
IAS/RSX-11M
RMS-11 MACRO Programmer's

Reference Manual
Order No. AA-0002A-TC

,~----------------------------

:<~:, IAS/RSX-11M

RM$i:i1 MACRO Programmer's

Re·ference Manual
Order No. AA-0002A-TC

digital equipment corporation • maynard. massachusetts

First Printing, May 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

7/78-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-lO
TYPESET-II

PREFACE

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2

CHAPTER 2

2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.2.2
2.3.2.2.1
2.3.2.2.2
2.3.2.2.3

CHAPTER 3

3.1

3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4

CHAPTER 4

4.1

CONTENTS

INTRODUCTION

RMS-ll OVERVIEW
Declaring RMS-ll Facilities
Accessing Fields in Control Blocks
Allocating and Initializing Control Blocks
Performing File and Record Operations

ORGANIZATION OF INFORMATION IN THIS MANUAL

THE PROGRAM INTERFACE WITH RMS-ll

RMS-ll RUNTIME PROCESSING MACROS
RMS-ll File Processing Macros
RMS-ll Record Processing Macros

USER CONTROL BLOCKS
The File Access Block (FAB)
The Record Access Block (RAB)
Extended Attribute Blocks (XABs)
The Name Block (NAM)

FILE AND RECORD OPERATIONS
File Operations
New Files and Extended Attribute Blocks
Existing Files and Extended Attribute Blocks
Record Operations
Record Access Streams
Specifying a Record for Access
Sequential Access Mode
Random Access Mode
Record's File Address (RFA) Access Mode

DECLARING RMS-ll FACILITIES

.MCALL DIRECTIVE - LISTING NAMES OF REQUIRED
MACRO DEFINITIONS
ORG$ - DECLARING THE PROCESSING ENVIRONMENT
DECLARING SPACE POOL REQUIREMENTS

POOL$B/POOL$E - Space Pool Declaration
P$BDB - Number of Buffer Descriptor Blocks
P$FAB - Number of Files Open Simultaneously
P$RAB - Non-indexed Record Access Streams
P$RABX - Indexed Record Access Streams
P$IDX - Number of Defined Keys
P$BUF - I/O Buffers

$INIT OR $INITIF - INITIALIZING THE RMS-ll
SYSTEM

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

$COMPARE - COMPARING THE CONTENTS OF A FIELD

iii

Page

xi

1-1

1-1
1-1
1-2
1-2
1-2
1-2

2-1

2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-8

3-1

3-1
3-3
3-4
3-5
3-6
3-6
3-7
3-7
3-8
3-.9

3-10

4-1

4-2

4.2
4.3
4.4
4.5
4.6

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.2.24
5.2.25
5.2.26
5.2.27
5.2.28
5.2.29
5.2.30

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2~8
6.2.9
6.2.10
6.2.11
6.2.12

CONTENTS (CONT.)

$FETCH - COPYING THE CONTENTS OF A FIELD
$OFF - RESETTING BITS WITHIN- A FIELD
$SET - SETTING BITS WITHIN A FIELD
$STORE - CHANGING THE CONTENTS OF A FIELD
$TESTBITS - TESTING BITS WITHIN A FIELD

THE FILE ACCESS BLOCK

ALLOCATING A FILE ACCESS BLOCK
FIELDS IN THE FI~E ACCESS BLOCK

ALQ - Allocation Quantity
BID - Block Identifier
BKS - Bucket Size
BLN - Block Length
BLS - Block Size
BPA - Buffer Pool Address
BPS - Buffer Pool Size
CTX - User Context Area
DEQ - Default File Extension Quantity
DEV - Device Characteristics
DNA - Default Name String Address
DNS - Default Name String Size
FAC - File Access
FNA - File Name String Address
FNS - File Name String Size
FOP - File Processing Options
FSZ - Fixed Control Area Size
IFI - Internal File Identifier
LCH - Logical Channel Number
MRN - Maximum Record Number
MRS - Maximum Record Size
NAM - Name Block Address
ORG - File Organization
RAT - Record Attributes
RFM - Record Format
RTV - Retrieval Window Size
SHR - File Sharing
STS - Completion Status Code
STV - Status Value
XAB - Extended Attribute Block Pointer

THE RECORD ACCESS BLOCK

ALLOCATING A RECORD ACCESS BLOCK
FIELDS IN THE RECORD ACCESS BLOCK

BID - Block Identifier
BKT Bucket Code
BLN Block Length
CTX User Context Area
FAB File Access Block Address
lSI Internal Stream Identifier
KBF Key Buffer Address
KRF Key of Reference
KSZ Key Size
MBC Multi-block Count
MBF Multi-buffer Count
RAC Record Access Mode

iv

Page

4-3
4-5
4-5
4-6
4-7

5-1

5-4
5-4
5-6
5-7
5-7
5-9
5-9
5-10
5-11
5-12
5-13
5-14
5-14
5-15
5-16
5-17
5-18
5-18
5-20
5-20
5-21
5-21
5-22
5-23
5-24
5-24
5-25
5-26
5-26
5-27
5-27
5-27

6-1

6-1
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-5
6-6
6-7
6-8
6-9
6-10

6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20
6.2.21

CHAPTER 7

7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.5

7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.7

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3

CHAPTER 9

9.1
9.1.1
9.1.2

CONTENTS (CONT.)

RBF - Record Address
RFA - Record's File Address
RHB - Record Header Buffer
ROP - Record Processing Options
RSZ: - Record Size
STS - Completion Status Code
STV - Status Value
UBF - User Record Area Address
USZ - User Record Area Size

EXTENDED ATTRIBUTE BLOCKS

ALLOCATING AN EXTENDED ATTRIBUTE BLOCK
LINKING AND ORDERING EXTENDED ATTRIBUTE BLOCKS
DATE AND TIME EXTENDED ATTRIBUTE BLOCKS
KEY DEFINITION EXTENDED ATTRIBUTE BLOCKS

DAN - Area Number for Data Buckets
DFL - Data Bucket Fill Size
FLG - Key Options
IAN - Area Number for Index Buckets
IFL - Index Bucket Fill Size
KNM - Key Name Address
LAN - Lowest Index Level Area Number
NUL - Null Key Value
POS - Key position
REF - Key of Reference
RVB - Root Virtual Block Number
SIZ - Key Size

FILE PROTECTION SPECIFICATION EXTENDED
ATTRIBUTE BLOCK

PRG - Programmer Number
PRJ - Project Number
PRO - System File Protection Value

ALLOCATION EXTENDED ATTRIBUTE BLOCKS
AID - Area Identification Number
ALN - Alignment Boundary Type
ALQ - Allocation Quantity
AOP - Allocation Options
BKZ - Bucket Size
DEQ - Default Area Extension Quantity
LOC - Allocation Starting Point
VOL - Relative Volume Number

SUMMARY EXTENDED ATTRIBUTE BLOCK

THE NAME BLOCK

ALLOCATING A NAME BLOCK
FIELDS IN THE NAME BLOCK

ESA - Expanded String Address
ESL - Expanded String Length
ESS - Expanded String Size

PERFORMING FILE AND RECORD OPERATIONS

FILE AND RECORD OPERATION MACRO CONVENTIONS
Format of File and Record Operation Macros
The RMS-11 Calling Sequence

v

Page

6-11
6-11
6-12
6-12
6-14
6-15
6-15
6-15
6-16

7-1

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-9
7-10
7-11
7-11
7-11
7-12
7-14
7-15
7-15

7-16
7-17
7-17
7-18
7-19
7-21
7-21
7-22
7-23
7-24
7-24
7-25
7-26
7-26

8-1

8-1
8-2
8-2
8-3
8-3

9-1

9-1
9-2
9-3

9.1.3
9.1.3.1

9.1.3.2

9.1.3.,3
9.1.4
9.1.5
9.2
9.2.1
9.2.2

9.2.3
9.2.4
9.2.5
9.2.6
9.3
9.3.1
9.3.1.1

9.3.1.2

9.3.2
9.3.2.1
9.3.2.2
9.3.2.3
9.3 .. 3
9.3.3.1
9.3.3.2
9.3.4

9.3.5
9.3.5.1
9.3.5.2
9.3.5.2.1
9.3.5.2.2
9.3.6
9.3.6.1

9.3.6.1.1
9.3.6.1.2
9.3.6.1.3
9.3.6.2
9.3.6.2.1
9.3.6.2.2
9.3.6.2.3
9.3.6.3
9.3.6.3.1
9.3.6.3.2
9.3.6.3.3
9.3.6.4
9.3.6.4.1
9.3.6.4.2
9.3.6.4.3
9.3.6.5
9.3.6.6

CONTENTS (CONT.)

Completion Routine Conventions
Register Usage Conventions Within
Completion Routines
Issuing RMS-ll Macro Calls Within
Completion Routines
Returning From a Completion Routine
Control Block Field Usage
Status Codes .

PERFORMING FILE OPERATIONS
$CREATE - Creating an RMS-ll File
$OPEN - Opening an Existing File for
Processing
$DISPLAY - Obtaining Attributes of a File
$ERASE - Deleting a File
$EXTEND - Extending Allocated Space
$CLOSE - Terminating File Processing

PERFORMING RECORD OPERATIONS
Record Access Streams
$CONNECT - Establishing a Record Access
Stream
$DISCONNECT - Terminating a Record Access
Stream
Record Operations and File Sharing
File Organizations and File Sharing
Program Sharing Information
Bucket Locking
Current Context of Record Operations
Understanding the Current Record
Understanding the Next Record
Synchronous and Asynchronous Record
Operations
Accessing Records
Specifying an Access Mode
Specifying a Record Transfer Mode
The RBF and RSZ Fields of the RAB
The UBF and USZ Fields of the RAB
Record Operation Macros
$FIND - Locating and Obtaining the RFA of a
Record
$FIND and the Sequential File Organization
$FIND and the Relative File Organization
$FIND and the Indexed File Organization
$GET - Retrieving a Record
$GET and the Sequential File Organization
$GET and the Relative File Organization
$GET and the Indexed File Organization
$PUT - Writing a New Record to a File
$PUT and the Sequential File Organization
$PUT and the Relative File Organization
$PUT and the Indexed File Organization
$UPDATE - Rewriting an Existing Record
$UPDATE and the Sequential File Organization
$UPDATE and the Relative File Organization
$UPDATE and the Indexed File Organization
$DELETE - Deleting a Record
$REWIND - Positioning to the Beginning of
a File

vi

Page

9-4

9-4

9-4
9-5
9-5
9-6
9-6
9-7

9-9
9-12
9-13
9-14
9-16
9-17
9-17

9-18

9-19
9-20
9-20
9-20
9-21
9-23
9-25
9-25

9-26
9-28
9-28
9-28
9-29
9-29
9-30

9-31
9-32
9-32
9-32
9-33
9-35
9-35
9-35
9-35
9-37
9-37
9-37
9-38
9-39
9-39
9-39
9-40

9-41

9.3.6.7
9.3.6.8
9.3.6.9

APPENDIX A

A.l
A.2
A.3
A. 3.1
A.3.2

APPENDIX B

B.l
B.2
B.3
B.4

APPENDIX C

C.l
C.l.l
C.l.2
C.l.3
C.l.4
C.l.S
C.2
C.2.1
C.2.1.1
C.2.2
C.2.3
C.2.3.1
C.2.4
C.2.S
C.2.6
C.3
C.3.1
C.3.2
C.3.3
C.3.4
C.4
C.S

APPENDIX D

D.l
D.2

D.3

APPENDIX E

APPENDIX F

CONTENTS (CONT.)

$TRUNCATE - Truncating a Sequential File
$FLUSH - Writing Out Modified I/O Buffers
$NXTVOL - Continue Processing on Next Volume

COMPLETION STATUS CODES

SUCCESSFUL COMPLETION STATUS CODES
ERROR COMPLETION STATUS CODES
FATAL ERROR CRASH ROUTINE

Fatal User Call Errors
RMS-ll Inconsistent Internal Conditions
Errors

PERFORMING BLOCK I/O

SPECIFYING BLOCK ACCESS
$READ - RETRIEVING VIRTUAL BLOCKS
$WRITE - WRITING VIRTUAL BLOCKS
$SPACE - FORWARD AND BACKWARD SPACING OF
MAGNETIC TAPE FILES

MAGNETIC TAPE HANDLING

MAGNETIC TAPE FILE PROCESSING
Access to Magnetic Tape Volumes
Rewinding Volume Sets
Positioning to the Next File Position
Single File Operations
Multiple File Operations

VOLUME AND FILE LABELS
Volume Label Format
Contents of Owner Identification Field
User Volume Labels
File Header Labels
File Identifier Processing by RMS-ll
End-of-Volume Labels
File Trailer Labels
User File Labels

FILE STRUCTURES
Single File Single Volume
Single File Multi-Volume
Multi-File Single Volume
Multi-File Multi-Volume

END OF TAPE HANDLING
ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS
COMPATIBLE)

FORMULAS

SEQUENTIAL FILES - AVERAGE RECORDS PER BLOCK
RELATIVE AND INDEXED FILES - AVERAGE DATA
RECORDS PER BUCKET
INDEXED-FILES - AVERAGE ENTRIES PER INDEX
AND ALTERNATE KEY DATA LEVEL

SAMPLE CODE SEGMENTS

ASSEMBLING AND TASK BUILDING

vii

Page

9-42
9-42
9-43

A-I

A-2
A-2
A-13
A-13

A-14

B-1

B-1
B-2
B-3

B-4

C-l

C-l
C-l
C-l
C-2
C-2
C-3
C-3
C-3
C-4
C-5
C-5
C-8
C-9
C-9
C-9
C-9
C-9
C-10
C-IO
C-IO
C-10

C-10

D-l

0-1

0-2

0-3

E-l

F-l

INDEX

FIGURE

TABLE

7-1
7-2
9-1
C-l

2-1
2-2
2-3
3-1
3-2
4-1
5-1
6-1
6-2
7-1
7-2
7-3
7-4
7-5
7-6
8-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11

9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
A-I
A-2
B-1

CONTENTS (CONT.)

FIGURES

Format of PRO Field
File Access Bits
Argument List Format
ANSI Magnetic Tape File Header Block (FCS
Compatible)

TABLES

RMS-ll File Processing Macros
RMS-ll Record Processing Macros
User Control Blocks
Minimum Set of .MCALL Directives
Space Pool Declaration Macros
Runtime Field Access Macros
File Access Block Fields
Record Access Block Fields
Minimum and Maximum Number of Buffers
Date and Time XAB Fields
Key Definition XAB Fields
Key Option Combinations
File Protection Specification XAB Fields
Allocation XAB Fields
Summary XAB Fields
Name Block Fields
RMS-ll File Operation Macros
$CREATE FAB Fields
$OPEN FAB Fields
$DISPLAY FAB Fields
$ERASE FAB Fields
$EXTEND FAB Fields
$CLOSE FAB Fields
$CONNECT RAB Fields
$DISCONNECT RAB Fields
$FREE RAB Fields
Record Access Stream Context After Record
Operations
$WAIT RAB Fields
RMS-ll Record Processing Macros
$FIND RAB Fields
$GET RAB Fields
$PUT RAB Fields
$UPDATE RAB Fields
$DELETE RAB Fields
$REWIND RAB Fields
$TRUNCATE RAB Fields
$FLUSH RAB Fields
$NXTVOL RAB Fields
Successful Completion Status Codes
Error Completion Status Codes
$READ RAB Fields

viii

Page

Index-l

7-18
7-18
9-3

C-ll

2-2
2-3
2-4
3-2
3-5
4-1
5-5
6-2
6-9
7-3
7-4
7-7
7-16
7-20
7-26
8-2
9-7
9-8
9-10
9-13
9-14
9-15
9-16
9-18
9-19
9-23

9-23
9-27
9-30
9-31
9-33
9-36
9-39
9-41
9-41
9-42
9-43
9-44
A-2
A-2
B-2

B-2
B-3
C-l
C-2
C-3
0-1
0-2
0-3

CONTENTS (CONT.)

TABLES

$WRITE RAB Fields
$SPACE RAB Fields
Volume Label Format
File Header Label (HOR1)
File Header Format (HOR2)
Average Records Per Block in Sequential Files
Average User Data Records per Bucket
Average Entries Per Index and Alternate Key
Oata Level Bucket

ix

B-4
B-4
C-3
C-6
C-7
0-1
0-2

0-3

PREFACE

This manual contains a complete description of RMS-Il (Record
Management Services for the PDP-II) as implemented on the lAS and
RSX-llM operating systems. Because the file and record services
described herein apply to MACRO-II programs, you should be familiar
with both the RSX-ll MACRO-II REFERENCE MANUAL and an appropriate
PDP-II PROCESSOR HANDBOOK. Additionally, you should read the
INTRODUCTION TO RMS-ll MANUAL before us~ng this manual.

Throughout this manual, the following conventions are used in the
description of RMS-Il macro syntax.

1. Upper case words and letters, and punctuation marks other
than those described in this preface, are written as shown.

2. Lower case words indicate that a value is to be substituted.
The accompanying text specifies the nature of the item to be
substituted.

3. Square brackets ([]), unless used in a OIC specification,
enclose optional items.

4. An ellipsis (•••) indicates that the preceding item or
bracketed group may be repeated any number of times.

Lastly, unless otherwise noted, decimal radix is used for numeric
values in all examples and accompanying explanatory text.

xi

CHAPTER 1

INTRODUCTION

1.1 RMS-ll OVERVIEW

Record Management Services for PDP-II operating systems (RMS-ll) is a
set of routines that enables programs to process files and records
within files. RMS-ll's variety of file organizations and record
access modes gives you the ability to choose processing methods best
suited to your application. RMS-ll files can be organized
sequentially, relatively, or with embedded indexes. Using these file
organizations, you can access records in a number of ways:

1. Sequentially.

2. Randomly by relative record number, key value, or record's
file address (RFA).

3. Dynamically through a mixture of sequential and random access
modes.

Through control blocks allocated in your program at assembly time, you
transmit file and record operation requests to RMS-ll. Through these
same control blocks, RMS-ll returns to you the data contents of files,
attribute information about files, and status codes.

To utilize RMS-ll facilities, you must understand how to:

1. Declare the RMS-ll facilities that your program requires.

2. Access fields in control blocks at runtime.

3. Allocate and initialize control blocks.

4. Perform file and record operations.

1.1.1 Declaring RMS-ll Facilities

Before processing an RMS-ll file, you must declare the RMS-ll
facilities that your program requires and allocate space in your
program for I/O buffers and internal RMS-ll control structures.
RMS-ll provides a set of macros that allows you to calculate buffer
and control structure requirements and provide for the selective
linking of only those portions of RMS-ll actually required by your
program.

1-1

INTRODUCTION

1.1.2 Accessing Fields in Control Blocks

You communicate with RMS-ll through control blocks. Control blocks
are formatted areas in your program. Each control block consists of
individual data fields. At runtime, you can access control block data
fields through special RMS-ll macros.

1.1.3 Allocating and Initializing Control Blocks

You must allocate space in your program for control blocks at
assembly-time. Additionally, you can establish initial values for the
fields in these blocks through assembly-time initialization macros.

1.1.4 Performing File and Record Operations

In combination with control blocks, a set of RMS-ll file and record
operation macros forms the complete runtime program interface with
RMS-ll. Each such macro represents a request for a particular file or
record service provided by RMS-ll. The fields of control blocks
further describe the request. Using particular RMS-ll macros, you
can:

• Create new files

• Process existing files

• Extend or delete files

• Read, write, update, or delete records within files

1.2 ORGANIZATION OF INFORMATION IN THIS MANUAL

The organization of this manual corresponds to the areas discussed in
the previous overview. However, an additional chapter is provided.
Chapter 2 provides an overview of the program interface with RMS-ll,
including runtime processing macros and user control blocks and the
interaction between these elements to produce file and record
operations.

Chapter 3 describes the declaration of RMS-ll facilities. It includes
descriptions of macros that declare the use of other macros, cause the
initialization of the RMS-ll system at runtime, declare buffer and
control structure space requirements, and specify the processing
environment.

Chapter 4, on accessing control block fields at runtime, describes a
set of general-purpose macros. These macros result in the generation
of code that, at runtime, manipulates the contents of control block
fields.

Chapter 5 discusses the allocation of the user control block known as
the File Access Block (FAB). This chapter further provides
descriptions of the function of each field in the FAB and the macros
provided by RMS-ll to initialize these fields at assembly-time.

Chapter 6 describes the user control block known as the Record Access
Block (RAB).

1-2

INTRODUCTION

Chapter 7 details control blocks known as Extended Attribute Blocks
(XABs).

Chapter 8 discusses the Name Block (NAM).

Chapter 9 details file and record operations. In addition to
describing the macros that cause these operations, this chapter also
discusses establishing and terminating a record aGcess stream, the
current context of record operations, file sharing, synchronous and
asynchronous operations, and record transfer modes.

Additionally, a number of appendixes provide detailed information of
further ·interest. Appendix A lists the status codes returned by
RMS-ll. Appendix B describes block I/O, a facility that allows your
program to bypass entirely the record processing capabilities of
RMS-ll. Appendix C summarizes the handling of ANSI-labeled magnetic
tapes.

Appendix D contains formulas enabling you to calculate the data
capacities of RMS-ll files. Sample code segments demonstrating the
program interface to RMS-ll are shown in Appendix E.

Finally, Appendix F summarizes the steps you must take to assembly and
task build programs that use RMS-ll facilities.

1-3

CHAPTER 2

THE PROGRAM INTERFACE WITH RMS-ll

To obtain RMS-ll services at runtime, your program must contain
processing macros and user control blocks. This chapter introduces
these macros and control blocks and summarizes their role in the
processing of RMS-ll files. Subsequent chapters expand this
introductory material and provide the detailed information necessary
to write programs that use RMS-ll facilities.

RMS-ll processing macros are expanded at assembly-time. The resulting
code is executed at runtime to perform the desired operation. Each
macro represents a program request for a file or record related
service.

With every request for a service, information is exchanged between
your program and RMS~ll. User control blocks are the means by which
this exchange occurs. Prior to issuing a request for an RMS-ll
service, your program must place information detailing the request in
a control block. For example, a request to open a file must be
accompanied by the name of the file, information on how the file will
be accessed, and details on how the file is to be shared. As another
example, a program request to read a record from a file must specify
an access mode and, if appropriate, a key value identifying the
desired record.

After a request for service has been processed, RMS-ll uses the same
control block to return information to your program. When a file has
been successfully opened, RMS-ll provides attribute information such
as the organization of the file and the format of the records in the
file. After successfully obtaining a record from a file, RMS-ll
provides your program with the location in memory and length of the
record retrieved.

The amount of information exchanged between RMS-ll and your program
varies with the nature of the request and the attributes of the file
being processed. Detailed information on the input to and output from
each type of runtime processing macro is provided in Chapter 9 of this
manual. This current chapter emphasizes only the general interface
used by a program when requesting RMS-ll services. This interface is
described in three sections:

• Runtime processing macros

• User control blocks

• File and record operations

2-1

THE PROGRAM INTERFACE WITH RMS-II

Table 2-3
User Control Blocks

Block Name

File Access Block (FAB)

Record Access Block (RAB)

Extended Attribute Blocks (XABs)

Name Block (NAM)

Function

Describes a file and contains
file-related information.

Describes a
contains
information.

record and
record-related

Contain file attribute
information beyond that in the
FAB.

Describes a location
containing the expanded file
specification resulting from
the application of default
values to a primary name
string.

The sUbsections that follow describe each control block listed in
Table 2-3.

2.2.1 The File Access Block (FAB)

At runtime, a File Access Block (FAB) represents a
The fields of the FAB are used to contain
information as:

• The name of file

• The organization of the file

particular file.
such file-related

• The operations your program will perform on the file

• The format of records within the file

• Record size information

• Allocation information

2.2.2 The Record Access Block (RAB)

A Record Access Block (RAB) is needed whenever individual records in a
file are to be accessed.

A RAB describes an individual record. It is used to communicate
information about that record between your program and RMS-II. Once a
file has been opened, you will use the fields of the RAB to describe a
record to be accessed.

2-4

THE PROGRAM INTERFACE WITH RMS-II

2.2.3 Extended Attribute Blocks (XABs)

There are several types of Extended Attribute Blocks (XABs). Each
type contains fields that represent one attribute of a file. These
attributes supplement those attributes in a File Access Block.
Specifically, there are Extended Attribute Blocks that describe:

• File creation and revision dates

• Primary and alternate key definitions for indexed files

• File protection specification

• Allocation information

You may use Extended Attribute Blocks when you:

1. Create a new file.

2. Request that RMS-Il transmit the extended attributes of an
existing file to your program.

In the first instance, your program uses XABs to pass file definition
information to RMS-ll. In the second instance, RMS-Il requires XABs
in order to pass attribute information to your program.

2.2.4 The Name Block (NAM)

A Name Block (NAM) is an optional user control block. It is used to
contain the full file specification resulting from the merger of
explicit file name information with program- and system-provided
defaults.

2.3 FILE AND RECORD OPERATIONS

To obtain any RMS-Il service, your program uses a combination of a
runtime processing macro call and a user control block. The primary
argument of every runtime processing macro, therefore, is the address
of a user control block.

In the following sections, the division of RMS-ll services into file
and rec?rd operations is continued to show the relationship of runtime
processlng macros with particular user control blocks. For each type
of operation, the relationship among control blocks is described.

2.3.1 File Operations

The primary argument of a file processing macro call is the address of
a FAB. The macro call itself represents the type of file service
requested (e.g., $OPEN, $DISPLAY, $CLOSE, etc.) and the FAB identifies
a specific file associated with the request. The combination of macro
call and FAB results in a file operation.

Since each FAB represents a single file, your program must contain one
FAB for each file that is open simultaneously.

2-5

THE PROGRAM INTERFACE WITH RMS-ll

You can optionally associate a Name Block (NAM) with a FAB. This
association involves setting the address of the NAM in a data field of
the FAB before the file is opened. While opening the file, RMS-ll
places the results of the merger of explicit and default file
specification information in an area described by the Name Block.

Your program can also associate Extended Attribute Blocks (XABs) with
a File Access Block. The presence and purpose of associated XABs are
related to whether a new file or an existing file will be processed.
In both instances, the presence of associated XABs is indicated by the
address of the first such block in a data field of the FAB. When
multiple XABs for the same file are present, they are chained together
through address fields in the XABs themselves.

2.3.1.1 New Files and Extended Attribute Blocks - You create a new
RMS-ll file through a combination of the $CREATE macro call and a File
Access Block. You will use the FAB to pass to RMS-ll a description of
the primary attributes of the file, such as the file's organization
and the format and size of the records the file will contain.
However, there are no fields in a FAB that allow you to specify
optional file attributes such as a protection specification, nor does
the FAB allow you to define keys for an indexed file. Therefore, you
will use XABs to pass to RMS-ll descriptions of file attributes beyond
those contained in the FAB.

2.3.1.2 Existing
attribute blocks
an existing file.
create the file.
However, there are
that represents an

Files and Extended Attribute Blocks - Extended
are never used to define or alter the attributes of
The attributes of a file are fixed at the time you

Thereafter, these attributes cannot be altered.
two occasions when XABs are associated with a FAB
existing file:

1. Your program contains a $DISPLAY macro.

2. You wish automatically to obtain extended file attributes as
additional outputs of the $OPEN macro.

When your program issues a $DISPLAY macro call, RMS-ll retrieves the
address of an XAB from a field in the FAB associated with the call.
This XAB may be the first of a chained list of such blocks. Further,
each block is self-identifying. That is, a field in the block
specifies the type of information the block can contain, e.g., key
definition, file protection specification, etc. Based on the types of
XABs present, RMS-ll obtains the specified attribute information from
the file and stores it in the appropriate XABs.

When your program issues an $OPEN macro call, RMS-ll examines the FAB
associated with the call for the address of an XAB. If this block
(possibly a chain of blocks) is present, RMS-ll automatically returns
the appropriate attribute information into the fields of the block.

2-6

THE PROGRAM INTERFACE WITH RMS-ll

2.3.2 Record Operations

The primary argument of a record processing macro (e.g., $GET, $PUT,
etc.) is the address of a Record Access Block. The macro call
represents the type of record service requested and the RAB identifies
a record associated with the request. The combination of macro call
and RAB results in a record operation.

Once a file has been opened by a $OPEN or $CREATE file operation, your
program must activate a record access stream before performing record
operations. After a record access stream has been activated, your
program can specify a record for access through the use of three
RMS-ll access modes. The following subsections, therefore, describe:

• Record access streams

• Specifying a record for access

2.3.2.1 Record Access Streams - A record access stream is the
association of a RAB with a FAB. This association occurs through the
issuance of a $CONNECT macro call. Once this association has been
established, your program can process records in the file represented
by the FAB. When processing a relative or indexed file, you can
associate more than one RAB with the same FAB. Each association
represents an independent record access stream to the same file. For
example, your program could access records within an indexed file by
primary key while, through a second record access stream, accessing
records within the same file through the index associated with an
alternate key.

At any point in time, a particular RAB can be associated with only a
single FAB. The number of RABs required by a program, therefore,
depends on the maximum number of record access streams active
simultaneously.

2.3.2.2 Specifying a Record for Access - The organization of a file
establishes the techniques (called access modes) that can be used to
specify records for access. The organization of a file is fixed at
the time the file is created. The access mode used to process records
in a file, however, can be different each time the file is opened.
Further, your program can dynamically switch from one access mode to
another during the runtime processing of a file.

RMS-ll supports three record access modes:

1. Sequential

2. Random

3. Record's File Address (RFA)

The following subsections describe each access mode.

2.3.2.2.1 Sequential Access Mode - When using sequential access mode,
your program issues a series of requests for the next record. RMS-ll
interprets these requests in the context of the organization of the
file being processed. Thus, the order in which records are read or
written is governed by the structure, or organization, of the file.

2-7

THE PROGRAM INTERFACE WITH RMS-ll

2.3.2.2.2 Random Access Mode - In random access mode, your program,
rather than the organization of the file being accessed, determines
the order in which records are processed. Each program request for a
record specifies, through fields in the RAB, the identification of the
record of interest. Thus, when using random access mode, your program
does not read or write the next record. Rather, your program
identifies a particular record. The identifier associated with the
request allows RMS-ll to locate the record within the file. The
random access mode cannot be used with sequentially organized files.
Both the relative and indexed file organizations, however, permit
random access to records.

2.3.2.2.3 Record's File Address (RFA) Access Mode - Record's file
address (RFA) access mode is similar to random access mode in that it
allows a specific record to be identified for retrieval. It can be
used with any file organization so long as the file resides on a disk
device. It cannot, however, be used for write operations.

The term record's file address is meant to convey the notion that
every record within a file has a unique address. The actual format of
this address depends on the organization of the file. In all
instances, however, only RMS-Il can interpret this format.

The most important feature of record's file address access is that the
RFA of any record remains constant while the record exists in the
file. After every successful $GET, $PUT, or $FIND operation, the RFA
of the desired record is returned by RMS-ll in a field of the Record
Access Block associated with the operation. Your program can then
save this RFA to be used again later to retrieve the same record. It
is not required that an RFA be used for subsequent retrieval only
during the current execution of the program. During a file's
existence, RFA's can be used at any subsequent point in time.

2-8

CHAPTER 3

DECLARING RMS-ll FACILITIES

Every program that processes RMS-ll files must contain directives and
special-purpose macros that declare the RMS-ll facilities required at
assembly-time and at runtime. This chapter describes these directives
and macros.

To declare RMS-ll facilities that are used by your program, you must
do the following:

1. List RMS-ll macros in .MCALL directives.

2. Declare the processing environment.

3. Declare space pool requirements.

4. Issue an $INIT or an $INITIF macro.

The sections of this chapter describe each of these requirements.

Unless otherwise
use decimal as
numeric values.

NOTE

noted, RMS-ll macros
the default radix for

3.1 .MCALL DIRECTIVE - LISTING NAMES OF REQUIRED MACRO DEFINITIONS

All macro calls issued in your program must be listed as arguments in
an • MCALL directive. Listing the macro calls in this way allows the
corresponding macro definitions to be read in from macro libraries
during assembly.

Each .MCALL directive takes the following form:

• MCALL

where

argl,etc.

argl,arg2, ••• ,argn

represents a list of symbolic names of the macro
definitions required in the assembly of the
program. Macro names may be listed in any order.

The number of .MCALL directives needed for RMS-ll macros can be
minimized. Table 3-1 lists a set of macro names. The definitions in
the system macro library for most of these macros contain embedded
.MCALL directives. These embedded .MCALL directives list as arguments
the names of additional RMS-ll macros. Thus, by providing .MCALL

3-1

DECLARING RMS-ll FACILITIES

directives with the names of the macros in Table 3-1, you effectively
can provide .MCALL directives for any and all RMS-II macros used in a
program.

Table 3-1
Minimum Set of .MCALL Directives

Us.er Supplied
.MCALL Argument Embedded .MCALL Arguments

ORG$

POOL$B

(none)

Space pool declaration macros (described in
Section 3.3).

$INIT or $INITIF (none)

$GNCAL

FAB$B

RAB$B

XAB$B

NAM$B

$FBCAL

$RBCAL

Runtime field manipulation macros (described
in Chapter 4) and completion routine macros
(described in Chapter 9).

Block allocation and File Access
initialization
5) •

macros (described in Chapter

Block allocation and Record Access
initialization
6) •

macros {described in Chapter

Extended Attribute Block allocation and
initialization macros (described in Chapter
7) •

Name Block allocation and initialization
macros (described in Chapter 8).

File processing macros (described in Chapter
9) •

Record processing
Chapter 9).

macros {described in

As shown in Table 3-1, you can ensure that all RMS-ll macros used in a
program appear as arguments in .MCALL directives by coding the
following sequence of .MCALL directives and macro calls.

• MCALL
.MCALL
• MCALL
$GNCAL
$FBCAL
$RBCAL

ORG$,POOL$B,$INIT
$GNCAL,FAB$B,RABB,XABB,NAM$B
$FBCAL,$RBCAL

In the preceding example, the $GNCAL, $FBCAL and $RBCAL macro calls
are issued after being listed in .MCALL directives. By issuing these
macro calls, you will cause the embedded • MCALL directives to take
effect. Naturally, you can omit any macro names from • MCALL
directives that do not apply to a particular program. If Name Blocks
or Extended Attribute Blocks are not used, for example, there would be
no need for listing the NAM$B or XAB$B macros. Further, you may
choose not to use the $RBCAL or $FBCAL macros, for example, but rather

3-2

DECLARING RMS-ll FACILITIES

to list separately each record processing and file processing macro
actually appearing in your program.

3.2 ORG$ - DECLARING THE PROCESSING ENVIRONMENT

You must include one or more ORG$ macros within the set of modules
that you will link together through the Task Builder to produce an
executable task.

NOTE

All ORG$ macros must be in modules that
are part of the root of your task. An
ORG$ macro for a particular file
organization must be present even if no
record operations are performed when
such a file is opened.

The presence of ORG$ macros in your source modules allows the Task
Builder to select for linking only those portions of RMS-Il actually
required by your program. Each ORG$ macro declares a unique
combination of file organization and record operations.

The ORG$ macro takes the following form:

where

ORG$ org[,<recop[,recop •••]>]

org

recop

is the type of file organization to be processed.
One of the following symbolic values must be
specified:

lOX - indexed file organization

REL - relative file organization

SEQ - sequential file organization

is a symbolic value identifying a type of
operation that will be performed on a file of the
specified organization. If a single value is
specified, the angle brackets are not needed. If
multiple values are specified, you must enclose
them in angle brackets and use commas to separate
each value from the preceding value. One or more
of the following may be specified in any order:

eRE - indicates a file of the
organization may be created

DEL - indicates $OELETE operations

FIN - indicates $FINO operations

GET - indicates $GET operations

PUT - indicates $PUT operations

UPD - indicates $UPOATE operations

3-3

specified

DECLARING RMS-ll FACILITIES

The following is an example of the use of ORG$ macros in a source
module:

ORG$
ORG$
ORG$

SEQ,<CRE,PUT)
IDX,<GET,UPD,FIN)
REL

In this example, the user declares that one or more sequential files
will be created and $PUT operations performed. One or more indexed
files will be opened and $GET, $UPDATE, and $FIND operations will be
performed on such files. Finally, one or more relative files will be
opened but no record operations will be performed (possibly such files
will be opened only for the purpose of issuing an $EXTEND or $DISPLAY
file operation).

3.3 DECLARING SPACE POOL REQUIREMENTS

RMS-li requires a collection of I/O buffers and internal control
structures to support file processing at runtime. The area in your
program occupied by these buffers and control structures is known as
the space pool. RMS-ll provides facilities that ensure that the space
pool is large enough to accommodate only the requirements of the
largest number of files that can be open simultaneously. By using
these facilities at assembly-time, your program provides information
that allows RMS-Il to calculate the minimum size requirements of the
space pool.

The major portion of the space pool is composed of I/O buffers. To
the user program, record processing under RMS-il appears as the
movement of records directly between a file and the program itself.
Transparent to the user program, however, RMS-il actually reads and
writes either virtual blocks or buckets into I/O buffers. When the
organization of a particular file is sequential, RMS-ll reads or
writes virtual blocks. For relative and indexed files, RMS-ll reads
or writes buckets.

The size of I/O buffers depends on the organizations of the files
being processed, the number of files open simultaneously, and the
number of simultaneously active record access streams. In providing
the information needed to calculate the size requirements for the I/O
buffers portion of the space pool, you have two choices:

1. A completely centralized space pool.

2. Private I/O buffers for one or more files.

In a completely centralized space pool, all I/O buffers as well as the
internal control structures required for file processing are
inaccessible to your program. RMS-li totally manages the space within
the pool and allocates portions, as needed, for buffer space and
control structures for open files.

Unlike a completely centralized space pool, the use of private I/O
buffers allows you some measure of control over I/O buffer space. You
can allocate private I/O buffers on a per-file basis by specifying the
address and total size of these buffers in fields of the File Access
Block associated with a file. When the file is open, this buffer
space is completely managed by RMS-ll and your program must not access
it. However, when the file is closed, the private I/O buffer space is
available for use by your program.

3-4

DECLARING RMS-ll FACILITIES

The major advantage of private I/O buffers is avoidance of
fragmentation of a completely centralized space pool. Since
particular files have varying buffer requirements based on their
organization, a centralized space pool can reach the point where there
is sufficient total space available for the opening of an additional
file but the space is not contiguous. When such a situation arises,
the desired file cannot be opened.

Whether you choose a completely centralized space pool or private I/O
buffers, RMS-ll always requires certain internal control structures
that must be allocated in the space pool to support file processing.
Unlike the handling of I/O buffers, your program can never access
these control structures or recover the space they occupy.

The number of internal control structures required by RMS-ll in the
space pool is based on the organizations of the files being processed,
the maximum number of files open simultaneously, and the maximum
number of simultaneously connected record access streams. Once again,
your program must provide, at assembly-time, the information needed to
determine the size requirements of the internal control structures
that must be allocated in the space pool.

The presence in your source modules of the macros listed in Table 3-2
allows RMS-ll to determine the size requirements for your program's
space pool. The descriptions following the table identify those
macros that are always required and those that are needed only in
specific instances. If you want private I/O buffers for one or more
files, you must also refer to the descriptions of the BPA (buffer pool
address) and BPS (buffer pool size) fields in Chapter 5.

Macro

POOL$B

P$BDB

P$FAB

P$RAB

P$RABX

P$IDX

P$BUF

POOL$E

Table 3-2
Space Pool Declaration Macros

Description

Beginning of space pool declaration

Number of buffer descriptor blocks

Number of files open simultaneously

Non-indexed record access streams active
simultaneously

Indexed record access streams active simultaneously

Number of defined keys

Input/output buffer requirements

End of space pool declaration

3.3.1 POOL$B/POOL$E - Space Pool Declaration

The POOL$B macro is required.
space pool definition macros.

POOL$B

It marks the beginning of a sequence of
This macro takes the form:

3-5

DECLARING RMS-ll FACILITIES

The POOL$E macro is also required. It marks the end of a sequence of
space pool declaration macros. It takes the form:

POOL$E

The remaining macros listed in Table 3-2 can be coded in any order
following the POOL$B macro and before the POOL$E macro. Multiple
instances of such space pool declarations can occur among the set of
source modules that you will link together through the use of the Task
Builder. The Task Builder will sum the size requirements indicated by
all such space pool declarations.

3.3.2 P$BDB - Number of Buffer Descriptor Blocks

The P$BDB macro is required. It ensures that the space pool contains
sufficient space for internal RMS-II control structures known as
buffer descriptor blocks.

The format of this macro is:

P$BDB bdbnum

where

bdbnum

where

maxbuf

maxrel

maxidx

is a numeric value or symbol representing the
number of buffer descriptor blocks required to
support the file processing performed by your
program. To determine this value, you must apply
the following formula:

bdbnum = maxbuf + maxrel + (2 * maxidx)

is the maximum number of I/O buffers ever in use
for simultaneously open files. You calculate this
value by totaling the multi-buffer counts in the
MBF fields of RABs for all combinations of
simultaneously connected record access streams.
The maximum value among all such combinations is
the desired maxbuf value.

is the maximum number of record access streams
ever connected simultaneously for write operations
to relative files (whether or not an actual write
operation is performed).

is the maximum number of record access streams
ever active simultaneously for write operations to
indexed files (whether or not an actual write
operation is performed).

3.3.3 P$FAB - Number of Files Open Simultaneously

The P$FAB macro is required.
storage in the space pool
related to File Access Blocks.

P$FAB number

It ensures that there will be sufficient
for internal RMS-II control structures

The format of this macro is:

3-6

where

number

DECLARING RMS-ll FACILITIES

is a numeric value representing the maximum number
of files that can be open simultaneously at run
time.

An example of the P$FAB macro follows:

POOL$B

P$FAB 4

POOL$E

In this example, the user specifies that a maximum of four files can
be open simultaneously at run-time.

3.3.4 P$RAB - Non-indexed Record Access Streams

The P$RAB macro ensures that there will be sufficient storage in the
space pool to accommodate internal control structures related to
Record Access Blocks for relative or sequential files. This macro can
be omitted, therefore, if no record operations are performed on
relative or sequential files.

The format of the P$RAB macro is as follows:

P$RAB rabs

where

rabs is a numeric value representing the maximum number
of Record Access Blocks that will be connected
simultaneously for relative and sequential files.

In the following example, the user declares that a maximum of three
Record Access Blocks, representing access streams to non-indexed
files, will be connected simultaneously.

POOL$B

P$RAB 3

POOL$E

3.3.5 P$RABX - Indexed Record Access Streams

The P$RABX macro ensures that there will be room in the space pool for
internal RMS-ll control structures related to indexed files. This
macro is required, therefore, if the program accesses records in any
indexed file. The format of this macro is as follows:

P$RABX rabs,ksize,ckeys

3-7

where

rabs

ksize

ckeys

DECLARING RMS-Il FACILITIES

is a numeric value representing the maximum number
of Record Access Blocks that will be connected
simultaneously for indexed files.

is a numeric value representing the size (in
bytes) of the largest key field within all the
files represented by the first argument.

is a numeric value representing the number of keys
that can change when a $UPDATE operation is
performed on an indexed file. This value must be
specified whenever an indexed file is accessed for
$UPDATE operations (i.e., the FAC field in the FAB
for the associated file contains FB$UPD), whether
or not a $UPDATE is actually performed.

The following is an example of the P$RABX macro:

POOL$B

P$RABX 1,32

POOL$E

In this example, the user specifies that there will be at most a
single Record Access Block connected for processing an indexed file at
any point during program execution. The size of the largest key field
in any such file is 32 bytes and no keys can change during a $UPDATE
operation.

3.3.6 P$IDX - Number of Defined Keys

The P$IDX macro reserves storage in the space pool for control
structures containing internal key summary information. This macro is
required if any indexed file is accessed by your program. Its format
is as follows:

P$IDX keys

where

keys is a numeric value representing the total number
of all keys defined for all indexed files opened
simultaneously. This total must be specified even
if certain keys within one or more files are never
used for retrieval operations.

The following is an example of the P$IDX macro:

POOL$B

P$IDX 3

POOL$E
3-8

DECLARING RMS-Il FACILITIES

In this example, the user declares that a total of three keys are
defined among all indexed files that are open simultaneously.

3.3.7 P$BUF - I/O Buffers

The P$BUF macro ensures that the space pool is large enough for I/O
buffers required to support the file and record processing performed
by your program. If you choose to allocate private I/O buffers for
all files, this macro can be omitted. If, however, one or more files
will be processed without associated private I/O buffers, this macro
is required.

The amount of buffer space required depends on the following:

• The maximum number of simultaneously active record access
streams.

• The bucket size or block size of the file associated with
each stream.

• The multi-block count (MBC) specified in
Blocks representing streams connected
files.

the Record Access
to disk sequential

• The multi-buffer count (MBF) specified in each Record Access
Block representing each stream.

To calculate buffer space requirements, you employ the following
formula:

where

buffsize

stmsizel,
stmsize2,
etc.

stmsizel[+stmsize2 .•• +stmsizen]

are the I/O buffer space requirements (in bytes)
for each simultaneously active record access
stream associated with a file without private I/O
buffers. The requirements of each such stream are
determined as follows:

where

FOR DISK FILES

stmsize=BKS*{SI2*MBC)*MBF

BKS is the number of virtual blocks in the
largest size bucket of the file
associated with the stream. For
sequential files, BKS equals I in this
formula.

3-9

DECLARING RMS-ll FACILITIES

where

MBC is the value contained in the
multi-block count (MBC) field of the
Record Access Block associated with
the stream. This value is used only
with sequential files. For
non-sequential files, MBC equals 1 in
this formula.

MBF is the value contained in the
multi-buffer count (MBF) field of the
Record Access Block associated with
the stream.

FOR MAGNETIC TAPE FILES

stream-size=BLS*MBF

BLS is the size (in bytes) of each
physical block of the file associated
with the stream. The default block
size for magnetic tape files is 512
bytes.

MBF is the value contained in the
multi-buffer count (MBF) field of the
RecordAccess Block associated with
the stream.

The format of the P$BUF macro is as follows:

P$BUF buffsize

where

buffsize is a numeric value representing the total size (in
bytes) of the I/O buffers required to support
files without private I/O buffers. The specified
value must be a multiple of 4.

In the following example of the P$BUF macro, the user specifies that a
total of 8192 bytes of I/O buffer space is required:

POOL$B

P$BUF 8192

POOL$E

3.4 $INIT OR $INITIF - INITIALIZING THE RMS-ll SYSTEM

You must include either an $INIT or an $INITIF macro in the
initialization code of any program that uses RMS-ll facilities. When
encountered at runtime, the $INIT macro call attempts the
initialization of the RMS-ll system. The $INITIF macro performs
initialization if RMS-ll is not presently initialized. RMS-ll uses
the C-Bit of the Processor Status Word to indicate success or failure

3-10

DECLARING RMS-II FACIBITIES

of the initialization procedure.
initialization was successful.

If the C-Bit is cleared,

The formats of these macros are:

where

1. label: $INIT

2. label: $INITIF

label is an optional user-specified symbol that
control to be transferred to this location
program execution. Other instructions
program may refer to this label, as in the
a program that has been written so that it
restarted.

NOTE

The $INIT macro will not cause
initialization if any files are open.

3-11

allows
during

in the
case of
can be

CHAPTER 4

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

This chapter describes RMS-ll runtime macros that retrieve, modify,
and test the contents of data fields in user control blocks.

Runtime field access macros expand into code that affects the contents
of data fields during execution of your program. Using one or more of
these macros, you can perform any of the following actions during
program execution:

• Store values into control block data fields before the
control block is used for the first time. You will perform
this action frequently since there are no runtime defaults
for any fields in control blocks.

• Alter the contents of a control block data field to suit the
logic of your program, e.g., dynamically changing the access
mode used to process a file from random to sequential.

• Test or compare the contents of control block data fields
returned by RMS-ll to your program, e.g., the status field
(STS) of a Record Access Block or File Access Block.

The runtime macros that perform the preceding functions are listed in
Table 4-1. RMS-ll limits all but two of these macros to use with 1
byte or 1 word fields. The following table, therefore, also includes
the size of control block data fields that can be accessed by the
specified macro.

Macro Name

$COMPARE

$FETCH

$OFF

$SET

$STORE

$TESTBITS

Table 4-1
Runtime Field Access Macros

Field Size

1 byte or 1 word

Any size

1 byte or 1 word

1 byte or 1 word

Any size

1 byte or 1 word

Function

Compares the contents of a field
with a user-specified value.

Copies the contents of a field into
a user-specified location.

Resets one or more bits within a
bit string field.

Sets one or more bits within a bit
string field.

Changes the contents of a field.

Tests one or more bits within a
field.

4-1

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

The macros in Table 4-1 are provided so that you need not be aware of
the specific placement (and, to a large extent, size) of the fields
within RMS-Il control blocks. The placement of these fields may
differ from release to release. There are instances, however, when
knowledge of placement is desirable (e.g., during debugging). This
information can be derived from the symbol table of an assembly
listing file of any module containing the control block(s) of
interest. Offset values are represented by symbols beginning with the
two characters '0$'. For one-word and one-byte fields, the offset
symbol is simply the concatenation of '0$' with the three-character
field name. For example, O$STS represents the offset (in bytes) of
the STS field from the beginning of a FAB or RAB. For multi-word
fields (such as ALQ in the FAB or in an allocation XAB) and multi-byte
fields (such as SIZ in the key definition XAB), each word (or byte) is
represented by an offset symbol that is the concatenation of '0$',
plus the 3-character field name, plus a digit in the range 0 to n,
where n is I less than the number of words (or bytes) in the field.
For example, the ALQ field is represented by the offset symbols O$ALQO
(the less significant word) and O$ALQI (the more significant word);
the SIZ field is represented by the symbols O$SIZO (the size of the
first, most significant, key segment), O$SIZI, ••• , 0$SIZ7 (the size
of the last, least significant, key segment).

The sections that follow describe each of the macros listed in Table
4-1. The 3-character names of fields in control blocks and the
symbolic values that can be used to test and set these fields are
specified in Chapters 5 through 8.

NOTES

1. Octal radix is assumed for all numeric
values used as operands in the macros
described in this chapter. You can
indicate decimal radix through the use
of an explicit decimal point following a
numeric value.

2. In all instances in which a control
block field is 2 words in length and
contains a numeric value, the least
significant bits appear in the first
word of the field and the most
significant bits in the second word.

4.1 $COMPARE - COMPARING THE CONTENTS OF A FIELD

The $COMPARE macro compares a I-byte or I-word control block data
field with a user-specified value and sets PDP-II condition codes.

The format of the $COMPARE macro is as follows:

label:$COMPARE

where

label

source,fnm,reg

is an optional user-specified symbol referring to
the $COMPARE macro.

4-2

source

fnm

reg

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

is a user-specified operand representing a value
to be compared with the contents of a control
block data field. You may express this operand
using any valid addressing mode. If the operand
is specified as #0, a TST (or TSTB) instruction is
generated and condition codes set accordingly.
The operand must be word aligned for comparison
with I-word data fields.

is the 3-character name of a I-byte or I-word data
field within a user control block. The assembler
will generate an error message if the specified
field name represents a multi-word field. The
user-specified source operand will be compared
with the contents of this field.

is a general register, RO through RS, loaded with
the address of the user control block containing
the desired data field.

The following are examples of the $COMPARE macro:

$COMPARE #SU$SUC,STS,Rl

$COMPARE 2(Rl),RSZ,RS

In the first example, the user compares the status field (STS) of a
control block with the symbolic value SU$SUC. The address of either a
File Access Block or Record Access Block (both contain a status field)
is in general register 1. In the second example, the user specifies
that the record size field (RSZ) is to be compared with the operand
expressed using indexed addressing mode. Since the RSZ field exists
only in Record Access Blocks, general register RS must contain the
address of aRAB.

4.2 $FETCa - COPYING THE CONTENTS OF A FIELD

The $FETCH macro copies the contents of a control block data field
into a user-specified location. This macro can be used to access any
data field, regardless of size.

The format of the $FETCH macro is as follows:

label:$FETCH

where

label

destination

destination,fnm,reg

is an optional user-specified symbol referring to
the $FETCH macro.

is a location within the user program into which
the contents of a control block field are to be
copied. The following restrictions apply to this
operand:

1. You cannot use immediate mode or any form of
deferred addressing mode.

2. If the field name specified as the second
argument is POS or SIZ (refer to description of
key definition XAB$ in Chapter 7), you cannot
use register mode addressing to express the
destination operand.

4-3

fnm

reg

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

3. For multi-word fields other than POS and SIZ,
you must use care when expressing the
destination operand with register mode
addressing. The expanded code of the $FETCH
macro will use successive registers as
destination operands for successive words of
the data field. Depending on the length of the
data field and the register specified as the
destination operand, this code could use the
register containing the control block address
as a destination operand.

4. If the data field to be copied is one or more
words in length, the specified destination
location must be word aligned.

is the 3-character name of any data field within a
user control block. Regardless of length, the
contents of this field are copied to the
user-specified location.

The following conventions apply if the $FETCH
macro is used to reference the key size (SIZ) or
key position (POS) fields of a key definition XAB
(refer to Chapter 7 for a description of key
definition XABs):

• You specify the 3-character name, SIZ or POS,
to access the entire 8-element array. The
following example shows all eight words of the
POS field copied into successive locations
beginning with the user-specified destination:

$FETCH (RO)+,POS,R3

• To access a single element in the 8-element
array, you specify the 3-character field name
immediately followed by a numeric element
number from 0 to 7. In the following example,
the user fetches the first element of the POS
field:

$FETCH R4,POSO,R3

is a general register, RO through RS, loaded with
the address of the user control block containing
the desired data field.

The following are examples of the $FETCH macro:

$FETCH

$FETCH

R2,RBF,R4

8. (R3) ,MRN ,RI

In the first example, general register R4 contains the address of a
Record Access Block. The user copies the contents of the record
address field (RBF) into general register R2. In the second example,
general register RI contains the address of a File Access Block. The
user copies both words of the maximum record number field (MRN) into
successive words beginning with the specified location.

4-4

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

4.3 $OFF - RESETTING BITS WITHIN AFIELD

The $OFF macro resets one or more bits within I-byte or I-word bit
string data fields.

The format of the $OFF macro is as follows:

label:$OFF

where

label

value

fnm

reg

value,fnm,reg

is an optional user-specified symbol referring to
the $OFF macro.

is an expression or location specifying the bits
within the data field that are to be reset.

is the 3-character name of a I-byte or I-word data
field within a user control block. The assembler
will generate an error message if the specified
field name represents a multi-word field.

is a general register, RO through R5, loaded with
the address of the user control block containing
the desired data field.

In the following example, general register R2 contains the address of
a Record Access Block. The user resets the bit in the record options
field (ROP) that specifies greater than or equal key searches.

"$OFF #RB$KGE,ROP,R2

4.4 $SET - SETTING BITS WITHIN A FIELD

The $SET macro sets one or more bits within I-byte or I-word bit
string data fields.

The format of the $SET macro is as follows:

label:$SET

where

label

value

fnm

reg

value,fnm,reg

is an optional user-specified symbol referring to
the $SET macro.

is an expression or location specifying the bits
within the data field that are to be set.

is the 3-character name of a I-byte or I-word data
field within a user control block. The assembler
will generate an error message if the specified
field name represents a multi-word field.

is a general register, RO through R5, loaded with
the address of the user control block containing
the desired data field.

The following are examples of the $SET macro:

$SET
$SET

#FB$GET!FB$UPD,FAC,R4
#RB$EOF,ROP,RI

4-5

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

In the first example, general register R4 contains the address of a
File Access Block. The user sets the bits within the file access
field (FAC) that indicate $GET and $UPDATE operations will be
performed on the associated file. In the second example, general
register RI contains the address of a Record Access Block. The user
sets the bit within the record options field (ROP) that specifies
positioning to end of file.

4.5 $STORE - CHANGING THE CONTENTS OF A FIELD

The $STORE macro changes the contents of an entire control block data
field by storing values from a user-specified location. This macro
can be used with any size data field. For multi-word fields,
successive locations, beginning with the user-specified location, will
be used as the source of values to be stored into the data field. For
bit string data fields, the entire field will be altered. Therefore,
if you want to change bit settings selectively in a bit string field,
you should use the $OFF or $SET macro.

The format of the $STORE macro is as follows:

label:$STORE

where

label

source

source,fnm,reg

is an optional user-specified symbol referring to
the $STORE macro.

is a location within the user program containing
values to be stored into a control block data
field. When this operand is expressed as #0, the
expanded code of this macro will clear the entire
data field to zero. The following restrictions
apply to this operand:

1. You cannot use any form
addressing mode.

of deferred

2. Immediate mode addressing can be used only
with I-byte or I-word fields.

3. If the field name specified as the second
argument is POS or SIZ (refer to
description of key definition XABs in
Chapter 7), you cannot use register mode
addressing to express the source operand.

4. For multi-word fields other than POS and
SIZ, you must use care when expressing the
source operand with register mode
addressing. The expanded code of the
$STORE macro will use successive registers
as source operands for successive words of
the data field. Depending on the length of
the data field and the register specified
as the source operand, this code could use
the register containing the control block
address as a source operand.

5. Word alignment of source operands is
required when setting the contents of
fields one or more words in length.

4-6

fnm

reg

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

is the 3-character name of any data field in a
user control block. The $STORE macro will change
the contents of this field, regardless of its
length.

The following conventions apply if the $STORE
macro is used to change the contents of the key
position CPOS) or key size (SIZ) fields of a key
definition XAB (refer to description of key
definition XABs in Chapter 7):

• You specify the 3-character name, POS or
SIZ, to change the contents of the entire
8-element array. The following example
shows the changing of contents of all 8
words of the POS field with values taken
from successive locations beginning with
the user-specified source location:

$STORE (RI)+,POS,R3

• To access a single element in the
8-element array, you specify the
3-character field name immediately
followed by a numeric element number from
o to 7. In the following example, the
user changes the contents of the first
element of the POS field:

$STORE R2,POSO,RI

is a general register, RO through R5, loaded with
the address of the user control block containing
the desired data field.

The following are examples of the $STORE macro:

$STORE

$STORE

iO,ALQ,R3

iINPUT,FAB,RI

In the first example, general register R3 contains the address of a
File Access Block. The user clears the 2-word allocation quantity
field (ALQ) in the block to zero. In the second example, general
register RI contains the address of a Record Access Block. The user
stores the address of a File Access Block in the FAB field of the
Record Access Block.

4.6 $TESTBITS - TESTING BITS WITHIN A FIELD

The $TESTBITS macro compares one or more bits within a I-byte or
I-word control block data field with a user-specified value and sets
PDP-II condition codes.

The format of the $TESTBITS macro is as follows:

label:$TESTBITS

where

label

source,fnm,reg

is an optional user-specified symbol referring to
the $TESTBITS macro.

4-7

source

fnm

reg

ACCESSING CONTROL BLOCK FIELDS AT RUN-TIME

is an expression or location indicating which bits
of the specified data field are to be tested.

is the 3-character name of a I-byte or I-word bit
string data field containing the bits to be
tested. The assembler will generate an error
message if the specified field name represents a
multi-word field.

is a general register, RO through R5, loaded with
the address of the user control block containing
the desired data field.

In the following example of the $TESTBITS macro, the address of a File
Access Block is in general register R3. The user tests the file
access (FAC) field of the block to determine if the current program
can issue $UPDATE or $PUT operations:

$TESTBITS #FB$UPD!FB$PUT,FAC,R3

If neither bit is set in the FAC field, condition code Z will be set,
if either or both bits are set in SHR, code Z will be off.

4-8

CHAPTER 5

THE FILE ACCESS BLOCK

This chapter describes the File Access Block (FAB), the fields in a
FAB, and the assembly-time macros that allocate FABs and initialize
fields in FABs.

Certain conventions apply to the assembly-time macros presented in
this chapter and In Chapter 6 (The Record Access Block), Chapter 7
(Extended Attribute Blocks), and Chapter 8 (The Name Block). For
example, two macros are always required to allocate space for a user
control block. These macros take the general form:

where

1. label:xyz$B

2. xyz$E

label

xyz

is the user-specified symbol that names this
particular block.

is the three character name of the control block
to be allocated (i.e., FAB, RAB, XAB, NAM).

An xyz$B macro causes the allocation of space for the specified block
and delimits the beginning of an optional sequence of assembly-time
initialization macros for the fields of the block. The xyz$E macro
performs three functions:

1. Stores the values specified by intervening initialization
macros in appropriate locations in the block.

2. Sets assembly-time default values in fields not explicitly
initialized.

3. Terminates the definition of the block.

Each field within a user control block has a three character name.
These three character names are always part of the name of the
associated assembly-time initialization macros. The following is the
format of initialization macros:

x$fnm arg

where

x is the first character of the name of the block
containing the field to be initialized, e.g., F
for File Access Block, R for Record Access Block.

5-1

fnm

arg

THE FILE ACCESS BLOCK

is the three character name of the field to be
initialized.

is the value to be loaded into the specified
field.

The following are examples of assembly-time initialization macros:

F$FAC arg
R$ROP arg

The F$FAC macro initializes the file access field (FAC) of the File
Access Block. The R$ROP macro initializes the record options field
(RaP) of the Record Access Block.

Assembly-time initialization macros can appear only between the xyz$B
and xyz$E macros that define and allocate the control block containing
the field to be initialized.

The following are examples of the placement of field initialization
macros:

INFILE:FAB$B
F$FAC arg
FAB$E

INP: RAB$B
R$ROP arg
RAB$E

Depending on the nature of the field being initialized, three types of
arguments may appear on initialization macros:

1. Symbolic values.

2. Labels.

3. Numeric values.

NOTES

1. You cannot use global symbols or labels
as arguments to the assembly-time
initialization macros described in this
chapter. All symbols and labels used as
arguments must be defined locally.

2. The default radix for numeric values in
assembly-time initialization macros is
decimal.

When symbolic values are provided by RMS-ll, they take the following
form:

xz$nam

where

xz are the first and last characters of the
associated three-character block name, e.g. FB
for File Access Block, RB for Record Access Block.

5-2

nam

THE FILE ACCESS BLOCK

is a two- or three-character
representing the value to be
specified field.

symbolic name
loaded into the

The following are examples of symbolic values used as arguments in
initialization macros:

INFILE:FAB$B
F$FAC FB$PUT
FAB$E

INP: RAB$B
R$ROP RB$EOF
RAB$E

In the above examples, the file access field (FAC) of the File Access
Block named INFILE is initialized with the symbolic value FB$PUT.
This value indicates that the user requires write access to the file
associated with the block. The record options field (ROP) of the
Record Access Block INP is initialized with the value RB$EOF. This
value indicates that the file is to be positioned to end of file.

When several symbolic values are used to initialize a field, each
value must be separated by an exclamation point (1), as shown below:

INFILE:FAB$B
F$FAC FB$GETIFB$PUT!FB$DEL
FAB$E

The preceding example initializes the file access field (FAC) of the
File Access Block INFILE with values indicating that the user requires
read, write, and delete access to the contents of the associated file.

Certain fields in user control blocks can contain the address of
another block or program work area. The argument used in
initialization macros for these fields is the label specified by the
user for the second block or program work area.

INFILE:FAB$B
FAB$E

INP: RAB$B
R$FAB INFILE
RAB$E

The preceding example shows the File Access Block address field (FAB)
of the Record Access Block INP initialized with the address of the
File Access Block named INFILE.

Lastly, certain fields
assembly-time by macros
symbols as arguments:

1. INFILE:FAB$B
F$MRS 132
FAB$E

2. MAXSIZ=132.

INFILE:FAB$B

within
that

F$MRS MAXSIZ
FAB$E

structures may be initi~lized at
allow numeric values or user defined

5-3

THE FILE ACCESS BLOCK

In the preceding examples, the maximum record size field (MRS) of a
File Access Block named OTFILE is initialized with a value of 132,
representing the size, in bytes, of the largest record that will be
written in the file.

5.1 ALLOCATING A FILE ACCESS BLOCK

The FAB$B macro allocates space for a File Access Block and delimits
the beginning of an optional sequence of assembly-time initialization
macros for the fields of the block.

The format of the FAB$B macro is as follows:

label:FAB$B

where

label is a user-specified symbol that names this
particular File Access Block. You must assure
that the address assigned to this label is
word-aligned. Therefore, a .EVEN directive should
immediately precede the FAB$B macro.

The FAB$E macro delimits the end of an optional sequence of
assembly-time initialization macros and stores any specified initial
values in the appropriate fields of the block. At assembly-time, all
fields not explicitly initialized are set to their default values.
The FAB$E macro must always appear subsequent to an associated FAB$B
macro, even when no intervening initialization macros are coded. This
macro takes the form:

FAB$E

The following example shows the allocation of a File Access Block
named MASTER:

• EVEN
MASTER: FAB$B

FAB$E
iALLOCATE MASTER FAB
iEND OF MASTER FAB

The following example shows the allocation of the same block with the
assembly-time initialization of two fields -- the file access (FAC)
and logical channel number (LCH) fields •

• EVEN
MASTER: FAB$B

F$FAC
F$LCH
FAB$E

iALLOCATE MASTER FAB
FB$PUT iACCESS FOR $PUT OPERATIONS
2 iACCESS FILE ON CHANNEL 2

iEND OF MASTER FAB

5.2 FIELDS IN THE FILE ACCESS BLOCK

Table 5-1 summarizes the fields in the File Access Block:

5-4

Field
Name

ALQ

BID

BKS

BLN

BLS

BPA

BPS

CTX

DEQ

DEV

DNA

DNS

FAC

FNA

FNS

FOP

FSZ

IFI

LCH

MRN

MRS

NAM

ORG

RAT

RFM

THE FILE ACCESS BLOCK

Table 5-1
File Access Block Fields

Field
Size Description

2 words Allocation quantity.

1 byte Block identifier.

I byte Bucket size.

I byte Block length.

I word Block size.

1 word Private buffer pool address.

I word Private buffer pool size.

I word User context area.

I word Default file extension quantity.

I byte Device characteristics.
(bit string)

I word Default name string address.

I byte Default name string size.

I byte File access.
(bit string)

I word File name string access.

I byte File name string size.

I word File processing options.
(bit string)

I byte Fixed control area size.

I word Internal file identifier.

I byte Logical channel number.

2 words Maximum record number~

I word Maximum record size.

I word Name block address.

I byte File organization.

I byte Record attributes.
(bit string)

I byte Record format.

(Continued on next page)

5-5

Field
Name

RTV

SHR

STS

STV

X~

Field

THE FILE ACCESS BLOCK

Table 5-1 (Cont.)
File Access Block Fields

Size Description

1 byte Retrieval window size.

1 byte File sharing.
(bit string)

1 word Completion status code.

1 word Status value.

1 word Extended attribute block pointer.

The subsections that follow describe the purpose of each of the fields
listed in Table 5-1. RMS-ll provides macros that allow you to
initialize most of these fields at assembly-time. These macros, when
provided, are discussed at the conclusion of each field description.

5.2.1 ALQ - Allocation Quantity

The allocation quantity (ALQ) field is used with three file processing
macros - $OPEN, $CREATE, and $EXTEND:

1. As output from the $OPEN macro call, RMS-ll sets the ALQ
field to indicate the highest numbered virtual block
currently allocated to the file.

2. Before creating a new file by issuing a $CREATE macro
call, you can set the ALQ field of the FAB describing
the file. The value you place in ALQ will be
interpreted by RMS-ll as the number of virtual blocks to
be contained in the initial extent of the file. If you
set ALQ equal to zero, RMS-ll will determine the minimum
number of virtual blocks that must be allocated for
initial extent of the file. For sequential files, no
blocks will be allocated. For relative and indexed
files, the minimum number of virtual blocks is based on
·the attributes of the file.

3. Before extending a file by issuing a $EXTEND macro call,
you must set ALQ equal to the number of virtual blocks
to be added to the file.

NOTE

The function of the ALQ field
during the $CREATE and $EXTEND
macro calls is different from the
preceding descriptions if
allocation XABs are present during
the operation. Refer to Section
7.6 in Chapter 7 for a description
of allocation XABs and their effect
on ALQ during $CREATE and $EXTEND
operations.

5-6

THE FILE ACCESS BLOCK

The F$ALQ macro allows you to initialize the ALQ
assembly-time. The format of this macro is as follows:

F$ALQ quantity

where

field at

quantity is a numeric value in the range of 0 to 16,777,215
representing a number of virtual blocks.

The following example of the F$ALQ macro shows an allocation quantity
of 132 virtual blocks.

MASTER: FAB$B

F$ALQ 132

FAB$E

5.2.2 BID - Block Identifier

The block identifier (BID) field identifies the block as a FAB. This
field, automatically set by the FAB$B macro, contains the value
FB$BID. You must never alter this field.

5.2.3 BKS - Bucket Size

The bucket size (BKS) field is used only for relative and indexed
files. When you open an existing relative or indexed file by issuing
the $OPEN macro call, RMS-II sets the BKS field to the defined SIze of
buckets in the file. When, however, you wish to create a relative or
indexed file, you can specify the size of buckets in the file by
setting a value in this field before issuing the $CREATE macro call.
For sequential files, RMS-II ignores the BKS field during a $CREATE
macro call and zeroes the field during a $OPEN macro call.

NOTE

The function of the BKS field during the
$CREATE and $OPEN macro calls is
different from the preceding description
if allocation XABs are present during
the operation. Refer to Section 7.6 in
Chapter 7 for a description of
allocation XABs and their effect on BKS
during $CREATE and $OPEN operations.

In specifying a bucket size, you must be aware of the relationship
between bucket size and record size. Since RMS-il does not allow
records to cross bucket boundaries, you should ensure that the number
of virtual blocks per bucket conforms to one of the following
formulas:

5-7

THE FILE ACCESS BLOCK

1. Indexed files with fixed length records:

where

Bnum=«Rlen+7)*Rnum)+15/512

Bnum

Rlen

Rnum

is the number of virtual blocks per bucket
rounded up to the next higher integer. The
result must be in the range of from 1 to 32.

is the fixed record length.

is the number of records that you want in
each bucket.

2. Indexed files with variable length records:

where

Bnum=«Rmax+9)*Rnum)+15/512

Bnum is the number of virtual blocks per bucket
rounded up to the next higher integer. The
result must be in the range of from 1 to 32.

Rmax is the maximum size of any record in the
file.

Rnum is the number of records, of the maximum
size, that you want in each bucket.

3. Relative files with fixed length records:

where

Bnum = «Rlen+l)*Rnum)/512

Bnum

Rlen

Rnum

is the number of virtual blocks per bucket
rounded up to the next higher integer. The
result must be in the range of from 1 to 32.

is the fixed record length.

is the number of records that you want in
each bucket.

4. Relative files with variable length records:

where

Bnum = «Rmax+3)*Rnum)/512

Bnum

Rmax

Rnum

is the number of virtual blocks per bucket
rounded up to the next higher integer. The
result must be in the range of from 1 to 32.

is the maximum size of any record in the
file.

is the number of records that you want in
each bucket. Variable length records in a
relative file bucket always occupy Rmax+3
bytes.

5-8

THE FILE ACCESS BLOCK

5. Relative files with VFC format records:

where

Bnum = «Rmax+Fsiz+3)*Rnum)/512

Bnum

Rmax

Fsiz

Rnum

is the number of virtual blocks per bucket
rounded up to the next higher integer.

is the maximum size of the data portion of
any VFC record in the file.

is the size of the fixed control area portion
of the VFC records.

is the number of records that you want in
each bucket. VFC records in a relative file
bucket always occupy Rmax+Fsiz+3 bytes.

The F$BKS macro allows you to initialize the BKS
assembly-time. The format of this macro is as follows:

field at

F$BKS bucket-size

where

bucket-size is a numeric value, in the range of 0 to 32,
representing the number of virtual blocks
contained in each bucket of the file. The
assembly-time default is o. RMS-ll interprets a
value of 0 as identical to a value of 1.

The following is an example of the F$BKS macro
specification of four virtual blocks per bucket:

showing the

MASTER: FAB$B

F$BKS 4

FAB$E

5.2.4 BLN - Block Length

The block length (BLN) field specifies the length of the FAB. This
field, automatically set by the FAB$B macro, contains the value
FB$BLN. You must never alter this field.

5.2.5 BLS - Block Size

The block size (BLS) field is used for files on magnetic tape. When
you open an existing file on magnetic tape by issuing a $OPEN macro
call, RMS-Il sets the BLS field to the size of the physical blocks in
the file. When, however, you are creating a file on magnetic tape,
you can specify the physical block size by setting a value in this
field before issuing the $CREATE macro call.

5-9

THE FILE ACCESS BLOCK

The F$BLS macro allows you to initialize the
assembly-time. Its format is:

F$BLS block-size

where

BLS field at

block-size is a numeric value representing the size (in
bytes) of the physical blocks on a tape. This
value must be either 0 or in the range of 18 to
8192 bytes. At runtime, a value of 0 is
interpreted as the operating system default of 512
bytes. The assembly-time default is o.

An example of the F$BLS macro follows:

MASTER: FAB$B

F$BLS 4096

FAB$E

In this example, the user specifies that each physical block in a
magnetic tape file will be 4096 blocks.

NOTE

To allow data interchange with other DEC
systems, you should specify a block size
less than or equal to 512 bytes. To
allow data interchange with non-DEC
systems, you should specify a block size
that is less than or equal to 2048
bytes.

5.2.6 BPA - Buffer Pool Address

The buffer pool address (BPA) field can contain the address of a
private I/O buffer pool for all record access streams for the file
represented by the FAB. If you wish to use a private I/O buffer pool,
you must set the address of the pool in this field before issuing a
$CREATE or $OPEN macro call for the file. If you do not want to use a
private I/O buffer pool for the file, you must assure that this field
is zero before you issue the $CREATE or $OPEN macro. If this field is
zero at the time a $CREATE or $OPEN macro call is issued, RMS-ll
allocates I/O buffers for the file from the centralized space pool
(refer to Section 3.3.7 in Chapter 3).

The F$BPA macro allows you to initialize the BPA
assembly-time. The format of this macro is as follows:

F$BPA address

5-10

field at

where

address

THE FILE ACCESS BLOCK

is the symbolic address of the
of a private I/O buffer pool.
be on a double-word boundary.
default for the BPA field
private I/O buffer pool).

starting location
This address must

The assembly-time
is zero (i.e., no

In the following example, the user sets, at assembly-time, the address
of a private I/O buffer pool in the File Access Block called MASTER •

• EVEN
INBUF: .BLKB 4096.

MASTER: FAB$B

F$BPA INBUF

FAB$E

5.2.7 BPS - Buffer Pool Size

You use the buffer pool size (BPS) field to specify the size of a
private I/O buffer pool. You specify this size only if you placed a
valid address in the BPA field of the same FAB before issuing a $OPEN
or $CREATE macro call.

The F$BPS macro allows you to initialize the
assembly-time. Its format is:

BPS field at

F$BPS poolsz

where

poolsz is a numeric value representing the total size (in
bytes) of the private I/O buffer pool. The
specified value must be a multiple of 4.

To calculate the size of the private pool, you use the following
formula:

where

poolsz = stmsizel[+stmsize2 .•• stmsizen]

stmsizel,
stmsize2,
etc.

are the I/O buffer space requirements (in bytes)
for each simultaneously active record access
stream associated with the file. The requirements
of each such stream are determined as follows:

FOR DISK FILES

stmsize=BKS*(512*MBC)*MBF

5-11

where

where

THE FILE ACCESS BLOCK

BKS is the number of virtual blocks in the largest
size bucket of the file associated with the
stream. For sequential files, BKS equals 1 in
this formula.

MBC is the value contained in the multi-block
count (MBC) field of the Record Access Block
associated with the stream. This value is used
only with sequential files. For non-sequential
files, MBC equals 1 in this formula.

MBF is the value contained
count (MBF) field of the
associated with the stream.

FOR MAGNETIC TAPE FILES

stmsize=BLS*MBF

in the
Record

multi-buffer
Access Block

BLS is the size (in bytes) of each physical block
of the file associated with the stream. The
default block size for magnetic tape files is 512
bytes.

MBF is the value contained
count (MBF) field of the
associated with the stream.

in the
Record

multi-buffer
Access Block

In the following example, the user defines the address and size of a
private I/O buffer pool:

• EVEN
INBUF: .BLKB 4096.

MASTER: FAB$B

F$BPA INBUF
F$BPS 4096

FAB$E

5.2.8 CTX - User Context Area

The user context area (CTX) is never used in any way by RMS-ll. It is
intended exclusively for the user. Therefore, you can set any value
you choose in this I-word field. You might, for example, use this
field as a means of communicating with a common completion routine in
your program.

The F$CTX macro allows you to initialize the CTX
assembly-time. The format of this macro is as follows:

F$CTX argument

5-12

field at

THE FILE ACCESS BLOCK

where

argument represents any user-selected value.

The following are two examples of the F$CTX macro, showing a numeric
value placed in the user context area in the first case, and a
symbolic value in the second case.

1. MASTER: FAB$B

F$CTX 3

FAB$E

2. MASTER: FAB$B

F$CTX INPUT

FAB$E

5.2.9 DEQ - Default File Extension Quantity

The default file extension quantity (DEQ) field contains the number of
virtual blocks to be used when RMS-ll must automatically extend the
file. This automatic extension occurs whenever your program attempts
a $PUT or $UPDATE operation that cannot be accommodated within the
space currently allocated to the file.

When you create a new file, you can specify a default extension
quantity by setting the desired value in the DEQ field before issuing
the $CREATE macro call. RMS-ll saves the specified value as a
permanent attribute of the file. A value of zero indicates that the
default extension quantity for the file is the volume default.

When you are processing an existing file, you can temporarily override
the default extension quantity specified when the file was created.
To do this, you set the desired value in the DEQ field before issuing
the $OPEN macro call. When RMS-ll finds a non-zero value in this
field during $OPEN processing, it uses the specified value for any
automatic extension operations needed while the file is open. Once
you close the file, the default extension quantity reverts to that
specified at create time.

The F$DEQ allows you to initialize the DEQ field at assembly-time.
Its format is:

F$DEQ quantity

where

quantity is a numeric value
virtual blocks. This
of from 0 to 65,535.
files, the quantity
multiple of bucket
default is O.

5-13

representing a number of
number must be in the range
For relative and indexed
you specify should be a

size. The assembly-time

THE FILE ACCESS BLOCK

The following example of the F$DEQ macros shows the user specifying a
default extension of 80 virtual blocks.

MASTER: FAB$B

F$DEQ 80

FAB$E

5.2.10 DEV - Device Characteristics

When you open a file by issuing a $OPEN or $CREATE macro call, RMS-ll
sets the device characteristics (DEV) field. This field allows RMS-ll
to communicate to your program the generic characteristics of the
device on which the file resides. After the file is open, you can use
appropriate runtime field accessing macros (refer to Chapter 4) to
test for the following characteristics:

FB$CCL

FB$MDI

FB$REC

FB$SDI

FB$SQD

FB$TRM

Carriage control device, e.g.,
terminals.

printers and

Multiple directory structured device, e.g., disk
volumes.

Record oriented device, e.g., terminal, line
printer, etc. All record oriented devices are
considered sequential in nature.

Single directory device, i.e., a master file
directory is used but no user file directories are
present.

Sequential and block oriented device (magnetic
tape).

Terminal with both keyboard and printer.

5.2.11 DNA - Default Name String Address

The default name string address (DNA) field allows you to provide
program defaults for any missing components of the file name string
addressed by the FNA field. You can specify defaults for one or mote
of the following file specification components:

1. Device

2. Directory

3. Filename

4. File type

5. File version number

5-14

THE FILE ACCESS BLOCK

You can use
assembly-time.

the F$DNA macro to initialize
The format of this macro is:

the DNA field at

F$DNA address

where

address is the symbolic address of an ASCII string
representing one or more components of a file
specification. The components (e.g., device, file
type) must be specified in the order in which they
would occur in a complete file specification
string. If this field is zero, RMS-ll assumes
that there is no default name string.

As an example of the use of a default name string and the F$DNA macro,
assume that a user's program contains the following directive:

DFNAM: .ASCII /SY:.DAT/

The following use of the F$DNA macro would associate the default name
string with a particular File Access Block:

MASTER: FAB$B

F$DNA DFNAM

FAB$E

During a $OPEN or $CREATE macro call, RMS-ll uses the ASCII string
whose address is DFNAM to provide the device (SY:) and file type (DAT)
components of the file specification of the file to be accessed -- if
these components are missing from the string whose address is stored
in the FNA field.

5.2.12 DNS - Default Name String Size

The default name string size (DNS) field is used to specify the size
of the default name string whose address is contained in the DNA field
of the same File Access Block.

The F$DNS macro allows you to initialize the
assembly-time:

DNS

F$DNS size

where

size is a numeric value representing the
default name string expressed in
specified value must be in the range
255. If this field is zero, RMS-Il
there is no default name string.

field at

size of the
bytes. The
of zero to
assumes that

Assume that a user's program contains the following directive:

DFNAM: .ASCII /SY:.DAT/

5-15

THE FILE ACCESS BLOCK

The following example shows the use of the F$DNS macro and its
relationship to the F$DNA macro:

MASTER: FAB$B

F$DNA DFNAM
F$DNS 7

FAB$E

5.2.13 FAC - File Access

You must ensure that the file access (FAC) field contains indications
of operations you intend to perform on the file. After you open a
file, RMS-Il rejects any of the seven operations listed below if that
operation was not specified in the FAC Field during execution of the
$OPEN or $CREATE macro call for the file.

$DELETE
$GET
$PUT
$TRUNCATE
$ UPDATE
$READ (block I/O)
$WRITE (block I/O)

If, for example, a $DELETE record operation macro appears in your
program for the file associated with this File Access Block, the
symbolic value FB$DEL must be present in the file access field before
you open the file.

The F$FAC macro allows you to initialize the FAC
assembly-time. The format of this macro is as follows:

field at

where

F$FAC operation[!operation •••]

operation is a symbolic value representing a type of file or
record operation that may be performed on the
file. One or more values may be listed in any
order. Allowable values are:

FB$DEL

FB$GET

FB$PUT

FB$REA

$DELETE operations.

$GET and/or $FIND operations
(assembly-time default).

$PUT operations. You must specify this
value if you are creating a file.

$READ block
Appendix B
I/O).

5-16

I/O operations (refer to
for a description of block

THE FILE ACCESS BLOCK

FB$TRN

FB$UPD

FB$WRT

$TRUNCATE operations. You should not
specify this value unless the associated
file is sequential.

$UPDATE operations.

$WRITE block
Appendix B
I/O) •

I/O
for

operations (refer to
a description of block

The following are two examples of the F$oFAC macro, indicating $GET
operations for the associated file in the first case, and $DELETE,
$GET, and $PUT operations in the second case.

1. MASTER: FAB$B

F$FAC FB$GET

FAB$E

2. MASTER: FAB$B

F$FAC FB$DEL!FB$GET!FB$PUT

FAB$E

5.2.14 FNA - File Name String Address

In combination with the file name string size field (FNS) , the FNA
field describes an ASCII string that represents the file specificaiton
of the file associated with the File Access Block. If this string
does not contain all the components of a full file specification,
RMS-ll will use the defaults supplied in the default name string
described by the DNA and DNS fields. If no default name string is
present or if the file specification is still incomplete, RMS-ll will
apply system defaults, if any, for the missing components.

The F$FNA macro allows you to initialize the
assembly-time. Its format is:

FNA field at

F$FNA address

where

address is the symbolic address of an ASCII string
representing the file specification of the file
associated with the File Access Block. If this
field is zero, RMSll assumes that there is no file
name string.

5-17

THE FILE ACCESS BLOCK

The following is an example of the F$FNA macro:

FLNAM: .ASCII /PAYROLL/

MASTER: FAB$B

F$FNA FLNAM

FAB$E

5.2.15 FNS - File Name String Size

The file name string size (FNS) field contains the size of the ASCII
string file specification whose address is in the FNA field of the
block.

The F$FNS macro allows you to initialize the
assembly-time. The format of this macro is:

FNS field at

F$FNS size

where

size is a numeric value representing
bytes) of the file name string.
value must be in the range of zero
this field is zero, RMS-ll assumes
no file name string.

the size {in
The specified
to 255. If
that there is

The following example shows the use of the F$FNS macro and its
relationship to the F$FNA macro:

FLNAM: .ASCII /PAYROLL/

MASTER: FAB$B

F$FNA FLNAM
F$FNS 7

FAB$E

5.2.16 FOP - File Processing Options

The file processing options (FOP) field contains indicators
representing your requests for optional file handling operations.
This field can contain one or more of the following values:

5-18

FB$CTG

FB$DLK

FB$NEF

F2$POS

FB$RWC

FB$RWO

FB$SUP

FB$TMD

FB$TMP

THE FILE ACCESS BLOCK

indicates that, during a $EXTEND or $CREATE
operation, RMS-II is to allocate contiguously the
amount of space specified in the allocation
quantity field (ALQ). For an existing file,
RMS-II returns this value in the FOP field
following a $OPEN if the corresponding file is
contiguous.

indicates that the file is not to be locked from
further access if it is not closed in the normal
manner.

inhibits positioning to end of file when an ANSI
tape file is opened and the file access field
(FAC) contains the symbolic value FB$PUT.

indicates that the magnetic tape volume set should
be positioned to immmediately after the most
recently closed file when the file represented by
this File Access Block is created. The FB$RWO
value takes precedence over FB$POS. The default
operation is to position to the end of the volume
set.

specifies that the magnetic tape volume set is to
be rewound when the file is closed.

indicates that the magnetic tape volume set is to
be rewound before the file associated with this
File Access Block is opened or created.

to be
if an
full
with

causes any corresponding existing file
superseded during a $CREATE macro call
explicit version number is present in the
file specification of the file associated
this File Access Block.

indicates that the file associated with the File
Access Block is to be created as a temporary file
and deleted when the file is closed. This value
takes, precedence over the value FB$TMP, if both
are present.

indicates that a temporary file is to be created
and retained after closing. The file name will
not be entered in the directory.

The F$FOP macro allows you to initialize the
assembly-time. Its format is:

FOP field at

where

F$FOP option[loption •••]

option is a symbolic value representing a processing
option to be applied to the file represented by
the FAB. One or more of the options listed above
can be specified.

5-19

THE FILE ACCESS BLOCK

In the following example of the F$FOP macro, the user requests that
the magnetic tape volume is to be rewound when the file is closed.

MASTER: FAB$B

F$FOP FB$RWC

FAB$E

5.2.17 FSZ - Fixed Control Area Size

The fixed control area size (FSZ) field is used only when the records
of the file represented by the FAB are in VFC format. When you create
such a file, you can set the desired value in the FSZ field before
issuing the $CREATE macro call. When you open an existing file that
contains VFC format records, RMS-II will set this field equal to value
specified when the file was created.

You can initialize this field at assembly-time by using the F$FSZ
macro. Its format is as follows:

F$FSZ size

where

size is a numeric value, expressed in bytes,
representing the size of the fixed control area of
each record of the file. The specified value must
be in the range of from I to 255. The default
size is 2 bytes. If this field is zero, RMS-ll
assumes that the default size is desired.

An example of the F$FSZ macro follows:

- - MASTER: FAB$B

F$FSZ 8

FAB$E

In this example, the user specifies that each record of the file (with
VFC format records) contains an 8-byte fixed control area.

5.2.18 IFI - Internal File Identifier

The internal file identifier (IFI) field is used by RMS-li to
associate the File Access Block with a corresponding internal control
structure in the space pool. RMS-li sets this field during a $OPEN or
$CREATE operation. It is cleared to zero during a $CLOSE macro call.
Your program must never alter this field.

5-20

THE FILE ACCESS BLOCK

5.2.19 LCH - Logical Channel Number

The LCH field is used to indicate a logical channel number. Every
File Access Block representing an open file must contain a unique
logical channel number. All I/O operations performed on the file
represented by a FAB will use this number.

You can initialize the LCH field at assembly-time by using the F$LCH
macro. The format of this macro is as follows:

F$LCH channel

where

channel is a numeric value from I to 255.

In the following example, the user assigns a logical channel number of
4 to the associated File Access Block:

MASTER: FAB$B

F$LCH 4

FAB$E

5.2.20 MRN - Maximum Record Number

The maximum record number (MRN) field is meaningful only for relative
files. When creating a relative file, you can use this field to
specify the highest numbered record that can ever be written into the
file. Thereafter, if any program attempts to write a record whose
relative number exceeds the specified limit, RMS-Il will return an
illegal maximum record number error (ER$MRN). Conversely, if you do
not want to limit the number of records that can be written into a
relative file, you set the MRN field to zero before is·suing the
$CREATE macro for the file. If the MRN field contained a value of
zero at the time the file was created, RMS-ll will not perform limit
checks when records are written.

When you open an existing relative file by issuing a $OPEN macro call,
RMS-ll returns to your program the MRN value specified when the file
was created. If no MRN was specified, RMS-ll returns the default
value.

You can initialize the MRN field at assembly-time by using the F$MRN
macro:

where

F$MRN max-rec-num

max-rec-num is a numeric value representing the highest
numbered record that can be written into the file
associated with the File Access Block. The
assembly-time default is zero. RMS-Il converts a
value of zero to the highest positive integer for
the length of the field. It is this latter value
that will be returned during a $OPEN operation if
MRN was defaulted during a $CREATE operation.

5-21

THE FILE ACCESS BLOCK

The following are two examples of the F$MRN macro. In the first
example, the user indicates that the highest numbered record that can
be written into the file is record 10,000. In the second example, the
user explicitly specifies that no limit checks are to be performed.

1. MASTER: FAB$B

F$MRN 10000

FAB$E

2. MASTER: FAB$B

F$MRN °

FAB$E

5.2.21 MRS - Maximum Record Size

When you create a file you should set the MRS field before issuing the
$CREATE macro. The value you set in this field is based on the format
of records in the file you are creating.

Fixed format records - the specified value represents the actual
size of each record in the file. When creating a new file with
fixed format records, you must place a non-zero value in the MRS
field.

Variable and stream format records the specified value
represents the size of the largest record that can be written
into the file. A value of zero means no limit on record size.
The assembly-time default value is zero. However, if the
organization of a file is relative, you must create the file with
a non-zero maximum record size, which establishes the size of the
record cells in the file.

VFC format records - the specified value must not include the
size of the fixed control area. Rather, the specified value
represents only the remaInlng data portion of VFC records.
Non-zero and zero values are interpreted by RMS-ll in the same
manner as in variable format records.

When you open an existing file by issuing a $OPEN macro call, RMS-ll
returns, in the MRS field, the maximum record size specified when the
file was created.

The F$MRS macro allows you to initialize the
assembly-time. This macro takes the form:

F$MRS size

5-22

MRS field at

where

size

THE FILE ACCESS BLOCK

is a numeric value expressed in bytes,
representing record size. This value must be in
the range of 0 to 16,383.

In the following example, the user specifies a maximum record size of
1024 bytes:

MASTER: FAB$B

F$MRS 1024

FAB$E

5.2.22 NAM - Name Block Address

The Name Block address (NAM) field is always an optional field. You
will place an address in this field only when you have allocated a NAM
block in your program and want the facilities provided by such a block
when you open a file (refer to Chapter 8 for a description of the
purpose of a NAM block).

You can initialize the NAM field at assembly-time with the F$NAM
macro. This macro takes the form:

F$NAM address

where

address is the symbolic address of an optional name block
associated with this File Access Block. A value
of zero indicates no NAM block. The assembly-time
default is zero.

An example of the F$NAM macro follows:

NMBLK: NAM$B

NAM$E

MASTER: FAB$B

F$NAM NMBLK

FAB$E

5-23

THE FILE ACCESS BLOCK

5.2.23 ORG - File Organization

The organization (ORG) field identifies the organization of the file
represented by the File Access Block. When you open an existing file,
RMS-II will set this field. When you create a new file, your program
must set this field before issuing the $CREATE macro call.

The F$ORG macro allows you to initialize the
assembly-time. Its format is:

ORG field at

where

F$ORG organization

organization is a symbolic value representing the organization
of the file. One of the following values must be
specified:

FB$IDX - indexed
FB$REL - relative
FB$SEQ - sequential (assembly-time default)

The following is an example of the F$ORG macro:

MASTER: FAB$B

F$ORG FB$IDX

FAB$E

In this example, the user specifies that the new file associated with
the File Access Block is to have an indexed organization.

5.2.24 RAT - Record Attributes

The record attributes (RAT) field specifies characteristics of the
records in the file. When you open an existing file, RMS-II sets this
field with the characteristics specified at create time. When you
create a new file, your program sets desired values in this field
before issuing the $CREATE macro call.

The F$RAT macro allows you to initialize the
assembly~time. It has the following format:

RAT field at

where

F$RAT attribute[!attribute]

attribute is a symbolic value used to define an attribute of
the records of the file. One or more values may
be listed in any order. Allowable values are:

FB$BLK indicates that records will not cross
block boundaries. This value can be
specified for sequential files only.

5-24

THE FILE ACCESS BLOCK

FB$CR

FB$FTN

indicates that each record, when written
to a line printer or terminal, is to be
preceded by a line feed character and
followed by a carriage return character.

specifies that the first byte of each
record contains a FORTRAN carriage
control character.

In the following example, the user specifies that records do not cross
block boundaries and each record is to be preceded by line feed and
followed by carriage return when written to a carriage control device:

MASTER: FAB$B

F$RAT FB$BLK!FB$CR

FAB$E

5.2.25 RFM - Record Format

The record format (RFM) field indicates the format of the records in
the file represented by the File Access Block. When you create a
file, your program should ensure that the desired value is present in
the RFM field before issuing the $CREATE macro. When you open an
existing file, RMS-II sets this field with the value specified when
the file was created.

You can initialize the RFM field at assembly-time with the F$RFM
macro. This macro takes the form:

where

F$RFM record-format

record-format is a symbolic value defining the format of all
records contained within the file. One of the
following values can be specified:

FB$FIX

FB$STM

FB$UDF

FB$VAR

indicates fixed format records.

indicates ASCII stream record format.
This value can be specified only for
sequential files on disk devices.

indicates no record format is defined
for the file. When creating a new file
or accessing an existing file with
undefined records, your program must use
block I/O (refer to Appendix B). When
creating such a file, the ORG field must
specify sequential file organization.

specifies variable format
(assembly-time default).

5-25

records

THE FILE ACCESS BLOCK

FB$VFC indicates
value can
(on disk
files.

VFC format records. This
be specified for sequential

devices only) or relative

The following is an example of the F$RFM macro:

MASTER: FAB$B

F$RFM FB$FIX

FAB$E

5.2.26 RTV - Retrieval Window Size

The retrieval window size (RTV) field identifies the number of
retrieval pointers you want RMS-ll to maintain in memory for the file
represented by the File Access Block.

The F$RTV macro allows you to initialize the
assembly-time. This macro takes the form:

RTV field at

F$RTV number

where

number is either a positive integer in the range of 0 to
127 or a -1. A value of 0 (assembly-time default)
indicates that RMS-ll is to determine a minimum
window size. A non-zero positive value represents
the actual number of retrieval pointers to be
maintained in memory. A -1 indicates that the
entire file is to be mapped through a window
maintained in memory.

In the following example, the user requests a retrieval window of 10
retrieval pointers.

MASTER: FAB$B

F$RTV 10

FAB$E

5.2.27 SBR - File Sharing

The file sharing (SHR) field allows you to indicate whether you are
willing to let other programs write to the file while your program has
the file open at runtime (for either reading or writing). Note that
sequentially organized files can be shared for reading only. However,
RMS-ll permits relative and indexed files to be shared for both
reading and writing.

5-26

THE FILE ACCESS BLOCK

You can initialize the SHR field at assembly-time by using the F$SHR
macro. Its format is:

F$SHR value

where

value is a symbolic value or O. A value of 0
(assembly-time default) indicates that you do not
want to share the file at runtime with any program
that will write to the file. If, in contrast, you
are willing to share the file with one or more
programs that will write to the file, you can set
this field with the following symbolic value:

FB$WRI - allow shared writers.

In the following example, the user indicates willingness to share the
file with programs that write to the file:

MASTER: FAB$B

F$SHR FB$WRI

FAB$E

5.2.28 STS - Completion Status Code

Before returning control to your program, RMS-II always sets the
completion status code (STS) field to indicate success or failure of
the file operation. Appendix A contains a complete list of symbolic
completion codes that your program can use to test the contents of
this field.

Based on the type of operation performed and the contents of the STS
field, RMS-II may use the status value (STV) field to communicate
additional completion information to your program (refer to Appendix A
for a complete listing of the instances in which RMS-II uses the STV
field).

5.2.30 XAB - Extended Attribute Block Pointer

When a particular operation requires the association of Extended
Attribute Blocks with a File Access Block, you set the address of the
first associated block (of a potential chained list of such blocks) in
the XAB field of the FAB. For example, when you create an indexed
file, you must always provide at least one XAB -- a key definition XAB
for the primary key.

The F$XAB macro allows you to initialize the
assembly-time:

F$XAB xab-address

5-27

XAB field at

where

xab-address

THE FILE ACCESS BLOCK

is the symbolic address of the first Extended
Attribute Block associated with this File Access
Block. A value of zero (assembly-time default)
indicates no XABs are present for a particular
operation involving this FAB.

The following is an example of the F$XAB macro:

KEYDEF: XAB$B XB$KEY

XAB$E

MASTER: FAB$B

F$XAB KEYDEF

FAB$E

In this example, KEYDEF is the label (address) of an Extended
Attribute Block.

5-28

CHAPTER 6

THE RECORD ACCESS BLOCK

This chapter describes the Record Access Block (RAB), the fields in a
RAB, and the assembly-time macros that allocate RABs and initialize
fields in RABs.

Record Access Blocks are the second type of control structure that you
allocate at assembly-time and use at runtime to communicate with
RMS-ll. During program execution, you associate (by issuing $CONNECT
macro call) a Record Access Block with a File Access Block. The
association of a RAB and a FAB is known as a record access stream.
Once you have established a record access stream, you use the fields
of the Record Access Block to define to RMS-ll the next logical record
you want to access in the file.

6.1 ALLOCATING A RECORD ACCESS BLOCK

The RAB$B macro allocates space for a Record Access Block and delimits
the beginning of an optional sequence of assembly-time initialization
macros for the fields of the block.

The format of the RAB$B macro is as follows:

where

label:RAB$B [type]

label

type

is a user-specified symbol that names this
particular Record Access Block. You must ensure
that the address assigned to this label is
word-aligned. Therefore, a .EVEN directive should
immediately precede the RAB$B macro.

indicates whether or not the Record Access Block
can support asynchronous I/O operations (refer to
Section 9.3.4 of Chapter 9 for a description of
asyncronous record operations). One of the
following values can be specified:

SYN indicates synchronous record operations
only (default).

ASYN indicates that the RAB can support both
synchronous and asynchronous record
operations.

The RAB$E macro delimits the end of an optional sequence of
assembly-time initialization macros and stores any specified initial
values in the appropriate fields of the block. At assembly-time, all

6-1

THE RECORD ACCESS BLOCK

fields not explicitly initialized are set to their default values.
The RAB$E macro must always appear subsequent to an associated RAB$B
macro, even when no intervening initialization macros are coded. This
macro takes the form:

RAB$E

The following example shows the allocation for synchronous operations
of a Record Access Block named INPUT:

• EVEN
INPUT: RAB$S

RAB$E
iALLOCATE INPUT RAB
iEND OF INPUT RAB

The following example shows the allocation of the same block with the
assembly-time initialization of two fields--the File Access Block
address and Record Access (RAC) fields of the block •

• EVEN
INPUT: RAB$S iALLOCATE INPUT RAB

iADDRESS OF ASSOCIATED FAB
iSEQUENTIAL ACCESS

R$FAB MASTER
R$RAC RB$SEQ
RAB$E iEND OF INPUT RAB

6.2 FIELDS IN THE RECORD ACCESS BLOCK

Table 6-1 summarizes the fields in the Record Access Block:

Table 6-1
Record Access Block Fields

Field Field
Name Size Description

BID I byte Block identifier.

BKT 2 words Bucket code.

BLN 1 byte Block length.

CTX 1 word User context area.

FAB I word File Access Block address.

lSI 1 word Internal stream identifier.

KBF 1 word Key buffer address.

KRF 1 byte Key of reference.

KSZ 1 byte Key size.

MBC 1 byte Multi-block count.

MBF 1 byte Multi-buffer count.

RAC 1 byte Record access mode.

(Continued on next page)

6-2

Field
Name

RBF

RFA

RHB

ROP

RSZ

STS

STV

UBF

USZ

THE RECORD ACCESS BLOCK

Table 6-1 (Cont.)
Record Access Block Fields

Field
Size Description

1 word Record address.

3 words Record's file address.

1 word Record header buffer.

1 word Record processing options.
(bi t string)

1 word Record size.

1 word Completion status code.

1 word Status value.

1 word User record area address.

1 word User record area size.

The sUbsections that follow describe the purpose of each of the fields
listed in Table 6-1. RMS-ll provides macros that allow you to
initialize most of these fields at assembly-time. These macros, when
provided, are discussed with the description of the associated field.

6.2.1 BID - Block Identifier

The block identifier (BID) field identifies the block as a RAB. This
field, automatically set by the RAB$B macro, contains the value
RB$BID. You must never alter this field.

6.2.2 BKT - Bucket Code

The bucket code (BKT) field is used in two instances:

1. When the record access stream represented by the RAB is
performing I/O on a relative file.

2. When the record access stream represented by the RAB is
performing block I/O.

When the record access stream is performing I/O on a relative file,
RMS-ll sets the BKT field to the relative record number of the record
accessed by an operation (e.g., $GET, $PUT). This feature is valid
only when your program is using sequential access mode.

When performing block I/O, your program uses the BKT field to specify
the virtual block number of a block to be read or written (refer to
Appendix B for a description of block I/O).

THE R$BKT macro initializes the BKT field at assembly-time:

R$BKT vbn

6-3

THE RECORD ACCESS BLOCK

where

vbn is a numeric value representing a virtual block
number.

In the following example, the user specifies that the tenth virtual
block of the file will be accessed when the program performs its first
block I/O operation at runtime.

INPUT: RAB$B

R$BKT 10

RAB$E

6.2.3 BLN - Block Length

The block length (BLN) field specifies the length of the RAB. This
field, automatically set by the RAB$B macro, contains the value RB$BLN
for a synchronous RAB and the value RB$BLL for an asynchronous RAB.
You must never alter this field.

6.2.4 CTX - User Context Area

The user context area (CTX) is never used in any way by RMS-ll. It is
intended exclusively for the user. Therefore, you can set any value
you choose in this I-word field. You might, for example, use this
field as a means of communicating with a common completion routine in
your program.

The R$CTX macro allows you to initialize the CTX
assembly-time. The format of this macro is as follows:

R$CTX argument

where

argument represents any user-selected value.

field at

The following are two examples of the R$CTX macro, showing a numeric
value placed in the user context area in the first case, and a
symbolic value in the second case.

1. INPUT: RAB$B

R$CTX 1

RAB$E

6-4

THE RECORD ACCESS BLOCK

2. INPUT: RAB$B

R$CTX MASTER

RAB$E

6.2.5 FAB - File Access Block Address

The FAB field must contain the address of a File Access Block
associated with an open file at the time a $CONNECT macro call (refer
to Section 9.3.1) is issued for the current Record Access Block.

The R$FAB macro allows you to initialize the
assembly-time. Its format is as follows:

R$FAB fab-address

where

FAB field

fab-address is the symbolic address of a File Access Block.

The following is an example of a R$FAB macro:

MASTER: FAB$B

FAB$E

INPUT: RAB$B

R$FAB MASTER

RAB$E

6.2.6 lSI - Internal Stream Identifier

at

The internal stream identifier (lSI) field is used by RMS-Il to
associate the Record Access Block with a corresponding internal
control structure in the space pool. RMS-ll sets this field during a
$CONNECT operation. Your program must never alter this field.

6.2.7 KBF - Key Buffer Address

The key buffer address (KBF) field contains the address of a loc~tion
in your program. You will use this location during certain operations
in random access mode to indexed and relative files.

6-5

THE RECORD ACCESS BLOCK

Before issuing a $GET or $FIND operation in random mode to an indexed
file, you place in KBF the address of a location containing a
character s~ring key value. The size of this character string must be
specified in the KSZ field. During execution of the $GET or $FIND
operation, RMS-ll uses the character string described by the KBF and
KSZ fields to search an index (which you specify through the contents
of the KRF field of the RAB) and locate the desired record in the
file. The type of match (i.e., exact, generic, approximate, or
approximate and generic) that RMS-ll attempts between the character
string you specify and key values in records of the file is determined
by the KSZ field and the ROP field.

Before issuing a $GET, $FIND, or $PUT operation in random mode to a
relative file, you must place in KBF the address of a location
containing a relative record number (note that relative record numbers
for a relative file begin with 1). The size of this location must be
in the KSZ field and must always equal 4.

The R$KBF macro allows you to initialize the
assembly-time. The format of this macro is:

KBF field at

R$KBF address

where

address is the symbolic address of a location containing
the key value or relative record number of a
record. RMS-Il does not require that this address
be word-aligned. The size of this field is
specified by the KSZ field. When a relative file
is being accessed, the address in KBF points to
the least significant bits of the desired relative
record number.

The following is an example of the R$KBF macro:

INKEY: BLKB 32.

INPUT: RAB$B

R$KBF INKEY

RAB$E

6.2.8 KRF - Key of Reference

The key of reference (KRF) field is meaningful only when an indexed
file is being processed. It is used when your program:

1. Issues $GET or $FIND operations in random access mode to
indexed files.

2. Issues $CONNECT,or $REWIND operations for indexed files.

6-6

THE RECORD ACCESS BLOCK

During random $GET or $FIND operations, the contents of the KRF field
specify which key field is described by the KBF and KSZ fields, e.g.,
primary key, first alternate key, etc. Thus, KRF tells RMS-II which
index in the file to search seeking a match on the character string
key value you described through the contents of the KBF and KSZ
fields.

During $CONNECT or $REWIND operations, RMS-II uses the contents of the
KRF field to determine the current context of the record access stream
(refer to Section 9.3.3 in Chapter 9 for a discussion of current
context). In this case, KRF identifies an index of the file which, in
turn, identifies the next record for the stream.

The R$KRF macro can be used to initialize the KRF field at
assembly-time. The following is the format of this macro:

where

R$KRF key-number

key-number is a numeric value representing a key within the
records of the file. A value of zero indicates
the primary key. Values of I through 254 indicate
the desired alternate keys. The assembly-time
default value is zero (primary key).

In the following example, the user specifies that the contents of the
location called INKEY represent a first alternate key value.

INKEY: BLKB 32.

INPUT: RAB$B

R$KBF
R$KRF

RAB$E

6.2.9 KSZ - Key Size

INKEY
I

The key size (KSZ) field contains the size of the location whose
address is in the KBF field of the block.

When you access an inoexed file in random mode, you use the contents
of the KSZ and ROP fields to specify the type of match that RMS-II is
to perform on the character string key value addressed by the KBF
field. If the size in KSZ equals the length of the key field as
defined when the file was created, RMS-II attempts an exact match (if
neither RB$KGE or RB$KGT is present in ROP) or an approximate match
(if RB$KGE or RB$KGT is present in ROP). If, however, the size in KSZ
is less than the defined key length, RMS-II attempts a generic match
(RB$KGE or RB$KGT not in ROP) or a generic-approximate match (either
RB$KGE or RB$KGT present in ROP).

When you access a relative file in random mode, you must ensure that
KSZ contains the value 4.

6-7

THE RECORD ACCESS BLOCK

The R$KSZ macro allows you to initialize this field at assembly-time.
The format of this macro is as follows:

R$KSZ size

where

size is a numeric value representing the size (in
bytes) of the record key. The specified value
must be in the range of 1 to 255.

The following is an example of the R$KSZ macro:

INKEY: BLKB 32.

INPUT: RAB$B

R$KBF
R$KSZ
R$KRF

RAB$E

INKEY
32
1

In this example, the user specifies that the first alternate key value
in location INKEY is 32 bytes in length.

6.2.10 MBC - Multi-block Count

Use of the multi-block count (MBC) field is optional. It applies only
when the stream represented by the RAB is accessing a sequentially
organized file on disk.

The contents of the MBC field, examined by RMS-ll during execution of
the $CONNECT macro, represent the number of virtual blocks you want
transferred as a single entity during I/O operations between the file
and each of the stream's buffers. Effectively, therefore, the MBC
field defines the size of each buffer supporting the stream's access
to the file while the MBF field (refer to Section 6.2.11) specifies
the number of such buffers RMS-ll is to allocate for the stream.

The primary use of the MBC field is for throughput optimization. It
in no way effects the structure of the file being accessed. Rather,
it minimizes the number of disk accesses required to support your
program's record operation requests. In particular, if your program
issues all read requests {$GETs} or all write requests ($PUTS), you
can increase execution speed by specifying at $CONNECT time an MBC
value that is greater than 1. In combination with this value, you
must ensure that the central space pool (refer to Section 3.3.7 in
Chapter 3) or your private I/O buffer pool (refer to Section 5.2.7 in
Chapter 5) contains sufficient space for the larger buffers.

The R$MBC macro initializes the MBC field at assembly-time. Its
format is:

R$MBC blocks

6-8

where

blocks

THE RECORD ACCESS BLOCK

is a numeric value from 0 to 255 representing the
number of blocks to be transferred during I/O
operations and, therefore, the number of virtual
blocks contained in each I/O buffer supporting the
stream. The assembly-time default is O. Both 0
and 1 indicate 1 block per buffer.

In the following example, the user specifies that 8 virtual blocks are
to be transferred during each I/O operation between the stream's
buffers and the file.

INPUT: RAB$B

R$MBC 8

RAB$E

6.2.11 MSF - Multi-buffer Count

The contents of the multi-buffer count (MBF) field represent the
number of I/O buffers you want RMS-ll to allocate when your program
issues a $CONNECT operation for this Record Access Block. RMS-ll
allocates these buffers either from the centralized space pool or, if
the BPA and BPS fields are non-zero in the FAB associated with this
RAB, from the private I/O buffer pool associated with the file.

The minimum number of buffers that RMS-ll requires for a record access
stream is based on the organization of the file. Table 6-2 lists the
minimum number of buffers for each file organization and the maximum
number of buffers that you can specify.

Table 6-2
Minimum and Maximum Number of Buffers

File Minimum
Organization MBF

Sequential 1

Relative 1

Indexed 2

The R$MBF macro allows you to initialize the
assembly-time. The format of this macro is:

R$MBF buffers

6-9

Maximum
MBF

2

No maximum

No maximum

MBF field at

where

buffers

THE RECORD ACCESS BLOCK

is a numeric value representing the number of
buffers to be allocated to the record access
stream upon execution of a $CONNECT macro call.
The specified value must be in the range of 0 to
255. A value of 0 (assembly-time default)
indicates the minumum number of buffers based on
the file's organization. If the user specifies
less than the minimum required by the organization
of the file, RMS-ll ignores the user specification
and allocates the minimum required. If the user,
for a sequential file, specifies more than the
maximum, RMS-ll allocates the maximum number (2).
If the user specifies more buffers than are
available, RMS-ll allocates as many as possible.

In the following example, the user specifies the allocation of four
buffers:

INPUT: RAB$B

R$MBF 4

RAB$E

6.2.12 RAC - Record Access Mode

The RAe field specifies the access mode to be used to retrieve or
store a record.

The R$RAC macro allows you to initialize the
assembly-time. Its format is:

RAC field at

where

R$RAC access-mode

access-mode is a symbolic value
access desired. One
specified:

representing the type of
of the following may be

RB$KEY

RB$RFA

RB$SEQ

indicates random access. You can
specify this value only with relative or
indexed files.

indicates access by record's file
address (for files on disk devices
only). When you specify this value,
RMS-ll uses the record's file address
(RFA) field of this RAB to access the
record.

indicates sequential access.
specify this value with
organization.

6-10

You can
any file

THE RECORD ACCESS BLOCK

The following is an example of the R$RAC macro in which the user
indicates random access:

INPUT: RAB$B

R$RAC RB$KEY

RAB$E

6.2.13 RBF - Record Address

The record address (RBF) field is used to pass the address of a record
between RMS-ll and your program. As output from a successful $GET
operation, RMS-ll always places the memory address of the retrieved
record in RBF. Conversely, your program, prior to a $PUT or $UPDATE
operation, must place in RBF the memory address of the record to be
written out to the file. In both instances, the RSZ field describes
the size of the record. Refer to Section 9.3.5.2.1 in Chapter 9 for
further details on the RBF and RSZ fields.

You can initialize the RBF field at assembly-time with the R$RBF
macro. The format of this macro is as follows:

R$RBF address

where

address is the symbolic address of an area in your
program.

In the following example, the user initializes the RBF field with the
address of a program location that, at runtime, will contain a record
to be written to the file.

RECBUF: .BLKB 150.

INPUT: RAB$B

R$RBF RECBUF

RAB$E

6.2.14 RFA - Record's File Address

The record's file address (RFA) field is used to pass the RFAs of
records between RMS-ll and your program. After successful $GET, $PUT,
and $FIND operations, RMS-ll returns to your program the RFA of the
record successfully operated upon. Your program can then save the
contents of this field for subsequent retrieval of the record using
RFA access mode. Before retrieving a record using RFA access, your
program must load the RFA of the desired record in the RFA field.

6-11

THE RECORD ACCESS BLOCK

6.2.15 RHB - Record Header Buffer

RMS-ll uses the record header buffer (RHB) field only when the record
format field (RFM) of the associated File Access Block indicates VFC
format records. When RHB is non-zero, RMS-ll interprets its contents
as the address of a buffer for the fixed control area portion of VFC
records. On $GET operations, RMS-ll strips the fixed control area
portion of VFC records and places it in the buffer whose address is in
the RHB field. On $PUT and $UPDATE operations, RMS-ll prefixes the
data portion of the record with the fixed . control area portion
described by the RHB field before the entire record is written to the
file. For all such operations, the size of the fixed control area
portion is a defined attribute of the file. During a $OPEN macro
call, RMS-ll returns this size in the FSZ field of the associated File
Access Block. When your program processes the fixed control area
portion of VFC records, you must ensure that the buffer described by
the RHB field is at least as large as the value in FSZ.

When you do not want to process the fixed control area portion of VFC
records, you zero the RHB field. When RHB is zero, RMS-ll does the
following:

1. Skips the fixed control area portion of the record on $GET
operations.

2. Writes out a zero-filled fixed control area
operations.

on $PUT

3. Leaves the original fixed control area unaltered on $ UPDATE
operations.

You can initialize the RHB field at assembly-time with the R$RHB
macro:

where

R$RHB header-address

header-address is the symbolic address of an area within your
program. An address of zero in the RHB field
indicates the nonexistence of the buffer.

6.2.16 ROP - Record Processing Options

The record processing options (ROP) field allows you to request
optional functions during the execution of a record operation.

The R$ROP macro allows you to initialize the ROP
assembly-time. The format of this macro is as follows:

field at

where

R$ROP option[!option •••]

option is a symbolic value representing record processing
options. One or more of the following options may
be specified in any order.

6-12

THE RECORD ACCESS BLOCK

RB$ASY

RB$EOF

RB$FDL

RB$KGE

RB$KGT

RB$LOA

RB$LOC

indicates asynchronous operation. When
this value is set, RMS-ll can return
control to your program before the
specified record operation is completed
(assuming that the RAB has been defined
as asynchronous in the RAB$B macro).

indicates that RMS-ll is to position to
end of file when the $CONNECT macro call
is issued for the record access stream.
This option applies only to sequential
files on disk devices.

indicates fast delete (indexed files
only). When this value is present,
$DELETE operations will mark records in
the file as deleted but RMS-ll will not
remove pointers to the record from the
indexes.

indicates that RMS-ll is to search for
the first record containing a value in
the key specified by the KRF field that
is greater than or equal to the value
described by the KBF and KSZ fields.
This option applies only to indexed
files and is one form of the approximate
match facility (see also RB$KGT).

specifies the second form of the
approximate match facility (see also
RB$KGE). It indicates that RMS-ll is to
search for the first record containing a
value in the key specified by the KRF
field that is greater than the value
described by the KBF and KSZ fields.
This option applies only to indexed
files.

indicates that RMS-ll is to follow
bucket fill sizes for record insertions
to indexed files. The fill sizes for a
file are specified by the user at file
creation time in the DFL and IFL fields
of key definition XABs. The
assembly-time default is to ignore
bucket fill sizes (i.e., buckets will be
completely filled).

indicates locate mode. Locate mode on
$GET operations is supported for all
file organizations. Locate mode on $PUT
operations is supported only for
sequential files. Locate mode is not
permitted if the file was opened for
$UPDATE operations (i?e., the value
FB$UPD was present in the FAC field of
the FAB during the $OPEN or $CREATE
operation).

6-13

THE RECORD ACCESS BLOCK

RB$UIF indicates that if a $PUT operation to a
relative file encounters an existing
record in the target record cell, the
existing record is to be updated. If
RB$UIF is not set, RMS-ll returns an
ER$REX (record already exists) error if
a $PUT operation to a relative file
encounters an existing record.

The following are two examples of the R$ROP macro. In the first
example, the user specifies positioning to end of file and locate mode
operations. In the second example, the user specifies an approximate
key search, i.e., RMS-ll is to search for a record containing a key
value equal to or greater than the key described by the KBF, KSZ, and
KRF fields.

1. INPUT: RAB$B

R$ROP RB$EOF!RB$LOC

RAB$E

2. INPUT: RAB$B

R$ROP RB$KGE

RAB$E

6.2.17 RSZ - Record Size

The record size (RSZ) field contains the size (in bytes) of the record
whose address is in the RBF field. Following a successful $GET
operation, RMS-ll places the size of the retrieved record in the RSZ
field. Conversely, your program, before issuing a $PUT or $UPDATE
operation, must ensure that the RSZ field contains the size of the
record to be written.

The R$RSZ macro can be used to initialize the RSZ field at
assembly-time. The format of this macro is:

where

R$RSZ record-size

record-size is a numeric value representing the size (in
bytes) of the record whose address is in the RBF
field. The value specified must range from 1 to
16383.

6-14

THE RECORD ACCESS BLOCK

The following is an example of the R$RSZ macro:

RECBUF: .BLKB 150.

INPUT: RAB$B

R$RBF
R$RSZ

RAB$E

RECBUF
150

In this example, the user specifies a record size of 150 bytes.

6.2.18 STS - Completion Status Code

RMS-ll always sets the completion status code (STS) field to indicate
success or failure of the record operation. Appendix A contains a
complete list of symbolic completion codes that your program can use
to test the contents of this field.

6.2.19 STY - Status Value

Based on the type of operation performed and the contents of the STS
field, RMS-li may use the status value (STV) field to communicate
additional completion inf~rmation to your program (refer to Appendix A
for a complete list of the instances in which RMS-ll uses the STY
field).

6.2.20 UBF - User Record Area Address

The user record area address (UBF) field must contain a valid address
regardless of the data transfer mode (i.e., move or locate mode)
associated with the record access stream. Refer to Section 9.3.5.2.2
in Chapter 9 for details on the function of the UBF field.

The R$UBF macro allows you to initialize the
assembly-time. The format of this macro is:

UBF field at

R$UBF address

where

address is the symbolic address of a work area within your
program. You must specify the size of this work
area in USZ.

6-15

THE RECORD ACCESS BLOCK

The following is an example of the R$UBF macro.

WAREA: .BLKW 1024.

INPUT: RAB$B

R$UBF WAREA

RAB$E

6.2.21 USZ - User Record Area Size

The USZ field contains the size of the user record area whose address
is in the UBF field.

You can initialize the USZ field at assembly-time with the R$USZ
macro:

R$USZ area-size

where

area-size is a numeric value representing the size (in
bytes) of the user record area whose address is in
the UBF field. The value specified must range
from 1 to 16383.

In the following example, the user specifies a user record area 2048
bytes in size.

WAREA: .BLKW

INPUT: RAB$B

R$UBF
R$USZ

RAB$E

1024.

WAREA
2048

6-16

CHAPTER 7

EXTENDED ATTRIBUTE BLOCKS

This chapter describes Extended Attribute Blocks, the fields in
Extended Attribute Blocks, and the assembly-time macros that allocate
XABs and initialize fields in XABs.

Extended Attribute Blocks contain file and record attribute
information beyond that specified in the associated File Access Block.
XABs are generally required only when a file is being created
(particularly an indexed file) or when the $DISPLAY macro call is used
to retrieve file attributes.

When more than one Extended Attribute Block is required, they are
linked together. The XAB field of the File Access Block points to the
first block in the linked list.

There are five types of Extended Attribute Blocks:

1. Date and time XABs

2. Key definition XABs

3. File protection specification XABs

4. Allocation XABs

5. Summary XAB

After descriptions of XAB allocation and linking, the subsections that
follow describe each type of XAB.

7.1 ALLOCATING AN EXTENDED ATTRIBUTE BLOCK

The XAB$B macro allocates space for an Extended Attribute Block and
delimits the beginning of an optional sequence of assembly-time
initialization macros for the fields of the block.

The format of the XAB$B macro is as follows:

where

label:XAB$B type

label is a user-specified symbol that names this
particular Extended Attribute Block. You must
ensure that the address assigned to this label is
word-aligned. Therefore, a .EVEN directive should
irnmedi ate ly pr.ecede the XAB$B macro.

7-1

type

EXTENDED ATTRIBUTE BLOCKS

is a symbolic value representing the type of
attribute information contained in the block. At
assembly-time, the specified value is stored in
the COD field of the block. At runtime, the value
in the COD field determines how RMS-ll interprets
the remainder of the Extended Attribute Block.

One of the following values must be specified at
assembly-time.

XB$DAT

XB$KEY

XB$PRO

XB$ALL

XB$SUM

indicates a date and time XAB.

indicates a key definition XAB.

indicates a file protection
specification XAB.

indicates an allocation XAB.

indicates a summary XAB

The XAB$E macro delimits the end of an optional sequence of
assembly-time initialization macros and stores any specified initial
values in the appropriate fields of the block. At assembly-time all
fields not explicitly initialized are set to their default values.
The XAB$E macro must always appear subsequent to an associated XAB$B
macro, even when no intervening initialization macros are coded. This
macro takes the form:

XAB$E

The following example shows the allocation of a key definition
Extended Attribute Block named KEYDEF:

• EVEN
KEYDEF: XAB$B XB$KEY

XAB$E

7.2 LINKING AND ORDERING EXTENDED ATTRIBUTE BLOCKS

Regardless of the type of information contained (e.q., key definition,
protection specification, etc.), every XAB has an NXT field. The NXT
field links one XAB with another. When multiple XABs are needed for a
particular operation (e.g., $CREATE, $DISPLAY), the address of the
first XAB is placed in the XAB field of the File Access Block. The
address of the second XAB is placed in the NXT field of the first XAB,
and so forth. The NXT field of the last XAB in the linked chain is
set to zero to indicate the end of the chain.

Within a chain of XABs, there is no mandatory ordering of blocks based
on XAB type (i.e., contents of the COD field). Assume, for example,
that you want to obtain the attributes of a single-key indexed file.
At assembly-time, you could allocate a date and time XAB, a key
definition XAB, a file protection XAB, and a summary XAB. Then,
either at assembly-time or at runtime, ·you could link these XABs in
any order by appropriately setting the contents of the NXT field in
each block. Finally, you would issue a $DISPLAY macro call and RMS-ll
would fill attribute information into each block -- the type of
information going into each block being determined by the COD field of
the block.

7-2

EXTENDED ATTRIBUTE BLOCKS

While different types of XABs can appear in any order in a chain,
multiple instances of the same type must appear in a particular order.
This rule applies to key definition and allocation XABs, since these
are the only ones that RMS-ll permits multiple instances of in a
chain. Key definition XABs must be linked together in ascending order
based on the contents of the key of reference (REF) field (refer to
Section 7.4.10). Allocation XABs must be linked together in ascending
order based on the contents of the area identification number (AID)
field (refer to Section 7.6.1). In both instances, there cannot be
any intervening XABs of another type in the sub-chain of XABs of the
same type. Further, the ope.ration for which these XABs are present
determines whether or not the ascending order must be dense. For
$CREATE operations, key definition and allocation XABs, if present,
must appear in densely ascending order by, respectively, key of
reference (REF) and area identification number (AID). For $OPEN,
$EXTEND, and $DISPLAY operations, key definition and allocation XABs,
if present, must be in ascending order but need not be dense.

You use the X$NXT macro to initialize the NXT field of an XAB at
assembly-time. The format of the X$NXT macro is as follows:

X$NXT xab-address

where

xab-address is the symbolic address of the next XAB within the
current chain of XABs. A value of zero indicates
the last (or only) XAB in a chain.

7.3 DATE AND TIME EXTENDED ATTRIBUTE BLOCKS

Date and time Extended Attribute Blocks contain fields specifying the
date and time the associated file was created and the date and time
the file was last updated. There are no initialization macros for the
fields in this XAB since you can only examine, but not alter, the date
and time attributes of a file. The allocation of this XAB at
assembly-time causes the fields of the block to be initialized to
zero.

Table 7-1 describes the fields of a date and time XAB.

Table 7-1
Date and Time XAB Fields

Field Name Field Size Description

COT 4 words The date and time the file was
created, expressed as an 8 byte
binary number.

COD 1 byte Code field. Contains the value
XB$DAT.

NXT 1 word Next XAB.

ROT 4 words The date and time the file was last
updated, expressed as an 8 byte
binary number.

RVN 1 word Revision number. Contains the
number of times the file was opened
(via a $OPEN macro call) for write
operations.

7-3

EXTENDED ATTRIBUTE BLOCKS

The 8-byte binary numbers (in which the lowest-addressed byte is the
least significant) in the COT and ROT fields represent the number of
hundreds of nanoseconds elapsed since the beginning of November 17,
1858.

7.4 KEY DEFINITION EXTENDED ATTRIBUTE BLOCKS

Each key definition Extended Attribute Block describes one key of an
indexed file. When you create an indexed file, you must set the
contents of the fields of this XAB before you issue the $CREATE macro
call. You must, further, provide one key definition XAB for each key
you want the file to have. Since every indexed file has at least one
key (the primary key) you will always require at least one key
definition XAB.

When you open an existing indexed file or issue a $DISPLAY operation
for such a file, you use key definition XABs only if you want RMS-ll,
as output from the macro call, to provide your program with one or
more of the key definitions specified when the file was created.

Table 7-2 summarizes the fields of a key definition XAB.

Table 7-2
Key Definition XAB Fields

Field Name Field Size Description

COD 1 byte Code field. Contains the value
XB$KEY.

DAN 1 byte Area number for data buckets.

DFL 1 word Data bucket fill size.

FLG 1 byte Key options.
(bi t string)

IAN 1 byte Area number for index buckets.

IFL 1 word Index bucket fill size.

KNM 1 word Key name address.

LAN 1 byte Area number for lowest level of
index.

NUL 1 byte Null key value.

NXT 1 word Next XAB.

P~S 8 words Key position.

REF 1 byte Key of reference.

RVB 2 words Root virtual block number.

SIZ 8 bytes Key size.

7-4

EXTENDED ATTRIBUTE BLOCKS

The following sUbsections describe the fields listed in Table 7-2 that
are unique to the key definition XAB.

7.4.1 DAN - Area Number for Data Buckets

You set a value in the DAN field only if both of the following are
true:

1. You are creating a new indexed file.

2. You are using allocation XABs (described in Section 7.6) to
control the placement and structure of the file.

If both of the above are true, then you use the DAN field to assign
the buckets of the data level of the index defined by this XAB to one
of the areas defined by an allocation XAB.

When the key definition XAB describes the primary key, the data level
of the index consists of those buckets containing the actual data
records of the file. When, however, the XAB describes an alternate
key, the data level of the index consists of buckets in which RMS-ll
maintains pointer arrays describing the data records.

The X$DAN macro allows you to initialize the
assembly-time. Its format is:

DAN field at

where

X$DAN aid

aid is a numeric value from 0 to 254 representing an area
identification number contained in the AID field of an
allocation XAB present in the same chain. The
assembly-time default is 0 (i.e., area 0).

In the following example, the user assigns the data level of the key
defined by the XAB called KEYDEF to area 1.

AREAl: XAB$B XB$ALL

.
X$AID 1

XAB$E

KEYDEF: XAB$B XB$KEY

X$DAN 1

XAB$E

7-5

EXTENDED ATTRIBUTE BLOCKS

7.4.2 DFL - Data Bucket Fill Size

At $CREATE time, you can use the DFL field to specify how many bytes
you want used in each data level bucket of the associated index. By
specifying less than the total bucket size, you indicate that the data
buckets are not to be completely filled but are to contain some amount
of free space. At runtime, RMS-li adheres to the fill size specified
at $CREATE time only if the RB$LOA value is present in the record
processing options (ROP) field of the RAB.

When the key definition XAB describes the primary key, the OFL field
describes space in buckets containing the actual user data records.
When the XAB describes an alternate key, the OFL field describes space
in buckets of the alternate index containing pointers to the user data
records.

You may want to use the facility provided by the OFL field (and the
similar facility provided by the IFL field, described in Section
7.4.5) in the following situation: If you expect to perform numerous
$PUT and $UPDATE operations on the file after it has been initially
populated, you can minimize the resultant movement of records (known
as bucket splitting) by specifying a less than maximum bucket fill
size at $CREATE time. To utilize the free space thereby reserved in
the buckets, programs that perform $PUT or $UPDATE operations on the
file should not place, at $CONNECT time, the value RB$LOA in the ROP
field of the RAB.

The X$DFL macro allows you to initialize the
assembly-time. The format of this macro is:

DFL field at

X$DFL space

where

space is a numeric value representing the maximum number
of bytes to be used in the data buckets. The
assembly-time default value is 0, which is
interpreted at runtime by RMS-II as meaning the
bucket size in bytes (i.e., no unused space).

The following is an example of the X$DFL macro:

KEYDEF: XAB$B XB$KEY

X$DFL 256

XAB$E

In this example, the user specifies that each bucket in the data level
is to be filled to a maximum of 256 bytes.

7-6

EXTENDED ATTRIBUTE BLOCKS

7.4.3 FLG - Key Options

The key options (FLG) field defines optional characteristics of the
key represented by the XAB. These characteristics are:

1. Duplicate key values are allowed.

2. Key values can change.

3. Null key value.

You use the X$FLG macro to initialize the FLG field at assembly-time.
Its format is:

X$FLG option[!option.~.]

where

option

Key Type

Primary

Alternate

CHANGE
+

is a symbolic value specifying a characteristic of
the key field defined by the Extended Attribute
Block. The following values may be specified:

XB$CHG

XB$DUP

XB$NUL

indicates that the associated key within
any record can be changed by a program
during a $UPDATE operation. This option
can be specified only for alternate keys
and only in conjunction with XB$DUP.

indicates that records within the file
may have the same values within the key
field associated with this XAB.

The allowed combinations of XB$CHG and
XB$DUP depend on the type of key (i.e.,
primary or alternate) represented by the
extended attribute block. Table 7-3
summarizes these combinations.

indicates that the NUL field of this XAB
contains a null key value. You can
specify this characteristic only for
alternate keys.

Table 7-3
Key Option Combinations

Combination

CHANGE NO CHANGE NO CHANGE
+ + +

DUPLICATES NO DUPLICATES DUPLICATES NO DUPLICATES

Error Error Allowed Default

Default Error Allowed Allowed

The assembly-time default values for the FLG field depend on the type
of key (i.e., primary or alternate) defined by the XAB. The defaults
for a primary key are:

7-7

EXTENDED ATTRIBUTE BLOCKS

1. Duplicate key values are not allowed.

2. Key values cannot change.

3. No null key value.

The defaults for alternate keys are:

1. Duplicate key values allowed.

2. Key values can change.

3. No null key value.

The symbolic values you specify using the X$FLG assembly-time macro or
the $STORE runtime macro are mapped into bit settings in the FLG
field. When a bit is set, it means that the corresponding
characteristic was specified (e.g., key values can change or duplicate
key values allowed or null key value defined). Conversely, when a bit
is zero, it means that the corresponding characteristic is not defined
for the key (e.g., key values cannot change, or duplicate keys not
allowed or null key not defined). Both the X$FLG and the $STORE macro
affect the entire FLG field, setting those bits specified and clearing
to zero those not specified. Therefore, when defining the
characteristics of a key, you should specify exactly what you want the
field to contain, expressing bit settings as symbolic values. Any
symbolic values you omit will result in a zero in the corresponding
bit position. As examples, consider the following:

1. KEYDEF: XAB$B XB$KEY

X$FLG XB$DUP1XB$NUL

XAB$E

2. KEYDEF: XAB$B XB$KEY

X$FLG XB$NUL

XAB$E

3. STORE #O,FLG,R3

In the first example, the user specifies that duplicate keys are
allowed, a null key value is defined, and (through the absence of
XB$CHG) that key values cannot change. In the second example, the
user specifies that a null key value is defined but duplicate key
values are not permitted and key values cannot change. In the third
example, the user sets the FLG field to indicate that duplicate key
values are not permitted, key values cannot change, and no null key is
defined.

7-8

EXTENDED ATTRIBUTE BLOCKS

7.4.4 IAN - Area Number for Index Buckets

You set a value in the area number for index buckets (IAN) field only
if both of the following are true:

1. You are creating a new indexed file.

2. You are using allocation XABs (refer to Section 7.6) to
control the placement and structure of the file.

If both of the above are true, then you use the IAN field to assign
the buckets of the index level of the index defined by this XAB to one
of the areas defined by an allocation XAB.

When the key definition XAB describes the primary key, the index level
of the index consists of all levels of the tree-structured primary
index down to and including the level containing pointers to the user
data records themselves. When, however, the XAB describes an
alternate key, the index level consists of all levels of the
tree-structured alternate index down to, but not including, the level
containing buckets in which RMS-ll maintains pointer arrays describing
the user data records (refer to the LAN field description for an
additional facility in index bucket assignment).

The X$IAN macro allows you to initialize the
assembly-time. Its format is:

IAN field at

where

X$IAN aid

aid is a numeric value from 0 to 254 representing an area
identification number contained in the AID field of an
allocation XAB present in the same chain. The
assembly-time default is 0 (i.e., area 0).

In the following example, the user assigns the index level of the key
defined by the XAB called KEYDEF to area 2.

AREA2: XAB$B XB$ALL

X$AID 2

XAB$E

KEYDEF: XAB$B XB$KEY

X$IAN 2

XAB$E

7-9

EXTENDED ATTRIBUTE BLOCKS

7.4.5 IFL - Index Bucket Fill Size

At $CREATE time, you can use the IFL field to specify how many bytes
you want used in each index level bucket of the associated index. By
specifying less than the total bucket size, you indicate that the
index buckets are not to be completely filled but are to contain.some
amount of free space. At runtime, RMS-II adheres to the fill size
specified at $CREATE time only if the RB$LOA value is present in the
record processing options (ROP) field of the RAB.

When the key definition XAB describes the primary key, the IFL field
describes space in buckets in all levels of the tree-structured
primary index down to and including the level containing pointers to
the user data records themselves. When the XAB describes an alternate
key, IFL applies to all levels of the tree-structured alternate index
down to, but not including, the level containing buckets in which
RMS-II maintains pointer arrays describing the user data records.

You may want to use the facility provided by the IFL field (and the
similar facility provided by the DFL field, described in Section
7.4.2) in the following situation: If you expect to perform numerous
$PUT and $ UPDATE operations on the file after it has been initially
populated, you can minimize the resultant movement of index entries
(known as bucket splitting) by specifying a less than maximum bucket
fill size at $CREATE time. To use the free space thereby reserved in
the index buckets, programs that perform $PUT or $UPDATE operations on
the file should not place, at $CONNECT time, the value RB$LOA in the
ROP field of the RAB.

You can initialize the IFL field at assembly-time with the X$IFL
macro. The format of the X$IFL macro is as follows:

X$IFL space

where

space is a numeric value representing the maximum number
of bytes to be used in the index buckets. The
assembly-time default is 0, which is interpreted
at runtime by RMS-II as meaning the bucket size in
bytes (i.e., no unused space).

The following is an example of the X$IFL macro:

KEYDEF: XAB$B XB$KEY

X$IFL 300

XAB$E

In this example, the user specifies that 300 bytes of each index
bucket are to be used.

7-10

EXTENDED ATTRIBUTE BLOCK,S

7.4.6 KNM - Key Name Address

The Key Name Address (KNM) field can contain the address of a
32-character ASCII string. When you are defining a key, you can
associate any 32-character string you choose with the key field
represented by the XAB. RMS-ll never examines this character string
but retains it in the file as part of the key definition information.

You can initialize the KNM field at assembly-time with the X$KNM
macro. Its format is:

X$KNM address

where

address is the symbolic address of a buffer. This buffer
should alwa~s be at least 32 bytes in length. A
value of 0 in this field indicates that no key
name is defined ($CREATE) or is to be displayed
($OPEN or $DISPLAY).

7.4.7 LAN - Lowest Index Level Area Number

You set a value in the LAN field only when both of the following are
true:

1. You are creating a new indexed file.

2. You are using allocation XABs (refer to Section 7.6) to
control the placement and structure of the file.

If both of the above are true, then the LAN field allows you to
separate the lowest level of the index from all higher levels by
specifying a different area number than that specified by the IAN
field. However, the bucket size of the area specified by the LAN
field must be the same as that of the area identified by the IAN
field.

You can initialize the LAN field at assembly-time with the X$LAN
macro:

where

X$LAN aid

aid is a numeric value from 0 to 254. A value of 0
indicates that the lowest level of the index is to
occupy the same area as the remainder of the index.
Values from I to 254 represent an area identification
number contained in the AID field of an allocation XAB.
The assembly-time default is o.

7.4.8 NUL - Null Key Value

The NUL field can contain any user-selected character value. When you
create an indexed file, however, RMS-Il examines and saves the
contents of this field only if the value XB$NUL is present in the FLG
field of the block. F~rther, the null key facility is available only
for Extended Attribute Blocks that define an alternate key.

7-11

EXTENDED ATTRIBUTE BLOCKS

When writing a record into an indexed file, RMS-ll normally updates
all indexes of the file to reflect the values found in the
corresponding key fields of the record. However, if a null key value
is defined for a particular alternate key, RMS-ll examines the
contents of the key field in the record. If this field consists
solely of the null key characters specified in the NUL field of the
XAB that defined the key at $CREATE time, RMS-ll will not make an
entry in the associated alternate index for the record.

The X$NUL macro can be used to initialize the NUL field at
assembly-time. The format of this macro is as follows:

X$NUL value

where

value is any user-selected character value.

The following are two examples of the X$NUL macro:

1. KEYDEF: XAB$B XB$KEY

X$FLG XB$NUL
X$NUL <IZ>

XAB$E

2. KEYDEF: XAB$B XB$KEY

X$FLG XB$NUL
X$NUL <"'0177>

XAB$E

In the first example, the user specifies that any record containing
all ZI S in the key field defined by the current XAB is not to have an
entry made for it in the associated alternate index. In the second
example, the user specifies the same action but the null key value is
the ASCII character DEL.

7.4.9 POS - Key Position

In combination with the SIZ field, the POS field defines the location
of the key within each record of the file. The POS field is eight
words in length because two types of keys can be defined simple
keys and segmented keys.

A simple key is a single string of contiguous bytes in the record.
The first word of the POS field specifies the starting position of the
string and the remaining words contain zeros.

A segmented key consists of two to eight strings of bytes in the
record. Each individual string (segment) is a set of contiguous
bytes, but the strings need not be contiguous with each other, nor

7-12

EXTENDED ATTRIBUTE BLOCKS

need they be in any particular order. Each successive word of the POS
field specifies the starting position of one of the segments. When
processing records that contain segmented keys, RMS-ll treats the
individual segments of the key as a single, logically contiguous
string beginning with the first segment and ending with the last.

The X$POS macro can be used
assembly-time. The format of
follows:

to initialize the POS
this macro for simple

field at
keys is as

X$POS position

where

position is a numeric value representing the starting
position of the key within each record. The first
byte of a record is represented by a value of 0,
the second by a value of 1, etc.

For segmented keys, the format of the X$POS macro is as follows:

where

X$POS <posO,posl[,pos2 ••• ,pos7]>

posO,posl,etc. are numeric values representing starting positions
of each segment of the segmented key. Up to eight
values can be specified. It is not necessary that
the list of values represent ascending byte
positions in the record. To define a segmented
key, the POS field and the SIZ field must contain
an equal number of successive values.

Three examples of the X$POS macro follow:

1. KEYDEF: XAB$B XB$KEY

X$POS 0

XAB$E

2. KEYDEF: XAB$B XB$KEY

X$POS 8

XAB$E

3. KEYDEF: XAB$B XB$KEY

X$POS <19,0,13,28>

XAB$E

7-13

EXTENDED ATTRIBUTE BLOCKS

In the first example, the user defines a simple key that begins in the
first byte of each record. The second example shows the specification
of a simple key beginning in the ninth byte of each record. To
complete the definition of these simple keys, the user must establish
a corresponding value in the key size (SIZ) field of the block. In
the third example, the user specifies a segmented key. The first
segment of the key begins in the twentieth byte, the second segment
begins in the first byte, the third segment in the fourteenth byte,
and the fourth segment in the twenty-ninth byte. To complete the
definition of this segmented key, the user must establish four values
for the size field (SIZ) corresponding to these four segment
positions.

7.4.10 REF - Key of Reference

The key of reference (REF) field identifies which key (i.e., primary,
first alternate, second alternate, etc.) is defined by the XAB.

The X$REF macro allows you to initialize the REF
assembly-time. The format of this macro is as follows:

field at

X$REF value

where

value is a numeric value, in the range of 0 to 254,
indicating which key is represented by the current
block. A value of 0 indicates the primary key, 1
indicates the first alternate key, etc. The
assembly-time default value for the REF field is
zero (i.e., primary key).

The following are two examples of the X$REF macro, showing the
specification of a primary key in the first case, and the
specification of a third alternate key in the second case.

1. KEYDEF: XAB$B XB$KEY

X$REF 0

XAB$E

2. KEYDEF: XAB$B XB$KEY

X$REF 3

XAB$E

7-14

EXTENDED ATTRIBUTE BLOCKS

7.4.11 RVB - Root Virtual Block Number

When a key definition XAB is present during an $OPEN or $DISPLAY
operation, RMS-ll sets RVB to the number of the virtual block of the
file that contains the root of the index for the key described by the
XAB.

7.4.12 SIZ - Key Size

The key size (SIZ) field specifies the length of the key whose
starting position is contained in the POS field of the same block.

The X$SIZ macro can be used to initialize the SIZ field at
assembly-time.

For simple keys, the format of the X$SIZ macro is as follows:

X$SIZ size

where

size is a numeric value representing the length (in
bytes) of the key defined by the block. Allowed
values for the SIZ field are 1 to 255.

For segmented keys, the format of the X$SIZ macro is as follows:

where

X$SIZ <sizeO,sizel [,size2 ••• size7]>

sizeO,sizel,etc. are numeric values representing the length of
each segment of the segmented key. Up to eight
values can be specified. The total size
specified must be less than 256. To define a
segmented key, you must provide an equal number
of values for the SIZ and POSfields of the
block. For example, the first value specified
on an X$POS macro will be combined with the
first value on an X$SIZ macro to define the
location and length of the first segment of the
segmented key, etc.

Two examples of the X$SIZ macro follow:

1. KEYDEF: XAB$B

X$SIZ 8

XAB$E

2. KEYDEF: XAB$B

XB$KEY

XB$KEY

X$SIZ <8,2,5,32>

XAB$E
7-15

EXTENDED ATTRIBUTE BLOCKS

In the first example, the user specifies a key length of 8 bytes. In
the second example, the user specifies the lengths of the four
segments of a segmented key. Assume that the following initialization
macro is also present for the same block:

X$POS <19,0,13,28>

The following is the full definition of the segmented key:

Start position Length

20th byte 8 bytes
1st byte 2 bytes
14th byte 5 bytes
29th byte 32 bytes

Total Key Length = 47 bytes

7.5 FILE PROTECTION SPECIFICATION EXTENDED ATTRIBUTE BLOCK

A file protection specification Extended Attribute Block contains
protection information for the associated file. Wh~n you create a
file, you can use this type of XAB to explicitly ass1gn protection
codes. When you open an existing file, you can use this type of XAB
to obtain the protection codes specified when the file was created.
Table 7-4 describes the fields of this type of XAB.

Field Name

COD

NXT

PRG

PRJ

PRO

Table 7-4
File Protection Specification XAB Fields

Field Size

1 byte

1 word

1 word

1 word

1 word

Description

Code field contains
XB$PRO.

Next XAB.

the value

Programmer number portion of
owner's user identification code
(Ule).

Project number portion of owner's
user identification code (UlC).

System dependent file protection
value.

The following sUbsections describe the fields listed in Table 7-4 that
are unique to the file protection specification XAB.

7-16

EXTENDED ATTRIBUTE BLOCKS

7.5.1 PRG - Programmer Number

The PRG field contains the programmer number portion of the file
owner's user identification code.

The X$PRG macro can be used to initialize the PRG field at
assembly-time. The format of the X$PRG macro is as follows:

X$PRG number

where

number is a numeric value representing a programmer
number. The specified value must range from 1 to
255.

The following is an example of the X$PRG macro:

PRODEF: XAB$B XB$PRO

X$PRG 11

XAB$E

7.5.2 PRJ - Project Number

The PRJ field contains the project number portion of the file owner's
user identification code.

The X$PRJ macro allows you to initialize the PRJ
assembly-time. The X$PRJ macro takes the following form:

X$PRJ number

where

field at

number is a numeric value representing a project number.
The specified value must range from 1 to 255.

The following is an example of the X$PRJ macro:

PRODEF: XAB$B XB$PRO

X$PRG 211

XAB$E

7-17

EXTENDED ATTRIBUTE BLOCKS

7.5.3 PRO - System File Protection Value

The system file protection value (PRO) field identifies the file
access privileges of four classes of users:

1. Group

2. Owner

3. System

4. World

the class of users with the same project number as
contained in the PRJ field of the current block.

the owner of the file.

users executing under
identification code.

a privileged user

all users not within the group, owner, and system
categories.

The format of the one-word PRO field is as follows:

Bits 15 12 11 8 7 4 3 o

WORLD GROUP OWNER SYSTEM

Figure 7-1 Format of PRO Field

Each of the four categories above has four bits:
following meaning with respect to file access:

each bit has the

Bit '3 2 o

DELETE EXTEND I WRITE READ

Figure 7-2 File Access Bits

A bit value of zero (0) indicates that the respective type of access
to the file is to be allowed: a bit value of one (1) indicates that
the respective type of access to the file is to be denied.

The X$PRO macro initializes the PRO field at assembly-time. Its
format is:

X$PRO

where

protect

protect

is a numeric value representing the desired
encoding for the I-word field. The default radix
for this value is decimal. Use of the MACRO-II
octal radix unary operator will facilitate the
setting of this field.

7-18

EXTENDED ATTRIBUTE BLOCKS

In the following example, the user grants full access rights to the
system and owner and restricts the group and world classes to read
only privileges.

X$PRO <~0167000>

7.6 ALLOCATION EXTENDED ATTRIBUTE BLOCKS

Each allocation XAB describes one area of a file. An area is a
portion of a file that is treated as a single entity for the purposes
of:

initial allocation
extension
placement control
bucket size

Only indexed files can contain more than one area. Multiple areas, if
present, in an indexed file are consecutively numbered beginning with
o. Sequential and relative files are always composed of a single area
(area 0).

In allowing you to define file areas, allocation XABs serve the
following two purposes:

1. They allow you to control the physical placement of a file
(of any organization) on a volume.

2. They allow you to control the internal structure of an
indexed file.

To control the physical placement of a file on a volume, you provide
one (for any type of file) or more (for indexed files only) allocation
XABs linked to the FAB you use to create the file. Within each
allocation XAB are two fields -- alignment (ALN) and location (LOC).
If you set the symbolic value XB$LBN in the ALN field, and a numeric
value in the LOC field, RMS-ll considers the contents of the LOC field
as a logical block number on the volume. RMS-ll then attempts to
allocate the initial virtual block of the area represented by the XAB
at the specified logical block. The same allocation XAB allows you to
specify the initial allocation size (ALQ) and, for indexed files only,
a default extension quantity (DEQ) for the area.

Either with or without the placement control facility, you can use
allocation XABs to control the internal structure of an indexed file.
You can define multiple areas within such a file, assign the index and
data levels associated with keys to particular areas, and vary the
size of buckets on a per-area basis. Indeed, varying the size of
buckets among different areas of an indexed file can be the primary
motivation for your use of allocation XABs. For example, if your
indexed file will contain large data records, you may want
particularly large buckets for the data level of the primary key.
However, you may not want to use the same size buckets for the index
levels of the key. Conversely, for another indexed file, you might
want index level buckets that are larger than data level buckets in
order to minimize the number of index levels that RMS-ll must traverse
to access any record.

7-19

EXTENDED ATTRIBUTE BLOCKS

Both facilities provided by allocation XABs -- placement control and
indexed file structuring -- are completely optional. If you do not
require either of these facilities, you do not need allocation XABs.
In the absence of allocation XABs, RMS-ll provides the following
defaults:

1. When you create a new file (of any organization), RMS-ll
allocates a single area (implicitly, area 0) to the file.
The initial size of this area is specified in the ALQ field
of the FAB and the file-level default extension quantity in
the DEQ field of the FAB. The physical placement of the file
on the volume is completely under the control of the host
operating system.

2. For an indexed file, the absence of allocation XABs when
creating a file results in the allocation of a single area
(again, area 0) for the entire file and the use of a single
bucket size for the entire file.

When the preceding defaults are unsuitable for a particular file, you
will need allocation XABs in your program.

Once you create (via $CREATE) a particular file using allocation XABs,
you can also use such XABs with the $EXTEND, $OPEN, and $DISPLAY macro
calls. Table 7-5 lists the fields in an allocation XAB. The
subsections that follow describe the function of each field with each
of the macro calls.

Field Name

AID

ALN

ALQ

AOP

BKZ

COD

DEQ

LOC

NXT

VOL

Table 7-5
Allocation XAB Fields

Field Size Description

1 byte Area identification number.

1 byte Alignment boundary type.

2 words Allocation quantity.

1 byte Allocation option.
(bit string)

1 byte Bucket size.

1 byte Code field. Contains the
value XB$ALL.

1 word Default area extension quantity.

2 words Allocation starting point.

1 word Next XAB.

1 word Relative volume number.

7-20

EXTENDED ATTRIBUTE BLOCKS

7.6.1 AID - Area Identification Number

The area identification (AID) field identifies the area of the file
described by the allocation XAB. You are always responsible for the
contents of this field. It is never set by RMS-ll. Rather, RMS-ll
uses this field to:

1. Check the sequencing of allocation XABs in an XAB chain. For
all operations (i.e., $CREATE, $EXTEND, $OPEN, $DISPLAY),
allocation XABs in an XAB chain must appear in ascending
order, based on the contents of the AID field in each.

2. Identify the target area for a specific operation (e.g.,
$CREATE, $EXTEND, etc.).

You can initialize the AID field at assembly-time with the X$AID
macro. Its format is:

X$AID

where

area

area

is a numeric value indicating which area of the file is
described by the current block. Area identification
numbers range from 0 to 254. If the organization of
the file is sequential or relative, only a single
allocation XAB can be used for any operation and its
AID field must contain o. The assembly-time default
for this field is o.

In the following example, the user establishes an allocation XAB for
area 1 of an indexed file:

ARl: XAB$B XB$ALL

X$AID 1

XAB$E

7.6.2 ALN - Alignment Boundary Type

The alignment boundary type (ALN) field specifies the type of
alignment requested for the area described by the block. If you
require placement control over the initial allocation ($CREATE) or
explicit extension ($EXTEND) of the area, you use this field to
specify whether the LOC field contains a logical block number or a
virtual block number. If you do not wish to exercise placement
control during a $EXTEND or $CREATE operation, you set this field
equal to zero.

When allocation XABs are present during a $OPEN or $DISPLAY operation,
RMS-ll sets the ALN field equal to the value specified for the
corresponding area when the file was created.

You can use
assembly-time.

the X$ALN macro
Its format is:

X$ALN type

to

7-21

initialize the ALN field at

where

EXTENDED ATTRIBUTE BLOCKS

type is a symbolic value or O. One of the following
symbolic values can be specified:

XB$LBN

XB$VBN

align area (or extension to area) on or near
logical block described by LOC field.

perform allocation as near as possible to
the virtual block described by LOC field.
If LOC contains 0, RMS-ll will allocate
space as near as possible to the current
high virtual block of the file. If the AID
field of the block specifies area 0, the
value XB$VBN is invalid during a $CREATE
operation.

RMS-ll interprets a value of 0 in the ALN field as
meaning no placement control is being exercised by the
user. The assembly-time default is o.

In the following example, the user indicates that no placement control
is described by the current allocation XAB.

AR1: XAB$B XB$ALL

X$ALN 0

XAB$E

7.6.3 ALQ - Allocation Quantity

The allocation quantity (ALQ) field specifies the number of virtual
blocks in the initial allocation of the area (when the allocation XAB
is used with the $CREATE operation) or the number of virtual blocks by
which the area is to be extended (when the block is part of a $EXTEND
operation). For both operations, the value you specify in this field
overrides the contents of the ALQ field in the FAB. RMS-ll neither
examines nor sets this field during $OPEN and $DISPLAY operations.

The X$ALQ macro allows you initialize the ALQ field in this block at
assembly-time. The format of this macro is as follows:

where

X$ALQ quantity

quantity is a numeric value in the range of 0 to 16,777,215
representing a number of virtual blocks. If, during a
$CREATE operation, the user-specified quantity in the
ALQ field for allocation area 0 is less than the number
required to store necessary file attributes, RMS-ll
ignores the user-specified value and allocates a
sufficient number of virtual blocks.

7-22

EXTENDED ATTRIBUTE BLOCKS

In the following example of the X$ALQ macro, the user specifies that
400 virtual blocks are to be allocated to the area described by the
block:

ARl: XAS$B XB$ALL

.
X$ALQ 400

XAB$E

7.6.4 AOP - Allocation Options

The allocation options (AOP) field allows you to qualify the action
RMS-ll is to perform when the block is present during a $CREATE or
$EXTEND operation. For $OPEN and $DISPLAY operations, RMS-ll returns
into this field the options specified when the area was created (via
$CREATE).

The X$AOP macro can be used to initialize the AOP field at
assembly-time. Its format is:

X$AOP

where

option

option[!option]

is a symbolic value representing an option to be
applied during a $CREATE or $EXTEND operation. You can
specify either or both of the following:

XB$HRD

XB$CTG

Hard req~est. This option should be
specified only if the ALN field contains the
value XB$LBN. RMS-ll returns an error code
if the initial allocation ($CREATE) or
extension ($EXTEND) of the area cannot be
aligned on the logical block specified by
the LOC field. The default is to perform
the allocation as close as possible to the
requested alignment.

Contiguous allocation requested. The
assembly-time default is non-contiguous.

In the following example of the X$AOP macro, the user specifies a hard
request for a contiguous allocation:

ARl: XAB$B XB$ALL

X$AOP XB$CTG!XB$HRD

XAB$E

7-23

EXTENDED ATTRIBUTE BLOCKS

7.6.5 BKZ - Bucket Size

The BKZ field specifies the size of the buckets in the area described
by the allocation XAB. This field is used for indexed files only.
During a $CREATE operation, the value you specify in this field
supersedes the contents of the BKS field in the FAB. During $OPEN and
$DISPLAY operations, RMS-ll returns into this field the value
specified when the area was created. The primary purpose of this
field is to allow you to vary the size of buckets among the multiple
areas of an indexed file.

The X$BKZ macro allows you to initialize the BKZ
assembly-time. The format of this macro is as follows:

X$BKZ bucket-size

where

field at

bucket-size is a numeric value, in the range of 0 to 32,
representing the number of virtual blocks
contained in each bucket in the area of the file.
The assembly-time default is o. RMS-ll interprets
a value of 0 as identical to 1.

The following is an example of the X$BKZ macro
specification of four virtual blocks per bucket:

ARl: XAB$B

X$BKZ 4

XAB$E

7.6.6 DEQ - Default Area Extension Quantity

showing the

The default area extension quantity (DEQ) field applies to indexed
files only. It specifies the number of virtual blocks to be used when
RMS-ll must automatically extend the area described by the XAB. This
automatic extension occurs whenever your program attempts a $PUT or
$UPDATE operation that cannot be accommodated within the space
currently allocated to the area.

During a $CREATE operation, RMS-ll examines the value you specified in
this field. If this value is nonzero, RMS-ll saves it as the default
extension quantity for the area defined by the XAB. If, however, the
DEQ field in this block is zero, RMS-ll saves the FAB's DEQ as the
default extension quantity for the area defined by the XAB.

The DEQ field in the allocation XAB is neither examined nor set during
a $EXTEND operation. During a $OPEN or $DISPLAY operation, however,
RMS-ll returns into this field the value specified when the area was
created.

You can use the X$DEQ macro to
allocation XAB at assembly-time.

X$DEQ quantity

initialize the DEQ field
The format of this macro is:

7-24

of an

where

EXTENDED ATTRIBUTE BLOCKS

quantity is a numeric value representing a number of virtual
blocks. This number must be in the range of from 0 to
65,535. The quantity you specify should be a multiple
of the area's bucket size. The assembly-time default
is o.

In the following example, the user specifies that, when automatic
extension is necessary, RMS-ll is to extend the area by 80 virtual
blocks.

ARl: XAB$B

X$DEQ 80

XAB$E

7.6.7 LOC - Allocation Starting Point

The allocation starting point (LOC) field is used by RMS-ll only
during $CREATE and $EXTEND operations. Further, the contents of this
field are ignored during such operations if the ALN field of the same
block is zero. When, however, the ALN field contains XB$LBN, RMS-ll
interprets the contents of LOC as the starting logical block number on
the volume for the initial allocation ($CREATE) or extension ($EXTEND)
of the area. The ALQ field of the same block contains the number of
blocks to be allocated and the AOP field can optionally specify
(XB$HRD) that the allocation must begin with the specified logical
block.

When the ALN field contains XB$VBN during a $CREATE or $EXTEND
operation, RMS-ll interprets the contents of LOC as a virtual block
number within the file. For $CREATE operations, LOC must contain
zeroes since no virtual blocks as yet exist in the file. However,
during $EXTEND operations, LOC can contain the number of a virtual
block in the file near which the extension to the area is to be
allocated. Again, you use the ALQ field to specify the size of the
extension. Note, how.ever, that the allocation options (AOP) field
cannot contain XB$HRD.

During $OPEN and $DISPLAY operations, RMS-ll neither sets nor examines
the LOC field.

The X$LOC macro allows you to initialize the
assembly-time. Its format is:

LOC field at

X$LOC

where

number

number

is a numeric value interpreted as follows:

1. If ALN contains XB$LBN, the specified number is the
starting logical block for the allocation. The
specified number may vary from 0 to the maximum
number of blocks on the volume.

7-25

EXTENDED ATTRIBUTE BLOCKS

2. If ALN contains XB$VBN, the specified number is a
virtual block within the file. The specified
number may vary from 0 to the number of virtual
blocks in the file. A value of 0 (assembly-time
default) implies that allocation should occur as
near as possible to the current end of file.

The following is an example of the X$LOC macro:

ARI: XAB$B

X$AOP
X$ALN
X$LOC

XAB$E

XB$HRD
XB$LBN
1024

In this example, the user specifies that allocation of an extent for
the area represented by the XAB must begin on logical block number
1024.

7.6.8 VOL - Relative Volume Number

The relative volume number (VOL) field must contain
assembly-time default for this field is o.

7.7 SUMMARY EXTENDED ATTRIBUTE BLOCK

o. The

The summary XAB allows you to determine the number of keys defined for
an existing indexed file and/or the number of allocation areas defined
for an existing file.

You never use this type of XAB with a $CREATE macro call. However, a
summary XAB can be associated with a FAB at the time a $OPEN or
$DISPLAY macro call is issued. The presence of this XAB during these
macro calls allows RMS-I1 to return to your program the total number
of keys and allocation areas defined when the file was created.

Table 7-6 describes the fields of a summary XAB.

Field Name

COD

Table 7-6
Summary XAB Fields

Field Size Description

I byte Code field. Contains
XB$SUM.

the value

NOA I byte Number of allocation areas defined
for the file.

NOK 1 byte Number of keys defined for the
file.

NXT 1 word Next XAB.

7-26

CHAPTER 8

THE NAME BLOCK

The Name Block is an optional structure. After a successful $CREATE,
$OPEN, or $ERASE macro call, a location described by this block
contains the full file specification resulting from RMS-ll's merger of
the default file name string (described by the DNA and DNS fields of
the associated FAB) with the primary name string (described by the FNA
and FNS fields of the associated FAB) and system defaults. You
indicate that this service is desired by assuring that the NAM field
of the FAB contains the address of a Name Block at the time a $CREATE,
$OPEN, or $ERASE macro is issued.

The following sUbsections describe the allocation of a Name Block and
assembly-time initialization macros for fields in the block.

8.1 ALLOCATING A NAME BLOCK

The NAM$B macro allocates space for a
beginning of an optional sequence
macros for the fields of the block.

Name Block and delimits the
of assembly-time initialization

The format of the NAM$B macro is as follows:

label:NAM$B

where

label is a user-specified symbol that names this
particular Name Block. You must ensure that the
address assigned to this label is word-aligned.
Therefore, a .EVEN directive should immediately
precede the NAM$B macro.

The NAM$E macro delimits the end of the optional sequence of
assembly-time initialization macros initiated by NAM$B and stores any
specified values in the appropriate fields of the block. This macro
must always appear subsequent to an associated NAM$B macro, even when
no intervening initialization macros are coded.

The NAM$E macro takes the following form:

NAM$E

The following example shows the allocation of a Name Block called
FNAME:

FNAME:
• EVEN
NAM$B
NAM$E

8-1

THE NAME BLOCK

8.2 FIELDS IN THE NAME BLOCK

Table 8-1 summarizes the fields in a Name Block.

Table 8-1
Name Block Fields

Field Name Field Size Description

ESA 1 word Expanded string

ESL 1 byte Expanded string

ESS 1 byte Expanded string

address

length

size

The subsections that follow describe the fields listed in Table 8-1.

8.2.1 ESA - Expanded String Address

The expanded string address (ESA) field contains the address of a
user-allocated buffer. Following a $OPEN, $CREATE, or $ERASE macro
call, RMS-ll pla~es in this buffer the file specification string
resulting from the application of default information (provided by the
default name string of the FAB and system defaults) to the original
file string (file name string of the FAB). The ESA buffer must be
present if the block itself is input to an operation (i.e., the NAM
field of the FAB is nonzero).

The N$ESA macro allows you to initialize the ESA field at
assembly-time. The following is the format of the N$ESA macro:

N$ESA address

where

address is the symbolic address of a buffer in the user
program.

The following is an example of the N$ESA macro:

NAMBUF: .BLKB 32.

FNAME: NAM$B

N$ESA NAMBUF

NAM$E

8-2

THE NAME BLOCK

8.2.2 ESL - Expanded String Length

The expanded string length (ESL) field is set by RMS-II after a $OPEN,
$CREATE, or $ERASE macro call. This field contains the actual length
of the expanded file specification whose address is in the ESA field.

8.2.3 ESS - Expanded String Size

The expanded string size (ESS) field contains the size of the
user-allocated buffer whose address is in the ESA field of the block.

You can initialize the ESS field at assembly-time with the N$ESS
macro. The format of the N$ESS macro is as follows:

N$ESS size

where

size is a numeric value representing the size (in
bytes) of the buffer whose address is in the ESA
field. The specified value must range from I to
255.

In the following example, the user specifies an expanded string area
of 32 bytes:

FNAME: NAM$B

N$ESA

N$ESS

NAM$E

NAMBUF

32

8-3

CHAPTER 9

PERFORMING FILE AND RECORD OPERATIONS

This chapter describes the RMS-ll macros used to access and manipulate
files and records within files.

As described in Chapter 2,· file and record processing macros in
combination with user control blocks form the runtime program
interface with RMS~ll. The primary argument of a file processing
macro call is the address of a File Access Block. The primary
argument of a record processing macro call is the address of a Record
Access Block. Certain fields within these blocks must contain
appropriate values at the time a particular file or record processing
macro call is issued. Following such macro calls, RMS-Il returns
information to your program within fields of the same control block.
The detailed descriptions of file and record processing macros in this
chapter, therefore, list all control block fields used as input to a
macro call and every field that may contain information returned to
your program by RMS-Il.

The remainder of this chapter is divided into three sections:

1. File and record operation macro conventions (i.e., macro
formats, the RMS-ll calling sequence, completion routines,
control block field usage, and status codes).

2. Performing file oper.ations (i.e., $CREATE, $OPEN, $DISPLAY,
$ERASE, $EXTEND, $CLOSE).

3. Performing record operations (i.e., record access streams,
record operations and file sharing, current context of record
operations, synchronous and asynchronous operations,
accessing records, and record operation macros).

NOTE

When RMS-II is executing, asynchronous
system traps (ASTs) are disabled. When
RMS-ll returns to your program, ASTs are
enabled.

9.1 FILE AND RECORD OPERATION MACRO CONVENTIONS

While differing in function, file and
same general format. Furthermore,
service requires the establishment of
Within this calling sequence, you can
of completion routines.

9-1

record operation macros have the
each macro call for an RMS-Il
a standard calling sequence.

optionally specify the addresses

PERFORMING FILE AND RECORD OPERATIONS

Before issuing the actual file or record operation macro call, your
program must ensure that the control block (i.e., FAB or RAB) contains
appropriate values in the fields that will be examined by RMS-Il.
Following execution of the macro call, your program should examine the
status code returned by RMS-ll in the control block to ascertain the
success or reason for failure of the operation. The following
subsections, therefore, describe:

• The format of file and record processing macros

• The RMS-ll calling sequence

• Completion routine conventions

• Control block field usage

• Status codes

9.1.1 Format of File and Record Operation Macros

You can code file and record operation macros in either of the
following two formats:

where

1. label:$macro

or

2. label:$macro block[,error[,success]]

label

$macro

block

error

success

is an optional user-defined symbol referring to the
macro.

is one of the file or record operation macros described
in this chapter.

is the address
operations) or
operations.)

of
a

a File
Record

Access Block (for file
Access Block (for record

is the address of a user completion routine to be
called if the requested operation fails.

is the address of a user completion routine to be
called if the requested operation completes
successfully. This argument is ignored for file
processing macro calls.

In the second format, the presence of arguments causes the macro
expansion to build an argument list on your program's stack. In the
first format above, however, no arguments appear following the macro
name. In this format, therefore, you must create the argument list in
your program. The following sUbsection describes this process.

NOTE

The first format of RMS-ll file and
record operation macros (i.e., without
an argument list) generates less code
and uses less stack space than the
second format.

9-2

PERFORMING FILE AND RECORD OPERATIONS

9.1.2 The RMS-ll Calling Sequence

At the time an RMS-ll routine is called, general register R5 must
contain the address of a word-aligned formatted argument list. Figure
9-1 shows the format of this list:

UNDEFINED I ARGUMENT COUNT--RS

BLOCK ADDRESS

ERROR ADDRESS

SUCCESS ADDRESS

Figure 9-1 Argument List Format

RMS-ll interprets the fields within the argument list as foll~ws:

Argument Count

Block Address

Error Address

Success Address

is a binary value from 1 to 3 representing
the number of arguments present 1n the
argument list. This count field must equal 1
if the user does not specify completion
routine addresses.

is the address of a File
file operations) or a
(for record operations).

is the address of a user
to be called if the
fails.

Access Block (for
Record Access Block

completion routine
requested operation

is the address of a user completion routine
to be called if the requested operation
completes successfully. This argument is
ignored for file processing macro calls.

The preceding argument list is automatically generated whenever you
specify a file or record processing macro with arguments. When
specifying these macros without arguments, your program must construct
the argument list. For example, if you want to read a record from a
file and specify both an error and a success completion routine, the
equivalent of the following sequence must be coded:

MOV #LIST,R5

$GET

LIST: .WORD
• WORD
• WORD
• WORD

3
INRAB
ERRI
SUCCI

iADDRESS OF ARGUMENT
iLIST TO REGISTER 5
iRECORD PROCESSING MACRO
iTO READ A RECORD

iNUMBER OF ARGUMENTS
iRECORD ACCESS BLOCK ADDRESS
iERROR ROUTINE ADDRESS
iSUCCESS ROUTINE ADDRESS

If you wanted to specify a success routine without specifying an error
routine, you would use the following code for the argument list:

LIST: .WORD
• WORD
.WC;>RD
• WORD

3
INRAB
-1
SUCCI

iNUMBER OF ARGUMENTS
iRECORD ACCESS BLOCK ADDRESS
i-I MEANS NO ERROR ROUTINE
iSUCCESS ROUTINE ADDRESS

9-3

PERFORMING FILE AND RECORD OPERATIONS

If neither a success nor an error routine is specified, the argument
list is constructed as follows:

~NUMBER OF ARGUMENTS LIST: .WORD
• WORD

1
INRAB ~RECORD ACCESS BLOCK ADDRESS

Finally, if only an error routine is specified, you would construct
the argument list as follows:

LIST: .WORD ~NUMBER OF ARGUMENTS
• WORD
• WORD

2
INRAB
ERRI

~RECORD ACCESS BLOCK ADDRESS
~ERROR ROUTINE ADDRESS

Regardless of the macro format used to invoke an RMS-Il routine,
RMS-ll preserves all general registers (RO-RS) across a macro call.

9.1.3 Completion Routine Conventions

The use of completion routines is always optional. If a corresponding
address is present in the argument list, RMS-Il invokes an error or
success completion routine based on the results of the operation
attempted. When employing completion routines, you must be aware of
conventions in the areas of:

• Register usage
• Issuing RMS-ll macro calls within completion routines
• Returning from a completion routine

The subsections that follow discuss each convention.

9.1.3.1 Register Usage Conventions Within Completion
RMS-Il calls a user-specified completion routine,
register conventions are used:

Routines - When
the following

1. General register R5 contains the address of the same argument
list, or a copy of the argument list, that was part of the
calling sequence to RMS-Il itself. Therefore, you can use
the control block address at 2(RS) to access fields of the
control block.

2. General registers RO-R4 are undefined.

9.1.3.2 Issuing RMS-ll Macro Calls Within Completion Routines - As
part of a completion routine, your program can issue an additional
RMS-Il file or record processing macro call. RMS-Il considers each
such additional macro call as an extension of the original request
that caused the completion routine to be invoked. The only
restriction RMS-Il enforces is that a synchronous operation request
cannot be issued within a completion routine called as a result of an
asynchronous record operation.

9-4

PERFORMING FILE AND RECORD OPERATIONS

9.1.3.3 Returning From a Completion Routine - To return control from
a completion routine to RMS-ll, your program must:

1. Restore the stack pointer SP to its original value at the
time of entry to the completion routine. Your program must
not attempt to cause control flow changes by modifying the
stack.

2. Issue a $RETURN macro.

The format of the $RETURN macro is as follows:

where

label:$RETURN

label is an optional user-defined macro referring to this
$RETURN macro.

9.1.4 Control Block Field Usage

The fields within the control block associated with a particular macro
call are the means by which you qualify or further define the
requested file or record operation. For each particular operation,
some number of control block fields will be used as input by RMS-il.
The tables that accompany each macro description in this chapter
enumerate these fields. You must ensure, before your program issues a
macro call, that the appropriate fields in your control block contain
the necessary values.

You have three choices on how to set values in control block fields:

1. Assembly-time initialization.

2. Assembly-time defaulting.

3. Runtime initialization.

At assembly-time, you can explicitly initialize a field or, when a
default is defined, allow the assembly-time expansion of the block
allocation macros to set a default value in the field. At runtime,
you can initialize or alter a control block field through use of the
$STORE, $SET, or $OFF macros. You must understand, however, that
there are no runtime defaults for any field in any control block. "If
you fail to set (at assembly-time or runtime) every field in a control
block that is defined as input to a particular operation, the
ope-ration may fail.

Consider the following example. You write a program that creates an
indexed file and a sequential file. To save storage, you decide to
allocate a single File Access Block. Therefore, your program will
first create one file, close it, and then reuse the FAB to create the
second file. You allocate a single key definition XAB (assuming your
indexed file has only a single key). To create the indexed file
first, you initialize all the appropriate fields of the FAB (e.g., ORG
contains FB$IDX, RFM contains, perhaps, FB$VAR, etc.). You place the
address of the key definition XAB in the XAB field of the FAB. Then
you define the primary key of the file through the fields of the XAB
and you set the NXT (next XAB) field in the XAB to zero to indicate
that there are no additional XABs. Finally, you issue the $CREATE
macro call and, if RMS-ll indicates successful completion, you close
the new file by issuing a $CLOSE macro call.

9-5

PERFORMING FILE AND RECORD OPERATIONS

Now your program is ready to create the sequential file. Using the
$STORE macro, you alter the ORG field of the FAB so that it contains
the value FB$SEQ. You further alter additional fields (RFM, FNA, FNS,
MRS, etc.) so that they accurately describe your sequential file.
However, you neglect to zero the XAB field in the FAB. When you issue
the second $CREATE macro call, RMS-II will find a valid address in the
XAB field. It will then examine the XAB addressed by this field and
find that it is a key definition XAB. Since sequential files do not
have keys, RMS-Il will reject the create operation and return an error
status code to your program.

As the preceding example shows, you must appropriately set every field
in a control block that RMS-II may use during execution of an
operation. RMS-Il assumes that every value found in an input field
was intentionally placed there for use during the current operation.
Since there are no runtime defaults for control block fields, you are
responsible for the contents of all input fields prior to issuing a
file or record operation macro call.

9.1.5 Status Codes

Before returning to your program from a file or record operation macro
call, RMS-Il always indicates the success or failure of the requested
operation by setting the STS field of the control block associated
with the call.

Through the use of the $COMPARE macro and the mnemonic status codes
listed in Appendix A, your program can check for successful completion
(SU$SUC) or particular error conditions.

While particular error status codes are mentioned in certain sections,
there is no attempt to list all possible error codes that can occur
for every individual file or record operation. Such lists would tend
to duplicate most of the list found in Appendix A. In writing
programs, therefore, you must examine Appendix A and determine which
error conditions you particularly want to test for following a macro
call. For example, in reading a file, you always want to be prepared
for the ER$EOF error status code (end of file). Whether you test for
other error codes, such as ER$RLK (bucket is locked by another program
or another stream in your own program) depends on the requirements and
logic of your program.

With certain error status codes, RMS-ll returns to your program
additional information in the STY field of the control block
associated with an operation. The descriptions of error status codes
in Appendix A indicate those instances in which the STY field contains
such information.

9.2 PERFORMING FILE OPERATIONS

A file operation macro call causes RMS-Il to perform some action
related to an entire file. The macro call itself (e.g., $CREATE,
$OPEN, $CLOSE) indicates the type of action desired. The fields of
the File Access Block associated with the macro call identify the file
or further qualify the requested action.

9-6

PERFORMING FILE AND RECORD OPERATIONS

Table 9-1 summarizes the file operation macros provided by RMS-ll:

Macro Name

$CREATE

$OPEN

$DISPLAY

$ERASE

$EXTEND

$CLOSE

Table 9-1
RMS-ll File Operation Macros

Description

Creates and opens a new RMS-ll file of any
organization.

Opens an existing RMS-ll file making
contents available for processing.

its

Returns attributes of an RMS-ll file to the
user program.

Deletes an RMS-ll file and removes its entry
from a directory.

Extends the allocated space of an RMS-ll file.

Closes an open RMS-ll file.

The subsections that follow describe the action caused by each file
operation macro and the control block fields that are input to and
output from each operation.

9.2.1 $CREATE - Creating an RMS-ll File

The $CREATE macro creates anew RMS-ll file with the attributes you
specify in the File Access Block and any Extended Attribute Blocks
chained to the FAB. When key definition or allocation XABs are
present, they must be grouped in densely ascending order (i.e., 0, 1,
2, 3, 4... in the REF or AID fields) without gaps or intervening XABs
of other types. Otherwise, RMS-ll returns an ER$ORD error code. An
illogical XAB type in the chain (e.g., a summary XAB or a key
definition XAB for a sequential file) causes the ER$COD error
condition. If a NAM Block is also chained to the FAB, RMS-Il sets the
ESL field of the block and places the expanded file specification in
the area addressed by the ESA field of the NAM block.

The $CREATE operation leaves the file open. Therefore, you must close
the file by issuing a $CLOSE macro call.

NOTE

The $CREATE operation requires 1 BDB and
512 bytes of I/O buffer space, all of
which are released when the operation
completes. You reserve space for BDBs
through the use of the P$BDB macro
(refer to Chapter 3) and space for I/O
buffers through the P$BUF macro (refer
to Chapter 3) or the BPA and BPS fields
of the FAB (refer to Chapter 5). The
calculation of BDB and buffer space
requirements is related to the

9-7

PERFORMING FILE AND RECORD OPERATIONS

performance of record operations on the
file. Since any record operations
require at least 1 BDB and a buffer at
least 1 virtual block in size, the BDB
and buffer requirements for this file
operation are typically met without
specific attention on the part of the
user.

The formats of the $CREATE macro are as follows:

where

1. label:$CREATE

2. label:$CREATE fab[,error]

label

fab

error

is an optional user-defined symbol referring to the
$CREATE macro.

is the address of a File Access Block representing
the file to be created.

is the address of a user completion routine to be
called if the $CREATE operation fails.

Table 9-2 lists the fields of the File Access Block used during the
$CREATE macro call.

Input

Table 9-2
$CREATE FAB Fields

Name Description

ALQ Allocation quantity (this field is ignored if one or
more allocation XABs are present).

BKS Bucket size (this field is ignored for indexed files
if one or more allocation XABs are present).

BLS Block size (magnetic tape files only).

BPA Buffer pool address.

BPS Buffer pool size.

DEQ Default file extension quantity.

DNA Default name string address.

DNS Default name string size.

FAC File access (must contain at least the value FB$PUT).

FNA File name string address.

FNS File name string size.

(Continued on next page)

9-8

Name

Input FOP
(Cont.)

FSZ

LCH

MRN

MRS

NAM

ORG

RAT

RFM

RTV

SHR

XAB

Output DEV

IFI

STS

STV

PERFORMING FILE AND RECORD OPERATIONS

Table 9-2 (Cont.)
$CREATE FAB Fields

Description

file processing options.

Fixed control area size (files with VFC format records
only).

Logical channel number.

Maximum record number (relative files only).

Maximum record size.

Name block pointer.

File organization.

Record attributes.

Record format.

Retrieval window size.

File sharing.

Extended Attribute Block pointer.

Device characteristics.

Internal file identifier.

Completion status code.

Status value.

9.2.2 $OPEN - Opening an Existing File for Processing

The $OPEN macro makes an existing file available for processing by
your program. RMS-ll returns the basic attributes of the file in the
fields of the File Access Block associated with the request. If
Extended Attribute Blocks are chained to the FAB, RMS-ll fills in the
attribute information represented by each XAB (e.g., key definition
XAB, protection XAB, etc.). When either key definition or allocation
XABs are present, they must be grouped in ascending order (by REF or
AID, respectively) but need not be dense. No other intervening types
are permitted. If this sequencing is violated, RMS-Il returns an
ER$ORD error. Further, RMS-ll does not verify that the number of key
definition or allocation XABs does not exceed the number of actual
keys or areas defined for the file. Any such excess XABs are ignored.
An illogical XAB type in the chain (e.g., key definition XAB for a
sequential file) is similarly ig"nored. Additionally, if a NAM Block
is chained to the FAB, RMS-II sets the ESL field in the NAM Block and
places the expanded file specification of the open file in the
location specified by the ESA field of the NAM Block.

9-9

PERFORMING FILE AND RECORD OPERATIONS

NOTE

The $OPEN operation requires 1 BDB and
512 bytes of I/O buffer space, all of
which are released when the operation
completes. You reserve space for BDBs
through the use of the P$BDB macro
(refer to Chapter 3) and space for I/O
buffers through the P$BUF macro (refer
to Chapter 3) or the BPA and BPS fields
of the FAB (refer to Chapter 5). The
calculation of BDB and buffer space
requirements is related to the
performance of record operations on the
file. Since any record operations
require at least 1 BDB and a buffer at
least I virtual block in size, the BDB
and buffer requirements for this file
operation are typically met without
specific attention on the part of the
user.

The formats of the $OPEN macro are:

where

1. label:$OPEN

2. label:$OPEN fab [,er ror]

label

fab

error

is an optional user-defined symbol referring to the
$OPEN macro.

is the address of a File Access Block representing a
file to. be opened.

is the address of a user completion routine to be
called if the $OPEN operation fails.

Table 9-3 lists the fields of the File Access Block used during the
$OPEN macro call.

Name

Input BPA

BPS

DEQ

DNA

DNS

FAC

Buffer

Buffer

Default

Default

Default

Table 9-3
$OPEN FAB Fields

Description

pool address.

pool size.

extend quantity.

name string address.

name string size.

File access.

(Continued on next page)

9-10

Input
(Cant.)

Output

Name

FNA

FNS

FOP

LCH

NAM

RTV

SHR

XAB

ALQ

PERFORMING FILE AND RECORD OPERATIONS

Table 9-3 (Cont.)
$OPEN FAB Fields

Description

File name string address.

File name string size.

File processing options.

Logical channel number.

Name block pointer.

Retrieval window size.

File sharing.

Extended Attribute Block Pointer. This field is
optional. If present, RMS-ll will fill the indicated
block (and any XABs chained to the first block) with
the file attribute information indicated by the type
of block present.

Allocation quantity. Contains the highest numbered
virtual block allocated to the file.

BKS Bucket size. Supplied for relative and indexed files
and zeroed for sequential files. When multiple areas
have been defined for an indexed file, BKS contains
the size of the largest bucket in the file.

BLS Block size (sequential files on magnetic tape only).

DEV Device characteristics.

FOP File processing options. Contains FB$CTG if the file
is contiguous.

FSZ Fixed control area size.
format is VFC.

Supplied only if record

IFI Internal file identifier.

MRN Maximum record number. Supplied
organization is relative.

MRS Maximum record size.

ORG File organization.

RAT Record attributes.

RFM Record format.

STS Completion status code.

STV Status value.

9-11

only if file

PERFORMING FILE AND RECORD OPERATIONS

9.2.3 $DISPLAY - Obtaining Attributes of a File

The $DISPLAY macro retrieves file attribute information that you
request and places the information in the fields of Extended Attribute
Blocks. You must open the file in order to obtain attributes.

RMS-ll determines the type of attribute information desired through
examination of the types of Extended.Attribute Blocks associated with
the File Access Block by the XAB field. When either key definition or
allocation XABs are present, they {must be grouped in ascending order
(by REF or AID, respectively) but need not be dense. No other
intervening types are permitted. If this sequencing is violated,
RMS-ll returns an ER$ORD error. Further, RMS-ll does not verify that
the number of key definition or allocation XABs does not exceed the
number of actual keys or areas defined for the file. Any such excess
XABs are ignored. An illogical XAB type in the chain (e.g., key
definition XABs for a sequential file) are similarly ignored.

NOTE

For the duration of its operation,
$DISPLAY requires 1 BDB (refer to the
P$BDB macro description in Chapter 3)
and 512 bytes of I/O buffer space (refer
to the P$BUF macro description in
Chapter 3 or the BPS field description
in Chapter 5). These requirements are
in addition to the BDB and buffer space
requirements for any streams that are
connected at the time the $DISPLAY call
is issued.

The formats of the $DISPLAY macro are as follows:

where

1. label:$DISPLAY

2. label:$DISPLAY fab[,error]

label

fab

error

is an optional user-defined symbol referring to the
$DISPLAY macro.

is the address of a File Access Block representing a
file whose attributes are to be returned to the user
program.

is the address of a user completion routine to be
called if the $DISPLAY operation fails.

Table 9-4 lists the fields of the File Access Block used during the
$DISPLAY macro call.

9-12

Name

Input XAB

IFI

Output STS

STV

PERFORMING FILE AND RECORD OPERATIONS

Extended

Internal

Table 9-4
$DISPLAY FAB Fields

Description

Attribute Block pointer.

file identifier.

Completion status code.

Status value. Contains a system
address of the XAB that caused an

error
error.

9.2.4 $ERASE - Deleting a File

code or the

The $ERASE macro deletes an RMS-ll file and removes its directory
entry. The space occupied by the file is returned at a system
dependent time. You can issue a $ERASE ope'ration for a file currently
accessed by another program or by your own program (so long as you are
accessing it on a different logical channel). The file is not
deleted, however, until all accessors close it. You cannot delete
files on unit record or sequential (e.g., magnetic tape) devices.

NOTE

The $ERASE operation requires 1 BOB and
512 bytes of I/O buffer space, all of
which are released when the operation
completes. You reserve space for BOBs
through the use of the P$BDB macro
(refer to Chapter 3) and space for I/O
buffers through the P$BUF macro (refer
to Chapter 3) or the BPA and BPS fields
of the FAB (refer to Chapter 5). The
calculation of BOB and buffer space
requirements is related to the
performance of record operations on the
file. Since any record operations
require at least 1 BOB and a buffer at
least 1 virtual block in size, the BOB
and buffer requirements for this file
operation are typically met without
specific attention on the part of the
user.

The formats of the $ERASE macro are:

1. label:$ERASE

2. label:$ERASE fab[,error]

9-13

PERFORMING FILE AND RECORD OPERATIONS

where

label

fab

error

is an optional user-defined symbol referring to the
$ERASE macro.

is the address of a file access block representing a
file to be deleted.

is the address of a user completion routine to be
called if the $ERASE operation fails.

Table 9-5 lists the fields of the File Access Block used during the
$ERASE macro call.

Name

Input BPA

BPS

DNA

DNS

FNA

FNS

LCH

Output STS

STV

Table 9-5
$ERASE FAB Fields

Description

Buffer pool address.

Buffer pool size.

Default name string

Default name string

address.

size.

File name string address.

File name string size.

Logical channel number.

Completion status code.

Status value.

9.2.5 $EXTEND - Extending Allocated Space

The $EXTEND macro
file. The file
to the file must
Before you open
least one type of
You cannot extend

extends the amount of space allocated to an RMS-II
must be open and any record access streams connected
be inactive before the extension is attempted.

the file, the FAC field in your FAB must specify at
write operation (i.e., FBPUT, FBUPD, or FB$DEL).
a file residing on magnetic tape.

If no allocation XABs are present, RMS-II extends, by default, area 0
of the file or (for sequential or relative files) the file itself.
The allocation quantity field (ALQ) of the File Access Block must
contain the number of virtual blocks to be added to the file. In the
FOP field of the FAB, you can request a contiguous extent (FB$CTG).
If RMS-II cannot allocate a contiguous extent, the $EXTEND operation
will fail.

9-14

PERFORMING FILE AND RECORD OPERATIONS

If you created an indexed file using allocation XABs (refer to Section
7.6 in Chapter 7), you can selectively extend one or more areas of the
file by providing appropriate allocation XABs as input to the $EXTEND
operation. In this case, RMS-ll obtains the amount by which each area
is to be extended from the ALQ field of each XAB. If you attempt to
extend an area that has a currently unused extent, RMS-ll returns on
ER$LEX error. Allocation XABs, when present, must be in ascending
order by AID (area identification number) but need not be dense.

The formats of the $EXTEND macro are:

where

1. label:$EXTEND

2. label:$EXTEND fab[,error]

label

fab

error

is an optional user-defined symbol referring to the
$EXTEND macro.

is the address of a file access block representing a
file to be extended.

is the address of a user completion routine to be
called if the $EXTEND operation fails.

Table 9-6 lists the field of the File Access Block used during the
$EXTEND macro call.

Input

Output

Name

ALQ

Table 9-6
$EXTEND FAB Fields

Description

Allocation quantity. Ignored
allocation XABs are present.

if one or more

FOP File processing options. You can specify FB$CTG.
This value will be ignored, however, if one or more
allocation XABs are present.

IFI Internal file identifier.

XAB Extended Attribute Block Pointer (optional).

ALQ Allocation quantity. This field will contain the
actual number of virtual blocks added to the file.

STS Completion status code.

STV Status value.

9-15

PERFORMING FILE AND RECORD OPERATIONS

9.2.6 $CLOSE - Terminating File Processing

The $CLOSE macro closes an open RMS-ll file.

You should issue $DISCONNECT macro calls (refer to Section 9.3.1.2)
for each record access stream associated with a file before issuing
the $CLOSE macro. If you do not issue these $DISCONNECTs, RMS-ll will
effectively disconnect all the file's record access streams. However,
the $CLOSE operation will fail if there is an outstanding I/O request
on any such stream. Further, the lSI (internal stream identifier)
field in each RAB representing a stream will not be zeroed. Only the
$DISCONNECT macro call zeroes this field. This action is desirable
since it ends the association of a RAB with an internal RMS-ll
structure in the space pool.

If RMS-ll returns a write error (ER$WER) in the STS field of the FAB,
it has still closed and deaccessed the file.

The formats of the $CLOSE macro are as follows:

where

1. label:$CLOSE

2. label:$CLOSE fab [, error]

label

fab

error

is an optional user-defined symbol referring to the
$CLOSE macro.

is the address of a File Access Block representing the
file to be closed.

is the address of a user completion routine to be
called if the $CLOSE operation fails.

Table 9-7 lists the fields of the File Access Block used during the
$CLOSE macro ca~l.

Name

Input FOP

IFI

Output IFI
",

STS

STV

Table 9-7
$CLOSE FAB Fields

Description

File processing options. You
(rewind tape volume on close).

Internal file identifier.

can

Internal file identifier. (Zeroed)

-Completion status code.

Status value.

9-16

specify FB$RWC

PERFORMING FILE AND RECORD OPERATIONS

9.3 PERFORMING RECORD OPERATIONS

After you open a file through a $OPEN or $CREATE macro call, you can
perform record operations on the file. To perform such record
operations, you must understand in detail the following:

• Record Access streams
• Record operations and file sharing
• Current context of record operations
• Synchronous and asynchronous record operations
• Accessing records
• The actual record operation macros (e.g., $GET, $PUT, $UPDATE,

etc.)

The following subsections describe each of these facilities.

9.3.1 Record Access Streams

To process records in a file, you must establish a record access
stream. A record access stream is the logical association of a Record
Access Block with a File Access Block. Once you have established a
record access stream, you can issue operations on records in the file
represented by the File Access Block.

RMS-ll permits only one record access stream for sequential files.
Thus, when you open or create a sequential file, you can associate
only one RAB with the FAB representing the file. When you open or
create a relative or indexed file, RMS-Il permits you to establish
multiple record access streams by associating more than one RAB with
the same FAB.

When you establish a single record access stream for a file, your
program uses the stream to issue a sequence of record operations.
Within the stream, these record operations are executed serially. In
other words, you can process only one record at a time. When you
establish multiple record access streams for a file, your program can
process more than one record of the file in parallel. Thus, such
multiple streams represent independent and concurrently active
sequences of record operations to the same file.

After you open a file by issuing a $OPEN or a $CREATE macro call~ you
establish a record access stream by:

1. Placing the address of the File Access Block in the FAB field
of the appropriate Record Access Block. You can perform this
action at runtime by using the $STORE macro or at
assembly-time by using the R$FAB initialization macro.

2. Issuing a $CONNECT macro.

When you have completed the desired sequence of record operations, you
terminate a record access stream by issuing a $DISCONNECT macro.

The following sUbsections describe the $CONNECT and $DISCONNECT
macros.

9-17

PERFORMING FILE AND RECORD OPERATIONS

9.3.1.1 $CONNECT - Establishing a Record Access Stream - The $CONNECT
macro establishes a record access stream by associating a Record
Access Block with a File Access Block. During the macro call, RMS-ll
allocates I/O buffers for the stream. These buffers are allocated
from the file's private buffer pool (if such a pool was described by
the BPA and BPS fields of the FAB during the $OPEN or $CREATE
operation) or from the centralized space pool. Additionally, RMS-ll
allocates, within the centralized space pool, internal control
structures needed to support the stream.

The formats of the $CONNECT macro are:

1. label:$CONNECT

2. label:$CONNECT rab[,error[,success}1

where

label is an optional user-defined symbol referring to the
$CONNECT macro.

rab is the address of a Record Access Block to be
associated with a File Access Block.

error is the address of a user completion routine to be
called if the $CONNECT operation fails.

success is the address of a user completion routine to be
called if the $CONNECT operation succeeds.

Table 9-8 lists the fields of the Record Access Block used during the
$CONNECT operation.

Input

Output

Name

FAB

Table 9-8
$CONNECT RAB Fields

Description

File access block address.

KRF Key of reference. Needed for indexed files only.

MBC Multi-block count (sequential disk files only).

MBF Multi-buffer count.

ROP Record processing options.

UBF User record area address (see RBF field below).

lSI Internal stream identifier.

RBF Record buffer address. Supplied only if locate mode
for a sequential file was specified in the ROP field.
RBF is set equal to UBF.

STS Completion status code.

STV Status value.

9-18

PERFORMING FILE AND RECORD OPERATIONS

9.3.1.2 $DISCONNECT - Terminating a Record Access Stream - The
$DISCONNECT macro terminates a record access stream. The association
of the specified Record Access Block to a File Access Block is ended.
System buffers and internal control structures reserved for record
processing by the stream are returned to the buffer pool.

NOTE

The $DISCONNECT macro does not have the
effect of an implicit $REWIND operation
(refer to Section 9.3.6.6) for magnetic
tape files. If you want to ensure that
a magnetic tape file will be positioned
to the beginning of file for a
subsequent $CONNECT to the same open
file, you must issue an explicit $REWIND
operation before issuing the $DISCONNECT
for the current stream.

The formats of the $DISCONNECT macro are:

where

1. label:$DISCONNECT

2. label:$DISCONNECT rab[,error[,success]]

label

rab

error

success

is an optional user-defined symbol referring to the
$DISCONNECT macro.

is the address of a Record Access Block whose
association with a File Access Block is to be ended.

is the address of a user completion routine to be
called if the $DISCONNECT operation fails.

is the address of a user completion routine to be
called if the $DISCONNECT operation succeeds.

Table 9-9 lists the fields of the Record Access Block used during the
$DISCONNECT operation.

Name

Input lSI

Output lSI

STS

STV

Table 9-9
$DISCONNECT RAB Fields

Description

Internal stream identifier.

Internal stream identifier

Completion status code.

Status value.

9-19

(zeroed) •

PERFORMING FILE AND RECORD OPERATIONS

9.3.2 Record Operations and File Sharing

a file with other
in which a particular
Whether a particular

provided to RMS-ll by
the file. RMS-ll

file through a bucket
therefore, describe:

RMS-ll allows your program to share access to
concurrently executing programs. The manner
file can be shared is based on its organization.
file is shared at runtime depends on information
your program and other programs accessing
coordinates record operations to a shared
locking mechanism. The following subsections,

1. File organizations and file sharing.

2. Program sharing information.

3. Bucket locking.

9.3.2.1 File Organizations and File Sharing - With the exception of
files on unit record devices and magnetic tape, which cannot be
shared, every RMS-ll file can be shared by any number of programs that
are reading, but not writing, the file. Relative and indexed files
(but not sequential files) can be shared by multiple readers and one
or more writers. Your program can read or write records in a relative
or indexed file while other programs are similarly reading or writing
records in the file. Thus, the information in such files can be
changing while your program, or other programs, are accessing them.

9.3.2.2 Program Sharing Information - While a file's organization
establishes whether it can be shared by readers only or by multiple
readers and writers, your program specifies whether such sharing
actually occurs at runtime. You control the sharing of a file through
information your program provides RMS-ll in the File Access Block used
to open the file.

Two fields in the File Access Block provide RMS-ll with file sharing
information--the file sharing (SHR) field and the file access (FAC)
field. The SHR field specifies what type of sharing you will allow.
If the SHR field contains the value FB$WRI, you have indicated that
you are willing to share the file with programs that are writing to
the file. The absence of FB$WRI (i.e., SHR equals O) indicates that
you are willing to share the file with readers, but not writers. The
FAC field declares the record operations that your program can itself
perform on the file it is accessing_ The presence of one or more of
the values FBPUT, FBDEL, FB$UPD, or FB$TRN indicates that your
program intends to write to the file.

The contents of the SHR and FAC fields in the FAB you use to open a
file are critical in the sharing of a file for the following reasons:

1. If your program is the first to open a file, it can perform
any record operation on the file as long as the organization
of the file supports the operation and the operation is
declared in your FAC field. However, the contents of your
SHR field establish whether any other program desiring to
write the file can also gain access.

9-20

PERFORMING FILE AND RECORD OPERATIONS

2. If your program is not the first to access a file, RMS-ll
allows you to open the file only if the contents of your FAC
and SHR fields are compatible with the intentions of all
programs that currently have access to the file. That is,

a. If your FAC field indicates write operations and your SHR
field indicates no one else can write, then:

• All current accessors of the file must have
specified FB$WRI in their SHR fields, and

• All current accessors must have indicated read only
operations in their FAC fields.

b. If your FAC field indicates read only operations and your
SHR field indicates no one else can write, then:

• All current accessors of the file must have
indicated read only operations in their FAC fields.

c. If your FAC field indicates read only operations and your
SHR field allows writers, then:

• There cannot be any current accessor who is writing
and has disallowed writers.

d. If your FAC field indicates write operations and your SHR
field allows writers, then:

• There cannot be any current accessor who has
disallowed writers.

9.3.2.3 Bucket Locking - RMS-ll uses a bucket locking facility to
control operations to a relative or indexed file that is being
accessed by one or more writers. The purpose of this facility is to
ensure that a program can add, delete, or modify a record in a file
without another program, or another record access stream within the
same program, simultaneously accessing the same record.

RMS-ll employs bucket locking in either of the following instances:

1. The SHR field in the FAB of the first program to open a file
specifies shared writing (i.e., FB$WRI).

2. The SHR field in the FAB of the first program to open a file
specifies shared reading only (i.e., SHR contains 0) but the
FAC field in the same FAB declares one or more output
operations (i.e., FBPUT, FBUPO, or FB$OEL).

In the first instance, RMS-ll locks any bucket accessed by a
successful $GET or $FINO operation issued from within any record
access stream in any program processing the file. This lock prevents
a second record access stream, in the same program or another program,
from accessing any record in the same bucket. In the second instance,
RMS-ll locks buckets accessed by $GET or $FINO operation issued by the
program whose FAC field indicates write operations. These locks,
however, can be encountered only by other record access streams within
the same program.

9-21

PERFORMING FILE AND RECORD OPERATIONS

RMS-II retains the
that caused the
lock is in effect,
error status code
the bucket.

lock on a bucket until the record access stream
locking issues another ~ecord operation. While the
RMS-Il returns an ER$RLK (target bucket locked)
to other record access streams attempting to access

For greatest flexibility at runtime, you should always assume that any
record your program attempts to access may be denied because of the
target bucket locked (ER$RLK) condition. The bucket that you
attempted to access can have been locked by another record access
stream in your own program or a record access stream in another
program. To deal with this condition, you should employ the following
procedures when you write programs:

1. Never allow a lock to be retained on a bucket longer than is
necessary. That is, after you issue a successful $GET or
$FIND operation, you have caused RMS-Il to lock a bucket.
You should issue a second record operation in the same record
access stream so that RMS-Il will unlock the bucket. Any
record operation (e.g., $PUT, $UPDATE, $DELETE, or another
$GET or $FIND) will cause unlocking. Alternatively, you can
explicitly unlock the bucket by issuing the $FREE macro (see
below).

2. If you are using a single record access stream to access a
file and you encounter the ER$RLK error, you can reissue the
record operation that failed until RMS-Il indicates
successful completion.

3. If you are using multiple record access streams to access a
file, you must not merely reissue the record operation that
failed. Since one of your own record access streams may have
caused locking of the target bucket, you could place your
program in an infinite loop if you continue to issue the same
operation. Therefore, you should issue a $FREE (see below)
for all other record access streams to the same file in your
program. You can then safely reissue the original record
operation until RMS-Il indicates successful completion.

The $FREE macro unlocks a bucket that RMS-ll has locked on behalf of
the record access stream. If no bucket is locked, RMS-ll returns on
ER$RNL (no bucket locked) error status code.

The formats of the $FREE macro are as follows:

where

1. label:$FREE

2. label:$FREE rab[,error[,success]]

label

rab

error

success

is an optional user-defined symbol referring to the
$FREE macro.

is the address of a Record Access Block representing a
record access stream.

is the address of a user completion routine to be
called if the $FREE operation fails.

is the address of a user completion routine to be
called if the $FREE operation succeeds.

9-22

PERFORMING FILE AND RECORD OPERATIONS

Table 9-10 lists the fields of the Record Access Block used during the
$FREE operation.

Name

Input lSI

Output STS

STV

Table 9-10
$FREE RAB Fields

Description

Internal stream identifier

Completion status code

Status value

9.3.3 Current Context of Record Operations

Transparent to your program, RMS-ll maintains current context
information for each record access stream you establish. This context
information identifies where, in a file, each record access stream is
positioned at any point in time. As your program performs record
operations on a record access stream, RMS-ll modifies, as necessary,
the current context of that stream.

At any point in time, the current context of a record access stream is
represented by, at most, two records:

1. The Current Record

2. The Next Record

The type of record operation you issue establishes whether or not,
after the operation, there is a Current Record for the stream.
Furthermore, the type of record operation and the access mode you use
establish whether the identity of the Next Record is changed or
unchanged. Table 9-11 summarizes the effect each successful record
operation has on the current context of a stream. The sUbsections
that follow describe the purpose and importance of the notions of
Current and Next Records.

.Record Operation

$CONNECT

$CONNECT
(ROP=RB$EOF)

Table 9-11
Record Access Stream Context

After Record Operations

Current Identity of
Access Mode Record Next Record

- None First Record
(for indexed files,
established by index
represented by KRF)

- None End-of-file
(sequential files,
disk only)

(Continued on next page)

9-23

PERFORMING FILE AND RECORD OPERATIONS

Record Operation

$FIND

$FIND

$GET
(not immediately
preceded by $FIND)

$GET
(immediately
preceded by $FIND)

$GET

$PUT

Table 9-11 (Cont.)
Record Access Stream Context

After Record Operations

Current Identity of
Access Mode Record Next Record

Sequential New New Current Record +1

Random or RFA New Unchanged

Sequential New New Current Record +1

Sequential Unchanged Current Record +1

Random or RFA New New Current Record +1

Sequential None 1. Sequential file
EOF.

2. Relative file

-
-

next relative
record position.

3. Indexed file
undefined.

$PUT Random None Unchanged

$ UPDATE - None Unchanged

$DELETE - None Unchanged

$TRUNCATE - None End-of-file

$REWIND - None First record

$FREE - None Unchanged

Unsuccessful (any) None Unchanged
record operations
(except ER$RTB)

NOTES

1. Except for the $TRUNCATE operation,
RMS-ll establishes the Current Record
(if any) before establishing the
identity of the Next Record.

2. The notation "+1" indicates the next
sequential record as determined by the
organization of the file. For indexed
files, the current key of reference is
part of this determination.

9-24

-

PERFORMING FILE AND RECORD OPERATIONS

9.3.3.1 Understanding the Current Record - The Current Record
associated with a record access stream represents the target record
for an $ UPDATE , $DELETE, or $TRUNCATE operation. RMS-Il rej.ects any
$UPDATE, $DELETE, or $TRUNCATE operation you issue for a stream that
does not have, at that point, a Current Record.

To establish (or maintain) a Current Record for a stream, you must
successfully issue one of the following:

1. A $FIND operation.

2. A $GET operation (including $GET operations that return
ER$RTB).

As Table 9-11 shows, either of these two operations, if successful,
establishes or retains a Current Record as part of the stream's
context. Note that a successful, sequential $GET operation that was
immediately preceded by a successful $FIND does not change the Current
Record. Your program simply reads the record located by the preceding
$FIND but that record continues to be the stream's Current Record.
All other types of $GET operations and all $FIND operations establish
new Current Records.

In contrast to $FIND and $GET operations, all other record operations,
upon completion, leave the stream without a Current Record. Further,
any unsuccessful record operation (excluding a $GET that returns
ER$RTB) leaves the stream without a Current Record. Therefore, any
$ UPDATE , $DELETE, or $TRUNCATE operation your program issues must be
immediately preceded by a successful $FIND or $GET operation. If you
do not follow this procedure, RMS-II rejects the $ UPDATE , $DELETE, or
$TRUNCATE operation and returns the ER$CUR (No Current Record) error
code.

9.3.3.2 Understanding the Next Record - RMS-Il utilizes the Next
Record for sequential mode processing. A stream's Next Record
represents the target record for:

• A sequential $GET operation (if the immediately preceding
operation was not $FIND)

• A sequential $FIND operation

• A sequential $PUT operation to a sequential or relative file

For the preceding operations, RMS-Il uses its internal knowledge of
file organization and structure to determine the next record to be
processed. This look ahead ability significantly decreases sequential
mode access times.

Initially, RMS-Il determines the Next Record as follows:

The $CONNECT operation leaves the Next Record as:

• The first record in a sequential disk file (unless the record
processing options (ROP) field in the Record Access Block
contains the value RB$EOF).

• End of file in a magnetic tape file that has been opened for
$PUT operations.

9-25

PERFORMING FILE AND RECORD OPERATIONS

• The first record in a magnetic tape file if this is the first
$CONNECT for a file opened for read only. Note that if there
has been a previous $CONNECT followed by a $DISCONNECT for
the open tape file, the $REWIND operation should be used to
position the stream to beginning of file.

• The first record in a relative file.

• The first record in the collating sequence of the specified
key of reference in an indexed file.

Thereafter, RMS-ll alters the identity of Next Record as follows:

• The $GET operation in any access mode, and the $PUT and $FIND
operations in sequential mode leave the identity of the Next
Record as that of the record following the one on which the
operation was performed. This record is:

1. The next record within sequential or relative files, or

2. The next record as determined by the collating sequence
of the specified key of reference in indexed files.

• The $TRUNCATE operation, which is allowed only on sequential
files, sets the Next Record to point to the end of file.
RMS-ll does not write EOF indicators in the file as a result
of a $TRUNCATE.

The following operations have no effect on the Next Record:

1. $UPDATE.

2. $DELETE.

3. $PUT or $FIND in random access mode.

4. All unsuccessful record operations (except ER$RTB).

9.3.4 Synchronous and Asynchronous Record Operations

Within each record access stream, your program can perform any record
operation either synchronously or asynchronously. When a record
operation is performed synchronously, RMS-ll returns control to your
program only after the record operation request has been satisfied
(e.g., a record has been read and passed to your program). When a
record operation is performed asynchronously, RMS-ll can return
control to your program before the record operation request has been
satisfied. Your program, then, can utilize the time required for the
physical transfer between the file and memory of the block or bucket
containing the record to perform other computations.

To perform asynchronous record operations, you must:

1. Allocate, at assembly-time, an asynchronous Record Access
Block to represent the stream in which you will issue
asynchronous requests. You must allocate multiple
asynchronous Record Access Blocks if you intend to issue
asynchronous requests in parallel. (Refer to Section 6.1 in
Chapter 6 for the details of allocating an asynchronous RAB.)

9-26

PERFORMING FILE AND RECORD OPERATIONS

2. Ensure that the value RB$ASY is present in the record
processing options (ROP) field of the asynchronous RAB before
you issue the desired record operation. You can initialize
the ROP field at assembly-time with this value or set the
field at runtime with the $SET macro. Further, during
execution, you can switch between synchronous and
asynchronous operations in a stream by using the $SET and
$OFF macros to set and reset the value RB$ASY in the ROP
field. Note, however, that RMS-ll ignores the value RB$ASY
if the RAB is not asynchronous.

When you issue an asynchronous record operation, you can specify a
completion routine to be called if the operation succeeds. You can
also specify an error completion routine to be called if the operation
fails. Within such completion routines, you can issue additional
operations. These additional operations, however, should also be
asynchronous operations. If you issue a synchronous operation from an
asynchronous completion routine, you may receive an ER$AST error if
the completion routine was called at AST level in the task.

While an asynchronous operation is in progress in a record access
stream, you must:

1. Never modify the contents of the Record Access
representing the stream.

Block

2. Never issue a second record operation request in the same
stream until the first operation is completed. RMS-ll
returns an ER$RSA (record stream active) error status code if
you issue a record operation to a stream which has a record
operation in progress.

To determine when an asynchronous record operation has completed, you
issue the $WAIT macro. Upon completion of the asynchronous request
for the associated RAB, RMS-ll returns control to your program at the
point following the $WAIT macro (after calling the appropriate
completion routine, if specified).

The formats of the $WAIT macro are as follows:

where

1. label:$WAIT

2. label:$WAIT rab

label is an optional user-defined symbol referring to the
$WAIT macro.

rab is the address of an asynchronous Record Access Block
representing a record access stream with an
asynchronous request in progress.

Table 9-12 lists the fields of the Record Access Block used during the
$WAIT operation.

Name

Input lSI

Output (var ies)

Table 9-12
$WAIT RAB Fields

Description

Internal stream identifier

(dependent on operation waited

9-27

upon)

PERFORMING FILE AND RECORD OPERATIONS

9.3.5 Accessing Records

To process a record in a file, you must specify an access mode in the
Record Access Block representing a stream connected to the file. Your
program can use one of two record transfer modes to access the subject
record in memory after it has been read from the file or before your
program writes it to the file. The following subsections, therefore,
describe:

• Specifying an access mode

• Specifying a record transfer mode

9.3.5.1 Specifying an Access Mode - You use the record access mode
(RAC) field of the Record Access Block to specify the access mode that
RMS-ll is to employ for a particular record operation. During the
execution of your program, you can switch access modes within a stream
by changing the contents of this field.

Within the RAC field, you can specify one of three values:

1. RB$SEQ sequential access mode.

2. RB$KEY random access mode.

3. RB$RFA record's file address access mode.

You can specify sequential access mode with any file organization.
Random access mode, however, is restricted to relative and indexed
files. RFA access mode is limited to retrieval operations (i.e.,
$GET, $FIND) to files residing on disk devices.

RMS-ll examines the contents of the RAC field in a RAB only during the
execution of a $GET, $FIND, or $PUT operation. The $UPDATE, $DELETE,
and $TRUNCATE operations do not require an access mode specification.
You cannot issue these operations unless you have already accessed a
record by issuing a $GET or $FIND operation.

9.3.5.2 Specifying a Record Transfer Mode - While the RAC field
specifies how RMS-ll accesses a record in a file on behalf of your
program, the record processing options (ROP) field in the RAB allows
you to specify how your program (for $GET operations) or RMS-ll (for
$PUT or $UPDATE operations) accesses the target record in memory. In
the ROP field, you can specify one of two record transfer modes - move
mode or locate mode. During execution of your program, you can switch
record transfer modes within a stream by changing the contents of this
field.

Within the ROP field, you indicate:

• Move mode through the absence of the bit value RB$LOC

• Locate mode through the presence of the bit value RB$LOC

Move mode requires that RMS-ll move individual records between I/O
buffers and the user program. For $GE~ operations, RMS-ll reads a
virtual block (sequential files) or bucket (relative or indexed files)
into an I/O buffer. RMS-ll then locates the desired record in the
buffer and moves it to a program-specified location. For $PUT or
$ UPDATE operations, your program first builds a record in any desired
program location. Your program then stores the address and size of

9-28

PERFORMING FILE AND RECORD OPERATIONS

the record in the RAB and issues the appropriate macro call. During
execution of the macro call, RMS-II moves the record from its
specified location to an I/O buffer. When the buffer is filled,
RMS-ll writes it to the file.

Locate mode enables your program to access records directly in an I/O
buffer. Therefore, there is normally no need for RMS-Il to move
records between I/O buffers and the user program. RMS-Il does not
permit the use of locate mode if a file was opened for update
operations (e.g., FAC contains the value FB$UPD). If a file has not
been opened for update operations, then locate mode is supported for
$GET operations for all file organizations. For $PUT operations,
locate mode is supported for sequentially organized files only.

The record transfer mode you select for a particular record operation
determines the use of the following fields of the RAB:

1. Record address (RBF) and record size (RSZ).

2. User record area address (UBF) and user record area size
(USZ) •

The use of these fields is described in the following subsections.

9.3.5.2.1 The RBF and RSZ Fields of the RAB - The RBF (record
address) and RSZ (record size) fields of the RAB always describe the
location in memory and the size of the target record for a $GET, $PUT,
or $UPDATE operation. These fields are set as follows:

1. For $PUT and $UPDATE operations, your program must always
ensure that RBF and RSZ describe the location and size of the
record to be written.

2. After a successful $GET operation, RMS-ll always sets RBF to
the address of the retrieved record and RSZ to the size of
the record.

Additionally, when your program is writing records to a sequential
file in locate mode, RMS-ll returns an address in the RBF field after
each $PUT operation. This address is the location where your program
can build the next record. It is not required that this location be
used. If it is used, your program need only set the RSZ field to
describe the size of the next record to be written. If it ~is not
used, your program must, again, set both RBF and RSZ.

9.3.5.2.2 The UBF and USZ Fields of the RAB - The USF (user record
area address) and USZ (user record area size) fields described a fixed
work area in your program. Regardless of record transfer mode, you
must always provide this work area. Further, it should be large
enough to contain the largest record in the file accessed by the
stream. RMS-Il uses the work area described by UBF and USZ as
follows:

1. For $GET operations in move mode, RMS-II moves the retrieved
record from the I/O buffer to the location described by UBF.
RBF (set equal to UBF) and RSZ describe the moved record. If
the work area is not large enough to contain the entire
record, RMS-II moves as much of the record as possible (i.e.,
up to the amount specified in USZ), updates the current
context of the stream, and returns the ER$RTB error code.

9-29

PERFORMING FILE AND RECORD OPERATIONS

2. For $GET operations to any file in locate mode, RMS-ll will
normally set RBF to the address of the record in an I/O
buffer. However, if RMS-ll determines that locate mode
cannot be used for a particular operation, RMS-ll will
actually use move mode. That is, the record will be moved to
the location described by UBF when move mode must be used,
RMS-ll may return ER$RTB, as described above, if the user
record area is too small.

3. For $UPDATE operations and $PUT operations in move mode,
RMS-ll ignores the UBF and USZ fields. You must describe the
record to be written in the RBF and RSZ fields.

4. For $PUT operations on sequential files in locate mode,
RMS-ll uses the UBF and USZ fields as follows:

• If the space remaining in the I/O buffer after the
$PUT operation has been performed is equal to or
greater than USZ, RMS-ll sets RBF to the location
within the buffer where your program can build the
next record.

• If the space rema1n1ng in the I/O buffer is less than
USZ, RMS-ll sets RBF equal to UBF.

9.3.6 Record Operation Macros

Table 9-13 summarizes the record processing macros provided by RMS-ll:

Macro Name

$FIND

$GET

$PUT

$UPDATE

$DELETE

$REWIND

$TRUNCATE

$FLUSH

$NXTVOL

Table 9-13
RMS-ll Record Processing Macros

Description

Locates a record in a file and returns its RFA.

Retrieves a record from a file.

Writes a new record into a file.

Rewrites an existing record within a file.

Deletes a record from a relative or indexed file.

Positions to the beginning of a file.

Truncates a sequential file.

Writes out modified I/O buffers.

Causes processing of a magnetic tape file to
continue on the next volume of a volume set.

The subsections that follow describe each of the record processing
macros listed in the preceding table. Appendix A contains a complete
list of completion status codes that can result from the issuance of
these and other RMS-ll macros.

9-30

PERFORMING FILE AND RECORD OPERATIONS

9.3.6.1 $FIND - Locating and Obtaining the RFA of a Record - The
$FIND macro locates a specified record in a file and returns its
record's file address into the RFA field of the RAB. Additionally,
RMS-ll sets the record pointer and, for $FIND operations in sequential
access mode, the next record pointer. The record pointer after a
$FIND specifies which record will be the subject of the next
sequential $GET operation or a $DELETE, $UPDATE, or $TRUNCATE
operation.

The main uses of the $FIND operation are as follows:

1. Skipping records when in sequential access mode (by issuing
successive $FIND operations).

2. Establishing a random starting point in a file for sequential
access.

3. Establishing a current record for a $DELETE, $UPDATE, or
$TRUNCATE operation.

The formats of the $FIND macro are as follows:

where

1. label:$FIND

2. label:$FIND rab[,error[,success]]

label is an optional user-defined symbol referring to the
$FIND macro.

rab is the address of a Record Access Block containing the
specification of a record to be found.

error

success

is the address of a user completion routine to be
called if the $FIND operation fails.

is the address of a user completion routine to be
called if the $FIND operation succeeds.

Table 9-14 lists the fields of the Record Access Block used during the
$FIND operation.

Input

Name

lSI

Table 9-14
$FIND RAB Fields

Description

Internal stream identifier.

KBF Key buffer address. In combination with KSZ, KBF
describes a record identifier for random access to
a relative or indexed file.

KRF Key of reference. Used only for random access
indexed files.

KSZ Key size.

RAC Record access mode.

(Continued on next page)

9-31

Input
(Cont.)

output

Name

RFA

PERFORMING FILE AND RECORD OPERATIONS

Table 9-14 (Cont.)
$FIND RAB Fields

Description

Record's file address. Used for RFA access only.

ROP Record processing options.

BKT Bucket code. When you access a relative file in
sequential access mode, RMS-ll sets this field
equal to the relative record number of the found
record.

RFA Record's file address.

STS Completion status code.

STV Status value.

The following
operation for
organizations.

sUbsections describe
the sequential,

characteristics
relative, and

of the
indexed

$FIND
file

9.3.6.1.1 $FIND and the Sequential File Organization - Either
sequential or RFA access mode can be used with the $FIND operation to
a sequential file. RFA access, however, is permitted only' for
sequential files on disk devices.

9.3.6.1.2 $FIND and the Relative File Organization - For the relative
file organization, you can employ any of the three supported access
modes with the $FIND operation -- sequential, random, or RFA.

When you specify sequential access mode, RMS-ll will locate the next
existing record in the file. If no record exists in any remaining
record positions, RMS-ll will return the ER$EOF error code (End of
File) in the STS field of the RAB.

Normally, you would not use RFA access mode with the $FIND macro since
the output of the operation would be the identical record's file
address used as input. However, a $FIND operation in RFA access mode
could return a ER$DEL (Record Deleted) error code. This error code
indicates that the record described by the user-supplied record's file
address once existed in the file but was subsequently deleted.

Finally, random access mode can also be used for $FIND operations to
relative files. Such an operation can result in an ER$RNF (Record Not
Found) error if no record exists in the record position you specified
through the KBF and KSZ fields of the RAB.

9.3.6.1.3 $FIND and the Indexed File Organization - For the indexed
file organization, you can use any of the three supported access
modes -- sequential, random, and RFA. In random access mode, RMS-ll
uses the key of reference field (KRF) of the RAB to determine the
index to be used to locate the record.

9-32

PERFORMING FILE AND RECORD OPERATIONS

In a $FIND operation in sequential access mode, RMS-ll will locate the
next record in the sequence established by the index associated with a
particular key of reference. RMS-ll uses the key of reference used by
the most recent successful $GET or sequential $FIND operation or the
key of reference contained in the KRF field at $CONNECT time. If a
different index is desired for sequential processing, you should first
issue a $REWIND operation specifying the new key of reference or issue
a $GET in random access mode with the desired key of reference.

$FIND operations in random access mode require the KRF field. You can
specify any valid key of reference. If no record exists in the file
that will satisfy the $FIND request, RMS-ll returns an ER$RNF (Record
Not Found) error.

During $FIND operations in RFA access mode, RMS-ll ignores the KRF
field. The ER$DEL error code may be returned if the desired record
once existed in the file but had been deleted subsequently.

9.3.6.2 $GET - Retrieving a Record - The $GET macro retrieves a
record from any of the RMS-ll file organizations. The RBF and RSZ
fields always describe the record retrieved after a successful
operation. Further, RMS-ll sets the record pointer to the record's
file address of the retrieved record and returns this value in the RFA
field of the Record Access Block. These fields are valid only until
the next operation on the RAB is issued.

The formats of the $GET macro are as follows:

where

1. label:$GET

2. label:$GET rab[,error[,success]]

label is an optional user-defined symbol referring to the
$GET macro.

rab is the address of a Record Access Block containing the
specification of the record to be accessed.

error

success

is the address of a user completion routine to be
called if the $GET operation fails.

is the address of a user completion routine to be
called if the $GET operation succeeds.

Table 9-15 lists the fields of the Record Access Block used during the
$GET operation.

Name

Input lSI

KBF

Internal

Table 9-15
$GET RAB Fields

Description

stream identifier.

Key buffer. In combination
describes a record identifier
a relative or indexed file.

with KSZ, KBF
for random access to

(Continued on next page)

9-33

Name

Input KRF
(Cont.)

PERFORMING FILE AND RECORD OPERATIONS

Table 9-15 (Cont.)
$GET RAB Fields

Description

Key of reference. Used only for'random access to
indexed files.

KSZ Key size.

RAC Record access mode.

RFA Record's file address. Used for RFA access only.

RHB Record header buffer. Used for VFC format
records. If this field equals 0, RMS-ll skips the
fixed control area portion of the record.

ROP Record processing options.

UBF User record area address.

USZ User record area size.

Output BKT Bucket code. When you access a relative file in
sequential access mode, .RMS-ll sets this field
equal to the relative record number of the record
retrieved.

RBF Record address. This field contains the address
of the retrieved record.

RFA Record's file address.

RSZ Record size. This field contains the size of the
record whose address is in RBF.

STS Completion status code.

STV Status value. See note below.

NOTE

After a successful $GET operation from a
unit record or terminal device, the low
order byte of the STV field is used to
report the terminating character for the
input record. This byte is set as
follows:

Octal
Contents

15
33
32
o

Terminating
Character

CR
ESC
CTRL/Z
other

Except when the low order byte of STV is
0, the terminating character is never in
the record described by the RBF and RSZ
fields of the RAB.

9-34

PERFORMING FILE AND RECORD OPERATIONS

The following sUbsections describe the characteristics of the
operation for the sequential, relative, and indexed
organizations.

$GET
file

9.3.6.2.1 $GET and the Sequential File Organization - Either
sequential or RFA access mode can be used with the $GET operation to a
sequential file. RFA access, however, is permitted only for
sequential files on disk devices.

9.3.6.2.2 $GET and the Relative File Organization - For the relative
file organization, you can employ any of the three supported access
modes -- sequential, random, or RFA.

When you specify sequential access mode, RMS-ll returns the next
existing record in the file (or the Current Record if the immediately
preceding operation was a successful $FIND). If no record exists in
any remaining record positions, RMS-ll returns the ER$EOF error code
(End of File) in the STS field of the RAB.

When you use random access mode, RMS-ll returns an ER$RNF (Record Not
Found) error if no record exists in the record position you specified
through the KBF and KSZ fields of the RAB.

RMS-ll may return an ER$DEL (Record Deleted) error code for $GET
operations in RFA access mode. This error code indicates that the
desired record once existed in the file but was subsequently deleted.

9.3.6.2.3 $GET and the Indexed File Organization - For the indexed
file organization, you can employ any of the three supported access
modes -- sequential, random, and RFA.

In a $GET operation (not preceded by a $FIND) in sequential access
mode, RMS-ll retrieves the next record in the sequence established by
the index associated with a particular key of reference. RMS-ll uses
the key of reference of the most recent successful $GET or $FIND
operation or the key of reference contained in the KRF field at
$CONNECT time. If a different index is desired for sequential
processing, you should first issue a $REWIND operation specifying the
new key of reference or issue a $GET or $FIND in random access mode
with the desired key of reference.

$GET operations in random access mode require the KRF field. You can
specify any desired key of reference. If no record exists in the file
that will satisfy the $GET request, RMS-ll returns an ER$RNF (Record
Not Found) error.

During $GET operations in RFA access mode, RMS-ll ignores the KRF
field. The ER$DEL error code may be returned if the desired record
has been deleted.

9.3.6.3 $PUT - Writing a New Record to a File - The $PUT macro writes
a new record into any RMS-ll file organization. The RBF and RSZ
fields must describe the record to be written. RFA access mode cannot
be used. Note that $PUT operations in random access mode do not
change the next record pointer.

9-35

PERFORMING FILE AND RECORD OPERATIONS

The following are the formats of the $PUT macro:

where

1. label:$PUT

2. label:$PUT rab[,error[,success]]

label is an optional user-defined symbol referring to the
$PUT macro.

rab is the address of a Record Access Block containing the
specification of the record to be written.

error

success

is the address of a user completion routine to be
called if the $PUT operation fails.

is the address of a user completion routine to be
called if the $PUT operation succeeds.

Table 9-16 lists the fields of the Record Access Block used during the
$PUT operation.

Input

Name

lSI

KBF

KSZ

RAC

RBF

RHB

Table 9-16
$PUT RAB Fields

Description

Internal stream identifier.

Key buffer. Used only for random access to
relative files.

Key size. Used for random access to relative
files only.

Record access mode.

Record address.

Record header buffer. Used for VFC records only.
If this field equals 0, RMS-ll zeroes the fixed
control area portion of the record written.

ROP Record processing options.

RSZ Record size.

UBF User record
sequential
9.3.5.2.2).

area.
files

Used
only

for locate mode for
(refer to Section

USZ User record area size. Used for locate mdde for
sequential files only.

Output BKT Bucket code. When you access a relative file in
sequential access mode, RMS-llil sets this field
equal to the relative record number of the record
written.

(Continued on next page)

9-36

Output
(Cont.)

PERFORMING FILE AND RECORD OPERATIONS

Name

RBF

RFA

STS

STV

Table 9-16 (Cont.)
$PUT RAB Fields

Description

Record address. This field lndicates
next record may be built. (locate
sequential files only)

Record's file address.

Completion status code.

Status value.

where
mode

The following subsections describe the characteristics of the
operation for the sequential, relative, and indexed
organizations.

the
on

$PUT
file

9.3.6.3.1 $PUT and the Sequential File Organization - You must ensure
that the value RB$SEQ is present in the record access field (RAC) of
the RAB at the time a $PUT macro call is issued for a sequential file.
Further, RMS-ll does not permit new records to be added to a file at
any place but the end of file. Therefore, if you intend to add
records to a sequential file that already contains records, either the
value RB$EOF (position to end-of-file) must be present in the record
options field (ROP) of the RAB at the time you issue the $CONNECT
macro call for the stream or you must position to end-of-file through
$FINDs and/or $GETs prior to issuing any $PUT requests.

You cannot write any record whose length is greater than the maximum
record size specified when the file was created.

9.3.6.3.2 $PUT and the Relative File Organization - You can use
either sequential or random access mode during $PUT operations to a
relative file. For both access modes, three restrictions apply.
First, no record can be written to the file whose length is greater
than the maximum record size specified when the file was created.
Second, the target record position cannot already contain a record.
Third, the target record position cannot represent a relative offset
from the beginning of the file whose value is greater than the maximum
record number, if such a number was specified at the time the file was
created.

9.3.6.3.3 $PUT and the Indexed File Organization - You can use either
sequential or random access mode during $PUT operations to an indexed
file. For both access modes, two restrictions apply to the length of
the record to be written. First, the length of the record cannot
exceed the maximum record size specified when the file was created.
Second, every record written must be large enough to contain a
complete primary key field. It is not required, however, that records
be large enough to contain all defined alternate key fields. If such
alternate key fields are partially or completely missing because of
record length, RMS-ll makes no entries for the new record in the
associated alternate indexes.

9-37

PERFORMING FILE AND RECORD OPERATIONS

$PUT operations to an indexed file do not require a key value or a key
of reference. RMS-ll determines where to write the record by
examining the contents of the primary key field in the record. Before
writing the record, RMS-ll compares the key values (pri~ary and
alternate) in the record with the key values of records already
existing in the file. This comparison determines if the writing of
the record would result in the presence of duplicate key values among
records of the file. If duplicates would occur, RMS-ll verifies the
defined characteristics for the key field(s) being duplicated. If
duplicates are not allowed for a particular key field, RMS-ll rejects
the operation with an ER$DUP error code. However, if duplicates are
allowed, RMS-ll performs the $PUT operation and returns a success code
of SU$DUP. Subsequent sequential $GET operations on a given index
will always retrieve records with identical key values in the order in
which the records were written •.

When you issue a series of $PUT operations in sequential access mode,
RMS-ll checks that the primary key in each record is equal to (if
duplicate primary key values are allowed) or greater than the primary
key of the previous record written. An ER$SEQ (key out of sequence)
error status code is returned if the primary key of the current record
fails this check. This checking is suppressed, however, if the
immediately preceding operation was not a successful $PUT in
sequential access mode.

9.3.6.4 $UPDATE - Rewriting an Existing Record - The $UPDATE macro
rewrites an existing record within a file. The Current Record
associated with the stream will be rewritten. Therefore, the
operation immediately preceding a $UPDATE must be a successful $GET or
$FIND. Otherwise, RMS-ll returns an ER$CUR (No Current Record) error
code. The address and size of the replacement record must be in the
RBF and RSZ fields respectively. Errors indicating an illegal input
value in the RAB (e.g., ER$RSZ - illegal record size) do not effect
the original record in the file. Other types of errors (e.g.,
ER$WER - file write error), however, can mean that the original record
is lost.

The following are the formats of the $UPDATE macro:

1. label:$UPDATE

2. label:$UPDATE rab[,error[,success]]

where

label is an optional user-defined symbol referring to the
$UPDATE macro.

rab is the address of a Record Access Block.

error is the address of a user completion routine to be
called if the $UPDATE operation fails.

success is the address of a user completion routine to be
called if the $UPDATE operation succeeds.

9-38

PERFORMING FILE AND RECORD OPERATIONS

Table 9-17 lists the fields of the Record Access Block used during the
$UPDATE operation.

Input

Name

lSI

Table 9-17
$UPDATE RAB Fields

Description

Internal stream identifier.

RBF Record address.

RHB Record header buffer. Used for VFC format records
only. If no address is specified in this field,
RMS-ll leaves the fixed control area portion of
the original record unaltered.

ROP Record processing options. Note that locate mode
is not supported for $UPDATE operations.

RSZ Record size.

Output RFA Record's file address.

STS Completion status code.

STV Status value.

The following sUbsections describe
operation for the sequential,
organizations.

characteristics
relative, and

of the $UPDATE
indexed file

9.3.6.4.1 $UPDATE and the Sequential File Organization - RMS-ll does
not permit the $UPDATE operation for sequential files residing on
magnetic tape or unit record devices. Furthermore, for disk files,
the format of the records in the file cannot be stream and you cannot
change the length of the record being rewritten.

9.3.6.4.2 $UPDATE and the Relative File Organization - If the format
of records is variable, the length of the replacement record can
differ from the length of the original record. In all instances,
however, you cannot issue a $ UPDATE macro call specifying a
replacement record whose length is greater than the maximum record
size defined when the file was created.

9.3.6.4.3 $UPDATE and the Indexed File Organization - On an $ UPDATE
operation to an indexed file that allows duplicate primary keys, you
cannot change the length of the original record (RMS-II returns ER$RSZ
is you attempt such a change). For indexed files that do not allow
duplicate primary keys, however, the length of the replacement record
to be written by the $UPDATE macro call can differ from the length of
the original record. Two restrictions, however, apply to the length
of the replacement record. First, the length of the replacement
record cannot exceed the maximum record size defined when the file was

9-39

PERFORMING FILE AND RECORD OPERATIONS

created. Second, e!ery replacement record must be large enough to
contain a complete prlmary key field. It is not required, however,
that the replacement record be large enough to contain all defined
alternate key fields. If an alternate key field is partially or
completely missing in the replacement record but was present in the
original record, the key field must have the characteristic that key
values can change. This is also true if the replacement record
contains a key field missing in the original record.

Before writing the record, RMS-II compares the key values of the
original record with the key values of the replacement record. This
comparison takes into account the defined characteristics of each key.
For example, if a particular key is not allowed to change, RMS-Il will
reject the $UPDATE operation with a ER$CHG error code if the
replacement record contains an altered value in the associated key
field. Similarly, if duplicates are not allowed for a particular key,
RMS-II rejects the operation with a ER$DUP error code if writing the
replacement record would cause duplicate values for the particular
key. Conversely, if duplicates are allowed and writing the record
results in the presence in the file of duplicate values for a
particular key, RMS-II performs the write operation and returns a
success code of SU$DUP.

9.3.6.5 $DELETE - Deleting a Record - The $DELETE macro deletes an
existing record from a relative or indexed file. This macro is an
illegal operation for records in a sequential file.

The $DELETE operation always applies to the Current Record.
Therefore, the operation immediately preceding a $DELETE must be a
successful $GET or $FIND. Otherwise, RMS-II returns an ER$CUR (No
Current Record) error code.

The formats of the $DELETE macro are as follows:

where

1. label:$DELETE

2. label:$DELETE rab[,error[,success]]

label is an optional user-defined symbol referring to the
$DELETE macro.

rab is the address of a Record Access Block.

error

success

is the address of a user c9mpletion routine to be
called if the $DELETE operation fails.

is the address of a user completion routine to be
called if the $DELETE operation succeeds.

Table 9-18 lists the fields of the Record Access Block used during the
$DELETE operation.

9-40

PERFORMING FILE AND RECORD OPERATIONS

Name

Input lSI

ROP

Output STS

STV

Table 9-18
$DELETE RAB Fields

Description

Internal stream identifier.

Record processing options.

Completion status code.

Status value.

i

9.3.6.6 $REWIND - Positioning to the Beginning of a File - The
$REWIND macro sets the current context of a stream to the beginning of
a file. Following the operation, there is no Current Record. The
Next Record is the first record in the file (for indexed files, the
KRF field establishes the index to be used).

The following are the formats of the $REWIND macro:

where

1. label:$REWIND

2. label:$REWIND rab[,error[,success]]

label is an optional user-defined symbol referring to the
$REWIND macro.

rab is the address of a Record Access Block associated with
a file.

error

success

is the address of a user completion routine to be
called if the $REWIND operation fails.

is the address of a user completion routine to be
called if the $REWIND operation succeeds.

Table 9-19 lists the fields of the Record Access Block used during the
$REWIND operation.

Name

Input lSI

KRF

Output STS

STV

Table 9-19
$REWIND RAB Fields

Description

Internal stream identifier.

Key of reference. Used for indexed files only.

Completion status code.

Status value.

9-41

PERFORMING FILE AND RECORD OPERATIONS

9.3.6.7 $TRUNCATE - Truncating
macro truncates a sequential
relative and indexed files.

a Sequential File - The $TRUNCATE
file. This operation is illegal for

$TRUNCATE deletes the Current Record and all records following that
record. The immediately preceding operation must be a successful $GET
or $FIND. Otherwise, RMS-II returns an ER$CUR (No Current Record)
error code.

RMS-Il declares an end-of-file at the position formerly occupied by
the Current Record. Additionally, the $TRUNCATE operation causes the
Next Record to point to this end-of-file. Therefore, you can extend
the file by issuing $PUT operations in sequential mode following the
$TRUNCATE operation.

The following are the formats of the $TRUNCATE macro:

where

1. label:$TRUNCATE

2. label:$TRUNCATE rab[,error[,success]]

label is an optional user-defined symbol referring to the
$TRUNCATE macro.

rab is the address of a Record Access Block associated with
a sequential file.

error

success

is the address of a user completion routine to be
called if the $TRUNCATE operation fails.

is the address of a user completion routine to be
called if the $TRUNCATE operation succeeds.

Table 9-20 lists the fields of the Record Access Block used during the
$TRUNCATE o-pe~ation.

Name

Input lSI

Output STS

STV

Table 9-20
$TRUNCATE RAB Fields

Description

Internal stream identifier.

Completion status code.

Status value.

9.3.6.8 $FLUSH - Writing Out Modified I/O Buffers - The $FLUSH macro
writes out all modified I/O buffers associated with a record access
stream, thus ensuring' that all record activity up to a point in time
is actually reflect~d in the file. If the file is relative or
indexed, any bucket c~rrently locked by the stream remains locked.

9-42

PERFORMING FILE AND RECORD OPERATIONS

The formats of the $FLUSH macro are as follows:

1. label:$FLUSH

2. label:$FLUSH rab[,error[,success]]

where

label is an optional user-defined symbol referring to the
$FLUSH macro.

rab is the address of a Record Access Block representing a
stream to be flushed.

error is the address of a user completion routine to be
called if the $FLUSH operation fails.

success is the address of a user completion routine to be
called if the $FLUSH operation succeeds.

Table 9-21 lists the fields of the Record Access Block used during the
$FLUSH operation.

Name

Input lSI

Output STS

STV

Table 9-21
$FLUSH RAB Fields

Description

Internal stream identifier.

Completion status code.

Status value.

9.3.6.9 $NXTVOL - Continue Processing on Next Volume - The $NXTVOL
macro can be used only when the stream is accessing a file on magnetic
tape. You issue this macro when you want to continue processing the
file on the next volume of a volume set before the end of the current
volume is reached. RMS-ll will then open the first file section on
the next volume. File sections occur when a file is written on more
than one volume. The portion of the file on each of the volumes
constitutes a file section. For input files, the following processing
occurs when you issue a $NXTVOL macro:

1. All records in I/O buffers for the current file section are
skipped.

2. If the current volume is the last volume in the set, i.e.,
there is no next volume, RMS-ll reports end-of-file to your
program.

3. If another file section exists, the current volume is rewound
and the next volume is mounted. A request to the operator is
printed if necessary.

4. The header label (HDRl) of the first file section is read and
checked.

9-43

PERFORMING FILE AND RECORD OPERATIONS

5. If all required fields check, the operation continues.

6. If any check fails, the operator is requested to mount the
correct volume.

For output files, the following processing occurs.

1. I/O buffers that are currently in memory are written on the
current file section (i.e., an implicit $FLUSH is performed).

2. The current file section is closed with EOVI and EOV2 labels
and the volume is rewound.

3. The next volume is mounted.

4. A file with the same name and the next higher section number
is opened for write. The file set identifier is identical
with the volume identifier of the first volume in the volume
set.

The formats of the $NXTVOL macro are as follows:

where

1. label:$NXTVOL

2. label:$NXTVOL rab[,error[,success]]

label is an optional user-defined symbol referring to the
$NXTVOL macro.

rab is the address of a Record Access Block associated with
a file on a magnetic tape volume set.

error

success

is the address of a user completion routine to be
called if the $NXTVOL operation fails.

is the address of a user completion routine to be
called if the $NXTVOL operation succeeds.

Table 9-22 lists the fields of the Record Access Block used during the
$NXTVOL operation.

Input

Output

Table 9-22
$NXTVOL RAB Fields

Name Description

lSI Internal stream identifier.

ROP Record processing options.

STS Completion status code.

STY Status value.

9-44

APPENDIX A

COMPLETION STATUS CODES

This appendix describes completion status codes that can be returned
by RMS-II to your program.

All RMS-II file and record operations return a completion status code
into the status field (STS) of the control block (i.e., FAB or RAB)
associated with the operation. A symbolic name is defined for each
such code. The symbolic names for successful completion status codes
take the following form:

SU$xxx

where

xxx is a mnemonic value describing the successful
operation.

Symbolic names for error completion status codes take the form:

ER$xxx

where

xxx is a mnemonic value representing the reason the
operation failed.

For certain error conditions, RMS-II uses the status value (STV) field
to communicate additional information to your program. The tables in
this appendix list all instances in which a particular symbolic value
in the STS field indicates the presence of further information in the
STV field.

NOTE

When the tables in this appendix
indicate that the STV field contains an
ACP error code, you should refer to the
description of such codes in Appendix I
of the IAS/RSX-II I/O Operations
Reference Manual.

A limited number of severe error conditions cause RMS-II to invoke a
fatal error crash routine. Section A.3 of this appendix describes
these conditions and the crash routine itself.

The sections that follow describe, respectively, successful completion
status codes, error completion status codes, and the RMS-II fatal
error crash routine.

A-l

COMPLETION STATUS CODES

A.I SUCCESSFUL COMPLETION STATUS CODES

Table A-I describes successful completion status codes returned by
RMS-II routines.

Symbolic
Name

SU$SUC

SU$DUP

SU$IDX

SU$RRV

Table A-I
Successful Completion Status Codes

Decimal Description
Value

I Operation successful.

2 A record written into an indexed file as a
result of a $PUT or $UPDATE operation contains
at least one key value that was already present
in another record.

3 During a $PUT or $UPDATE operation on an
indexed file, the record was successfully
written. The record can be subsequently
retrieved but RMS-II was not able to optimize
the structure of the index at the time the
record was inserted. Several indirections will
occur, therefore, on retrieval. In some
instances, RMS-II may also return an error code
(e.g., ER$RLK) in the STV field of the control
block.

4 During a $PUT or $UPDATE operation on an
indexed file, the record was successfully
written. However, RMS-II was unable to update
one or more Record Retrieval Vectors (RRVs) and
the records associated with the RRVs cannot be
retrieved using alternate indexes or RFA
addressing mode.

A.2 ERROR COMPLETION STATUS CODES

Table A-2 describes error completion status codes returned by RMS-II
routines.

Table A-2
Error Completion Status Codes

Symbolic Octal Decimal STV Description
Value Value Value

ER$ABO 177760 -16 ER$STK Operation aborted: out of
or stack save area or in core

ER$MAP data structures corrupted.

ER$ACC 177740 -32 ACP error Files-II ACP could not access
code the file.

(Continued on next page)

A-2

Symbolic
Value

ER$ACT

ER$AID

ER$ALN

ER$ALQ

ER$ANI

ER$AOP

ER$AST

ER$ATR

ER$ATW

ER$BKS

ER$BKZ

ER$BLN

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal
Value

Decimal
Value

177720 -48

177700 -64

177660 -80

177640 -96

177620 -112

177600 -128

177560 -144

177540 -160

177520 -176

177500 -192

177460 -208

177440 -224

STV Description

File activity precludes
action (e.g., attempting to
close a file with outstanding
asynchronous record
operation) •

XAB address Bad area identification
number (AID) field in
allocation XAB (i.e., out of
sequence).

XAB address Illegal value in alignment
boundary type (ALN) field of
allocation XAB.

(XAB address) Value in allocation quantity
(ALQ) field in FAB (or
allocation XAB) exceeds
maximum or, during an
explicit $EXTEND operation,
equals zero.

XAB address

ACP error
code

ACP error
code

XAB address

A-3

Records in a file on ANSI
labeled magnetic tape are
variable length but not in
ANSI D format.

Illegal value in
options (AOP)
allocation XAB.

allocation
field in

Invalid operation at AST
level: attempting to issue a
synchronous operation from an
asynchronous record operation
completion routine.

Read error on file header
attributes.

Write error on file header
attributes.

Bucket size (BKS) field in
FAB contains value exceeding
maximum.

Bucket size (BKZ) field in
allocation XAB contains value
exceeding maximum.

Block length (BLN) field in a
FAB or RAB is incorrect.

(Continued on next page)

Symbolic
Value

ER$BOF

ER$BPA

ER$BPS

ER$BUG

ER$CCR

ER$CHG

ER$CHK

ER$CLS

ER$COD

ER$CRE

ER$CUR

ER$DAC

ER$DAN

ER$DEL

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

177430 -232

177420 -240

177400 -256

177360 -272

177340 -288

177320 -304

177300 -320

177260 -336

177240 -352

177220 -368

177200 -384

177160 -400

177140 -416

177120 -432

STV

RSTS/E
error code

XAB address

ACP error
code

ACP error
code

XAB address

A-4

Description

Beginning of file detected on
$SPACE operation to magnetic
tape file.

Private buffer pool address
not a double word boundary.

Private buffer pool size not
a multiple of 4.

Internal error detected in
RMS-ll (refer to Section A.3
of this Appendix); no
recovery possible; contact a
Software Specialist.

Can't connect RAB (i.e., only
one record access stream
permitted for sequential
files).

$UPDATE attempting to change
a key field that does not
have the change attribute.

Index file bucket check-byte
mismatch. The bucket has
been corrupted. No recovery
possible for the bucket.

Close function failed (RSTS/E
operating system only).

Invalid COD field in XAB or
XAB type is illegal for the
organization or operation.

Files-II ACP could not create
file.

No current record: operation
not immediately preceded by a
successful $GET or $FIND.

Files-II ACP deaccess error
during $CLOSE

Invalid area number in DAN
field of key definition XAB.

Record accessed by RFA access
mode has been deleted.

(Continued on next page)

Symbolic
Value

ER$DEV

ER$DIR

ER$DME

ER$DNF

ER$DNR

ER$DPE

ER$DUP

ER$ENT

ER$ENV

ER$EOF

ER$ESS

ER$EXP

ER$EXT

ER$FAB

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

177100 -448

177060 -464

177040 -480

177020 -496

177000 -512

176770 -520

176740 -544

176720 -560

176700 -576

176660 -592

176640 -608

176630 -616

176620 -624

176600 -640

STV

ACP error
code

ACP error
code

ACP error
code

A-5

Description

1. Syntax error in device
name.

2. No such device.
3. Inappropriate device for

operation (e.g.,
attempting to create an
indexed file on magnetic
tape) •

Syntax error in
name.

directory

Dynamic memory exhausted:
insufficient space in
central space pool or
private buffer pool.

Directory not found.

Device not ready.

Device positioning error.

Duplicate key detected,
duplicates allowed
attribute not set for one
or more key fields.

Files-II ACP enter function
failed.

Environment error: operation
or file organization not
specified in ORG$ macro.

End of file.

Expanded string area in NAM
block too short.

File expiration
reached.

date

File extend failure.

not

Not a valid FAB: BID field
does not contain FB$BID.
Refer to Section A.3 of
this Appendix.

(Continued on next page)

Symbolic
Value

ER$FAC

ER$FEX

ER$FID

ER$FLG

ER$FLK

ER$FND

ER$FNF

ER$FNM

ER$FOP

ER$FUL

ER$IAN

ER$IDX

ER$IFI

ER$IMX

ER$INI

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

176560 -656

176540 -672

177530 -680

176520 -688

176500 -704

176460 -720

176440 -736

176420 -752

176400 -768

176360 -784

176340 -800

176320 -816

176300 -832

176260 -848

176240 -864

STV

XAB address

ACP error
code

XAB address

XAB address

A-6

Description

1. Record operation attempted
was not declared in FAC
field of FAB at open time.

2. Invalid contents in FAC
field.

3. FB$PUT not present in FAC
for $CREATE operation.

File already
(attempted
operation).

Invalid file ide

exists
$CREATE

Invalid combination of values
in FLG field of key
definition XAB (e.g., no
duplicates and keys can
change) •

File locked by another user
-- you cannot access the file
because your sharing
specification cannot be met.

Files-II ACP Find function
failed.

File not found.

Syntax error in file name.

Invalid file options.

Device full: can't create or
extend file.

Invalid area number in IAN
field of key definition XAB.

Index not initialized (this
code can only occur in the
STV field when STS contains
ER$RNF) •

Invalid IFI field in FAB.

Maximum number (254) of key
definition or allocation XABs
exceeded or multiple summary,
protection, or date XABs
present during operation.

$INIT or $INITIF macro call
never issued.

(Continued on next page)

Symbolic
Value

ER$IOP

ER$IRC

ER$ISI

ER$KBF

ER$KEY

ER$KRF

ER$KSZ

ER$LAN

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

176220 -880

176200 -896

176160 -912

176140 -928

176120 -944

176100 -960

176060 -976

176040 -992

STV

XAB address

A-7

Description

Illegal operation; examples
include:

1. Attempting a $TRUNCATE
operation to a
non-sequential file.

2. Attempting an $ERASE or
$EXTEND operation to a
magnetic tape file.

3. Issuing a block' mode
operation (e.g., $READ
or $WRITE) to a stream
not connected for block
operations.

4. Issuing a record
operation (e.g., $GET,
$PUT) to a stream
connected for block
mode operations.

Illegal record encountered in
sequential file: invalid
count field.

Invalid
identifier
(field may
by user)
issued for

internal stream
(lSI) field in RAB
have been altered
or $CONNECT never
stream.

Key buffer address
field equals o.

(KBF)

Record identifier (i.e., the
4-byte location addressed by
KBF) for random operation to
relative file is 0 or
negative.

Invalid key of reference
(KRF) in RAB: 1) As input to
random $GET or $FIND
operation, or 2) As input to
$CONNECT or $REWIND (in this
case, ER$KRF is returned for
the first record operation
following the $CONNECT or
$REWIND.

Key size equals zero or too
large (indexed file) or not
equal to 4 (relative file).

Invalid area number in LAN
field of key definition XAB.

(Continued on next page)

Symbolic
Value

ER$LBL

ER$LBY

ER$LCH

ER$LEX

ER$LOC

ER$MAP

ER$MKD

ER$MRN

ER$MRS

ER$NAM

ER$NEF

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

176020 -1008

176000 -1024

175760 -1040

STV

175750 -1048 XAB address

175740 -1056 XAB address

175720 -1072

175700 -1088 ACP error

175660 -1104

175640 -1120

175620 -1136

175600 -1152

A-a

Description

Magnetic tape is not ANSI
labeled.

Logical channel busy.

Invalid value in logical
channel number (LCH) field of
FAB.

Attempt to extend an area
containing an unused extent.

Invalid value in LaC field of
allocation XAB.

In core data structures
(e.g., I/O buffers)
corrupted. This code can
only occur in the STV field
when STS contains ER$ABO
Refer also to Section A.3 of
this Appendix.

Files-II ACP could not mark
code file for deletion.

1. Maximum record number
field contains a negative
value during $CREATE of
relative file.

2. Record identifier (pointed
to by KBF) for random
operation to relative file
exceeds maximum record
number specified when file
created.

Maximum record size
field contains 0
$CREATE operation and:

(MRS)
during

1. Record Format is fixed,
or

2. File organization is
relative.

Odd address in Name Block
address (NAM) field in FAB on
$OPEN, $CREATE, or $ERASE.

Not at end-of-file:
attempting a $PUT operation
to a sequential file when
stream is not positioned to
EOF.

(Continued on next page)

Symbolic
Value

ER$NID

ER$NPK

ER$OPN

ER$ORD

ER$ORG

ER$PLG

ER$POS

ER$PRM

ER$PRV

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

175560 -1168

175540 -1184

STV

175520 -1200 RSTSjE
error code

175500 -1216 XAB address

175460 -1232

175440 -1248

175420 -1264 XAB address

175400 -1280 XAB address

175360 -1296

A-9

Description

Can't allocate internal index
descriptor: insufficient
room in space pool while
attempting to open an indexed
file.

No primary key definition XAB
present during $CREATE of
indexed file.

Open function failed (RSTS/E
operating system only).

XABs in chain not in correct
order:

1. Allocation or key
definition XABs not in
ascending (or densely
ascending) order.

2. XAB of another
intervenes in
definition
allocation
sub-chain.

type
key
or

XAB

Invalid value in file
organization (ORG) field of
FAB.

Error in file's prologue:
file is corrupted and must be
reconstructed.

Key position (POS) field in
key definition XAB contains a
value exceeding maximum
record size.

File header contains bad date
and time information
(retrieved by RMS-ll because
a date and time XAB is
present during a $OPEN or
$DISPLAY operation); file
may be corrupted. --

Privilege violation: access
to the file denied by the
operating system.

(Continued on next page)

Symbolic
Value

ER$RAB

ER$RAC

ER$RAT

ER$RBF

ER$RER

ER$REX

ER$RFA

ER$RFM

ER$RLK

ER$RMV

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

175340 -1312

175320 -1328

175300 -1344

175260 -1360

STV

175240 -1376 ACP error
code

175220 -1392

175200 -1408

175160 -1424

175140 -1440

175120 -1456 ACP error
code

A-lO

Description

Not a valid RAB: BID field
does not contain RB$BID.
Refer to Section A.3 of this
Appendix.

1. Illegal values in record
access mode (RAC) field of
RAS.

2. Illogical value in RAC
field (e.g., RB$KEY with a
sequential file).

1. Illegal values in record
attributes (RAT) field of
FAB during $CREATE.

2. Illogical combination of
attributes (e.g., FB$CR
and FB$FTN) in RAC field
during $CREATE.

Record .address (RBF) field in
RAB contains an odd address
(block mode access only).

File read error.

Record already exists:
during a $PUT operation in
random mode to a relative
file, an existing record
found in the target record
position.

Invalid RFA in RFA field of
RAB during RFA access.

1. Invalid record format in
RFM field of FAB during
$CREATE.

2. Specified record format is
illegal for file
organization.

Target bucket locked by
another task or another
stream in the same program.

Files-II ACP Remove function
failed.

(Continued on next page)

Symbolic
Value

ER$RNF

ER$RNL

ER$ROP

ER$RPL

ER$RRV

ER$RSA

ER$RSZ

ER$RTB

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal STV
Value Value

Description

175100 -1472 (ER$IDX) Record identified by KBF/KSZ
fields of RAB for random $GET
or $FIND operation does not
exist in relative or indexed
file (for indexed files only,
STV may contain ER$IDX).
Record may never have been
written or may have been
deleted.

175060 -1488

175040 -1504

$FREE operation issued but no
bucket was locked by stream.

Record options (ROP) field
contains illegal values or
illogical combination of
values.

175020 -1520 ACP error
code

Error while reading prologue.

175000 -1536

174760 -1552

174740 -1568

Invalid RRV record
encountered in indexed file;
file may be corrupted.

Record stream active, i.e.,
in asynchronous environment,
attempting to issue a record
operation to a stream that
has a request outstanding.

Record size specified in RSZ
of RAB during $PUT or $UPDATE
is invalid:
1. RSZ equals zero.
2. RSZ exceeds maximum record

size (MRS) specified when
file created.

3. RSZ not equal to size of
Current Record for $UPDATE
operation to a sequential
file on disk.

4. RSZ does not equal MRS
(for fixed format
records).

174720 -1584 Actual record Record too big for user's
size buffer: RMS-ll could not

move entire record retrieved
by $GET operation to user
work area (UBF/USZ). Note
that this error does not
destroy the current context
of the stream. Rather, the
stream's context is updated
as if the operation had been
completely successful.

(Continued on next page)
A-II

Symbolic
Value

ER$SEQ

ER$SHR

ER$SIZ

ER$STK

ER$SYS

ER$TRE

ER$TYP

ER$UBF

ER$USZ

ER$VER

ER$VOL

ER$WER

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Octal Decimal
Value Value

174700 -1600

174660 -1616

STV

174640 -1632 XAB address

174620 -1648

174600 -1664 Directive or
QIO status
code

174560 -1680

174540 -1696

174520 -1712

174500 -1728

174460 -1744

174440 -1760 XAB address

174420 -1776 ACP error
code

A-12

Description

During $PUT operation, key of
record to be written is not
equal to or greater than key
of previous record (and RAC
field contains RB$SEQ).

Illogical value in SHR field
of FAB (e.g., FB$WRI
specified for sequential
file).

Invalid SIZ field in key
definition XAB during $CREATE
(e.g., specified size exceeds
maximum record size).

During asynchronous record
operation, RMS-ll has found
that the stack is too big to
be saved (this code can only
occur in the STV field when
STS contains ER$ABO).

System directive error.

Index tree error:
file is corrupted.

indexed

Syntax error in file type
(e.g., more than 3 characters
specified).

Invalid address in UBF field
of RAB:
1. UBF contains 0, or
2. UBF not word aligned (for

block mode access only).

Invalid USZ field in
(i.e., USZ contains 0).

RAB

Syntax error in file version
number.

Invalid VOL field in
allocation XAB (i. e.', VOL
does not contain 0).

File write error.

(Continued on next page)

COMPLETION STATUS CODES

Table A-2 (Cont.)
Error Completion Status Codes

Symbolic Octal Decimal STV Description
Value Value Value

ER$WLK 174410 -1784 Device is write locked.

ER$WPL 174400 -1792 ACP error Error while writing prologue.
code

ER$XAB 174360 -1808 (XAB address) XAB field in FAB (or NXT
field in XAB) contains an odd
address.

A.3 FATAL ERROR CRASH ROQTINE

RMS-ll issues a BPT instruction whenever it encounters inconsistent
internal f FAB or RAB). This action is taken only when RMS-ll cannot
continue processing, since to do so might cause damage to user files
or the user's task image. As an example, when the problem is caused
by an invalid FAB or RAB, RMS-ll cannot return an error status code in
STS since it has no recognizable user control block to work with.

The BPT instruction generated as a result of fatal errors is in the
RORMSA module of RMS-ll. The following is the state of the general
registers at the time this instruction is issued:

RO = RMS-ll error code
Rl = Entry SP value
R2 = Entry return PC
R3 = Address of system impure area

General registers Rl and R2 are always valid if the crash routine is
invoked by a fatal user call error. When the crash routine is invoked
by inconsistent internal conditions, the contents of general registers
Rl and R2 may be meaningless if RMS-ll was executing an asynchronous
RAB operation.

The following subsections summarize, respectively, the fatal user call
errors and the RMS-il inconsistent internal conditions that can cause
invocation of the fatal error crash routine.

A.3.l Fatal User Call Errors

When the fatal error crash routine is invoked because of a user call
error, general register RO contains one of the following error codes:

• ER$FAB
• ER$RAB

These error codes indicate that the user called RMS-ll using a control
block that was not a valid FAB (for file operations such as $OPEN,
$CREATE, etc) or RAB (for record operations such as $CONNECT, $GET,
$PUT, etc.). This condition can occur for anyone of the following
reasons:

A-13

COMPLETION STATUS CODES

1. The address of the FAB or RAB is O.

2. The address of the FAB or RAB is odd.

3. The control block's BID field does not contain the proper
block identifier code (i.e. , FB$BID for FABs and RB$BID for
RABs) •

A.3.2 RMS-ll Inconsistent Internal Conditions Errors

When the crash routine is invoked because of RMS-ll inconsistent
internal conditions, general register RO contains one of the following
error codes:

• ER$BUG
• ER$MAP

These error codes indicate internal problems with RMS-ll and are
considered fatal. They can be caused bYTimproper coding by the user
(e.g., destroying some internal RMS-ll data base), but are also used
to detect RMS-il bugs. When one of the above error codes is
encountered, the user should provide, if possible, the following
information to DEC with an SPR:

1. The contents of the general registers.

2. The first ten words, at a minimum, or all words upon the
system stack.

3. The operation the program was performing (e.g., $OPEN, $GET,
$PUT).

4. The organization of the file being processed.

5. A load map of the task.

6. If running on RSX-IIM, a post-mortem dump.

A-14

APPENDIX B

PERFORMING BLOCK I/O

In addition to sequential, random, and RFA access, RMS-ll provides a
fourth access mode known as block access. Block access allows you to
bypass entirely the record processing capabilities of RMS-ll. Through
macros described in this appendix, you can directly read or write the
virtual blocks of a file.

NOTE

Many elements of the internal structure
of RMS-ll files are not normally visible
to user programs. Through the use of
block access, however, you can gain
visibility of these elements. Extreme
caution must be exercised, therefore,
when altering the contents of the
virtual blocks of an RMS-ll-structured
sequential, relative, or indexed file.

B.l SPECIFYING BLOCK ACCESS

To use block access, you must allocate 1 buffer descriptor block (BOB)
for each stream connected simultaneously for block access (RMS-ll
permits a single block access stream for sequential files and multiple
streams for relative and indexed files). These BOBs are specified in
the P$BDB macro in the space pool declaration section (POOL$B
POOL$E). At $OPEN or $CREATE time, the value FB$REA must be present
in the FAC field of the FAB if the file will be read in block access
mode and the value FB$WRT must be present in the FAC field if the file
will be written in block access mode. If you are creating a file in
block mode, the ORG field of the FAB must contain FB$SEQ and the RFM
field must contain FB$UDF. Finally, a 512 byte buffer (either in the
space pool or in a user-specified location described by the BPA and
BPS fields of the FAB) must be present for the $OPEN or $CREATE macro
call to execute successfully.

Once a file has been opened for block access, RMS-ll will not allow
you to connect any streams to the file for record access. Only block
access can be performed on the file. Each block access stream is
activated by a $CONNECT macro call and terminated by a $DISCONNECT
macro call.

B-1

PERFORMING BLOCK I/O

B.2 $READ - RETRIEVING VIRTUAL BLOCKS

The $READ macro retrieves a user-specified number of bytes from a file
beginning on a specified virtual block boundary. You must supply a
word-aligned work area (UBF) into which RMS-II is to move the blocks
of the file. You indicate the even number of bytes to be transferred
to the UBF location in the USZ field and the starting virtual block
number in the file in the BKT field. After completion of the
transfer, RMS-ll uses the RBF and RSZ fields to describe the location
and number of bytes actually transferred.

The formats of the $READ macro are as follows:

1. label:$READ

2. label: $ READ

where

label

rab

error

success

rab[,error[,success]]

is an optional user-defined symbol referring to
the $READ macro.

is the address of a Record ~ccess Block containing
the specification of the block(s) to be retrieved.

is the address of a user completion routine to be
called if the $READ operation fails.

is the address of a user completion routine to be
called if the $READ operation succeeds.

Table B-1 lists the fields of the Record Access Block used during the
$READ operation.

Input

Output

Name

BKT

Table B-1
$READ RAB Fields

Description

Bucket number. Must contain virtual block number
of first block to be read.

lSI Internal stream identifier.

UBF User work area address (word-aligned).

USZ User work area size (must be an even number).

RBF

This field will control the total amount of data
transferred. Multiple virtual blocks can be
retrieved from a disk file by specifying the
appropriate multiple of 512 bytes in this field.

Record address. This field is set equal to UBF.

RSZ Record size. Actual number of bytes transferred
(not including terminator character - refer to STY
below).

(Continued on next page)

B-2

Name

PERFORMING BLOCK I/O

Table B-1 (Cont.)
$READ RAB Fields

Description

Output
(Cont.)

STS Completion status code. Note that if this field
contains ER$EOF, the RSZ field will still describe
a number of bytes transferred.

STV Status value. After successful $READ operations
from a unit record or terminal device, STV is used
to report the terminating character for the input
block. Refer to the $GET operation in Section
9.3.6.2 in Chapter 9.

B.3 $WRITE - WRITING VIRTUAL BLOCKS

The $WRITE macro writes a user-specified number of bytes beginning on
a specified block boundary to any of the RMS-ll file organizations.
The user describes the blocks to be written in the RBF and RSZ fields.
The BKT field must contain the virtual block number of the first block
in the file to be written.

The formats of the $WRITE macro are as follows:

where

1. label:$WRITE

2. label:$WRITE rab,[,error[,success]]

label

rab

error

success

is an optional user-defined symbol referring to
the $WRITE macro.

is the address of a Record Access Block containing
the specification of the block(s) to be written.

is the address of a user completion routine to be
called if the $WRITE operation fails.

is the address of a user completion routine to be
called if the $WRITE operation succeeds.

Table B-2 lists the fields of the Record Access Block used during the
$WRITE operation.

B-3

Input

Output

Name

BKT

PERFORMING BLOCK I/O

Table B-2
$WRITE RAB Fields

Description

Bucket number. Must contain virtual block number
of first block to be written.

lSI Internal stream identifier.

RBF Record address (word aligned). Address within
user program of first byte of one or more blocks
to be written.

RSZ Record size (must be an even number). This field
will control the total amount of data transferred.
Multiple virtual blocks can be written to a disk
file by specifying the appropriate multiple of 512
bytes in this field. Partial blocks can be
written but the ~ontents of the unwritten portion
of a block on disk are undefined.

STS Completion status code.

STV Status value. Actual number of bytes transferred.

B.4 $SPACE - FORWARD AND BACKWARD SPACING OF MAGNETIC TAPE FILES

When you open a file on magnetic tape in block mode, you can use the
$SPACE macro call to space forward or backward in the file. RMS-ll
returns an ER$IOP (illegal operation) if the file does not reside on
magnetic tape or has not been opened for block I/O.

Table B-3 lists the fields of the Record Access Block used during the
$SPACE operation.

Input

Output

Name

BKT

Table B-3
$SPACE RAB Fields

Description

Bucket number. Only the low order 16 bits of this
field are examined. RMS-ll interprets these bits
as representing a signed 15 bit integer. A
positive integer represents the number of blocks
the file is to be forward spaced. A negative
integer represents the number of blocks the file
is to be backspaced.

lSI Internal stream identifier.

ROP Record processing options. Can contain RB$ASY.

STS Completion status code.

STV Status value. Number of blocks spaced.

B-4

APPENDIX C

MAGNETIC TAPE HANDLING

The only form of magnetic tape structure supported by RMS-Il is the
standard ANSI structure. This appendix describes the processing of
magnetic tape files and the ANSI labeling and structuring format
supported by host qperating systems.

C.I MAGNETIC TAPE FILE PROCESSING

lAS and RSX-llM support the standard ANSI magnetic tape structure as
described in the June 19, 1974 proposed revision to "Magnetic Tape
Labels and File Structure for Information Interchange," ANSI
X3.27-1969. Any of the following file/volume combinations can be
used:

1. Single file on a single volume,

2. Single file on more than one volume,

3. Multiple files on a single volume,

4. Multiple files on more than one volume.

Items 2 and 4 above constitute a volume set.

The sequence in which volume and file labels are used and the format
of each label type is defined in Sections C.2 and C.3.

C.I.I Access to Magnetic Tape Volumes

Magnetic tape is a sequential access, single-directory storage medium.
Only one user can have access to a given volume set at a time. No
more than one file in a volume set can be open at a time. Access
protection is performed on a volume set basis. On volumes produced by
DIGITAL systems, user access rights are determined by the contents of
the owner identification field as described in Section C.2.1.1.
Volumes produced by nonDIGITAL systems are restricted to read-only
access unless explicitly overridden at MOUNT time.

C.l.2 Rewinding Volume Sets

A magnetic tape volume set can be rewound during a $OPEN, $CREATE, or
$CLOSE macro call. Regardless of the method used to rewind the volume
set, the following procedures are performed by the system:

C-l

MAGNETIC TAPE HANDLING

1. All mounted volumes are rewound to BOT.

2. If the first volume in the set is not mounted, the unit to be
used is placed offline.

3. If the volume is not already mounted and if the rewind was
requested by a $OPEN or $CREATE macro call, a 'request to
mount the first volume is printed on the operator's console.

4. If the rewind was requested by a $CLOSE macro call, no mount
message is issued until the next volume is needed.

C.l.3 Positioning to the Next File Position

The FB$POS option in the file options (FOP) field of the FAB can be
used to indicate that the file to be created is to be written
immediately after the end of file labels of the most recently closed
file. Any subsequent files in the volume set are lost.

If the rewind-on-open option (FB$RWO) also is specified, the file is
created after the VOLI label on the first volume of the set. All
files that were previously contained in the volume set are lost.

To create a file in the next file position, the FB$POS option must be
set in the FOP field. The default action of the file system is to
position at the logical end of the volume set to create the file.

When the default is used, no check is made for the existence of a file
with the same name in the volume set. Therefore, a program written to
use magnetic tape normally should specify FB$POS.

C.l.4 Single File Operations

Single file operations are performed by specifying the FB$RWO and
FB$RWC options for the $CREATE or $OPEN macro call. Using this
approach, scratch tape operations can be performed as follows:

1. Create the first file with rewind specified,

2. Write the data records and close the file with rewind,

3. Open the first file again for input,

4. Read and process the data,

5. Close the file with rewind,

6. Create the second file with rewind specified,

7. Write the data records,

8. Close the file with rewind and perform any additional
processing.

C-2

MAGNETIC TAPE HANDLING

C.l.S Multiple File Operations

A multiple file volume is created by creating, writing, and then
closing a series of files without specifying the FB$RWO option. The
sequential processing of files on the volume can be accomplished by
not specifying the FB$RWC (rewind-on-close) option when opening the
files.

Opening a file for extend (i.e., FB$PUT is specified in the FAC field
of the FAB) is legal only for the last file on the volume set.

The following tape operations are performed to create a multiple file
tape volume:

1. Create a file for output with rewind,

2. Write data records and close the file,

3. Create the next file with no rewind,

4. Write the data records and close the file,

5. Repeat for as many files as desired.

Files on tape can be opened in a nonsequential order, but increased
processing and tape positioning time is required. Nonsequential
access of files in a multiple volume set is not recommended.

C.2 VOLUME AND FILE LABELS

Tables C-l, C-2, and C-3 present the format of volume labels and file
header labels.

C.2.l Volume Label Format

Character
Position Field

1-3 Label

4 Label

5-10 Volume

Table C-l
Volume Label Format

Length
Name in Bytes

identifier 3 VOL

number 1 1

identifier 6 Volume

Contents

label. Any
alphanumeric or special
character in the center four
columns of the ASCII code
table.

(Continued on next page)

C-3

MAGNETIC TAPE HANDLING

Character
Position Field Name

11 Accessibility

12-37 Reserved

38-51 Owner
identification

52-79 Reserved

80 Label standard
version

Table C-l (Cont.)
Volume Label Format

Length
in Bytes Contents

1 Any. alphanumeric or special
character in the center four
columns of the ASCII code
table. A space indicates no
restriction. All volumes
produced by lAS or RSX-ll have
a space in this position.

26 Spaces

14 The contents of this field are
system-dependent and are used
for volume protection
purposes. See Section C.2.l.l
below.

28 Spaces

1 1

C.2.l.l Contents of Owner Identification Field - The owner
identification field is divided into the following three subfields and
a single pad character:

1. System identification (positions 38 through 40),

2. Volume protection code (positions 41 through 44),

3. UIC (positions 45 through 50),

4. Pad character of one space (position 51).

The system identification consists of the
sequence.

D%x

following

x is the machine code and can be one of the following:

8 - PDP-8
A - DECsystem-lO
B - PDP-II
F - PDP-15

character

The D%x characters provide an identification method so that the
remaining data in the owner identification field can be interpreted.
In the case of tapes produced on PDP-II systems, the system
identification is D%B and the volume protection code and UIC are
interpreted as described below.

The. volume protection code in positions 41 through 44 defines access
protection for the volume for four classes of users. Each class of
user has access privileges specified in one of the four columns as
follows.

C-4

MAGNETIC TAPE HANDLING

Position Class

41 System (UIC no greater than [7,255])
42 Owner (group and member numbers match)
43 Group (group number matches)
44 World (any user not in one of the above)

One of the following access codes can be specified for each character
position.

Code Privilege

No access
Read only

o
1
2
3
4

Extend (append) access
Read/extend access
Total access

The UIC is specified in character positions 45 through 50. The first
three characters are the group code in decimal. The next three are
the user code in decimal.

The last character in the owner identification field is a space.

The following is an example of the owner identification field.

Owner identifier - D%B1410051102

1. The file was created on a PDP-II.

2. System and group have read access.
Owner has total access.
All others are denied access.

3. The UIC is [051,102].

C.2.2 User Volume Labels

User volume labels never are written or passed back to the user. If
present, they are skipped.

C.2.3 File Header Labels

The following information should be kept in mind when creating file
header labels:

• The Files-II naming convention uses a subset (Radix-50) of the
available ANSI character set for file identifiers.

• One character in the file identifier, the period (.), is fixed
by Files-II.

• A maximum of 13 of the 17 bytes in the file identifier are
processed by Files-II.

• It is strongly recommended that all file identifiers be
limited to the Radix-50 PDP-II character set and that no
character other than the period (.) be used in the file type
delimiter position for data interchange betw~en PDP-II and
DECsystem-lO systems.

C-5

MAGNETIC TAPE HANDLING

• For data interchange between DIGITAL and nonDIGITAL systems,
the conventions listed above should be followed. If they are
not, refer to Section C.2.3.l.

Tables C-2 and C-3 describe the HDRl and HDR2 labels respectively.

Table C-2
File Header Label (HDRl)

Character
Position Field Name

1-3 Label identifier

4 Label number

5-21 File identifier

22-27 File set
identifier

28-31 File section
number

32-35

36-39

40-41

42-47

48-53

54

55-60

61-73

74-80

File sequence
number

Generation number

Generation version

Creation date

Expiration date

Accessibility

Block count

System code

Reserved

Length
in Bytes Content

3 HDR

1 1

17 Any alphanumeric or special
character in the center four
columns of the ASCII code
table.

6 Volume identifier of the first
volume in the set of volumes.

4 Numeric characters. This
field starts at 0001 and is
increased by 1 for each
additional volume used by the
file.

4

4

2

6

6

1

6

13

7

C-6

File number within the volume
set for this file. This
number starts at 0001.

Numeric characters.

Numeric characters.

yyddd (with leading space)
or

00000 (with leading space) if
no date.

Same format as creation date.

Space

000000

The three letters DEC followed
by name of system that
produced the volume. See
Section C.2.l.l.

Examples: DECFILEllA
DECSYSTEMIO

Pad name with spaces.

Spaces

(Continued on next page)

MAGNETIC TAPE HANDLING

Table C-3
File Header Format (HDR2)

Character
Position Field Name

1-3 Label identifier

4 Label number

5 Record format

6-10 Block length

11-15 Record length

16-50

51-52

53-80

System-dependent
information

Buffer offset

Reserved

Length
in Bytes Content

3 HDR

1 2

1 F - fixed length
D - variable length
S - spanned (not supported)
U - undefined

5 Numeric characters

5 Numeric characters

35

2

28

C-7

Positions 16 through 36 are
spaces.

Position 37 defines carriage
control and can contain one of
the following:

A - first byte of record

space

contains FORTRAN
control characters,

- line
return
inserted
records,

feed/carriage
is to be

between

M - the record contains
all form control
information.

If DEC appears in positions 61
through 63 of HDRI, position
37 must be as specified above.

Positions 38 through 50
contain spaces.

Numeric characters.
tapes produced by
Not supported on
Files-II.

Spaces

00 on
Files~ll.

input to

MAGNETIC TAPE HANDLING

C.2.3.l File Identifier Processing by RMS-ll - The following steps
describe the processing of a file identifier by RMS-ll.

1. The first nine characters at a maximum are processed by an
ASCII to Radix-50 converter. The filename scan continues
until one of the following occurs:

A conversion failure,
9 characters are converted,
A period (.) is encountered.

2. If the period is encountered, the next three characters after
the period are converted and treated as the file type. If a
failure occurs or all nine characters are converted, the next
character is examined for a period. If it is a period, it is
skipped and the next three characters are converted and
treated as the file type.

3. The version number is derived from the generation number and
the generation version number as follows.

{generation ~umber - 1)*100 + generation version + 1

At file output, the file identifier is handled as follows.

1.

2.

3.

The filename is placed in the first positions in the
identifier field. It can occupy up to nine positions.
followed by a period.

The file type of up to three characters is placed after
period. The remaining spaces are padded with spaces.

The version number is
generation version
following formulas.

then placed in the generation
number fields as described in

a. generation number = version # - 1 + 1
100

b. generation version # = version # - 1
Modulo 100

NOTE

In both calculations, remainders are
ignored.

The following are examples.

VERSION # GENERATION # GENERATION VER #

1 1 0
50 1 49
100 1 99
101 2 0
1010 11 9

C-8

file
It is

the

and
the

MAGNETIC TAPE HANDLING

C.2.4 End-of-Volume Labels

End-of-volume labels are identical to the file header labels with the
following exceptions:

1. Character positions 1 through 4 contain EOVI and EOV2 instead
of HDRI and HDR2, respectively.

2. The block count field contains the number of records in the
last file section on the volume.

C.2.5 File Trailer Labels

End-of-file labels (file trailer labels) are identical with file
header labels with the following exceptions:

1. Columns 1 through 4 contain EOFI and EOF2 instead of HDRI and
HDR2, respectively,

2. The block count contains the number of data blocks in the
file.

C.2.6 User File Labels

User file labels never are written or passed back to the user. If
present, they are skipped.

C.3 FILE STRUCTURES

The file structures illustrated below are the types of file and volume
combinations that the file processor produces. Additional sequences
can be read and processed by the file processor.

If HDR2 is not present, the data type is assumed to be fixed (F) and
the block size and record size are assumed to be the default value for
the file processor. 512 decimal bytes is the default for both block
and record size. The minimum block size and fixed length record size
is 18 bytes. The maximum block size is 8192 bytes.

The meaning of graphics used in the file structure illustrations is as
follows.

1. * indicates a tape mark,

2. BOT indicates beginning of tape,

3. EOT indicates end of tape,

4. ,indicates the physical record delimiter.

C.3.1 Single File Single Volume

BOT,VOLl,HDRl,HDR2*---DATA---*EOFl,EOF2**

C-9

MAGNETIC TAPE HANDLING

C.3.2 Single File Multi-Volume

BOT,VOLI,HDRI,HDR2*---DATA---*EOVI,EOV2**
BOT,VOLI,HDRI,HDR2*---DATA---*EOFI,EOF2**

C.3.3 Multi-File Single Volume

BOT,VOLI,HDRI,HDR2*---DATA---*EOFI,EOF2*HDRI,HDR2*---DATA--*EOFI,EOF2**

C.3.4 Multi-File Multi-Volume

BOT,VOLI,HDRI,HDR2*--DATA--*EOFI,EOF2*HDRI,HDR2*--DATA--*EOVl,EOV2**
BOT,VOLI,HDRI,HDR2*--DATA--*EOFI,EOF2*HDRI,HDR2*--DATA--*EOFI,EOF2**

C.4 END OF TAPE HANDLING

End of tape is handled automatically by the magnetic tape file
processor. Files are continued on the next volume providing the
volume is already mounted or mounted upon request. A request for the
next volume is printed on co.

C.S ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS COMPATIBLE)

Figure C-I illustrates the format of a file header block that is
returned by the file header READ ATTRIBUTE command for ANSI magnetic
tape. The header block is constructed by the magnetic tape primitive
from data within the tape labels.

C-IO

H.MPOF

HEADER
AREA

IDENTI­
FICATION
AREA

MAP
AREA {

MAGNETIC TAPE HANDLING

ANSI MAGTAPE FCS-COMPATIBLE FILE
HEADER BLOCK

MAP OFFSET t IDENT OFFSET

FILE SEQUENCE NUMBER

FILE SECTION NUMBER

STRUCTURE LEVEL = 401 (8)

UIC (FOR VOLUME) ~

PROTECTION CODE (FOR VOLUME)

RECORD ATTRIBUTES I RECORD TYPE CODE

RECORD SIZE IN BYTES

N WORDS OF ZERO'S

FILE NAME RAD50

FILE TYPE RAD50

FILE VERSION NUMBER

ZERO'S (REVISION DATE & TIME)

CREATION DATE & TIME (000000)

EXPIRATION DATE

PAD BYTE OF 0

COpy OF THE
HDRI LABEL

COpy OF THE
HDR2LABEL

(if byte 1 of label = 0,
label is not present)

NULL MAP, I.E., ZERO'S
(10 BYTES LONG)

Figure C-I

H.IDOF

H.FNUM

H.FSEQ

H.FLEV

.FOWN=H.PROG

H.FPRO

H.UFAT

X+I.FNAM
(IDENT OFFSET *2)=X

I.FTYP

X+I.FVER

X+I.RVNO

X+I.CRDT

X+I.EXDT

X+47.

X+50.

X+130.

X+210.=
(MAP OF OFFSET 2)

ANSI Magnetic Tape File Header Block
(FCS Compatible)

C-Il

APPENDIX D

FORMULAS

This appendix contains formulas that can be used to calculate the
following:

1. Number of records per block in sequential files.

2. Number of user data records per bucket in relative or indexed
files.

3. Number of entries per bucket in the index levels of all
indexes and the data level of alternate indexes in an indexed
file.

D.l SEQUENTIAL FILES - AVERAGE RECORDS PER BLOCK

Record Format

Fixed

Variable

VFC

Table 0-1
Average Records Per Block

in Sequential Files

Sequential File Medium

Oisk* Magnetic Tape

512 BLS
recsz recsz

512 BLS
(recsz+2) (recsz+4)

512 BLS
(recsz+FSZ+2) (recsz+FSZ+4)

* Records in a sequential file on disk are word-aligned.

where

recsz is the actual record size (for fixed
average record size (for variable
bytes.

0-1

format) or
or VFC) in

BLS

FSZ

FORMULAS

is the magnetic tape block size aft specified in
the BLS field of the FAB at the t~me the file was
created.

is the fixed control area size as specified in the
FSZ field of the FAB at the time the file was
created.

D.2 RELATIVE AND INDEXED FILES - AVERAGE DATA RECORDS PER BUCKET

Record Format

Fixed

Variable

VFC

where

DBKT

recsz

FSZ

Table D-2
Average User Data Records

per Bucket

File Organization

Indexed
Relative (data level of primary

DBKT (DBKT-1S)
(recsz+l) (recsz+7)

DBKT (DBKT-1S)
(recsz+3) (recsz+9)

DBKT
(recsz+FSZ+3)

index)

is the bucket size in bytes (a multiple of 512).

is:

1. The actual record size for fixed
records.

format

2. The maximum record size for variable or VFC
format records in relative files.

3. The average record size for variable format
records in indexed files.

is the fixed control area size as specified in the
FSZ field of the FAB at the time the file was
created.

0-2

FORMULAS

0.3 INDEXED-FILES - AVERAGE ENTRIES PER INDEX AND ALTERNATE KEY
DATA LEVEL

Average
Entries
per Bucket

where

IBKT

DBKT

keysz

dups

3,9,5

Table 0-3
Average Entries Per Index and Alternate

Key Data Level Bucket

Bucket Type

Index Level Data Level Data Level
(primary and (alternate key - no (alternate key -

alternate duplicates allowed) duplicates allowed

(IBKT-lS) (DBKT-lS) (OBKT-lS)
(keysz+3) (keysz+9) (keysz+8+(S*dups»

is the size in bytes of buckets in the index level
(a multiple of 512).

is the size in bytes of buckets in the data level
of the alternate key index (a multiple of 512).

is the key size in bytes.

is the number of records with identical values for
a particular instance of a key value.

are average values representing actual ranges of,
respectively, 2 to 4, 8 to 10, and 4 to 6.

0-3

APPENDIX E

SAMPLE CODE SEGMENTS

The sample code segments in this appendix demonstrate the copying of
records from an existing sequential file to a new sequential file.

DEMO.RMS

PROGRAM TO COpy RECORDS FROM A SEQUENTIAL FILE NAMED
FILEI.DAT TO A NEW SEQUENTIAL FILE NAMED FILE2.DAT

STEP 1: ACCESS THE NECESSARY RMS MACROS

• MCALL $INIT,ORG$,FABB,RABB,POOL$B,$CREATE,$OPEN,$CLOSE
.MCALL $CONNECT,$GET,$PUT,$FETCH,$STORE,$COMPARE

STEP 2: DEFINE CONTROL BLOCKS AND FILE NAME STRINGS

FAB1:

;THE FAB FOR THE INPUT FILE, WHICH ALREADY EXISTS, WILL BE
;FILLED WITH MOST OF THE ESSENTIAL INFORMATION CONCERNING
iFILEI.DAT WHEN THE FILE IS OPENED. THE PROGRAM NEED ONLY
;SPECIFY ENOUGH INFORMATION TO OPEN THE FILE.

FAB$B
F$FNA
F$FNS
F$LCH
FAB$E

NAME 1
9
1

;FAB FOR FILE1.DAT
;ADDRESS OF NAME STRING
;STRING IS 9 CHARACTERS LONG
iACCESS ON CHANNEL 1
;END OF FAB1

NAMEl: .ASCII /FILEI.DAT/ ;NAME STRING FOR FAB1

FAB2:

;HERE, AND WITH FILE2, WE ASSUME THAT THE FILE EXISTS
iON THE SYSTEM DISK UNDER THE ACCOUNT ON WHICH WE ARE
iLOGGED IN •
• EVEN ; (CONTROL BLOCKS MUST BE WORD ALIGNED)

iTHE FAB FOR THE OUTPUT FILE, WHICH DOES NOT YET EXIST, MUST
iBE FILLED WITH THE INFORMATION NECESSARY TO CREATE IT (AS IN
;THE PREVIOUS CASE, SOKE FIELDS SIMPLY CONTAIN DEFAULT VALUES
iAND ARE NOT EXPRESSED EXPLICITLY). SOME OF THIS INFORMATION
;WILL DEPEND ON THE CHARACTERISTICS OF FILEI.DAT, AND MUST BE
;FILLED IN AT RUN-TIME AFTER FILE1.DAT HAS BEEN OPENED.

FAB$B
F$FNA
F$FNS
F$LCH
F$FAC
FAB$E

NAME 2
9
2
FB$PUT

;FAB FOR FILE2.DAT
;ADDRESS OF NAME STRING
iSTRING IS 9 CHARACTERS LONG
;ACCESS ON CHANNEL 2
;WRITE ACCESS REQUIRED
iEND OF FAB2

NAME2: .ASCII /FILE2.DAT/ ;NAME STRING FOR FAB2

E-1

SAMPLE CODE SEGMENTS

RABl:

RAB2:

• EVEN

RAB$B
R$FAB
R$RAC
R$UBF
R$USZ
R$RHB

RAB$E

RAB$B
R$FAB
R$RAC
R$RBF
R$RSZ
R$RHB

RAB$E

FABI
RB$SEQ
RECBUF
500
HEDBUF

FAB2
RB$SEQ
RECBUF
500
HEDBUF

;RAB FOR FILEl.DAT
;ADDRESS OF OWNER (FAB)
;SPECIFY SEQUENTIAL ACCESS
;ADDRESS OF RECORD BUFFER FOR $GETS
;SIZE OF THIS BUFFER (500. BYTES)
;ADDRESS OF RECORD HEADER BUFFER
; (NECESSARY FOR VFC RECORDS ONLY)
;END OF RABI

;RAB FOR FILE2.DAT
;ADDRESS OF OWNER
;SPECIFY SEQUENTIAL ACCESS
;ADDRESS OF RECORD BUFFER FOR $PUTS
;SIZE OF THIS BUFFER (500. BYTES)
;ADDRESS OF RECORD HEADER BUFFER
; (NECESSARY FOR VFC RECORDS ONLY)
;END OF RAB2

; STEP 3: ALLOCATE THE BUFFERS SPECIFIED ABOVE

RECBUF: .BLKW 250.

HEDBUF: • BLKw 128 •

. STEP 4 : GENERATE RMS INTERNAL SPACE POOL ,

POOL$B ;BEGIN POOL SPECIFICATION
P$FAB 2 ;A FAB FOR EACH FILE
P$RAB 2 ;A RAB FOR EACH FAB
P$BDB 2 ;AN I/O BUFFER FOR EACH RAB
P$BUF 1024 ;MINIMUM BUFFER SIZE IS 512. BYTES
POOL$E ;END OF POOL SPECIFICATION

STEP 5: DEFINE THE RMS FUNCTIONALITY REQUIRED

ORG$ SEQ,<CRE,GET,PUT> ;SEQUENTIAL FILES ONLY, $FIND,
;$UPDATE, $DELETE NOT REQUIRED

STEP 6: PROVIDE A GENERAL ERROR ROUTINE TO HANDLE UNEXPECTED ERRORS
WHICH MIGHT OCCUR (WHAT IF FILEl.DAT DID NOT EXIST, OR CON­
TAINED A RECORD LARGER THAN 500 BYTES?). THIS IS AN ALTER­
NATIVE TO THE 'COMPLETION ROUTINE' FUNCTION PROVIDED BY RMS.

ERROR: ; (CODE WHICH WILL HANDLE THE ERROR, PROMPT AT THE TERMINAL FOR
;FURTHER IN~TRUCTIONS, ETC.)

; STEP 7: WRITE THE PROGRAM

START: $INIT
$OPEN iFABl
MOV #FABl,RO
$COMPARE iO,STS,RO
BLT 1$
JSR PC,ERROR

1$; MOV #FAB2,Rl
$FETCH R2,RAT,RO
$STORE R2,RAT,Rl
$FETCH R2,RFM,RO
$STORE R2,RFM,Rl
$FETCH R2,FSZ,RO
$STORE R2,FSZ,Rl
$FETCH R2,MRN,RO

;INITIALIZE RMS.
;OPEN FILEl.DAT,
;SET UP FOR $COMPARE:
;NEGATIVE STS VALUE IMPLIES OPEN FAILURE
;BRANCH IF SUCCESSFUL
;OTHERWISE EXECUTE ERROR ROUTINE.
;COMPLETE INITIALIZATION OF FAB2:
;GET RAT FIELD FROM FABl
;AND MOVE IT INTO FAB2;
;DO THE SAME WITH THE RFM FIELD;

;FSZ IS PERTINENT ONLY IF FILEl.DAT
;MAY CONTAIN VFC RECORDS.
;YOU MAY OR MAY NOT WISH TO TRANSFER

E-2

2$:

3$:

4$:

5$:

6$:
DONE:

1$:

2$:

SAMPLE CODE SEGMENTS

$STORE
$FETCH
$STORE

R2,MRN,Rl
R2,MRS,RO
R2,MRS,Rl

iMRN, MRS, AND FOP. IF MRN IS COPIED,
iREMEMBER THAT IT IS A 2-WORD FIELD,
iAND WILL DESTROY THE CONTENTS OF R3.

iINITIALIZATION OF FAB2 SHOULD NOW BE COMPLETE EXCEPT FOR ANY
iSPECIAL CASES (FOR EXAMPLE, IF FILE2.DAT IS ON MAGNETIC TAPE,
iYOU MAY WISH TO SET THE BLS FIELD).

$FETCH R2,ALQ,RO
$STORE R2,ALQ,Rl
$CREATE Rl
$COMPARE #O,STS,Rl
BLT 2$
JSR PC,ERROR
MOV #RABl,RO
MOV #RAB2,Rl
$CONNECT RO
$COMPARE #O,STS,RO
BLT 3$
JSR PC,ERROR
$CONNECT Rl
$COMPARE #O,STS,Rl
BLT 4$
JSR PC,ERROR

iNOW CREATE FILE2.DAT (Rl=FAB2):
iCHECK FOR FAILURE
iBRANCH IF SUCCESSFUL
iOTHERWISE EXECUTE ERROR ROUTINE.
iCONNECT THE RABS.

iBRANCH IF SUCCESSFUL

$GET RO iGET A RECORD FROM FILEl.DAT.
$COMPARE #ER$EOF,STS,RO iWERE WE AT END-OF-FILE?
BEQ DONE iIF SO, CLEAN UP AND EXIT.
$COMPARE #O,STS,RO iSOME OTHER ERROR?
BLT 5$ iBRANCH IF SUCCESSFUL
JSR PC,ERROR iIF SO, HANDLE IT.
$FETCH R2,RSZ,RO iCOPY RECORD LENGTH FROM
$STORE R2,RSZ,Rl iRABl TO RAB2.
$PUT Rl iOUTPUT THE RECORD TO FILE2.DAT.
$COMPARE #O,STS,Rl
BLT 6$ iBRANCH IF SUCCESSFUL
JSR PC,ERROR
BR 4$ iLOOP UNTIL DONE.
MOV #FABl,RO :BACK TO THE FABS FOR $CLOSE.
MOV iFAB2,Rl
$CLOSE RO
$COMPARE #O,STS,RO
BLT 1$ iBRANCH IF SUCCESSFUL
JSR PC,ERROR
$CLOSE Rl
$COMPARE #O,STS,Rl
BLT 2$
JSR PC,ERROR

iRMS IS NOW DONE: FILE2.DAT NOW CONTAINS ALL THE DATA RECORDS
iOF FILEl.DAT, PLUS WHATEVER OTHER INFORMATION (MRS, MRN, ETC.)
iYOU CHOSE TO DUPLICATE. INSERT YOUR OWN EXIT CODE AND EXIT •

• END START

E-3

APPENDIX F

ASSEMBLING AND TASK BUILDING

When you assemble a program that uses RMS-Il facilities, you must
reference the following file as a macro library in your command line:

[1,I]RMSMAC.MLB

When you task build without RMS-II overlays, you must include in the
task builder command line or user ODL root statement a reference to
the following file as an object library:

[1,I]RMSLIB.OLB

When you task build with RMS-II overlays, you must:

1. Edit a private copy of the RMS-II prototype ODL to include
the needed portions of RMS-II. The prototype ODL is in the
following file:

[1,I]RMSll.ODL

2. Include references in the root statement of your ODL to the
following factors:

a. RMSROT
b. RMSALL

RMSALL can be referenced as a co-tree. If RMSALL is a
co-tree, you must specify the full search option to the task
builder.

3. Reference; in your overlay description language, your private
copy of the edited RMSII.ODL as an indirect file.

F-l

•

Access mode, specifying an, 9-28
AID, 7-21
Allocation XAB, 7-19
ALN, 7-21
ALQ, 5-6, 7-22
AOP, 7-23
Asynchronous record operations,

9-26

BID, 5-7, 6-3
BKS, 3-9, 5-7
BKT, 6-3
BKZ, 7-24
BLN, 5-9, 6-4
BLS, 3-10, 5-9
BPA, 5-10
BPS, 5-11
Bucket locking, 9-21, 9-22
Bucket size, 5-7 to 5-9, 7-24
Buffer descriptor blocks, 3-6
Buffers, I/O, 3-4, 3-9, 3-10,

5-10, 5-11

Calling sequence, RMS-ll, 9-3
COT, 7-3
Centralized space pool, 3-4
$CLOSE, 9-16
COD, 7-2
$ COMPARE , 4-2
Completion routines, 9-3 to 9-5
Completion status code, 5-27,

6-15, 9-6
$ CONNECT , 2-7, 9-18, 9-25, 9-26
Context of record operations,

9-23
Control block fields,

accessing at runtime, 4-1 to
4-5

numeric values in 2-word, 4-2
offsets of, 4-2
usage, 9-5

Control blocks, user
accessing fields in, 4-1 to

4-8
function of, 2-3
FAB, 2-4
NAM, 2-5
RAB, 2-4
XAB, 2-5

$ CREATE , 9-7
CTX, 5-12, 6-4
Current context of record

operations, 9-23
Current Record, 9-23, 9-25

INDEX

DAN, 7-5
Date and Time XAB, 7-3
Declaring RMS-ll facilities,

$INIT, 3-10, 3-11
$INITIF, 3-10, 3-11
.MCALL directive, 3-1, 3-2
ORG$, 3-3, 3-4
space pool requirements, 3-4

to 3-10
$ DELETE , 9-25, 9-26, 9-28, 9-40
DEQ, 5-13, 7-24
DEV, 5-14
Device characteristics, 5-14
DFL, 7-6
$DISCONNECT, 9-19
$DISPLAY, 9-12
DNA, 5-14
DNS, 5-15

ER$RTB, 9-24, 9-25, 9-29, 9-30
$ERASE, 9-13
ESA, 8-2
ESL, 8-3
ESS, 8-3
$EXTEND, 9-14
Extended Attribute Blocks,

allocating, 7-1, 7-2
Allocation, 7-19
Date and Time, 7-3
existing files and, 2-6
file operations and, 2-5, 2-6
File Protection Specification,

7-16
Key Definition, 7-4
linking, 7-2
new files and, 2-6
order of, 7-2
Summary, 7-26
types of, 7-1

F$ALQ, 5-7
F$BKS, 5-9
F$BLS, 5-10
F$BPA, 5-10
F$BPS, 5-11
F$CTX, 5-12
F$DEQ, 5-13
F$DNA, 5-14
F$DNS, 5-15
F$FAC, 5-16
F$FNA, 5-17
F$FNS, 5-18

Index-l

F$FOl
F$FSl
F$LCl
F$MR1
F$MR:
F$NAl
F$OR~
F$RA~
F$RFI
F$RT~
F$SH~
F$XAl
FAB i

FAB I

alJ
fiE
fi~
fu~

FAB$~
FAB$l
FAC, '
$FET~
Fielc

ace
~

nur
ofj
us~

File
alJ
fiE
fiJ
fu]

File
~

File

File
bu<
f ' ,

1..

pre
re<
sp~

$FINE
Fixe~
Fixe~

FLG,
$FLU~
FNA, .
FNS,
FOP,
$FREI
FSZ,

$GET 1

!

INDEX (CaNT.)

Sequential access mode, 2-7,
9-28

Sequential file organization,
$FIND and the, 9-32
$GET and the, 9-35
$PUT and the, 9-37
specifying, 5-24
$UPDATE and the, 9-39

Sharing, file
bucket locking and, 9-21
file organizations and, 9-20
program information, 9-20
record operations and, 9-20
specifying, 5-26

SHR, 5-26, 9-20, 9-21
SIZ, 4-3, 4-4, 4-6, 4-7, 7-15
Space pool,

buffers in, 3-4
centralized, 3-4
declaration, 3-5 to 3-9

$ STORE , 4-6
Stream record format, 5-22, 5-25
STS, 5-27, 6-15, 9-6
STV, 5-27, 6-15, 9-6
Summary XAB, 7-26
Synchronous record operations,

9-26

$TESTBITS, 4-7
$TRUNCATE, 9-25, 9-26, 9-42

UBF, 6-15, 9-29
$ UPDATE , 9-25, 9-26, 9-28, 9-29,

9-30, 9-38 to 9-40
User control blocks,

accessing fields in, 4-1 to 4-8
function of, 2-3
FAB, 2-4
NAM, 2-5
RAB, 2-4
XAB, 2-5

USZ, 6-16, 9-29

Variable format records
VFC format records, 5-~

5-26, 6-12
VOL, 7-26

$WAIT, 9-27

X$AID, 7-21
X$ALN, 7-21
X$ALQ, 7-22
X$AOP, 7-23
X$BKZ, 7-24
X$DAN, 7-5
X$DEQ, 7-24
X$DFL, 7-6
X$FLG, 7-7
X$IAN, 7-9
X$IFL, 7-10
X$KNM, 7-11
X$LAN, 7-11
X$LOC, 7-25
X$NUL, 7-11
X$NXT, 7-3
X$POS, 7-13
X$PRG, 7-17
X$PRJ, 7-17
X$PRO, 7-18
X$REF, 7-14
X$SIZ, 7-15
XAB (the FAB field), 5,
XAB (Extended Attributl

allocating, 7-1, 7-2
Allocation, 7-19
Date and Time, 7-3
existing files and,
file operations and,
File Protection Spec.

7-16
Key Definition, 7-4
linking, 7-2
new files and, 2-6
order of, 7-2
Summary, 7-26
types of, 7-1

XAB$B, 7-1
XAB$E, 7-2

Index-4

IAS/RSX-llM
RMS-ll MACRO Programmer's
Reference Manual
AA-0002A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ _

Organiza.tion ______________________________ _

Street ___ _

City __________________________ State ____________ Zip Code ____________ __

or
Country

~·-----·---------------------------------.. --------------Fold lIere--

-----------------------.. -------------- Do Not Tear - Fold lIere aDd Staple --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mlJDama
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

