RSX-11M/M-PLUS
Task Biilder Manuai
Order No. AA-L680B-TC

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1

digital equipment corporation - maynard, massachusetts

First Printing, June 1979
Revised, January 1982
Revised, April 1983

The information in this decument is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1979, 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT Eﬂgﬂan
DECUS RSTS
DECwriter
ZK2250
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS {USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.0O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

“Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC). igitai Equipment
Corporation. Northboro. Massachusetts 01532

CONTENTS

Page

>
<

PREFACE

SUMMARY OF TECHNICAL CHANGES xix

CHAPTER 1 INTRODUCTION AND COMMAND SPECIFICATIONS

TASK COMMAND LINE .+ ¢ o o ¢ o o o o o s o o o o o«
Printing the Map File . . ¢ & & ¢ ¢ &+ o o o o &
Omitting Specific Output Files

MULTILINE INPUT . ¢ o o ¢ o o o o « o o s o o o =

OPTIONS . . . e e e s e e o e o e s e o o o e o

MULTIPLE TASK SPECIFICATIONS e o o e o o e o s o o

INDIRECT COMMAND FILES &+ &+ « « s o o s o o o o o =

COMMENTS IN LINES . & & o ¢ o o o o o o o o o o »

FILE SPECIFICATIONS . &+ 4 & o o o o o o o o o o &

SUMMARY OF SYNTAX RULES . . ¢ ¢ ¢ o o ¢ o o o o

.
N -
}

H B
L]
O JN N W N

.
1
QoUW WWNN

..
'—l

T e e]
ol]

N

CHAPTER TASK BUILDER FUNCTIONS

LINKING OBJECT MODULES . .+ ¢ ¢ « o o o o o s o o =
Allocating Program Sections . . ¢« ¢« v ¢« o o« o« .

1 Access-code and Allocation-code . . + .+ . . .

.2 Type-Code and Scope-Code . ¢« + « o « o o o o &
Resolving Global Symbols . . . « + &« « & « & + &

THE TASK STRUCTURE . ¢« &« & &4 o o o o o o o o o o =

OVERLAYS e« e o o o e e o e o s o = = @

ADDRESSING CONCEPTS e e s s e s e e o o o o e

1 Physical, Virtual, and Logical Addresses . . .

2 Unmapped SYSEEmMS + ¢ « o « o o o o o o o o « o 2-14

3

4

. L 1 .

NN

1 NN
[l et S B |
wowo~NJunNE

IS N N N N R

N
[}
[}
w

Mapped SYStems . . & « o o o s s o o o o + o o 2=14
Regions & & ¢« v o ¢« o o o o o o s o o o o o o 2-18
TASK MAPPING AND WINDOWS . ¢ ¢« « o + o o s o« « o 2-20
.1 Task Windows . . . ¢ « « o ¢ ¢ &« ¢ « o &« o « o« 2=20

. o

NN DNDNNDNDNNDNDNDNDDNDND

.

r-Mode Mappin
PRIVILEGED TASKS « e e s e e s e e . 2-25

© +MULTIUSER TASKS. (RSX-11M- PLUS ONLY) " wilere o o w1228
7 USER~MODE 'I=- AND D-SPACE TASKS (RSX= -11M- PLUS), .. '2-28

CHAPTER 3 OVERLAY CAPABILITY

3.1 OVERLAY STRUCTURES « v 4 ¢ o o o o o o o o o« o o o 3-1
3.1.1 Disk-Resident Overlay Structures + + « . 3-2
3.1.2 Memory-Resident Overlay Structures (Not

Supported on RSX-11S) . . &« &« ¢« o o o o« o« « o « 3-5
3.2 OVERLAY TREE . . ¢ ¢ ¢ & ¢ 4 o o o « o« o« o« o &« &« 3-15
3.2.1 Loading Mechanism ¢« « ¢« +« ¢« « « « . 3-16
3.2.2 Resolution of Global Symbols in a Multisegment

Task o« ¢« o ¢ ¢ ¢ & o o o & o 4 s 4 s s« « « . 3-16

iii

CHAPTER

CHAPTER

CONTENTS

Page
3.2.3 Resolution of Global Symbols from the Default
Library . o« o o o o o o o o o o o o s o o o« « 3-18
3.2.4 Allocation of Program Sections in a
Multisegment Task . . . e e o e o s e o o 3-19
3.3 OVERLAY DATA STRUCTURES AND RUN TIME ROUTINES . 3-19
3.3

.1 Overlaid Conventional Task Structures 3-20

OVERLAY DESCRIPTION LANGUAGE . . « « o « o o o o 3-23

MULTIPLE-TREE STRUCTURES . . + « &« + « o« « « « « 3=-30
Defining a Multiple-Tree Structure 3-30

3.4
3.4.1 .ROOT and .END Directives . . . « ¢« ¢ « « » o 3=23
3.4.2 .FCTR Directive e e+ o o s 3=25
3.4.3 Arguments for the .FCTR and ROOT D1rect1ves . 3-25
3.4.3.1 Named Input File . . . e 4 & 4 s e s s o o 3=25
3.4.3.2 Specific Library Modules e+ e s e s o « o » 3=26
3.4.3.3 A Library to Resolve References Not

Previously Resolved . . . « « « « &« « « « o 3-26
3.4.3.4 A Section Name Used in a .PSECT Directive . 3-26
3.4.3.5 A Segment Name Used in a .NAME Directive . . 3-26
3.4.4 Exclamation Point Operator « « « « . « 3-26
3.4.5 .NAME Directive e e s e o s o o o o 3=27
3.4.5.1 Example of The Use of The .NAME Directive . 3-28
3.4.6 .PSECT Directive . . + + « ¢ o o o o o o « « o« 3=29
3.4.7 Indirect Command Files « . « « ¢« « ¢ « « « « - 3=30
3.5
3.5
3.5

.
o

.5.1.1 Defining Co-trees With a Null Root by 031ng
NBAME & 4 4 4 v e s 4 e s e s s s e s o o o 3=31
3.5.2 Multiple-Tree Example 3-31
3.6 CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE
ALLOCATION DIAGRAM =« . e « e« o« « « 3-35
3.6.1 Creating a .ROOT Statement by U31ng a Virtual
Address Space Allocation Diagram 3=37
3.6.2 Creating a .FCTR Statement by Using a V1rtua1
Address Space Allocation Diagram 3-38
3.6.3 Creating an ODL Statement for a Co-Tree by
Using a Virtual Address Space Diagram 3-39
3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL
LANGUAGE « e e e . s Y
3.8 EXAMPLE 3-1: BUILDING AN OVERLAY e o« + 3-41
3.9 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE « « 3-49
4 OVERLAY LOADING METHODS
4.1 AUTOLOAD & « & o o o o o s o o s o o s o o o o o o« 4-1
4.1.1 Autoload Indicator . . o & & ¢ ¢ o « o o o o o . 4-2
4.1.2 Path Loading . « & ¢ ¢ ¢ ¢ o o o o o o o o o o « 4=3
4.1.3 Autoload Vectors . . e e e e s e e e e o o o 4-4
4.1.4 Autoloadable Data Segments T
4.2 MANUAL LOAD . . . o o o e e e s e s s e o o &-7
4.2.1 MACRO-11 Manual Load Calllng Sequence 4-7

GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK . . .
USE AND SIZE OF OVERLAY RUNTIME ROUTINES

5 SHARED REGION CONCEPTS AND EXAMPLES

5.1 SHARED REGIONS DEFINED . +. ¢« « & o o « « o o o o« & 5-1
5.1.1 The Symbol Definition File 5-4
5.1.2 Position-Independent Shared Regions 5-5

iv

CHAPTER

« e o « e 0
« ¢ ¢ o o 0
B> WwWwwwNN
" . e . 0
w N - N

GRGECGYC RGN R R
L]
o e e

.
o

5.1.11.1

5.1.12

5.2.1.4
5.2.1.5

5.2.1.6

CONTENTS

Position-Independent Shared Region Mapping
Specifying a Position-Independent Region .
Absolute Shared Regions ¢ ¢« ¢« « « .
Absolute Shared Region Mapping
Specifying an Absolute Shared Region . . .
Absolute Shared Region .STB File
Shared Regions with Memory-Resident Overlays
Considerations About Building an Overlaid
Shared Region .+ .« & 4 ¢ o ¢« o « o o o o &
Example of Building a Memory-Resident
Overlaid Shared Region e e e e o & e W
Options for Use in Overlaid Shared Regi
Autoload Vectors and .STB Files for Ove
Shared Regions . . ¢ v ¢ o o o o o o o o &
Run-Time Support for Overlaid Shared Regions
Linking to a Shared Region
Number and Size of Shared Regions
Example 5-1: Building and Linking to a Common
in MACRO-1I1 . . . v & v 4 v 4 o o o o o o &
Linking Shared Regions Together . . .
Examplé 5-2: Building and Linking to a Device
Common in MACRO-11 e

HO'

Example 5-3: Building and L1nk1ng to a Resident

Library in MACRO-11 . . . +v v 4 o o o o o &
Resolving Program Section Names in a
Shared Region . . . o

Example 5-4: Building a Task That Creates a

Dynamic Region . . « ¢ & ¢« ¢ ¢ ¢ ¢« & v o« « .

CLUSTER LIBRARIES . . ¢ & & o « o o s o o« o =

Building the Libraries o o o o
Summary of Rules for Bulldlng the Libraries
Rule 1: All Libraries but the First Requir
Resident Overlays . . . v ¢« &« « o o o o &

Rule 2: User Task Vectors Indirectly Resolve

all Interlibrary References
Rule 3: Revectored Entry Point Symbols Mus
Not Appear in the "Upstream" .STB File . .
Rule 4: A Called Library Procedure Must No
Require Parameters on the Stack
Rule 5: All the Libraries Must be PIC or
Built for the Same Address

Rule 6: Trap or Asynchronous Entry Into a

Library is not Permitted
Building Your Task . o « &« & « v o o o « o &
Examples

F77CLS -- Build the Default lerary for the

FORTRAN-77 OTS . . « « . .

FDVRES -- Build an FMS- ll/RSX Vl 0 Shareabl
Library .« o o o v v v v 4 o« o o o o o o
FDVRESBLD.ODL -- Overlay Description for
FMS-11/RSX V1.0 Cluster Library
FCSRES Library Build e .
F77TST.CMD -- File to Build the FMS ll/RSX
V1.0 FORDEM Test Task . .+ +v ¢ ¢ « o « « &
Overlay Run-Time Support Requirements . . .

VIRTUAL PROGRAM SECTIONS . . « & &« & & o o o

FORTRAN Run-Time Support for virtual Program
Secticns . . . e e e 4 s e e s
Example 5-5: Bulldlng a Program that Uses a

Virtual Program Section « . . .

PRIVILEGED TASKS

INTRODUCTION . . & ¢ &¢ 4 o 4 o s o o o o o o &

-

-

e

t

t

e

5-39
5-40
5-43
5-44
5-44
5-45

5-46

CONTENTS

PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION . . 6-1
PRIVILEGED TASK HAZARDS . . « &+« « « o o« « o« o« o o 6-1
SPECIFYING A TASK AS PRIVILEGED 6-2
PRIVILEGED TASK MAPPING + & « & « o o o o o o o o 6=2
6-4
6-5
6-5

/PR:0 PRIVILEGED TASK . . ¢ & « ¢ o o o o o o« o« =
/PR:4 PRIVILEGED TASK . .+ ¢ o« « ¢ o o o o« o« o o =
/PR:5 PRIVILEGED TASK e o s e o e e s
EXAMPLE 6-1: BUILDING A PRIVILEGED TASK TO

EXAMINE UNIT CONTROL BLOCKS . « &« &« « & + « = « - 6-6

AN OO
¢ e
OO I WN

KTASK WINDOWS IN I— AND D-SPACE TASKS

‘SPECIFYING DATA ‘SPACE IN YOUR TASK
f‘OVERLAID I- AND ‘D~ SPACE TASKS w.,.,@f}
‘Autoload Vectors and .STB Files . . -

Qﬁ‘f:ﬂ;j.fjp(j,l— AND D-SPACE TASK MEMORY ALLOCATION - ANEJEXAM;,

i) MAPS P A S o . H o e emw Vot
7.9.1 . ~Virtual Memory Allocatlon for MAIN TSK . =10
7.9.2 . ' Virtual Memory Allocation for MAINID. TSK PR 0B
CHAPTER 8 SUPERVISOR-MODE LIBRARIES (RSX-11M-PLUS ONLY) - Tl
8.1 INTRODUCTION e se e e e ele i e el B=1
8.2 MODE~-SWITCHING VECTORS e - D
8.3 COMPLETION ROUTINES . .+ '+ & eie el e eim e 8-2

8.4 RESTRICTIONS ON THE CONTENTS OF SUPERVISOR—MODE
LIBRARIES e e e e & eiele o 8-2
8.5 SUPERVISOR-MODE LIBRARY MAPPING e e e we e e« o 8=3
8.5.1 Supervisor Mode Library Data . . . o eie - . 8-3
8.5.2 Superv1sor Mode Libraries with I- and D- Space e
: Tasks « s e e ‘m.wite PP . . o el el e 8-3
8.6 ”BUILDING AND LINKING- TO SUPERVISOR MODE LIBRARIES '847
8.6.1 ' " Relevant TKB Options . . « « « o ¢ o o o <o o o 8=7
8.6.2 " Building the Library ¢ & o e & o0 o 00 B=7
8.6.3" ‘Building the Referencing Task v v o o ve o o o 827
'8.6.4 ' Mode Switching Instruction . . ¢ o ¢ o v & e, 8-8"
8.7 . "CSM LIBRARIES » v w s o o s o v eieou o '8-8
gL ‘Building a CSM Library . '« v & v &uie B4
B Te20 Linking to a CSM-Library« o o =9
“.8.7.3 Example CSM lerary and Linking. Task .. 10
8.,7.3.1 " Building SUPER o e ‘ (8.
+7.3.2~ - Building TSUP. ‘.,;’.f;,;“’ , |8
.7.3.3 " Running, TSUP ,f. R R e .19
J7.40 0 The .CSM lerary ‘Dispatching Process . 19
8 CONVERTING SCAL: LIBRARIES TO CSM LIBRAR&ES 0

o w”” LIBRARIWS G, T e T e
.10 . MULTIPLE SUPERVISOR MODE LIBRARIES
ol

" LIBRARY . . e
LINKING SUPERVISOR MODE LIBRARIES

‘;OVERLAID SUPERVISORwMODE LIBRARIES

vi

CONTENTS

CHAPTER 10 SWITCHES
10.1 SWITCHES &+ v « o o o o o o o s s o o o o o « « « 10-1
10.,1.1 /AC[:n] -- Ancillary Control Processor 10-5
10.1.2 /AL -- Allocate Checkpoint Space 10-6
10.1.3 /CC -- Concatenated Object Modules 10-7
10.1.4 /CM -~ Compatibility Mode Overlay Structure . 10-8
10.1.5 /CO -- Build a Common Block Shared Region . . 10-9
10.1.6 /CP -- Checkpointable « « « « « o 10-10
10.1.7 J/CR -- Cross-Reference . . . « « ¢« o « « « « o« 10-11
10.1.8 /DA -- Debugging Aid . . + « + .« ¢ « ¢« + . . . 10-14
10.1.9 /DL -- Default Library . . « « « « « « « « « . 10-15
10.1.10 /EA -- Extended Arithmetic Element 10-16
10.1.11 /EL -- Extend Library . . « « « ¢ « « « « » o 10-17
10.1.12 /FP -- Floating Point « 10-18
10.1.13 JFU —— Full Search . . « « + « « o « « « « + « 10-19

eader

10.1.14

bLie L A [~pand, D=8pe
.1.16 /1P Task Maps 1/0 Page
10.1.17 /LB -- Library File . . . e e e o o o & o o 10-23

10.1.18 /LI -- Build a Library Shared Region 10-25
10.1.19 /MA -- Map Contents of File 10-26
10.1.20 /MM[:n] -- Memory Management .
10.1.21 /MP -- Overlay Description . .
1.0 oMU Multiug {RSRX=L1IM-PLU

/NM —-— No Dlagnos ic Messages

/PI -- Position Independent .

/PM -~ Postmortem Dump
10.1.26 /PR[:n] -- Privileged
10.1.27 /RO -- Resident Overlay . . « « « « « « « « . 10-34
10.1.28 /SE == Send . - .« « s+ o o o o o + o « o « o » 10-35
10.1.29 /SG -- Segregate Program Sections 10-36

10.1.30 /SH —— Short Map .« « « « « « o o o o o o « o« « 10=-37
10.1.31 /SL -- Slave P X o B
10.1.32 /SP -- Spool Map Output e e e « o s e o s & o 10-45
10.1.33 /SQ -- Sequential 4« ¢ o o o o o . . 10-46

10.1.34 /SS -- Selective Search . . . « « « « « « « o 10-47
10.1.35 /TR -- Traceable . « + « « « o o o « o« « = « « 10-50
10.1.36 /WI -- Wide Listing Format 10-51
1051537 v /XH == External., Header: (RSX-IlM&PLﬁSMJ Yoo 1 10=52
10.1.38 /XT[:n] -- Exit on Diagnostic « . 10-53
CHAPTER 11 OPTIONS

11.1 OPTIONS . « & o« « o o s o =« e e & s 4 e e e e 11-1
11.1.1 ABORT -- Abort the Task- Bulld e e e s e & s & 11-4
11.1.2 ABSPAT -- Absolute Patch« . . « . « . 11-5
11.1.3 ACTFIL -- Number of Active Files 11-6
11.1.4 ASG -- Device Assignment . . . e e e e e o . 11-7
11.1.5 CLSTR -- System-Owned Cluster of Resident

Libraries or Commons . « « + « « « o« o« o o o« «» 11-8
1i.1.6 - CMPRT -~ Completion Routinev—;kRSX—llﬁ PLUS s L

ONLY v v s v s % i e e e e e e e 11210
11.1.7 COMMON or LIBR -- System-Owned Resident Common

or System-Owned Resident Library 11-11

vii

CONTENTS

11.1.9 EXTSCT -- Program Section Extension 11-14
11.1.10 EXTTSK -- Extend Task Memory 11-15
11.1.11 FMTBUF -- Format Buffer Size 11-16
11.1.12 GBLDEF -- Global Symbol Definition 11-17
11.1.13 GBLINC -- Include Global Symbols 11-18
11.1.14 GBLPAT -- Global Relative Patch 11-19
11.1.15 GBLREF -- Global Symbol Reference 11-20
11.1.16 GBLXCL -- Exclude Global Symbols 11-21
11.1.17 LIBR -- System-Owned Library . . e e e . . 11-22
11.1.18 MAXBUF -- Maximum Record Buffer Slze e« & o . 11-23
11.1.19 ODTV —-- ODT SST VeCtOr .+ + « & o v & & o « « . 11-24
11.1.20 PAR -- Partition 11-25
11.1.21 PRI -- Priority ¢« ¢ v ¢« v v v v v o . 11-27
11.1.22 RESCOM or RESLIB -- Resident Common or

Resident lerary e o o o e 4 & o o s+ e o & a2 o 1l1-28
11.1.23 RESLIB i

1. AME 4 4 e e e e e e e e .. 11236
11.1.29 TSKV -- Task SST Vector . . e s e o o o o o 11-37
11.1.30 UIC -- User Identification Code e o e« o s o« o 11-38

11.1.31 UNITS -- Logical Unit Usage . . . « « « « . . 11-39
11.1.32 VSECT -- Virtual Program Section 11-40
11.1.33 WNDWS -- Number of Address Windows 11-41
APPENDIX A TASK BUILDER INPUT DATA FORMATS

A,1l DECLARE GLOBAL SYMBOL DIRECTORY RECORD A=2
A,1l.1 Module Name (TyPe 0) « v ¢« v v v o« o o o o o o« . A-4
A.1.2 Control Section Name (Type 1) . . . +. +. « . . . A=5
A.1.3 Internal Symbol Name (Type 2} . « ¢« +« « « . . . A-5
A.l.4 Transfer Address (Type 3) =+« ¢« ¢« « ¢« « « « « « . A-6
A.l1l.5 Global Symbol Name (Type 4) ©+ v ¢ & & o « o« « . B=6
A.1.6 Program Section Name (Type 5) .+ ¢« « ¢« o « o . . A=7
A.1.7 Program Version Identification (Type 6) . . . A-10
A.l1.8 Mapped Array Declaration (Type 7) . « ¢« « o A=10
A.1.9 Completion Routine Definition (Type 10) e « o A-11
A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD A-11
A.3 TEXT INFORMATION RECORD . . + v v & & o o o « . A=11
A.4 RELOCATION DIRECTORY RECORD . v v o o o o o o« . A-12
A.4.1 Internal Relocation (Type 1) « « . +« ¢« « « . . A-14
A.4.2 Global Relocation (Type 2) +. v v v o o « « « . B-15
A.4.3 Internal Displaced Relocation (Type 3) A-15
A.4.4 Global Displaced Relocation (Type 4) A-16
A.4.5 Global Additive Relocation (Type 5) A-16
A.4.6 Global Additive Displaced Relocation (Type 6) A-17
A.4.7 Location Counter Definition (Type 7) « ¢ « « o« A-17
A.4.8 Location Counter Modification (Type 10) « « o« A-18
A.4.9 Program Limits (Type 11) « « « . . A-18
A.4.10 Program Section Relocation (Type 12) e« o« +» « . A-19
A.4.11 Program Section Displaced Relocation (Type 14) A-19
A.4.12 Program Section Additive Relocation (Type 15) A-20
A.4,.13 Program Section Additive Displaced Relocation

(Type 16) e e o + o « « &« o« A=21
A.4,14 Complex Relocation (Type 17) e o e+ o e« o o &« o BA=22
A.4.15 Resident Library Relocation {Type 20) A-23
A.5 INTERNAL SYMBOL DIRECTORY RECORD A-24
A.5.1 Overall Record Format . . « v « v « &« & « o . A-24

viii

gt i
TR
NN
W

e o L Y
.
.

ol i i
NG RGN NGRS I T

APPENDIX B

Wwwwww
L]

W wwN -
.
N

APPENDIX E

APPENDIX F

APPENDIX G

CONTENTS

TKB Generated Records (Type 1) + + o ¢ « o « .
Start-of-Segment Item Type (1) « « «. o « o .
Task Identification Item Type (2) e e e e .
Autoloadable Library Entry Point Item Type
(3) « ¢« « & o . .

Relocatable/Relocated Records (Type 2)
Module Name Item Type (1) © * s o ® s e o
Global Symbol Item Type (2) =« « v o o o o &
PSECT Item Type (3) e e e e e e e e o
Line-Number or PC Correlation Item Type (
Internal Symbol Name Item Type (5) . . .

Literal Records (TYPE 4) v v v v v o o o o o .

END OF MODULE RECORD . &+ & ¢ v o o o 2 2 o 2 « =

1)

DETAILED TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP . . . ¢ & ¢ v v v & o o o &« &
CHECKPOINT AREA ¢ 4 ¢ ¢ o o o o o o o
HEADER . « v v ¢ ¢ v o v v 0 v 6 v v o o o v o
Low-Memory Context « . « . .
Logical Unit Table Entry . . « v v v o o o o
TASK IMAGE & & & o ¢ o o o o« o o o o o o o o & 4
Autoload Vectors for Conventional Tasks . . .

egment Descriptor
Window DeSCriptor . v v v v v v v o o o o o
Region DeSCriptor . . « v v v v ¢ o o o o o &

HOST AND TARGET SYSTEMS
INTRODUCTION . o+ & &« & & .+ . o« e e

EXAMPLE C-1: TRANSFERRING A TASK FROM A HOST TO
TARGET SYSTEM . ¢ v & v ¢ 4 o o o o o o o o o

MEMORY DUMPS

POSTMORTEM DUMPS & v ¢ v o« o ¢ o o o o o o o o @
SNAPSHOT DUMP . & &4 4 4o ¢ « o o o o o o o o o =
Format of the SNPBKS Macro . « « « o o o o o &
Format of the SNAPS Macro . « o v « o o o« o =
Example of a Snapshot Dump . . . «

RESERVED SYMBOLS

IMPROVING TASK BUILDER PERFORMANCE

EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT
Table Storage . . +¢ v ¢ 4 4 4 ¢ 4 e e e e o
Input File Processing . « ¢« ¢ ¢ ¢ v o « o « &
SUMMATY & & o o o o o o o o o o o « o « o o

MODIFYING COMMAND SWITCH DEFAULTS .+ . &« o o o

THE SLOW TASK BUILDER . &4 4 & ¢ o o o o o o o

THE FAST TASK BUILDER

ix

Page

A-25
A-25
A-26

A-26
A-27
A-27
A-28
A-29
A-29
A-30
A-30
A-30

CONTENTS

OVe;laldkTask MAIN TSK :

APPENDIX H ERROR MESSAGES

GLOSSARY

INDEX

EXAMPLES

EXAMPLE 3-1 Map File for OVR.TSK + ¢« ¢ o « o &« o o o o o« o« o 3-44
3-2 Map File for RESOVR.TSK . « « o &« « « « « « o« » 3-47
4-1 Cross-Reference Listing of Overlaid Task 4-13
5-1 Part 1 Common Area Source File in MACRO-11 . . 5-18
5-1 Part 2 Task Builder Map for MACCOM,TSK 5-19
5-1 Part 3 MACRO-11 Source Listing for MCOM1I . . . 5-21
5-1 Part 4 MACRO-11 Source Listing for MCOM2 . . . 5-22
5-1 Part 5 Task Builder Map for MCOM1.TSK 5-24
5-2 Part 1 Assembly Listing for TTCOM 5=27
5-2 Part 2 Task Builder Map for TPCOM 5-28
5-2 Part 3 Assembly Listing for TEST 5=29
5-2 Part 4 Memory Allocation Map for TEST 5-=31
5-3 Part 1 Source Listing for Resident Library

LIB.MAC & &« & o &« « o s s o o o s o o o o « « o« 5=32

5-3 Part 2 Task Builder Map for LIB.TSK 5-34
5-3 Part 3 Source Listing for MAIN.MAC 5=35
5-3 Part 4 Task Builder Map for MAIN.TSK 5-=37
5-4 Part 1 Source Listing for DYNAMIC.MAC 5-41
5-4 Part 2 Task Builder Map for DYNAMIC.TSK 5-43
5~5 Part 1 Source Listing for VSECT.FTN 5-59
5-5 Part 2 Task Builder Map for VSECT.TSK 5-61
6-1 Part 1 Source Code for PRIVEX . . +. « « « « « o o 6=7
6-1 Part 2 Task Builder Map for PRIVEX « e s+ s « . 6-10
7 ap. of : e g
7
8
8-
8

g

2 Memory Allocation File (Map) Example
Part 1 Task Builder Map for LIB.TSK . . « « . .
Part 2 Task Builder Map for MAIN.TSK
Sample Postmortem Dump {(Truncated) . . « « . « . . D=
Sample Program That Calls for Snapshot Dumps . . . D-9
Sample Snapshot Dump (in Word Octal and Radix-50) D-10
Sample Snapshot Dump (in Byte Octal and ASCII) . D-11

o

1

UUUCIJOOH
=W N

FIGURES

FIGURE 2-1 Relocatable Object Modules . +. + ¢« « « o « o o« o o 2-2
2-2 Modules Linked for Mapped and Unmapped Systems . . 2-3
2-3 Allocation of Task MemoOry . « « « « o « o o o o o 2=6
2-4 Disk Image of the Task . + v « o o o o o o o o « o« 2=9
2-5 2-9

Memory IMAge « o o & o o o o o o o o o o o o o o o

CONTENTS

Page

2-6 Simple 2-Segment, Disk-Resident Overlay Calling

Sequence . . . ¢ o & o s o » 2-11
2-7 Simple 2- Segment, Memory- Re31dent Overlay Calllng

SEqUeNCE « v o o o o o o o o o ¢ o o s & o & & o 2-12
2-8 Virtual and Logical Address Space Coincidence

in an Unmapped System . . . ¢« ¢« & « « « o« « . o 2=15
2-9 Memory Layout for Unmapped System 2-16
2-10 Task Relocation in a Mapped System e o 2=17
2-11 Memory Management Unit's Division of Vlrtual

Address Space « e e . o e o + + . 2-18
2-12 Mapping for 4K-Word and 6K Word Tasks e e o o . 2=-19
2-13 Window Block 0 e s e s o o o e o e o o e o o o o 2=21

mi

”1'tuar

TK1 i i -_Segment Task .

3-1 3
3-2 TKl1 Built As a Multisegment Task « « « o« 3-5
3-3 TK1 Built with Additional Overlay Deflned e . e . 3=7
3-4 TK2 Built As a Single-Segment Task . .« « « « . . . 3-8
3-5 TK2 Built As a Memory-Resident Overlay . « 3-9
3-6A Relationship Between Virtual Address Space and
Physical Memory -- Time 1 . . + ¢« & « « &« « . . 3-11
3-6B Relationship Between Virtual Address Space and
Physical Memory -- Time 2 « « ¢« « « « « 3-12
3-7a Relationship Between Virtual Address Space and
Physical Memory -- Time 3 « « « « « « . 3-13
3-7B Relationship Between Virtual Address Space and
Physical Memory -- Time 4 . . . + ¢« &« & « « « . 3-14
3-8 Overlay Tree for TKl . . &+ v ¢« ¢ « ¢« o « « « « « 3-16
3-9 Resolution of Global Symbols in a Multisegment
Task « ¢ o ¢ o o o o o o o o o o o & e e o . o 3-17
3-10 Resolution of Program Sections for TKl e+ o« « o 3-19
3-11 Typical Overlay Root Segment Structure o . 3-21

3-13 Tree and Virtual Address Space Diagram 3-24
3-14 Overlay Tree for Modified TRl 3-31
3-15 Virtual Address Space and Physical Memory for

Modified TK1« e . e « e o e« « o & 3-33
3-16 Overlay Co-Tree for MOdlfled TKl e e . . 3-34
3-17 Virtual Address Space and Physical Memory for TKl

As 2@ CO-Tr€e . . « o + o o s o o o o« o« o o o« « o« 3=35
3-18 Virtual Address Space Allocation Diagram 3-36
3-19 Virtual Address Space Allocation for a Main Tree

and Its Co-Tree « o 3-40
3-20 Overlay Tree of Vlrtual Address Space for OVR TSK 3-43
3-21 Allocation of Virtual Address Space for OVR.TSK 3-46
3-22 Allocation of Virtual Address Space for

RESOVR.TSK . . « . . . ¢ + e & s & o o s ® = 3-48
4-1 Details of Segment C of TKl e e e o o o o o o o o 4=2
4-2 Path-Loading Example . . . &+ &« &+ v « « s « « o « o 4-4
4-3 Autoload Vector Format for Conventlonal Tasks . . 4-4

4-5" ‘Example Autoload Code Sequenee for a Conventional
Task & o ¢ o o o« . .« . . e e e s e e o o s o o 4
4-6 Autoload Overlay Tree Example e e e e e o 2 o o 4-
5-1 Typical Resident COmmon . ¢ & 4 & ¢ « o « o« « « « 5
5-2 Typical Resident Library . . e o o o o o o 5=
5-3 Interaction of the /LI, /CO, and /PI Switches . 5
5-4 Specifying APRs for a Position-Independent Shared
REJION «¢ & & 4 4 « o o o o o o o o o o« o s o o « o 5-6

CONTENTS
Page

Mapping for an Absolute Shared Region 5-8
Windows for Shared Region and Referencing Task . 5-15
Allocation Diagram for MACCOM.TSK 5-20
Assigning Symbolic References within a Common . 5-23
Allocation of Virtual Address Space for MAIN.TSK 5-38
0 Example Library and Task Structure 5-44
1 Example of an Unbalanced Tree with Null Segment 5-45
2 Example of an Overlay Cluster Library Structure 5-45
3
4

]

Example of a Vectored Call Between Libraries . . 5-46
VSECT Option Usage . « « « &+ « o s o o o o« o« « « 5=55
Privileged Task Mapping . . « &+« « o« « o ¢« o « o« o« 6=3
Mapping for /PR:4 and /PR:5 e e e e o o 6-4
Allocatlon of Virtual Address Space for PRIVEX . 6-11

SOttt
|
WNHHKMRFHFWO~NOWV

“to.a 16K Supe
vLMapplng of'a

«~8K Superv1sor~Mo&e Lnbxary
. ‘Overlay Conflguratlcn Allowed,fo
« . Libraries . -. j
rmAllocatlon of.n

General Object Module FOTmMAt « o« o o o o o o o o &
Global Symbol Directory Record Format
Module Name Entry Format . . « ¢« « ¢ ¢ & o ¢ o o &
Control Section Name Entry Format
Internal Symbol Name Entry Format « . . .
Transfer Address Entry Format «
Global Symbol Name Entry Format . . . « . « + . .
Program Section Name Entry Format
Program Version Identification Entry Format . .

Mapped Array Declaration Entry Format

Completion Routine Entry Format

End of Global Symbol Directory Record Format .- .

Text Information Record Format . . . « « « « « &

Relocation Directory Record Format

Internal Relocation Entry Format A-1l5
Global Relocation Entry Format . . . « . « « . . A-=15
Internal Displaced Relocaton Entry Format . . . A-16
Global Displaced Relocation Entry Format A-16
Global Additive Relocation Entry Format A-17
Global Additive Displaced Relocation Entry Format A-17
Location Counter Definition Entry Format A-18
Location Counter Modification Entry Format . . . A-18
Program Limits Entry Format . . . « « « « . . « A-19
Program Section Relocation Entry Format A-19

it s i

::’D’
[l ol e T T R N N N B |
'—I

QOO Ut W

i
1T

e

N

xii

CONTENTS

Page

A-25 Program Section Displaced Relocation Entry Format A-20
A-26 Program Section Additive Relocation Entry Format A-21
A-27 Program Section Additive Displaced Relocation

Entry Format + v ¢« v ¢ v v « . . A-21
A-28 Complex Relocation Entry Format A=23
A-29 Resident Library Relocation Entry Format A-23
A-30 General Format of All ISD Records A=25
A-31 General Format of a TKB Generated Record A-25
A-32 Format of TKB Generated Start-of- -Segment Item (1) A-26
A-33 Format of TKB Generated Task Identification Item

(2) o v v 4 v 0.« e e W . + « A-26
A-34 Format of an Autoloadable lerary Entry P01nt

Ttem (3) . . e e« e o o o o« A=27
A-35 Format of a Module Name Item Type (1) e o « « o A-28
A-36 Format of a Global Symbol Item Type (2) « « « o« A-28
A-37 Format of a PSECT Item Type (3) e« o o o s o o« o A=29
A-38 Format of a Line-Number or PC Correlation Item

Type (4) « « « o e e e . . A-30
A-39 Format of an Internal Symbol Name Item Type (5) A-31
A-40 Format of a Literal Record Type . « o « A=31
A-41 End-of-Module Record Format . . « + o & « o« . . A=32
B-1 Image on Disk of Non-Overlaid Conventional Task . B=2
B-2 Image on Disk of Conventional Non-Overlaid Task

Linked to Overla1d lerary e e 4 e e e s e e a4 e .
erlaid Task

esiden ibrary Data B
B-6 Label Blocks 1 and 2 -- Table of LUN Assignments . B-
B-7 Label Block.3 -- Segment Load List B-
B-8 Task Header, Fixed Part . . . v «v v v v v « . . B-1
B-9 Task Header, Variable Part « « . . . B-1
B-10 Vector Extension Area Format . . . +« « B-1
B-11 Logical Unit Table Entry + B=1
B-12 Task-Resident Overlay Data Base for a
Conventional Overlaid Task

y
5 Autoload Vector Entry for I- and D-Space Tasks . B-18
6 Segment Descriptor + B=19
7 Window Descriptor + B=21
8 Region Descriptor e« s+ s s+ e+ e« o« . B=21

Snapshot Dump Control Block Format e o « o o o« o « D=6

TABLES

TABLE

Program Section Attributes e e e e e . .

Program Sections for Modules IN1, IN2 and IN3 . .

Individual Program Section Allocatlons « e e s .

Resolution of Global Symbols for INL, IN2 and IN3

Comparison of Overlay Run-Time Module Sizes . . 4
Comparison of Overlay Run-Time Module Sizes . . 5-
Mapping Comparison Summary o o o o o o o . 7
Task Builder Switches 10-2
Files fOr SEL.TSK v & ¢ & v« & o v o o o o o o« . 10-47
Task Builder Options 11-2
Symbol Declaration Flag Byte -- B1t A531gnments . A-7
Program Section Name Flag Byte -- Bit Assignments A-8
Relocation Directory Command Byte -- Bit

Assignments « ¢ + « e o & « o A-=13
Task and Resident lerary Data o« o e ¢« o« +« « . B-4
Resident Library/Common Name Block Data - « « . . B-8

oo N
I

|
lU’!I—‘I

|
RSl I S S

=

NN D

¢

PR H O NN NN
I O o

1
W N)

i
N~

xiii

CONTENTS

Task File Switch Defaults . .
Map File Switch Defaults
Symbol Table File Switch Defaults .
Input File Switch Defaults . . .

Xiv

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts and capabilities of the
RSX-11M/M~-PLUS Task Builder.

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-11M systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. Instead, most of the examples in the main text of this
manual are written in MACRO-11.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-11M or
RSX-11M-PLUS) and with the operating procedures described in the
RSX-11M/M-PLUS MCR Operations Manual. In addition, you should be
familiar with the programming concepts described in the RSX-11M/M-PLUS
Guide to Program Development.

STRUCTURE OF THIS DOCUMENT

This manual has 11 chapters. Their contents are summarized as
follows:

e Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

e Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space and the resolution of global symbols. It also contains
an introduction to supervisor-mode libraries, privileged
tasks, and multiuser tasks.

® Chapter 3 describes the Task Builder's overlay capability and
the language you use to define an overlay structure.

® Chapter 4 describes the two methods available to you to load
overlay segments.

e Chapter 5 describes some typical Task Builder features,
including tasks that access shared regions and device commons,
tasks that create dynamic regions, and virtual program
sections.

XV

PREFACE

e Chapter 6 defines privileged tasks, describes their mapping,
and shows how to build a privileged task to examine unit
control blocks.

e Chapter 10 lists and describes the Task Builder switches. The
switches are listed in alphabetical order.

e Chapter 11 lists and describes the Task Builder options. The
options are listed in alphabetical order.

This manual also contains eight appendices. Their contents are
summarized as follows:

e Appendix A contains a detailed description of the Task Builder
input data structures.

e Appendix B contains a detailed description of the task image
file structure.

e Appendix C describes the considerations for building a task on
one system to run on a system with a different hardware
configuration.

e Appendix D describes two memory dumps: postmortem and
snapshot.

e Appendix E contains a list of the symbols and program section
names reserved for Task Builder use.

e Appendix F contains information on improving Task Builder
performance.

e Appendix G describes the fast Task Builder.
e Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendices.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described 1in the
Information Directory and Master Index for your operating system.
This directory defines the intended audience of each manual in the
documentation set and provides a brief synopsis of each manual's
contents.

PREFACE

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec,...

means that one or more input-spec items, separated by commas, can be
specified.

Vertical ellipses mean that lines in an example, command 1lines, or
lines in a Task Builder map file that are not pertinent to an example
have been omitted. For example:

TKB>»input-line

means that one or more of the indicated TKB items have been omitted.

The words "Task Builder" in this manual have been abbreviated to the
acronym TKB.

Unless otherwise stated, references to tasks, their mapping, and their
structure imply a nonprivileged task in an RSX-11M mapped system.

In the examples of Task Builder command sequences, the portion of the
command sequence that you type is printed in red. The Task Builder's
responses and prompts are printed in black.

Shading in the manual has the following meanings:

xvii

SUMMARY OF TECHNICAL CHANGES

This manual contains the changes for RSX-11M Version 4.1 and
RSX-11M-PLUS Version 2.l1. This manual has been extensively revised.

A study of the Table of Contents and this Summary of Technical Changes
is recommended before you look for information in the manual.

GENERAL CHANGES

Editorial changes were made throughout the manual to correct
typographical errors.

Small technical changes were made throughout the manual as a result of
ongoing development, SPR responses, and readers' comments.

The major technical changes to the manual are listed below.

TECHNICAL CHANGES

NEW OPTIONS

DSPPAT -- Allows ob]ect level patchlng of a conventional task or

CHANGED OPTIONS

conventional task or

ABSPAT -- Allows object level

o o
TR
vk

COMMON -- The COMMON optlon causes the common to be mapped with
D-spac%‘ APRs. i ‘ T '

f
"@ ko
ar

xS
5
'J«s'iz‘ Sl : . B

ﬁ@l‘”ﬁ@ sg- J = an HkESP Ce.. L &

he D- APRS, which mmﬁmﬂ hge*
o o %mw;‘ g e “5wmew
e e i ik L ST
el W i, RS S e

w

v;mxxsswmx;; St i i : : - R
x Foe H i i)
L £0 b ed, th both
bidled . St NG

9 E. £

g et

oy i @
o gy i » *; ; i G i
i i i ' o i g 1‘“‘”

u::,ﬁ@,scewam,,%‘ pace APR: sn - Tinked to an I-

o ST

i mix i

SUMMARY OF TECHNICAL CHANGES

NEW ERROR MESSAGES

Module module-name contains incompatible autoload vectors
CHANGED ERROR MESSAGES

Lookup failure resident library file

changed to

Lookup failure resident library file - filename.ext
MISCELLANEOUS TECHNICAL CHANGES

Autoload vectors for conventional tasks have changed. The call

to SAUTO is now made indirectly through .NAUTO in the overlay
impure area.

Memory allocation diagrams may be used as an aid to create .ODL
files.

Overlay Run-time System routines have changed size from the
previous release.

'MACRO-11 and FORTRAN manual load calling Sequences for - overlays
in.I- and D-space tasks ' may not use asynchronous loadlng.

For versions of TKB that support I-.and D—space tasks and that
‘were used to build libraries, TKB allocates autoload vectors in
‘the root of the task only for those autoloadable entry p01nts in’
the library referenced by the task. ‘ o

I— and D-spaceé tasks may link to commons, conventlonal labrarles,
and superv1sor—mode libraries. : ,

(Loading«l— and ~D—space tasks 1nto memory ~requires two dlsk
-accesses.. Overlaid 1~ and D-space tasks ﬁay req
addltlon, two disk- accesses for loadlng e;ch segment~
segment contalns both I- space and D-space. ’ R -

Segment
for the

Internal Symbol Directory Records, along with their formats, are
described in Appendix A, They consist of:

e Type 1 records, generated by TKB and output to the .STB file

e Type 2 records, generated by language processors

XX

SUMMARY OF TECHNICAL CHANGES

e Type 3 records, created from type 2 records and output to the
.STB file

e Type 4 records, written to the .STB file without modification
A new bit called LDSTYP distinguishes between a 1library or common.
See offset RSLFLG in the resident library name block data in Appendix
B.

The first library in a cluster may be overlaid and contain a non-null
root.

New Task Builder reserved symbols have been added to Appendix E.

The Fast Task Builder supports the /EA switch and the TASK= option.

Other minor technical and editorial changes have been made also.

xxi

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in developing a program are as follows:

l. You write one or more routines in an RSX-11M/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or compiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder
(TKB) , which combines the object modules into a single task
image output file.

4, You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file using the editor, and then repeat steps 2 through 4.

The Task Builder's main function is to convert relocatable object
modules (.0OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-11M or RSX-11M-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, using the Task
Builder (TKB) is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. TKB links the object modules, resolves references between
them, resolves references to the system library, and produces a single
task image ready to be installed and executed.

TKB makes a set of assumptions (defaults) about the task image based
on typical wusage and storage requirements. You can override these
assumptions by including switches and options in the task-building
terminal sequence. Thus, you can build a task that is tailored to its
own input/output and storage requirements.

TKB also produces (upon request) a memory allocation (map) file that
contains information describing the allocation of address space, the
modules that make up the task image, and the value of all global
symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross reference).

INTRODUCTION AND COMMAND SPECIFICATIONS

Note that the examples in this manual use MCR as the operating system
language. Refer to the RSX-11M-PLUS Command Language Manual and, in
particular, to the command in that manual for DIGITAL Command Language
equivalence.

The following example shows a simple sequence for building a task:

>MAC PROG=PROG
>TKB PROG=PROG
>INS PROG
>RUN PROG

The first command (MAC) causes the MACRO-11 assembler to translate the
source code of the file PROG.MAC into a relocatable object module in
the file PROG.OBJ. The second command (TKB) causes TKB to process the
file PROG.OBJ and to produce the task image file PROG.TSK. The third
command (INS) causes the INSTALL processor to add the task to the
Executive's directory of executable tasks (System Task Directory).
The fourth command (RUN) causes the task to execute.

The example just given includes the command
>TKB PROG=PROG

This command illustrates the simplest use, of TKB. It gives the name
of a single file as output and the name of a single file as input.

The following sections describe basic Task Builder command forms and
sequences.,

1.1 TASK COMMAND LINE

The task command 1line contains the output file specifications,
followed by the input file specifications; they are separated by an
equal sign (=). You can specify up to three output files and any
number of input files.

The task command line has the following form:
task-image~file,map-file,symbol-definition-file=input-£file,...

You must give the output files in a specific order: the first file
you name 1is the image (.TSK) file; the second 1is the memory
allocation (.MAP) file; and the third is the symbol definition (.STB)
file. The map file lists information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for reprocessing by TKB. You specify
this file when you are building a resident 1library or common.
(Resident libraries and commons are described 1in Chapter 3.) TKB
combines the input files to create a single task image that can be
installed and executed.

1.1.1 Printing the Map File

If you create a map file by specifying one in the TKB command line,
there are a number of ways that you can print the file. The following
examples show you ways that you may print the map file.

1. With the following two command lines, you canm create a map

file and then print it later. The TKB command line tells TKB
to create a task file, a map file without printing it (by use

1-2

INTRODUCTION AND COMMAND SPECIFICATIONS

of the switch /-SP), and a symbol definition file. The PRINT
command line tells the system to print the map file.

>TKB INV.TSK,INV.MAP/-SP,INV.STB=INV.OBJ
>PRINT INV.MAP

2. With the next command 1line, you can print the map file
directly as it 1is created. In this case, TKB tells the
system to print the file by use of the switch /SP. However,
the system task PRT... or ...PRT must be installed for this
method to work.

>TKB INV.TSK,INV.MAP/SP,INV.STB=INV.OBJ

3. With the next command line, you can print the map file on a
line printer that you specify. It is best to use this
command line on an RSX-11M-PLUS system because that system
uses transparent spooling. Using this command line on an
RSX-11M system may cause the printer to be unavailable to
other tasks. See your system manager for specific details
about using the following command line.

>TKB INV.TSK,LPn:,SY:INV.STB=INV.OBJ

1.1.2 Omitting Specific Output Files

You can omit any output file by replacing the file specification with
the delimiting comma that would normally follow it. The following
commands illustrate the ways in which TKB interprets the output file
names.,

Command Output Files

>TKB IMG1l,IMG1l,IMGl=IN1 The task image file 1is IMGl.TSK, the
memory allocation (map) file is
IMG1.MAP, and the symbol definition file
is IMGl.STB.

>TKB IMGl=INl The task image file is IMGl.TSK.
>TKB ,IMGl=IN1 The map file is IMGl.MAP.
>TKB ,,IMGl=IN1 The symbol definition file is IMG1l.STB.
>TKB IMGl,,IMGl=IN1l The task image file is IMGl1.TSK and the
symbol definition file is IMGl.STB.
>TKB =IN1 gpis is a diagnostic run with no output
iles.

1.2 MULTILINE INPUT

Although you can specify a maximum of three output £files, you can
specify any number of input files. When you specify several input
files, a more flexible format 1is sometimes necessary -- one that
consists of several 1lines. This multiline format is also necessary
when you want to include options in your command sequence (see Section
1.3).

INTRODUCTION AND COMMAND SPECIFICATIONS

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. TKB then prompts for input wuntil it receives a line
consisting only of the terminating slash characters (//). For
example:

>TKB

TKB> IMG1, IMG1=IN1
TKB> IN2, IN3

TKB> //

This sequence produces the same result as the single line command
>TKB IMGl,IMGl=INL1,IN2,IN3

Both command sequences produce the task image file IMGl1.TSK and the
map file IMGl.MAP from the input files IN1.0BJ, IN2.0BJ, and IN3.0BJ.

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops
accepting input, builds the task, and returns control to MCR.

1.3 OPTIONS

You use options to specify the characteristics of the task you are
building. To include options in a task, you must use the multiline
format. If you type a single slash (/) following the input file
specification, TKB requests option information by displaying ENTER
OPTIONS: and prompting for input. For example:

>TKB

TKB> IMGl, IMG1=IN1
TKB>IN2,IN3

TKB /

Enter Options:
TKB>PRI=100

TKB> COMMON=JRNAL: RO
TKB> //

In this sequence there are two options: PRI=100 and COMMON=JRNAL:RO.
The two slashes end option input, initiate the task build, and return
control to MCR upon completion.

NOTE

When you are building an overlaid task,
there are exceptions to the use of the
single slash (/). Overlaid tasks are
described in Chapter 4.

The RSX-11M/M-PLUS Task Builder provides numerous options, which are
described in Chapter 11. The general form of an option is a keyword
followed by an equal sign (=) and an argument list. The arguments in
the 1list are separated from one another by a colon (:). 1In the
example above, the first option consists of the keyword PRI and a
single argument indicating that the task is to be assigned the
priority 100. The second option consists of the keyword COMMON and an
argument list, JRNAL:RO, indicating that the task accesses a resident

=
I
[1:N

INTRODUCTION AND COMMAND SPECIFICATIONS

common region named JRNAL and that the access is read-only. You can
specify more than one option on a line by using an exclamation point
(1) to separate the options. For example, the command

TKB> PRI=100 ! COMMON=JRNAL: RO
is equivalent to the two lines:

TKB> PRI=100
TKB> COMMON=JRNAL : RO

Some options accept more than one set of argument lists. You wuse a
comma (,) to separate the argument lists. For example, in the command

TKB> COMMON=JRNAL:RO,RFIL:RW

the first argument 1list indicates that the task has requested
read-only access to the resident common JRNAL. The second argument
list indicates that the task has requested read/write access to the
resident common RFIL.

The following three sequences are equivalent:
TKB> COMMON=JRNAL:RO,RFIL:RW
TKB> COMMON=JRNAL : RO!COMMON=RFIL:RW

TKB> COMMON=JRNAL:RO
TKB> COMMON=RFIL:RW

1.4 MOLTIPLE TASK SPECIFICATIONS

If you intend to build more than one task, you can use the single
slash (/) following option input. This directs TKB to stop accepting
input, build the task, and request information for the next task
build. For example:

> TKB

TKB> IMG1=IN1

TKB> IN2,IN3

TKB> /

Enter Options:

TKB> PRI=100

TKB> COMMON=JRNAL: RO
TKB> /

TKB> IMG2=SUB1

TKB> //

TKB accepts the output and input file specifications and the option
input; it then stops accepting input upon encountering the single
slash (/) during option input. TKB builds IMGl.TSK and then returns
to accept more input for building IMG2.TSK.

1.5 INDIRECT COMMAND FILES

You can enter commands to TKB directly from the keyboard, or
indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
TKB commands you want to be executed. Later, after you invoke TKB,
you type an at sign (@) followed by the name of the indirect command
file.

INTRODUCTION AND COMMAND SPECIFICATIONS

For example, suppose you create a file called AFIL.CMD containing the
following: :

IMGLl, IMGl=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
//

Later, you can type:

>TKB
TKB>@AFIL
TKB>

or simply:
>TKB @AFIL

When TKB encounters the at sign (@), it directs 1its search for
commands to the file named AFIL.CMD. The example above is equivalent
to the keyboard sequence

>TKB

TKB> IMGl, IMG1=IN1
TKB>IN2,IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL: RO
TKB>//

When TKB encounters two terminating slash characters (//) 1in the
indirect command file, it terminates indirect command file processing,
builds the task, and exits to MCR.

When TKB encounters a single slash (/) in an indirect command file and
the slash 1is the last character in the file, TKB directs its search
for commands to the terminal. For example, suppose the file AFIL.CMD
in the last example is changed to read:

IMG1, IMG1=IN1
IN2,IN3
/

Later, you can type:

>TKB
TKB>@AFIL

In this case, TKB goes to the terminal and prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the keyboard.
If you then conclude option input from the keyboard with double
slashes (//), TKB suspends command processing, as described above, and
exits to MCR following the task build. If you conclude option input
with a single slash (/), TKB prompts for new command input following
the task build of IMG1l.TSK, as follows:

TKB>

INTRODUCTION AND COMMAND SPECIFICATIONS

Using the single slash (/) following option input in indirect command
files 1is a convenient way to return control to your terminal between
successive task builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMG1, IMG1=INl
IN2,IN3

/
PRI=100
COMMON=JRNAL

/
The second, AFIL1.CMD, contains:

IMG2,IMG2=IN4

IN5,IN6
/
PRI=100
//
Then, the terminal sequence to build these two tasks is:
>TKB
TKB>QAFIL
TKB>@AFIL1
>
NOTE
For interaction with a TKB indirect
command file as described above, you
must use the multiline format when you
specify the indirect command file.
TKB permits two levels of indirection in file references. That is,

the indirect command file referenced in a terminal sequence can
contain a reference to another indirect command file. For example, if
the file BFIL.CMD contains all the standard options that are used by a
particular group of users at an installation, you can modify AFIL to
include an indirect command file reference to BFIL.CMD as a separate
line in the option sequence.

The contents of AFIL.CMD would then be:

IMG1l, IMG1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
@BFIL

//

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=100

TIRTTMO -

UNITS=5i{ASG=DT1:5

INTRODUCTION AND COMMAND SPECIFICATIONS

Then the terminal equivalent of building these files is:

>TKB

TKB> IMGl1l, IMG1=IN1
TKB>IN2,IN3

TKB>/

Enter Options:
TKB>PRI=100
TKB>COMMON=JRNAL : RO
TKB>STACK=100
TKB>UNITS=51ASG=DT1:5
TKB>//

The indirect command file reference must appear on a separate line.
For example, if you modify AFIL.CMD by adding the @BFIL reference on

the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and TKB would report an error.

1.6 COMMENTS IN LINES
You can include comments at any point in the command sequence, except
in lines that contain file specifications. You begin a comment with a
semicolon (;) and terminate it with a carriage return. All text
between these delimiters is a comment.
For example, in the indirect command file AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task.

TASK 33A

DATA FROM GROUP E-46 WEEKLY
MG1l, IMGl=

PROCESSING ROUTINES
N1

STATISTICAL TABLES

P N8 Ne we NG We NS e NE w6 e we we

N2

ADDITIONAL CONTROLS

N3

Lo BN TRR TR T

RI=100
OMMON=JRNAL:RO ; RATE TABLES

TASK STILL IN DEVELOPMENT

NQNe e ve () we
~N

1.7 FILE SPECIFICATIONS

TKB adheres to the standard RSX-11M/M-PLUS conventions for file
specifications. For any file, you can specify the device, the User
File Directory (UFD), the file name, the file type, the file version
number, and any number of switches.

1-8

INTRODUCTION AND COMMAND SPECIFICATIONS

The file specification has the form
device: [group,member]filename.type;version/swl/sw2.../swn

When you specify files by name only, TKB applies the default switch
settings for device, group, member, type, and version.

For example:

>TKB

TKB> IMG1, IMG1=IN1
TKB> IN2, IN3
TKB>//

If the current User Identification Code (UIC) of the terminal that TKB
is running on is [200,200], the task image file specification of the
example is assumed to be:

SY0:{200,200] IMG1.TSK;1

That is, TKB creates the task image file on the system device (SY0:)
under UFD [200,200]. The default type for a task image file is .TSK
and, if the name IMGl1.TSK is new, the version number is 1. The
default settings for all the task image switches also apply. Switch
defaults are described in detail in Chapter 6.

For example:

> TKB

TKB> [[20,23]] IMG1/CP/DA, IMG1/CR=IN1
TKB>IN2;3,IN3

TKB> //

This sequence of commands instructs TKB to create a task image file
IMG1.TSK;1 and a memory allocation (map) file IMGl.MAP;l (actually, it
produces IMGl.TSK and IMGl1.MAP with versions one higher than the
current versions) under UFD [20,23] on the device SY:. The task image
is checkpointable and contains the standard debugging aid (ODT). TKB
outputs the map to the 1line printer with a global cross-reference
listing appended to it. TKB builds the task from the latest versions
of IN1.OBJ and 1IN3.0BJ, and the specific version of IN2.0BJ. The
input files are all found on the system device.

The system device (SY:) 1is always the default device unless you
specify otherwise. 1f you specify another device on either side of
the equal sign, that device becomes the default device for the files
on that side of the equal sign. For example:

>TKB
TKB> [[20,23]] IMG1, IMGl, IMG1=DB1:IMGl, IN1,IN2

This command line produces a task image file, map file, and listing
file in UFD [20,23] on device SY:. All the object files are in UFD
[20,23] on device DBl. In cases where files are scattered among
several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. In the example
above, the map file could be fully specified by the device LP:. The
map listing is produced on the line printer, but is not retained as a
file.

This example also used switches /CP, /CR, and /DA. The code, syntax,
and meaning for each switch are given in Chapter 6.

INTRODUCTION AND COMMAND SPECIFICATIONS

1.8 SUMMARY OF SYNTAX RULES
The syntax rules for issuing commands to TKB are as follows:

e A task-build command can take any one of four forms. The
first form is a single line:

>TKB task-command-line
The second form has additional lines for input file names:

>TKB
TKB>task-command-line
TRB>input-line

TKB>terminating-symbol

The third form allows you to specify options:

>TKB
TKB>task-command-line
TKB>/

Enter Options:
TKB>option-line

TKB>terminating-symbol
The fourth form has both input lines and option lines:

>TKB
TKB>task-command-line
TKB>input-line

TKB>/
Enter Options:
TKB>option-line

TKB}terminating—symbol
The terminating symbol can be:

/ if you intend to build more than one task

// if you want TKB to return control to MCR
® A task command line has one of the three forms:

output-file-list=input-file,...

=input-file,...

. @indirect-command-file

The third form is an indirect command file specification, as
described in Section 1.5.

INTRODUCTION AND COMMAND SPECIFICATIONS

An output file list has one of the three forms:
task-image-file ,map-file,symbol-definition-file
task-image-file,map-file
task-image-file

The task-image-file is the file specification for the task

image file; map-file is the file specification for the memory

allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the
specfications can be omitted, so that, for example, the
following form is permitted:
task-image-file,,symbol-definition-file

An input line has one of two forms:

input-£file,...

@indirect-command-file

Both input-file and indirect-command-file are file
specifications.

An option line has one of two forms:
option!...
@indirect-command-file
The indirect-command-file is a file specification.
An option has the form:
keyword=argument-list,...
The argument-list is:
arg:...
The syntax for each option is given in Chapter 6.

A file specification conforms to standard RSX-1M/M-PLUS
conventions. It has the form:

device:[group,member] filename.type;version/swl/sw2.../swn
device:

The name of the physical device on which the volume

containing the desired file is mounted. The name consists

of two ASCII characters followed by an optional 1- or

2-digit octal wunit number and a colon; £for example, LP:
or DT1:.

group

The group number, in the range of 1 through 377(8).

INTRODUCTION AND COMMAND SPECIFICATIONS

member

The member number, in the range 1 through 377(8).

filename

The name of the desired file. The file name can contain up
to 9 alphanumeric characters.

type

The 3-character file type identification. Files having the
same name but a different function are distinguished from
one another by the file type; £for example, CALC.TSK and
CALC.OBJ.

version

The version number, 1in octal, of the file. Various
versions of the same file are distinguished from one
another by this number; for example, CALC.OBJ;1 and
CALC.0BJ; 2.

All components of a file specification are optional. The
combination of the group number and the member number is
the User File Directory (UFD) that contains the file name.

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
(TKB) functions:

1. Linking object modules
2. Assigning addresses to the task image
3. Building data structures into the task

First, TKB is a linker. It collects and links the relocatable object
modules that you specify to it into a single task image, and resolves
references to global symbols across the module boundaries.

Second, TKB assigns addresses to the task image. On mapped systems,
TKB assigns addresses for a task beginning at 0. The Executive then
relocates the addresses at run time. On unmapped systems, TKB assigns
addresses for a task beginning at the base address of the partition in
which the task is to run. The addresses of tasks that run on unmapped
systems are not relocated at run time.

NOTE

Unless otherwise indicated, references
to tasks that run on mapped systems
assume that the tasks are nonprivileged
and residing within system-controlled
partitions.

Third, TKB builds data structures into the task image that are
required by the INSTALL processor to install the task and by the
Executive to run it.

This chapter describes the three TKB functions in detail. It also
describes the concepts of mapped d ystems In addition,
this chapter introduces regions, supet de' libraries, overlays,
privileged tasks, ‘I-:andi~D+space "tas and many of the mapping
concepts necessary for an understanding task mapping and Task
Builder functions.

gl 4
of

2.1 LINRING OBJECT MODULES

TKB links object modules within the context of program sections and
resolves references to global symbols across module boundaries.

When the language translators convert symbolic source code within a

module to object code, they assign provisional 16-bit addresses to the
code. A single assembly or compilation produces a single object

2-1

TASK BUILDER FUNCTIONS

module. In its simplest form, each module begins at 0 and extends
upward to the highest address in the module. Three object modules
produced at separate times might have the address limits shown in
Figure 2-1.

10001

750

500

MODULE #1 MODULE #3

MODULE #2

RELOCATABLE 0-

RELOCATABLE O RELOCATABLE 0-

ZK-377-81

Figure 2-1 Relocatable Object Modules

If these modules represent the separate modules of a single program,
TKB links them together and modifies the provisional addresses to one
of the following:

e For a mapped system, a single sequence of addresses beginning
at 0 and extending upward to the sum of the lengths of all the
modules (-1 byte)

e For an unmapped system, a single sequence of addresses
beginning at a base address assigned at task-build time and
extending upward to the sum of the lengths of all the modules
(-1 byte)

For example, Figure 2-2 shows the three modules linked for a mapped
system and the modules linked for an unmapped system.

2.1.1 Allocating Program Sections

The language translators process source code and TKB 1links object
modules within the context of program sections. A program section is
a block of code or data that consists of three elements:

e A name

e A set of attributes

e A length
A program section is the basic unit used by TKB to determine the
placement of code and data in a task image. The language translators
maintain a separate location counter for each program section in a

program. The name of each program section, its attributes, and its
length are conveyed to TRKB through the object module.

TASK BUILDER FUNCTIONS

2250 T SZSOT
MODULE #3 MODULE #3
MODULE #2 MODULE #2
MODULE #1 MODULE #1

1 !

0 BASE 1000~
MAPPED UNMAPPED

SYSTEM SYSTEM

ZK-378-81

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACRO-11, for example) or by allowing the language
translator to create them. If you do not explicitly create a program
section in your source code, the language translator you are working
with will create a "blank" program section within each module
translated. This program section will appear on your 1listings and
maps as . BLK.. For more information on explicitly declared program
sections, see your language reference manual.

A program section's name is the name by which the language translator
and TKB reference it. When processing files, both the language
translator and TKB create internal tables that contain program section
names, attributes, and lengths. A named program section can be
declared more than once. However, all occurrences of that named
program section must have identical attributes if the section occurs
more than once in the same module or if the section is a glokal
program section. Identically named program sections within the same
module and global program sections with differing attributes cause TKB
to declare the program section as having multiple attributes, which is
an error. However, identically named program sections with differing
attributes may appear in different trees of an overlaid task if the
program sections have the local (LCL) attribute.

TASK BUILDER FUNCTIONS

Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space TKB must
reserve for it.

When a program consists of more than one module, it is not unusual for
program sections of the same name to exist in more than one of the
modules., Therefore, as TKB scans the object modules, it <collects
scattered occurrences of program sections of the same name and
combines them into a single area of your task 1image file. The
attributes listed in Table 2-1 control the way TKB collects and places
each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value Meaning

access-code RW Read/write: data can be read from, and
written into, the program section.

RO Read-only: data can be read from, but
cannot be written into, the program
section.

allocation-code CON Concatenate: all references to a given

program section name are concatenated;
the total allocation is the sum of the
individual allocations.

OVR Overlay: all references to a given
program section name overlay each other;
the total allocation is the length of the
longest individual allocation.

relocation-code REL Relocatable: the base address of the
program section is relocated relative to
the base address of the task.

ABS Absolute: the base address of the
program section is not relocated; it is
always 0.

save SAV The program section has the SAVE
attribute, and TKB forces the program
section into the root.

scope-code GBL Global: the program section name is
recognized across overlay segment
boundaries; TKB allocates storage for
the program section from references
outside the defining overlay segment.

LCL Local: the program section name is
recognized only within the defining
overlay segment; TKB allocates storage
for the program section from references
within the defining overlay segment only.

(continued on next page)

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Attribute Value Meaning
type-code D Data: the program section contains data.
I Instruction: the program section

contains either instructions, or data and
instructions,

2.1.1.1 Access-code and Allocation-code - TKB uses a program
section's access-code and allocation-code to determine its placement
and size in a task image. If you specify /SG in the command sequence,
TKB divides address space into read/write and read-only areas, and
places the program sections in the appropriate area according to
access-code. However, the default is to order the program sections
alphabetically.

TKB uses a program section's allocation-code to determine its starting
address and length. 1If a program section's allocation-code indicates
that TKB is to overlay it (OVR) , TKB places each allocation to the
program section from each module at the same address within the task
image. TKB determines the total size of the program section from the
length of the longest allocation to it.

If a program section's allocation-code indicates that TKB is to
concatenate it (CON), TKB places the allocation from the modules one
after the other in the task image, and determines the total allocation
from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on
a word boundary. If the program section has the D (data) and CON
(concatenate) attributes, TKB appends to the last byte of the previous
allocation all storage contributed by subsequent modules. It does
this regardless of whether that byte is on a word or nonword boundary.
For a program section with the I {instruction) and CON attributes,
however, TKB allocates address space contributed by subsequent modules
beginning with the nearest following word boundary.

For example, suppose three modules, IN1l, IN2, and IN3, are to be task
built. Table 2-2 lists these modules with the program sections that
each contains and their access codes and allocation codes.

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B ig the
sum of the lengths of each occurrence; that is, 100 + 120 = 220. The
Program section named A also occurs twice. However, it has the OVR
(overlay) attribute; so its total allocation is the 1largest of the
two sizes, or 300. Table 2-3 lists the individual program section
allocations,

TASK BUILDER FUNCTIONS

Table 2-2
program Sections for Modules IN1, IN2, and IN3

Program
Section Access Allocation Size
File Name Name Code Code (Octal)
IN1 B RW CON 100
A RW OVR . 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 (o RO CON 50
Table 2-3

individual Program Section Allocations

Program Section Total
Name Allocation

B 220

A 300

c 220

TKB then groups the program sections according to their access
and alphabetizes each group, as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3
represents the Task Builder's allocation
of program sections if the /SG or /MU
switches are used. For more
information, see the description of the
/MU, /SQ, and /SG switches in Chapter

10.

4 C (220) 1 reaD-ONLY
| Access
B (220)]
READMWRITE | TASK MEMORY
ACCE
A (300) CCESS
STACK
HEADER

ZK-379-81

Figure 2-3 Allocation of Task Memory

codes

TASK BUILDER FUNCTIONS

The save attribute (SAV) is useful in cases where the information in a
program section must be kept available to all task segments. The SAV
attribute of a program section causes TKB to force the program section
into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the
MACRO-11 .PSECT directive specified with the SAV attribute are in the
root of the task.

2.1.1.2 Type-Code and Scope-Code - The scope-code is meaningful only
when you define an overlay structure for a task. The scope-code is
described in Chapters 3 and 4 within the context of the descriptions
of overlays. {The type-code is meaningful in the context of program
sections within an I- and D-space task, as described in Chapter 7.}

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and
any references (explicit or implicit) to the system library. When the
language translators process a text file, they assume that references
to global symbols within the file are defined in other, separately
assembled or compiled modules. As TKB links the relocatable object
modules, it creates an internal table of the global symbols it
encounters within each module. 1If, after TKB examines and links all
the object modules, references remain to symbols that have not been
defined, TKB assumes that it will find the definition for the symbols
within the default system object module library (LB:[1,1]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. If you have not specified an output map in
your TKB command sequence, TKB reports the names of the undefined
symbols to you on your terminal, If you have specified an output map,
TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map
listing.

When creating the task image file, TKB resolves global references, as
shown in the following example. Table 2-4 lists the three files INi,
IN2, and IN3, showing the program sections within each file, the
global symbol definitions within each program section, and the
references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for IN1l, IN2, and IN3

File Program Section Global Global
Name Name Definition Reference
IN1 B Bl A
B2 L1l
A Cl
XXX
C
IN2 A A
B Bl B2
IN3 C Bl

TASK BUILDER FUNCTIONS

In processing the first file, INl, TKB finds definitions for Bl and B2
and references to A, L1, Cl, and XXX. Because no definition exists
for these references, TKB defers the resolution of these global
symbols. 1In processing the next file, IN2, TKB finds a definition for
A, which resolves the previous reference, and a reference to B2, which
can be immediately resolved.

When all the object files have been processed, TKB has three
unresolved global reference: Cl, L1, and XXX. Assume that a search
of the system library LB:[1,1]SYSLIB.OLB resolves Ll and XXX, and TKB
includes the defining modules in the task's image. Assume also that
TKB cannot resolve the global symbol Cl. TKB lists it as an undefined
global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a
multiply defined global symbol. TKB uses the first definition of that
multiply defined symbol.

Finally, an absolute global symbol (for example, symbol=100) can be
defined more than once without being listed as multiply defined, as
long as each occurrence of the symbol has the same value.

2.2 THE TASK STRUCTURE

TKB builds the data structures required by other system programs and
incorporates them into the task image. The Executive (which is
responsible for the allocation of system resources) must have access
to the data for all tasks on the system. It must know, for example, a
task's size and priority, and it must have information about the way

each task expects to use the system. It 1is the Task Builder's
responsibility to allocate space in the task image for the data
structures required by the Executive. For example, TKB allocates

space for the task header and initializes it.

The disk image file created by TKB contains the linked task and all of
the information required by the system programs to install and run it.

In its simplest form, the disk image file consists of three physically
contiguous parts:

e The label block group
e The task header
e The task memory image
Figure 2-4 illustrates the basic simplified structure of this file.

The label block group contains data produced by TKB and used by
INSTALL command processing. It contains information about the task,
such as the task's name, the partition in which it runs, its size and
priority, and the logical units assigned to it. When you install the
task, INSTALL command processing (hereinafter called INSTALL) uses
this information to «create a Task Control Block (TCB) entry for the
task in the System Task Directory (STD) and to initialize the task's
header information,

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. TKB creates and
partially initializes the header; INSTALL initializes the rest of the
header.

TASK BUILDER FUNCTIONS

. TASK |
: MEMORY

HEADER

LABEL
BLOCK

ZK-380-81

Figure 2-4 Disk Image of the Task

The task memory contains the 1linked modules of the program and,
therefore, the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (SP). The label block group, the task's
header, and the task memory are described in detail in Appendix B.

The task's memory image is the part of your task that the system reads
into physical memory at run time. The 1label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-5 shows the memory image.

. TASK .
! MEMORY ¢

HEADER

ZK-381-81

Figure 2-5 Memory Image

TASK BUILDER FUNCTIONS

2.3 OVERLAYS

This section is an introduction to overlaid tasks. Details about
overlaid tasks can be found in Chapters 3 and 4.

Using overlays can save memory space by reducing the size of the
executing portion of the task or the physical memory required by the
task. Parts of an overlaid task reside on disk, thereby saving memory
space,

An overlaid task is a task designed to have discrete parts. The parts
of a task designed this way can execute relatively independently of
other parts. Parts of an overlaid task reside on disk until they are
needed for their required function. The common part of the task,
which stays in memory, is the root. The root calls the other parts of
the task, which are referred to as segments, from disk into memory.

The RSX-11M/M-PLUS systems have two types of overlaid tasks. One type
of overlaid task reads in segments from disk over other segments
already in memory. A task of this type is called a disk-resident
overlaid task. In this task, segments reside on disk until they are
needed. The segments in disk-resident overlays that share the same
memory address space of the task with other segments must be logically
independent of those segments. The independence is necessary because
the other segments are on disk and cannot be referenced. For example,
Task A, an overlaid task root, can call either of two
segments: segment B or segment C. The root of Task A initially calls
segment B. Segments B and C occupy the same memory space. Segment B
cannot call segment C and segment C cannot call segment B. However,
if segment B returns control of the task to the root of task A, the
root can then call segment C. Segment C would then be read into
memory over segment B, Figure 2-6 illustrates this sequence.

Because segments of a disk-resident overlaid task can occupy the same
memory space, a disk-overlaid task can occupy less memory than it
would if it were not overlaid. However, more disk I/0 transfers (and,
therefore, more time) are needed for this type of task.

Another type of overlaid task is the memory-resident overlaid task.
In this task, the segments reside on disk until they are needed. At
that time, the needed segment is read into a sequentially adjacent
area of memory and resides there until the task ends. For example, a
memory-resident overlaid Task A has two segments: segment B and
segment C. If the root of task A calls segment B, segment B is read
into memory adjacent to the root. When the root regains control and
then calls segment C, segment C 1is read into memory adjacent to
segment B, Figure 2-7 illustrates this sequence.

Memory-resident overlaid tasks execute faster than disk-resident
overlaid tasks. The increase in speed occurs because fewer disk 1/0
transfers are needed during task execution.

TASK BUILDER FUNCTIONS

MEMORY

TASK A
|root| B [c || LoaD TAsSK

TASK A
ROOT

MEMORY

TASK A
[root| B | ¢ |

TASK A
ROOT

ROOT CALLS
SEGMENT B

MEMORY

TASK A
ROOT

ROOT CALLS
SEGMENT C

ZK-382-81

Figure 2-6 Simple 2-Segment, Disk-Resident Overlay Calling Sequence

TASK BUILDER FUNCTIONS

MEMORY

LOAD TASK

TASK A
ROOT

MEMORY

ROOT CALLS
SEGMENT B

TASK A
ROOT

MEMORY

TASK A
[rooT| B | ¢ |

ROOT CALLS
SEGMENT C

TASK A
ROOT

ZK-383-81

Figure 2-7 Simple 2-Segment, Memory-Resident Overlay Calling
Sequence

TASK BUILDER FUNCTIONS

2.4 ADDRESSING CONCEPTS

The primary addressing mechanism of the PDP-11 is the 16-bit computer
word. The maximum physical address space that the PDP-11 can
reference at any one time is a function of the length of this word.
Because of the 16-bit word size, a task can have an address no larger
than 177777 (octal) (32K words) within the task image for nonprivileged
tasks on an unmapped system. In practice, the task size may be
limited to a few words less than 32K because of system design.

2.4.1 pPhysical, Virtuwal, and Logical Addresses

Physical, virtual, and logical addresses, and virtual and logical
address space, are concepts that provide a basis for understanding the
functions of task addressing and the use of task windows.

e Physical addresses - A single, physical location in memory is
called the physical address.

Memory is divided into parts called bytes. They are numbered
according to their position in memory. Therefore, the lowest
byte is 0 and the highest byte is whatever the upper limit of
memory may be for a particular system; for example, 32K, 64K,
and so forth. The assigned number 1is «called the physical
address.

A task contains addresses (for example, 0 through 2200). TKB
relocates the task's addresses in an unmapped system by a
number represented by the base address of the partition in
which it 1is installed. After installation, the task's
addresses refer to physical addresses of memory, which always
correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task 1is in memory. The memory (physical)
addresses will not be from 0 through 2200. For example, after
the task is installed in the partition, the task's address of
0 may become physical address 17000 because the Task Builder
added in the offset, which is equal to the partition base
address,

In a mapped system, the task's addresses remain the same but
the physical memory addresses may change due to Executive
processes (checkpointing, swapping, and so forth.).
Therefore, the task addresses do not always correspond to the
same physical memory. If the task wuses memory management
directives, the memory addressing can be changed by the task
to include any part of physical memory that it is allowed to
access.

e Virtual addresses - A task's virtual addresses are the
addresses within the task.

The PDP-11's 16-bit word length (a mapped system) imposes the
address range of 32K words on the virtual addresses.
Therefore, these task addresses coulid include addresses O
through 177777(octal) depending on the length of the task.
These task addresses are not the same as the actual addresses

of the memory in which the task resides.

TASK BUILDER FUNCTIONS

® Virtual address space - A task's virtual address space is that
space encompassed by the range of virtual addresses that the
task uses.

With the Create Address Window (CRAWS) memory management
directive, a task can divide its virtual address space into
segments called virtual address windows. By using address
windows, you «can manipulate the mapping of virtual addresses
to dififerent areas of physical memory.

® Logical addresses - A task's logical addresses are the actual
physical memory addresses that the task can access.

e Logical address space - The task's logical address space is
the total amount of physical memory to which the task has
access rights.

The physical memory represented by the logical addresses may
or may not be continuous. The items in physical memory that
logical address space includes are the task itself, and static
and dynamic regions.

2.4.2 Unmapped Systems

In an unmapped system, the task's virtual address space and its
logical address space coincide exactly, as shown in Figure 2-8.

In an unmapped system, the task's address space is 1limited to 32K
words. All of the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/0 page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive. Figure 2-9 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-controlled partitions. When TKB
links the relocatable object modules of a task that is to run on an
unmapped system, it requires that you specify the partition in which
the task is to run, and the partition's base address and length. TKB
sets the base address of the task to the base address of the
partition. This means that the task's location in physical memory is
bound to the partition and does not change. Because all of physical
memory in an unmapped system is directly addressable, and the task's
location within memory does not change, the addresses that TKB assigns
coincide exactly with the physical addresses of the machine and,
therefore, do not need to be relocated at run time.

2.4.3 Mapped Systems

A mapped system is one in which the processor contains a KT-11 memory
management unit. The processor handbook for your machine contains a
complete description of the memory management unit.

Mapped processors have up to three modes of operation: kernel,
‘supe sor, and user (the PDP-11/34 does not have supervisor mode).
ormation in this section is relevant to user mode only.

TASK BUILDER FUNCTIONS

PHYSICAL
MEMORY
32K TASK N-32K
32K ol D
Xé?ﬁusglé = PARTITION kgg‘é%g;
oPAGE BASE ADDRESS SPACE
BEFORE
ASSIGNING
ADDRESSES
N
0 —| ———— o
> EF
0
ZK-384-81

Figure 2-8 Virtual and Logical Address Space Coincidence
in an Unmapped System

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system 1is still the
16-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When TKB links the relocatable object modules of a
task that is to run on a mapped system, it assigns 16-bit addresses to
the task image. The memory management unit's function (under control
of the Executive) 1is to convert the task's 16-bit addresses to
effective 18- or 22-bit physical addresses. The mechanical Jjob of
task relocation is performed by the Executive and the memory
management unit at task run time. Figure 2-10 illustrates the
relationship between physical memory and virtual address space in a
mapped system.

TASK BUILDER FUNCTIONS

32 K WORDS

1/0 PAGE

* EXECUTIVE-

o L |

ZK-385-81

Figure 2-9 Memory Layout for Unmapped System

The memory management unit divides a machine's 32K words of wvirtual
address space into eight 4K-word segments or pages. Each page has two
registers associated with it:

e A l6-bit Page Description Register (PDR), which contains
control and access information about the page with which it is
associated

e A 1l6-bit Page Address Register (PAR), which 1is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-11 shows how the memory
management unit divides the 32K words of virtual address space.

The Executive allocates only as many APRS as are necessary to map a
given task into physical memory. Therefore, a 4K-word task requires
one APR; a 6K-word task requires two. Figure 2-12 1illustrates this
mapping.

TASK BUILDER FUNCTIONS

b ;

HIGHEST
PHYSICAL
ADDRESS
PARTITION
BOUNDARY
—45/// TASK
MEMORY
32K —
MEMORY
MANAGEMENT HEADER
UNIT
TASK
MEMORY
TASK
MEMORY SYSTEM-CONTROLLED
— PARTITION
0—
HEADER
VIRTUAL ADDRESS
SPACE
FOR 32 K WORD
TASK TASK
MEMORY
HEADER
TASK
MEMORY
PARTITION HEADER _/
BOUNDARY
* EXECUTIVE *
e ETC. *
° L]
0—
PHYSICAL
MEMORY

ZK-386-81

Figure 2-10 Task Relocation in a Mapped System

TASK BUILDER FUNCTIONS

PAGE 7 !
VIRTUAL 160000 — APR7 —
PAGE 6
VIRTUAL 140000 — APRG6 —
PAGE 5
VIRTUAL 120000 — APR5 —
PAGE 4 VIRTUAL ADDRESS
VIRTUAL 100000 — APR4 — SPACE
PAGE 3
VIRTUAL 60000 — APR3 —
PAGE 2
VIRTUAL 40000 — APR2 —
PAGE 1
VIRTUAL 20000 — APR 1
I PAGE O
VIRTUALO APRO '

ZK-387-81

Figure 2-11 Memory Management Unit's Division of Virtual
Address Space

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I1/0 page and the Executive are not normally part of a task's virtual
address space and, unlike in an unmapped system, a task is inhibited
by the system from accessing any portion of physical memory that it
does not specifically own. Because the I/0 page and the Executive are
not part of a task's wvirtual address space, a task can be
approximately 32,767 words long (32K minus 32 words needed by the
loader) on a mapped system. TKB can build a task of 32K minus 1 word
in size. However, overlaid tasks, and tasks that become extended, may
use the entire 32K-word space.

2.4.4 Regions

This section briefly describes regions and their relationship to and
use Dby tasks. Regions and their use are more thoroughly described in
Chapter 5.

A region is a defined area of memory that can contain code or data.
It can also be a blank area reserved for use by one or more tasks.
The region is named and built like a task except that the /HD header
switch is negated (/-HD) because the region is not a task and does not
need a task header. Tasks can also create regions dynamically as they
execute. Dynamic regions are useful because they increase the task's
logical address space while saving its virtual address space. Regions
also allow tasks to share code and data with other tasks.

TASK BUILDER FUNCTIONS

160000 APR 7 — APR7—
140000 APR 6 — APRG—
120000 APR 5 — APR 65—
100000 APR 4 — APR 4—
60000 APR 3 — APR 3—
40000 APR 2— APR 2 —
20000 APR 1 — APR 1— TASK
TASK MEMORY 6 K WORDS
MEMORY 4 K WORDS
HEADER & STACK HEADER & STACK
VIRTUALO APRO— APR O —
TASK A (4 K WORDS) TASK B (6 K WORDS)

Regions
built.

ZK-388-81

Figure 2-12 Mapping for 4K-Word and 6K-Word Tasks

are named according to their use or the way in which they were
These regions are:

Task Region -- A continucus block of memory in which the task
runs.
Common Shared Region -- On unmapped systems, a shared region

defined by an operator at run time or built into the system
during system generation; for example, a global common area.

TASK BUILDER FUNCTIONS

Resident commons are usually called shared regions because
they are wused as an area in which tasks share common data.
Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

® Library Shared Region -- A shared region containing common
code or routines shared by tasks, and in this way saving
virtual address space in the tasks.

® Dynamic Region -- A region created dynamically at run time by
the Create Region (CRRGS) memory management directive in the
task. This directive and associated directives are described
in the RSX-11M/M-PLUS Executive Reference Manual.

By convention, a shared region that contains code is a library and a
shared region that contains data is a common.

Tasks must map to a region by using task windows which must be defined
and numbered in the task when the task is built. Usually, a task uses
one window for each region to which mapping must occur. Task windows
are described in the next section, Task Mapping and Windows.

Figure 2-14 shows a sample collection of regions that could make up a
task's logical address space. A task's logical address space can
expand and contract dynamically as the task issues the appropriate
memory management directives. The header and root segment are always
part of the region. Therefore, the task header and root segment
always use window 0 (UAPR 0) and region 0. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2.5 TASK MAPPING AND WINDOWS

As mentioned earlier, tasks that run on mapped systems must be
relocated at run time. When you build a task that is to rum on a
mapped system, TKB creates and places in the header of the task one or
more 8-word data structures called window blocks. When you install a
task, INSTALL initializes the window block(s) . Once initialized, a
window block describes a range of continuous virtual addresses called
a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a
task consists of one continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 5), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

TASK BUILDER FUNCTIONS

e At
-13 illustrates window

HIGHEST VIRTUAL - ~N
ADDRESS

TASK REGION —

REGION 0
TASK > :
MEMORY

WINDOW BLOCK
0

HEADER & STACK /)

LOWEST VIRTUAL ———
ADDRESS

ZK-389-81

Figure 2-13 Window Block 0

When you run your task, the Executive determines where 1in physical
memory the task is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

Referring to Figure 2-14, which illustrates a mapped system without I-
and D-space, you can observe that a large 32K user task contains three
distinct areas of continuous space called "windows." The term "“task
window" 1is a construct that maps a continuous portion of the task's
virtual address space to a continuous portion of a region in the
task's logical address space. Windows must have a specified size and
starting address. The window size can be from 32 words to 32K minus

TASK BUILDER FUNCTIONS

32 words, and windows must start on a 4K address boundary. Figure
2-14 shows three windows that are not continuous in the task's virtual
address space. However, the space within each window 1is continuous.
In this task, the size of window 0 is 11K; the size of window 1 is
11K; and the size of window 2 is 8K. The concept of windows exists
for the following specific reason.

By using the concept of windows and the memory management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged task can change
its access to 1logical addresses (real, physical memory). The area
that your program accesses can Dbe changed by the program during
program execution. The process of accessing different logical areas
of memory is called "mapping."

By referring to Figure 2-14, you can see that window 1 in the task is
mapped to region 1 in physical memory. The task can change the window
1 mapping to region 0 in physical memory. In effect, then, though a
task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that
you set up the mapping) by changing the mapping of its windows to
different logical addresses. Figure 2-14 provides a visual
description of the concept of mapping to different logical addresses.

The discussion now proceeds to setting up the task's windows. This is
done by defining task window blocks to TKB.

To manipulate virtual address mapping to various logical areas, you
must first divide a task's 32K of virtual address space into segments.
These segments are task (virtual address) windows. Each window
encompasses a continuous range of virtual addresses. The first
address of the window address range must be a multiple of 4K (the
first address must begin on a 4K boundary) because of the way that the
KT-11 memory management unit uses APRs.

On ‘an RSX-11M system, you can »spe01fy up to seven 'windows. = Task
mapp1ng for the task's code requlres the useﬁof w1ndqw 0. Therefore,
there is a total of eight i “is not available,
to nonpr1v1leged tasks. , ¢
minimum of 32.words to a. maxlmum af 32K mlnus 32 words&,

'RSX-11M-PLUS - tasks that
libraries _have -a total
windows 'n thi ’

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in the task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of extra window blocks needed by
the task. The number of blocks should equal the maximum number of
windows that will exist concurrently while the task is running.

€C-¢

VIRTUAIL. ADDRESS SPACE
of 32K USER TASK

KT11 MEMORY MANAGEMENT UNIT

32K

87 4K
WINDOW 2

6 4K

5 4K

4 RRwiNDow 1\ 4K

-

WINDOW 0 4K

i ———

0K HEADER

/. CONTAINS

3 WINDOW BLOCKS

va| apr | DF
15 13 12 65
L_aprF | BN | oB |
SELECT {
APR
USER KERNEL
ACTIVE PAGE REGS | ACTIVE PAGE REGS
PAR PDR PAR PDR
7] PaF 7| PaF
6| PAF 6| par
5] PAF 5| PAF
4| paF 4] PaF
3| PaF 3| par
2| PaAF 2| par
1] PaF 1] PAF
—=To] PAF o] paF

KAPR OR UAPR
11 USER
00 KERNEL

DETERMINED BY BITS 14-15 OF PSW

[

PBN 1

TASK
LOGICAL
ADDRESS
SPACE

PHYSICAL MEMORY

REGION 0

REGION 1
WINDOW 1

REGION 2
WINDOW 2

TASK REGION
WINDOW 0

17

| 65

L

18-BIT PHYSICAL ADDRESS

Figure 2-14

Ji

W

EXECUTIVE

—_)
W

Virtual to Logical Address Space Translation

ZK-390-81

SNOILONANA ¥IATINL ASVL

TASK BUILDER FUNCTIONS

In RSX-11M or RSX-11M-PLUS without 1I- and D-space, a window's
identification is a number from O to 7, which is an index to the
window's corresponding window block. The address window identified by
0 1is the window that always maps the task's header and root segment.
TKB creates window 0, which the Executive uses to map the task. No
directive may specify window 0; a directive that does so is rejected.

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAWS). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

e Map a window to all or part of a region.

e Unmap a window from one region in order to map it to another
region.

e Unmap a window from one part of a region in order to map it to
another part of the same region.

2% 6 RSX—IlM—PLUS SUPERVISOR MODE

:Three modes of ope at1on are possxble the PDP- 11' user.

supeKV1sor mode, and kernel mode. Each mode has ass001ated w1th i

“‘PRs for mapplngxmemory.; 8 I—space APRS and: 8 D-space: APRS, .
: ’ ~rsuperv1sor—mode 11bra

TASK BUILDER FUNCTIONS

I - -
iy ,;;‘“:m i e

i
iy

G sy
yiiz

i i
PO iy mn, .
i

ik

e Ui i »;“' 3
:LMW 1 i
e logic

i t m’ t,
xﬁ»«m IR il

il) g,
% L gy e
o !
‘,"“ i g s
i i i o G
it gy ity
oy i Wil
o) , Yy
e & 0 i % iy
g S i gy e
it »,,,w i ,,X, e i i g e
1 '

] .,,e R i Vz’fsﬁx o

o

ye
4 Jmm;

T % i

e
MW“SMa
wDe p e
Sl A

w

i g 4 ;
L ,;Qggm eﬁﬁwuﬁﬁﬂm

:
m“, W .

g 0, By ,,MEW g »w,,m,k’w,((, w ’ffx““‘%«; o umx“)‘zgszu;, x‘lkm‘m oy

wdata o T o fmmw m,.,,“ , :w,wﬁwa th

e o wa; “"Wm {6 ,“'sm« s Al

G
@

mﬁ?@ln
X q‘*m e ikl
. m “l&«

:
o o N

! <7
MéapaMMls@r [
[S e w u»»,,%g% T

i % « «‘,i SXE&W”“W;“ d

“m,
e\mlw;
=i

:ymxxw ‘“&m ““ by i w i m,, w *wa;w

o Sy i Am g o e iy
stagk. BX i aj o
o i Ry .
nyk “’n “‘“ m‘ v 5;-, d &‘“Ww o ‘M«;,,“ % g

i % %

mgwm ve A ,g "mm,;,;‘ S T
wu$ﬂ Ex g wem
é‘w»,, Lz o ‘smg i w,, Fidi

4,
o
sm;((”‘”‘ w ty
e M
_,,W” }wm, e g o

e

Gy
i

«*‘m i s ™ W

i i

”m i Sﬂn W::I‘I‘“"“ig
v

i

mw,; i

g
Sy
Wby
i g, U

g g w-mg i
i ;““‘WZ‘,’Hs”"u?;g i
Z i
- xs.,‘:,ﬂmmﬂ&‘ ven

i

g

%
a&‘
%

g
i s

g
e il i i iy i T
ksor. o wbr@uym; &%Mre“ S wmm,m%@
i i T S nC g i m iy el N i i Ty as, i - it «) W
ms iy, i ot o i A P i i g gy “m, e i it g ‘a st g
,“‘ iy x'“n?; i :m;fz‘“ ,“‘ gm“"”ﬂ;xw ol nxmw‘j s w:“ ""* o i g '“’:’i‘m‘s el ! mé;,‘ R o it
Msm "‘i"‘*m S "“‘ r« i i ,&““’im o mu,; i i Wan e i o Al g e g e 5
G i L e T g s i i e
Al s g iwx“h"“ e ggﬁ el P Pl s il “ﬁ o 1‘“’” “‘,ﬁ’ i “ws i R Ay
w ;f ‘Mq‘ g AN ?J‘ e o " 4 »u s
@ 0 0‘4% ¥ S : gy
‘“ms s" i (,x o ,Tl“ﬂ*ium’gi‘#x e e ,«wmqm,w L omn o - m““’“m’ nxw“‘g Tl g Rl g T T ss e
e tusm ; ol g S «,,” “w;ﬂ o wcgm it o “"”‘4; ms; Ww iy MK mw "“xmsxmﬁu iy I i ﬁ,,,;?» B O ‘w
P] e n i 3 g g S T “w«m am by
V‘“" TR M e T i i, “"SIN“ Avm‘ ‘g"“ i (kg ;ﬁ:ﬁ&vsw;f‘ e w **%M“'”‘“b’ ’”M*“Hw !qik’ m;‘;‘ ::??:f' e ““‘:;s;f;wmfwﬁ‘
e Q,,,,w ”‘ “**"wi"v i w«i“ e e D *“w;ui“ S iimes i i et i i i o

2.7 PRIVILEGED TASKS

RSX-11M/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. However, the term "privileged" has meaning in mapped
systems only, because in mapped systems certain areas of memory are
protected from nonprivileged tasks. In an unmapped system, any task
has the ability to access all of physical memory if so programmed.
Therefore, the distinction between these two classes of tasks is
primarily one of their mapping to memory in a mapped system.

Privileged tasks in a mapped system can access system data areas and
the Executive. Altering system data areas or the Executive can cause
obscure and difficult problems. Therefore, privileged tasks must be
programmed and used with all caution.

You can specify a task as privileged by using the /PR switch in the
TKB command 1line. The /PR:0 switch allows a task to perform certain
privileged operations; but, the /PR:0 task cannot access the
Executive or system data structures. The /PR:4 switch allows the task
to directly map the I/0 page, Executive routines, and system data
structures. The /PR:4 switch 1is wused for a privileged task in a
system that has an Executive of 16K or less. The /PR:5 switch allows
a task to directly map to the I/0 page, Executive routines, and system
data structures. The /PR:5 switch is used for a privileged task in a
system that has an Executive of 20K or less.

Chapter 6 describes privileged tasks and their mapping in detail.

TASK

BUILDER FUNCTIONS

TASKS APRS MEMORY
USER D
NON-
PRIVILEGED 7 1/0 PAGE
USER
TASK
32K
0
_ 7 TASK
0
0
SPVSR D
7
SUPERVISOR-
MODE
LIBRARY
32K
0 SPVSR
MODE
I
SPVSR LIBRARY
7
0
0
KERNEL D
EXECUTIVE 7
POOL,
1 COMMON,
DATA g TABLES
ETC.
g KERNEL | \
e ——
INSTRUCTIONS 4
CODE
i1+D 1
0 LOW CORE

N+32K

N+32K

36K

ZK-391-81

i

TASK BUILDER FUNCTIONS

TASKS APRS MEMORY
USER D
NON-
PRIVILEGED 7 1/0 PAGE
USER
TASK
32K
0
_ USER | USER
d 7 TASK
0 /
/
/
0 /
COPIED SPVSR D
SUPERVISOR- 7
MODE
LIBRARY
32K
0
SPVSR
MODE
s PVSR |
i SPVS LIBRARY
- 7
0
0
KERNEL D
EXECUTIVE 2
POOL,
1 COMMON,
DATA 0 TABLES,
ETC.
’ KERNEL |
\ -
INSTRUCTIONS 4
CODE
1+D 1
0 LOW CORE

N+32K

N+32K

36K

0

ZK-392-81

TASK BUILDER FUNCTIONS

4 g
i,
e .
i s
N

i

. I-— and

Addit Onally, the separate '1nstruct10n areas ,are wmapped through
«separate APRs in the memory management uniti . Hence, ‘up to. 8. user—mode
instruction APRs map the task's. 1nstructlons, and up “to s-8 user—mode
data APRs map theutask‘s data. “«_" T el LR .

Also,«overlald I- and D«space tasks’\are more complex” because _each’
overlaid ‘part. (segment) of“such a task may 1951der1n bothw1nstruct1on
space and data space. R S R

@ + b g ; et

I— and D-space tasks dlffer~fﬁomf¢bnyentibnal\tééké ipf the following

S
TASK BUILDER FUNCTION

Sy e, W x’ "”
. i g t ‘,mw,«uww,, it
»rwmw K i, X xxx»n‘qmﬂ»w bl
B Mo, «xux !u‘&»m m i ‘ k‘ ”ms 4 “”‘N R w "‘ S“ W mﬁ Wl H
S L i Wu, it v : “""’ e i
N ,, ,xx m i ke *M« Bracct et i «x' 'v“ oy
- Nxmmha i u,mw Aty B
i ;,.)m(i ‘,“ B ‘u
wvxxvmwu;mr!u nn«t«wnmm' > o "”’ Ll
g M,WW;J’L‘ iﬁw s ‘I‘ T Lo . t
w i ,,w, i e .
e oy «w M i
% nws

xu» '*H

e xxw(m,,y i
o xe@(X o ww«. it

e t’b x<<3,nt;em

T e “th .y::waa n(Q ﬁ

i mw”“ ««»m i At e

«.»tf?‘"i*f'm B ﬂ- op E@T e
ma“NFm%

e
(.«,w, i e
S A
et A TR

iy

. “’ Ve
" b i xq, i d
: “Se i il
0015 t «ww SQ,RW }:Mj "«Z’ T
Ge Easkiwith g
)i MHM’)? : “ME" ” k”hx J.M,, o g mw BRS
AR D {03 d “, P20 RO AT S5
- m s i “ B w.mx s i
-wand B" *x'-mm i
i usk b10] éém «{Im,, Hmsmmu) i
s Sa*use@_ﬁ' i %
e vl Shou el
,,2 . show m
v"ﬂ;Elb i

s,

i

o

m,wg e BPRS
\rough two ,m,,,se'ts T IO

b e ‘ ‘ m'“ x e ne

" @ y x,,t,(¥

WM‘M ot d sxm p ‘@m o «,m R ¥

‘ Ins - and T i

& Wm, ‘, xe “t x,(xx w r«(c\\\—«mmw N, i

i e xx»r a Biloin o

e :v uu&xmx\«mm i “ "

MEMORY
USER-MODE
APRS

TASK i
VIRTUAL B]
ADDRESS

SPACE

4K

D'SF ACE
D

DATA
4K

’ INSTRUCTIONS
INSTRUCTIONS B

—(C
b))
(49

—

I-SPACE

ZK-1049-82

: k ’ Np’
PR oS
.3 : mm.,,
ity

o e

L T num

g ¢
- rw e
e
i

St
3 i:j P
s
o (,?* e
i 7 . The
S incC Chapter: ot
,»,u,«»,».,. mxm« u\b ﬂ Chapte] s‘ﬁ
W e o de RES
i x Gy s . i g vy (ssxgw,w e i"‘“"“iw)m,,
‘g S pa 2 Webipadyiog .
are mor Mmm i s i) !xx) S, Wt T e
n gLy P, mw; ;‘~ BE %%xag(sx‘%e“b‘;ww;ms i nw«“mm M}‘f’»:t e »,:s’ . *»»mw,,,.,5“&-Wsm,,,,,,,,
e ‘ i Wmum v e A o LT ,utih‘ o BBk
R pi i ;z;w o *’“‘?Ew:‘ s;”"“ﬁ“?““i Wmmm;y i
o xy % o S # it el i ™ ; i . ‘4 \
w 13, e o B M smsim»«; iy smww:f, H»W“::::’:ﬂyam g ‘*Iz«vai«‘fiféssii,,‘f;ztz»wm,,,,, sy
» 'y s $;. Y g L i
a“g ge s for. G ot s i e
T i e ‘ e 8
s, i B o i e L e
ﬁi““ : mﬁm AL i L e e
y.uuki\«iv‘ymnf*{%‘ & ‘«h::;“‘m g ﬂ"‘&ww,, M
i) p‘ | S
M L

CHAPTER 3

OVERLAY CAPABILITY

TKB provides you with the means to reduce the memory and/or virtual
address space requirements of your task by using tree-like overlay
structures created with the Overlay Description Language (ODL). You
can divide your conventional task into pieces called segments, which
are loadable with one disk access. : : : Spac cask,

: 1mi ssegment.. The segments are
the discrete parts of the overlay structure that form the tree. You
can specify two kinds of overlay segments: those that reside on disk,
and those that reside permanently in memory after being loaded from
disk. ‘

:

3.1 OVERLAY STRUCTURES
To create an overlay structure, you divide a task into a series of
segments consisting of:

e A single root segment, which is always in memory

® Any number of overlay segments, you must consider which either
1) reside on disk and share virtual address space and physical
memory with one another (disk-resident overlays); or 2)
reside in memory and share only virtual address space with one
another (memory-resident overlays)l

Segments consist of one or more object modules, which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent; that is, the components of one segment
cannot reference the components of another segment with which it
shares virtual address space. In addition to the logical independence
of the overlay segments, you must consider the general flow of control
within the task when creating overlay segments.

You must also consider the kind of overlay segment to «create at a
given position in the structure, and how to construct it. Dividing a
task into disk-resident overlays saves physical space, but introduces
the overhead activity of 1loading these segments each time they are

needed -- but are not present -- in memory. Memory-resident
overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are

referenced by remapping.

1. Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task 1is to
run.

OVERLAY CAPABILITY

Several large classes of tasks can be handled effectively when built
as overlay structures. For example, a task that moves sequentially
through a set of modules 1is well suited to wuse as an overlay
structure. A task that selects one of a set of modules according to
the value of an item of input data is also well suited to use as an
overlay structure.

3.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically independent need not be present in memory at the same time.
They, therefore, can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKl, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TK1=OVRLAY.ODL/MP
and the file OVRLAY.ODL contains the modules CNTRL, A, B, C in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules A, B, and C are logically independent;
that is:

A does not call B or C and does not use the data of B or C.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data of A or B.
A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
‘memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls C and C returns to CNTRL.

CNTRL calls A and A returns to CNTRL.
In this example, the lcading of overlays occurs only four times during
the execution of the task. Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.
The effect of the use of an overlay structure on allocating virtual

address space and physical memory for task TKl is described in the
following paragraphs.

OVERLAY CAPABILITY

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
C 14000 bytes

Figure 3-1 shows the virtual address space and physical memory
required as a result of building TK1 as a single-segment task on a
system with memory management hardware.

11

rtual address space and physical memory requirement to build TKL
ingle-segment task is 104000 (octal) bytes.

In contrast, Figure 3-2 shows the virtu
memory required as a result of building
using the overlay capability.

al address space and physical
m1
i 4

Kl as a multisegment task and

The multisegment task requires 50000 (octal) bytes.

NOTE

In addition to the storage required for
modules A, B, and C, storage is required
for overhead in handling the overlay
structures. This overhead is not
reflected in this example.

In using the overlay capability, the total amount of virtual address
space and physical memory required for the task is determined by the
sum of the length of the root segment and the length of the 1longest
overlay segment. Overlay segments A and B in this example are much
longer than overlay segment C. 1If A and B are divided into sets of
logically independent modules, task storage requirements can be
further reduced. Segment A can be divided into a control program (A0)
and two overlays (Al and A2). Segment A2 can then be divided into the
main part (A2) and two overlays (A21 and A22). Similarly, segment B
can be divided into a control module (BO) and two overlays (Bl and
B2).

Figure 3-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires 104000 (octal) bytes of virtual
address space and physical memory. The first overlay structure
reduces the requirement by 34000 (octal) bytes. The second overlay
structure further reduces the requirement by 14000 (octal) bytes.

The vertical and horizontal lines in the diagrams of Figures 3-2 and
3-3 represent the state of virtual address space and physical memory
at various times during the calling sequence of TKl. For example, in
Figure 3-3 the leftmost vertical line in both diagrams shows virtual
address space and physical memory, respectively, when CNTRL, A0, and
Al are lcaded. The next vertical line shows virtual address space and
physical memory when CNTRL, AOQ, A2, and A21 are loaded, and so on.

OVERLAY CAPABILITY

The horizontal lines in the diagrams of Figures 3-2 and 3-3 indicate
segments

example,
region

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6-—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0—

in Figure 3-3,
in both diagrams shows
which can use the same virtual address
next horizontal line shows Al,

that share virtual address
the uppermost

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

space and physical memory. For
horizontal 1line of the task
A21, A22, Bl, B2, and C, all of
space and physical memory. The
B2, and C, and so on.

C
B
104000
BYTES
A
CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

ZK-393-81

Figure 3-1 TK1l Built As a Single-Segment Task

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4-—

60000 APR 3—

40000 APR 2—
A > A
B B
c c 50000
BYTE
20000 APR 1—
CNTRL CNTRL

(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK

0 APRO— HEADERANDSTACK | STAC

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-394-81

Figure 3-2 TK1 Built As a Multisegment Task

3.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-11S)

TKB provides for creating overlay segments that are loaded from disk
only the first time they are referenced. Thereafter, they reside in
memory. Memory-resident overlays share virtual address space just as
disk-resident overlays do but, wunlike disk-resident overlays,
memory-resident overlays do not share physical memory. Instead, they
reside in separate areas of physical memory, each segment aligned on a
32-word boundary. Memory-resident overlays save time for a running

3-5

OVERLAY CAPABILITY

task because they do not need to be copied from a secondary storage
device each time they are to overlay other segments. "Loading" a
memory-resident overlay reduces to mapping a set of shared virtual
addresses to the unique physical area of memory containing the
overlaying segment,

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file. The
task is built by the command

>TKB TK2=0VRLAY2.ODL/MP
and the file OVRLAY2.0DL contains the modules CNTRL, D, E, and F in an
overlay description for the task being built. The /MP switch
specifies that the input file is an Overlay Description Language (ODL)
file.

In this example, the modules D, E, and F are logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.
A memory-resident overlay structure can be defined in which D, E, and
F are overlay segments that occupy separate physical memory locations
but the same virtual address space. The flow of control for the task
is as follows:

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.
The effect of the use of a memory-resident overlay structure on
allocating virtual address space and physical memory for task TK2 is

described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)
CNTRL 20000
D 10000
E 14000
F 12000

Figure 3-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000 (octal) bytes.,

If TK2 is built wusing the Task Builder's memory-resident overlay
capability, the relationship of virtual address space to physical
memory changes, as shown in Figure 3-5.

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

APR 0-

Figure 3-3

OVERLAY CAPABILITY

Al

A21|A22

B1

A2

B2 | C

A0

BO

CNTRL

(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

TK1 Built

A211A22
A1l B1
A2 B2 | C

A0 BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

with Additional Overlay Defined

> 34000

ZK-395-81

160000

14000

120000

100000

60000

40000

20000

APR 7—

APR 6—-

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—-

APR 0—

OVERLAY CAPABILITY

HEADER AND STACK

F F
E E
s
D D
CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

VIRTUAL ADDRESS SPACE

Figure 3-4

HEADER AND STACK

56000
BYTES

PHYSICAL MEMORY

TK2 Built As a Single-Segment Task

ZK-396-81

OVERLAY CAPABILITY

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4—

60000 APR 3—
F
40000 APR 2— .
56000
BYTES
D E F D
20000 APR 1-— > 34000,g)
CNTRL BYTES CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)
HEADER AND STACK HEADER AND STACK
0 APRO- / J

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-397-81

Figure 3-5 TK2 Built As a Memory-Resident Overlay

The physical memory requirements for TK2 do not change (56000 (octal)
bytes), but the virtual address space requirements have been reduced
tc 34000 {octal) bytes. This represents a savings in virtual address

space of 22000(octal) bytes.

OVERLAY CAPABILITY

NOTE

In addition to the storage required for
modules D, E, and F, storage is required
for overhead in handling the overlay
structures., This overhead is not
reflected in this example.

In Figure 3-5, the vertical and horizontal 1lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2, The leftmost
vertical 1line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped. The third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been
called, "loading" of the overlay segments reduces to the remapping of
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 3-6 and 3-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

e TIME 1 (Figure 3-6A) - TK2 is run and the system 1loads the
root segment (CNTRL) into physical memory and maps to it.

e TIME 2 (Figure 3-6B) - CNTRL calls segment D. The system
loads segment D into physical memory and maps to it. Segment
D returns to CNTRL.

e TIME 3 (Figure 3-7A) - CNTRL calls segment E, The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

e TIME 4 (Figure 3-7B) - CNTRL calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL.

160000

140000

120000

100000

60000

40000

20000

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—-

APR 0—

Figure 3-6A

OVERLAY CAPABILITY

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

Figure 3-6A Time 1

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Relationship Between Virtual Address Space

and Physical Memory -- Time 1

ZK-398-81

160000

140000

120000

100000

60000

40000

20000

0

OVERLAY CAPABILITY

APR 7—

APR 6—

APR 5—

APR 4—

APR 3—

APR 2—

APR 1—

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

APR 0—

VIRTUAL ADDRESS SPACE

Figure 3-6B Time 2

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-6B Relationship Between Virtual Address Space
and Physical Memory -- Time 2

ZK-399-81

160000

140000

120000

100000

60000

40000

20000

OVERLAY CAPABILITY

Figure 3-7A Time 3

APR 7—
APR 6—
APR 5—
APR 4—
APR 3—
APR 2—
E
D
APR 1—
CNTRL CNTRL
(ROOT SEGMENT) —_— > (ROOT SEGMENT)
APR O HEADER AND STACK HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 3-7A Relationship Between Virtual Address Space
and Physical Memory -- Time 3

ZK-400-81

OVERLAY CAPABILITY

Figure 3-7B Time 4

160000 APR 7—

140000 APR 6—

120000 APR 5—

100000 APR 4-

60000 APR 3—
F

40000 APR 2—
E
D

20000 APRI— po VT _ _ _ _

CNTRL CNTRL
(ROOT SEGMENT) — (ROOT SEGMENT)
0 APRO. HEADERANDSTACK | HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

ZK-401-81

Figure 3-7B Relationship Between Virtual Address Space
and Physical Memory -- Time 4

It 1is important to be careful in choosing whether to have
memory-resident overlays in a structure. Carelessly using these
segments can result in inefficient allocation of virtual address
space, because TKB allocates virtual address space in blocks of 4K
words. Consequently, the 1length of each overlay segment should
approach that limit if you are to minimize waste. (A segment that is
one word longer than 4K words, for example, is allocated 8K words of
virtual address space. All but one word of the second 4K words is
unusable.)

OVERLAY CAPABILITY

You can also conserve physical memory by maintaining control over the
contents of each segment. Including a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, 1including those from the system object module 1library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.

The primary criterion for choosing to have memory-resident overlays is
the need to save virtual address space when disk-resident overlays are
either undesirable (because they would slow down the system
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

3.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.

Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be 1logically independent.

Branches connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an
overlay structure consisting of one or more trees (the ODL is
described in Section 3.4).

The single overlay tree shown in Figure 3-8 represents the allocation
of virtual address space for TKl (see Section 3.1.1).

The tree has a root (CNTRL) and three main branches (A0, BO and C).
It also has six leaves (Al, A21, A22, Bl, B2, and C). ‘

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A21-A2-A0-CNTRL

The path up is defined from the root to the leaf. For example:
CNTRL-B0-B1l

Knowing the properties of the tree and 1its paths 1is important to

understanding the overlay loading mechanism and the resolution of
global symbols.

OVERLAY CAPABILITY

A21 A22

A1l A2 B1 B2

I_l__l

A0 BO

CNTRL

—0

ZK-402-81

Figure 3-8 Overlay Tree for TKl

3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 3-8) is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, A0, and CNTRL; but A2 cannot
call al, B1, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 4.

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the
same activities that it does for a single-segment task. The rules
defined in Chapter 2 for resolving global symbols in a single-segment
task apply also in this case, but the scope of the global symbols is
altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree diagram in Figure 3-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the
same name, the symbols are multiply defined and an error message is
produced.

In a multisegment task, you can define two global symbols with the
same name if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but

they are referenced from a segment that is common to both, the symbol

is ambiguously defined If you define a global symbol more than once
TR E

oNn 2 ginales na+h = - -
on a2 s e

.
3 3 3 £1 a
ingle path, it is tiply defined.

OVERLAY CAPABILITY

TKB's procedure for resolving global symbols is summarized as follows:
1. TKB selects an overlay segment for processing.

2. TKB scans each module in the segment for global definitions
and references.

3. If the symbol is a definition, TKB searches all segments on
paths that pass through the segment being processed, and
looks for references that must be resolved.

4. 1If the symbol is a reference, TKB performs the tree search as
described in step 3, looking for an existing definition.

5. If the symbol is new, TKB enters it in a 1list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. That is, TKB processes the segment
farthest from the root first, before processing an adjoining segment.

When TKB processes a segment, its search for global symbols proceeds
as follows:

1. The segment being processed

2. All segments toward the root

3. All segments away from the root
4. All co-trees (see Section 3.5)

Figure 3-9 illustrates the resolution of global symbols in a
multisegment task.

A21 A22
T (DEF) R (REF)
S (REF) Q (REF)

I S (REF)
Al B1 B2

Q (REF) A2 Q (REF REF
R (REF) R (DEF) S EREF; S)
S (REF)
A0 BO C
Q (DEF) Q (DEF)
S (DEF) S (DEF)
T (DEF) I
CNTRL
S (REF)

ZK-403-81

Figure 3-9 Resolution of Global Symbols in a Multisegment Task

OVERLAY CAPABILITY

The following notes discuss the resolution of references 1in Figure
3-9:

1. The global symbol Q is defined in both segment A0 and segment
B0. The references to Q in segment A22 and in segment Al are
resolved by the definition in A0. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AQ0-A2-A22) . The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

3. The global symbol S is defined in both segment A0 and segment
BO. References to S from segments Al, A2l, or A22 are
resolved by the definition in AQ, and references to S 1in Bl
and B2 are resolved by the definition in B0. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

4. The global symbol T is defined in both segment A21 and
segment A0Q. Since there 1is a single path through the two
definitions (CNTRL-A0-A2-A21), the global symbol T is
multiply defined.

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that TKB scans in
the first pass. If any undefined symbols remain, TKB initiates a
second pass over the structure in an attempt to resolve such symbols
by searching the default object module library (normally
LBO:[1,1]SYSLIB.OLB). TKB reports any undefined symbols remaining
after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 3.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.
In addition, such references can cause overlay segments to be
inadvertently displaced from memory by the overlay 1loading routines,
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second pass is restricted to:

e The segment in which the undefined reference has occurred

® All segments in the current tree that are on a path through
the segment

e The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the /FU (full) switch in the task image file
specification. (Refer to Chapter 10 for a description of the /FU
switch,)

OVERLAY CAPABILITY

3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program section's attributes indicates whether the program
section is local (LCL) to the segment in which it is defined or is
global (GBL).

Local program sections with the same name can appear in any number of
segments. TKB allocates virtual address space for each local program
section in the segment in which it 1is declared. Global program
sections that have the same name, however, must be resolved by TKB.

When a global program section is defined in several overlay segments

along a common path, TKB allocates all virtual address space for the
rogram section in the overlay segment closest to the root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute. 1In Figure 3-10, the common block COMA is
defined in modules A2 and A2l. TKB allocates the wvirtual address
space for COMA in A2 because that segment is closer to the root than
the segment that contains A21.

If the segments A0 and BQ use the common block COMAB, however, TKB
allocates the virtual address space for COMAB in both the segment that
contains A0 and the segment that contains BO. A0 and B0 cannot
communicate through COMAB. When the overlay segment containing BQ is
loaded, any data stored in COMAB by A0 is lost.

You can specify the allocation of program sections explicitly. If A0
and B0 need to share the contents of COMAB, vyou can force the
allocation of this program section into the root segment by the use of
the (PSECT directive of the Task Builder's overlay description
language, described in Section 3.4.

A21 A22
A1 A2
COMA B1 B2
AO BO C
COMAB COMAB I
CNTRL

ZK-404-81

Figure 3-10 Resolution of Program Sections for TK1

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When TKB constructs an overlaid task, it builds
structures and adds them to the task image. The
contain information about the overlay segments and describe the

OVERLAY CAPABILITY

relationship of each segment in the tree to the other segments in the
tree. TKB also 1includes into the task image a number of system
library routines (called overlay run-time routines). The overlay
run-time routines use the data structures to facilitate the loading of
the segments and to provide the necessary linkages from one segment to
another at run time.

TKB links the majority of data structures and all of the overlay
run-time routines into the root segment of the task. The number and
type of data structures, and the functions the routines perform,
depend on two considerations:

e Whether the task is built to use the Task Builder's autoload
or manual load facilities

e Whether the overlay segment is memory resident or disk
resident

These considerations have a marked impact on the size and operation of
the task. Chapter 4 describes the Task Builder's autoload and manual
load facilities and describes the methods for loading overlays.
Appendix B describes the data structures and their contents in detail.

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following sections.

3.3.1 Overlaid Conventional Task Structures

Depending on the considerations just discussed, some or all of the
following data structures are required by the overlay run-time
routines:

° Segmént tables
® Autoload vectors
e Window descriptors
® Region descriptors
Figure 3-11 shows a typical overlay root segment structure.

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root
segment and in every segment that calls modules in another segment
located farther away from the root of the tree. All references to
resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAWS). One descriptor is allocated for each memory-resident overlay
segment.

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRGS).

OVERLAY CAPABILITY

90—

TASK CODE & DATA

WINDOW DESCRIPTORS
REGION DESCRIPTORS
SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

ECTORS TYP!CAIéE
AUTOLOAD VEC TvPica
— ROOT SEGMENT

TASK CODE
AND
DATA

HEADER AND STACK

ZK-405-81

e
ent Structur
11 Typical Overlay Root Segm

Figure 3-

T
B g i
e e »{:‘;s,‘“’;” e
ym mmy&“tm»w w &m i iy et
ey :
il “fmm

ikl
'“*w 25 mmm ;
A

"
i 3"““““‘1&\";«
) e 4
ss amm,” . m,
M, iy

&

o
I
i ;;v «:
4 m
qm;

o i L i
i ;mw g
S i il iy
. £ Lyriin A SR
- t), &mﬁwwwmmmwwm» <
< ’,‘;‘ st Ww“t:’ «9{«2 e i ;;‘ e w:$ WW,,,«,,),., (t‘f‘,;’i;
g SEry e S
nmhe ")«is @; \%{ % > }, (%m AL xx,g:mpw R e o 7H<mimw$,
Pt e ni ! | o Tﬁsw;“ B A ,L“" e mw‘w«vss,s»wsx;)
kaw *‘“ U w&kxx<x,> 4 S N il LT i iy
o o o Hekl e o
Q i i i ‘,,,"'!“’W““ i &m isin “‘“; Sty <,W,mw e
iy m \q iy 4 wnmmm m Wmf”m*';"x*<»;<»xwu ;(,; «».m» i i
i m‘ WW‘ S . xmi“> i «wms; i Jé‘, o i “‘*«w i mvn”m” sy "" ‘a‘ﬂu"ff”
‘2 = ; eﬁé«»ﬂf‘??i" i i "‘"“M e M!migm'«(;;‘,,‘ b "«ﬁ) i s “1“ i wm««w» iy u,,,u,,mw.«,,,
i i i o * i e
: m«ww,, i “?;; x;«”“‘ i ;m vv»wi:?:m;;w“u i Gy Vi] > K Wm gy ’: i o
o, i " gl L il 2% s s iy “”"'““““ s e
o ""M MM, ’ i ””“f'* i gy e 4 ““h i A T AT A it s " i u,m o Wiy i“wmmm
«m-;.sm, i i o g R o ,__; sm o N"\Mmmw, S (D e m Pl i ««.«w,i i :
M il ..,m & . o By et s i »x«u&‘wm, gy Wi R
e 5 msw n, ss o G T Penl o i ’” by iy
ﬂ'ii i ;m b4 wmw — i i g ‘M M;;;; ;;;W M,»?,(,MML o fsz f,:L ‘;"'};”;:;,“"“‘“‘“f’v* il «,iifi:ffl’,«i"“
e Sl e G s L i g L
wuwxm»s w i ““‘"“ ““ﬁ*“!f n;‘;sxszzg ;miuzzs:\ i ;:‘w*»m(;x e, e e i, s‘~‘~:«r i f;d“\rw'q*" oy mww’»wl“ g, M“"“’”""M)"
" S0 ey ey g g it i, g i g g
o a»umw,,m Muw S g s i t:’«fj . i i g o i i
i G e i, g o B Ty oy i t«z,«,m,,g. iy s, s il G oy,
n e i O) N,um i ww”," “«%:xfmi% o g Ry o L, 0 f G
o S e i xisw ‘,M i i e s i Sl e ’“““""”"“’#5”‘»Sm(;l«x g fhag
P i, S i i, v el i gt g wm,,x«,,,“x o Ly L L Rty i
summ«m ,MB w.r«wim;;mg;emmm;m ”;M‘““x g Qe il w;igjgj‘“ Wi i N ol ,,W::m;v o o i >m,§$,x.’~ i
Un m <, Sl e iy w gt i i g " i “"’“Mmm) o “"?i""““*?~;xquxmg; 6t 0 P i W S i
msswu el & i & 0 L)‘“Wm) ’*X*xiny““!,xs,,m i e s i W i g o
waxm ;. “,,,,m w,,s‘;;;»,.,‘,,(" ,,,M,@ g i wsm“ ‘*m»w“ . o wv,zm,(s S sty i g, S b Beiiisyg, 5 s .""“‘ R e g
o 0 O e Ui ;me«,,; P, ”fi;“,s,,,,,.;» b o u;s;n,q,,;:l,'uif’“f‘j‘“:’,’ T g
i "“"’iw;“Nwwﬁwxm,w“ ot b i cmmms,M«,MM] - e e e N;v,,‘ W b 2 W o, i ;Z,}j"“‘“ st
T i “ i i, mm,mm;;w“ o i ’WY’»‘H!{X‘«((;Wxmhx m,z.,mm Ui ‘;&m« 1 ’wmw ,,,M“M i 1oy e oL s A M, s oy oy .
g s f“iqf e, il 0 xs&.ssssmm,,; ‘*ﬁ}}’w“, X‘\ﬂg«%‘mssww gy smmmw W O, e S "“ o : G e R
s 5 i B gt oy PR COL S i «vw'wmnw,n i g e -um)m“) g bt S e AL
g :if“‘,*lﬁil‘m,xmmsmsim*xnw,i ,,5. g iy =4 LA D v‘“ i e (“«M‘,,y §>‘r‘x;j”‘;’fm i i o ;‘«‘ p T b]
, kr\\,xibﬂ‘mx«,“(;, e Mx,, ki g Ly fdon o o nwul(?w,ug o i, w»»,mswwm, Ty gy
wmxm smi iy & M,m it - fpations $ i s gy «(Hadiyn H- S Yy