RSX-11M/M-PLUS
Guide to Program

Development
Order No. AA-H264A-TC

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, May 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

Mo responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBT
DECnet IAS PDT
DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CONTENTS

1 THE PROGRAM DEVELOPMENT ENVIRONMENT

SOFTWARE TOOLS

1 Text Editor

2 Assembly Language

3 Task Creation

4 Debugging Aids

4.1 On-Line Debugging Tool

4,2 Postmortem Dump

4.3 Snapshot Dump

5 General Utilities

5.1 Cross-Reference Processor

5.2 Peripheral Interchange Program

5.3 Queuing and Spooling

5.4 Librarian Operations
DIGITAL-SUPPLIED SYSTEM SOFTWARE

1 System Directives - Macro Libraries

2 System Subroutines - Object Libraries
HARDWARE FOR PROGRAM DEVELOPMENT

1 Disks

2 Terminals

3 Printers

THE PROGRAM DEVELOPMENT PROCESS -~ OVERVIEW

GUIDE TO FURTHER READING

CREATING MACRO-11 SOURCE FILES

MACRO-11 SKELETON SOURCE FILE FORMAT
.TITLE Directive
. IDENT Directive
Author Line
Changes Section
Module Function
Some Useful Directives
.PAGE Directive
«SBTTL Directive
.LIST TTM Directive
.NLIST BEX Directive
.MCALL Directive
.END Directive
Local Symbol Definitions
Local Macro Definitions
Local Data Blocks
Module Function - Detailed
.PSECT Directive
CREATING A SOURCE FILE FROM A SKELETON FILE
Performing the Initial Input
Inserting Blank Lines in Text
Terminating the Input and the EDI Program
Creating a Source File from the Skeleton

DNN NN R e e

¢ e s e s s

N HFHREOYONOAOOAAAOAOUTE WN
. . L] . . L]
AU W N

o

. o

. .
N =

e o o o

iii

Page

<
[T
-

e
LR 1

1
AU UITUIE N [l

[|
HMEREERPONNNS

HHHHHHTHHHHHH

! [|
aoanoananUIununwE

NNOMNNNMMNNONNNDND
1111 1

I [
NN o

I
HWWYWWYWWYVomoowon

DJLSESELCE SHSH CHLCH UN SN S S N
|
=

CONTENTS

2.3 EDITING THE SOURCE FILE
2.3.1 Displaying Text
2.3.2 Locating Text and Positioning the Line
Pointer
.3 Changing Text
.4 Inserting Code in the Source File
GUIDE TO FURTHER READING

CHAPTER

w

ASSEMBLING AND CORRECTING A PROGRAM MODULE

PERFORMING A DIAGNOSTIC RUN ON A SOURCE FILE
TYPICAL ERRORS ENCOUNTERED DURING ASSEMBLY
The MACRO-11 Error Code A
The MACRO-11 Error Code. U
The MACRO-11 Error Code Q
The MACRO-11 Error Code E
GENERATING A PROGRAM MODULE AND A LISTING
EXAMINING A LISTING AT THE TERMINAL
GENERATING A CROSS-REFERENCE LISTING
SPOOLING A COPY OF LISTINGS
CLEANING UP THE DISK DIRECTORY
GUIDE TO FURTHER READING

¢« o e o
S W

WWWwWWWwWwwwwwwuww
e« o o o o 8 o ® s s e
o~NoUMeWNhDDNDMODNE

CHAPTER

>

BUILDING AND TESTING A TASK

CREATING A TASK IMAGE
Supplying a Single Object Module
Supplying Multiple Object Modules
Using the Fast Task Builder
TASK BUILDER DEFAULTS
GENERATING A MAP AND A GLOBAL CROSS—-REFERENCE
LISTING
Requesting a Map and a Global Cross-
Reference Listing
Examining the Map at the Terminal
Requesting a Full Map
RUNNING THE TASK AND CORRECTING TYPICAL ERRORS
GUIDE TO FURTHER READING

« o e
wN -

£~
e Www w WN R

|

B D
« o o e
o .
w N

CHAPTER USING DEBUGGING AIDS

THE ON-LINE DEBUGGING TOOL
" Including ODT in a Task
Preparing to Use ODT
Setting up the Task
Setting Breakpoints within the Task
Examining and Changing Locations with ODT
Error Conditions and Terminating Task
Execution

POSTMORTEM DUMP

THE SNAPSHOT DUMP

GUIDE TO FURTHER READING

ot wn
e s s & o 2 ®

BWN HRRHEBERE
auewNE

oo,
« o e

CHAPTER CREATING AND USING PROGRAM LIBRARIES

CREATING AND USING A MACRO SOURCE LIBRARY
Creating the Macro Library
Using the Macro Definitions from the Library

Ao O
PPN
e

N =

iv

[}

waUJw(ﬁwaQU%J$(»U)
| L L | UNIL
SN WWWNNH

-8

PN NS
U
[g e

-y

I I]
Suoues e

S

[L LI |
=

auuoiaa O
AN

1
— O 0 ©

k{lU'IU'IU1

| |
[

A)
W

CONTENTS

CREATING AND USING AN OBJECT MODULE LIBRARY
Creating the Object Module Library
Using the Object Modules from the Library
Using the Library to Resolve Undefined
Global Symbols
Dual Use of the Library
MAINTAINING USER LIBRARIES
Adding Modules to a Library
Replacing a Module in a Library
Obtaining Information about a Library
GUIDE TO FURTHER READING

dwwwwNn NN
.
Y

. . .
wWN -

. .
WK

CHAPTER FORTRAN IV PROCEDURES
OVERVIEW OF PDP-11 FORTRAN IV
FORTRAN IV PROGRAM DEVELOPMENT PROCEDURES
Creating the Source File
Performing a Diagnostic Run
Creating an Object Module
Creating a Task Image
Running and Debugging a Task
GUIDE TO FURTHER READING

WNhNNDDNDNDN -
.
U WN =

INDEX
FIGURES
FIGURE The Program Development Process
MACRO-11 Source File Format
MACRO-11 Source Statement Format
Sample Source File Skeleton
Creating the Skeleton File SKEL.MAC
Source Code for FILE.MAC
Source Code for FILEA.MAC
Source Code for FILEB.MAC
Memory Allocation Synopsis from Task BUG Map
Portion of Assembly Listing for NUMA
MACRO-11 Library Source Definitions
FORTRAN IV Sample Source Code AVERAGE.FTN

[T I | [LU |
FENFRFNOAUUD WD

]

TABLES
TABLE 1-1 DIGITAL-Supplied Macro Libraries
1-2 DIGITAL-Supplied Object Libraries
3-1 Terminal Output Control Commands

NNNNNNNN ~ AN O

[aad

P

U U R R L e |
HdS W
WHE®O

NOUTUNNONNNNNNNON

WNHEDDNDN

W
o RTY

PREFACE

MANUAL OBJECTIVES

The RSX-11M/M-PLUS Guide to Program Development introduces the program
development environment on the RSX-11M and RSX-11M-PLUS systems. It
pProvides a synopsis of the information that has immediate usefulness
in getting started in the program development process. In addition,
the book gives an overview of the software environment and some
guidelines on program design.

INTENDED AUDIENCE

This book is intended for the person who is already familiar with the
general, basic operations of an RSX-11 system: gaining access to the
system, using the terminal and related devices, and requesting simple
Executive services through the command interface. The greater part of
the book addresses assembly language programming because that language
is the one provided with all systems. Included 1is one chapter
summarizing the program development procedures for a high-level
language, PDP-11 FORTRAN IV. However, most of the topics covered for
the assembly language programmer - using a text editor, creating an
executable image, wusing 1library facilities - apply to programmers
using any computer language.

If you are not familiar with the general, basic operations of ‘the
system, you should first read the Introduction to RSX-11M-PLUS or the
RSX-11M Beginner's Guide. Both these books describe how to access the
system, use a terminal, and use the system command interface.

STRUCTURE OF THIS DOCUMENT

This guide is meant to be read as you use the system. For this
reason, the examples are presented in an order in which you can
emulate them at the terminal. Rather than demonstrate the complexity
of the system, these examples are designed to demonstrate practical
program development operations.

This guide is also meant to be used with other manuals in your
documentation set, Toward this end, a selection of further reading
material is listed in the last section of each chapter. By using this
guide, then, you can become increasingly familiar with other, more
advanced manuals until you need not refer to this introductory text
except as a refresher.

The information in this book 1is organized into seven chapters as
follows:

¢ Chapter 1, The Program Development Environment, introduces the
software and hardware on which you develop programs.

vii

e Chapter 2, Creating MACRO-11 Source Files, describes how to
create an assembly language source program using a skeleton
file and text editor.

e Chapter 3, Assembling and Correcting a Program Module,
describes how to use the MACRO-11 assembler to generate an
object module.

e Chapter 4, Building and Testing a Task, describes how to use
the Task Builder to link object modules to create a loadable
task image.

e Chapter 5, Using Debugging Aids, introduces debugging aids and
discusses how to use them.

e Chapter 6, Creating and Using Program Libraries, describes how
to create and maintain a library of macro source statements
and a library of object module subroutines.

e Chapter 7, FORTRAN IV Procedures, briefly introduces the
FORTRAN IV program development process.

ASSOCIATED DOCUMENTS

As mentioned above, documents recommended for further reading are
listed at the end of each chapter. In addition, the RSX-11lM
Documentation Directory and the RSX-11M-PLUS Documentation Directory
1ist and describe all the documents in the documentation sets for each
system.

CONVENTIONS USED IN THIS DOCUMENT

Throughout this book, symbols and other notation conventions are used
to represent keyboard characters, to convey textual information, and
to otherwise ease the presentation of material. The symbols and
conventions used are explained below. :

Convention Meaning

A one- to three-character symbol indicates
that you press a key on the terminal; for
example, (@) indicates the RETURN key and ()
indicates the LINE FEED key.

The symbol indicates that you must
press the key labeled CTRL while you
simultaneously press another key; for
example, indicates the CTRL and O
keys. In examples, this control key
sequence is shown as “x; for example, ~0
indicates the result of typing

because that 1is how the system echoes
control key combinations.

viii

Convention

~

"print" and "type"

MCR>

red ink

~

Meaning

The circumflex character, appearing with
another character, represents the system
response to receiving a control character
(CTRL/X). For example, when you type the
CTRL/Z combination while running some system
tasks, the system echoes "Z. (On some
terminals, the circumflex is replaced by the
up-arrow (%) character.)

As these words are used in the text, the
system prints and the user types.

The explicit prompt of Monitor Console
Routine (MCR), the command interface used on
RSX-11M and one interface available on
RSX-11M-PLUS systems and the one used in
this book.

A greater-than sign is the system command
interface prompting character. Whenever
control is vreturned to the user task
terminal and you can type input, the prompt
appears.

RSX-11M systems have only Monitor Console
Routine (MCR) but RSX-11M-PLUS systems may
have both MCR and DIGITAL Command Language
(DCL). To determine which command interface
your terminal has, simply type the CTRL/C
combination and the explicit prompt (either
MCR> or DCL>) will appear.

Color-highlighted information in examples
indicates information that you type.
Information in examples not in the
contrasting color constitutes computer
output.

Commas in commands separate parameters.
They also indicate positional entries on a
command line.

A dot in a file specification separates the
file name and the file type.

A semicolon in a file specification
separates the file type and file version
number.

A slash character in a file specification

precedes a switch. Switches modify command
action.

ix

CHAPTER 1

THE PROGRAM DEVELOPMENT ENVIRONMENT

This chapter introduces the software and hardware that you typically
need to develop programs on an RSX-11M or RSX-11M-PLUS
multiprogramming system. Its aim is to orient you to the environment
in which you will be working. The remaining chapters in the guide
further describe and illustrate how to use the tools and facilities
introduced in the following sections.

1.1 SOFTWARE TOOLS

RS5X-11M and RSX-1lM-PLUS make software tools available to users as
executable entities called system tasks. A system manager makes these
tasks accessible by installing them on the system, To invoke an
installed task, you need not know where the task resides. To request
a task's services, you need only know the 3-character name of the
task, The tools described in this guide should be instailed on most
systems.

1.1.1 Text Editor

A text editor is the means by which you create source code. The
examples in this book show the editor EDI. EDI is an interactive
editing program that enables you to enter ASCII text at a terminal and
Store the text in a disk file. EDI also lets you access text in a
disk file; examine, delete, and change text; and insert new text.
The disk file is then used as input to other tasks in further steps of
the program development process.

EDI is a single-pass, line-oriented editor. 1In its typical mode of
operation, called block mode, it reads, from a disk file, a block of
text - as much text as will fit in its text buffer. You perform
editing operations on text in the EDI buffer. After editing text in
the buffer, you request the editor to renew the buffer with the next
block of text. To change text in a previously edited buffer, you must
close the current editing session and read, from the beginning of the
file, to the block of text.

1 on systems with fewer resources, you may be required to invoke some
system tasks that are not permanently installed. On such systems, you
may need to use the RUN command and need to know in which UFD a task
resides. This manual assumes that all tasks are installed.

THE PROGRAM DEVELOPMENT ENVIRONMENT

Editing functions are on a line-by-line basis. New text is 1inserted
into the buffer one line at a time. Current text in the buffer is
changed by your locating the line or lines on which EDI must make the
change.

To preserve currently existing text, EDI performs all processing on a
temporary copy of the file being edited. As you renew text in the
buffer, EDI writes the edited text to a temporary file. This action
has two advantages and one drawback. First, the current version of
your text file is always left intact. Second, when you exit from the
editing session, you have the option of storing the edited file in a
new version of the old file or of creating an entirely new file (that
is, one with a different name and version number). The drawback of

emporary file is that, in the event of a system crash, edits _you
éxs-meﬂ-ﬁttause—eﬂtf . After a crash, € ne ersion of the Tlle 1S
0-lengt did not have time to preserve the edits from the
temporary file.

1.1.2 Assembly Language

RSX-11M and RSX-11M-PLUS systems support many programming languages.

However, the one language distributed on all systems is the PDP-11
assembly language, MACRO-11. S§ZEIis the task that assembles MACRO-11
danguage | files. It accepts disk source 1input file 1n orma
an

ate a relocatable object module and a listing file of the
source language. The object module contains all the object records
and relocation information needed to link with other object modules.
All symbol definition done by the assembler has a base of zero. The
allocation of virtual addresses and relocation is left for the task
building process.

Source input to MACRO-11 consists of free-format statements, each line
of input containing a single statement. Input statements are either
PDP-11 instructions, MACRO-11 assembler directives, macro calls, or
direct assignments. Statements can contain labels to allow control to
change locally (within the module) or to enable control to be passed
between modules (globally).

Source input usually contains user-defined symbols. A user-defined
symbol is either 1local or global. A local symbol is defined in the
current source file and is referenced only within the current file. A
global symbol is defined in one source file but can be referenced in
one or more other source files.

The assembler allows you to use both 1local and global symbols as
labels for statements. When a global symbol appears as a label, the
related statement is referred to as an entry point (that is, a point
at which other modules can transfer control to the current object
module). VYou can use local symbols as statement labels to define
points to which control transfers within an object module.

The assembler evaluates all local symbol definitions in a source file.
Any symbols remaining undefined are classed as global. Thus, after an
assembly, all local symbols are assigned relative locations, but the
module may contain references for which definitions must be supplied.
The resolution of these references is left for the task building
process.

THE PROGRAM DEVELOPMENT ENVIRONMENT

Assembler directives in a source file allow you to perform operations
such as the following.

° Program sectioning

° Listing control

° Conditional assembly
° Data storage

Program sectioning allows code or data within an object module to be
overlaid by or concatenated with code or data in other object modules

or in noncontiguous locations within the same module. Program
sectioning 1is especially useful where convenient physical ordering
differs from logical reference ordering (for example, in

table-generating macro statements). Listing control directives enable
documentation features such as 1listing-heading 1lines, listing-page
formatting, and table of contents generation. Conditional assembly
directives allow optional omission or inclusion of lines of code or
user-defined symbols. Using data storage directives, you can control
the size and contents of data areas.

Special statements called macro directives allow you to reference a
predefined symbol that causes the assembler to expand a single line
source statement into multiple lines of code or data and insert the
assembled result in the object module. Such macro symbols are
tvpically used for recurring coding §ggugng§sT'“THE‘T?EZ??T3%“‘3?"?Be
code sequence occurs at each point you refer to the macro symbol.
Definitions for such macro symbols can occur in the source file i

or can reside in a pacro library. Generally, you place infrequently
used macro definitions 1in the source file that invokes them and store

frequentl used macro definitions in a jQrary. The Executive
and f1 processi vices are made available to the program through

macro gsymbols that are_gefined in a DIGITAL-supplied macro SlRrary.

MACBQ;lL-Lﬂ-i-E;EE%E.EEEEEQLS{' During the first pass, the assembler
groups all symbols as either w284l or global, performs statement
generation, locates all, macro_symbols, and, it necessary, reads the
macrQNggi1niElgng_éﬁggiz%ﬁzgg?géT"X? the end of pass 1, the assembler
must have processed a oC references, such as all undefipned.glaohal

symbols, to be resolved by the Task Builder.

During the _geco the assembler actually generates t

module _and tin iles, flagging with an error code in the listing
Tle those source statements containing errors. If vyou requested a
cross-reference 1listing of symbols, the assembler also generates a
request for the Cross-Reference Processor (CRF) to create the proper
information. (CRF is introduced in Section 1.1.5 in this chaptgf:)

The MACRO-11 listing file provides both documentation for the module
and a tool for debugging the code. As a reference aid, the assembler
generates and includes line numbers in the listing for each statement

in the source file. It also maintains a current location cou
each program section ined in the . 1tion, the

listing includes a symbol table showing symbols, their attributes, and
their values if known at assembly time.

The lo i ounter value giv in fnsubad i i wital in
aesugging because It DProvides the offsets into the module for each
program section. . An offset, combined with th 1 dr for a
program section-‘T??3ﬁ"the'“T3EK"EETT35?‘5%;??§§TT§§g—§§E—§§§%ccess

locations in the memory-resident task image during debugging.

THE PROGRAM DEVELOPMENT ENVIRONMENT

1.1.3 Task Creation

The Task Builder (TKB) on RSX-11M and RSX-11lM-PLUS systems is a
multiple purpose tool. It allows vyou to create a loadable entity

(called a task image), define and structure a shared area of memory
(caITeéd a resident common), and arrange sharable routines to reside in
memory (called resident libraries). TKB has many complex aspects but
this guide introduces only its most frequent usage — building a task
image.
To build a task image, TKB accepts, as basic input, the output of a
language processor - an object module or multiple object modules. The
Task Builder can optionally generate a file of executable code (the
task image), a file of memory 3li2gg;ign.inﬁnxmagggg_ig_ﬂggl, and a
special Iile of symbol definitions used in constructing theé task (the
symbol definition file). The task image, residing on disk, is in a
ormat suiltable to e loaded into memory and executed. If you
generate a cross-reference listing, the listing itself contains only
global symbols and is appended to the map file.

In creating a task image, the Task Builder's primary —functions gage
linking, address binding, an ildi system dat .
Linking involves reésolvimg- global references 1n Ject modules and

resolving program section references among all object modules.
Address binding is assigning virtual address space within the task.
Building system data structures involves the creation of elements that
the system requires to load the task image into memory and to execute
the task. To resolve global symbols that are not defined in any of
the input object modules, TKB searches any object 1libraries you
specify and, as a default condition, searches the system object
library.

Because the PDP-1ll processor can address only 32K words (the address
limit of 16 bits) at any one time, a task cannot reference more than
32K words at a time. However, if you use certain advanced programming
techniques, the Task Builder allows a task to access more code or data
than can fit within the address limits. Techniques to overcome the
addressing limits include the following.

° Overlaying segments of a task with either disk-resident or
memory-resident code

. Mapping to different regions of memory outside the physical
limits of the current task space

Because these are advanced techniques, they are not shown in the
examples in this guide. For more information on them, refer to the
RSX-11M/M-PLUS Task Builder Manual.

The memory allocation information, or map, produced by TKB shows you
how program sections are arranged in task memory (their starting
virtual addresses and extents on mapped systems and physical addresses
and extents on unmapped systems), what contributions are in a program
section, any undefined symbols, and the optional cross-reference
listing of global symbols, You <can use the starting virtual
addresses, combined with the current location counter values (provided
by the assembler) as offsets, to access 1locations within the
memory-resident task during debugging.

THE PROGRAM DEVELOPMENT ENVIRONMENT

l.1.4 Debugging Aids

This section introduces the debugging aids described in this guide and
provided with RSX-11M and RSX-11M-PLUS systems to assist in
identifying faulty code.

l.1.4.1 On-Line Debugging Tool - The On-Line Debugging Tool (ODT)
allows interactive control of task execution. You specify to the Task
Builder that you want a debugging aid included in a task. TKB inserts
into the task the module LB:[1,1]0DT.OBJ.

When you run a task that includes ODT, execution begins at the ODT
transfer address rather than at the task starting address. Therefore,
ODT gains control and allows you to type special commands that
establish base addresses and that set breakpoint locations within the
task. After you tell ODT to begin task execution, ODT saves the
instructions at breakpoint locations you specified and replaces them

with PDP-11 breakpoint (BPT) instructions. ODT enables the BPT
synchronous system trap (SST) entry point in the task. Upon
encountering a BPT tmstructior—Th the task, the Executive passes

control to ODT at its breakpoint routine. ODT saves task registers in
special locations, restores instructions to the breakpoint 1locations,
and transfers control to the wuser task terminal. By typing ODT
commands, you can examine and alter any instructions or data within
task memory.

If a task generates an SST error, ODT gains control at its SST entry
point, prints a notice at the user terminal, and passes control to the
terminal. You can use the ODT commands to discover the cause of the
error, correct it, and perhaps continue executing the task.

To successfully modify instructions, you must have a thorough
understanding of the PDP-11 instruction set. If you are programming
in a high-level language, you should avoid interactive debugging
whenever possible.

1.1.4.2 Postmortem Dump - Postmortem Dump (PMD) is an installed task
that is directed by the Executive to extract run-time related data
about a terminated task, format it, and request a printed listing.l
Normally, when a task generates a synchronous system trap (SST), such
as caused by an improper reference to an odd address or a reference to
a nonexistent memory location, the Executive tries to transfer control
to an S®T entry point defined by the task. If the task does not have
an SST routine defined for the particular type of trap, the Executive
begins Ronormal task termination.

1 PMD requires that the Executive option for abnormal task termination
and device-not-ready messages be selected at system generation time.

THE PROGRAM DEVELOPMENT ENVIRONMENT

To terminate the task, the Executive performs an abort operation and
notifies the Task Termination Notification (TKTN) task. TKTN
displays, on the user terminal, the_ reason for the termination and the
contents of the task registers.l without PMD, you can acquire no
further information about the task.

By enabling Postmortem Dumps for a task which itself does not handle
synchronous system traps, you tell the Executive to supply more data
at abnormal task termination. That 1is, the Executive follows the
abort procedure and, in addition, creates a request for PMD to create
the dump. PMD examines system and task structures to preserve status
and run-time data, reads the task image from memory, and writes it to
disk in a readable format. PMD then queues a request to print the
file containing the dump data, after which the Executive completes the
task abort procedure.

1.1.4.3 Snapshot Dump - The snapshot dump ($SNAP), also using PMD,
generates an edited dump of a running task. Because the snapshot dump
requires you to insert special code (for example, the $SNAP macro
call) in a task, it is more difficult to use than PMD. However, by
inserting the snapshot dump code in the task, you can choose the
location at which the dump is created and select the extent and format
of the dump. 1In addition, you can generate the dump from more than
one location and, therefore, as many times as needed during task
execution.

It _is often useful to include debugging facilities such as $SNAP i
our task ase on deflning a condl n Tree— 10 1nclude e
EaciTiET While you are gepugging, Simply detime-tme=variable. You can

then omit the facility merely by reassembling the code with the
conditional variable undefined.

1.1.5 General Utilities

This section introduces the general-purpose utility programs that are
mentioned in this guide.

1.1.5.1 Cross-Reference Processor - The Cross-Reference Processor
gCRF% is an installed task that receives requests from MACRO-11 _and

the Task Builder to §enerate cross-reference 1istin%s of symbols. CRF
generates a specially ed file ng e cross—-reference
data and appends that file to the assembler listing or the task map

file. Therefore, if you request a cross-reference listing of symbols,
it always appears at the end of a listing or map file.

1.1.5.2 Peripheral Interchange Program - The Peripheral Interchange
Program (PIP) is the standard DIGITAL program for performing &ile_.and

device-related functionssi transferring file jum or User

1l The TKTN task must be installed on the system to display the
messages.

2 commands exist that allow you to fix a task in memory and physically
examine the contents of the task image. However, this is an involved
procedure and beyond the scope of this book.

THE PROGRAM DEVELOPMENT ENVIRONMENT

File Directory (UFD), to another, obtaining directory listings,
“Tenaming Elles, eleting files, and changing file protection codes.

PIP handles all file-structured devices and is wused for almost all

file operations. The noteworthy exception to PIP capabjlitl is for
certain PDP-11 Recor anagemen file operations,

for=wirtor supplies =TT ufTTIrrres.

1.1.5.3 Queuing and Spooling - RSX-11M and RSX-11M-PLUS systems

differ 1in the manner in which™wa provides gueuIng and SDOO g
TacilitiesBat bo Stems generally OLLer g _Same__user nctions.
ATMost—aYT Drogram developmen Jeks—automatically generate reques

to.um_e_mwwm% output file opn the
system default rinter. If your insta on "Mas the proper tasks
installed, Spooling task dequeues such requests and prints the

requested output file on the proper device. You should consult the
system manager at your installation for the exact details.

1.1.5.4 Librarian Operations - The Librarian program [(LBR) can create
and maintain specially formatted library files on disk:_ one for macro
call definitions and one for object module subroutines.l The MACRO-11
assembler and the Task Builder can access these library files and
extract the proper code from them. Libraries are convenient to use
because they encourage sharing of code, provide faster access to
multiple modules (only one file need be opened and closed), occupy
less space than the equivalent number of separate modules, and impose
a coding standard. The library files you create using the Librarian
are in the same format as those that DIGITAL supplies with the
operating system.

1.2. DIGITAL-SUPPLIED SYSTEM SOFTWARE

DIGITAL supplies system software in two standard 1library formats:
macLg_,ggll——detinixiggi_ggg oggect module subroutines. You use macro
Tibraries as input to the assembler and object libraries as 1input to
the Task Builder. The following two subsections describe these system

libraries. MACRe LIB ey ASSENPIER
bbjm-f librareg - Tk Bbo'/ln

1.2,1 System Directives - Macro Libraries

DIGITAL makes available system directives and system-related features
through calls; definitions for these calls reside in macro libraries.
The libraries are stored in a predefined file area known as the Useg
File Directory or UFD. The UFD is [1,1] on the system library device
(teLerenced explicitly by the device-independent designation LB:).
Table 1-1 summarizes the macro libraries DIGITAL supplies.

To use these libraries, you should follow the specific procedures
described in the system documentation. Typically, you supply in the
source code the appropriate names of the modules as parameters of a
.MCALL MACRO-11] directive. This action tells the assembler to
generate an entry for that call in its macro symbol table and to
search the appropriate library for the definition of the macro symbol.

1 The Librarian can also create a universal library file to contain
any of one file type you prefer.

1-7

THE PROGRAM DEVELOPMENT ENVIRONMENT

Table 1-1
DIGITAL-Supplied Macro Libraries

File Name and Type Description of Contents

RSXMAC.SML System Macro Library. Contains the macro
definitions for all RSX~-11M and RSX-11M-PLUS
system directives and File Control Service
(FCS) file processing calls. Derault
1Tbrary for the assembler. :

EXEMC.MLB Executive Macro Library. Contains the
symbol and offset definitions for the
Executive data structures.

RMSMAC.MLB PDP-11 Record Management System (RMS-11).
Contains the definitions for RMS-1ll1l calls
for sequential and relative file 1I/0. If
your system has the optional RMS-11K
software, this 1library will also contain
calls for indexed file operations.

In translating source code, the assembler first checks for macro
symbols, When the assembler finds an operator on a source line, it
searches its macro symbol table to see whether the operator is a macro
symbol, If the operator is a macro symbol, the assembler applies the
local definition for the macro symbol or extracts the definition from
a library you specified or from the system library. By searching the
user-supplied library first, the assembler allows you to tailor the
definitions of system macro calls or PDP-11 instructions. MACRO-11
assembles the macro definition with any accompanying parameters and
includes the assembled code in the object module. As a result, the
proper code is included from a library.

Through the use of the system macro library, you are provided with the
code enabling a task to issue system directives and to obtain file
trol services (FCS). These services enable a task to obtain
fﬁﬁ:?TEE"Eﬁﬂ"gygtgh information, perform input/output functions,
communicate with other tasks, manipulate logical and virtual address
space, control execution, and properly exit. 1In general, most RSX-11lM
and RSX-11M-PLUS featuréds are made available to a tagk t
the system macro library. For the system macro library
RSXMAC you need no ate the library name to the assembler. As a

default condition, the assembler automatically searches the system
macro library.

Through the use of the Executive macro library EXEMC.MLB, you are
provided with code to allow software to refer to offsets within the
Executive and system definitions of the Executive data structures.
This 1library 1is provided for building privileged tasks and for
incorporating specially written device drivers in the system. (This
topic is covered fully in the RSX-11M-PLUS Guide to Writing an I/0
Driver, the RSX-11M Guide to Writing an 1I/0 Driver, and the
RSX-11M/M-PLUS Task Builder Manual and is not mentioned further in
this guide.)

The Record Management System library RMSMAC.MLB is provided to support
file and record access to RMS-11 data. RMS-11 is an
upwards-compatible extension of FCS and offers more functions such as
indexed sequential (keyed) access to data. You include the RMS-11
macro symbols in the source code and supply to the assembler the name

THE PROGRAM DEVELOPMENT ENVIRONMENT

of the RMS-11 library to use. The assembler extracts the definitions
from the library and includes the RMS-11 code in the object module.

1.2.2 System Subroutines - Object Libraries

On RSX-11M and RSX-11M-PLUS systems, system object libraries provide
general wutility functions and special-purpose Executive features.
These libraries, like the macro libraries, reside in UFD [1,1] on the
system library device (LB:). Table 1-2 lists and describes the object
libraries DIGITAL supplies.

Table 1-2
DIGITAL-Supplied Object Libraries

File Name and Type Description of Contents
SYSLIB.OLB System Library. Contains register handling,
arithmetic, data conversion, output

formatting, file control services (FCS), and
FCS command line processing subroutines.
Optionally contains a set of real-time data

acquisition routines. Default library for
TKB.
VMLIB.OLB Virtual Memory Management Library. Contains

dynamic memory, <core allocation, virtual
memory, and page management subroutines.

EXELIB.OLB Executive Library. Contains the definitions
of the Executive symbols.

ANSLIB.OLB ANSI Magnetic Tape Library. On RSX-11M
systems only, an alternate version of

SYSLIB. Contains ANSI magnetic tape 1label
handling routines and FCS big buffering
support. (On RSX-11M-PLUS systems and
systems with 1limited disk space, these
routines are in SYSLIB.)

RMSLIB.OLB Record Management System. Contains the
routines for sequential and relative (RMS-11)
. and, optionally, indexed (RMS-11K) I/O.

FOROTS.OLB FORTRAN IV and FORTRAN 1IV-PLUS Library
F4POTS.OLB (optional). The Object Time System (OTS)
and other routines for the PDP-11 FORTRAN IV
language processors.

You typically include system object routines in a task by specifying
the routine name as the operand of a CALL macro or Jump To Subroutine
(JSR) instruction in the source code. The language processor, at the
point of the reference, generates the instructions to transfer control
to the external subroutine., The name of the subroutine is left as an
externally-defined global symbol for the Task Builder to resolve.

THE PROGRAM DEVELOPMENT ENVIRONMENT

To ensure that subroutines are placed in the task image, the Task
Builder, as a default operation, searches the library SYSLIB.OLB for
routine names that remain wundefined after the search of any
user-specified 1libraries. TKB attempts to match the undefined global
reference (the subroutine name in a module) with an entry point name
in the SYSLIB library. When it finds a match, TKB extracts a copy of
the module defining the symbol from SYSLIB and inserts the subroutine
in the task image. Any further references to that symbol in the task
are defined by the subroutine and TKB need not add any code to resolve
further references.

If a module references routines that are in an object library other
than SYSLIB.OLB, you must specify that library when you build the
task. TKB performs the same search operations on user-supplied
libraries as it does on the default search of SYSLIB. The Task
Builder also searches any user-specified libraries in the order in
which you specify them before it searches the system library.

1.3 HARDWARE FOR PROGRAM DEVELOPMENT

Basically, you need three types of devices for program development:
disks, terminals, and printers. This section briefly introduces these
devices and tells where you can f£ind further information. 1In general,
each hardware unit on the system is delivered with relevant hardware
documentation that provides programming information in addition to
operational instructions. Your local installation should have a
library of such hardware documentation. If you are not writing any
specially tailored code for these devices, the system software handles
them transparently through such mechanisms as the print spooler and
the Peripheral Interchange Program (PIP).

1.3.1 Disks

Disks are the main storage media on RSX-1l1lM and RSX-1lM-PLUS systems.
Disk drives are either public (that is, accessible to all users) or
private (that is, accessible to a restricted set of users). Almost
all wutility programs work with disk storage as a default device. You
can share public disk resources to create source program files and, as
needed, allocate your own private drive to store reserved copies of
source and documentation files.

1.3.2 Terminals

Terminals are the means by which you communicate with the system.
DIGITAL terminals handle 7-bit ASCII characters and system software
usually ignores any eighth, or parity, bit. You perform input to the
system through a typewriter-like keyboard; the system returns output
to you either on a screen at a video-display terminal or on paper at a
hard-copy terminal. Video-display terminals are more convenient
because they typically operate at faster rates than hard-copy devices.
Hard-copy terminals, however, have the advantage of providing a record
of what transpired during a session on the system.

Terminals are connected to the computer through either a direct 1line
or a modem unhit over a dial-up telephone 1line. If you are not
familiar with wusing a terminal, you should read either the
Introduction to RSX-11M-PLUS or the RSX-11lM Beginner's Guide. Both of
these documents explain how to access the system and use basic system
commands.

THE PROGRAM DEVELOPMENT ENVIRONMENT

1.3.3 Printers

Printers provide volume hard-copy output of data. On larger systenms,
you communicate with the printer through intermediate software called
spooling programs. On smaller systems, you may have to specify

explicitly that output is to go to a printer device in the absence of
spooling programs.

1.4 THE PROGRAM DEVELOPMENT PROCESS -- OVERVIEW

Figure 1-1 illustrates the steps in the program development process.
The following paragraphs briefly describe these steps, which are
treated in greater detail in Chapters 2 through 7.

‘ START ’

SOURCE
_ TEXT FILE MAC) CREATING AND
EDITOR (EDI) FORMATTING
MACRO-11
MACRO SOURCE
LIBRARY FILE FILES
(DEFAULT=RSXMAC.SML)
LISTING ASSEMBLING
LANGUAGE FILE (.LST) AND
PROCESSOR CORRECTING
{(MAC) A PROGRAM
OBJECT FILE (.0BJ)) MODULE
CORRECT — OBJECT
SOURCE ves LIBRARY FILE
FILE 3 DEFAULT=SYSLIB.OLB
- ASSEMBLY ()
ERRORS
\
MAP —
FILE (MAP)
TASK BUILDING
BUILDER > AND
TKB) — TESTING A
SYMBOL DEFINITION TASK
FILE (.STB)
— y
APPLY SOURCE
CORRECTIONS TASK IMAGE
AS NEEDED FILE (.TSK)
DUMP
FILE (.PMD)
RUNNING
DEBUG DEBUGGING
A TASK

Figure 1-1 The Program Development Process

THE PROGRAM DEVELOPMENT ENVIRONMENT

The steps normally taken to prepare a program to run on the system are
as follows.

1. Create a source program in a file on disk

2., Submit the source file to a language processor (assembler or
compiler) to produce an object module

3. Submit the file (or files) containing the object module to
the Task Builder to create a file containing a loadable task
image

4. Request the Executive to execute the task

You use a text editor to create the source file. For MACRO-11
programmers, this guide suggests a skeleton format for source files
and shows how to replicate and modify the skeleton file. The skeleton
file becomes a common base from which you create each new source file.

A language processor creates the file of relocatable object code. For
assembly language processing, MACRO-1l1l also accesses the system macro
library to include code for system directives in the object file. For
compilers, system directives are invoked by calls to subroutines in
the system object library SYSLIB.

The Task Builder creates the file of loadable code, assuming certain
default conditions about the run-time environment and building these
characteristics into the task. The Task Builder also accesses system
and user-specified libraries to resolve references in the task.

Once you have a task image, you request the Executive to run the
program. If any errors are encountered, you must edit the source

file, reassemble or recompile, build a new task image file and try
again.

1.5 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document Location

RSX-11M-PLUS Operating System Manual

Chapter 5, Program Development Facilities
Section 6.2, Editing Facilities

Section 6.3, File Utilities

Section 6.5, Cross Reference Processor (CRF)

Introduction to RSX-11M-PLUS
Chapter 1, M-PLUS How-To
Chapter 2, Learning the System

RSX-11M Beginner's Guide

Chapter 1, The Terminal
Chapter 3, The Files

Introduction to RSX-11M

Chapter 5, Program Development

CHAPTER 2

CREATING MACRO-11] SOURCE FILES

Your first step in program development is to «create a file that
contains MACRO-11 source statements. One way to do this is to create
a skeleton source file which you can use as a framework for all your
source programs. This chapter describes a source file format you can
use as a guideline to create your own skeleton file, presents some
MACRO-11 statements to include in the file, and explains some
elementary editing commands you can use to create and modify source
file}s.

DIGITAL has established a coding standard to enhance the readability
and maintainability of its MACRO-1l source programs. That standard is
outlined in an appendix of the IAS/RSX-11 MACRO-11 Reference Manual,
the reference for which is given in the list of further reading at the
end of this chapter.

2.1 MACRO-11 SKELETON SOURCE FILE FORMAT

This section presents the skeleton and source statement formats and
discusses each of the elements 1in the skeleton. Figure 2-1
illustrates the basic elements of the skeleton: a preface,
definitions, functional descriptions, and the code itself.

The source file preface, or preamble, should be on the first page.
The preface essentially describes the code, states its ownership,
identifies the author, defines the changes to the code, and gives a
brief description of the module's function.

After the preface of the module comes the detail of the code.
Declarations, such as local symbol, macro, and data definitions,
appearing toward the front of the code, make reading the code easier.
Preceding the routines in the module you should place detailed
descriptions of what the routines do and define what is required for
input to the routines, what the routines produce, and what effects
result from execution.

Each statement line in a source file should follow a consistent
format, as shown in Figure 2-2.

CREATING MACRO-11 SOURCE FILES

Title
Identification

Statement of Ownership

Authorship

Change History

Module Function
(General)

Local Symbol Definitions

Local Macro Definitions

Local Data Blocks

Module Function
(Detailed)
Inputs, Outputs,
and
Side Effects

Module Code

Module Preface
on first page

Figure 2-1 MACRO-11 Source File Format

CREATING MACRO-11 SOURCE FILES

Label: Operator Operand(s) ; Comments

Tab Position O Tab Position 1 Tab Position 2 Tab Position 4
Column 1 Column 9 Column 17 Column 33

Figure 2-2 MACRO-11 Source Statement Format

Although the assembler allows free formatting of statements, you
should follow the recommended format because it is easy to follow and
creates readable, consistent code.

In the source statement format shown in Figure 2-2, the label is any
user-defined symbol that identifies a reference location in the code.
An operator is any PDP-1l1 operation code, MACRO-11 assembler
directive, or macro symbol. An operand 1is any argument(s) or
parameter (s) of an operator. Comments consist of 1information you
provide to describe what effect you desire from the execution of the
instruction. Comments do not affect program execution; the assembler
merely transfers them to the 1listing file produced during the
assembly.

Comments, accompanied by selected MACRO-11 assembler directives,
constitute the source file skeleton. This skeleton provides the
structure on which you build the source file. Directives 1in the
source file skeleton identify the code and control the format of the
listing., Figure 2-3 shows a sample skeleton.

Sections 2.1.1 through 2.1.12 describe the parts of the source file
skeleton in detail.

2,1.1 L.TITLE Directive

The .TITLE directive allows you to name the module. The assembler
takes the- 4 nbla characters, up to the first blank or
horizontal tab character, as the module name. Following the name in
the LTITLE directive, you can use.uR to 24 gharacters to generally
describe the function of the module. The name a e description
appear as the first entry in the header line of each page in the

assembly 1listing. For example, consider the following .TITLE
directive.

.TITLE SKELTN SOURCE FILE SKELETON

The assembler takes the characters SKELTN as the module name. The
remaining characters up to the 30th character are taken as the
description. Any remaining characters after the 30th character would
be discarded. —

The r does ou specif in the
S 2
directive name you S ce or objec iles. To

mrmimtee=t¥nfusion, however, it is helpful to appiy € name ecified
in the L.TITLE directive to the source file from which the module is
created. (Note that the sample code and commands shown in this guide
use different names to help you distinguish their usages.)

CREATING MACRO-1l1 SOURCE FILES

TITLE
+ TOENT

GRELTN
/017

§

’

¢ AUTHOR? Z

i

;

§ CHANGES?

§

§

§ MODULE FUNCTION?

¥

i
« FAGE
CSRTTL SYMBOL.y
HL.I8T TTH
+NLIST REX
JMOCALL EXITSS

§

§LOCAL SYMROL DEFINITIONG?

’

i

i LocAL MACROS:

¥

§

i LOCAL DATA BLOCKS:

§

JFBECT DATA» DIy RUW

]

i FUNCTION DETALLSS
¥

;

; INPUTS

§

¥ QUTPUTS

H

t SIDE EFFECTS?
¥

$ START CODNE HERE

+PAGE

+BRTTI.

+PEECT
START
END 2 EXTTHS
+ EXNIY

MACRO »

SOURCE FYLE

a

¥

Iy
y
A
?

SKELETON

BREAK FAGE FOR FPREFACE

DATA DEFINITIONS

SUFFRESS BIN EXTENSION
EXECS EXIT MACRO

EXIT CLEANLY TO EXEC
TELL ASSEMERLER END OF CODE

Figure 2-3 Sample Source File Skeleton

CREATING MACRO~-11 SOURCE FILES

Moreover, the name the assembler extracts from the ,TITLE directive is
important 1in subsequent steps of program development. The Task
Builder lists this name in its memory allocation synopsis to show
which object modules made contributions to each program section in the
task image. 1In addition, if the obJject module 1is inserted in an
object library, the Librarian program keeps this name in the directory
of the library to refer to the object module,

2.1.2 JIDENT Directive

The .IDENT directive records the version of the module. You can
establish your own version identification conventions., The
identification follows the module into the task image and is displayed
in the map. Knowing whether the correct version of the module was
linked into the task image helps in the debugging and maintenance
process,

2.1.3 Author Line

The author line identifies the originator of the code.

2.1.4 Changes Section

This section of the source file describes any modifications that have
been made to the module. You can develop a convention whereby the
author's initials and a number can tag a change. The author of the
change can identify the change in this section and flag each line of
code with an additional comment such as the following.

TOM JONES 2-APR-78 ;TJ001
ADD STATE TAX TO TOTAL

~e o

Then, in the code a changed or added line can be flagged with the
notation TJOOl.

ADD A,B ;TOTAL WITH TAX ;TJ0O1

This procedure helps the author recall what changes were made to the
module and assists others in determining the extent of changes.l

2.1.5 Module Function

In the module function part of the source file, you can describe the
general processing operations the code performs. This description can
include how the module relates to the system or specific application,
that is, what type of processing precedes and follows the execution of
this module.

1 A utility called the Source Language Input Program (SLP) is supplied
with the system and can be used for source file maintenance. SLP
provides the means to update lines in an existing source file and to
apply an audit trail to identify lines deleted, replaced, and added.

CREATING MACRO-11 SOURCE FILES

2.1.6 Some Useful Directives

Between the module function description and the local symbol
definitions is a convenient place to 1insert some general purpose
directives. The following subsections describe these directives.

2.1.6.1 LPAGE Directive - The .PAGE directive causes a page break in
the assembly 1listing., It appears as shown in Figure 2-3 to keep the
preamble alone on the first page of the listing (after the table of
contents). You can use the .PAGE directive throughout the module to
generate page breaks for different subroutines.

2.1.6.2 LSBTTL Directive - The .SBTTL directive creates an entry for
the assembly 1listing table of contents printed at the front of the
listing. A table of contents 1is helpful in summarizing the
subroutines in a 1large module. Therefore, the text you supply with
the directive ought to describe what the related subroutine does. In
addition to appearing in the table of contents, the text appears on
the second line of the heading at the top of each 1listing page. If
your modules typically contain only a small number of subroutines, you
probably will not find the table of contents feature very useful.

2.1.6.3 LLIST TTM Directive - The .LIST TTM directive <creates a
listing formatted more conveniently for ouput on a terminal. (Section
3.4 of this guide shows how to display a listing at a terminal.) The
directive can be included during the early stages of program
development and removed from the stabilized code.

2.1.6.4 .NLIST BEX Directive - The .NLIST BEX directive suppresses
the binary extension of statements beyond what can £it on one source
statement line. Use of this directive saves much excess printing in
the assembly listing. For example, only the binary value of the first
three characters of an ASCII string would appear in the listing. The
directive simply makes the listing more readable and saves paper.

2.1.6.5 JMCALL Directive - The .MCALL directive is the means by which
you tell the assembler the names of the externally defined macro calls
that appear in the source file, The directive causes the assembler to
create entries in its macro symbol table for the macro names and to
look up the definitions of the related calls in either a user or a
system macro library. The assembler includes the definitions from the
library in the module where the calls themselves appear.l

The EXITSS directive (shown in the .MCALL statement) should be in
every user program that is designed to exit gracefully. It should be
the last statement the program (task) executes before it returns
control to the Executive. (The EXIT$S directive performs important
system housekeeping operations for the task.) The related definition

1 g you do not include the directive ,LIST ME (list macro expansions)
or .LIST MEB (list macro expansion lines that generate object code) in
the source file, the assembler does not insert in the 1listing the
expanded source code of the macros it assembles.

CREATING MACRO-11 SOURCE FILES

for EXITS$S resides in the file RSXMAC.SML in UFD [1,1] on the library
device (LB:). DIGITAL recommends that user tasks exit by using the
EXIT$S directive. (An alternative form of exiting allows a task to
ERTT and post status.)

If a call for an externally defined macro statement appears in the
source file but is not preceded by an .MCALL directive and the macro
name, the assembler treats the unrecognized macro call as an...implicit
. WORD data storage directive. (If the macro call has parameters, the
assembler may generate an error because of 1llega1 syntax for a .WORD
directive.) The object code is not assembled in the object module.
Later, when you build the task with the related object module and the
macro name 1is not a valid symbol, the Task Builder flags the name as
an Undefined Reference. ®hys, without the (MCALL directive, the
assgmbler does not know that it must search Iibraries to resuvive tire—

macro sxmbol.
a—!

2.1.6.6 LEND Directive - The ,END directive in a module signals the
logical end of source input and optlonally specifies the task transfer
address. ansfer addr ation at which rogram
execution begins. ough each source file sho contaln an
directive, only one source file should define the transfer address.
The assembler does not process lines beyond the one on which the .END
directive appears.

2.1.7 Local Symbol Definitions

In this section of your source file, you collect symbols in direct
assignment statements. Because symbols in MACRO-1l can be defined as
expressions of other symbols, having the definitions in one ©place is
an advantage. In addition, good programming practice encourages using
symbols instead of simply supplying a numeric constant.

For example, in defining a 10-byte buffer, the best method is to
define a symbol and then use the symbol in the buffer definition.

LOCAL SYMBOL DEFINITIONS

TN e ~o =

IZB = 10.
i
; LOCAL DATA BLOCKS
i
BUFB: .BLKB SIZB

This method has several advantages. First, if a single constant that
is referred to in numerous places in the code must be altered, you
need perform only one edit (to the symbol definition) to effect the
change. Second, if all the symbols are gathered in one place in
alphabetical order, reading the code is much simplified. Third, you
can find all references to a symbol in a cross-reference listing. The
cross-reference capability allows you to examine all the references to
a symbol and confidently assess the effects of altering the symbol
definition. These advantages are lost if you use constants.

Thus, the symbol list would contain such local symbol definitions as
SIZB = 10. The symbols themselves would appear in the module code.

CREATING MACRO-11 SOURCE FILES

2.1.8 Local Macro Definitions

The definition of a macro statement can appear anywhere in the source
file as long as the definition appears before the first occurrence of
the macro statement. It is better programming practice, then, to
place all macro definitions in a standard place near the front of the
source file.

2.1.9 Local Data Blocks

This section of the source file defines such data as buffers, status
words, and status bytes. Generally, it describes the local storage
that the module references. It is good programming practice to use a
separate .PSECT directive for data. See Section 2.1.1ll.

2.1.10 Module Function - Detailed

This section of the source file can be as general or specific as
neteded to describe the functions of the module, A complex module
should have a lengthy discussion; a simple module need not have as
much. At a minimum, this section should state the register usage on
input _to TR OUTDUTTTOTNE ToduTE

2.,1.11 .PSECT Directive

The .PSECT directive establishes a name and attributes for a program
section. A program section is a unit allocation of memory reserved
for either code or data. For example, you can establish a program
section to contain data for your program as follows.

.PSECT DATA,D,RW

The .PSECT directive creates the program section named DATA with the
attributes data (D) and read/write (RW). You may give a program
section for data either the read-only (RO) or the read/write (RW)
attribute.l (The assembler applies other, default attributes not
relevant to this discussion.)

The three most important aspects of the L.PSECT directive are: (1)
contributions defined for...a _ _gpecific _program section _can be in
§2%2£2Eg_g_gggg_in_ﬂ_ﬁgn;gg_jila_n;_____gparate source tiles; (2) the
ttributes of the program section are passed to the Task Builder; and
(3) contributions for a specific program section with the same
attributes are collected in one continuous allocation of memory space
by the Task Builder. 1In the skeleton file, it is useful to define one

program section to contain the data elements referenced in the task
and to define another program section to contain the code.

1 rsx-11M systems do not support hardware protection of program
sections that have the RO attribute., RSX-11M-PLUS systems support
hardware protection of program sections that have the RO attribute 1if
they are in the pure code of a multiuser task. Consult the
RSX-11M/M-PLUS Task Builder Manual for a discussion of program section
allocation in multiuser tasks.

2-8

CREATING MACRO-11 SOURCE FILES

2.2 CREATING A SOURCE FILE FROM A SKELETON FILE

This section describes how to use an editor, EDI, to create a skeleton
file and then to create a source file from the skeleton.

2.2.1 Performing the Initial Input

To create the skeleton file, run the editor by typing the command EDI
and the specification of a new file (one that 1is not in your
directory).

>EDI SKEL.MAC
[CREATING NEW FILE]
INPUT

The editor runs, determines that the file does not exist, creates the
file, and tells you to begin typing the input.

Type the input according to Figure 2-4. Leave any typographical
errors until after you have become familiar with the editing commands
described in Section 2.3. The notation conventions appearing in the
figure are described in the Preface at the front of this guide.

2.2.1.1 Inserting Blank Lines in Text - To insert a blank line in the
source file as shown in Figure 2-4, type a space or tab on a new line
followed by the RETURN key. If you type the RETURN key twice in
succession (that 1is, type the RETURN key to enter a line of text and
immediately type the RETURN key again on the new line), EDI terminates
the input. Thus, to enter a blank 1line, you need type only one
nonprinting character, such as TAB, on a new line.

2.2.1.2 Terminating the Input and the EDI Program - To terminate the
input, type the RETURN key twice 1in succession. EDI prints the
asterisk to request a command. Type the EXIT command to close the
file and terminate EDI. For example:

last line of text

RET

*EXIT
[EXIT]

>

When EDI exits, it prints the message [EXIT] and returns control to
MCR. The MCR prompt (>) indicates that the command interpreter is
ready to accept a new command.

CREATING MACRO-11 SOURCE FILES

EDT SKEL « MAC

CCREATING NEW FILE
INFUT

JTITLE SKELTN
Ta CINENT 701/
5

3

5 AUTHOR: Z

5

G D)

;

i CHANGES!

;

a
=

T.

M

e as e

ODULE FUNCTIONS

>
H4

TAB

+FPAGE ()
JSBTTL (G2e) SYMROL s MACRD
LIST TTM™ TAB

SOURCE FILE

. w> e er

SKELETON

BREAN FPAGE FOR FREFACE
DATA DEFINITIONS
TERMINAL LISTING MODE

Preay

Tap SNLIST REXCas) SUPFRESS RIN EXTENSION
TAB JMCALL EXIT$S POEXECS EXIT MACROD
mas) (RED)

V

i LOCAL SYMEOL DEFINITIONS!

5
TaB

;

§LOCAL MACROSS

;

;

5 LOCAL DATA ELOCKS:

;

FSECTSTARTIATA» Iy RW
TAB

;

3 FUNCTION DETAILSS

;

¢ 2 INFUTSS

;

i (e QUTFUTS?

;

i (s SINE EFFECTS!

;

Ga) (=D

«PAGE,
TaB CSRTTL

JFEECT

§ START CONE HERE

START?

ENNG (GAD) EXIT4S
Ca) END G Ca) G
Cren)

FEXIT

CEXIT)

s

a
¥

v

EXTT
TELL

QQJEMBLER END OF

Figure 2-4 Creating the Skeleton File SKEL.MAC

10

CODE

CREATING MACRO-11 SOURCE FILES

2.2.2 Creating a Source File from the Skeleton

After you create the skeleton file, you can use it many times to
create different source files by running the editor again as described
in Section 2.2.1, For example:

>EDI SKEL.MAC
[00054 LINES READ IN]

[PAGE 1]
*

This time EDI finds the file you just created, reads it into memory,
and prints an asterisk to request a command.

The EXIT command with a file specification creates a new file with
that name and containing all of the text in your skeleton.

*BXIT FILE.MAC
[EXIT]

>

EDI creates either the new file FILE.MAC;l in your directory or, if
the file already exists, a new version of the file. It retains the
input file SKEL.MAC. .You can repeat this process to create as many
new source files as you need.

At this point, the contents of SKEL.MAC and your new file are exactly
the same - typographical errors and all. Now you must use editing
commands to change your new file to make it unique. Section 2.3
describes some of these commands and gives examples of their usage to
enable you to perform the most common editing functions.

By using the same skeleton file each time you want to «create a new
source file, you save typing time and have a better chance of creating
consistent, easily readable, and well-documented code. After you have
gone through Section 2.3 and learned the editing commands, you may
want to correct the errors in the skeleton file.

2.3 EDITING THE SOURCE FILE

This section describes how to use a subset of EDI commands to edit a
source file. By following the examples in this section, you will
create three source files that you can use in subsequent stages of the
program development cycle.

You can abbreviate most of the commands in EDI. For example, the EXIT

command can be abbreviated EX. The descriptions of each command
include (within parentheses) the accepted abbreviation if one exists.

2.3.1 Displaying Text
Use the EDI command to access a source file to edit.
’EDI FILE.MAC

[00054 LINES READ IN]
[PAGE 1]
*

CREATING MACRO-11 SOURCE FILES

Two keys, RETURN and ESCAPE, cause EDI to move forward and backward,
respectively, one line and to display the new line. By using these
two keys, you can step line by line through a file. For example:

* (D)
.TITLE SKELTN SOURCE FILE SKELETON

* (RET

.IDENT /0l/
*

.TITLE SKELTN SOURCE FILE SKELETON
*

Typing the RETURN key twice advances the pointer two times and
displays each 1line. Typing the ESCAPE key moves the pointer back to
the previous line and displays the line.

TYPE n (TY n)

The TYPE n command displays n lines at a time but does not alter the
line position. For example:

*TYPE 2
.TITLE SKELTN SOURCE FILE SKELETON

.IDENT /01/
*

The 2 in the TYPE command causes EDI to display the current 1line and

the next 1line. If vyou give the TYPE command without a number, EDI
displays the current line (that is, one 1line).

LIST (L)

The LIST command displays all lines in the buffer starting at the

current line and stopping at the last line in the buffer (that is, end
of buffer).

*LIST
(all lines are listed)
*TYPE

[*BOB*]
* EXIT
[EXIT]

>

The LIST command positions the line pointer at the beginning of the
buffer. The TYPE command shows the position of the line pointer. EDI
prints the blank line it maintains at the beginning of the buffer and
the message [*BOB*] to remind you that the line pointer is at the
beginning of the buffer. EDI always keeps a blank 1line at the

beginning of the buffer to allow you to insert lines before the first
line of text in the buffer.

2,3.2 Locating Text and Positioning the Line Pointer

Editing a file requires you to locate a line of text in the buffer and
to position the pointer to that line., This section describes several
of the commands most commonly used in editing files.

CREATING MACRO-11 SOURCE FILES

BEGIN (B), END (E)

The BEGIN and END commands position the pointer to fixed lines in the
buffer - the beginning and ending lines. The END command also prints
the last line of the buffer. For example:

>EDI FILE.MAC

[00054 LINES READ IN]

[PAGE 1]

*END

.END Ga) () ; TELL ASSEMBLER END OF CODE
*

The END command is useful for quickly assessing what is the last 1line
in the buffer. The BEGIN command is helpful in quickly positioning
the pointer at the beginning (or top) 1line of the buffer, thus
enabling multiple passes over a buffer.

*BEGIN
*TYPE

[*BOB*]
*

Because the BEGIN command does not display. any. text, you can use the
TYPE command to display the first line in the buffer. The command in
the example shows the blank line at the beginning of the buffer. EDI
prints [*BOB*] to show you that it is positioned at the beginning of
the buffer.

(D

me) ,TITLE SKELTN SOURCE FILE SKELETON
*

Typing the RETURN key advances the pointer and displays the line.
LOCATE (L)

If the text you want to examine is within the buffer, you can type the
LOCATE command with a string to be located.

*LOCATE MODULE

; MODULE FUNCTION:
*

A space should separate the command and the search string to be
located. EDI displays the line on which it found the first occurrence
of the string. If EDI does not find the string, it prints a message
indicating that the end of buffer has been reached.

*LOCATE NODULE
[*EOB*]
*

After an unsuccessful search, EDI leaves the line pointer at the last
line of the buffer.

CREATING MACRO-11 SOURCE FILES

PLOCATE (PL)

If the string for which you are searching is not in the buffer, you
can use the PLOCATE command to tell EDI to search successive buffers
until it locates the string.

* BEGIN
* PLOCATE .END

«END (ae) ; TELL ASSEMBLER END OF CODE

*

EDI searches the buffer starting at the current line. If the string
is not found in the buffer, EDI preserves the contents of the buffer
and reads in more lines from the input file to £ill the buffer again.
It prints a message telling the number of lines searched. When EDI
finds the string, it displays the line on which the string occurs. If
EDI does not find the string, it prints a message indicating that the
end of file has been reached.

* PLOCATE .ENDR
[*EOF*]
*

At the end of file (signaled by [*EOF*]), EDI leaves an empty buffer
in which you can either insert new text (which follows all the text
currently in the file) or exit to preserve any changes made and to
start at the beginning of the file again. Note that, once EDI has
preserved a buffer, you can not go back to it except by starting at
the beginning of the file again.

* EXIT
[EXIT]

>

You can also use the PLOCATE command with a string known not to exist
in the file to position EDI after the last line of the file.

RENEW (REN)

The RENEW command lets you read new lines from the input file.

*EDI FILE.MAC

(00054 LINES READ IN]
[PAGE 1]

* RENEW

[*EQOF*]

{PAGE 2]

*EXIT

[EXIT]

>
THE RENEW command writes the lines in the buffer to the temporary
output file before it reads in new lines from the input file. 1If

there are no more lines left in the file, EDI signals the end of file.
This command is useful for casually inspecting the contents of a file.

2-14

CREATING MACRO-1l1 SOURCE FILES

2.3.3 Changing Text
CHANGE (C)

The CHANGE command alters text on the current line, allowing you to:
l. Replace an old string with a new string
2. Add a string at the start of a line
3. Delete a string f£rom a line

The command requires that you type, within character delimiters, the
old string (the text to be altered) followed by the new string. The
only requirement for the delimiting character is that it does not
appear in either the old or the new string.l A convenient character to
use as a delimiter is the slash character (/) as shown in the
following example.

>EDI FILE.MAC

[00054 LINES READ IN]
[PAGE 1]
* ()
.TITLE SKELTN _ SOURCE FILE SKELETON
*C /SKELTN/NUMA/ ()
.TITLE NUMA SOURCE FILE SKELETON

After you enter the C command, EDI searches the 1line for the old
string (SKELTN) and replaces it with the new string (NUMA). EDI then
prints the changed line to allow you to verify the operation. If EDI
cannot locate the old string, it prints the message [NO MATCH] and
reprints the prompt.

To save typing long strings, EDI allows you to include an ellipsis
(¢e.) in the o0ld string. For example:

*C /SO...ON/COUNT NUMBER OF A'S/

.TITLE ((Ta) NUMA (a8) COUNT NUMBER OF A'S
*

EDI takes the characters 80, all intervening characters, and the
characters ON as the old string. The ellipsis, used in this manner,
reduces the amount of typing required to specify a string to be
changed. Three other forms of the ellipsis allow variations of the
abbreviation.

Jeos/ By itself, the ellipsis means the entire line
/old string.../ From old string to the end of the line
/+...01ld string/ From the beginning of the line to o0ld string

The slash characters shown as delimiters with the ellipsis can be any
unique character.

1 The ampersand character (&) should not be used as a delimiter
because EDI treats it as a concatenation character. If you must use
it as a delimiter, follow the special procedures presented in Chapter
3 of the RSX-11 Utilities Manual for using the Concatenation Character
(CC) command.

CREATING MACRO-11 SOURCE FILES

To place a string at the beginning of a line, specify the null string
as the old string. For example:

*C //OLD STRING/(mer)
OLD STRING LTITLE (Ca5) NUMA COUNT NUMBER OF A'S
*

EDI replaces the null string at the beginning of the 1line with OLD
STRING and prints the changed line.

To delete a string from the line, specify the null string as the new
string as follows.

*C /OLD STRING// (Crer)
ms) ,TITLE NUMA COUNT NUMBER OF A'S

*

EDI replaces OLD STRING with the null string, that is, it deletes OLD
STRING and prints the changed line.

AP

A special command, AP, adds a string at the end of a 1line. The
command does not need delimiting characters since only one string can

be specified. Simply specify a space to separate the command and the
string as follows.

*GED)
.IDENT /0l/
*AP ; IDENTIFY MODULE VERSION

.IDENT /01/ ; IDENTIFY MODULE VERSION
*

After adding the text at the end of the line, EDI displays the changed
line.

DP n

To remove a line or lines from the text in the buffer, specify the
DP n command, where n is the number of lines to be deleted. The TYPE
n command can be used with the DP n command to display the lines to be
deleted.

*TYPE 3

’

i
;AUTHOR:Z
*DPp 2

;AUTHOR:Z
*

The TYPE 3 command displays the current line and two succeeding lines
(the pointer remains positioned at the current 1line). The DP 2
command deletes the current line and one succeeding line. EDI moves
the pointer to the 1line after the last one deleted and prints that
line.

CREATING MACRO-11 SOURCE FILES

EXIT (EX)

After changing text in the file, close the editing session as follows.

*EXIT
[EXIT]

>

The EXIT command without a file name creates a new version of the
current file and copies the remainder of the file to the new version.
Because exiting preserves the edits you have made to that point, you
should exit fairly often from a lengthy editing session., If a system
crash occurs, EDI retains the old version of your file (that 1is, it
retains the edits up until you last exited) but does not retain the

changes you are making. Frequent exits minimize the amount of editing
that can be lost if a system crash occurs.

2.3.4 1Inserting Code in the Source File
INSERT (1)

The INSERT, or I, command allows you to add multiple lines of text in
the source file. To insert code in the source file FILE.MAC, use
positioning commands to locate the line preceding where you want to
place the new material. The I command places new lines in the buffer
after the current line. For example:

>EDI FILE.MAC

[00052 LINES READ IN]

[PAGE 1]

*I, FUNCTION:

MODULE FUNCTION:

ICrer
THIS MODULE LOADS A BUFFER,
COUNTS THE NUMBER OF A'S (UPPER
CASE ONLY) IN THE BUFFER, CONVERTS
THE NUMBER TO OCTAL, AND REPORTS
THE NUMBER OF A'S FOUND.

%~

~s WO we ne e

RET

*

The L command (for LOCATE) positions EDI to the line preceding where
you want to place the new lines. Typing the.I command followed by the
RETURN key places EDI in insert mode. After you type the lines, press
the RETURN key twice in succession to leave insert mode.

Continue using positioning and editing commands to type in the
remainder of the source program shown in Figure 2-5.

CREATING MACRO-11 SOURCE FILES

+TITLE NUMA COUNT NUMBER OF A‘S
+IDENT /01/ § IDENTIFY MODULE VERSION
AUTHOR? Z

- ws

CHANGES ?

o> er e

MODULE FUNCTION?
THIS MONULE LOADS RUFFER»
COUNTS THE NUMBER OF A8 (UFPER
CASE ONLY) IN THE BUFFER» CONVERTS
THE NUMEER TO QCTAL» AND REFPORTS
THE NUMRER OF A’S8 FOUNI.,

W M3 EF Wr W WE eF €

+FAGE ¢ BREAK FAGE FOR FREFACE
+SRTTL SYMROL» MACROy DATA DEFINITIONS

+LIST TT™M # TERMINAL LISTING MODE
+NLIST BEX SUFFRESS RIN EXTENSION
+MCALL EXIT$S EXEGC’S EXIT MACRO

-y wr e

;

LOCAL SYMROL DEFINITIONS:
MOGLEN = NUMEND-MSO
SIZ = 8O,
SIZaA = G

-

L.OCAL MACROS: NONE

“€> ar W

LOCAL DATA RLOCKS?

wr W 6y

+PEECT DATAYDISRW

Al JASCIT /A7 i DEFINE AN A
BUF1? + BLKR S1Z § DEFINE BUFFER
M8G? +ASCTIT /THE NUMRBER OF A’S IS /
NUMA +BLKE S5IZh i DEFINE OCTAL COUNT
NUMEND = i END OF MESSAGE
NUMBER OF CHARS TYFED

NUMEC +BLRKW 1

y

Figure 2-5 Source Code for FILE.MAC

CREATING MACRO-1ll1 SOURCE FILES.

FUNCTION DETAILS!

W Wr WS WS W» W €S W

¢ START

START?

106

2082

30%¢

EEND ¢

INFUTS?

BUF1 I8 LOADED WITH CHARACTERS

OQUTFUTS

NUMA HOLDS THE NUMEBER OF A’S

SIDE EFFECTS! NONE

CODE HERE

+ PAGE

+SBTTL ROUTINE TO COUNT A’S

+FSECT

MOV ¥RUF 1RO # LOAD RUFFER ADDR

MOV #5IZyR1 § LOAD RUFFER SIZE

Cal.L READ § READ FROM TTY

TST R2 # ANY CHARS IN BUFFER®?
BEQ END # IF NONEs FINISH UF
CLR R1 5 INIT # OF A’S COUNTER
MOV R2» NUMC # SAVE # OF CHARS TYFED
CMPR (ROY+rA i I8 CHAR = A7

EBNE 20% # IF NOy EBET NEXT CHAR
INC R1 # COUNT AN A

DEC R2 ¢ ONE LESS CHAR

ENE 104 $# IF MORE» COMPARE NEXT
+ PAGE

+SBTTL TRANSLATE COUNT TO 0OCTAL

MOV #NUMA+ 6RO # BET PTR TO OCTAL #
MOV #59R2 # SET COUNT OF DIGITS
MOV R1ys—~(GF) ¥ BTACK IS TEMF AREA
RIC ¥177770@SF FOSTRIF LOW 3 RITS

ADD $60 R8P # MAKE OCTAL DIGIT

MOVER (SP)+y~(RO) i STORE OQCTAL DIGIT

ASR R1 § SHIFT TO

ASBR Ri H NEXT

ASR Ri1 H 3 RITS
DEC R2 i ONE LESS DIGIT

BNE 304 i IF MOREs REFEAT

MOV ¥MSGyRO # LOAD ADDR OF RUFFER
MOV #MEGLENYR1 ¢ LOAD SIZ OF MESSAGE
CALL WRITE $# REFORT THE RESULTS
EXIT$S i EXIT CLEANLY TO EXEC
+ ENI # TELL ASSEMELER END OF COLE

Figure 2-5 (Cont,)

Source Code for FILE.MAC

CREATING MACRO-11 SOURCE FILES

After you have typed in the code, use the techniques described
previously to create two new source files, FILEA.MAC and FILEB.MAC,
from the skeleton file. The code for these two files is shown in
Figures 2-6 and 2-7. These two files and the file FILE.MAC will be
used in Chapter 4 to build and test a task. You may want to edit the
skeleton file before you create the two new source files.

2.4 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document Location

IAS/RSX-11 MACRO-11 Reference Manual

Chapter 2, Source Program Format

Appendix E, Sample Coding Standard

Section 6.1, Listing Control Directives
Section 6.6, Terminating Directives
Section 6.8, Program Sectioning Directives
Section 7.8, MACRO Library Directive

RSX-11M/M-PLUS Task Builder Manual

Section 2.1, Linking Object Modules
Section 6.1.26, SQ (Sequential)

RSX-11 Utilities Manual

Chapter 3, Line Text Editor (EDI)

RSX-11M/M-PLUS Executive Reference Manual

Section 1.4.1, Macro Name Conventions
Section 4.3.20, Task Exit (EXITS$S)
Section 4.3.33, Queue I/0 Request and Wait

CREATING MACRO-11 SOURCE FILES

+TITLE TTREAD TERMINAL READ SUBROUTINE
+IDENT /01/

f AUTHOR? DEF ?-AFR-79

L

CHANGES: NONE

-

| Wr > W W

;
i LOCAL

>

LOCAL.

> e e

L.OCAL

> e w0

08T

14

MODULE FUNCTION?

THIS MODULE READNS A LINE FROM A
TERMINAL INTO A RUFFER

+ FAGE § BREAK PAGE FOR FREFACE

+SBTTL SYMBOLy MACRO» DATA DEFINITIONS
JLIST TTM TERMINAL LISTING
+NLIST EBEX

+MEALL QIOSS,yWTSES$S

a
v
a
’

SYMROL. DEFINITIONS?

EFN1 = 1
LUNS = G
MACROS?: NONE

DATA RBLOCKS?

FBECT DATAsDyRW

+BLKW 2 i DEF I0 STATUS WS

Figure 2-6 Source Code for FILEA.MAC

SUFFRESS RIN EXTENSION

CREATING MACRO-1l1 SOURCE FILES

3 FUNCTION DETAILSS

> TH W € W W W W W

i START
WRITE??

1043

INFUTS

RO
R1
QUTFUTS?

ADDR OF BUFFER TO WRITE
LENGTH IN RYTES OF BUFFER

g i

SUCCESS IN IOST
SIDE EFFECTS: I0T IF ERROR

+PAGE
+SRTTL START OF CODE
+FOECT
CONE HERE
i DEF ENTRY FOINT
QIO FLOWLEy #LUNG» FEFNLy v #TOST y y ROy R1 y #4402
QIN$S FARAMETERS?
I0WLE FUNCTION CODE
LUNG (TKE DEFAULT)
EFN1 I8 EVENT FLAG 1
STATUS AREA = I08T
FARAMETER LIST -
RO = START OF RUFFER
R1 = ¥ OF CHARS TO WRITE
40 = QUTPUT <CR>y<LFX*

> es Wr > WP e ‘€S M s ‘€r €y e ‘s ‘e

RCS 10% IF SET» DIR ACCEFT ERROR
WTSE4S #EFNL WAIT FOR 10 COMPLETE

TSTR 08T CHECK 10 STATUS

RBLT 10% IF LTy 10 ERROR

RETURN GO RACK TO CALLER

MOV $NSWy RO i SAVE DIR STAT WD

MOVE TOSTyR1 ¢ SAVE I0 STAT VALUE

1aT i 88T DUMPS TASK REGS

+END # TELL ASSEMBLER END OF CODE

;

Figure 2-6 (Cont.) Source Code for FILE%.MAC

h

‘CREATING MACRO-11 SOURCE FILES

STITLE TTWRIT TERMINAL WRITE SUBROUTINE
SIDENT /017

¥

i AUTHOR? DEF 9-AFR-79

§

$

¢ CHANGES?T NONE

]

§

§ MODULE FUNCTION?

ﬁ .

i THIS MODULE WRITES A
§ LINE FROM A RUFFER TO
$ A TERMINAL

H

+FAGE b BREAK FAGE FOR FREFACE
SSRTTL SYMEROL » MACROY DATA DEFINITIONS

IS8T TT™ §OTERMINAL LISTING MODE
+NLIST BEX 3 SBUPFRESS BIN EXTENSTON
+MCALL QIOSSWTHESS

;

$ LOCAL SYMEOL DEFINITIONS:
EFN1 wmo
LUNSG w5

-

LOCAL MACROS? NONE

wr ws W

LOCAL DATA BLOCKS?

> e wr

JPBECT DATA Dy RW

IosT: + BLKYW 2 #ODEF 10 STATUS WS

Figure 2-7 Source Code for FILEB.MAC

CREATING MACRO-11 SOURCE FILES

§ FUNCTION DETAILS?

INFUTS?

RO = ADIR OF BUFFER TO WRITE
R1 = LENGTH IN RYTES OF RUFFER
QUTFUTS S

SUCCESS IN I0ST
SIDE EFFECTS: T0T IF ERROR

w2 Cr Er T3 S e3 WF W €

+FAGE
+SETTL START OF CODE
+FHECT
i 8TART CONE HERE
WRITE?:? § DEF ENTRY FOINT
QAI0%S FLOWLEy ELUNS y FEFNLy y BTOSTy v “RO» R1 y #400
QIO$S FARAMETERS S
TOWLE FUNCTION CODE
LUNG (TKR DEFAULT)
EFNL I8 EVENT FLAG 1
STATUS AREA = I108T
FARAMETER LIST <
RO = START OF RUFFER
Ri = # OF CHARS TO WRITE
40 = QUTPUT <CRxy=LF>
IF SETy DIR ACCEFT ERROR
WAIT FOR 10 COMPLETE
CHECK 10 STATUS
IF LTy I0 ERROR
GO RBRACK TO CALLER

RBCS 10%
WTSE$S #EFN1
TSTER osT
RBLT 104
RETURN

MY el ‘e ER 'e3 AT € Sn CE W 6> RF AE WS

1042

SAVE DIIR STAT WD

SAVE 10 STAT VALUE

SET DUNMPS TASK REGS

TELL ASSEMRLER END OF CODE

MOV $NSWy RO
MOVER I08TyR1
10T
+END

wr ‘g wr e

Figure 2-7 (Cont.) Source Code for FILEB.MAC

2-24

CHAPTER 3

ASSEMBLING AND CORRECTING A PROGRAM MODULE

This chapter describes a few uses of the MACRO-1l1 assembler, some of
the common types of coding errors, some ways to uncover and correct
errors, and the way to generate a cross-reference listing.

The material in this chapter assumes that you have created the three
source files as described in Chapter 2.

3.1 PERFORMING A DIAGNOSTIC RUN ON A SOURCE FILE

Your first use of the MACRO-11 assembler on a source file should be to
perform a diagnostic run. You run the assembler only to check for
general errors, not to produce an object module or listing file. To
perform a diagnostic run, type the following command.

>MAC /DS:GBL=FILE

(any error lines appear)

>

The right side of the equal sign gives the specification of the source
file. The assembler searches for the file named FILE.MAC in your UFD.
The assembler applies the type .MAC as a default. Because there are
no file specifications on the left side of the equal sign, MACRO-11l
does not produce any object module or listing file., When you do not
specify a 1listing file in the command, the assembler prints on the
input terminal the lines that generated errors and reports the total
number of errors found.

The left part of the command (/DS:GBL) causes MACRO-11 to disable the
setting of undefined symbols to global and external. Ordinarily, when
MACFO-11 finds a symbol that is not defined in the source file, it
assumes that the reference is to a symbol that is defined external to
the module (in another module). (The notation GX in the 1listing
symbal table denotes a global and externally defined symbol.) By
disabling this feature in the diagnostic run, you tell the assembler
to flag any potential global reference with an undefined symbol error.
This disabling method is a convenient way to catch typographical
errors in symbol names at assembly time rather than later when you
link your object modules together.

The appearance of MACR0O-11 messages at the terminal during the
diagnostic run indicates that your module contains errors. 1If the
assembler does not find any errors, it simply returns control to the
Executive and MCR prints its prompt. Errors in the assembly are

ASSEMBLING AND CORRECTING A PROGRAM MODULE

denoted by single letter codes printed at the beginning of the faulty
statement. These errors are summarized in Appendix D of the
IAS/RSX-11 MACRO-11 Reference Manual.

The only errors that should appear from the diagnostic run are the
following:

U 67 000010 004767 CALL READ
u 95 000110 004767 CALL WRITE
ERRORS DETECTED: 2

/DS :GBL=FILE

READ FROM TTY
REPORT THE RESULTS

. we

The two undefined symbols, READ and WRITE, are the entry points
defined in the source files FILEA.MAC and FILEB.MAC. These symbols
are to be resolved by TKB.

3.2 TYPICAL ERRORS ENCOUNTERED DURING ASSEMBLY

Four error codes cover the majority of errors made in an assembly
language source file. The following sections describe some of the
most common conditions under which these error codes are generated.

3.2.1 The MACRO-1ll1l Error Code A

Error code A indicates a general assembly error. Most of these errors
are caused by typing mistakes such as the following.

e Omitting the semicolon (;) from a comment

The semicolon separates your comment from the portion of the
statement that the assembler evaluates. If you omit the
semicolon, MACRO-11 attempts to evaluate your comment as part
of the rest of the statement line.

e Omitting the period from a MACRO-11l directive

The leading period (.) 1in the operator field tells the
assembler that the statement contains a MACRO-11 directive.
If you forget to 1include the period on a directive, the
assembler cannot evaluate the operator as a directive. As a
result, error code A 1is generated, the directive and its
arguments are given a value of 0, and they are designated as
global symbols.

e Misspelling a PDP-11 instruction mnemonic

If you misspelled a PDP-11l instruction mnemonic (for example,
MOVE instead of MOV), the assembler can evaluate the operands
but not the operator. The IAS/RSX-11 MACRO-1l1 Reference
Manual lists all the mnemonics alphabetically. (These
mnemonics make up the permanent symbol table (PST)). The
PDP-11 Programming Card also contains all the instruction
mnemonics.

e Forming an illegal symbol

The first character of a symbol must not be a numeral.

ASSEMBLING AND CORRECTING A PROGRAM MODULE

e Not properly delimiting a directive argument

Many MACRO-11 directives require a character or argumenu
string to begin with and end with a certain delimiting
character. If you use the wrong character or omit one of the
delimiters, the assembler cannot properly match the delimiters
and therefore cannot evaluate the directive., For example, the
.ASCII directive requires the character string to begin and
end with the same delimiting character.

Another type of general assembly error involves general addressing
errors. The typical addressing error 1is to exceed the range of a
branch instruction (that is, branching more than 128 words backwards
or 127 words forwards). To correct this type of error, replace the
branch instruction with code to test the proper condition and with the
JMP instruction to transfer control.

Also common as a general assembly error are illegal forward
references. If you define a symbol based on another symbol defined by
a forward reference, the assembler cannot evaluate the reference. For
example:

A
C

B + 10.
A + lo.

The assembler cannot evaluate the symbol A because B is not yet
defined.

3.2.2 The MACRO-11 Error Code U

Error code U signals an undefined symbol error. This error usually
occurs because: (1) a symbol name on the .MCALL directive was
misspelled or (2) reference was made to a local label that does not
exist in the current local symbol block.

3.2.3 The MACRO-1ll Error Code Q

Error code Q indicates questionable syntax. This error usually
results from either including too many (or too few) arguments in a
directive or specifying an incorrect number of operands on an
instruction. In addition, this error occurs when you omit the
semicolon from a comment and the assembler attempts to evaluate the
comment as part of the statement.

3.2.4 The MACRO-11 Error Code E

Error code E means that you have omitted the .END directive from the
assembly language source file. If the assembler does not f£ind the
.END directive, it generates error code E with a 1line number of 0
after the last statement in the listing file.

Error code E also may indicate an expression overflow. If the
assembler encounters a nested expression that is too complex, it
generates error code E and denotes the point of the overflow with a
question mark (?). To clear the error condition, either simplify the
expression or ask your system manager to build MACRO-1ll with a larger
stack. i

ASSEMBLING AND CORRECTING A PROGRAM MODULE

3.3 GENERATING A PROGRAM MODULE AND A LISTING

After you correct the errors uncovered in the diagnostic run, you are

ready to produce an object module and a listing file. The following
command produces both files.

>MAC FILE,FILE/-SP=FILE
(error summary printed)
>

This command, like the command for the diagnostic run, 'depends on
default file types that MACRO-11 automatically assigns. The leftmost
file specification creates an object module called FILE.OBJ. The file
type .0OBJ denotes that the file is an object module.

The comma following the object file specification in the command is a
separating character that 1is required to distinguish different file
specifications in command lines.

Following the comma in the command is the listing file specification
that «c¢reates the file <called FILE.LST. The file type .LST denotes
that the file is a listing of source code produced by an assembler or
compiler.

It is good programming practice to use the assembler defaults for file
types and to apply the name of the source file to both the object and
listing files. Using the defaults helps you to differentiate types of
files and keeping the same name helps relate different types of files
to the proper source file.

The designation /-SP following the listing file specification in the
command inhibits automatic spooling of the 1listing to the line
printer. During the program development cycle, you create many files
for which you do not need a permanent copy. It is easier and less
wasteful to examine a listing file at your terminal than to generate
numerous copies of 1listing files that must be discarded because of
minor errors. After you attain an error-free assembly, you can spool
a copy of the latest version of the listing file retained on your
disk.

When you request a listing file in the assembly, MACRO-11 does not
print error lines on the terminal. Instead, if the assembler detects
any errors, it prints a message giving the total number found. 1If the
assembler finds no errors, it simply exits. The absence of a summary
of error messages from the assembler means an error-free assembly. If
there are errors, you can examine the listing file at the terminal.
However, an error-free assembly does not guarantee that the program
will run properly.

You can issue the following commands to assemble the two other source
files, FILEA.MAC and FILEB.MAC, which you created using the procedures
described in Chapter 2.

>MAC FILEA,FILEA/-SP=FILEA
>MAC FILEB,FILEB/-SP=FILEB
>

These two commands create the object modules FILEA.OBJ and FILEB.OBJ
that you will need to link into your task in Chapter 4.

ASSEMBLING AND CORRECTING A PROGRAM MODULE

3.4 EXAMINING A LISTING AT THE TERMINAL

You can run the Peripheral Interchange Program (PIP) to transfer a

copy of your listing from disk to the terminal., The following command
starts the transfer.

>PIP TI:=FILE.LST

(file appears on screen)

>

In the command to the left of the equal sign, the designation TI:
specifies your terminal (that is, the terminal initiating the request)
as the output device.

NOTE

If you omit the colon £from TI:, PIP
creates a new file called TI in your UFD
and copies the input file to it.

To the right of the equal sign is the input file specification with
both a name and type. For PIP, you must specify a file type because
it does not apply a default file type for you. (Without a file type,
PIP looks for a file with no type, that is, a file with a null type.)

You can use control commands to temporarily stop and restart the
display and to alternately suppress and resume the output request.
The commands are summarized in Table 3-1.

Table 3-1
Terminal Output Control Commands
Command Effect
CTRL/S Temporarily stops the display
CTRL/Q Restarts the display stopped by CTRL/S
CTRL/O Alternately suppresses and resumes
the output to the terminal

The CTRL/S and CTRL/Q commands are used together to freeze the display
on the screen and to request more lines to be displayed. While the
CTRL/S command is in effect, you can read what is on the screen. The
CTRL/Q command tells the system to restart the display where it left
of f when it sensed the CTRL/S command.

The CTRL/0 command is for suppressing unwanted output. The command
tells the system to stop sending characters to the terminal. The
program, however, continues processing but simply omits displaying the
output. (While CTRL/O is in effect, the system disables keyboard
input and does not echo any characters typed at the terminal.,) By
typing CTRL/0O again, you tell the system to resume output to the
terminal. By typing successive CTRL/Os, you can skip unnecessary
portions of the output until the program reaches the correct part. If
the program finishes processing the output request while CTRL/O is in
effect, the system automatically reenables keyboard input and a prompt
appears on the terminal.

ASSEMBLING AND CORRECTING A PROGRAM MODULE

3.5 GENERATING A CROSS-REFERENCE LISTING

Worthwhile additions to the assembly listing are the symbol and macro
cross-reference listings. These listings give, in alphabetical order,
each symbol and macro name defined or referred to and the number of
the page and 1line in the listing where the definition or reference

occurs. You generate the cross-reference 1listing by typing the
following.

>MAC ,FILE/CR/-SP=FILE
(any errors cause total number to be printed)

>

Because no file specification precedes the comma in the command,
MACRO-11 omits creating the object module and produces only a listing
file. The /CR designation tells the assembler to generate a request
for the CRF task to produce a cross-reference listing. (Omitting the
comma from the command causes an error because the command then
requests an object module only. With an object module specification,
the designations /CR and /-SP are illegal.)

NOTE
If, after you request a cross-reference
listing, you discover that the
information is missing from your

listing, the CRF task either 1is not
installed on your system or is still
processing the request. Ask your system
manager to install the CRF task,

The CRF task appends the cross-reference listing to the end of the

listing file, denoting the cross references by the titles SYMBOL CROSS
REFERENCE and MACRO CROSS REFERENCE.

3.6 SPOOLING A COPY OF LISTINGS

Once you have developed an error-free assembly, you can obtain a hard
copy of the listing file by typing one of the following commands.

>PIP FILE.LST/SP
>

or

>PRINT FILE.LST
>

These commands create a request to the spooling task to print the file
you specify. (You can request more than one file at a time by
including the file specifications in the command and separating each
specification with a comma.) Your request is placed in a queue of
requests that 1s processed by a separate task.

If your system does not have spooling, you can list the file directly
on the printer as follows:

;PIP LP:=FILE.LST

3-6

ASSEMBLING AND CORRECTING A PROGRAM MODULE

If the printer is not busy or is not allocated by another wuser, PIP
outputs the file to printer unit 0.

3.7 CLEANING UP THE DISK DIRECTORY

After you edit and reassemble the source files several times, your
directory becomes cluttered with multiple versions of the same files.

You can list the name, types, version numbers, and sizes of the files
stored in your UFD by typing the following command.

>PIP /LI
(the directory listing appears)
>

The designation /LI causes PIP to list the directory information at
your terminal. By default, the command requests all names, types, and
versions of files in your UFD.

By examining the directory information, you notice that files with the
same name and type have multiple versions. Use the following command

to the PIP program to purge all but the most recent version of the
files.

>PIP *,MAC,*.LST,*.0BJ/PU
>

The designation /PU purges all but the latest version of the files

specified. The asterisk character in the command denotes all files
having any name and the type specified.

3.8 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document . Location

IAS/RSX-11 MACRO-11 Reference Manual

Chapter 8, Operating Procedures

Section 8.1.3, RSX-1ll1l File Spec Switches
Section 8.4, MACRO-11 Error Messages
Appendix D, Diagnostic Error Message Summary

RSX-11 Utilities Manual

Section 4.2.2, Performing File Control Functions
Chapter 6, Print and Queue Utility
Appendix D, Cross Reference Processor (CRF)

RSX-11M~PLUS Batch and Queue Operations Manual

Chapter 3, Queuing Jobs

CHAPTER 4

BUILDING AND TESTING A TASK

This chapter describes ways to use the Task Builder (TKB) program to
create a task 1image from program object modules. The procedures
described in this chapter assume that you have created three
error-free object modules as described in Chapter 3.

4.1 CREATING A TASK IMAGE

The TKB program creates a task image file that can be loaded into
memory. You can supply as input to TKB either a single object module
or multiple object modules. 1In most cases, however, your programs
will <consist of multiple object modules. The following sections
describe the procedures and the way TKB reports error conditions.

4.1.1 Supplying a Single Object Module

To create a task image file from a single module, supply the f£ile name
of the object module as in the following command.

>TKB FILE=FILE

(any error messages appear)
>

The right side of the equal sign specifies the file containing the
object module. TKB assumes that the type in the file specification is
.OBJ. The left side of the equal sign gives the specification of the
task image file to which TKB assigns the file type .TSK. Again, as
with the assembler, it is convenient to apply the same name to both
the output file and the input file and to let TKB apply the default
type specifications.

TKB tries to resolve all global references in the object module. If
there are undefined references after the module has been processed,
TKB searches the system object library SYSLIB.OLB in UFD [1,1] on the
library device (LB:). If no errors are encountered in the process,
TKB exits and the command prompt (>) appears.

If TKB detects an error during processing, it prints a message at the
terminal in one of the following forms.

TKB -- *DIAG* - error message
or

TKB -—- *FATAL* - error message

4-1

BUILDING AND TESTING A TASK

TKB error messages are summarized in an appendix of the RSX-11M/M-PLUS
Task Builder Manual.

If an error message appears and the error condition described is not
operational (for example, lack of space for the task image file) or is
not a fatal error, TKB creates the task image file anyway. Depending
on the error condition, you may have to remove the cause of the error
from the source file, reassemble the source file and repeat the TKB
procedure. In some instances, the diagnostic condition is merely a
warning and has no ill effect when the task runs. (For guidelines on
typical error conditions, see Section 4.4.)

When you create the task image from the single object module FILE.OBJ,
TKB prints the following error message.

TKB ~- *DIAG* -2 UNDEFINED SYMBOLS SEGMENT FILE

READ
WRITE

The undefined symbols, READ and WRITE, are the entry points of the two
routines defined by the object modules FILEA.OBJ and FILEB.OBJ. TKB
searches the system object library to resolve global references left
undefined in your input. Because TKB failed to f£ind modules that
defined these symbols, it reported the error condition. You can
eliminate the error condition by following the procedures described in
Section 4.1.2.

4,1.2 Supplying Multiple Object Modules

TKB accepts multiple object modules as input. On the right side of

the equal sign, type the names of the object files separated by
commas, as in the following example.

>TKB FILE=FILE,FILEA,FILEB

(any error messages appear)

>

TKB performs the same actions as described in Section 4.1.1 for one
object module. Only one of the object modules specified must have
been assembled with a .END directive giving the starting address of
the task. If one of the modules does not contain the starting
address, TKB assigns the default transfer address of 1, which causes
an error when you run the task. See Section 4.4.

TKB also processes a concatenated object module, which 1is merely a
file containing multiple modules. To create a concatenated file, use
PIP as follows:

>PIP FILCON.OBJ=FILE.OBJ,FILEA,FILEB/ME
>

The right side of the command specifies the files to be concatenated.
You need specify the file type (.OBJ) only on the first file because
PIP applies it as the default file type for subsequent names. The
designation /ME tells PIP to merge (concatenate) all the files into
the one file specified on the left side of the equal sign. (When you
supply multiple file specifications on the right side of the command,
PIP uses /ME as a default condition. The command string includes /ME
merely to emphasize the concatenate, or merge, operation.)

BUILDING AND TESTING A TASK

The single concatenated object file can then be the sole input to TKB
as in the following command.

>TKB FILE=FILCON
(any error messages appear)

>

This operation saves file processing overhead for the TKB program and
is possibly 40 percent faster than supplying the object modules
separately.

4.1.3 Using the Fast Task Builder

Often you are performing repetitive, straightforward task building
functions where speed is preferable to versatility. In such
circumstances, you should use the Fast Task Builder (FTB). Its
interface is the same as that of TKB. For example:

>FTB FILE,FILE/-SP=FILE,FILEA,FILEB
>

FTB runs three to four times faster than TKB but is 1less versatile
than TKB. For example, FTB does not create a global cross-reference
listing or a symbol definition file. 1In addition, the FTB map has
less information than the TKB map has.

4.2 TASK BUILDER DEFAULTS

When you build a task image, TKB applies certain default conditions to
your program including the partition in which your task runs, the host
system memory management characteristics, the task's
checkpointability, and the number of 1logical wunits your task can
access. If your program does not use the default conditions, the
process of building a task becomes more complex. You can consult the
RSX-11M/M-PLUS Task Builder Manual for the procedures to override the
default conditions,

TKB assigns your program to be run in the default partition called
GEN. If you are building a task to run in another partition, you can
either supply the correct partition name at run time or rebuild the
task and specify the correct partition name.

TKB applies memory management characteristics depending on the system
on which you build the task. If your system has memory management
hardware, TKB allocates memory starting at virtual address 0 and
assumes that the task will be relocated by memory management hardware.
Therefore, the task can be run in any partition 1large enough to
contain the image. If your system does not have memory management
hardware, TKB assumes that the task runs at a fixed physical address
that the system must supply.

The Task Builder assumes that the task is not checkpointable and does
not use the floating-point processor. TKB establishes the maximum
number of logical units (six) the task can access and supplies the
assignments for these 1logical wunits. The default assignments are:
logical units 1 through 4 are assigned to the system device (8Y:),
unit 5 is the task initiating terminal (TI:), and unit 6 is the
console listing device (CL:). These defaults mean that the task can

BUILDING AND TESTING A TASK

simultaneously refer to at most four files on the system device, one
file on the task initiating terminal, and one file on the system
console listing device.

4.3 GENERATING A MAP AND A GLOBAL CROSS-REFERENCE LISTING

Before you run the task and correct simple errors, you can produce a
memory allocation file (called a map) and a cross-reference listing of
global symbols. The map and global cross-reference file is useful in
later stages of program development and for program documentation.

4.3.1 Requesting a Map and a Global Cross—-Reference Listing

In most situations, you need a standard map and global cross-reference
listing for debugging a task. To create a map with a global
cross~-reference listing, type the following command.

>TKB ,FILE/CR/-SP/-WI=FILE,FILEA,FILEB
>

The right side of the equal sign is the input object module (or
concatenated object module or multiple object modules). The left side
of the equal sign in the command specifies the map file name, to which
TKB appends the file type .MAP. The comma preceding the map file name
suppresses the creation of the task image file.

To create a new version of the task image file when you request the
map and global cross-reference listing, type the command as follows.

>TKB FILE,FILE/CR/-SP/-WI=FILE,FILEA,FILEB
>

TKB creates both files.

The designation /CR tells TKB to generate a request for the CRF task
to produce a global cross-reference listing., The designation /-WI
reduces the width of the listing from 132 columns to 80 <columns for
display on a terminal. The CRF task executes the request from TKB and
appends the global symbol cross-reference listing file to the end of
the map file. The global cross-reference in the map listing is
denoted by the title GLOBAL CROSS REFERENCE.

NOTE

If, after you request a global
cross-reference 1listing, you discover
that the map does not have one, the CRF
task either 1is not installed on the
system or 1is still processing the
request. Consult the system manager to
have the CRF task installed.

1 rhe task image specification is null when a comma appears first 1in
the command. If you omit the comma, TKB treats the file name for the
map as a task 1image and generates a syntax error because the
designation /CR/-SP is illegal with a task image file.

BUILDING AND TESTING A TASK

4.3.,2 Examining the Map at the Terminal

The same commands described in Section 3.4 can be used to examine a
map at the terminal. The following command shows the procedure.

>PIP TI:=FILE.MAP
(file appears on screen)

>

Use the control commands CTRL/S, CTRL/Q, and CTRL/O, summarized in
Table 3-1, to control the terminal output.

4.3.3 Requesting a Full Map

The map file produced as described in Section 4.3.1 is a short form of
the map that contains most information needed for debugging tasks. To
generate a full form of the map, specify +the command to TKB as
follows.

>TKB ,FULL/-SP/-SH/MA/CR=FILE,FILEA,FILEB
>

The designation /~SH indicates that you do not want the short form of
the standard map. TKB therefore includes the file contents
information in the map. The designation /MA tells TKB to include
system library contributions to the task in the file contents section
of the map. (System symbols also are included in the global
cross-reference listing.)

4.4 RUNNING THE TASK AND CORRECTING TYPICAL ERRORS

You execute your task by using the RUN command and the name of the
task image file.l For example:

>RUN FILE

Because the task FILE 1is not installed on the system, the Run
processor searches your UFD on device SY: for a file named FILE.TSK.
Run installs it temporarily and runs it immediately. (The task will
be automatically removed on exit.)

To run task FILE, the Executive transfers control to the task
starting, or transfer, address. If your task encounters an error
condition, the Executive must decide whether to abort the task.

Errors that can cause the Executive to abort a task are either
hardware related or software related. If the error is hardware
related, such as a memory parity error or a load failure, the
Executive begins aborting the task. 1In contrast, a synchronous system
trap (SST) error condition, such as an illegal instruction, causes the
Executive to attempt to transfer control to an SST routine. An SST
routine is a routine within a task that services a particular type of
SST condition. If your task defines a routine to service the type of
trap, the Executive transfers control to it. If your task does not
have the routine defined, the Executive aborts the task.

1 The RUN command has many formats for scheduling and rescheduling
tasks. The format shown in the example is the most widely employed.

4-5

BUILDING AND TESTING A TASK

Aborting a task forces an orderly termination of the task. Included
in the termination 1is a request for the Task Termination and
Notification task (TKTN) to display a message on your terminal. The
display includes the cause of the abort and .a list of the task
registers and Processor Status word (PS). For example:

TASK "TT30 " TERMINATED
ODD ADDRESS OR OTHER TRAP FOUR
R0=000000

R1=100101

R2=135600

R3=000000

R4=000000

R5=000000

spP=001172

PC=000003

PsS=170017

>

The information can help you ascertain the cause of the abort.l If the
cause of the error is hardware-related, report the occurrence to your
system manager who can consult the error logging data to ascertain the
origin of the problem. If the cause of the error was an SST
condition, you can use the data displayed by TKTN to f£ind the problem.

The value of the PC (minus 2) shown in the display tells you the
address of the instruction that was being executed when the error was
encountered. In the example shown above, the PC is at an odd address
(000003). By examining the task map, you can ascertain that the PC
address is not within the task code. This condition demonstrates one
of the more common error conditions. The main module NUMA source file
FILE.MAC does not define a task transfer address. The .END directive
in a source file, used to define the starting address of a task, does
not have the address symbol of the first instruction. If you omit the
starting address definition, TKB supplies a default transfer address
of 1. When you run the task, it causes an odd address trap and
terminates.. (Note that the PC has been incremented to 000003.)
Therefore, you should ensure that the source file defines a starting
address and that the address is even (on a word boundary).

To correct an error in your task, you must edit the source file(s)
concerned, reassemble the corrected file(s), and rebuild the task.
For example:

>EDI FILE.MAC

[00103 LINES READ IN]
(PAGE 1]
*L .END

+END

*C /D) /D () START/
+END START

*EX

[EXIT]

TELL ASSEMBLER END OF CODE

-

TELL ASSEMBLER END OF CODE

-

>MAC FILE,FILE/-SP=FILE
>TKB FILE,FILE/-SP=FILE,FILEA,FILEB

1 The format of the information varies between RSX-11M and
RSX-11M-PLUS (that 1is, one system may have the time of the abort and
another system may report the processor on which the abort occurred).
However, the basic data displayed is the same.

4-6

BUILDING AND TESTING A TASK

>RUN FILE

ABCABCABAB '

THE NUMBER OF A'S IS 0004
>

After you correct the error and rebuild the task, you can run the task
again. The task reads the 1line of text that you type, counts the
number of As, displays the result, and exits.

The typical errors made in programming result in an SST condition.
The common conditions are either an odd address or a memory protection
trap. Most of these -errors occur when you use relative mode
addressing instead of immediate mode. For example:

MoV #BUF1 ,RO H
MOV OFFSET(RO) ,R1 H

The immediate mode reference #BUFl moves the address of BUFl into
register 0. If you omit the number sign (#), however, you incorrectly
specify relative mode addressing as follows.

MOV BUF1,RO
Mov OFFSET(RO),R1

This instruction moves the contents of BUFl and not the address of
BUFl into RO. The subsequent indexed mode reference generates either
an odd address or memory protection trap. (Your task is attempting
either to 1illegally reference an odd address or to reference a
location outside task memory). This type of error occurs often when
you are using system directives that require parameters as immediate
mode references and you omit the number sign from a parameter that
makes the reference relative. :

4.5 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document Location

RSX-11M/M-PLUS Task Builder Manual

Chapter 1, Commands

Section 6.1, Switches

Section 6.2, Options

Appendix F, Error Messages

Appendix E, The Fast Task Builder (FTB)

RSX-11 Utilities Manual

Section 4.2.2, Performing File Control Functions
Appendix D, Cross Reference Processor (CRF)

CHAPTER 5

USING DEBUGGING AIDS

This chapter introduces a few debugging aids that are helpful in the
program development process.

5.1 THE ON-LINE DEBUGGING TOOL

The On-Line Debugging Tool (ODT) is special code that you include in
your task image to assist you during debugging. ODT gives you
interactive control of task execution, and allows you to set
breakpoints and examine and change data and instructions within the
memory-resident task. The ODT module is linked into your task image,
thereby increasing the size of the task image. Therefore, you remove
ODT from your task when you finish debugging by rebuilding the task
and omitting the ODT module. ‘

ODT commands differ from commands in other utility programs. Most
programs have multiple-character commands that require a 1line
terminator before they are executed. ODT commands, however, are
single characters and require no 1line terminator. That is, ODT
interprets input on a character per character basis rather than on a
line by 1line basis. Therefore, as soon as you type a character that
ODT recognizes as a command, ODT interprets it and performs the
specified function. This difference in commands means that you must
be especially alert when you are debugging your task with ODT.

5.1.1 1Including ODT in a Task
To include ODT in a task, type a command similar to the following one.

>TKB BUG/DA,BUG/CR/-SP=FILE,FILEA,FILEB
>

The designation /DA accompanying the task image £file specification
tells TKB to include ODT. The task builder accesses the file ODT.OBJ
in UFD [1,1] on the library device and links it into the task BUG.
You should request a map of the task because an accurate map is
necessary for use with ODT.

5.1.2 Preparing to Use ODT

Before you run a task containing ODT, ensure that accurate listings of
the assembled source files are available. These listings show the
offsets into the modules in your task. The map of the task and the
assembled source listings provide the data you need to set breakpoints
and examine locations within the task.

5-1

USING DEBUGGIKG AIDS

5.1.3 Setting up the Task

When you run a task containing ODT, ODT gains control, identifies
itself (and the task it controls), and prints its command prompt. The
following command shows the sequence.

>RUN BUG
ODT:TT30

The notation TT30 is the name that the system dispatcher assigned to
the task. Such a name consists of the letters TT followed by the unit
number of the terminal that requested the task. (The task shown here
was run from terminal number 30 (octal).)

The underline character (_) indicates that ODT is ready to accept
commands.

To access locations within the task, you should establish one or more
relocation registers. This set of eight registers, numbered 0 through
7, allows. you to specify locations within the task in terms of offsets
from the start of modules in the task image.

To establish the proper addressing using offsets, you must first
consult the location information in the task map. On the map
printout, the portion titled MEMORY ALLOCATION SYNOPSIS contains the
location information for each program section and for each
contribution to the program sections from different modules. A sample
of the relevant portion of the map for the program BUG is shown in
Figure 5-1.

MEMORY ALLOCATION SYNOFSIS?

SECTION TITLE IDENT FILE

+ BLK+3(RWsIyLCL,RELyCON) 001202 000340 00224,
001202 000122 00082, NUMA 01 FILCON,OEJ#1
001324 000110 00072, TTREAD 01 FILCON.OBJS1
001434 000106 00070. TTWRIT 01 FILCON.ORJ?1

DATA ! (RWsDyLCLYRELCON) 001542 000166 00118,
001542 000156 00110. NUMA 01 FILCON.ORJS1
001720 000004 00004. TTREAD 01 FILCON.OBJS1
001724 000004 00004, TTWRIT 01 FILCON.OQEJG1

$$$0DT S (RWy IyGBLRELYOVR) 001730 003572 02938,
001730 005572 02938, ODTRSX MO5.02 ODT.OBJ? 36

Figure 5-1 Memory Allocation Synopsis from Task BUG Map

The location information for a program section is the octal starting
address of the program section and its extent in bytes (both octal and
decimal values). For example, for the blank program section, the
starting location is 1202 (octal) and the extent is 340 (octal), or
224 (decimal), bytes. Under the program section location information
are the octal starting addresses and extents in bytes for the
contributions from each object module. For example, the contribution
from TTREAD in the blank program section starts at location 1324 and
extends for 110 (octal), or 72 (decimal), bytes.

The following example shows how to place the starting addresses of the
modules in relocation registers.

USING DEBUGGING AIDS

_1202;0R
_1324; 1R
_1434;2R
_1542; 3R
_1720;4R
T1724;5R

The R commands place the addresses in relocation registers 0 through
5. (The addresses are octal; ODT accepts only octal numbers.) As
soon as you type the R in the command line, ODT generates 1line feed
and carriage return operations and prints another prompt. This action
indicates that ODT has executed the command as soon as it was typed.
Therefore, before typing the R (or any command), ensure that the
command line is correct.

If you notice a typographical error in the line before you type the
command itself, simply type either the CTRL/U combination; the number
8 or 9; or the DELETE key as shown in the following example.

_1272;08

ODT considers the decimal number 8 an illegal character. It discards
the input 1line, displays a question mark (?) to signal an error, and
prints the prompt on a new line. You must retype the entire line. 1If
you do enter an incorrect address in the relocation register, simply
retype the command.

_1272;0R
T1202;0R

ODT stores the most recently entered value in the register.

To access a location within a task, you must create an address by
combining the relocation register and a location counter value for the
relevant program section shown in the assembly listing.

Figure 5-2 shows a portion of the assembly listing for the blank
program section in the module NUMA.

The relocation register provides the base address of a module; the
location <counter value supplies an offset to the location within the
program section for the module. In the example, you placed in
relocation register 0 the starting address of the NUMA contribution to
the blank program section. Location counter value 20 in the assembly
listing for NUMA 1is 20 bytes from the start of the address in
relocation register 0. You combine the two values to form the address
of the location. The combination is formed by typing the number of
the relocation register, a comma (,), and the offset value (in octal).
For example:

0,20

ODT adds the base value in relocation register 0 (1202 in this case)
and the offset typed after the comma (20). This creates an effective
address of 1222 (octal). You wuse this syntax with wvarious ODT
commands to access locations within the task address space.

USING DEBUGGING AIDS

NUMA COUNT NUMERER OF A’S MACRO M1113 10-APR-79 10118 PAGE 3
ROUTINE TO COUNT A8
62 SSETTL ROUTINE TO COUNT A8
43 000000 JPSECT
464 000000 START S
65 000000 012700 MOV FRUF Ly RO i LOAD BU AT
66 000004 012701 MOV FEIZy R §oLOAD BUFFER SIZE
67 000010 0047467 CALL RE AT § READ FROM TTY
468 000014 00U702 TGT R2 $OANY CHARS IN RUFFERT?
469 Q000146 001434 REQ ENL §OTF NONEy FINLSH UF
70 000020 005001 CLR Rl FOINET & OF A8 COUN
71 000022 010247 MOV Ry NUMC ioBAVE & OF CHARS TY
72 000026 1043
73 000026 122067 GMPR (ROY+»A i 1S CHaR L
74 000032 001001 BNE 205 yoIF NOv 2TONEXT CHAR
7% 000034 00UR201 ING Ri § COUNT AN A
76 000036 2082
77 000036 00U302 DEC R2 POONE LESS CHAR
78 000040 001372 BNE 10% §OIF MOREy COMPARE NEXT

Figure 5-2 Portion of Assembly Listing for NUMA

To examine words within a module, type the address followed by the
slash (/) character as follows.

_0,20/005001

The slash character causes ODT to open the designated location as a
word and display its contents. The contents ODT displays should agree
with the value shown in the assembly listing.

To close the currently open location, type either the RETURN Kkey or
the LINE FEED key. The RETURN key closes the location as shown in the
following example.

_0,20/005001

ODT closes the location and prints its prompt on a new line.

Once you have opened a location, typing the LINE FEED key enables you
to examine successive words in the task image. The following example
shows the procedure.

_0,32/001001
0,000034 /005201

In response to the LINE FEED key, ODT closes the current 1location,
opens the next sequential location in the task image, and displays the
address of the 1location, a space, the slash character, and the
contents of the 1location. The slash character signals that the
location is open as a word.

USING DEBUGGING AIDS

NOTE

You can change the contents of the
currently open "location to n by typing
the octal number n before typing the
RETURN or LINE FEED key. See Section
5.1,5.

To examine bytes within a task, type the address followed by the
backslash (\) character as follows.

0,32\ 001

The backslash character causes ODT to open the designated location as
a byte and display its contents. You can examine successive bytes by
typing the LINE FEED key, after which ODT closes the currently open
byte location, opens the next sequential byte location, and displays
its contents.

_32\001
0,000033 \002 N

The backslash character preceding the contents signals that the
location is open as a byte.

Before you proceed in the debugging session, you should verify the
relocation register values by examining a location in each module and
comparing its contents with what shows in the assembly listing. The
following sequence shows the procedure.

_1,66/002403
2,72/ 000207
3,121\ 124
4,0/ 000000 Cxer)
75,0/ 000000

As you examine each location, compare the contents ODT displays with
what appears in the assembly listing. If the values do not match,
either you have an incorrect listing or the relocation register value
is wrong.

5.1.4 Setting Breakpoints within the Task

To allow you to stop (or break) task execution, ODT provides eight
registers called breakpoint registers. These registers, numbered 0
through 7, 1let you specify 1locations of instructions at which
execution should stop. The registers are denoted by a number and the
B command.

To establish breakpoints in the task, specify the 1location of the
instruction and the B command as in the following example.

_0,10;0B
T1,74;1B

USING DEBUGGING AIDS

The command places the designated addresses in breakpoint registers 0
and 1. (Changing a breakpoint register is the same as changing a
relocation register: simply retype the command and give the altered
contents.)

NOTE

In specifying the address of an
instruction, ensure that the location is
the first word of the instruction.

As soon as you type the B in the command, ODT generates the carriage
return and line feed operations and prints a prompt.

After setting up the breakpoint registers, you can issue the G (Go)
command to begin task execution. For example:

0B:0,000010

When you type the G command, ODT swaps a BPT instruction into each
breakpoint location.l ODT passes control to the starting address of
the task. The task executes until it reaches a BPT instruction, at
which point ODT regains control. When ODT regains control, the task
has not yet executed the instruction at the 1location where the
breakpoint is set. ODT swaps the instructions back into the locations
at which breakpoints are set, and prints a message giving:

e The breakpoint register designation
e The relocation address at which execution stopped

In the example above, the message shows breakpoint register 0 and its
contents (offset 10 from the base address in relocation register 0).

5.1.5 Examining and Changing Locations with ODT

When execution stops at a breakpoint, you can examine and change data
within the task image address space. (You can also do these
operations before you start execution. Instructions, as well as data,
can be altered.) When a task stops at a breakpoint location, its
general registers are stored in ODT locations accessed by the dollar
sign ($) character. The following sequence shows a way to display
general registers 0, 1, and 2.

_$0/ 001543

$1 /000120 (D)
$2 /135600

The dollar sign followed by a number refers to a particular task
general register. The slash (/) character opens the general register
as a word location and prints its contents. Typing the LINE FEED key
closes the current location and opens the next sequential location.

1l Eight breakpoint instruction registers, referred to by the letter I,
contain the actual instructions during task execution.

5-6

USING DEBUGGING AIDS

To change data, simply type a new value while the current location |is
open, The following sequence shows a way you can change register 2.

$2/ 135600 100
$3 /140130

While the location (register 2) is open, you can type the new value to
replace the current contents. ODT writes the new value 100 (octal)
into the currently open location before closing it and opening the
next sequential location. .

Any locations within the task can be examined and changed. The
following sequence shows a way to open a location as a byte and change
its contents.

_3,0\101 102 (e

_3,0\102 101 (rer

The backslash (\) character opens the specified address as a byte
location. The new value 102 (octal) is written to the open location
as a byte value. Typing the RETURN key closes the location. The next
commands examine offset 0 to verify that it indeed contains 102
(octal) and change the contents back to 101l.

After you examine and change locations, resume execution with the P
(proceed) command as follows:

_PABCABCABAB
1B:1,000074

The P command causes ODT to swap in the BPT instructions, restore the
task general registers, and continue with the instruction at which the
break occurred. The task executes the READ routine which prompts for
input at the terminal.

NOTE

ODT does not supply a carriage return
and line feed after you type the P.
Therefore, the data that you type in
response to the READ routine will follow
the P on the same line.

You can type a line of input, after which execution stops at the
location contained in breakpoint register 1.

The G command is used to transfer control to another address and
continue execution., For example:

_1,76G

ODT transfers control to offset 76 and continues execution there.
This command purposely tranfers control to the error routine to show
what occurs when an error is encountered. See Section 5.1.6.

USING DEBUGGING AIDS

5.1.6 Error Conditions and Terminating Task Execution

If the task generates an error condition, the Executive handles the
processing as a synchronous system trap (SST). Control is passed to
ODT which prints a message similar to the following one.

10:2,000000

This message (similar in format to the breakpoint halt message) gives
a code describing the reasons for the trap and tells the address
following the location that generated the trap. 1In the message above,
IO means the 1IOT instruction. If you can discover the cause of the
trap, make the appropriate changes in the task and proceed. If vyou
cannot 1isolate the <cause of the trap, you should exit from ODT and
start a new debugging session.

To help ascertain the cause of the trap, you can examine the task
registers and stack before you start a new debugging session. Use the
dollar sign ($) followed by the register number to access the task
registers as described in Section 5.1.5. To examine the stack,
examine register 6 (the Stack Pointer) and use the at sign (@) to open
the location pointed at by R6. For example:

_$6/001200 @
001200 / 001216

The slash (/) character opens R6 as a word and displays the address of
the top of the stack. The at sign character (@) takes the contents of
the currently open location (that is, R6) as the address of the next
location to be opened, opens it, and displays its contents, which is
the top word on the stack.

To examine the stack, type the LINE FEED key to open and display each
successive word on the stack. You can ascertain the highest address
the stack can have by consulting the line labeled STACK LIMITS in the
task attributes section of the map. The line gives four numbers: the
low address of the stack area, the high address of the stack area, and
the octal and decimal extent of the stack area. The high address
tells you the last available location (that is, the bottom) of the
stack. After you have examined the highest address, you have looked
at all the items on the stack and can type the RETURN key to close the
last available location.

To exit from the task by means of ODT, use the X command as follows.

X

ODT simply performs the exit task directive and returns control to the
Executive,

5.2 POSTMORTEM DUMP

Another debugging aid is the Postmortem Dump (PMD). It requires no
special code in your program. You simply request TKB to enable PMD
for your task as follows.

>TKB FILE/PM,FILE/-SP=FILE,FILEA,FILEB
>

USING DEBUGGING AIDS

The designation /PM in the command after the task image file name
tells TKB to set a bit in the task flag word.l (You can tell whether a
task includes PMD by inspecting the task attributes section of the

map. A line item <called TASK ATTRIBUTES will have the designation
PM.)

When PMD is in effect for a task, the occurrence of an error that
generates a synchronous system trap (SST) causes the Executive to
handle the termination of your task in a special manner.2 Instead of
simply aborting the task, the Executive generates a request for PMD to
create a formatted disk file showing the task image context. When a
task generates a synchronous system trap, the Executive initiates the
normal task termination procedure (the printing of an error message
and general register contents at the terminal) and additionally
generates the request for PMD. To inform you that a dump is in
effect, the Executive causes the following message to appear at the
terminal.

POST MORTEM DUMP WILL BE GENERATED

PMD receives the request, creates a file in UFD [1,4] on the 1library
device, and generates a request to the spooler to print the file. The
file has the name of the task and a type of .PMD. The print spooler
automatically deletes a file with the type .PMD after it is printed.

5.3 THE SNAPSHOT DUMP

The snapshot dump capability is a subset of the Postmortem Dump but
requires special code in the task. Whereas PMD generates a dump of an
entire task, the snapshot dump can produce a dump of only a portion of
the task. Also, PMD generates a dump only when the task terminates
abnormally, but the snapshot code can produce a dump at any place in
the task execution.

You include the necessary snapshot code in the task by editing the
source file and inserting the snapshot macro calls where you want to
produce a dump.3 After you reassemble the modules containing the
snapshot calls, rebuild the task and substitute the reassembled
modules. When you use snapshot macro calls, you do not need any
special swit:ches or options for TKB.

When you run the task and that section containing the special code is
executed, a snapshot dump 1is taken. The special code generates a
request for the PMD task. (No special messages are printed at the
terminal.) To hold the dump, PMD creates a file with the name of the
task and a type of .PMD in the UFD the same as the UIC under which the
task is running. PMD then generates a request for the spooling task
to print and delete the file.

1 The keyword and option PMD=YES on the RUN command and the keyword
PMD on the ABORT command also allow you to enable Postmortem Dumps for
your task. See the RSX-11M/M-PLUS MCR Operations Manual.

2 This discussion assumes that the task does not handle synchronous
system traps through the SVTKS$ directive and specially coded routines.

3 The snapshot macro calls the PMD task as described in Chapter 8 of
the RSX-11M/M~-PLUS Task Builder Manual.

USING DEBUGGING AIDS

5.4 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document Location

RSX-11M/M-PLUS Task Builder Manual

Chapter 8, Memory Dumps
Section 8.1, Postmortem Dumps
Section 8.2, Snapshot Dumps

IAS/RSX-11 ODT Reference Manual

Section 4.3, Linking and Initiating ODT

Section 3.11, Relocation Register Commands

Section 3.12, Relocation Calculation Commands

Section 3.5, Task Breakpoint Commands

Section 3.2, Commands for Opening, Changing and
Closing Locations

Section 3.14, Reprinting Open Locations

Section 3.6, Program Execution Commands

Section 4.5, Returning Control to the Host System

CHAPTER 6

CREATING AND USING PROGRAM LIBRARIES

This chapter describes the procedures to create and maintain a library
of macro source statements and a library of object module subroutines.
It also shows how to include in your task image the macro call
definitions and the object subroutines from user-created libraries.

The decision about whether to implement specific code as a macro call
or as an object module subroutine is 1left to the designer. 1In
general, the difference between implementations is a tradeoff of
assembly time versus linking time and, secondarily, convenience versus
size. Each time your source file invokes a specific macro call, the
assembler must include the macro expansion in the object module.
However, when your program calls an external subroutine, the
resolution of the call is done during linking. Moreover, using the
macro call to generate in-line code is convenient but each invocation
of the call increases the size of the resulting task image. However,
if your program calls a specific external subroutine more than once,
the subsequent invocations do not include that code in the task.

6.1 CREATING AND USING A MACRO SOURCE LIBRARY

The Librarian program (LBR) creates a library file which can contain
macro definitions. Such a file has a default type .MLB (macro
library) and contains only macro definitions.

6.1.1 Creating the Macro Library

To create a user library of macro definitions, you must have a file or
files which have the macro source definitions. The Librarian program
can accept as input either one file containing multiple definitions or
multiple files, each of which has one or more definitions. Figure 6-1
shows one file with two macro definitions.

The following command creates a macro library file from one input file
of source definitions.

>LBR USRMAC/CR:25.::128.:MAC=USRMAC
>

The designation /CR tells LBR to create a library file. LBR creates
the library file USRMAC.MLB. For input to the library file, LBR uses
the file or files specified to the right of the equal sign. In the
example, the input file is USRMAC.MAC.

CREATING AND USING PROGRAM LIBRARIES

SAVE -~ STORES REGISTER ON STACK

- e -

+MACRO SAVEsSREG
MOV REGy - (8F) # PUSH REG ONTO STACK
+ ENDM

RESTOR - FOFS REGISTER VALUE OFF STACK

- ‘er e

+MACRO RESTORYREG

MOV (SF)+vREG # FOF REG OFF STACK
+ENDM

+END

Figure 6-1 MACRO-11 Library Source Definitions

Following the designation /CR in the command are parameters, separated
by colons, that LBR uses to create the library.l The first parameter,
25 (decimal), gives the length in blocks for the library file. If you
omit this parameter, LBR uses 100 (decimal) blocks as the default
length. When creating the library file, you can allow for some future
additions to the 1library by making the size larger than necessary.
(LBR will expand a library file as needed if you add modules which
will cause the file to exceed its original size. However, the library
will no longer be contiguous.) The second parameter is blank because
it applies only to object 1libraries. The third parameter, 128
(decimal), is the number of module name table entries to allocate for
this library. (An entry in the module name table is required for each
macro definition.) Following the third parameter is the type of
library to «create (MAC for macro definition). You must specify this
parameter because the default is object library.

In creating the macro library, LBR allocates the requested amount of
contiguous file space. If sufficient contiguous space 1is not
available, LBR generates the OPEN FAILURE error and terminates. To
have the library created, you must either free up some space on the
volume or try a smaller library size.

When the library file is created, LBR attempts to insert into the
library the macro definitions from the input file. LBR searches the
input file for .MACRO directives and .ENDM directives. If the macro
definitions are nested, only the outermost directives are directly
callable from the library. From each macro definition, LBR extracts
the name and creates an entry in the module name table. The entry in
the module name table is the means by which the assembler finds the
associated macro definition in the 1library. Any code or comments
outside the directives are discarded and all trailing blank and tab
characters, blank 1lines, and comments are eliminated from the macro
text itself. (This action, called squeezing, conserves memory for the
assembler and reduces the space required to hold the macro
definitions.) Errors occurring during the insertion of definitions
usually indicate improper definitions, such as a missing .ENDM
directive.

1 The numeric parameters are followed by decimal points to force LBR
to interpret them as decimal numbers. If you omit the decimal points,
LBR treats the numbers as octal.

CREATING AND USING PROGRAM LIBRARIES

6.1.2 Using the Macro Definitions from the Library

Once the macro definitions are in the library, you need perform only
three actions to have the assembler include the macro expansions in
your code.

1. Include the name of the macro in a .MCALL directive in your
program source file

2. Invoke the macro call within the source file

3. ©Specify the name of the library file in the command to the
assembler

Thus, to invoke the two macro library definitions SAVE and RESTOR in
your program, precede the macro calls themselves with a statement such
as the following:

.MCALL SAVE,RESTOR ; CALL DEFINITIONS FROM USRMAC

This statement should preferably occur at the start of the source
file, When you assemble a source file that refers to the macro
definitions in the 1library file, use a command similar to the
following.

>MAC USRTST,USRTST/-SP=USRMAC/ML ,USRTST
>

To the right of the equal sign in the command, specify the name of the
macro library and the designation /ML. The comma separates the macro
library file name and the source file name. The designation /ML
indicates to the assembler that the file is a macro library. The name
of the macro library must precede the source file that refers to the
macro definitions.

NOTE

If the library specification follows the
source file name in the command and the
corresponding definitions are not in the
system macro library RSXMAC, MACRO-11
does not recognize the library file and
generates assembly errors in the lines
that contain calls to library
definitions.

To process the macro calls in the source file, the assembler uses the
names given in the .MCALL directive to generate symbols for the macro
symbol table.l To expand the macro calls not defined in the source
file, the assembler searches the 1library you specified before it
searches the system default macro library. MACRO-11 does not search
the system macro library for definitions that are found in the user
library file.

N you omit the name of the macro call from the (MCALL directive,
the assembler cannot recognize the «call itself in the code. (A
corresponding entry is not in its macro symbol table.) It treats an
unrecognized macro call as an implicit .WORD directive. 1If the macro
name is not a valid symbol, its wusage 1is flagged as an Undefined
Reference by TKB.

CREATING AND USING PROGRAM LIBRARIES

6.2 CREATING AND USING AN OBJECT MODULE LIBRARY

LBR may be used to create a library file containing object modules.
Such a file has the file type .OLB (object library) as a default and
can contain only object modules.

6.2.1 Creating the Object Module Library

To create an object module library, you must have a file or files that
contain the object modules to be inserted into the library. The
following command creates the object library and inserts the modules
FILEA.OBJ and FILEB.OBJ.

>LBR USROBJ/CR:25.:128.:64.=FILEA,FILEB
>

The designation /CR tells LBR to create a library file. LBR uses the
name preceding /CR as the name of the library and applies the default
file type .OLB. Following /CR 1in the command are parameters,
separated by colons, used in creating the file.l

The first parameter, 25 (decimal), gives the size in blocks at which
to create the library file., If you omit the parameter, LBR supplies
100 (decimal) blocks as the default size. When creating the 1library,
you can allow for future additions by making the size larger than
necessary. (LBR will expand a library file as needed if you add
modules which will cause the file to exceed 1its original size.
However, the library will no longer be contiguous.)

The second parameter, 128 (decimal), in the command gives the number
of entry point table slots to reserve.2 (An entry point is any global
symbol in a module by which your program refers to the associated
module.) A good estimate for the number of entry points is twice the
number of modules the library will contain (that is, two entry points
per module). If you omit this parameter, LBR supplies 512 (decimal)
as the default number. 1If the value you supply is not an integral
multiple of 64 (decimal), LBR raises the number to the next highest
multiple of 64 (decimal).

The third parameter, 64 (decimal), is the number of module name table
entries to <create for the library. (The module name is the means by
which LBR refers to the module code in the library.) If you omit this
parameter from the command, LBR supplies 256 (decimal) as the default
number. If the value you specify is not an integral multiple of 64
(decimal), LBR raises the number to the next highest multiple of 64
(decimal).

The last parameter (omitted from the command above) specifies the type
of library to build. LBR supplies OBJ as the default type.

1 The numeric parameters are followed by decimal points to force LBR
to interpret them as decimal numbers. If you omit the decimal points,
LBR treats the numbers as octal.

2 LBR allows you to build an object library having zero entry points.
This feature allows you to maintain modules with duplicate entry
points in the same library. (The names of the modules must still be
unique.) When wusing such a library, you must specify the correct
module name (s) to TKB when you build your task. See Section 6.2.2.

CREATING AND USING PROGRAM LIBRARIES

In creating the object 1library £file, LBR allocates the requested
amount of contiguous space. You can estimate the number of contiguous
blocks that LBR requires by using PIP. Request a directory listing of
all the files to be inserted in the library and use the total number
of blocks PIP calculates. If sufficient contiguous space 1is not
available, LBR generates the OPEN FAILURE error and terminates. To
have the library created, you must either free up some space on the
volume or try to build a smaller object library.

When the object library is created, LBR attempts to insert into the
library the object modules from the input file(s). It arranges the
entries in the module name table in alphabetical order by module name.
The module name that LBR uses is the one you specified in the .TITLE
directive when you assembled the_object module. The module names and
entry points must be unique.l LBR finds the global symbols in each
object module and enters them in the entry point table. If LBR finds
a module name or an entry point that duplicates one already used, it
prints an error message and stops processing.

If LBR finds an error, it does not insert any modules in the 1library
from the file containing the error. You must eliminate the error
condition and insert the modules from the corrected £file again. If
LBR does not find any errors, it enters all the modules in the
library. To ascertain what modules were inserted, obtain a listing of
the library as described in Section 6.3.3.

6.2.2 Using the Object Modules from the Library

When the object modules are in the library, you need perform only two
actions to have TKB include the routines in your task.

1. Include the CALL x statement in the calling module (where x
is an entry point to the called module). (It is assumed that
the called module has a global statement to define the entry
point.)2

2. Specify the name of the library file and the names of the
called modules in the command to TKB.

Thus, to invoke subroutines from the library, ensure that the CALL
statements are in your program.

When you build the task, use a command similar to the following.

>TKB SUBLIB,SUBLIB/-SP=FILE,USROBJ/LB:TTREAD:TTWRIT
>

The designation /LB after a name in the command indicates to TKB that
the file 1is an object library. TKB accesses the file USROBJ.OLB in
the UFD that is the same as the current UIC, The names appearing

1 1f you suppress including entry points in the 1library entry point
table, LBR allows you to insert in the library object modules having
duplicate entry points. This feature enables you to maintain slightly
different modules of the same general type in the same library. You
select the correct module by specifying the unique module name to TKB
when you build your task. See Section 6.2.2,

2 CALL is a macro statement which is a permanent symbol in the
MACRO-11 assembler. It standardizes subroutine calling conventions.
CALL X translates to JSR PC,x (where x is the subroutine entry point).

CREATING AND USING PROGRAM LIBRARIES

after /LB in the command are the names of the modules to be extracted
from the library and placed in the task. TKB searches the module name
table of the library for these modules. (Remember that these module
names are derived from the name given in the .TITLE directive and not
from the file names from which the modules were created,)

Note that the module names in the command are preceded by colons. The
colons are necessary to distinguish the names as library module names.
Placing a comma before a name tells TKB to treat the name as an object
module and to search your UFD for a file with that name and a type of
.0BJ. That is, the colon tells TKB to process what follows as an
argument of /LB and the comma tells TKB to treat what follows as a
file name.

This method of specifying an object library search is more direct and
faster than the method described in Section 6.2.3. If you are using a
large library, TKB need search only the module name table for those
object modules you specify. The disadvantage is that the
responsibility is yours to specify the names of all the modules that
your task requires. In one situation, this is the only method to use
a library. If you are using a library with zero entry points, this is
the sole method of telling TKB which modules to include from that
library.

6.2.3 Using the Library to Resolve Undefined Global Symbols

Often the modules in a task refer to global symbols that are defined
in other modules. If the modules that define the global symbols
reside in a library, you can have TKB search the library. The
following example shows the wusage of /LB with no module names to
request the search.

> TKB LB,LB/-SP=FILE,USROBJ/LB
>

The designation /LB with no module names tells TKB to search the
library entry point table for symbols that are referred to but not
defined. When TKB finds a symbol in the table that is unresolved in
the task, it extracts the defining module and places it in the task.
If any symbols remain unresolved after the user library search, TKB
searches the system library.

This method of specifying an object library search requires less
effort on your part than the method described in Section 6.2.2 because
TKB searches the entry point table to resolve any global references
undefined to that point in the processing. If you are using a large
library, TKB may take longer in searching the entry point table than
if you had specified the names of the modules to include in your task.

6.2.4 Dual Use of the Library

In certain circumstances, you may want TKB to definitely include
specific modules from the library and also to search the same library
to resolve any undefined references that may occur. For example, you
may have conditional code in the main part of a task and do not know
what global symbols are referenced. TKB allows you to specify the two
forms of the library search as in the following command.

> TKB LBOPT,LBOPT/-SP=FILE,USROBJ/LB:TTREAD,USROBJ/LB
>

CREATING AND USING PROGRAM LIBRARIES

The first appearance of the /LB designation tells TKB to extract the
named module., The second occurrence tells TKB to search the library
for any unresolved global symbols. TKB includes 1in the task any
modules from the 1library that define the global symbols that are
unresolved at that point in the building of the task. If any
unresolved symbols remain after the user library search, TKB searches
the system library.

6.3 MAINTAINING USER LIBRARIES

This section decribes three simple operations to maintain a user
library - adding modules to, replacing a module in, and obtaining
information about the library.

6.3.1 Adding Modules to a Library

Modules can be added to a library with an LBR command such as the
following.

>LBR USRMAC.MLB/IN=MAC1l ,MAC2
>

To add modules to a library, specify the name and type of the library
file and the /IN designation (insert) to the left of the equal sign in
the LBR command. To the right of the equal sign, give the name of the
modules, separated by a comma. You need not supply a file type
because LBR applies the correct type as a default according to the
type of the library you specify.

The library must have a sufficient number of name table entries
available (and, for object modules, entry point table slots). Each
global symbol in an object module requires an available entry point
table slot. A module name table entry must be available for each
object module and macro definition added. When inserting a module,
LBR checks to ensure that a module of the same name does not currently
reside in the library. If a duplicate name is found, the program
reports the duplicate name and terminates. For object modules being
inserted, LBR also checks for duplicate entry point names. To add
modules with duplication, you must either eliminate the duplicate

names or change the /IN designation to /RP (replace). See Section
6.3.2.

6.3.2 Replacing a Module in a Library

After you create a library, a typical maintenance function you will
perform 1is changing and updating modules in the library. Because a
module of the same name (and, for object modules, the same entry
points) already exists, you must perform a replace operation. For
example:

>LBR USROBJ/RP=FILEA
MODULE "TTREAD" REPLACED

>

CREATING AND USING PROGRAM LIBRARIES

LBR accesses the 1library file USROBJ.OLB; logically deletes the
module TTREAD and all of the entry points for that name; and inserts
the new version of module TTREAD from the file FILEA,O0BJ. LBR prints
a message telling you the name of each module it replaced. If a
module to be replaced does not exist in the library file, LBR assumes
that the module is to be inserted, automatically inserts it, but does
not print the message.

LBR does not automatically reclaim the space occupied by a module that
you replaced. Therefore, to reclaim this 1lost space, you should
occasionally run LBR and compress the library file.

6.3.3 Obtaining Information about a Library

To obtain information about a library, type a command to LBR similar
to the following.

>LBR [1,1]USROBJ.OLB, [303,10]LBLIST/LE/FU
>

This command causes LBR to access the library file USROBJ.OLB in UFD
[1,1]. The comma separates the library file name from the listing
file specification. The designations /LE and /FU tell LBR to list
entry points and full information (size, date of creation, and, for
object modules, identification) in the file LBLIST.LST in UFD
[303,10]. If you omit the UFD specification from the listing file,
LBR creates the listing file in the UFD of the library.

To list information at the terminal, simply omit the file name from
the command as follows.

>LBR [1,1]USRMAC.MLB/FU
>

Because a macro library does not have entry points, you can omit the
/LE designation from the command.

6.4 GUIDE TO FURTHER READING

The sections or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document Location

RSX-11M/M-PLUS Task Builder Manual

Section 6.1.13, LB (Library File)

IAS/RSX-11 MACRO-11 Reference Manual

Section 8.1.3, RSX~1l1 File Specification Switches
Section 7.8, Macro Library Directive: «MCALL

RSX-11] Utilities Manual

Chapter 14, Librarian Utility Program (LBR)

CHAPTER 7

FORTRAN IV PROCEDURES

PDP-11 FORTRAN IV is one of several high-level languages optionally
available on RSX-11M and RSX-11M-PLUS systems. This chapter briefly
introduces the product and summarizes its program development
procedures.

7.1 OVERVIEW OF PDP-11 FORTRAN IV

The FORTRAN IV language processor on RSX-11lM and RSX-11M-PLUS consists
of the following elements:

e Compiler task FOR
e Object Time System library
e An optional shareable library

The FORTRAN IV compiler accepts an ASCII disk file containing source
statements. It can generate a disk file in object module format and a
listing file suitable for printing. The user interface to the
compiler 1is similar to that of the MACRO-11 assembler. The program
development procedures are like those for assembly language modules:
you supply the object file to TKB to obtain an executable program.

The FORTRAN IV Object Time System (OTS) 1is a «collection of object
module subroutines required to create an executable program. On
systems with more than one high-level language, the OTS routines for
FORTRAN IV must be segregated from those of other languages.
Sometimes, the OTS routines reside in the system object 1library
SYSLIB. Regardless of their location, however, the OTS routines must
be accessible to TKB. The difference to you is whether the 1library
containing the OTS routines must be explicitly named. If the OTS
routines are in SYSLIB, TKB can locate them without an explicit
specification because, as a default condition, it automatically
searches the system library.

The FORTRAN IV compiler does not generate all of the machine code
required by a task at run time. Common sequences of code reside in
the 0TS library. During compilation, FORTRAN IV flags these common
sequences as undefined global symbols. TKB must then resolve the
undefined references by selecting from the OTS those modules that
resolve the symbols in the object module.

In a narrow sense, the Object Time System contains the routines that
the compiler designates to be linked into your task. 1In practice,
however, the OTS can be an ordinary library file containing various
routines in addition to the routines required by the compiler-assigned
references., In a wider sense, the OTS can contain user-callable

FORTRAN IV PROCEDURES

routines as well as routines for which the compiler generates
references.

As an option, a system installation can have a common area containing
shareable FORTRAN IV OTS routines. This common area, called a
resident library, contains the most frequently used routines, taken
from the 0TS, and made available for user tasks to link to and share
at run time. Thus, with a shareable library, TKB generates references
to the routines in the resident library that you specify when you
build the task. TKB does not include those routines 1in your task
image. The routines use virtual address space in the task bhut do not
require additional physical memory in the task image. The resident
library, tailored to the needs and requirements of a particular
system, saves task-build time and memory by the amount of code that
need not be repeated in each memory-resident FORTRAN IV task.

7.2 FORTRAN IV PROGRAM DEVELOPMENT PROCEDURES

The program development procedures for FORTRAN IV are quite similar to
those for the assembler. Therefore, this chapter does not present the
detail found in Chapters 2 through 6. For example, to edit a FORTRAN
IV source file, you wuse the same commands as you used to edit an
assembly language source file as described in Chapter 2.

7.2.1 Creating the Source File

To create a sample FORTRAN IV source file, invoke the editor task EDI

and use the following commands to insert the lines of code shown in
Figure 7-1. ’

>EDI AVERAGE.FTN
[CREATING NEW FILE]

INPUT
insert the lines here and
type the RETURN key twice to exit from
insert mode

RET

*EXIT

[EXIT]

>

Because EDI cannot insert a blank line in the text (EDI requires at
least one nonprinting character such as a space or tab character; see
Section 2.2.1.1), use the C (comment line) in column 1 for readability
in the source file in place of the blank line. If you insert a line
with a space or tab character on it, the FORTRAN IV compiler generates
an error because it expects a valid label on a nonblank line.

To format the source statements and avoid counting spaces, you can use
the TAB character. The FORTRAN IV compiler will position the
character following an initial TAB character to the proper column.
That 1is, a digit following an 1initial TAB will be considered a
continuation character (column 6) and a nondigit will be considered
the beginning of the statement (column 7).

FORTRAN IV PROCEDURES

FPROGRAM AVERAGE

c FROGRAM TO COMFPUTE AVERAGE OF NUMBERS ENTERED AT TERMINAL
C THE NUMRER ‘07INDICATES END OF INFUT
c
TOTAL = 0O ! INITIALIZE ACCUMULATOR
N = 0 P INITIALIZE COUNTER
5 N=N+1
WRITE (5+10) ! PROMFT TO ENTER NUMEBER
10 FORMAT (7 ENTER NUMRERy END WITH 07)
READ (5+20) K I READ NUMEBER FROM TERMINAL
20 FORMAT I10
IF (K JEQ. 0) GOTO 40 I 0 MEANS NO MORE INFUT
TOTAL = TOTAL + K ! COMPUTE TOTAL WITH NUMRER
GO TO 3
C

C NOWy COMPUTE TOTAL BY DIVIDING IT EY THE NUMEER OF TIMES
C THROUGH THE LOOF
C

40 TOTAL = TOTAL/N)

WRITE (3»50) TOTAL ! DISFLAY THE RESULT
S50 FORMAT (7 AVERAGE I8 “sF10.2)

sTOP

END

Figure 7-1 FORTRAN IV Sample Source Code AVERAGE.FTN

7.2.2 Performing a Diagnostic Run

To see whether there are any syntax or grammar errors in a source
file, you can perform a diagnostic run. For example:

> FOR ,AVERAGE/-SP=AVERAGE

AVERAG

FOR -~ [AVERAG] ERRORS: 1, WARNINGS: 0
>

This command requests FORTRAN IV to «compile the file AVERAGE.FTN,
which resides 1in your UFD. The compiler «creates a listing file
AVERAGE.LST but no object module. (The leading comma in the command
means a null file specification for the object file. If you omit the
comma, FORTRAN IV creates the object file but not the 1listing file.)
As a default condition, the listing file contains source program code
and diagnostic messages only.

When you request a listing file in a compilation, FORTRAN IV reports
at the terminal the name of the program unit being compiled and a
summary of errors found. To discover what caused the errors, you must
examine the section of the listing entitled FORTRAN IV DIAGNOSTICS.
Display the listing file by typing the following command.

>PIP TI:=AVERAGE.LST

(PIP displays listing)

FORTRAN IV PROCEDURES

On a video display terminal, use the CTRL/S and CTRL/Q commands to
stop and resume the output.

The following line appears in the diagnostic section of the listing.
IN LINE 0008, ERROR: SYNTAX ERROR

Line 8 refers to the statement number 0008 assigned by the compiler.
The error referred to 1is described in an appendix of the language
user's guide. In the source code part of the listing, line 8 is shown
as follows.

0008 20 FORMAT I10
The compiler detected the missing parentheses on the field descriptor
in the FORMAT statement. You must edit the source file, as in the
following example.

>EDI AVERAGE.FTN
[00023 LINES READ IN]

[PAGE 1]

*, I10

20 FORMAT I10
* /I10/(110)/

20 FORMAT (Il10)
*EXIT

[EXIT]

>

The L command locates the line containing the string Il10 and prints
the entire line., The C command replaces the string I10 with (I10) and
prints the line so that you can verify the change. The EXIT command
terminates the editing session and creates the new, edited version of

the file. Next, you can use the edited version to create an object
module.

7.2.3 Creating an Object Module

To create an object module, simply add the file name to the command
string you used to perform the diagnostic run.

>FOR AVERAGE,AVERAGE/-SP=AVERAGE
AVERAG
>

This command requests FORTRAN IV to compile the file AVERAGE.FTN and
to create object and listing files AVERAGE.OBJ and AVERAGE.LST. If
FORTRAN IV detects any errors, it prints a summary at the terminal as
described in Section 7.2.1. If there are no errors, FORTRAN IV
returns control to MCR which prints the > prompt.

FORTRAN IV PROCEDURES

7.2.4 Creating a Task Image

The object module created by the FORTRAN IV compiler does not contain
all the «code required at run time. Therefore, when you run TKB, you
must specify as input both the name of the object module and the name
of the library containing the FORTRAN IV Object Time System
routines.* The following command shows the procedure.

>TKB AVERAGE=AVERAGE,LB:[1,1] FOROTS/LB
>

This command requests TKB to link the module AVERAGE.OBJ and resolve
any undefined references by searching the library FOROTS.OLB in UFD
[1,1] on the system library device.l You can add, as input to TKB,
file names of any external object modules which the main module calls.
As a result of the command, TKB creates a task image file AVERAGE.TSK.
(A memory allocation file is not needed.) If TKB detects any errors,
it proceeds according to whether the error 1is fatal or diagnostic.
Refer to an appendix in the RSX-11M/M-PLUS Task Builder Manual for
guidelines on error processing.

The task image created by TKB has certain default conditions. The
task AVERAGE can be built to run successfully without having to
override these default conditions. When you build a task from a
FORTRAN IV module, you may have to specify special switches in the
command or supply options to TKB. Refer to the language user's guide
for information regarding Task Builder default FORTRAN IV conditions
and FORTRAN-specific options and switches. :

7.2.5 Running and Debugging a Task
To execute the task AVERAGE, type the following command.

>RUN AVERAGE

ENTER NUMBER, END WITH O
66

ENTER NUMBER, END WITH O
66

ENTER NUMBER, END WITH 0
0

AVERAGE IS 44.00
TT30 -- STOP

>

The program is not computing the average correctly. If you cannot
locate the error by 1looking at the program listing, you can place
debugging statements in the code and assemble the module with them.

1 In the command, the name shown for the FORTRAN IV Object Time System
(FOROTS) 1is only a convention recommended by DIGITAL. Consult the
system manager at your installation because the FORTRAN 1V OTS
routines may reside in another 1library or in the system library
SYSLIB. (If the OTS routines do reside 1in SYSLIB, you need not
specify the name of the OTS in the command to TKB because TKB
automatically searches the system library.)

7-5

FORTRAN IV PROCEDURES

To add debugging statements to the program, simply edit the source
file with 1lines of code beginning with D in column 1. For example,
you can include statements to print values of variables before and
after the loop, as follows.

>EDI AVERAG.FTN
[00023 LINES READ IN]

[PAGE 1]

*L 5D

5N=N+1

* 1 (G

D (s WRITE (5,6) N,TOTAL

DG FORMAT (' ***DEBUG LINE N = ',Il0,', TOTAL = ',F10.0) Czr)

*L 50 ()

50 FORMAT (' AVERAGE IS ',F10.2)
* 1 (Cren)

D () WRITE (5,51) N

D51 () FORMAT (' ***DEBUG LINE N = ',I10)CxD)
* EXIT Crer)

[EXIT]

>

The L commands locate and print the contents of the lines that precede
where the debugging statements are to be placed. The I commands
insert the debugging statements. The insert operation 1is terminated
by typing two successive RETURN keys. After the inserts are made, the
EXIT command closes the files and terminates EDI.

Next, recompile the module and request FORTRAN IV to include the
debugging statements as shown in the following command.

>FOR DEBUG,DEBUG/-SP=AVERAGE/DE
AVERAG
>

The compiler generates the files DEBUG.OBJ and DEBUG.LST. Because of
the designation /DE in the command, the compiler includes statements
beginning with D in column 1. If you omit /DE, the debugging 1lines
are treated as comment lines.

Next, build and run the task with the debugging lines as follows.

>TKB DEBUG=DEBUG,LB:[1,1]FOROTS/LB

> RUN DEBUG

*%¥*DEBUG LINE N = l, TOTAL = 0.
ENTER NUMBER, END WITH O

66

***DEBUG LINE N = 2, TOTAL = 66.
ENTER NUMBER, END WITH 0

66

***DEBUG LINE N = 3. TOTAL = 132.
ENTER NUMBER, END WITH O

0

AVERAGE IS 44.00

***DEBUG LINE N = 3

TT30 -- STOP

>

The debugging statements enable you to inspect the values of
variables, As you can see, the loop counter N is incremented one
extra time for the number 0. The value N must be decremented by 1.

FORTRAN IV PROCEDURES

To correct the error, edit the source file again as follows.

>EDI AVERAGE.FTN
{00027 LINES READ IN]
[PAGE 1]

*L, TOTAL/(Crer)

40 TOTAL = TOTAL/N

*C ;N; (N-1);

40 TOTAL = TOTAL/ (N-1)
*EXIT

[EXIT]

>

Next, repeat the compilation, linking,

>FOR AVERAGE,AVERAGE/-SP=AVERAGE

AVERAG

and running as follows.

>TKB AVERAGE=AVERAGE,LB:[1,1)FOROTS/LB

>RUN AVERAGE

ENTER NUMBER, END WITH 0
66

ENTER NUMBER, END WITH 0
66

ENTER NUMBER, END WITH 0
0

AVERAGE IS 66.00

TT30 --- STOP

>

The program is compiled without the
shows that the correction eliminated the error.

7.3 GUIDE TO FURTHER READING

debug statements. The output

The section or chapters in the following documents contain additional
information on the subjects described in this chapter.

Document

IAS/RSX-11 FORTRAN IV User's Guide

Section 2
Section 2
Section 2
Section 1

Section 1

ol’
2y
06,
'3’

05,

Location

FORTRAN IV Object Time System
Object Code

OTS and Shareable Libraries
Using the Task Builder to Link
FORTRAN IV Programs

Operating Procedures

Section 1.6, Debugging a FORTRAN IV Program
Appendix C, FORTRAN IV Error Diagnostics

RSX-11M/M-PLUS Task Builder Manual

Appendix F, Error Messages

INDEX

A

AP command (EDI), 2-16
Assembly language, 1-2
See also MACRO-11.
Assembly listing,
examining at a terminal, 3-5
formatting, 2-6
generating a, 3-4
page break, 2-6
spooling a copy of, 3-6, 3-7
table of contents, 2-6
terminal format, 2-6
Asterisk character,
in PIP, 3-7

Backslash character,
in ODT, 5-5

BEGIN command (EDI), 2-13

Blank line,
in a FORTRAN IV source file, 7-2
inserting with EDI, 2-9

Block mode, 1-1

C

CHANGE command (EDI), 2-15
Coding standard, 2-1
Compiler task FOR, 7-1
Concatenated object module,
creating a, 4-2
input to TKB, 4-3
Creating,
object modules,
from FORTRAN IV, 7-4
from MACRO-11, 3-4
source files,
FORTRAN IV, 7-2
MACRO-11, 2-11
skeleton, 2-9
task images, 4-1 to 4-3, 7-5
CRF (Cross-Reference Processor)
overview of, 1-6
generating an assembly cross-
reference, 3-6
global cross-reference,
generating, 4-4
Cross-reference listing,
generating a macro, 3-6
generating an assembly, 3-6
global,
generating a, 4-4
MACRO-11, 1-3
Cross-Reference Processor,
See CRF,

Index-1

CTRL/0O command, 3-5
CTRL/Q command, 3-5
CTRL/S command, 3-5

D

Data storage,
control in assembly language,
1-3
definition of (MACRO-11l), 2-8
disk, 1-10
program section for, 2-8
Debugging,
errors in MACRO-11, 3-2, 3-3
FORTRAN IV programs, 7-6, 7-7
task, 4-5 to 4-7
Debugging aids,
FORTRAN IV, 7-6
introduction to, 1-5
use of, 5-1 to 5-9
Debugging tool. See ODT.
Default,
conditions in TKB, 4-3, 4-4
file type,
in MACRO-11, 3-4
in TKB, 4-1
system library search,
MACRO-11, 1-3, 1-8, 2-6, 2-7
TKB, 1-10, 4-1, 4-2
transfer address, 4-6
Diagnostic run,
on FORTRAN IV source file, 7-3,
7-4
on MACRO-11 source file, 3-1
Directives,
assembler, types of, 1-3
recommended use of, 2-3, 2-5
to 2-8
system, 1-7 to 1-9

-Disks, public and private, 1-10

Dollar sign,

in oDpT, 5-6, 5-8
DP command (EDI), 2-16
Dump. See PMD.

E

EDI,
abbreviating strings in, 2-15
asterisk character in, 2-9
block mode, 1l-1
changing text, 2-15, 2-16
correcting task error with,
creating a file from, 2-11,
deleting characters, 2-16
deleting lines, 2-16
displaying text, 2-11, 2-12

~
I
N O

INDEX

EDI (Cont.)
editing commands, 2-11 to 2-17
ellipsis in, 2-15
inserting blank lines, 2-9
inserting characters, 2-16
inserting new lines, 2-17
locating text, 2-12, 2-14
performing initial input, 2-9
positioning pointer, 2-13
terminating input to, 2-9
Editor, text, 1l-=1
See also EDI.
Ellipsis in EDI, 2-15
END command (EDI), 2-13
.END directive, 2-7
Entry point table, 6-4
zero entry points in, 6-6
Error messages,
FORTRAN IV, 7-4
MACRO-11, 3-1, 3-2
opT, 5-3
task termination (TKTN), 4-6
TKB, 4-1
ESCAPE key,
in EDI, 2-12
Executive macro library, 1-8
EXEMC.MLB (Executive macro
library), 1-8
EXIT command (EDI), 2-17
EXIT$S directive, 2-6

F

Fast Task Builder (FTB), 4-3
File,
creation of library,
macro, 6-1, 6-2
object, 6-4, 6-5
creation of source, 2-11, 7-2
directory listing of a, 3-7
editing a source, 2-11 to 2-17
listing at a terminal, 3-5
purging a, 3-7
spooling a copy of, 3-6
File contents section, 4-5

File type,

LFTN, 7-3

.LsT, 3-4, 6-8, 7-3
.MAC, 3-1

.MAP, 4-4

.MLB, 6-1

.OBJ, 3-4, 7-4
.OLB, 6-4

.PMD, 5-9

.TSK, 4-1

FILEA.MAC source code, 2-21
FILEB.MAC source code, 2-22, 2-23
FILE.MAC source code, 2-18, 2-19
Files, purging, 3-7

Index-2

FOR compiler task, 7-1
creating object module with,
7-4
/DE in, 7-6
diagnostic run, 7-3
including debugging statements
with, 7-6
Format,
FORTRAN IV statement, 7-2
MACRO-11 source file,
description of, 2-3 to 2-8
samplé skeleton, 2-2
MACRO-11 statement, 2-3
FORTRAN IV
compiler task, 7-1
formatting source statements,
7-2
specifying OTS to TKB, 7-5
See also FOR.
FTB (Fast Task Builder), 4-3

G

G command (in ODT), 5-7
Global cross-reference listing,
generating, 4-4
Global default, disabling in
MACRO-11, 3-1
Global symbol,
as entry point, 6-4
using library to resolved
undefined, 6-6

H

Hardware for program development,
1-10

.IDENT directive, 2-5

INSERT command (in EDI), 2-17

Inserting,
characters in a line, 2-16
modules in a library, 6-7
new lines in a file, 2-17

L

Language, assembly, 1-2
See also MACRO-11.
LBR (Librarian Program),
adding a module to a library,
6-7
efficiency, 1-7
/FU in, 6-8
/IN in, 6-=7
/LE in, 6-8
listing information about a
library, 6-8

LBR (Librarian Program) (Cont.)
macro library creation with,
6-1, 6=2

INDEX

object module library creation

with, 6-4, 6-5

replacing a module in a library,

6-7, 6-8
/RP in, 6-7, 6-8
LINE FEED key,
in ODT, 5-4
Librarian Program. See LBR.
Libraries, DIGITAL-supplied,
1-7 to 1-9

See also macro, object and OTS.

Library,
creating a user macro, 6-1,
creating a user object, 6-4,
default search of system,

6

by MACRO-11, 1-3, 1-8, 2-6,
2=-7
by TKB, 1-10, 4-1, 4-2
maintaining a user, 6-7, 6-8
cbject,
designating in TKB, 6-5, 6-
7-5
system, 1-9

using to resolve undefined
global symbols, 6-6, 6~7
obtaining information about a
user, 6-8
shareable, 7-1,
squeezing, 6-2
LIST command (EDI), 2-12
Listing,
examining at a terminal, 3-5
generating a cross-reference,
3-6
generating a FORTRAN 1V,
7-4
generating an assembly, 3-4
global cross-reference,
generating a, 4-4
spooling a copy of, 3-6,
use in debugging, 5-3,
Listing control, 1-3, 2-6
.LIST TTM directive, 2-6
Local symbol definitions,
LOCATE command (EDI), 2-13
Location counter, 1-3
use in debugging, 5-3,
Logical units, See LUN.
.LST file type, 3-4, 6-8
LUN (Logical Unit),
default by TKB, 4-3,

7-2

7-3,

3-7
5-4

2-7

5-4

4-4

-2

6-5

6,

Index-3

.MAC file type, 3-1

MACRO-11,

assembling a source file,
3-1, 3-=2

/CR in, 3-6

cross-reference listing, 1-3,
3-6

data storage definition, 2-8,
2-9

default search of system
library, 1-3, 1-8, 2-6, 2-7

defining local symbols, 2-7
/DS:GBL in, 3-1
error messages from, 3-1,
errors, typical, 3-2, 3-3
listing generation, 3-4
location counter, 1-3
macro cross-reference,
macro library usage in,
macro symbols, 1-3, 2-6,
/ML in, 6-3
object module generation,
source input to, 1-2
source file skeleton,
2-8
statement format, 2-3
symbol evaluation in, 1-2
table of contents generation,
2-6
types of directives,
Macro call,
cross-reference of symbols for,

3-2

3-6
6-3

2-7
3-4

2-1 to

1-3

3-6
default resolution of, 1-3,
1-8, 2-6, 2-7

treatment of unrecognized, 2-7

user-library resolution of, 6-3
Macro library,

adding modules to a, 6-7

creating a user, 6-1, 6-2

default search of system,

1-8, 2-6, 2~7

DIGITAL-supplied, 1-8

listing information on a, 6-8

replacing modules in a, 6-7,

6-8

using definitions from a,
MAC task, 1-2

See also MACRO-11.
Map,

examining at terminal,

full, 4-5

generating a, 4-4

reducing width of, 4-4

STACK LIMITS in, 5-8

use in debugging, 5-2

1_3 ’

6-3

4-5

INDEX

.MAP file type, 4-4 ODT (On-line Debugging Tool) (Cont.)
.MCALL directive, 2-6 ODT.OBJ file, 5-1
usage with user macro library, overview of, 1-5
6-3 P command in, 5-7
Memory allocation file. See Map. R command in, 5-3
.MLB file type, 6-1 RETURN key in, 5-4
Module name, setting up a task with, 5-2
definition of, 2-3 to 5-=5
object library usage, 6-5 slash character in, 5-4
usage during debugging, 5-2, 5-3 source listing use in, 5-3,
Module name table, 5-4
in macro library, 6-2 SST within, 5-8
in object library, 6-4 terminating task execution,
Module version, 2-5 5-8
underline character in, 5-2
pq X command in, 5-8
.OLB file type, 6-4
.NLIST BEX directive, 2-6 On-line Debugging Tool. See ODT.

OTS (Object Time System) library,

() 7-1

Object library, p
adding modules to an, 6-7
creating a user, 6-4, 6-5 .PAGE directive, 2-6
default search of system, 1-10, Peripheral Interchange Program.
4-1, 4-2 See PIP.
DIGITAL-supplied, 1-9, 1-10 PIP (Peripheral Interchange
listing information on an, 6-8 Program) ,
ors, 7-1 asterisk in, 3-7
replacing modules in an, 6-7, cleaning up a UFD, 3-7
6-8 creating a concatenated object
using to resolve undefined module, 4-2, 4-3
global symbols, 6-6 examining a listing at terminal,
Object module, 3-5, 4-5
creating a concatenated, 4-2, /ME in, 4-2, 4-3
4-3 overview of, 1-6
input to TKB, 4-1, 4-2 /PU in, 3~-7
input to user object library, /SP in, 3-6, 3-7
6-4 spooling a listing with, 3-6, 3-7
generating in MACRO-11, 3-4 PLOCATE command (EDI), 2-14
output of FORTRAN IV, 7-4, 7-5 .PMD file type, 5-9
output of MACRO-11l, 1-2 PMD (Postmortem Dump),
Object Time System (OTS) library, enabling with TKB, 5-8, 5-9
7-1 overview of, 1-5
.OBJ file type, 3-4 Postmortem Dump. See PMD.,
ODT (On-line Debugging Tool) Preface, source file (MACRO-11l), 2-1
backslash character in, 5-5 PRINT command, 3-6, 3-7
B command in, 5-6 Printers, 1-11
commands in, 5-1 to 5-8 Program, user,
correcting input to, 5-3 development, overview of, 1-11
dollar sign in, 5-6 exiting, 2-6, 2-7
error conditions in task, 5-8 including object library
examining locations with, 5-4, routines in, 6-5, 6-6
5-5 library, 6-1
forming address in, 5-3 macro calls from a, 6-3
G command in, 5-7 macro symbol definition
including in a task, 5-1 placement, 1-3
LINE FEED key in, 5-4 module name definition, 2-3
map use in, 5-2 module version, 2-5

Index-4

INDEX

Program, user (Cont.)

sample FORTRAN IV, 7-3

section definition, 2-8

system routines in, 1-8 to 1-10
Programming techniques, advanced,
Program sectioning, 1-3, 2-8
.PSECT directive, 2-8
Purging files, 3-7

Q

Queuing, 1-7

R

Record Management Services, PDP-11.
See RMS-11
Relocation registers in ODT, 5-2
Relocatable object module.
See object module,
RENEW command (EDI), 2-14
RETURN key,
as EDI command, 2-12
in ODT, 5-4
terminating EDI input with, 2-9
RMS--11 (PDP~11 Record Management
Services),
macro library, 1-8
RMSMAC .MLB (RMS-11 macro library),
1-8
RSXMAC.SML (system macro library),
1-8
RUN command, 4-5, 7-5 to 7-7

S

.SBTTL directive, 2-6
Sectioning, program, 1-3
Skeleton, source file (MACRO-11),
2=1 to 2-8
Slash character,
in ODT, 5-4
SSNAP (Snapshot Dump)
overview of, 1-6
usage as debugging aid, 5-9
Snapshot Dump. See S$SNAP.
Source file (FORTRAN IV)
adding debugging statements
to a, 7-6
creating a, 7-2
Source file (MACRO-11),
assembling a, 3-1, 3-2
creating from a skeleton, 2-11
editing, 2-11 to 2-17
format,
description of, 2-3 to 2-8
sample skeleton, 2-2
inserting lines in, 2-17

Index-5

Source file (MACRO-11) (Cont.)
macro library call in, 6-3
object library call in, 6-5
preface, 2-1
requesting a listing of, 3-4
typical errors in, 3-2, 3-3

Spooling, 1-7
a listing file, 3-6, 3-7

SST. See synchronous system trap.

Standard, coding, 2-1

Statement,
format,

FORTRAN IV source, 7-2

MACRO-11 source, 2-3
general description of

MACRO-11, 1-2, 1-3

Symbol,
cross-reference of, 3-6
definition of local, 2-7
definition of macro, 1-3
MACRO-11 evaluation of, 1-2,

3-1
resolution of global, 1-4, 4-2
resolution of macro, 2-6, 6-3

Synchronous system trap,
effect in ODT, 5-8
relation to Postmortem Dump,

1-5
role in task termination, 4-5
SYSLIB.OLB system library, 1-9,
1-10

System directives, 1-7 to 1-9

System library,
contributions (in map), 4-5
macro (RSXMAC.SML), 1-8

contents of, 1-8

default search of, 1-3, 1-8,
2-6, 2-7

object (SYSLIB.OLB), 1-9, 1-10

contents of, 1-9

default search of, 1-10,
4-1, 4-2

System tasks, 1-1

T
Task,
abort of a, 4-6
building a, 4-1 to 4-3, 7-5
changing data in a memory-
resident, 5-7
correcting an error in a, 4-5,
4-6, 7-5 to 7-7
debugging a, 4-5, 4-6, 7-5 to

7-7

default conditions in a, 4-3,
4-4

examining registers and stack
of a, 5-8

including ODT in a, 5-1

INDEX

Task (Cont.)

macro calls in a, 6-3

map, generating a, 4-4, 4-5

name, 5-2

object library routines in a,
6-5, 6-6

running a, 4-5, 7=5
setting breakpoints within a,
5_51 5-6
synchronous system trap in a,
4-5, 4-6
system library contributions to
a, 4-5
termination of a, 4-6
transfer (starting) address in
a,
default, 4-2, 4-6
defining the, 2-7
Task Builder. See TKB.
Task image,
creating a, 4-1
Tasks, system, 1l~1
Task Termination Notification.
See TKTN.
Terminal,
control of output to, 3-5
examining an assembly listing

at, 3-5 :
format of FORTRAN IV statements,
7-2
types of, 1-10
Text buffer, 1-1
Text editor, 1l-1

See also EDIT.
.TITLE directive, 2-3
TKB (Task Builder)
concatenated object module as
input, 4-2, 4-3
/CR in, 4-4
creating a task image,
4-3
/DA in, 5-1
default conditions, 4-3, 4-4
default search of system library,
1-10, 4-1, 4-2

4-1 to

TKB (Task Builder) (Cont.)
default transfer address, 4-2
dual usage of object library
in, 6-6, 6-7

enabling Postmortem Dumps,
5=9

errors during processing,
4=2

fast version of,

generating a,
cross-reference listing,
full map, 4-5
standard map, 4-4

including ODT in a task,

input to, 1-4

/LB in, 6-6, 7-5

/LB:name in, 6-5

object library designation in,
6-5

output from,

/PM in, 5-8,

/-SH in, 4-5

typical errors in, 4-5, 4-6

undefined symbols in, 4-2

/-WI in, 4-4

TKTN (Task Termination and

Notification),

used with PMD, 1-6

abort message from, 4-6

Transfer (starting) address,
defining of a, 2-7
system treatment of default,

4-6

Trap. See synchronous system trap.

.TSK file type, 4-1

TYPE command (EDI),

5-8,
4-1,
4-3

4-4

5-1

1-4
5-9

2-12

U

Underline character,
in ODT, 5-2
Utility programs, general, 1-6

Index-6

— s

Please cut along this line.

RSX-11M/M-PLUS Guide
to Program Development
AA-H264A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form,

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If 50, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other (please specify)

ooooaa

Name Date

Organization

Street

City. State Zip Code
or
Country

~— — — — DoNotTear-FoldHereandTape — |

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A1
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

— — — — DoNotTear-FoldHeg — — — — — — — — — — — — — — — —

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB

