
RT11 Utilities Manual

Order No. AA-M213A- TC

)
j

RSTS/E
RT11 Utilities Manual

Order No. AA-M213A-TC

December 1981

This document describes RTll-based utilities that you use while
programming under the RSTS/E operating system.

OPERATING SYSTEM AND VERSION: RSTS/E V7.1

SOFTWARE VERSION: RSTS/E V7.1

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment Corpo­
ration. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license, and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1981 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC VT lAS
DECUS DECsystem-10 MASSBUS
DECnet DECSYSTEM 20 PDT
PDP DECwriter RSTS
UNIBUS DIBOL RSX
VAX EduSystem VMS

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-ll Text Management System.

1/82/14

I
)

Contents

Preface

Chapter 1 Introduction: Using RT11 Utilities on RSTS/E

1.1 Program Development Cycle and the RT11 Utilities.

1.1.1
1.1.2
1.1.3

Program Development Cycle.
Definition of the RT11 Utility Programs.
Languages that Use the RT11 Utilities

1.2 Additional Documents.
1.3 Run-Time System Environment

1.3.1 Running the Utility Programs.
1.3.2 Running the Utilities in DCL

1.4 Command String Specifications .
1.5 Logicals: DK: and SY:.
1.6 Error Messages in the Appendix.

Chapter 2 MACR0-11 Program Assembly

2.1 Running the MACRO-11 Assembler.

2.1.1 Running MACRO with the RUN Command or a
CCL Command

2.1.2 Running MACRO in DCL .

2.2 Temporary Work File
2.3 File Specification Switches

2.3.1
2.3.2
2.3.3
2.3.4

2.3.5

Listing Control Switches .
Function Control Switches.
Macro Library File Designation Switch
Cross-Reference (CREF) Table Generation Switch

2.3.4.1 Obtaining a Cross-Reference Table ..
2.3.4.2 Handling Cross-Reference Table Files

Assembly Pass Switch.

2.4 MACRO-11 Error Codes and Messages

2.4.1
2.4.2

Programming Level Errors . .
Input-Output Level Error Messages

Chapte,r 3 Linker (LINK)

3.1 Overview of the Linker Process

3.1.1
3.1.2

3.1.3

What the Linker Does
How the Linker Structures the Load Module.

3.1.2.1 Absolute Section.
3.1.2.2 Program Sections

Global Symbols: Communication Links Between Modules

Page

vii

.1-1

.1-1

.1-2

.1-3

.1-3

.1-4

.1-4

.1-5

.1-5

.1-7

.1-7

.2-1

.2-2

.2-4

.2-6

.2-6

.2-7

.2-9
2-10
2-11

2-11
2-12

2-14

2-14

2-14
2-17

.3-2

.3-2

.3-3

.3-3

.3-3

.3-7

iii

3.2

3.3

3.4
3.5

3.6

Running and Using the Linker

3.2.1 Running LINK
3.2.2 LINK Command Line Specification
3.2.3 LINK Switches Briefly Noted

Input and Output .

3.3.1 Input Object Modules .
3.3.2 Input Library Modules
3.3.3 Output Load Module
3.3.4 Output Load Map .

Creating an Overlay Structure
Switch Descriptions.

3.5.1 Alphabetical Switch (I A)
3.5.2 Bottom Address Switch (lB:n) .
3.5.3 Continue Switch (lC) or (I/).

3.5.4 Extend Program Section Switch (/E:n).
3.5.5 Default FORTRAN Library Switch (IF)
3.5.6 Directory Buffer Size Switch (lG)
3.5.7 Highest Address Switch (lH:n)
3.5.8 Include Switch (II)

3.5.9 Memory Size Switch (lK:n)
3.5.10 Modify Stack Address Switch (/M[:n]) .
3.5.11 Overlay Switch (lO:n) .
3.5.12 Library List Size Switch (/P:n)
3.5.13 Absolute Base Address Switch (I Q)
3.5.14 Symbol Table Switch (IS) .
3.5.15 Transfer Address Switch (IT[:n]).
3.5.16 Round Up Switch (lU:n).
3.5.17 Map Width Switch (/W) .

3.5.18 Bitmap Inhibit Switch (IX)

3.5.19 Boundary Switch (lY:n) .
3.5.20 Zero Switch (lZ:n).

Linker Prompts .

Chapter 4 librarian (USR)

LV

4.1
4.2
4.3

The Librarian
Running and Using LIBR.
Switches and Functions for Object Libraries.

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12

Include All Global and Absolute Global Symbols Switch (I A).
Command Continuation Switches (lC and I/)
Creating a Library File
Inserting Modules into a Library
Delete Switch (lD)
Extract Switch (IE)

Delete Global Switch (lG)
Include Module Names Switch (IN)

Include P-section Names Switch (lP)
Replace Switch (/Rl .
Update Switch (1m .
Wide Switch (/W). .

.3-8

.3-8
3-11
3-12

3-13

3-14
3-14
3-17
3-18

3-20
3-30

3-30
3-30
3-30
3-31
3-31
3-32
3-32
3-33
3-33
3-33
3-34
3-35
3-36
3-36
3-37
3-38
3-38
3-38
3-38
3-39

3-39

.4-1

.4-2

.4-3

.4-3

.4-4

.4-5

.4-5

.4-6

.4-7

.4-7

.4-8

.4-9

.4-9

.4-9
4-10

4.3.13 Creating Multiple Definition Libraries Switch (IX)
4.3.14 Listing the Directory of a Library File.
4.3.15 Merging Library Files
4.3.16 Combining Library Switch Functions

4.4 Switch Commands and Functions for MACRO Libraries .

4.4.1
4.4.2

Command Continuation Switches (lC or / !) .
Macro Switch (lM[:nD

Chapter 5 Object Module Patch Utility (PAT)

5.1 Introduction to the PAT Utility
5.2 Running and Using PAT ..
5.3 How PAT Updates a Module.

5.3.1 Input File
5.3.2 Correction File .

5.4 Updating Object Modules

5.4.1 Overlaying Lines in a Module.
5.4.2 Adding a Subroutine to a Module

5.5 Determining and Validating the Contents of a File

Appendix A Switch and Argument Summary

A.1 MACRO Switches

A.l.1 Arguments for Listing Control Switches ..
A.l.2 Arguments for Function Control Switches.
A.l.3 Arguments for the Cross-Reference Switch (lC)

A.2 LINK Switches
A.3 LIBR Switches

Appendix B Error Message Summary

Glossary

Index

B.1 MACRO Error Messages
B.2 LINK Error Messages.
B.3 LIBR Error Messages .
B.4 PAT Error Messages .

4-10
4-11
4-12
4-13

4-14

4-14
4-14

.5-1

.5-1

.5-4

.5-4

.5-4

.5-5

.5-5

.5-6

.5-8

A-I

A-2
A-2
A-3

A-4
A-5

· B-2
· B-4
· B-10
· B-13

v

Figures

1-1 Developing an Executable Program . 1-2
2-1 Sample Assembly Listing .2-8
2-2 Cross-Reference Table. 2-13
3-1 Library Searches 3-16
3-2 Sample Load Map. . . . 3-19
3-3 Sample Overlay Structure for a FORTRAN Program. 3-21
3-4 Overlay Scheme. 3-22
3-5 The Run-Time Overlay Handler. 3-22
3-6 Sample Subroutine Calls and Return Paths 3-26
3-7 Memory Diagram Showing Sample Link with Overlay Regions. 3-29
5-1 Updating a Module Using PAT5-2
5-2 Processing Steps Required to Update a Module Using PAT. . . .5-3

Tables

2-1 Default File Specification Values .2-4
2-2 File Specification Switches .2-7
2-3 Arguments for IL and IN Switches .2-9
2-4 Arguments for IE and ID Switches 2-10
2-5 IC Switch Arguments. 2-12
2-6 MACRO-11 Error Codes 2-15
3-1 P-sect Attributes .3-4
3-2 Section Attributes. .3-6
3-3 P-sect Order. .3-6
3-4 Global Reference Resolution. .3-7
3-5 LINK/RT11 Command Switches. 3-10
3-6 Linker Defaults. 3-11
3-7 Linker Switches. 3-12
3-8 Absolute Block Parameters Information . 3-18
3-9 Line-by-Line Sample Load Map Description 3-19
3-10 Linker Prompting Sequence . 3-39
4-1 LIBR Object Switches. .4-4
4-2 LIBR Macro Switches . 4-14
A-I File Specification Switches A-I
A-2 Arguments for IL and IN Switches A-2
A-3 Arguments for IE and ID Switches A-3
A-4 IC Switch Arguments. A-3
A-5 Linker Switches. A-4
A-6 LIBR Object Switches. A-6

Vl

i
/

Preface

In previous releases of RSTS IE, this document was called the RSTS IE
FORTRAN IV Utilities Manual. The title has been changed to reflect more
accurately the manual's content and its use in the RSTS/E programming
environment.

Audience Description

Users of this manual should be familiar with either the FORTRAN IV or
MACRO computer language and have a working knowledge of the RSTS IE
operating system.

Purpose of Document

This manual describes the RTll-based utilities that MACRO and
FORTRAN IV programmers need to develop programs on RSTS/E, on an
RTII system, or both.

Associated Documents

Refer to Chapter 1 for a description of the documents you need to develop
MACRO or FORTRAN IV programs on a RSTS IE system.

Document Structure

To better understand and use this manual, read the material in Chapter 1
before using the utilities in Chapters 2 through 5 and before referencing
the appendixes. The introductory chapter contains information you need to
understand more thoroughly the use ofRTll utilities on a RSTS/E system.

There are five chapters, a glossary, and two appendixes:

• Chapter 1 USING RTll UTILITIES ON RSTS/E
Introduces the reader to the RTll utilities as they are used on a RSTS IE
system.

• Chapter 2 MACRO-ll PROGRAM ASSEMBLY
Describes how to use the MACRO assembler to create an object module
that is input to the LINK utility.

• Chapter 3 LINKER (LINK)
Contains information the MACRO and FORTRAN IV programmmer
need to combine many object modules into an module the computer can
execute.

• Chapter 4 LIBRARIAN (LIBR)
Shows how to create, modify, maintain, and use library files containing
FORTRAN IV and MACRO modules.

uu

• Chapter 5 OBJECT MODULE PATCH UTILITY (PAT)
Describes how to update code in a relocatable binary object module file.

• Appendix A SWITCH AND ARGUMENT SUMMARY
Contains a summary list of MACRO, LINK, and LIBR switches (and
arguments). Use this appendix for reference.

• Appendix B ERROR MESSAGE SUMMARY
Lists the error messages you may encounter as you use the MACRO,
LINK, LIBR, and PAT utilities. (Appendix B does not, however, contain a
description of the MACRO programming-level error codes. You must
refer to Chapter 2 for that information.)

• Glossary
Defines the more commonly used terms in this manual.

Documentation Conventions

A description of the symbolic conventions used throughout this manual
follows. Familiarize yourself with these conventions before you continue
reading.

1. RT-ll (with the hyphen) refers to the RT-ll operating system. RTll
(without the hyphen) refers to the utilities based on the RT-ll utilities
that have been modified to run on RSTS/E - the utilities described in
this manual.

2. Examples consist of actual computer output wherever possible. Where
necessary, user input is in red to distinguish it from computer output.

3. This manual uses the symbol m to represent a carriage return. Unless
the manual indicates otherwise, terminate all commands or command
strings with a carriage return.

4. You produce several characters in system commands by typing a combi­
nation of keys concurrently. For example, while holding down the
CTRL key, type ° to produce the CTRL/O character. Key combinations
such as this one are documented as CTRL/O, CTRL/C, and so on.

5. In discussions of command syntax, uppercase letters represent the
command name, which you must type. Lowercase letters represent a
variable, for which you must supply a value.

Square brackets ([]) enclose an item that is optional: you may include
the item in brackets, or you may omit it, as you choose.

The ellipsis symbol (...) represents repetition. You can repeat the item
that precedes the ellipsis.

* Teletype is a registered trademark of the Teletype Corporation.

Chapter 1
Introduction: Using RT11 Utilities on RSTS / E

The main text of this manual describes four RT-ll utilities that have been
modified for RSTS/E: MACRO, LINK, LIBR, and PAT. These utilities give
the MACRO or FORTRAN IV programmer tools to create executable
programs on a RSTS IE system. This introductory chapter contains back­
ground information you need before using the RTll utilities in the RSTS IE
programming environment.

1.1 Program Development Cycle and the RT11 Utilities

There are three major operating systems that run on the PDP-ll computer:
RTll, RSX, and RSTS/E. Each provides an environment in which you can
create and run programs. The RSTS/E operating system, in contrast to the
others, allows the development of programs compatible with either RTll or
RSX execution-time structures, as well as programs for RSTS/E itself. In
the case of RSX, compatibility is at the source and command level; for RTII
compatibility extends down to .SA V. There are certain restrictions, such as
lack of the Extended Memory (XM) Monitor and Foreground/Background
(FB) Monitor for RSTS IE's RTll environment, and lack of asynchronous
1/0 for both RTll and RSX; RSTS/E, in fact, emulates only the RT-ll
Single-Job (SJ) Monitor. This manual describes the RTll utilities you use to
create RTll-based programs that can run either on an RTll system or on
your RSTS/E system. However, before beginning to program on RSTS/E,
you must understand the "program development cycle."

1.1.1 Program Development Cycle

There are a number of steps to take before your computer can execute
programs you write. These steps in the creation of your executable program
are collectively called the "program development cycle." You have three
paths you can take in developing programs on RSTS/E: RTll, RSX, and
RSTS/E. (That is, you can develop RTll programs that run on RTll or
RSTS/E systems and create RSX programs that run on RSX or RSTS/E,
resulting in programs that can run in anyone of three environments.)

1-1

Create
Source

While the operating systems are different, they have similar program
cycles. A diagram (using the RTll program names) can illustrate this
process:

Figure 1-1: Developing an Executable Program

Assemble -- Source
(MACRO)

MACRO Library
Files

(LlBR)

Object Code

Patch Object
Code
(PAT)

Link
Object
(LINK)

I
Library
Files

(LlBR)

~
Run Link
Output

MK·OO430-00

The utilities in this manual perform some of the operations in this cycle.
The RSX environment on RSTS/E provides a parallel set of program devel­
opment tools. Refer to the RSTS / E Programming Utilities Manual for a
description of the utilities you use to create programs in the RSX RSTS /E
environment.

1.1.2 Definition of the RT11 Utility Programs

The RTll utility programs that RSTS/E provides for program development
are:

It Macro Assembly (MACRO)
The MACRO assembler accepts a MACRO source program as input to
create an object module. You then use the object module as input to the
LINK utility to make a file the system can execute.

It Linker (LINK)
LINK accepts object modules from an assembler (and/or a compiler) to
produce an executable file. LINK can also combine a number of object
programs with any necessary library and assembly language subroutines.
It is the output of the LINK operation that you specify with the system
RUN command. For example, if MYPRGM were the name of the output
from LINK, you could execute MYPRGM by typing RUN MYPRGM.

It Librarian (LIBR)
LIBR lets you build and maintain object libraries of your frequently used
FORTRAN IV or MACRO routines. It also maintains macro libraries for
the MACRO-ll assembler. The librarian organizes the library files so
that the linker and MACRO-ll assembler can access them rapidly.

It Object Module Patch (PAT)
PAT helps you modify code in a relocatable binary object (.OBJ) module.
This means you can change previously assembled code without reassem­
bling it. You can also use PAT to update library files and to patch the
compiler and FORTRAN Object Time System (OTS).

1-2 Introduction: Using RTll Utilities on RSTS/E

)

1.1.3 Languages that Use the RT11 Utilities

MACRO and FORTRAN IV are the two DIGITAL-supplied computer
languages that use the RTll utilities described in this manual. MACRO
comes to you on the RSTS/E distribution kit; FORTRAN IV is distributed
on its own kit, which means you must order it separately.

The RTll utilities are compatible with programs written in either MACRO
or FORTRAN IV. For example, object file formats from the RTll MACRO
assembler and the FORTRAN IV compiler are identical. This allows the
RTII LINK utility to accept both types of object files and process them in
the same way. Furthermore, because the object file formats are identical,
you can use the patch utility PAT to modify the object code of both
languages. You must use the RSX utilities to process programs written in
other languages, such as BASIC-PLUS-2.

Refer to the RSTS IE System User's Guide for a more complete discussion of
program development on RSTS/E.

1.2 Additional Documents
To use this manual properly, you must have access to other documentation.
The list that follows contains the documents either FORTRAN IV or
MACRO programmers can use for developing FORTRAN IV or MACRO
programs on RSTS IE:

• PDP-ll MACRO Language Reference Manual
Describes how to use the MACRO-ll relocatable assembler to develop
PDP-ll assembly language programs. This manual presents detailed
descriptions of MACRO-ll features. These include source and command
string control of assembly and listing functions, directives for conditional
assembly and program sectioning, and user-defined and system macro
libraries.

• RSTS IE System Directives Manual
Contains general information on run-time systems and describes RSTS/E
monitor, RSX emulator, and RTll emulator directives for the assembly­
language programmer.

• RSTS IE System User's Guide
Contains a description of non privileged system programs and a discussion
of the program development cycle on a RSTS IE system.

• PDP-ll Programming Card
Summarizes, on a pocket-sized folding card, the PDP-ll machine instruc­
tions used by the various PDP-ll assembly language processors.

• RT-ll IRSTS IE FORTRAN IV User's Guide
Provides the information needed to compile, link, execute, and debug a
FORTRAN program under RT-ll.

• PDP-ll FORTRAN Language Reference Manual
Describes the form of the basic elements of the FORTRAN language: the
FORTRAN statements. The document is a reference manual for the inex­
perienced as well as the experienced programmer. It is not a tutorial
manual.

Introduction: Using RTll Utilities on RSTS/E 1-3

1.3 Run-Time System Environment

The RSTS/E system places you under the control of the default keyboard
monitor after you log in to the system. BASIC-PLUS, BASIC-PLUS-2,
DCL, RTll, and RSX are keyboard monitors the system manager can select
during system generation. You know what keyboard monitor is the default
by the prompt the monitor prints at your terminal:

Ready

BASIC2

$

BASIC-PLUS

RSX

RT11

BASIC-PlUS-2

DIGITAL Command language (DCl)

At this command level, you can run any of the RT11 utilities described in
this manual. Each of the keyboard monitors understands the RUN com­
mand and passes the command line on to the RTll utility program for
processing. However, before using the utilities, you must learn the account
in which they reside. Generally, you find MACRO.SAV, LINK.SAV,
LIBR.SAV, and PAT.SAV in the system library account [1,2]. That is the
account to which they are assigned on the RSTS/E distribution kit. Unless
your system manager has moved them, you should be able to call the utili­
ties from that account. Check with your system manager or simply try to
run the utilities from the library account.

1.3.1 Running the Utility Programs

To call the utilities, respond to the keyboard monitor prompt by typing a
command in the form:

RUN $utility m
*
The dollar sign ($) indicates that the program resides in the RSTS/E
system library account [1,2]. Utility represents the name of the program
you want to run. When it is ready for you to enter a command string, the
utility prints an asterisk (*) prompt. If you learn from the system manager
that the utilities have been moved, then include the new account number in
the file specification:

RUN [1,3]<utility>m

*
In this case, the system searches account [1,3] and runs the utility, which
prompts you for command input. CYour system manager may also have
moved the utilities to a device other than one in the public structure. In
that case, you will also need to include the device name along with the file
specification of the utility.)

1-4 Introduction: Using RTll Utilities on RSTS/E

If you prefer to work under the RTll run-time system, type:

RUN $SWITCH
Keyboard fTlonitor to sJ"litch to? RTll @

RSTS/E changes your default keyboard monitor to RTll if it was not the
default already. To indicate the switch into RTll has been made, the RTll
keyboard monitor dot prompt (.) appears on your teminal, showing its read­
iness to accept input from the keyboard.

1.3.2 Running the Utilities in Del

You may want to run the RTll utilities under the control of the DIGITAL
Command Language (DCL) keyboard monitor. This command environment
is compatible with other DIGITAL computer systems, allowing users of
these systems to use RSTS IE without having to learn the RSTS IE
command environment. For those not familiar with DCL, the language
consists of words that suggest the operations performed. This ma,kes using
the computer less difficult and thus creates a more productive working
environment.

To use DCL, you must run the RSTS IE SWITCH program (if DCL is not
already your keyboard monitor). After you type "DCL" in response to the
single program prompt, SWITCH places your terminal under DCL's con­
trol. The dollar prompt ($) printed by the DCL keyboard monitor indicates
that you can begin to enter commands. DCL syntax is explained for each of
the utilities described in following chapters. If you need more information
about DCL, refer to the RSTS IE DeL System User's Guide.

1.4 Command String Specifications

A utility program prompts you with an asterisk prompt (*) when it is ready
to accept a command string. (Pressing the RETURN key without entering a
command line causes the utility to print its name and version number.) The
first command string you enter has the general format:

output = input

The output and input side of your response have the following meaning:

output

input

Represents the output file specifications. You can in general
specify up to three file names, although some utilities allow
only one or two. If you do not include an output file specifica­
tion, the utility chooses a default.

Represents the input file specifications. You can choose not
to include an input file specification, but if you do, six is the
maximum.

Introduction: Using RTll Utilities on RSTS IE 1-5

Use the following RSTS/E file specification format when responding to
command prompts issued by the utilities:

dev:[p,pn]filename. type / pr[otect] :nn[/ switch(es)]

dev: Identifies the device on which the file is stored or is to be
written. You create a valid dev: field by combining a two­
character device code with an optional unit number. Each
dev: field must end with a colon (:). If, for example, you have
a file on an RP06, on device unit number 1, the device field
would be DB 1:. Refer to the RSTS IE System User's Guide for
a list of valid RSTS IE devices and their corresponding device
codes. The logical DK: is the default; refer to Section 1.5.

[p,pn] Represents the account that contains the file you want to
access. The number in square brackets ([]) consists of both a
project (p) and a programmer number (pn), with each being
assigned a decimal value from 0 to 254. Together they allow
you to differentiate one user's files from another. The default
[p,pn] is your own account. Examples of valid project­
programmer numbers are [1,210] and [200,63].

filename Can have as many as six characters. It has no default and
thus must be specified whenever you run a program.

file type Can contain up to three characters. It describes the type of
data in a file. Some examples of file types that appear in this
manual are:

.DAT FORTRAN IV data file

.FOR FORTRAN IV source file

.LLD Library listing file

.LST Listing file (MACRO, FORTRAN IV, and LIBR out­
put)

.MAC MACRO source file (MACRO input, LIBR input and
output)

.MAP Map file (linker output)

.OBJ Relocatable binary file (MACRO or FORTRAN IV
output, LINK input, LIBR input and output)

.SA V Executable IV program file

.SML System MACRO library

.STB Symbol table file in object format containing all
global symbols resolved during a link

.TMP Temporary cross-reference file, for communication
from MACRO to CREF

1-6 Introduction: Using RTll Utilities on RSTS/E

IPR:nn

I switch

Uses decimal values (such as 60) to restrict or permit access
to a file. The code or combination of codes determines the
degree of restriction. Protection codes have effect only when
given to output files. Refer to the RSTS IE System User's
Guide for more complete information on protection codes.

Changes the way a utility program works. You will find the
list of switches for a particular utility in the appropriate
chapter.

The RSTS I E System User's Guide contains a more complete description of
the RSTS IE file specification.

1.5 logicals DK: and SY:

On an RT-ll system, programs and data files are often kept on separate
devices, especially on very small systems. In RT-ll, SY: is the logical name
given the disk containing the system files. It is also the default boot device.
The logical DK refers to the disk that contains user work files and repre­
sents the disk to which the utility programs default when no device name is
included in a file specification. The system also defaults to this device to
find an executable file when you use the RUN command.

On RSTS IE, these two logicals exist and generally have the same mean­
ings. (The exception is the RUN command, which searches the RSTS/E
public structure by default.) The logical SY: usually refers to the disk(s) in
the public structure that contain both the system files and user work files.

On RSTS IE, DK is usually assigned to the public structure. Thus, DK: on
a RSTS/E system may be synonymous with SY:, even though the utilities
perform their input and output to and from DK. This happens as long as
you have not used the RSTS/E ASSIGN command to point DK to another
device. For example:

ASSIGN DB1:DK:

This command makes DBl: the disk that the RTll utilities choose when
you do not include a device name in your file specifications (which default
to DK).

1.6 Error Messages in the Appendix

Here are a few important facts you should know about the error messages
described in this manual:

1. To make accessing error messages easier, all messages are in Appendix
B. (Only Chapter 2 on the MACRO assembler contains any error infor­
mation; input and output error messages for MACRO, however, are in
Appendix B.)

2. You should read the introduction to Appendix B before using the RTll
utilities. It contains information that will help you interpret and
correct the error conditions generated by the RTll utilities.

Introduction: Using RTll Utilities on RSTS/E 1-7

Chapter 2
MACRO-11 Program Assembly

This chapter describes how to assemble MACRO-ll programs under
RSTS/E.

Output from the MACRO-11 assembler includes any or all of the following:

• A binary object file - the machine-readable logical equivalent of the
MACRO-ll assembly language source code

• A listing of the source input file

• A cross-reference file listing

• A table of contents listing

• A symbol table listing

To use the MACRO-ll assembler, you should understand how to:

1. Start and stop the MACRO-ll assembler (including how to format
command strings to specify files MACRO-ll uses during assembly)

2. Assign temporary work files to nondefault devices, if necessary

3. Use file specification switches to override file control directives in the
source program

4. Interpret error messages

The following sections describe these topics.

2.1 Running' the MACR0-11 Assembler

This section describes how to run the MACRO-ll assembler:

• With the RUN command or a Concise Command Language (CCL)
command

• From the DIGITAL Command Language (DCL) keyboard monitor

MACRO-11 Program Assembly 2-1

Use the method that best suits your needs and the prevailing conditions
(default keyboard monitor for example) at your installation.

2.1.1 Running MACRO with the RUN Command or a CCl
Command

To run the MACRO-ll assembler from the system library account [1,2],
type:

RUN $MACRO(Bffi

*

If your system manager has installed MACRO-ll as a Concise Command
Language (CCL) command (for example, MACR-O), then you can also run
the assembler with:

MACRO(Bffi

*

In either case, MACRO-ll prints an asterisk prompt on your terminal. The
assembler is now ready to accept command string input in the form:

output-filespecCs) = input-filespecCs)

As an alternative, if MACRO is a CCL on your system, you can enter a
whole command line in the form:

MACRO output-filespec = input-filespec

The more detailed format for the command string is:

obj ,list,cref / s:arg = sourcei, ... ,sourcen / s:arg

obj The file specification of the binary object file that the assembly
process produces (the device for this file should not be KBn: or
LPn:).

list The file specification of the assembly and symbol listing that
the assembly process produces.

cref The file specification of the CREF temporary cross-reference
file that the assembly process produces. The dev:cref specifica­
tion is necessary only if you must place the cref work file on a
disk other than the default (which is DK:, or WF: if defined).

/s:arg A set of file specification switches and arguments. (Section
2.3 describes these switches and associated arguments.)

sourcei The file specifications for a MACRO-ll source file or MACRO
library file. These files contain the MACRO language pro­
grams to be assembled. You can specify as many as six source
files.

2-2 MACRO-ll Program Assembly

The complete format for a file specification is:

dey: [p,pn]filename. type IPR[otect]:nn

The default device for the files used by MACRO is DK:. On RSTS/E, DK: is
usually synonymous with SY:, but you can assign DK: to another device
and explicitly specify a device in your command string to MACRO. If you
submit the listing file directly to a printing device, such as KBn: or LPn:,
you can abbreviate the file specification for a listing file to include only the
device code. In addition, RSTS IE allows you to use the default for the
project-programmer number or the protection code, as described in Section
1.4. The format for an input (source) file specification is the same except for
the protection code, which you can omit. MACRO ignores it on input files.

For example, the following command string calls for an assembly that uses
one source file (SRC.MAC) plus the system MACRO library to produce an
object file BINF.OBJ and a listing. The listing goes directly to the line
printer.

*DK:BINF.DBJ.LP:=DK:SRC.MAC

All output file specifications are optional. MACRO does not produce an
output file unless the command string contains a specification for that file.
If you do not include an output file specification, you can omit the equal
sign (=).

The system determines the file type of an output file specification by its
position in the command string. Use commas in place of files you wish to
omit. For example, to omit the object file, you must begin the command
string with a comma. You need not include a comma after the final output
file specification. The following command produces a listing, including
cross-reference tables, but not binary object files:

* .LP: IC=MAIN.MAC

The next command produces an object file but no listing file or
cross-reference listings; input files are on DK: (which is usually the system
device, as described above):

*DB1:[240.129JBINF.OBJ(40)=SRC1.MAC.SRC2.MAC

MACRO assumes certain default values when you do not specify devices
and file types in the command string. Table 2-1 lists these default values
for each file specification.

MACRO-ll Program Assembly 2-3

Table 2-1: Default File Specification Values

Default Default Default
File Device File Name File Type

Object DK: None; must specify .OBJ

Listing Same as for object file None; must specify .LST

Cref DK: (CF: if assigned) CREF* .TMP

First source DK: None; must specify .MAC

Additional source Same as for preceding None; must specify .MAC
source file

System MACRO DK: SYSMAC .SML
Library

User MACRO DK: if first file, other- None; must specify .MAC
Library wise same as for

preceding source file

• The default file name is DK:CREF.TMP if (1) you do not include a file specification or
(2) you do not include a file name but do include the IC switch. Otherwise, you must
enter a file name.

If you type RUN $MACRO and receive the asterisk prompt but do not enter
a command string, you can exit the MACRO-ll assembler by typing
CTRL/Z. This returns you to your keyboard monitor prompt. After you
enter a command string and press the RETURN key (thus beginning an
assembly), you can halt the assembly process at any time by typing
CTRL/C. Control returns to the MACRO-ll asterisk prompt. Enter
another command or type CTRL/Z to exit the MACRO-ll assembler and
return control to your keyboard monitor.

To restart the assembly process, type RUN $MACRO in response to the
keyboard monitor prompt.

2.1.2 Running MACRO in DCl

You can use the RUN command to invoke the MACRO-ll assembler when
you are under the control of the DCL keyboard monitor. Just follow the
procedures described in the previous section. But you can also run MACRO
from DCL using DCL syntax rules and procedures. This section describes
how to use these rules and procedures to execute MACRO programs.

You must first run the RSTS IE SWITCH program to switch control to the
DCL keyboard monitor (unless it is already the default):

RUN $SW ITCH(@')

The SWITCH program asks one question only and then places you in the
run-time system you select:

Keyboard Monitor? Del(@')

2-4 MACRO-ll Program Assembly

After you type DCL and press the RETURN key, DCL immediately prints a
. dollar ($) prompt on your terminal. The DeL keyboard monitor is now
ready to accept command input.

At the prompt, type a single line command in the form:

$ MAC[RO]/RTll input-filespeci + ... +n/OBJECT[= obj-filespec] I LIST = [list-filespec]

The command line accepts up to six input file specifications (i through n).
DCL syntax requires you to use a plus (+) sign instead of a comma (,)
whenever you specify more than one input file. If you do not include an
object file, MACRO creates one by default and gives it the same name as
the first input file. The assembler also automatically creates a list file if
you omit that specification. The default file types are .OBJ for the object
file and .LST for the list file. Have MACRO create both files by typing a
command line as follows:

$ MACRO/RT11 MAIN.MAC

MACRO creates the object file MAIN.OBJ and the list file MAIN.LST and
places the files in your account on the system disk (SY:).

If you do not want MACRO to create an object file, you must use the
INOOBJ switch. Similarly, the INOLIST switch tells MACRO not to
create a list file. For example:

$ MACRO/RT11 MAIN.MAC/NOLIST

MACRO creates the object file MAIN.OBJ but does not create a list file.

When you need to see if an old MACRO program assembles, and you do not
want to get an object or a list file (at least the first time you run the
program), attach both the INOOBJ and INOLIST switches:

$ MACRO/RT11 OLOPRG.MAC/NOOBJ/NOLIST

When you want to give the object or list file a name other than the one
MACRO assigns by default, enter the specific file name:

$ MACRO/RT11 MAIN.MAC/OBJECT=MODULE/LIST=MODLST

This command line tells MACRO to create the object file MODULE.OBJ
and the list file MODLST.LST. If you do not include file types, the assem­
bler assigns them for you. Even though an input file may be on a disk other
than the system disk, DCL always places the object and list files on the
system disk in your account, unless you specify otherwise. To place an
object and a list file on DBO:, for example:

$ MACRO/RT11 DBO:MAIN.MAC/OBJECT=DBO:MODULE/LIST=DBO:MODLST

MACRO places both files in your account on DBO:.

MACRO-ll Program Assembly 2-5

If you include an object file but not a list file specification, DCL assigns the
list file the same name, device, and account as the object file. For example:

$ MACRO/RTll MAIN.MAC/06JECT=MODULE

Your account on the system disk now contains the list file MODULE.LST
as well as the object file MODULE.OBJ. MACRO uses the default file
types .LST and .OBJ unless you enter your own.

When you attach the ILIBRARY switch to the particular input file specifi­
cation, MACRO can tell that an input file is a library. For example:

$ MACRO MAIN.MAC+SECDND.LI6/LI6RARY/06JECT=MDDULE

The ILIBRARY switch marks the input file SECOND.LIB as a library. You
must append the switch to the file you wish to mark. DCL allows you to
specify up to five library files in a single command string. If you need to
specify an object or list file, attach them as usual after the input file specifi­
cations and thus after any ILIBRARY switches you may have included.
Note that you must use the plus (+) sign to separate input file
specifications.

To abort the MACRO assembler and return to the DCL dollar prompt, type
CTRL/C.

2.2 Temporary Work File

Some assemblies need more symbol table· space than available memory
contains. When this occurs, the system automatically creates a temporary
work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK:. To make the system assign a
different device, enter the following command in response to the RTll
keyboard monitor prompt:

.ASSIGN dey: WF

Device (dev:) represents the physical name of a disk. MACRO creates
WRK.TMP on this device. The period before the ASSIGN command indi­
cates the command was typed in response to the RTll keyboard monitor
prompt (.). On RSTS/E, you switch into another run-time system, such as
RTll, by running the SWITCH program.

2.3 File Specification Switches

At assembly time, you may need to override certain MACRO directives
appearing in the source programs. You may also need to tell MACRO-ll
how to handle certain files during assembly. You can satisfy these needs by
including special switches in the MACRO-ll command string in addition
to the file specifications. Table 2-2 lists the switches and describes their
effects.

2-6 MACRO-ll Program Assembly

Table 2-2: File Specification Switches

Switch Usage

IL[:arg]* Listing control, overrides source program directives .LIST and .NLIST

IN[:arg]* Listing control, overrides source program directives .LIST and .NLIST

IE:arg** Object file function enabling, overrides source program directives .ENABL
and .DSABL

ID:arg** Object file function disabling, overrides source program directives .ENABL
and .DSABL

1M Indicates input file is a MACRO library file

IC[:arg] Requests or controls contents of cross-reference listing

IP:arg Specifies whether input source file is to be assembled in pass 1 or pass 2
only, rather than both passes

* Both IL and IN disable .LIST and .NLIST for the argument(s) specified; however, IL
turns it on, and IN turns it off.

** Both IE and ID disable .ENABL and .DSABL for the argument(s) specified; however,
IE turns it on, and ID turns it off.

The 1M and IP switches affect only the particular source file specification
to which they are directly appended in the command string. Other switches
are unaffected by their placement in the command string. The IL switch,
for example, affects the listing file, regardless of where in the command
string you place it.

The following sections describe how to use the file specification switches.

2.3.1 Listing Control Switches

Use the IL:arg and IN:arg switches with the set of arguments in Table 2-3
to control the content and format of assembly listings. At assembly time,
you can override the arguments of .LIST and .NLIST directives in the
source program. If you use the IL:arg or IN:arg switch, the directives .LIST
and .NLIST cannot control that particular switch in the source. For
example, specifying IN:CND disables the listing of unsatisfied conditionals
even if .LIST CND is present in the source.

Figure 2-1 shows an assembly listing of a small program. This listing
labels each important feature with the mnemonic name that determines
its appearance on the listing; the argument SEQ, for instance, controls the
appearance of the source line sequence numbers.

The system has default settings for the IL and IN switches when you do
not include arguments:

• The IL switch without an argument causes the system to ignore .LIST
and .NLIST directives that have no arguments .

• The IN switch without an argument causes the system to list only the
symbol table, the table of contents, and error messages.

MACRO-II Program Assembly 2-7

If
(XI

~
(1
~

?

~
~
8
~
rJl

~
'<

I SYM I

.MAIN. MACRO V04.00 26-JUL-81 21:29:21 PAGE 1 EJ
~ ~ I ICOMI

'T 3
4
5

AU 6 000000
7 000000
8 000000

AU 9 000004
10 000010
11 000012

AU 12 000016
13 000020
14 000022
15 000026

U 000026
16 000032
17 000034

U 000034
18 000040
19 000044

000044
20 000046
21 000050
22

.-
000012 LF= 012

.MCALL §] ~MACRO
SEX MD JSR

• ENDM r A I .GLOBAL 000000 000000 000000 .CSECT

012702 000050'
000000 000000
110022
120027 000012
001377
105022
012703 000050'

004767 000000
103762

004767 000000
010067 000002

104350~

000000'

START: MOV
1$ • THIN

MOVB
CMPB
BNE
CLRB

~~~~L 
JSR 

MC BCS 
CALL 
JSR 
MO\,' 
.EXIT 
EI'IT 

ANSWER: • BLKW 
BUFFER: • BLKB 

.END 

.MAIN. MACRO V04.00 26-JUL-81 21:29:21 PAGE 1-1 
SYMBOL TABLE 

ANSWER 000046R 002 LF 000012 SUBR1 

.TTYIN, .EXIT 
CALL NAME 
PC,NAME 

SUBR1, SUBR2 
PROG 

BUFFER,R2 

RO'(R2>t 
RO, LF 
1$ 

(R2>t 
BUFFER, R:', 

SUBR1 
PC,SUBR1 
START 
SUBR2 
PC,SUBR2 
RO, ANSWn: 

0350 

72. 
START 

****** 

r 
;SYMBOL FOR LINE FEED 

;DEFINE A USER MACRO 

iTWO EXTERNAL SUBROUTINES 
iDEFINE A CSECT 
iR2 = ADRS(BUFFER) 
iREAD A CHAR INTO RO 
iAND STORE IN BUFFER 
iWAS IT A LINE FEED? 
iNOPE - KEEP READING 
iELSE FLAG END OF LINE WITH ZERO 
iR3 = ADRS(BUFFER) FOR SUBR1 
iINVOKE CALL MACRO 

iGET A NEW LINE IF CARRY SET 
iELSE CALL OTHER SUBR 

iAND STORE IN ANSWER 
iRETURN TO RT-l1 

iDEFINE ANSWER STORAGE 
iINPUT LINE BUFFER 

• GLOBA= ****** • THIN= ****** 
I BlJ~-FER 000050R 002 START OOOOOOR 002 SUBR2 ****** 
, 

ABS. 000000 000 . 
000006 001 

PROG 000160 002 
~RRORS DETECTED: 5 

VIRTUAL MEMORY USED: 8192 WORDS (32 PAGES) 
DYNAMIC MEMORY AVAILABLE FOR 71 PAGES----- -
,MAIN. LST /L :MEB/C:S:E: P: R: 1'1: C=MAIN. MAC Of [COpy OF COMMAND STRING THAT REQUESTED LISTING I 

MK-00431-00 

~ .... 

~ 
If ..... 

00 

S 
"C ;-
>-
III 
III 
CD g. 
-< 
tot .... 
III 
~ .... 
= aQ 



The following example lists binary code throughout the assembly using the 
132-column line printer format and suppresses the symbol table listing: 

*1 ,LP: IL:MEB/N:SYM=F1LE 

Table 2-3: Arguments for IL and IN Switches 

Argument Default Listing Control 

SEQ List Source line sequence number 

LOC List Address location counter 

BIN List Generated binary code (includes BEX) 

BEX* List Binary extensions 

SRC List Source code 

COM List Comments 

MD List Macro definitions, repeat range definitions 

MC List Macro calls, repeat range expansion 

ME No list Macro expansions (includes MEB) 

MEB No list Macro expansion binary code 

CND List Unsatisfied conditionals, .IF and .ENDC statements 

LD No list List control directives with no arguments 

TOC List Table of Contents 

TTM No list 132-column line printer format when not specified, terminal 
mode (80-column mode) when specified 

SYM List Symbol table 

* This option applies to the listing of assembled binary code. There is room on a listing 
line to display three octal words (one ifTTM is set) of assembled code. If you assemble a 
source statement that assembles to more than three words, only the first three are 
listed if .NLIST BEX is in effect. If .LIST BEX is in effect, MACRO uses additional 
lines to list all assembled words. 

2.3.2 Function Control Switches 

The IE:arg and ID:arg switches allow you to enable or disable functions at 
assembly time and thus influence the form and content of the binary object 
file. These functions override .ENABL and .DSABL directives in the source 
program; if you specify the IE:arg or ID:arg switch, the .ENABL arg or 
.DSABL arg directive no longer affect the particular argument that may 
occur in the source. 

Table 2-4 summarizes the acceptable IE and ID function arguments, their 
normal default status, and the functions they control. 

MACRO-U Program Assembly 2-9 



Table~: Arguments for IE and ID Switches 

Argument Default Mode Function 

ABS Disable Produces output in paper tape absolute binary format 
instead of a standard object file. 

AMA Disable Assembles all relative addresses as absolute addresses. 
Replaces all uses of relative addressing mode (mode 67) 
by absolute addressing (mode 37). 

CDR Disable Ignores all source information beyond column 72. 

CRF Enable Allows cross-reference listing. Disabling this function 
inhibits CREF output even if switch IC is active. 

FPT Disable Truncates floating point values (instead of rounding). 

GBL Disable Treats undefined symbols as globals. 

LC Disable Allows lowercase ASCII source input. 

LSB Disable Allows local symbol block (not recommended in IE:arg 
or ID:arg). 

PNC Enable Allows binary output. 

REG Enable Automatically defines register mnemonics if enabled. 
You should set or clear the REG argument at the 
beginning of the source module. 

Use either the function control or listing control switch and arguments at 
assembly time to override corresponding listing or function control direc­
tives in the source program. For example, assume that the source program 
contains the following sequence: 

• NLIST MEB 

• (MACRO references) 

.LIST MEB 

In this example, you disable the listing of MEB (Macro Expansion Binary) 
code for some portion of the code and subsequently resume MEB listing. If 
you indicate IL:MEB in the assembly command string, however, the sys­
tem ignores both the .NLIST MEB and the .LIST MEB directives. This 
enables MEB listing throughout the program. 

The PDP-ll MACRO Language Reference Manual contains more informa­
tion on the arguments for both the listing control and function control 
switches. 

2.3.3 Macro Library File Designation Switch 

The 1M switch is meaningful only if you append it to a source file 
specification. It designates the source file as a macro library. 

If the command string does not include the standard system macro library 
SYSMAC.SML, the system automatically includes it as the last source file 
in the command string. 

2-10 MACRO-ll Program Assembly 



When the assembler encounters an .MCALL directive in the source code, it 
searches macro libraries according to their order of appearance in the com­
mand string. When it locates a macro record whose name matches that 
given in the .MCALL, it assembles the macro as indicated by that defini­
tion. Thus, if two or more macro libraries contain definitions of the same 
macro name, the macro library that appears leftmost in the command 
string takes precedence. 

For example: 

*<output file specification> = AL lB. MAC / M ,BL lB. MAC / M ,)-( I Z 

Assume that each of the two macro libraries, ALIB and BLIB, contains a 
macro called .BIG, but with different definitions. Then, if source file XIZ 
contains a macro call .MCALL .BIG, the system includes the definition 
of .BIG in the program as it appears in the macro library ALIB. 

Moreover, if macro library ALIB contains a definition of a macro 
called .READ, that definition of .READ overrides the standard .READ 
macro definition in SYSMAC.SML. 

2.3.4 Cross-Reference (CREF) Table Generation Switch 

A cross-reference (CREF) table lists all or a subset of the symbols in a 
source program, identifying the statements that define and use symbols. 

2.3.4.1 Obtaining a Cross-Reference Table - To obtain a CREF table, you 
must include the IC[:arg] switch in the command string. Usually you 
include the IC[:arg] switch with the assembly listing file specification. 
However, you can place it anywhere in the command string. 

If the command string does not include a CREF file specification, the sys­
tem automatically generates a temporary file on the system device (DK:). 
(See Section 2.3.4.2.) To store the temporary CREF file on a device other 
than DK:, you must include the dev:cref field in the command string or 
assign CF: to another device. 

A complete CREF listing contains the following six sections: 

1. A cross reference of program symbols; that is, labels used in the 
program and symbols defined by a direct assignment statement. 

2. A cross reference of register symbols. These normally include the sym­
bols RO, Rl, R2, R3, R4, R5, SP, and PC, unless the REG function has 
been disabled through a .DSABL REG directive or the ID:REG switch 
(in which case registers are treated as normal symbols and show up in 
the first symbol section). 

3. A cross reference of macros; that is, those symbols defined by .MACRO 
and .MCALL directives. 

4. A cross reference of permanent symbols; that is, all operation mnemon­
ics and assembler directives. 

MACRO-ll Program Assembly 2-11 



5. A cross reference of program sections. These symbols include the names 
you specify as operands of the .CSECT, .ASECT, or .PSECT directive. 
Also included are the default program sections produced by the assem­
bler, the blank p-sect, and the absolute p-sect, .ABS. 

6. A cross reference of errors. MACRO detects certain types of program­
ming and syntax errors in your source code and flags them with a one­
letter error code. In the error section of a CREF table, MACRO groups 
and lists the errors by type. 

The one-letter error codes also appear in the assembly listings. 

Section 2.4 describes the one-letter codes MACRO prints to identify 
programmer level errors; Appendix B lists the input-output level error 
messages that may, for example, result from specifying an incorrect 
command string or from problems with II 0 devices. 

You can include any or all of these six sections on the cross-reference list­
ing by specifying the appropriate arguments with the IC switch. Table 2-5 
contains a description of these arguments. 

Table 2-5: I C Switch Arguments 

Argument CREF Section 

S User-defined symbols 

R Register symbols 

M MACRO symbolic names 

P Permanent symbols, including instructions and directives 

C Control and program sections 

E Error code grouping 

NOTE 

Specifying IC with no arguments is equivalent to specifying 
IC:S:M:E:. Except for that special case, you must explicitly 
request each CREF section by including its arguments. The 
IC switch must be used to produce a cross-reference file even 
if the command string includes a CREF file specification. 

2.3.4.2 Handling Cross-Reference Table Files - When you request a cross­
reference listing with the I C switch, the system generates a temporary file, 
DK:CREF.TMP. 

If device DK: is write-locked or if it contains insufficient free space for the 
temporary file, you can allocate another device for the file. To allocate 
another device, specify a third output file in the command string; that is, 
include a dev:cref specification. (You must still include the IC switch to 
control the form and content of the listing. The dev:cref specification is 
ignored if the IC switch is not also present in the command string.) 

2-12 MACRO-ll Program Assembly 



The system then uses the dev:cref file instead of DK:CREF.TMP and 
deletes it automatically after producing the CREF listing. 

The following command string causes the system to use DB2:TEMP.TMP 
as the temporary CREF file: 

* .LP: .DB2: TEMP. TMP I C=SDURCE 

Another way to assign an alternate device for the CREF.TMP file is to 
enter the following command before typing RUN $MACRO: 

.ASSIGN dey: CF 

This method is preferred if you intend to do several assemblies, because it 
relieves you from having to include the dev: cref specification in each com­
mand string. If you enter the ASSIGN dev: CF command (there should be a 
space between dev: and CF) and later include a CREF file specification in a 
command string, the specification in the command string is in effect for 
that assembly only. 

The system lists requested cross-reference tables following the MACRO 
assembly listing. Each table begins on a new page. (Figure 2-2 combines 
the tables to save space.) 

Figure 2-2: Cross-Reference Table 

.MAIN. MACRO VOG.OO 26-JUL-81 21:29:21 PAGE S-1 
CROSS REFERENCE TABLE (CREF VOG.OO ) 

.GLOBA 1-6 

.TTYIN 1-9 
ANSWER 1-18* 1-20 
BUFFER 1-8 1-1G 1-21 
LF 1 - 1 1 - 11 
START 1-8 1-16 1-22 
SUBR1 1-6 1-15 
SUBR2 1-6 1-17 

.MAIN. MACRO VOG.OO 26-JUL-81 21:29:21 PAGE R-1 
CROSS REFERENCE TABLE (CREF VOG.OO ) 

PC 
RO 
R2 
R3 

1-15* 
1-10 
1-8* 
1-1G* 

1-17* 
1 - 11 
1-10* 

1-18 
1-13* 

.MAIN. MACRO VOG.OO 26-JUL-81 21:29:21 PAGE M-1 
CROSS REFERENCE TABLE (CREF VOG.OO ) 

t E}{ I T 
• TTY I N 
CALL 

1-2 
1-2 
1-3 

1-19 

1-15 1-17 

.MAIN. MACRO VOG.OO 26-JUL-81 21:29:21 PAGE C-1 
CROSS REFERENCE TABLE (CREF VOG.OO ) 

0-0 
• ABS. 0-0 
PROG 1-7 

.MAIN. MACRO VOG.OO 26-JUL-81 21:29:21 PAGE E-1 
CROSS REFERENCE TABLE (CREF VOG.OO ) 

A 
U 

1-6 
1-6 

1-9 
1-9 

1-12 
1-12 1-15 1-17 

MACRO-U Program Assembly 2-13 



The system prints symbols and also symbol values, control sections, and 
error codes, if applicable, beginning at the left margin of the page. Refer­
ences to each symbol are listed on the same line, left-to-right across the 
page. The system lists references in the form p-l; where p is the page in 
which the symbol, control section, or error code appears, and I is the line 
number on the page. 

A pound sign (#) next to a reference indicates a symbol definition. An 
asterisk (*) next to a reference indicates a destructive reference--that is, an 
operation that alters the contents of the addressed location or register. 

2.3.5 Assembly Pass Switch 

The IP:arg switch is meaningful only if you append it to a source input file 
specification. You must specify either of two arguments with it: 1 or 2. 

The specification IP:1 calls for assembly of the file during pass 1 only. 
Some files consist entirely of code that is completely assembled at the end 
of pass 1. Definition files (prefix files containing only symbol definitions) 
are a good example. At the end of pass 1, all definitions have been pro­
cessed; they are retained for pass 2 and do not need to be scanned again. 
(You should not put macro definitions for self-modifying macros in IP:1 
files.) Note that listing, cref and object output take place in pass 2, so 
specifying IP:1 on a file causes it to be omitted from listing and cref, and 
should not be used on files that generate code. By specifying IP:1 for these 
files, you can cause MACRO-ll to skip processing of these files through 
pass 2. In some cases, this procedure can save considerable assembly time. 

The specification IP:2 calls for assembly of the file during pass 2 only. 
(Note: Situations where the IP:2 switch can be meaningfully employed are 
unusual.) 

2.4 MACRO-11 Error Codes and Messages 

MACRO can detect errors on two levels: programming and input-output. 
Section 2.4.1 describes the single character codes that identify MACRO 
programming level errors. A brief explanation of input-output errors 
appears in Section 2.4.2. For descriptions of these error messages, refer to 
Appendix B. 

2.4.1 Programming Level Errors 

Programming level errors are mistakes in source code syntax or faulty 
program logic. MACRO indicates an error on this level with a single error 
code. These codes automatically appear on the assembly listings. Consider 
the following: 

1. MACRO prints programming level error codes on the left margin of the 
assembly listing, preceding the source line sequence numbers, when 
the/L:TTM switch or the .LIST TTM directive has not been used. 

2-14 MACRO-ll Program Assembly 



2. MACRO prints error codes on the assembly listing following a field of 
six asterisk characters, when you request a listing in terminal, 
80--column format (with IL:TTM or .LIST TTM). The source statement 
containing the error follows on the next line. For example: 

****** A 
26 00236 000002' .WORO REL1+REL2 

3. MACRO also prints programming error codes on the cross-reference 
listing if you specify IC:E in the MACRO command string. 

Table 2-6 shows the error codes that might appear on an assembly listing. 
For more information on error code interpretation and debugging, see the 
PDP-ll MACRO-ll Language Reference Manual. 

Table 2-6: MACRO-ll Error Codes 

Error Code Meaning 

A Addressing or relocation error. This message can be generated by any of 
the following: 

1. A branch instruction target that is too far above or below the current 
statement. Branch targets must be within -128 to -127 '(decimal) 
words of the instruction. (A special case is the branch target for the 
SOB instruction which must be within 64 decimal words, backward 
only.) 

2. A statement that makes an illegal change to the current location 
counter. For example, a statement that forces the current location 
counter to cross a .PSECT boundary generates this message. 

3. A statement that contains an invalid address expression. For exam­
ple, an absolute address expression that has a global symbol, relocat­
able value, or complex relocatable value generates this message. The 
directives .BLKB, .BLKW, and .REPT must have an absolute value 
or an expression that reduces to an absolute value. 

4. Separate expressions in the statement that are not separated by 
commas. 

5. A global definition error. If .ENABL GBL is set, MACRO-ll scans 
the symbol table at the end of the first pass and marks any undefined 
symbols as global references. If one of these symbols is subsequently 
defined in the second pass, a general addressing error occurs. 

6. A global assignment statement that contains a forward reference to 
another symbol. 

7. An expression that defines the value of the current location counter 
and contains a forward reference. 

8. An illegal argument for an assembler directive. 

9. An unmatched delimiter or illegal argument construction. 

B Instruction or word data are being assembled at an odd address. The 
assembler increments the location counter by 1 and continues. 

(continued on next page) 

MACRO-ll Program Assembly 2-15 



2-16 

Table 2-6: MACRO-ll Error Codes (Cont.) 

Error Code Meaning 

D Reference was made to a multiply defined nonlocal label. 

E The .END assembler directive at the end of the source input is missing. 
The assembler supplies a .END statement and completes the current 
assembly pass. 

I MACRO-ll has detected one or more illegal characters. This often occurs 
when a line feed does not follow a carriage return, which can easily 
happen while using a source editor. A question mark (?) replaces each 
illegal character on the assembly listing, and MACRO-ll continues after 
ignoring the character. 

L An input line is longer than 132 characters. In particular, this error 
occurs when the expansion of a macro causes excessive substitution of 
real arguments for dummy arguments. 

M A nonlocal label is the same as an earlier label (multiple definition of a 
label). For example, two labels whose first six characters are identical 
can generate this error. The error occurs on both definitions of the label. 

N A number is not in the current program radix. MACRO-ll processes this 
number as a decimal value. 

o Op-code error. Directive is out of context. Exceeding the· permitted 
nesting level for conditional assemblies causes this error. Attempting to 
expand a macro that remains unidentified after a .MCALL search can 
also generate this message. 

P 1. Phase error. The definition or value of a label differs from one assem-
bler pass to the next, or a local symbol occurs more than once in a 
local symbol block. 

2. Program-defined error. Generated if a .ERROR directive is assembled. 

Q Questionable syntax. Missing arguments, too many arguments, or an 
incomplete instruction scan generates this error message. 

R Register-type error. An invalid use of or reference to a register has been 
made, or an attempt has been made to redefine a standard register sym­
bol without first issuing the .DSABL REG directive. For example, this 
error can be caused by illegal register numbers (such as FOO = %10) or by 
the use of a nonregister in a place where a register is required, such as 
MOV 10(FOO),BAR. 

T Truncation error. The expression is too large for the context. An expres­
sion generated more than 8 significant bits during the use of the .BYTE 
directive or trap (EMT, TRAP, and so forth) instruction or more than 6 
bits on a SOB or MARK instruction or improper addressing mode - not 
register or registered deferred - in a floating point instruction. 

U Undefined symbol. An undefined symbol was encountered during the 
evaluation of an expression; the assembler assigns the undefined symbol 
a constant zero value. 

Z Incompatible instruction. This message is a warning that the instruction 
does not behave the same for all PDP-ll hardware configurations. 

MACRO-11 Program Assembly 



2.4.2 Input-Output Level Error Messages 

Input-Output (1/0) level error messages appear when you specify incorrect 
command strings to MACRO or when problems arise with I I 0 devices. 
Error messages of this type have the following format: 

?MACRO-n-message 

Refer to Appendix B for the description of input-output level error messages 
that MACRO produces. 

MACRO-ll Program Assembly 2-17 





Chapter 3 
Linker (LINK) 

The linker (LINK) converts object modules to a format suitable for loading 
and execution. This chapter describes how to perform the link operation. 
The organization of this chapter is: 

Section 3.1 Overview of the Linking Process explains some of the terms 
used exclusively in this chapter, the functions of the linker, 
how the linker structures your program to prepare it for exe­
cution, and the communication links between modules 
within your program. 

Section 3.2 Running and Using the Linker describes how to run the 
linker from the keyboard monitors available to you on your 
RSTS/E system and describes the syntax for input and out­
put file specifications. This section also summarizes the 
switches you use to adjust the output of the link operation. 

Section 3.3 Input and Output lists and describes the files that are valid 
for input to and output from the linker. This section also 
explains how to use library files, and how the linker pro­
cesses library files, which you create with the librarian util­
ity (see Chapter 4). 

Section 3.4 Creating an Overlay Structure describes how to design and 
implement overlay structures for your programs. This sec­
tion provides descriptions and illustrations of how overlaid 
programs work and how they reside in memory. 

Section 3.5 Switch Descriptions lists and describes the switches you can 
use with the linker. 

Section 3.6 Linker Prompts lists and explains the prompts the linker 
prints at the terminal after you enter a command line. 

Linker (LINK) 3-1 



3.1 Overview of the linker Process 

This chapter uses the following terms: 

program section 

object module 

A named, contiguous unit of code (instructions or data) 
that is considered an entity and that can be relocated 
separately without destroying the logic of the program. 
Also known as p-sect. 

The primary output of an assembler or compiler, which 
can be linked with other modules and loaded into mem­
ory as an executable program. The object module is 
composed of the relocatable machine language code, 
relocation information, and the corresponding global 
symbol table defining the use of the symbols within the 
program. Also known as a module. 

load module A program (in a format) ready for loading and 
executing. 

library file A file, generated by the librarian, containing one or 
more relocatable object modules that can be incorpo­
rated into other programs. 

library module A module from a library file. 

root segment The segment of an overlay structure that, when loaded, 
remains resident in memory during the execution of a 
program. Also known as the root. 

overlay segment A section of code treated as a unit that can overlay code 
already in memory and be overlaid by other overlay 
segments when called from the root segment or another 
overlay segment. Also known as an overlay. 

global symbol A global value or global label. 

low memory Physical memory from 0 to 28K words. 

3.1.1 What the Linker Does 

When the linker processes the loaded object modules, it: 

• Relocates your program module and assigns absolute addresses 

• Links the modules by correlating global symbols that are defined in one 
module and referenced in another 

• Creates the initial control block for the linked program that the RUN 
command uses 

• Creates an overlay structure, if specified, and includes the necessary run­
time overlay handler and tables 

3-2 Linker (LINK) 



• Searches the library files you specify to locate unresolved global symbols 

• Produces a load map, if specified, that shows the layout of the load 
module 

• Produces a symbol table definition file, if specified 

The linker needs to make two passes over the input modules. During the 
first pass it constructs the symbol table, which includes all program section 
names and global symbols in the input modules. The linker then scans the 
library files to resolve undefined global symbols. It includes from the librar­
ies only those modules that are required to resolve undefined global sym­
bols. During the second pass, the linker reads in object modules, performs 
most of the functions listed above, and produces the load module. 

3.1.2 How the Linker Structures the Load Module 

When the linker processes the assembled or compiled object modules, it 
creates a load module, in which it has assigned all absolute addresses, has 
created an absolute section, and has allocated memory for the program 
sections. 

3.1.2.1 Absolute Section - The absolute section is often called the ASECT 
because the assembler directive .ASECT allows information to be stored 
there. The absolute section appears in the load map with the name. ABS. 
and is always the first section in the listing. The absolute section ends at 
the assigned "base" address (by default octal 1000) and contains: 

• A system communication area 

• The user stack 

The system communication area resides in locations 0-377 and contains 
data the linker uses to pass program control parameters and a memory 
usage bitmap. Section 3.3.3 provides a detailed description of each location 
in the system communication area. 

The stack is an area that a program can use for temporary storage and 
subroutine linkage. General register 6, the stack pointer (SP), references 
the stack. 

3.1.2.2 Program Sections - The program sections (p-sects) follow the abso­
lute section. The set of attributes associated with each p-sect controls the 
allocation and placement of the section within the load module. The p-sect, 
as the basic unit of memory for a program, has: 

• A name by which it can be referenced 

• A set of attributes that define its contents, mode of access, allocation, and 
placement in memory 

• A length that determines how much storage is reserved for the p-sect 

Linker (LINK) 3-3 



You create p-sects by using a COMMON statement in FORTRAN or the 
.PSECT (or .CSECT) directive in MACRO. You can use the .PSECT direc­
tive to attach attributes to the section. (The .CSECT directive automati­
cally supplies a fixed set of attributes.) Note that the attributes that follow 
the p-sect name in the load map are not part of the name; only the name 
itself distinguishes one p-sect from another. You should make sure, then, 
that p-sects of the same name that you want to link together also have the 
same attribute list. If the linker encounters p-sects with the same name but 
with different attributes, it prints a warning message and uses the 
attributes from the first time it encountered the p-sect. 

Program Section Attributes 

The linker collects from the input modules any references to a p-sect and 
combines them in a single area of the load module. The attributes, which 
are listed in Table 3-1, control the way the linker collects and places this 
unit of storage. 

Table 3-1: P-sect Attributes 

Attribute 

access-code* 

type-code 

scope-code 

reloc-code 

alloc-code 

Value Explanation 

RW Read I Write - data can be read from, and written into, the 
p-sect. 

RO Read Only - data can be read from, but cannot be written into, 
the p-sect. 

D Data - the p-sect contains data, concatenated by byte. 

I Instruction - the p-sect contains either instructions, or data 
and instructions, concatenated by word. (That is, each contribu­
tion to an I-type p-sect is rounded up to an even length.) 

GBL Global - the p-sect name is recognized across segment bound­
aries. If all contributions to this p-sect are in a single segment, 
the p-sect is allocated in that segment. Otherwise, it is allo­
cated in the root. In that case, all contributions are combined 
into the root regardless of which segment they occurred in. 

LCL Local - the p-sect name is recognized only within each individ­
ual segment. The linker allocates storage for the p-sect in each 
segment from contributions within that segment only. 

REL Relocatable - the base address of the p-sect is relocated rela­
tive to the virtual base address of the program. 

ABS Absolute - the base address of the p-sect is not relocated. It is 
always O. 

CON Concatenate - all allocations to a given p-sect name are 
concatenated. The total allocation is the sum of the individual 
allocations. 

OVR Overlay - all allocations to a given p-sect name overlay each 
other. The total allocation is the length of the longest individ­
ual allocation. 

* Ignored by the linker 

3-4 Linker (LINK) 



The scope-code is meaningful only when you define an overlay structure for 
the program. In an overlaid program, a global section is known throughout 
the entire program. Object modules contribute to only one global section of 
the same name. If two or more segments contribute to a global section, then 
the linker allocates that global section to the root segment of the program. 
In contrast to global sections, local sections are known only within a partic­
ular program segment. Because of this, several local sections of the same 
name can appear in different segments. Thus, several object modules con­
tributing to a local section do so only within each segment. An example of a 
global section is named COMMON in FORTRAN. An example of a local 
section is the default blank section for each macro routine. 

The alloc-code determines the starting address and length of memory allo­
cated by modules that reference a common p-sect. If the alloc-code indicates 
that such a p-sect is to be overwritten, the linker stores the allocations from 
each module starting at the same location in memory. It determines the 
total size from the length of the longest contribution to the p-sect. Each 
module's allocation of memory to a location overwrites that of a previous 
module. If the alloc-code indicates that a p-sect is to be concatenated, the 
linker places the allocations from the modules one after the other in the 
load module; it determines the total allocation from the sum of the lengths 
of the contributions. 

Any data (D) p-sect that contains references to word labels must start on a 
word boundary. This is done with the .EVEN assembler directive at the end 
of each module's concatenated p-sect. If this is not done, the program may 
fail to link, printing the message: 

?LINK-F-Word relocation error 

It may also fail at execution time with ?Odd address trap or some other 
similar message. 

The allocation of memory for a p-sect always begins on a word boundary. If 
the p-sect has the D (data) and CON (concatenate) attributes, all storage 
contributed by subsequent modules is appended to the last byte of the 
previous allocation. This occurs whether or not that byte is on a word 
boundary. For a p-sect with the I (instruction) and CON attributes, how­
ever, all storage contributed by subsequent modules begins at the nearest 
following word boundary. 

In any p-sect with the ABS attribute, except for the .ASECT, data is 
ignored. Thus, in the following example, the first case is treated like the 
second case: 

Case 1 

.PSECT 
A" " 

Case 2 

.PSECT 
A" " 

FOOtABS 
.WORD 

FOOtABS 
.BLKW 

100 

1 

Linker (LINK) 3-5 



That is, the linker pretends the length is zero for allocation purposes. Such 
p-sects are used as a way of defining absolute global symbol values. 
(ABS p-sects primarily facilitate symbolic memory layouts.) For each ABS 
p-sect, address assignment starts at zero. But if CON is used, the individual 
contributions are assigned one after the other. 

The .CSECT directive of MACRO is converted internally by MACRO to an 
equivalent .PSECT with fixed attributes. An unnamed CSECT (blank sec­
tion) is the same as a blank PSECT with the attributes RW, I, LCL, REL, 
and CON. A named CSECT is equivalent to a named PSECT with the 
attributes RW, I, GBL, REL, and OVR. Table 3-2 shows these sections and 
their attributes. 

Table 3-2: Section Attributes 

access- type- scope- reloc- alloc-
Section code code code code code 

CSECT RW I LCL REL CON 

CSECT name RW I GBL REL OVR 

ASECT (. ABS.) RW I GBL ABS OVR 

COMMON /name/ RW D GBL REL OVR 

The names assigned to p-sects are not global symbols; you cannot reference 
them as such. For example: 

MOV tlPNAME,RO 

This statement, where PNAME is the name of a section, is invalid and 
generates the undefined global error message if no global symbol of 
PNAME exists. A name can be the same for both a p-sect name and a global 
symbol. The linker treats them separately. 

Program Section Order 

The linker determines the memory allocation of p-sects by the order of 
occurrence of the p-sects in the input modules. Table 3-3 shows the order in 
which p-sects appear for both overlaid and nonoverlaid files. 

Table 3-3: P-sect Order 

Nonoverlaid Overlaid 

Absolute (. ABS.) Absolute (. ABS.) 

Blank Overlay handler ($OHAND) 

Named (NAME) Overlay table ($OTABL) 
Blank 
Named (NAME) 

3-6 Linker (LINK) 



If there is more than one named section, the named sections appear in the 
order that they occur in the input files. 

If the size of the blank p-sect is 0, it does not appear in the load map. 

3.1.3 Global Symbols: Communication Links Between Modules 

Global symbols provide the link, or communication, between object mod­
ules. You create global symbols with a double colon (::), with a double equal 
sign (= =), with a double equal sign and a single colon (= = :), or by speci­
fying the name of a defined symbol in a .GLOBL directive. If you define the 
global symbol in an object module (as a label using :: or by direct assign­
ment using = =), other object modules can reference it. If the global symbol 
is not defined in the object module, it is an external symbol and is assumed 
to be defined in some other object module. If you use a global symbol as a 
label in a routine, it is often called an entry point - that is, it is an entry 
point to that subroutine. 

As the linker reads the object modules, it keeps track of all global symbol 
definitions and references. It then modifies the instructions and data that 
reference the global symbols. The linker always prints undefined globals on 
the console terminal after pass 1. If you request a load map on the terminal, 
undefined globals also appear at the end of the load map. 

Table 3-4 shows how the linker resolves global references when it creates 
the load module. 

Table 3-4: Global Reference Resolution 

Module Global Global 
Name Deimition Reference 

INl Bl A 
B2 Ll 

Cl 
XXX 

IN2 A B2 
Bl 

IN3 Bl 

In processing the first module, INl, the linker finds definitions for Bl and 
B2 and references to A, Ll, Cl, and XXX. Because no definition currently 
exists for these references, the linker defers the resolution of these global 
symbols. In processing the next module, IN2, the linker finds a definition 
for A that resolves the previous reference and a reference to B2 that can be 
immediately resolved. 

When all of the object modules have been processed, the linker has three 
unresolved global references remaining: Ll, Cl, and XXX. A search of the 
default system library resolves XXX. The global symbols Ll and Cl remain 
unresolved and are, therefore, listed as undefined global symbols. 

Linker (LINK) 3-7 



The relocatable global symbol, Bl, is defined twice and is listed on the 
terminal as a global symbol with multiple definitions. The linker uses the 
first definition of such a symbol. An absolute global symbol can be defined 
more than once without being listed as having multiple definitions, as long 
as each occurrence of the symbol has the same value. 

3.2 Running and Using the Linker 

This section describes how to start the linker, how to create a valid com­
mand line, and how to use the switches to help you generate the output you 
need. 

3.2.1 Running LINK 

There are a number of ways to run the linker program. The method you use 
depends on the keyboard monitor that interprets your commands. The only 
exception to this rule is the RUN command; it starts the linker from any of 
the keyboard monitors that come with your RSTS IE system. To run the 
linker from the system device with the RUN command, respond to any of 
the RSTS/E keyboard monitor prompts by typing: 

RUN $LINK m 
* 

If your system manager has installed the LINK program as a Concise Com­
mand Language (CCL) command (such as LIN-K) and your keyboard moni­
tor is not DCL, you can run LINK by typing: 

LINK m 
* 

In either case, LINK prints an asterisk prompt when the linker is ready to 
accept a command line. (If you press the RETURN key only, the linker 
prints its current version number.) When using the LINK CCL command, 
you have the added option of placing an entire command specification on 
one line, as in the format: 

LINK <output-filespec> = <input-filespec> 

After you press the RETURN key, LINK processes the command line and 
returns you to your keyboard monitor prompt. You must start the linker 
again if you have other files to link. Section 3.2.2 describes the input and 
output file specifications you use with the linker program. 

As stated before, you can start the LINK program with the RUN command 
from the DCL keyboard monitor. But there are two commands you can use 
to run the linker when your keyboard monitor is DCL: 

• With the CCL LINK 

• Using the LINKIRTll command 

3-8 Linker (LINK) 



The first command actually consists of the "eeL" prefix and the name of a 
valid eeL command, in this case LINK. This syntax allows you to use eeL 
commands under DeL. The second command gives you the option to run 
the linker in DeL if DeL is your keyboard monitor and you plan to do most 
of your program development from this environment. 

To use the eeL LINK command in DeL, you must type, while at the DeL 
dollar prompt ($), the three-letter prefix "eeL", a space, and then the eeL 
command that your system manager has assigned to the LINK program. If 
the assigned eeL is LIN-K, for example, you would run the linker by 
typing a command line in the form: 

$ CCl LINK m 
* 
The linker prints the asterisk prompt indicating that the program is ready 
to accept command input. As with using a eeL command under the control 
of a keyboard monitor other than DeL, you can place a complete command 
file specification on one line: 

$ CCL LINK <output-filespec> = <input-filespec> [ I switch], ... 

The linker returns you to the DeL dollar prompt after executing the com­
mand. Section 3.2.2 describes the formats to use for the input and output file 
specifications. 

The DeL LINK/RTll command consists of the command name "LINK" 
and the switch "/RTll". You must include the IRTll switch when you 
need to use the RTll-based linker, unless your system manager has made 
it the default. The syntax for the command line is: 

$ LINK IRTll <filespeci[, ... ,filespecn[ I switch(es)]]> 

As an alternative, you can type LINK/RTll in response to the DeL dollar 
prompt, and then press the RETURN key. DeL prints a prompt to which 
you enter file information in the following form: 

$ LINK/RTll 
Files: <filespeci[, ... ,filespecn[ I switch(es)]]> 

Whether you enter information on one line or in response to the FILES 
prompt, the form in which you enter information is the same. (Essentially, 
DeL treats the RETURN reponse like a space, after which it expects a 
command line.) DeL syntax accepts up to six input files (i thru n). If you do 
not include a file type, DeL assumes the file type is .OBJ. To suit the type 
of link you need to perform, use the switches described in Table 3-5. 

The following example illustrates how to link FILEl and FILE2 using the 
IEX=file and IMAP switches: 

$ LI NK I RT 11 
Files: FIlE1,FIlEZ/E){=FIlE/MAP 

$ 

Linker (LINK) 3-9 



Table 3-5: LINK/RTll Command Switches 

Switch 

I EXECUTABLE 

Meaning 

Use the name of the first input file for the name of the 
executable file. If you do not include this switch, DCL assumes 
IEXECUTABLE as the default. The short form of this switch 
is lEX. 

IEXECUTABLE = file Use file for the name of the executable file. DCL selects .SA V if 
you do not include a file type. The short form of this switch 
is lEX = file. 

I NOEXECUTABLE 

I MAP 

IMAP = file 

I NOMAP 

Do not generate an executable file. You must specify IMAP 
when using the INOEXECUTABLE switch. The short form of 
this switch is INOEX. 

Use the name of the executable file (implicit or explicit file dec­
laration) as the name of the map file. If you do not include a file 
type, DCL uses .MAP. The short form of this switch is IMA. 

Use file as the name of the map. DCL selects .MAP as the file 
type when you do not include a file type in the file specification. 
The short form of this switch is IMA = file. 

Do not generate a map file. DCL does not create a map file 
unless you explicitly include the lMAP switch. This means you 
do not need to use INOMAP if you do not want a map file; 
INOMAP is the default. You cannot use INOMAP with 
I NOEXECUTABLE. DCL accepts INOMA as the short form 
of INOMAP. 

The linker creates an executable file FILE. SA V and the map file 
FILE.MAP and returns to the DCL dollar prompt. You can create the same 
results with a LINK/RTll command in the form: 

$ LINK/RTll FILE1,FILE2/E){=FILE/MAP 

$ 

The linker again creates FILE.SA V and FILE.MAP and returns to DCL 
command level. Be sure, when you run the linker with a single command 
line, that you include a space between the IRTll switch and the beginning 
of the file specification(s). The switches in Table 3-5 can be located any­
where on the command line but are generally placed at the end. (Refer to 
the RSTSIE DeL User's Guide for more information about the LINK 
command.) 

Type CTRL I C to stop the linker at any time, or use CTRL I Z to stop the 
linker when it is waiting for input at its asterisk prompt (*). In either case, 
control returns to your keyboard monitor. 

3-10 Linker (LINK) 



3.2.2 LINK Command Line Specification 

If you are under the control of a keyboard monitor other than DCL, the 
format of the first command string you enter in response to the linker's 
prompt is: 

[bin-filespec].[map-filespec].[sym-filespec] = obj-filespec[ / switch ... ][ •... obj-filespec[ / switch ... ]] 

The definitions for these file specifications are: 

bin-filespec Represents the file specification assigned to the linker's 
output load module file 

map-filespec Represents the file specification of the load map output 
file 

sym-filespec Represents the file specification of the symbol definition 
file 

obj-filespec Represents the file specifications for an object module, a 
library file, or a symbol table file created in a previous 
link 

/ switch Represents one of the switches listed in Table 3-7 

Chapter 1 describes the correct format for a RSTS IE file specification. 

In each file specification above, the device should be a random-access 
device, except that the output device for the load map file can be any 
RSTS/E device. If you do not specify a device, the linker uses a default as 
shown in Table 3-6. 

If you do not specify an output file, the linker assumes that you do not want 
the associated output. For example, if you do not specify the load module 
and load map (by using a comma in place of each file specification) or if you 
leave out the output side up to and including the equal sign, the linker 
prints only error messages, if any occur. Ordinarily, the linker generates at 
least one load module. 

Table 3-6 shows the default values for each specification. 

Table 3-6: Linker Defaults 

Device File Name File Type 

Load Module DK: None SAY 

Map Output DK: or same None MAP 
as load 
module 

Symbol DK: or same None STB 
Definition as previous 
Output output device 

Object Module DK: or same None OBJ 
as previous 
object module 

Linker (LINK) 3-11 



3-12 

If you make a syntax error in a command string, the linker prints an error 
message and returns you to the asterisk prompt. You can then retype the 
new command string. Similarly, if you specify a nonexistent file, an error 
occurs; the linker prints an asterisk after which you must type the com­
mand string again. 

3.2.3 LINK Switches Briefly Noted 

The switches associated with the linker are described in Table 3-7. To 
properly use the switches, you must precede the letter representing each 
switch by the slash character (I). Switches must appear on the line indi­
cated if you continue the input on more than one line, but you can position 
them anywhere on the line. The column titled Command Line lists on 
which line in the command string the switch can appear. Section 3.5 pro­
vides a more detailed explanation of each switch. 

Table 3-7: Linker Switches 

Switch Command 
Name Line 

IA First 

lB:n First 

IC Any but 
last 

IE:n First 

IF First 

IG First 

IH:n First 

II First 

lK:n First 

Linker (LINK) 

Section Explanation 

3.5.1 Lists global symbols in program sections in alphabeti­
cal order in the load map. 

3.5.2 Changes the bottom address of a program to n (invalid 
with /H). 

3.5.3 Continues input specification on another command 
line. (You can also use IC with 10; however, do not 
use IC with the II switch.) 

3.5.4 Extends a particular program section in the root to a 
specific value. 

3.5.5 Instructs the linker to use the default FORTRAN 
library $FORLIB.OBJ to resolve any undefined global 
references. Do not specify this switch in the command 
line when $FORLIB has been incorporated into 
$SYSLIB. 

3.5.6 Adjusts the size of the linker's library directory buffer 
to accommodate the largest multiple definition 
library directory. 

3.5.7 Specifies the top (highest) address to be used by the 
relocatable code in the load module. Invalid with IB, 
IY, or IQ. 

3.5.8 Allows you to specify additional external global sym­
bols to be satisfied (typically from the libraries). In 
general, this is used to explicitly request the inclusion 
of additional library modules. 

3.5.9 Inserts the value you specify (the valid range for n is 
from 1 to 28) into word 56 of block 0 of the image file. 
This switch informs the RTll run-time system that 
the program requires nK words of memory. 

(continued on next page) 



Table 3-7: Linker Switches (Cont.) 

Switch Command 
Name Line Section Explanation 

IM[:n] First 3.5.10 Causes the linker to prompt you for a global symbol 
that represents the initial stack address (if n is omit-
ted) or that sets the initial stack address to the value 
n (if n is specified). 

IO:n Any but 3.5.11 Indicates that the program is an overlay structure; n 
first specifies the overlay region to which the module is 

assigned. 

IP:n First 3.5.12 Changes the default amount of space the linker uses 
for the library routines list. 

IQ First 3.5.13 Lets you specify the base addresses of up to eight root 
program sections. Invalid with IH. 

IS First 3.5.14 Makes the maximum amount of space in memory 
available for the linker's symbol table. (Use this 
switch only when a particular link stream causes a 
symbol table overflow.) 

IT[:n] First 3.5.15 Causes the linker to prompt you for a global symbol 
that represents the transfer address (if n is omitted) 
or that sets the transfer address to the value n (if n is 
specified) . 

IU:n First 3.5.16 Rounds up the root program section you specify so 
that the size of the root segment is an integer multi-
ple of the value you supply (n must be a power of 2). 

IW First 3.5.17 Directs the linker to produce a wide load map listing. 

IX First 3.5.18 Does not output the bitmap if the area normally used 
by the bitmap (location 360-377) is used by code. 

IY:n First 3.5.19 Starts a specific program section in the root on a par-
ticular address boundary. Invalid with IH. 

IZ:n First 3.5.20 Sets unused locations in the load module to the value 
n (ifn is omitted, the linker uses zero as the default). 

/I First and 3.5.3 Allows you to specify command string input on addi-
last tionallines. Do not use this switch with IC. 

3.3 Input and Output 

Linker input and output is in the form of modules; the linker uses one or 
more input modules to produce a single output (load) module. The linker 
also accepts library modules and symbol table definition files as input and 
can produce a load map and/or symbol table definition file. The sections 
that follow describe all valid forms of linker input and output. 

Linker (LINK) 3-13 



3.3.1 Input Object Modules 

Object files, consisting of one or more object modules, are the input to the 
linker. (Entering files that are not object modules may result in a fatal 
error.) Object modules are created by language translators such as the 
FORTRAN compiler and the MACRO-ll assembler. The module name 
item declares the name of the object module (see Section 3.3.4). 

The first six Radix-50 characters of the .TITLE assembler directive are 
used as the name of the object module. These six characters must be 
Radix-50 characters (the linker ignores any characters beyond the sixth 
character). The linker prints the first module name it encounters in the 
input file stream (normally the main routine of the program) on the second 
line of the map following TITLE:. The linker also uses the first identity 
label (issued by the .IDENT directive) for the load map. It ignores addi­
tional module names. 

The linker reads each object module twice. During the first pass, it reads 
each object module to construct a global symbol table and to assign absolute 
values to the program section names and global symbols. The linker uses 
the library files to resolve undefined globals. It places their associated 
object modules in the root. On the second pass, the linker reads the object 
modules, links and relocates the modules, and outputs the load module. 

Symbol table definition files are special object files that can serve as input 
to the linker anywhere other object files are allowed. 

3.3.2 Input Library Modules 

The linker can automatically search libraries. Libraries consist of library 
files, which are specially formatted files produced by the librarian program 
(described in Chapter 4). The files contain one or more object modules that 
provide routines and functions to aid you in meeting specific programming 
needs. (For example, FORTRAN has a set of modules containing all neces­
sary computational functions - SQRT, SIN, COS, and so on.) You can use 
the librarian to create and update libraries. Then you can easily access 
routines that you use repeatedly or routines that different programs use. 
Selected modules from the appropriate library file are linked as needed 
with your program to produce one load module. Libraries are described in 
more detail in Chapter 4. 

You specify libraries in a command string the same way you specify normal 
modules; you can include them anywhere in the command string. If you are 
creating an overlay structure, specify libraries before you specify the over­
lay structure. If a global symbol is undefined at the end of pass 1 and if a 
module in a library contains that global definition, then the linker pulls 
that module from the library and links it into the load image. Only the 
modules needed to resolve references are pulled from the library; unrefer­
enced modules are not linked. 

3-14 Linker (LINK) 



Modules in one library can call modules from another library; however, the 
libraries must appear in the command string in the order in which they are 
called. For example, assume module X in library ALIB calls Y from the 
BLIB library. To correctly resolve all globals, the order of ALIB and BLIB 
should appear in the command line as: 

Module B is the root. It calls X from ALIB and brings X into the root. 
Module X in turn calls Y, which is brought from BLIB into the root. 

Library Module Processing 

The linker selectively relocates and links object modules from specific user 
libraries that were built by the librarian. Figure 3-1 illustrates this gen­
eral process. During pass 1, the linker processes the input files in the order 
in which they appear in the input command line. If the linker encounters a 
library file during pass 1, it takes note of the library in an internal save 
status block, and then proceeds to the next file. The linker processes only 
nonlibrary files during the initial phase of pass 1. In the final phase of pass 
1, the linker processes only library files. This is when it resolves the unde­
fined globals that were referenced by the nonlibrary files. 

The linker processes library files in the order in which they appear in the 
input command line. The default system library (DK:$SYSLIB.OBJ) is 
always processed last (if any undefined globals remain). 

The search method the linker uses allows modules to appear in any order in 
the library. You can specify any number of libraries in a link and they can 
be positioned anywhere, with the exception of forward references between 
libraries, and they must come before the overlay structure. The default 
system library, DK:$SYSLIB.OBJ, is the last library file the linker 
searches to resolve any remaining undefined globals. 

Some languages, such as FORTRAN, have an Object Time System (OTS) 
that the linker takes from a library and includes in the final module. The 
most efficient way to accomplish this is to include these OTS routines (such 
as NHD, OTSCOM, and V2NS for FORTRAN) in DK:$SYSLIB.OBJ. 

Libraries are input to the linker the same way as other input files. For 
example: 

*TASK01.LP:=MAIN.MEASUR 

This causes program MAIN.OBJ to be read from DK: as the first input file. 
Any undefined symbols generated by program MAIN.OBJ should be satis­
fied by the library file MEASUR.OBJ specified in the second input file. The 
linker tries to satisfy any remaining undefined globals from the default 
library DK:$SYSLIB.OBJ. The load module, TASKOl.SAV, is stored on 
DK: and a load map is printed on the line printer. 

Linker (LINK) 3-15 



Figure 3-1: Library Searches 

Exit Pass 

MK-00432-00 

3-16 Linker (LINK) 

Open File 

No 

Read as Much of Library 
Directory as Possible 

Search for Undefined 
Globals from Library 

Process Library 
Modules 

Yes 

Yes Reposition to 
Beginning of 
Library File 

Close Library 



Multiple Definition Libraries 

In addition to the libraries explained so far, the linker processes multiple 
definition libraries. Its primary purpose is to provide special functions for 
RSTS IE. These libraries differ from other libraries in that they can contain 
more than one definition for a given global. You specify multiple definition 
libraries in the command line the same way you specify normal libraries. 
Modules that the linker obtains from multiple definition libraries always 
appear in the root. 

It is useful to know the differences between processing normal and multiple 
definition libraries. When you include modules from a multiple definition 
library, the linker has to store that library's directory in an internal buffer. 
A library's directory is called an entry point table (EPT). If a library EPT is 
too large to fit into the internal buffer, the linker prints a message asking 
you to use the IG switch. The IG switch changes the buffer's size to accom­
modate the largest EPT of all the multiple definition libraries you are 
using. Use the IG switch only when the linker indicates it is required. 

When a global symbol in a module of a multiple definition library matches 
an undefined global, LINK removes from the undefined global list all other 
globals defined in the same module. LINK does this before it processes the 
library module. Thus, two modules with identical globals do not appear in 
the linked module. 

NOTE 

The order of modules in multiple definition libraries is very 
important and affects which modules LINK uses. The in­
creased EPT size (due to duplicate entries, in addition to 
module name entries) also slows LINK down. 

3.3.3 Output Load Module 

The primary output of the linker is a load module that you can run under 
RSTS/E. The linker creates as a load module a memory image file (file type 
of .SAV) for use under the RTlt Emulator (RTll.RTS). 

The load module for a memory image file is arranged as follows: 

Root Segment Overlay 
Segments 
(optional) 

The first 256-word block of the root segment (main program) contains the 
memory usage bitmap and the locations the linker uses to pass program 
control parameters. The memory usage bitmap outlines the blocks of mem­
ory that the load module uses; it is located in locations 360 through 377. 

Table 3-8 lists the parameters that appear in the absolute block, the 
addresses the parameters occupy, and the conditions under which they are 
set. 

Linker (LINK) 3-17 



Table 3-8: Absolute Block Parameters Information 

Address Information When Set 

14,16 BPT trap vector 

20,22 lOT trap vector 

34,36 TRAP vector 

40 Start address of program always 

42 Initial setting of SP (stack pointer) always 

44 Job Status Word (overlay bit set by always 
LINK) 

50 Highest memory address used by the always 
program (high limit) 

56 Program size in K with IK 

64 Start address of overlay table with 10 

360-377 Memory usage bitmap always, except 
with IX 

The linker stores default values in locations 40, 42, and 50, unless you use 
switches to specify otherwise. The IT switch affects location 40, for exam­
ple, and 1M affects location 42. You can also use the .ASECT directive to 
change the defaults. The overlay bit is located in the job status word. LINK 
automatically sets this bit if the program is overlaid. Otherwise, the linker 
initially sets location 44 to O. 

You can assign initial values to memory locations 0-476 (which include the 
interrupt vectors and system communication area) by using an .ASECT 
assembler directive. The values appear in block 0 of the load module, but 
there are restrictions on the use of .ASECT directives in this region. You 
should not modify locations 360-377 because the memory usage map is 
passed in those locations, unless you use the IX switch. 

You can use an .ASECT directive to set any location that is not restricted, 
but be careful if you change the system communication area. The program 
itself must initialize restricted areas, such as locations 360-377 at run 
time. 

3.3.4 Output Load Map 

The linker can produce a load map following the completion of the initial 
pass. This map, shown in Figure 3-2, illustrates the layout of memory for 
the load module. 

The load map lists each program section that is included in the linking 
process. The line for a section includes the name and low address of the 
section and its size in bytes. The rest of the line lists the program section 
attributes, as shown in Table 3-2. The remaining columns contain the 
global symbols found in the section and their values. 

3-18 Linker (LINK) 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

The map begins with the linker version number, followed by the date and 
time the program was linked. The second line lists the file name of the 
program, its title (which is determined by the first module name record in 
the input file), and the first identification record found. The absolute sec­
tion is always shown first, followed by any nonrelocatable symbols. The 
modules located in the root segment of the load module are listed next, 
followed by those modules that were assigned to overlays in order by their 
region number (see Section 3.4). Any undefined global symbols are then 
listed. The map ends with the transfer address (start address) and high 
limit of relocatable code in both octal bytes and decimal words. 

Figure 3-2: Sample Load Map 

RT-11 LINK V06.01 Load Map Wed 26-Au!O-81 12:01:10 
TEST .SAV Title: TEST Indent: 

Section Addr Size Global Val'Je Global Val'Je Global Value 

. ABS. 000000 000000 (RW,I,GBL,ABS,OVR) 
001000 000200 (RW,I,LCL,REL,CON) 

TEST ·001200 000174 (RW,I,LCL,REL,CON) 
START 001200 EXIT 001240 

Transfer address = 001200, Hish limit = 001372 :381. words 

Table 3-9 describes each line in the sample load map above. 

Table 3-9: Line-by-Line Sample Load Map Description 

Line Contents 

1 Load map header. 

2 Program name, program title (.MAIN. default) and identity (default is blank). 

4 P-sect description header. Section indicates the p-sect name; Addr indicates the 
p-sect start address; Size indicates p-sect length in octal bytes; Global and Value 
list the p-sect globals and their associated octal values. 

6 Absolute p-sect, . ABS. This line includes the absolute p-sect's start address 
(always 0), length and attributes (for a complete description of these abbrevia-
tions, see Table 3-2). 

7 Unnamed p-sect. This p-sect appears in the load map after the absolute p-sect. For 
overlaid programs, the unnamed (blank) p-sect appears in the load map after the 
overlay table p-sect. 

8-9 TEST p-sect. Line 9 lists TEST's two globals, START and EXIT, with their associ-
ated values. 

11 Transfer address indicates the address in memory where the program starts. 
High limit indicates the last address used by the program. The number of words 
in the program appears last. 

Linker (LINK) 3-19 



3.4 Creating an Overlay Structure 

The linker's ability to handle overlays gives you virtually unlimited mem­
ory space for an assembly language or FORTRAN program. A program 
using overlays can be much larger than would normally fit in the available 
memory space because portions of the program reside on a disk. To use this 
capability, you must define an overlay structure for your program. 

An overlay structure divides a program into segments. For each overlaid 
program, there is one root segment and a number of overlay segments. 
Each overlay segment is assigned to a particular area of available memory, 
called an overlay region. More than one overlay segment can be assigned to 
a given overlay region. Each region of memory, however, is occupied by one 
(and only one) of its assigned segments at a time. The other segments 
assigned to that region are stored on disk. They are brought into memory 
when called, replacing (overlaying) the segment previously stored in that 
region. The root segment, on the other hand, contains those parts of the 
program that must always be memory-resident. Therefore, the root is never 
overlaid by another segment. 

Figure 3-3 diagrams an overlay structure for a FORTRAN program. The 
main program is placed in the root segment and is never overlaid. The 
various MACRO subroutines and FORTRAN subprograms are placed in 
overlay segments. Each overlay segment is assigned to an overlay region 
and stored on disk until called into memory. For example, region 2 is 
shared by the MACRO subroutine A currently in memory and the MACRO 
subroutine B in segment 4. When a call is made to subroutine B, segment 4 
is brought into region 2 of memory, overlaying or replacing segment 3. 

The overlay file shown in Figure 3-3 is created by the linker when you 
specify an overlay structure. The overlay file contains the root segment and 
each overlay segment, including those overlay segments currently in 
memory. 

The linker calculates the size of any region to be the size of the largest 
segment assigned to that region. Thus, to reduce the size of a program (that 
is, the amount of memory it needs), you should first concentrate on reduc­
ing the size of the largest segment in each region. The linker delineates the 
overlay regions you specify and prefaces your program with the run-time 
overlay handler code shown in Figure 3-5. The linker also sets up links 
between the overlay handler and program references to routines that reside 
in overlays. When, at run time, a reference is made to a section of your 
program that is not currently in memory, these links cause an overlay to be 
read into memory. The overlay segment containing the referenced code 
becomes resident. 

3-20 Linker (LINK) 



Figure 3-3: Sample Overlay Structure for a FORTRAN Program 

high 

REGION 3 Region 3 
segment 6 

SEGMENT 6 -------
FORTRAN subprogram Region 3 

segment 5 

REGION 2 
Region 2 

segment 4 
MACRO 

SEGMENT 3 subroutine B 
--------

MACRO subroutine A Region 2 
segment 3 

REGION 1 Region 1 
segment 2 

SEGMENT 2 ---------
FORTRAN subprogram Region 1 

segment 1 

ROOT 
ROOT 

FORTRAN main program FORTRAN 
main program 

low memory 

Block 0 
- of Overlay File 

MK-00433-00 

Linker (LINK) 3-21 



You specify an overlay structure to the linker by using the /0 switch (see 
Figure 3-4). 

Figure~: Overlay Scheme 

Command line: High 

A=A I I = Root } B,e/0:1 = Segment 1 = Region 1 
0/0: 1 = Segment 2 

E I 0: 2 = Segment 3 } = Region 2 F,G/O:2 = Segment 4 
I I 

MK-00434-00 
Low 

Figure 3-5: The Run-Time Overlay Handler 

.TITLE OHANDL.006 OVERLAY HANDLER 
olDENT /VOLOO 

RT-11 OVERLAY HANDLER 

COPYRIGHT eCI 1979 
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. 01754 

C 

B 

A 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A 
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION 
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER 
COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE 
TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO 
AGREES TO THESE LICENSE TERMS. TITLE TO AND OWNERSHIP OF THE 
SOFTWARE SHALL AT ALL TIMES REMAIN IN DEC. 

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT 
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY VIGITAL 
EQUIPMENT CORPORATION. 

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC. 

MAS 

EDIT LOG SINCE VOl.OO 
ADD NEW GLOBAL NAMES TO ALLOW RELOCATION OF HANDLER CODE 

G 
Region 2 

F 

D Region 1 

Root 

;MASOl 

(continued on next page) 

3-22 Linker (LINK) 



Figure 3-5: The Run-Time Overlay Handler (Cont.) 

.SBTTL THE RUN-TIME OVERLAY HANDLER 

it 
THE FOLLOWING CODE IS INCLUDED IN THE USER'S PROGRAM BY THE 
LINKER WHENEVER OVERLAYS ARE REQUESTED BY THE USER. 
THE RUN-TIME OVERLAY HANDLER IS CALLED BY A DUMMY 
SUBROUTINE OF THE FOLLOWING FORM: 

JSR 
.WORD 
.WORD 

ti5, SOVRH 
<OVERLAY **6> 
<ENTFiY ADDR> 

;CALL TO COMMON CODE 
il OF DESIRED SEGMENT 
iACTUAL CORE AD DR (VIRTUAL ADDR) 

ONE DUMMY ROUTINE OF THE ABOVE FORM IS STORED IN THE RESIDENT PORTION 
OF THE USER'S PROGRAM FOR EACH ENTRY POINT TO AN OVERLAY SEGMENT. 
ALL REFERENCES TO THE ENTRY POINT ARE MODIFIED BY THE LINKER TO INSTEAD 
BE REFERENCES TO THE APPROPRIATE DUMMY ROUTINE. EACH OVERLAY SEGMENT 
IS CALLED INTO CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE. AN 
OVERLAY SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTS, TO THE LIMITS 
OF CORE MEMORY. ONLY ONE SEGMENT AT A TIME MAY OCCUpy AN OVERLAY REGION • 

• SBTTL DEFINITIONS, AND MISC. 

H 
UNDEFINED GLOBALS IN THE OVERLAY HANDLER MUST BE NAMED '$OVDF1' TO 
'$OVDFn' SUCH THAT A RANGE CHECK MAY BE DONE BY LINK TO DETERMINE IF 
THE UNDEFINED GLOBAL NAME IS FROM THE OVERLAY HANDLER. A CHECK IS 
DONE ON THE .RAD50 CHARACTERS 'SOV', AND THEN A RANGE CHECK IS DONE ON 
THE .RAD50 CHARATERS 'DF1' TO 'DFn'. THESE GLOBAL SYMBOLS DO NOT APPEAR 
ON LINK MAPS, SINCE THEIR VALUE IS NOT KNOWN UNTILL AFTER THE MAP HAS BEEN 
PRINTED. CURRENTLY SOVDFI TO $OVDF5 ARE IN USE. 

GLOBAL SYMBOLS OSREAD, AND O$DONE ARE USEFULL WHEN DEBUGGING 
OVERLAID PROGRAMS. 

OSREAD:: WILL APPEAR IN THE LINK MAP, AND LOCATES THE .READ STATEMENT 
IN THE OVERLAY HANDLER. 

OSDONE:: WILL APPEAR IN THE LINK MAP, AND LOCATES THE FIRST INSTRUCTION 
AFTER A .READ IS COMPLEATED IN THE OVERLAY HANDLER. 

;-

.MCALL .READW, •• Vl •• 
• • V1 •• 

• SBTTL OVERLAY HANDLER CODE 

.PSECT SOHAND,GBL 

.ENABL GBL 

.ENABL LSB 

i SOVRH IS THE ENTRY POINT TO THE OVERLAY HANDLER 

SOVRH:: MOV 
MOV 
MOV 

RO,-(SP) 
Rl,-(SP) 
R2,-(SP) 

iMUST SAVE SINCE READ ETC USE IT 
;/0 OVERLAY ENTRY POINT 

(continued on next page) 

Linker (LINK) 3-23 



Figure 3-5: The Run-Time Overlay Handler (Cont.) 

2$: 

it 

MOV 
BR 
ADD 
MOV 

CMP 
BEQ 

@R5,Rl 
7$ 
t$OVTAB-6,Rl 
(Rllt.R2 

(R5)t,@R2 
4$ 

iPICK UP OVERLAY NUMBER 
IFIRST CALL ONLY * * * 
iCALC TABLE ADDR 
;GET FIRST ARG. OF OVERLAY SEG. ENTRY 

lIS OVERLAY ALREADY RESIDENT? 
iYES, BRANCH TO IT 

THE .READ USES INFORMATION AS FOLLOWS: 
I CHANNEL NUMBER, CORE ADDRESS, LENGTH TO READ. RELATIVE BLOCK ON DISK. 
; THESE ARE PICKED UP IN REVERSE ORDER OF THAT SPECIFIED IN THE CALL. 
i -

O$READ::.READW 17,R2,@Rl,(RUt ;READ FROM OVERLAY FILE 
O$DONE::BCS 5$ 
4$: MOV (SP)t.R2 iRESTORE USERS REGS 

MOV (SP)t,Rl 
MOV (SP)t.RO 
MOV @R5,R5 iGET ENTRY ADDRESS 
RTS R5 ;ENTER OVERLAY ROUTINE AND RESTORE USER'S R5 

5$: EMT 376 
.BYTE 0,373 

7$: MOV t11501,2$ 
MOV (PC)t.R1 

$ODF1: : .WORD $OVDFl 
8$: CLR (Rl)t 

CMP Rl,$ODF2 
BLO 8$ 
BR 2$ 

$ODF2: : .WORD $OVDF2 

.DSABL LSB 

.SBTTL $OVTAB OVERLAY TABLE 

; t 
OVERLAY SEGMENT TABLE FOLLOWS: 

iSYSTEM ERROR 10 (OVERLAY 1/0) 

iRESTORE SWITCH INSTR (MOV @R5,R1) 
iSTART ADDR FOR CLEAR OPERATION 
iHIGH ADDR OF ROOT SEGMENT 
iCLEAR ALL OVERLAY REGIONS 
iDONE? 
ILO -} NO, REPEAT 
lAND RETURN TO CALL IN PROGRESS 

;HIGH ADDRESS OF 10 OVERLAYS 

$OVTAB: .WORD {CORE ADDR},{RELATIVE BLK},{WORD COUNT} 

; _ . 

THREE WORDS PER ENTRY, ONE ENTRY PER OVERLAY SEGMENT. 

ALSO, THERE IS ONE WORD PREFIXED TO EACH OVERLAY REGION 
THAT IDENTIFIES THE SEGMENT CURRENTLY RESIDENT IN THAT REGION. 
THIS WORD IS AN INDEX INTO THE TABLE. 

• PSECT $OTABL,D.GBL,OVR 

$OVTAB:: 

.END 

iMASOl 

iMASOl 

/0 OVERLAYS 

There is no special formula for creating an overlay structure. You do not 
need a special code or function call. Some general guidelines must be fol­
lowed, however. For example, a FORTRAN main program must always be 

3-24 Linker (LINK) 



placed in the root segment. This is true also for a global program section 
(such as a named COMMON block) that is referenced by more than one 
overlay segment. 

The assignment of region numbers to overlay segments is crucial. 
Segments that overlay each other (have the same region number) must be 
logically independent; that is, the components of one segment cannot 
reference the components of another segment assigned to the same region. 
Segments that need to be memory resident simultaneously must be 
assigned to different regions. 

When you make calls to routines or subprograms that are in overlay seg­
ments, the entire return path must be in memory. This means that from an 
overlay segment you cannot call a routine that is in a different segment of 
the same region. If this is done, the called routine overlays the segment 
making the call and destroys the return path. 

Figure 3-6 illustrates a sample set of subroutine calls and return paths. In 
the example, solid lines represent legal subroutine calls and dotted lines 
represent invalid calls. 

Suppose the following subroutine calls were made: 

1. The root calls segment 8 

2. Segment 8 calls segment 4 

3. Segment 4 calls segment 3 

Segment 3 can now call any of the following, in any order: 

itself segment 8 

segment 4 the root 

These segments and the root, of course, are all currently in memory. 

Segment 3 cannot call any of the following segments because this would 
destroy its return path: 

segments 2 and 1 
segment 5 
segments 6 and 7 

Look at what might happen if one of these invalid calls is made. Suppose 
segment 4 calls segment 3 and segment 3 in turn calls segment 5. Segment 
5 is not resident in region 2, so an overlay read-in occurs: segment 5 is read 
into memory, thus destroying the memory-resident copy of segment 4. The 
subroutine in segment 5 executes and returns control to segment 3. Seg­
ment 3 finishes its task and tries to return control to segment 4. Segment 4, 
however, has been replaced in memory by segment 5. Segment 4 cannot 
regain control and the program loops indefinitely, or traps, or random 
resul ts occur. 

Linker (LINK) 3-25 



Figure 3-6: Sample Subroutine Calls and Return Paths 

region 3 

region 2 

region 1 

root 

I 
I 
I 

\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 

" '- "- ..... 

"-
"­

"-
"-

" 

--

- - - ----

" " \ 
\ 
\ 
\ 
\ 
\ 

MK-00435-00 

The guidelines already mentioned and some additional rules for creating 
overlay structures are summarized as follows: 

1. $SYSLIB must be present to create an overlay structure because it 
contains the overlay handler. 

2. Overlay segments assigned to the same region must be logically inde­
pendent; that is, the components of one segment cannot reference the 
components of another segment assigned to the same region. 

3. The root segment contains the transfer address, stack space, impure 
variables, data, and variables needed by many different segments. The 
FORTRAN main program unit must be placed in the root segment. 

4. The absolute section (. ABS.) never takes part in overlaying in any 
way. It is part of the root and is always resident. 

5. A global program section (such as a named COMMON block or a 
.PSECT with the GBL attribute) that is referenced in more than one 
segment is placed in the root segment by the linker. This permits com­
mon access across the different segments. 

3-26 Linker (LINK) 



6. Object modules that are automatically acquired from a library file are 
placed automatically in an overlay segment, as long as that library 
module is referenced only by that segment. If a library module is refer­
enced by more than one segment, LINK places that library module in 
the root. You can, however, extract modules from a library file using 
the librarian utility program as explained in Chapter 4. Extracted 
object modules can be placed in overlay segments. 

Do not specify a library file on the same command line as an overlay 
segment. You must specify all library modules before specifying any 
overlay modules. LINK places in the root any modules from a multiple 
definition library and any modules included with the II switch. 

7. All COMMON blocks that are initialized with DATA statements must 
be similarly initialized in the segment in which they are placed. 

8. When you make calls to overlay segments, the entire return path to the 
calling routine must be in memory. This means you should take the 
following points into account: 

a. You can make calls with expected return (as from a FORTRAN 
main program to a FORTRAN or MACRO subroutine) from an over­
lay segment to entries in the same segment, the root segment, or to 
any other segment, as long as the called segment does not overlay in 
memory part of your return path to the main program. 

b. You can make jumps with no expected return (as in a MACRO pro­
gram) from an overlay segment to any entry in the program, with 
one exception: you cannot make such a jump to a segment if the 
called segment will overlay an active routine in that region (that is, 
a routine whose execution has begun, but not finished, and that will 
be returned to). 

c. Calls you make to entries in the same region as the calling routine 
must be entirely within the same segment, not within another seg­
ment in the same region. 

9. You must make calls or jumps to overlay segments directly to global 
symbols defined in an instruction p-sect (entry points). For example, if 
ENTER is a global symbol in an overlay segment, the first of the follow­
ing two commands is valid, but the second is not: 

JMP ENTER 
JMP ENTER+G 

; I.'ALI 0 
jINI.'ALID 

10. You can use globals defined in an instruction p-sect (entry points) of an 
overlay segment only for transfer of control and not for referencing data 
within an overlay segment. The assembler and linker cannot detect a 
violation of this rule so they issue no error. However, such a violation 
can cause the program to use incorrect data. If you reference these 
global symbols outside of their defining segment, the linker resolves 
them by using dummy subroutines of four words each in the overlay 
handler. Such a reference is indicated on the load map by an at sign 
character (@) following the symbol. 

Linker (LINK) 3-27 



11. The linker directly resolves symbols that you define in a data p-sect. It 
is your responsibility to load the data into memory before referencing a 
global symbol defined in a data section. 

12. In the linker command string, specify overlay regions in ascending 
order. 

13. Overlay regions are read-only. The overlay handler does not save the 
segment it is overlaying. Any tables, variables, or instructions that are 
modified within a given overlay segment are reinitialized to their origi­
nal values in the .SA V file if that segment has been overlaid by another 
segment. You should place any variables or tables whose values must 
be maintained across overlays in the root segment. 

14. Your program cannot use channel 17 (octal) because overlays are read 
on that channel. 

15. Note that the condition codes set by your program are not preserved 
across overlay segment boundaries. 

16. MACRO and FORTRAN directly resolve all global symbols that are 
defined in a module. If LINK moves the p-sect where they are defined 
from an overlay segment to the root, LINK will not generate an overlay 
table entry for those symbols. 

This set of rules applies only to communications among the various mod­
ules that make up a program. Internally, each module must only observe 
standard programming rules for the PDP-11 (as described in the PDP-ll 
Processor Handbook and in the FORTRAN and MACRO-ll language 
reference manuals). 

The linker provides overlay services by including a small resident overlay 
handler in the same file with your program to be used at program run time. 
(Refer to Figure 3-5.) The linker inserts this overlay handler plus some 
tables into your program beginning at the bottom address. The linker then 
moves your program up in memory to make room for the overlay handler 
and tables, if necessary. The handler is stored in $SYSLIB. This scheme is 
diagrammed in Figure 3-7. 

3-28 Linker (LINK) 



Figure 3-7: Memory Diagram Showing Sample Link with Overlay 
Regions 

177776 

160000 

1000 

[ 1 RT11 Run-time System 

,..~ Free Memory .. ~ 

SEGMENT IDENTIFICATION WORD 

OVERLAY REGION 1 

~:~~~; i o:e~:~y J :~e~(a~ erro~v:~:~age 1 ~~~~:~:~nE 
overlay _____ _____ _ _____ L__________ _ ________ _ 

SEGMENT IDENTIFICATION WORD 

ROOT SEGMENT OF PROGRAM 

optional functions, initialization code, user area 

OVERLAY HANDLER AND TABLES 
(included by the linker) 

SYSTEM AREA 

MK-00436-00 

Linker (LINK) 3-29 



3.5 Switch Descriptions 

Full descriptions of the switches summarized in Table 3-7 follow in alpha­
betical order. 

3.5.1 Alphabetical Switch (/ A) 

The I A switch lists global symbols within program sections in alphabetical 
order on the load map. 

3.5.2 Bottom Address Switch (lB:n) 

The IB:n switch supplies the lowest address to be used by the relocatable 
code in the load module. The argument n is an unsigned octal number that 
defines the bottom address of the program being linked. If you do not sup­
ply a value for n, the linker prints: 

?LINK-F-/5 No value 

Retype the command line, supplying an even octal value. 

When you do not specify IB, the linker positions the load module so that 
the lowest address is location 1000 (octal). If the ASECT size is greater 
than 1000, the size of ASECT is used. 

If you supply more than one IB switch during the creation of a load module, 
the linker uses the first IB switch specification. The IB switch is illegal 
when you are linking to a high address (Ill). 

The bottom value must be an unsigned, even, octal number. If the value is 
odd, the linker prints the message: 

?LINK-F-/5 odd-value 

Reenter the command string specifying an unsigned, even, octal number as 
the argument to the IB switch. 

3.5.3 Continue Switch (lC) or (1/) 

The continue switch (lC) lets you type additional lines of command string 
input. Use the IC switch at the end of the current line and repeat it on 
subsequent command lines as often as necessary to specify all the input 
modules in your program. Do not enter a I C switch on the last line of input. 

The following command indicates that input is to be continued on the next 
line: 

*OUTPUT,LP:=INPUT/C 

* 

3-30 Linker (LINK) 



An alternate way to enter additional lines of input is to use the I I switch on 
the first line. The linker continues to accept lines of input until it 
encounters another I I switch, which can be either on a line with input file 
specifications, or on a line by itself. The advantage of using the I I switch 
instead of the IC switch is that you do not have to type the I I switch on 
each continuation line. This example shows how the linker itself is linked: 

*LINK ,LI NK =LI NKO 1 WI 1 
*LINKl 10: 1 
*LI NK2 10: 1 
*LINK3 10: 1 
*L I NK4 10: 1 
*LINK5 10: 1 
*L I NKG 10: 1 
*LINK7 10: 1 
*LINKEM/o:lI1 

You cannot use the IC switch and the I I switch together in a link command 
sequence. That is, if you use I I on the first line, you must use I I to termi­
nate input on the last line. If you use IC on the first line, use IC on all lines 
but the last. 

3.5.4 Extend Program Section Switch (lE:n) 

The IE:n switch allows you to extend a program section in the root to a 
specific value. Type the IE:n switch at the end of the first command line. 
After you have typed all input command lines, the linker prompts with: 

Extend section? 

Enter the name of the program section to be extended, and then press the 
RETURN key. The resultant program section size (in bytes) is equal to or 
greater than the value you specify, depending on the space the object code 
requires. The value you specify must be an even value. Note that you can 
extend only one section. 

The following example extends section CODE to 100 (octal) bytes: 

*)-( ,K B : = L K 001 1 E : 100 
Extend section? CODE 

3.5.5 Default FORTRAN Library Switch (/ F) 

By indicating the IF switch in the command line, you can link the 
FORTRAN library ($FORLIB.OBJ on device DK:) with the other object 
modules you specify. You do not need to specify FORLIB explicitly. For 
example: 

*=-ILE,LP:=AB/F 

Linker (LINK) 3-31 



The object module AB.OBJ from DK: and the required routines from the 
FORTRAN library DK:$FORLIB.OBJ are linked together to form a load 
module called FILE.SAV. 

The linker automatically searches the DK:$SYSLIB.OBJ default system 
library. The library normally includes the modules that compose FORLIB. 
You should not have to use IF. 

3.5.6 Directory Buffer Size Switch (/G) 

When you are using modules for your program that are from a multiple 
definition library, LINK has to store that library's directory in an internal 
buffer. Occasionally, this buffer area is too small to contain an entire direc­
tory, in which case LINK is unable to process those modules. The IG switch 
causes LINK to adjust the size of its directory buffer to accommodate the 
largest directory size of the multiple definition libraries you are using. 
Because the IG switch slows the linking process, you should use it only 
when it is necessary. In particular, use it only after an attempt to link your 
program failed because the buffer was too small. LINK prints the following 
message when a failure of this type occurs: 

?LINK-F-Directory buffer too small 

3.5.7 Highest Address Switch (/H:n) 

The IH:n switch allows you to specify the top (highest) address to be used 
by the relocatable code in the load module. The argument n represents an 
unsigned, even, octal number. If you do not specify n, the linker prints: 

?LINK-F-/H no value 

Retype the command, supplying an even octal number to be used as the 
value. 

If you specify an odd value, the linker responds with: 

?LINK-F-/H odd value 

Retype the command, supplying an even octal number. 

If the value is not large enough to accommodate the relocatable code, the 
linker prints: 

?LINK-F-/H value too low 

Relink the program with a larger value. 

You cannot use the IH switch with the IY or IB switch. 

3-32 Linker (LINK) 



NOTE 

Be careful when you use the IH switch. Most FORTRAN 
programs use the free memory above the relocatable code as 
a dynamic working area for I I 0 buffers, device handlers, 
symbol tables, and so forth. The size of this area differs 
according to the memory configuration. Programs linked to a 
specific high address might fail to run for users with a lower 
maximum memory size because there is less free memory. 

3.5.8 Include Switch (I I) 

The II switch lets you take global symbols from any library and include 
them in the linking process even when they are not needed to resolve 
globals. This provides a method for forcing modules that are not called by 
other modules to be loaded from the library. All modules that you specify 
with II go into the root. When you specify the II switch, the linker prints: 

Library search? 

Reply with the list of global symbols to be included in the load module; 
press the RETURN key to enter each symbol in the list. Pressing only the 
RETURN key terminates the list of symbols. 

The following example includes the global $SHORT in the load module: 

*SCCA=RK1:SCCA/I 
Library search? $SHORT lB@ 
Library search? lB@ 

3.5.9 Memory Size Switch (/K:n) 

The IK:n switch lets you insert a value into word 56 of block 0 of the image 
file. The argument n represents the number of 1K blocks of memory 
required by the program; n is an integer in the range 1-28. Note that the 
value for n is interpreted as an octal number unless you place a period (.) 
after it. For example, when LINK sees a switch such as IK:28., it interprets 
the value 28. as a decimal number. 

3.5.10 Modify Stack Address Switch (/M[:n]) 

The stack address, location 42, is the address that contains the initial value 
for the stack pointer. The 1M switch lets you specify the stack address. The 
argument n (if present) is an even, unsigned, octal number that defines the 
stack address. After all input lines have been typed, the linker prints the 
following message if you have not specified a value for n: 

StacK sY~lbol? 

Linker (LINK) 3-33 



In this case, specify the global symbol whose value is the stack address, and 
press the RETURN key. You must not specify a number. If you specify a 
nonexistent symbol, the linker prints an error message and sets the stack 
address to the system default (1000) or to the bottom address if you used 
IB. If the program's absolute section extends beyond location 1000, the 
default stack space starts after the largest .ASECT allocation of memory. 

Direct assignment (with .ASECT) of the stack address within the program 
takes precedence over assignment with the 1M switch. The statements to 
do this in a MACRO program are as follows: 

.ASECT 

.=42 

.WoRo INITSP ;INITIAL STACK SYMBOL VALUE 

.PSECT ;RETURN TO PREVIOUS SECTION 

The following example modifies the stack address: 

*oUTPUT=INPUT 1M 
StacK SYMbol? BEG 

3.5.11 Overlay Switch (lO:n) 

The 10 switch segments the load module so that the entire program is not 
memory-resident at one time. This lets you execute programs that are 
larger than the available memory. The argument n is an unsigned octal 
number (up to six digits) specifying the overlay region to which the module 
is assigned. The 10 switch must follow (on the same line) the specification 
of the object modules to which it applies, and you can specify only one 
overlay region on a command line. Overlay regions cannot be specified on 
the first command line; that is reserved for the root segment. You must use 
I C or I I for continuation. 

You specify co-resident overlay routines (a group of subroutines that occupy 
the overlay region and segment at the same time) as follows: 

*oBJA,oBJB,oBJC/o:l/C 
*oBJo ,oBJE 10: 1 I C 

All modules that the linker encounters until the next 10 switch are 
co-resident overlay routines; that is, they all go into the same segment. If 
you specify, at a later time, the 10 switch with the same value you used 
previously (same overlay region), then the linker opens up the correspond­
ing overlay area for a new group of subroutines. This group occupies the 
same locations in memory as the first group, but it is never needed at the 
same time as the previous group. The following commands to the linker 
make Rand S occupy the same memory as T (but at different times): 

*MAIN,LP:=RooT/C 
*R,S/O:l/C 
*T 10: 1 

3-34 Linker (LINK) 



The following example establishes two overlay regions: 

*OUTPUT ,LP: = I NPUT I I 
*OBJA/O:1 
*OBJB/O:1 
*OBJC/O:2 
*OBJO 10: 2 
* I I 

You must specify overlays in ascending order by region number. For 
example: 

*A=A I C 
*B/O:1/C 
*C/O:1/C 
*O/O:l/C 
*G/O:2 

The following overlay specification is invalid because the overlay regions 
are not given in ascending numerical order. LINK prints an error message 
in each case, and ignores the overlay switch immediately preceding the 
message: 

*)(=LIBRO I I 
*LIBR1/0:1 
*LIBR2/0:0 
?LINK-W-/O or IV oPtion error, re-enter line 

* 
In this example, LINK ignores the overlay line immediately preceding the 
error message and should be reentered with an overlay region number 
greater than or equal to one. 

3.5.12 Library List Size Switch (lP:n) 

The IP:n switch lets you change the amount of space allocated for the 
library routine list. Normally, the default value allows enough space for 
your needs. It reserves space for approximately 170 unique library 
routines, which is the equivalent of specifying IP:170. (decimal) or IP:252 
(octal). 

The following error message indicates that you need to allocate more space 
for the library routine list: 

?LINK-F-Library list overflow, increase size with IP 

You must rei ink the program that makes use of the library routines, and 
use the IP:n switch. Make sure you specify a value for n that is greater 
than 170. 

You can use the IP:n switch to correct for symbol table overflow. Specify a 
value for n that is less than 170. This reduces the space used by the library 
routine list and increases the space allocated for the symbol table. If the 
value you choose is too small, LINK prints the message: 

?LINK-F-Library list overflow, increase size with IP 

Linker (LINK) 3-35 



In the following command, the amount of space for the library routine list 
is increased to 300 (decimal): 

.SCCA=DM1:SCCA/P:300. 

3.5.13 Absolute Base Address Switch (/Q) 

The IQ switch lets you specify the absolute base addresses of up to eight 
p-sects in your program. This switch is particularly handy if you are pre­
paring your program sections for placement in ROM storage. When you use 
this switch in the first command line, the linker prompts you for the p-sect 
names and load addresses. The p-sect name must be six characters or less, 
and the load address must be an even octal number. Press the RETURN 
key to terminate each line. If you press only the RETURN key in response 
to any of the prompts, LINK stops issuing a prompt. 

If you use IE, IY, or IU with IQ, LINK processes those switches before it 
processes IQ. 

When you use the I Q switch, observe the following restrictions: 

• Enter only even addresses. If you enter an odd address, no address, or 
invalid characters, LINK prints an error message and then prompts you 
again for the p-sect and load address. 

• Do not use IQ with IR. These switches are mutually exclusive. 

• LINK moves your p-sects up to the specified address; moving down might 
destroy code. If your address requires code to be moved down, LINK 
prints an error message, ignores the p-sect for which you have specified a 
load address, and continues. 

The following example specifies the load addresses for three p-sects: 

.FILE,TT:=FILE,FILE1/Q 
Load Section:Address?PSECT1:1000 
Load Section:Address?PSECT3:4000 
Load Section:Address?PSECT2:2500 
Load Section:Address? m 

3.5.14 Symbol Table Switch (IS) 

The IS switch instructs the linker to allow the largest possible memory 
area for its symbol table at the expense of input and output buffer space. 
Because this makes the linking process slower, you should use the IS 
switch only if an attempt to link a program failed because of symbol table 
overflow. When you use I S, you cannot specify a symbol table file and a 
map in the command string. 

3-36 Linker (LINK) 



3.5.15 Transfer Address Switch (/T[:n]) 

The transfer address is the address at which a program starts when you 
begin execution with the RUN command. It prints on the last line of the 
load map. The IT switch lets you specify the start address of the load 
module. The argument n is an unsigned octal number that defines the 
transfer address. If you do not specify n, LINK prints the following 
message: 

Transfer S}'frlbol? 

Specify the global symbol whose value is the transfer address of the load 
module. Terminate your response by pressing the RETURN key. You 
cannot specify a number in response to this message. If you specify a nonex­
istent symbol, LINK prints an error message and sets the transfer address 
to 1 so that the program is not executable. If the transfer address you 
specify is odd, the program does not start after loading. (A RUN command 
produces the message: ?Bad start address.) 

Direct assignment (with .ASECT) of the transfer address within the pro­
gram takes precedence over assignment with the IT switch. The transfer 
address assigned with a IT switch has precedence over that assigned with 
an .END assembly directive. To assign the transfer address within a 
MACRO program, use statements similar to these: 

START1: 

START2: 

.ASECT 

.=lIO 

.WORD 

.PSECT 

or 

.END 

STARTl lSYMBOL VALUE FOR TRANSFER ADDRESS 
lRETURN TO PREVIOUS SECTION 

lSECONDARY STARTING ADDRESS 

STARTZ 

The following example links the files LIBRO.OBJ and ODT.OBJ and starts 
execution at ODT's transfer address, O.ODT: 

*LBRODT ,LBRODT=LIBRO ,ODT / T / W / / 
*LI BR 1 / 0: 1 
*LI BR2 / 0: 1 
*LI BR3 / 0: 1 
*LI BRlI / a : 1 
*LIBR5 / 0: 1 
*LIBRG / 0: 1 
*LBREM / 0: 1 / / 
Transfer SYMbol? O.ODT 

* 

Linker (LINK) 3-37 



3.5.16 Round Up Switch (I U :n) 

The IU:n switch rounds up the section you specify in the root so that the 
size of the root segment is a whole number multiple of the value. The 
argument n must be a power of 2. When you specify the IU:n switch, the 
linker prompts: 

ROllnd section? 

Reply with the name of the program section to be rounded, and then press 
the RETURN key. The program section must be in the root segment. Note 
that you can round only one program section. The following example 
rounds up section CHAR: 

.LK007,KB:=LK007/U:200 
ROllnd section? CHAR 

If the program section you specify cannot be found, LINK prints the follow­
ing message and then continues the linking process with no rounding: 

?LINK-W-Rollnd section not fOllnd 

3.5.17 Map Width Switch (/W) 

The IW switch directs the linker to produce a wide load map listing. If you 
do not specify the IW switch, the listing is wide enough for three Global 
Value columns '(normal for paper with 80 columns). If you use IW, the 
listing is six columns wide, which is suitable for a 132-column page. 

3.5.18 Bitmap Inhibit Switch (IX) 

The IX switch instructs the linker not to generate the bitmap if code is 
located between 360 and 377 inclusive. You use this switch to link the 
RSTS/E monitor. The bitmap is stored in locations 360 and 377 in block 0 
of the load module, and the linker normally stores the program memory 
usage bits in these eight words. Each bit represents one 256-word block of 
memory. This information is required by the RUN command when loading 
the program; therefore, be careful when you use this switch. 

3.5.19 Boundary Switch (lV:n) 

The IY:n switch starts a specific program section in the root on a particular 
address boundary. Do not use this switch with IH. The linker generates a 
whole number multiple of n, the argument you specify for the starting 
address of the program section. The argument must be a power of 2. The 

3-38 Linker (LINK) 



linker extends the size of the previous program section to accommodate the 
new starting address. When you have entered all input lines, the linker 
prompts: 

Boundary section? 

Respond with the name of the program section whose starting address you 
are modifying. Press the RETURN key to terminate your response. Note 
that you can specify only one program section for this switch. If the pro­
gram section you specify cannot be found, the linker prints the following 
message and then continues: 

?LINK-W-Boundary section not found 

3.5.20 Zero Switch (/Z:n) 

The IZ:n switch fills unused locations in the load module and places a 
specific value in these locations. The argument n represents that value. 
You can use this switch to eliminate random results that occur when the 
program references uninitialized memory by mistake. The linker automati­
cally zeros unused locations. Use the IZ:n switch only when you want to 
store a value other than zero in unused locations. The IZ switch ~ithout an 
argument is equivalent to IZ:O. Thus, when n is equal to zero, you need to 
specify only IZ. 

3.6 LINKER Prompts 

Some of the linker operations prompt for more information, such as the 
names of specific global symbols or sections. The linker issues the prompt 
after you have entered all the input specifications, but before the actual 
linking begins. Table 3-10 shows the sequence in which the prompts occur. 

Table 3-10: Linker Prompting Sequence 

Prompt Switch 

Transfer symbol? IT 

Stack symbol? 1M 

Extend section? IE:n 

Boundary section? IY:n 

Round section? IU:n 

Load section:address? IQ 

Library search? II 

Linker (LINK) 3-39 



3-40 

The library search and the load section prompts can accept more than one 
symbol and are terminated by pressing the RETURN key in response to the 
prompt. 

The following example shows how the linker prompts for information when 
you combine switches: 

*L K 0 0 1 = L K 00 1 / T / M / E : 1 0 0 / Y : 4 0 0 / U : 20 / I / Q 

Transfer SYMbol? O.ODT 
StacK SYMbol? ST3 
Extend section? CHAR 
Boundary section? CODE 
Round section? STKSP 
Load section:address? MAIN:l00000 
Load section:address? m 
Library search? $SHORT 
Library search? m 
* 

Linker (LINK) 



Chapter 4 
Librarian (LIBR) 

The librarian utility program (LIBR) lets you create, update, modify, list, 
and maintain object library files. It also allows you to create macro library 
files for use with the V03 and later versions of the MACRO-ll assembler. 

4.1 The Librarian 

A library file is a direct access file (a file that has a directory) that contains 
one or more modules of the same module type. The librarian organizes the 
library files so that the linker and MACRO-ll assembler can access them 
rapidly. Each library contains a library header, library directory (or global 
symbol table, or macro name table) and one or more object modules or 
macro definitions. The object modules in a library file can be routines that 
are: 

• Repeatedly used in a program 

• Used by more than one program 

• Related and simply gathered together for convenience 

Your needs determine the contents of the library file. An example of a 
typical object library file is the default system library SYSLIB.OBJ that 
the linker uses. An example of a macro library file is SYSMAC.SML, which 
MACRO uses to process .MCALL (macro call) directives. 

You access object modules in a library file from another program by mak­
ing calls or references to their global symbols. You then link the object 
modules with the program that uses them, producing a single load module 
(see Chapter 3). 

The following sections describe how to: 

• Run the librarian (Section 4.2) 

• Use the librarian to create and maintain object libraries (Section 4.3) 

• Create macro libraries (Section 4.4) 

4-1 



4.2 Running and Using LlSR 

To run the librarian, type the following command in response to your key­
board monitor prompt: 

RUN $LIBR m 
* 

If your system manager has added a Concise Command Language (CCL) 
command, such as LIBR, type: 

LIBR m 
* 

You can also use the LIBR command to run the librarian whenever DCL is 
your keyboard monitor. In any case, when LIBR is ready to accept a com­
mand line, it prints an asterisk prompt (*) on your terminal. You then can 
enter a command string or type CTRL/Z to exit the program. Once you type 
a command line and press the RETURN key to begin execution, you must 
type CTRL I C to stop the librarian and return control to your keyboard 
monitor. Typing a CTRL/Z during the execution of a command has no 
effect. Use CTRL/Z only to exit LIBR at the asterisk prompt. 

Specify the LIBR command string in the following general format: 

library-filespec,list-filespec = input-filespec[ / switch(es»), ... 

The definition of each file specification follows: 

library-filespec Represents the library file specification to be created or 
updated. 

list-filespec Represents a listing file for the library's contents. 

input-filespec Represents the input object modules (you can specify 
up to six input files); it can also represent a library file 
to be updated. 

switch Represents a switch from Table 4-1. 

You specify devices and file names in the standard RSTS IE command 
string syntax (see Chapter 1), with default file types for object libraries 
assigned as follows: 

Object File Default File Type 

List file .LST 

Library output file .OBJ 

Input file (library or module) .OBJ 

4-2 Librarian (LIBR) 



If you do not specify a device, DK: is assumed, which is normally equivalent 
to SY: (the public structure), unless you use the ASSIGN command to 
change it. 

Each input file consists of one or more object modules and is stored on a 
given device under a specific file name and file type. Once you insert an 
object module into a library file, LIBR no longer references the module by 
the name of the file of which it was a part; instead you reference it by its 
individual module name. (But when referencing from other modules in 
LINK, for example, the global symbols in the modules are important, not 
the module name used in operations like LIBR deletes.) Use the assembler 
to assign this module name with either a .TITLE statement in the assembly 
source program (the default name is .MAIN. in the absence of a .TITLE 
statement) or the subprogram name for FORTRAN routines. Thus, for 
example, the input file FORT.OBJ can exist on DM2: and can contain an 
object module called ABC. Once you insert the module into a library file, 
reference only ABC (not FORT.OBJ). 

The input files normally do not contain main programs but rather sub­
programs, functions, and subroutines. The library file must never contain a 
FORTRAN "BLOCK DATA" subprogram because there is no global symbol 
to cause the linker to load it automatically. 

4.3 Switches and Functions for Object Libraries 

You maintain object library files by using switches. The functions you can 
perform include object module deletion, insertion and replacement, library 
file creation, and listing of an object library file's contents. 

Table 4-1 summarizes the switches used with LIBR for object libraries. The 
following sections, which are arranged alphabetically by switch, describe 
the switches in greater detail. 

There is no switch to indicate module insertion. If you do not specify a 
switch, the librarian automatically inserts modules into the library file. 

4.3.1 Include All Global and Absolute Global Symbols Switch (/ A) 

Normally, the librarian includes in the directory only global entry points 
(labels) and not absolute global symbols. Use the / A switch when you want 
all the global symbols to appear in the library file's directory. When you 
use / A, the librarian includes in the directory all absolute global symbols, 
including those that have a value of o. 

The following example places all the global symbols from module MODI 
and MOD2 in the library directory for ALIB.OBJ: 

*ALIB=MODl ,MOD2 / A 

Librarian (LIBR) 4-3 



Table 4-1: LIBR Object Switches 

Command 
Switch Line Section Meaning 

IA First 4.3.1 Puts all globals in the directory, including all abso-
lute global symbols. 

IC Any but 4.3.2 Allows you to type the input specification on more 
last than one line. 

/D First 4.3.5 Deletes modules (from a library file) that you specify. 

IE First 4.3.6 Extracts a module from a library and stores it in an 
.OBJ file. 

IG First 4.3.7 Deletes global symbols (from the library directory) 
that you specify. (The module containing the global 
being deleted is not itself deleted from the library.) 

IN First 4.3.8 Includes the module names in the directory. 

IP First 4.3.9 Includes the program section names (p-sect names) in 
the directory. 

IR First 4.3.10 Replaces modules in a library file. This switch must 
follow the file specification to which it applies. 

/U First 4.3.11 Inserts and replaces (updates) modules in a library 
file. This switch must follow the file specification to 
which it applies. 

IW First 4.3.12 Indicates wide format for the listing file. 

IX First 4.3.13 Allows multiple definitions of global entry points to 
appear in the library entry point table. 

/! First and 4.3.2 Allows you to type the input specification on more 
last than one line. 

4.3.2 Command Continuation Switches (lC and / /) 

You must use a continuation switch whenever there is not enough room to 
enter a command string on one line. The maximum number of input files 
that you can enter on one line is six; you can use the IC or I I switch to 
enter more. Type the IC switch at the end of the current line, and repeat it 
at the end of subsequent command lines as often as necessary, so long as 
memory is available; if you exceed memory, LINK prints an error message. 
Each continuation line after the first command line can contain only input 
file specifications (and no other switches). Do not specify a IC switch on the 
last line of input. If you use the I I switch, type it at the end of the first 
input line and again at the end of the last input line. 

The following example creates a library file on DK: under the file name 
ALIB.OBJ. It also creates a listing of the library file's contents as 
LIBLST.LST (also on DK:). The file names of the input files (all from DMl:) 
are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and TRACK.OBJ. 

*ALIB,LIBLST=DM1:MAIN,TEST,FXN/C 
*DM1:TRACK 

4-4 Librarian (LIBR) 



The next example creates a library file on DK: under the name BLIB.OBJ. 
It does not produce a listing. Input files are MAIN.OBJ from the system 
device, TEST.OBJ from DM1:, FXN.OBJ from DMO:, and TRACK.OBJ 
from DB1:. 

*BLIB=MAINI I 
*OM1:TEST 
*OMO:FXN 
*OB1 :TRACK I I 

Another way of writing this command line is: 

*BLIB=MAIN .0Ml :TEST ,OMO:FXN I I 
*OB1 :TRACK 
* I I 

4.3.3 Creating a library File 

To create a library file, specify a file name on the output side of a command 
line. The following example creates a new library (on DK:) called 
NEWLIB.OBJ. The modules that make up this library file are in the files 
FIRST.OBJ and SECOND.OBJ, both on the system device. 

*NEWLIB=FIRST,SECONO 

Assume you then enter this command line: 

*NEWLIB,LIST=THIRO,FOURTH 

The existing library file NEWLIB.OBJ is lost when the new library file is 
created. A listing of the library file's contents is created under the file name 
LIST.LST. The object modules in the files THIRD.OBJ and FOURTH.OBJ 
are inserted into the library file NEWLIB.OBJ. 

4.3.4 Inserting Modules into a library 

Whenever you specify an input file without specifying an associated switch, 
the librarian inserts the input file's modules into the library file you name 
on the output side of the command string. You can specify any number of 
input files. If you include section names (by using IP) in the global symbol 
table and if you attempt to insert a file that contains a global symbol or 
PSECT (or CSECT) having the same name as a global symbol or PSECT 
already existing in the library file, the librarian prints a warning message 
(see Section 4.3.13 for multiple definition library creation). The librarian 
does, however, update the library file, ignore the global symbol or section 
name in error, and then prompt you with an asterisk for another command 
line. 

Although you can insert object modules even if the module name (as 
assigned by the .TITLE statement or SUBROUTINE name statement in 
FORTRAN) conflicts with that of a module already in the library, this 

Librarian (LIBR) 4-5 



practice is not recommended because of possible confusion when you need to 
update these modules. (Sections 4.3.10 and 4.3.11 describe replaciI!6' and 
updating.) 

NOTE 

You must indicate the library file to which the operation is 
directed on both the input and output sides of the command 
line when making changes to an existing library; in effect, 
the librarian creates a "new" output library file each time it 
performs one of these operations. You must specify the 
library file first in the input field. 

The following command line inserts the modules included in the files 
FA.OBJ, FB.OBJ, and FC.OBJ on DB1: into a library file named 
DXYNEW.OBJ on the system device. The resulting library also includes 
the contents of library DXY.OBJ. 

The next command line inserts the modules contained in files THIRD.OBJ 
and FOURTH.OBJ into the library NEWLIB.OBJ. 

*NEWLIB,LIST=NEWLIB,THIRD,FOURTH 

Note that the resulting library (1) contains the original library plus some 
new modules and (2) replaces the original library because the same name 
was used in this example for the input and output library. 

4.3.5 Delete Switch (/ D) 

The ID switch deletes modules and all their associated global symbols from 
the library. 

When you use the ID switch, the librarian prompts: 

Module naMe? 

Respond with the name of the module to be deleted, and then press the 
RETURN key. Continue until you have entered all modules to be deleted. 
Press RETURN immediately after the Module name? message to terminate 
input and to begin execution of the command line. 

The following example deletes the modules SGN and TAN (on DM3:) from 
the library file TRAP.OBJ: 

*DM3:TRAP=DB3:TRAP/D 
Module naMe? SGN 
Module naMe? TAN 
Module naMe? 

4-6 Librarian (LIBR) 



The next example deletes the module FIRST from the library LIBFIL.OBJ. 
All modules in the file ABC.OBJ replace old modules of the same name in 
the library. The example also inserts the modules in the file DEF.OBJ into 
the library: 

*LIBFIL=LIBFIL/D,ABC/R,DEF 
Module name? FIRST 
Module name? 

In the following example, the librarian deletes two modules of the same 
name from the library file LIBFIL.OBJ: 

*LIBFIL=LIBFIL/D 
Module name? X 
Module narlle? X 
Module narlle? 

4.3.6 Extract Switch (/ E) 

The IE switch allows you to extract an object module from a library file and 
place it in an .OBJ file. 

When you specify the IE switch, the librarian prints: 

Global? 

Respond with the name of a global symbol defined in the module you want 
to extract. If you specify a global name, the librarian extracts the entire 
module of which that global is a part. LIBR stops printing the Global? 
prompt if you press the RETURN key. 

The following example extracts the ATAN routine from the FORTRAN 
library $SYSLIB.OBJ and stores it on DM1: in a file called ATAN.OBJ: 

*DM1:ATAN=$SYSLIB/E 
Global? ATAN 
Global? 

The next example extracts the $PRINT routine from $SYSLIB.OBJ and 
stores it on DM1: as PRINT.OBJ: 

*DM1:PRINT=$SYSLIB/E 
Global? $PRINT 
Global? 

You cannot use the IE switch in the same command line as another switch. 

4.3.7 Delete Global Switch (/ G) 

The IG switch lets you delete a specific global symbol from a library file's 
directory. When you use the IG switch, the librarian prints: 

Global? 

Librarian (LIBR) 4-7 



Respond with the name of the global symbol you want to delete, and then 
press the RETURN key; continue until you have entered all globals to be 
deleted. Press the RETURN key immediately after the Global? prompt to 
end input and begin execution of the command line. 

For example, the following command causes LIBR to delete the global sym­
bols NAMEA and NAMEB from the directory found in the library file 
ROLL.OBJ on the system device: 

*ROLL=ROLL I G 
Global? NAMEA 
Global? NAMEB 
Global? 

The librarian deletes globals from the directory only (and not from the 
library itselD. The module containing the global symbol being deleted is not 
itself deleted. Whenever you update a library file, all globals that you pre­
viously deleted are restored, unless you use the IG switch again to delete 
them. This feature lets you recover if you delete the wrong global. 

4.3.8 Include Module Names Switch (I N) 

When you use the IN switch on the first line of the command, the librarian 
includes module names in the directory. The linker loads modules from 
libraries based on the fact that those modules define needed global symbols 
that were undefined in the linker's previous input files, not on the basis of 
module names. Normally, then, it is a waste of space and a performance 
compromise to include module names in the directory. 

If you do not include module names in the directory, the MODULE column 
of the directory listing is blank, unless the module requires a continuation 
line to print all its globals. A plus sign ( + ) in the MODULE column indi­
cates continued lines. The IN switch is most useful when you create a 
temporary library in order to obtain a directory listing. 

If the library does not have module names in its directory, you must create 
a new library to include the module names. The following example illus­
trates how to do this. The library directory is listed on the terminal, and 
because the library output is to the null device (NL:), no output library file 
is actually generated. The current library OLDLIB remains unchanged. 

*NL: .KB:=OLDLIB/N 
RT-l1 LIBRARIAN V04.00 TUE 10-NOV-81 20:38:41 
NL:TEMP.OBJ TUE 10-NOV-81 20:38:40 

MODULE 

IRAD50 
JMUL 
LEN 
SUBSTR 
JADD 
JCMP 

4-8 Librarian (LIBR) 

GLOBALS 

IRAD50 
JMUL 
LEN 
SUBSTR 
JADD 
JCMP 

GLOBALS 

RAD50 

GLOBALS 



4.3.9 Include P-section Names Switch (/ P) 

The librarian does not include program section names in the directory un­
less you use the IP switch on the first line of the command. The linker does 
not use section names to load routines from libraries. In fact, including the 
names can decrease linker performance. Including program section names 
also causes a conflict in the library directory and subsequent searches, 
because the librarian treats section names and global symbols identically. 

This switch is provided for compatibility with RT-ll V2C. DIGITAL 
recommends that you avoid using it with RSTS/E. 

4.3.10 Replace Switch (/ R) 

Use the IR switch to replace modules in a library file. The IR switch 
replaces existing modules in the library file you specify as output with the 
modules of the same names contained in the file(s) you specify as input. In 
the command string, enter the input library file before the files used in the 
replacement operation. 

If an old module does not exist under the same name as an input module or 
if you specify the IR switch on a library file, the librarian prints an error 
message followed by the module name and ignores the replace command. 
The IR switch must follow each input file name containing modules for 
replacement. (An error results if any of the modules in the replacement file 
is absent from the library; other modules are still replaced. Thus, you may 
want to use the IU switch, which is less restricting.) 

The following command line indicates that the modules in the file INB.OBJ 
are to replace existing modules of the same names in the library file 
TFIL.OBJ. The object modules in the files INA.OBJ and INC.OBJ (all files 
are stored on DK:) are to be added to TFIL. 

*TFIL=TFIL,INA,INB/R,INC 

The same operation occurs in the next command as in the preceding exam­
ple, except that this updated library file is assigned the new name XFIL. 

4.3.11 Update Switch (/ U) 

The IU switch lets you update a library file by combining the insert and 
replace functions. If the object modules that compose an input file in the 
command line already exist in the library file, the librarian replaces the old 
modules in the library file with the new modules in the input file. If the 
object modules do not already exist in the library file, the librarian inserts 
those modules into the library. (Note that some of the error messages that 

Librarian (LIBR) 4-9 



might occur with separate insert and replace functions are not printed 
when you use the update function.) The IV switch must follow each input 
file that contains modules to be updated. Specify the input library file 
before the input files in the command line. 

If the input file contains some modules that already exist in the library and 
some that do not, IV picks up all modules. The IR switch picks up only 
those that already exist, reporting "Illegal replacement of xxx" for those 
that do not. In contrast, insert (no switch) picks up only modules that do not 
yet exist in the library, causing "Illegal insert of xxx" for those that do. 
Thus, by choice of switches, you can perform the operation you want. 

The following command line instructs the librarian to update the library 
file BALIB.OBJ on the system device. First the modules in FOLT.OBJ and 
BART.OBJ replace old modules of the same names in the library file, or if 
none already exist under the same names, the modules are inserted. The 
modules from the file TAL.OBJ are then inserted; the librarian prints an 
error message if the name of the module in TAL.OBJ already exists. 

*BALIB=BALIB,FDLT/U,TAL,BART/U 

In the next example, there are two object modules of the same name, X, in 
both Z and XLIB; these are first deleted from XLIB so that both the mod­
ules called X in file Z are correctly placed in the library. Globals SEC1 and 
SEC2 are also deleted from the directory but automatically return the next 
time the library XLIB.OBJ is updated. 

*XLIB=XLIB 10,2 I U I G 
Module naMe? X 
Module naMe? X 
Module na/Tle? 
Global? SECl 
Global? SEC2 
Global? 

4.3.12 Wide Switch (/W) 

The IW switch gives you a wider listing if you request a listing file. The 
wider listing has six Global columns instead of three, as in the normal 
listing. This is useful if you list the directory on a line printer or a terminal 
that has 132 columns. 

4.3.13 Creating Multiple Definition Libraries Switch (IX) 

The IX switch lets you create libraries that can have more than one defini­
tion for a global entry point. These libraries are called multiple definition 
libraries. They are processed differently from libraries that contain only 
one definition for each global entry point name that appears in the library's 
directory. For more information on processing multiple definition libraries, 
see Section 3.3.2. 

4-10 Librarian (LIBR) 



In multiple definition libraries, two library modules may contain the same 
global symbol name, and both definitions will appear in the entry point 
table (EPT). At least one entry point name should be unique in each mod­
ule so that you can easily identify it. 

When you use the IX switch, the librarian does not issue the following 
message when it encounters a duplicate global symbol name. The global 
name appears in the directory for each module that defines it. 

?LIBR-W-Illegal insert of AAAAAA 

In addition, the IX switch causes the librarian to turn on the IN switch 
(see Section 4.3.8). 

The following example creates the multiple definition library MLTLIB 
from modules MOD1, MOD2, and MOD3 and lists the library on the 
terminal: 

*ML TLI B ,KB: =MOD 1 ,MOD2 ,MOD3 /;< 

RT-ll LIBRARIAN V04.00 THU 12-NOV-81 08:45:31 
DK:MLTLIB.OBJ THU 12-NOV-81 08:45:31 

MODULE GLOBALS GLOBALS 

MODI OMA$R SWP$ 
MOD2 ATP$ OMA$R 

LBM 
MOD3 ATP$ OMA$R 

ENTZ 

4.3.14 Listing the Directory of a Library File 

GLOBALS 

ATP$ 
MER$CR 

MER$CR 

You can request a listing of the contents of a library file (the global symbol 
table) by indicating both the library file and a list file in the command line. 
Because a library file is not being created or updated, you do not need to 
indicate the file name on the output side of the command line; however, you 
must use a comma to designate a null output library file. 

The command syntax can be either of the following: 

* ,KB: = library-filespec 
* ,list-filespec = library-filespec 

The definition of these file specifications is: 

library-filespec Represents the file specification for the existing library 
file 

KB: Indicates that the listing is to be sent directly to a 
terminal 

list-filespec Represents the file specification for the list file of the 
library file's contents 

Librarian (LIBR) 4-11 



The following command stores a listing of all modules in the library file 
LIBFIL.OBJ (on the system device) in the file LIST.LST (on DM2:): 

*,DM2:LIST=LIBFIL 

The next command sends to a terminal a listing of all modules in the 
library file FLIB.OBJ, which is stored on the system device: 

*,KB:=FLIB 

Here is a sample section of a large directory listing: 

* ,KB:=SYSLIB 
RT-ll LIBRARIAN V04.00 FRI 20-NDt.I-81 21:01:01 
DK: SYSLI B. OBJ FRI 20-NOV-81 20:59:47 

MODULE GLOBALS GLOBALS GLOBALS 

DCO$ ECO$ FCO$ 
+ GCO$ RCI$ 

DIC$IS DIC$MS D I CHS 
+ DIC$SS $DII)C $DVC 

ADO$IS ADD$MS ADD$PS 
+ ADD$SS SUD$IS SUD$MS 
+ SUD$PS SUD$SS $ADD 

The first line of the listing file shows the version of the librarian that was 
used and the current date and time. The second line prints the library file 
name and the date and time the library was created. Each line in the rest of 
the listing shows only the globals that appear in a particular module. If a 
module contains more global symbol names than can print on one line, a 
new line will be started with a plus sign (+) in column 1 to indicate 
continuation. 

If you request a listing of a library file that was created with the IX or IN 
switch, the listing includes module names under the MODULE heading. 

4.3.15 Merging Library Files 

You can merge two or more library files under one file name by specifying 
in a single command line all the library files to be merged. The librarian 
does not delete the individual library files following the merge unless the 
output file name is identical to one of the input file names. 

The command syntax is: 

library-filespec = input-filespec, ... 

These file specifications have the following definitions: 

library-filespec Represents the library file that will contain all the 
merged files. (If a library file already exists under this 
name, you must also specify it in the input side of the 
command line so that it is included in the merge.) 

input-filespec Represents a library file to be merged. 

4-12 Librarian (LIBR) 



The following command combines library files MAIN.OBJ, TRIG.OBJ, 
STP.OBJ, and BAC.OBJ (all files are on DK:) under the existing library 
file name MAIN.OBJ, replacing the old contents of MAIN.OBJ: 

*MAIN=MAIN,TRIG,STP,BAC 

The next command creates a library file named FORT.OBJ and merges 
existing library files A.OBJ, B.OBJ, and C.OBJ under the file name 
FORT.OBJ: 

*FORT=A.B,C 

NOTE 

Library files should only be combined using the previous pro­
cedure; in particular, do not use the PIP program for this 
purpose. The resulting output is unacceptable to both LINK 
and LIBR. 

4.3.16 Combining library Switch Functions 

You can request two or more library functions in the same command line, 
with the exception of the IE and 1M switches, which cannot be specified on 
the same command line with any other switch. The librarian performs func­
tions (and issues appropriate prompts) in the following order: 

1. IC or I I 

2. ID 

3. IG 

4. IV 

5. IR 

6. Insertions 

7. Listing 

For example: 

*FILE,LP:=FILE/O,MODX,MDDY/R 
Module nafTle? XYZ 
Module name? A 
Module name? 

The librarian performs the functions in this example in the following order: 

1. Deletes modules XYZ and A from the library file FILE.OBJ 

2. Replaces any duplicate of the modules in the file MODY.OBJ 

3. Inserts the modules in the file MODX.OBJ 

4. Lists the directory of FILE.OBJ on the line printer 

Librarian (LIBR) 4-13 



4.4 Switch Commands and Functions for MACRO Libraries 

The librarian lets you create macro libraries. A macro library works with 
the V03 and later MACRO-ll assembler. 

The .MACRO directive produces the entries in the library directory (macro 
names). LIBR does not maintain a directory listing file for macro libraries; 
to list the macros in the library, print the ASCII input file. 

The default input and output file type for macro library files is .MAC (using 
the 1M switch). 

If you give the library file the same name as one of the input files, the 
librarian prints the error message: 

?LIBR-F-Output and input filenames the same 

This prevents the deletion of an input file when the library is created. 

The librarian removes all comments from your source input file except for 
those within a macro (that is, between a .MACRO and .ENDM pair of 
directives). Comments take up space during the assembly and in the library. 
If saving space and shortening assembly time are important to you, remove 
them from the macros wherever possible before creating a macm library. 
(This may make the macro expansions less clear, however.) 

Table 4-2 summarizes the switches you can use with macro libraries. The 
switches are explained in detail in the following two sections. 

Table 4-2: LIBR Macro Switches 

Command 
Switch Line Section Meaning 

IC Any but 4.4.1 Command continuation; allows you to type the input 
last specification on more than one line. 

IM[:n] First 4.4.2 Macro; creates a macro library from the ASCII input 
file containing .MACRO directives. 

/! First and 4.4.1 Command continuation; allows you to type the input 
last specification on more than one line. 

4.4.1 Command Continuation Switches (Ie or / /) 

These switches for macro libraries are the same as for object libraries. See 
Section 4.3.2. 

4.4.2 Macro Switch (lM[:n]) 

The IM[:n] switch creates a macro library file from an ASCII input file that 
contains .MACRO directives. The optional argument n determines the 
amount of space to allocate for the macro name directory by representing 

4-14 Librarian (LIBR) 



the number of macros you want the directory to hold. Remember that n is 
interpreted as an octal number; you must follow n by a decimal point (n.) to 
indicate a decimal number. Each 64 macros occupies one block of library 
directory space. The default value for n is 128, enough space for 128 
macros, which use 2 blocks for the macro name table. 

The command syntax is: 

library-filespec = input-filespec IM[:n] 

Definitions for these file specifications follow: 

library-filespec Represents the macro library to be created 

input-filespec Represents the ASCII input file that contains .MACRO 
definitions 

IM[:n] Is the macro switch 

The continuation switches (lC or / !) are the only switches you can use with 
the macro switch. 

The following example creates the macro library SYSMAC.SML from the 
ASCII input file SYSMAC.MAC. Both files are on the system device. 

*SYSMAC.SML=SYSMAC/M 

Librarian (LIBR) 4-15 





Chapter 5 
Object Module Patch Utility (PAT) 

This chapter describes how to use the Object Module Patch Utility (PAT). 

5.1 Introduction to the PAT Utility 

The PAT utility program allows you to update code in a relocatable binary 
object module (.OBJ). Unlike other programs such as ODT, PAT does not 
act like an editor, which usually allows you to inspect a module's octal 
contents. Instead, the program performs a merge of (1) the original input 
file and (2) a correction file containing the corrections and additions to the 
original file. The original input file consists of one or more concatenated 
object modules, only one of which can be corrected with a single execution 
of the PAT utility. The correction file consists of object code that, when 
linked by the linker, either replaces or appends to the original object 
module. Output from PAT is the updated input file. You then may need to 
use the linker to create an executable program, run the librarian to update 
the library, or do nothing if the corrected module typically exists as an 
object module. 

Prior to using PAT, you must have created the correction file with a text 
editor and compiled or assembled it to create the correction file object 
module. Figure 5-2 illustrates the entire procedure, which results in an 
updated executable file. Note that it is always good practice to create a 
backup version of the file you want to patch before using PAT to make 
changes. 

5.2 Running and Using PAT 

To run PAT, type the following command in response to your keyboard 
monitor prompt: 

RUN $PAT m 
* 
If your system manager has installed PAT as a Concise Command 
Language command (for example, PAT), run the PAT program by typing: 

PAT m 
* 

5-1 



The PAT command also works (if the CCL PAT is installed) when your 
default (or job) keyboard monitor is DCL. In any case, the PAT program 
prints an asterisk prompt (*) on your terminal indicating its readiness to 
accept command input. Chapter 1 describes the RSTS IE file specification 
format you use to construct command lines for the PAT utility program. 

You specify a PAT command string in the form: 

[output-filespec] = input-filespec[ I C[:n]],correct-filespec[ I C[:n]] 

Parameters in the PAT command string have the following definitions: 

output-filespec 

input-filespec 

correct-filespec 

IC 

number 

Is the file specification for the output file. If you do not 
specify an output file, PAT does not generate one. 

Is the file specification for the input file. This file can 
contain one or more concatenated object modules. 

Is the file specification for the correction file. This file 
contains the updates being made to a single module in 
the input file. 

Specifies the checksum switch for the associated file. 
This causes PAT to generate an octal value for the 
sum of all the binary data composing the module in 
that file. 

Specifies an octal value. PAT compares the checksum 
value it computes for a module with the octal value 
you specify. 

The use of the checksum option is optional. If you in­
clude it in a file specification, you can specify I C alone 
without an argument (number). 

Type CTRL/C to stop PAT at any time or CTRL/Z in response to the 
asterisk prompt to return control to your keyboard monitor. 

Figure 5-1 shows how you use PAT to update a file (FILE!) consisting of 
three object modules (MODI, MOD2, and MOD3) by appending a correction 
file to MOD2. After running PAT, you use the linker to relink the updated 
module with the rest of the file and to produce a corrected executable 
program. 

Figure 5-1: Updating a Module Using PAT 

FILE1 

MOD1 
FILE1 

MOD2 
~ MOD1 

MOD3 

r-R ~ 
MOD2 

PAT ----------
UPDATE2 

UPDATE2 MOD3 

MK-00437-00 

5-2 Object Module Patch Utility (PAT) 



LINKER 

Figure 5-2: Processing Steps Required to Update a Module Using 
PAT 

TEXT 
EDITOR 01( • 

CORECT.MAC 

EJ I > 
CORECT.OBJ 

EJ 
MYFILE.OBJ 

EJ 

CORECT.MAC 

>u 1. Create a correction file 
using the text editor. 

CORECT.OBJ 

gEJ 2. Execute the assembler (or 
compiler) to create an 
object module version of 
the correction file. 

MYFILE.OBJ 

> 3. Execute PAT, using as 
input the correction file and 
the module to be updated. 

MYFILE.SAV 

4. a) If the corrected object ~ EJ 
module is part of ~ 
something that typically 
exists as a program, 
execute the linker to 
resolve new addresses 
and create an 
executable program. 

b) If the corrected module 
is an element in a library 
(for example, SYSLlB), 
run the librarian and 
create or update the 
library to contain the 
new (corrected) object 
module. 

c) If the corrected module 
is something that 
typically exists as an 
object module, you need 
do nothing. Whenever 
you link this module, the 
corrections will be 
included. 

MK-00438-00 

Object Module Patch Utility (PAT) 5-3 



There are several steps you must follow when using PAT to update a file: 

1. Use a text editor to create the correction file. 

2. Assemble the correction file to produce an object correction module. 

3. Submit the input file and the correction file in object module form to 
PAT for processing. 

4. Link the updated object module, along with the object modules that 
make up the rest of the program, to create an executable program. 

Figure 5-2 shows the processing steps involved in generating an updated 
executable file using PAT. 

5.3 How PAT Updates a Module 

PAT updates a base input module by using additions and corrections you 
supply in a correction file. This section describes the PAT input and correc­
tion files and gives information on how to create the correction file. 

5.3.1 Input File 

The input file is the file to be updated; it is the base for the output file and 
must be in object module format. When PAT executes, the module in the 
correction file is applied to this file. 

5.3.2 Correction File 

The correction file must be in object module format, and it is usually cre­
ated from a MACRO-ll source file in the following format: 

.TITLE inputname 

[.IDENT updatenum] 

[section name] 

inputline 

inputline 

* 

* 

* 
Definitions of these parameters follow: 

inputname Is the name of the module to be corrected by the PAT 
update. That is, inputname must be the same name as 
the name on the input file .TITLE directive for a mod­
ule in the input file that is to be corrected. 

5-4 Object Module Patch Utility (PAT) 



updatenum 

section name 

inputline 

Is any value acceptable to the MACRO-ll assembler. 
Generally, this value reflects the update version of the 
file being processed by PAT, as shown in the examples 
to follow. 

Is the ASECT, CSECT, or PSECT included in the 
correction file. 

Are lines of input for PAT's use in correcting and updat­
ing the input file. 

During execution, PAT adds any new global symbols that are defined in the 
correction file to the module's symbol table. Duplicate global symbols in the 
correction file supersede their counterparts in the input file, provided that 
both definitions are relocatable or both are absolute. 

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT, 
provided that both have the same relocatability attribute (ABS or REL) -
the relocatability attribute of a CSECT is REL. If PAT encounters duplicate 
PSECT names, it sets the length for the PSECT to the length of the longer 
PSECT and appends a new PSECT to the module. (Duplicate PSECT means 
a PSECT name in the correction file that matches the name of some PSECT 
in the original input module.) 

If you specify a transfer address, it supersedes that of the module you are 
patching. 

5.4 Updating Object Modules 

The following examples show the source code for an input file and a correc­
tion file to be processed by PAT and the linker. The examples show as 
output a single source file that, if assembled and linked, would produce a 
binary module equivalent to the file generated by PAT and LINK. Two 
techniques are described: one is for overlaying lines in a module, and the 
other is for appending a subroutine to a module. 

5.4.1 Overlaying Lines in a Module 

In the following example, PAT first appends the correction file to the input 
file. The linker is then executed to replace code within the input file. 

The input file for this example is: 

ABC: : 

• TITLE 
• I DENT 
.ENABL 

ABC 
/01 / 
GBL 

MOl.' A ,C 
JSR PC,XVZ 
RTS PC 
.END 

Object Module Patch Utility (PAT) 5-5 



To add the instruction ADD A,B after the JSR instruction, the following 
patch source file is included: 

• TITLE ABC 
.IDENT 101.011 
.ENABL GBL 

.=.+12 
ADD AlB 
RTS PC 
.END 

Note that both the original and the patch files use the "blank" PSECT by 
default (because no .PSECT or .CSECT directive is present). The patch 
source is assembled using MACRO-ll and the resulting object file becomes 
the input to PAT along with the original object file. The following source 
code represents the result of PAT processing: 

• TITLE ABC 
.IDENT 101.011 
.ENABL GBL 

ABC: : 
MOI.J A,C 
JSR PC,XYZ 
RTS PC 

.=ABC 
• =. + 12 

ADD AlB 
RTS PC 
.END 

After the linker processes these files, the load image appears, as this source 
code representation shows: 

• TITLE ABC 
.IDENT 101.011 
.ENABL GBL 

ABC: : 
MOV A,C 
JSR PC,XYZ 
ADD AlB 
RTS PC 
.END 

The linker uses the . = . + 12 in the program counter field to determine 
where to begin overlaying instructions in the program and, finally, over­
lays the RTS instruction with the patch code: 

ADD AlB 
RTS PC 

5.4.2 Adding a Subroutine to a Module 

In many cases, a patch requires that more than a few lines be added to 
patch the file. A convenient technique for adding new code involves append­
ing it to the end of the module in the form of a subroutine. This way, you 
can insert a JSR instruction to the subroutine at an appropriate location. 
The JSR directs the program to branch to the new code, execute that code, 
and then return to in -line processing. 

5-6 Object Module Patch Utility (PAT) 



The source code for the input file for the example is: 

• TITLE ABC 
• I DENT /01 / 
.ENABL GBL 

ABC: : 
MDl.J A.B 
JSR PC ,}{YZ 
MOt,J C.RO 
RTS PC 
.END 

Suppose you wish to add the instructions: 

MOt,J D .RO 
ASL RO 

between 

MOt) A .B 

and 

JSR PC .){YZ 

The correction file to accomplish this is: 

• TITLE ABC 
• I DENT /01.01/ 
.ENABL GBL 
JSR PC,PATCH 
NOP 
.PSECT PATCH 

PATCH: 
MOt) A,B 
MOt,! D.RO 
ASL RO 
RTS PC 
.END 

PAT appends the correction file to the input file, and the linker then 
processes the file, generating the following output file: 

• TITLE ABC 
• I DENT /01.01/ 
.ENABL GBL 

ABC: : 
JSR PC.PATCH 
NOP 
JSR PC .){YZ 
MOt) C.RO 
RTS PC 
.PSECT PATCH 

PATCH: 
MDl.J A.B 
MOt,! D.RO 
ASL RO 
RTS PC 
.END 

Object Module Patch Utility (PAT) 5-7 



In this example, the JSR PC,PATCH and NOP instructions overlay the 
three-word MOV A,B instruction. (The NOP is included because this is a 
case where a two-word instruction replaces a three-word instruction. NOP 
is required to maintain alignment.) The linker allocates additional storage 
for .PSECT PATCH, writes the specified code into this program section, and 
binds the JSR instruction to the first address in this section. Note that the 
MOV A,B instruction, replaced by the JSR PC,PATCH, is the first instruc­
tion the PATCH subroutine executes. 

5.5 Determining and Validating the Contents of a File 

Use the checksum switch (lC) to determine or validate the contents of a 
module. The checksum switch directs PAT to compute the sum of all binary 
data composing a file. If you specify the command in the form IC:n, PAT 
computes the checksum and compares that checksum to the value you 
specify as n. 

To determine the checksum of a file, enter the PAT command line with the 
I C switch applied to the file whose checksum you want to determine. For 
example, PAT responds to the command =INFILE/C,INFILE.PAT with 
the message: 

?PAT-W-Input module checksum is nnnnnn 

PAT generates a similar message when you request the checksum for the 
correction file. 

To validate the changes made to a file, enter the checksum switch in the 
form IC:n. PAT compares the value it computes for the checksum with the 
value you specify as n. If the two values do not match, PAT enters the 
changes but displays one of the following two messages reporting the 
checksum error: 

1. ?PAT-W-Input file checksum error 

2. ?PAT-W-Correction file checksum error 

Checksum processing always results in a nonzero value. 

5-8 Object Module Patch Utility (PAT) 



Appendix A 
Switch and Argument Summary 

A.1 MACRO Switches 

At assembly time you may need to override certain MACRO directives 
appearing in the source programs. You may also need to direct MACRO-ll 
on the handling of certain files during assembly. You can satisfy these 
needs by including special switches in the MACRO-l1 command string in 
addition to the file specifications. A table of the switches and a description 
of each follows. 

Table A-I: File Specification Switches 

Option Usage 

IL[:arg]* Listing control, overrides source program directives .LIST and .NLIST 

IN[:arg]* Listing control, overrides source program directives .LIST and .NLIST 

IE:arg** Object file function enabling, overrides source program directives .ENABL 
and .DSABL 

ID:arg** Object file function disabling, overrides source program directives .ENABL 
and .DSABL 

1M Indicates input file is a MACRO library file 

IC[:arg] Requests or controls the contents of cross-reference listing 

IP:arg Specifies whether input source file is to be assembled in pass 1 or pass 2 
only, rather than in both passes 

* Both IL and IN disable .LIST and .NLIST for the argument(s) specified; however, IL 
turns it on, and IN turns it off. 

** Both IE and ID disable .ENABL and .DSABL for the argument(s) specified; however, 
IE turns it on, and ID turns it off. 

Refer to the text in Section 2.3 for a complete description of these switches. 

A-I 



A.1.1 Arguments for Listing Control Switches 

Two switches, IL:arg and IN:arg, affect listing control. By specifying these 
switches with a set of selected arguments, you can control the content and 
format of assembly listings. You can override the arguments of .LIST and 
.NLIST directives in the MACRO source program. Table A-21ists the argu­
ments you use with the IL and IN switches. 

Table A-2: Arguments for IL and IN Switches 

Argument Default Listing Control 

SEQ List Source line sequence number 

LOC List Address location counter 

BIN List Generated binary code (includes BEXl 

BEX* List Binary extensions 

SRC List Source code 

COM List Comments 

MD List Macro definitions, repeat range definitions 

MC List Macro calls, repeat range expansion 

ME No list Macro expansions (includes MEB) 

MEB No list Macro expansion binary code 

CND List Unsatisfied conditionals, .IF and .ENDC statements 

LD No list List control directives with no arguments 

TOC List Table of Contents 

TTM No list 132-column line printer format when not specified, terminal 
mode (80-column model when specified 

SYM List Symbol table 

* This option applies to the listing of assembled binary code. There is room on a listing 
line to display three octal words (one if TTM is set) of assembled code. If you assemble a 
source statement that assembles to more than three words, only the first three are 
listed if .NLIST BEX is in effect. If .LIST BEX is in effect, MACRO uses additional lines 
to list all assembled words. 

Read more about the listing control switches in Section 2.3.1. 

A.1.2 Arguments for Function Control Switches 

Two switches, IE:arg and ID:arg, allow you to enable or disable functions 
at assembly time, and thus influence the form and content of the binary 
object file. These functions can override .ENABL and .DSABL directives in 
the source program. The following table summarizes the acceptable IE and 
ID function arguments, their normal default status, and the functions they 
control. 

A-2 Switch and Argument Summary 



Table A-3: Arguments for IE and ID Switches 

Argument Default Mode Function 

ABS Disable Produces output in paper tape absolute binary format 
instead of a standard object file. 

AMA Disable Assembles all relative addresses as absolute addresses. 
Replaces all uses of relative addressing mode (mode 67) 
by absolute addressing (mode 37). 

CDR Disable Ignores all source information beyond column 72. 

CRF Enable Allows cross-reference listing. Disabling this function 
inhibits CREF output even if switch IC is active. 

FPT Disable Truncates floating point values (instead of rounding). 

GBL Disable Treats undefined symbols as globals. 

LC Disable Allows lowercase ASCII source input. 

LSB Disable Allows local symbol block (not recommended in IE:arg or 
lD:arg). 

PNC Enable Allows binary output. 

REG Enable Automatically defines register mnemonics if enabled. 
You should set or clear the REG argument at·the begin-
ning of the source module. 

See Section 2.3.2 for more information about these arguments. 

A.1.3 Arguments for the Cross-Reference Switch (/ C) 

A complete cross reference contains six sections: (1) program symbols, (2) 
register symbols (if the REG switch has been disabled), (3) MACRO 
symbols, (4) permanent symbols, (5) program sections, or (6) errors. You 
can include any or all of these six sections on the cross-reference listing by 
specifying the appropriate arguments with the IC:arg switch. Table A-4 
summarizes these arguments. 

Table A-4: I C Switch Arguments 

Argument CREF Section 

S User-defined symbols 

R Register symbols 

M MACRO symbolic names 

P Permanent symbols including instructions and directives 

C Control and program sections 

E Error code grouping 

Switch and Argument Summary A-3 



NOTE 

Specifying IC with no arguments is equivalent to specifying 
IC:S:M:E:. Except for that special case, you must explicitly 
request each CREF section by including its arguments. The 
IC switch must be used to produce a cross-reference file even 
if the command string includes a CREF file specification. 

Refer to Section 2.3.4 for more information about obtaining a complete 
CREF listing. 

A.2 LINK Switches 

The table of switches that follows is associated with the linker. You must 
precede the letter representing each switch by the slash character. 
Switches must appear on the line indicated if you continue the input on 
more than one line, but you can position them anywhere on the line. The 
column titled Command Line lists on which line in the command string the 
switch can appear. 

Table A-5: Linker Switches 

Switch Command 
Name Line 

IA First 

IB:n First 

IC Any but 
last 

IE:n First 

IF First 

IG First 

IH:n First 

II First 

Section Explanation 

3.5.1 Lists global symbols in program sections in alphabeti­
cal order in the load map. 

3.5.2 Changes the bottom address of a program to n (invalid 
with IR). 

3.5.3 Continues input specification on another command 
line. (You can also use IC with 10; however, do not 
use IC with the I I switch.) 

3.5.4 Extends a particular program section in the root to a 
specific value. 

3.5.5 Instructs the linker to use the default FORTRAN 
library, $FORLIB.OBJ, to resolve any undefined 
global references. Do not specify this switch in the 
command line when $FORLIB has been incorporated 
into $SYSLIB. 

3.5.6 Adjusts the size of the linker's library directory buffer 
to accommodate the largest multiple definition 
library directory. 

3.5.7 Specifies the top (highest) address to be used by the 
relocatable code in the load module. Invalid with IB, 
IY, or IQ. 

3.5.8 Allows you to specify additional external global sym­
bols to be satisfied (typically from the libraries). In 
general, this is used to explicitly request the inclusion 
of additional library modules. 

(contmued on next page) 

A-4 Switch and Argument Summary 



Table A-5: Linker Switches (Cont.) 

Switch Command 
Name Line Section Explanation 

IK:n First 3.5.9 Inserts the value you specify (the valid range for n is 
from 1 to 28) into word 56 of block 0 of the image file. 
This switch informs the RT11 run-time system that 
the program requires nK words of memory. 

IM[:n] First 3.5.10 Causes the linker to prompt you for a global symbol 
that represents the stack address (if n is omitted) or 
that sets the initial stack address to the value n (if n 
is specified). 

IO:n Any but 3.5.11 Indicates that the program is an overlay structure; n 
first specifies the overlay region to which the module is 

assigned. 

IP:n First 3.5.12 Changes the default amount of space the linker uses 
for a library routines list. 

IQ First 3.5.13 Lets you specify the base addresses of up to eight root 
program sections. Invalid with IH. 

IS First 3.5.14 Makes the maximum amount of space in memory 
available for the linker's symbol table. (Use this 
switch only when a particular link stream causes a 
symbol table overflow.) 

IT[:n] First 3.5.15 Causes the linker to prompt you for a global symbol 
that represents the transfer address (if n is omitted) 
or that sets the transfer address to the value n (if n is 
specified). 

IU:n First 3.5.16 Rounds up the root program section you specify so 
that the size of the root segment is an integer multi-
ple of the value you supply (n must be a power of 2). 

IW First 3.5.17 Directs the linker to produce a wide load map listing. 

IX First 3.5.18 Does not output the bitmap if the area normally used 
by the bitmap (location 360-377) is used by code. 

IY:n First 3.5.19 Starts a specific program section in the root on a par-
ticular address boundary. Invalid with IH. 

IZ:n First 3.5.20 Sets unused locations in the load module to the value 
n (ifn is omitted, the linker uses zero as the default). 

/I First and 3.5.3 Allows you to specify command string input on addi-
last tionallines. Do not use this switch with IC. 

A.3 LlBR Switches 

You maintain object library files by using switch commands. Functions you 
can perform include object module deletion, insertion and replacement, 
library file creation, and listing of an object library file's contents. The 
following table summarizes the switches available for you to use with 
LIBR. 

Switch and Argument Summary A-5 



Table A-6: LIBR Object Switches 

Command 
Switch Line Section Meaning 

IA First 4.3.1 Puts all globals in the directory, including all abso-
lute global symbols. 

Ie Any 4.3.2 Allows you to type the input specification on more 
but last than one line. 

ID First 4.3.5 Deletes modules (from a library file) that you specify. 

IE First 4.3.6 Extract modules from a library and stores it in an 
.OBJ file. 

IG First 4.3.7 Deletes global symbols (from the library directory) 
that you specify. (The module containing the global 
being deleted is not itself deleted from the library.) 

IN First 4.3.8 Includes the module names in the directory. 

IP First 4.3.9 Includes the program section names (p-sect names) in 
the directory. 

IR First 4.3.10 Replaces modules in a library file. This switch must 
follow the file specification to which it applies. 

!U First 4.3.11 Inserts and replaces (updates) modules in a library 
file. This switch must follow the file specification to 
which it applies. 

IW First 4.3.12 Indicates wide format for the listing file. 

IX First 4.3.13 Allows multiple definitions of global entry points to 
appear in the library entry point table. 

II First and 4.3.2 Allows you to type the input specification on more 
last than one line. 

A-6 Switch and Argument Summary 



Appendix B 
Error Message Summary 

The utilities print error messages in the format: ?UTILITY -n-message. 
The first character of each error message is a question mark (?) followed by 
the name of the utility in uppercase letters. The single-character code n 
indicates whether the error was a fatal (F) or a warning (W) message: 

FATAL 

WARNING 

messages cause the current command or statement to be 
ignored; you can usually correct the error by entering an­
other command. 

messages indicate an error condition that may affect execu­
tion at a later time. A message of this type may require some 
attention. 

A message includes: (1) a description of the conditions that may have 
caused the error and (2) methods to recover. The error messages are listed 
in alphabetical order. 

Before trying to interpret and then correct the error conditions generated 
by the utilities in this manual, you should be aware of the following 
comments: 

COMMENT #1 

There may be times when error messages returned by the utilities do not 
help you identify the condition causing the error. This results from having 
a large set of RSTS/E error messages map into a smaller set provided by 
RT11. RSTS/E chooses the most logical RTll error when the emulator 
encounters an error condition, but the RTll error message that is chosen 
may not retain the "flavor" provided by the original. For example, many 
RSTS/E error conditions are mapped into the RT-ll "device full" error. 
The intent is to convey "cannot write output file." But the actual cause of 
the error may have nothing to do with "device full," which is a relatively 
rare occurrence on RSTS/E. When situations like this occur and you are 

B-1 



using RTll as your primary run-time system, type CTRL/C to return to 
the dot prompt (.) generated by RT11. Typing ERR at that point and press­
ing the RETURN key causes the system to print the original RSTS/E error 
message. An example of this follows: 

.RUN $MACRO 
*SY:=KB: 
?MACRO-F-Deuice full 
*"C 

.ERR @ 
?Illegal file naMe 

The resulting error message should, as in this case, more accurately reflect 
the condition that caused the error. 

COMMENT #2 

There are a number of errors in LINK, LIBR, and PAT that indicate "bad 
input." You may be able to correct the error condition if you follow these 
procedures: 

1. Verify that you are using the correct file(s). 

2. Assemble or compile the file(s) again. 

3. Retry the operation. 

4. Submit an SPR if the problem persists. The error might be an compiler 
or assembler bug or a LINK/LIBR/PAT bug. Be sure when you submit 
an SPR to include a copy of the dialogue used and machine-readable 
copies of both the source and the object files. 

COMMENT #3 

A few of the error messages refer to the word "option" which in this context 
has the same meaning as the term "switch" used in RSTS/E documenta­
tion. Switch refers to the combination of a slash character (I) and a word 
which cause the MACRO, LINK, LIBR, or PAT utility to act in a prescribed 
way. The word "switch" has been used here to comply with other RSTS/E 
documentation. 

B.1 MACRO Error Messages 

A list of MACRO assembler error messages follows: 

?MACRO-F-Bad option 

The specified switch was not recognized by the program. Check for a typing 
error in the command line. Use only a valid listing control or functional 
control (or CREF) switch. 

?MACRO-F-Device full DEV: 

The output device does not have enough room for an output file specified in 
the command string. Increase storage space or specify another device. Refer 
to COMMENT #1 at the beginning of this appendix. 

B-2 Error Message Summary 



?MACRO-F-File not found DEV:FILENAME.TYPE 

The input file in the command line does not exist on the specified device. 
Correct any file specification errors in the command line and retype. 

?MACRO-F-Illegal command 

The command line contains a syntax error or specifies more than six input 
files. Correct the command line and retype. 

?MACRO-F-Illegal device DEV: 

The device specified in the command line does not exist on the system. 
Specify a different device name. 

?MACRO-F -Insufficient memory 

There were too many symbols, macro, or nested repeat blocks in the 
program being assembled. Increase memory space. Try to reduce the 
complexity of nested macro calls. 

?MACRO-F-I/O error on DEV:FILENAME.TYPE 

A hardware error occurred during a read from or write to the specified file. 

?MACRO-F-I/O error on work file 

MACRO failed to read, write, or open its work file, WRK.TMP. Free up 
some space on the public structure or specify a different device for the work 
file. 

?MACRO-F-Invalid macro library 

The library file has been corrupted, or it was not produced by the librarian 
LIBR. Use LIBR to generate a new copy of the library. 

?MACRO-F-Output device full on DEV:FILENAME.TYPE 

There was no room to continue writing the output file. Increase storage 
area. Refer to COMMENT #1 at the beginning of this appendix. 

?MACRO-F-Read error on MACRO library 

MACRO detected a bad record in the MACRO library. This error can occur 
when the library is bad. Rebuild the MACRO library. 

?MACRO-F-Storage limit exceeded (64K) 

MACRO's Virtual Symbol Table can store symbols and macros up to 64K 
words in any combination. The program contains more than 64K total of 
these elements. Check for a condition that leads to excessive size, such as a 
macro expansion that recursively calls itself without a terminating 
condition. If necessary, reduce the requirements of the source program by 
segmenting it into separate modules, and assemble each of them 
separately. 

?MACRO-W-I/O error on CREF file: CREF aborted 

Either there is not enough space to perform the operation, or an I/O error 
occurred while the CREF work file was being written. CREF processing is 
terminated but the assembly will continue. Increase storage space, specify 
a different device for the CREF file, or correct the cause of the I/O error. 

Error Message Summary B-3 



8.2 LINK Error Messages 

A list of LINK error messages follows: 

?LINK-F-Address space exceeded 

The high limit of all program sections exceeded 32K words when all sec­
tions were concatenated. Reduce the size of the program by using overlays 
or by reducing the size of the largest segment within each overlay region. 

?LINK-F-ASECT too big 

An absolute section overlaps into an occupied area of memory or an overlay 
region. Locate a segment of available memory large enough to contain the 
absolute section, and substitute the appropriate starting address. 

?LINK-F-/B No value 

No argument was specified to the IB switch. Reenter the command string, 
specifying an unsigned, even, octal number as the argument to the IB 
switch. 

?LINK-F-/B Odd value 

The argument to the IB switch was not an even number. Reenter the com­
mand string, specifying an even number as the argument. This error indi­
cates that the object module was bad (or perhaps not a legal object module). 

?LINK-F-Bad complex relocation in DEV:FILENAME.TYPE 

During pass 2 of the linker, a complex relocation string in the input file was 
found to be invalid. Check for a typing error in the command line; verify 
that the correct file names were specified as input. Refer to COMMENT #2 
at the beginning of this appendix. 

?LINK-F-Bad GSD in DEV:FILENAME.TYPE 

There was an error in the global symbol directory (GSD). The file is proba­
bly not an legal object module. Verify that the correct file names were 
specified as input; check for a typing error in the command line. Refer to 
COMMENT #2 at the beginning of this appendix. 

?LINK-F-Bad RLD in DEV:FILENAME.TYPE 

An invalid relocation directory (RLD) command exists in the input file. The 
file is probably not a legal input module. Check for a typing error in the 
command line; verify that correct file names were specified as input. Refer 
to COMMENT #2 at the beginning of this appendix. (In addition to the 
remarks in COMMENT #2, check the source code to make sure that all 
modules contributing to a data p-sect are word-aligned.) 

?LINK-F-Bad RLD symbol in DEV:FILENAME.TYPE 

An error occurred in the language processor because a global symbol named 
in a relocatable record was not defined in the global symbol definition 
record. The object file is bad. Refer to COMMENT #2 at the beginning of 
this appendix. 

B-4 Error Message Summary 



?LINK-F-/H Value too low 

The value specified as the high address for linking was too small to accom­
modate the code. Obtain map output without using the IH switch to deter­
mine the space required, and then retry the operation. 

?LINK-F -Illegal character 

The character specified was not used in the proper context. Examine the 
command string for errors in syntax, making sure that the characters for 
symbols are legal Radix-50 characters. Correct and retype. 

?LINK-F-Illegal device 

The device indicated was not available. Verify that the device name is valid 
for the system in use. ' 

?LINK-F-Illegal error 

An internal error occurred while the linker was recovering from a previous 
system or user error. Refer to COMMENT #2 at the beginning of this 
appendix. 

?LINK-F-Illegal record type in DEV:FILENAME.TYPE 

A formatted binary record had a type not in the range 1-10 (octal). Refer to 
COMMENT #2 at the beginning of this appendix. 

?LINK-F-Insufficient memory 

There was not enough memory to accommodate the symbol table, or other 
buffers used by LINK. Try linking without the IG, IP, or IS switch (if 
used), reduce the number of globals used, or use fewer libraries. 

?LINK-F-Library EPT too big, increase buffer with /G 

The IG switch was not specified in RTll and a IX library with too large an 
Entry Point Table was encountered. Relink, and issue IG switch on first 
input line. 

?LINK-F-Library list overflow, increase size with /P 

The linker's library routing list was exceeded. Relink the program that 
uses the library routines. The IP:n switch default is 170 (decimal). Increase 
the size of the list by specifying a size greater than the default. 

?LINK-F-/M Odd value 

An odd value was specified for the stack address. Check for a typing error 
in the command line. Reenter the command, specifying an even value to the 
1M switch. 

?LINK-F-Map device full DEV:FILENAME.TYPE 

There was no room in the directory for the file name, or there was no room 
on the output device for the map file. Increase storage space or use another 
device. Refer to COMMENT #1 at the beginning of this appendix. 

?LINK-F-Old library format in DEV:FILENAME.TYPE 

The format of the library file is outdated (previous to Version 2C). Rebuild 
the library file using the current librarian. 

Error Message Summary B-5 



?LINK-F-Protected file already exists DEV:FILENAME.TYPE 

An attempt was made to open a file using a name already associated with 
an existing protected file. Use a different name to open a new file, rename 
the file with PIP, change the protection code, or use another file. 

?LINK-F-Read error in DEV:FILENAME.TYPE 

A hardware error occurred while the indicated input file was being read. 
Check for read-locked or off-line devices. 

?LINK-F-SAV device full DEV:FILENAME.TYPE 

There was no room in the directory for the file name, or there was no room 
on the output device for the SA V image. Increase storage space. Refer to 
COMMENT #1 at the beginning of this appendix. 

?LINK-F-SAV read error 

A hardware error occurred while LINK was reading the output SA V file. 
Check for read-locked or off-line devices. 

?LINK-F-SAV write error 

A hardware error occurred while LINK was writing the SA V image file. 
The device may be full or you protected the file against yourself (that is, 
*FOO<63> = BAR). Check for write-locked or off-line devices, use another 
device, free up space, or fix the command line. 

?LINK-F-Size overflow of section AAAAAA 

The program section in question increased program size to more than 32K 
words. Reduce the size of the program, either in this section or elsewhere in 
the program. 

?LINK-F-STB device full DEV:FILENAME.TYPE 

There was no room in the directory for the file name, or there was no room 
on the output device for the symbol table (STB) file. Increase storage space 
or use another device. Refer to COMMENT #1 at the beginning of this 
appendix. 

?LINK-F-STB not allowed with /S and a map 

An attempt was made to produce STB and MAP in the same linking opera­
tion, which is prohibited with the /S switch. Produce STB and MAP files in 
separate linking operations. 

?LINK-F-STB write error 

A hardware error occurred while LINK was writing the symbol table (STB) 
file. The device may be full, or you protected the file against yourself (that 
is, *FOO<63> = BAR). Check for write-locked or off-line devices. 

?LINK-F -Storing text beyond high limit 

An input object module may have caused the linker to store information in 
the image file beyond the high limit of the program; there is an error 
condition in the object module. Reassemble or recompile the program. 
Submit an SPR if the condition persists. 

B-6 Error Message Summary 



The amount of space allocated for the output file was insufficient, or there 
was not enough room on the output device for the output file. Specify a 
larger output file size, or increase storage space. 

?LINK-F-Symbol table overflow 

Too many global symbols were used in the program. Retry the link, using 
the IS switch. If the error still occurs, reduce the size of the library list 
using the IS and IP:n switches, with a value less than the default (170). If 
the error continues, the link cannot take place in the available memory. 
Reduce the number of globals used. 

?LINK-F-/T Odd value 

An odd value was specified for the transfer address. Check for a typing 
error in the command line. Reenter the command, specifying an even value 
to the IT switch. 

?LINK-F-Too many program segments 

More than 1023 program segments were specified. Restructure overlays to 
reduce the number. 

?LINK-F-/U or /Y value not a power of 2 

The value specified with the IU or the IY switch is not a power of 2. 
Reenter the command with a value that is a power of 2. 

?LINK-F-Word relocation error in FILENAME 

During concatenation of data p-sects, a word reference was moved to an odd 
byte. Place the .EVEN assembler directive at the end of data p-sects to 
make sure that all word references in data p-sects are on a word boundary 
when relocated by LINK. 

?LINK-W-Additive reference ofNNNNNN a segment # MMMMMM 

A call or a jump to an overlay segment was not made directly to an entry 
point in the segment. NNNNNN represents the entry point; MMMMMM 
represents the segment number. Make sure that calls or jumps to overlay 
segments are made directly to entry points in the segment. See Section 3.4 
for more information about using overlays. 

?LINK-W-Bad option: / a 

The linker did not recognize the I a switch (I a represents the unrecognized 
switch) specified in the command line, or an illegal combination of switches 
was used. If the bad switch occurred in the first command line, the entire 
command line is ignored and LINK prompts for a new command; enter 
another command. If the bad switch occurred on a subsequent command 
line, the switch is ignored and processing continues. In a continued com­
mand line, make sure that the only switches used are 10, IV, IC, and I I. 
See Section 3.2.3 for a list of valid switches. Reexamine the command line 
and check for a typing error. 

Error Message Summary B-7 



?LINK-W-Boundary section not found 

The program section name specified as a boundary section with the IY 
switch was not found in the modules that were linked; or the program 
section does not exist in the root segment. The linker continues after the 
warning, without performing the IY operation. Check the responses to the 
Boundary section? prompt, and use the correct section name the next time 
you link. 

?LINK-W-Byte relocation error at NNNNNN 

The linker attempted to relocate and link byte quantities but failed because 
the high byte of the relocated value (or the linked value) was not all zeros. 
NNNNNN represents the address at which the error occurred. 

The relocated value is truncated to eight bits and the linker continues 
processing. Correct the source program so that no overflow occurs in relo­
cated byte quantities. Reassemble and relink. 

?LINK-W-Complex relocation divide by 0 in DEV:FILENAME.TYPE 

An attempt was made to divide by zero in a complex relocation string in the 
file indicated. A result of zero is returned and linking continues. Check 
uses of division in complex relocation string expressions to keep the result 
of the division from equaling zero. 

?LINK-W-Conflicting section attributes AAAAAA 

The program section symbol was defined with different attributes. The 
attributes of the first definition are used and the linking process continues. 
Check the source program, and use the desired section attributes for that 
program section. 

?LINK-W-Default system library not found SYSLIB.OBJ 

The linker did not find $SYSLIB.OBJ on the public structure when unde­
fined globals existed or when overlays were being used. Obtain a copy of 
$SYSLIB.OBJ from backup and relink the program, or correct the source 
files by removing the undefined globals listed on the terminal. SYSLIB in 
the system library account [1,2] contains the overlay handlers, which are 
required when overlays are specified. 

?LINK-W-Extend section not found 

The extend section name given with the IE switch was not found in the 
modules that were linked; or the extend section did not exist in the root 
segment. The linker continues after the warning, without performing the 
extend operation. Check the response to the Extend section? prompt, and 
use the correct section name the next time you link. 

?LINK-W-File not found DEV:FILENAME.TYPE 

The input file indicated was not found. Check for a typing error in the 
command line. Verify that the file name exists as entered in the command 
line, and retry the operation. 

?LINK-W-Load address odd 

An odd load address was specified with the IQ switch. Reenter the line with 
an even address. 

B-8 Error Message Summary 



?LINK-W-Load address too low AAAAAA 

The load address specified for the p-sect was too low. The p-sect was ignored 
to avoid overlaying code in a previous section. 

Link continues execution without loading the p-sect at the specified 
address. Relink and specify a higher load address for the p-sect. 

?LINK-W-Load section not found AAAAAA 

The load section specified was not found in the root or did not exist in the 
root segment. 

LINK continues execution, ignoring the placement request for the p-sect in 
question. Reorder the modules to place the p-sect containing the load sec­
tion in the root or specify the correct name, and then relink. 

?LINK-W-Map write error 

A hardware error occurred while the map output file was being written. 
The map output is terminated and the linking process continues. 

?LINK-W-Multiple definition of symbol 

The symbol indicated was defined more than once. Extra definitions are 
ignored. Make sure each symbol is defined only once. 

?LINK-W-No load address 

No address was specified with the IQ switch. Reenter the command line, 
and specify a load address. 

?LINK-W-IO or IV option error, re-enter line 

An error was made in the use of the 10 switch. There are two probable 
errors: (1) no value was given with the 10 switch, or (2) a value was given 
but it is incorrect. Check the context and reenter the line. 

?LINK-W-Round section not found AAAAAA 

The symbol representing the program section specified with the IV switch 
was not found in the symbol table. Linking continues with no round-up 
action. Check the source to make sure the p-sect exists in the root. 

?LINK-W-Stack address undefined or in overlay 

The stack address specified by the 1M switch was either undefined or in an 
overlay. The stack address is set to the default 1000. Check for a typing 
error in the command line. Verify that the stack address or global symbol is 
not defined in an overlay segment. 

?LINK-W-Transfer address undefined or in overlay 

The transfer address was not defined or was in an overlay. Check for a 
typing error in the command line. Respond to the IT switch with either a 
colon followed by an unsigned six-digit octal number or with a carriage 
return followed by the global symbol whose value is the transfer address of 
the load module. 

Error Message Summary B-9 



?LINK-W-Undefined globals: 

The globals listed were undefined (possibly because $SYSLIB was not pres­
ent and $SYSLIB modules were referenced or overlays were used). Check 
for a typing error in the command line. The undefined globals are listed on 
the terminal and also in the link map when requested. Correct the source 
program. Verify that all necessary object modules are indicated in the 
command line or are present in the libraries specified or in $SYSLIB. 

B.3 LIBR Error Messages 

A list of LIBR error messages follows: 

?LIBR-F-Bad GSD in DEV:FILENAME.TYPE 

There was an error in the global symbol directory (GSD). The file is proba­
bly not a legal object module. Refer to COMMENT #2 at the beginning of 
this appendix. 

?LIBR-F-Bad library for listing or extract 

The input file specified for extraction or to produce a directory listing was 
not a valid object library file. It may be necessary to rebuild the input file. 
Refer to COMMENT #2 at the beginning of this appendix. 

?LIBR-F-Bad option: fa 

The librarian did not recognize the given switch; / a represents the unrecog­
nized switch. The librarian restarts and prompts with an asterisk. Check 
for a typing error in the command line. Verify that the switch is legal for 
the librarian, and retry the operation. 

?LIBR-F-EOF during extract 

The end of the input file was reached before the end of the module being 
extracted. The object module format is probably incorrect. Rebuild the 
library file. If the error condition persists, reassemble the object module(s) 
belonging to that file. Also, refer to COMMENT #2 at the beginning of this 
appendix. 

?LIBR-F-File not found DEV:FILENAME.TYPE 

One of the input files indicated in the command line was not found. LIBR 
prints an asterisk; the command may be reentered. Check for a typing error 
in the command line. Verify that the file name exists as entered in the 
command line, and retry the operation. 

?LIBR-F-Illegal device 

The device indicated was not available. Verify that the device is valid for 
the system in use. 

?LIBR-F -Illegal error 

An internal error occurred while the librarian was recovering from a previ­
ous system or user error. Refer to COMMENT #2 at the beginning of this 
appendix. 

B-IO Error Message Summary 



?LIBR-F-Illegal input file DEV:FILENAME.TYPE 

A file other than a form library file or a form descriptor file was given as 
input when a form (IF) library was being created. Make sure that you 
entered the input file name correctly and that the file is a valid one. 

?LIBR-F -Illegal option combination 

Switches have been specified that request conflicting functions to be 
performed. For example, if IE is specified, no other switch may be used. If 
1M is specified, only continuation switches (lC and I!) may follow. Exam­
ine the logic of the command line and correct it if necessary. Check for 
typing errors, and retry the operation. 

?LIBR-F-Illegal record type in DEV:FILENAME.TYPE 

A formatted binary record had a type not in the range 1-10 (octal). Verify 
that the correct file names were specified as input; check for a typing error 
in the command line. Refer to COMMENT #2 at the beginning of this 
appendix. 

?LIBR-F-Insufficient memory 

Available memory was used up. The current command is aborted. Increase 
memory space. 

?LIBR-F-Macro name table full, use /M:n 

The number of macros to be placed in the macro name table was greater 
than the number allowed. Increase the size of the macro name table by 
supplying a value (n) to the switch IM:n. The default is 128 names. 

?LIBR-F-No value allowed: /a 

The specified switch I a does not take a value; I a represents the switch that 
you used. The librarian restarts and prompts with an asterisk. Check for 
typing errors; verify that the correct switch has been specified in the com­
mand line, and retry the operation. 

?LIBR-F -Output and input filenames the same 

The same file name was specified for both input and output files when the 
command string to build the macro library was specified. Use different file 
names for the input and output files specified to build a macro library. The 
default input and output file type is .MAC. 

?LIBR-F-Output device full DEV:FILENAME.TYPE 

The device was full; LIBR was unable to create or update the indicated 
library file. Increase storage space, or use another device. Refer to 
COMMENT #1 at the beginning of this appendix. 

?LIBR-F-Read error in DEV:FILENAME.TYPE 

An unrecoverable error occurred during the processing of an input file. 
LIBR prints an asterisk and waits for another command to be entered. A 
hardware problem may have caused this error. 

Error Message Summary B-ll 



?LIBR-F-/R or IU given on library file DEV:FILENAME.TYPE 

A IR or IV switch incorrectly followed the specified library file in the 
command string. Vse the IR or IV switch only after input file names 
containing modules for replacement or updating. Correct and reenter the 
command string. 

?LIBR-F-/U given on library file DEV:FILENAME.TYPE 

This message occurs if the IV illegally modified a forms library file. Use 
the IV switch only after input file names containing modules for 
replacement or updating. 

?LIBR-F-Write error 

The LIBR program detected an unrecoverable error while processing an 
output file. This may indicate that there was not enough space left on a 
device to create a file. Increase storage space. 

?LIBR-W-Duplicate form name of FORMNM 

Two forms of the same name were specified as input and a IV switch was 
not given on the second form. The first form encountered was put in the 
output file. All duplicates are ignored. Vse the IV switch to update a form 
of the same name as a previously specified file. 

?LIBR-W-Duplicate module name of AAAAAA 

A new module was inserted in a library, but its name is the same as a 
module that is already in the library. The librarian does not reenter the 
name in the directory. The old module is not updated or replaced. For the 
librarian program, insertion is the default operation and no command 
switch is needed; the switch for update is IV, and the switch for replace­
ment is IR. 

?LIBR-W-Illegal character 

The symbol name entered contained an illegal character. Retype the com­
mand line, using Radix-50 characters only, and retry the operation. 

?LIBR-W-Illegal delete of AAAAAA 

An attempt was made to delete from the library's directory a module or an 
entry point that does not exist; AAAAAA represents the module or entry 
point name. The entry point name or module name is ignored, and process­
ing continues. Check for a typing error in the command line. 

?LIBR-W-Illegal extract of AAAAAA 

An extraction of the identified global symbol was attempted, but the 
symbol was not found in the library. Check the command string and the 
contents of the library file for the correct library file and global symbol 
specifications. 

?LIBR-W-Illegal insert of AAAAAA 

An attempt was made to insert into a library a module that contains the 
same entry point as an existing module; AAAAAA represents the entry 
point name. The entry point is ignored, but the module is still inserted into 
the library. No user action is necessary. 

B-12 Error Message Summary 



?LIBR-W-Illegal replacement of AAAAAA 

An attempt was made to replace in the library file a module that does not 
already exist; AAAAAA represents the module name. The module is 
ignored and the library is built without it. Review the module names in the 
library file. Make sure the correct module was specified. 

?LIBR-W-Nulllibrary 

An attempt was made to build a library file containing no directory entries. 
Verify that the correct file names were specified as input; check for a typing 
error in the command line. Verify that the input to the library has at least 
one directory entry. 

?LIBR-W-Only continuation allowed 

An attempt was made to enter a command string beyond the end of the 
current line without the use of a continuation character. Enter a / C switch 
or / / at the end of the current line. 

8.4 PAT Error Messages 

A list of PAT error messages follows: 

?PAT -F -Command line error 

There is a syntax error in the PAT command line. Check for typing errors, 
and reenter the command line. 

?PAT-F-Correction file has bad GSD 

There was an error in the global symbol directory (GSD). The file is proba­
bly not a legal object module. Refer to COMMENT #2 at the beginning of 
this appendix. 

?PAT-F-Correction file has bad RLD 

A global symbol named in a relocatable record was not defined in the global 
symbol definition record. This error condition indicates a bad object file. 
Refer to COMMENT #2 at the beginning of this appendix. 

?PAT-F-Correction file has illegal record 

The correction file does not appear to be a proper object file. The standard 
language processors should produce the required format. Verify that the 
correction file has the proper format, and retype the command line. Refer to 
COMMENT #2 at the beginning of this appendix. 

?PAT-F-Correction file missing 

The command line does not have a correction file specification. PAT 
requires both an input file and a correction input file in every command. 
Enter a complete command. 

?PAT-F-Correction file missing RLD record 

The file is missing an RLD 7 command before the first TXT record. This is 
the p-sect definition command. PAT cannot process the file. This could 
simply mean a bad input file. Reassemble the correction file. Refer to 
COMMENT #2 at the beginning of this appendix. 

Error Message Summary B-13 



?PAT-F-Correction file read error 

PAT detected an error while reading the correction file. Input hardware can 
cause this error. Retry the command. Check for off-line devices. 

?PAT-F-Illegal error 

PAT has detected an internal software error condition. Refer to 
COMMENT #2 at the beginning of this appendix. 

?PAT-F-Incompatible reference to global AAAAAA 

The correction file contains a global symbol with improper attributes. 
Modify the attributes of the global symbol. Choose definition or reference, 
and choose relocatable or absolute. Reassemble the correction file, and 
retype the command line. 

?PAT-F-Incompatible reference to section AAAAAA 

The correction file contains a section name with improper attributes. 
Modify the section attributes or section type. Make sure the attributes 
match. Reassemble the correction file, and retype the command line. 

?PAT-F-Input file has bad GSD 

There was an error in the global symbol directory (GSD). The file is proba­
bly not a legal object module. Verify that the input file name is correct; 
check for a typing error in the command line. Refer to COMMENT #2 at 
the beginning of this appendix. 

?PAT-F-Input file has bad RLD 

An error occurred in the language processor because a global symbol named 
in a relocatable record was not defined in the global symbol definition 
record. Refer to COMMENT #2 at the beginning of this appendix. 

?PAT-F-Input file has illegal record 

The format of the input file is not compatible with the object file format 
PAT requires. The standard language processors should produce the 
required format. Verify that the input file has the proper format, and 
retype the command line. Refer to COMMENT #2 at the beginning of this 
appendix. 

?PAT-F-Input file missing 

The command line does not have an explicit input file specification. PAT 
requires both an input file and a correction file in every command. Enter a 
complete command. . 

?PAT-F-Input file read error 

PAT detected an error while reading the input file. Hardware errors on 
input can cause this error. Correct the problem, and retry the command. 

?PAT-F-Insufficient memory 

PAT ran out of memory. Allow the job to use more memory, or apply the 
patch in sections. 

B-14 Error Message Summary 



?PAT-F-Only IC allowed 

The input module or correction file specification contain an illegal switch. 
Enter a command line with the appropriate switches. 

?PAT-F-Output file full 

There was not enough free space on the output volume for the corrected 
object file. Increase storage space, or use another device. Refer to 
COMMENT #1 at the beginning of this appendix. 

?PAT-F-Output write error 

PAT encountered an error while writing the output file. This error occurs 
when the output device is write-locked or when there is a hardware error. 
Correct the problem and retry. 

?PAT-F-Unable to locate module AAAAAA 

The correction file has a module name that does not exist in the input file; 
AAAAAA represents the name of the nonexistent module. Update the 
input file to include the missing module, or correct an improper module 
name in the correction file. Retype the command line. 

?PAT-W-Additional input files ignored 

The command line specified more than two input files. PAT processed the 
first as the input module to be corrected and the second as the correction 
file. PAT ignores all other files. Only one correction file was processed. 
Merge the corrections into one file and reissue the command. 

?PAT-W-Additional output files ignored 

The command line has more than one output file specification. PAT cannot 
create more than one file for each command line and ignores all other 
output files specified, except the first. Enter a correct command. PAT's 
output file must be in the "outl" position for the general command line 
format: 

outl,out2,out3 = input,correct 

The command was in fact executed and thus further action may not be 
needed. 

?PAT-W-Correction file checksum error 

PAT found a checksum value that was different from the value for the / C 
correction file switch. Mistyping the / C switch value or specifying an 
invalid version of the correction file causes this error. Check for typing 
errors, and check both the checksum value and the correction file name 
used. Enter a correct command line. 

?PAT - W -Correction file checksum is NNNNNN 

PAT responds to the / C switch on the correction file with this message; 
NNNNNN is the octal value of the sum of all binary data composing the 

Error Message Summary B-15 



file. This message is for your information. The number printed is the check­
sum you would use with the IC:n switch if you plan to apply this patch 
again. 

?PAT-W-Input file checksum error 

PAT found a checksum value that was different from the value for the IC 
input file switch. Mistyping the IC switch value or specifying an invalid 
version of the input file causes this warning. Check for typing errors, and 
check both the checksum value and the input file name used. Enter a 
correct command line. 

?PAT-W-Input module checksum is NNNNNN 

PAT responds to the IC switch on the input module with this message. The 
octal value NNNNNN is the sum of all binary data in the file. This 
message is for your information. The number printed is the checksum you 
would use with the IC:n switch if you apply this patch again. 

B-16 Error Message Summary 



Glossary 

Absolute Address 

The binary number that is assigned as the address of a physical memory storage 
location. 

Absolute Section 

The portion of a program in which the programmer has specified physical memory 
locations of data items. 

Address 

A label, name, or number that designates a location in memory where information 
is stored. 

Argument 

A variable or constant value supplied with a command that controls its action, 
specifically its location, direction, or range. 

Assembler 

A program that translates symbolic source code into machine instructions by 
replacing symbolic operation codes with binary operation codes, and symbolic 
addresses with absolute or relocatable addresses. 

Assembly Language 

A symbolic programming language that normally can be translated directly into 
machine language instructions and is, therefore, specific to a given computin/l 
system. 

Assembly Listing 

A listing, produced by an assembler, that shows the symbolic code written by a 
programmer next to a representation of the actual machine instructions 
generated. 

Glossary-l 



CCl (Concise Command language) 

A shorthand way to run a RSTS/E system program, a DIGITAL-supplied program 
such as MACRO, or a user program. The CCL syntax allows you to run a program 
(MACRO, LINK, LIBR, PAT, for example) without the RUN command and unlike 
the RUN command allows you to place the entire command string on one line. 
After the program finishes executing, control returns to your keyboard monitor. 

Command 

A word, mnemonic, or character that, by virtue of its syntax in a line of input, 
causes a computer system to perform a predefined operation. 

Command language 

The vocabulary used by a program or set of programs that directs the computer 
system to perform predefined operations. 

Command String 

A line of input to a computer system that generally includes a command, one or 
more file specifications, and optional switches. Command string may be used 
interchangeably with the term command line. 

Compiler 

A program that translates a high-level source language into a language suitable 
for a particular machine. 

Cross-Reference listing 

A printed listing that identifies all references in a program to each specific symbol 
in a program and the statements where they are defined or used. 

DCl (DIGITAL Command language) 

A set of commands available on many different DIGITAL systems. These perform 
basic tasks like copying files, printing files, and running programs. On RSTS IE, 
the DCL command environment is managed by the DCL run-time system, which 
has a keyboard monitor like RTll. 

Device Name 

A unique name that identifies each device unit on a system. It usually consists of a 
two-character device mnemonic followed by an optional device unit number and a 
colon. 

Directives 

Mnemonics in an assembly language source program that are recognized by the 
assembler as commands to control a specific assembly process (as opposed to 
instructions) . 

Glossary-2 



DK: (Public Structure) 

See Public Structure and System Disk. 

Emulator 

Code that allows software written for a specific operating system to be run on a 
different type of computer system or on a different operating system. 

FORTRAN (FORmula TRANslation) 

Global 

A problem-oriented language designed to permit programmers to express mathe­
matical operations in a form resembling conventional notation. It is used in a 
variety of applications, including process control, information retrieval, and 
commercial and scientific data processing. 

A value defined in one program module and used in others. Globals are often 
referred to as entry points in the module in which they are defined and as exter­
nals in the other modules that use them. 

Global Symbol 

A global value or global label. 

Instruction 

A coded command that tells the computer what to do and where to find the values 
with which it is to work. A symbolic instruction is a mnemonic chosen to represent 
the operation being performed. Symbolic instructions must, however, be changed 
into machine instructions (by the assembler) before they can be executed by the 
computer. 

Job Keyboard Monitor 

The keyboard monitor that manages a job. Your job keyboard monitor is the same 
as the default keyboard monitor unless you change it. This you can do with the 
SWITCH program. After you change your job keyboard monitor, you remain under 
its control until you log out or use SWITCH again to change your keyboard 
monitor. 

Keyboard Monitor 

The part of a run-time system with which you communicate. When you work in 
the DCL environment, for example, you type commands that the DCL keyboard 
monitor receives and then interprets. Each RSTSIE keyboard monitor has an 
identifying "prdmpt" that it displays to indicate when it expects command input. 
Common keyboard monitor prompts on RSTS IE are: dollar sign ($) for DCL, 
"Ready" for BASIC-PLUS, angle bracket (» for RSX, and dot (.) for RTll. 

Glossary-3 



Library 

A file containing one or more macro definitions or one or more object modules that 
are routines that can be incorporated into other programs. 

Library Module 

Linker 

A module from a library. 

A program that combines many object modules into an executable module. It satis­
fies global references and combines program sections. 

Load Module 

A program in a format ready for loading and executing. 

Machine Language 

The actual language used by the computer when performing operations. 

Main Program 

The module of a program that contains the instructions at which program 
execution begins. Normally, the main program exercises primary control over the 
operations performed and calls subroutines or subprograms to perform specific 
functions. 

Monitor 

The master control program that observes, supervises, controls, or verifies the 
operation of a computer system. The collection of routines that controls the opera­
tion of user and system programs, schedules operations, allocates resources, and 
performs I/O. 

Object Module 

The primary output of an assembler or compiler, which can be linked with other 
modules and loaded into memory as an executable program. The object module is 
composed of the machine language code, relocation information, and the global 
symbol table specifying entry points and external symbols used within the pro­
gram. It is also known as a module. 

Object Time System (OTS) 

The collection of modules that is called by compiled code in order to perform 
various utility or supervisory operations (for example, FORTRAN Object Time 
System). 

OP-Code (Operation Code) 

The part of a machine language instruction that identifies the operation the CPU 
is to perform. 

Glossary-4 



Operand 

The data that an instruction operates upon. An operand is usually identified by an 
address part of an instruction. 

Operating System 

The collection of programs, including a monitor or executive and system programs, 
that organizes a central processor and peripheral devices into a working unit for 
the development and execution of application programs. 

Overlay Segment 

A section of code treated as a unit that can overlay code already in memory and be 
overlaid by other overlay segments when called from the root segment or another 
resident overlay segment. It is also known as an overlay. 

Program 

A set of machine instructions or symbolic statements combined to perform some 
task. 

Program Development 

The process of writing, entering, translating, and debugging source programs. 

Program Section 

A named, contiguous unit of code (instructions or data) that is considered an entity 
and that can be relocated as a unit without destroying the logic of the program. 

Public Structure 

The set of all disks that are public. When you do not include a device name in your 
file specification, the system by default accesses one of the disks on the public 
structure. Each of logicals SY: and DK: represents the name for all disks in the 
public structure. Thus, if you do not have any public disks other than the system 
disk, then SYO: and SY: are equivalent. If you have more than the system disk in 
the public structure, then SY: or DK: refers to the aggregate of all public disks. 
(See System Disk.) 

Relocate 

To move a routine from one portion of storage to another and to adjust the neces­
sary address references so that the routine, in its new location, can be executed. 

Root Segment 

The segment of an overlay structure that, when loaded, remains resident in mem­
ory during the execution of a program. It is also known as the root. 

Source Code 

Text, usually in the form of an ASCII format file, that represents a program. Such 
a file can be processed by a compiler or assembler. 

Glossary-5 



Source Language 

The language in which a source program is written. It is a system of symbols and 
syntax that is used to describe a procedure that a computer can execute. 

Subprogram 

A program or a sequence of instructions that can be called to perform the same 
task (though perhaps on different data) at different points in a program, or even in 
different programs. 

System Disk 

The disk that is required by the RSTS/E monitor to get the system started and 
thereafter to allow the system to run properly under timesharing. The system­
wide logical SYO: is assigned to the system disk. (See Public Structure.) 

Utility Program 

Any general-purpose program included in an operating system to perform common 
functions. On RSTS/E, a utility program is called a CUSP (Commonly Used 
System Program). 

Glossary-6 



Index 

Page numbers marked in bold indicate the main entry for an indexed item. A page number 
followed by the letter "f" means the entry is in a figure and a "t" means the entry is in a table. 
Page references that begin with "Gl" mark Glossary entries. 

A 
IA switch 

alphabetizes global symbols, 3-30 
LIBR, 4-3, 4-4t 
LINK,3-12t 

ABS argument, for MACRO IE and ID, 2-10t 
ABS attribute value, p-sect (LINK), 3-4t, 3-5, 

3-6 
.ABS. absolute p-sect, 2-12 
Absolute 

address (definition), Gl-l 
block parameters information, 3-18t 
global symbol, 3-6,3-8 . 
p-sect (.ABS.), 2-12 

Absolute section 
definition, Gl-l 
LINK,3-3 
part of root, 3-26 

Access-code attribute 
p-sect, 3-4t 
section, 3-6t 

Address, definition, Gl-l 
Allocation-code attribute 

p-sect, 3-4t 
section, 3-6t 
use of, 3-5 

AMA argument, for MACRO IE and ID, 2-10t 
Arguments 

BEX for MACRO, 2-9t 
BIN for MACRO, 2-9t 
C for MACRO IC, 2-12t 
CND for MACRO, 2-9t 
COM for MACRO, 2-9t 
definition, Gl-l 
E for MACRO IC, 2-12t 
LD for MACRO, 2-9t 
LOC for MACRO, 2-9t 
M for MACRO IC, 2-12t 
for MACRO IC, 2-12t, A-3t 
for MACRO IE and ID, 2-10t, A-3t 
for MACRO IL, 2-9t, A-2t 
for MACRO IN, 2-9t, A-2t 
for MACRO IP, 2-14 
MC for MACRO, 2-9t 

Arguments (cont.) 
MD for MACRO, 2-9t 
ME for MACRO, 2-9t 
MEB for MACRO, 2-9t 
more information on, 2-10 
P for MACRO IC, 2-12t 
R for MACRO IC, 2-12t 
S for MACRO IC, 2-12t 
SEQ for MACRO, 2-9t 
SRC for MACRO, 2-9t 
SYM for MACRO, 2-9t 
TOC for MACRO, 2-9t 
TTM for MACRO, 2-9t 

ASECT. See Absolute section 
.ASECT directive, 3-18 

LINK absolute section, 3-3 
in MACRO CREF, 2-12 

Assembler, Gl-I. See also MACRO 
Assembler, definition, Gl-l 
Assembly 

language (definition), Gl-l 
listing (definition), Gl-l 
listing (sample), 2-8f 
pass switch (/P), 2-14 

ASSIGN command 
assign CF:, 2-11 
temporary work file, 2-6 use, 1-7 
use with CREF.TMP, 2-13 

Attribute 
ABS value p-sect (LINK), 3-5, 3-6 
access-code (p-sect), 3-4t 
allocation-code (p-sect), 3-4t 
CON value p-sect (LINK), 3-5, 3-6 
D value p-sect (LINK), 3-5 
I value p-sect (LINK), 3-5 
relocation-code (p-sect), 3-4t 
scope-code (p-sect), 3-4t 
section (list), 3-6t 
type-code (p-sect), 3-4t 

Attribute value 
ABS p-sect (LINK), 3-4t 
CON p-sect (LINK), 3-4t 
D p-sect (LINK), 3-4t 

Index-l 



Attribute value (cont.) 
GBL p-sect (LINK), 3-4t 
I p-sect (LINK), 3-4t 
LCL p-sect (LINK), 3-4t 
OVR p-sect (LINK), 3-4t 
REL p-sect (LINK), 3-4t 
RO p-sect (LINK), 3-4t 
RW p-sect (LINK), 3-4t 

IB switch 
LINK, 3-12t, 3-30 
not with IR, 3-32 

B 

BEX argument, MACRO IL and IN, 2-9t 
BIN argument, MACRO IL and IN, 2-9t 
Blank p-sect, 2-12 
Boundary 

address (lY), 3-38 
.EVEN for word, 3-5 

Buffer, increase size of (LINK), 3-32 

c 
C arguments, for MACRO IC, 2-12t 
IC switch 

LIBR, 4-4, 4-4t 
LINK, 3-12t, 3-30, 3-34 
MACRO,2-7t 
macro (LIBR), 4-14 
MACRO arguments for, 2-12t, A-3t 
MACRO cross-reference table, 2-11 
not with I I LINK, 3-31 
PAT (checksum), 5-2, 5-8 
placement of (MACRO), 2-11 

CCL 
CCL LINK command, 3-8, 3-9 
definition, Gl-2 
run LIBR with, 4-2 
run LINK with, 3-8 
run MACRO with, 2-2 
run PAT with, 5-1 

CDR argument, for MACRO IE and ID, 2-10t 
CF: logical, assign, 2-11 
Checksum switch, PAT, 5-8 
CND argument, MACRO IL and IN, 2-9t 
COM argument, MACRO IL and IN, 2-9t 
Command 

definition, Gl-2 
language (definition), Gl-2 

Command string 
definition, Gl-2 
LIBR, 4-2, 4-4 
LINK,3-11 
MACRO, 2-2 
PAT, 5-2 

Index-2 

Command string specification, 1-5, 1-6 
error in, 3-12 
LIBR,4-2 
libraries in, 3-14, 3-15 
LINK, 3-8, 3-11 
MACRO, 2-2, 2-3 
PAT, 5-2 

COMMON statement, create p-sect, 3-4 
Compiler, definition, Gl-2 
CON attribute value 

p-sect (LINK), 3-4t, 3-5, 3-6 
Concise Command Language. See CCL 
Continue switch 

in LIBR, 4-4, 4-5 
in LINK, 3-30 

Correction file, PAT, 5-4, 5-5 
CREF. See Cross-reference table 
CRF argument, for MACRO IE and ID, 2-10t 
Cross-reference listing, definition, Gl-2 
Cross-reference table 

IC switch, 2-11 
contents, 2-11, 2-12 
file location, 2-11 
handling files, 2-12 
obtaining MACRO, 2-11 
sample listing, 2-13f 

.CSECT directive, 3-6 
create p-sect, 3-4 
in MACRO CREF, 2-12 

CTRL/C 
in LIBR, 4-2 
in LINK, 3-10 
in MACRO, 2-4, 2-6 
in PAT, 5-2 

CTRL/Z 
in LIBR, 4-2 
in LINK, 3-10 
in MACRO, 2-4 
in PAT, 5-2 

D 
D attribute value, p-sect (LINK), 3-4t, 3-5 
ID switch 

LIBR, 4-4t, 4-6, 4-7 
MACRO,2-7t 
MACRO arguments for, 2-10t, A-3t 

.DAT file type, 1-6 
DCL 

CCL LINK command in, 3-9 
definition, Gl-2 
documentation, 1-5 
examples of MACRO in, 2-5 
keyboard monitor, 1-5 
ILIBRARY in MACRO, 2-6 



DCL (cont.) 
LINK/RT11,3-9 
LINK/RT11 IEXECUTABLE switch, 3-10t 
LINK/RT11 IMAP switch, 3-9, 3-10t 
LINK/RT11 INOEXECUTABLE switch, 
3-10t 

LINK/RT11 INOMAP switch, 3-10t 
LINK/RT11 command, 3-9, 3-10 
LINK/RT11 switches, 3-10t 
ILIST in MACRO, 2-5 
MACRO command format, 2-5 
INOLIST in MACRO, 2-5 
INOOBJECT in MACRO, 2-5 
IOBJECT in MACRO, 2-5 
prompt, 1-4 
run LIBR in, 4-2 
run LINK in, 3-8 
run MACRO in, 2-1 
run PAT in, 5-2 
run RT11 utilities in, 1-5 
switch to, 2-4 

Default keyboard monitor, how to switch, 1-5 
Device name, definition, GI-2 
DIGITAL Command Language. See DeL 
Directive 

.ASECT, 2-12, 3-3, 3-18 

.CSECT, 2-12, 3-6 
definition, Gl-2 
.DSABL IE and ID, 2-9 
.ENABL IE and ID, 2-9 
.END causing error, 2-16t 
.ERROR (P MACRO error), 2-16t 
.GLOBL (global symbols), 3-7 
.LIST,2-7 
.MACRO, 2-11, 4-14 
.MCALL, 2-11, 2-16t 
.NLIST,2-7 
.PSECT, 2-12 
.PSECT with fixed attributes, 3-6 
.TITLE (name of object module), 3-14 
use of .EVEN, 3-5 

DK: logical 
ASSIGN command, 1-7 
default device, 2-3 
definition, 1-7, Gl-3 
LIBR default, 4-3 
LINK default, 3-11t 
MACRO default, 2-4 

E 
E arguments, for MACRO IC, 2-12t 
IE switch 

LIBR, 4-4t, 4-7 
LINK, 3-12t, 3-31 

IE switch (cont.) 
LINK prompt, 3-39t 
MACRO,2-7t 
MACRO arguments for, 2-10t, A-3t 

Emulator 
definition, Gl-3 
RSTS/E RT11, 3-17 

.ENABL directive, for IE and ID, 2-9 

.END directive, causing error, 2-16t 
Entry point. See Global symbols 
Entry point table, multiple definition table, 

3-17 
EPT. See Entry point table 
Error codes, MACRO, 2-14, 2-15t, 2-16t 
.ERROR directive, program-defined error 

(MACRO), 2-16t 
Error messages 

Bad input, B-2 
LIBR, B-10 to B-13 
LINK, B-4 to B-10 
location in manual, 1-7 
MACRO, B-2 to B-3 
PAT, B-13 to B-16 
RT11 and RSTS/E, B-2 
RT11 vs RSTS/E, B-1 
types of utility, B-1 

.EVEN directive, use of, 3-5 
IEXECUTABLE switch, DCL LINK/RT11, 

3-9, 3-10t 
Exit 

LIBR,4-2 
LINK,3-10 
MACRO, 2-4 
PAT,5-2 

Extended Memory (XM) Monitor, 1-1 

F 
IF switch, LINK, 3-12t, 3-31 
File 

definition of library, 3-2 
LINK symbol definition (STB), 3-11 
memory image, 3-17 
p-sect order of nonoverlaid, 3-6 
p-sect order of overlaid, 3-6 
RSTS/E specification for, 1~ 
symbol table definition (STB), 3-13, 3-14 
types (list), 1~ 

File specification 
MACRO,2-3 
MACRO default values, 2-4t 
MACRO switches, 2-6, 2-7t, A-It 
RSTS/E format, 1~ 

.FOR file type, 1-6 
Foreground/Background (FB) Monitor, 1-1 

Index-3 



FORTRAN 
definition, Gl-3 
librarY,3-12t 
link library with IF, 3-31, 3-32 
Object Time System (OTS), 1-2 
overlay structure for, 3-21£ 
use of RT11 utilities, 1-3 

FPT argument, for MACRO IE and ID, 2-10t 

G 
IG switch 

LIBR, 4-4t, 4-7, 4-8 
library EPT, 3-17 
LINK, 3-12t, 3-32 

GBL argument, for MACRO IE and ID, 2-10t 
GBL attribute value, p-sect (LINK), 3-4t 
Global 

definition, 3-7t, Gl-3 
label,3-2 
reference, 3-7t 
section, 3-5 
value, 3-2 

Global symbols, 3-7 
I A switch (LIBR), 4-3 
absolute, 3-8 
creation of, 3-7 
define absolute, 3-6 
definition, 3-2, 3-7, Gl-3 
delete (LIBR IG), 4-7, 4-8 
entry point, 3-7 
II switch, 3-33 
list with I A, 3-12t, 3-30 
multiple definitions, 3-8 
name of p-sect, 3-6 
resolution of, 3-7 
table, 4-11 
undefined, 3-7, 3-14 

.GLOBL directive, create global symbols, 3-7 

IH switch 
caution using, 3-33 
LINK, 3-12t, 3-32 
not with IB, 3-32 
not with IY, 3-32 

H 

I 
I attribute value, p-sect (LINK), 3-4t, 3-5 
II switch 

LINK, 3-12t, 3-27, 3-33 
LINK prompt, 3-39t 

Instruction, definition, Gl-3 

Index-4 

J 
Job keyboard monitor, definition, Gl-3 
Job status word, 3-18, 3-18t 

K 
IK switch, LINK, 3-12t, 3-33 
Keyboard monitor 

default, 1-4 
definition, Gl-3 
run LIBR in DCL, 4-2 
run LINK from, 3-8 
run LINK in DCL, 3-8 
run MACRO in DCL, 2-4 
run PAT in DCL, 5-2 
switch to default, 1-5 

L 
IL switch 

MACRO, 2-7, 2-7t 
MACRO arguments for, 2-9t, A-2t 

Label 
global,3-2 

LC argument, for MACRO IE and ID, 2-10t 
LCL attribute value, p-sect (LINK); 3-4t 
LD argument, MACRO IL and IN, 2-9t 
LIBR 

I A switch, 4-3, 4-4t 
bad input error, B-2 
IC switch, 4-4, 4-4t 
IC switch (macro), 4-14 
combining switches, 4-13 
command string, 4-2 
create macro libraries, 4-14 
ID switch, 4-4t, 4-6, 4-7 
IE switch, 4-4t, 4-7 
error messages, B-10 to B-13 
IG switch, 4-4t, 4-7, 4-8 
library file listing, 4-11 
location of, 1-4 
1M switch (macro), 4-14, 4-15 
macro switches, 4-14t 
merging library files, 4-12, 4-13 
module insertion, 4-3, 4-5 
IN switch, 4-4t, 4-8 
IP switch, 4-4t, 4-9 
IR switch, 4-4t, 4-9 
run with RUN command, 4-2 
stop, 4-2 
switches for, 4-4t, A-6t 
IU switch, 4-4t, 4-9, 4-10 
use of, 1-2, 4-1 
use of switches, 4-3 



LIBR (cont.) 
IW switch, 4-4t, 4-10 
IX switch, 4-4t, 4-10, 4-11 
I I switch, 4-4, 4-4t 
I I switch (macro), 4-14 

Library 
contents of, 4-1 
create macro, 4-14t 
definition, Gl-4 
entry point table (EPT), 3-17 
FORTRAN ($FORLIB.OBJ), 3-12t 
multiple definition (LINK), 3-17 
normal and multiple definition, 3-17 
order of multiple definition, 3-17 
routine list (LINK), 3-35 
system macro, 2-4t 

ILIBRARY, in MACRO DCL, 2-6 
Library file 

create, 4-5 
definition, 3-2, 4-1 
insert module in, 4-5 
listing of content, 4-11, 4-12 
macro, 4-1, 4-14 
merging of, 4-12, 4-13 
note of caution, 4-,6, 4-13 

Library module, 3-27 
definition, Gl-4 
LINK,3-14 
link,3-16f 
processing of, 3-15 

LINK 
I A switch, 3-12t, 3-30 
IB switch, 3-12t, 3-30 
bad input error, B-2 
IC switch, 3-12t, 3-30 
CCL LINK command in DCL, 3-9 
command string format, 3-8, 3-11 
continue switch, 3-30 
create load map, 3-13 
create object module, 3-14 
create overlay structure, 3-2 
CTRL/C, 3-10 
DCL IEXECUTABLE switch for, 3-10t 
DCL IMAP switch for, 3-10t 
DCL INOMAP switch for, 3-10t 
DCL LINK/RT11 command, 3-10 
IE switch, 3-12t, 3-31 
error messages, B-4 to B-10 
IF switch, 3-12t 
file specification defaults, 3-11t 
IG switch, 3-12t, 3-32 
global section, 3-5 
IH switch, 3-12t 

LINK (cont.) 
II switch, 3-12t, 3-33 
input, 3-13 
IK switch, 3-12t, 3-33 
library module, 3-14 
link library modules, 3-16f 
LINK/RT11 command in DCL, 3-8, 3-9 
LINK/RT11 switches, 3-10t 
list of switches, 3-12t, 3-13t, A-4t, A-5t 
load map, 3-18 
load module, 3-3, 3-11, 3-13, 3-17 
local section, 3-5 
location of, 1-4 
1M switch, 3-13t, 3-18, 3-33, 3-34 
memory diagram (overlay regions), 3-29f 
10 switch, 3-13t, 3-34, 3-35 
object module, 3-11, 3-14 
output, 3-13 
IP switch, 3-13t, 3-35, 3-36 
process library files, 3-15 
process multiple definition library, 3-17 
I Q restrictions, 3-36 
IQ switch, 3-13t, 3-36 
run from DCL, 3-8 
run with RUN command, 3-8 
IS switch, 3-13t, 3-36 
search method, 3-15 
stop, 3-10 
summary, 3-1 
switch prompts, 3-39t, 3-40 
symbol table definition (STB) files, 3-13 
IT switch, 3-13t, 3-18, 3-37 
IU switch, 3-13t, 3-38 
use of, 1-2, 3-1, 3-2, 3-3 
use of IH switch, 3-32 
use of OTS, 3-15 
version number of, 3-8 
IW switch, 3-13t, 3-38 
IX switch, 3-13t, 3-38 
IY switch, 3-13t, 3-38, 3-39 
IZ switch, 3-13t, 3-39 
I I switch, 3-13t, 3-31 

Link, RSTS/E monitor, 3-38 
Linker, definition, Gl-4 
ILIST, in MACRO DCL, 2-5 
.LIST directive, 2-9t 

with IL MACRO switch, 2-10 
List file 

ILIST in MACRO DCL, 2-5 
INOLIST in MACRO DCL, 2-5 

Listing 
control switches (MACRO), 2-7 
CREF MACRO, 2-11 

Index-5 



Listing (cont.) 
cross-reference table, 2-13f 
sample assembly, 2-8 

.LLD file type, 1-6 
Load map 

description of, 3-19t 
file specification defaults, 3-11t 
LINK creates, 3-13 
output, 3-18 
sample, 3-19 

Load module 
definition, 3-2, Gl-4 
file specification defaults, 3-11t 
IH switch, 3-32 
LUN]{, 3-3, 3-11, 3-13, 3-17 
memory image file, 3-17 
memory layout, 3-18 
start address (IT), 3-37 
use of IB, 3-30 
use of 10, 3-34 
use of I Z, 3-39 

LOC argument, MACRO IL and IN, 2-9t 
Local section 

example, 3-5 
LINK,3-5 

Low memory, definition, 3-2 
LSB argument, for MACRO IE and ID, 2-10t 
.LST file type, 1-6 

M 
M arguments, for MACRO IC, 2-12t 
1M switch 

LIN]{, 3-13t, 3-18, 3-33, 3-34 
LINK prompt, 3-39t 
MACRO,2-7t 
macro (LIBR), 4-14, 4-15 
MACRO library file, 2-10 

.MAC file type, 1-6 
Machine language, definition, Gl-4 
MACRO 

abort in DCL, 2-6 
arguments for IE and ID, 2-10t, A-3t 
command string specification, 2-2 
CREF listing content, 2-11, 2-12 
cross-reference table switch IC, 2-11 
CTRL/C,2-4 
CTRL/Z,2-4 
ID switch, 2-9 
DCL command string format, 2-5 
DCL examples, 2-5 
default file specification values, 2-4t 
IE switch, 2-9 
error codes, 2-14, 2-15t, 2-16t 
error messages, B-2 to B-3 

Index-6 

MACRO (cont.) 
file specification switches, 2-6, 2-7t, A-lt 
IL arguments, 2-9t, A-2t 
IL switch, 2-7 
ILIBRARY in DCL, 2-6 
ILIST in DCL, 2-5 
listing control switches, 2-7 
location of, 1-4 
IN arguments, 2-9t, A-2t 
IN switch, 2-7 
INOLIST in DCL, 2-5 
INOOBJECT in DCL, 2-5 
10BJECT in DCL, 2-5 
output from assembler, 2-1 
RUN command, 2-4 
run in DCL, 2-4 
run with CCL, 2-2 
run with RUN command, 2-2 
stop, 2-4, 2-6 
system library, 2-4t 
temporary work file, 2-6 
use of, 1-2 
use of RT11 utilities, 1-3 
ways to run, 2-1 

.MACRO directive 
cross reference of macros, 2-11 
LIBR,4-14 

Macro Expansion Binary code, 2-10. See also 
MEB 

Macro library 
1M switch, 2-10 
$SYSMAC.SML, 2-10, 2-11 

Main program, definition, Gl-4 
Map 

description of sample, 3-19t 
file specification defaults for load, 3-11t 
sample load, 3-19 

.MAP file type, 1-6 
IMAP switch, DCL LIN]{/RT11, 3-9, 3-10t 
MC argument, MACRO IL and IN, 2-9t 
.MCALL directive, 2-11, 2-16t 

cross reference of macros, 2-11 
MD argument, MACRO IL and IN, 2-9t 
ME argument,' MACRO IL and IN, 2-9t 
MEB argument, MACRO IL and IN, 2-9t 
MEB code, disable listing of, 2-10 
Memory 

image file, 3-17 
low (definition), 3-2 
usage map, 3-18, 3-18t 

Module, 3-2. See also Object module 
create object, 3-7, 3-14 
file specification defaults for load, 3-11t 



Module (cont.) 
file specification defaults for object, 3-11t 
LINK library, 3-14 
LINK load, 3-11, 3-13, 3-17 
LINK object, 3-11, 3-14 
load (definition), 3-2 
load (LINK), 3-3 
memory layout for, 3-18 
name of object, 3-14 
object (definition), 3-2 

Monitor, 2-4 
definition, Gl-4 
Extended Memory (XM), 1-1 
Foreground/Background (FB), 1-1 
keyboard, 1-4 
link RSTS/E (IX), 3-38 
run LINK from keyboard, 3-8 
switch to DCL keyboard, 2-4 
switch to default keyboard, 1-5 

Multiple definition library 
LINK, 3-17, 3-27, 3-32 
IX (LIBR), 4-10, 4-11 

IN switch 
LIBR, 4-4t, 4-8 
MACRO, 2-7, 2-7t 

N 

MACRO arguments for, 2-9t, A-2t 
.NLIST directive, 2-9t 

with IL MACRO switch, 2-10 
INOEXECUTABLE switch, DCL 

LINK/RT11,3-10t 
INOLIST, in MACRO DCL, 2-5 
INOMAP switch, DCL LINK/RT11, 3-10t 
Nonoverlaid files, p-sect order, 3-6t 
INOOBJECT, in MACRO DCL, 2-5 

o 
10 switch 

LINK, 3-13t, 3--34, 3-35 
for overlay structure, 3-22 

.OBJ file type, 1-6 
10BJECT, in MACRO DCL, 2-5 
Object file 

MACRO, 2-1, 2-3 
INOOBJECT in MACRO DCL, 2-5 
10BJECT in MACRO DCL, 2-5, 2-6 

Object module 
definition, 3-2, Gl-4 
file specification defaults, 3-11t 
global symbol link, 3-7 
how created, 3-14 
LIBR, 4-1,4-3, 4-5, 4-6 

Object module (cont.) 
LINK, 3-11, 3-14. 
name of, in .TITLE, 3-14 
in overlay segment, 3-27 
PAT,5-1 
update code in, 5-1 
updating (PAT), 5-5 

Object Time System (OTS) 
definition, Gl-4 
FORTRAN, 1-2 
LINK use of, 3-15 

Op-code, definition, Gl-4 
Operand, definition, Gl-5 
Operating system, definition, Gl-5 
OTS. See Object Time System 
Overlaid files, p-sect order, 3-6t 
Overlay. See Overlay segment 
Overlay file, 3-20 
Overlay handler, 3-20, 3-28 

location, 3-28 
p-sect order, 3-6t 
run-time, 3-2, 3-22f, 3-23f, 3-24f 

Overlay region, memory diagram, 3-29f 
Overlay scheme, example of, 3-22f 
Overlay segment, 3-20, 3-27 

definition, 3-2, Gl-5 
return path, 3-25 
return path guidelines, 3-27 

Overlay structure, 3-5 
description of, 3-20 
for FORTRAN, 3-20 
guidelines, 3-24, 3-25 
LINK creates, 3-2 
10 switch (LINK), 3-22 
rules for creating, 3-26, 3-27, 3-28 
sample FORTRAN, 3-2lf 

Overlay table 
p-sect order, 3-6t 
run-time, 3-2 

OVR attribute value, p-sect (LINK), 3-4t 

p 
P arguments, for MACRO IC, 2-12t 
P-sect, 3-2. See also Program section 

ABS attribute value, 3-6 
access-code attribute, 3-4t 
allocation-code attribute, 3-4t 
attributes, 3-4t 
CON attribute value, 3-5, 3-6 
creation of, 3-4 
D attribute value, 3-5 
global symbols, 3-6 
I attribute value, 3-5 

Index-7 



P-sect (cont.) 
order for nonoverlaid files, 3-6t 
order for overlaid files, 3-6t 
order of, 3-6t 
relocation-code attribute, 3-4t 
scope-code attribute, 3-4t 
structure of, 3-3 
type-code attribute, 3-4t 
use of allocation-code attribute, 3-5 

IP switch, 2-14 
arguments for, 2-14 
avoid with RSTS IE (LIBR), 4-9 
LIBR, 4-4t, 4-9 
LINK, 3-13t, 3-35, 3-36 
MACRO,2-7t 

PAT 
adding subroutine to module, 5-6, 5-7, 5-8 
bad input error, B-2 
I C switch, 5-2, 5-8 
command string, 5-2 
correction file, 5-4, 5-5 
error messages, B-13 to B.-16 
input file, 5-4 
input to, 5-1 
location of, 1-4 
output from, 5-1 
overlaying lines in module, 5-5, 5-6 
run in DCL, 5-2 
run with CCL, 5-1 
run with RUN command, 5-1 
stop, 5-2 
updating a file, 5-4 
updating a module, 5-2f, 5-3f, 5-4, 5-5 
use of, 1-2 

PNC argument, for MACRO IE and ID, 2-10t 
Program 

definition, Gl-5 
developing an executable, 1-2f 

Program development, 1-1 
definition, Gl-5 
documents for, 1-3 
executable program, 1-2f 
RSTS/E,I-1 
RSX, 1-1 
RTll,I-1 

Program section, 3-6. See also P-sect 
attributes, 3-3, 3-4 
definition, 3-2, Gl-5 
LINK allocates, 3-3 
order,3-6t 

Project-programmer number [PPN] 
in file specification, 1-6 

IPROTECTION,2-3 
definition, 1-7 
in file specification, 1-6 

Index-8 

Protection code 
definition, 1-7 
IPROTECTION, 1-6 

.PSECT directive 
create P-sect, 3-4 
with fixed attributes, 3-6 
in MACRO CREF, 2-12 

Public structure, definition, 1-7, Gl-5 

Q 
IQ switch 

LINK, 3-13t, 3-36 
LINK prompt, 3-39t 
restrictions, 3-36 

R 
R arguments, for MACRO IC, 2-12t 
IR switch 

comparison to IU (LIBR), 4-10 
LIBR, 4-4t, 4-9 

REG argument, for MACRO IE and ID, 2-10t 
Region numbers, assignment of, 3-25 
REL attribute value, p-sect (LINK), 3-4t 
Relocate, definition, Gl-5 
Relocation-code attribute 

p-sect, 3-4t 
section, 3-6t 

Return paths, 3-25, 3-26f 
guidelines, 3-27 

RO attribute value, p-sect (LINK), 3-4t 
Root. See Root segment 
Root segment, 3-20 

definition, 3-2, Gl-5 
in overlay structure, 3-26 

RSTS/E 
command string specification, 1-5 
file specification format, 1-6 

RSX, program development, 1-2 
RTll 

emulator (RSTS IE), 3-17 
get version number, 1-5 
prompt for utilities, 1-5 
restrictions, 1-1 
run-time system error messages, B-2 

IRTll switch 
for LINK DCL command, 3-8 
for MACRO DCL command, 2-5 

RTll utilities 
documents used with, 1-3 
languages that use, 1-3 
list of, 1-2 
logical DK:, 1-7 
logical SY:, 1-7 
prompt for, 1-5 



RT11 utilities (cont.) 
run, 1-4 
run from DCL, 1-5 
SWITCH program, 1-5 
version number, 1-5 

RUN command 
LIBR,4-2 
LINK,3-8 
MACRO, 2-1, 2-2, 2-4 
PAT,5-1 

Run-time overlay handler, LINK, 3-2 
Run-time system 
BASIC-PLU~2, 1-4 
BASIC-PLUS prompt, 1-4 
DCL,l-4 
environment, 1-4 
RSX prompt, 1-4 
RT11 prompt, 1-4 
switch to (SWITCH), 1-5 

RW attribute value, p-sect (LINK), 3-4t 

s 
S arguments, for MACRO IC, 2-12t 
IS switch, LINK, 3-13t, 3-36 
.SAV file type, 1-6 
Scope-code attribute 

p-sect, 3-4t 
section, 3-6t 

Section attributes, 3-6t 
Segment 

overlay (definition), 3-2 
root (definition), 3-2 

SEQ argument, MACRO IL and IN, 2-9t 
.SML file type, 1-6 
Source code, definition, Gl-5 
Source language, definition, Gl-6 
SRC argument, MACRO IL and IN, 2-9t 
Stack 

address (1M switch), 3-33, 3-34 
pointer (1M switch), 3-33 

.STB file type, 1-6 
Subprogram, definition, Gl-6 
Switch 

I A (LIBR), 4-3, 4-4t 
I A (LINK), 3-12t, 3-30 
arguments for MACRO IC, 2-12t 
arguments for MACRO IE and ID, 

2-10t, A-3t 
arguments for MACRO IP, 2-14 
assembly pass (MACRO), 2-14 
IB (LINK), 3-12t, 3-30 
IC (LIBR), 4--4, 4-4t 
IC (LINK), 3-12t, 3-30 
IC (MACRO), 2-7t 

Switch (cont.) 
IC (PAT), 5-2, 5-8 
IC macro (LIBR), 4-14 
IC MACRO cross-reference table, 2-11 
checksum switch (PAT), 5-8 
combining LIBR, 4-13 
ID (LIBR), 4-4t, 4-6 
ID (MACRO), 2-7t 
DCL LINK/RT11 IEXECUTABLE, 3-9, 

3-10t 
DCL LINK/RT11 IMAP, 3-9, 3-10t 
DCL LINK/RT11 INOEXECUTABLE, 

3-10t 
DCL LINK/RT11 INOMAP,3-10t 
definition, 3-12 
IE (LIBR), 4-4t, 4-7 
IE (LINK), 3-12t, 3-31 
IE (MACRO), 2-7t 
IF (LINK), 3-12t 
in file specification, 1-7 
function control, 2-10 
IG (LIBR), 4-4t, 4-7, 4-8 
IG (LINK), 3-12t, 3-32 
IH (LINK), 3-12t, 3-32 
II (LINK), 3-12t, 3-27,3-33 
IK (LINK), 3-12t, 3-33 
IL (MACRO), 2-7t 
LINK continue, 3-30 
list (DCL LINK/RT11), 3-10t 
list (LIBR), 4-4t, A-6t 
list (LINK), 3-12t, 3-13t, A-4t, A-5t 
list (MACRO), 2-6 
listing control, 2-7, 2-10 
1M (LINK), 3-13t, 3-18, 3-33, 3-34 
1M (MACRO), 2-7t 
1M macro (LIBR), 4-14, 4-15 
1M MACRO library, 2-10 
module insertion (LIBR), 4-3 
IN (LIBR), 4-4t, 4-8 
IN (MACRO), 2-7t 
10 (LINK), 3-13t, 3-34, 3-35 
IP (LIBR), 4-4t, 4-9 
IP (LINK), 3-13t, 3-35, 3-36 
IP (MACRO), 2-7t 
IQ (LINK), 3-13t, 3-36 
IR (LIBR), 4-4t, 4-9 
restrictions for I Q, 3-36 
IS (LINK), 3-13t, 3-36 
IT (LINK), 3-13t, 3-18, 3-37 
IU (LIBR), 4-4t, 4-9, 4-10 
IU (LINK), 3-13t, 3-38 
IW (LIBR), 4-4t, 4-10 
IW (LINK), 3-13t, 3-38 
IX (LIBR), 4-4t, 4-10, 4-11 
IX (LINK), 3-13t, 3-38 

Index-9 



Switch (cont.) 
IY (LINK), 3-13t, 3-38, 3-39 
IZ (LINK), 3-13t, 3-39 
I I (LIBR), 4-4, 4-4t 
I I (LINK), 3-13t, 3-31 
I Imacro (LIBR), 4-14 

SWITCH program 
choose run-time system, 1-5 
DCL,2-4 
get into RT11, 2-6 

SY: logical, 2-3 
definition, 1-7 

SYM argument, MACRO IL and IN, 2-9t 
Symbol, global, 3-2, 3-6 
Symbol table definition (STB) file 

definition, 3-14 
file specification defaults, 3-11t 
LINK, 3-11, 3-13 

$SYSMAC.SML, system macro library, 2-4t, 
2-10,2-11 

System communication area 
in absolute section, 3-3 
location, 3-3 

System disk, definition, Gl-6 
System library account [1,2], 1-4 
System library, default ($SYSLIB.OBJ), 3-15 
System macro library, 2-4t 
System wide logical 

OK:, 1-7 
SY:, 1-7 

IT switch 
T 

LINK, 3-13t, 3-18, 3-37 
LINK prompt, 3-39t 

.TITLE directive, name of object module, 3-14 

.TMPfiletype,l-6 
TOC argument, MACRO IL and IN, 2-9t 
TTM argument, MACRO IL and IN, 2-9t 
Type-code attribute 

p-sect, 3-4t 
section, 3-6t 

IU switch 
u 

compared to IR (LIBR), 4-10 
LIBR, 4-4t, 4-9, 4-10 
LINK, 3-13t, 3-38 
LINK prompt, 3-39t 

User stack 
in absolute section, 3-3 
definition of, 3-3 

Utility program, definition, Gl-6 

Index-lO 

V 
Version number, RT11, 1-5 

IW switch 
LIBR, 4-4t, 4-10 
LINK, 3-13t, 3-38 

w 

Word boundary, .EVEN directive, 3-5 
Work file, temporary in MACRO, 2-6 

x 
IX switch 

LIBR, 4-4t, 4-10, 4-11 
LINK, 3-13t, 3-38 

y 
IY switch 

LINK, 3-13t, 3-38, 3-39 
LINK prompt, 3-39t 
not with IH, 3-32, 3-38 

Z 
IZ switch, LINK, 3-13t, 3--80 



HOW TO ORDER ADDITIONAL DOCUMENTATION 

In Continental USA and Puerto Rico 
call 800-258-1710 

In New Hampshire, Alaska or 
Hawaii call 603-884-6660 

DIRECT MAIL ORDERS (U.S. and Puerto Rico) 

Purchase orders should be mailed directly to: 

DIGITAL EQUIPMENT CORPORATION 
P.O. Box CS2008 

Nashua, New Hampshire 03061 

In Canada 
call 800-267-6146 

DIRECT MAIL ORDERS (Canada) 

DIGITAL EQUIPMENT OF CANADA LTD. 
940 Belfast Road 

Ottawa, Ontario, Canada K1 G 4C2 
Attn: A&SG Business Manager 

INTERNATIONAL 

When placing orders outside the U.S.A., please send orders to: 

DIGITAL EQUIPMENT CORPORATION 
A&SG Business Manager 
c/o Digital's Local Subsidiary 

or Approved Distributor 

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment Corporation, 
Northboro, Massachusetts 01532 





Reader's Comments 

RSTS/E 
RT11 Utilities Manual 

AA-M213A-TC 

Note: This form is for document comments only. Digital will use comments submitted on this form at 
the company's discretion. If you require a written reply and are eligible to receive one under 
Software Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for 

improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 

o Higher-level language programmer 

o Occasional programmer (experienced) 

o User with little programming experience 

o Student programmer 
o Other (please specify) ______________________ _ 

Name Date 

Organization _________________________________ _ 

Street ____________________________________ _ 

City ________________ _ State 
Zip Code or ____ _ 
Country 



- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

~DmDDmD IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

ATTN: Commercial Engineering Publications MK1-2/ H3 

DIGITAL EQUIPMENT CORPORATION 

CONTINENTAL BOULEVARD 

MERRIMACK N.H. 03054 

I 

I 
----1 

No Postage 

Necessary 

if Mailed in the 

United States 

I 
I 

-- - - Do NotTear-Fold Here and Tape - - - - - - - - - - - - - - - - --, 






