RSX-11M-PLUS and Micro/RSX

XDT Reference Manual
Order No. AA-JT78A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dlilgli|t]a]l]
DIBOL ’ RSX

ZK4351

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Lid. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital’s local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be placed with the locat Digital subsidiary (809-754-7575).

internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TgX, the typesetting system developed by Donald E. Knuth at Stanford University. TeX is @ trademark of the
American Mathematical Society.

Contents

Preface v
Summary of Technical Changes xi
Chapter 1 The Executive Debugging Tool
1.1 The Advantage of XDTttt 1-1
12 How to Include XDT in Your RSX-11M-PLUS System 1-2
1.3 Loadable XDT on Micro/RSX and RSX-11M-PLUS Systems 1-2
1.4 Processor States 1-3
1.4.1 The Stack Depth Indicator and Interrupt Processing 1-4
15 Entering XDT 1-5
1.5.1 XDT and Synchronous System Traps 1-5
1.5.1.1 Processor Traps and System Crashes 1-8
15.2 Entering XDT from a Virgin System Boot. 1-8
1.5.3 Using the BRK Command to Enter XDT 1-9
1.5.4 Using the BPT Instruction to Enter XDT 1-9
1.5.4.1 Using the OPEN Command to Insert a BPT Instruction 1-9
1.5.4.2 Using the ZAP Utility to Insert a BPT Instruction 1-11
1.5.5 Entering XDT When the System Is Hung (RSX-11M-PLUS) 1-11
Chapter 2 Debugging with XDT
2.1 Debugging with XDT e e 2-1
2.1.1 Using XDT to Debug the Executive 2-1
2.1.2 Using XDT to Debug Privileged Tasks. 2-2
2.1.3 Using XDT to Debug a Driver, 2-2
214 Using XDT to Examine a Memory Location 2-3
215 Turning Off the Processor Clockccvuuuuuuono.n.. 2-4
216 T-BitError 2-5
2.2 Interpreting Bugchecks. 2-5
2.3 XDT Commands and Operatorso v vttt it et e 2-9

Chapter 3 Error Detection

3.1 Input Errors R 3-1
3.2 TaskImage Error Codes.ot 3-2

Appendix A Processor Status Word

Appendix B Executive Symbols Supported by Loadable XDT

Index

Figures
A-1 Format of the Processor Status Word A-1

Tables
1-1 XDT Trap Entry Codeso vttt 1-6
2-1 Common Facility-Independent Error Code Definitions 2-6
2-2 Standard Bugcheck Format Facility Code Definitions 2-8
2-3 Variables Used in XDT Command Descriptions 2-10
2-4 XDT Operators and Commandst 2-10
B-1 Executive Symbols Supported by Loadable XDT B-1

v

Preface

Manual Objectives

This manual describes the Executive Debugging Tool (XDT), which is used to debug privileged
tasks on RSX-11M-PLUS and Micro/RSX systems. The manual provides reference information
on all XDT commands, as well as information on how to use the commands to debug task
images.

Intended Audience

This manual is intended for all systems and applications programmers who develop task images
under the RSX-11M-PLUS or Micro/RSX operating systems. Readers should understand the
user interface of the operating system that they are using. RSX-11M-PLUS users should be
familiar with the contents of the RSX-11M-PLUS Guide to Program Development before reading
this manual. Micro/RSX users should be familiar with the contents of the Micro/RSX Guide to
Advanced Programming before reading this manual.

Structure of This Document

Chapter 1 gives information about XDT and describes how to enter XDT.

Chapter 2 describes XDT commands and operators and explains the differences between the
On-Line Debugging Tool (ODT) and XDT.

Chapter 3 describes how XDT responds to errors in user input or program logic. It lists all XDT
error message codes in alphabetical order.

Appendix A shows the format of the Processor Status Word (PSW) and summarizes the functions
of its bits. :

Appendix B lists the supported Executive symbols that loadable XDT will automatically search
for in the Executive map.

Associated Documents

The RSX-11M-PLUS and Micro/RSX Guide to Writing an 1/0 Driver contains information about
debugging a user-written driver. The information directory of the host operating system describes
other manuals that will be of interest to XDT users.

Conventions Used in This Document

The following conventions are used in this manual:

Convention Meaning

> A right angle bracket is the default prompt for the Monitor
Console Routine (MCR), which is one of the command interfaces
used on RSX-11M-PLUS systems. All systems include MCR.

$ A dollar sign followed by a space is the default prompt of
the DIGITAL Command Language (DCL), which is one of the
command interfaces used on RSX-11M-PLUS and Micro/RSX
systems. Many systems include DCL.

MCR> This is the explicit prompt of the Monitor Console Routine
(MCR).

DCL> This is the explicit prompt of the DIGITAL Command Language
(DCL).

XXX > Three characters followed by a right angle bracket indicate the

explicit prompt for a task, utility, or program on the system.

UPPERCASE - Uppercase letters in a command line indicate letters that must be
- entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications.

command abbreviations Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase letters. The following
example shows the minimum abbreviation allowed for the DCL
command DIRECTORY:

$ DIR

lowercase Any command in lowercase must be substituted for. Usually
the lowercase word identifies the kind of substitution expected,
such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that comprise a file spec-
ification; values are substituted for each of these variables as
appropriate.

vi

Convention

Meaning

/keyword,
/qualifier,
or

/switch

parameter

[option]

[..]

:argument

()

A command element preceded by a slash (/) is an MCR
keyword; a DCL qualifier; or a task, utility, or program switch.

Keywords, qualifiers, and switches alter the action of the
command they follow.

Required command fields are generally called parameters. The
most common parameters are file specifications.

Square brackets indicate optional entries in a command line or
a file specification. If the brackets include syntactical elements,
such as periods (.) or slashes (/), those elements are required
for the field. If the field appears in lowercase, you are to
substitute a valid command element if you include the field.
Note that when an option is entered, the brackets are not
included in the command line.

Square brackets around a comma and an ellipsis mark indicate
that you can use a series of optional elements separated
by commas. For example, (argument],...]) means that you
can specify a series of optional arguments by enclosing the
arguments in parentheses and by separating them with commas.

Some parameters and qualifiers can be altered by the inclusion
of arguments preceded by a colon. An argument can be either
numerical (COPIES:3) or alphabetical (NAME:QIX). In DCL, the
equal sign (=) can be substituted for the colon to introduce
arguments. COPIES=3 and COPIES:3 are the same.

Parentheses are used to enclose more than one argument in a
command line. For example:

SET PROT = (S:RWED,0:RWED)

Commas are used as separators for command line parameters
and to indicate positional entries on a command line. Positional
entries are those elements that must be in a certain place in the
command line. Although you might omit elements that come
before the desired element, the commas that separate them must
still be included.

vii

Convention

Meaning

(g/m]
[directory]

filespec

KEYNAME

//print” al’ld ”type”

black ink

The convention [g,m] signifies a User Identification Code (UIC).
The g is a group number and the m is a member number. The
UIC identifies a user and is used mainly for controlling access
to files and privileged system functions.

This may also signify a User File Directory (UFD), commonly
called a directory. A directory is the location of files.

Other notations for directories are: [ggg,mmm]|, [gggmmm], [ufd],
[name], and [directory].

The convention [directory] signifies a directory. Most directories
have 1- to 9-character names, but some are in the same [g,m]
form as the UIC.

Where a UIC, UFD, or directory is required, only one set of
brackets is shown (for example, [g,m]). Where the UIC, UFD,
or directory is optional, two sets of brackets are shown (for
example, [[g,m]]).

A full file specification includes device, directory, file name, file
type, anc. version number, as shown in the following example:

DL2: {46,63] INDIRECT.TXT;3

Full file specifications are rarely needed. If you do not provide
a version number, the highest numbered version is used. If
you do not provide a directory, the default directory is used.
Some system functions default to particular file types. Many
commands accept a wildcard character (*) in place of the file
name, file type, or version number. Some commands accept a
filespec with a DECnet node name.

A period in a file specification separates the file name and file
type. When the file type is not specified, the period may be
omitted from the file specification.

A semicolon in a file specification separates the file type from
the file version. If the version is not specified, the semicolon
may be omitted from the file specification.

A vertical ellipsis shows where elements of command input or
statements in an example or figure have been omitted because
they are irrelevant to the point being discussed.

This typeface denotes one of the keys on the terminal keyboard,
for example, the RETURN key.

The term “print” refers to any output sent to a terminal by
the system. The term “type” refers to any user input from a
terminal.

In examples, what the system prints or displays is printed in
black. :

viii

Convention

Meaning

red ink

XXX

In interactive examples, what the user types is printed in red.
System responses appear in black.

A symbol with a 1- to 3-character abbreviation, such as [x] or
, indicates that you press a key on the terminal. For example,
[ReT] indicates the RETURN key, [IF] indicates the LINE FEED key,
and indicates the DELETE key.

The symbol means that you are to press the key marked
CTRL while pressing another key. Thus, [CTR/Z] indicates that
you are to press the CTRL key and the Z key together in this
fashion. is echoed on some terminals as "Z. However,
not all control characters echo.

Summary of Technical Changes

The following sections list features that are new to XDT or that have been modified for the
RSX-11M-PLUS and Micro/RSX Version 4.0 operating systems. These new or modified features
are documented in the RSX-11M-PLUS and Micro/RSX XDT Reference Manual.

Also, major changes to the organization of the manual are included at the end of this summary.

New or Modified Features
Loadable XDT has the following new or modified features:
* Loadable XDT is now supported on all RSX-11M-PLUS operating systems.
* Expanded entry display has been provided for loadable XDT.
* Support has been added for the automated searching of symbol addresses listed in the
Executive map. ‘
Loadable XDT
All RSX~11M-PLUS systems now support loadable XDT.

Expanded Entry Display

The expanded entry display gives you the contents of the Executive’s registers, the kernel stack,
and the addresses of the kernel APR5 and APR6 mapping registers at the time the system
crashes.

Automated Searching of Symbol Addresses

The automated searching of symbol addresses listed in the Executive map requires only that you
specify a supported symbol name instead of its address to display the contents at that address.

Changes to the Document

The information contained in the RSX-11M-PLUS and Micro/RSX XDT Reference Manual formerly
resided in the RSX-11M-PLUS and Micro/RSX Debugging Reference Manual.

xi

Chapter 1
The Executive Debugging Tool

The Executive Debugging Tool (XDT) is an interactive tool for debugging privileged code such as
Executive modules, 1/O drivers, interrupt service routines, and privileged tasks. The command
interface is nearly identical to that of the On-Line Debugging Tool (ODT). You should be an
experienced ODT user before using XDT. For more information on ODT, see the RSX-11M-PLUS
and Micro/RSX Debugging Reference Manual.

Note

If you are not an experienced system programmer, you may find that
experimenting with XDT produces undesirable results. As with ODT, where
incorrect use could corrupt your program, incorrect use of XDT could corrupt
your system. Use it carefully.

The major difference between XDT and ODT is that XDT is a tool for debugging privileged
code—code that executes in system state or interrupt state—and ODT is a tool for debugging
nonprivileged code—code that executes in user (or task) state. See Chapter 2 for a list of ODT
commands not used in XDT and for a table of XDT operators and commands.

1.1 The Advantage of XDT

On RSX-11 systems without XDT support, any software fault occurring in system state or
interrupt state results in a system crash. However, on RSX-11 systems that include XDT
support, a software fault in system state or interrupt state causes the system to trap to XDT
rather than crash. d

When a software fault causes the system to trap to XDT, XDT has exclusive control of the system,
and all other system activity is suspended. You can then use XDT commands and operators
to examine registers, memory locations, and system data structures to locate the software fault
that caused the trap—provided, of course, that the software fault is not one that corrupts either
the XDT code itself or the trap vectors.

The Executive Debugging Tool 1-1

1.2 How to Include XDT in Your RSX-11M-PLUS System

System support for resident XDT is optional. You must explicitly specify during the system
generation procedure that XDT support be included in your system image. See the system
generation manual appropriate to your system for more information on including XDT support
on your system.

On RSX-11M-PLUS systems with instruction and data space support, XDT supports both
instruction space and data space referencing. Because XDT occupies physical address space
without taking up Executive virtual data address space, including XDT in a system with
instruction and data support does not reduce the size of available system pool.

On RSX-11M-PLUS systems without instruction and data space support, including XDT in the
system diminishes the size of system pool by approximately 2.5 kilobytes (Kb).

1.3 Loadable XDT on Micro/RSX and RSX-11M-PLUS Systems

On Micro/RSX systems, XDT is a loadable system-level debugger. On RSX-11M-PLUS systems,
XDT may be loadable or resident. When you load XDT, the LOAD task sets up XDT in a special
partition in memory outside of the area generally allocated to Executive code. Using loadable
XDT has the following advantages: :

¢ Makes more of system pool available to the system
e Allows you to load XDT only when you need to use it for debugging
* Improves system performance when you use loadable XDT over resident XDT
To load XDT on a Micro/RSX or an RSX-11M-PLUS system, use the command format shown
next.
Format
LOA /EXP=XDT[/PAR=parname][/HIGH][/FLAGS=n]

Parameters

/EXP=XDT
Causes XDT to be loaded as an extended Executive partition.

/PAR=parname
Specifies the partition in which XDT is to be loaded. If you omit the /PAR qualifier, GEN
is the default partition name.

/HIGH
Causes XDT to be loaded at the top of the partition.

/FLAGS=n
Determines whether XDT displays startup messages when XDT is loaded into the system
and whether XDT displays the expanded entry format when the system fatally traps to XDT.
With startup messages enabled, the system returns with three messages indicating whether

1-2 The Executive Debugging Tool

XDT loaded successfully, the physical address of the pool node, and the starting address of
XDT. With the expanded entry format enabled, XDT displays the following information:

* The Executive’s registers at the time of the crash
* The contents of the kernel stack
* The addresses of the kernel APR5 and APR6 mapping registers

The following values for n determine the displays given:

Expanded
n Entry Display Startup Messages
0 No Yes
1 Yes Yes
2 No No
3 Yes No

See Section 1.5.1 for an example of the startup messages and the expanded entry format.

To unload XDT on a Micro/RSX or an RSX~11M-PLUS system, use the command format shown
next.

Format

UNLOAD /EXP=XDT

For more details on using the LOAD command, see the Micro/RSX System Manager’s Guide or
the RSX-11M-PLUS and Micro/RSX System Management Guide.

1.4 Processor States

XDT responds to software faults occurring in system state or interrupt state. RSX-11 systems
operate in various software states, depending on the type of processing taking place at a given
time. (Software states are different from hardware processor modes. See the appropriate PDP-11
Processor Handbook or the PDP-11 Architecture Handbook for a description of processor modes.)
A summary of the system'’s software states follows:

User state: The processing state in which the system executes nonprivileged user task
code. In user state, the processor operates in user mode or supervisor mode and is fully
interruptible (PRO). The system stack is empty whenever user state code is executing.

System state: The state in which the system executes privileged code. It is the only state in
which the shared system database may be safely modified. In system state, the processor
operates in kernel mode and is completely interruptible (PRO).

Interrupt state: The Executive uses interrupt state to perform device-critical processing after
a peripheral device interrupt. In interrupt state, the processor operates in kernel mode
and can be either partially interruptible (PR4 to PR6) or completely noninterruptible (PR?7).
The shared system database cannot be safely modified in interrupt state, since operation
at interrupt state may have preempted a system state process that may already have been

The Executive Debugging Tool 1-3

modifying a system data structure. Driver processes may switch from interrupt state to
system state by calling the $FORK word to safely access shared system data.

When XDT executes, it has complete control of the system, so you can examine or modify any
system data structure. XDT runs at PR7 and, therefore, is totally noninterruptible. Pending
interrrupts must wait until you exit from XDT and resume normal execution.

Refer to the descriptions of interrupt processing and the $FORK process in the RSX-11M-PLUS
and Micro/RSX Guide to Writing an 1/O Driver for more information.

For a detailed description of processor interrupt priorities, refer to your PDP-11 Processor
Handbook.

The following priority scheme governs the order by which the system services the processing
states (interrupt level 7 is the highest priority interrupt):

1. Interrupt State Processing:

e PR7—Various device interrupts

e PRé6—Various device interrupts

e PR5—Various device interrupts

e PR4—Various device interrupts
2. System State Processing:

e Processing of traps from user state

e Processing of driver processes suspended by $FORK
3. User State Processing:

. Processing of all user tasks

1.4.1 The Stack Depth Indicator and Interrupt Processing

The Executive maintains a word, called the Stack Depth Indicator ($STKDP), to indicate the
number of interrupted system state processes that must be completed before servicing any
suspended system state processes and returning to user state. A second word, $FORK, heads a
list of suspended driver processes awaiting execution in system state.

While executing nonprivileged task code in user state, $STKDP contains a value of +1, and the
processor uses the user stack. When $STKDP contains a value other than +1, the Executive
operates in system state or interrupt state, and the processor uses the kernel stack.

As part of the process of switching from user state to system or interrupt state (caused, for
example, by a device interrupt or an Executive directive issued by a user state task), the Executive
decrements $STKDP to 0. Each subsequent interrupt causes the Executive to further decrement
$STKDP (-1, -2, and so on). The value (other than +1) contained in $STKDP indicates the
number of interrupted system state processes waiting to be returned to the Executive.

As each interrupt level process completes its interrupt state execution, the Executive increments
$STKDP until all the suspended interrupt state processes have been serviced and $STKDP again
contains a zero (0). The Executive then services any system state processes still waiting (in the
$FORK queue) before switching to user state and the user stack.

1-4 The Executive Debugging Tool

1.5 Entering XDT

Entry to XDT may or may not be intentional. For example, a coding change to a driver or a
part of the Executive might introduce an error, such as an illegal instruction. The execution of
the illegal instruction would cause the system to fault and immediately enter XDT. In this case,
entry to XDT is obviously not intentional. '

You may, however, deliberately cause the system to enter XDT. You might want to do so for
the following two reasons:

1. To locate a suspected software bug in a particular piece of system code
2. To test and debug a new or recently modified section of code
The following sections discuss system traps (the mechanism by which the system enters XDT)
and several ways to cause the system to trap to XDT.
1.5.1 XDT and Synchronous System Traps

A system trap is an event that transfers program control from the program through a trap
vector to a trap handling routine. System traps usually occur due to the execution of either an
illegal instruction or a specific trap-causing instruction. Traps provide software with a means
of monitoring and reacting to those events. The Executive initiates corresponding system trap
processing when particular events occur.

Synchronous system traps (SSTs) are events that occur at the same time and in direct relation to
the incorrect execution of program instructions. SSTs that occur in system state are the means
by which XDT gains control of the operating system instead of letting it immediately crash.

In a system with XDT support, all SSTs occurring at system state (except as described for the
TRAP instruction; see Section 1.5.1.1) result in a trap to XDT. A trap to XDT is indicated by a
message at the console terminal in the form shown next.

Format

xx: address [facility error F/N]

Parameters

XX:
Specifies one of the entry codes listed in Table 1-1.

address
Indicates the program counter (PC) at the time of the trap.

facility
Specifies one of the octal facility codes listed in Chapter 2, Table 2-2. This information is
provided only with the BC entry code.

error
Specifies one of the octal error codes listed in Chapter 2, Table 2-2. This information is
provided only with the BC entry code.

The Executive Debugging Tool 1-5

F/N :
Specifies either the letter F or the letter N, which represents fatal and nonfatal faults,
respectively. If the letter N appears, XDT allows you to use the Proceed command (P).
This information is provided only with the BC entry code.

Each entry code is associated with a particular trap vector, which is also listed in Table 1-1.
See Chapter 3 for more information about error detection.

For more information on the optional parameters provided with the BC entry code, see
Chapter 2.

Table 1-1: XDT Trap Entry Codes

Entry

Code Vector Fatal Reason

BC: 30 Varies Bugcheck—internally detected software fault. Fatalness
indicated in message line (loadable XDT only)

BE: 14 No Breakpoint entry—a BPT instruction

EM: 30 No EMT instruction

IL: 10 - Yes Illegal instruction

10: 20 No IOT instruction

MP: 250 Yes Memory-protection violation

OD: 4 Yes Odd address or nonexistent memory

SO: 4 Yes Stack overflow

TE: 14 No T-bit trap

nB: 14 No XDT set breakpoint (n is a register number 0-8)

To begin determining the cause of a system failure, you can specify loadable XDT to give an
extended entry display of the contents of the Executive’s registers, the kernel stack, and the
addresses of the kernel APR5 and APR6é mapping registers at the time the system crashes. The
information contained in this display may indicate the location of the code causing the trap.
The following example illustrates how to set loadable XDT to give you the display and a sample
display:

>LOA /EXP=XDT/FLAGS=1 o

XDT -- Initialization complete and successful

-- Node address = 004220
-- XDT address = 01010600

1-6 The Executive Debugging Tool

0D:000001 @

XDT>$0/007760 $1/001110 $2/000001 $3/000000 ©
XDT>$4/000001 $5/000000 $6/001004 $7/000340
XDT>

XDT>$6/001004 ¢ @

D 001004 /017446

001006 /030000

001010 /000021

001012 /125244

001014 /127134

001016 /000004

001020 /000002

001022 /120446

001024 /131614

001026 /170000

001030 /000000 172352/002504 172354/005015@
XDT>172372/003504 172374/010240

T> O

Uoouoououuououoo

©® When you load XDT (assuming /FLAGS equals 0 or 1), the system returns with three
messages indicating the following:

1 Whether XDT loaded successfully

2 The physical address of the pool node containing XDT transfer vectors (For more
information on pool nodes, see the RSX-11M-PLUS and Micro/RSX System Management
Guide.)

3 The physical starting address of the XDT partition
Otherwise, the system returns the command line interpreter (CLI) prompt.

Specifying the /FLAGS=1 qualifier indicates that you also want the expanded entry format
displayed.

The XDT trap entry code (in this case, an odd address or nonexistent memory trap).
The general registers and the addresses contained in each register.
The kernel stack, including the addresses in the Executive’s registers,

The addresses of the kernel APR5 and APR6 mapping registers.

©@ ® 606 00

The XDT prompt. From here you can use XDT commands to determine the cause of the
crash,

The Executive Debugging Tool 1-7

1.5.1.1 Processor Traps and System Crashes

An SST generally indicates that there is a software fault that may cause corruption of an
Executive database. For example, inserting an odd address into the link pointer of a Task
Control Block (TCB) results in an odd address trap the next time the Executive reads through
the TCB list.

The PDP-11, including the MicroPDP-11, has four trap instructions: EMT, IOT, BPT, and
TRAP. These instructions have the following results when executed in system state:

e Both the EMT and IOT instructions are fatal when executed in system state ($STKDP < 0).

e The BPT instruction is fatal when executed in system state, unless XDT is present in the
system, The BPT instruction is a means for entering XDT. When you deliberately set a
breakpoint in XDT (see the XDT nB command in Chapter 2, Table 2-4), XDT actually inserts
a BPT instruction where you want the breakpoint and saves the instruction it replaced with
the breakpoint.

e The TRAP instruction is legal only in system state ($STKDP = 0). The directive processors
use the TRAP instruction to post error codes back to the directive dispatcher.

1.5.2 Entering XDT from a Virgin System Boot

A virgin system is an RSX-11M-PLUS system that has completed execution of SYSVMR.CMD
but has not yet been saved (see the Monitor Console Routine (MCR) command SAVE in the
RSX-11M-PLUS MCR Operations Manual). If the virgin system includes XDT support, the normal
system startup immediately transfers control to XDT, which displays a message on the system
console terminal similar to the following:

BOO DL:[1,54]
XDT: 35

XDT>
The number following the colon (:) is the system base level number.

When the system traps to XDT in this situation, the system initialization code (INITL) has not
yet executed. Therefore, some system data structures have not yet been defined or initialized.
(On systems supporting memory management, memory management has not yet been enabled.)

After you have set any desired breakpoints, enter the XDT command G (Go) to return control to
the Executive module INITL. The INITL module then continues with the system initialization.
If a software fault occurs during system initialization (or if you have previously set a breakpoint
in the INITL module), the system traps to XDT upon encountering the fault (or the breakpoint)
instead of causing a fatal system crash. You can then use XDT to try to locate the error that
caused the fault or to take the appropriate action for the specified breakpoint.

Note that a saved system does not trap to XDT when it is bootstrapped. Part of the action of
INITL is to deallocate the memory it uses to system pool after it completes execution. In other
words, INITL is not part of the system image after SAVE executes. Furthermore, because SAVE
has control of the system when it copies the system image to disk, it—not XDT—retains initial
control when the system is rebooted, unless a suitable breakpoint has been placed in the SAVE
module.

1-8 The Executive Debugging Tool

Also note that if you save the virgin system with breakpoints set, the saved system traps to
XDT each time it reaches one of those breakpoints. This may occur both while the system is
being saved and during the system reboot.

1.5.3 Using the BRK Command to Enter XDT

The BRK (Breakpoint to Executive Debugging Tool) command passes control of the system to
XDT. Note that on RSX-11M-PLUS systems this is an MCR command. The message XDT prints
on the console includes a program counter (PC) inside the MCR task. This is a convenient way
to invoke XDT. From this point you can map to any desired location (for example, within a
driver) and set breakpoints. If XDT is not included in the system, the BRK command has no
effect.

Typing the XDT command P (Proceed) normally restores the system to the state that existed
just before the execution of the BRK command.

1.5.4 Using the BPT Instruction to Enter XDT

There are several ways to replace a system instruction with a BPT instruction to cause the
system to trap to XDT. The simplest method is to use the BRK command. You can also use the
OPEN command, for putting breakpoints into drivers or memory-resident privileged tasks, or
the ZAP utility, for putting breakpoints in a privileged program before you run it. Or, you can
include a BPT instruction in the macro source program before assembling it. (This last method
is useful when debugging a driver.)

The general procedure for setting and canceling the BPT instruction is as follows:
1. Replace a system state instruction with the BPT instruction.
The system traps to XDT when it executes the BPT instruction.

2

3. Use XDT to restore the original instruction replaced by BPT.

4. Decrement the PC by subtracting 2 from the contents of register R7.
5

Set any desired breakpoints by using XDT commands and proceed with the XDT P (Proceed)
or S (Single Step) command.

If you include a BPT instruction in the source code, you are not replacing an instruction.
Therefore, there is no need to decrement the PC or to restore any instruction. When you have
debugged the driver, take out the BPT instruction and reassemble the source code.

1.5.4.1 Using the OPEN Command to Insert a BPT Instruction

You can use the OPEN command to replace an instruction in the Executive, a device driver,
or a memory-resident privileged task with the BPT instruction. Note that on RSX-11M-PLUS
systems this is an MCR command. With this method, the BPT instruction affects only the image
in memory, not the image on disk. Therefore, rerunning or reinstalling the image wipes out
any BPT instruction set with the OPEN command.

To examine and replace an instruction in the Executive, use the command syntax shown next.

Format
OPEN addr{/KNLI]

The Executive Debugging Tool 1-9

Parameters
addr
Specifies the address in the Executive that is to be opened.

JKNLI
Accesses the contents of the address in the Executive. Specify this keyword if you need to
place a breakpoint into a directive common.

To examine and replace an instruction in a memory-resident privileged task, use the command
syntax shown next.
Format

OPEN addr/TASK=taskname

Parameters
addr ‘

Specifies the address in the task that is to be opened.
/TASK=taskname

Specifies the name of the memory-resident task.

To examine and replace an instruction in a driver, use the command syntax shown next.

Format
OPEN addr/DRV=ddnn:

Parameters
addr ‘
Specifies the address in the driver that is to be opened.

/DRV=ddnn:
Specifies the device mnemonic (ddnn:) for the driver to be opened.

Note

To examine and replace an instruction within a privileged task, the privileged
task must be fixed in memory.

" Once you have completed testing or debugging, use XDT to restore the original instruction
replaced by BPT, as follows:

e Decrement the PC by subtracting 2 from the contents of register R7.

e Set any desired breakpoints by using XDT commands and proceed with the XDT P (Proceed)
or S (Single Step) command.

1-10 The Executive Debugging Tool

1.5.4.2 Using the ZAP Utility to Insert a BPT Instruction

Because the OPEN command operates only on the running system, any changes made to the
system with the OPEN command are lost when the system is rebooted. One way to permanently
retain those changes is to save the system.

Another way to permanently retain changes to the system is by using the Task/File Patch
Program (ZAP). ZAP lets you modify the system image on disk. If you manually set a BPT
instruction in the Executive code by using ZAP, the system permanently retains that breakpoint
on disk. The trap to XDT occurs when the image is running in memory. To remove the
breakpoint, you must use ZAP to restore the original instruction on the disk image.

You can also use the ZAP utility to debug an overlaid privileged task. Suppose, for example,
that you want to set a breakpoint in an overlay segment of a privileged task. Since this segment
is not in memory, you cannot use the OPEN command to insert a BPT instruction; you would
have to use ZAP to insert the BPT instruction in the privileged task’s disk image file.

1.5.5 Entering XDT When the System Is Hung (RSX-1 IM-PLUS)

If the system is hung and commands are not being processed; you cannot force the system
to enter XDT as previously described. However, any processor traps in system state force
the system to enter XDT. One way to force the system to enter XDT is to use the switch
registers or the console to change the clock interrupt service routine to an odd address. For
example, if the system has a KW11-L clock with vector 100, simply deposit an odd address into
location 100 with the switch register. At the next clock interrupt, the system traps to XDT.

If the system is stuck in a tight loop, halt the central processing unit (CPU), examine the PC,
deposit an odd address in the PC, and then continue. Since the system will attempt to execute
an odd address, it will trap to XDT.

The Executive Debugging Tool 1-11

Chapter 2

Debugging with XDT

This chapter describes how to use the Executive Debugging Tool (XDT). It includes information
about interpreting bugchecks, which detect certain types of internal system corruption. A table
of XDT operators and commands is included in this chapter, as well as a table of the On-Line
Debugging Tool (ODT) commands not used in XDT.

2.1 Debugging with XDT

2.1.

Once the system traps to XDT, you are on your own to do whatever testing or debugging is
necessary. Virtually all other system activity has ceased. However, the system clock continues
to run. '

If the trap to XDT was unintentional, you can try to isolate the fault that caused the trap. The
RSX-11M-PLUS and Micro/RSX Guide to Writing an 1/O Driver contains some helpful information
on isolating faults and tracing system faults by using specific system data structures.

If you intentionally caused the system to trap to XDT for testing or debugging purposes,
remember to restore the instruction you replaced with the BPT instruction and decrement the
program counter (PC) by 2.

You can cause the system to enter the system crash dump routine by entering the XDT
command X. (In ODT, this same command merely causes ODT to exit.)
1 Using XDT to Debug the Executive

Because the Executive executes only in system state, you can cause a trap to XDT by setting a
breakpoint anywhere within the Executive code. Because the Executive is always mapped, you
can set breakpoints within Executive code at any time.

Note

The directive commons portion of the Executive is unmapped. Therefore, setting
breakpoints in this area yields no real benefits in debugging Executive code.

Debugging with XDT 2-1

With the XDT command S, you can single step through the execution of individual instructions
in the Executive code. When you have finished testing or debugging, you can resume the
execution of the system by using the XDT command P, or you can cause the system to enter
the crash dump routine by entering the XDT command X.

2.1.2 Using XDT to Debug Privileged Tasks

A privileged task must be executing in system state ($STKDP =0) in order to trap to XDT. If a
privileged task encounters a fault while executing in user state, the task either aborts or traps
to ODT (if that task was task-built to include ODT).

XDT and ODT processing are completely independent of each other. You can use XDT to debug
the portions of a privileged program that execute in system state, regardless of the presence of
ODT. You can use ODT to debug those portions of the same task that execute in user mode.

Whenever you attempt to set breakpoints in a task with XDT, you must make sure that the
task is mapped. One way to do this is to assemble a BPT instruction into the task source code
at the beginning of the system state code. When the system encounters the BPT instruction, it
traps to XDT with the task mapped. At this point, you can use any of the XDT commands and
operators.

You can also fix the task in memory and use the OPEN command to set a breakpoint. The
advantage of this method is that you do not need to reassemble and rebuild the privileged task
to insert the breakpoint. The disadvantage is that you must decrement the PC and replace the
original instruction.

Note

Fixing the task and using the OPEN command does not work when the system
state code is contained in an overlay.

2.1.3 Using XDT to Debug a Driver

I/0O drivers in RSX-11 systems can operate in system or interrupt state. You can use XDT
in either of these states to set breakpoints and to examine or modify driver data structures to
perform debugging operations.

You must make sure that the driver is mapped whenever you attempt to set breakpoints in it
with XDT. One way to do this is to assemble a BPT instruction into the driver source code at
one of the normal entry points to the driver. When the system encounters the BPT instruction,
it traps to XDT with the driver mapped. At this point, you can use any of the XDT commands
and operators. ‘

You can also use the OPEN command to replace an instruction in the driver with a BPT
instruction. The advantage of this method is that you do not need to reassemble and rebuild
the driver to remove the breakpoint. The disadvantage is that you must decrement the PC and
replace the original instruction upon encountering the breakpoint.

A third method of inserting a breakpoint is to force the driver to be temporarily mapped through
an Active Page Register (APR). You cannot set XDT breakpoints in this manner (see the XDT
command ;Bn), but you can replace an instruction in the driver with a BPT instruction after the
driver is mapped (just as you would if you used the OPEN command to replace the instruction).

2-2 Debugging with XDT

In the following example, assume that you have already entered XDT by using the BRK
command. By looking at a PAR listing, you know that the driver is at physical address 210400.
From this point you can proceed as follows:

1. Replace the current mapping context (3163) with the starting address of the driver (2104).
2. Replace the MOV instruction (010405) with a BPT instruction (3).

3. Replace the driver address (2104) with previous mapping context (3163).

4. Enter the XDT command P (Proceed).

When the system encounters the BPT instruction set in the driver, it traps to XDT from that
breakpoint (BE:120104). You can then begin debugging procedures with XDT commands and
operators. The sequence appears in the following example:

XDT>172352/ 003163 2104

XDT>120102/ 010405 3
XDT>172362/ 002104 3163

XDT>P
BE:120104

XDT>$7/ 120104 120102
XDT>

This method is useful if you discover at an inopportune time that you would like to set a
breakpoint in the driver. :

2.1.4 Using XDT to Examine a Memory Location

This is actually more difficult than it seems. Consider the following: The system has trapped to
XDT and you want to examine a memory location in a partition that contains a device driver.
Suppose you have a 20K Executive running on a mapped system. Kernel APRs 0 to 4 map
the Executive while the system is in XDT. Kernel APR7 maps the I/O page. Kernel APRs 5
and 6 contain the APR bias of whatever is mapped at the time the system enters XDT (that is,
APRs 5 and 6 map the Monitor Console Routine (MCR) task if the BRK command caused the
trap to XDT).

In the following example, assume that the system has already trapped to XDT and that you
want to examine locations in the kernel data space portion of memory. To examine a memory
location, proceed as follows:

1. Divide the physical address (107432) into two components: the relocation bias (1074) and
the displacement (32).

2. Manually map this section of physical memory by putting the relocation bias (1074) into
data space kernel APR5.

Examine the location by referencing the virtual address as 120000 + displacement (32).

4. Replace the APR bias with original mapping context (3163) after examining the memory
location. This step is not mandatory, but it does represent good debugging practice.

Debugging with XDT 2-3

The sequence appears in the following example:

XDT>172372/ 3163 1074
XDT>120032/ 10403
XDT>172372/ 3163 [RET
XDT>

Note
If you were to map with kernel APR6, then the virtual address would be
140000 + displacement.

Kernel APRs 0 to 7 map the following range of addresses (see the PDP-11 Processor Handbook
for more information on the kernel APRs):

I-Space D-Space

Kernel APRO 172340 Kernel APRO 172360
APR1 172342 APR1 172362
APR2 172344 APR2 172364
APR3 172346 APR3 172366
APR4 172350 APR4 172370
APR5 172352 APR5 172372
APR6 172354 APRé6 172374
APR7 172356 APR7 172376

2.1.5 Turning Off the Processor Clock

It is sometimes necessary in a debugging session to single step through code in the Executive.
To do this type of debugging with some parts of the Executive (for instance, with interrupt
handling routines), it is necessary to have the system completely inactive. It may, therefore, be
necessary to turn off the clock, which usually interrupts at a rate of 60 times a second.

For example, if the system has a KW11-L line clock with the control and status register (CSR)
address 177546, you can turn off the clock by placing a zero (0) in the CSR—this action clears
the interrupt enable bit in the clock CSR. :

2-4 Debugging with XDT

2.1.6 T-Bit Error

Using XDT to debug a user-written driver has special pitfalls. One problem that can arise is a
T-bit error as follows:

TE: address
XDT>

Generally, a trace (T) bit trap occurs when the T-bit is set in the Processor Status Word (PSW)
by some mechanism other than a breakpoint or an XDT P or S command. The T-bit error
results when control reaches a breakpoint that you have set, using XDT, in a loaded driver. The
T-bit error, rather than the expected BE: trap, occurs unless kernel APR5 maps to the driver at
the time XDT sets the breakpoint.

If you want to set a breakpoint in a loaded driver, you cannot set the breakpoint with XDT
until the driver is mapped (that is, you cannot set a breakpoint in a driver if you entered XDT
by using the MCR command BRK).

You can avoid this T-bit error by assembling the driver with an embedded BPT instruction or
by using either the ZAP utility or the OPEN command to replace a driver instruction with the
BPT instruction.

Another method is to use the BRK command to enter XDT. Then, use kernel APR5 to map
to the driver, to deposit a BPT instruction in the driver using XDT, and to restore the original
contents of kernel APR5. Return to user mode by using the XDT command P.

2.2 Interpreting Bugchecks

The RSX-11M-PLUS and Micro/RSX Executives all contain code that detects certain types of
internal system corruption. If XDT is included in the system, the Executive attempts to enter
XDT as soon as the system corruption is detected. By doing this, the system will more likely
be in a state where the fault that caused the corruption can be isolated.

For reporting this type of fault, RSX-11IM-PLUS uses the bugcheck, which uses the EMT
instruction to enter XDT. On RSX-11M-PLUS systems with resident XDT, XDT prompts with
the following:

EM:nannnn

XDT>

Use the following two steps to isolate the failure:

1. Find the location of the EMT instruction in the source code for the Executive. .

2. Ascertain the type of corruption from the context of the EMT. The EMT instructions included
in the source code for this purpose are typically generated by the CRASH macro.

In systems with loadable XDT, two additional pieces of information are provided. These are
the facility code and the error code. The facility code indicates which component of the system

Debugging with XDT 2-5

detected the fault. The error code indicates what fault was detected. Loadable XDT prompts
with the following;:

BC:nnnnnn ffffff eceecee s

Parameter Meaning

nnnnnn Specifies the address within the Executive where the bugcheck was executed.

fiiiii Specifies the octal facility code.

eceeee Specifies the octal error code.

s Specifies either the letter F or the letter N, which represents fatal and nonfatal
faults, respectively. If the letter N appears, XDT allows you to use the Proceed
command.

Table 2-1 shows error codes that are independent of which facility detected the fault. The high
bit for these error codes will always be zero. The definition, symbolic name, and octal value of
each code are shown.

Table 2-2 shows facility codes and error codes for errors that can only be issued by a particular
facility. The high bit for these error codes will always be zero. The definition, symbolic name,
and octal value of each code are shown. :

Table 2-1: Common Facility-iIndependent Error Code Definitions

Error :
Error Code Meaning

Synchronous system traps (SST) type errors—Major error code 1
BE.ODD 000100 Odd address or other trap 4

BE.SGF 000102 Segment fault

BE.BPT 000104 Breakpoint or T-bit trap

BE.IOT 000106 IOT instruction

BE.ILI 000110 Illegal instruction

BE.EMT 000112 EMT instruction

BE.TRP 000114 TRAP instruction

BE.STK 000116 Stack overflow

Internal inconsistency errors—Major error code 2
BE.NPA 000200 Task with no parent aborted (P/OS)
BE.SGN 000201 Feature not included in system
BE.2FR 000202 Double fork detected

2-6 Debugging with XDT

Table 2-1 (Cont.): Common Facility-independent Error Code Definitions

Error
Error Code Meaning
BE.ISR 000203 Interrupt service routine modified RO-R3
BE.FHW 000204 Fatal hardware error
BE.CSR 000205 Device control and status register (CSR) disappeared during powerfail
BEIDC 000206 Internal database consistency error
BE.ACP 000207 Ancillary Control Processor (ACP) task aborted
BE.HSP 000210 Header subpacket problem in Error Logging
BE.NCT 000211 No current task

System pool-related errors—Error code 3

BE.NPL
BE.DDA
BE.SIZ
BE.BAK
BE.POV
BE.FSI

000300
000301
000302
000303
000304
000305

No pool for operation

Double deallocation

Size of block invalid

Deallocated block below pool
Deallocation overlaps end of pool

Fragment with invalid size detected

Group global event flag errors—Error code 4

BE.GGF

000400

Task locked to nonexistent flags

Debugging with XDT 2-7

Table 2-2: Standard Bugcheck Format Facility Code Definitions

Error
Error Code Meaning

I/O driver subsystem—Facility code 2
BF.TTD 000200 Terminal driver

Executive components—Facility code 3

BF.EXE 000300 Exec—General and miscellaneous
BEXDT 000301 Exec—Executive Debugging Tool (XDT)
BF.MP 000302 Exec—Multiprocessing

Multiprocessor-specific-type errors

BE.NDS 100100 Init failure—Data space not loaded

BEINCK 100200 Clock not available

BE.URM 100300 Fork to offline UNIBUS run

BE.WTL 100400 Attempt to lock already owned lock

BE.UNO 100500 Attempt to unlock not by owner

BEILC 100600 Illegal lock count value

BE.LNS 100700 Lock not locked

BE.OCP 101000 At entry, another central processing unit (CPU) showed ownership
BEMLK 101100 Attempt to exit multiple lock

BENIN 101200 No reason for interprocessor interrupt
BE.UNP 101300 Some UNIBUS run not connected

BF.POL 000303 Exec—Pool handling routines (CORAL)
BF.ERR 000304 Exec—Hardware error processing subsystem
BFINT 000305 Exec—Internal consistency checking routine
BFINI 000306 Exec—INITL—initialization module

BE.DVI 000307 Exec—DVINT common interrupt handler
BF.PAR 000310 Exec—Parity memory support

BE.XIT 000311 Exec—Task exit/abort processing

2-8 Debugging with XDT

Table 2-2 (Cont.):

Standard Bugcheck Format Facility Code Definitions

Error
Error Code Meaning
BF.QIO 000312 Exec—QIO directive
BF.OPT 000313 Exec—Seek optimization
BF.ACC 000314 Exec—System resource accounting
BF.KAS 000315 Exec—Kernel asynchronous system trap (AST) support
BF.DIR 000316 Exec—Miscellaneous directives
BF.SAN 000317 Exec—Crash with sanity timer message

2.3 XDT Commands and Operators

XDT commands are generally compatible with ODT commands. However, XDT does not contain
the following commands that are available in ODT:

* No $M—Mask register
* No $X—Entry flag registers

® No $V—SST vector registers

* No $D—I/O logical unit number (LUN) registers .
* No $E—SST data registers

¢ No $W—$DSW (Directive Status Word) word

e NoE —Effegtive address search command

* No F —Fill memory command

¢ No N —Word search command

e No V —Restore SST vectors command

e No W —Memory word search command

The command descriptions in Table 2-4 use lowercase alphabetic variables to represent numeric
and alphabetic arguments specified in commands. These variables are explained in Table 2-3.

Debugging with XDT 2-9

Table 2-3: Variables Used in XDT Command Descriptions
Variable = Meaning

a An octal address expression representing the address of a task image location.

#symbol Identical to a where a represents the octal address of a symbol listed in the Executive
map. XDT automatically searches an internal symbols table that corresponds to
the Executive map, finds the address of the symbol, and then displays the contents
of that location. For example, specifying #$ACTHD/ displays the contents of the
location that the symbol $ACTHD maps to in the Executive. For a list of the
supported symbols, see Appendix B (loadable XDT only).

k An octal value up to six digits long with a maximum value of 1777773, or
an expression representing such a value. An expression may include arithmetic
operators or indicators. If more than six digits are specified, XDT truncates to the
low-order 16 bits. If the octal value is preceded by a minus sign, XDT takes the
two’s complement of the value.

n An octal integer between 0 and 7.

X An alphabetic character. A list of legal alphabetic characters is given in Table 2-4
where the variable x is used.

All XDT command I/Os go to or from the console terminal. Table 2—4 contains all of the XDT
commands and operators.

Table 2-4: XDT Operators and Commands

Format Meaning

+ (plus sign) or Arithmetic operator used in expressions. Add the preceding argument to
space the following argument to form the current argument.

- (minus sign) Arithmetic operator used in expressions. Subtract the following argument

from the preceding argument to form the current argument. Also used as
a unary operator to indicate a negative value.

, (comma) Argument separator. Separates the number of a relocation register from a
relative location to specify a relocatable address.

* (asterisk) Radix-50 separator used in constructing Radix-50 words.

. (period) Current location indicator. Causes the address of the last explicitly opened
location to be used as the current address for XDT operations.

; (semicolon) Argument separator. Separates multiple arguments, allowing an address
expression or XDT register value to be identified.

(RETURN Command that closes the curréntly open location and prompts for the next

command) command. If RETURN is preceded by k, the value k replaces the contents

or k of the currently open location before it is closed.

(LINE FEED Command that closes the currently open location, opens the next sequential

command) location (a word or a byte, depending on the mode in effect), and displays

or k its contents. If LINE FEED is preceded by k, the value k replaces the

contents of the currently open location before it is closed.

2-10 Debugging with XDT

Table 2-4 (Cont.):

XDT Operators and Commands

Format

Meaning

“ork®

—or _k

@ or k@

> or k>

<ork<

$n

$x or $nx

Command that closes the currently open location, opens the immediately
preceding location (a word or a byte, depending on the mode in effect),
and displays its contents. If " is preceded by k, the value k replaces the
contents of the currently open location before it is closed.

Command that interprets the contents of the currently open location as a
program counter (PC) relative offset and calculates the address of the next
location to be opened; closes the currently open location and opens and
displays the contents of the new location (a word or a byte, depending
on the mode in effect) thus evaluated. If _ is preceded by k, the value k
replaces the contents of the currently open location before it is closed.

Command that interprets the contents of the currently open word location
as an absolute address, closes the currently open location, and opens and
displays the contents of the absolute location (a word or a byte, depending
on the mode in effect) thus evaluated. If @ is preceded by k, the value k
replaces the contents of the currently open location before it is closed.

Command that interprets the low-order byte of the currently open word
location as a relative branch offset and calculates the address of the next
location to be opened; closes the currently open location and opens and
displays the contents of the relative branch location (a word or a byte,
depending on the mode in effect) thus evaluated. If > is preceded by k,
the value k replaces the contents of the currently open location before it
is closed.

Command that closes the currently open location (opened by a _, @,
or > command) and reopens the previous location (a word or a byte,
depending on the mode in effect). If the currently open location was not
opened by a _, @, or >, then < simply closes and reopens the current
location. If < is preceded by k, the value k replaces the contents of the
currently open location before it is closed.

Expression that represents the address of one of eight general registers,
where n is an octal digit identifying RO-R7. The initial contents of
these locations represent the general register content at the time XDT
received control. By changing these locations, you can change the register
contents for when control is restored to the Executive (using the S, P, or
G command).

Expression that represents the address of one of XDT’s internal registers,
where x is one of the following alphabetic characters, and n is one octal
digit. Registers exist within XDT in the following order:

S Processor Status register (hardware PS)
A Search argument register

L Low memory limit register
H

High memory limit register

Debugging with XDT 2-11

Table 2-4 (Cont.): XDT Operators and Commands

Format

Meaning

" or a

or a

% or a%

/ora/

\ or a\

k=

8or9,
,
or [CTRL/U

B

C Constant register

Q Quantity register

F Format register

nB Breakpoint address registers

nG Breakpoint proceed count registers
nl Breakpoint instruction registers
nR Relocation registers

Word mode American Standard Code for Information Interchange (ASCII)
operator. Interprets and displays the contents of the currently open (or the
previously opened) location as two ASCII characters and stores this word
in the quantity register ($Q). If " is preceded by a, the value a is taken as
the address of the location to be interpreted and displayed.

Byte mode ASCII operator. Interprets and displays the contents of the
currently open (or the previously opened) location as one ASCII character
and stores this byte in the quantity register ($Q). If ' is preceded by a,
the value a is taken as the address of the location to be interpreted and
displayed.

Word mode Radix-50 operator. Interprets and displays the contents of
the currently open (or the previously opened) location as three Radix-50
characters and stores this word in the quantity register ($Q). If % is
preceded by a, the value a is taken as the address of the location to be
interpreted and displayed.

Word mode octal operator. Displays the contents of the last word location
opened and stores this octal word in the quantity register ($Q). If / is
preceded by a, the value is taken as the address of a word location to be
opened and displayed.

Byte mode octal operator. Displays the contents of the last byte location
opened and stores this octal byte in the quantity register ($Q). If \ is
preceded by a, XDT takes the value a as the address of a byte location to
be opened and displayed.

Command that interprets and displays expression value k as six octal digits
and stores this word in the quantity register ($Q).

Invalid expressions that cancel the current command. ODT then awaits a

new command. The decimal values 8 and 9 are not valid characters and
thus, when entered, cause XDT to ignore the current command.

Command that removes all breakpoints. Breakpoint can be in drivers,
privileged tasks, and other system-level code as well as in the Executive
itself,

2-12 Debugging with XDT

Table 2-4 (Cont.): XDT Operators and Commands

Format

Meaning

nB

a;nB

G or aG

nK

a;nK

Command that removes the nth breakpoint. Breakpoint can be in drivers,
privileged tasks, and other system-level code, as well as in the Executive
itself.

Command that sets breakpoint n at address a. Breakpoint can be in
drivers, privileged tasks, and other system-level code as well as in the
Executive itself. If n is omitted, XDT assumes the lowest-numbered
available sequential breakpoint.

Constant register indicator. Represents the contents of register $C (constant
register).

Command that accesses data space. After this command is issued, XDT
interprets all references to locations as referring to data space.

Command that begins system execution at the current location in the
program counter, following these steps:

e Sets BPT instructions in or restores BPT instructions to all breakpoint
locations ‘

e Restores the Processor Status Word (PSW) v

e Starts execution at the address specified by the program counter
(register $7)

If G is preceded by a, the value a replaces the current program counter
($7) contents before proceeding as described above.

Command that accesses instruction space. After this command is issued,
XDT interprets all references to locations as referring to the instruction
space of the task.

Command that, using the relocation register whose contents are equal to
or closest to (but less than) the address of the currently open location,
computes the physical distance (in bytes) between the address of the
currently open location and the value contained in that relocation register.
XDT displays this offset and stores the value in the quantity register ($Q).

Command that computes the physical distance (in bytes) between the
address of the currently open or the last-opened location and the value
contained in relocation register n. XDT displays this offset and stores the
value in the quantity register ($Q).

Command that computes the physical distance (in bytes) between address
a and the value contained in relocation register n. XDT displays this offset
and stores the value in the quantity register ($Q).

Debugging with XDT 2-13

Table 2-4 (Cont.): XDT Operators and Commands

Format

Meaning

L or kL
or a;LL
or a;kL

a0 or a;kO

P or kP

nR
a;nR

S or nS

Command that lists all the word or byte locations between the address
limits that are specified by the low memory limit register ($L) and the high
memory limit register ($H). If L is preceded by k, the value k replaces the
current contents of $H before initiating the list operation. If L is preceded
by a, the value a replaces the current contents of $L before initiating the
list operation. Note that XDT’s primitive terminal interface code recognizes
CTRL/S and CTRL/Q so that the output produced by this command may
be easily controlled. In loadable XDT, typing CTRL/O cancels the list
command and returns the XDT> prompt.

Command that calculates and displays the PC-relative offset and the
8-bit branch displacement from the currently open location to ad-
dress a; or calculates and displays the PC-relative offset and the
8-bit branch displacement from the specified address a to the specified
address k.

Command that causes the system to proceed with execution from the
current breakpoint location and to stop when the next breakpoint location
is encountered or when the next trap occurs, if any. If k is specified, XDT
proceeds with program execution from the current location and stops at
the breakpoint only after encountering it the number of times specified by
integer k.

Quantity register indicator. Represents the contents of register $Q (quantity
register).

Command that sets all relocation registers to the highest address value,
1777774, so they cannot be used in forming addresses.

Command that sets relocation register n to the highest address value,
1777773, so it cannot be used in forming addresses.

Command that sets relocation register n to address value a. If n is omitted,
XDT assumes relocation register 0.

Command that executes one instruction and displays the address of the next
instruction to be executed. If n is specified, XDT executes n instructions
and displays the address of the next instruction to be executed.

Command that exits from the Executive to the system crash dump routine.

2-14 Debugging with XDT

Chapter 3
Error Detection

The Executive Debugging Tool (XDT) responds to errors in user input and to certain hardware-
detected errors that occur during task execution. This chapter describes these errors, XDT’s
response to them, and what action the user can take to correct them.

3.1 Input Errors

XDT uses the question mark (?) to indicate that it has detected an error in user input. After
displaying the question mark, XDT generates a carriage return and a line feed, and then XDT
prompts for another command.

XDT responds with the question’mark to any of the following input errors:
® Reference to an address without an operator

¢ Reference to an address that is not mapped

* Reference to a nonexistent register—for example, $20

* Input of an illegal character—for example, 8 or 9

If you have typed an incorrect input string—for example, contradictory arguments for the W
command—you may find that the simplest course of action is to cancel the input string by
typing an illegal character. You cannot, however, erase a string once you have entered the
command—the character W, in this case.

XDT does not tell you what error has caused it to display the question mark. However, an error
sometimes causes XDT to return one of the error codes listed in Section 3.2, plus information
on the location at which the error occurred.

In some cases (for example, if you attempt a memory operation when $L is greater than $H),
XDT repeats its prompt but does not display a question mark.

Error Detection 3-1

3.2 Task Image Error Codes

Eight synchronous system trap (SST) vector registers are used to contain pointers to error-
handling routines. Upon detecting an error condition, XDT activates the appropriate routine
and displays an error message. This message has the form cc:k, where cc is a 2-character error
code and k is the location at which the error occurred. XDT displays the location as a relative
address if there is a relocation register containing a base address less than the absolute address
of the location.

The following examples are error messages from a debugging session:

MP:007414
0D:1,003507

The remainder of this chapter is an alphabetic list of error codes. Each error code is followed by
an explanation and a description of what action the user should take in response to the error.

BE Explanation: Breakpoint instruction executed at unexpected location. The address of
the breakpoint instruction does not match the contents of any register, $0B to $7B.

User Action: Examine your code to determine why the unexpected breakpoint occurred;
then, continue with the P command.

EM Explanation: Invalid EMT instruction executed. Only EMT 377 and EMT 376 (for
a privileged task) are allowed by the Executive for execution of Executive directives.
Normally, vector address 30 is used for this trap sequence.

User Action: If you want to use an EMT trap handler that you have written, set SST
vector register 5 ($5V) to the appropriate vector address.

FP Explanation: Floating-point instruction error. One of the following has occurred:
division by zero; illegal Floating Op Code; flotation overflow or underflow; or conversion
failure.

User Action: Check your code for sequences that may have caused one of these
conditions.

IL Explanation: Reserved or illegal instruction executed. The task tried to execute a
' nonexistent instruction or an EIS or FPP instruction in a system with no EIS or FPP
hardware.

User Action: Check your code for typographical errors or the use of a nonexistent
instruction.

IO Explanation: IOT instruction executed. Normally, vector address 20 is used for this
trap sequence.

User Action: To change the handling of I/O traps, set SST vector register 3 ($3V) to
the appropriate vector address.

MP Explanation: Memory-protection violation or illegal memory reference. The task tried
to access a location outside of the ranges mapped, or the task tried to access a location
that it did not have the privilege to access.

User Action: Check your code for typographical or programming errors that could lead
to this condition.

3-2 Error Detection

oD

TE

TR

Explanation: Odd address reference on word instruction. The PC contained an odd
address when trying to access a word in memory. Also, on some processors, indicates
execution of an illegal instruction.

User Action: Check your code for the use of a word instruction when a byte instruction
was intended (MOV instead of MOVB, for example), or check for a typographical error
in the address specification.

Explanation: T-bit exception. The T-bit was set by some mechanism other than a
breakpoint or an S or P command. This error can occur if bit 4 is set in a word that is
interpreted as the PSW due to its position on the stack.

User Action: Check that the stack contains appropriate values.
Explanation: TRAP instruction executed. Normally, vector address 34 is used for this
trap sequence.

User Action: To change the handling of TRAP instructions, set SST vector register 6
($6V) to the appropriate vector address.

Error Detection 3-3

Appendix A
Processor Status Word

The Processor Status Word (PSW), stored at hardware location 17777776, contains information
on the current status of the processor. The information contained in this location includes the
following: ’

* The current and previous operational modes of the processor (mapped system only)
* The current processor priority

* An indicator that, when set, causes a trap upon completion of the current instruction
® Condition codes describing the results of the last instruction executed

The format of the PSW is shown in Figure A-1.

Figure A-1: Format of the Processor Status Word

15 14 13 12 11

|
|
=

CARRY
OVERFLOW
ZERO

NEGATIVE
TRACE TRAP
GEN REG SET
PREVIOUS MODE
CURRENT MODE

ZK-491-81

Bits 15 and 14 indicate the current processor mode: user mode (11), supervisor mode (01), or
kernel mode (00). Bits 13 and 12 indicate the previous mode; that is, the mode the machine
was in (user, supervisor, or kernel) prior to the last interrupt or trap.

Processor Status Word A-1

Bits 7 to 5 show the current priority of the central processor. The central processor operates
at any one of eight levels of priority (0 to 7). When the central processor is operating at
level 7 (the highest priority), an external device cannot interrupt it with a request for service.
The central processor must be operating at a lower priority than the external device’s request in
order for the interrupt to take effect.

The trace (T) bit (bit 4) can be set or cleared under program control. When set, a processor
trap will occur through location 14 upon completion of the current user instruction, and a new
PSW will be loaded. The T-bit is especially useful in debugging programs because it provides
an efficient means for stepping through the task one instruction at a time. ODT uses the T-bit
to execute instructions when you are stepping through your program with the S command, as
described in Chapter 2.

The condition codes N, Z, V, and C (bits 3 to 0, respectively) indicate the result of the last
central processor operation. These bits are set as follows:

N=1 If the result was negative
Z=1 If the result was zero ‘ .
V=1 If the operation resulted in an arithmetic overflow

C=1 If the operation resulted in a carry from the most significant bit

A-2 Processor Status Word

Appendix B

Executive Symbols Supported by Loadable XDT

Table B-1 lists the Executive symbols that XDT automatically searches for in an internal table.
You use the symbol (#symbolname) the same way as you would use the “a” variable in an
XDT command line. Specifying the symbol name eliminates having to look in the Executive
map for the symbol’s address. After locating the symbol, XDT displays the symbol’s value. See

Chapter 2 for more information on how to specify these symbols.

Table B-1: Executive Symbols Supported by Loadable XDT

Symbols from SYSXT—System entrance and exit routines
$CFORK $CKMAP $DBTRP $DIRSV $DIRXT $DSPKA $EXDOP
$EXROP $EXRP1 $FINBF $FINDI $FINXT $FORK $FORK1
$FORKO $FORK2 $GENBF $GGFRN $IFORK $INTSC $INTSE
$INTSF $INTSI $INTSV ~ $INTX1 $INTXT $LSUPD $LSUP1
$NONSI $QFORK $SGFIN $SWSTK $WPINO $WPIN1 $WPIN2
$WPIN3 $WPBR -

Symbols from LOWCR—Low core vector area

$BCERR $BCFAC $BCPC $BILNG $CPBIT $CPCRM $CSFSV
$CSHSV ~ $CURPR $CXDBL $FMAPP $HEADR $HFMSK $ICAVL
$KXBAS $KXPTR $KXVC1 $PROCN $RQSCH $SAHDB $SAHPT
$SGFFR $SIRWF $STACK $STKDP $STRTM $SUPFL $TKTCB
$UMPC $UMPS $UMRHD $UMRWT $UMR4 $UMRS5 $XXLOW
$XXHGH

Executive Symbols Supported by Loadable XDT B-1

Table B-1 (Cont.): Executive Symbols Supported by Loadable XDT

Symbols from BFCTL—Buffer control routine

$BLXIO $GTBYT $GTWRD $PTBYT $PTWRD
Symbols from CORAL—Core allocation and deallocation routines
$ALCLK $ALOCB $ALOC1 $ALPKT $ALSEC $ALSC1 $ALSPK
$ALVBK $DCLKA $DEACB $DEAC1 $DECLK $DEPKT $DESC1
$DESEC $DESPK $PLTRQ
Symbols from DRSUB—General executive subroutines
$CPALO $CPCON $CPDEA $CPSEN $DRCL2 $DRCL3 $DRQRQ
$FINDR $IMASG $MPDC1 $MPDC2 $MPDC3 $MPDC4 $MPDCV
$MPPRO
Symbols from EXESB—General executive subroutines
$ACHCK $ACHKB $ACHKP $ACHKW $ACHRO $ACHUI $CEFI
$CEFIG $CEFN $CEFNG $CKBFB $CKBFI $CKBFR $CKBFW
$CVDVN $DRWSE $MPLUN $MPLND $MPLNE $SRGEF $TICLR
$TKWSE
Symbols from IOSUB—I/O subroutines
$DCWIO $DECAL $DECBF $DECIO $DECIP $DVMSG $DVMGI
$GSPKT $GTPKT $INIBF $IOALT $IODON $IODSA $IOFIN
$IOKIL $IOKL1 $IOKL2 $QPKRQ $QPKR1 $QUEBF $REQUE
$REQU1 $SCDVT $SCDV1 $TSTBF $ULDRQ
Symbols from MDSUB—Mass storage device subroutines
$BLKCK $BLKC1 $BLKC2 $CKLBN $CRPAS $CVLBN $DEATR
$DLNK $ECCOR $LCKPR $MPPKT $MPVBN $RQCNC $RQCND
$RLCN $SHFND $SHFN1 $SHSAV ~ $VOLVD

B-2 Executive Symbols Supported by Loadable XDT

Table B-1 (Cont.): Executive Symbols Supported by Loadable XDT

Symbols from MEMAP—Memory mapping subroutines
$ASUMR $DEUMR $DQUMR $MPPHY $MPUBM $MPUBI $RELCD
$RELOC $RELOM $RELOP $RELUI $STMAP $STMP1 $SWACD
$SWAC1 $WTUMR

Symbols from PLSUB—PLAS subroutines
$CKACC $CRATT $DELRG ~ $DETRG $SRNAM $SRATT $SRWND
$UNMAP

Symbols from QUEUE—Queue manipulation routines
$CLINS $CLRMV $CLRSM $GTSPK $QCLIL $QCLNR $QCNTP
$QCPKT $QINSB $QINSF $QINSP $QMCR $QMCRL $QRMVA
$QRMVF $QRMVT $QSPIB $QSPIF $QSPIP $QSPRF $SCMDQ
$SRCCQ $SRCQ1 $SRUCB $SRUC1

Symbols from REQSB—Request subroutine

$ABCTK $ABTSK $ACCRG $ACTRM $ACTTK $ALTRG $BILDS

$CALTA $CLSRF $DASTT $DCAST $DEARG $DQAC $DRTHR
$ERREC $ERTHR $EXRQF $EXRQN $EXRQP $EXRQS $EXRQU
$FNDSP ~ $ICHKP $LDREG $LOADT $MAPTK $NXTSK $QASTC
$QASTT $QUEXT $REMOV $REMO1 $RLCPS $RLPAR $RLPRI

$SETCR $SETF $SETFG $SETM $SETMG $SETRT $SETRQ
$SRAST ~ $SRMUT $SRPRO $SRSTD $STPCT $STPTK $TCBCP
$TSKRP ~ $TSKRQ $TSKRT $TSPAR $TSTCP $UISET

Symbols from SSTSR—Synchronous system trap (SST) routines
$EMSST $FPPRQ $FPPR7 $FPPR8 $ILINS $IOTRP $SGFLT
$TRACE $TRP0O4

Executive Symbols Supported by Loadable XDT B-3

Table B-1 (Cont.): Executive Symbols Supported by Loadable XDT

Symbols from SYSXT—System entrance and exit routines

$CFORK $CKMAP $DBTRP $DIRSV $DIRXT $EXDOP $EXROP
$EXRP1 $FINBF $FINDI $FINXT $FORK $FORK1 $FORKO
$FORK2 $GENBF $GGFRN $IFORK $INTSC $INTSE $INTSF
$INTSI $INTSV $INTX1 $INTXT $LSUPD $LSUP1 $NONSI
$QFORK $SGFIN $SWSTK $WPINO $WPIN1 $WPIN2 $WPIN3
$WPBR $DSPKA

Symbols from SCBDF$—Statistics Control Block (SCB) offset definitions

S.CTM S.EMB S.FRK S.KS5 S.IT™ SKRB - SKITB
S.LHD S.PKT S.RCNT S.ROFF S.STS S.5T2 5.5T3
S.URM

Symbols from TCBDF$—Variable Task Control Block (TCB) offset definitions

T.ACN T.CPU T.CTX T.IRM T.ISIZ T.OCBH = T.RDCT
T.RRM T.SAST

Symbols from UCBDF—Variable Unit Control Block (UCB) offset definitions

U.CTX U.FPRO U.UAB U.LOG

Symbols from PCBDF$—Attachment descriptor block offset definitions

AIOC AMPCT APCB A.PCBL A.PRI ASTAT ATCB
A.TCBL

Symbols from CTBDF$—Controller Table Block (CTB) offset definitions

L.CLK L.DCB L.ICB L.KRB L.LNK L.NAM L.NUM
L.STS

Symbols from DCBDF$—Device Control Block (DCB) offset definitions

D.DSP D.LNK D.MSK D.NAM D.PCB D.VCAN D.VCHK
D.VDEB D.VKRB D.VNXC D.VTIN D.VTOU D.VINI D.VOUT
D.VPWF D.VUCB D.UCB D.UCBL D.UNIT

B-4 Executive Symbols Supported by Loadable XDT

Table B-1 (Cont.):

Executive Symbols Supported by Loadable XDT

Symbols from KRBDF$—Controller Request Block (KRB) offset definitions

K.CON K.CRQ K.CSR K.FRK K.HPU K.IOC K.OFF
K.OWN K.PRI K.PRM K.STS K.URM K.VCT

Symbols from PCBDF$—Partition Control Block (PCB) offset definitions
P.ATT P.BLKS P.CBDL P.CSBA P.DPCB PHDLN PHDR
P.IOC P.LNK P.MAIN P.NAM P.OWN P.PRI P.PRO
P.REL P.RMCT P.RRM P.SIZE P.STAT P.ST2 P.SWSZ
P.SUB P.TCB P.WAIT

Symbols from SCBDF$—Mapping assignment block definitions

M.BFVH M.BFVL M.LNK M.UMRA M.UMRN M.UMVH M.UMVL

Symbols from TCBDF$—Fixed Task Control Block (TCB) offset definitions

T.ACTL
T.HDLN
T.NAM
T.SRCT
T.TIO

T.ASTL T.ATT
T.IID T.IOC
T.OFF T.PCB
T.STAT T.ST2

T.UCB

T.DPRI
T.LBN
T.PCBV
T.ST3

T.EFLG
T.LDV
T.PRI
T.ST4

T.EFLM
T.LNK

TRCVL
T.TCBL

T.GGF
T.MXSZ
T.RRFL
T.TKSZ

Symbols from UCBDF—Fixed Unit Control Block (UCB) offset definitions

U.MUP
U.UNIT
U.ATT

U.UMB

U.LUIC U.OWN
U.ST2 U.CW1
U.BUF U.CNT
U.PRM

U.DCB
U.Cw2

U.UCBX

U.RED
U.CW3
U.ACP

U.CTL
U.CW4
U.VCB

U.STS
U.SCB
U.CBF

Executive Symbols Supported by Loadable XDT B-5

Index

A

C

Absolute location, 2-11
Address
relocatable, 2-13

American Standard Code for Information

Interchange
See ASCII
A register, 2-11
Argument separator, 2-10
ASCII
operator
byte mode, 2-12
word mode, 2-12
At sign command (@), 2-11
a variable, 2-10

B

B command, 2-12
BPT trap instruction, 1-8
Branch location, 2-11
Breakpoint, 1-9, 2-14
address register, 2-12
inserting with OPEN command, 1-9
inserting with ZAP utility, 1-11
instruction register, 2-12
proceed count register, 2-12
removing, 2-12
setting with XDT, 2-2
B register, 2-12
BRK command, 1-9
Bugcheck, 2-5
Byte mode
operator
ASCII, 2-12
octal, 2-12

Circumflex command (), 2-11
Command
at sign (@), 2-11
B, 2-12
circumflex (°), 2-11
D, 2-13
equal sign (=), 2-12
G, 1-8, 2-13
I, 2-13
K, 2-13
L, 2-14
left angle bracket (<), 2-11
LINE FEED, 2-10
O, 2-14
P, 19, 2-14
R, 2-14
RETURN, 2-10
right angle bracket (>), 2-11
S, 2-2, 2-14
underscore (), 2-11
variables
a, 2-10
k, 2-10
n, 2-10
#symbol, 2-10
list, B-1
x, 2-10
X, 2-1, 2-14
C register, 2-12
indicator, 2-13
CTRL/O
XDT, 2-14
Current location indicator (.), 2-10

D

Data space, 2-4

Index-1

Data space (cont’d.)
command, 2-13
D command, 2-13
Dollar sign ($), 2-11
Driver
debugging, 2-2

E

EMT trap instruction, 1-8, 2-5
Equal sign command (=), 2-12

Error
codes, 2-6, 3-2
detection, 3-1
facility codes, 2-6
task image, 3-2
T-bit, 2-5
Exit command, 2-14
Expression
invalid, 2-12
register address, 2-11

F

F register, 2-12

G

G command, 1-8, 2-13
G register, 2-12

H

H register, 2-11
I

I command, 2-13
Instruction space, 2-4

command, 2-13
Interrupt processing, 1-4
IOT trap instruction, 1-8
I register, 2-12

K

K command, 2-13
k variable, 2-10

L

L command, 2-14

Left angle bracket command (<), 2-11

LINE FEED command, 2-10
Location

absolute, 2-11
L register, 2-11

Index-2

M

Memory

examining memory location, 2-3

Mode
user, 2-2

N

n variable, 2-10

O

O command, 2-14
Octal operator
byte mode, 2-12
word mode, 2-12
Offset
calculating, 2-14
PC-relative, 2-14
OPEN command, 1-9
Operator
apostrophe ('), 2-12
backslash (\), 2-12
byte mode
ASCII, 2-12
octal, 2-12
minus sign (-), 2-10
percent sign (%), 2-12
plus sign (+), 2-10
quotation mark ("), 2-12
slash (/), 2-12
space, 2-10
word mode
ASCII, 2-12
octal, 2-12
Radix-50, 2-12

P

P command, 1-9, 2-14
PC-relative offset, 2-14
Processor clock, 1-11
turning off, 2-4
Processor states, 1-3
priority, 1-4
Processor Status Word
See PSW
Processor traps
XDT, 1-8
PSW, A-1
format, A-1

Q

Q register, 2-12
indicator, 2-14

Question mark (?)
user input error, 3-1

R

Radix-50
operator
word mode, 2-12
separator (*), 2-10
R command, 2-14
Register
A, 2-11
B, 2-12
breakpoint
address, 2-12
instruction, 2-12
proceed count, 2-12
C, 2-12
indicator, 2-13
F, 2-12
G, 2-12
general, 2-11
H, 2-11
I, 2-12
L, 2-11
Q, 2-12
indicator, 2-14
R, 2-12
clearing, 2-14
setting, 2-14
S, 2-11
XDT internal, 2-11
Register indicator
C register, 2-13
current location (.), 2-10
Q register, 2-14

Relative branch location, 2-11

Relocatable address, 2-13
RETURN command, 2-10

Right angle bracket command (>), 2-11

R register, 2-12
clearing, 2-14
setting, 2-14

S

S command, 2-2, 2-14

Separator

~ argument (,), 2-10
argument (;), 2-10

Separator (cont’d.)
Radix~-50 (*), 2-10

Space operator
See Operator

S register, 2-11

SST, 1-5

Stack Depth Indicator
See $STKDP

$STKDP, 1-4, 1-8, 2-2

#symbol variable, 2-10
list, B-1

Synchronous System Trap
See SST

System Trap, 1-5

T

Task
execution
beginning, 2-13
fixed, 2-2
privileged, 2-2
debugging with ZAP, 1-11
Trap, 3-2
entry codes, 1-6
instructions
BPT, 1-8
EMT, 1-8, 2-5
10T, 1-8
TRAP, 1-8
TRAP trap instruction, 1-8

U

Underscore command (—), 2-11

\Y

Variable, 2-10
#symbol
list, B-1

W

Word mode
operator
ASCII, 2-12
octal, 2-12
Radix-50, 2-12

X

X command, 2-1, 2-14
x variable, 2-10

Index-3

yA

ZAP utility
debugging privileged task, 1-11
inserting breakpoint, 1-11
modifying system image, 1-11

Index-4

RSX-11M-PLUS and Micro/RSX
XDT Reference Manual
AA-JT78A-TC

READER’S Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
COMMENTS and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer /user:

Name Date

Organization

Street

City State ______ Zip Code

or Country

——— Do Not T ar - Fold H r and Tape - —_— e o e e e

'No Postage

™ Necessary
t if Mailed

in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

ceme—— D0 NOt Tear - FOld HEre — — — e mm o o oo o o e i e o o e e e e e o e o ot e e e o e

