6

RSTS/E Programming Manual

Order Number: AA-EZ09B-TC

RSTS/E Programming Manual
Order Number: AA-EZ09B-TC

August 1990

This manual describes RSTS/E special programming techniques. It contains information on
device-dependent features and the use of system function calls.

Operating System and Version: RSTS/E Version 10.0
Software Version: RSTS/E Version 10.0

digital equipment corporation
maynard, massachusetts

August 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990. All rights reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests
the user’s critical evaluation to assist in preparing future documentation. The following are
trademarks of Digital Equipment Corporation:

ALL-IN-1 DEUNA RSX
DEC/CMS DIBOL RT
DECdx EDT RT-11
DEC/FMS-11 IAS TOPS-10
DECmail LA TOPS-21
DECnet LNO1 ULTRIX
DECnetE Micro/RSX UNIBUS
DECSA 0s/8 VAX
DECserver PDP VAXmate
DECsystem-10 PDP-11 VMS
DECSYSTEM-20 PDT vT
DECUS Q-BUS WPS-PLUS
DECworld RMS—11 Rainbow

DELUA RSTS ™
DEQNA alilglitlll

IBM is a registered trademark of International Business Machines Corporation.
RMS is a trademark of American Management Systems, Inc.

Contents

o=y 7= Vo - YRS xvii

Partl Devices

Chapter 1 System Structure and Disk Operations

1.1 System ACCOUNESottt e it i e 1—1
1.1.1 System Library Account [1,2]o 1—1

1.1.2 System Account [0,1]o oot 1-2

1.1.2.1 Allocating Disk Storage Space 1-2

1.1.2.2 BadBlock File. i 14

1.1.23 System Overlay File i 14

1.1.24 Monitor Save Image Library File 1-5

1125 Error Messages File 1-5

1.1.2.6 Saving Information Aftera Crash 1-5

1.1.2.7 Run-Time System Files 1-5

1.1.2.8 System Program Resident Library 1-6

1.1.2.9 Initialization Code i 1-6

1.1.2.10 SwappingStorage i e 1-6

1.1.2.11 System Account [0,1] on Nonsystem Disks 1-8

1.2 Storage of Accounting Data i 1-8
1.2.1 Accounting Data on the System Device 1-8

1.2.2 Accounting Data on Nonsystem Disks 1-9

13 PriVIlegeS e 1-10
1.4 Multiple Privileges 1-10
15 Classes of System Functions 1-11
1.5.1 Account Management Activities oo 1-11

1.5.2 File Access Activities o i e 1-12

1.6 Multiple Privilege Masks i 1-14
1.7 Multiple Privileges and Jobso oo 1-15
1.7.14 Job Creation e 1-15

1.7.2 Login . . 1-15

1.7.3 LOgoUt .« it e 1-15

1.7.4 Spawned Jobs 1-15

18 Writing Applications Using Multiple Privileges 1-16
1.8.1 Writing Programs Protected <124> and <104> 1-16

1.8.2 Writing Programs Protected <232> 1-17

1.9

1.10

1.1

1.16

1.8.3
1.84

Program Access and Privilege Checks . ..
Program Exit.

Multiple Privilege System Function Calls

Non-File-Structured Disk Operation
Opening a Disk for Non-File-Structured Processing

1.10.1
1.10.2
1.10.3
1.10.4
1.10.5
1.10.6
1.10.7

Accessing Large Clusters
Accessing Device Clusters

Non-File-Structured Block Access: MODE 128%
Access to Bad Block Information: MODE 512%

Privilege and Access
Allocating a Disk Unit

File-Structured Disk Operation

1.11.1
1.11.2

1.11.3
1.11.4
1.115
1.11.6
1.11.7
1.11.8
1.11.9

1.11.10

1.11.11

1.11.12
1.11.13
1.11.14
1.11.16
1.11.16
1.11.17

Reading and Writing Disk Files: MODE 0%

Updating Disk Files: MODE 1%, MODE 4%+1%o vvv vt ..
1.11.2.1 RSTS/E File Updating Capabilites

1.11.2.2 File Update: MODE 1%

1.11.2.3 Guarded File Update: MODE 4%+41%

Appending Data to Disk Files: MODE 2% .

Special Mode for Extending Files: MODE8%..................

Creating a Contiguous File: MODE 16% . .
Creating a Tentative File: MODE 32%. . . .

Creating a Contiguous File Conditionally: MODE 64%

No Supersede: MODE 128%
Data Caching: MODES 256%, 2048% . . .
11191 CacheSize..............
11192 Caching Control

1.11.9.3 Random Mode Data Caching: MODE 256%

1.11.9.4 Sequential Mode Data Caching:

MODE 2048%

Creating and Placing a File at the End of the Directory: MODE

1024%o oo

Creating and Placing a File at the Beginning of the Directory: MODE

1536%o

Reading a File During Processing: MODE 4096%

Read-Only Access to a File: MODE 8192%

Write Access to a Directory: MODE 16384%

Simultaneous Disk Access.
Disk Optimization.
Partial Block Operations on Disk

The Virtual Disk—DVO:

Asynchronous /O Requests

Disk Special Function: SPEC%

RX01/02 Flexible Diskettes

1.15.1 Block Mode: MODEO0%
1.16.2 Sector Mode: MODE 16384%
1.15.3 Flexible Diskette RECORD Modifiers
1.15.4 Deleted DataMarks
1.16.5 Partial Block Operations on Flexible Diskettes
1.15.6 Flexible Diskette Special Function: SPEC%
The Null Device - NL:

1-18
1-18

1-19

1-19
1-19
1-20
1-20
1-22
1-22
1-23
1-23

1-23
1-24
1-24
1-25
1-25
1-26
1-26
1-27
1-27
1-28
1-28
1-29
1-29
1-30
1-30
1-30
1-31

1-31

1-32
1-32
1-32
1-33
1-33
1-33
1-35

1-35

1-36

1-36

1-38
1-39
1-40
141
141
142
1-42

Chapter 2

2.1

2.2

23

2.4
25
2.6
2.7
2.8

2.9

2.10
2.1

212

Magnetic Tape

Overview of Tape Operations

2141 File-Structured and Non-File-Structured Processing
2.1.2 Magnetic Tape Labels i
2.1.3 Data and Label Handling in File-Structured Processing
2.1.4 Streaming Tape Drives i

The File-Structured Magnetic Tape OPEN FORINPUT

221 Reading the Current Record: MODE 0% or No Mode
222 Rewinding the Tape: MODES 2%, 32%,64%
2.2.3 Example of OPEN FOR INPUT Statement
2.24 ReadingData i,
The File-Structured Magnetic Tape OPEN FOR OUTPUT
2.3.1 Searching for a Label on OUTPUT 0nt
2.3.2 Writing a Label: MODES 16%, 512%
2.3.3 Extending a File: MODE 128%
2.3.4 DOS and ANSI Format Labels: MODES 16384%, 24576%
2.3.5 Processing DOS Magnetic Tape Files
2.3.6 Processing ANSI Magnetic Tape Files
2.3.7 Processing Multivolume ANSI Magnetic Tape Files
2.3.8 Example of OPEN FOR OUTPUT Statement
23.9 Writing Data and Processing End-of-Tape

The File-Structured Magnetic Tape OPEN ol
The File-Structured Magnetic Tape CLOSE,
The Non-File-Structured Magnetic Tape OPEN
The Non-File-Structured Magnetic Tape CLOSE
The MODE Specification in Non-File-Structured Processing

The MAGTAPE FUNCHIONt it ittt e e e e e e e e e e s

2.9.1 Off-line (Rewind and Off-line) Function
292 Write Tape Mark Function i,
2.93 Rewind FUnctionttt
2.9.4 Skip Record Function
2.9.5 Backspace Functiono
2.9.6 Set Density and Parity Functiont
2.9.7 Tape Status Function
2.9.8 Return File Characteristics Function
2.9.9 Rewind on CLOSE Functionc.iiiiieiinnn

2.9.10 Write End-of-Volume Labels on CLOSE Function
2.9.11 Error Condition Acknowledged
2.9.12 Extended Set Density Function

Asynchronous /O Requests i
Magnetic Tape Special Function: SPEC%ot
Magnetic Tape Error Handling i
2.121 Parity (Bad Tape) Error oo

2.12.2 Record Length Error. o
2.12.3 1011 = = .o S

2—1
21
2-3
2-3
2-5

2-5
2-7

2-7
2-8

2-8

2-9
2-10
2-10
2-11
2-11
2-13
2-14
2-14

2-16

2-16

2-16

2-17

2-17

2-19
2-20
220
2-20
2-20
2-21
2-21
2-23
2-25
2-26
2-26
2-27
2-27

2-28
2-29
2-29
2-30

2-30
2-30

2.12.4 Write Lock Error 2-30
2.12.5 Writing Beyond EOT Error 2-31
213 Magnetic Tape Programming Examples 2-31
2.131 Writing a Magnetic Tape File 2-31
2.13.2 Reading a Magnetic Tape File 2-31
2.13.3 Reading a Magnetic Tape Non-File-Structured 2-32
Chapter 3 Line Printer
3.1 Special Character Handling 3—1
3.2 Line Printer Control with the MODE Option 3-2
33 Line Printer Control with the FILESIZE Statement ’ 3-2
3.3.1 Change ESC t0 $: MODE 16%c.ouvuunnn ... 3-3
3.3.2 Set NOWRAP for Excess Lines: MODE 32% 3-3
3.3.3 Software Formatting: MODE 512%+N% 34
3.34 Enable Hardware Form Feed: MODE 4096% 34
3.3.5 Translate Numeric 0 to Letter O: MODE 128% 3-5
3.3.6 Truncate Long Lines: MODE 256% 3-5
3.3.7 Translate Lowercase to Uppercase: MODE 1024% 3-5
3.3.8 Skip Lines at Perforation: MODE 2048% 3-5
3.3.9 Suppress Form Feed on CLOSE: MODE 8192% 3-6
3.4 Line Printer Control with the RECORD Option 3-6
3.4.1 Print Over Perforations: RECORD 2%o.u.o.... 3-7
3.4.2 Delay Return Until Output Complete: RECORD 4%.. 3-7
3.4.3 Clear Buffers Before Returning Control: RECORD 8% 3-7
3.4.4 Truncate Long Lines: RECORD 32%oovuunu.... 3-8
3.4.5 Binary Output: RECORD 4096%ououuuon... 3-8
3.4.6 No Stall Option: RECORD 8192%0uuvurunon. .. 3-8
35 Line Printer Special Function: SPEC%., 3-9
3.6 Error Handling 3-9
Chapter 4 Terminals
4.1 Conditional Input from a Terminal: RECORD 8192% 41
4.2 No Stall Option on Terminal Output: RECORD 8192% 4-2
43 Force Interactive Input: RECORD 256%ouuurvunnnn. .. 4-2
4.4 Multiterminal Service on One I/O Channel: RECORD 32767%+1% 4-2
441 Multiterminal Service Output 4-3
4.4.2 Multiterminal Service Input. 44
45 Terminal Control with the MODE Option 4-5
451 Binary Data Output and Input: RECORD 4096% and MODE 1% 4-6
452 Suppress Automatic Carriage Return/Line Feed: MODE 4% 4-8
453 Echo Control: MODE 8%0 i, 4-8
454 Prevent Ctrl/C Interruption and Hibernation: MODE 16% 4-14
4.5.5 Enable Incoming XON/XOFF Processing: MODE 32% 4-15

vi

4.5.6 Special Use of RUBOUT: MODE 128% 4-15
457 Escape Sequence Mode: MODE 256% 4-16
4.6 ESCape SeqUEeNCESottt i e 417
4.6.1 VT100-, VT200-, and VT300-Family Escape Sequences 4-17
4.6.1.1 VT52-Compatible Mode 4-17
46.1.2 ANSI-Compatible Mode, 4-18
46.2 Programming Example i 4-20
4.6.3 Output Escape Sequencesovrueunnnnennennns 4-21
46.4 Input Escape Sequences.t 4-22

4.7 Transparent Control Character Output: RECORD 16384% and MODE
16384% & o vttt e 4-25
48 Private Delimiters 4-25
4.8.1 Characteristics of Private Delimiters 4-26
482 Usage Notes for Private Delimiters 4-27
4.9 Terminal Special Function: SPEC% 4-27
4.10 Keyboard Numbering 4-28
4.11 Pseudo Keyboards 4-29
41141 Accessing the Pseudo Keyboard 4-30
4112 Creating the Controlled Job 4-31
4113 Pseudo Keyboard /O 4-31
41131 PseudoKeyboardinput......................... 4-31
411.3.2 Pseudo Keyboard Output 4-32
4.11.4 Pseudo Keyboard Escape Sequence Processing. 4-34
4.11.5 Programming Example i 4-35
4.11.6 Pseudo Keyboard Special Function: SPEC% 4-36
4117 Dynamic Pseudo Keyboards 4-37
412 Local Area Transport (LAT)ot i et e s 4-38
4121 LAT POMS .« . vttt e et e e 4-38
4.12.2 Enabling LAT e 4-39
4.12.3 Host-Initiated LAT Connections o, 4-39
4.12.4 Isolation of LAT Problems o .. 4-43
413 Command Line Editing and Command Recall 4-43
4.13.1 Terminal Attributes e 4-43
4.13.2 Terminal OPENModes i i, 4-45
4.13.3 EchoonRead i 4-45

Chapter 5 Card Readers

5.1 ASCIl Mode: MODE 0%ottt ittt it it e et e e 5-1
5.2 Packed Hollerith Mode: MODE 1% i 5-2
5.3 Binary Mode: MODE 2% i 5-3
5.4 Setting Read Modes i 5-3

vii

Chapter 6 DMC11/DMR11 Interprocessor Link
6.1 Using the DMC11/DMR11 Interprocessor Link in Point-to-Point
Configurations 6—1
6.2 The OPEN Statement 61
6.2.1 MODE Value i i 61
6.2.2 CLUSTERSIZE Value i 6-2
6.2.3 FILESIZE Value i 62
6.2.4 RECORDSIZE Value 6-2
6.2.5 BIrors .. e 6-2
6.3 The GET Statement and RECORD Options 6-3
6.3.1 Count and Status Information. 64
6.4 The PUT Statement i 6-5
6.5 The CLOSE Statement it 6-6
6.6 Hardware Errors. i 66
Chapter 7 Ethernet Operations
7.1 Ethernet Concepts i, 7-1
7141 The Conversation Analogy, 7-1
71.2 Ethernetand DECnetE. 7-2
7.1.3 Ethernet Terms 72
7.1.341 Physical Layer. 7-2
7.1.3.2 Channel, Controller, and Data Link Layer 7-3
7.1.33 Protocol Typeand Portal 7-3
7.134 Counters 7-3
7.1.3.5 Physical Addressing 7-3
7.1.35.1 DECnet/E on Ethernet 74
7.1.3.6 Multicast Addressing. 74
71.4 Ethernet Addresses 74
7.2 Commands for Ethernet 0. ... 7-5
7.24 OPEN . .. 7-5
7211 Padded and Unpadded Protocols 7-6
7212 System Receive Buffers 7-7
7.2.2 CLOSE e 7-7
7.23 GET .. 7-7
7.2.4 PUT . 7-9
7.25 Special Ethernet Functions 7-10
7.25.1 Set New Physical Address 7-10
7252 Enable Multicast Addresses 7-10
7253 Get Circuit Counters and Get Line Counters 7-10
7254 Transfer Circuit Counters and Transfer Line Counters 7-1

viii

Partll System Function Calls and Programming Hints
Chapter 8 SYS System Function Calls

8.1 SYSSystem Function Calls. i, 8—1
8.1.1 SYS System Function Formats and Codes 8-2
8.1.2 Cancel Ctrl/O Effecton Terminal 8-11
8.1.3 Enter Tape Mode on Terminal ou.n 8-12
8.1.4 Enable Echoingon Terminal 8-12
8.1.5 Disable Echoingon Terminal ot 8-13
8.1.6 Enable ODT Submode on Terminal 8-14
8.1.7 Exit with No PromptMessage 8-15
8.1.8 FIPFunction Call e 8-15
8.1.9 Get Common Core Stringo ii it 8-15
8.1.10 Put Common Core Stringt 8-16
8.1.11 Exit and Clear Program iiiieennnannn 8-16
8.1.12 Cancel All Type Ahead it 8-17
8.1.13 Return Information on Last Opened File or Device 8-18
8.1.14 Execute CCLCommand 8-19
8.2 System Function Callsto FIP, F=6 8-20
8.2.1 Building a Parameter String oo 8-21
8.2.2 Unpacking the Returned Data 8-22
8.2.3 Notation and References Used in SYS Call Descriptions 8-24
8.2.3.1 Project-Programmer Number 824

8.2.3.2 Integer (2-Byte) Numbers 8-24

8.2.3.3 Unsigned Integer (2-Byte) Numbers 8-25

8.234 Negative Byte Values 826

8.2.3.5 File Name String Scan Format 8-26

8.2.3.6 MACRO Mnemonic Cross-References 8-27

8.3 Organization of This Section i 8-27
8.3.1 File Name StringScan i 8-27
8.3.2 Get Monitor Tables—Part I 8-35
8.3.3 SPOOING . v v v e s 8-37
8.34 Snap Shot DUMP . . . oottt e 841
8.3.5 File Utility Functions i 841
8.3.6 Manipulate Attributes 8-46
8.3.6.1 Read File Attributes 847

8.3.6.2 Write File Attributes i i 848

8.3.6.3 Read Pack Attributes 849

8.3.64 Read Account Attributes o oo 8-50

8.3.6.5 Write Account Attributes o 8-53

8.3.6.6 Delete Account Attributes o 8-54

8.3.7 Add/Delete CCL Commandiiiiiiirnenen . 8-55
8.3.8 Set Special Run Priority o i 8-57
8.3.9 Drop/Regain Temporary Privileges 8-57
8.3.10 Lock/Unlock Job in Memory i 8-59
8.3.11 Setloginst e s 8-60
8.3.12 Manipulate RTS, Resident Library, Dynamic Region. 8-60
8.3.13 Add a Run-Time System i 8-61
8.3.14 Remove a Run-Time System, 8-63
8.3.156 Unload a Run-Time System 8-64
8.3.16 Adda Resident Library i 8-65
8.3.17 Remove a Resident Library i 8-68
8.3.18 Unload a Resident Library 8-69

8.3.19
8.3.20
8.3.21
8.3.22
8.3.23
8.3.24
8.3.25
8.3.26
8.3.27
8.3.28
8.3.29
8.3.30
8.3.31
8.3.32
8.3.33
8.3.34
8.3.35
8.3.36
8.3.37
8.3.38

8.3.39

8.3.40
8.3.41
8.3.42
8.3.43
8.3.44

8.3.45
8.3.46

8.3.47
8.3.48
8.3.49

8.3.50
8.3.51
8.3.52
8.3.53
8.3.54
8.3.55

8.3.56

8.3.57

8.3.58

Create Dynamic Region u.....
Create/Delete a Virtual Disk.co.....
Associate a Run-Time System witha File
Shut Down System,
Accounting Dump.
Change Dateand Time,
Change Priority, Run Burst, and Maximum Size
Get Monitor Tables—Part Il
Change File Statistics
HangUpaDataset
Get Open Channel Statistics
Enable Ctrl/C Trap
Poke Memory

Force InputtoaTerminal
Get Monitor Tables—Part |
Disable Further Logins
Enable Further Logins
Create User Account,
Create User Account (New Format)
8.3.38.1 Create User Account (New Format)
Create User Account (Old Format), FO=0 (UU.PAS)..............
8.3.39.1 Create User Account (Old Format)
Delete User Account e eiinnnnn.
DiskPack Status,
Login/Verify Password.
Logout
Atach
83441 Attach
83442 Reattach
83443 SwapConsole...............cciiiiinnnn. ..
Detach
Change Quota, Password, Expiration Date
8.3.46.1 Change Quota (New Format)/Expiration Date/Password (Old

Format)
8.3.46.2 Change Quota (Old Format)/Expiration Date/Password (Old

Format)
8.3.46.3 Set Password (New Format)
83464 Killdob.
8.3.46.5 Disable Terminal
Return Error Messageo,
Allocate Device, Assign/List User Logical
Allocate/Reallocate Device.,
8.3.49.1 Allocate/Reallocate Device.
8.3.49.2 AssignUser Logical
8.3493 ListUserlogicals
Deallocate a Device or Deassign a User Logical
Deallocate All Devices and Deassign All Logicals
ZeroaDevice
Read, or Read and Reset AccountingData
Directory Lookup
Directory Lookuponindex. vu....
8.3.55.1 Special Magnetic Tape Directory Lookup
Disk Directory Lookup by File Name, FO=17 (UU.LOK)
8.3.56.1 Disk Wildcard Directory Lookup
Set Terminal Characteristics 0.,
8.3.57.1 Set Terminal Characteristics - Part|
8.3.57.2 Set Terminal Characteristics - Part Il
Disk Directory Lookup

8-71
8-73
8-73
8-74
8-75
8-76
8-77
8-79

8.3.59 Enable and Disable Disk Caching 8-154
8.3.60 Date and Time Conversion 0., 8-156
8.3.61 System Logical Names o, 8-157
8.3.62 Add New Logical Name, FO=21 (UUSLN) 8-158
8.3.63 Remove Logical Names 8-160
8.3.64 Change Disk Logical Names 8161
8.3.65 ListLogical Names ittt e 8-162
8.3.66 Send/Receive Message i i 8-162
8.3.67 Determine LAT Serverand Port IDs 8-163
8.3.68 Create a Local LAT Port 8-165
8.3.69 Delete a Local LAT Port, 8-166
8.3.70 Assignalocal LAT Port 8-167
8.3.71 Deassign alocal LATPort 8-169
8.3.72 Return Local LAT Port Status. 8-170
8.3.73 Return Local LAT Port Characteristics 8-173
8.3.74 Add, Remove, and List System Files 8-177
8.3.75 Add System Files. 8-177
8.3.76 Remove System Files 8-180
8.3.77 List System Files, FO=23 8-181
8.3.78 Create adob e e 8-182
8.3.79 Wildcard PPN Lookup oot e e e 8-188
8.3.80 ReturnJob Status i 8-189
8.3.81 Set/Clear/Read Current Privileges 8-191
8.3.82 Stall/Unstall System 8-193
8.3.83 Third-Party Privilege Check 8-194
8.3.84 Check Access Function. 8-195
8.3.85 Check File Access Rights 8-195
8.3.86 Convert Privilege NametoMask 8-196
8.3.87 Convert Privilege Maskto Name 8-197
8.3.88 OpenNextDisk File i, 8-198
8.3.89 Set Device Characteristics and System Defaults,. 8-200
8.3.90 Set Line Printer Characteristics 8-203
8.3.91 Set System Defaults i 8-205
8.3.92 Load/Remove Monitor Overlay Code 8-206
8.3.92.1 Load Monitor Overlay Code and Return Status/Remove
Monitor Overlay Code 8-206
8.3.92.2 Set and Return System Answerback Message 8-209
8.4 The PEEK Function i, 8-210
8.4.1 Fixed Locations in Monitor 8-211
8.4.2 Findingthe Current PPN i 8-212
Chapter 9 System Calls for Local Interjob Communication
9.1 Local Interjob Communication. i i 91
9.2 Format of the Send/Receive SYS Calls 9-2
9.2.1 Privileges Required for Send/Receive 9-2
9.3 Declare Receiver it i e 9-3
9.4 Send Local Data Messaget i 9-9
9.5 Send Local Data Message With Privilege Mask 9-12
9.6 Receive e e e 9-13

Xi

9.7 Remove Receiver e e 9-20
9.8 Local Send/Receive Examples 9-21
9.8.1 Declare Receiver Example 9-21
9.8.2 Send Local Data Examples 9-21
9.8.3 Receive Examples e 9-22
9.8.4 Summaryof Data Values. 9-25
Chapter 10 Communicating with Print/Batch and Operator/Message Services
10.1 Sending a Request Packet 10-1
10.2 Confirming a User Requestt 10-1
10.2.1 Declaring a Receiver for Confirmation 10-1
10.3 Request Packets i, 10-2
10.3.1 Sending an Operator Request Packet 10-2
10.4 PRINT/BATCH Command Values0uiiunuunn.. 104
10.4.1 The PRINTcommand iiininnen.. 104
10.4.2 The SUBMIT command., 104
10.5 Operator Command Values0 i, 104
10.5.1 The NOPcommand 104
10.5.2 The REPLY command 104
10.5.3 The REQUEST commandc0iitiiinnunnnn.. 104
10.5.4 The SET OPERATOR_SERVICES command 10-5
10.5.5 The STOP/OPERATOR_SERVICES command 10-5
10.5.6 The DELETE/REQUEST commandovvu.... 10-5
10.6 Data Fields i e 10-5
10.7 Print/Batch Data Field Values 10-6
10.8 Operator Data Field Values, 10-19
10.9 NOP Command Data Fields 10-19
10.10 REPLY Command Data Fields 10-19
10.10.1 Reply Text Field. 10-20
10.10.2 Request IDField, AR 10-20
10.11 REQUEST Command Data Fields 10-20
10.11.1 Reply TextField. 10-20
10.11.2 ANOJREPLY Field i, 10-21
10.11.3 JEACILITY Field e e 10-21
10.12 SET OPERATOR_SERVICES Command Data Fields 10-22
10.12.1 /KEEP Field 10-22
10.13 STOP/OPERATOR_SERVICES Command Data Fields 10-22
10.13.1 /ANOJABORT Field i e 10-22
10.14 Receiving Confirmation Messages, 10-23

xii

10.15

10.16

Messages Received by the REQUEST/REPLY Command 10-26

10.15.1 Number of Confirmation Messages 10-26
10.15.2 Reply Messages from Operators 10-27
Program Example e 10-27

Chapter 11

1.1

11.2

System Programming Hints

Designing a Program to Run Using a CCL Command 11-1
11.1.1 System Processing of CCL Commands 11-1
11.1.2 CCLPrecedence Rules. i, 11-2
11.1.3 Effect of CCLson Your Job Area, 11-2
11.1.4 CCL Syntax and Switches it 11-2
11.1.5 CCLCommandLine Parsing 11-3
11.1.6 BASIC-PLUS Action v it i it it it i e e 11-5
11.1.7 Conventions Used in BASIC-PLUS Programs 11-6
SLEEP and Conditional SLEEP Statements 116

Appendix A

Magnetic Tape Label Formats

A1 DOS Magnetic Tape Format i A-1
Ald DOS Labels it i e A2

A2 ANSI Magnetic Tape Format i, A3
A21 ANSlLabels e A-5

A21.41 Volume Label i, A-5

A21.2 Header 1 Label (HDR1) A-6

A2.1.3 Header 2 Label (HDR2) A-7

A21.4 End-of-File or Volume 1 Label (EOF1 or EOV1) A-8

A21.5 End-of-File or Volume 2 Label (EOF2 or EOV2) A-9

A3 Initializing Magnetic Tapes i A-10

Appendix B Card Codes

Appendix C
c.1
c.2
c.3

C.4

C5

Error Messages

User Recoverable Errors ot ittt it e et Cc-3
Nonrecoverable Errorso ittt it e i it it et e e C-13
BASIC-PLUS-2 EITOIS . . o i it ittt ittt e et e e e Cc-20
The ??Program Lost-Sorry Error i C-21
C.44 Checksum Errorona BACFile i, Cc-21
c4.2 Unrecoverable Disk Error Readinga BACFile c-22
C.43 Incorrect BAC File Size i ittt ittt i c-22
c44 Unmatched Version Numbers Cc-22
Software Performance Report Guidelines Cc-22

xiii

Appendix D

Radix-50 and ASCII Character Sets

D.1 Radix-50 Character Set D-1
D.2 ASCII Character Codesttt D-3
Appendix E Device Handler Index
Appendix F Monitor Directives
Appendix G EMT Logger Send/Receive Calls
G.1 EMT Logging and Send/Receive0vuuiiunnnn... G—1
G.2 Declaringan EMT Logger G-2
G.3 Receiving an EMT Logger Messageovuuiunnnnn.. G-3
G.3.1 Message Format, G4
G.3.2 EMT Rootand FIRQB Fields G-5
G.3.3 Message from SHUTUP G-6
Index
Figures
1-1 RSTS/E File Protection Codes, 1-13
41 Input Escape Sequence Processingciuiiininnn. .. 4-22
4-2 Pseudo Keyboard Operations. 4-30
4-3 PUT Statement Actions for Pseudo Keyboard Output 4-33
51 Packed Hollerith Read Mode 5-2
52 BinaryReadMode i 5-3
8—1 Integer Representation of Changed Characters 8-23
8-2 Reversal of Bytes by SWAP%() Function. 8-23
8-3 High-Order Bits of CPU Time and KCTs, 8-131
91 Summary of Send/Receive Data, 9-26
A1 DOS-Labeled Magnetic Tape File A-2
A-2 DOS Magnetic Tape Consisting of 3 Files of 10 Data Records Apiece A2
A3 ANSI-Labeled Magnetic Tape File A4
A4 ANSI Magnetic Tape Consisting of 3 Files of 10 Data Records Apiece A4
G-1 EMT Data Packet Layout G-5

Xiv

Tables

1-1
1-2
1-3
14
1-5
1-6
1-7
1-8
-9
2-1
2-2
2-3
24
2-5
2-6
2-7
2-8

3-2
3-3
34
4-1

L&t

51

FrIift

87

8-9
9-1

92

10-1
10-2
10-3
104
10-5
10-6

Valid Cluster Size Ranges it e e
SWapP TIMES . .. ottt it ittt ettt s
Account Information Stored on the System Device
RSTS/E Privileges i e e e e
Account Management Privileges i e
File Access Privileges e e
Non-File-Structured Disk Default Characteristics
MODE Specifications for Disk Files
MODE Specifications for Flexible Diskette
Statements and Functions for Accessing Magnetic Tapes
System Density Values for Magnetic Tape
Magnetic Tape OPEN FOR INPUT MODE Values
Magnetic Tape OPEN FOR OUTPUT MODE Values
ANSI Magnetic Tape CLUSTERSIZE Values
MAGTAPE Function Summary i
Magnetic Tape Status Word i
Magnetic Tape File Characteristics Word for ANSI Format
LP11 Characters i i it e
Line Printer OPENMODE Values it
Additional OPEN MODES with FILESIZE 32767%+1%
Line Printer RECORD Values.t
Multiple Terminal RECORD Values for 8% s
Summary of MODE Values for Terminals
Echo Control Mode Character Set

ANSI-Compatible Escape Sequences: VT100-, VT200- and VT300-Family
Terminalso it e e e

Escape Sequence Terminatorsoi ittt ittt
Command Line Editing and Recall Availability
Specifying Read Modeson Card Reader
SYS System Function Calls (by Function Code)
SYS System Function Calls (by FunctonName)
FIP SYS Calls (by SubfunctionCode)
FIP SYS Calls (by Function Name) it
File Name String Scan FlagWord 1 oot
File Name String Scan FlagWord 2
SYS 14 Legal Byte Value Combinations
Internal Speed Values for Terminal Interface Lines.
Monitor Fixed Locations
RSTS/E Reserved Names ittt
Sender Selection Summary e
Message Parameter Areaon Send L i
Print/Batch Command Values it
Operator Command Values
User Request Data Fields i,
Operator Request Data Fields
Parameter Areaon Receive e

1-10
1-12
1-14
1-20
1-24

2-2
2-2
2-6
2-9
2-12
2-19
2-23
2-25

XV

Xvi

10-7
10-8
11-1

A2
A3
A4
A-5
A6

I g

D-1
D-2
E-1

Confirmation Error Codes ittt e e e e 10-25

Parameter Area for Reply Messages 10-27
STATUS Variable After CCLEntry. i, 11-6
DOS Label Record Bytes i i A-3
Volume Label Format i A-5
Header 1 Label Format. i A-6
Header 2 Label Format. it i i, A-7
End-of-File or Volume (EOF or EOV) 1 Record Format A-8
End-of-File or Volume (EOF or EOV) 2 Record Format A-9
CardReader Codes ittt ittt it B—1
Severity Standard in Error Messages i i e, C-2
Special Abbreviations for Error Descriptions Cc-2
Nontrappable Errors in Recoverable Class Cc-3
User Recoverable Errors i it e C-3
Nonrecoverable Errors i e e C-13
BASIC-PLUS-2 Errorso i e e e e e e Cc-20
Radix-50 Character Positions D-2
ASCll Character Codes i i i e e D-3
Handler Index i e e E—1
Monitor Directives e e F—1

Preface

Objectives

This manual describes RSTS/E programming techniques. The descriptions in-
clude:

¢ Directions on how to optimize the use of devices on RSTS/E
¢ Descriptions of system function calls to the RSTS/E monitor

e General information and programming hints for the system programmer

Audience

This manual is for BASIC-PLUS, BASIC-PLUS-2, and MACRO programmers.
It assumes that you know how to program in one of these languages and are
familiar with RSTS/E system concepts and features.

If you program in BASIC-PLUS or BASIC-PLUS-2, this manual contains all

the information you need to use device-dependent features and system function
calls. If you program in MACRO, however, you will need to use this manual as a
companion to the RST'S/E System Directives Manual.

Document Structure

Part I, Devices, contains six chapters. Each chapter describes programming
techniques for a different type of device:

Chapter 1 Describes file-structured and non-file-structured disk and flexible
diskette operations. It also describes RSTS/E system files and
privileges.

Chapter 2 Describes file-structured and non-file-structured magnetic tape
operations and explains how to process DOS- and ANSI-labeled
tapes.

Chapter 3 Describes system features for controlling line printers.

Chapter 4 Describes system features for controlling terminals, such as
echo control and multiterminal service. It also describes pseudo
keyboards.

Chapter 5 Describes card readers.

Chapter 6 Describes the DMC11/DMR11 interprocessor link.

Chapter 7 Describes Ethernet and the commands for using it.

xvii

Part II, System Function Calls and Programming Hints, contains four chapters:

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Describes system function calls available to BASIC-PLUS and
BASIC-PLUS-2 programmers. These calls let you communicate
with the RSTS/E monitor, perform special I/O functions, and set
terminal and job characteristics. Although the call descriptions
are tailored for BASIC programmers, MACRO programmers can
consult this chapter for a detailed description of the corresponding
monitor directives.

Describes system function calls for local message send/receive
operations. As in Chapter 8, the call descriptions are tailored
for BASIC programmers but are intended for use by MACRO
programmers as well.

Describes the system function call for a Print/Batch Services (PBS)
or Operator Message Services (OMS) request.

Contains system programming hints. It describes the CCL facility
and explains how the monitor handles the SLEEP and conditional
SLEEP statements.

This manual also has seven appendixes:

Appendix A

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Appendix G

Describes magnetic tape label formats for DOS and ANSI tapes
and explains how RSTS/E initializes the two types of tapes.

Lists card codes.

Lists RSTS/E and BASIC-PLUS error messages.
Summarizes the Radix-50 and ASCII character sets.
Lists device handler indexes.

Lists the monitor directives that correspond to the BASIC-PLUS
system function calls.

Describes the use of parameters and other features of the
send/receive calls that are specific to an EMT logging program.

Related Documents

xviii

The RSTS/E System User’s Guide describes RSTS/E system concepts, and ex-
plains how to work with files and devices.

The RSTS/E Utilities Reference Manual describes the use of RSTS/E system

programs.

The BASIC-PLUS Language Manual describes how to program in BASIC-PLUS.

The RSTS/E System Directives Manual describes monitor directives available to
MACRO programmers.

See the RSTS/E Documentation Directory for more information on RSTS/E

manuals.

Conventions

This manual uses the following conventions:

<>

[1

Angle brackets enclose essential elements of the item being described.
For example, you must supply an expression in the statement:

SLEEP <expression>

Square brackets indicate an optional element or a choice of one element
among two or more optional elements. For example, the CCL. DETACH
switch has the form:

[<space>VDETIA[C[H]II]
The required part of the switch is /DET.

Ctrl/x This symbol indicates a control key combination, such as Ctrl/U or Ctrl

/0. To enter a control key combination, hold the Ctrl key down while
you press the indicated key.

All examples in this manual are written to execute in BASIC-PLUS EXTEND
mode unless otherwise noted. If you enter them at your terminal, remember
to press the RETURN or LINE FEED key after each command, statement, or
program line.

Summary of Technical Changes for V10.0

Significant changes to the RSTS/E Programming Manual are:

During installation, the system now copies CSP100.LIB, the system program
resident library, into [0,1]. See Chapter 1.

Allowable pack cluster sizes now go up to 64. See Chapter 1.

RSTS/E now supports the RA70, RA90, RD31, RD32, RD53, and RD54 disk
drives. See Chapter 1.

RSTS/E now supports online creation and deletion of the virtual disk (device
DVO0:). See Chapters 1 and 8.

This manual now includes descriptions of the escape sequences for VT100-,
VT200-, and VT300-family terminals. See Chapter 4.

RSTS/E now supports Local Area Transport (LAT) for both in-bound and
host-initiated connections. See Chapters 4 and 8.

RSTS/E now supports dynamic pseudo keyboards. See Chapters 4.

RSTS/E now supports command recall and command line editing. See
Chapter 4.

RSTS/E now has a new in-memory structure called the job header, used for
user logical names and command line editing information. See Chapter 8.

Xix

XX

RSTS/E now supports extended user and system logical names. See Chapter
8.

You can now use the UU.FIL call to control a file’s [INOIBACKUP and
/INOJIGNORE characteristics. See Chapter 8.

RSTS/E now supports floating resident libraries. See Chapter 8.

You can now use the UU.CFG call to set Answerback messages for electronic
messaging services such as TELEX and TWX. See Chapter 8.

RSTS/E now supports the Operator/Message Services package (OMS). See
Chapter 10.

Partl
Devices

Chapter 1

System Structure and Disk Operations

Disks are file-structured, random access devices. They are the fastest, most
reliable, and most durable type of peripheral device.

RSTS/E is a disk-based system. During timesharing, some parts of the monitor
and run-time system code are always in memory; other parts are on the system
disk and are loaded into memory only when needed. The system disk also stores
system programs and user files.

Because the RSTS/E system is built around disks and their characteristics, this
chapter differs from other chapters on peripheral devices in this manual. Besides
describing both file-structured and non-file-structured disk operations, it also
describes how RSTS/E system accounts are set up and how RSTS/E handles
privileges. This chapter also describes flexible diskettes and the "null device,"

a software structure available on all RSTS/E systems for debugging and for
creating a buffer without tying up a physical device.

1.1 System Accounts

RSTS/E systems have two accounts that are essential to system operation: the
system library account and the system account. The system library account, [1,2],
stores a library of system programs and message and control files. This account
must be present on the system disk. The system account, [0,1], contains RSTS/E
monitor files and routines that are critical to system operation.

The following sections explain these two accounts in detail.

1.1.1 System Library Account [1,2]

During system installation, the initialization procedure creates the system library
account [1,2] on the system disk. The system program installation procedure
populates the account with system programs. This section briefly describes the
contents of account [1,2]. See the RSTS/E System Installation and Update Guide
for a directory listing of the account.

The system library stores many of the system programs that are available to
general and privileged users. It also contains text files used by system programs.

System Structure and Disk Operations 1-1

During normal system start-up or automatic crash recovery, the START option
accesses the system library automatically. The console keyboard is logged in
automatically under account [1,2]. Then the system invokes the START.COM file
in account [0,1] as a DCL command file. One of the steps in the system start-up
procedure runs the ERRCPY program. Depending on the contents of the start-up
command file, other programs may be started up in account [1,2] as well, or the
system manager may elect to run any of these programs in some other account.

1.1.2 System Account [0,1]

During system installation, the initialization procedure creates the system
account [0,1] on the system disk. The procedure creates two files required for

all RSTS/E disks and stores them in [0,1]: the storage allocation file SATT.SYS
and the bad block file BADB.SYS. Account [0,1] on the system disk also contains
files used for system operation. During system installation, the system copies the
necessary files into [0,1]. See the RSTS/E System Installation and Update Guide
for a directory listing of the account. Some of the most important files are:

e INIT.SYS, the system initialization code

e SWAP.SYS, the primary swapping file

e CRASH.SYS, the crash dump data file

® A file with the file type .SIL, the monitor code

¢ DCL.RTS, the system default keyboard monitor

¢ RT11.RTS, a required auxiliary run-time system

¢ ERR.ERR, the error message text

e CSP100.LIB, the system program resident library

e PKG001.MSG and PKG002.MSG, the DCL error message files

The following sections describe the RSTS/E system files.

1.1.2.1 Allocating Disk Storage Space

RSTS/E uses the SATT.SYS file to control the allocation and deallocation of
storage space for a disk. The file maps the entire space on the disk in a bit
map called a storage allocation table (SAT). Each bit in a SAT represents either
allocated or unallocated space. The system sets a bit in the SAT to 1 when that
space is allocated for any purpose.

The system allocates storage space in terms of pack clusters. Each bit in the SAT
represents one cluster of disk space. A cluster is a fixed number of contiguous
512-byte blocks of storage on the disk. The cluster size defines how many con-
tiguous 512-byte blocks are contained in the cluster. RSTS/E defines cluster sizes
for disks, directories, and files.

1-2 System Structure and Disk Operations

Table 1-1 presents the types of clusters and related information.

Table 1—1: Valid Cluster Size Ranges
Maximum
Cluster Size Minimum Size Size When Defined
Pack (for any Device Cluster 64 At initialization time with DSKINT
disk) Size (see Table option, or on line with the DCL
1-7) INITIALIZE command.
Directory Pack Cluster 16 At creation of the directory with
Size either the DSKINT initialization op-
tion, CREATE/ACCOUNT command,
or SYS system function.
File Pack Cluster 256 At creation of the file with either an

Size

OPEN or OPEN FOR OUTPUT state-

ment, or the DCLL CREATE or COPY
command. Specify cluster size with
the CLUSTERSIZE option. Note that
when you specify a negative cluster
gize, the system uses either the abso-
lute value of the argument specified
or the pack cluster size, whichever is
greater.

The system manager specifies the disk cluster size either during disk initializa-
tion (DSKINT) or on line with a qualifier to the DCL INITIALIZE command. The
pack cluster size defines the minimum number of contiguous 512-byte blocks that
a cluster comprises on a specific disk; thus, the extent of contiguous space each
bit represents in the SAT. A pack cluster size of 1 means that one 512-byte block
of storage is allocated for each bit set to 1. A pack cluster size of 2 means that
two contiguous 512-byte blocks are allocated for each bit set to 1. The minimum
value for a pack cluster size is the device cluster size for the disk type. Allowable
pack cluster sizes are 1, 2, 4, 8, 16, 32, or 64 as long as the pack cluster size is
equal to or greater than the device cluster size of the disk. See Table 1-7 for a
list of disk device cluster sizes.

The pack cluster size affects the efficiency of storage space allocation. A large
size improves access time to programs and files but may waste disk space. For
example, if the pack cluster size is 16, the system allocates one cluster of 16
contiguous blocks to a one-block file: fifteen blocks are wasted. A 15-block file
also requires one cluster but only one block is wasted. Thus, the system manager
must choose the pack cluster size that best fits the type of processing and the
access requirements of the local installation.

Because of the problem of wasted space, Digital recommends you do not use
disks of extended cluster size (32 or 64) for system disks. Use them for a limited
number of accounts and for large data files.

One processing consideration is the use of data caching on the system (see the
section "Caching Control"). While the pack cluster size is set during disk initial-
ization and the cache cluster size can be set and changed during timesharing, the
relationship between the two affects the optimal use of the cache. For example, if
the pack cluster size and file cluster size are both 4 and you specify a cache clus-
ter size of 8 (see the SET CACHE command in the RSTS/E System Manager’s
Guide, or SYS Call 19, Enabling and Disabling Disk Caching), 4 blocks in the
cache contain your file’s data and 4 may contain unrelated data. Therefore, if you
plan to use data caching on your system, the pack cluster size that the system

System Structure and Disk Operations 1-3

manager specifies during disk initialization should be equal to or greater than
any cache cluster size you specify during timesharing.

The User File Directory (UFD) has a defined directory cluster size. Its minimum
value is the pack cluster size (or 16 on disks where the pack cluster size is greater
than 16) . The system manager specifies the cluster size during account creation.
A directory cluster size must be a power of 2 up to a maximum of 16 and must be
greater than or equal to the pack cluster size. Thus, for a pack cluster size of 2,
the directory cluster size on that device can be 2, 4, 8, or 16. For a pack cluster
size of 8, a directory cluster size on that device can be 8 or 16.

The directory cluster size limits the size to which a directory can expand. A
directory expands to catalog files and can occupy a maximum of seven clusters.

The directory cluster size determines how many files a user can create under
one account. The following formula gives the number of user files (UF) for each
allowable directory cluster size (UC). (The formula assumes that all files are a
minimum size between 1 and 7 clusters and have no attributes.)

(217 x UC) - 1
e = JF
3

The maximum number of user files is 72 for a UFD cluster size of 1 and the
maximum UF is 1157 for a UFD cluster size of 16. Note that system performance
is maximized when the UFD contains fewer files.

1.1.2.2 Bad Block File

The bad block file BADB.SYS is the mechanism which the system manager uses
to remove unreliable storage blocks on system and nonsystem disks from use.
The DSKINT option or the DCL INITIALIZE command creates BADB.SYS in
account [0,1]. DSKINT can thoroughly check each block on a disk for reliability.
If any block on a disk pack or cartridge is faulty, DSKINT allocates the pack
cluster in which the bad block resides to the file BADB.SYS. The bad block file,
therefore, contains no data but merely removes from use those clusters found to
contain unreliable blocks.

Asg a disk is exercised during time-sharing operations, more unreliable portions
of a disk may be uncovered. By checking the data errors recorded in the sys-
tem error log, the system manager can isolate these bad blocks. Through the
REFRESH initialization option (see the RSTS/E Installation and Update Guide),
the manager can add newly discovered bad blocks to BADB.SYS. Once the system
allocates a bad block to BADB.SYS, it cannot be deallocated.

Note that MSCP disk controllers for RA-, RC-, and RD-series disks provide their
own built-in handling of bad disk blocks. This is transparent to the system; the
disk appears to have the full number of good data blocks. Occasionally, bad blocks
show up despite the replacement mechanism. So you can still access BADB.SYS,
even on MSCP disks.

1.1.2.3 System Overlay File

The OVR.SYS file contains certain monitor code that resides on disk, not in
memory. The system loads this code into memory on demand and overlays a
certain part of the monitor. The monitor Save Image Library (SIL) normally
contains the overlay code. The system achieves optimum efficiency when this
code resides on the logical center of a fast-access disk.

1-4 System Structure and Disk Operations

If the system disk is not a fast-access disk, the system manager can use the DCL
INSTALL/OVERLAY_ FILE command to create a separate, contiguous file that
contains the overlay code. The manager can optimally position this file on a fast
disk. At the start of time-sharing operations, the system manager can add the
overlay file to the system. Thereafter, the system accesses the copy of the overlay
code in the optimally positioned file rather than in the original code in the SIL.

1.1.2.4 Monitor Save Image Library File

All monitor code, whether permanently resident in memory or loadable as over-
lays, resides in account [0,1] on the system disk. This file is structured in Save
Image Library format and must have a file type of .SIL. Multiple monitor files
can reside on the system disk but the system only installs one such file at a time.
The system marks the installed monitor file as nondeletable and loads the file
from disk to memory when time-sharing operations begin.

1.1.2.5 Error Messages File

The ERR.ERR file contains the system error messages. Digital distributes
ERR.ERR with each RSTS/E system. ERR.ERR must exist in account [0,1]
on the system disk.

The DCL INSTALL/ERROR_FILE command allows the system manager to create
a separate contiguous file and position it on any disk. The standard name for
this file is ERR.SYS. The system achieves optimum efficiency when this code
resides on a fast-access disk. At the start of time-sharing operations, the system
manager can add this separate file to the error message file on the system.

The monitor copies the contents of the established default error message file to
this optimally positioned file. Thereafter, the system accesses the copy in the
optimally positioned file instead of the established default file.

1.1.2.6 Saving information After a Crash

The system uses the file CRASH.SYS to save a dump of the read/write area of the
monitor and the extended buffer pool (XBUF) at the time of a system crash.

INIT.SYS automatically creates the CRASH.SYS file on the system disk during
system start-up. If INIT.SYS cannot find sufficient contiguous disk space to
create CRASH.SYS, it prints a warning message before starting the system.

The size of CRASH.SYS depends on the size of the monitor read/write area and
XBUF. The monitor read/write area size varies according to the hardware and

software configuration but is between 64 and 112 blocks. To estimate the number
of blocks needed for XBUF, use the formula:

Size of XBUF in K words * 4

1.1.2.7 Run-Time System Files

The account [0,1] on the system disk must contain at least one file with a file type
of .RTS. This file is the default keyboard monitor and is automatically loaded
into memory by the monitor at the start of timesharing. The default keyboard
monitor must reside on the system disk because that disk is the only one logically
mounted at system start-up time.

DCL.RTS is the system default keyboard monitor. In addition, RT11.RTS is also
required on the system. The system manager can add auxiliary run-time systems
(other files with .RTS file types in account [0,1]).

System Structure and Disk Operations 1-5

All run-time system files (as well as resident library files) must occupy contiguous
space on disk. This condition allows a run-time system (or resident library) to be
loaded into memory as fast as possible.

1.1.2.8 System Program Resident Library

Account [0,1] on the system disk contains the resident library CSP100.LIB.
Because nearly all system programs use CSP100.LIB, this resident library is
required on the system. CSP100.LIB is automatically installed during system
start up.

CSP100.LIB is a floating resident library. See the system function call,
Manipulate Run-Time System, Resident Library, Dynamic Region (SYS -18),
for more information about floating libraries.

1.1.2.9 Initialization Code

The INIT.SYS file contains the system initialization code. INIT.SYS resides

in account [0,1] on the system disk. When the system disk is bootstrapped, a
secondary bootstrap loads the main part of the initialization code into memory.
The initialization code is a large, stand-alone program that performs consistency
checks on system software and hardware. It allows the system manager to:

* Initialize and format disks

e Install patches

¢ Enable and disable device controllers

° Manipulate files in account [0,1] on both system and non-system disks
® Change some default timesharing characteristics

e Add bad blocks to the bad block file BADB.SYS in account [0,1].

At the start of timesharing, the RSTS/E monitor code replaces the initialization
code in memory.

1.1.2.10 Swapping Storage

Nonresident jobs on RSTS/E are kept in predefined areas on disk called swap
files. RSTS/E provides four distinct swap files: SWAP.SYS, SWAP0.SYS,
SWAP1.SYS, SWAP3.SYS. Swap file number 2, named SWAP.SYS, is required
on all systems; the other files are optional. SWAP.SYS must reside on the system
disk.

During system installation, INIT.SYS automatically creates the SWAP.SYS

file in account [0,1] at a size large enough for 1 job. Later on in the system
installation, the system manager can create a SWAP1.SYS file at a size large
enough to hold the rest of the jobs on the system. Or, the system manager can
later create muitiple swap files (up to a total of 4) to provide swap space for all
jobs. The system manager can locate some or all of these files on disks other than
the system disk, preferably on high speed disks that do not contain frequently
accessed files. See the RSTS/E System Installation and Update Guide for details.

RSTS/E uses swap files in a predefined way. For example, the system stores a
highly interactive job that must be removed from memory in the lowest numbered
file available. The system searches for an empty space starting at the lowest
numbered active file. On the other hand, a job with infrequent activity is stored
in the highest numbered file available. Such relatively inactive jobs are those
that sleep until an event occurs. The system error logging program ERRCPY is
an example of a relatively inactive job.

1-6 System Structure and Disk Operations

A swap file can be either a file or an entire device, for example, a high speed disk.
The best device to use for swap files on a system depends on the types of devices
available and the amount of data swapped.

Table 1-2 shows the approximate amount of time (in seconds) needed to transfer
different size job images for various types of disks. Actual times will be longer if
the disk is accessed in other ways, for example to read user file data.

Table 1-2: Swap Times

Job Size (in words)

Disk 8K 16K 28K 32K 64K
RL01/02 .10 13 .18 .19 .32
RKO05 .16 .25 .38 43 .78
RK06/07 .08 11 .15 17 .29
RP04 .06 .08 1 12 .20
RP05/06 .06 .08 A1 12 .20
RMO2 .06 .08 a1 12 .20
RMO03/05 .05 .06 .08 .09 14
RMS80 .05 .06 .08 .09 .14
RA60 .06 .07 .08 .08 11
RA70 .03 .05 .07 .07 12
RAS80 .05 .06 .08 .09 .14
RAS81 .04 .05 .06 .07 .10
RA90 .02 .04 .05 .05 .07
RC25 .04 .06 .07 .08 13
RD31/32 .07 .09 14 .15 27
RD51 A1 14 17 .19 .29
RD52 .08 .10 14 15 .26
RD53/54 .06 .09 13 .14 .25

Calculate the swap times for each disk by using the formula:

Job size * 2
Swap time = Avg access time + ———
Transfer speed

where:

Average access time measured in seconds, is defined as the sum of the average seek
time and the average latency time.

Transfer speed is measured in kilo-bytes per second (KB/S).

Job size is measured in kilo-words (KW).

When a file is used as a swap file, the system manager can further reduce the
swap time by using the /POSITION switch on the file specification to position the
file in the middle of the disk. This minimizes the time required for positioning
the read/write heads. On systems with multiple disks, the system manager can
position two files on separate drives to take advantage of overlapped seeks.

System Structure and Disk Operations 1-7

A swap file other than file 2 (SWAP.SYS) is dynamic. The system manager adds
files at the start of timesharing to allow the maximum number of jobs to run.
During timesharing, a swap file can be removed and added again as another
device or file. Dynamic addition and removal of swap files allows timesharing to
continue when hardware problems on a device being used for swapping would
normally require discontinuing system operation.

1.1.2.11 System Account [0,1] on Nonsystem Disks

The system account [0,1] on a nonsystem disk initially contains two required
files: SATT.SYS and BADB.SYS. The DSKINT initialization option or the DCL
INITIALIZE FILE command similarly creates these files for nonsystem disks as
for the system disk. Account [0,1] on a nonsystem disk, either public or private,
can contain other optional system files.

The REFRESH initialization option manipulates system files in account [0,1]

on a nonsystem disk as well as on the system disk. The following DCL com-
mands perform related operations: the /ERROR_FILE, /SWAP_FILE, and
/OVERLAY_FILE qualifiers of the INSTALL and REMOVE commands; the SET
FILE/INOJDELETABLE command. See the RSTS/E System Managers Guide for

more information about these commands.

Both the REFRESH option and DCL commands can create and position contigu-
ous files (such as a swap file or the overlay file) on a nonsystem disk. They can
also mark files in account [0,1] as nondeletable. Note that only REFRESH can
add blocks to the BADB.SYS file. Nonsystem disks can also contain auxiliary
run-time system files.

1.2 Storage of Accounting Data
This section describes how accounting data is stored on sysfem and nonsystem
disks. It describes:
e Accounting data on the system device.

e Accounting data on nonsystem disks.

1.2.1 Accounting Data on the System Device

Project-programmer numbers (PPN) and passwords control access to the RSTS/E
system. The system manager, or anyone who has sufficient privilege (GACNT for
group, WACNT for all), creates a new account by using the CREATE/ACCOUNT
command (see the RSTS/E System Manager’s Guide). The manager enters the
PPN and password for the new account, along with other information, to allow a
user access to system facilities.

The new account information is stored on the system device. During account
creation, the system manager has the option to preextend and position the UFD
(see SYS Call 0, Create User Account). By default, the system preallocates

one cluster for the UFD. The UFD is related directly to the user’s account and
contains information about the files created under that account number.

The system disk structure contains information about all UFDs (accounts) on
the system. When a user tries to gain access to the RSTS/E system by giving an
account and password, the system program LOGIN checks whether the PPN and
password given match one stored on disk. If so, the system allows access.

1-8 System Structure and Disk Operations

Besides the LOGIN program, other system commands and programs also access
the account information. For example, the SHOW ACCOUNT command refer-
ences the accumulated system accounting information. The system manager uses
the SET/ACCOUNT command to reset this accounting data or change certain
parameters such as disk quota. The LOGOUT system program references the

disk quota information.

Table 1-3 lists the account information that the system keeps for each account.

Table 1-3: Account Information Stored on the System Device

Type Description Explanation
Identification Project-programmer The PPN has the format [n,m]
number (account) where n and m are decimal num-
bers that identify the user.
Password 6 letters and/or digits (old format).
14 ASCII characters (new format).
Accumulated Usage Central Processor Unit Processor time the account has

Disk Storage and
System Resource Usage

(CPU) time (Run Time)
Connect Time (log-in
time)

Kilo-core-ticks (KCTs)

Device time

Quota

used to date, in tenths of a second.

Number of minutes the user has
been connected to the system
through a terminal or remote line.

Memory usage factor. One KCT is
the usage of 1K words of memory
for one tenth of a second.

Number of minutes of peripheral
device time the account has used.

Number of 512-byte blocks the
user is allowed to retain. Types of
quotas include logged-out, logged-
in, job, detached-job, message, and
RIB.

Using SYS system function calls, users who have GACNT or WACNT privilege
can write programs that access the accounting information. See the description of
the system function calls in Chapter 8.

1.2.2 Accounting Data on Nonsystem Disks

The system disk exists in what is called the public structure. The system
manager can add additional disks to the public structure or add them as private
disks. Disks other than the system disk are called nonsystem disks. Each disk
added to the system also contains its own directory structure, which is created
when the system manager initializes the disk. A nonsystem disk initially contains
UFD information for account [0,1] as well as storage information.

Accounts on public disks are treated differently from accounts on private disks.
RSTS/E allocates space for a user’s file in the public structure on the disk that
has the most free space. (RSTS/E never puts files on the virtual disk, DVO:,
automatically.) If the user’s account does not yet exist on the disk with the most
free space, the account number is added dynamically to that disk and a UFD is
created for the user on that disk. A user cannot create a file on a private disk

unless the account number already exists on that disk. The system manager or a
sufficiently privileged user grants access to a private disk by entering the account
information on the desired disk with the CREATE/ACCOUNT command.

System Structure and Disk Operations 1-9

1.3 Privileges

The system manager must have a way to prevent general access to activities
that can damage the system. Prior to Version 9.0, RSTS/E allowed the system
manager to divide users into privileged and nonprivileged groups. Nonprivileged
users were restricted to activities that could cause no system damage. Privileged
users had access to all activities.

The multiple privileges feature gives the system manager finer control over access
to activities. Now the system manager can limit the user’s access to just those
activities suitable to the user’s job. Multiple privileges gives the system manager
a tool to enhance system performance, security, and more easily delegate certain
operations.

1.4 Multiple Privileges

The multiple privilege feature groups similar system functions into sets and
defines a privilege to control access to each set of functions. A group of 35
privileges govern the entire set of RSTS/E system functions. The privileges
given to an account determine the range of functions available to the user. Some
privileges apply to very specific functions; others control functions within broader
classes of system use.

Table 1-4 summarizes the RSTS/E privileges.

Table 1-4: RSTS/E Privileges

Privilege Description

DATES Chahge system date/time and file dates.

DEVICE Access restricted devices.

EXQTA Exceed quotas or memory maximum. (Not usually given to users; used
by privileged programs.)

GACNT Perform accounting operations on accounts in the user’s group.

GREAD Read or execute any file in the user’s group, regardless of protection
code.

GWRITE Write, delete, create, or rename any file in the user’s group, regardless
of protection code.

HWCFG Set hardware configuration parameters; for example, set terminal
characteristics.

HWCTL Control devices; for example, disable a device or hang up a dial-up line.

INSTAL Install run-time systems, swap files, and resident libraries.

JOBCTL Manipulate other jobs; for example, detach or kill a job.

MOUNT Mount or dismount disks other than NOSHARE.

OPER Enable or disable operator terminals, and show or reply to requests.

PBSCTL Control Print/Batch Services (PBS); for example, turn servers on or off,
and change printer forms.

RDMEM PEEK at memory. (Not usually given to users; used by privileged
programs.)

(continued on next page)

1-10 System Structure and Disk Operations

Table 1-4 (Cont.): RSTS/E Privileges

Privilege Description

RDNFS Read a disk non-file-structured.

SEND Broadcast to terminals and send messages to restricted receivers.

SETPAS Change your own password.

SHUTUP Shut down the system.

SWCFG Set software configuration parameters; for example, installation name.

SWCTL Control software components; for example, turn DECnet on and off.

SYSIO Perform restricted I/O operations; for example, gain write access to files
in account [0,*], or set the privilege bit on nonexecutable files.

SYSMOD Perform functions that could easily modify the system; for example,
poke memory.

TMPPRV Set privilege bit (128) in the protection code of an executable program.

TUNE Control system tuning parameters; for example, caching or job priority.

USER1-8 Available for customer applications. Not used by RSTS/E.

WACNT Perform accounting operations on any account.

WREAD Read or execute any file regardless of protection code.

WRTNFS Read/write a disk non-file-structured.

WWRITE Write, delete, create, or rename any file regardless of protection code.

(For [0,*] accounts, SYSIO is required in addition to WWRITE.)

1.5 Classes of System Functions

Most system activities fall into two general classes:
® Account Management Activities
® File Access Activities

The next two sections describe these two classes of system activities and discuss
the privileges that control them.

1.5.1 Account Management Activities

A user accesses a computer through an account. The individual account is a
member of the "group,” which contains all accounts with the same project number.
The group, in turn, is a subset of the "world," which contains all accounts on the
system. Account management activities include creating and deleting accounts,
as well as changing passwords, disk quotas, and expiration dates.

The following privileges control account management:

GACNT Group Account Management—Grants account management privileges
within the user’s group.

WACNT World Account Management—Grants account management privileges
for all accounts.

SETPAS Set Password—Allows changing one’s own password.

System Structure and Disk Operations 1-11

Table 1-5 outlines the account management activities and the privileges required
to perform them.

Table 1-5: Account Management Privileges

Activity Self Group World
Create/delete account GACNT or WACNT (for GACNT or WACNT
nonsystem disks)” WACNT
Set account parameters GACNT or WACNT GACNT or WACNT
WACNT
Set password SETPAS or GACNT or GACNT or WACNT
WACNT WACNT
Read account data Always allowed, except GACNT or WACNT
/parameters password WACNT
Read/reset account data ~ GACNT or WACNT GACNT or WACNT
WACNT

*Create does not apply to the system disk; you cannot delete your own account.

1.5.2 File Access Activities

Users routinely access files. The user creates some files, which reside in the
individual’s account. Other files reside in the accounts of other users or in system
accounts. File access activities include: creating, deleting, renaming, reading,
writing, and executing files.

Both the protection code of the file and the privileges granted to the user can
affect whether the system grants or denies file access.

On a system with equal privileges granted to all users, protection codes control
the operations that a user can perform on a file. The SET PROTECTION
command (or the /PROTECTION switch in the RSTS/E file specification) passes a
value to the system that sets bits in the protection code byte. When a bit is set,
the system prohibits activity named by that bit.

Figure 1-1 shows the value and meaning of each protection code bit.

1-12 System Structure and Disk Operations

Figure 1-1:

RSTS/E File Protection Codes

If Executable Bit Not Set

128 64 32 16 8 4 2 1

| | | | | | | |

I I I I I I I I

Priv Exe (0) Write Read Write Read Write Read
World World Group Group Owner Owner

If Executable Bit Set

128 64 32 i6 8 4 2 1

| | | | | | | I

I | I I I | | I

Priv Exe (1) Read, Exe Read, Exe Read, Exe
Write World Write Group Write Owner
World Group Owner

Certain privileges also govern file access activities. Some privileges override
protection codes completely. The following privileges grant a user the right to
perform certain file access activities, regardless of protection codes:

GREAD

Group Read—Read the data in any file within the group. Also, execute

a program, if the executable bit is set.

WREAD

World Read—Read the data in any file in on the system. Also, execute

a program, if the executable bit is set.

GWRITE

group.

WWRITE

system.

Group Write—Modify, extend, or delete the data in any file within the

World Write—Modify, extend, or delete the data in any file on the

System Structure and Disk Operations 1-13

Table 1-6 summarizes the file access activities and the rules that govern file

access.

Table 1-6: File Access Privileges

Function Self Group World

Read Yes, if protection GREAD or WREAD or protection
code permits, WREAD or code permit
or GREAD or protection code
WREAD permit

Write/Delete Yes, if protection GWRITE or WWRITE or protection
code permits, WWRITE or code permit (and SYSIO
or GWRITE or protection code if account [0,*])
WWRITE permit

Execute Yes, if protection GREAD or WREAD or protection
code permits, WREAD or code permit
or GREAD or protection code
WREAD permit

Create/Rename/Zero Yes GWRITE or WWRITE (and SYSIO if

WWRITE account [0,*])

1.6 Multiple Privilege Masks

The system manager assigns a certain set of privileges to each account. The
system stores this set of privileges in privilege masks. A privilege mask is a set
of flag bits with one bit corresponding to each privilege. When a flag bit is set,
the user acquires the corresponding privilege.

For each active job, RSTS/E keeps three masks:

® Authorized mask—The set of privileges that the system manager gives to the
account. You can use the SHOW ACCOUNT/FULL command to list the set of
privileges available to your account.

¢ Current mask—The set of privileges now in effect for the job. The system
always references this mask when it performs a privilege check. You can raise
or lower your privileges (up to your authorized limit) with the Set/Clear/Read
Current Privileges SYS Call (SYS 28), or the DCL SET JOB/PRIVILEGE
command. You can list your current set of privileges with the SHOW JOB
/PRIVILEGE command.

¢ Saved mask—The saved record of the current privileges when a job gains
temporary privileges (see the section "Temporary Privileges").

When a user attempts to perform an activity that is restricted by one or more
privileges, the system performs a privilege check. This check examines the
current mask to determine if the requesting job has all the privileges required to
perform the activity. If the requesting job has insufficient privilege to perform the
activity, the system returns one of the following errors:

?Protection violation (ERR=10)
Mlegal SYS() usage (ERR=18)

1-14 System Structure and Disk Operations

1.7 Multiple Privileges and Jobs
The following sections describe how the monitor handles privilege information
during the life of a job. They describe:
® Job creation
e Login
°* Logout
®* Spawned jobs

1.7.1 Job Creation

At job creation, the monitor initializes both the current mask and the authorized
mask, giving them all privileges except SYSMOD and TMPPRYV. This applies to
all newly created jobs with the exception of those created by SYS 24, Create a Job
(see Chapter 8).

1.7.2 Login

When a job logs in, the Login SYS call (SYS 4) looks up the authorized mask in
the account attributes. It copies this mask into the saved and authorized masks,
ORs it into the current mask, and sets the job status to indicate the job has
temporary privileges in effect.

If a program logs in, it now has all the privileges it originally had, plus possibly
some new ones. When a program exits, the user has all authorized privileges
enabled.

A user who logs in may not want all his authorized privileges to be active at
login. In that case the user can employ a LOGIN.COM file to initially drop some
privileges.

1.7.3 Logout

When a job logs out, the monitor clears the group-related privileges GACNT,
GREAD, and GWRITE in all three privilege masks. This is done because the
job is currently running with PPN = 0, effectively putting it in group zero. The
monitor drops group privileges because the intent of these privileges is to allow
access to the user’s group, not group zero.

Apart from losing group privileges, a job neither gains nor loses any privileges as
a result of logging out. Note that the Logout SYS call (SYS 5) performs a self-kill
except when the job currently has WACNT privilege.

1.7.4 Spawned Jobs

The Create A Job SYS call (SYS 24) creates a spawned job. For jobs spawned
logged-in, the monitor usually gives the spawned job the same set of authorized
and current privileges as the account it logs in to. This is done before the
program, if any, is run. If the program is a privileged program, the usual
additional privilege processing takes place (see the section "Running a Privileged
Program").

System Structure and Disk Operations 1-15

As an option, the caller of the Create a Job SYS call can specify that the created
job have fewer privileges. :

Jobs spawned logged-out are given the same privileges as the job issuing the
spawn function.

Spawning a job logged-in to an account other than the caller’s requires accounting
(GACNT/WACNT) privilege. Logged-out spawn requires WACNT privilege.
Spawn therefore allows users with accounting privilege to create jobs that have
some other account’s privileges, possibly more than their own.

1.8 Writing Applications Using Multiple Privileges

When you write applications in RSTS/E V9.0 or later, you must correctly use
the multiple privileges features. The following sections explain how to best use
multiple privileges within your program. They describe:

° Writing programs protected <124> and <104>

e Writing programs protected <232> (privileged programs)
¢ Performing access and privilege checks

®* Program exit

e Multiple privilege system function calls

1.8.1 Writing Programs Protected <124> and <104>

Before V9.0, only a "privileged" user could run an executable program residing
in a [1,*] account with a protection code of <124> (60+64). These programs could
safely assume that anyone able to run the program had all the privileges required
to perform all of the program’s steps (an exception to this was POKE, which
required the program to be run from account [1,1]).

Since V9.0, the concept of "privileged" user is no longer all inclusive. If you have
WREAD (world read) privilege, you can execute any program protected <124>
on the system, even though you may not have all the privileges required for the
program to work properly.

It may be acceptable to simply leave programs protected <124> as is. These
programs will succeed or fail depending on the privileges of the user who executes
them. However, some <124> programs may require the user to have several
different privileges in order to succeed. If a user has some but not all of the
privileges required, the program may partly succeed; it can complete some of its
tasks but may fail at others. This may be undesirable, especially where failing
part way through a multistep operation could leave a file or other data corrupted.

The solution to this problem is for such programs to do a privilege check at the
beginning of the program, to ensure that the user has all the required privileges
before proceeding. You can use the Check Access Function SYS call (SYS 32)

to determine if a user has a particular privilege. See Chapter 8 for a complete
description of this call.

Once you add a privilege check to <124> programs, you can safely lower the
program’s protection code to <104> (40+64). Protection code <104> allows any
user on the system to run the program. The up-front privilege check terminates
the program if its user does not have the proper privileges.

1-16 System Structure and Disk Operations

For example, suppose a program requires HWCFG, SWCFG, and TUNE privilege
in order to work properly. The program should initially perform a check to ensure
that any user running the program has all three privileges before continuing. If
the user has HWCFG and SWCFG privilege, but lacks TUNE privilege, then the
program issues an error message and terminates.

If you still want program privacy, you can leave the program’s protection code
<124>, allowing only users with WREAD (or GREAD if the program resides in
the same group as the user) to access the program or display it in a DIRECTORY
listing.

1.8.2 Writing Programs Protected <232>

In some cases, you may not want to require users to have all the privileges

that a program needs to work properly. In such cases, you can give a program
temporary privilege by setting the privilege bit (128) in its protection code. When
a privileged program is executed, it receives all privileges except SYSMOD and
TMPPRYV.

Any program with a protection code of <192> or higher is privileged. The normal
protection code associated with privileged executable programs is <232>, granting
execute access to all, but restricting read/write access to the owner.

For security purposes, the system places two restrictions on privileged programs:
¢ You need TMPPRYV privilege to designate a program as privileged.

e A privileged program that resides on a disk mounted /NOSHARE will not
have temporary privileges when run. This restriction prevents an outsider
from acquiring privileges by bringing in a privileged program on a private
pack. To be able to mount a disk /SHARE, you need MOUNT privilege.

Privileged programs may be available to all users (for example, SYSTAT), or they
may be restricted by including a check for some privilege at the beginning. Using
the previous example, if you make a <104> program privileged (protection code
<232>), it can check at the beginning for only TUNE privilege. The program
proceeds for those users with TUNE privilege, even though the program itself
requires HWCFG and SWCFG privilege as well. Be sure to drop temporary
privilege before doing the privilege check, so that the user’s privileges are
checked, not the program’s (see the next section).

SHUTUP is an example of such a privileged program. It requires a variety of
privileges to remove jobs, remove runtime systems, dismount disks, and issue the
Shut Down System SYS call (SYS -16). Instead of requiring a user to have all of
these privileges, SHUTUP is installed as a privileged program (protection code
<232>) and only requires the user to have SHUTUP privilege in order to perform
all of its steps. SHUTUP returns the error message ?SHUTUP privilege required
if a user without SHUTUP privilege attempts to run it.

Whenever such a program drops temporary privilege, the program’s privileges are
saved and the user’s own privileges are re-enabled. When temporary privileges
are regained, the two sets of privileges are exchanged again. If temporary
privileges are permanently dropped, then the user’s privileges are re-enabled and
the program’s temporary privileges are lost.

You should be careful when you create privileged programs. In general, a
privileged program should execute most of its functions with temporary privileges
dropped, raising them just before executing a privileged operation and then
dropping them immediately following the operation.

System Structure and Disk Operations 1-17

Pay special attention to BASIC-PLUS error handling under such conditions. If a
privileged operation causes an error, control may be passed to an error handler
with temporary privileges still enabled. Be sure that there are no paths in the
program where temporary privileges may be accidentally left enabled.

1.8.3 Program Access and Privilege Checks

When designing programs, avoid duplicating the monitor’s access and privilege
checks in your program. When performing an operation that depends on the
user’s privileges and/or a file’s protection code, a program should simply perform
the operation (with temporary privileges disabled if a privileged program), and let
the monitor enforce its access and privilege rules. Duplicating such checks in the
program itself is inefficient and may lead to incompatibility in the future.

For example, suppose you want to design a privileged program that creates a
file in a user-specified location (device and account). Rather than having the
program determine if the user is authorized to create the file in the location
specified, simply drop temporary privileges and create the file. If the user lacks
the required privileges, the monitor blocks the file’s creation and returns an
error. The program can then report the error and reprompt the user for a new
file location. Note that this program will continue to function properly, even if
RSTS/E access and privilege rules change in the future.

Several system function calls allow programs to more easily establish access
rights and privileges. Digital recommends you use these calls where possible. See
the section "Multiple Privilege System Function Calls" for a summary of the calls.

1.8.4 Program Exit

Whenever a program exits or chains to another program, the monitor performs
the following privilege-related cleanup:

* If temporary privileges are in effect, the monitor cancels them.

* The monitor cancels any third-party privilege check currently in effect. (See
the Third-Party Privilege Check SYS call, SYS 31.)

* If the job is currently logged-out and does not have WACNT privilege, and the
program exits, the monitor kills the job. Chaining among programs is possible
without restriction when logged out, but other operations that exit the current
program result in a self-kill. Note that the Logout SYS call (SYS 5) performs
a self-kill immediately unless the caller has the WACNT privilege.

* If the program being exited is a privileged program, the monitor clears the
job’s memory and sets the job size to the minimum size for the job’s default
keyboard monitor.

e All open files are closed.

1-18 System Structure and Disk Operations

1.9 Multiple Privilege System Function Calls

Five SYS calls control multiple privileges:

¢ Drop/Regain Temporary Privileges (SYS -21)—This call allows a program to
selectively use temporary privileges.

e Set/Clear/Read Current Privileges (SYS 28)—This call reads the current mask
and selectively sets and/or clears bits in it. The SET JOB/PRIVILEGE and
SHOW JOB/PRIVILEGE commands use this call.

e Third-Party Privilege Check (SYS 31)—This call enables or disables third-
party privilege checking. Server programs such as spoolers use this call to
perform privilege checks for users who request the service.

e Check Access Function (SYS 32)—This call performs a variety of privilege
checking functions. It checks file access rights, converts a privilege mask to
names, and converts privilege names to mask.

e Send Privileges (SYS 22)—This new subfunction of the Send/Receive call
permits a program to pass a job’s current privileges to another program.

See Chapter 8 for a detailed description of each SYS call.

1.10 Non-File-Structured Disk Operation

Non-file-structured disk operation lets sufficiently privileged users (RDNFS,
WRTNFS privileges) access specific blocks on a disk.

You can process non-RSTS/E file-structured disks under RSTS/E and use an
entire disk as a single file. Non-file-structured processing also allows system
programs, such as SAVE/RESTORE (see the RSTS/E System Manager’s Guide),
to optimally process file-structured disks.

NOTE

The data you look at when reading a disk as a non-file-structured
device is internal to RSTS/E and is subject to change at any time.

1.10.1 Opening a Disk for Non-File-Structured Processing

If you have RDNFS privilege, you can open a disk in non-file-structured mode. To
access a disk for non-file-structured processing, specify only a device designator
in the OPEN statement. Only the OPEN and OPEN FOR INPUT statements are

valid. The following two sample statements are equivalent:
100 OPEN "DL1:" FOR INPUT AS FILE 1%
100 OPEN "DL1:" AS FILE 1%

Both allow reading and writing of physical blocks on RL unit 1. An OPEN FOR
OUTPUT statement results in the error ?Disk pack is not mounted (ERR=21).
For example:

100 OPEN "DL1:" FOR OUTPUT AS FILE 1%

You need RDNF'S privilege to read a disk that is open in non-file-structured mode.
You need WRTNFS privilege to write to the disk. To prevent other programs from
accessing a non-file-structured disk, a job with HWCTL privilege can allocate the
device.

System Structure and Disk Operations 1-19

1.10.2 Accessing Large Clusters

For cluster sizes greater than 16 (on RA82 disks, for example), the default buffer
size to access the disk in cluster mode is larger than other disks. This may cause
user programs to receive a "?Maximum memory exceeded" error when they use
cluster mode I/0 on the extended disks. This does not happen with small disks
of pack cluster size greater than 16, but only with disks with device cluster sizes
greater than 16.

Since RSTS/E uses an MFD/GFD/UFD cluster size of 16 on disks with a pack
cluster size greater than 16, user programs that directly access directory struc-
tures may have to be modified. Any program that calculates the cluster ratio
by dividing the MFD/GFD/UFD cluster size by the pack cluster size must be
modified. Since the cluster ratio is less than one, the program should set it to
one.

1.10.3 Accessing Device Clusters

Before writing a program that accesses a disk as a non-file-structured device,
you need to understand the terms logical block, device cluster, device cluster size,
device cluster number, and default buffer size:

® A logical block is 512 bytes of disk data. Logical blocks are numbered starting
at 0.

e A group of contiguous logical blocks forms a device cluster. The device cluster
size is the number of logical blocks in the group. It is fixed for each type
of disk at 1, 2, 4, 8, 16, 32, or 64. The device cluster size represents the
minimum amount of information (the minimum number of logical blocks) that
can be retrieved or written in one non-file-structured 1/0 operation. Device
clusters are numbered from 0 to the maximum shown in Table 1-7.

® The default buffer size for all disk units when open in non-file-structured
cluster mode is the device cluster size multiplied by 512 bytes.

Table 1-7 lists the default disk characteristics.

Table 1-7: Non-File-Structured Disk Default Characteristics

Minimum
Device Cluster Default Buffer Total Size (in Maximum Device Cluster
Device Size Size (Bytes) Blocks) Number
RX33 1 512 2400 2399
RX50 1 512 800 799
RKO05 1 512 4800 4799
RKO5F 1 512 4800 per unit; 2 4799 per unit; 2 units per
units per drive drive
RLO1 1 512 10,220 10,219
RLO02 1 512 20,460 20,459
RD31 1 512 41,560 41,559
RD32 2 1024 83,204 41,601

(continued on next page)

1-20 System Structure and Disk Operations

Table 1-7 (Cont.): Non-File-Structured Disk Default Characteristics

Minimum
Device Cluster Default Buffer Total Size (in Maximum Device Cluster

Device Size Size (Bytes) Blocks) Number

RD51 1 512 21,600 21,599

RD52 1 512 60,480 60,479

RC25 1 512 50,902 per unit; 50,901 per unit; 2 units per
2 units per spindle
spindle

RKO06 1 512 27,104 27,103

RKO7 1 512 53,768 53,767

RD53 4 2048 138,668 34,666

RMO02/03 4 2048 131,648 32,911

RP04/05 4 2048 171,796 42,948

RM80 4 2048 242,575 60,643

RMO5 8 4096 500,352 62,543

RP06 8 4096 340,664 42,582

RA60 8 4096 400,175 50,021

RA70 16 8192 547,040 34,189

RAS80 4 2048 237,208 59,301

RAS81 16 8192 891,056 55,697

RAS82 32 16,384 1,216,640 38,019

RAS0 64 32,768 2,376,128 37,126

Virtual disk ! 1 512 4 * #K words Varies with size
allocated

1The virtual disk is not a physical device. It is a logical device created from memory.

After you open a disk for non-file-structured processing, use the RECORD or
BLOCK option in GET and PUT statements to read and write a specific cluster
on the disk. The number you specify designates a device cluster number. Thus,
on an RK05, BLOCK 4100 refers to device cluster number 4100 on the disk,
because the device cluster size for an RKO5 is 1.

The system can access device cluster 0 only immediately after an OPEN state-
ment. The GET or PUT statement that accesses device cluster 0 must either
specify BLOCK 0 or omit the BLOCK option. Once the disk has been accessed,
omitting the BLOCK option or specifying BLOCK 0 in a GET or PUT statement
accesses the next sequential device cluster. Note that you can use COUNT to
read a partial block (see the section "Partial Block Operations on Disk"), however
the system positions itself at the start of the next cluster following the operation.

After you perform I/0 to the disk, the only way you can access device cluster 0 is
by closing the disk and reopening it for non-file-structured access. This statement
reads the first block of an RKO05:

100 OPEN "DK1:" AS FILE 1%
\ GET #1%, BLOCK O.

System Structure and Disk Operations 1-21

CAUTION

On a RSTS/E file-structured disk, logical block 0 contains the bootstrap.
The remaining blocks, if any, in device cluster 0 contain no data.
Writing to device cluster 0 on a RSTS/E file-structured disk destroys
the bootstrap. Because of this, you must have the SYSMOD privilege
to write to device cluster 0.

If the program attempts to read or write beyond the end of the disk, the ?End of
file on device (ERR=11) error occurs.

You can improve total throughput by specifying a large buffer size. This permits
a single disk transfer to read a large quantity of data. To change the buffer size,
include the RECORDSIZE option in the OPEN statement.

The RECORDSIZE specified should be an integral multiple of 512 times the
device cluster size. For example, the following statement opens the RK05 disk on
unit 1 for non-file-structured processing and sets the buffer size to 2048 bytes:

100 OPEN "DK1l:" AS FILE 1%, RECORDSIZE 2048%

See the BASIC-PLUS Language Manual for a description of the RECORDSIZE
option in OPEN statements.

1.10.4 Non-File-Structured Block Access: MODE 128%

Specify MODE 128% in a non-file-structured OPEN statement to access logical
disk blocks instead of device clusters. MODE 128% lets you perform read/write
operations on individual disk blocks.

To access blocks on the disk, specify MODE 128% in the OPEN statement and
use the BLOCK option in the GET or PUT statement. The BLOCK option accepts
a floating-point argument that represents the desired block (where block 1 is the
first block on the disk, the pack label). See the BASIC-PLUS Language Manual
for a description of the BLOCK option in GET and PUT statements. You may
need MODE 128% to access large disks with large buffersize requirements (32 or
64).

1.10.5 Access to Bad Block Information: MODE 512%

MODE 512% in a non-file-structured OPEN statement allows a program to read
beyond the last writable portion of a disk. The DCL INITIALIZE command uses
this mode to read the factory bad block file, which is located beyond the last
writable portion of the disk.

MODE 512% also suppresses errors normally logged by the system error logger.
The system sends these errors to your program if you declare the program as a
local receiver with object type code 64% (see Chapter 9).

Note that this mode is reserved for use by the disk initialization program and is
not intended for general use.

1-22 System Structure and Disk Operations

1.10.6 Privilege and Access

You do not need to logically mount a disk that is being processed in non-file-
structured mode. After you insert the disk into its drive, you can read or
write to it if you have the appropriate privilege (RDNFS, WRTNFS). If you
only have RDNFS privilege, you can read the disk regardless of the number of
users accessing it, but if you attempt to write on the disk while another user is
accessing it, a ?Protection violation error occurs.

If the disk is logically mounted, you have only read access while doing non-file-
structured processing, unless you have both WRTNFS and SYSMOD privilege
and specify MODE 16384.

By testing bits 9 and 10 of the BASIC-PLUS variable STATUS, the user program
can determine what accesses it has. See the BASIC-PLUS Language Manual for
a description of the STATUS variable.

1.10.7 Allocating a Disk Unit

You can allocate a dismounted disk unit to your current job if you have the
HWCTL privilege. This action prevents access by other users to the drive when
you perform non-file-structured operations on a volume mounted in the drive.

When a dismounted disk is allocated, the system limits access to the drive. The
drive cannot be logically mounted. If the job to which the drive is allocated
has the necessary privileges, it has both read and write access to the disk.
Other users who have the RDNFS or WRTNFS privilege can read the disk in
non-file-structured mode but cannot write on the disk.

Allocating the disk unit can be useful when performing I/0. If you need to CLOSE
and reopen and GET or PUT block 0, you do not lose ownership of the disk while
it is closed.

The output of the SHOW DISK command shows an allocated drive as non-file-
structured (NFS) and private (Pri). For example, the following portion of a SHOW
DISK command output shows that disk DM1 is assigned.

Disk Structure:
Dsk Open Size Free Clu Err Name Level Comments

DM1 1 1 0 Pri, R-O, NFS
DR1 45 131648 30052 22% 4 0 a 1.2 Pub, DLW, LDX
DR2 0 242576 33040 13% 8 0 R 1.1 Pri, R-O, DLW
DR3 8 500352 56296 11% 8 0 W 1.2 Pri, DLW, LDX
DR4 0 242572 17528 7% 4 0 M 1.1 Pri, DLW, LDX
DR5 0 500352 76152 15% 8 0 H 1.1 Pri, R-O, DLW

1.11 File-Structured Disk Operation

In file-structured disk operation, data is organized in files. The system manager
uses the DSKINT option during system initialization or the DCL INITIALIZE
command to set up a skeletal file structure on a RSTS/E disk. During time-
sharing, you can create files with the CREATE command, a text editor such as
EDT, or the OPEN and OPEN FOR OUTPUT statements. See the BASIC-PLUS
Language Manual for a complete discussion of BASIC-PLUS I/0O methods.

You can open disk files in one of several modes. The following sections describe
these modes; Table 1-8 summarizes them.

System Structure and Disk Operations 1-23

The general form of the OPEN statement with the MODE option is:
100 OPEN "FILE.DAT" AS FILE N%, MODE M%

where N% is the internal I/0 channel number and M% is the mode in which the
file FILE.DAT is to be opened.

Note that if a nonprivileged job attempts to open a file in a mode that requires
privilege, the system ignores that particular mode value. Table 1-8 lists the disk
file MODE specifications.

Table 1-8: MODE Specifications for Disk Files

MODE Meaning

0% Normal read/write

1% UPDATE mode

2% APPEND to file

5% Guarded UPDATE (4%+1%)

8% Special extend

16% Create contiguous file

32% Create tentative file

64% Create contiguous file conditionally

128% No supersede

256% Random data caching (requires TUNE privilege)
512% Create file—Place at beginning of directory (with 1024%)
1024% Create file—Place at end of directory

2048% Sequential data caching (with 256%)

4096% Read normally regardless

8192% OPEN file read only

16384% Write UFD (requires WRTNF'S privilege)

1.11.1 Reading and Writing Disk Files: MODE 0%

Specify MODE 0% or omit the MODE option to open a disk file for normal
reading and writing (the system default). In default mode, an OPEN FOR INPUT
statement opens an existing file for read and write access (if the protection code
of the file permits it). OPEN FOR OUTPUT deletes an existing file and creates

a new file with the same name. An OPEN statement without an INPUT or
OUTPUT specification attempts to perform an OPEN FOR INPUT operation. If
this fails, the system creates a new file. '

OPEN, OPEN FOR INPUT, and OPEN FOR OUTPUT statements control only
the actions the system performs when it opens the disk file. See the BASIC-PLUS
Language Manual for a description of these statements.

1.11.2 Updating Disk Files: MODE 1%, MODE 4%+1%

In certain applications (for example, inventory updating) several users may need
read and write access to a single master file. In such cases, it is time consuming
to continually close and reopen the file to obtain and relinquish write access. For
this reason, RSTS/E provides an update option that gives several users write
access to a file while guarding against simultaneous writing of the same data.

1-24 System Structure and Disk Operations

The following sections describe the capabilities RSTS/E provides and those that
are available through BASIC-PLUS.

1.11.2.1 RSTS/E File Updating Capabilities

In file updating operations, RSTS/E allows locks to be applied on blocks in a file.
A single lock can apply to a single block or to a range of blocks. The blocks within
the range of a single lock must be logically sequential; they need not be physically
clustered. Because RSTS/E permits multiple locks at the same time on the same
file, logically nonsequential blocks within a file can be updated in the same time
period.

1.11.2.2 File Update: MODE 1%
Use MODE 1% in the OPEN statement to open a file for update. For example:

100 OPEN 'MASTER.DAT’ AS FILE 1%, MODE 1%

This statement opens MASTER.DAT for update on channel 1 and creates a
512-byte buffer in your job space.

After a program opens a file for update, the system allows the program to access
data simultaneously with other programs but enforces certain safeguards. When
a program performs any read operation on the file, RSTS/E puts the block ac-
cessed in a locked state. An attempt by another program to access any data in
that locked block results in the error ?Disk block is interlocked (ERR=19). This
error signals that the data required is being accessed on another channel in the
current program or by another program and is perhaps being updated.

The program accessing the data makes the data available to another program by
unlocking the block. Several ways exist for a program to unlock a locked block.
The program can:

¢ Perform any write operation on the file.

¢ Execute the UNLOCK statement on the channel where the file is open. The
UNLOCK statement has the form:

UNLOCK <expression>

where expression is the internal channel number of the file that is opened for
update.

¢ Read another block. (However, this action locks the newly retrieved block.)

¢ Execute a CLOSE statement on the file. (Executing an END or CHAIN
statement or executing the last statement of the program implicitly closes all
files.)

Additionally, the system unlocks a block when the program encounters an error
while accessing the file.

You cannot open a file simultaneously in both normal and update mode. An
attempt to perform an open in one mode when the file is currently open in the
other mode generates the error ?Protection violation (ERR=10). The same error
occurs if the protection code of the file prohibits read and write access.

Even if a file is open in update mode, a program can still gain read access to
the file. It can open the file with MODE 4096% (see the section "Reading a File
During Processing: MODE 4096%"). This mode allows normal read access but
not write access, regardless of whether the file is open for update.

System Structure and Disk Operations 1-25

BASIC-PLUS allows a program to lock several logically consecutive blocks during
a GET operation. The number of blocks is established by the RECORDSIZE
option. For example:

100 OPEN ’'MASTER.DAT’ AS FILE 1%, RECORDSIZE 1024%, MODE 1%

The RECORDSIZE 1024% option causes BASIC-PLUS to create a 1024-byte
buffer. Therefore, a GET operation on channel 1 retrieves 2 blocks and puts both
blocks together in the locked state. RSTS/E allows up to 31 blocks in the buffer to
be locked in this manner and allows up to seven locks on the file (see the section
"Disk Special Function: SPEC%"). Note that the same rules for a single locked
block apply for the range of locked blocks.

You can open a file in UPDATE mode (1% or 5%) and extend it beyond the current
end-of-file (EOF). To extend the file, follow these steps:

1. OPEN the file in UPDATE mode.
2. GET block 1 (the first block of the file).

3. Use the SPEC% function (see the section "Disk Special Function: SPEC%") to
place an explicit lock on block 1.

4. Extend the file to the desired length beyond the current EOF with PUT
statements.

5. Unlock block 1 (see the section "Disk Special Function: SPEC%").

The extended blocks are now available to users of the file.

1.11.2.3 Guarded File Update: MODE 4%+1%

Guarded file update in the OPEN statement provides the same update processing
as MODE 1% with one more processing feature. The program can write a block
or range of blocks only after it has read and locked the data. If your program
attempts to write data that is not currently locked, the result is a ?Protection
violation error (ERR=10). This feature prevents a program from updating data
that it has not accessed. Note that you must use MODE 4% and 1% to gain
special update; MODE 4% alone is equivalent to MODE 0%.

You can open a file in UPDATE mode and extend it beyond the current EOF. See
the previous section for a description of the extend procedure.

1.11.3 Appending Data to Disk Files: MODE 2%

Use MODE 2% in the OPEN statement to write data to a new block following
the current EOF in a disk file. Do not use the OPEN FOR OUTPUT statement,
because it deletes the existing file. Specify MODE 2% only with non-RMS block
I/0 files. For example:

100 OPEN "DATA.DAT" FOR INPUT AS FILE 1%, MODE 2%

The system opens the file DATA.DAT under the current account on the system
disk. The next output operation creates a new block and appends it to the last
block in the file that contains data. Any fill characters in the previous last block
of the file remain when the system appends the new last block. A PUT statement
that the system later executes on the file need not specify a BLOCK number.
When the PUT statement does not include the BLOCK option, the system writes
the next sequential block.

1-26 System Structure and Disk Operations

The following sample program illustrates append mode by showing its use in a
classroom environment. Each student enters experimental data into a class data
file. The complete class data file can then be input to another program to produce
a class curve for the experiment.

100 DIM X(10%), X$(10%)
\OPEN "SCIENC.EXP" AS FILE 1%, MODE 2%
\IF (STATUS AND 1024%) THEN
PRINT "WRITE ACCESS NOT GRANTED."
\PRINT "TRY AGAIN IN A FEW MINUTES."

\GOTO 800
400 FIELD #1%, 8%*I% AS B$, 8% AS X$(I%)
FOR I%=1% TO 10%
500 PRINT "YOUR VALUES FOR X ARE";
\MAT INPUT X
600 LSET X$ (I%)=CVTFS$(X(I%))
FOR I%=1% TO 10%
700 PUT #1%
\PRINT "THANK YOU"
800 CLOSE 1%
\END

Note that in certain applications, you may want to append records to a file on one
channel and read the appended records on another channel. The most current file
size information is available to all channels on which a file is open.

1.11.4 Special Mode for Extending Files: MODE 8%

Use MODE 8% in the OPEN, OPEN FOR INPUT, or OPEN FOR OUTPUT
statement to force RSTS/E to update a file’s size data and retrieval pointers on
the disk during extend operations. In normal processing, RSTS/E maintains

a file’s size data in memory. RSTS/E does not update this size on disk until it
allocates a new cluster to the file. By specifying MODE 8%, you force RSTS/E
to update the on-disk file size as well as the retrieval pointers for each allocated
cluster for every block added to the file. For example:

10 OPEN ’'DATA.DAT’ AS FILE 1%, MODE 8% + N%

where the value N% can be any other disk MODE option. The system creates the
file if it does not exist.

Extending a disk file using MODE 8% increases the processing overhead because
the system must access the disk more times for every block added. The extra
overhead is warranted for applications where the system must correctly preserve
a file’s size in the event of a system crash or power failure.

1.11.5 Creating a Contiguous File: MODE 16%

Use MODE 16% with the FILESIZE option in the OPEN FOR OUTPUT state-
ment to create a contiguous file on disk. Contiguous means that the clusters
allocated to the file are physically adjacent. For example:

10 OPEN ’'DATA.1’ FOR OUTPUT AS FILE 1%, FILESIZE 12%, MODE 16%

You can use other options with MODE 16% to specify the buffer size
(RECORDSIZE) and the file cluster size (CLUSTERSIZE).

You must use the FILESIZE option with MODE 16%. It preextends the file to
its maximum length, thereby telling the system how much contiguous space is
required. If sufficient contiguous space is not available, the system generates the
error ?No room for user on device (ERR=4). Note that you can specify MODE
64% (see the section "Creating a Contiguous File Conditionally: MODE 64%")

System Structure and Disk Operations 1-27

to create a contiguous file conditionally. The file is made contiguous if possible;
otherwise, it is made noncontiguous and no error is returned.

Processing a contiguous file greatly reduces overhead because it minimizes
directory accesses and movement of read/write heads. Files for run-time systems
and swapping must be contiguous because the monitor accesses these files
independently of the normal file processor. However, you cannot extend a
contiguous file. An attempt to extend a contiguous file generates the error
?Protection violation (ERR=10).

1.11.6 Creating a Tentative File: MODE 32%

Use MODE 32% in the OPEN FOR OUTPUT statement to create a file that does
not become permanent until it is closed with the CLOSE statement. If a file of
the same name currently exists, the system does not supersede it until you close
the tentative file. Tentative files have the IGNORE attribute set, so that the
system automatically excludes them from BACKUP operations.

When you create a tentative file, the system searches for an existing file of the
same name. If you do not specify an explicit disk name, the system searches the
public structure. If the system finds a file of the same name, and its protection
code does not allow deletion, you receive the error ?Protection violation (ERR=10).
If the system finds a file of the same name, and it can be deleted, it is left intact
(not deleted) until a CLOSE on the tentative file is executed.

A successful OPEN statement causes an entry for the tentative file to be made
in the directory. The entry marks the tentative file for deletion. If the system
crashes or the job resets the channel (with a negative channel number in the
CLOSE statement) before closing the file, the tentative file is deleted. Note that
tentative file directory entries appear only on a directory listing that contains
files marked for deletion.

When you close a tentative file, the system again searches for a file of the same
name. If such a file is found and it can be deleted, the system deletes it and
makes the tentative file permanent. If a file of the same name is found and its
protection code does not allow deletion, the error ?Protection violation (ERR=10)
occurs. However, the system closes the tentative file and renames it to:

TM?nnn.TMP

where:

? is an alphabetic indication of the file’s channel (A=0, B=1, C=2, and so on).
nnn is the job number.

Note that this operation can cause multiple copies of this name to exist in a
directory.

1.11.7 Creating a Contiguous File Conditionally: MODE 64%

Use MODE 64% in the OPEN FOR OUTPUT statement to create a conditionally
contiguous file. MODE 64% causes the monitor to create a contiguous file based
on the following conditions:

e If there is enough contiguous space available on the disk to contain the file,
the monitor creates a contiguous file.

1-28 System Structure and Disk Operations

e If there is not enough contiguous space on the disk to contain the file, the
monitor creates a noncontiguous file. If the monitor can create the file, it does
not return an error.

Note that the monitor ignores MODE 64% if MODE 16% is also set for the file
(see the section "Creating a Contiguous File: MODE 16%").

1.11.8 No Supersede: MODE 128%

Use MODE 128% in the OPEN FOR OUTPUT statement to create a file that
will not supersede an existing file of the same name. MODE 128% notifies the
monitor that, if a file of the same name currently exists, the existing file should
not be deleted. Instead, the system returns the error ?Name or account now
exists (ERR=16).

1.11.9 Data Caching: MODES 256%, 2048%

When your job executes a read request, the monitor performs a disk access
and transfers the requested data from the disk to the your job’s I/O buffer. On
systems with many jobs that use large amounts of data, the resulting large
number of disk accesses can slow response time. You can reduce the number of
data transfers from disk through data caching.

When you enable caching, the monitor stores the most recently read (accessed)
data blocks in an area of memory called the cache, which is part of XBUF. If
your job requests a data block that is present in the cache, the monitor copies the
requested data directly from the cache into the job’s I/O buffer and thus avoids a
physical disk access.

Data caching is most useful for read operations because it can minimize disk
transfers. In a write operation that modifies existing data, the data is updated on
disk and in the cache, but no new data is installed in the cache.

The system manager installs caching on the system and optionally sets its
parameters during system start-up. When caching is enabled, the monitor
examines the cache for all data transfer requests that are directed to the disk
driver. If the requested data is in the cache, the read operation completes without
placing a load on the disk driver.

The monitor constantly updates the cache so that it contains the most recently
requested data by adding data clusters or replacing data clusters (if the cache
is full). The monitor schedules a job’s data transfers into the cache based on
the time since last access. A data cluster currently in the cache is eligible for
replacement if it:

e Is the data with the longest time since last access

e Has been in the cache for more than the minimum residency established by
the system manager (the cache replacement timer, set with the SET CACHE
command).

System Structure and Disk Operations 1-29

1.11.9.1

Cache Size

The amount of data that can be in the cache at any given time depends on the
cache cluster size, which can be 1, 2, 4, or 8 blocks. In many cases, the cache
cluster size determines the number of read requests that can be resolved in the
cache before a disk access is required. For example, when the cache cluster size
is 8 blocks, a read operation that installs data in the cache causes the installation
of 8 physically contiguous blocks (including the requested blocks).

The system manager sets the cache cluster size during system start-up or with
the Enable Disk Caching SYS call (SYS 19). For optimum performance, the
cache cluster size should equal the pack cluster size set during disk initialization.
If that is not possible, then the cache cluster size should be smaller than the
pack cluster size. The monitor allocates cache space from XBUF (see the section
"Enable and Disable Disk Caching," in Chapter 8).

1.11.9.2 Caching Control

If you have the TUNE privilege, you can enable or disable caching and determine
the size of the cache by using the Enable Disk Cache SYS call (SYS 19) or the
SET CACHE command (see the RSTS/E System Manager’s Guide). In addition,
if you have TUNE privilege, you can specify caching for a file on a system where
caching is enabled.

You can cache a file in either random or sequential mode. Random mode is the
default; Digital recommends it for files that are accessed randomly, such as RMS
indexed files. Sequential mode caching is designed for files that are accessed
sequentially. If you are not sure in advance how a file will be accessed, you
should specify random mode caching.

To specify caching for a file, you can either:

®* Mark its UFD entry with the File Utility Functions SYS call (SYS -26) or the
SET FILE command

® Specify MODE 256% or MODE 2048% in the OPEN statement

Both methods let you specify either random or sequential mode caching.

The best way to specify caching for a file depends on its use. If you are creating
a file for use in a specific program, use the following MODE values to specify
caching when you open the file. However, if you are creating a file for general
use, it is better to mark the file’s UFD entry with the File Utility Functions SYS
call (SYS -26) or the SET FILE command. The use of caching MODE values
requires TUNE privilege. However, a file whose UFD is marked for caching is
cached on OPEN, regardless of the user’s privilege, as long as caching is enabled
on the system.

1.11.9.3 Random Mode Data Caching: MODE 256%

Use MODE 256% in the OPEN statement to cache data transfers to and from a
file in random mode. MODE 256% has effect only if data caching is enabled on
the system (see the section "Enable and Disable Disk Caching”, in Chapter 8).

When a read on a randomly cached file occurs, the monitor examines the cache to
determine if the requested data item is present. If the data is in the cache, the
monitor copies the data from the cache buffer that contains it to the program’s
I/0 buffer. The monitor then links the cache buffer to the beginning of the list
of cache buffers and clears its time of residency since last access. The monitor
maintains the list of cache buffers in order of increasing time since last access.

1-30 System Structure and Disk Operations

If the requested data item is not in the cache, the monitor examines the list of
cache buffers to determine the time of last access for the oldest cluster in the
cache. If the time is less than the minimum residency, the requested data cannot
be installed in the cache, so the monitor automatically performs a normal disk
read. If the time is greater than the minimum residency, the monitor replaces the
current data in the cache buffer with the new data and then transfers it to the
program’s I/0 buffer.

1.11.9.4 Sequential Mode Data Caching: MODE 2048%

Use MODE 2048% in the OPEN statement to cache data transfers to and from a
file in sequential mode. MODE 2048% has effect only if the file is being cached.
That is, either MODE 256% is set, the file’s UFD entry is marked for caching (see
the section "File Utility Functions," in Chapter 8), or caching is set for all data
on the system (see the section "Enable and Disable Disk Caching", in Chapter 8).
Note that sequential mode caching has no effect for a cache cluster size equal to
1, although no error is returned if the cluster size is 1.

Sequential mode works like random mode caching except for the way the monitor
handles:

¢ A read on the last block of a cache cluster

e A read on more than one cache cluster

In sequential mode caching, a read on the last block of a cluster makes the cluster
eligible for replacement, regardless of the amount of time it has been in the cache.
This speeds the replacement process in the cache and minimizes the space that
the cache requires. The monitor handles a read on any other block in the cache
cluster the same as in random mode caching: the cluster becomes eligible for
replacement only when its minimum residency time in the cache expires.

In a read on more than one cache cluster, the monitor transfers all the requested
data blocks to the program’s I/O buffer but only installs the last cache cluster in
the cache. Furthermore, if the last data block read is the last block in a cache
cluster, the monitor does not install any data in the cache. Thus, if you define the
cache cluster size as 1 and specify sequential mode, no data blocks are installed
in the cache because every data block is the last block in a cache cluster.

1.11.10 Creating and Placing a File at the End of the Directory: MODE 1024%

Use MODE 1024% to override the pack default and specifically place a file at the
end of the current account’s directory. This file placement is useful for files that
are infrequently accessed or are not time critical. Because the monitor always
searches for files starting at the beginning of the directory, placing noncritical
files at the end speeds access to the first part of the directory.

Use MODE 1024% only in the OPEN FOR OUTPUT statement to create a
new file. If you do not specify MODE 1024%, the monitor places the file in the
directory as directed by the pack default. This default depends on the system
manager’s response to the New files first? DSKINT question. For example, if
you create the file on DB1: and do not specify MODE 1024%, the monitor uses
the DB1: default to place the file. If the device is part of the multidisk public
structure (SY:), the monitor selects the disk pack with the most free space and
uses that pack’s default. (The monitor will not select DVO:, the virtual disk.)

System Structure and Disk Operations 1-31

1.11.11 Creating and Placing a File at the Beginning of the Directory: MODE
1536%

Specify MODE 1536% (MODE 1024% + 512%) in the OPEN FOR QUTPUT
statement to cause the monitor to override the pack default and place a file at
the beginning of the current account’s directory. If you do not specify MODE
1536%, the monitor places the file in the directory as directed by the pack default.
This default depends on the system manager’s response to the New files first?
DSKINT question. For example, if you create the file on DB1: and do not specify
MODE 1536%, the monitor uses the DB1: default to place the file. If the device
is part of the multidisk public structure (SY:), the monitor selects the disk pack
with the most free space and uses that pack’s default. (The monitor will not
select DVO:, the virtual disk.)

Use MODE 1536% for files that are frequently accessed. For example, if a
program is used very heavily, you can place it at the start of the directory.
For example, the $PIP program is heavily used on many RSTS/E systems. In
this case, placing $PIP at the start of the [1,2] directory may improve system
performance.

1.11.12 Reading a File During Processing: MODE 4096%

In certain applications, you may need to read a data file regardless of what other
processing is in progress. Under normal circumstances, the system prohibits
opening a file while the file is currently open for update (MODE 1% or MODE
4%+1%). However, with MODE 4096% you can open a file for read access
regardless of whether the file is being updated. When a file is opened using
MODE 4096%, other users can open the file in update mode. For example:

10 OPEN ’'DATA.2’ FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 4096%

You cannot perform write operations. If you attempt a write operation, the system
generates the error 7Protection violation (ERR=10). If the file is simultaneously
open for update, the system does not generate the normal error ?Disk block is
interlocked (ERR=19) when the program reads a block being updated (although
that block may contain inconsistent data).

NOTE

Use MODE 4096% with care because of the danger involved in reading
data that is subject to change.

1.11.13 Read-Only Access to a File: MODE 8192%

Certain applications require simple read access to a data file and do not want

to preclude write access by other applications. Under normal circumstances, an
OPEN FOR INPUT statement for a disk file possibly gains write access on the
I/0 channel involved. To gain read access to a data file when you do not want
write access, use MODE 8192% in the OPEN FOR INPUT statement. The system
never grants write access to a file opened with MODE 8192%.

1-32 System Structure and Disk Operations

You can use MODE 8192% on files that are opened normally (MODE 0%).
However, you cannot use MODE 8192% to open a file that is currently opened
for update (MODE 1%). If a file is currently opened for update, you must specify
MODE 8192%+1% in order to open the file read-only. If the file is not yet opened
and you specify MODE 8192%+1%, subsequent opens on that file must be made
with MODE 1%. For example:

10 OPEN ’'DATA.3’ FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 8192%

After execution of this statement, the program has only read access to the file
DATA 3. If the file is currently open for update, however, the system generates
the normal error ?Protection violation (ERR=10).

1.11.14 Write Access to a Directory: MODE 16384%

If you have the WRTNFS privilege, you can write into a directory by specifying
MODE 16384% in the OPEN statement. For example, the following statement
allows you to read and write into the UFD of account [5,10]:

199 OPEN "DK1:[5,10]" AS FILE 2%, MODE 16384%

An OPEN FOR OUTPUT statement is invalid for a UFD. Without MODE
16384%, the system allows only read access if you have the appropriate READ
privilege (GREAD for group, WREAD for all).

1.11.15 Simultaneous Disk Access

RSTS/E permits several users to read from the same file simultaneously, but only
one user can write to a file (unless the file is open in update mode). Without this
limitation, two users could try to write the same record of the file simultaneously,
resulting in a loss of data. To avoid this conflict, the system permits only one
user at a time to have write access to any file. If a second user attempts to write
into the file, the error ?Protection violation (ERR=10) results. Thus, users may
fail to obtain write access to a file that is not write-protected against them. If
this failure occurs, the second user must close the file and reopen it after the first
user has closed it.

The system does not permit a file to be open simultaneously in update mode
and in normal mode. If your program attempts to do so, it results in the error
?Protection violation (ERR=10). However, a file can be open simultaneously in
update mode and read during processing mode (see the section in this chapter,
"Reading a File During Processing: MODE 4096%"). In addition, a file can be
open in update mode by multiple users.

By checking bits 9 and 10 of the STATUS variable immediately after the OPEN
statement, a program can ascertain whether the current job has read and write
access to a file. The example in the section in this chapter, "Appending Data to
Disk Files: MODE 2%", performs this check. See the BASIC-PLUS Language
Manual for a description of the STATUS variable.

1.11.16 Disk Optimization

Whenever you open a file on the public structure, the system searches the
directories of all public disks to determine whether the file exists. To avoid the
overhead of searching multiple directories, you can put the file on a private disk.

System Structure and Disk Operations 1-33

When you dedicate a private disk to a large production file, it minimizes overhead
to access data and ensures an efficient directory organization. If you find this
impractical and must store more than one such file on one private disk, dedicate
an entire account to each file. This arrangement reduces directory search
overhead.

However, if you must save more than one file under an account, create the more
frequently accessed ones first or use MODE 1536% (see the section "Creating and
Placing a File at the Beginning of a Directory: MODE 1536%") to ensure better
directory organization.

If you cannot do this, the system manager can optimally reorder the file directory
with the REORDR system utility (see the RSTS/E System Manager’s Guide).
With REORDR, you can order files on an account in either forward or reverse
direction, by either date and time of creation or date of last access.

If you need to put a small number of large files in a single volume, use extended
cluster-size disks (cluster size 32 or 64). However, do not use extended cluster-
size disks for system disks or to hold large numbers of accounts. The more
accounts you keep on an extended cluster-size disk, the more space will be
wasted—a maximum of 112 blocks per account for cluster size 32, or 224 blocks
per account for cluster size 64. Minimize the wasted space by minimizing the
number of accounts and the number of files in each account.

When you create a large file, specify a large file cluster size to increase efficiency.
A large cluster size reduces the number of UFD blocks required to describe

the file. Performance improves because the system can read or write multiple
blocks in a single transfer. In addition, you can preextend a disk file to its
maximum length when you create it and can specify that contiguous space be
used. Preextension reduces directory fragmentation. Contiguous space reduces
window turning, which is the process of following UFD retrieval pointers to locate
a specific block within a file.

If you have the appropriate accounting privilege (GACNT for group, WACNT for
all), you can use the Create User Account SYS call (SYS 0) to optimally preextend
and place directories. By doing this, you may improve system performance.

If you preextend a disk file with the FILESIZE modifier on the OPEN statement
and you do not specify the cluster size with the CLUSTERSIZE modifier, the
monitor computes the clustersize that is optimal for fast access. The monitor uses
the formula FILESIZE/7, rounded up to the nearest cluster size. For example:

100 OPEN "MYFILE.DAT" FOR OUTPUT AS FILE 1%, FILESIZE 100%

This OPEN statement preextends the file MYFILE.DAT to a size of 100 blocks.
The monitor automatically computes a cluster size of 16 (100/7, rounded up).
Note that the largest possible cluster size is 256 blocks.

If a program requires simultaneous access to more than one data file, it is best
to place each file on a different private disk. Overhead increases if the files
reside on the same disk because the disk head must move whenever the program
accesses a different file. Thus, a large percentage of execution time is spent in
moving the disk head back and forth.

Use different accounts to store different kinds of files. To minimize the number
of poorly ordered accounts, dedicate certain accounts to files that are created
once and remain fairly static, and reserve other accounts for transient files. To
further optimize the structure, minimize the number of files in one account. For
example, it is better to have 30 files each in 10 accounts than to have 300 files in
one account.

1-34 System Structure and Disk Operations

1.11.17 Partial Block Operations on Disk

In general, the buffer you use for disk I/O should be a multiple of 512 bytes in
length. Specify the buffer size by using the RECORDSIZE option in the OPEN
statement.

By default, GET and PUT statements transfer the entire buffer. If you want to
transfer less data, use the COUNT option. The COUNT option used in a GET
statement specifies the maximum number of characters to be read in the current

record regardless of the buffer size. In the following example the file is opened
with RECORDSIZE 1024% and you want to read only 520 bytes:

100 OPEN "MYFILE.DAT" AS FILE 1%, RECORDSIZE 1024%
110 GET #1%, COUNT 520%

This GET operation on channel 1% fills the buffer to the requested number of
bytes. The disk software then skips the rest of the last disk block read and
positions itself to access the next block. To satisfy the COUNT of 520, the
software reads the current block (for 512 bytes), reads 8 bytes of the next block,
and positions itself to access the following block.

For GET or PUT operations, you can use any value for RECORD or BLOCK.
For example, with a COUNT of 520 bytes, BLOCK 1 accesses the first block
and 8 bytes of the second block. BLOCK 2 in the GET statement retrieves the
entire contents of the second block plus 8 bytes of the third block. The file is
then positioned to access the block following the last one accessed (block 4 in the
previous example).

For PUT operations, the COUNT must be a multiple of 512 bytes (or exactly 512
bytes when writing a UFD). For GET operations, COUNT must be even. In all
cases, the COUNT value must not be greater than the buffer size (RECORDSIZE
option of the OPEN). See the BASIC-PLUS Language Manual for more informa-
tion.

1.12 The Virtual Disk—DVO0:

The virtual disk lets you store temporary data within the system’s memory. The
virtual disk is nct a physical hardware device, but it contains the same structures
as a physical disk device. You can use the virtual disk for file-structured or
non-file-structured I/O in the same way you use any other disk device, with one
exception: all data written to the virtual disk is lost when the RSTS/E system
shuts down or crashes. Because of this, the system does not place files on the
virtual disk unless explicitly ordered to do so. DVO: is the device designator for
the virtual disk.

The system manager allocates memory to the virtual disk with the DCL
command CREATE/VIRTUAL_DISK. Use the SHOW DISK command to find out
if the virtual disk is enabled on your system.

You can use the virtual disk to store temporary files or any file that has a

very short lifespan. Examples of temporary files are work files created by an
application program like SORT/MERGE that are later deleted; virtual arrays
created by BASIC-PLUS that are no longer needed once the program exits; or
temporary files used for entering data in applications that give users a chance to
edit data before updating a permanent file.

System Structure and Disk Operations 1-35

You can also place copies of read-only files that never change and are frequently
accessed on the virtual disk. For example, place in virtual memory a copy of an
index file that is used to access other files. Or, place heavily overlaid programs
(like TKB) on the virtual disk to improve performance. The virtual disk is
especially useful on large memory systems. Because the virtual disk never
requires physical I/O, it is the fastest disk on your system. It is even faster than
data caching for these reasons:

e A file placed on the virtual disk always remains in memory. On the other
hand, a cached file remains in memory based on frequency of access.

e When you write to a file on the virtual disk, no physical I/O takes place.
When you write to a cached file, physical I/O takes place. The file processor
first performs a physical write, then it updates memory.

The virtual disk takes memory away from user space. On a small memory
system, this may detract from overall performance. In addition, you cannot use
the virtual disk for any permanent files because all data is lost when the system
shuts down or crashes.

Data transfers to and from the virtual disk use much more CPU time than the
equivalent transfers on physical disks. Do not use the virtual disk on systems
with little spare CPU time.

1.13 Asynchronous I/0 Requests

An asynchronous read or write request performs the same basic function as

the synchronous read or write request: it moves data between a device and

a program. The difference lies in the completion of the request. While a
synchronous request stalls the job’s execution until the request is complete, an
asynchronous request does not stall the program. The program continues to run
regardless of the state of the I/O request. When the 1/0 request completes, the
RSTS/E monitor executes an asynchronous completion routine (ACR) in the user
program. This routine notifies the user job of the I/O completion.

The ACR is a section of code within the user job that executes when an I/O
request completes. The ACR is the only section of code in the program that can
check for any device dependent errors.

BASIC-PLUS programmers cannot use asynchronous I/0. BASIC-PLUS-2
programmers can use this feature, but must write a MACRO subroutine. See the
RSTS/E System Directives Manual for details.

1.14 Disk Special Function: SPEC%

The SPEC% function performs special operations on disks, flexible diskettes,
magnetic tapes (see Chapter 2), line printers (see Chapter 3), terminals (see
Chapter 4), and pseudo keyboards (see Chapter 4).

On disks, the SPEC% function allows you to explicitly lock a maximum of seven
disk block ranges on a file that is open for update (MODE 1% or MODE 1%+4%,
see the section in this chapter, "Updating Disk Files"). A locked range (from

1 to 31 blocks) is one that cannot be accessed by another user or from another
channel. Thus, SPEC% extends the use of update and guarded update modes,
which locks the last block or blocks read on a file.

1-36 System Structure and Disk Operations

SPEC% also allows you to release explicit or implicit locks. (An explicit lock is
a lock done by the user. An implicit lock is done automatically, by the system.)
Note that when you close a file, all explicit and implicit locks are released for that

file.

The SPEC% function for disk files has the format:
VALUE%=SPEC%(FUNCTION%, BLOCK, CHANNEL%, 0%)

where:

VALUE%

FUNCTION%

BLOCK

CHANNEL%
0%

depends on the particular function code you specify in FUNCTION%.
In most cases, VALUE% is equal to the BLOCK parameter.

is a function code that specifies the desired operation. During normal
I/O operations, a block, or range of blocks, is implicitly locked when
you read the file with a BASIC-PLUS GET statement. The SPEC%
function allows you to convert implicit locks to explicit locks and to
release selected locked blocks. The code specified in FUNCTION%
determines the use of SPEC%. The codes are:

FUNCTION%=0% releases all locked blocks.

FUNCTION%=1% releases the current implicit lock.

FUNCTION%=2% converts the current implicit lock to an
explicit lock.

FUNCTION%=3% releases the explicitly locked block specified

in the BLOCK parameter. If BLOCK is
0, all explicitly locked blocks are released.
However, implicitly locked blocks remain

locked.
FUNCTION%=4% converts an implicit lock to an explicit lock
and release the implicit lock.
FUNCTION%=5% truncates the file on CHANNEL% * 2 at the

block number given by BLOCK.

specifies the starting block number for releasing an explicit lock. Note
that BLOCK must be a floating-point number.

is the I/O channel on which the operation is to be performed.

is the handler index for disk devices.

If you open a file with a RECORDSIZE greater than 512, SPEC% allows you to
lock more than one block when you read a range of blocks into the buffer with
the GET statement. For example, if you open the file with RECORDSIZE 1024%,
each GET operation reads (and implicitly locks) two blocks. For example, suppose
you explicitly lock blocks 2 and 3:

100 GET #1%,

RECORD 2%

\ VALUE%=SPEC% (2%,0,1%,0%)

You can then read blocks 3 and 4 (GET RECORD 3%) and cause implicit locks
on these blocks. Note that if you attempt to lock a range of blocks that overlap
an already explicitly locked range, the monitor returns the error ?Disk block
is interlocked (ERR=19). In addition, if a range of blocks is locked, an explicit
release of those blocks must refer to the first block in the range.

System Structure and Disk Operations 1-37

The following errors are possible during a SPEC% operation:

Meaning ERR Value
?BAD DIRECTORY FOR DEVICE 1
The directory of the device is unreadable or corrupted.
?ACCOUNT OR DEVICE IN USE 3

The file being truncated is open on more than one channel or by
another user.

?NO ROOM FOR USER ON DEVICE 4

There are too many locks pending on this channel. You can lock a
maximum of seven ranges of blocks on a file.

?CANT FIND FILE OR ACCOUNT 5

You specified function code 3 for FUNCTION% and attempted to
unlock a block that was not locked.

/0 CHANNEL NOT OPEN 9
The file is not open on the given channel.
?PROTECTION VIOLATION 10

You do not have write access to this file, or you attempted to
explicitly lock a block that had not been implicitly locked. An
attempt to lock a block after a PUT or UNLOCK can cause this

error.
?END OF FILE ON DEVICE 11

The truncation request for a size greater than the size of the
current file.

?DEVICE HUNG OR WRITE LOCKED 14
Hardware conditions have changed since the file was opened.
?DISK BLOCK IS INTERLOCKED 19

You attempted to explicitly lock a range of blocks that overlaps an
already explicitly locked range of blocks.

1.15 RX01/02 Flexible Diskettes

The RSTS/E monitor handles the RX11/RX01 and RX211/RX02 flexible diskettes
(sometimes called floppy disks) as non-file-structured devices. The device name
for the flexible diskette is DX.

NOTE

The RX50 and RX33 flexible disks are not in this category. They are
treated as file-structured disks with the device name DU.

BASIC-PLUS, which uses the standard monitor I/O services for flexible diskettes
lets you store only one file on a diskette. For example:

2

SAVE DX1:

This command stores one .BAS file on a diskette. To read the file from the
diskette or to run it, use:

OLD DX1:
RUN DX1:

1-38 System Structure and Disk Operations

The system utility program FIT lets you store more than one file on a flexible
diskette. This program transfers specially formatted data between a flexible
diskette and the RSTS/E environment. See the RSTS/E Utilities Reference
Manual for more information.

A flexible diskette is divided into 77 tracks (numbered 0 through 76), each of
which consists of 26 sectors (numbered 1 through 26). Thus, there are 2002
records (numbered 0 through 2001). Each record is 128 bytes for RX01 and
single-density RX02, or 256 bytes for double-density RX02 on each diskette.

Table 1-9 shows that you can open and access a flexible diskette in either of two
modes.

Table 1-9: MODE Specifications for Flexible Diskette

MODE Meaning
0% Read and write in block mode (default)
16384% Read and write in sector mode

The following sections describe the MODE specifications.

1.15.1 Block Mode: MODE 0%

In block mode, the buffer size is 512 bytes, equivalent to four 128-byte records.
The four sectors are interleaved according to the following algorithm, where N is
the value specified in RECORD:

TEMP1 = INT(N/26)

TEMP2 = N - INT(N/26)*26

TEMP2 = TEMP2 * 2

TEMP2 = TEMP2+1 IF TEMP2 >=26
TEMP2 = TEMP2 + 6*TEMP1

TRACK = TEMP1 + 1

SECTOR = TEMP2 - INT(TEMP2/26)*26 + 1

This interleaving algorithm is standard in other PDP-11 operating systems
for the flexible diskette (for example, RSX~11M, RT-11). Note that track 0 is
unavailable; its use is reserved for IBM-compatible labels.

The following statement opens the diskette on unit 3 in block mode on I/O
channel 1:

10 OPEN "DX3:" AS FILE 1%

A GET statement reads a 512-byte block from the diskette. The RECORD option,
if present, defines a specified sector starting point for the read. If you omit the
RECORD option or include RECORD 0%, the next sequential block is read. For
example:

100 GET #1%, RECORD N%

System Structure and Disk Operations 1-39

where:

N% is the number of the sector at which the block begins. It can be any number
from 1 through 493. (Only the first GET statement after the device is opened
can access the first block on the diskette).

A PUT statement writes a 512-byte block on the diskette:

200 PUT #1%, RECORD N%, COUNT C%

where:

N% is the number of the sector at which the block begins. The RECORD option
can also include 16384% to write a Deleted Data Mark with each of the
sectors (see the section "Deleted Data Marks").

C% must be a positive nonzero number.

You can perform block mode operations in sector mode. The following example
opens an RX01 diskette with this statement:

20 OPEN "DX3:" AS FILE 1%, RECORDSIZE 512%, MODE 16384%
Then use the GET (or PUT) statement:

30 GET #1%, RECORD N&%*4% + 32767% + 1%

where:
32767%+1% specifies sector interleaving
N%*4% defines 512-byte blocks at 4-sector intervals

1.15.2 Sector Mode: MODE 16384%

In sector mode, the buffer size is 128 bytes for RX01 and 256 bytes for RX02.
Open the diskette on unit 3 in sector mode with the following statement:

10 OPEN "DX3:" AS FILE 1%, MODE 16384%

When you use GET and PUT statements, you can calculate track and sector
numbers from the RECORD number. If you specify the desired record number
as N (any number from 0 through 2001), you can specify the track and sector to
access as:

TRACK = INT (IN/26)
SECTOR = N - INT(N/26)*26 + 1

A GET statement reads a 128-byte single-density or a 256-byte double-density
record from the diskette. The RECORD option, if present, defines a specific record
on the diskette. If you omit the RECORD option or include RECORD 0%, the
next sequential record is read. For example:

100 GET #1%, RECORD N%

where N% is the record number and can be any number from 1 through 2001.
(Only the first GET statement after the file has been opened can access record 0.)

If you include -32768% (formed by 32767% + 1%) in the RECORD option (for
example, RECORD N%+32767%+1%), sectors are interleaved according to the
algorithm discussed in the section "Block Mode - MODE 0%."

A PUT statement writes a 128-byte single density or a 256-byte double density
record on the diskette. For example:

200 PUT #1%, RECORD N%, COUNT C%

1-40 System Structure and Disk Operations

where:

N% is the record number. The RECORD option can also include -32768% for
interleaving (see the section Block Mode - MODE 0%) and 16384% to write a
Deleted Data Mark (see the section "Deleted Data Marks") with each of the

records.

C% must be a positive nonzero number.

NOTE

If you insert a single-density diskette into an RX02 drive, the buffer
size on a sector mode open is 256 bytes (the length of two sectors).
Thus, the statement GET RECORD N% reads record N% and record
N%+1%. To make sure that you read only one record, include COUNT
128% in the GET statement.

1.15.3 Flexible Diskette RECORD Modifiers

When you perform I/O operations on flexible diskettes, you can include three
special RECORD values in GET and PUT statements to modify the actions of the

diskette drive:
RECORD 8192%

RECORD 16384%

RECORD 32767%+1%

Allows you to access logical record zero on the flexible
diskette. Under normal operation, the system does not
allow access to logical record zero after the first /O operation
is performed. However, the following statement accesses
logical record zero:

GET #N%, RECORD 8192%

Writes a Deleted Data Mark to the diskette when used in
the PUT statement (see the following section "Deleted Data
Marks").

Causes the specified I/O operation to be performed in block
mode. That is, when you want block mode on a diskette
that is open in sector mode (MODE 16384%), you can specify
RECORD 32767%+1% in the GET or PUT statement. With
RECORD 32767%+1%, the I/O operation you perform is done
in block mode.

1.15.4 Deleted Data Marks

Each sector of a flexible diskette contains a bit called the Deleted Data Mark
in addition to its data. When an INPUT or GET operation from the diskette
encounters a Deleted Data Mark, the error ?Data format error (ERR=50) occurs.

In a GET operation, the contents of the buffer are valid even if this error occurs.
So it is possible to examine the contents of the record containing the Deleted Data
Mark. When the record size specified is larger than one sector, the last sector
read into the buffer is the data that had the Deleted Data Mark.

The RECOUNT variable reflects the amount of data read up to and including this
mark. To write a Deleted Data Mark to a diskette, include RECORD 16384% in

the PUT statement.

System Structure and Disk Operations 1-41

1.15.5 Partial Block Operations on Flexible Diskettes

Use the RECORDSIZE option in the OPEN statement on a flexible diskette to
specify a value that is not a multiple of the default buffer size (512 bytes in block
mode; 128 bytes or 256 bytes in sector mode). Be careful, however, in using the
GET and PUT statements.

For GET operations with a nondefault buffer size (or a multiple of the default),
the software retrieves the required number of bytes and positions itself to the
next boundary. In block mode, this boundary is the next block (sector number
times 4 for RX01, times 2 for RX02); in sector mode, this boundary is the next
sector. Thus, for a buffer size of 520 bytes, a GET statement in block mode
returns in the buffer the current sector, the next three sectors, and the first eight
bytes of the fourth sector. The software then skips the rest of the fourth sector
and all of the fifth, sixth, and seventh sectors to position itself at the beginning of
the next block boundary for the next GET operation. A GET statement in sector
mode returns the required number of bytes and skips the rest of the partial sector
to position itself at the beginning of the next sector boundary.

You can use any legal value in the RECORD option with the GET statement.
Thus, with a buffer size greater than 512 bytes, you can overlap record values to
recover skipped data.

NOTE

When you use the COUNT option in a GET statement, the COUNT
argument must be a positive even number. If an odd number (or 0)
appears in the COUNT, the error ?Illegal byte count for I/O (ERR=31)
is returned.

For a PUT operation with a nondefault buffer size (or a multiple of the default),
the software performs the same skipping and positioning as with the GET
statement. The software writes null bytes in the skipped data. If you include the
COUNT option in the PUT statement, the software writes the specified number of
bytes from the buffer and writes null bytes for the rest of the buffer and for the
skipped data.

1.15.6 Flexible Diskette Special Function: SPEC%

The SPEC% function performs special operations on flexible diskettes, disks,
magnetic tape (see Chapter 2), line printers (see Chapter 3), terminals (see
Chapter 4), and pseudo keyboards (see Chapter 4).

For flexible diskettes, the SPEC% function lets you:
¢ Find out the density (single or double) of the current diskette
°* Mount a new diskette and recompute the density

¢ Reformat an RX02 diskette for a desired density

Because the RX02 flexible diskette drive supports single- and double-density
diskettes, the SPEC% function is useful for programmed diskette operations.

For example, SPEC% allows you to mount a series of single- and double-density
diskettes without having to close and reopen the device for each mount. Normally
the driver computes density once, during the initial open. If you insert a second
diskette that is incompatible with the initially computed density, read or write
operations fail.

1-42 System Structure and Disk Operations

SPEC% permits you to include an instruction in your program that causes the
driver to recompute the density. In addition, for RX02 flexible diskette drives,
SPEC% lets you specify a density reformat operation.

The SPEC% function for flexible diskettes has the format:
VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,18%)

where:

VALUE% depends on the function code you specify in FUNCTION%.
FUNCTION% is a function code that specifies the desired operation. The codes are:

FUNCTION%=0%

FUNCTION%=1%

FUNCTION%=2%

returns the density of the currently mounted
diskette in the form: DENSITY%=VALUE%
AND 255%. If DENSITY%=1%, the diskette
is single-density; if DENSITY%=2%, the
diskette is double-density. Note that
PARAMETER must also be 0.

causes the diskette driver to recompute
density. If the diskette has been changed in
the drive without closing and reopening the
I/0 channel, issue this code prior to any I/O
operation on the diskette. This function also
returns the computed density as described in
FUNCTION%=0%. Note that PARAMETER

must be 0.

reformats the current diskette to the density
in PARAMETER. PARAMETER equals 1 for
single-density and 2 for double-density. Note
that this operation is allowed only on RX02
drives and that any data on the diskette
prior to the operation is lost.

PARAMETER see the description of FUNCTION%.

CHANNEL% is the I/O channel on which the operation is to be performed.

18% is the handler index for flexible diskettes.

SPEC% can take up to 20 seconds to reformat the density of an RX02 diskette and
cannot be interrupted with Ctrl/C. If the operation is interrupted by power failure

or catastrophic error, the diskette will contain both single- and double-density
and cannot be used. To recover, you must reformat the diskette.

The following errors are possible during a SPEC% operation:

Meaning ERR Value
?DEVICE HUNG OR WRITE LOCKED 14
A hardware error occurred. This can often be a transient condi-
tion. Retry the operation.
MISSING SPECIAL FEATURE 66

An attempt was made to reformat on an RX01 flexible diskette
drive. The use of SPEC% to reformat diskette density is allowed

only on RX02 drives.

System Structure and Disk Operations 1-43

SPEC% is useful in flexible diskette programming to make sure that sector
opens are correctly handled. You can resolve the conflict between 128-byte
single-density buffer sizes and 256-byte double-density buffer sizes by using the
following procedure:

To field the buffer:
FIELD #channel number, 128%*DENSITY% AS BUFFER.RX02%

To write the buffer:
PUT #channel number, COUNT 128%*DENSITY%

DENSITY% is defined as:
DENSITY%=SPEC%(0%, 0, CHANNEL%, 18%) AND 255%

1.16 The Null Device - NL.:

The null device exists as a debugging aid on all RSTS/E systems. It provides a
means for a program to check out all I/O routines without reference to an actual
device. A read access for the null device returns the error ?End of file on device
(ERR=11) and a write access simply returns control to your program.

You can use the null device to dynamically allocate buffer space in memory. It
has a default buffer size of 2 bytes, which is adequate for performing alternate
buffer I/0O operations with data on another channel. To specify a different buffer
size, use the RECORDSIZE option in the OPEN statement. The null device can
use any even buffer size. For example, the following statement allocates 132
bytes of buffer space:

100 OPEN ’'NL:’ AS FILE 12%, RECORDSIZE 132%

Opening the null device is also a convenient way to set up a buffer for message
send/receive operations. Use the RECORDSIZE option in the OPEN statement
to specify the buffer size. See Chapter 9 for more information on message send
/receive operations.

The null device is shareable by all users on the system: no user can assign it.

1-44 System Structure and Disk Operations

Chapter 2

Magnetic Tape

Magnetic tape is a compact, relatively inexpensive medium that can provide large
amounts of off-line data storage. One reel of magnetic tape can store many files.
In addition, through multivolume ANSI processing, you can store one or more
large files on several reels of tape.

Unlike disks, which can be accessed randomly or sequentially, magnetic tape is
a sequential access device. In most applications, a magnetic tape file is read or
written from beginning to end, and each record in the file is processed in order.

Magnetic tape is used for backing up disks on many RSTS/E systems. The
RSTS/E BACKUP and SAVE/RESTORE programs (see the RSTS/E System
Manager’s Guide), the PIP program (see the RSTS/E Utilities Reference Manual),
and the DCL COPY command (see the RSTS/E System User’s Guide) can all
perform this function. In addition, the RMSBCK and RMSRST utility programs
(see the RMS-11 User’s Guide) can back up and restore RMS—11 files between
disk and magnetic tape.

Other uses for magnetic tape include journaling and data interchange. Some
applications track transactions as they are processed by journaling each
operation to a magnetic tape as well as to a disk. Magnetic tape is also useful
for transferring data between different computer systems. Finally, you may want
to use magnetic tape instead of disk for applications that require infrequent
processing (particularly batch processing) and use large amounts of data.

2.1 Overview of Tape Operations

RSTS/E offers a variety of utility programs and software features for processing
magnetic tapes. The utility programs can fill most general needs. This chapter
discusses the software features, which provide extra flexibility and control for
special applications. These features include:

e MODE values for use in file-structured and non-file-structured processing
e FILESIZE, CLUSTERSIZE, and POSITION values for ANSI tapes
e MAGTAPE and SPEC% functions

2.1.1 File-Structured and Non-File-Structured Processing

RSTS/E can process magnetic tape as either a file-structured or a non-file-
structured device. File-structured processing lets you take advantage of built-in
system file handling functions; thus, it is easier to program than non-file-
structured processing. On the other hand, non-file-structured processing gives
you more control over tape operations. (For example, you may need to process a

Magnetic Tape 2-1

tape written in a nonstandard format by another system or recover a file from a
corrupted tape in non-file-structured mode.)

Table 2—-1 summarizes the BASIC-PLUS statements used to access magnetic
tape on RSTS/E. These are the same statements used to access disks. See the
BASIC-PLUS Language Manual for complete descriptions of the statements.

Table 2-1: Statements and Functions for Accessing Magnetic Tapes

Stream ASCIIL Block I/O
Function (File-Structured) (File- or Non-File-Structured)
Open OPEN OPEN
Access Buffer - FIELD
Read INPUT GET
INPUT LINE
Write PRINT PUT
Special - MAGTAPE, SPEC%
Close CLOSE CLOSE

The KILL and NAME AS statements (see the BASIC-PLUS Language Manual)
apply only to disk and DECtape files; you cannot use them with magnetic tape
files.

RSTS/E provides several MODE values for use with the OPEN statement to
control file-structured and non-file-structured tape operations. The MODE values
differ for file-structured and non-file-structured processing. The MAGTAPE and
SPEC% functions, used mostly in non-file-structured processing, give you still
more control over magnetic tape operations. In addition, the Special Magnetic
Tape Directory Lookup SYS call (SYS 15) is available to look up directories on
magnetic tape (see Chapter 8).

RSTS/E writes tape records of 512 bytes by default. Table 2-2 lists standard
system defaults for magnetic tape density and parity. Note that all tape drives ex-
cept for the TK25 and TK50 use 9-track magnetic tape. The Set System Defaults
SYS call (SYS 34) changes the system tape density default. See Chapter 8 for
details.

Table 2-2: System Density Values for Magnetic Tape

Tape Drive Density

TE10 800 bpi only
TE16 800 or 1600 bpi
TK25 Special format
TK50 Special format
TS03 800 bpi only
TS11 1600 bpi only
TS05 1600 bpi only

(continued on next page)

2-2 Magnetic Tape

Table 2-2 (Cont.): System Density Values for Magnetic Tape

Tape Drive Density

TU10 800 bpi only
TU16 800 or 1600 bpi
TU45 800 or 1600 bpi
TU77 800 or 1600 bpi
TU80 1600 bpi only
TU81 1600 or 6250 bpi
TU81-E 1600 or 6250 bpi

You can override the system defaults by using the MOUNT command. In
addition, you can override both system and assigned defaults in a program by
using the MODE option (in non-file-structured processing) and the MAGTAPE
and SPEC% functions (in both file-structured and non-file-structured processing).

2.1.2 Magnetic Tape Labels

RSTS/E supports two types of magnetic tape file labels in file-structured process-
ing: ANSI (American National Standards Institute) and DOS (Disk Operating
System). These labels contain information about data on the tape, but they have
different formats. The ANSI label has a more complex format and contains more
information than the DOS label. A specific tape must contain only one type of
label.

NOTE

Where ANSI is used in RSTS/E documentation, it refers to the RSTS/E
implementation of American National Standard X3.27-1978 - magnetic
tape labels and file structure for information exchange. RSTS/E
implements a subset of this standard.

In addition, RSTS/E uses U (undefined) record format, which is not
defined in ANSI standard X3.27-1978.

The system manager sets the default label format with the DCL SET SYSTEM
command or with the Set System Defaults SYS call (34). If you want to use a
different label, you can either select a label format for your current job with the
MOUNT command or specify a label in a program by use of MODE values in
the OPEN statement. The MOUNT command overrides the system default; the
MODE values override both the system default and the job default.

2.1.3 Data and Label Handling in File-Structured Processing

File-structured magnetic tape processing involves two types of operations:
¢ Data handling
® Label handling

Magnetic Tape 2-3

Data handling, which is done by your program, is no different from data handling
on any other device: the operations you perform depend on the I/O method you
use. In BASIC-PLUS, you can use either stream (formatted) ASCII or block

I/0. Stream ASCII I/O limits you to stream ASCII records, but BASIC-PLUS
takes care of record blocking and deblocking, buffer management, and conversion
between ASCII and numeric data types. Block I/0 lets you read or write any type
of data record, but your program must do its own blocking and deblocking, buffer
management, and data conversion. Note that you may be able to use PIP instead
of writing your own program (see the RSTS/E Utilities Reference Manual). Or,
you may be able to use the DCL COPY command (see the RSTS/E System User’s
Guide).

Label handling, on the other hand, is done by the system. (Your program needs
to read and write magnetic tape labels only when you process tapes in non-file-
structured mode.) The system needs information from you to write or read tape
labels; you supply this information when you open the file. The way you supply
information and the amount you supply depends on whether you are using a DOS
or ANSI tape.

In general, the system requires no special information from your program to write
a DOS tape. You can use standard BASIC-PLUS programming techniques (such
as the RECORDSIZE option in the OPEN statement to specify a buffer size other
than the default). However, when you write an ANSI tape, you need to supply
some special information, which you place in the CLUSTERSIZE and FILESIZE
options and the POSITION switch when you open the file. CLUSTERSIZE,
FILESIZE, and POSITION for ANSI tapes have different meanings than they do
for disk files. These parameters:

e Specify information about record format and length to be written at certain
positions in the tape label

¢ Determine the I/0 buffer size

® Specify a section number for a multivolume file; that is, a file too large to fit
on one tape
See the section "Processing ANSI Magnetic Tape Files" laster in this chapter for

more information.

Note that although the system writes the label based on information you specify,
it does not check this information when you write data records to the tape.
Instead, your program must ensure that the label information and the data
format agree.

Reading a magnetic tape also differs depending on whether it has DOS or ANSI
labels. When you open a DOS tape for input, the system creates a 512-byte 1/0
buffer unless you specify a different buffer size in the RECORDSIZE option.
However, when you open an ANSI tape for input, the system determines the I/O
buffer size from information in the label. Do not use the RECORDSIZE option
when opening an ANSI tape.

The rest of this chapter describes magnetic tape operation in detail:
¢ File-structured processing

¢ Non-file-structured processing

® Multivolume ANSI processing

e MAGTAPE and SPEC% functions

* Asynchronous I/0 processing

2-4 Magnetic Tape

® Error Handling

® Programming Examples

Note that Appendix A of this manual describes DOS and ANSI label formats and
explains how RSTS/E initializes the two types of tapes. This information is useful
for reading a tape from another operating system or writing a tape for use on
another operating system.

2.1.4 Streaming Tape Drives

Tape drives can be classified as start-stop or streaming. On start-stop tape
drives, such as the TS11, TS03, TU10/TE10, TU16/TE16, TU45, or TU77, the
tape motion stops after each tape record is read or written. The maximum speed
of such a tape drive, and the amount of data that can be written onto the tape, is
relatively independent of the speed at which the host system can deliver the data.
On streaming drives, such as the TS05, TU80, TU81, TK25 and TK50, the drive
continues to move the tape after a data transfer, in anticipation of the next data
transfer. This mode of operation results in higher I/O transfer speeds and more
tape capacity than with start-stop drives.

However, if data is not supplied to a streaming tape drive quickly enough, the
drive reverts to start-stop mode. Since the drive mechanism is not designed to
reposition the tape as quickly as a start-stop drive, this mode of operation is
inefficient, resulting in slow operation and less tape capacity. This is especially
true of cartridge tape drives such as the TK50. For this reason, Digital strongly
recommends that you use a streaming tape drive only in applications where the
drive can be made to stream consistently.

Any program that uses a streaming drive should use the asynchronous I/0
directives (READA, .WRITA) and the program should be written so that the data
is supplied to the drive as fast as possible. In addition, any program that uses
streaming tape drives must have enough system resources available (buffer space,
CPU time, disk availability) so that it can deliver data to the drive fast enough to
let it stream consistently.

The only Digital-supplied utility for RSTS/E that meets this requirement is
BACKUP. Digital recommends that you use BACKUP for all streaming tape drive
operations, and strongly discourages using the DCL COPY command, PIP, and
the AUXLIB$:COPY utility with streaming tape drives, especially the TK50.

It is normal for TK50 drives to log some soft errors in the system error log,
especially when reading tapes containing data blocks of 512 bytes or less. These
soft errors use some space in your system error log, but they are otherwise
unimportant.

2.2 The File-Structured Magnetic Tape OPEN FOR INPUT

To open a magnetic tape file for file-structured processing, specify the device
name and file name in the OPEN statement. For example:

100 OPEN "MTO:ABC" FOR INPUT AS FILE N%, MODE M%

The OPEN FOR INPUT statement searches for the specified file on a designated
tape unit. Use OPEN FOR INPUT when you want to read a magnetic tape.
Unlike disk operation, OPEN FOR INPUT on magnetic tape permits read access
only. An attempt to write to the file generates the error ?Protection violation
(ERR=10). If the system detects a logical end-of-tape before finding a file, the
error ?Can’t find file or account (ERR=5) occurs.

Magnetic Tape 2-5

In the previous example, the system associates tape unit 0 with the channel
designated by N% and searches for file ABC under the current account according
to the value of M% in the MODE specification. Note that account numbers are
ignored on ANSI-labeled tapes.

Table 2—3 shows the MODE values that you can use in an OPEN FOR INPUT
statement. The MODE value can be the sum of any combination of these single
values, as long as they do not represent conflicting operations.

Table 2-3: Magnetic Tape OPEN FOR INPUT MODE Values

MODE Meaning
0% Read file label record at current tape position.
2% Do not rewind tape when searching for specified file.
32% Rewind tape before searching for specified file.
64% Rewind tape upon executing a CLOSE.
16384% Search for a DOS-formatted file label.
24576% Search for an ANSI-formatted file label.

If the system finds the file, it opens the file for read access only. If you later
execute a GET statement on channel N%, it makes a block of the file available to
the program in the channel’s buffer.

For ANSI-labeled tapes, the system reads the block length from the header 2
label (HDR2) when it opens the file. The system creates the buffer at the size
given by the block length. However, if the block length is odd, the system rounds
the value down to make the buffer size an even number of bytes. (To avoid loss
of data when a magnetic tape file is read, make sure the block length is an even
value when you write the file.)

Under DOS file-structured operations, a GET statement reads magnetic tape
records into a 512-byte buffer. However, in certain cases you may need to process
records larger than 512 bytes. Use the RECORDSIZE option to allocate more
buffer space than the default provides. The form of the statement is:

100 OPEN "MTO:FIDO" FOR INPUT AS FILE N%, MODE M%, RECORDSIZE
R%

where:

N% is the internal I/O channel on which the file is open,
M% is the MODE value

R% is the desired record length. The system rounds R% down to an even number if
R% is odd.

This statement opens the file FIDO under the current account on tape unit 0 for
input and allocates R% bytes of buffer space for data transfer operations.

To open a file stored on a DOS file-structured magnetic tape under an account
other than the current account, supply the project-programmer number in the
OPEN statement. For example:

100 OPEN "[3,214]MTO:ABC" FOR INPUT AS FILE N%, MODE M%

In this example, the system associates tape unit 0 with the channel designated
by N% and searches for file ABC under account [3,214] according to the value of
M% in the MODE specification.

2-6 Magnetic Tape

2.2.1 Reading the Current Record: MODE 0% or No Mode

Omitting the MODE specification or using a MODE 0% specification reads the
record at the current position of the tape. The system expects the label format
to be the system-wide default unless you changed the format when the unit was
allocated to the job with the MOUNT command. If the label format differs or the
tape is not properly positioned, the system generates the error ?Bad directory
for device (ERR=1). No match causes the system to rewind the tape and check
successive label records until the label record for the desired file is found or the
logical end-of-tape is detected. The system does not rewind the tape when the
program executes a CLOSE statement on channel N%.

2.2.2 Rewinding the Tape: MODES 2%, 32%, 64%

As mentioned before, MODE 0% reads the tape from its current position. If the
file name specified in the OPEN statement does not match the label record, the
system automatically rewinds the tape to the first file label record and begins
reading labels file by file.

To override this automatic rewind feature, include MODE 2% in the OPEN
statement. In this case, the system reads the tape from its current position and,
if no match occurs, continues reading file label records from that position forward
until it either finds the file or detects the logical end-of-tape. The system does not
rewind the tape when it performs a CLOSE operation.

MODE 32% rewinds the tape to the first label record before reading any label.
Once again, no match causes the system to check successive label records until it
finds the file or detects the logical end-of-tape. The system does not rewind the
tape when it performs the CLOSE operation on channel N%.

Including MODE value 64% with any of the above modes rewinds the tape when
you issue a CLOSE statement on channel N%.

2.2.3 Example of OPEN FOR INPUT Statement

You can use the MODE values in any combination as long as they do not
represent conflicting operations. (For example, MODE 16384%+24576% causes
illogical results because DOS and ANSI formats are mutually exclusive.)

Consider the following:
10 OPEN "MT1:NATHAN" FOR INPUT AS FILE 3%, MODE (32%+64%+24576%)

This statement opens the file NATHAN on tape unit 1 and associates it with
channel 3%. You can also specify MODE 24772%, the sum of the three modes.

When the system executes this statement, it rewinds the tape to the first label
record (MODE 32%) and begins to read successive file label records until it either
finds the file or detects the logical end-of-tape. The search is successful only if the
system finds the file label NATHAN, written in ANSI format (MODE 24576%).

When the search is successful, the file NATHAN is available for input by means
of GET, INPUT, or INPUT LINE statements. Remember, since the file is open for
input only, attempting to execute PUT or PRINT statements results in the error
?Protection violation (ERR=10).

The next CLOSE statement rewinds the tape (MODE 64%).

Magnetic Tape 2-7

2.2.4 Reading Data

Three types of statements read magnetic tape data: INPUT, INPUT LINE, and
GET statements.

If a tape contains stream ASCII data, you can read it with INPUT or INPUT
LINE statements. These statements work the same way they do for disks.

To read other types of data, use the GET statement. GET reads a single record of
data into the I/O buffer from a magnetic tape file that is open for input. Do not
use both GET and INPUT statements to read the same file.

The GET statement for magnetic tape has the form:
100 GET #N%

where:

N% is the channel on which the device is open.

This statement reads the next sequential record in the file. For DOS format
tapes, the buffer is 512 bytes long unless you specify a larger buffer with the
RECORDSIZE option when you open the file. For ANSI-labeled tapes, the buffer
size is the block length read from the header 2 label (HDR2).

Magnetic tape hardware allows only sequential access. Therefore, you cannot
use the RECORD option in the GET statement. After the GET, the number of
bytes read is available in the RECOUNT variable. To associate string variables
with all or part of the data in the I/O buffer, use a FIELD statement (see the
BASIC-PLUS Language Manual). Attempting to read beyond the end of the file
results in the error ?End of file on device (ERR=11).

If the system reads a block that is larger than the buffer, it transfers the amount
of data that fits, skips the excess data, and returns the error ?Magtape record
length error (ERR=40). The next GET statement then reads the next block.

The GET statement does not perform any data conversions or record blocking and
deblocking. Your program must interpret the data retrieved.

2.3 The File-Structured Magnetic Tape OPEN FOR OUTPUT

The OPEN FOR OUTPUT statement searches for a specified file on a designated
tape unit. Use OPEN FOR OUTPUT when you want to write a magnetic tape.
(Unlike disk operations, OPEN FOR OUTPUT on magnetic tape allows write
access only.) For example:

10 OPEN "MTO:ABC" FOR OUTPUT AS FILE N%, MODE M%

The system associates tape unit 0 with the internal channel designated by N%
and searches for the file ABC in the current account according to the value M%

in the MODE specification. Note that the system ignores account numbers on
ANSI-labeled tapes.

If it does not find the file, the system writes a magnetic tape label record for
the file at the logical end-of-tape and leaves the unit open with write access
only. A PUT or PRINT statement subsequently executed on channel N% writes
the channel’s buffer to the tape. Since the file is open solely for output, a GET,
INPUT, or INPUT LINE statement executed on channel N% generates the error
?Protection violation (ERR=10).

The search is successful when the system locates the specified file. The value of
M% in the MODE specification determines how the system searches for and acts
on the file when it is found.

2-8 Magnetic Tape

Table 2—4 shows the MODE values that can be used in an OPEN FOR OUTPUT
statement. The MODE value can be the sum of any combination of these single
values, as long as they do not represent conflicting operations.

Table 2-4: Magnetic Tape OPEN FOR OUTPUT MODE Values

MODE Meaning
0% Read file label record at current tape position.
2% Do not rewind tape when system searches for the file.
16% Write over existing file. (Destroy any subsequent files currently on the tape.)
32% Rewind tape before searching for the file.
64% Rewind tape upon executing the CLOSE statement.
128% Open for append.
512% Write new file label record without searching.
1024% Use block length field as specified in /FILESIZE in place of record length

field in /CLUSTERSIZE. Only meaningful on ANSI tape, when the record
length field is zero. (See Table 2-5).

16384% Search for a DOS-formatted file label.
24576% Search for an ANSI-formatted file label.

2.3.1 Searching for a Label on OUTPUT

Omitting the MODE specification or using a MODE 0% specification reads the
tape at its current position. The system expects the label format to be the system
default unless you changed the format when the unit was allocated to the job
using the MOUNT command.

If the label format differs or the tape is not correctly positioned, the system
generates the error ?Bad directory for device (ERR=1).

If the system finds a file label record, and its file name (and account for DOS
tapes) matches that of the file specified in the OPEN statement, the system
generates the error ?Name or account now exists (ERR=16).

No match causes the system to rewind the tape and to check successive file label
records until it either finds a match or detects the logical end-of-tape. If the
system detects the logical end-of-tape, the search is unsuccessful. As a result,
the system backspaces over the logical end-of-tape, writes a file label record for
the file, and allows write access to the file. The system does not rewind the tape
when the program executes a CLOSE statement on channel N%.

2.3.2 Writing a Label: MODES 16%, 512%

As mentioned before, a search is successful when the system finds the specified
file on the magnetic tape. The error ?Name or account now exists occurs when
this happens. This is a precaution to prevent you from unintentionally writing a
file at this point. (Doing so will write over the current file and destroy all later
files on the tape.) Include a value of 16% in the MODE specification to suppress
this error message and cause the system to write over an existing file on magnetic
tape.

NOTE

Writing over a file causes any files after the overwritten file to be lost.

Magnetic Tape 2-9

When 16% appears alone in the MODE specification, the system first reads the
tape at its current position. If the system finds a file label record and the file
specification in the label record matches the file specification in the OPEN FOR
OUTPUT statement, it backspaces over the file label record, writes a new label
record over the existing label, and allows the program write access to the file.
If the logical end-of-tape is at the current position, the system backspaces one
record, writes a new file label record, and allows write access to the file. No
match causes the system to rewind the tape and to check label records until it
either locates the file or detects the logical end-of-tape. Detecting the logical
end-of-tape before locating the file causes the system to backspace one record,
write a tape label for the file, and allow write access to the file.

When you include 512% in the value for the MODE option, the system writes a
file label record at the current tape position. No label record reading occurs. The
system simply writes a new file label record, destroying all subsequent files on
the tape. Only the value 32%, which causes the tape to rewind (see the section
"Rewinding the Tape"), takes precedence over 512%. Therefore, when you use
512% with any combination of values, not including 32%, the system writes a file
record label at the current tape position.

NOTE

Any MODE value that includes 512% causes the files after an overwrit-
ten file to be lost. The overwritten file is always the one at which the
tape is currently positioned, except when you also include 32% in the
MODE value.

2.3.3 Extending a File: MODE 128%

When you include 128% in the value for the MODE option, the system attempts
to open an existing file and position the tape so you can append information to
it. The file must already exist; if it does not exist, the error ?Can’t find file or
account (ERR=5) occurs. The file must also be the last file on the tape before the
logical end-of-tape. If it is not the last file on the tape, the system cannot locate
the trailing EOF tape marks and the error ?Protection violation (ERR=10) occurs.
As for all other MODE values, you can use 128% alone or with any combination
of values.

2.3.4 DOS and ANSI Format Labels: MODES 16384%, 24576%

By default, the system assumes that label records on a tape (either DOS or ANSI)
are in the system default format or the format you select for your job with the
MOUNT command. The MODE values 16384% and 24576% override any current
defaults for labeling.

MODE 16384% in the OPEN FOR OUTPUT statement causes the system to
search for a specified magnetic tape file. The search succeeds only if the file is
written in DOS format (that is, preceded by a DOS label).

MODE 24576% in the OPEN FOR OUTPUT statement causes the system to
search for a specified magnetic tape file. In this case, the search succeeds only if
the file label is written in ANSI format.

If the tape format (either ANSI or DOS) differs from that used in the search,
the system generates the error ?Bad directory for device (ERR= 1). If the system
finds the file, it returns the error ?Name or account now exists (ERR=16).

2-10 Magnetic Tape

The system reads the tape from its current position. If it does not find the

file, the system rewinds the tape and reads file labels one by one until it finds
the correct file. If the system detects the logical end-of-tape, it automatically
backspaces over the logical end-of-tape, writes a DOS or ANSI label record for the
file, and allows write access to the file.

2.3.5 Processing DOS Magnetic Tape Files

If the tape being processed is in DOS format, use the RECORDSIZE option in
the OPEN FOR OUTPUT statement to designate the block length. Omitting the
RECORDSIZE option from the OPEN FOR OUTPUT statement is the same as
specifying RECORDSIZE 0. BASIC-PLUS creates a 512-byte buffer, the default
for DOS magnetic tape processing. PUT statements write blocks on tape equal to
the buffer size (512 bytes).

To write blocks larger than 512 bytes, specify an even value equal to or greater
than 512 in the RECORDSIZE option. If the value is odd, BASIC-PLUS rounds
the buffer size down to make it even.

To write blocks smaller than 512 bytes, create a buffer smaller than 512 bytes.
Specify 32767%+1% plus an even value equal to or greater than 14 in the
RECORDSIZE option. The minimum block for DOS format tapes is 14 bytes. For
example:

100 OPEN ’'MT1.ABC’ FOR OUTPUT AS FILE 1%, RECORDSIZE 32767%+1%+130%

In this example, the 32767%+1% value sets the sign bit and tells BASIC-PLUS
to use the value specified (130 in this case) instead of the default value of 512, If
the sign bit is not set, the system creates a 512-byte buffer. If the value given is
odd (and the sign bit is set), BASIC-PLUS rounds the buffer size down to make it
even.

PUT statements write blocks on tape equal to the buffer size. You can use the
COUNT option to write tape blocks smaller than the buffer size but not less than
the minimum of 14 bytes.

2.3.6 Processing ANSI Magnetic Tape Files

If the system is processing a tape with ANSI labels, use the CLUSTERSIZE and
FILESIZE options in the OPEN FOR OUTPUT statement to designate the record
format and length, file characteristics, and block length. Use the /POSITION
switch to specify a section number of a multivolume file.

The system uses these values to create the corresponding fields in the file label
and to set the I/O buffer size. The FILESIZE and CLUSTERSIZE options and
the /POSITION switch have effect only when the tape being processed has ANSI
labels. The general form of the statement with options is:

10 OPEN 'MTO0:ABC/PO[SITION]:n’ FOR OUTPUT AS FILE N%,
CLUSTERSIZE Q%, FILESIZE P%, MODE 24576% + M%

You must specify the options in the exact order shown; otherwise, the system
generates the error ?Modifier error. To apply the system default for any option,
omit that specification from its place in the statement.

In the previous example, the system associates tape unit 0 with the channel
designated by N%. The system searches for file ABC according to the value
specified by M% in the MODE option. The value 24576% in the MODE option
ensures that ANSI label processing is done because any system or device defaults

Magnetic Tape 2-11

are overridden by the value in the MODE option. For the search to succeed, the
file name ABC must match the file identifier in the file label on the tape.

The value n in the /POSITION switch designates the section number of a
multivolume file. If you do not specify the /POSITION switch, the default section
number is 1. See the following section "Processing Multivolume ANSI Magnetic
Tape Files."

The value Q% in the CLUSTERSIZE option designates the record length, record
format, and characteristics of the file created. The value given causes the system
to write the appropriate data in the label fields of the header and end-of-file
records on tape.

Table 2-5 shows the label data for values of Q%. The value specified with
CLUSTERSIZE is the sum of values chosen from Table 2-5.

Table 2-5: ANSI Magnetic Tape CLUSTERSIZE Values

CLUSTERSIZE
Label Field Name Value Label Result
Record Format 0% U = Undefined"
16384% F = Fixed length
32767%+1% D = Variable length
-16384% S = Spanned?
Record Length Between 0% and For U, always 0%
(in bytes) 4095%, For F, value gives fixed record length.
or FILESIZE For D, value gives maximum record length.
For S, value is unused.?
If this value is 0% and mode 1024% is used,
then the record length field is set equal to the
block length value specified in /FILESIZE=.
System Dependent 0% M = carriage control embedded
(File Characteristics) 4096% A = FORTRAN carriage control.
8192% (space) = Implied carriage control (when

printed, line feed precedes and carriage
return follows each record).

IRSTS/E undefined record format tapes cannot be processed directly by most other operating
systems.

2RSTS/E does not support ANSI format S records.

If you omit the CLUSTERSIZE option from the OPEN FOR OUTPUT statement,
the system applies CLUSTERSIZE 0%. The system creates a file with undefined
(U) record format and embedded carriage control with record length 0%. (Use the
default CLUSTERSIZE if you plan to use PRINT to write a stream ASCII tape.)

NOTE

U format records do not conform to ANSI standard X3.27-1978.
Non-RSTS/E operating systems may not be able to read tapes with
undefined format.

The record length that the CLUSTERSIZE option specifies is the value that the
system writes in character positions 11 through 15 of the header 2 (HDR2) label
record. For fixed-length records, this value should equal the number of bytes you
use in the FIELD statement to subdivide the I/O buffer. The subdivisions created
to load records into the I/O buffer then equal the record length on the tape label.
For variable-length records, this value should be the maximum length of a record.
RSTS/E does not allow recordsizes greater than 4095%. In applications where

2-12 Magnetic Tape

you need large tape blocks, you can use mode 1024% to make the record length
field equal to the block length field. In these cases, you must specify a recordsize
of 0% along with mode 1024 %.

The value P% in the FILESIZE option designates the block length for the file.
The system writes this value in character positions 6 through 10 of the header
2 (HDR2) label when it opens the file. If you omit the FILESIZE option (the
same as specifying FILESIZE 0%) from the OPEN FOR OUTPUT statement, the
system sets the block length to 512 bytes. In the FILESIZE option, you must
specify a value between 18 (the minimum allowed on ANSI-labeled tape) and
32767%. Because a record cannot span blocks, the FILESIZE value for fixed-
length records must be a multiple of the CLUSTERSIZE value, and greater than
the CLUSTERSIZE value for variable-length records.

In ANSI label processing, the system uses the block length from the HDR2 label
to create the magnetic tape I/O buffer. This action allows the program to write
blocks of data on tape equal in size to the I/O buffer. The block length in the
FILESIZE option should correspond to the total size of the I/O buffer defined by
the FIELD statement.

You can use the FILESIZE option in ANSI label processing to create an I/O buffer
other than 512 bytes. The specified block length is written in the HDR2 label.
The block length on the tape should be an even number. If the block length is
odd, the system rounds it down one byte to make the I/O buffer an even number
of bytes.

Note that the action of the FILESIZE option in ANSI label processing is similar to
the action of the RECORDSIZE option in DOS label processing. However, if you
use the RECORDSIZE option in ANSI label processing, and the value you specify
is larger than the block length in the HDR2 label, the system establishes the I/0
buffer at the size given in the RECORDSIZE option. No advantage is gained from
using a buffer size larger than the block length. Thus, Digital recommends that
you do not use the RECORDSIZE option in ANSI label processing.

Data to be written to ANSI-labeled tape is not automatically converted by RSTS
/E to the appropriate ANSI record format. Your program must format the data in
the I/0 buffer before writing the buffer to the tape. In addition, data read from
an ANSI-labeled tape must be interpreted in the appropriate ANSI record format
by the program. It is not in the scope of this manual to fully describe ANSI record
format; refer to ANSI standard X3.27 - 1978. However, the PIP utility can create
and read ANSI format records (see the RSTS/E Utilities Reference Manual).

2.3.7 Processing Multivolume ANSI Magnetic Tape Files

If you are processing large ANSI magnetic tape files, you can use the /POSITION
switch in the file specification to label files that reside on more than one volume.
The general form of the statement is:

10 OPEN "MTO:ABC/POSITION:n" [FOR OUTPUT/INPUT] AS FILE N%, MODE
M%

Magnetic Tape 2-13

where n indicates the volume number of the file. Legal values for n are:

OPEN FOR OUTPUT
0 Writes volume number 1 mark on the file
1-9999 Writes the volume number specified on the file.

If you specify a value other than 0 or 1, the file must be the first data on the
tape to ensure sequential processing.

OPEN FOR INPUT
0 Searches for the first file that matches the filename.ext
1-9999 Searches for the first file that matches both the file name, file type, and the

volume number specified. If the file is found but the volume numbers do not
match, the error ?Pack IDs don’t match (ERR=20) is returned.

When you are at the end of a tape and you know that there is more data for
another tape, issue MAGTAPE function 10 (End-of-Volume Mark on CLOSE)
before the CLOSE statement. When you issue the CLOSE statement, this
MAGTAPE function writes an ANSI EOV label on the tape instead of the EOF
label. See the section "The MAGTAPE Function" for more information on writing
an EOV mark.

Multivolume magnetic tape processing works only on ANSI-labeled files.

2.3.8 Example of OPEN FOR OUTPUT Statement

You can use the MODE values available with OPEN FOR OUTPUT in any
combination as long as they do not specify conflicting operations. For example:

10 OPEN "MTO:LLL317" FOR OUTPUT AS FILE 2%, MODE 16466%

This statement opens the file LLL317 on tape unit 0 and associates it with
channel 2%. MODE 16466% is the sum of MODE 2% + 16% + 64% + 16384%.

When the system executes line 10, it determines whether the current label record
is in DOS format (MODE 16384%). If the file is not found, the system does

not rewind the tape (MODE 2%); instead it continues to search for labels in
DOS format from the next record on. If the correct label record is found (that

is, LLL317 exists), the system backspaces one record and writes the new label
over the existing label (MODE 16%). If the logical end-of-tape is found first,

the system backspaces one EOF record and writes the new label, allowing write
access to the new file.

Once the new label record is written, the file LLL317 is available for output.
Since the file is open for output only, attempting to execute GET or INPUT
statements results in the error ?Protection violation (ERR=10).

The next CLOSE statement rewinds the tape (MODE 64%).

2.3.9 Writing Data and Processing End-of-Tape
You can write data to a magnetic tape file with either PUT or PRINT statements.
Do not use both statements to write the same file.

The PUT statement writes the contents of the I/O buffer for the specified
I/0 channel to the next sequential record of the file. The general form of the
statement is:

100 PUT #N%

2-14 Magnetic Tape

where:
N% specifies the internal channel on which the file is open.
PUT writes a single record to a magnetic tape file.

The PRINT statement writes stream ASCII data to a magnetic tape file. Use

PRINT only if you plan to use the tape on a RSTS/E system. Other operating
systems may not be able to read BASIC-PLUS stream ASCII data.

If RSTS/E finds the physical end-of-tape marker while writing to tape using a
PUT statement, the system writes the entire record and returns the error ?No
room for user on device (ERR=4).

However, if RSTS/E finds the physical end-of-tape marker while writing to tape
using a PRINT statement, the system may not write the last item printed. The
system returns the error ?No room for user on device (ERR=4).

The error condition does not harm the data. GET statements (when the file is
later opened for input) access data at and beyond the marker without error. If
you see this error, use one of these recovery procedures:

® Close the file as soon as the error occurs, and then create another file on
another tape for the remainder of the data.

° If the tape is ANSI format and you want to use multivolume processing,
follow these steps:

1. Issue the SPEC% or MAGTAPE function to write an end-of-volume mark
on the tape.

Close the tape.

Open the next volume of the file as the first file on another tape. Use the
same name, but include the /POSITION switch to specify the next higher
section number of the file.

4. Continue writing the file on the next volume. If the error ?No room for
user on device (ERR=4) occurs again, go to step 1.

° If the file is DOS format or if the file is ANSI format and you do not want to
use multivolume ANSI processing, include a subroutine that writes a logical
end-of-tape mark at the end of the previous file in the program. You can then
write the file that generated the error condition to another tape. Follow these
steps:

1. Backspace with the MAGTAPE function using the maximum parameter
32767% (see the section "Backspace Function"). Repeat this procedure
until the status function (see the section "Tape Status Function") indicates
the tape is at beginning-of-tape (BOT) or that it detects a tape mark
(end-of-file [EOF]).

2. If no error occurs during the backspace, check the tape status function
(see the section "Tape Status Function") to see whether the tape is at BOT
or EOF. If any error occurs, the data may be corrupt.

3. If the tape is at BOT, the file will not fit on the tape. Write three tape
marks (see the section "Write Tape Mark Function") to zero the tape, then
try a longer tape. Finding BOT should occur only on DOS tapes. ANSI
tape files contain a tape mark between the label records; thus, the system
should find a tape mark before finding BOT.

4. If the tape is at a tape mark and is in DOS format, write three tape
marks. On an ANSI-labeled tape, backspace to the next tape mark, and
then write three tape marks.

Magnetic Tape 2-15

2.4 The File-Structured Magnetic Tape OPEN

The OPEN statement performs an OPEN FOR INPUT operation for a designated
file on a specific tape unit. For example:

10 OPEN "MTO:ABC" AS FILE N%, MODE M%

The system associates tape unit 0 with the internal channel designated by N%
and searches for the file ABC as if you specify an OPEN FOR INPUT statement
with M% in the MODE specification. An OPEN statement without a MODE
specification is treated the same as MODE 0%. If the OPEN FOR INPUT
operation succeeds, the program has read access to the file on the channel’s
buffer. If the system cannot open the file for input, it performs an OPEN FOR
OUTPUT operation using the MODE M% specification.

Use OPEN FOR INPUT or OPEN FOR OUTPUT instead of OPEN with magnetic
tape. OPEN FOR INPUT and OPEN FOR OUTPUT allow the system to
immediately determine which operation is needed.

2.5 The File-Structured Magnetic Tape CLOSE

The CLOSE statement terminates processing of a magnetic tape file. If the file
is open for input, the system skips to EOF or EOV (if it is not already there)
and frees the buffer space for other use within the program. If the file is open
for output and the file label is in ANSI format, the system writes a trailer label
group (see Appendix A). The system writes three EOF records to mark the logical
end-of-tape, regardless of the file label format. It then backspaces the tape over
two of the EOF records to position the tape for later output and frees the buffer
space for other use within the program.

If you issue the Write EOV Mark on CLOSE MAGTAPE function (code 10) prior
to the CLOSE, the system writes EOV labels instead of EOF labels.

In addition, the system rewinds the tape if you include the value 64% in the
MODE specification when you open the tape. Otherwise, the system does not
rewind the tape.

2.6 The Non-File-Structured Magnetic Tape OPEN

In non-file-structured processing, the system does no label processing. Essentially,
the system passes all data directly between the magnetic tape and the user
program. You can read or write tapes of any format with non-file-structured
magnetic tape operations, as long as the program is set up to handle the actual
tape format correctly. You can only write records of 14 bytes or longer. However,
other operating systems may not be able to process records of less than 18 bytes,
which is the minimum record length allowed by ANSI standard X3.27-1978.
Attempting to write a shorter record results in the error ?Illegal byte count for
I/0 (ERR=31).

To indicate non-file-structured processing, specify only the tape unit in the
OPEN statement. Do not include a file name. There are three types of OPEN
statements. The first two are:

100 OPEN "MTO:" FOR INPUT AS FILE 1%
100 OPEN "MTO:" AS FILE 1%

The OPEN FOR INPUT and simple OPEN statements are equivalent. No tape
movement occurs; the system permits both reading and writing of records.

2-16 Magnetic Tape

The third form of the OPEN statement is slightly different:
100 OPEN "MTO:" FOR OUTPUT AS FILE 1%

In this example, the OPEN FOR OUTPUT statement permits writing only. The
next section discusses this method of opening a tape for writing and the actions
that occur on CLOSE.

2.7 The Non-File-Structured Magnetic Tape CLOSE

CLOSE has no special action on non-file-structured tapes unless you used an
OPEN FOR OUTPUT statement. On a magnetic tape that is open for output,
the CLOSE statement causes three trailing tape marks to be written, followed by
backspacing over two of these tape marks, which positions the tape correctly for
later output operations.

In any case, if the tape is open for non-file-structured processing, it is not
rewound on CLOSE,

2.8 The MODE Specification in Non-File-Structured Processing

The MODE specification in non-file-structured magnetic tape processing can be
used with some 9-track devices to indicate parity. For 800 bpi tape density, the
standard parity is odd. Digital does not recommend using the MODE specification
to specify even parity. Digital recommends the use of odd parity. Even parity,
although available, cannot be used to write binary data. In addition, few other
operating systems (or tape drives) support the use of even parity.

For 1600 bpi tape densities, parity is odd and nonselectable. The system ignores
any attempt to specify even parity in the MODE specification.

See Table 2-2 for information on the density of 9-track devices.
MODE in the OPEN statement is evaluated by the following algorithm:
D+P+S
where:
D (density) is:

12 = 800 BPI
256 = 1600 BPI

P (parity) is:
0 = odd parity
1 = even parity
S (stay) is:
0 = MODE value does not stay after CLOSE
8192 = MODE value stays after CLOSE
If you do not specify a MODE value in the OPEN statement, the system processes
the tape using the system density default and odd parity.

If you add 8192% to the MODE value, the associated parity and density settings
remain in effect for the job if the tape unit was allocated to the job, even after the
channel has been closed.

Magnetic Tape 2-17

To allow read and write access to a tape, use the OPEN or OPEN FOR INPUT
statement. For example:

100 OPEN "MTO:" AS FILE 1%, MODE 12%
100 OPEN "MTO:" FOR INPUT AS FILE 1%, MODE 12%

Either statement makes the tape on the 9-track drive unit 0 available for
execution of GET and PUT statements on channel 1%. The system accesses
tape with a density of 800 bpi and odd parity. The system does not perform
tape positioning or status checking. You must perform such operations using the
MAGTAPE function described in the next section.

To allow only write access to a tape, use the OPEN FOR OUTPUT statement.
For example:

OPEN "MT1:" FOR OUTPUT AS FILE 1%, MODE 12%

If the unit is write-locked (that is, the write-enable ring on the reel is removed),
the system generates the error ?Device hung or write locked (ERR=14) and does
not open the device. Otherwise, the statement makes the tape on unit 1 available
for execution of PUT statements on channel 1%. Since the device is open solely
for write access, an attempt to execute a GET statement on the channel causes
the error ?Protection violation (ERR=10). The system writes records in odd parity
at a density of 800 bpi. Your program must check the status of the device and
control the device by use of the MAGTAPE function described in the next section.

To read and write records larger than 512 bytes, include the RECORDSIZE option
in the OPEN statement. For example:

100 OPEN "MTO:" AS FILE 1%, RECORDSIZE 1000%, MODE 12%

This statement associates the tape on unit 0 with channel 1%. The RECORDSIZE
option creates a buffer of 1000 bytes. If insufficient memory is available, you see
the error PMaximum memory exceeded. You must then either reduce the size of
the program or increase the maximum size to which the job can grow. The buffer
length must be an even number greater than 512. If the number given is odd, the
system rounds it down one byte to make it even. If the number is less than 512,
the system uses the default buffer length of 512.

Subsequent GET and PUT operations on channel 1% read and write records 1000
bytes long. Attempting to read a record longer than the buffer generates the
error ?Magtape record length (ERR=40). The RECOUNT variable contains the
number of bytes read.

To write records smaller than the buffer size, open the device normally and
specify the COUNT option in the PUT statement. For example:

205 PUT #1%, COUNT 76%

This statement writes a 76-byte record. If you do not use COUNT, PUT writes
an entire buffer, regardless of whether the buffer contains meaningful data. A
record must be at least 14 bytes (18 bytes to conform to the ANSI standard), and
no larger than the I/0 buffer.

If a record smaller than the buffer size is read, the BASIC-PLUS RECOUNT
variable contains the number of bytes read. Every input operation on any
channel (including channel 0) sets RECOUNT. Thus, you should test or save
RECOUNT immediately after each GET statement.

2-18 Magnetic Tape

2.9 The MAGTAPE Function

The MAGTAPE function gives a program control over all magnetic tape oper-
ations. You can use MAGTAPE in either file-structured or non-file-structured
processing, although it is mainly used in non-file-structured processing.

The general form of the MAGTAPE function is:
1% = MAGTAPE (F%,P%,U%)

where:

F%
P%
U%
1%

is the function code (1 to 12).

is an integer parameter.

is the internal channel number on which the selected tape is open.

is the value returned by the function.

F% determines the effect of the MAGTAPE function. The following sections
describe these functions, beginning with function code 1. In all examples in these
sections, assume that tape unit 1 is open on channel 2. Table 2—6 summarizes
the MAGTAPE function codes and includes the designations IMMEDIATE and
WAIT. IMMEDIATE means that the monitor starts the action and returns control
to your program immediately; WAIT means that the monitor returns control to
your program only after the operation is complete.

Table 2-6: MAGTAPE Function Summary

Function

Action Code Parameter Value Returned Wait or Immediate
Rewind and offline 1 Unused 0 Immediate
Write tape mark 2 Unused 0 Wait
Rewind 3 Unused 0 Immediate
Skip record 4 No. of records No. of records not Wait

to skip skipped
Backspace over record 5 No. of records No. of records not Wait

to backspace backspaced
Set density and parity 6 D+P+S 0 Immediate
Tape status function 7 Unused Status Immediate
File characteristics 8 Unused File characteristics Immediate
Rewind on CLOSE 9 Unused 0 Immediate
End-of-volume (EOV) 10 Unused 0 Immediate
labels on CLOSE
Error condition acknowl- 11 Unused 0 Wait
edged (only meaningful
for asynchronous 1/0)
Extended set density 12 Density to set Actual Density set Immediate

/check

/checked

Magnetic Tape 2-19

2.9.1

Off-line (Rewind and Off-line) Function

Function code =1
Parameter = unused
Value returned =0

The OFF-LINE function causes the specified magnetic tape to be rewound and set
to OFF-LINE. For example:

200 I% = MAGTAPE(1%,0%,2%)

This statement rewinds and sets the magnetic tape open on internal channel 2 to
OFF-LINE.

2.9.2 Write Tape Mark Function

Function code =2
Parameter = unused
Value returned =0

The Write Tape Mark function writes one tape mark record at the current position
of the magnetic tape. For example: :

200 I%$ = MAGTAPE(2%,0%,2%)

This statement writes a tape mark on the magnetic tape that is open on internal
channel 2.

2.9.3 Rewind Function

Function code =3
Parameter = unused
Value returned =0

The Rewind function rewinds the selected magnetic tape. For example:
200 I% = MAGTAPE (3%,0%,2%)

This statement rewinds the magnetic tape open on internal channel 2. (This
function does not cause the tape to be set to OFF-LINE.)

2.9.4 Skip Record Function

Function code =4
Parameter = number of records to skip (0 to 32767)
Value returned = number of records or tape marks not skipped (0 unless the system

finds a tape mark)

The Skip Record function advances the tape. If you set the parameter to any
number in the range 1 to 32767, the function advances the tape by records.

The tape continues to advance until either the specified number of records is
skipped, in which case the value returned by the function is 0, or a tape mark is
encountered, in which case the value returned is the specified number of records
to skip minus the number actually skipped. (The system counts the tape mark as

2-20 Magnetic Tape

a record skipped.) For example, to skip from the current tape position to just past
the next tape mark, use the function:

200 I% = MAGTAPE (4%,32767%,2%)

This statement assumes there are fewer than 32767 records before the next tape
mark. In the section, "Tape Status Function,” a more complex example using the
MAGTAPE function shows how to skip an entire file regardless of the number of
records.

If you set the parameter to zero, the function always advances the tape one tape
mark, skipping over any intervening records. The function positions the tape
after the tape mark and returns the number of tape marks not skipped (0 if the
tape mark was found, 1 if it was not).

2.9.5 Backspace Function

Function code =5

Parameter = number of records to backspace (1 to 32767)

Value returned = number of records not backspaced (0 unless the system finds a tape
mark or BOT)

The Backspace function is similar to the Skip function, except that tape motion
is in the opposite direction. The beginning-of-tape (BOT or Load Point) as well
as tape marks can cause premature termination of the Backspace operation, in
which case the value returned is the specified number of records to backspace
minus the number actually backspaced. (The system counts the tape mark as
a record actually backspaced.) The BOT is neither skipped nor counted as a
skipped record. For example:

200 I% = MAGTAPE(5%,1%,2%)

This statement backspaces one record on the magnetic tape opened on internal
channel 2, unless the tape was already at BOT.

If you set the parameter to zero, the function always backspaces the tape one
tape mark, skipping over any intervening records. The function positions the tape
before the tape mark and returns the number of tape marks not skipped (0 if the
tape mark was found, 1 if it was not).

To skip past the previous tape mark with TK50 drives, do not adapt the example
from the Skip Record function to the Backspace function. Instead, use the
Backspace function, with the parameter set to 0. For example, to skip from the
current tape position to just past the previous tape mark, use the function:

200 I% = MAGTAPE (5%,0%,2%)

2.9.6 Set Density and Parity Function

NOTE

This function does not support the TK25, TK50, or TU81 magnetic
tape drives. It is provided only for compatibility with existing software.
Digital recommends that the Extended Set Density Function (code 12)
be used in future program development.

Magnetic Tape 2-21

Function code =6
Parameter = D+P+S

Value returned =0
where:
D (density) is:

12 = 800 bpi
256 = 1600 bpi

P (parity) is:

0 = odd parity
1 = even parity (not recommended; see the section "The MODE
Specification in Non-File-Structured Processing")

S (stay) is:

0 = MODE value does not stay after CLOSE
8192 = MODE value stays after CLOSE

A tape drive is set to the system default for density and odd parity unless you
change the default when you allocate the unit (with a MOUNT command) or
when you open the unit. If the tape drive has more than one density and/or
parity option available, this function changes the density and/or parity according
to the value given as the parameter.

See Table 2-2 for information about 9-track tape drive densities, and the section
"The MODE Specification in Non-File-Structured Processing" for information on
parity settings.

The system interprets the parameter exactly as it does the MODE value in a
non-file-structured OPEN statement. For example:

10 OPEN "MMO:" AS FILE 2%
20 I% = MAGTAPE (6%, 256%, 2%)

These statements set the density and parity of the 9-track tape drive open on
channel 2 to 1600 bpi, odd parity. The density and parity that you specify in
the parameter are in effect until channel 2 is closed. The system sets 1% to 0
to indicate successful completion. If this function is executed on a tape open in
file-structured mode, the system ignores the request and returns the same value
as the value passed.

If the unit is allocated, adding 8192% to the parameter value (making it
8192%+256%) keeps the new density/parity setting in effect even after the
associated channel is closed. The next OPEN statement without a MODE op-
tion, associating any channel number with tape unit 0, automatically opens it
with that new density/parity setting. A DISMOUNT command for a previously
allocated unit returns the density/parity setting for the tape unit to the system
default value. Specifying another parameter value also changes the density and
parity setting. The setting remains if ownership of the unit is passed to another
job.

The following immediate mode routine sets tape unit 2 to 800 bpi, odd parity,
using DOS labels. In this example, once channel 3 is closed, the new density
/parity setting is now in effect and remains in effect until a DISMOUNT operation
is executed on tape unit 2.

2-22 Magnetic Tape

ASSIGN MM2:.DOS

OPEN "MM2:" AS FILE 3%
I% = MAGTAPE (6%, 8192%+12%, 3%)
CLOSE 3%
2.9.7 Tape Status Function
Function code =7
Parameter = unused
Value returned = status

The Tape Status function returns the status of the specified magnetic tape as a
16-bit integer, with certain bits set, depending on the current status.

Table 2—-7 shows the status word format.

Table 2-7: Magnetic Tape Status Word

Bit Test Meaning

15 1% < 0% Last command caused an error.

14-13 (I% AND 24576%)/8192% If bit 3 = 0, density:

0 = reserved
1 = reserved
2 = reserved
3 = 800 bpi
If bit 3 = 1, density:
0 = 1600 bpi
1 = reserved
2 = reserved
3 = reserved
12 (I% AND 4096%) = 0% 9-track tape.
(1% AND 4096%) <> 0% Reserved.
11 (1% AND 2048%) = 0% Odd parity.
(I% AND 2048%) <> 0% Even parity.

10 (1% AND 1024%) <> 0% Tape is physically write-locked.

9 (I% AND 512%) <> 0% Tape is beyond physical EOT marker.

8 (I% AND 256%) <> 0% Tape is at BOT (load point).

7 (I% AND 128%) <> 0% Last command detected a tape mark (EOF
marker).

6 (1% AND 64%) <> 0% The last command was READ and the record read
was longer than the I/O buffer size (that is, part
of the record was lost).

5 (I% AND 32%) <> 0% Unit is nonselectable (OFF-LINE).

4 (I% AND 16%) = 0% Unit does not accept 1600 bpi.

(1% AND 16%) = 1% Unit accepts 1600 bpi.
3 (1% AND 8%) = 0% See values for bits 14-13.

(1% AND 8%) = 1%

See values for bits 14-13.

(continued on next page)

Magnetic Tape 2-23

Table 2-7 (Cont.): Magnetic Tape Status Word

Bit Test Meaning

2-0 (1% AND 7%) Indicates last command issued:

0 = OFF-LINE

1 =READ

2 = WRITE

3 = WRITE TAPE MARK
4 = REWIND

5 = SKIP RECORD

6 = BACKSPACE RECORD

NOTE

Bits 3, 4, and 11 to 14 are maintained only for backwards compatibility.
Digital recommends that you use the Extended Set Density Function
(code 12) for all future software development.

The following example obtains the status of the magnetic tape opened on internal
channel number 2:
200 I% = MAGTAPE (7%,0%,2%)

When the value of 1% returned is 24,848 decimal (or 60420 octal), the magnetic
tape is 800 bpi, 9-track, odd parity, and the last command issued was OFF-LINE,
You can determine this information by testing the value of 1%, bit by bit, against
Table 2-7. For example:

I% = 24,848 (decimal)

6 042 0 (octal)

110 000 100 010 000 (binary)
The test for density uses bits 14 and 13:
(I% AND 24576%)/8192%
The following diagram shows the result:
I% 110 000 100 010 000
AND 24576% 110 000 000 000 000
Result 110 000 000 000 000

If you divide the result of (I% AND 24576%), which in this example is 24576%,
by 8192%, the quotient can equal 0, 1, 2, or 3. In this case, 24576/8192 = 3,
indicating that the tape density is 800 bpi.

The results of bit 12 (1% AND 4096%) and bit 11 (I% AND 2048%) are both Zero,
indicating a 9-track tape with odd parity.

Bit 8 (I% AND 256%) and bit 4 (I% AND 16%) both return a value of 1, indicating
that the tape is at the load point and that the unit accepts 1600 bpi.

Bit 2-0 (I% AND 7%) returns a value of 0, indicating the last command issued
was OFF-LINE.

2-24 Magnetic Tape

Use the Skip Record function to advance to the next tape mark (that is, skip over
the current file). You can use one Skip Record function unless the file is longer
than 32,767 records (in which case the system must execute several skip record
functions) or the system detects a physical EOT within a file. The following
statements execute a Skip Record function until the next tape mark is found:

20 I% = MAGTAPE (4%,32767%,2%) !Do one set of skips &
\GOTO 20 UNLESS (MAGTAPE (7%,0%,2%) AND 128%) Do another unless &
'tape mark found

2.9.8 Return File Characteristics Function

Function code =38
Parameter = unused

Value returned = file characteristics

This function returns the status of the specified file-structured magnetic tape
file as a 16-bit integer, with certain bits set depending on the current file
characteristics. Nonzero integers are returned for ANSI files; zero is always
returned for DOS files.

Table 2-8 shows file characteristics word for ANSI format.

Table 2-8: Magnetic Tape File Characteristics Word for ANSI Format

Bit Test Meaning
15-14 (SWAP%(1%) AND 192%)/64% ANSI format:

0 = U (undefined)*

1 = F (fixed-length)

2 = D (variable-length)
3 = S (spanned)?

13-12 (1% AND 12288%)/4096% Format U operation:
0 (default)

Format D, S and F operation:

0 (carriage control embedded "M")
1 (FORTRAN carriage control "A")
2 (implied LF/CR " ")

11-0 1% AND 4095% Format U operation:
0 = (default)
Format F operation:
Record length
Format D operation:
Maximum record length
Format S operation:

unused?

1U (undefined) format does not conform to ANSI standard X3.27-1978.
2RSTS/E does not support ANSI format S.

Magnetic Tape 2-25

The following example obtains the characteristics of a file on a magnetic tape
opened on channel 2:

400 I%$ = MAGTAPE (8%,0%,2%)

When the value of 1% returned is 16464 (16384% + 64% + 16%) decimal (40120
octal), the magnetic tape file is in ANSI format F, carriage control is embedded
"M", and the record length is 80 bytes. You can determine this information by

testing the value of 1%, bit by bit, against Table 2-8. For example:

I3% 16464 (decimal)

040120 (octal)
0 100 000 001 010 000 (binary)

The test for ANSI format type is (SWAP%(1%) AND 192%)/64%, where 192% =
128% + 64%.

SWAP% (I%) O 101 000 001 000 000

AND 192% 11 000 000
Result 1 000 000
Dividing the result of SWAP%(1%) AND 192% (which in this case is 64%) by 64%,

the quotient equals 64%/64% = 1, indicating that the tape file is in ANSI format
F.

The result of (1% AND 12288%)/4096% is 0 in this example, indicating that the
carriage control is embedded "M".

Finally, the result of 1% AND 4095%) yields 80 in this case, so the record length
is 80 bytes.

2.9.9 Rewind on CLOSE Function

Function code =9
Parameter = unused
Value returned =0

The Rewind on CLOSE function causes the selected magnetic tape to be rewound
when the CLOSE statement is executed. For example:

I%$ = MAGTAPE (9%,0%,2%)

This statement rewinds the tape open on internal channel 2 when you issue
CLOSE from a program or in immediate mode.

You must use the Rewind on CLOSE function after the OPEN statement and
before the CLOSE statement. This function overrides all MODE specifications
that, in the OPEN statement, instruct the system not to rewind on closing the
file. Once the system executes the Rewind on CLOSE function, it cannot be
cancelled.

2.9.10 Write End-of-Volume Labels on CLOSE Function

Function code =10
Parameter = unused
Value returned =0

2-26 Magnetic Tape

This function writes end-of-volume (EOV) labels on the selected ANSI mag-
netic tape when the close statement is executed. This function is mainly for
multivolume ANSI processing. For example:

I% = MAGTAPE (10%,0%,2%)

This statement causes EOV labels to be written to the file on execution of the
CLOSE statement. Normally, end-of-file (EOF) labels are written. You must use
the Write End-of-Volume Labels function after the OPEN statement and before
the CLOSE statement.

This function works only on ANSI labeled magnetic tapes. An attempt to write
end-of-volume labels on DOS-labeled or non-file-structured tapes results in the
error ?Illegal MAGTAPE () usage (ERR=65).

2.9.11 Error Condition Acknowledged

Function code =11
Parameter = unused
Value returned =0

This function acknowledges an error condition that has occurred during an asyn-
chronous I/0 operation. When an error occurs while performing asynchronous
I/O, the tape driver does not execute any more requests until this function has
been issued. This is because asynchronous I/0 allows multiple requests to be
outstanding, but they may be invalid if the user knows of the error condition that
occurred. All requests between the original errored request and the error con-
dition acknowledged function call return the error ?Device hung or write locked
(ERR=4). Once the error condition acknowledged function has been issued, the
driver resumes normal processing, on the assumption that the user is aware of
the error and is taking whatever steps are appropriate to correct it. For example:

I% = MAGTAPE(11%,0%,2%)

This statement acknowledges the error condition that occurred from the asyn-
chronous I/O operation on the magnetic tape open on internal channel 2.

The Error Condition Acknowledged function returns no errors and will never fail
when issued. If not required, it is simply ignored.

2.9.12 Extended Set Density Function

Function code =12
Parameter = Density to set/check
Value returned = Actual density

You can use this function to set the density of a tape drive, or get density
information about a drive. The action that RSTS/E takes depends on the value of
the parameter.

Magnetic Tape 2-27

If the parameter value is zero, RSTS/E returns the current density of the tape
drive. If bit 15 is set, RSTS/E attempts to set the density of the tape drive to the
value in bits 14-0 as follows:

Value Meaning

32767 Sets the density to the highest legal density allowed for that tape drive. The
value returned is the density set. No error is returned.

1 Sets the density to the lowest legal density allowed for that tape drive. The
value returned is the density set. No error is returned.

n Attempts to set the density to the value specified. If the value is not legal for
that tape drive, RSTS/E returns an ?Illegal number error message (ERR=52)
and leaves the density of the drive unchanged.

If bit 15 is clear, RSTS/E does not change the drive’s density but only tests the
value passed in bits 14-0 as follows:

Value Meaning
32767 Returns the highest legal density for this drive.
1 Returns the lowest legal density for this drive.
n Returns the lowest legal density for this drive that is greater than or equal

to the parameter value. If the parameter value is less than the drive’s lowest
legal density, RSTS/E returns the lowest legal density. If the parameter value
is greater than the highest legal density, RSTS/E returns the highest legal
density.

Any density changes made by this call, remain in effect until either a new
density is set or a magnetic tape is read that has a density different than the
one formerly set. This action is equivalent to the STAY value 8192% in the Set
Density and Parity Function (function code 6).

NOTE

For MT, MM, and MU tape drives, a tape must be mounted and be at
beginning-of-tape (BOT) to set the drive density. If this condition is
not met and an attempt is made to change the drive’s density, RSTS/E
returns an ?Illegal MAGTAPE() usage error message (ERR=65). A tape
does not have to be mounted on the drive to check legal densities or
return the current density of a drive.

2.10 Asynchronous I/O Requests

An asynchronous read or write request performs the same basic function as the
traditional synchronous read or write request: it moves data between a device
and a program. The difference lies in the completion of the request. While a
synchronous request stalls the job’s execution until the request is complete, an
asynchronous request does not stall the program. The program continues to run
while the I/0O request completes in the background.

When the asynchronous I/0 request completes, the system informs the program
that issued the request of the completion and status of the request. The system
notifies the program by forcing it to run an asynchronous completion routine to
notify the user job of the I/0 completion. The asynchronous completion routine is
a section of code within the user job that executes when an I/0O request completes.
When the asynchronous completion routine is entered, it can check for any device
dependent errors.

2-28 Magnetic Tape

Asynchronous I/O is only meaningful on MS: tapes (TS11, TK25, TS05, TU80) and
MU: tapes (TK50, TU81). Other tape drives accept asynchronous I/O requests
and emulate asynchronous behavior, but the job stalls and few advantages are
gained from its use.

NOTE

Digital strongly recommends you use only asychronous I/O with TK50
tape.

BASIC-PLUS programmers cannot use asynchronous I/0. BASIC-PLUS-2
programmers can use this feature, but must do so using a MACRO subroutine.
See the RSTS/E System Directives Manual for details.

2.11 Magnetic Tape Special Function: SPEC%

The SPEC% function performs special operations on magnetic tape, disks (see
Chapter 1), flexible diskettes (see Chapter 1), line printers (see Chapter 3),
terminals (see Chapter 4), and pseudo keyboards (see Chapter 4).

The SPEC% function for magnetic tape performs the same operations as the
MAGTAPE function. It allows you to rewind the tape, skip records on the tape,
and set tape density and parity. See the section "The MAGTAPE Function" for

details.

The SPEC% function for magnetic tape has the format:
VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,14%)
where:

VALUE% depends on the function code specified in FUNCTION%.

FUNCTION% is the function code.

PARAMETER depends on the function code specified in FUNCTION%.

CHANNEL% is the I/O channel on which the operation is to be performed.

14% is the handler index for magnetic tape.

The code you specify in FUNCTION% determines the operation performed. These
operations duplicate those performed by the MAGTAPE function codes (see
Table 2-6). The following MAGTAPE and SPEC% functions are equivalent:

I% = MAGTAPE (F%,P%,U%)

I% = SPEC% (FUNCTION%-1%,PARAMETER, CHANNEL%, 14%)

2.12 Magnetic Tape Error Handling

RSTS/E recognizes the following magnetic tape error conditions:
e Parity error

¢ Record length error

e Offline (not ready) error

e Write lock error

e Write beyond EOT error

For other error conditions that can occur with magnetic tape (Illegal byte count,
File exists, Protection violation), see Appendix C.

Magnetic Tape 2-29

2.12.1 Parity (Bad Tape) Error

If the system detects a parity error on a read attempt, it tries to reread the record
up to 15 times. If the error condition persists, the error ?Data error on device
(ERR=13) occurs. In this case, the read has been completed, but the data in the
I/0 buffer cannot be considered correct.

For TMSCP tapes, the controller handles the retries in a manner transparent

to the operating system. For other tapes, if the first attempt to write a record
fails, the system tries to rewrite the record up to 15 times using write with
Extended Interrecord Gap to space past a possible bad spot on the tape. If the
error condition persists, the error ?Data error on device (ERR=13) occurs. In both
cases, the tape is positioned just past the record on which the error occurred.

If you have error logging on your system, a magnetic tape error may be logged for
each parity error that occurs. Consult the ERRDIS full error report to see if the
problem is due to a malfunctioning or poorly aligned magnetic tape drive.

2.12.2 Record Length Error

The record length error can occur only during a read operation when the record
on the tape is longer than the I/O buffer size, as determined by the OPEN
statement. The extra bytes in the record are not read into memory but are
checked for possible parity errors. If a parity error occurs, the error ?Data error
on device (ERR=13) is returned to your program, and bit 6 of the tape status word
is set. Therefore, if you are reading records of unknown length from magnetic
tape, you must check for possible record length errors after every read operation.
Use a statement of this form:

200 PRINT "RECORD TOO LONG" IF MAGTAPE (7%,0%,2%) AND 64%

Note that if bit 6 is set in the tape status word, the IF condition in this example
tests'as TRUE. The error ?Magtape record length error (ERR=40) occurs when
the tape block is too long, in either file-structured or non-file-structured magnetic
tape.

2.12.3 Offline Error

The system determines the status of the tape unit by testing bit 5 of the returned
value of the tape status function shown in Table 2-7. If bit 5 is set, the tape
unit is offline. The error ?Magtape select error (ERR=39) occurs if you attempt to
access an offline drive.

2.12.4 Write Lock Error

Attempting any write operation on a magnetic tape that is physically write-locked
(that is, a tape that does not have the write-enable ring inserted) results in the
error ?Device hung or write locked (ERR=14).

2-30 Magnetic Tape

2.12.5 Writing Beyond EOT Error

Attempting to write a record beyond the end-of-tape reflective marker writes the
entire record but returns the error ?No room for user on device (ERR=4). This
error condition is a warning to the user program; it does not harm the data.
The program can recover in one of two ways; see the section "Writing Data and
Processing End-of-Tape."

2.13 Magnetic Tape Programming Examples

The following examples show how to read and write a magnetic tape file.

2.13.1 Writing a Magnetic Tape File

The following BASIC-PLUS program opens an existing magnetic tape file for
output and appends data to the file:

100 M%=16384%+128%+64%+32%
\OPEN "MMO:RECORD.FIL" FOR OUTPUT AS FILE 1%, MODE M%
\FIELD #1%, 2% AS S$, 8% AS M$, 2% AS Y$, 8% AS C$, 2% AS DS
\INPUT "HOW MANY RECORDS TO ENTER" ;A%
400 FOR I%=1% TO A%
\INPUT "RECORD";S%
\INPUT K$
\INPUT Y%
\INPUT L$
\INPUT D%
500 LSET S$=CVT%S$ (S%)
\LSET Y$=CVT%S$ (Y%)
\LSET D$=CVT%S$ (D%)
\LSET MS$=K$
\LSET C$=L$
\PUT 1%, COUNT 22%

\NEXT I%
\CLOSE 1%
3000 END

The program opens the file RECORD.FIL, which is on a DOS tape (MODE
16384%), for append (MODE 128%). The system rewinds the tape before it
searches for the file (MODE 32%) and when it executes a CLOSE statement on
the file (MODE 64%). After the user types in each record, the program converts
the data, builds a record, and writes the record to the file. Finally, after all
records have been written, the program closes the file and ends.

2.13.2 Reading a Magnetic Tape File

The following BASIC-PLUS program opens a magnetic tape file for input and
reads records from the file. It assumes a file in which records are identifiable by
an integer key. For example:

150 M%=16384%+64%+32%

\OPEN "MMO:RECORD.FIL" FOR INPUT AS FILE 1%, MODE M%
200 INPUT "HOW MANY RECORDS"; F%
210 FOR I%=1% TO F%

\N%=0%

\INPUT "RECORD TO FIND";J%

Magnetic Tape 2-31

300 GET #1%
\FIELD #1%, 2% AS S$, 8% AS M$, 2% AS Y$, 8% AS C$, 2% AS D$
500 N%$=N%+1%
\S%=CVT$$% (S$)
\GOTO 300 IF J%<>S%
625 YS=CVT$% (Y$)
\D%=CVT$% (D$)
750 PRINT S%
\PRINT M$
\PRINT Y%
\PRINT C%
\PRINT D%
\T%=MAGTAPE (5%, N%, 1%)
\NEXT I%
\CLOSE 1%
2000 END

The program opens the magnetic tape file RECORD.FIL on I/O channel 1 with
read access only. The tape is in DOS format and is rewound both before the
system searches for the file and when the system closes the file (MODE 16384% +
32% +64%). The program searches for the record the user specifies and converts
the data in the record to a recognizable form before printing it.

Because magnetic tape is a sequential access device, the program uses the
MAGTAPE function to backspace the tape to the beginning of the file following
each record retrieval. This allows the user to request records in any order.
Finally, the program closes the file and ends.

2.13.3 Reading a Magnetic Tape Non-File-Structured

The following program reads a DOS magnetic tape label record. See Appendix A
for a description of the DOS label format.

100 DEF FNZS$ (Z$)=RAD$ (SWAP% (CVT$% (2$)))
110 INPUT "WHICH DRIVE";M$
\OPEN M$ AS FILE 1% '
200 FIELD #1%, 2% AS F$, 2% AS N$, 2% AS X$, 1% AS P$, 1% AS Js,
1% AS C$, 1% AS U$, 2% AS D$, 2% AS UlS
\GET #1%
250 F1$=FNZ$ (FS$)+FNZS (N$) +". "+FNZ$ (X$)
300 P%=ASCII (PS)
\J%=ASCII (J$)
\C%=ASCII (C$)
400 D%=SWAP% (CVT$% (D$))
\Y$=DATES$ (D%)
500 PRINT F1$,P%,J%,C%,Y$
600 CLOSE 1%
32767 END

The program opens the tape for non-file-structured processing on I/0 channel

1. No MODE specification is necessary because the tape is 9-track, 800 bpi,
odd parity. After reading the 14-byte label record, the program converts the file
name (bytes 0-5) from Radix-50 notation to the ASCII character string F1$. The
program then converts the project-programmer number (PPN) and protection
code (P$, J$, and C$) to integer format. It next changes the creation date of the
file (D$) to PDP-11 internal form and uses the DATE$ function to obtain the
creation date in DD-MMM-YY format. Finally, the program prints all the label
information and ends.

2-32 Magnetic Tape

Chapter 3

Line Printer

RSTS/E provides several MODE and RECORD options as well as one SPEC%
function for controlling line printer output. It also provides a FILESIZE modifier
to enable extended software formatting. This chapter describes these options. In
addition, it describes special character handling for line printers.

3.1 Special Character Handling
Certain nonprinting characters have special significance on line printer output.

Table 3—-1 summarizes LP11 operation under RSTS/E for each of these special
characters.

Table 3-1: LP11 Characters

Character LP11 Action

CHR$(8) BS - Backspace. This action depends on the /BACKSPACE qualifier of the
SET PRINTER command.
1. Prints line
2. Returns carriage
3. Spaces to position immediately before previous position on line

CHR$(9) Tab - Horizontal Tab. This action depends on the /TAB qualifier of the
SET PRINTER command.

1. Spaces over to next tab position (columns 1, 9, 17, 25, and so on)

CHR$(10) LF - Line Feed
1. Prints line
2. Returns carriage
3. Advances paper one line

CHR$(11) VT - Vertical Tab

1. Advances paper one line and resets line counter

CHR$(12) FF - Form Feed
1. Prints line
2. Returns carriage
3. Advances paper to the top of the next form (see the
section Line Printer Control with the MODE Option)

(continued on next page)

Line Printer 3-1

Table 3-1 (Cont.): LP11 Characters

Character LP11 Action

CHR$(13) CR - Carriage Return
1. Prints line
2. Returns carriage
3. No line feed (may be used for overprint)

CHR$(96) to Lowercase printing characters, converted to uppercase except on an
CHR$(126) uppercase/lowercase printer.

3.2 Line Printer Control with the MODE Option

The MODE specification in the OPEN statement allows you to control line printer
operations. For example:

OPEN "LP:" AS FILE N%, MODE M%

The system associates line printer unit 0 with channel N%. The value of M% in
the MODE specification determines the actions the system performs at the line
printer.

Table 3-2 shows the line printer MODE values.

Table 3-2: Line Printer OPEN MODE Values

MODE Value Line Printer Action

0% to 127% Defines form length in number of lines per page. 0% indicates the
default form length. You set the default form length with the SET
PRINTER command. Also included when specifying nonstandard form
length with software formatting (512%) and/or automatic page skip
(2048%). This feature is maintained for backward compatibility only.
Use the FILESIZE form (see the next section) in all new program

development.

128% Changes the character 0 (zero) to the letter O ("oh").

256% Truncates lines that are longer than the form width. If MODE 256%
is not set, then lines longer than the form width are wrapped onto the
next line.

512% Enables software formatting. Allows special characters to position
paper at a specific line.

1024% Translates lowercase characters to uppercase characters.

2048% Skips six lines (that is, skips over perforation) at the bottom of each
form.

4096% Enables hardware form feed.

8192% Suppresses form feed on CLOSE. Normally, two form feeds are gener-

ated whenever the line printer is closed.

3.3 Line Printer Control with the FILESIZE Statement

3-2 Line Printer

The FILESIZE specification in the OPEN statement allows you to use extended
software formatting. This feature handles a line printer form length specification

of up to 255 lines. It also enables two additional mode values: Change <ESC> to
$ - MODE 16%, and Set NOWRAP - MODE 32%.

You enable extended software formatting with a FILESIZE 32767%+1% modifier
in the OPEN statement. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+N%, MODE M$%

The system associates line printer unit 0 with channel 1. The value N% specifies
the form length and can be any value from 0-255. A value of 0 indicates the
default form length. The FILESIZE value 32767%+1% sets the FILESIZE sign
bit, thereby enabling extended use of the MODE values. M% specifies the MODE
value.

Table 3-3 lists the MODE values available for use with the FILESIZE
32767%+1% modifier.

Table 3-3: Additional OPEN MODES with FILESIZE 32767%+1%

MODE Value Line Printer Action

16% Changes ESC to $. This mode disables escape sequences in data
output to the device.

32% Sets NOWRAP mode for lines that are longer than the printer’s form

width. Excess characters continue to be output to the device. Mode
256% overrides this mode.

The following sections describe the various uses of the MODE option.

3.3.1 Change ESC to $: MODE 16%

You can use MODE value 16% only when you include the FILESIZE 32767 %+1%
modifier in the OPEN statement. This mode value instructs the line printer
driver to change any ESC character to a dollar sign ($) character. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+60%, MODE 16%

This statement enables extended software formatting and sets the page length to
60 lines per page. MODE 16% disables escape sequences in all data output to the
device.

3.3.2 Set NOWRAP for Excess Lines: MODE 32%

You can use MODE value 32% only when you include the FILESIZE 32767 %+1%
modifier in the OPEN statement. This mode value instructs the line printer
driver to continue to output excess characters to the device. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+60%, MODE 32%

This statement enables extended software formatting and sets the page length to
60 lines per page. The driver continues to output excess characters to the device.

Normally, the driver inserts a line feed character in lines that exceed the printer’s
form width, causing the line to be wrapped onto the next line. With MODE 32%
enabled, the driver passes excess characters to the device without inserting a
line feed character. the hardware characteristics of the device itself determine
the actual display of excess characters. Note that the driver’s horizontal position
counter remains at the rightmost position of the form width, even though
characters that exceed the line width are being sent to the device.

Note that MODE 256%, Truncate Long Lines, always takes precedence over
MODE 32%.

Line Printer 3-3

3.3.3 Software Formatting: MODE 512%+N%

The MODE value 512% allows you to pass special control characters to position
the paper on a specified line number. Note that if your system manager specifies
8 bit capabilities for a line printer (which allows 8 bit characters to be sent to the
printer) you cannot perform software formatting to that printer. If you attempt to
do so, the system generates the error ?Missing special feature (ERR=66).

For example:
100 OPEN "LPO:" AS FILE 1%, MODE 512%+30%

This statement enables software formatting and sets the form length to 30 lines
per page. If you do not specify the form length, the system uses the default
defined with the SET PRINTER command. Lines are numbered from zero to one
less than the length specified. Thus, in the previous example, lines are numbered
from 0 to 29.

After enabling software formatting with MODE 512%, you specify the line
number on which to position the printer paper by sending a special character to
the line printer in PUT or PRINT statements. The system skips to this line by
sending the proper number of line feed characters to the printer.

The special character is of the form CHR$(128%+L%), where L% is the line
number to advance to. For example:

200 PRINT #1%, CHRS (128%+19%);

This statement causes the system to advance the paper to line 19. If the line
value L% is greater than the page length, the system ignores it. If the line value
L% is greater than the current line number, the printer skips to that line number
on the current page. If the line value L% is less than or equal to the number of
the current line, the system moves the paper to the top of the next page and then
skips to the appropriate line.

NOTE

To enable the program to properly perform software formatting of print
lines using special characters, load the paper in the line printer with
the top of form aligned properly and with the tractors set at their
top-of-form position.

The system treats characters whose values lie between 0 and 127 as the standard
ASCII equivalents as shown in Appendix D. If you do not specify MODE

512% in the OPEN statement, and, if you do not specify 8 bit capabilities for the
line printer, characters whose values lie in the range 128% to 255% are treated
as (value - 128%).

3.3.4 Enabl

3-4 Line Printer

e Hardware Form Feed: MODE 4096%

The form feed (FF) character advances the paper to the top of the next page.
When you use the default form length, the FF character is sent directly to the
device. If you use a form length other than the default, the system translates FF
to the proper number of line feed (LF) characters to advance to the next page.

MODE 4096% causes the system to always send a FF to the device, regardless
of the form length. This mode disables FF-to-LF translation. MODE 4096% is
useful for devices that can be set to variable page lengths.

NOTE

If you include both 4096% and 512% values in the MODE option, a FF
character sent to the line printer remains untranslated. The form feed
positions the paper at the top of hardware form. This action results
in unpredictable output because the line counting done by the MODE
512% processing does not take into account the movement of the paper
to the top of hardware form.

3.3.5 Translate Numeric 0 to Letter O: MODE 128%

A value of 128% in the MODE specification causes the system to print all 0
(zero) characters as O (uppercase "oh") characters. This feature is often used
in commercial applications where there can be no possibility for confusion. For
example:

10 OPEN "LPO:" AS FILE 1%, MODE 128%+60%

This statement indicates that the line printer should translate 0 to O (128%) on
line printer unit 0 with a form length of 60.

3.3.6 Truncate Long Lines: MODE 256%

To truncate lines greater than the width of the line printer, include 256% in the
MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 256%+128%+22%

The statement sets the MODE value 128% on line printer unit 0; it also discards
excess characters from each line printed (MODE 256%). The form length is 22
lines. When you do not use 256% in the MODE value, the system prints excess
characters on a second physical line (unless you use MODE 32%).

3.3.7 Translate Lowercase to Uppercase: MODE 1024%

To translate lowercase characters to uppercase characters, include 1024% in the
MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 1024%+256%+128%

This statement sets the MODE values 128% and 256%. The default form
length is used. In addition, it causes the system to translate all characters
with representations between CHR$(96%) and CHR$(122%) to their equivalents
between CHR$(65%) and CHR$(90%). The system also translates characters
with representations between CHR$(224%) and CHR$(254%) to their equivalents
between CHR$(192%) and CHR$(222%). This feature is always set for an
uppercase-only printer.

3.3.8 Skip Lines at Perforation: MODE 2048%

To skip six lines at the bottom of each form, include 2048% in the MODE value.
For example:

10 OPEN "LPO:" AS FILE 1%, MODE 2048%+1024%+256%+128%+60%

Line Printer 3-5

The statement sets the MODE values 128%, 256%, and 1024%, and also skips six
lines at the bottom of each to page. Note that form length is specified by 60%.
With MODE 2048% in effect, the system does not print on the last six lines of
each form. This feature is useful when you are printing continuous listings to be
placed in horizontal binders. If you load the line printer so that the top of form
is the third physical line on the page, the system leaves three blank lines at the
bottom and top of each page. When the listings are placed in binders, printed
material is located three lines from the perforations of the page for easy reading.

3.3.9 Supp

ress Form Feed on CLOSE: MODE 8192%

For certain applications, it is necessary to maintain the current print position on
the line printer during a CLOSE operation. Normally, the system automatically
generates two form feeds (FF) on either an implicit CLOSE (for example, a
CHAIN operation) or an explicit CLOSE. By specifying MODE 8192% in the
OPEN statement, the program tells the system not to generate any form feed
when it performs the CLOSE operation on the channel open for the line printer.
For example:

10 OPEN "LPO:" AS FILE 1%, MODE 8192% + N%

The value N% can be any other combination of MODE values valid for line
printer operation.

3.4 Line Printer Control with the RECORD Option

3-6 Line Printer

The RECORD option in a PUT or PRINT statement modifies the operation of the
line printer and enables discrete control of individual output steps.

Table 34 lists the values allowed in the RECORD option.

Table 3—-4: Line Printer RECORD Values

Value Meaning
2% Print over perforation (disables MODE 2048% for this output step).
4% Do not return control to the program until output is complete or until the
system encounters an error.
8% Clear pending output buffers before buffering characters for the request.
32% Truncate long lines (enables MODE 256% for this output step).
4096% Enable binary output, pass all characters to the device "as is."
8192% Return control to the program if an output stall is to occur on the device.

The general format of the RECORD option for line printer operation is either one
of these two forms:

10 PUT #N%, RECORD R%, COUNT C%
10 PRINT #N%, RECORD R%, A$
The following sections describe the RECORD values.

3.4.1

Print Over Perforations: RECORD 2%

By specifying RECORD 2% in the PUT or PRINT statement, you can temporarily
override the effect of MODE 2048% on an output form. For example, an appli-
cation program that usually skips six lines at the bottom of forms might need to
print an identification or special page requiring all lines on the page. RECORD
2% allows the program to print in the lines normally skipped.

3.4.2 Delay Return Until Output Complete: RECORD 4%

For line printer output, the system transfers data from program buffers to

the device by using intermediate storage areas called system buffers. This
intermediate buffering allows the faster computational process to continue
unhindered by the slower output action of the line printer. For each output
request, the system transfers the data to system buffers. At the same time, at its
own speed, the line printer driver extracts the data from the system buffers and
outputs it to the device.

Normally, completion of an output request occurs when the data is buffered.
After buffering the data, the system returns control to the program at the next
statement. If the program finishes its output routine but an error occurs at
the device before the data is actually printed, recovery can be difficult under
programmed control.

The RECORD 4% option in an output request tells the system not to return
control until the data is actually printed. This mechanism allows a program
greater control over error recovery—although at the cost of increased execution
time. To use this mechanism, print a NUL character with the RECORD 4%
option. For example:

10 PRINT #1%, RECORD 4%, CHRS$(0%);

The output operation has no effect on the line printer because the system
discards all NUL characters. The program maintains control of the output
operation because the system does not complete the request until it prints all
previously buffered characters. If an error occurs, the program can take recovery
action and resume at this operation. When control passes to the next statement,
the output operation is complete.

If you combine the RECORD 4% option with the RECORD 8192% ("No stall")
option, the monitor returns an error message if the printer is offline.

3.4.3 Clear Buffers Before Returning Control: RECORD 8%

Sometimes it is advantageous for a program to stop printing characters already
buffered for output. Because characters to be printed on a line printer are kept
in intermediate buffers, interrupting the output routine only prevents additional
characters from being buffered. Normally, characters already buffered for output
by the system continue printing until the buffers are clear or until an error
occurs.

The RECORD 8% option in an output request tells the system to terminate
the print operation and clear all pending output buffers before buffering the
characters in the request. For example:

10 PRINT #1%, RECORD 8%, CHRS$ (13%);

Line Printer 3-7

The system clears all pending output buffers and then sends the carriage return
(CR) character to the printer. The CR character flushes out any characters

in the printer hardware buffers by forcing them to print. After the successful
completion of this statement, the printer and its buffers are clear, the vertical
position counter is reset to top of form, and the horizontal position counter is reset
to the left margin. (Although the driver’s internal vertical form position counter
is reset to top of form, you may need to align the form itself to its top-of-form
position.)

3.4.4 Trunc

ate Long Lines: RECORD 32%

RECORD 32% enables MODE 256% for one output step. RECORD 32% causes
the driver to truncate lines greater than the width of the line printer.

3.4.5 Binary Output: RECORD 4096%

RECORD 4096% disables all formatting of characters sent to the line printer for
one output step. The driver outputs all characters to the device "as is." Note that
the driver does not update the vertical and horizontal position counters and the
page counter when this modifier is in effect.

Note that you cannot output null characters to the printer when using binary
output.

3.4.6 No Stall Option: RECORD 8192%

3-8 Line Printer

RECORD 8192% provides a "no stall" option for line printer output. RECORD
8192% causes the monitor to return control to your program if an output stall is
to occur on the device. You can determine the number of bytes still to be written
by checking the contents of the XRB+XRBC. The XRB is accessible only through
MACRO; see the RSTS /E System Directives Manual.

RECORD 8192% is useful for programs that must perform several different
functions with optimal performance (such as a line printer spooler that performs
message send/receive and prints files at the same time). When an output stall
does occur, the program can perform other processing before trying to write the
remaining bytes to the line printer or terminal.

When you use the "no stall" option, you can perform a special test to see if the
line printer is busy without causing your program to stall. To perform the test,
print a single null character and specify RECORD (8192%+4%). When you specify
both values, the system returns control to your program instead of stalling it. If
the system returns 0 at XRB+XRBC, the line printer buffers are empty, which
means there are no characters still to print. A nonzero value at XRB+XRBC
means that the line printer buffer still contains one or more characters to print.
In this case, repeat the test until the system returns 0 at XRB+XRBC.

Note that BASIC-PLUS programmers cannot use this RECORD modifier. BASIC-
PLUS-2 programmers can use this modifier, but must use a MACRO subroutine
to check the XRB. See the RSTS/E System Directives Manual for details.

3.5 Line Printer Special Function: SPEC%

The SPEC% function performs special operations on line printers, terminals,
disks, flexible diskettes, magnetic tapes, and pseudo keyboards.

For line printers, the SPEC% function lets you:
* Read the current value of the page counter.

® Read the current vertical and horizontal line positions.

The SPEC% function for line printers has the format:
VALUE% = SPEC%(FUNCTION%,PARAMETER%,CHANNEL%,6%)

where:

VALUE% depends on the function code specified in FUNCTION%.

FUNCTION% is the function code. The SPEC% function performs various func-
tions on line printers as determined by the function code. These
codes are:
FUNCTION%=0 returns current value of page counter.
FUNCTION%=1 returns current vertical and horizontal line

positions.

PARAMETER% is unused.

CHANNEL% specifies the I/O channel for the line printer.

6% is the handler index for line printers.

SPEC% subfunction 0 returns the current value of the page counter as a 16-bit
value. SPEC% subfunction 1 returns a 16-bit value with the current vertical line
position in the low byte and the horizontal position in the high byte.

3.6 Error

Handling

An error condition at the line printer causes the system to interrupt the transfer
of data from the buffers to the device, but not from the program to the buffers.
Since any number of unpredictable events such as a ribbon jam or a paper

tear can cause an error condition, the system retains the unprinted data in the
buffers until either the error is cleared (the unit becomes ready again) or the user
program executes a CLOSE operation.

The system checks the status of the line printer every ten seconds and, upon
detecting the ready condition, continues output from the small buffers without
loss of data. If a program closes the line printer while the error is still pending,
the system returns the small buffers to the pool without printing their contents.
The data transferred from the program, but not yet printed, is lost.

If the program disregards the error condition and continues processing, the
system does not transfer more data to additional small buffers. No output occurs
at the line printer while the error condition remains in effect.

To prevent loss of data, your program must properly detect a line printer error
condition and perform appropriate error handling. The system indicates a line
printer error by generating the error ?Device hung or write locked (ERR=14).
The first time the system returns this error after an output request (for example,
PUT), the data is fully buffered by the monitor. No data is lost, but the buffered
data cannot be sent to the printer because of the error condition.

Line Printer 3-9

Because all of the data is buffered, you should not write exceptionally large
buffers to the line printer. The monitor checks the printer’s status every 10
seconds. It resumes printing when the error condition is removed. To prevent
filling up monitor buffer space, subsequent output requests return immediately
with the error ?Device hung or write locked (ERR=14). No data is buffered while
the error condition persists. When an output request returns without error, the
printer error is cleared. However, it is good programming practice to force the
monitor to wait until line printer output is complete before printing any more
data.

The following sample program demonstrates code that:

e Opens the line printer, inputs a line from the disk file, and performs output
to the line printer

e Performs efficient error handling as described in this section

10 ! HOUSEKEEP ING
20 OPEN "DATA.DAT" FOR INPUT AS FILE 1%
\OPEN "LPO:" AS FILE 2%, RECORDSIZE BUFSIZ(1%)
\FIELD 1%, BUFSIZ(1%) AS I$
\FIELD 2%, BUFSIZ(2%) AS 0$
\FIELD 2%, 1% AS 01$

\E$ = 0%

\ON ERROR GOTO 200
100 ! COPY LOOP
110 GET #1%

\C% = RECOUNT
\LSET 0$ = I$

120 PUT #2%, COUNT C%
\GOTO 100
130 ! LINE PRINTER OUTPUT ERROR - DATA PUT
! AT LINE 120 IS BUFFERED
140 LSET O1$ = CHR$ (0%)
150 PUT 2%, RECORD 4%, COUNT 1%
\E% = 0%
\PRINT IF POS (0%)
\GOTO 100

! PUT A NULL (IGNORED BY MONITOR)
! AND WAIT FOR PRINTER READY
! IF IT MAKES, PRINTER IS OK, SO GO
! BACK TO COPY LOOP
160 PRINT ’'PRINTER HUNG - PLEASE FIX IT';

UNLESS E%
\PRINT CHRS$ (7%):;
\E% = -1%
\SLEEP 10%
\GOTO 150

! ASK FOR REPAIRS ONCE, DING EACH
! TIME, SLEEP AND RETRY

200 ! ERROR HANDLING

210 RESUME 300 IF ERR = 11% AND ERL = 110%
\RESUME 130 IF ERR = 14% AND ERL = 120%
\RESUME 160 IF ERR = 14% AND ERL = 150%

\ON ERROR GOTO 0
300 ! DONE
310 CLOSE 1%, 2%
32767 END

3-10 Line Printer

Chapter 4

Terminals

RSTS/E provides several features for use in interactive terminal applications. You
access most of these features through the MODE option in the OPEN statement
and the RECORD option in GET and PUT (or PRINT) statements. For example,
by using various MODE and RECORD options you can:

¢ Display and process screen forms using echo control

e Perform I/O to several terminals using one I/0 channel

This chapter describes these and other terminal features. It also describes:
e Escape sequences
® Private delimiters

e Pseudo keyboards

Except for the section on escape sequences, which contains information about the
VT100-, VT200-, and VT300- family terminals, this chapter describes only the
general-purpose software features that the RSTS/E operating system provides.
See the user’s guide for your terminal for hardware-specific information.

4.1 Conditional Input from a Terminal: RECORD 8192%

Sometimes a program must execute an input request from a terminal without
waiting for data to be available. For example, the terminal may be opened on a
specific I/O channel or may be one of many terminals opened on one I/O channel
(see the section "Multiterminal Service on One I/O Channel"). Normally, the
system stalls a program that is executing an input request until data is available
in the keyboard input buffer (that is, until a user types a line terminator at the
keyboard). To avoid waiting for data, use RECORD 8192% in the GET statement.
For example:

GET #1%, RECORD 8192%

If a terminated data line is available from the terminal open on channel 1, the
system transfers it to the program’s channel 1 buffer. The number of bytes read
from the terminal input buffer is given by the RECOUNT variable. If no data
is available, the system generates the error ?Data error on device (ERR=13). In
both cases, the system reports the results immediately.

You can use RECORD 8192% with the SLEEP statement to wait for input. When
you type a delimiter at a terminal or when a receiving job has received a message,
the system cancels the sleep operation. This feature is useful for determining

Terminals 4-1

whether the sleep operation was canceled by terminal input or the expiration of
a receive call’s wait time (see the section "Receive"” in Chapter 9). The following
sample routine shows the procedure for cancellation on terminal input:

100 OPEN "KB:" AS FILE #1%
110 ON ERROR GOTO 200
\GET #1, RECORD 8192%
\GOTO 1000
!GOT DATA, GO PROCESS IT
200 IF ERR=13 AND ERL=110 THEN RESUME 300
ELSE ON ERROR GOTO 0
300 SLEEP 5%
\GOTO 110

If data is not available at the terminal, a message is pending. If no delimited
data is available, the program can process it.

4.2 No Stall Option on Terminal Output: RECORD 8192%

When performing output to a terminal, you can also include the value 8192% in
the RECORD option. Note that RECORD 8192% works differently for terminal
input and output. When used on output, RECORD 8192% causes the monitor
to return control to your program if an output stall occurs on the device. If an
output stall does occur, the program can perform other processing before trying
to write the remaining bytes to the terminal. This modifier performs a similar
function to the "no stall” option for line printer output (see the section "No Stall
Option" in Chapter 3).

4.3 Force Interactive Input: RECORD 256%

You can use the RECORD 256% modifier on a GET statement to force the
program to always take input from the terminal, even if a command file is in
effect. Normally, if you read from a terminal and there is a DCL command file
active, then the program takes input from the command file. See the RSTS/E
Guide to Writing Command Procedures for more information on DCL command
files. For example:

GET #1%, RECORD 256%

This modifier is useful in programs that need to ask questions of a user, even
when running under the control of a command file. The DCL command INQUIRE
uses this modifier.

4.4 Multiterminal Service on One I/0 Channel: RECORD
32767%+1%

4-2 Terminals

The multiterminal feature allows one program to interact with several terminals
on one I/0 channel instead of opening each terminal for input or output. This
feature is useful in applications such as order entry, inventory control, and
query-response where the same function is performed on several terminals but a
separate job for each terminal is undesirable or inefficient.

To control several terminals, you must first establish a master terminal by
opening a keyboard on a nonzero channel. Two forms of the OPEN statement are
possible:

10 OPEN "KB:" AS FILE N%
10 OPEN "KB4:" AS FILE N%

The first form associates channel N% with the job console keyboard and defines it
as the master terminal. The second form associates channel N% with keyboard
number 4 and defines it as the master terminal.

You can then control additional. or slave, terminals through special forms of the
block I/0 GET and PUT statements. The program must allocate the terminal to
the job but must not open it. You can establish the terminals as slave terminals
with the ALLOCATE command before you run the program. You can also allocate
these terminals by executing the Allocate/Reallocate Device SYS call (SYS 10).
Your program can control any number of terminals up to the maximum number
of terminals on the system.

When a program interacts with several terminals on one I/O channel, the
system services the terminals in round-robin fashion, determined by the numeric
sequence of the terminals. To perform input and output, use GET (or INPUT)
and PUT (or PRINT and PRINT-USING) statements in a special manner, as the
following sections describe. Note that the RECORD option specifies a particular
action and keyboard number.

4.4.1 Multiterminal Service Output

Use a PUT statement of the following form to perform output to a keyboard,
either master or slave:

10 PUT #1%, RECORD 32767%+1%+K%, COUNT N%

where:

K% is a variable in the RECORD modifier that specifies the unit number of the
keyboard to which output is directed.

N% is a variable in the COUNT modifier that specifies the number of characters to

transfer from the buffer on channel 1 to the designated keyboard.

The only special error that can occur is ?Not a valid device (ERR=6), indicating
that the terminal addressed is neither the master keyboard nor a slave keyboard
reserved by the program. Other possible errors, such as ?I/0O channel not open
(ERR=9), work in the standard way.

You can use the RECORD option with the PRINT or PRINT-USING statement as
well as with the PUT statement. For example, the following statements output
the string Z$ to the unit designated by K%:

20 PRINT #1%, RECORD 32767%+1%+K%, Z§;
20 PRINT #1%, RECORD 32767%+1%+K%, USING "!!!!", 2z$;
When you use PRINT or PRINT-USING, you do not need to use FIELD, LSET,

and RSET statements to move data to an output buffer. It is also easier to format
the data with PRINT or PRINT-USING than with block I/O statements.

You can output binary data using multiterminal service by including the value
4096% in the RECORD option. For example:

100 PUT #N%, RECORD 32767%+1%+4096%+K%, COUNT M%

This statement outputs the number of bytes of binary data specified by M% to the
keyboard whose unit number is the variable K%.

Note that when you use multiterminal service, the system keeps track of the
current position (using the CPOS() function) of the output line of the master
keyboard but does not keep track of the current position of the output line of the
slave keyboards. Thus, you should keep a count of characters printed to the slave
keyboards if you need to know exactly what the current position is on the line.

Terminals 4-3

4.4.2 Multiterminal Service Input

In multiterminal service, you can request:
e Input from a specific keyboard

e Input from any of the multiple terminals

You specify each type of input request by including certain values in the GET
statement RECORD option. The rest of this section describes the two types of
input requests in detail.

Use a GET statement of the following form to request input from a specific
keyboard, either master or slave:

10 GET #1%, RECORD 32767 %+1%+K%

where the variable K% in the RECORD modifier specifies the keyboard number
of the terminal from which input is requested. The GET statement transfers

the data from the terminal’s input buffer to the I/O buffer for the designated
channel. The first character in the buffer contains the number of the keyboard
from which the input came. The total number of characters transferred, including
the keyboard number, is available in the RECOUNT variable. You can access
the data with a standard FIELD statement. Because the first character of the
I/O buffer is the keyboard number, the length of the data input is equal to
RECOUNT-1%.

If no input is available from the designated terminal, the error ?Data error on
device (ERR=13) results. Because this error is recoverable, your program can
execute an appropriate ON ERROR GOTO routine. The system does not allow a
stall on input from a specific keyboard in multiple terminal arrangements.

The following GET statement requests input from any one of the multiple
terminals:

10 GET #1%, RECORD 32767%+1%+16384%+S%

If input is pending from any terminal, the system transfers the contents of that
terminal’s buffer to the buffer for the designated channel. The first character in
the buffer is the keyboard number of the terminal from which input came. As
with input from a specific keyboard, you can use FIELD to access the sending
keyboard number and the data sent. The variable S% tells the system how long
to stall the program to wait for input. Table 4—1 lists the values S% can have.
If no input is pending from any terminal, the program stalls as described for
S%=0% in Table 4—1.

4-4 Terminals

Table 4-1: Multiple Terminal RECORD Values for S%

Value Meaning

S% = 0% GET statement waits until input is available from any one of the
terminals. The system waits indefinitely if no input is pending. When
input is available, the system transfers the data and the program
accesses the data as described in the previous section. The error ?Data
error on device (ERR=13) may occur due to a race condition with
Ctrl/C. No data is lost; simply reissue the GET statement to continue
operation. A race condition can occur when two jobs are accessing the
same data. That is, one job attempts to access data while another job
is in the act of changing that data. The system cannot resolve these
two conditions.

1%<S%<255% GET statement waits up to S% seconds for input from any terminal. If
no input is available from any terminal in S% seconds, the error ?Data
error on device (ERR=13) occurs.

S% = 8192% If no input is pending from any of the terminals, the error ?Data error
on device (ERR=13) occurs immediately.

In multiterminal service, the system handles Ctrl/C differently for slave and
master terminals. A Ctrl/C entered at any one of the slave terminals passes
a CHR$(3) character to the program but does not terminate the program. The
RECOUNT variable contains the value 2%, representing the keyboard number
and the Ctrl/C character. The program can process the Ctrl/C character as

a special character. If Ctrl/C is entered at the master terminal, the system
terminates the program in the standard fashion.

A Ctrl/Z entered at either a master or slave terminal produces the error ?End of
file on device (ERR=11). The system returns the unit number of the keyboard
causing the error as the first character in the channel buffer.

4.5 Terminal Control with the MODE Option

You can control a terminal in several ways with the MODE option in the OPEN
statement. Table 4—2 summarizes the MODE values you can use for terminals.

Table 4-2: Summary of MODE Values for Terminals

MODE Meaning

1% Enable binary input from a terminal
2% Reserved for TECO
4% Suppress automatic carriage return/line feed at right margin

8% Enable echo control (turns off other modes and automatically enables MODE 4%)
16% Guard program against Ctrl/C interruption and dial-up line hibernation
32% Enable incoming XON/XOFF processing
64% Reserved
128% Enable special scope RUBOUT
256% Set escape sequence mode

16384% Enable transparent control character output

Do not use MODE 512% together with multiterminal service. This is the
conditional sleep mode; if you use this mode on the master terminal, it also
affects all the slave terminals.

Terminals 4-5

The following sections describe the various MODE options.

4.5.1 Binary Data Output and Input: RECORD 4096% and MODE 1%

4-6 Terminals

To perform binary data output to a terminal, either opened on its own I/O channel
or opened as one of many terminals on one I/O channel, use a statement of the
following form:

PUT #N%, RECORD 4096%, COUNT M%

This statement transfers the number of bytes specified by M% to the output
buffer of the terminal open on channel N%. You do not need any special form
of the OPEN FOR OUTPUT statement. Specifying RECORD 4096% in the
PUT statement disables all output formatting on the terminal for that output
operation.

You can obtain binary input from a keyboard by including MODE 1% in the
OPEN statement. For example:

10 OPEN "KB6:" AS FILE N%, MODE 1%

This statement associates channel N% with keyboard number 6 in binary input
mode. As a result, characters received are not echoed by the system and are not
altered in any way.

A program can read binary data from:
® A terminal paper tape reader
e The terminal itself

e Any device connected to the system through a keyboard interface.

To start a transfer of data, use the GET statement. For example:
GET #N%

The system transfers some number of characters from the keyboard open on
channel N% to the buffer for that channel. If no data is available, the system
stalls the program until data is received from the keyboard. When data is
received, the system makes the program eligible to run and transfers the data
to the program’s I/O buffer. The program must execute GET statements often
enough to avoid losing data from the transmitting device.

The number of characters received is always at least one and never more than
the channel buffer size. The default buffer size for keyboards is 128 characters.
You can override the default buffer size by using the RECORDSIZE option

in the OPEN statement. However, because the system must first buffer the
characters before they can be transferred to the program’s buffer, changing the
RECORDSIZE may not help increase the number of characters read by each read
operation. (The system limit is approximately 180, but will vary depending on
other system activity.) The RECOUNT variable contains the actual number of
characters received.

Normally, the system terminates a read after every character typed at a terminal
open for binary input. However, if you set one or more private delimiters for that
terminal, the system terminates a read only when you type a private delimiter.

The system accepts and does not alter any characters received from a terminal
open for binary input. Thus, entering Ctrl/C has no effect. For this reason, the
system disables binary input mode under any of the following conditions:

® The period for a WAIT statement expires. (The error ?Keyboard wait ex-
hausted (ERR=15) occurs.)

®* You execute any input or output statement on channel zero when the user’s
keyboard is open for binary input.

®* You execute an OPEN statement in normal mode on the device but on a
different channel.

* You execute a CLOSE statement on any channel associated with a keyboard
open for binary input.

Under condition 1, the system disables binary input mode if time for a WAIT is
exhausted. For example:

10 WAIT 10%
20 GET #1%

If the system does not detect data within 10 seconds on channel 1, which is open
for binary input, it disables binary mode in addition to generating the error
?Keyboard wait exhausted (ERR=15). The keyboard stays open for normal ASCII
data transfers.

Under condition 2, the system disables binary input mode when the program
performs I/O on channel 0 and the user’s keyboard is open for binary input on a
nonzero channel. For example:

10 OPEN "KB:" AS FILE 1%, MODE 1%
20 GET #1%

40 PRINT "MESSAGE";

The statement at line 10 opens the user’s keyboard for binary input on a nonzero
channel (channel 1). The statement at line 20 performs binary input from

the keyboard. However, at line 40 the system executes a PRINT statement

on channel 0, which disables binary input mode. The user’s terminal remains
open on channel 1 for normal ASCII data transfers. Note that a PRINT or PUT
statement on channel 1 does not turn off binary input mode. Under condition 3,
the system disables binary input on a channel if the program executes a normal
OPEN on the same device but on a different channel. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%

100 OPEN "KB6:" AS FILE 2%

When the system executes line 100, it disables binary input on keyboard 6. If
line 100 contained MODE 1%, the system would open keyboard 6 for binary input
on channel 2. Therefore, keyboard 6 would be open for binary input on both
channels.

Terminals 4-7

Under condition 4, the system disables binary input if the program executes a
CLOSE statement on any channel associated with a keyboard open for binary
input. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%
20 OPEN "KB6:" AS FILE 2%, MODE 1%

100 CLOSE 2%

The CLOSE statement at line 100 disassociates channel 2 from keyboard 6 but
also disables binary input on channel 1. Keyboard 6 remains open in normal
mode on channel 1. Digital recommends using binary input mode by opening a
device other than the user’s terminal for binary input on any nonzero channel.
Your program can interact normally with the user’s terminal by executing
standard INPUT and PRINT statements and can gather data from the binary
device on the nonzero channel by executing GET statements.

Because binary input disables all special character handling, the system cannot
detect an end-of-file on a terminal transmitting binary data.

4.5.2 Suppress Automatic Carriage Return/Line Feed: MODE 4%

RSTS/E normally performs a carriage return/line feed (CR/LF) operation when
the right margin of a terminal is to be exceeded. (The SET TERMINAL command
sets the right margin by means of the width characteristic.) You can suppress
this automatic operation by opening the terminal with the MODE 4% option. For
example:

OPEN "KB13:" AS FILE 1%, MODE 4%

The system opens keyboard number 13 on channel 1 in suppress CR/LF mode.
The system places all terminals allocated by the job but not opened in the same
mode. (This action follows the multiterminal service rules; see the section,
"Multiterminal Service on One I/0 Channel.") Thus, all slave terminals have the
same control characteristics as the master terminal.

MODE 4% stays in effect until the terminal is either closed or opened again
without MODE 4%. All slave terminals stay in this mode until the master
terminal is either closed or opened again without MODE 4%.

MODE 4% is normally used for echo control and is automatically enabled with
the MODE 8% option, which the next section describes.

4.5.3 Echo Control: MODE 8%

4-8 Terminals

Echo control mode gives programs better control over screen-oriented input
handling, for example, a forms-oriented data entry application where the program
prompts for and accepts input to various fields on the screen. Echo control

is typically used in video terminal applications, but can can also be used on
hard-copy terminals.

Echo control mode provides several features for screen-oriented applications:

e Automatic display of a "paint" character—When you declare a field on the
screen, you can define a special paint character for character deletion in the
field. When you delete characters from the field, the system refreshes the
paint character on the screen to maintain the appearance of the field. The
system maintains the declared paint character automatically; your program

can display prompts or forms on the screen, accept input from one field at a
time, and format the data for processing.

¢ Other special character handling—For example, if you type too many charac-
ters in a field, the system can echo them as BEL characters or store them as
input for the next field. You specify which type of processing you want when
you declare the field.

To enable echo control, use the MODE 8% option in the OPEN statement:
OPEN "KBn:" AS FILE 1%, MODE 8%

where n designates the keyboard to be opened on channel 1 in echo control
mode. A nonzero channel is required. The system also places all terminals
allocated by the job but not opened in echo control mode. (This action follows
the multiterminal service rules; see the section, "Multiterminal Service on One
I/0 Channel." Thus, all slave terminals are in the same mode as the master
terminal.)

MODE 8% turns off other MODE options in effect (except MODE 16% and MODE
128%) and turns on MODE 4%.

Echo control remains in effect until one of the following conditions is met:
e A CLOSE is performed on the channel
¢ The terminal is opened again without MODE 8%

¢ Any input or output is performed on channel 0 (the job’s console terminal)

The system automatically disables Line Editing and Command Recall whenever
the terminal is open in echo control mode, regardless of the setting of the
terminal’s LINE_EDITING and RECALL attributes.

In echo control mode, the system strips the parity bit from all characters. All
characters returned to the user have ASCII values in the range 1 to 127. The
system does not pass synchronization and editing characters to the program. The
system passes delimiters to the program but they are never echoed.

Table 4-3 summarizes how the system treats these characters in echo control
mode.

Table 4-3: Echo Control Mode Character Set

Code
ASCII Returned
Code to User Comments
Ignored Characters
0 - Used as filler for timing.
Delimiter Characters
Private ? Private delimiter.
3 3 AC (Ctrl/C combination).
4 4 AD (Ctrl/D combination).
10 10 Line feed.

(continued on next page)

Terminals 4-9

Table 4-3 (Cont.):

Echo Control Mode Character Set

ASCII
Code

Code
Returned
to User

Comments

Delimiter Characters

12
13
26
27

125

126

12
13,10
26
27

27 or 125

27 or 126

Form feed.

Carriage return (with line feed appended).

AZ (Ctrl/Z combination); generates ERR=11.

If you use the SET TERMINAL/NOESCAPE_SEQUENCE

command and output an escape character, the system returns
27 to the user and treats it as a delimiter.

If you use the SET TERMINAL/ESCAPE_SEQUENCE
command, the escape character triggers an escape sequence.
The system returns an escape sequence to the user and
considers the whole sequence as the delimiter.

If you use the SET TERMINAL/ALTMODE command, 125 is
translated to escape (27).

If you use the SET TERMINAL/NOALTMODE command, 125
is data.

If you use the SET TERMINAL/ALTMODE command, 126 is
translated to escape (27).

If you use the SET TERMINAL/NOALTMODE command, 126
is data.

Editing Characters

127

21

Rubout (DEL character); on video terminals, generates

a backspace followed by the paint character and another
backspace; on hard-copy terminals, echoes deleted characters
between backslashes.

AU (Ctrl/U combination); repeatedly simulates RUBOUT until
no characters remain in field.

Data Characters

32-95
96-126

96-126

192-254

192-254

32-95
64-94

96-126

192-221

223-254

Normal 64-character graphic set.

If you use the SET TERMINAL/UPPERCASE=INPUT com-
mand, lowercase letters are translated to uppercase.

If you use the SET TERMINAL/LOWERCASE=INPUT

command, lowercase letters are returned to the user.

If you use the SET TERMINAL/UPPERCASE=INPUT com-

mand, lowercase letters are translated to uppercase.

If you use the SET TERMINAIL/LLOWERCASE=INPUT
command, lowercase letters are returned to the user.

4-10 Terminals

(continued on next page)

Table 4-3 (Cont.): Echo Control Mode Character Set

Code

ASCIX Returned

Code to User Comments
Synchronization Characters

17 - XON (Ctrl/Q combination); resumes suspended output (if you
use the SET TERMINAL/TTSYNC command).

19 - XOFF (Ctrl/S combination); suspends output (if you use the
SET TERMINAL/TTSYNC command).

Other Characters

1,2,5-9,11, - Echoed as BEL (code 7); otherwise, ignored.

14-16,18,20

22-25,28-31

17,19 - If you use the SET TERMINAI/NOTTSYNC command,

synchronization characters are treated as other (echoed as
BEL; otherwise, ignored).

When you open the terminal in echo control mode, you must next declare a field
before issuing a GET statement to input characters from the terminal. Declaring
a field:

e Establishes field size, which is the maximum number of characters the field
can hold.

e Specifies how overflow characters are handled. Two methods are available:

— Normal. A field is terminated by receiving a delimiter. Any characters
received in excess of the field size are treated as other (see Table 4-3) and
echoed as BEL characters.

— Keypunch. A field is terminated either by receiving a delimiter or
by entering the nth character in an n-character field. If the field is
terminated by size (receiving the maximum number of characters allowed)
rather than by a delimiter, a form feed (code 12) is appended to the field.
The terminal does not echo any excess characters but retains them as
input for the next field.

* Defines a special paint character to be echoed for character deletion se-
quences. The default is the space character, which actually erases a visible
character on a video screen. However, you can use a character like under-
score (_) to indicate, or paint, the field. A line editing character (Ctrl/U or
DELETE) causes the defined paint character to be echoed in place of the
default space character. This action maintains the visual indicator of the field
during any character deletion sequence.

To declare a field, execute a special form of the PUT or PRINT statement on the
channel where the terminal is open with MODE 8%. Use the RECORD 256% and
COUNT N% options in the PUT statement to declare the field:

PUT #C%, RECORD 256%, COUNT N%
where:

N% is in the range of 1% to the size of the buffer declared on channel C% and
indicates how many bytes in that buffer represent the field declaration.

Terminals 4-11

4-12 Terminals

Define the field as follows:

N% = 1% The byte contains the field size and overflow handling information. The
field size must be in the range of 1 to 127. If you attempt to declare
a size of 0, the system returns the error ?Illegal byte count for I/O
(ERR=31).

If you add 128 to the field size, it indicates that keypunch overflow
handling is to be used instead of normal overflow handling.

N% = 2% The first byte contains the field size declaration as described in N% =
1%.

The second byte contains the ASCII value of the paint character. If this
byte is 0 or N% = 1%, then a space is the paint character by default.

N% > 2% The first N minus 2 bytes contain a prompt that is to print on the
terminal before the field.

Byte N minus 1 is the field size declaration as described for N% = 1%.
The last byte is the paint character as described for N% = 2%.

For example:

COUNT 1% Specifies that the first byte in the buffer declares the field size. Space
becomes the paint character by default.
COUNT 2% Specifies that the first byte in the buffer declares the field size. The

second byte in the buffer declares the paint character. If you want to
use a space as the paint character, specify 0% or the ASCII value for
space in this byte.

COUNT 20% Specifies that the first 18 bytes in the buffer contain the prompt. The
prompt is a string of ASCII characters. Byte 19 in the buffer contains
the field size. Byte 20 in the buffer contains the paint character.

You can also use the PRINT statement to declare a field, using a method similar
to that of the PUT statement. The PRINT statement must include a RECORD
256% modifier to indicate the field declaration and string specifications (in place
of the COUNT option) to declare field parameters. For example:

10 PRINT #C%, RECORD 256%, CHR$(M%+S%);
10 PRINT #C%, RECORD 256%, CHR$(M%+S%)+'P’;
10 PRINT #C%, RECORD 256%, A$+CHR$(M%+S%)+CHR$(P%);

where:

C% is the nonzero channel open with MODE 8%.
M% is the overflow handling code:

M% = 128% for keypunch.
M% = 0% for normal.

S% is the field size in the range of 1 to 127.

+ concatenates the field declarations.

P is the ASCII paint character.

A$ is the prompt.

P% is the decimal code for the paint character; for example, underline is CHR$(95%).

; terminates the string (suppresses CR/LF).

When you use the PRINT statement instead of the PUT statement to declare

a field, it saves space in your program because it eliminates the need for the
statements to define and load a buffer. Note that you should output all necessary
bytes as one string, as in the previous examples. Do not use multiple elements
separated by semicolons (;).

After you declare the field, the field is considered active. Once you issue a GET
statement, the system begins echoing typed characters until the field is filled or
a delimiter is typed. The terminal handles subsequent characters according to
the overflow mode in effect for the field. When the terminal receives a delimiter
(or the nth character for an n-character keypunch field), it deactivates the field
and disables echoing. The system retains characters typed after the field is
deactivated until the next field is declared and another terminal read occurs.

Attempting to declare a field when one is currently active and the system has
input characters for your program generates the error ?Account or device in use
(ERR=3). Use the cancel type ahead SYS call to deactivate an active field.

You can combine 256% with other values in the RECORD option of the PUT or
PRINT statement for multiterminal service operations. Combining RECORD
values lets you declare a field for either the master or a slave terminal. You need
not declare fields on all terminals, only on those terminals from which input is
solicited. If your program tries to input data without declaring a field on any
terminal, the system returns the error ?Data error on device (ERR=13).

Digital recommends the following sequence when interacting with a video
terminal in echo control mode:

1. Open any terminal on a nonzero channel with MODE 8%.

2. Optionally, execute the Cancel All Type Ahead SYS call (SYS 11), to cancel
any type ahead characters. This step is not required, since type ahead
characters are not echoed until a GET statement is executed.

3. Position the cursor to top of screen and clear the screen.

Print any prompting text and display paint characters in all fields. (The
program must initially display the paint characters that will be maintained
by terminal service during any deletion sequences.)

5. Position the cursor to the beginning of the first field (by direct cursor address-
ing).

6. Declare the field with the desired size and prompt and a paint character that
matches the one displayed.

7. Execute the GET statement to retrieve input. Any type ahead characters will
be echoed when the GET statement is executed.

NOTE

The INPUT, INPUT LINE and MAT INPUT statements recognize
only the standard BASIC-PLUS delimiters (carriage return,

line feed and form feed) and should not be used in echo control
input operations. With the GET statement you can use a private
delimiter.

Extract data from the buffer and store it for processing.

Continue positioning the cursor, declaring fields, retrieving input, and
extracting data as required.

For hard-copy terminals, the sequence is slightly different:
1. Open the terminal on a nonzero channel with MODE 8%.
2. Optionally, execute the Cancel All Type Ahead SYS call (SYS 11).

3. Position the paper at top of form. (If the terminal has hardware top of form,
print a form feed; otherwise, print several line feeds.)

Terminals 4-13

4. Print any prompting text for the first field.

5. If the terminal can backspace and has the underline character, paint the field
with underlines and print the appropriate number of backspaces to fix the
printing position at the start of the field.

6. Declare the field with the desired size, overflow handling mode, and prompt.
Do not declare a paint character because it has no effect on a hard-copy
terminal.

7. Execute the GET statement to retrieve input. Any type ahead characters will
be echoed when the GET statement is executed. Do not use INPUT, INPUT
LINE, or MAT INPUT statements.

Extract data from the buffer and store it for processing.

9. Position the paper and printing mechanism for the next field by printing
carriage return, line feeds, and spaces as required. Use only one field for each
line because characters removed during a deletion sequence are echoed, which
can cause the next intended field to be used.

10. Repeat the sequence from step 4 until all fields are satisfied.

It is possible to use ODT submode (see SYS call 4, Enable ODT Submode) with
echo control. Combining these features allows a program to examine every input
character while ensuring that type ahead stays within the bounds of a field.
However, some special processing is required for the program to work correctly.

Completion of an ODT submode input request does not necessarily terminate an
echo control field. Therefore, if the program tries to declare the next field while
the previous field is still active, one of two conditions occurs:

e If there is no pending input for the program, the system cancels the existing
field and defines the new one.

e If there is pending input for the program, the system notifies the program
by returning the error ?Account or device in use (ERR=3), and the field
declaration fails.

To handle the second condition, you can trap the error and have the program read
the rest of the characters in the field.

Digital recommends using private delimiters instead of ODT submode (see the
section "Private Delimiters").

4.5.4 Prevent Ctrl/C Interruption and Hibernation: MODE 16%

4-14 Terminals

MODE 16% protects a program from:
© Aborting when Ctrl/C is entered at the terminal.

¢ Hibernating when it becomes detached and attempts terminal I/O on a
nonzero channel. A job becomes detached when it executes the detach system
function call or when it is running over a dial-up line that gets hung up.

Entering Ctrl/C at a terminal that is open with MODE 16% cancels any pending
output to the terminal, sets Ctrl/O, and is interpreted as an ASCII 3. The
program can recover and continue output.

Hanging up a dial-up line (without using MODE 16%) causes a job to be detached
and to enter the hibernation state as soon as it does terminal I/0. The job must
wait until it is attached, through some external process, before it can recover.
With MODE 16%, an immediate exit to the error ?I/0 to detached keyboard
(ERR=27) occurs when terminal I/0O is attempted, which allows the program to
recover. To take advantage of MODE 16%, your program must trap this error.
Otherwise, the job goes into hibernation because BASIC-PLUS uses channel zero
to display the error message on the terminal.

MODE 16% remains in effect until one of the following conditions is met:
e A CLOSE is performed on the channel

e The terminal is opened again, without MODE 16%

° Any I/O is performed on channel 0 (the job’s console terminal)

4.5.5 Enable Incoming XON/XOFF Processing: MODE 32%

When an OPEN statement includes MODE 32%, an incoming XOFF character
(ASCII 19) suspends output to the terminal; an incoming XON character (ASCII
17) resumes output to the terminal.

When the OPEN statement also includes MODE 1% (for binary input), the
terminal processes all other incoming characters as for MODE 1%. However, the

terminal ignores all other incoming characters when the OPEN statement does
not also include MODE 1%.

MODE 32% remains in effect until one of the following conditions is met:
e A CLOSE is performed on the channel.

¢ The terminal is opened again without MODE 32%.

* Any I/O is performed on channel 0 (the job’s console).

® An input timeout occurs, producing the error ?Keyboard wait exhausted
(ERR=15).

4.5.6 Special Use of RUBOUT: MODE 128%
MODE 128% allows video terminals to use RUBOUT as a delimiter. RUBOUT's
use as a delimiter is subject to these conditions:

e If a typed character is the object of a RUBOUT operation and is a printing
character (CHR$(32) to CHR$(126) or CHR$(160) to CHR$(254)), the terminal
deletes the character.

e If there is no typed character or if the character is nonprinting (CHR$(0) to
CHR$(31) and CHR$(127)), the terminal does not delete a character. The
terminal buffers RUBOUT as a delimiter and marks the job as eligible to run.

The ability of MODE 128% to buffer RUBOUT as a delimiter is particularly
useful to screen-oriented editors.

NOTE

MODE 128% is reserved for use with Digital-supplied software and it
is subject to change in future releases.

Terminals 4-15

4.5.7 Escape Sequence Mode: MODE 256%

4-16 Terminals

When a terminal is in escape sequence mode, RSTS/E interprets the ESC
character (CHR$(27%)) as the start of an escape sequence instead of as a
delimiter. You can set escape sequence mode either by opening the terminal with
MODE 256% or by setting the terminal’s escape sequence characteristic with the
SET TERMINAL/ESCAPE_SEQUENCE command. MODE 256%, the method
Digital recommends, sets escape sequence mode even if the terminal is set to
/NOESCAPE_SEQUENCE.

Digital recommends MODE 256% because, in addition to setting escape sequence
mode, it modifies the way the system handles escape sequences that end with

P. When you use MODE 256%, the system recognizes P as an escape sequence
terminator. On the other hand, when you set the terminal’s escape sequence
characteristic, the system requires another character after P to terminate an
escape sequence. See the section "Input Escape Sequences" for more information
about escape sequence terminators.

NOTE

As an alternative to MODE 256%, an optional patch is available to
cause the system to recognize P as an escape sequence terminator.
Unlike MODE 256%, this patch affects all terminals on the system.
See the RSTS/E Maintenance Notebook for details.

Because the system recognizes P as an escape sequence terminator with MODE
256%, you can use the same code to read incoming escape sequences from all keys
on VT52-, VT'100-, VT200- and VT300-family terminals in ANSI mode. On the
other hand, when you set escape sequence mode through the terminal’s escape
sequence characteristic, you cannot use the same code to read incoming escape
sequences from the VT100-, VT200- or VI300-family PF1 key and the VT52 blue
key, which are in the same place on the keypad. Both keys send escape sequences
that end with P. See the section "Escape Sequences” for a complete description of
escape sequences.

The following statement opens keyboard unit 46 in escape sequence mode on I/O
channel 2:

100 OPEN "KB46:" AS FILE #2%, MODE 256%

This mode follows multiterminal service rules, which means that all terminals
allocated but not opened by the job are also placed in escape sequence mode. See
the section "Multiterminal Service on One I/O Channel" for more information
about multiterminal service.

MODE 256% remains in effect until either:
¢ A CLOSE is performed on the channel
¢ The terminal is opened again without MODE 256%

If the terminal’s escape sequence characteristic is set, escape sequence mode stays
in effect when you cancel MODE 256%.

4.6 Escape Sequences

An escape sequence is a series of characters that performs a control function on
the terminal, such as moving the cursor forward or backward or erasing part

of the screen. The first character of an escape sequence is an ESC. The ESC
character is a prefix that causes the terminal to treat subsequent characters as a
command instead of echoing them on the screen.

One common use of escape sequences is cursor control. Cursor control is a
feature of many video terminals, including the VT100-, VT200-, and VT300-family
terminals. As its name suggests, cursor control allows a program to manipulate
the screen cursor. Cursor control is often used with the RSTS/E echo control
feature in data entry applications.

This section:

® Summarizes commonly-used escape sequences for the VT100-, VT200-, and
VT300-family terminals.

* Shows how to use ANSI-compatible escape sequences to control the cursor and
use two graphics features: reverse video and double-height characters. (The
example is intended to show the technique, not to be a practical application.)

* Explains how the system handles input and output escape sequences for all
types of terminals.

4.6.1 VT100-, VT200-, and VT300-Family Escape Sequences

VT100-, VT200- and VT300-family terminals can operate in either VT52-
compatible mode or ANSI-compatible mode. Each mode has a different set of
escape sequences.

4.6.1.1

VT52-Compatible Mode

In VT52-compatible mode, the VT100-, VIT200- and VT300-family terminal re-
sponds to escape sequences like a VT52 terminal. VT52-compatible escape
sequences let you execute programs on the VI'100-, VIT200- and VT300-family
terminals that are written for the VI52 terminal. However, they do not let
you take advantage of advanced features, such as reverse video. In addition,
VT52-compatible escape sequences are not ANSI-standard.

If you write programs for the VI'52 as well as the VI'100-, VT200- and VT300-
family terminals, or if you are converting from the VI52 to a more advanced
terminal, be aware of differences between the terminals. For example:

° The "home" cursor position differs among the VT100-, VT200- and VT300-
family terminals and the VI52. Home, which is the top left corner of the
screen, is:

— (1,1) for the VT'100-, VT200- and VT300-family terminals in ANSI-
compatible mode

- (32,32) for the VT52 and the VT'100-, VIT200- and VT300-family in VT52-
compatible mode

® When you use cursor control functions on the VI'52 or the VI'100-, VT200-
and VT300-family terminal in VT52-compatible mode, you must output the
line and column positions as one-byte ASCII values. (You can use the CHR$
function to perform the necessary conversion.)

Terminals 4-17

On the other hand, when you use cursor control functions on the VI100-,
VT200- and VT300-family terminals in ANSI-compatible mode, you output
line and column positions as string data. No conversion is necessary.

See the appropriate hardware manuals for a complete discussion of terminal
hardware and software.

4.6.1.2 ANSI-Compatible Mode

Table 44 summarizes the VT'100-, VT200- and VT300-family ANSI-compatible
escape sequences that move the cursor, erase all or part of the screen, and control
line size and character attributes (bold, underscore, blink, and reverse video).
Table 44 uses the symbols Pl, Pc, and Pn:

Pl means line number.
Pc means column number.
Pn is a decimal parameter expressed as a string of ASCII digits. The parameter’s

meaning for each escape sequence is explained in Table 4—4. Separate multiple
parameters with a semicolon (;). If you omit a parameter or specify 0, the
terminal uses the default parameter value for that escape sequence.

Be sure to include the left square bracket ([) in the escape sequence prefix where
Table 4—4 indicates. Note that escape sequences cannot contain embedded spaces.
See the VT'100 User Guide for a complete description of VI'100 escape sequences.
See the V1220 User Guide, VT240 User Guide, or VT241 User Guide, for a
complete description of VIT200-family escape sequences. See the V1.330/VT340
Programmer Reference Manual, Part I and Part II, for a complete description of
VT300-family escape sequences.

4-18 Terminals

Table 4-4: ANSI-Compatible Escape Sequences: VT100-, VT200- and VT300-
Family Terminals

Escape Sequence

Description

Cursor Movement

ESC[PnA Moves the cursor up n lines without affecting the column position.
The parameter Pn specifies the number of lines. The default value
is one line.

ESC[PnB Moves the cursor down n lines without affecting the column posi-
tion. The parameter Pn specifies the number of lines. The default
value is one line.

ESC[PnC Moves the cursor forward (right) n columns without affecting the
line position. The parameter Pn specifies the number of columns.
The default value is one column.

ESC[PnD Moves the cursor backward (left) n columns without affecting the
line position. The parameter Pn specifies the number of columns.
The default value is one column.

ESC[PLPcH Direct cursor address. Moves the cursor to the specified line and
column position. If you do not specify a line or column position, the
cursor moves to the home position, which is the top left corner of
the screen.

ESCD Index. Moves the cursor to the current column position on the next
line.

ESCM Reverse index. Moves the cursor to the current column position on
the preceding line.

ESCE Moves the cursor to the first column position on the next line.

Erasing

ESCI[K or ESC[OK Erases from the current cursor position to the end of the line.

ESC[1K Erases from the beginning of the current line to the cursor.

ESC[2K Erases the entire line containing the cursor.

ESCI[J or ESC[0J Erases from the current cursor position to the end of the screen.

ESC[1J Erases from the beginning of the screen to the current cursor
position.

ESC[2J Erases the entire screen.

ESC[PnM VT200- and VT'300-family terminals only. Erases multiple lines
below the cursor. As lines are deleted, the remaining lines move up.
The parameter Pn specifies the number of lines.

ESC[PnP Erases multiple character to the right of the cursor. As characters

are deleted, the remaining characters move to the left.

(continued on next page)

Terminals 4-19

Table 4-4 (Cont.): ANSI-Compatible Escape Sequences: VT100-, VT200- and
VT300-Family Terminals

Escape Sequence Description

Line Size (Double Height and Double Width)

ESC#3 Changes the current line to the top half of a double-height, double-
width line.

ESC#4 Changes the current line to the bottom half of a double-height,
double-width line.

ESC#5 Changes the current line to a single-width, single-height line.

ESC#6 Changes the current line to a double-width, single-height line.

To display double-height characters, use the ESC#3 and ESC#4 sequences as a pair
on adjacent lines and send the same characters to both lines. The use of double-width
characters reduces the number of characters on each line by half.

Character Attributes (Require Advanced Video Option on VI'100)

ESC[Pn;Pn;Pn;..;m Turns bold, underscore, blink, and reverse video attributes ON and
OFF. Pn can have the following values:

0 or none All attributes OFF

1 Bold ON

4 Underscore ON

5 Blink ON

7 Reverse video ON
For VT300-family terminals only:
8 Invisible

22 Bold OFF

24 Underline OFF

25 Blink OFF

27 Reverse video OFF
28 Invisible OFF

The terminal executes the parameters in order and ignores any
other parameter values. Unlike line size commands, which affect
only the current line, the character attributes affect the entire
screen. Remember to turn them OFF before ending your program.

Status Line Control (VI'300-Family Only)

ESC[Pn$)} Controls the destination of data sent to the terminal.
Pn = 0O—send data to screen
1—send data to status line only
ESC[Pn$- Controls type of status line.
Pn = 0—no status line

1—terminal indicator status line

2—host writable status line

4.6.2 Programming Example

The following example shows how to use VI'100-, VT200- and VT300-family
ANSI-compatible escape sequences in BASIC-PLUS. The program uses PRINT
statements to send the escape sequences to the terminal and the special value
CHR$(155%) for the ESC character. (See the section "Output Escape Sequences.")

4-20 Terminals

Each PRINT statement ends with a semicolon to prevent BASIC-PLUS from
printing a carriage return/line feed (CR/LF) as the last step in the PRINT
statement. You need separate PRINT statements to print each half of the double

height line.

10 EXTEND

100 ESCS$ = CHRS (155%) !Set up variables

120 PREFIXS = ESCS + ' [’ !for ESC and ESC[prefix
125 CLEARS = PREFIXS + ’'2J' tand to clear the screen
130 !

132 ! Escape sequences to move cursor and erase screen.

133 !

135 PRINT CLEARS; !Clear screen

140 PRINT PREFIXS + ’16;4H'; !Move cursor to 16,4

160 PRINT ’'Move the cursor to line 16, column 4 and print this text.’;
170 SLEEP 3%

180 PRINT PREFIXS + ’1K’; 'Erase text
186 PRINT PREFIXS + ’'16;4H’; 'Move cursor back to 16,4
200 PRINT PREFIX$ + ’5A’; !Move cursor up 5 lines

220 PRINT ’'Then move the cursor up 5 lines’;

225 SLEEP 3%

230 PRINT CLEARS; !Clear screen

250 PRINT PREFIXS + ’10C’; !Move cursor forward 10 spaces
270 PRINT ’'and forward 10 spaces’;

280 SLEEP 3%

290 PRINT CLEARS; !Clear screen

300 PRINT PREFIXS$ + 'H'; !Back to home position

310 !

320 ! Escape sequences for line size control and reverse video
350 !

370 PRINT PREFIXS + '7m’; !Turn on reverse video

390 PRINT PREFIXS$S + ‘16H’ + ESCS + ’"#3';

395 !Change line 16 to double-height top half
400 PRINT ’Double height line in reverse video’;
410 !Change line 17 to double-height bottom half
420 PRINT PREFIX$ + "17H’ + ESCS$S + "#4';

430 PRINT ’'Double height line in reverse video’;
450 SLEEP 3%

460 PRINT PREFIXS + 'm’; !Turn off reverse video
470 PRINT CLEARS !Clear screen
32767 END

4.6.3 Output Escape Sequences

When you send an escape sequence to a terminal, use the value CHR$(155%)
for the escape character if the terminal is in normal output mode. Do not use
CHR$(27%), which is the ASCII decimal code for the ESC character, unless you
are using transparent control character mode. The system translates CHR$(27%)
to CHR$(36%), the dollar sign ($) character. CHR$(155%), an ESC with the high
order bit set, is a special value that prevents the system from translating the
ESC character to a $ character. When you use CHR$(155%), it causes the real
CHR$(27%) to be sent, allowing the terminal to interpret the transmitted escape
sequence. See the section, "Transparent Control Character Output: RECORD
16384% and MODE 16384%" for more information.

In processing output escape sequences, the system counts the escape characters
along with the other characters to be output. This causes lines to wrap prema-
turely on video terminals. To avoid this line wrap, open the terminal in MODE
4% (suppress automatic CR/LF).

Terminals 4-21

4.6.4 Input Escape Sequences

4-22 Terminals

Under RSTS/E, terminals can operate in either escape sequence mode or no
escape sequence mode. Digital recommends that you set escape sequence mode
by using MODE 256% in the OPEN statement (see the section "Escape Sequence
Mode: MODE 256%"). For compatibility with existing applications, you can set
either mode with the Set Terminal Characteristics SYS call (SYS 16), or the SET
TERMINAL command (see the RSTS/E System User’s Guide). New applications
should use MODE 256%.

When a terminal is in normal mode, the system recognizes an incoming ESC
character, CHR$(27%), as a delimiter and echoes a CHR$(36%), the $ character.
When a terminal is in escape sequence mode, however, the system does special
processing of input escape sequences. This special processing is useful for
applications such as reading input from keypad function keys.

NOTE

To cause a terminal to send escape sequences instead of numbers
when keypad keys are pressed, you must send an escape sequence to
the terminal. For the VT'100 in ANSI-compatible mode, this escape
sequence is "ESC=". See the appropriate hardware manual for details.

When a terminal is in escape sequence mode, the system processes input escape
sequences so that:
e The characters in the escape sequence do not echo on the terminal.

e A BASIC-PLUS program can read and test escape sequences.

Input escape sequences are processed after Ctrl/S and Ctrl/Q (if the TTSYNC
characteristic is set) but before private delimiters and all other characters. In
brief, the system moves the ESC character from the beginning to the end of

the escape sequence so that BASIC-PLUS can recognize the ESC character as a
delimiter. The program receives the escape sequence as follows:

1. A CHR$(128%) value

2. The characters in the ESC sequence (minus the ESC character that started
the sequence) without normal data conversions

3. A CHR$(155%) value, which signals the end of the escape sequence

Figure 4-1 shows an example of this conversion process.

Figure 4-1: Input Escape Sequence Processing

CHR$(27%) + 'OP’ CHR$(128%) + 'OP" + CHR$(155%)
—_— >

Terminal System User Program

MK-00697-00

Use GET statements to read incoming escape sequences, not INPUT or INPUT
LINE statements. Unlike INPUT and INPUT LINE, GET does not strip the high
order bit or discard nulls.

It is also a good idea to cancel tvpe ahead right after you change a terminal’s
escape sequence characteristic or open a terminal in escape sequence mode (see
SYS call 11, Cancel All Type Ahead). Canceling type ahead makes sure that
the terminal’s type ahead buffer does not contain a mixture of data processed in
normal and escape sequence modes.

VT52 and VT100 ANSI-compatible escape sequences are defined so that matching
keys on each terminal send escape sequences that end with the same character.
Thus, you can use the same code to read incoming escape sequences from both
terminals, regardless of whether the VT'100s are in ANSI- or VT52-compatible
mode.

For example, the up arrow key on a VI52 terminal (and a VT100 terminal in
VT52-compatible mode) sends the sequence ESC+"A". Your program receives
this sequence as CHR$(128%)+"A"+CHR$(155%). The up arrow key on a VT'100
terminal in ANSI mode sends the sequence ESC+"[A"; your program receives
this sequence as CHR$(128%)+'["+CHR$(155%). By checking for an "A", your
program can recognize the up arrow key from both terminals. Incoming escape
sequences for other keys follow the same pattern. When you use this technique:

e Use MODE 256% to set escape sequence mode instead of setting the termi-
nal’s escape sequence characteristic. The system handles escape sequences
that end with P differently for each method. See the section "Escape Sequence
Mode: MODE 256%" for more information.

¢ Remember that it works only for reading incoming escape sequences; on
output, your program must distinguish between a VIT100 and a VT52. See
the section "VT100-, VT200- and VT300-Family Escape Sequences” for more
information.

The rest of this section provides more detailed information on how the system
processes escape sequences in escape sequence mode.

In escape sequence mode, an incoming ESC character CHR$(27%) sets a flag
indicating that an escape sequence follows. The system does not echo the ESC
character as a $ character and does not echo other characters in the sequence
except for certain control characters. The terminal handles the characters in the
escape sequence as follows:

1. The ASCII control characters (CHR$(0%) through CHR$(31%) and
CHR$(127%)) are processed first. Except for DELETE (CHR$(127%)) and
Ctrl/U (CHR$(21%)), their functions do not change. The terminal discards
DELETE and Ctrl/U and does not pass them to the user. The control charac-
ter CHR$(27%) (escape) starts a new escape sequence.

Note that control characters in escape sequences violate the ANSI standard
and should not be used.

2. Normal data conversion, such as translating lowercase letters to uppercase
letters, is not done for characters inside an escape sequence.

3. The system resumes normal data conversions after it terminates the escape
sequence.

Terminals 4-23

4-24 Terminals

Table 4-5 describes how the system terminates the escape sequence when it
receives one of the escape sequence terminators.

Table 4-5: Escape Sequence Terminators

Sequence

Examples

Comments

Y<2 characters>

O<modifier>
?<modifier>

P<modifier>

[<n fillers><terminator>

<n fillers><terminator>

<ESC>Y<line#><col#>

<ESC>0P
<ESC>?M

<ESC>P
<ESC>0P

<ESC>[5A
<ESC>[10;15H

<ESC>#4
<ESC>=
<ESC>Q

The VT52 terminal uses this es-
cape sequence for direct cursor
addressing.

The modifier can be any character
except a control character. VI52 and
VT100 terminals transmit escape
sequences of this type when the
terminal is in keypad application
mode and a keypad key is pressed.

The modifier can be any character
except a control character. The
system recognizes this sequence

as an escape sequence terminator
when you set the terminal’s ESC
SEQUENCE characteristic but not
when you open the terminal with
MODE 256%. See the section Escape
Sequence Mode: MODE 256%.!

The system recognizes P as an es-
cape sequence terminator when you
open the terminal with MODE 256%
but not when you set the terminal’s
ESC SEQUENCE characteristic. See
the section Escape Sequence Mode:
MODE 256%.!

The filler characters must be in

the range CHR$(32%) through
CHR$(63%). The terminator charac-
ter must be in the range CHR$(64%)
through CHR$(128%). These are
ANSI-compatible escape sequences.

The filler characters must be in

the range CHR$(32%) through
CHR$(47%). The terminator charac-
ter must be in the range CHR$(48%)
through CHR$(126%). These are
ANSI-compatible escape sequences.
Some VT52 escape sequences, such
as <ESC>Q (red key), are also
recognized by this rule.

1As an alternative to MODE 256%, an optional patch is available that causes the system to recognize
"P" as an escape sequence terminator. Unlike MODE 256%, this patch affects all terminals on the
system. See the RSTS/E Maintenance Notebook for details.

The system starts another escape sequence whenever it receives another ESC
character. If the ESC character precedes or is embedded in one of the character
sequences in Table 4-5, the system does not append the CHR$(155%) value to the
escape sequence it was processing before it starts processing the next one.

4.7 Transparent Control Character Output: RECORD 16384% and
MODE 16384%

Until recently, most terminals had a character set of 128 characters. The
characters were stored as 8 bits of data and were usually transmitted that way
as well. The top bit (sign bit) of the 8-bit byte was always zero.

Now, many terminals support the international character set of 256 characters.
For these terminals, all 8 data-bits are significant. You can set the terminal to
correctly handle the 256-character set using the /EIGHT_BIT qualifier of the SET
TERMINAL command. See the RSTS/E System Manager’s Guide for details.

RSTS/E terminal output processing normally modifies control characters in

a variety of ways. For example, the terminal prints many characters with
up-arrows, and converts ESC to $. To suppress these conversions, programs
can add 128 to the value of the character to be printed. However, this is often
inconvenient, especially in programs that must also run on other operating
systems. It also causes additional problems on 8-bit terminals.

On 8-bit terminals, the characters in the range 128-159 are called C1I control
characters and have a different meaning from the corresponding characters with
the sign bit cleared. Since RSTS/E normally assumes that characters in the
range 128-159 are used to represent "real" control characters in the range 0-31,
the new C1 control characters are not normally available.

Transparent control character output solves these problems. You specify it by
using MODE 16384% in the OPEN statement, or by using the RECORD 16384%
modifier in the PRINT or PUT statements. For example:

PUT #1%, RECORD 16384%

Transparent control character output is, in a sense, an intermediate form
between "normal" and "binary" output. It processes the backspace, tab, line feed,
vertical tab, form feed, and carriage return control characters in the usual way
(for example, if the No Tab characteristic is set, tab expansion is performed).

It transmits all other control characters unchanged, including the C1 control
characters. Character codes 27 (ESC) and 155 (CSI) reset the position counter
(CCPOS function value) to zero. Other control characters do not affect the
position counter at all. Graphic (printable) characters are output in the same way
as normal output.

4.8 Private Delimiters

A "private delimiter" is a character used as a delimiter within a program. You
can define any printing or nonprinting character to be a private delimiter. For
example:

e Aletter

e A function key, such as DELETE

e A control character, such as Ctrl/Z

e A standard delimiter, such as LINE FEED

A private delimiter is useful on a data entry terminal with a specialized keyboard.

You can use a large or conveniently located key as the delimiter key. Private
delimiters are also useful in keypad applications.

Terminals 4-25

You can declare one character as a private delimiter on any RSTS/E system. Use
the Set Terminal Characteristics SYS call (SYS 16), or the .SPEC directive (see
the RSTS/E System Directives Manual).

Some RSTS/E systems allow the use of multiple private delimiters. If your
system has this feature, you can declare up to 256 private delimiters with the
.SPEC directive, available through MACRO. Multiple private delimiters let you
do special character processing without using single character I/0. For example,
by combining escape sequences with private delimiters, you can define your own
function keys in keypad applications.

The .SPEC directive lets you set, read, and clear multiple private delimiters.
You cannot set or read multiple private delimiters in BASIC-PLUS. For more
information about the .SPEC directive, see the RSTS/E System Directives
Manual. The rest of this section provides general information about private
delimiters for both BASIC-PLUS and MACRO programmers.

4.8.1 Characteristics of Private Delimiters

4-26 Terminals

When you declare a character as a private delimiter with either the Set Terminal
Characteristics SYS call (SYS 16) or the .SPEC directive, it overrides the existing
ASCII code for the character. Thus, unlike a standard delimiter such as RETURN
or LINE FEED, a private delimiter does not echo at the terminal. In addition, a
special character no longer performs its normal function. For example, when the
DELETE key is a private delimiter, it does not erase the last character typed.

A private delimiter has basically the same characteristics as a standard delimiter.
Like a standard delimiter, it:

e Terminates a read operation.

® Cannot be deleted (except with Ctrl/X). The DELETE key and Ctrl/U do not
affect private delimiters in the type ahead buffer.

® Causes the system to awaken a sleeping job when typed at a terminal that
the job has open or assigned. If the job cannot be awakened, the system
stores the private delimiter character.

Once set, a private delimiter remains in effect for a terminal until either:
¢ The program clears it.

® The job releases the terminal by deassigning it or by closing the I/O channel
where the terminal is open.

In addition, the system clears private delimiters when a dial-up line is hung up
or the job controlling the terminal is killed.

Private delimiters change the way characters are processed in binary mode
(MODE 1%). When a terminal is open in binary mode and no private delimiter
is in use, the system terminates a read after every character. However, if one
or more private delimiters are in use, the system terminates a read only when a
private delimiter is typed.

The system processes private delimiters after processing Ctrl/S and Ctrl/Q (if the
TTSYNC characteristic is set) and escape sequences (if the terminal is in escape
sequence mode). This feature prevents a terminal from becoming permanently
stalled, and it also lets you use private delimiters and escape sequences in the
same program.

The system processes private delimiters before all other characters, including
control characters (for example, Ctrl/C). Thus, when you use a standard delimiter
character as a private delimiter, it does not echo on the terminal.

4.8.2 Usage Notes for Private Delimiters

Follow these guidelines when using private delimiters:

e In a BASIC-PLUS program that uses a private delimiter, you must read input
from the terminal with GET statements. Private delimiters do not work with
INPUT, INPUT LINE, or MAT INPUT statements.

¢ By combining escape sequences with private delimiters, you can define your
own function keys without using single character 1/0. Follow these steps:

1. Make sure the keypad is in the right mode for your application.
2. Define each function as the PF1 key followed by a character.

3. Define each character as a private delimiter so it does not echo on the
terminal.

For example, you might define PF1 + A as one function and PF1 + M as
another function.

* To return a private delimiter character to its normal function, execute the
Set Terminal Characteristics SYS call (SYS 16) or the .SPEC directive again.
Note that while you can set and read multiple private delimiters only with
the .SPEC directive, you can clear multiple private delimiters with either
the .SPEC directive or the BASIC-PLUS SPEC% function (see the section
"Private Delimiters").

4.9 Terminal Special Function: SPEC%

The SPEC% function performs special operations on disks (see Chapter 1),
flexible diskettes (see Chapter 1), magnetic tapes (see Chapter 2), line printers
(see Chapter 3), and terminals and pseudo keyboards (see Chapter 4).

For terminals, the SPEC% function allows you to cancel Ctrl/O, set modes for
tape, echo, and ODT, cancel type ahead, and clear private delimiters. The SPEC%
function for terminals has the format:

VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,2%)
where:

VALUE% depends on the function code specified in FUNCTION%.

FUNCTION% is the function code. The SPEC% function performs various operations
on terminals as determined by the FUNCTION% code. These codes
are:

FUNCTION%=0 Cancel Ctrl/O.

FUNCTION%=1 Set tape mode.

FUNCTION%=2 Enable echo and clear tape mode.
FUNCTION%=3 Disable echo.

FUNCTION%=4 Set ODT mode.

FUNCTION%=7 Cancel all type ahead.
FUNCTION%=9 Clear all private delimiters.

Terminals 4-27

PARAMETER specifies the terminal on which the operation is to take place. If
PARAMETER is 0, the system performs the operation on the currently
open terminal. If you specify a keyboard number in PARAMETER, the
system performs the operation on that terminal. Note that you must
allocate the keyboard to the calling job but you must not open it.

CHANNEL% specifies the I/O channel for the terminal in PARAMETER.

2% is the handler index for terminals.

4.10 Keyboard Numbering

4-28 Terminals

RSTS/E maintains two types of keyboards: static and dynamic.

Static keyboards are either physical terminal lines, such as DL-11 lines or
DHU multiplexer sub-lines, or static pseudo keyboards — those configured in
the monitor via the SET SYSTEM/PSEUDO_KEYBOARD=n command. Static
keyboards are fixed in the monitor; they change only when terminal hardware is
added or deleted, or a different number of static pseudo keyboards is specified.

Dynamic keyboards are created by the monitor as needed — they do not refer to
a physical terminal line. RSTS/E uses dynamic keyboards for creating local LAT
terminal ports (either host initiated or terminal server initiated), and for creating
dynamic pseudo keyboards. The number of dynamic keyboards available on a
system is equal to the maximum keyboard limit (127) minus the number of static
keyboards defined.

RSTS/E assigns numbers to static keyboards from 0 to the maximum static
keyboard number - 1. (RSTS/E sets this maximum number depending on the
hardware of your particular system.) Within this range, it numbers keyboards in
the following order:

* Single line interfaces (DL11-A/B/C/D)
e Static pseudo keyboards
* Multiplexers

- DJnl

- DHI1

- DZ11/DZV11/DZQ11

— DHV11/DHU11/DHQ11

That is, RSTS/E lists all single line interfaces first, followed by all static pseudo
keyboards, and so on.

RSTS/E starts numbering dynamic keyboards at the maximum static keyboard
number + 1, up to an absolute maximum of 127. If your system uses LAT
terminals and dynamic pseudo keyboards, it lists these terminals just above their
existing terminal interfaces. To see this list, enter the DCL command SHOW
DEVICE KB.

When a pseudo keyboard opens, RSTS/E returns the keyboard number in
FQSIZM. The number returns as KBnumber * 1. This method works for both
static and dynamic pseudo keyboards.

To determine the pseudo keyboard number, use a statement similar to the
following, immediately after an OPEN statement in BASIC-PLUS:

KB%=ASCII (MID (SYS (CHRS (12%)),4%,1%))

4.11 Pseudo Keyboards

A pseudo keyboard is a logical device that has the characteristics of a terminal
but has no terminal associated with it. Like a terminal, a pseudo keyboard has
an input buffer and an output buffer, both of which come from the small buffer
pool. User programs can send input to and get output from these buffers.

Using a pseudo keyboard lets one job control other jobs on the system. Pseudo
keyboards are especially useful for batch operations because they let you do
terminal I/0 without tying up a terminal.

The system manager sets the number of pseudo keyboards on the system during
system installation. The system assigns a device name of PKn: to each pseudo
keyboard and associates each one with a keyboard unit number KBn: but not
with a physical terminal. For example, the system may associate PK5: with KBS:
even though no physical keyboard 8 exists.

Using a pseudo keyboard involves a controlling job and a controlled job. The
controlling job (your program) creates the controlled job and then does I/O to it
through the pseudo keyboard, PKn:. You can run LOGIN and use both system
and program commands to control the job.

The controlling job uses the pseudo keyboard to perform input to and extract
output from the controlled job (which runs on KBm: associated with PKn:).
However, the controlled job does not know it is working with a pseudo keyboard.
Instead, it does input and output on its own keyboard, KB:.

Terminals 4-29

Figure 4-2 shows the interaction between the controlled and controlling jobs.

Figure 4-2: Pseudo Keyboard Operations

CONTROLLING

JOB
GET A
INPUT, PUT, Controlling
INPUT LINE y PRINT job does I/O
to PKm:
OUTPUT INPUT
BUFFER BUFFER
PKm: FOR FOR
KBn: CONTROLLED | CONTROLLED
JOB JOB
A GET, Controlled
PUT, INPUT, job does 1/0
PRINT Y INPUT LINE to KBn:
CONTROLLED
JOB
MK-00696-00

The system transfers data to a pseudo keyboard in full duplex mode. This means
that strings sent by PUT or PRINT statements are echoed in the output buffer
of the associated keyboard unit. Your program can read this echo with GET,
INPUT, or INPUT LINE statements. In addition, when you send a carriage
return character (CHR$(13%)) to the controlled job’s input buffer, the system
automatically appends a line feed character.

The rest of this section contains the following pseudo keyboard information:

e How to access a pseudo keyboard, create a controlled job, and perform pseudo
keyboard I/0

e A sample program
¢ The SPEC% function for pseudo keyboards

4.11.1

4-30 Terminals

Accessing the Pseudo Keyboard

Use the OPEN statement to access a pseudo keyboard. For example:
10 OPEN "PKO:" AS FILE #1%

This OPEN statement associates pseudo keyboard unit 0 with I/O channel 1
and sets up its input and output buffers. Use this simple form of the OPEN
statement; the system ignores the optional phrases FOR INPUT and FOR
OUTPUT when opening pseudo keyboards.

Two MODE values are available for pseudo keyboards. MODE 0%, the default,
causes the system to kill the controlled job when you close the pseudo keyboard.
MODE 1% requires EXQTA privilege and causes the system to detach the
controlled job when you close the pseudo keyboard. For example:

100 OPEN "PK3:" AS FILE #1%, MODE 0%
200 OPEN "PK5:" AS FILE #2%, MODE 1%

300 CLOSE #1%, #2%

When these statements execute, the system kills the job running on PK3: and
detaches the job running on PK5:,

When the PK side of a pseudo keyboard is open, its KB side functions like a real
keyboard. It can be opened, closed, assigned, and deassigned. You can broadcast
data to it and force input to it. However, when the PK side of a pseudo keyboard
is not open, its KB side functions like a disabled terminal. The system does not
process input from it or send output to it. See the Disable Terminal SYS call
(SYS 8) for more information about disabled terminals.

Two errors can occur when you open a pseudo keyboard:

¢ If the device you specify does not exist on the system, the error ?Not a valid
device (ERR=6) occurs.

e If another job has the device assigned or opened, the error ?Device not
available (ERR=8) occurs.

4.11.2 Creating the Controlled Job

After you open a pseudo keyboard, you must start the controlled job. The normal
way to create the controlled job is with the Create A Job SYS call, (SYS 24). In
some cases, you could force the LOGIN dialogue instead, but that requires you
know the account password.

After the controlled job is running, you can send system commands, program
commands, and program responses to the PK device by using PUT or PRINT
statements with various RECORD options. Use GET statements to obtain output
from the controlled job. The next section explains pseudo keyboard I/0 in detail.

4.11.3 Pseudo Keyboard I/O

Reading from a pseudo keyboard is the same as reading from the controlled job’s
screen; writing to a pseudo keyboard is the same as typing at the controlled job’s
terminal or forcing input to the controlled job’s keyboard.

4.11.3.1

Pseudo Keyboard Input

To obtain output from the controlled job, execute a GET statement on the I/0
channel where the pseudo keyboard is open. For example, the following statement

transfers data from the controlled job’s output buffer to your program’s channel 1
buffer:

100 GET #1%

Terminals 4-31

The system never stalls the controlling program to wait for data. Instead, it
immediately returns the contents of the controlled job’s output buffer to the
controlling job. The buffer contents may be a single message, several messages,

or a message fragment. If no input is available, the error ?End of file on device
(ERR=11) occurs.

If the controlled job performs output faster than the controlling job can execute
GET statements, the keyboard output buffer fills. As a result, the controlled
job enters an output wait state (TT) as if it were waiting for a real terminal.
When the stall occurs, the system makes the controlling job eligible to run (f it
was in the SLEEP state) so that it can execute GET statements and receive the
controlled job’s output.

4.11.3.2 Pseudo Keyboard Output

4-32 Terminals

To perform output to a pseudo keyboard, execute a PRINT or PUT statement with
a coded value in the RECORD option. For example:

100 PUT #N%, RECORD R%, COUNT C%

where:

N% is the I/O channel where the PK device is open

C% is the number of bytes to send from the I/O buffer to the controlled job’s input
buffer.

If you omit the COUNT option, the PUT statement sends either 128 bytes (the
pseudo keyboard’s default buffer size) or the number of bytes specified in the
RECORDSIZE option of the OPEN statement.

R% determines the actions the system performs for a specific PRINT or PUT state-
ment. R% is an integer whose value the system interprets on a bit-by-bit basis.
The system tests the low order four bits in R% (the bits numbered 0 through
3 from right to left) and executes the PRINT or PUT statement depending on
whether certain bits are on or off.

Figure 4-3 explains the bit tests.

Figure 4-3: PUT Statement Actions for Pseudo Keyboard Output

ERA=5
(JOB IS NOT
LOGGED IN)

ERR=3
(DEVICE IN
USE)

o8 ERR-28
IN cTRLIC N\ NO (JOB IN KB

STATE WAIT BUT NOT

» CTRL/C STATE

DO NOT
SEND ANY
DATA

SEND
CHARACTERS
TO KB

NO

OFF=0 | ERR=4 RETURN
(NO ROOM FOR CONTROL
INPUT ON KB) TO USER

WAIT UNTIL
ROOM IS
AVAILABLE

MK-00031-01

Terminals 4-33

Figure 4-3 shows the actions the system performs by testing the bits in R%. In
summary:

Bit O (value = 1) If set, the system does not check job status before sending data to
the pseudo keyboard.

Bit 1 (value = 2) If set, the system tests whether the pseudo keyboard is waiting for
a system command (~C state) or is waiting for program input (KB
wait state).

Bit 2 (value = 4) If set, the system does not send data to the pseudo keyboard but

instead returns control to the controlling program.

Bit 3 (value = 8) If set, and there are no small buffers for keyboard input, the system
waits until small buffers are available. However, your program
receives an error if the output buffer chain is full.

The data you send to a pseudo keyboard must have the same format as data
typed at a keyboard. For example, if you send a line that would normally end
with the RETURN key, you must end the line with a carriage return character
(CHR$(13%)). In addition, the value you specify in the COUNT option must
include the carriage return character. Do not end the line with a carriage return
/line feed sequence; the system automatically appends a line feed character to a
line that ends with a carriage return character (just as it does when you enter a
line at a terminal with the RETURN key).

Your program should send only one line at a time and retrieve each program or
system response separately. Sending multiple lines fills up small buffers. For
the same reason, the user should not type ahead. In addition, do not send a line
unless the PK device is waiting for input. Always check PK device status before
sending data.

Use the RECORD 6% option (values 2 and 4) in a PUT or PRINT statement

to ensure that the controlled job is at command level. If the job is waiting for
keyboard input but is not at command level, the error ?Programmable AC trap
(ERR=28) occurs. You must force a Ctrl/C to the controlled job; otherwise, control
returns to your program, which can then send a system command.

To run a program under the controlled job:

1. Use a PUT or PRINT statement with the RECORD 6% option to make sure
that the controlled job is at command level.

2. Send the RUN command followed by the program name to the PK device.

The RECORD 16% option lets you kill any job currently running on the pseudo
keyboard. In the PUT statement, specify the I/0O channel where the pseudo
keyboard is open. For example:

100 PUT #8%, RECORD 16%

This statement kills the job currently running on the PK: unit open on channel 8.

4.11.4 Pseudo Keyboard Escape Sequence Processing

4-34 Terminals

When you output escape sequences on a pseudo keyboard, the terminal driver
translates CHR$(155%) to an escape ESC character (ASCII 27). The translation
is necessary to properly handle eight bit terminal input. ATPK takes that pseudo
keyboard output and displays it on your terminal. However the terminal driver
now translates the ESC character to a $ character.

To make pseudo keyboard processing work correctly when using escape sequences,
use either binary MODE (1%), or transparent control character output MODE
(16384%) as an open mode, or use the RECORD 4096% modifier. This allows

the terminal driver to correctly read escape characters back from the pseudo
keyboard (without translation). See the sections "Binary Data Output and Input:
RECORD 4096% and MODE 1%" and "Transparent Control Character Output:
RECORD 16384% and MODE 16384%" for more information.

4.11.5 Programming Example

The following sample program uses a pseudo keyboard to process a command file:

10 EXTEND

100 OPEN "PK8:" AS FILE #1%

110 PRINT "What command file do you want to use";

120 INPUT LINE FILENAMES

130 OPEN FILENAMES FOR INPUT AS FILE #2%

140 PRINT "What is the account to log into";

150 INPUT LINE PPN$

160 PPNS$ = CVTS$S (PPNS,4%)

170 INPUT "What is the password"; PW$

180 PRINT #1%, RECORD 1%, "HELLO "; PPN$; CHRS (13%);

190 PRINT #1%, RECORD 1%, PW$ + CHRS (13%);

200 ON ERROR GOTO 19000

210 SLEEP 1%

220 GET #1%

230 FIELD #1%, RECOUNT AS AS

240 PRINT AS;

250 GOTO 220

260 PRINT #1%, RECORD 4%

270 INPUT LINE #2%, BS$S

280 BS = CVTSS (BS,4%)

290 PRINT #1%, B$; CHRS$(13%);

300 GOTO 220

19000 IF ERR = 11% AND ERL = 220% THEN RESUME 260 &
ELSE IF ERR 3% AND ERL = 260% THEN RESUME 210 &
ELSE IF ERR 11% AND ERL = 270% THEN RESUME 19100 &
ELSE ON ERROR GOTO O

19100 CLOSE #1%, #2%

32767 END

Line 100 opens the pseudo keyboard on I/O channel 1. Lines 110 through 170 ask
the user (the controlling job) for a command file name and accounting information
for the controlled job. Lines 180 and 190 create the controlled job by sending
LOGIN input to the pseudo keyboard. Both PRINT statements use RECORD 1%
to tell the system not to check job status before sending data.

The next section of the program consists of two loops:

e The first loop (lines 220 through 250) repeatedly gets data from the controlled
job’s output buffer and prints it on the controlling job’s terminal. When there
is no more data in the buffer, control goes to the error handling routine at
line 19000.

¢ The second loop (lines 260 through 300) first uses a PRINT statement with
RECORD 4% to see if the controlled job is waiting for keyboard input. If it is,
the program reads a line from the command file and sends it to the controlled
job’s input buffer. Control then goes back to the first loop.

If the controlled job is not waiting for keyboard input, control goes to error
handling routine.

Terminals 4-35

The error handling routine (lines 19000 through 19100) processes two errors:

e ?End of file on device (ERR=11). This error can occur for two different reasons
in this program:

— The controlled job’s output buffer is empty.
— There are no more commands in the command file.

If the output buffer is empty, control goes to the loop that reads the next
command from the command file. If there are no more commands in the
command file, the program closes I/O channels and ends.

® ?Account or device in use (ERR=3). This error occurs if the controlled job is
busy (that is, not waiting for keyboard input) when the program checks to
see if it is ready for another command. The error handling routine transfers
control to the SLEEP statement at line 210, which suspends program
execution for one second before starting to execute the first loop again. The
program works without the SLEEP statement but makes less efficient use of
system resources.

4.11.6 Pseudo Keyboard Special Function: SPEC%

4-36 Terminals

The SPEC% function performs special operations on disks (see Chapter 1),
flexible diskettes (see Chapter 1), magnetic tapes (see Chapter 2), line printers
(see Chapter 3), and pseudo keyboards and terminals (see Chapter 4).

For pseudo keyboards, the SPEC% function lets you:

* Disable and enable echo at the controlled job’s keyboard (that is, the KB side
of the pseudo keyboard)

¢ Read a flag word that tells you whether echo is ON or OFF at the controlled
job’s keyboard

* Read the current exit status of the job you are controlling.

A pseudo keyboard receives two kinds of output from a controlled job: character
echo, which is done by the RSTS/E monitor, and program output, which occurs
when a program writes to the controlled job’s keyboard. The SPEC% function
affects only character echo, not program output.

Character echo is enabled by default. However, in some pseudo keyboard
applications it is more convenient to disable character echo. For example, in a
pseudo keyboard application that uses both a terminal and a pseudo keyboard,
you get character echo from the terminal; you also get character echo and
program output from the pseudo keyboard. You can use this function to disable
character echo at the pseudo keyboard.

The SPEC% function for pseudo keyboards has the format:
VALUE% = SPEC%(FUNCTION%, PARAMETER%, CHANNEL%, 16%)

where:

VALUE%

PARAMETER%

CHANNEL%
16%

depends on the function code you specify in FUNCTION%.

FUNCTION%=0%

FUNCTION%=1%

a flag word that contains information about the
controlled job’s keyboard. By testing bit 5 in
VALUE%, you can determine whether keyboard
echo is enabled or disabled. The tests are:

VALUE% AND 32% <> 0%
Keyboard echo is disabled.

VALUE% AND 32% = 0%
Keyboard echo is enabled.

returns the current exit status and the worst
exit status for the job you are controlling:
VALUE% AND 7%

The current exit status, from the list below.
(VALUE%/16%) AND 7%

The worst exit status the job has had, from the
list below.

Value Status

0% Warning

1% Success

2% Error

4% Severe error

depends on the function code you specify in FUNCTION%.

FUNCTION%=0%

FUNCTION%=1%

specifies the operation to perform:
Value Operation

0% Read the flag word
255% Enable echo
-1% Disable echo

unused

specifies the I/O channel where the pseudo keyboard is open.

is the device handler index for pseudo keyboards.

4.11.7 Dynamic Pseudo Keyboards

Dynamic pseudo keyboards are devices the monitor creates as needed. RSTS/E
limits access to dynamic pseudo keyboards according to the number of other
terminal devices on the system, and according to the EXQTA privilege. If the
job has the EXQTA privilege, it is allowed to open as many dynamic pseudo
keyboards as possible; without the privilege, it can open only one. If the job
tries to open a second dynamic pseudo keyboard without the EXQTA privilege, it
gets Error 69, the ?Quota exceeded message. The absolute maximum number of

keyboards is 128.

Since the monitor creates dynamic pseudo keyboards only when they are needed,
their terminal characteristics cannot be set before they are used. Otherwise,
dynamic pseudo keyboards are identical to static pseudo keyboards.

Terminals 4-37

To access a dynamic pseudo keyboard, always open PKO: using mode 16. Here is
an example in BASIC-PLUS:

OPEN "PKO:/MODE:16" AS FILE #1%
or
OPEN "PKO:" AS FILE #1%, MODE:16

Since mode 16 allows fully dynamic creation and use of pseudo keyboards, you get
the ?No room for user on device error message if all 128 keyboards are already in
use, of if the system does not have enough small buffers to create more dynamic
pseudo keyboards. Every time you open PKO: in mode 16, you create a new
dynamic pseudo keyboard.

4.12 Local Area Transport (LAT)

RSTS/E supports Local Area Transport (LAT). This feature lets users with
terminals connected to terminal servers reach any RSTS/E system on the
Ethernet that has LAT and DECnet/E support. LAT on RSTS/E also supports
host-initiated LAT connections, letting users connect to application devices such
as terminals, printers, and modems that are physically connected to ports on the
server. This lets users share these resources with other systems on the Ethernet.

Users on terminal servers can also have multiple sessions. This means they
can connect to several systems or the same system multiple times from a single
terminal.

In order to use LAT on RSTS/E you must have Ethernet hardware, DECnet/E,
and one or more of the following terminal servers:

¢ Digital Ethernet Terminal Server (DECSA)
¢ DECserver 100

e DECserver 200

¢ DECserver 500

e DECserver 550

e VAXmate systems

¢ IBM-PC systems running DECnet-DOS

4121 LAT Ports

4-38 Terminals

LAT ports differ from most terminals on your system, since they are not physi-
cally connected to the system using terminal interfaces. Instead, RSTS/E connects
LAT ports to terminal server ports using Ethernet hardware and software.

Like dynamic pseudo keyboards, LAT ports are dynamic keyboards. Like other
dynamic keyboards, a LAT port does not have a unique keyboard unit number
until it is created. Dynamic keyboards are numbered sequentially, starting with
the first available keyboard unit number greater than the maximum physical
(static) keyboard unit number.

As with other dynamic keyboards on RSTS/E, you can reference LAT ports using
standard keyboard syntax (for example, KB45:), or device controller syntax (such
as KBI3:). Use the controller designator I to identify LAT ports. When you create
a LAT port for host-initiated connections, you can either specify the number of
the port you want to create or let the system pick the next available number.

4.12.2 Enabling LAT
To support LAT terminal servers, the system must have DECnet/E and the
Ethernet hardware. If it has these, RSTS/E automatically makes LAT available.

Use the SHOW SYSTEM command to determine the current state of LAT and
the state that will take effect after the next reboot (if different from the current
state).

Use the SHOW TERMINAL command to list the LAT server and port name for
those connections coming from LAT terminal servers.

Use the following DCL commands to set parameters for the LAT software:

Privilege
Command Required Description
ASSIGN/PORT SWCFG Assigns a LAT port to a remote
terminal server.
CREATE/PORT SWCTL Creates a LAT port.
CREATE/SERVICE/LAT SWCFG Creates a LAT service.
DEASSIGN/PORT SWCFG Deassigns a LAT port from a remote
terminal server.
DELETE/PORT SWCTL Deletes a LAT port.
DELETE/SERVICE/LAT SWCFG Deletes a LAT service.
SET NODE/LAT SWCFG Sets LAT node characteristics.
SET PORT SWCFG Sets LAT port characteristics.
SET SERVICE/LAT SWCFG Sets LAT service characteristics.
SET SYSTEM/LAT SWCFG Enables LAT at next system restart.
SHOW COUNTERS/LAT SWCTL Shows LAT related counters.
SHOW NODE/LAT None Shows LAT node characteristics.
SHOW PORT None Shows LAT port characteristics.
SHOW SERVICE/LAT None Shows LAT service characteristics.
SHOW SESSIONS None Shows information about LAT ses-
sions.
SHOW TERMINAL_SERVERS/LAT None Shows terminal servers known to
LAT.
START/LAT SWCTL Starts LAT on an Ethernet device.
STOP/LAT SWCTL Stops LAT on an Ethernet device.

Each of these commands is described more fully in the RSTS/E System Manager’s
Guide.

4.12.3 Host-Initiated LAT Connections

A host-initiated LAT connection lets you establish a connection from a RSTS/E
system to a remote device, such as a printer, modem or terminal, attached to
an Ethernet terminal server. For example, if you connect an LNO3 printer to
your server, and set the proper characteristics of the remote port on the server
according to the guidelines described in the documentation for the server, users
on any RSTS/E system on the Ethernet could print files on the LN03. This
feature lets you share your resources over the entire local area network rather
than restricting them to individual local systems.

Terminals 4-39

4-40 Terminals

In general, you can use terminals connected to terminal servers as you would
use any other terminals on your system, including for multi-terminal service and
other special-purpose terminal uses. While there are some extra steps that must
be taken to define and set up a local LAT terminal for host-initiated connects,
once those steps are completed (generally as part of system startup), you can use
LAT terminals as you would any other terminal.

Creating and Assigning LAT Ports

Before you can begin using host-initiated LAT connections, you must first create a
LAT port and then assign it to a remote port and/or service on a terminal server.
To create a LAT port you issue the DCL command CREATE/PORT. For example,
the following command creates a LAT port using dynamic keyboard line KBIO:
(KB47: in the example):

$ CREATE/PORT _KBIO:
Port KB47: created

If you want, you can also assign the LAT port to a remote port or service on

the terminal server when you create the LAT port. Use the /TERMINAL_
SERVER qualifier (to specify the name of the server to use) and either or both the
/REMOTE_PORT qualifier (to specify the name of the remote port on the server
that the device is connected to) or the /SERVICE qualifier (to specify the service
on the server you want to use). For example, the following command creates a
LAT port using keyboard KB47: and assigns it to port PORT_72 on terminal
server LAT890.

$ CREATE/PORT/TERMINAL_SERVER=LAT890/REMOTE_PORT=PORT_72 KB47:

Port KB47: created

Port KB47: assigned with queueing to terminal-server LAT890
remote-port PORT 72

Similarly, the following command creates a LAT port using dynamic keyboard line
KBIO: and assigns it to any port on terminal server LAT890 offering the service
named LNO3:

$ CREATE/PORT/TERMINAL_SERVER=LAT890/SERVICE=LN03 _KBIO:

Port KB47: created

Port KB47: assigned with queueing to terminal-server LAT890
remote-service LNO3

You can specify the name of the port to create — using standard keyboard syntax
(KBn:) or controller syntax (KBIn: for dynamic keyboards) — or simply let the
system select the next available dynamic keyboard number to use (the CREATE
/PORT command displays the designator of the keyboard used to create the LAT
port).

In cases where you have applications that must reference a LAT port via a specific
device designator—such as PBS print servers—make sure that the LAT port is
created using the correct keyboard or controller syntax designator. Otherwise, the
desired port may be unavailable, or already assigned to another job or function.
Avoid this problem by creating all necessary LAT ports in the START.COM
system startup command file, before other users or jobs can create them.

NOTE

When you add these commands to your START.COM file, put the
startup of LAT and the creation of the LAT ports before the startup of
the PBS package. PBS expects the ports to have already been created
when it starts up the print servers.

Once the LAT port is created, you can set the characteristics of the port using
the SET TERMINAL command, as you would for any standard terminal. By
default, a newly created LAT port has the settings of a hardcopy terminal. For
example, if port KB60: is assigned to a port on a terminal server which has an
LNO3 printer connected to it, you would issue the following command to set the
port’s characteristics to that of an LNO03:

$ SET TERMINAL/DEVICE=LNO3/PERMANENT KB60:

A LAT port must be assigned to a terminal server, and either a remote port or
service or both before it can be used.

If you do not assign a LAT port to a terminal server at the time the port is
created, or you want to reassign the port to a different terminal server, port or
service, use ASSIGN/PORT. For example, the following command assigns LAT
port KB47: to port PORT_72 on terminal server LAT890:

$ ASSIGN/PORT/REMOTE_PORT=PORT 72 KB47: LAT890
Port KB47: assigned with queueing to terminal-server LAT890
remote-port PORT 72

LAT Queueing

Some terminal servers can put host-initiated requests on a queue when they
cannot be processed immediately. This happens when the remote port is busy
with another request. When the remote port becomes available, the server
notifies the requesting host node that the connection can now be established.

On RSTS/E, LAT ports are created with queued access as the default. You can
remove the port’s queue access by including the /NOQUEUED qualifier on the
CREATE/PORT command when the port is created, or the ASSIGN/PORT or SET
PORT commands after the port is created. If you set the LAT port to no queue
access, then the server rejects the connection request if the remote port is not
currently available. Likewise, you can change the port’s setting to queued access
by including the /QUEUED qualifier on the same commands.

NOTE

Not all terminal servers provide queueing. Refer to the server’s docu-
mentation to determine whether or not this feature is available.

Impact on Applications

Most existing applications that perform terminal I/O should work without mod-
ification. Some applications may require changes, depending on how they were
designed to open terminals and perform terminal 1/O.

For LAT ports, the request to initiate a connection takes place when the port is
first assigned or opened. Because the connection request can be delayed for a
period of time, the assign or open request always completes immediately, even
though the connection is not yet established. If the connection is established
when the first write request for the terminal is issued, then the write completes
normally. However, if the connection is still not established when the program
issues a write request for the terminal, the action taken depends on the type of
write operation:

e All Except NOSTALL Writes:

If a normal write request (all except NOSTALL writes) is issued and the
connection is still not completed, then the user’s job is stalled in a TT state
until one of the following conditions occurs:

— The connection is established, at which time the write request is pro-
cessed.

Terminals 4-41

4-42 Terminals

— The connection is rejected or times out, in which case the ?I/0 to detached
keyboard error is returned.

¢ NOSTALL Writes:

If the write request is a NOSTALL write, then the user’s job is not stalled and
one of the following events occurs:

— The connection has been established, in which case the write request is
processed.

— The connection request is still being processed, in which case the error
?Device not available is returned immediately.

— The connection is rejected or times out, in which case the ?1/0 to detached
keyboard error is returned immediately.

Note that an application issuing NOSTALL writes can, if it receives the
Device not available error, simply reissue the write request until the connec-
tion is established.

Some application programs may need to be modified to handle these types of
conditions specific to LAT ports being used for host-initiated connections.

RSTS/E provides a new SYS call, Return Local LAT Port Status, to let application
programs find out the current status of the port. In addition to the port status,
the SYS call also returns the queue position, if the request has been queued, and
reject reason code, if the request was rejected. With this SYS call, application
programs can continually reissue the call after assigning or opening the port
waiting for the establishment or rejection of the connection before attempting any
I/0. This gives the application program the chance to do other tasks while waiting
for the connection to be established. See Chapter 8, function code 22, or RSTS/E
Directives Manual for further details on this SYS call.

Dial-out Modems

Applications written for dial-out modem access should work without modifica-
tions. To use modems with LAT:

¢ Connect the modem to a port on the server following the guidelines detailed
in your users manual that came with the server.

e Create the local LAT port on the RSTS system using the CREATE/PORT
command and assign it to the remote port or the service on the server.

® Set the characteristics of the newly created port via the SET TERMINAL
command as you would any static terminal line except for the DIALUP
characteristic. Because the modem is connected directly to the server, the
server is responsible for handling all the modem signals. Therefore, the
/DIALUP characteristic should not be set. An error is issued if you attempt to
set this characteristic on any LAT port.

Once you have taken the steps outlined above, the port is ready to be used and no
further action is needed.

412.4

Isolation of LAT Problems

To isolate LAT problems, use the DCL commands SHOW COUNTERS/LAT and
SHOW COUNTERS/LAT/DEVICE, and the DECnet/E Network Control Program
(NCP) utility. This may require the SWCTL privilege. To invoke NCP, type:

$ RUN DECNETS :NCP

You should then get the NCP> prompt. The following NCP commands are
particularly useful in isolating LAT problems:

NCP> SHOW LINE dev COUNTERS
NCP> LOOP CIRCUIT dev PHYSICAL ADDRESS ethernet-address

Note that dev is the name of the device being used (UNA-0 or QNA-0) and
ethernet-address is the Ethernet address of the terminal server under question.
See the DECnet/E System Manager’s Guide for more information on these
commands.

For more information on LAT activity, ask the system manager to consult the
console terminal. The LOGIN and LOGOUT commands automatically send

the server and port names for LAT terminals to the OPSER program or OMS
(Operator/Message Services), which relays the names to the console. (If neither
OPSER nor OMS is not running, LOGIN and LOGOUT send the names to KBO:.)

The LOGIN command also sends the server and port names to [0,1]JLOGIN.COM,
which you can modify to respond to the information as you see fit. LOGIN.COM
automatically passes the names to the group and user LOGIN.COM files in
Parameter P5, and executes a SET TERMINAL/INQUIRE command for the LAT
terminal.

4.13 Command Line Editing and Command Recall

Command line editing and command recall reduce the number of keystrokes
required to enter commands or correct typing errors. Because these features are
implemented in the RSTS/E monitor, they are available at the DCL command
level, within other keyboard monitors, and at the application program level.

4.13.1 Terminal Attributes

Command line editing and recall are available on all terminals capable of
processing and displaying ANSI escape sequences (terminals with the ANSI
terminal attribute). RSTS/E automatically disables command line editing on
terminals set to NOANSI. Command recall is still available on terminals set
NOANSI, but the terminal displays recalled commands on the next line instead
of the current line.

Command line editing and recall are always available at the DCL level, and
within other keyboard monitors, unless the keyboard monitor opens the terminal
in a mode that forces the feature to be disabled. The modes that automatically
disable command line editing and recall are:

¢ Binary or ODT (MODE 1%)
e TECO (MODE 2%)
e Echo Control (MODE 8%)

Terminals 4-43

4-44 Terminals

In Escape Sequence mode (MODE 256%), command line editing and recall are
possible using control character, but function keys and arrow keys are disabled
and available for application uses. Because Escape Sequence mode intercepts the
editing and recall control characters, these characters can not reach application
programs from terminals in Escape Sequence mode.

Within an application, command line editing and recall are determined by the
LINE_EDITING and RECALL terminal attributes. These attributes can be
controlled with DCL before entering the application. To control the attributes,
use:

¢ The [NOJLINE_EDITING qualifier to the SET TERMINAL command. This
disables or enables command line editing in the next application run.

¢ The [NOJRECALL command. This disables or enables command line recall in
the next application run.

The new attributes control their functions only within an application or program.
Note that they do not apply to commands entered at DCL or other keyboard
monitors.

Two additional terminal attributes determine how characters are handled as they
are typed within a line (where the cursor is not positioned at the end of the line).
These are the OVERSTRIKE and INSERT attributes. To control these attributes,
use:

e The /OVERSTRIKE qualifier to the SET TERMINAL command. This
indicates that each new character should replace (overstrike) the character
positioned at the cursor.

e The /INSERT qualifier to the SET TERMINAL command. This indicates
that each new character should be inserted at the current cursor position;
characters to the right of the cursor are shifted right one character to make
room for the new character.

The /OVERSTRIKE or /INSERT qualifier affects line editing both for DCL and
for applications. The qualifier remains in effect until it is changed or until the
terminal is reinitialized by a login or a /RESET command. The terminal then
goes back to its permanent characteristic (OVERSTRIKE mode, unless the system
manager has changed it).

Type Ctrl/A at any time to switch back and forth between INSERT and
OVERSTRIKE mode until you end the line. At the beginning of the next line, the
terminal goes back to the current mode.

4.13.2 Terminal OPEN Modes

Certain applications, such as EDT and DECmail-11, use the terminal’s arrow
keys or other control characters for their own purposes. Some keyboard monitors
may do the same. RSTS/E automatically disables command line editing or recall
or both if the program or keyboard monitor opens the terminal in a special mode,
as shown in Table 4-6.

Table 4-6: Command Line Editing and Recall Availability

OPEN Mode Line Editing Recall
Mode Description Available? Available?
0 Normal Yes Yes
1 Binary or ODT No No
2 TECO No No
4 Suppress CRLF Yes Yes
8 Echo control No No
16 Guard Ctrl/C Yes Yes
32 Enable XON/OFF Yes Yes
128 Special Rubout Yes Yes
256 Escape Sequence Yes? Yes!
16384 Transparent Controls Yes Yes

INote that while in mode 256, Escape Sequence Mode, Command Line Editing and Command Recall
are only available using control characters. Function keys and the arrow keys are available for the
application’s use. This table applies to both programs and keyboard monitors.

In addition, command line editing and recall are automatically disabled in any
applications that use FMS.

You may have an application that does not open the terminal in a mode that
automatically disables command line editing or recall, thought you may still
want to disable one or both functions. In such cases, use the Set Terminal
Characteristics SYS call to disable the LINE_EDITING or RECALL attributes or
both, and then restore them on exit.

4.13.3 Echo on Read

Echo on read is the processing and echoing of characters typed on a terminal
only when a read occurs. In versions of RSTS/E prior to V10.0, characters
were processed and echoed as soon as you typed them, even if no read was
pending. In some instances, these typeahead characters would be processed
incorrectly. For example, if you begin typing your password before LOGIN issues
its Password: prompt, the characters you type are echoed, since the terminal

is not yet set to NOECHO mode. Another example is processing of escape
sequences when starting the EDT text editor. On startup, EDT sets the terminal
to NOESCAPE_SEQUENCE mode. However, if you type ahead while EDT is
starting up, and your terminal is set to ESCAPE_SEQUENCE, the characters
you type will not be processed correctly, since they will be processed based on
your terminal’s current settings and open modes, rather than those established at
the time of the read.

Terminals 4-45

4-46 Terminals

Echo on read solves these problems. With the addition of command line editing
and recall, the position of the cursor on the command line becomes more impor-
tant than before. Without echo on read, the position of the cursor with respect
to the characters output to the terminal becomes erratic and unpredictable.
Consider the case of typing ahead while a DIRECTORY command is being ex-
ecuted. The typeahead characters are echoed interspersed with the directory
listing characters, and editing the line becomes virtually impossible. In such
cases, you would need to type Ctrl/R to redisplay your current command so you
know where on the command line the cursor is located. Echo on read solves this
problem as well.

In RSTS/E V10.0, characters are stored in the typeahead buffer but not processed
or echoed, if there is no outstanding read request. When a read is issued, any
characters in the type ahead buffer (up to the first line delimiter) are processed.
This ensures that any typeahead characters are processed based on the correct
terminal open mode, terminal characteristics, etc.

Echo on read is compatible with the way VMS handles character processing.
Special interrupt characters (for example Ctrl/T' and Ctrl/C) continue to be
processed immediately, regardless of whether or not a read is outstanding.

Echo on read has lacks any visual cue when you type ahead (since typeahead
characters are no longer echoed until a read occurs). Some inexperienced users
may conclude that their terminal or the system is not functioning properly. Users
should be encouraged to type Ctrl/T to see that their terminal and the system are
still operating.

Chapter 5

Card Readers

This chapter describes the use of card readers on RSTS/E.

The card reader reads data from standard (80-column) punched cards. Data is
read from the card one column at a time in one of three modes: ASCII, packed
Hollerith, or binary. One card can be read (and the data on it stored) in any
mode.

5.1 ASCIlI Mode: MODE 0%

The card reader reads cards punched with the standard ASCII codes, as shown in
Appendix B. One of four sets of codes can be used: ANSI, 029, 026, or 1401. The
code set for the system is specified during system installation. Cards punched

in other formats are not acceptable to RSTS/E in ASCII mode. The end-of-file
card for RSTS/E contains a 12-11-0-1 or a 12-11-0-1-6-7-8-9 punch in card column
1. Reading an end-of-file card causes the error ?End of file on device (ERR=11),
which can be trapped with an ON ERROR GOTO statement.

The RECOUNT variable (see the BASIC-PLUS Language Manual) contains the
number of characters read following every input operation. In the ASCII read
mode, trailing spaces are ignored and carriage return and line feed characters
are appended, making the value of the RECOUNT variable two more than the
number of punched columns per card. Consequently, the RECOUNT variable can
have a value between 2 (for a blank card) and 82 (for 80 columns of data). For
example, consider a card punched as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Columns 1 to 26 are punched and 27 through 80 are blank. The following
program executes as shown:

100 OPEN "CR:" AS FILE 1%
\INPUT LINE #1%, AS
\PRINT LEN (AS)

\PRINT "M LA, nMgn

32767 END

RUNNH

28
>ABCDEFGHIJKLMNOPQRSTUVWXYZ
<

In this example, the trailing spaces in card columns 27 through 80 are deleted,
and the two characters, carriage return and line feed, are added, making a total
of 28 characters in the string A$.

Card Readers 5-1

You can read cards with INPUT, INPUT LINE, or GET statements. If a card is
misread or contains any illegal punches, the error ?Data error on device (ERR=13)
occurs. With INPUT or INPUT LINE statements, any columns containing illegal
punches are stored as BACKSLASH (ASCII 92) codes. If you read the card with
a block I/0 GET statement, the buffer contains data for each column punched,
and any columns that contain illegal punches are stored as ASCII 220 code
(BACKSLASH with the high order bit set). By checking the characters for code
220, your program can determine in which column(s) the error(s) occurred.

5.2 Packed Hollerith Mode: MODE 1%

In packed Hollerith read mode, the value of the RECOUNT variable is always
80, because each of the 80 card columns corresponds to a single data byte and
trailing spaces are not ignored. The value of each byte is the sum of the punched
row positions.

Figure 5-1 shows the packed Hollerith read mode values

Figure 5-1: Packed Hollerith Read Mode

Associated Values of Rows

#12 e —_— 128

* %
g
w
N

ROWS

oW W W H W
©ONO U AN =
S OO A WN

COLUMNS

BIT 7 6 5 4 3 2 1 0

ROW 12 1 0 9 8 1-7

VALUE 128 64 32 16 8 4 2 1 MK-00033-01

Note that the associated values of rows 1 through 7 are simply 1 through 7,
respectively. Only one of these seven rows can be punched per column. If none of
these seven rows is punched, the value of the byte is 0.

5-2 Card Readers

5.3 Binary Mode: MODE 2%

The binary read mode associates two data bytes with each card column.
Therefore, the value of the RECOUNT variable is always 160. Once again, the
value of each byte is the sum of the values of the punched row positions.

Figure 5-2 shows the binary read modes.

Figure 5-2: Binary Read Mode

Associated Values of Rows

#12 C— J— - 8
#11 — —f T
#0 SECOND BYTE _— 2
#1 | __ _ v 1
2 128
Rows # 3 64
4 32
#5 FIRST BYTE 16
#6 8
#7 4
#8 2
#9 [— — — VY 1
COLUMNS
BIT 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
ROW ololJolofw|l1tlo]l1]2]3]lasa|s|e|{7]|38]3s
SECOND BYTE FIRST BYTE

MK-00034-01

5.4 Setting Read Modes

You can specify a read mode in an OPEN statement (with the MODE option)
or a GET statement (with the RECORD option). Table 5—1 shows the MODE
and RECORD values that correspond to each read mode. The default mode is 0
(ASCII).

Card Readers 5-3

As shown in Table 5-1, you must specify an explicit value when you use the
MODE or RECORD option; failure to do so results in an error message.

Table 5-1: Specifying Read Modes on Card Reader

Statement Option Specified Read Mode
OPEN MODE 0 ASCII
MODE 1 Packed Hollerith
MODE 2 Binary
GET RECORD 256 ASCII

RECORD 257 Packed Hollerith
RECORD 258 Binary

For example:

60 OPEN "CR:" FOR INPUT AS FILE 2%, MODE 1%
110 GET #2%, RECORD 258%

Line 60 of the example specifies packed Hollerith read mode. Line 110 specifies
binary read mode for the first card.

A read mode specified in an OPEN statement supersedes previous read mode
specifications. A read mode specified in a GET statement, however, overrides
previous read mode specifications in the program for one card only. Consider the
following sample program segment:

Specified Read Mode
at This Point

100 OPEN "CR:" FOR INPUT AS FILE 1%, MODE 1% Hollerith
\GET #1%, RECORD 256% ASCII
\GET #1% Hollerith

350 CLOSE 1%

400 OPEN "CR:" FOR INPUT AS FILE 6%, MODE 0% ASCII
\GET #6% ASCII
\GET #6%, RECORD 258% Binary
\CLOSE 6%

32767 END

Line 100 of the sample program sets the read mode to Hollerith and then
overrides it, setting the read mode to ASCII temporarily. When the last
statement on the line is executed without a RECORD option, however, the read
mode reverts to the OPEN mode — in this case, Hollerith. The next OPEN
statement (line 400) supersedes the previous one, setting the read mode to ASCII.
However, a RECORD 258% option changes the mode to binary. Closing a file
cancels the card reader’s read mode. When a file has been closed, executing an
OPEN statement is the only way to reestablish a read mode.

5-4 Card Readers

Chapter 6
DMC11/DMR11 Interprocessor Link

This chapter describes how to use the DMC11 and DMR11 devices in a program
to set up a communication link to another processor. Although the DMR11 differs
in some details from the DMC11, they appear identical to your program.

6.1 Using the DMC11/DMR11 Interprocessor Link in Point-to-Point
Configurations

The DMC11/DMR11 Network Link (device XM: on RSTS/E) provides high speed
local or remote interconnection of computers over a serial synchronous link.

It uses the Digital Data Communications Protocol (DDCMP) to provide data
transmission and uses Non-Processor Request (NPR) data transfers to and from
memory to provide high throughput and minimize processor overhead.

Normally, the DMC11/DMR11 is used by the DECnet/E package, which supports
multiple node networks, user data security, multiple logical links over a single
physical link, and other network features. When in use by DECnet/E, the
DMC11/DMR11 is not available to you except through DECnet/E. However, in
point-to-point configurations, DECnet/E may not be needed. In these cases, you
can access the XM: device directly from a program to obtain a communication link
with another processor. DECnet/E need not even be configured into the RSTS/E
system.

6.2 The OPEN Statement

The DMC11/DMRI11 is not a file-structured device. However, you must specify
certain parameters at open time to establish the device’s operating mode. In
addition, when you execute an OPEN statement on a DMC/DMR with an
autoanswer/autodial phone connection, the Data Terminal Ready (DTR) modem
control signal is automatically raised to enable data transmission.

6.2.1 MODE Value

The MODE value used when opening a DMC11/DMR11 indicates whether the
unit is to be run in full-duplex or half-duplex mode. These modes are described
in the Terminals and Communications Handbook. To cause the DMC11/DMR11
to hang up a phone connection when it receives a DDCMP restart, add 512 to
the specified MODE value. To specify full duplex, omit the MODE option in the
OPEN statement, or specify a MODE value of zero. To specify half duplex, use a
MODE value of 1024.

DMC11/DMR11 Interprocessor Link 6-1

6.2.2 CLUSTERSIZE Value

To ensure that messages from the remote processor to the local RSTS/E system
are received without need for retransmission, the DMC11/DMR11 allocates one
or more receive buffers to the unit when it is opened. Whenever a message is
received over the link, it is placed in one of the allocated buffers. That buffer is
then placed on a queue of received messages, called the receive complete queue.
When you issue a GET statement on the open channel of the DMC11/DMR11,
the message is copied from the system buffer to your I/O buffer, and the system
buffer is released.

Because a buffer on the receive complete queue is no longer available for use

by the DMC11/DMR11, the driver tries to replace it with another buffer from
the monitor’s extended buffer pool or from the small buffer pool. The number of
buffers that the driver attempts to keep allocated to the DMC11/DMR11 receiver
side is called the buffer quota for the unit. You specify it at open time as the
CLUSTERSIZE value. Any number from 1 to 127 is valid as a buffer quota, but
values above 4 are not recommended except when a very large volume of traffic on
a high speed (higher than 56K baud) line is expected; allocating too many buffers
to the DMC11/DMR11 needlessly ties up system resources. However, if the buffer
quota is too low, overrun errors may occur on the unit. These do not cause any
loss of data, but do result in reduced performance due to retransmissions.

6.2.3 FILESIZE Value

The value used in the FILESIZE option at open time specifies the size of the
buffers allocated to the DMC11/DMR11 receiver. This value limits the length

of a received message and must be between 1 and 632 inclusive. If the remote
processor sends a message larger than the receiver buffer size, the message is lost
and the DMC11/DMR11 halts operation. Note that the 632-byte limit on receive
buffer size does not limit the length of transmitted messages. The DMC/DMR
driver limits transmitted message lengths to a maximum of 8000 bytes. However,
to avoid message truncation, you must be careful to stay within the remote
system’s receive buffer size. For example, if the remote system is also RSTS/E,
the length of transmitted messages is limited to 632 bytes maximum or a smaller
value that is equal to the receive buffer size, as established by the FILESIZE
value (specified in the OPEN statement for the remote DMC11/DMR11).

6.2.4 RECORDSIZE Value

The RECORDSIZE value establishes the I/O buffer size for the DMC11/DMR11.
The default buffer size is 512 bytes. While you can specify any even buffer size,
it is good practice to make the I/O buffer the same size or larger than the device’s
receive buffer (see the section, "The GET Statement and RECORD Options").

6.2.5 Errors

Only two errors specific to the DMC11/DMR11 can occur at open time. The error
?Device hung or write locked (ERR=14) occurs if the driver cannot initialize the
device. The error ?No buffer space available (ERR=32) occurs if the driver cannot
obtain a 264-byte buffer to use as the hardware base table.

6-2 DMC11/DMR11 Interprocessor Link

6.3 The GET Statement and RECORD Options

The GET statement copies the next message from the DMC11/DMR11 queue

of received messages into your program’s I/O buffer. If the received message is
longer than your buffer, the monitor truncates it with no warning. Therefore, it is
good practice to specify a RECORDSIZE in the OPEN statement that is greater
than or equal to the FILESIZE value (see the section, "FILESIZE Value").

The value in the RECORD option of GET statements determines how the
program treats message unavailability. If no message is available and the
DMC11/DMRI11 is still running (that is, the physical link is intact), you can
cause your job to get an error indication immediately or to sleep until a message
is received. A RECORD value of 0 (or omitting the RECORD option) tells the
monitor to generate the error ?Can’t find file or account (ERR=5) immediately. A
RECORD value of 8192% tells the monitor to stall the job until either:

e A message is available from the remote processor, in which case the message
is returned in the user’s buffer as usual

e A DMC11/DMR11 error occurs, in which case the program receives the error
?Device hung or write locked (ERR=14)

A RECORD value of 16384%+n%, where n% is a number between 0 and 255,
causes the monitor to put the job to sleep. It is awakened by any of the following
conditions:

® A message is received on the DMC11/DMR11.

® An error occurs on the DMC11/DMR11.

e A message is received through the local send/receive mechanism.
e A delimiter is typed on one of the job’s keyboards.

¢ The number of logins is set to 1.

¢ N seconds have expired and n is not 0.

If the job is awakened because a message is received, the monitor copies the
message to its buffer, just as if the GET had succeeded without sleeping. If it is
awakened because an error occurred, it receives the error ?Device hung or write
locked (ERR=14). If it is awakened for any other reason, it receives the error
?Can’t find file or account (ERR=5).

When the DMC11/DMR11 driver detects a failure in the physical link, it shuts
down the unit. Any messages received before the hardware failure are returned
to the job as it executes GET statements. No error indication appears until the
receive complete queue is empty. At that point, the job receives the error ?Device
hung or write locked (ERR=14). The only recourse is to close the channel on
which the unit is open.

DMC11/DMR11 Interprocessor Link 6-3

6.3.1 Count and Status Information

If the 4096% bit is on in the RECORD value in a GET statement, the driver does
not return a message from the DMC11/DMR11. Instead, it returns count and
status information to the user. Twenty-six bytes of information are returned in
the following format:

BYTES MEANING

1 Number of transmit buffers actually being processed by the DMC11/DMR11
hardware.

N

Total number of transmit buffers waiting to be sent, including those given to
the hardware (that is, number of uncompleted PUT statements).

Number of messages on the receive queue waiting to be given to the job.

Number of receive buffers actually given to the DMC11/DMR11 hardware.

Total number of buffers allocated to the DMC11/DMR11 receiver, including
those given to the hardware.
7-8 Length of the first message on the receive queue (0 if byte 3 is 0).
9 If the DMC11/DMRI11 is not running (see byte 10), this is a code indicating
the type of error:
0 Hardware error (see control-out information in bytes 19-20).

3
4 Reserved.
5
6

Unknown control-out operation.

Illegal input interrupt.

Illegal output interrupt.

Unsolicited input interrupt.

Unexpected output interrupt.

DDCMP maintenance mode/message received.
Lost data error.

Reserved.

© 0 3 O Ut b W =

Disconnect code.
DDCMP start received.
UNIBUS address timeout on DMC/DMR access.

12 Procedure error.

-t
= O

255 Timeout error.

10 Status flags, encoded as a combination of bits:

4 The first transmit since the DMC11/DMR11 was opened is com-
plete, indicating that a link has been established and that further
transmits will be timed out.

64 The driver is waiting for buffers to satisfy receive buffer quota.

128 Unit is running. If this bit is off, the DMC11/DMR11 was halted
for the reason given in byte 9.
All other bits are reserved.

11-12 Receive buffer size (from the FILESIZE value when the DMC11/DMR11 was
opened).

13-14 Operational mode (from the MODE value when the DMC11/DMR11 was
opened).

15-16 Reserved.

6-4 DMC11/DMR11 Interprocessor Link

BYTES MEANING

17 Receive buffer quota (from the CLUSTERSIZE value when the DMC11
/DMR11 was opened).

18 Reserved.

19-20 Value of SEL6 hardware register at most recent control-out interrupt. If the

DMC11/DMR11 was halted due to a hardware error, the specific error (or
errors) can be found here. For the format of this word, see the description of
the DMC11 and DMR11 in the DMR 11 Synchronous Controller User’s Guide.

21-22 Data check count. A data check error occurs when the DMC11/DMR11 has
tried seven retransmissions of a message without success. This indicates that
the physical channel is defective or that the remote processor does not have
a buffer to receive the message. The DMC11/DMRI11 continues to retry the
transmission and reports a data check error every seven retries. The total
number of data check errors that have occurred since the DMC11/DMR11 unit
was opened is returned in this word.

23-24 Timeout count. A timeout error occurs when the DMC11/DMR11 has received
no response from the remote end of the link for 21 seconds. This indicates a
broken communications channel or a failure at the other end of the link. The
number of timeout errors since the OPEN is returned in this word.

25-26 Overrun count (the number of overrun errors since the OPEN). An overrun
error indicates that a message was received but no buffer was available. This
is nonfatal because the remote system retransmits the message (and possibly
logs data check errors). You can reduce overrun errors by increasing the
buffer quota for the unit (see CLUSTERSIZE in OPEN). Overrun errors can
also occur when the driver is not able to obtain a buffer allowed by the buffer
quota value. To reduce this type of overrun error, increase the size of XBUF
at the start of the next time-sharing session.

Three errors (data check, timeout, and overrun) that are detected by the DMC11
/DMR11 are only warnings. These are nonfatal and do not cause the unit to halt.
Your program is not informed when they occur. However, if any of them occurs
frequently, it indicates that the program has set the wrong CLUSTERSIZE value
or that there is trouble on the physical line between the two processors. The
driver counts the number of times each error occurs and returns those counts as
part of the status information.

Your program never stalls when it issues a count and status request.
Furthermore, this request is legal whether or not the unit is running. Thus,
you can use it to determine the specific DMC11/DMRI11 problem after the
program receives an ERR 14.

6.4 The PUT Statement

The PUT statement copies data from your program’s I/O buffer to a system
buffer and queues the buffer for transmission. The number of bytes to transmit
is specified in the COUNT option and can be from 1 to 8000. A COUNT value
outside that range generates the error ?Illegal byte count for I/O (ERR=31). If
the monitor cannot obtain a buffer big enough to hold the message, it returns the
error ?No buffer space available (ERR=32). The program can sleep for a while
and retry the PUT, waiting for adequate buffer space to become available. Note
that on a given configuration it may be impossible to obtain a buffer of the proper
size. It is good practice to limit the retry operations to a small number after
receiving ERR=32.

DMC11/DMR11 Interprocessor Link 6-5

If the physical link has gone down, the driver immediately returns the error
?Device hung or write locked (ERR=14). As with the GET statement, the only
recourse is to close the channel.

The PUT statement queues messages to the DMC11/DMR11 to be sent as soon
as possible. Your program is not normally notified when the actual message
transmission is done, nor whether it is ever done (in case of a physical link
failure). You can modify this action by using the RECORD option of the PUT
statement. A RECORD value of 0 (or omitting the RECORD option) tells the
monitor to queue the data for transmission, and the program immediately
continues processing. RECORD 8192% tells the monitor to stall the job until all
pending transmissions have completed successfully (in which case the program
continues processing normally) or until a DMC11/DMR11 error occurs (in which
case the program receives error 14). RECORD 16384%+n%, where n% is a
number between 0 and 255, causes the monitor to put the job to sleep. It is
awakened by any of the following conditions:

¢ All pending transmissions have completed successfully.

® An error occurs on the DMC11/DMR11.

® A message is received through the local send/receive mechanism.
® A delimiter is typed on one of the job’s keyboards.

¢ The number of logins is set to 1.

¢ N seconds have expired and n is not 0.

If the job is awakened for the second reason, it receives the error ?Device hung
or write locked (ERR=14). If it is awakened for any other reason, it receives no
error and continues processing normally. To find the number of transmissions
still outstanding, use a GET with RECORD 4096% and examine the value in byte
2. Adding the value 4096% to any of the above RECORD values tells the monitor
not to transmit any data, but to do the WAIT operation specified.

6.5 The CLOSE Statement

If a DMC11/DMR11 unit is open by a user on more than one channel, no CLOSE
except the last has any effect. When the last CLOSE is issued, the unit is halted,
any received messages not given to the user are discarded, any messages queued
for transmission but not transmitted are discarded, and all buffers are returned to
the monitor. It is normally good practice to issue a PUT statement with RECORD
4096%+8192% to wait for all transmissions to complete before executing a CLOSE
statement. The CLOSE call cannot fail. When the CLOSE statement is executed
on a DMC/DMR with an autoanswer/autodial phone connection, the DTR (Data
Terminal Ready) modem control signal is automatically dropped to disable data
transmission.

6.6 Hardware Errors

Any fatal error detected by the DMC11/DMR11 (that is, any error not listed as
nonfatal in the count and status description) causes the monitor to shut down the
link. The monitor reports the error ?Device hung or write locked (ERR =14) to
your job on all subsequent PUT operations and on any GET operations after all
queued messages have been received. (GET operations with RECORD 4096% are
always legal, whether or not the unit is running.)

6-6 DMC11/DMR11 Interprocessor Link

Chapter 7

Ethernet Operations

This chapter presents an overview of Ethernet and describes how to use its local
area networking features on RSTS/E with BASIC-PLUS or BASIC-PLUS-2. Some
special functions work only through MACRO-11 programs. You can use Ethernet
without these functions, but they can greatly increase an application’s flexibility
and its ability to monitor the network. For descriptions of these special functions,
see the RSTS/E System Directives Manual, under the .SPEC listing for Ethernet.

7.1 Ethernet Concepts

Ethernet consists of a single coaxial cable that connects computers, terminals,
and other devices within a limited geographic area. All nodes on an Ethernet
have equal access to the interconnecting cable. Ethernet’s access method is called
"Carrier-Sense, Multiple-Access with Collision Detect" (CSMA/CD). These terms
mean:

¢ Carrier Sense—Each node checks the cable before it sends a message or data
packet. If another node is transmitting, the first node delays transmission
until the cable is no longer busy.

e Multiple Access—All nodes are on the same coaxial cable, and all the nodes
can hear all message or data packets sent on the Ethernet. The intended
recipient nodes recognize incoming packets by addresses which are specified
within the packets.

¢ Collision Detect—If two or more nodes send packets at the same time, their
signals collide. Each node hears such collisions, then waits before sending a
packet again.

To use Ethernet, you only need four BASIC statements: OPEN, CLOSE, GET,
and PUT. See the section Commands for Ethernet for full descriptions of these
functions. You may also wish to use the special Ethernet .SPEC functions that
have been added to MACRO-11. See the RSTS/E System Directives Manual for
full descriptions.

7.1.1 The Conversation Analogy

In many ways, Ethernet resembles ordinary conversation at a social gathering.
To be polite, you do not speak while someone else is talking; you listen before you
speak. This resembles the carrier-sense feature of Ethernet; each node makes
sure the cable is clear before sending any information.

Ethernet Operations 7-1

In a conversation, anyone may begin to talk once they determine that no one else
is talking. (Compare this to a lecture, where only one person talks.) This equal
right to speak resembles the multiple-access feature of Ethernet; many nodes can
use the same cable.

If two people start to talk at the same time, they note the fact and stop talk-
ing (that is, each listens while talking and stops if interfering with someone
else). This resembles the collision-detect feature of Ethernet; if two nodes start
transmitting at the same time, both nodes detect this and stop.

When the two people stop talking, they wait and start over again. On Ethernet,
this situation is called backoff and retransmission; a delay before retransmission
will eventually clear the collision situation.

There is another useful analogy between Ethernet and a social event. When
someone at the party talks, everyone (usually) can hear what is being said. Some
of what is said is intended for everyone, some is intended for a smaller group (for
example, everyone over 21), and some is intended for an individual. Likewise,
nodes on an Ethernet can hear every message. Some messages are intended for
all nodes (broadcast address), some are intended for a subset (multicast address),
and some are intended for individual stations (physical address).

7.1.2 Ethernet and DECnet/E

DECnet/E is a Digital product using the Ethernet data link layer and Ethernet
physical link layer to communicate. It uses the Digital Network Architecture
for network control. In order to increase the flexibility of Ethernet on RSTS/E,
Digital has provided a direct interface to the Ethernet data link layer for RSTS
/E users. This interface resembles the interface provided for the DMC/DMR
communications devices, and can be programmed with or without DECnet/E on
the system.

If DECnet/E is on the system, you should start it before any other jobs are
allowed to perform OPENSs to the Ethernet devices.

7.1.3 Ethernet Terms

To make Ethernet easier to use, you should become familiar with these terms:
* Physical layer

¢ Channel, controller, and data link layer

* Protocol type and portal

¢ Counters

¢ Physical addressing and hardware addressing

¢ Multicast addressing

7.1.3.1 Physical Layer

Digital Equipment Corporation, Intel Corporation, and Xerox Corporation collab-
orated in producing the Ethernet specification to develop a variety of local area
network products. Digital’s implementation of the Ethernet specification consists
of the lowest two levels of the overall DNA specification—the physical layer and
the data link layer.

7-2 Ethernet Operations

The physical layer of Ethernet is a bus in the shape of a branching tree. The
medium is a shielded coaxial cable using Manchester-encoded, digital signaling.
Each Ethernet can support up to 1023 nodes. The maximum length of the cable
is 2.8 kilometers (1.74 miles).

7.1.3.2 Channel, Controller, and Data Link Layer

Each Ethernet has one channel. The channel is made up of the physical cable
connecting the nodes, together with the nodes’ controllers. A controller is a RSTS
/E device connected directly to the cable. Each node has one or two controllers
connecting to the Ethernet. The controllers and their device drivers make up the
Ethernet data link layer. Controllers come in four types:

e DELUA, a UNIBUS controller (called UNA in DECnet, XE: in RSTS/E)

e DEUNA, an older UNIBUS controller (called UNA in DECnet, XE: in RSTS
/E)

e DELQA, a Q-Bus controller (called QNA in DECnet, XH: in RSTS/E)
e DEQNA, an older Q-Bus controller (called QNA in DECnet, XH: in RSTS/E)

7.1.3.3 Protocol Type and Portal

All incoming Ethernet messages have a protocol type, an identifying string
near the beginning, that identifies the proper portal to receive the message (for
instance, the DECnet/E portal). The portal is the logical access from the user
software to the channel.

7.1.3.4 Counters

The Ethernet controller keeps records of link performance called the counters.
For example, the counters record the number of times the controller had to
throw away a packet because it ran out of buffer space. Use the counters to
find problems and fine-tune the system. For example, if the counters show the
controller throws away packets too often, you should give the controller more
buffers, or read from it more often.

There are two kinds of counters, circuit counters and line counters. A circuit
counter monitors a single portal. A line counter monitors the whole channel. You
cannot work with counters through BASIC programs; you must use MACRO-11.

7.1.3.5 Physical Addressing

You address nodes on Ethernet lines by their Ethernet physical addresses.
Because the Ethernet is a multiaccess broadcast device, all nodes connected

to an Ethernet line are equally accessible. Therefore, each node on an Ethernet
is assigned a unique Ethernet physical address which is set by the controller soft-
ware at the node, or is set to a default value at the factory. This default physical
address is the hardware address. Xerox Corporation assigns a block of hardware
addresses for Digital to use with its DEUNA, DELUA, and DEQNA Ethernet
controllers. One address from the assigned block is permanently associated with
each controller in read only memory.

Ethernet addresses are represented by six pairs of hexadecimal numbers sepa-
rated by hyphens, 08-00-2B-06-06-90 for example.

Ethernet Operations 7-3

7.1.3.5.1

DECnet/E on Ethernet

If you have DECnet/E, the controller software sets the physical address to be
within an assigned block of addresses when the node is powered up. The con-
troller constructs the physical address by appending a hexadecimal number to
the constant hexadecimal number AA-00-04-00. The controller software uses the
node address (area-number.node-number) to construct the last two pairs of hex-
adecimal numbers it appends to the constant, D7-0C for example. In this case,
the physical address is AA-00-04-00-D7-0C.

NOTE

The system manager must start DECnet/E before any user portals
open. Once a portal opens, no users can modify the controller’s charac-
teristics.

7.1.3.6

Multicast Addressing

Use multicast address to send messages to more than one node. A multicast
address can be:

® A multicast group address, which is an address assigned to any number of
nodes. Use the group address to send a message to all nodes in the group
with a single transmission.

® The broadcast address, which is a single address, the hexadecimal number
FF-FF-FF-FF-FF-FF. Use a broadcast address to transmit a message to all
nodes on a given Ethernet.

NOTE

The use of the broadcast address on Ethernet severely burdens the
network resources. Digital does not recommend using a broadcast
address on a heavily populated Ethernet.

7.1.4 Ethernet Addresses

Certain Ethernet addresses and ranges of addresses have specialized functions.
Digital physical addresses are in the range:

AA-00-00-00-00-00 through AA-00-04-FF-FF-FF

Multicast addresses assigned for use in cross-company communications are:

Value Meaning
FF-FF-FF-FF-FF-FF Broadcast
CF-00-00-00-00-00 Loopback assistance

Digital multicast addresses assigned to be received by other Digital nodes on the
same Ethernet are:

Value Meaning
AB-00-00-01-00-00 Dump/load assistance
AB-00-00-02-00-00 Remote console
AB-00-00-03-00-00 All phase IV routers
AB-00-00-04-00-00 All phase IV end nodes

7-4 Ethernet Operations

AB-00-00-05-00-00 Reserved for future use
through
AB-00-03-FF-FF-FF

AB-00-04-00-00-00 For use by Digital customers for their own applications
through
AB-00-04-FF-FF-FF

7.2 Commands for Ethernet

You can use the following BASIC statements on the Ethernet:

e OPEN
¢ CLOSE
e GET

e PUT

In addition, only the Ethernet controllers use the following special functions:
* Set New Physical Address

* Enable Multicast Addresses

® Get Circuit Counters

¢ Get Line Counters

* Transfer Circuit Counters

®* Transfer Line Counters

Programs written in BASIC-PLUS and BASIC-PLUS-2 can use the OPEN,
CLOSE, GET, and PUT statements to operate the Ethernet interface. To use the
special functions, you must use MACRO-11 programs. See the RSTS/E System
Directives Manual, the .SPEC listings for Ethernet.

7.2.1 OPEN

Example Open statement:

OPEN "XEO:/PO:1600" AS FILE #1, CLUSTERSIZE 4, RECORDSIZE 512%+6%+6%+2%+2%
* XEO specifies Ethernet controller 0

¢ /PO0O:1600 specifies protocol type 1600. This is the position modifier.

* FILE #1 specifies RSTS/E channel 1.

e CLUSTERSIZE 4 specifies four system receive buffers. You cannot specify
more than 127. Digital does not recommend specifying more than 10.

* RECORDSIZE 512%+6%+6%+2%+2% specifies 512 bytes for the size of the
I/0 buffer, with 6 bytes each for the source and destination addresses, 2 bytes
each for the portal protocol type and the Ethernet length field.

°* MODE 0% is the default and so was not written in the example. 0% defines
the portal as using a "padded" protocol. Use MODE 128% for an "unpadded"
protocol. (See below for descriptions of padded and unpadded protocols.)

Ethernet Operations 7-5

The format of the OPEN statement for Ethernet is:

OPEN "XEa:/PO:b" AS FILE #c, CLUSTERSIZE d,
RECORDSIZE e%+6%+6%+2%+2%, MODE f£%

where a, b, ¢, d, e, and f are the variables described in the preceding example.

Use the OPEN statement to open a portal on a given Ethernet controller. The
OPEN statement also lets you allocate receive buffers and set the portal protocol
type.

After the OPEN statement, the portal receives incoming messages for the
specified protocol type at the physical address of the controller.

NOTE

If you intend to use DECnet/E, be sure you start DECnet/E before you
issue any OPEN statements for users. Since DECnet/E has to modify
the node’s physical address before it can start, it must be the first
portal opened on a channel.

Possible Errors

Meaning "ERR Value
?NO BUFFER SPACE AVAILABLE 32

There are not enough buffers available in the small buffer pool
to create the portal’s data structures, or the extended buffer
pool (XBUF) is too small or fragmented to allocate the requested
number of system receive buffers.

?ACCOUNT OR DEVICE IN USE 3

The protocol type requested is already open on the channel.

?DEVICE HUNG OR WRITELOCKED 14

The controller is disabled or inoperative.

Note the following restrictions:

° Each portal supports only one protocol type. On OPEN, the protocol for the
portal is defined. You can enable multiple protocol types by opening several
different portals on different RSTS/E channels.

® You cannot open the same protocol type on two portals on the same channel.

¢ The Ethernet controller physical address is not available to ahyone above the
data link layer.

7.2.1.1 Padded and Unpadded Protocols

Protocols may be padded or unpadded. When you issue an OPEN statement, you
must decide whether to do the following send and receive operations in padded
or unpadded mode. Specify MODE 0% for a padded protocol, MODE 128% for
unpadded. Padded is the default. It is easier to use but takes up more space.

In the padded mode, the data link layer automatically fills in the length field

of the receive buffer and makes sure the message is long enough to be put on
Ethernet, using the length field of the packet. It also uses the length field of
incoming packets. In the unpadded mode, the data link layer leaves the length
field blank and leaves it to you to make sure you have the minimum length of 60
bytes.

7-6 Ethernet Operations

7.2.1.2 System Receive Buffers

Since a user job may not be in memory when a message for it arrives on the
Ethernet, RSTS/E lets you allocate system receive buffers to hold messages until
the job can pick them up (using GET statements). Allocate these system receive
buffers using the CLUSTERSIZE parameter on the OPEN statement.

Under the current version of RSTS/E, each system receive buffer is 632 bytes
long. Every message received for the portal uses at least one buffer, and long
messages may use as many as three of these system receive buffers, depending on
their length.

RSTS/E keeps careful count of available system receive buffers for each portal.
When a message comes in for a portal and there are not enough system buffers
available to the portal, RSTS/E discards the message. When the user next issues
a GET command, it returns ERROR 13 (?Data Error on Device), meaning that at
least one message was dropped by RSTS/E due to a shortage of system receive
buffers.

On a normal GET command, the system copies a message (of one or more system
receive buffers) into the buffers in the user program. Once this copy is complete,
the system receive buffers are once again available to receive incoming messages.

Digital does not recommend allocating more than 10 system receive buffers to
a portal. Digital also recommends that user portals do not routinely handle
messages which are larger than can fit into one system receive buffer.

7.2.2 CLOSE

Example CLOSE statement:
CLOSE #1%

® #1% specifies the device open on RSTS/E channel 1 as the device with the
portal to close. The format to close any channel n is:

CLOSE #n%

Use the CLOSE statement to close the portal on a given Ethernet controller.
RSTS/E closes the portal on the data link side and frees all the system resources
reserved for it for other system processes. The CLOSE statement requires no
parameters and returns no errors.

7.23 GET

Example GET statement:
GET #1% &, RECORD 0%

* #1% & specifies the device on RSTS/E channel 1 as the device with the portal
to read from.

¢ RECORD 0% specifies that the GET operation should not be stalled. If there
are new messages waiting, the GET operation returns the first one. If not,
the GET fails with the error message ERR 5 (?Can’t find file or account).

Users can also use RECORD 8192% to specify a stall for the GET. With a
stall, the GET returns the first message, if there are any messages waiting.
Otherwise, it stalls the job in an XE state, waiting for an Ethernet message
addressed to the portal. Users can interrupt this stalled GET with Ctrl/C, in
case nothing comes over the Ethernet.

Ethernet Operations 7-7

The format for any channel a, stalled or not according to the value of b, is:
GET #a% &, RECORD b%

Use the GET statement to read data from a portal previously opened on the
channel. If the portal was OPENed in padded mode, then the first 16 bytes
are header information, including the length field. If the portal was OPENed
in unpadded mode, only the first 14 bytes are header information, followed
immediately by message data.

The amount of data read depends on the device and the size of the buffer area, as
defined in the XRB. The number of bytes transferred is always less than or equal
to the buffer size. The actual number of bytes read is returned in the XRB when

the directive is complete.

The receive buffer, which must start on a word boundary, contains the following
fields upon completion of a GET:

DESTINATION ADDRESS FIELD

6 bytes

SOURCE ADDRESS FIELD

6 bytes

PROTOCOL TYPE FIELD

2 bytes
LENGTH FIELD ~— (Unless you specify a
2 bytes "no padding” portal on
OPEN)
DATA
46 - 1500 bytes
Possible Errors
Meaning ERR Value
?MAGTAPE RECORD LENGTH ERROR 40
Message truncated to fit.
?DATA ERROR ON DEVICE 13
Lost packets (user buffer unavailable).
?CAN'T FIND FILE OR ACCOUNT 5

For no stall GETs, when no messages are pending.

7-8 Ethernet Operations

7.24 PUT

Example PUT statement:

PUT #1%, COUNT 6%+6%+2%+2%+LEN (D$)

* #1% specifies the device on RSTS/E channel 1 as the device with the portal to

write to.

¢ COUNT 6%+6%+2%+2%+LEN(D$) specifies 6 bytes each for the source
and destination addresses, 2 bytes each for the portal protocol type and the
Ethernet length field, and LEN(D$) for the length of the user string to send
(that is, the data to be sent is in buffer D$).

The format for any channel a, field length b, is:

PUT #a%, COUNT 6%+6%+2%+2%+b

Use the PUT statement to send information through the data link layer to
another node. In padded mode, the data link layer fills in the length bytes with
the length of the data sent. The data link layer always makes sure the transmit
packet is between 60 and 1514 bytes long, and will fill in the source address and
protocol type, using the type passed in the OPEN statement.

The PUT statement expects you to PUT a buffer in the following format, provid-
ing for space for the following information in addition to the actual data to be

transferred:

DESTINATION ADDRESS FIELD

6 bytes
Specified by User

SOURCE ADDRESS FIELD

6 bytes
Filled in by the
data link layer
(RESERVED)

PROTOCOL TYPE
2 bytes

Filled in by the
data link layer
(RESERVED)

LENGTH
2 bytes

Filled in by the
data link layer

DATA

46 - 1500 bytes

Specifies the address
of the machine that
will receive the message.

Specifies the address
of the originating
node (you).

Specifies the portal
that you expect will
receive the message.
Specified during OPEN.

Specifies the length of
the message.

This field is present only
for padded protocols.

Contains the
message’s data.

Note the following requirements and restrictions:

e The total buffer size must be between 60 and 1514 bytes in length.

¢ The buffer must start on a word boundary, but can contain an even or odd

number of bytes.

Ethernet Operations 7-9

® The user specifies the destination address field.

® The data link layer always specifies the source address field, which is reserved
for Digital use.

¢ The data link layer also specifies the protocol type, which is reserved for
Digital use.

o If the protocol is a padded protocol, then the data link layer fills in the length
field as calculated from the information passed in the XRBC.

Possible Errors

Meaning ERR Value
?ILLEGAL BYTE COUNT FOR /O 31
The count is not between 60 and 1514 bytes, or starts on an odd
address.
?DATA ERROR ON DEVICE 13

The device is disabled or inoperative.

?DEVICE HUNG OR WRITE LOCKED 14

The controller is disabled or inoperative.

7.2.5 Special Ethernet Functions

MACRO-11 provides the following functions to give greater flexibility in using
and monitoring the Ethernet. These functions are not available in BASIC. See
the RSTS/E System Directives Manual under .SPECs for Ethernet for more

information.

7.2.5.1 Set New Physical Address

Use the Set New Physical Address function to change the physical address of the
Ethernet controller. It is a .SPEC function and requires too many parameters to
call using BASIC-PLUS or BASIC-PLUS-2. Use MACRO-11.

7.2.5.2 Enable Multicast Addresses
Use the Enable Multicast Addresses function to let the portal receive multicast
messages. This is a device dependent .SPEC function. The XRB contains pointers
identifying the User Multicast Address Buffer. RSTS/E allows a maximum of five
multicast addresses per portal on an Ethernet channel.

This is a .SPEC function and requires too many parameters to call using BASIC-
PLUS or BASIC-PLUS-2. Use MACRO-11.

7.2.5.3 Get Circuit Counters and Get Line Counters

Use the Get Counters functions to bring the counters up to date. The controllers
maintain counters in several places. You must tell the data link layer when you
want to collect them. The controllers update line or circuit counters only when
you issue the call.

These are .SPEC functions and require too many parameters to call using BASIC-
PLUS or BASIC-PLUS-2. Use MACRO-11.

7-10 Ethernet Operations

7.2.5.4 Transfer Circuit Counters and Transfer Line Counters

Use the Transfer Counter functions to read the counter information from the data
link layer to the user space once you have updated the information with the Get
Counters function.

These are .SPEC functions and require too many parameters to call using BASIC-
PLUS or BASIC-PLUS-2. Use MACRO-11.

Ethernet Operations 7-11

Partll
System Function Calls and Programming Hints

Chapter 8

SYS System Function Calls

This chapter describes the system function calls, also known as SYS calls.
System function calls let you perform many special functions, such as:

e Establish special character:stics for a job
e Perform special I/O functions

¢ Set terminal characteristics

* Modify account characteristics

¢ Manipulate account privilege information

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The
FIP code causes a dispatch call to be made to special resident or nonresident code
that performs file processing. The subfunctions of SYS call 6 are called FIP calls.
Because programmers generally use FIP calls more frequently than the SYS
calls, the FIP calls are also commonly referred to as SYS calls. This chapter also
uses SYS call as the preferred term.

The calls described in this chapter are organized as follows:

e SYS system function calls (F=0 to F=14). The calls are arranged in ascending
numerical order. Tables 8-1 and 8-2 summarize these calls.

¢ SYS system function calls to FIP (F0=-29 to F0=34). With two exceptions,
the calls are arranged in ascending numerical order. Tables 8-3 and 8-4
summarize these calls.

¢ The PEEK function. This function lets a user who has RDMEM privilege
examine any word location in the monitor part of memory.

8.1 SYS System Function Calls

SYS system function calls let you perform special I/O functions, establish special
characteristics for a job, set terminal characteristics, and cause the monitor to
execute special operations.

The SYS call format is used for two reasons. First, the calls are unique to the
RSTS/E implementation of the BASIC-PLUS language. As such, the calls are
system-dependent and have calling formats different from any BASIC-PLUS
language call. Second, the SYS format allows the use of a variable number of
parameters.

SYS System Function Calls 8-1

Some SYS calls provide one set of functions to a nonprivileged user, while
providing the privileged user with a more powerful set. To find out what
privileges are associated with each call, see Tables 8-1 through 8-4, as well as the
individual description of each SYS call.

If you are not sure what privileges your account has, use the SHOW JOB
/PRIVILEGES command to list them. If you have more privileges than you
need to use a certain call and want to temporarily disable them, use the SET
JOB/PRIVILEGES command. The DCL commands associated with privileges are
described in the RSTS/E System User’s Guide.

The first part of Chapter 8 describes all system function calls with function codes
other than 6. The second part of Chapter 8 describes system function calls to the
file processor (FIP calls). These calls are associated with system function call 6.

8.1.1 SYS System Function Formats and Codes

The general format of the SYS call is:
V$ = SYS(CHR$(F%) + 0$)

where:

v$ is the data (target) string returned by the call.

F% is the SYS system function code.

0$ is the optional (by function code) parameter string passed by the call.

F% in the general format denotes function codes that range from 0 through

14, inclusive. SYS calls that specify a code outside of this range or that pass a
zero length string generate the error ?Illegal SYS() usage (ERR=18). Table 8-1,
organized by code number, summarizes the codes and their functions. Table 8-2,
organized alphabetically by function name, provides the same information.

The SYS call whose function code is 6 is a more specialized case of the general
system function call. It is specialized by a subfunction code called the file
processor (FIP) code. The FIP code causes a dispatch call to be made to special
code that performs file processing.

The format of the call is:
V$ = SYS(CHR$(6%) + CHR$(F0%) + 0%)

where:

v$ is the data (target) string returned by the call.

F0% is the FIP subfunction code.

0$ is the optional (by function code) parameter string passed by the call.

The section "SYS System Function Calls to FIP" describes the purpose, calling
format, and use of each FIP system function call (F=6). It also describes how to
build the parameter string to pass to the monitor and how to extract data from
the returned string.

Table 8-3 in this section is a quick reference index of the FIP functions in order
of FIP code (F0). Table 8—4 provides the same information, but is arranged al-
phabetically by function name. For detailed information on each of the functions,
refer to the page shown beside the name in the table.

8-2 SYS System Function Calls

In Tables 8-1 through 8-4, the Relevant Privileges column lists the privileges
associated with each SYS call. A user who attempts to call a SYS function
without sufficient privilege receives the error ?Illegal SYS() usage (ERR=18)

or the error ?Protection violation (ERR=10). To avoid repetition, this chapter
describes error 18 for calls only if it has a meaning different from nonprivileged

attempts to use the call.

Table 8—1: SYS System Function Calls (by Function Code)

Function Relevant

Code(F) Function Name Privileges Page
0 Cancel Ctrl/O effect on terminal None 8-12
1 Enter tape mode on terminal None 8-12
2 Enable echoing on terminal None 8-13
3 Disable echoing on terminal None 8-13
4 Enable ODT submode on terminal None 8-14
5 Exit with no prompt message None 8-15
6 SYS call to the file processor See individual 8-15

FIP call

7 Get core common string None 8-16
8 Put core common string None 8-16
9 Exit and clear program None 8-16

10 Reserved for special implementations - -

11 Cancel all type ahead None 8-17

12 Return information on last opened file None 8-18

13 Reserved for special implementations - -

14 Execute CCL command Execute access 8-19

to file

Table 8-2: SYS System Function Calls (by Function Name)

Function Relevant
Function Name Code(F) Privileges Page
Cancel all type ahead 11 None 8-17
Cancel Ctrl/O effect on terminal 0 None 8-12
Disable echoing on terminal 3 None 8-13
Enable echoing on terminal 2 None 8-13
Enable ODT submode on terminal 4 None 8-14
Enter tape mode on terminal 1 None 8-12
Execute CCL command 14 Execute access 8-19
to file
Exit and clear program 9 None 8-16
Exit with no prompt message 5 None 8-15
Get core common string 8 None 8-16
Put core common string 8 None 8-16

(continued on next page)

SYS System Function Calls 8-3

Table 8-2 (Cont.): SYS System Function Calls (by Function Name)

Function Relevant
Function Name Code(F) Privileges Page
Reserved for special implementations 10 - -
Reserved for special implementations 13 - -
Return information on last opened file 12 None 8-18
SYS call to the file processor 6 See individual 8-15

FIP call

Table 8-3: FIP SYS Calls (by Subfunction Code)

Function
Code(FO) Function Name Relevant Privileges Page
-29 Get monitor tables - part III None 8-35
-28 Spooling (Obsolete, use PBS request) Read access 8-37
Write access
-27 Snap shot dump SYSIO 8-41
-26 File utility functions Read access 8-41
Write access
DATES
TUNE
SYSIO
-25 Read/write file attributes Read access 8-48
Write access
-25 Read pack attributes DEVICE 8-50
-25 Read/write account attributes GACNT 8-51
WACNT
-25 Delete account attributes GACNT 8-57
WACNT
-24 Add/delete CCL command INSTAL 8-57
-23 Terminating file name string scan None 8-27
-22 Set special run priority TUNE 8-59
-21 Drop/regain (temporary) privileges None 8-60
-20 Lock/unlock job in memory TUNE 8-61
-19 Set number of logins 'SWCTL 8-62
-18 Add run-time system INSTAL 8-63
-18 Remove run-time system INSTAL 8-65
-18 Unload run-time system INSTAL 8-66
-18 Add resident library INSTAL 8-67
-18 Remove resident library INSTAL 8-70
-18 Unload resident library INSTAL 8-71
-18 Create dynamic region INSTAL 8-71
-18 Create/Delete virtual disk INSTAL 8-74
HWCFG

8-4 SYS System Function Calls

(continued on next page)

Table 8-3 (Cont.):

FIP SYS Calis (by Subfunction Code)

Function 3
Code(FO) Function Name Relevant Privileges Page
-17 Name run-time system Write access 8-75
-16 Shut down system SHUTUP 8-76
-15 Accounting dump GACNT 8-717
WACNT
-14 Change system date/time DATES 8-78
-13 Change priority/run burst/job size TUNE 8-78
-12 Get monitor tables - part II None 8-80
-11 Change file backup statistics DATES 8-81
-10 File name string scan None 8-27
-9 Hang up a dataset HWCTL 8-83
-8 Get open channel statistics None 8-84
-7 Enable Ctrl/C trap None 8-86
-6 Poke memory SYSMOD 8-88
-5 Broadcast to terminal SEND 8-88
-4 Force input to terminal SYSIO 8-89
-3 Get monitor tables - part I None 8-90
-2 Disable logins SWCTL 8-92
-1 Enable logins SWCTL 8-92
0 Create user account (new format) GACNT 8-93
WACNT
0 Create user account (old format) GACNT 8-96
WACNT
1 Delete user account GACNT 8-1
WACNT
Reserved - -
Disk pack status MOUNT 8-100
HWCFG
4 Login None 8-104
4 Verify password DEVICE 8-104
GACNT
WACNT
5 Logout EXQTA 8-106
WACNT
6 Attach GACNT 8-108
WACNT
6 Reattach DEVICE 8-111
6 Swap Console None 8-112
7 Detach JOBCTL 8-113
8 Change quota (old format)/expiration date/password GACNT 8-114

(old format)

WACNT

(continued on next page)

SYS System Function Calls 8-5

Table 8-3 (Cont.):

FIP SYS Calls (by Subfunction Code)

Function
Code(FO) Function Name Relevant Privileges Page
8 Change quota (new format)/expiration GACNT 8-115
date/password (old format) WACNT
8 Set password (new format) GACNT 8-118
WACNT
8 Kill job JOBCTL 8-119
8 Disable terminal HWCTL 8-120
9 Return error messages None 8-121
10 Allocate/reallocate device DEVICE 8-122
HWCTL
10 Assign user logical None 8-124
10 List user logical names None 8-125
11 Deallocate a device or deassign user logical None 8-126
12 Deallocate all devices None 8-127
13 Zero a device DEVICE 8-128
Create/rename access to
account
14 Read/read and reset accounting data GACNT 8-130
WACNT
15 Directory lookup on index DEVICE 8-136
Read or execute access
15 Special magnetic tape directory lookup DEVICE 8-137
16 Set terminal characteristics - part I HWCFG 8-143
16 Set terminal characteristics - part II HWCFG 8-152
17 Disk directory lookup on file name DEVICE 8-139
Read or execute access
17 Disk wildcard directory lookup DEVICE 8-141
Read or execute access
18 Obsolete (use function code 22) - -
19 Enable/disable disk caching TUNE 8-158
20 Convert date and time None 8-160
21 Add new logical names INSTAL 8-162
21 Remove logical names INSTAL 8-164
21 Change disk logical name INSTAL 8-165
21 List logical names None 8-166
22 Message send/receive JOBCTL 8-166
SEND
SWCFG
SWCTL
SYSIO
22 Send local data message with privileges SEND Ch. 10
22 Send Print/Batch Services request None Ch. 10
22 Create and delete a local LAT port SWCTL 8-169

8-6 SYS System Function Calls

(continued on next page)

Table 8-3 (Cont.):

FIP SYS Calis (by Subfunction Code)

Function
Code(FO) Function Name Relevant Privileges Page
22 Assign, deassign, and set local LAT ports SWCFG 8-171
22 Return LAT port characteristics None 8-176
23 Add system files Write access 8-181
INSTAL
23 Remove system files Write access 8-183
INSTAL
23 List system files None 8-184
24 Create a job Execute access 8-186
EXQTA
JOBCTL
TUNE
WACNT
25 Wildcard PPN lookup DEVICE 8-191
26 Return job status JOBCTL 8-192
TUNE
27 Reserved - -
28 Set/clear current privileges None 8-194
28 Read current privileges None 8-194
29 Stall/Unstall system HWCTL 8-196
30 Reserved - -
31 Third-party privilege check None 8-198
32 Check file access rights None 8-198
32 Convert privilege name to mask None 8-199
32 Convert privilege mask to name None 8-200
33 Open next disk file DEVICE 8-201
Read access
Write access
DATES
34 Set device characteristics HWCFG 8-204
HWCTL
34 Set line printer characteristics HWCFG 8-206
34 Set system defaults HWCFG 8-208
SWCFG
34 Load monitor overlay code and return sta- SWCFG 8-209
tus/remove monitor overlay code
- PEEK function RDMEM 8-214
SYSMOD

SYS System Function Calls 8-7

Table 8-4: FIP SYS Calis (by Function Name)

Function
Function Name Code(FO) Relevant Privileges Page
Accounting dump -15 GACNT 8-169
WACNT
Add/delete CCL command -24 INSTAL 8-57
Add new logical names 21 INSTAL 8-162
Add system files 23 Write access 8-181
INSTAL
Add resident library -18 INSTAL 8-67
Add run-time system -18 INSTAL 8-63
Allocate/reallocate device 10 DEVICE 8-122
HWCTL
Assign a local LAT port 22 SWCFG 8-171
Assign user logical 10 None 8-124
Attach 6 GACNT 8-108
WACNT
Broadcast to terminal -5 SEND 8-88
Change disk logical name 21 INSTAL 8-165
Change file backup statistics -11 DATES 8-81
Change quota/expiration date/password 8 GACNT 8-115
WACNT
Change priorify/run burst/job size -13 TUNE 8-78
Change system date/time -14 DATES 8-78
Check file access rights 32 None 8-198
Convert date and time 20 None 8-160
Convert privilege mask to name 32 None 8-200
Convert privilege name to mask 32 None 8-199
Create a job 24 Execute access 8-186
EXQTA
JOBCTL
TUNE
WACNT
Create dynamic region -18 INSTAL 8-71
Create a local LAT port 22 SWCTL 8-169
Create user account (new format) 0 GACNT 8-93
WACNT
Create user account (old format) 0 GACNT 8-96
WACNT
Deallocate all devices 12 None 8-127
Deallocate a device or deassign user logical 11 None 8-126
Deassign a local LAT port 22 SWCFG 8-171
Delete account attributes -25 GACNT 8-57
WACNT
Delete a local LAT port 22 SWCTL 8-169

8-8 SYS System Function Calis

(continued on next page)

Table 8-4 (Cont.): FIP SYS Calls (by Function Name)

Function
Function Name Code(FO) Relevant Privileges Page
Delete user account 1 GACNT 8-99
WACNT
Detach 7 JOBCTL 8-113
Directory lookup on index 15 DEVICE 8-136
Read or execute access
Disable logins -2 SWCTL 8-92
Disable terminal 8 HWCTL 8-120
Disk directory lookup on file name 17 DEVICE 8-139
Read or execute access
Disk pack status 3 MOUNT 8-100
HWCFG
Disk wildcard directory lookup 17 DEVICE 8-141
Read or execute access
Drop/regain (temporary) privileges -21 None 8-60
Enable Ctrl/C trap -7 None 8-86
Enable logins -1 SWCTL 8-92
Enable/disable disk caching 19 TUNE 8-158
File name string scan -10 None 8-27
File utility functions -26 Read access 8-41
Write access
DATES
TUNE
SYSIO
Force input to terminal -4 SYSIO 8-89
Get monitor tables - part I -3 None 8-90
Get monitor tables - part II -12 None 8-80
Get. monitor tables - part III -29 None 8-35
Get open channel statistics -8 None 8-84
Hang up a dataset -9 HWCTL 8-83
Kill job 8 JOBCTL 8-119
Return local LAT port characteristics 22 None 8-176
List logical names 21 None 8-166
List user logical names 10 None 8-125
List system files 23 None 8-184
Load monitor overlay code and return status 34 SWCFG 8-209
Lock/unlock job in memory -20 TUNE 8-61
Login 4 None 8-104
Logout 5 EXQTA 8-106
WACNT

(continued on next page)

SYS System Function Calls 8-9

Table 8-4 (Cont.): FIP SYS Calls (by Function Name)

Function
Function Name Code(FO) Relevant Privileges Page
Message send/receive 22 JOBCTL 8-166
SEND
SWCFG
SWCTL
SYSIO
Name run-time system -17 Write access 8-75
Open next disk file 33 DEVICE 8-201
Read access
Write access
DATES
PEEK function - RDMEM 8-214
SYSMOD
Poke memory -6 SYSMOD 8-88
Read current privileges 28 None 8-194
Read pack attributes -25 DEVICE 8-50
Read/read and reset accounting data 14 GACNT 8-130
WACNT
Read/write account attributes -25 GACNT 8-51
WACNT
Read/write file attributes -25 Read access 8-48
Write access
Reattach 6 DEVICE 8-111
Remove logical names 21 INSTAL 8-164
Remove monitor overlay code 34 SWCFG 8-209
Remove resident library -18 INSTAL 8-70
Remove run-time system -18 INSTAL 8-65
Remove system files 23 Write access 8-183
INSTAL
Return error messages 9 None 8-121
Return job status 26 JOBCTL 8-192
TUNE
Send local data message with privileges 22 SEND Ch. 10
Send Print/Batch Services request 22 None Ch. 10
Set/clear current privileges 28 None 8-194
Set device characteristics 34 HWCFG 8-204
HWCTL
Set local LAT port characteristics 22 SWCFG 8-171
Set line printer characteristics 34 HWCFG 8-206
Set system defaults 34 HWCFG 8-208
SWCFG
Set number of logins -19 SWCTL 8-62
Set password 8 GACNT 8-118
WACNT

8-10 SYS System Function Calls

(continued on next page)

Table 8-4 (Cont.): FIP SYS Calis (by Function Name)

Function

Function Name Code(FO) Relevant Privileges Page
Set special run priority -22 TUNE 8-59
Set terminal characteristics - part I 16 HWCFG 8-143
Set terminal characteristics - part II 16 HWCFG 8-152
Shut down system -16 SHUTUP 8-76
Snap shot dump -27 SYSIO 8-41
Special magnetic tape directory lookup 15 DEVICE 8-137
Spooling (obsolete: use PBS request) -28 Read access 8-37

Write access
Stall/Unstall system 29 HWCTL 8-196
Swap Console 6 None 8-112
Terminating file name string scan -23 None 8-27
Third-party privilege check 31 None 8-198
Unload resident library -18 INSTAL 8-71
Unload run-time system -18 INSTAL 8-66
Verify password 4 DEVICE 8-104

GACNT

WACNT
Wildcard PPN lookup 25 DEVICE 8-191
Zero a device 13 DEVICE 8-128

Create/rename access to

account

8.1.2 Cancel Ctrl/O Effect on Terminal

Data Passed

Bytes Meaning

1 CHR$(0%), the cancel Ctrl/O code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.
If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Cancel Ctrl/O, F=0 8-11

Discussion

This call cancels the effect of a Ctrl/O typed at the specified terminal. The

call selects the terminal open on the channel number you pass in byte 2. (The
terminal must be open on that channel.) If you use a slave terminal, byte 2 must
be a nonzero channel number on which the master terminal is open; byte 3 must
contain the keyboard number of the slave terminal. See the RSTS/E System
User’s Guide for a description of Ctrl/O.

8.1.3 Enter Tape Mode on Terminal

Data Passed

Bytes Meaning

1 CHR$(1%), the enter tape mode code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard

assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None

Discussion

This call is specifically for use with ASR33 terminals that have a low-speed paper
tape reader. The call disables echoing on the terminal and places the terminal
in tape mode so that a program can be read into the system from the low-speed
reader.

The action of this call is the same as that of the TAPE command (see the BASIC-
PLUS Language Manual). The call selects the terminal open on the channel
number you pass in byte 2. (The terminal must be open on that channel.) If you
use a slave terminal, byte 2 must be a nonzero channel number on which the
master terminal is open; byte 3 must contain the keyboard number of the slave
terminal.

Note that Ctrl/C cancels tape mode.

8.1.4 Enable Echoing on Terminal

Data Passed

Bytes Meaning
1 CHR$(2%), the enable echoing code.

8-12 Enable Echoing, F=2

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.
Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

This code cancels the effect of SYS calls with codes 1 and 3. The call selects the
terminal open on the channel number you pass in byte 2. (The terminal must
be open on that channel.) If you use a slave terminal, byte 2 must be a nonzero
channel number on which the master terminal is open; byte 3 must contain the
keyboard number of the slave terminal.

8.1.5 Disable Echoing on Terminal

Data Passed

Bytes Meaning

1 CHR$(3%), the disable echoing code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard

assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Reduired

None.

Discussion

This call prevents the system from echoing information typed at the terminal.
As a result, information such as a password is kept secret but accepted as valid
input by the system. The call selects the terminal open on the channel number
you pass in byte 2. (The terminal must be open on that channel.) If you use a
slave terminal, byte 2 must be a nonzero channel number on which the master
terminal is open; byte 3 must contain the keyboard number of the slave terminal.

Note that Ctrl/C reenables terminal echo.

Disable Echoing, F=3 8-13

8.1.6 Enable ODT Submode on Terminal

Data Passed

Bytes Meaning

1 CHR$(4%), the enable ODT submode code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard

assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

ODT submode allows the system to accept less than a full line as input from the
terminal. Normally, the system waits to accept terminal input until it receives a
line terminated by a delimiting character: carriage return, line feed, form feed,
escape character, or Ctrl/D combination. However, in ODT submode the system
does not wait for a delimiting character. Instead, one or more characters typed at
the terminal are passed immediately to the program by the next keyboard input
request statement. This input mode is called ODT submode because it is used in
the system program ODT.BAS and the debugging routine ODT.OBJ.

You must enable this function before every input request statement that imme-
diately passes characters to the program. You must use a GET statement as
the input request statement. (You must not use INPUT or INPUT LINE state-
ments, because they cause repeated generation of the input request until a line
terminator is detected.)

If a program performs other lengthy operations before it executes either another
SYS call and GET statement or other input/output operation at the terminal, it
allows time for the user to type more than one character. To provide for such

a possibility, the program should examine the system variable RECOUNT after
executing each GET statement. This procedure determines how many characters
the user typed between keyboard input operations and enables the program to
process all the characters without losing any.

The call selects the terminal open on the channel number you pass in byte 2.
(The terminal must be open on that channel.) If you use a slave terminal, byte 2
must be a nonzero channel number on which the master terminal is open; byte 3
must contain the keyboard number of the slave terminal.

8-14 Exit with No Prompt, F=5

8.1.7 Exit with No Prompt Message

Data Passed

Byte Meaning
1 CHR$(5%), the exit with no prompt code.
Data Returned

None.

Privileges Required

None.

Discussion

This type of exit does not clear the program from memory, and thus allows you to
continue running the program. The specific effects are:

¢ Keeps the files open.

® Saves the current program state, which allows you to continue execution.
* Drops temporary privilege.

¢ Does not generate a prompting message.

¢ Has the BASIC-PLUS keyboard monitor wait for a command.

8.1.8 FIP Function Call

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The
FIP code causes a dispatch call to be made to special resident or nonresident code
that performs file processing. The entire class of subfunctions of SYS call 6 are
called FIP calls.

See the section "SYS System Function Calls to FIP" for a description of SYS calls
to the file processor.

8.1.9 Get Common Core String

Data Passed

Byte Meaning
1 CHR$(7%), the get a string from core common code.

Data Returned

The target string is the contents of the job core common area.

Privileges Required

None.

Get Common Core String, F=7 8-15

Discussion

This call allows a program to extract a single string from a data area loaded by
another program previously run by the same job. The data area is called core
common and is from 0 to 127 bytes long. This call does not alter the contents of
the core common area. See SYS call 8, Put Core Common String.

8.1.10 Put Common Core String

Data Passed

Bytes Meaning
1 CHR$(8%), the put string into core common code.

2-128 The string to put in core common.

Data Returned
The target string is the passed string.

Privileges Required

None.

Discussion

This call allows a program to load a single string into a common data area called
core common. Another program running under the same job and called by the
CHAIN statement can extract this string later. The string can be from 0 to 127
bytes long. If the string to be put into the core common area is longer than 127
bytes, the system sets the length of the core common string to 0.

This function provides a way to pass a limited amount of information when a
program executes a CHAIN statement. If you want to pass a larger amount of
information, it must be written to a disk file and read back by the later program.

8.1.11 Exit and Clear Program

Data Passed

Bytes Meaning

1 CHR$(9%), the exit and set up NONAME code.

2-3 The first three characters of the run-time system name, in Radix-50 format, to
which control is to pass. If bytes 2-5 are zero, the call selects your job keyboard
monitor.

4-5 The last three characters of the run-time system name, in Radix—50 format, to

which control is to pass.

6 If you do not specify this byte, the call establishes the run-time system you
name in bytes 4-5 as the job keyboard monitor. Otherwise, CHR$(N%); the
following values of N% determine the action performed:

Value Action
255% Establish the run-time system as the job keyboard monitor.

0% Enter the specified run-time system without establishing it as the
job keyboard monitor.

Data Returned

None.

8-16 Exit and Clear Program, F=9

Privileges Required

None.

Discussion

This call clears the current program from memory and returns control to your
job keyboard monitor or the run-time system you specify in bytes 2-5. It also
closes all channels without cleaning up partial buffers. (That is, any I/O in
progress is not completed.) This is the proper way of stopping a program that is
not to be rerun. Such programs are those that terminate on an error and have
the privileged bit set in the protection code. The BASIC-PLUS command NEW
NONAME performs the same action.

If bytes 2 through 5 specify a run-time system, the call transfers control to that
run-time system and establishes it as the job keyboard monitor. If you do not
specify bytes 2 through 5, the call transfers control to the job keyboard monitor.
If you specify byte 6 with a value of 0, it causes a temporary switch to the
run-time system named in bytes 2-5.

The run-time system to which control is returned prints its prompting message.
For the BASIC-PLUS run-time system, two prompts are possible. If the job

is logged in to the system, BASIC-PLUS prints carriage return, line feed, and
Ready prompt followed by one carriage return and two line feeds. If the job is not
logged in, BASIC-PLUS prints carriage return, line feed and Bye followed by one
carriage return and two line feeds.

8.1.12 Cancel All Type Ahead

Data Passed

Bytes Meaning

1 CHR$(11%), the cancel type ahead code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channel 0.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard

assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

This call clears all unread, pending input from a terminal’s buffers, which cancels
any input typed before a program requests it. This call is mainly intended for
echo control operations, where echoing of unsolicited input ruins the appearance
of painted fields. See the section "Echo Control: MODE 8%" in Chapter 4 for the
discussion of controlling echo and declaring a field on a screen to have a special
paint character.

Cancel All Type Ahead, F=11 8-17

The call selects the terminal open on the channel number you pass in byte 2.
(The terminal must be open on that channel.) If you use a slave terminal, byte 2
must be a nonzero channel number on which the master terminal is open; byte 3
must contain the keyboard number of the slave terminal.

8.1.13 Return Information on Last Opened File or Device

Data Passed

Byte Meaning
1 CHR$(12%), the return information about the last opened file or device code.

Data Returned

Bytes Meaning

1 The current job number times 2.

2 Internal coding.

3 The channel number (times two) on which the file or device was opened.

4 The most significant bits of the file size (MSB size). If the call returns a nonzero

number, it indicates a file whose size is greater than 65535 blocks. If the call is
to a pseudo keyboard, this byte contains the actual keyboard number associated
with the device.

5-6+ Project-programmer number.

7-10+ File name in Radix—50 format.

11-12+ File type in Radix-50 format.

13-14+ The least significant bits (LSB) of the file size (in blocks).

15-16+ The default buffer size (in bytes).

17-18+ The OPEN MODE value.

19-20 Status (the same information returned by the BASIC-PLUS STATUS variable).

21+ File cluster size (MOD 256).

22+ Protection code of the file opened.

23-24+ The physical device name, in ASCII format.

25+ The device’s unit number (a real number).

26 Bit flags that specify whether the device is part of the public structure. See
Discussion.

27-30 Internal coding.

Privileges Required

None.

Discussion

When you execute a compiled program under the BASIC-PLUS run-time system
(by a RUN command, a CHAIN statement, or a CCL command that executes a
.BAS or .BAC file), BASIC-PLUS saves several pieces of information about the
program, including its file specification and job number.

When the file is opened, BASIC-PLUS saves the information in file name string
scan format (identified by the + in the Data Returned). BASIC-PLUS keeps this
information until another file is opened, at which time it updates the information.
This SYS call allows you to obtain the information that BASIC-PLUS saves. See
the section "File Name String Scan Format" for more information.

8-18 Return Information on Last Opened File/Device, F=12

For a file-structured OPEN, byte 26 of the returned string contains the following
information in bits 1 and 0 (the other bits are meaningless):

Bit0=0 The device is in the public structure.
Bit0=1 The device is a private disk.
Bit1=0 A specific device was not specified.
Bitl1=1 A specific device was specified.

These bits are meaningless for a non-file-structured OPEN.
Examples

The following two examples illustrate the Return Information on Last Opened
File SYS call:

e DBS3: is a public disk. If the file SY:FOO was last opened and the file is on
DB3:, bytes 23-25 contain DB3. However, the program can examine byte 26
(using the AND operator) to determine that:

Byte 26 AND 1 =0 The device is part of the public structure.
Byte 26 AND 2 =0 The public structure was specified.

Therefore the correct device designator is SY:.

e DBS3: is the public disk. Using DB3:FOO as last opened file, the correct device
designator would be DB3: since:

Byte 26 AND 1=0 The device is part of the public structure.
Byte 26 AND 2 = 2 The device has a specific unit number - in byte 29.

Note that this call returns information about the file last opened, no matter how
it was opened. For example, suppose the call is made after you type:

OLD PROG

RUN

The last file opened is a BASIC-PLUS work file, not the program PROG.BAS.

8.1.14 Execute CCL Command

Data Passed

Bytes Meaning
1 CHR$(14%), the execute a CCL command code.
2-128 The string to be executed.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None The protection code grants you execute access
GREAD Execute any program within the group
WREAD Execute any program

Execute CCL Command, F=14 8-19

Possible Errors

Meaning ERR Value
?LINE TOO LONG 47

The string you passed is too long to be executed as a CCL com-
mand. Note that the monitor expands CCL abbreviations to their
full syntax.

ILLEGAL NUMBER 52

You used a nonnumeric value as an argument in one of the CCL
switches. For example, a /SIZE:A switch specification can cause
this error.

MLLEGAL SWITCH USAGE 67

You specified an illegal switch for the CCL command. For exam-
ple, requesting a size that is larger than the system’s SWAP MAX
can cause this error.

Discussion

This call causes the monitor to scan the string in bytes 2-128 to determine if
it is a valid CCL command. If the string is valid, the call removes the current
program from memory and executes the CCL command as though it had been
typed directly to a keyboard monitor. Note that this call has the same effect on
your current program as a CHAIN statement: both cause your current program
to be terminated and removed from memory.

If the string is not valid because of one of the previously described error condi-
tions, the program terminates (unless an error handling routine is in effect). If
the string is valid but no such CCL command is defined, the monitor returns
control to the caller (with no error) at the next program statement.

Other errors can be detected after the call removes the current program and
the system attempts to execute the CCL command (see the RSTS/E System
Directives Manual).

8.2 System Function Calls to FIP, F=6

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The FIP
code causes a dispatch call to be made to special resident or nonresident code that
performs file processing. The entire class of subfunctions of SYS call 6 are called
FIP calls. Because programmers generally use FIP calls much more frequently
than the SYS calls, the FIP calls are also commonly referred to as SYS calls. This
chapter also uses SYS call as the preferred term.

The format of the call is:
V$ = SYS(CHR$(6%) + CHR$(F0%) + O$)

where:

v$ is the data (target) string returned by the call.
F0% is the FIP subfunction code.

(o}] is the optional (by function) parameter string.

8-20 System Function Calls to FIP, F=6

The general format of the target variable (V$) is:
Bytes Meaning

1 Job number times 2.
2 Value of internal function called (normally meaningless to general users).
3-30 Data returned.

NOTE

Except for the Message Send/Receive calls (SYS 22), the call always
returns 30 bytes. Unused bytes are not defined. Digital reserves the
right to change the values returned in these bytes at any time.

The proper use of the FIP system function call requires that you build a
parameter string to pass and that you later extract the data from the returned
string, called the target string. Each call returns a string of 30 bytes. Only some
bytes contain useful information for the call. The descriptions of the FIP codes
specify the contents of each useful byte in the string. Use these descriptions to
determine whether you need the information.

8.2.1 Building a Parameter String

Some SYS calls require no parameters except the function and subfunction codes;
other SYS calls require either variable length parameter strings or very simple
parameter strings. For such SYS calls, it is usually more convenient to set up and
execute the function call in a single statement. The following sample statements
show the procedure:

A3

SYS (CHRS (6%) + CHRS$ (-7%))
{ENABLE CTRLC TRAP
! (NO PARAMETER STRING)

AS SYS (CHRS (6%) + CHRS$ (-10%) + "DKO:FILE.TYP")
!FILE NAME STRING SCAN
! (VARIABLE LENGTH

!PARAMETER STRING)

AS SYS (CHRS (6%) + CHRS (-8%) + CHRS$ (1%))

'{FCB/DDB INFORMATION
!FOR FILE OPEN ON
!CHANNEL 1

! (SIMPLE PARAMETER

! STRING)

Many SYS calls require more complex data formats. For example, the Kill A Job
SYS call, (SYS 8), requires byte 3 to be the job number to kill, byte 27 to be 0, and
byte 28 to be 255. To build the complex parameter string to pass to a function,
Digital recommends that you dimension a 30-element integer array and set the
items in the array to values that map into those required in the parameter string
format. You can then convert the array to a character string by the CHANGE
statement before passing it as the parameter string of the SYS system function
call. The resulting character string is in the proper format and contains the
correct byte values to be placed as the parameter string of the SYS call.

System Function Calls to FIP, F=6 8-21

For example:

10 DIM A%(30%)

\J% = 4%
\A%(I%) = 0% FOR I% = 0% TO 30%
\A% (0%) = 30%
\A%(1%) = 6%
\A% (2%) = 8%
\A% (3%) = J%
\A% (27%) = 0%
\A% (28%) = 255%
Following the code that builds the list is the CHANGE statement and the call
itself:
100 CHANGE A% TO A$!GENERATES CHARACTER
!STRING FROM THE
'INTEGER LIST
200 BS$ = SYS(AS) ! INVOKE SYSTEM FUNCTION CALL

In the SYS call descriptions, certain parts of parameter strings are documented
as "Reserved; should be 0." You should fill these bytes with NUL characters
(ASCII code 0). You can use the STRING$(n,0%) function (where n is the number
of NUL characters needed) to generate a string of proper length or place 0%

in the appropriate array elements. By placing 0% in these bytes you will be
sure that your code is upward compatible if future releases of RSTS/E use these
currently unused bytes. If not, your code may produce unpredictable results with
future releases of RSTS/E.

8.2.2 Unpacking the Returned Data

In the example shown in the previous section, the action performed (kill a job),
rather than the data returned, is the objective of the call. However, many SYS
calls return a data string that is your primary objective. In such a case, you must
unpack the data in the string.

When you build the parameter string, Digital recommends two ways to unpack
the returned string:

Method 1:

If you need only a few pieces of data, it may be more convenient to operate
directly on the returned string. For example, if you want only the 4-byte
Radix—50 representation of a 6-byte string, you can use the File Name String
Scan SYS call (SYS -10):

A$ = MID(SYS(CHR$(6%) + CHR$(-10%) + S$), 7%, 4%)

The MID function extracts bytes 7 through 10 of the returned string. To extract
numeric data, you can use the ASCII or CVT$% functions. See the BASIC-PLUS
Language Manual for more information.

Method 2:

If you need many pieces of the returned data, or if you need to use the string
returned by the SYS call to set up another SYS call, you can transform the
returned string to a 30-element integer array using a CHANGE statement. For
example:

CHANGE A$ TO A%
CHANGE SYS(...) TO A%

8-22 System Function Calls to FIP, F=6

When you convert the returned string in this manner, you need to do further
conversions to get numeric data into a usable form. Consider, for example, the
data returned by a the Directory Lookup On Index call (SYS 15). The layout

of the data returned specifies that bytes 11 and 12 are the file type encoded in
Radix—50 format. To convert those bytes into an ASCII string (for example, to
open the file), you must convert the two bytes to a single integer and then use the
BASIC-PLUS RADS$ function. However, the integer representation of each byte
occupies a full word; 16 bits in length.

Figure 8-1 shows array elements 11 and 12.

Figure 8-1: Integer Representation of Changed Characters
15 7 0

A%(11) 0 BYTE 11
15 7 0

A%(12) 0 BYTE 12

A%(11) contains the low byte portion of the Radix—50 word; A%(12) contains the
high byte portion of the Radix—50 word. You must combine the two bytes into a
single word and convert them to the proper character string representation:

S$ = RAD$(A%(11) + SWAP%(A%(12)))

Figure 8-2 shows that the SWAP% function reverses the bytes (the low byte takes
the high byte position and vice versa) in an integer word.

Figure 8-2: Reversal of Bytes by SWAP%() Function

15

0 15 7 0

BYTE 12 > SWAP% (A%(12)) »! BYTE 12 0

Thus, byte 12 takes the high byte position in the word. The + operator then
combines the two words to form one word. The RAD$ function performs the
conversion on that one integer word to produce the three-character string rep-
resentation of the file type. See the BASIC-PLUS Language Manual for a more
detailed description of the SWAP% function and its use with the CVT functions.

The character string is assigned to the character variable S$ and is in ASCII
format.

System Function Calls to FIP, F=6 8-23

To convert a longer string from Radix—50 to ASCII format, you must use this
procedure on each pair of bytes in the string. For example, SYS call 15 returns
the file name in bytes 7 through 10. To convert these bytes to ASCII format, use
the following routine:

A$= RAD$(A%(7%) + SWAP%(A%(8%)))
B$ = RAD$(A%(9%) + SWAP%(A%(10%)))
F$ = A$ + B$

You can also use the statement:
F$ = RAD$(A%(7%) + SWAP%(A%(8%))) + RAD$(A%(9%) + SWAP%(A%(10%)))

8.2.3 Notation and References Used in SYS Call Descriptions

This section describes conventions used in the SYS call descriptions. It also
provides programming hints for working with SYS calls. Because programmers
commonly refer to the FIP calls as SYS calls, the term SYS call is used in the
individual description of each call.

8.2.3.1 Project-Programmer Number

Many SYS calls require that you specify a project-programmer number (PPN) in
the calling string, and several return a PPN. In these cases, the PPN field is in
the general form:

Bytes X and (X+1) PPN

where:

Byte X holds the programmer number
Byte X+1) holds the project number

For example, to set up a SYS call to zero an account on a disk'(SYS 13), the
calling format shows:

Bytes 5-6 Project-programmer number
If the call is to be set up in a 30-element array A%, then the format requires that:

A%(5%) = programmer number

A%(6%) = project number

8.2.3.2 Integer (2-Byte) Numbers

Many of the SYS calls described in this chapter return or require integer data in
two consecutive bytes of the returned data string. In this case, the field in the
returned string is described in the format:

Bytes X and (X+1) integer value

If you are processing the returned string directly (that is, without changing it to
an integer array), then you can obtain the integer value of the two bytes with the
statement:

1% = SWAP%(CVT$%MID(A$,X,2%)))

where A$ holds the returned string. See the BASIC-PLUS Language Manual for
a discussion of the SWAP% function with the CVT functions.

8-24 System Function Calls to FIP, F=6

If you convert the returned data string to an integer array A% using the
CHANGE statement, then you can obtain the integer value with the statement:

1% = A%X) + SWAP%(A%(X+1%))

For example, the Get Monitor Tables - Part I SYS call (SYS -3) returns the
address of the monitor’s job table in bytes 11 and 12. If A$ holds the returned
string, then either of the following two routines puts the address of the job table
into the integer variable 1%:

1% = SWAP%(CVT$%MID(A$,11%,2%)))

CHANGE A$ TO A%
1% = A%(11%) + SWAP%(A%(12%))

8.2.3.3 Unsigned Integer (2-Byte) Numbers

In some integer fields in the FIP calls, the value is a full 16-bit unsigned integer
between 0 and 65535. The sign bit indicates an extra power of two rather than
positive or negative. Because an integer value in BASIC-PLUS is between -32768
and +32767, any value greater than 32767 must be stored as a floating-point
value. Assume that in some SYS call, the call returns an unsigned integer in
bytes 5 and 6 and that the returned string has been changed to an array, A%.
As always, the high byte of the integer is in byte 6, the low byte in byte 5. The
following statement places the full 16-bit value into the floating-point variable Q:

Q = 256.*A%(6%) + A%(5%)

where Q is always positive. Note that replacing the 256.* in the statement
with SWAP%() causes the expression to be first evaluated as a normal integer
expression and then changed to a floating-point value. This operation is not
desirable because the resulting value is between -32768 and +32767. The 256.*
forces the expression to be evaluated as a floating-point number.

Converting an unsigned integer to two bytes to pass to a SYS call also requires
special processing. Assume that Q holds the unsigned value and that the value
is to be placed in A%(5%) (low order) and A%(6%) (high order). The most direct

method of transformation is:

A%(6%) = Q/256.

A%(5%) = Q-A%(6%)*256.
On PDP-11 computers without floating-point hardware (FIS or FPP), division
operations are relatively slow. On these machines, a faster method is the routine:

10 Q% = Q - 32768.
\ Q% = Q% EQV 32767%
\ A%(5%) = Q% AND 255%
\ A% (6%) = SWAP% (Q%) AND 255%

However, this second method requires more code.

System Function Calls to FIP, F=6 8-25

8.2.3.4 Negative Byte Values

Many FIP calls pass and return integer values in one byte of the data string.
Some call descriptions refer to negative byte values.

While negative byte values are meaningful to MACRO programmers, BASIC-
PLUS treats all byte values as positive. Where the term "negative" byte value is
used, it refers to an integer value between 128% and 255%. To obtain the actual
signed value, use the following statement:

S% = SWAP%(B%)/256%
where B% is the byte to convert.

8.2.3.5 File Name String Scan Format

The File Name String Scan SYS call (SYS -10) is useful as a "front-end" for many
SYS functions. Most of the SYS calls that require device or file information in
their parameter strings expect information in the format in which the SYS -10
call returns it. For example, SYS call 17, Disk Directory Look Up On File Name,
expects its calling string to be passed in exactly the same format as that returned
by the SYS -10 call, with a change of only four data bytes. The following routine
sets up and executes the look up call on the file DK0:[10,20]INVENT.DAT, using
the File Name String Scan SYS call:

10 DIM A% (30%)
\A$="DKO: [10,20] INVENT.DAT"
\CHANGE SYS (CHRS (6%)+CHRS (-10%) +AS%) TO A%
\A% (0%)=30%
\A% (1%) =6%
\A% (2%)=17%
\2A% (3%) ,A%(4%)=0%
\CHANGE A% TO A$
\CHANGE SYS(A$) TO A%
32767 END

Many calls require a file name, password, pack identification label or other six-
character string to be passed as two words in Radix—50 format. The File Name
String Scan call is the only means provided to convert the string to the proper
format. The section "File Name String Scan" (SYS=-10, SYS=-23) describes how
this conversion is done.

NOTE

The SYS call descriptions that follow use a special convention to avoid
repetition. A plus sign (+) postscript identifies fields in the calls that
are either passed or returned in the same format as that returned

by SYS call -10, File Name String Scan. See the section "File Name
String Scan" (SYS=-10, SYS=-23) for a detailed description of the fields
returned by File Name String Scan.

See Table 8-3 in the beginning of this chapter for a quick reference
index of the SYS functions ordered by FIP code (F0). See Table 84 for
a quick reference index of the SYS functions arranged alphabetically by
function name.

8-26 System Function Calls to FIP, F=6

8.2.3.6 MACRO Mnemonic Cross-References

The RSTS/E System Directives Manual describes monitor directives for MACRO
programmers. Many directives correspond to the SYS calls described in the
following sections. In each section that follows, the SYS call number (FO =)
appears in bold type at the top of the page. The corresponding MACRO directive
appears in parenthesis below it. For a summary of SYS call codes and their
corresponding monitor directives, see Table F—1. For information on the use of
MACRO directives, see the RSTS/E System Directives Manual.

8.3 Organization of This Section

The system function calls to FIP are listed by number, from the most negative to
the most positive. There are three exceptions to this sequence:

* File Name String Scan (F0=-10, F0=-23). Because this call is used as a "front
end" for many calls, it is described first.

® Directory Lookup Calls (F0=15, F0=17). Because these calls are related, SYS
17 is right after SYS 15.

° Message Send/Receive (F0=22). See Chapters 8 and 9 for a description of this
call.

The PEEK function is described at the end of this chapter.

8.3.1 File Name String Scan

Data Passed

Bytes Meaning
1 CHR$(6%), the SYS call to FIP.

2 CHR$(-10), the file name string scan code. CHR$(-23) is the same as CHR$(-10)
except that the scan terminates on certain characters. See Discussion.

3-? Character string to scan; can be any length.

Data Returned
Sets the STATUS variable and returns the following:

Bytes Meaning
1 The current job number times 2.
2 The Most Significant Bits (MSB) of the file size as specified in the

/FILESIZE:n (or /SIZE:n) file specification switch. If the call returns a
nonzero number, it indicates a file whose size is greater than 65535 blocks.

3-4 Internal coding.

5-6 Project-programmer number (PPN). 0 means the current account. See the
Discussion for information about translation of special characters.

7-10 File name in Radix-50 format. See Discussion.

11-12 File type in Radix-50 format. See Discussion.

13-14 The number of blocks specified in the /FILESIZE:n (or /SIZE:n) file specifica-

tion switch; for files that are larger than 65535 blocks, the Least Significant
Bits (LSB) of the file size.

15-16 The file cluster size given in the /CLUSTERSIZE:n file specification switch.

File Name String Scan, FO=-10 F0=-23 (.FSS) 8-27

17-18

19-20

21

22
23-24

25

26

27-28
29-30

The value for MODE, if specified in the /MODE:n (or /RONLY) file spec-
ification switch, with the sign bit set; 0 if /MODE or /RONLY were not
specified.

The value for file position in the /POSITION:n switch, where n represents
the device cluster number at which the first block of the file is placed.

If no protection code is found, this byte is 0 unless a job default protection
is currently assigned. If a protection code is found or if no protection code is
found when a job default protection is currently set, this byte is nonzero and
byte 22 contains the protection code.

Protection code when byte 21 is nonzero.

To determine what is returned for a device, flag word 2 must be checked. If
no colon was found in the string, these two bytes and byte 25 and 26 are 0.
If a colon was found, a device name may or may not have been found.

A device name can be a physical device name or a logical device name.

If a physical device name was found, these bytes contain two characters
in ASCII format. (For example, DK yields D in byte 23 and K in byte
24.) Bytes 25 and 26 contain unit number information. If a logical name
(either job-specific or system-wide) was found and that logical name was
translatable (the name was currently assigned to a physical device), the
call translates the name and returns the full physical device information
in bytes 23 through 26. If the logical device name was untranslatable, the
call returns the logical name in Radix—50 format in bytes 23 through 26.
For logical names longer than 6 characters, the call returns only the first
6 characters. The monitor does not translate the logical device name if the
name is not currently assigned to a physical device or if the first character
of the logical name string is an underscore (for example, OPEN "_KB:").

Note that, if a physical device name is passed to this call and the device
is not configured on the system, the name is treated as an untranslatable
logical name.

If a physical device name is returned in bytes 23 and 24, this byte contains
unit number information. The unit number here is real if byte 26 is 255.

If this byte is 0, no explicit unit number was found for the device. If this
byte is 255, the value in byte 25 is the explicitly specified device unit
number. The 255 value here indicates that a zero in byte 25 is explicitly
unit O of the device.

First flag word. See Discussion.

Second flag word. See Discussion.

Privileges Required

None.

Possible Errors

Meaning ERR Value

?ILLEGAL FILE NAME 2

The character string scanned contains unacceptable characters.
See the RSTS/E System User’s Guide for a description of a file
specification. If you are using the -10 version of the call, the
string may contain other than a valid file specification switch.

ILLEGAL NUMBER 52

The argument on a file specification switch is missing or contains
an illegal character.

8-28 File Name String Scan, FO=-10 F0=-23 (.FSS)

Meaning ERR Value
?ILLEGAL SWITCH USAGE 67

A file specification switch in the string scanned is not the last
element in the file specification, is missing a colon, or is not a
valid form of the switch.

Discussion

The file name string scan function determines specific file syntax information
(for example, whether a given file name is valid) and returns information in the
format required for all other file- and device-related SYS calls. The call also
processes the allowable RSTS/E file specification switches. See the RSTS/E
System User’s Guide for a description of the format of these switches.

NOTE

This call is the only means provided to pack a string in Radix-50
format.

The call does the following for each component of a file specification:

e For a device specification, the call processes physical device names and
unit number information. If you pass a logical name, the call attempts to
translate it to a physical name. Note that if the logical name string contains
an underscore as the first character, the call does not translate the logical
name. The STATUS variable is set for the device type found in the string
scanned.

e For a project-programmer specification, the call validates the format. If you
pass a character denoting an account, the call translates it to the proper
numbers. For example, if $ is assigned to the system library account, [1,2],
$ is returned as 2 in byte 5 and 1 in byte 6. Besides the $, the call also
translates the characters !, %, &, # and @ if they are assigned to accounts and
indicates whether the wildcard character was found.

NOTE

Special PPN characters other than the dollar sign ($) may not be
available in future releases of RSTS/E.

e For a file name, the call validates the format and translates the name into
Radix—50 format. It also notes the presence of wildcard characters.

e For a file type, the call validates the format and translates it into Radix-50
format. The call also notes the presence of wildcard characters.

e For a protection code, the call validates the format of the numbers. If a
protection code is not found, the call returns the assigned value or, if an
assignable code is not current, returns zero.

e For file specification switches, the call validates the placement of the switches
in the string and the format of each switch found. It notes the presence of
those switches found and returns switch arguments.

The following example shows how to convert a string to Radix—50 format with a
user-defined function and the file name string scan SYS call:

10 DEF FNPOS$ (AS) = MID (SYS(CHRS (6%)+CHRS (-10%)+AS),7%,4%)&
\ ! PACK 6 CHARACTERS TO RADIX-50

File Name String Scan, FO=-10 F0=-23 (.FSS) 8-29

The function FNP0$ returns a four-character string that is the Radix—50 repre-
sentation of the first six characters of A$. (Note that the function does not include

error handling and

that errors can occur.) The File Name String Scan SYS call

is the only function that packs a string in Radix—50 format. To pack strings
longer than six characters, you must make multiple calls to the SYS function.

You can pack up to
six characters from

nine characters in a single call if a period separates the first
the last three characters (the file name and type format).

The two words in bytes 27 and 28 and in bytes 29 and 30 hold easily accessible
flags indicating exactly what fields in the source string were found and what kind

of information they

contained. For the purposes of the discussion, it is assumed

that the returned string was converted by a CHANGE statement to an integer
array, M%(30%). The flag words are then created by doing the proper arithmetic
operations on the bytes, as shown:

flag word 1: SO0%
flag word 2: S1%

M% (27%) +SWAP % (M% (28%))
M% (29%) +SWAP % (M% (30%))

Once you create these two words, the information in them is accessible by means
of an AND operation between the word and the bit relating to a particular piece
of information. Each bit of the PDP-11 word holds a YES or NO answer; see
Tables 8-5 and 8-6 for details.

Flag word 1 indicates whether file specification switches were detected in the
string passed. Flag word 2 contains information about elements found in the
file specification. The high byte of flag word 1 is retained for compatibility with
previous versions of RSTS/E.

Tables 8-5 and 8-6

assume that bytes 27 and 28 have been put into S0% and

bytes 29 and 30 have been put into S1%, as described in the previous example.

Table 8-5: File Name String Scan Flag Word 1

Flag word 1: where S0% = M9%(27%) +SWAP%(M%(28%))

Bit Comparison Meaning
0 (S0% AND 1%)<>0% The /CLUSTERSIZE:n switch was specified.
(S0% AND 1%) = 0% No /CLUSTERSIZE:n was found.
1 (80% AND 2%)<>0% Either the /MODE:n or /RONLY switch was specified.
(S0% AND 2%) = 0% Neither /MODE:n nor /RONLY was found.
2 (S0% AND 4%)<>0% Either the /FILESIZE:n or /SIZE:n switch was specified.
(S0% AND 4%) = 0% Neither the /FILESIZE:n nor /SIZE:n switch was found.
3 (80% AND 8%)<>0% The /POSITION:n switch was specified.
(S0% AND 8%) = 0% No /POSITION:n switch was found.
4-7 Reserved.
8 (80% AND 256%)<>0% A file name was found in the source string (and is returned in
Radix-50 format in bytes 7 through 10).
(S0% AND 256%) = 0% No file name was found.
9 (S0% AND 512%)<>0% A period (.) was found in source string.
(S0% AND 512%) = 0% No period was found in source string implying that no file type was
specified.
10 (S0% AND 1024%)<>0% A project-programmer number (PPN) was found in source string.

(continued on next page)

8-30 File Name String Scan, FO=-10 F0=-23 (.FSS)

Table 8-5 (Cont.): File Name String Scan Flag Word 1

Flag word 1: where S0% = M9%(27%) +SWAP%(M9%(28%))

Bit Comparison

Meaning

(S0% AND 1024%) = 0%
11 (S0% AND 2048%)<>0%

(S0% AND 2048%) = 0%

12 (S0% AND 4096%)<>0%
(S0% AND 4096%) = 0%

13 (S0% AND 8192%)<>0%
(S0% AND 8192%) = 0%

15 S0%<0%

No PPN was found.

A left angle bracket (<) or /PR was found in source string, implying
that a protection code was found.

No left angle bracket (<) or /PR was found (no protection was
specified).

A colon (but not necessarily a device name) was found.

No colon was found, implying that no device could have been speci-
fied.

Device name was specified and was a logical device name.

Device name (if specified) was an absolute (nonlogical) device name.
(If device name was not specified, this is 0.)

Source string contained wildcard characters (either ? or * or both)
in file name, file type or PPN fields. In addition, the device name
specified, though a valid logical device name, does not correspond to
any of the logical device assignments currently in effect or contains
an underscore as the first character. You must test bits of flag word
2 for wildcard characters and device name found.

Table 8-6: File Name String Scan Flag Word 2

Flag word 2: where S1% = M9%(29%)+SWAP%(M%(30%))

Bit Comparison Meaning
0 (81% AND 1%)<>0% File name was found in the source string.
(81% AND 1%) = 0% No file name was found. The next two comparisons return 0.
1 (S1% AND 2%)<>0% File name was an asterisk (*) character and is returned in bytes 7

(S1% AND 2%) = 0%

2 (S1% AND 4%)<>0%
(S1% AND 4%) = 0%
3 (S1% AND 8%)<>0%

(S1% AND 8%) = 0%

4 (S1% AND 16%)<>0%
(S1% AND 16%) = 0%

5 (S1% AND 32%)<>0%

(S1% AND 32%) = 0%

6 (S1% AND 64%)<>0%
(S1% AND 64%) = 0%
7 (S1% AND 128%)<>0%

through 10 as the Radix—50 representation of the string "??????".
File name was not an * character.

File name contained at least one question mark (?) character.
File name did not contain any ? characters.

A period (.) was found.

No period was found, implying that no file type was specified. The
following three comparisons return 0.

A file type was found (that is, the field after the period was not null).

No file type was found. (The field after the period was null—the next
two comparisons return 0.)

File type was an * character and is returned in bytes 11 and 12 as
the Radix~50 representation of the string "???".

File type was not an * character.

File type contained at least one ? character.
File type did not contain any ? characters.
A PPN number was found.

(continued on next page)

File Name String Scan, F0=-10 F0=-23 (.FSS) 8-31

Table 8-6 (Cont.):

File Name String Scan Flag Word 2

Flag word 2: where S1% = M9%(29%)+SWAP%(M%(30%))

Bit Comparison Meaning
(S1% AND 128%) = 0% No PPN was found. (The next two comparisons return 0.)
8! (S1% AND 256%)<>0% Project number was an * character (that is, the PPN was of the form
[* PROG]) and is returned in byte 6 as 255.
(S1% AND 256%) = 0% Project number was not an * character.
9! (S1% AND 512%)<>0% Programmer number was an * character (that is, the PPN was of the
form [PROJ,*]) and is returned in byte 5 as 255.
(S1% AND 512%) = 0% Programmer number was not an * character.
10 (81% AND 1024%)<>0% A protection code was found.
(S1% AND 1024%) = 0% No protection code was found.
11 (S1% AND 2048%)<>0% The protection code currently set as default by the current job was
used.
(S1% AND 2048%) = 0% The assignable protection code was not used.
12 (S1% AND 4096%)<>0% A colon (¢), but not necessarily a device name, was found in the
source string.
(S1% AND 4096%) = 0% No colon was found (no device could have been specified); the
following three comparisons return 0.
13 (S1% AND 8192%)<>0% A device name was found.
(S1% AND 8192%) = 0% No device name was found; the following two comparisons return 0.
14 (S1% AND 16384%)<>0 Device name specified was a logical device name.
(S1% AND 16384%) = 0% Device name specified was an actual device name; the following
comparison returns 0.
15 S1% < 0% The logical device name specified was invalid for one of the following
reasons:
¢ The device name contained an underscore (_) but did not corre-
spond to any physical device on the system.
e The device name did not contain an underscore but could not be
translated to a physical device name.
The logical name is returned in bytes 23 through 26 as a Radix-50
string.
S1% >= 0% The device name specified, if any, was either an actual device

name or a logical device name to which a physical device has been
assigned. The physical device name is returned in bytes 23 and 24
and the unit information is returned in bytes 25 and 26.

1Note that if the PPN was of the form [*,*], then both bit 8 and bit 9 of the data byte returned are nonzero values.

Since flag word 2 contains the high order byte of flag word 1 plus some additional
information, it is the more useful of the two words. The following sample program
uses this word and prints out a list of all the bits returned in the word.

8-32 File Name String Scan, F0=-10 F0=-23 (.FSS)

5
10
20
30
40
50
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

490
500
32767

DIM M% (30%) ! SET UP AN ARRAY TO RETURN TO
PRINT "STRING TO SCAN";

INPUT LINE S$

S$=CVTS$$ (SS$, -1%) ! GET RID OF GARBAGE BYTES

CHANGE SYS(CHRS (6%) +CHRS (-10) +S$) TO M%

S1%=M% (29%) +SWAP% (M% (30%))

IF S1% AND 1% THEN PRINT "FILENAME FOUND"

IF S1% AND 2% THEN PRINT "FILENAME WAS AN ’'*/"

IF S1% AND 4% THEN PRINT "FILENAME HAD '7?2’S8"

IF S1% AND 8% THEN PRINT "DOT (.) FOUND"

IF S1% AND 16% THEN PRINT "NON-NULL FILE TYPE FOUND"
IF S1% AND 32% THEN PRINT "FILE TYPE WAS ’'*’"

IF S1% AND 64% THEN PRINT "FILE TYPE HAD ’'?’'S"

IF S1% AND 128% THEN PRINT "PPN FOUND"

IF S1% AND 256% THEN PRINT "PROJECT NUMBER WAS ’*’"

IF S1% AND 512% THEN PRINT "PROGRAMMER NUMBER WAS '/ *’"
IF S1% AND 1024% THEN PRINT "PROTECTION CODE FOUND"
IF S1% AND 2048% THEN PRINT "ASSIGN’D PROTECTION USED"
IF S1% AND 4096% THEN PRINT "COLON (:) FOUND"

IF S1% AND 8192% THEN PRINT "DEVICE NAME FOUND"

IF S1% AND 16384% THEN PRINT "DEVICE NAME WAS LOGICAL"
IF S1%<0% THEN PRINT "DEVICE NAME NOT ASSIGN’D OR UNDERSCORE"
IF S1% AND 4096% THEN

IF S1%>0% THEN PRINT " ‘STATUS’ HAS BEEN SET"

PRINT FOR I%=1% TO 2%

GOTO 10

END

The following examples show some of the previous messages:

STRING TO SCAN? ABCDEF.TYP
FILENAME FOUND

DOT (.) FOUND

NON-NULL FILE TYPE FOUND

STRING TO SCAN? SY:FILENM.DEX
FILENAME FOUND

DOT (.) FOUND

NON-NULL FILE TYPE FOUND
COLON (:) FOUND

DEVICE NAME FOUND

‘STATUS’ HAS BEEN SET

STRING TO SCAN? SY:FILENM.TYP[1,203]
FILENAME FOUND

DOT (.) FOUND

NON-NULL FILE TYPE FOUND

PPN FOUND

COLON (:) FOUND

DEVICE NAME FOUND

‘STATUS’ HAS BEEN SET

STRING TO SCAN? SY:FILENM.TYP([2,103)/PR:52
FILENAME FOUND

DOT (.) FOUND

NON-NULL FILE TYPE FOUND

PPN FOUND

PROTECTION CODE FOUND

COLON (1) FOUND

DEVICE NAME FOUND

‘STATUS’ HAS BEEN SET

File Name String Scan, FO=-10 F0=-23 (.FSS) 8-33

STRING TO SCAN? SY:FILENM.TYP[,201]
FILENAME FOUND

DOT (.) FOUND

NON-NULL FILE TYPE FOUND

PPN FOUND

PROJECT NUMBER WAS ”

COLON (:) FOUND

DEVICE NAME FOUND

‘STATUS’ HAS BEEN SET

STRING TO SCAN? SY:A.
FILENAME FOUND

DOT () FOUND

NON-NULL FILE TYPE FOUND
FILE TYPE WAS ”

COLON (:) FOUND

DEVICE NAME FOUND
‘STATUS’ HAS BEEN SET

STRING TO SCAN? SY:FILE?? TYP
FILENAME FOUND

FILENAME HAD ’?’S

DOT (.) FOUND

NON-NULL FILE TYPE FOUND
COLON (:) FOUND

DEVICE NAME FOUND

‘STATUS’ HAS BEEN SET

STRING TO SCAN? :A
FILENAME FOUND
COLON (1) FOUND
‘STATUS’ HAS BEEN SET

The STATUS variable is set or not set depending on the presence or absence of a
device in the string scanned. The following three conditions apply:

e When no device name is found in the string; that is, no colon is found, the
STATUS is unpredictable. This condition applies when bit 12 of flag word 2
tests as equal to 0.

e When the device name is logical and untranslatable (an actual device is not
assigned or the logical name string begins with an underscore), STATUS is
unpredictable. This condition applies when bits 12, 13, and 14 of flag word 2
test as not equal to 0 and bit 15 tests as on (S1%<0%).

e When the device name is either an actual device name or is logical and
translatable, STATUS is set for the device. This condition applies when bit 12
tests as not equal to 0 and bit 15 tests as equal to 0 (S1%>=0%).

Line 260 of the sample program shows the test to determine when STATUS is set
by the call.

The file name string scan call has two versions. Both calls process RSTS/E

file specification switches. The -10 version of the call processes a RSTS/E file
specification only. If other than a valid form of a file specification switch is found,
it generates the error ?Illegal file name (ERR=2). The -23 version of the call
processes a full command line, which can contain multiple file specifications and
switches other than valid forms of the file specification switches. To process a full
command line, the call terminates the scan on certain characters.

8-34 File Name String Scan, F0=-10 F0=-23 (.FSS)

The file name string scan using CHR$(-23%) in place of CHR$(-10%) terminates
without error on the following characters:

= Equal sign

/ Slash unless part of a valid file specification switch

; Semicolon

R Comma unless between brackets or parentheses (indicates PPN) end of string

The scan is done from left to right. If the scan finds a valid file specification
switch, it processed the switch and continues the scan. If the scan finds other
than a file specification switch, the scan terminates. The program must process
the switch and also check for remaining switches. The scan does not process
any file specification switches following a switch that terminates the scan. The
BASIC-PLUS variable RECOUNT returns the number of unscanned characters.
For example:

S$=SYS(CHR$(6%) + CHR$(-23%) + "SY:[1,41ABC/PR:40")

This call returns the data as described for CHR$(-10%) and RECOUNT equals
0. The following call returns the data described for CHR$(-10%) for the string
"SY:[1,4]JABC/PR:40" and RECOUNT equals 7:

S$ = SYS(CHR$(6%) + CHR$(-23%) + "SY:[1,4]ABC/PR:40,DT:-DEF")

The scan terminates on the comma between file specifications. Any other charac-
ters generate an error and none of the data is returned.

8.3.2 Get Monitor Tables—Part Il

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.
2 CHR$(-29%), the get monitor tables - part III code.
3-30 Reserved; should be 0.

Data Returned

Bytes Meaning

1 The current job number times 2.

2 Not used.

34 (DDCTBL) - The controller/device table.
5-6 (UCTTBL) - The unit/controller table.

7-8 (SATEND) - The disk size table.

9-10 (UNTLVL) - The disk structure level table.

11-12 (MFDPTR) - The MFD pointer table.
13-14 (MAGLBL) - The magnetic tape label default table.

15 The number of jobs currently on the system.
16-20 Internal code.
21-22 Hardware configuration word. See Discussion.

23-24 (UNTERR) - The unit error table.

Get Monitor Tables—Part lll, FO=-29 (UU.TB3) 8-35

25-26 (DEVCLU) - The low byte contains the device cluster size. The high byte
contains the CLUFAC table.

27-28 (NULRTS) - The null run-time system block pointer.
29-30 (DSTPTR) - The memory management unit (MMU) address of the disk statistics

table if this monitor is generated with the unsupported disk statistics feature.
Otherwise, 0.

Privileges Required

None.

Possible Errors

None.

Discussion

The three Get Monitor Table SYS calls to FIP return to your program either an
address or a data value. The calls are commonly used with the PEEK function
to read various system parameters and tables that give configuration and run-
time information. Because it is beyond the scope of this manual to describe

the monitor, this section only briefly describes the information returned by the
monitor table functions. For a description of Get Monitor Tables - Part I, see SYS
call -3. For a description of Get Monitor Tables - Part II, see SYS call -12. The
section "The PEEK Function" describes the use of the PEEK function for certain
convenient programming operations.

In this call, a name in all uppercase letters denotes each item of information de-
scribed. This name is the same one used to identify the information in the RSTS
/E assembly listings. If the name is in parentheses, the information returned is
an address of the data described. If the name is not in parentheses, the informa-
tion returned is the actual data value. For example, Get Monitor Tables - Part I
returns CNT.KB-1 in byte 3. The value returned is the number of terminal lines
minus 1 configured on the system. However, bytes 11 and 12 return (JOBTBL),
the address of the table of jobs. Use the PEEK function to inspect the address.

NOTE

All information returned by the call described in this section is internal
to RSTS/E and is subject to change at any time.

DDCTBL and UCTTBL (bytes 3-6) are pointers to monitor tables that allow
system programs to translate communications device names from one format to
another. For example, DECnet, which runs on many different Digital systems,
uses a different format for device names than RSTS/E. Thus, programs that
print information about communications devices need these tables. The SYSTAT
system program also uses this call to print its busy devices and disk status
reports.

SATEND (bytes 7-9) is a pointer to a disk size table that the SYSTAT program
uses to compute sizes for its display. UNTLVL (bytes 9-10) is a pointer to the
disk structure level table, MFDPTR (bytes 11-12) is a pointer to the MFD pointer
table, and MAGLBL is a pointer to the magnetic tape label table. Byte 15
contains the number of entries in the monitor’s job table structure that includes
jobs in any state.

8-36 Get Monitor Tables—Part lll, FO=-29 (UU.TB3)

The hardware configuration word (bytes 21-22) contains a bit mask specifying
configuration data. The most useful bit flags are the following:

Value
8%
32%
512%
1024%
8192%

Meaning

FIS available. If bit is OFF, FIS is not available.
Q-BUS system. If bit is OFF, UNIBUS system.
FPP available. If bit is OFF, FPP is not available.
CIS available. If bit is OFF, CIS is not available.

System has Instruction and Data (I&D) space. If bit is OFF, system does not
have I&D space.

8.3.3 Spooling

Data Passed

Bytes
1

2

34
5-6+

7-10+
11-12+

13-14

15
16

17-18

Meaning

CHR$(6%), the SYS call to FIP.
CHR$(-28%), the spool request code.
Reserved; should be 0.

The PPN of the file to spool. If bytes 5-6 are zero, the call uses the current user
account. The call does not allow wildcards.

The file name (which can include wildcards), in Radix—50 format, of the file to
spool.

The file type (which can include wildcards), in Radix—50 format, of the file to
spool.

The two-character, ASCII spooled device name field to which the file is sent.
If bytes 13-14 are zero, LP is used. These bytes may affect whether requests
are channeled to the Print/Batch Services (PBS) package or the OPSER-based

spooling package. See Discussion.
The unit number of the device name field specified in bytes 13-14.

The unit number real flag of the device specified in bytes 13-14. Specify -1

if byte 15 contains an actual unit number. Specify 0 if bytes 13-14 contain a
generic device name, in which case the monitor issues a request for the default
print or batch queue. See Discussion.

Reserved, must be zero.

Spooling, FO=-28 (UU.SPL) 8-37

19-20

21-22
23-24+

25+

26+

27-30

The flag word to specify whether to route the request to the Print/Batch
Services (PBS) or the OPSER-based (OPSER) spooling package:

Value Meaning

0% The default. See Discussion.

4096% Network print or batch request. Only meaningful for PBS. See

Discussion.

8192% Always route request to the OPSER-based spooling package
16384% Always route request to the PBS package

You can specify the following values for the PBS package:
Value Meaning

4%

32%

Delete the file after spooling; same as DCL PRINT command’s
/DELETE qualifier.

No header; same as DCL PRINT command’s /NOFLAG PAGES
qualifier. This value is ignored for batch requests.

You can specify the following values for the OPSER spooling package:
Value Meaning

1%

2%
4%

8%
16%
32%

File is spooled with FORTRAN carriage control; equivalent to QUE
/TYP:FTN option.

Restart; equivalent to QUE /RE option.

Delete the file after spooling; equivalent to QUE /DE option or DCL
PRINT command’s /DELETE qualifier.

Binary file; equivalent to QUE /BI option.
End; equivalent to QUE /END option.

No header; equivalent to QUE /NH option or DCL PRINT command’s
/NOFLAG_PAGES qualifier.

Reserved; should be 0.

The device name where the file to be spooled is located. The device must be a

disk.

If bytes 23-24 are zero, SY (the public structure) is used.

The unit number of the device containing the file to be spooled. This byte is
ignored if byte 26 is zero.

The unit number real flag of the device containing the file to be spooled. A
nonzero value indicates a real unit number in byte 25.

Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

None
GREAD
WREAD
GWRITE
WWRITE

8-38 Spooling, FO=-28 (UU.SPL)

Spool a file if the protection code permits access

Spool a file/ NODELETE in any account within the group
Spool any file/ NODELETE

Spool a file /DELETE in any account within the group
Spool any file / DELETE

Possible Errors

Meaning ERR Value
?NO ROOM FOR USER ON DEVICE 4

The number of messages pending for the queue is at its declared
maximum. This may be a transient condition; retry the operation.

?CAN'T FIND FILE OR ACCOUNT 5

The account specified in bytes 5-6 does not exist on the device
specified, the file name or type specified in bytes 7-12 cannot be
found, or neither PBS nor QUEMAN (OPSER spooler) is installed
as a message receiver.

?NOT A VALID DEVICE 6

An attempt was made to spool a file to a spooling device that had
a unit number greater than 7, or the file to be spooled is contained
on an invalid device.

?PROTECTION VIOLATION 10

An attempt was made to queue a file to which the user did not
have read access or queue a compiled file.

?DEVICE HUNG OR WRITE LOCKED 14

This error is caused by a hardware condition. For example, the
specified disk could not be accessed.

?DISK PACK IS NOT MOUNTED 21

The specified disk device is not mounted; logically mount the disk
with the MOUNT command (requires MOUNT privilege).

?DISK PACK IS LOCKED OUT 22

The disk is in a locked state. Execute the call under a sufficiently
privileged account to override this condition.

?DEVICE NOT FILE STRUCTURED 30

The device specified in bytes 23-24 of the call is not a file-
structured device.

?NO BUFFER SPACE AVAILABLE 32

System buffers are not currently available to store this message.
This may be a transient condition; retry the operation.

Discussion

RSTS/E has two spooling packages: the Print/Batch Services package (PBS) and
the OPSER-based spooling package (OPSER).

Spooling, FO=-28 (UU.SPL) 8-39

The system sends the request either to PBS or OPSER according to the value you
specify in bytes 19-20. Bits 8192% and 16384%, if set, determine the routing. If
both bits are clear, then the next two rules apply:

e If the spooled device name field in bytes 13-14 is null or LP, then the system
sends the request to PBS if it is running. Otherwise, the system sends the
request to OPSER.

e If the spooled device name field in bytes 13-14 is BA and the filetype is .COM,
then the request is routed to PBS. Otherwise, the system sends the request to
OPSER.

PBS and OPSER interpret the device name field passed in bytes 13-14 and 15
differently.

PBS requests:

Data Call Interpretation
Passed

null Default print queue

LP: Default print queue

LPn: Print queue named LPn:
BA: Default batch queue
BAn: Batch queue named BAn:

If you specify the value 4096% in bytes 13-14, PBS sends print requests to
NET$PRINT and batch requests to NET$BATCH.

OPSER requests:

Data Call Interpretation
Passed

null Print queue LPO:

LP: Print queue LP:
LPn: Print queue LPn:
BA: Batch queue BA:
BAn: Batch queue BAn:

Byte 16 is the unit number real flag. A nonzero value instructs the monitor to
issue the request for the queue with the same name as the device name field. For
this to work properly with the PBS package, the system manager must define
queues named LPO: - LP7:, and BAO: - BA7:.

When the monitor executes this call, it performs the following checks:
1. Ensures that the specified file name is legally formatted.

2. Ensures that the specified device (the device containing the specified file) is a
mounted RSTS/E disk and that the user has access to it.

3. If no wildcards are specified in bytes 7-12, ensures that the specified file exists
and that the user has read access to it.

4. Performs all appropriate send/receive buffer quota checks and ensures that
the spooler is available (not hibernating).

If any of these conditions are not met, the call is aborted and an error is returned
(see Possible Errors).

8-40 Spooling, FO=-28 (UU.SPL)

8.3.4 Snap Shot Dump

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.
2 CHR$(-27%), the snap shot dump code.
3-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

SYSIO
Possible Errors

Meaning ERR Value
?CAN’T FIND FILE OR ACCOUNT 5

The call attempted to write data to the crash dump file, but crash
dump was not enabled at system start-up time because sufficient
space was not available on the system disk.

Note that this call also returns device-dependent errors such as ?Device hung or
write locked (ERR=14).

Discussion

This call writes the current monitor image executing in memory and the contents
of the extended buffer pool (XBUF') to the crash dump file [0,1JCRASH.SYS.
XBUF contains monitor data structures, including DECnet/E data structures and
caching information. You can analyze the contents of the CRASH.SYS file with
the ANALYS program (see the RSTS/E System Manager’s Guide).

8.3.5 File Utility Functions

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.
2 CHR$(-26%), the file utility code.
3 CHR$(N%), where N% is the internal channel number (in the range 1 to 12) on

which the file is open.

If N% is O, specify the target file by PPN and file name and type in bytes 5
through 12.

File Utility Functions, FO=-26 (UU.FIL) 8-41

4 The first flag byte. (Byte 27 is the second flag byte). CHR$(F%), where F%
specifies the file utility function. The function F% is one (or the sum) of the
following codes:

Value Meaning

1% Set or reset the file’s placed bit (cannot be used with code 8%). See
byte 15.

2% Modify code 16% to return O as the device cluster number (DCN) if
the file’s placed bit is not set.

4% Change the file’s backup statistics. Requires DATES privilege if the
date of last access is changed (bytes 17-18 are nonzero).

8% Change the file’s run-time system name field.

16% Return the file’s retrieval information. That is, 16% causes the
monitor to map the virtual block number (VBN) of the file into the
disk DCN. You cannot use this with code 8%. You can use this code
to obtain an existing file’s DCN in order to place a new file near it.
See Discussion.

32% Unset the file’s contiguous bit. This code allows you to extend a
contiguous file; however, the file is made noncontiguous.

64% Enable/disable sequential mode caching if the file is cached. You
cannot use this with code 8%. Also see bytes 13-16. (Requires
TUNE privilege.)

128% Enable/disable data caching on the file. You cannot use this with
code 8%. See byte 15. (Requires TUNE privilege.)
5-6+ If N% in byte 3 is 0, specify the PPN of the file you want to modify.
If N% is nonzero, these bytes are ignored.

7-10+ If N% in byte 3 is 0, specify the file name (in Radix-50 format) of the file you
want to modify.

If N% is nonzero, the call ignores these bytes.

11-12+ If N% in byte 3 is 0, specify the file type (in Radix—50 format) of the file you
want to modify.

If N% is nonzero, the call ignores these bytes.

13-16 The specifications in these bytes depend on the function code specified in byte
4:

If byte 4 AND 8%<>0%, then bytes 13 through 16 contain the new run-time
system name field in Radix-50 format.

If byte 4 AND 16%<>0%, then bytes 13 and 14 contain the low order word
of the VBN you want to locate, byte 15 contains 0% or is used by another
operation, and byte 16 contains the high order byte of the VBN you want to
locate.

If byte 4 AND 1%+64%+128%, then bytes 13, 14 and 16 contain zeros or are
used by another operation, byte 15 contains flags for the following operations:
Flag Meaning

2% New value for the placed bit if byte 4 AND 1%<>0%.
4% New value for sequential bit if byte 4 AND 64%<>0%.
8% New value for no backup bit if byte 27 AND 8%<>0%.
32% New value for no delete/rename bit if byte 27 AND 1%<>0%.
64% New value for ignore bit if byte 27 AND 64%<>0%.
128% New value for cached bit if byte 4 AND 128%<>0%.

8-42 File Utility Functions, FO=-26 (UU.FIL)

17-18

19-20

21-22

23-24+

25-26+

27

28-30

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specify a new date of last access for the file. If you do not want to change
the date, specify 0. If you do not select the statistics function, the call ignores
these bytes.

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specify a new date of creation for the file. If you do not want to change
the date, specify 0. If you do not select the statistics function, the call ignores
these bytes.

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specify a new time of creation for the file. If you do not want to change
the time, specify 0. If you do not select the statistics function, the call ignores
these bytes.

If N% in byte 3 is 0, specify the name of the device that contains the file you
want to modify. The device must be a disk, and a specification of 0 in bytes 23
and 24 indicates the public disk structure.

If N% is nonzero, the call ignores these bytes.

If N% in byte 3 is 0, specify the unit number and unit number flag associated
with the file you want to modify.

If N% is nonzero, the call ignores these bytes.

The second flag byte. CHR$(K%), where K% is the sum of the selected func-
tions:

Value Meaning

1% Change the value of the file’s no delete/rename bit. See byte 15.
Cannot be used with byte 4, code 8%. (Requires SYSIO privilege.)

2% Do not return the error ?Protection violation if the operation will not
succeed. See Discussion.

4% Change the value of the file’s no backup bit. When set, this bit
excludes the data portion of the file from BACKUP operations.

8% Change the value of the file’s ignore bit. When set, this bit excludes
the file from BACKUP operations.

16% If the file is opened, use the date of last access in bytes 17-18 if bit 2

of FIRQB+FQSIZM is set.
Reserved; should be 0.

Data Returned

Bytes
1
2

3-4

Meaning

Not used.

The file characteristics:

byte 2=2% File is placed.

byte 2=4% File will be cached sequentially, if at all.
byte 2=8% File has no backup bit set.

byte 2=16% File is contiguous.

byte 2=32% File has the no delete/rename bit set.
byte 2=64% File has ignore bit set.

byte 2=128% File will be cached when open.

If the file’s VBN was passed in byte 16 and file retrieval information (code 16)
was requested in byte 4 (see Data Passed), these bytes contain the DCN of the
file’'s VBN. Note that these bytes return 0 if the specified VBN is larger than
the file size or if the file was not placed and function code 2 was not passed in
byte 4.

File Utility Functions, FO=-26 (UU.FIL) 8-43

5-26 File attribute data; unused words are filled with zeros.

27-30 The file’s run-time system name in Radix—50 format.
Privileges Required

None Read or set file flags, if the protection code permits
GREAD Read file flags in any account within the group
WREAD Read file flags in any account

GWRITE Set file flags in any account within the group
WWRITE Set file flags in any account

DATES Change file last access date
TUNE Set or clear file caching bits
SYSIO Set or clear nodelete/rename bit

Possible Errors

Meaning ERR Value
?CAN'T FIND FILE OR ACCOUNT 5
The file or account specified in bytes 5 through 12 is not present
on the disk. \
?I/0 CHANNEL NOT OPEN 9

The channel specified in byte 3 is not open.

?PROTECTION VIOLATION 10

The file open on the channel specified in byte 3 is not a disk file,
or the job lacks the privilege required for the specified operation.

ILLEGAL SYS() USAGE 18

The file open on the specified channel is not a disk file or is a user
file directory.

Discussion

This call supplements the functions of the Name Run-time System SYS call (SYS
-17) and the Change File Backup Statistics SYS call (SYS -11). This call provides
support for files larger than 65535 blocks and for file placement. You can also
use this call to obtain a file’s run-time system name and attribute data without
opening the file.

This call is heavily used. To improve performance, use the DCL command LOAD
/OVERLAY FILE_UTILITY to move the code for the call into memory. To remove
it from memory, use the DCL command UNLOAD/OVERLAY FILE_UTILITY.

The run-time system name field (see Data Passed, bytes 4 and 27 through 30)
in the accounting entry of the file’s User File Directory (UFD) contains file size
information for large files. The call decodes the two-word run-time system name
field as follows:

® If the first word is nonzero, the data in both words is the run-time system
name. The file size is limited to 65535 blocks.

8-44 File Utility Functions, FO=-26 (UU.FIL)

e If the first word is 0, the low order byte of the second word contains the most
significant bits of the file size. The file size is limited to 2/23-1 blocks. The
high order byte of the second word is reserved and must be 0.

The following restrictions apply to large files:

® Because an executable file cannot have both a run-time system name and a
most significant bit indication in the field, large files are not executable.

® You cannot extend a compiled file beyond block 65535. An attempt to extend
a compiled file past block 65535 results in the error ?Protection violation
(ERR=10).

° You cannot rename a file that is larger than 65535 blocks with the intent of
assigning a compiled protection code. The attempt is rejected with no error
and the compiled bit remains off.

¢ When you extend a file past block 65535, it loses its run-time system name.

¢ You cannot change the run-time system name of a file that is larger
than 65535 blocks. The attempt results in the error ?Protection viclation
(ERR=10).

® You cannot change the run-time system name of a compiled file to two words
of zeros. The attempt results in the error ?Protection violation (ERR=10).
Note that you can perform this operation on a noncompiled file.

¢ You cannot change the run-time system name of any file to a zero word
followed by a nonzero word.

To place a file in a particular position on the disk, specify the desired disk DCN
(Device Cluster Number) as returned in bytes 3 and 4 of this call in the file
specification /POSITION switch (see the RSTS/E System User’s Guide). The
monitor attempts to place the first block of the file at or after the specified DCN.
If the file placement is successful, the placed bit (bit 1, mask value 2) in the
file’s UFD entry is set (see SYS calls -10 and -23). If the file placement is not
successful, the first block of the file is placed at the lowest free block on the disk,
the UFD placed bit is not set, and no error is returned.

Note that you can use either this call or SYS call -11, Change File Statistics, to
change data in a file’s accounting entry. However, the two calls work differently
when you open a file, write to it, change the date of last access in the file’s
accounting entry, and then close the file.

When you use this SYS call to change the date of last access before closing the
file (by specifying 4% in byte 4 and a new date in bytes 17 and 18), the system
updates the file’s accounting entry to contain the current date when it closes the
file. Use SYS call -11 if you want the file’s accounting entry to retain the date
specified in the call after the file is closed.

To change the value of the file’s no backup bit, pass the new value as the value
8% in byte 15. The contents of the file’s no backup bit is returned as the value 8%
in byte 2. This bit sets the file’'s [NO]JBACKUP flag, as does the [/NO]BACKUP
qualifier to the SET FILE command. The default for all files is BACKUP. If
NOBACKUP is set, the file’s attributes—name, type, size, and so forth—are
included in the backup operation, but the data portion of the file is not. A
RESTORE operation restores the file to its original size, but its contents are
random. Assign NOBACKUP to highly volatile files.

File Utility Functions, FO=-26 (UU.FIL) 8-45

To change the value of the file’s no delete/rename bit, pass the new value as the
value 32% in byte 15. The contents of the file’s no delete/rename bit is returned
as the value 32% in byte 2. An attempt to reset the bit in the following files
generates the error ?Protection violation: [0,1]1SATT.SYS, [0,1]BADB.SYS, or
SYO0:[0,1]INIT.SYS. For more information about the no delete/rename bit, see
the REFRESH FILE suboption of INIT, in the RSTS/E System Installation and
Update Guide.

To change the value of the file’s ignore bit, pass the new value as the value 64% in
byte 15. The contents of the file’s ignore bit is returned as the value 64% in byte
2. This bit sets the file’s [NOJIGNORE flag, as does the [/NOJIGNORE qualifier
to the SET FILE command. The default for all files is NOIGNORE. If IGNORE is
set, BACKUP ignores the file during a BACKUP operation. You do not need touse
the /EXCLUDE qualifier to exclude the file.

Because you can specify several functions for this call to perform at once, you
can use the value 2% in byte 27 to avoid the error ?Protection violation. This
value instructs the call to disregard any invalid requests while still processing
valid ones. In previous versions of RSTS/E, the call returned the error if any
requested function could not be executed, even if some of the requested functions
were perfectly valid.

8.3.6 Manipulate Attributes

This call has the following subfunctions:
* Read File Attributes

° Write File Attributes

* Read Pack Attributes

* Read Account Attributes

¢ Write Account Attributes

* Delete Account Attributes

Certain PDP-11 record organizations, such as RMS-11, define characteristics
for files that they create. These characteristics are called file attributes. File
attributes are defined when the file is created and must be retained during the
existence of the file. In RSTS/E, file attributes are kept on disk in a UFD entry.
See the RSTS/E System User’s Guide for a description of file attributes.

Account attributes, on the other hand, are divided into "attribute blocks." Each
block is identified by a type code in the range 1 to 255 and contains 13 bytes

of data. The account attribute calls identify the attribute to be accessed using
the type code. Type codes in the range 1 to 127 are reserved for use by Digital.
Type codes in the range 128 to 255 are for customer use. Customer applications
(typically account management related programs) can use these codes for storing
moderate amounts of account-related information. Because excess use of account
attributes decreases the number of possible accounts per group, applications that
need to store a lot of data should use an auxiliary file. Currently, approximately
five additional (user-supplied) account attributes can be used per account without
affecting the 255 account per group limit. Note that this is subject to change
because future releases of RSTS/E may use additional account attributes.

Because these subfunctions deal with internal data structures, any reading or
writing account attributes controlled by Digital may cause problems in future
releases. If you have data that needs to be manipulated or read by a significant
number of programs, use one of the other SYS calls provided.

8-46 Manipulate Attributes, FO=-25 (UU.ATR)

The account attribute calls differ from the file attribute calls by the negative
value passed in byte 3 rather than a channel number of an open file.

8.3.6.1

Read File Attributes
Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-25%), the read/write attributes code.

3 CHR$(N%), where N% is the channel number on which the file is open.
4 CHR$(0%), to specify read.

5-30 Reserved; should be 0.

Data Returned

Bytes Meaning

1 Current job number times 2.

2-4 Not used.

5-26 File attribute data. If file has no attributes, all bytes contain nulls .

27-30 Name of run-time system under which file was created, in Radix—50 format.

1To determine the number of attributes returned, scan backwards from byte 26 (in words) to find the
first word that is not null. Then calculate the number of attributes returned. If all the words are
null, no attributes were returned.

Privileges Required

None.

Possible Errors

Meaning ERR Value
?I/0 CHANNEL NOT OPEN 9

Channel specified in byte 3 must have file open.

?PROTECTION VIOLATION 10

Job does not have read access to the file, or the channel is open on
a UFD. (UFDs do not have attributes.)

?DEVICE NOT FILE STRUCTURED 30

Device on which file is open must be disk.

?ILLEGAL I/O CHANNEL 46

Attributes can be accessed only on channels 1 through 15.

Manipulate Attributes, FO=-25 (UU.ATR) 8-47

8.3.6.2 Write File Attributes
Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-25%), the read/write attributes code.

3 CHR$(N%), where N% is the channel number on which file is open. (You must
have write access on the open channel.)

4 CHR$(N%), where N% is the number of words to write (1<=N<=11).

5-26 The attribute data to write, 2 bytes per attribute.

27-30 Reserved; should be 0.

Data Returned

None.

Privileges Required

None.

Possible Errors

Meaning ERR Value

?NO ROOM FOR USER ON DEVICE 4

The UFD of the account is full. Some files must be deleted to free
entries for attributes.

?1/0 CHANNEL NOT OPEN 9

Channel specified in byte 3 must have file open.

?PROTECTION VIOLATION 10

Job does not have write access to the file open on channel, or the
channel is open on a UFD. (UFDs do not have attributes.)

?DEVICE NOT FILE STRUCTURED 30

Device on which file is open must be disk.

?ILLEGAL BYTE COUNT FOR I/O 31

No more than 11 can be specified in byte 4.

?ILLEGAL I/O CHANNEL 46

Attributes can be accessed only on channels 1 through 15.

NOTE

Digital-supplied software depends on file attribute data defined by
the system. User-written software must not write attribute data that
conflicts with system-defined attribute data.

8-48 Manipulate Attributes, FO=-25 (UU.ATR)

8.3.6.3 Read Pack Attributes
Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-25%), the read/write attributes code.

3 CHR$(-4%), the code to read pack attributes.

4-22 Reserved; should be 0.

23-26+ The name and unit number of the disk device whose attributes are to be
returned.

27-30 Reserved; should be 0.

Data Returned

Bytes Meaning

1-6 Not used.

7-8 Starting device cluster number of the MFD.
9-10 Pack revision level.

11 Pack cluster size.

12 Not used.

13-14 Pack status/flags. See the Discussion.
15-18 Pack ID, in Radix-50 format.

19-20 Size of disk in device cluster numbers.

21 Device cluster size.

22 0 if disk is not system disk; 1 if disk is system disk.
23-24 UNTCNT for the disk.

25-26 Reserved for special applications.

27-28 Number of free device clusters.

29-30 Not used.
Privileges Required
DEVICE Access a restricted disk

Possible Errors

Meaning ERR Value
?NOT A VALID DEVICE 6

Device specified is not a valid device.

?DEVICE NOT FILE STRUCTURED 30

Device specified is not a logically mounted disk.

Discussion

This call returns information about mounted disks. You can use it to obtain the
characteristics of a disk and the drive on which the disk is mounted.

Manipulate Attributes, FO=-25 (UU.ATR) 8-49

The following are the defined bits returned in the pack status/flags:

Bit Value Meaning
9 512% Pack is initialized "new files first"
11 2048% Pack is initialized to maintain date of last write
12 4096% Pack is initialized as a read-only pack
14 16384% Pack is initialized as a private/system disk

All other values are reserved.

8.3.6.4 Read Account Attributes
Data Passed

Bytes Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-1%), the read account attributes subfunction code.

CHR$(N%), where N% is the attribute type code for the account to be accessed.
The following values are the currently defined attribute type codes:

Value Meaning

0% Lookup by index

1% Quotas

2% Authorized privilege mask
3% Password

4% Date/time information

L R

5% Name entry

6% Nondisk quotas

You may also use type codes in the customer-defined range (128-255).
5-6 PPN of the account to be accessed.

7-8 CHR$(1%)+CHR$(SWAP%(1%)), where 1% is the index number of the account to
read. Used only if byte 4 is 0; otherwise, 0. An index of O returns the account’s
accounting data.

9-22 Reserved; should be 0.
23-26+ The name and unit number of the disk device where the account resides.
27-30 Reserved; should be 0.

Data Returned

Bytes Meaning
1-6 Not used.

7-20 Account attribute data. The first byte contains the attribute type code, as
passed in byte 4. If byte 4 is 0, the first byte returns the type code of the
attribute found. The remaining 13 bytes contain the actual attribute data. See
the Discussion for a description of the 13 data bytes of attribute codes 1, 2, and
4.

21-30 Not used.

8-50 Manipulate Attributes, FO=-25 (UU.ATR)

Privileges Redquired

None Read attributes 1, 2, and 4-191 in your own account. That is, you can
read all Digital-defined attributes except password as well as the first 64
user-defined attributes (128-191).

GACNT or Read all attributes in group accounts.
GREAD

WACNT or Read all attributes in all accounts.
WREAD

Possible Errors

The following error messages are possible with the read, write, and delete account
attributes subfunctions of this call.

Meaning ERR Value
?CAN'T FIND FILE OR ACCOUNT 5

The account you specified does not exist.

?NOT A VALID DEVICE 6

The device you specified does not exist.

?PROTECTION VIOLATION 10
You do not have sufficient privilege to perform the specified

subfunction.

?DISK PACK IS NOT MOUNTED 21

The disk you specified is not mounted.

?DEVICE NOT FILE STRUCTURED 30

The device on which the file is open must be a disk.

?END OF FILE ON DEVICE 11

The attribute you specified was not found. If you specified a
lookup by index, the index is greater than the number of at-
tributes.

This error message can only occur with the read account at-
tributes subfunction.

Discussion

This call searches for the specified attribute type and returns the data as 7 words,
beginning in byte 7. The first byte is the type code; the remaining 13 bytes are
the actual attribute data.

You can also specify a search by index number by passing a value of 0 in byte
4. This type of search enables programs like BACKUP to read all the account
attributes without trying each of the 255 possible type codes. The program can
issue successive calls, incrementing the index value by 1 each time.

The layouts of the data returned in bytes 7-20 for attribute type codes 1, 2, 4,
and 6 are listed below. The data shown is considered internal information and is
subject to change without notice.

Manipulate Attributes, FO=-25 (UU.ATR) 8-51

Type 1: Quota information

Byte
7
8
9-10
11-12
13
14
15
16
17-18
19-20

Meaning

1, the attribute type code
Detached job quota
Logged-out quota (LSB)
Logged-in quota (LSB)
Logged-in quota (MSB)
Logged-out quota (MSB)
Reserved

Current usage (MSB)
Reserved

Current usage (LSB)

Type 2: Authorized privilege mask

Byte
7
8

9-16
17-20

Meaning

2, the attribute type code
Reserved

Authorized privilege mask

Reserved

Type 4: Date/time information

Byte
7
8
9-10
11-12

13-14
15-16
17-18
19-20

Meaning

4, the attribute type code

Keyboard of last login (-1 if last login was detached)
Date of last login, in RSTS/E internal format

Time of last login, in RSTS/E internal format in bottom 11 bits. Flags in high 5
bits.

Date of last password change
Time of last password change, in bottom 11 bits. Flags in high 5 bits.
Date of account creation

Expiration date (-1 if no expiration)

Flags in bytes 11-12 are:

2048%
Others

No password is required to log in to this account

Reserved

Flags in bytes 15-16 are:

2048%
4096%
8192%

Password cannot be looked up
No dialup logins allowed

No network logins allowed

16384% No interactive logins allowed (spawn and batch only)
32767%+1% Captive account

8-52 Manipulate Attributes,

F0=-25 (UU.ATR)

Type 6: Nondisk quotas

Byte
7
8

9-10
11-12
13-20

Meaning

6, the attribute type code
Total job quota

RIB quota

Message quota

Reserved

8.3.6.5 Write

Account Attributes
Data Passed

Bytes
1

2
3
4

5-6
7-20

21-22
23-26+
27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-2%), the write account attributes subfunction code.

CHR$(N%), where N% is the attribute type code for the account to be accessed.
Values for attribute type codes are:

Value Meaning

0% Accounting Data

1% Quotas

2% Authorized privilege mask
3% Password

4% Date/time information

5% Name entry

6% Nondisk quotas

You may also use type codes in the customer-defined range (128-255).
PPN of the account to be accessed.

The new account attribute data. The first byte contains the attribute type code.
The remaining bytes contain the actual attribute data. See the Discussion for a
description of the 13 data bytes of attribute codes 1, 2, and 4.

Reserved; should be 0.
The name and unit number of the disk device where the account resides.
Reserved; should be 0.

Data Returned

None.

Privileges Required

GACNT
WACNT

Write attributes for accounts in the group

Write attributes for all accounts

Manipulate Attributes, FO=-25 (UU.ATR) 8-53

Possible Errors

In addition to the general error messages listed in the read account attributes
subfunction, this call returns the following errors:

Meaning ERR Value
?NO ROOM FOR USER ON DEVICE 4

The attribute block does not exist yet, and it cannot be added
because the directory is full.

?PROTECTION VIOLATION 10

You do not have sufficient privilege to perform this subfunction, or
the disk you specified is write-locked.

Discussion

This call searches for the attribute type code you specify in byte 4. If no match is
found, it attempts to allocate a new directory entry to hold the new attribute.
Next, it writes the data passed in bytes 7-20 into the attribute block. See

the Discussion in the previous subfunction, "Read Account Attributes," for a
description of the data passed in bytes 7-20.

This call writes the data exactly as passed, with two exceptions:

® Authorized privilege mask (attribute type 2—When writing the mask, the
call ignores any attempt to turn on privilege bits if the caller does not have
the corresponding privilege currently in effect. This applies only to attempts
to change a bit from OFF to ON. Writing a bit as ON is allowed without
checking if it was ON already.

* Date/time information (attribute type 4)—The last login fields are always
left alone unless they are currently null. This ensures that any logins to an
account leave a trace that cannot easily be altered.

8.3.6.6 Delete Account Attributes
Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-25%), the read/write attributes code.

3 CHR$(-3%), the delete account attributes subfunction code.

4 CHR$(N%), where N% is the attribute type code for the account to be accessed.

Values for attribute type codes are limited to those in the customer defined
range (128 to 255).

5-6 PPN of the account to be accessed.

7-22 Reserved; should be 0.

23-26+ The name and unit number of the disk device where the account resides.
27-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

8-54 Manipulate Attributes, FO=-25 (UU.ATR)

Privileges Required

GACNT Delete attributes for accounts in the group
WACNT Delete attributes for all accounts
Possible Errors

In addition to the general error messages listed in the read account attributes
subfunction, this call returns the following errors:

Meaning ERR Value
TPROTECTION VIOLATION 10

You do not have sufficient privilege to perform this subfunction; or
the disk you specified is write-locked; or you attempted to delete
attributes in the Digital reserved attribute type range.

?END OF FILE ON DEVICE 11

The attribute you specified was not found.

Discussion

This subfunction deletes an attribute block for a specified account. It searches
for the attribute type specified in byte 4. If found, the attribute block is deleted.
This call applies only to attribute type codes in the customer defined range (128
to 255).

8.3.7 Add/Delete CCL Command

Data Passed
To add a CCL command, specify the bytes described below.
Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-24%), the code to add/delete CCL.

3 CHR$(0%), to add a CCL command.

4 CHR$(U%), where U% is the number of unique characters in the command.

U% must be between 1 and the length of the command. This defines the
abbreviation point.

5-6 PPN under which program to run is stored.

7-10 File name, in Radix-50 format, of the program to run.

11-12 File type, in Radix-50 format, of the program to run.

13-21 CCL command; from 1 to 9 ASCII characters padded with NUL characters.

22 Must be CHR$(0%).

23-24 Name of device on which program to run is stored; must be disk.

25 Device unit number if byte 26 is 255.

26 If this byte is 255, the value specified in byte 25 is the explicitly specified unit
number.

27-28 Line number at which to start program (add 32767% + 1% to keep privileges).
29-30 Reserved; should be 0.

Add/Delete CCL Command, FO=-24 (UU.CCL) 8-55

To delete a CCL command, specify the bytes described below.

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-24%), the code to add/delete CCL.
3 CHR$(-2%) to delete a CCL command.
4

CHR$(U%), where U% is the number of unique characters in the command. U%
must be between 1 and the length of the command and defines its abbreviation
point.

5-12 Reserved; should be 0.
13-21 CCL command to delete.
22-30 Reserved; should be 0.
Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors
7 Meaning ERR Value
For the add CCL call:
ILLEGAL FILE NAME 2

The CCL command being added either begins with a number or
contains an otherwise unacceptable character.

?ACCOUNT OR DEVICE IN USE 3

The CCL command being added is already defined.
For the delete CCL call:

?CAN'T FIND FILE OR ACCOUNT 5

The CCL command specified does not exist.

Discussion

This call adds and deletes CCL commands. Chapter 10 of this manual describes
the operation and design of CCL commands.

The command can be a string from one to nine characters long. The allowed
single-character commands are A through Z, the at sign (@) character, the dollar
sign ($) character, and the number sign (#) character. For commands longer
than one character, the string must begin with a letter, and the remaining
characters can be letters or digits. The command cannot begin with a numeric
character because BASIC-PLUS interprets digits at the beginning of a line as a
line number, not a command.

Commands have an abbreviation point after the first character. The abbrevi-
ation point is specified by the value in byte 4. If you specify an abbreviation
point that equals the number of characters in the command, the command can-
not be abbreviated. An example of an abbreviated CCL command is DIR (the
abbreviation point follows the R), which uniquely defines the CCL command
DIRECTORY. Any of the following abbreviations are also valid: DIR, DIRE,

8-56 Add/Delete CCL Command, FO=-24 (UU.CCL)

DIREC, DIRECT, DIRECTO, DIRECTOR, and DIRECTORY. If the abbreviation
point for DIRECTORY follows the Y, then no abbreviation is valid.

Because of the way RSTS/E interprets CCL commands, you must make sure
that you define similar commands in the correct order. For example, you must
define MACRO before MAC. See the RSTS/E System Manager’s Guide for more

information about defining CCL commands.

8.3.8 Set Special Run Priority

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.
2 CHR$(-22%), the code to set special run priority.
3-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required
TUNE

Possible Errors

None.

Discussion

This SYS call sets the special run priority bit in the job priority word. This action
raises the priority of the job slightly above that of other jobs in its priority class.
The priority bit is cleared whenever the job returns to the job keyboard monitor
or whenever a program chains to another program. Thus, an appropriately
privileged job can raise its priority without protecting against a user typing
Ctrl/C and retaining the higher priority.

8.3.9 Drop/Regain Temporary Privileges

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.
2 CHR$(-21%), the code to drop temporary privileges.
3 If you do not specify a value, the call permanently drops temporary privileges.

Otherwise, CHR$(N%), where N% means either of the following:
255% Temporarily drop temporary privileges.

0% Regain temporary privileges dropped by 255% value.
4-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Drop/Regain Temporary Privileges, FO=-21 (.SET/.CLEAR) 8-57

Possible Errors

None.

Discussion

This call allows a program to selectively use temporary privileges. (See Chapter 1
for a description of temporary privileges.)

This call allows a program to activate temporary privileges for sections of code
where they are needed, but take advantage of built in monitor protections (such
as protection code arbitration) elsewhere. The call does not affect the permanent
privileges of an account.

Good programming practice suggests two general approaches to using and con-
trolling temporary privilege. If temporary privilege is required only for some
initial set-up, the program can concentrate the code requiring privilege "up front"
and then drop temporary privileges permanently. The remainder of the program
can then rely on the monitor’s built-in protection, appropriate to the account the
program is running in. The following sample code illustrates this approach:

10 VS$ = SYS(CHR$ (6%) + CHRS (-22%))
!SET SPECIAL RUN PRIORITY - THIS REQUIRES PRIVILEGE

20 OPEN "$SYSTEM.FIL" FOR INPUT AS FILE 1%, MODE 8192%
!OPEN A "REFERENCE" FILE, REGARDLESS OF PROTECTION
! (USING READ-ONLY MODE, OFTEN GOOD PRACTICE, ALSO)

30 V$ = SYS(CHR$ (6%) + CHRS (-21%))
'HAVING DONE THE NECESSARY SET~UP, DROP TEMPORARY
!PRIVILEGES FOR THE REMAINDER OF THE PROGRAM

40

A different approach is appropriate when a program needs temporary privileges
at several points during execution. In this case, good programming practice
suggests that temporary privileges be dropped early, and then regained just long
enough to be used where needed. The following sample code illustrates this
approach. (This sample uses line numbers appropriate for a program designed to
be invoked by CCL. See Chapter 11 for more information on these conventions.)

1 EXTEND

2 PRINT ’?PLEASE USE THE "xxxxx" CCL COMMAND’

\ GOTO 32767 !DISALLOW SOMEONE INVOKING THE PROGRAM BY RUN
30000 ! CONVENTIONAL CCL ENTRY POINT

DROP.PRIVILEGESS = CHR$(6%) + CHRS(-21%) + CHRS (255%)
!COMPOSE THE "DROP PRIVILEGES" CALL STRING

\ V$ = SYS(DROP.PRIVILEGESS)
!GO AHEAD AND DROP THEM, FIRST THING

\ REGAIN.PRIVILEGESS = CHRS (6%) + CHRS(-21%) + CHRS (0%)
!COMPOSE THE "REGAIN PRIVILEGES" CALL STRING,
!FOR LATER USE

. (FOLLOWING CODE CAN NOW EXECUTE
WITHOUT PRIVILEGE)

!NOW, YOU REACH A POINT WHERE PRIVILEGE IS REQUIRED
! (OPEN A PROTECTED FILE)

8-58 Drop/Regain Temporary Privileges, FO=-21 (.SET/.CLEAR)

\ V$ = SYS(REGAIN.PRIVILEGESS) !GET PRIVILEGES TEMPORARILY
\ OPEN "$SYSTEM.FIL" FOR INPUT AS FILE 1%, MODE 8192%

!OPEN A "REFERENCE" FILE, REGARDLESS OF PROTECTION

! (USING READ-ONLY MODE, OFTEN GOOD PRACTICE, ALSO)
\ V$ = SYS(DROP.PRIVILEGESS$) !AND DROP PRIVILEGES AGAIN

(AND SIMILARLY FOR OTHER OPERATIONS
THROUGHOUT THE PROGRAM)

32767 END

8.3.10 Lock/Unlock Job in Memory

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-20%), the lock/unlock a job in memory code.

3 CHR$(N%), where N% is 0% for lock and 255% for unlock.
4-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required
TUNE

Possible Errors

None.

Discussion

This call prevents unnecessary swapping by forcing the job executing the call to
remain in memory. The call performs this action without affecting the job priority
or run burst. The call merely eliminates the swapping time between run bursts.

You may want to use this call in a program with certain time-sensitive routines.
The locked time must be very short to avoid degrading system performance.
Depending on the memory configuration, a locked job can cause fragmentation
of user space and prohibit the system from swapping any other job into memory.
If the job expands its size in memory, the system can swap it out of memory
regardless of its locked status.

The following sample code demonstrates the lock and unlock procedure:

10 AS$ = SYS(CHR$(6%) + CHRS (-20%) + CHRS(0%))
! LOCK JOB IN MEMORY
100 AS$ = SYS(CHRS (6%) + CHRS (-20%) + CHRS$(255%))

! UNLOCK JOB FROM MEMORY

Set Logins, FO=-19 (UU.LOG) 8-59

8.3.11 Set Logins

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-19%), the set logins code.

3 CHR$(N%), where N% is the number of logged in jobs to allow.
4-30 Reserved; should be 0.

Data Returned

Bytes Meaning

1 The current job number times 2.

2 Not used.

3 CHR$(N%), where N% is the actual number of logins set.
4-30 Not used.

Privileges Required
SWCTL

Possible Errors

None.

Discussion

This call sets the number of allowable logins to the number specified in byte 3. A
value of 0 sets the number of allowed jobs to 1. The upper limit for the number
of logins is either the system JOB MAX or the number of jobs that can currently
be swapped, whichever is lower. If you specify a larger value, the system sets the
number of logins to the upper limit. You do not receive an error.

The number of jobs that can log in to a RSTS/E system is limited by the swapping
space available, the JOB MAX set at system start-up, and the set maximum
number of logins. However, console terminal KBQ: is a special terminal that can
log in regardless of the set login maximum, provided that swapping space and
JOB MAX permit. The system manager can install a patch that changes the
number of the special keyboard from KBO: to some other keyboard.

8.3.12 Manipulate RTS, Resident Library, Dynamic Region

This call has the following subfunctions:
¢ Add Run-Time System

¢ Remove Run-Time System

¢ Unload Run-Time System

¢ Add Resident Library

®* Remove Resident Library

® Unload Resident Library

8-60 Manipulate RTS, Resident Library, Dynamic Region, FO=-18 (UU.RTS)

¢ Create Dynamic Region
e Create Virtual Disk
e Delete Virtual Disk

8.3.13 Add a Run-Time System

Data Passed

Bytes
1
2
3

5-6+
7-10+
11-12

13-14
15-16

17

18

Meaning
CHR$(6%), the SYS call to FIP.
CHR$(-18%), the run-time system manipulation code.

CHR$(N%), where N% is:
0% Use values for all bytes as specified in this call.

128% Use values defined in the .RTS file for bytes 13-14, 15-16, 19-20, and
21-22.

Reserved; should be 0.
PPN of the file to add; if none is specified, [0,1] is the default.
Run-time system name in Radix—50 format.

CHR$(A%)+CHR$(SWAP%(A%)), where A% is the 1K-word section of memory
at which this run-time system is to be loaded. The numbering begins at 0 and
ends at n-1 (where n is the total number of 1K-word sections of memory on the
system).

If A% is 0% and the run-time system requires a fixed address (read/write or
/STAY run-time system), the monitor finds the address progressing from high to
low memory. Otherwise, the monitor uses an area of memory calculated when
the run-time system is actually needed.

If A% is -1%, the monitor calculates a fixed address, regardless of whether or
not the run-time system requires one.

Maximum allowed user image size, in K words (the P.SIZE symbol). If byte 3 is
128%, these bytes are ignored.

Minimum allowed user image size, in K words (the PMSIZ symbol). If byte 3 is
128%, these bytes are ignored.

CHR$(P%), where P% is the position in the linked list of run-time system
(RTS) description blocks to place the description block for this run-time system.
If P% is 1%, the call places the description block immediately after that of
the primary RTS. If P% is a nonzero value less than or equal to the number
of blocks currently in the list, the call places this new block in that position
following the primary RTS block. If P% is 0% or a value greater than the
number of blocks currently in the list, the call places this new block at the end
of the list.

CHR$(S%), where S% is the stay flag. If S% is 128% (the high bit is set), this
RTS is kept permanently resident. If S% is 0%, the memory occupied by this
RTS can be released as user job space whenever the usage count of the RTS
goes to 0.

Add a Run-Time System, F0=-18 (UU.RTS) 8-61

19-20 CHR$(F%) + CHR$(SWAP%(F%)), where F% is a flag word whose bits define
this run-time system’s characteristics. If byte 3 is 128%, these bytes are
ignored. Only the high byte is used for flag bits. F% is the sum of the bits set

as follows:

Value Meaning

256% This RTS is a keyboard monitor.

512% This RTS handles only one user; that is, it is not shared by
multiple users.

1024% This RTS allows read and write access to its memory rather
than read-only access.

2048% Errors that occur under the control of this RTS should not be
recorded in the system error log.

4096% This RTS should be immediately removed from memory when
its usage count goes to 0.

8192% The monitor computes the proper job image size (in K words)
for any program running under this RTS as (file-size+3)/4.

16384% Reserved; should be 0.

32767%+1% This RTS emulates trap instructions by using a special EMT
prefix. If this characteristic is specified, the EMT prefix code is
in the low byte (0 < code < 255).

21-22 The normal executable file type, in Radix-50 format, for this run-time system
(the PDEXT symbol). If byte 3 is 128%, the call ignores these bytes.

23-24+ Name of the device (must be disk) on which the run-time system file is stored.
If you do not specify a name, the call uses SY:.

25+ Unit number.

26+ Unit number flag.
27-30 Reserved; should be 0.
Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors

Meaning ERR Value
?NO ROOM FOR USER ON DEVICE 4

If the monitor were to load this run-time system at the address
specified in bytes 11 and 12, memory would be fragmented and a
swapping violation would occur. See the discussion of assigning
and allocating memory in the RST'S/E System Installation and
Update Guide for guidelines on how to avoid fragmenting memory.
This error can also occur when the monitor attempts to determine

the address assignment but cannot find any valid load address
due to lack of memory.

?CAN'T FIND FILE OR ACCOUNT 5

A file with the name specified in bytes 7 through 10 and a file
type of .RTS cannot be found in the account and device specified
in this call (bytes 5-6 and bytes 23-26).

8-62 Add a Run-Time System, FO=-18 (UU.RTS)

Meaning ERR Value
?PROTECTION VIOLATION 10

The file to be added as the run-time system has a bad format. For
example, the file is not contiguous or has illegal entries in the SIL
index.

?NAME OR ACCOUNT NOW EXISTS 16

A run-time system with the same name currently exists.

ILLEGAL BYTE COUNT FOR I/O 31

The range of memory starting at the load address given in bytes
11 and 12 is not available. See the SYSTAT memory status report
to select an available range of memory.

?NO BUFFER SPACE AVAILABLE 32

Adding a run-time system description block requires a small
buffer and one is not currently available.

Discussion

This SYS function adds a run-time system description block to the linked list of
blocks in the monitor. Run-time systems other than the primary run-time system
(RSX) and the default keyboard monitor (DCL) are transient from one time-
sharing session to another. Thus, systems that offer auxiliary run-time systems
must define them for each time-sharing session.

8.3.14 Remove a Run-Time System

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the run-time system manipulation code.
3 CHR$(4%), remove run-time system.

4-6 Reserved; should be 0.

7-10+ Run-time system name in Radix-50 format.

11-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required
INSTAL

Remove a Run-Time System, FO=-18 8-63

Possible Errors

Meaning ERR Value

?ACCOUNT OR DEVICE IN USE 3

This run-time system is currently being loaded into memory or is
resident and in use. It cannot be removed until usage count is 0.

?CAN'T FIND FILE OR ACCOUNT 5

The run-time system specified in bytes 7 through 10 is not cur-
rently defined.

?PROTECTION VIOLATION 10

The run-time system specified in bytes 7 through 10 is the pri-
mary RTS or the system default keyboard monitor and cannot be
removed by this call.

Discussion

This call removes a run-time system from memory, deletes the monitor struc-
ture that defines this run-time system, and closes the run-time system file.
The SHUTUP system program automatically performs these actions when it
terminates time-sharing operations.

8.3.15 Unload a Run-Time System

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the run-time system manipulation code.
3 CHR$(6%), unload run-time system.

4-6 Reserved; should be 0.

7-10+ Run-time system name in Radix-50 format.

11-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors

Meaning ERR Value
?ACCOUNT OR DEVICE IN USE 3

The run-time system specified in bytes 7 through 10 is currently
being loaded into memory or is resident and in use by the job that
is currently running. It cannot be unloaded now; a later attempt
might succeed.

8-64 Unload a Run-Time System, FO=-18

Meaning ERR Value

?CAN'T FIND FILE OR ACCOUNT 5

The run-time system specified in bytes 7 through 10 is not cur-
rently defined.

Discussion

This call frees the portion of memory occupied by the run-time system. The
memory is made available as user job space. The run-time system will be loaded
again when it is needed. This function is valid for the primary run-time system,
in which case it simply causes the run-time system to be reread from disk. In all
other cases, the unload function also clears the "stay" flag set when the run-time
system was last added or loaded.

8.3.16 Add a Resident Library

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the resident library manipulation code.

3 CHR$(16%), add a resident library.

4 Reserved; should be 0.

5-6+ The PPN of the file to add; if none is specified, [0,1] is the default.

7-10+ The resident library name in Radix-50 format.

11-12 CHR$(A%)+CHR$(SWAP%(A%)), where A% is the 1K-word section of memory
at which the resident library is to be loaded. The numbering begins at the
first available 1K-word section and ends at n-1 (where n is the total number of
1K-word sections of memory on the system).

If A% is 0% and the library requires a fixed address (read/write or /STAY
library), the monitor finds the address progressing from high to low memory.
Otherwise, the monitor uses an area of memory calculated when the library is
actually needed. See the Discussion for restrictions on specifying A%=0%.

If A% is -1%, the monitor finds the first free space large enough to hold the
resident library, starting from the top of memory.

If A% is -2%, and you add the library neither read/write nor /STAY, the monitor
calculates an address for the library when it is actually needed. See the
Discussion for restrictions on specifying A%=-2%.

13-17 Reserved; should be 0.

18 CHR$(S%), where S% is the stay flag. S% can be one of the following values:
Value Meaning

0% The memory occupied by this library can be freed for user job space
whenever the usage count of the RTS is 0 (no active task is accessing
the library).

128% The library is made permanently resident.

Add a Resident Library, FO=-18 8-65

19-20 CHR$(F%)+CHR$(SWAP%(F%)), where F% is the flag word that defines the
characteristics of the library. Only the high byte is used for flag bits. F% is the
sum of the bits set, as follows:

Value Meaning

256% Reserved; should be 0.

512% The resident library is available to only one user. It is not
shared by multiple users.

1024% The resident library allows read/write access to its memory,
rather than read- only access.

2048% Reserved; should be 0.

4096% The resident library does not record errors in its code in the
system error log.

8192% The resident library is immediately removed from memory
when its usage count equals zero.

16384% Reserved; should be 0.

32767%+1% Reserved; should be 0.

21-22+ Protection code for the installed resident library. To specify a protection code,
place a nonzero value in byte 21 and the protection code in byte 22. To accept
the default protection, specify 0 in byte 21. The default protection code is 42,
which means that the monitor grants read access to all users but denies write
access.

23-24+ The name of the disk device on which the resident library is to be stored. If no
name is specified, SY: is used.

25+ Unit number.

26+ Unit number flag.
27-30 Reserved; should be 0.
Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors

Meaning ERR Value
?NO ROOM FOR USER ON DEVICE 4

You specified an address in bytes 11 and 12 that would cause the
monitor to load the library so that memory would be fragmented
and a swapping violation would occur. See the RST'S/E System
Installation and Update Guide for guidelines on avoiding memory
fragmentation.

This error can also occur when the monitor attempts to determine
the address assignment but cannot find any valid load address
due to lack of memory.

8-66 Add a Resident Library, FO=-18

Meaning ERR Value
?CAN’T FIND FILE OR ACCOUNT 5

You specified a file name in bytes 7 through 10 that cannot be
found in the account specified in bytes 5 and 6 on the device
specified in bytes 23 through 26. Make sure that the file name
you specify has a .LIB file type and is located in the specified
account and device.

?PROTECTION VIOLATION 10

The file you want to add is in improper format. For example,
this error occurs if you specify a file that is not contiguous or has
illegal entries in the SIL index.

INAME OR ACCOUNT NOW EXISTS 16
You specified the file name of a resident library that already

exists.

?ILLEGAL BYTE COUNT FOR IO 31

You did not specify a load address in bytes 11 and 12 or the
address you specified is not available. Refer to the memory status
report of a display program to determine an available range of
memory.

?NO BUFFER SPACE AVAILABLE 32

A small buffer is required for the description block of an added
resident library. This error is returned if a small buffer is not
available.

Discussion

This SYS call adds a specified library to the monitor’s list of resident libraries.
This call is similar to that used to add a run-time system.

If you specify a value of 0 in bytes 11-12, and you add the library neither as
read/writeable nor with /STAY, the monitor calculates an address for the library
when it is actually needed. This is called a restricted floating resident library.
This type of library has the following restrictions:

® Only 1 such resident library may be mapped by a program at any time.

e A program mapping to the library must be running under the NULL run-time
system.

¢ The maximum size of the library is 28K words.

e The start address for mapping the library may not be any higher than:
32K - s
where s is the size of library rounded up to the next highest 4K boundary.

If you specify a value of -1 in bytes 11-12, the monitor automatically decides
where to load the resident library, finding the first free space large enough to
hold the library, starting from the top of memory. This is called a fixed resident
library. The library file does not have to reside in account [0,1]; however, the file
type must be .LIB.

Add a Resident Library, FO=-18 8-67

If you specify a value of -2 in bytes 11-12, and you add the library neither read
/write nor /STAY, the monitor calculates an address for the library when it is
actually needed, as it does for a value of 0. This is called an unrestricted floating
resident library. This type of library has the following restrictions:

e A program mapping to the library must be running under the NULL run-time
system.

® The maximum size of the library is 255K words.
If you install either type of floating library with /STAY or /NOREAD_ONLY, you

override the "floating” designation and the monitor installs the library as a fixed
library, with the value -1.

See the RSTS/E Tusk Builder Reference Manual for more information on creating
and using resident libraries.

8.3.17 Remove a Resident Library

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the resident library manipulation code.
3 CHR$(20%), remove a resident library.

4-6 Reserved; should be 0.

7-10+ The resident library name in Radix-50 format.
11-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors

Meaning ERR Value
?ACCOUNT OR DEVICE IN USE 3

You attempted to remove a library that is being loaded into
memory or is in use by the currently running job. A resident
library cannot be removed while a job is still attached to it.

?CAN'T FIND FILE OR ACCOUNT 5

You specified a resident library name in bytes 7 through 10 that
is not currently defined.

Discussion

This SYS call removes a library from physical memory, deletes the monitor
structure that defines the library, and closes the library file.

8-68 Remove a Resident Library, FO=-18

8.3.18 Unload a Resident Library

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the resident library manipulation code.
3 CHR$(22%), to unload a resident library.

4-6 Reserved; should be 0.

7-10+ The resident library name in Radix—50 format.
11-30 Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL
Possible Errors

Meaning ERR Value
?ACCOUNT OR DEVICE IN USE 3

You attempted to unload a resident library that is in the process
of being loaded or is in use by the currently running job. A library
cannot be unloaded while a job is still attached to it.

?CAN'T FIND FILE OR ACCOUNT 5

You specified an undefined resident library name in bytes 7
through 10.

Discussion

This SYS call removes a library from memory and frees that portion of memory
for use by other jobs. The system reloads the library when it is needed. If the
"stay" flag has been set by a previous add or load function, the call clears it.

8.3.19 Create Dynamic Region

Data Passed

Bytes Meaning

1 CHR$(6%), the SYS call to FIP.

2 CHR$(-18%), the run-time system manipulation code.

3 CHR$(24%), create dynamic region.

4-6 Reserved; should be 0.

7-10+ Region name in Radix—-50 format. If zero is passed, this creates an unnamed

dynamic region. See Discussion for information on unnamed dynamic regions.

Create Dynamic Region, FO=-18 8-69

11-12 CHR$(A%)+CHR$(SWAP%(A%)), where A% is the 1K-word section of memory
at which this dynamic region is to be loaded. The numbering begins at 0 and
ends at n-1 (where n is the total number of 1K-word sections of memory on the
system). If A% is 0%, the monitor finds the first free space large enough to hold
the region, starting from the top of memory.

13-14 Size of region in K-words, between 1 and 255 K. If you include a value of 128%,
the monitor creates the region even if the full amount of memory requested is
not available.

15-16 Reserved; should be 0.

17 CHR$(N%), where N% can be:
0% Do not attach job to region.

128% Attach job to region.

18 CHR$(N%), where N% can be:
0% Delete region when all users detach.

128% Do not delete region when all users detach.

19-20 CHR$(N%)+CHR$(SWAP%(N%)), where N% can be:
0% The region can be shared.

512% The region cannot be shared.
21 Protection code flag. If set, the protection code is real.
22 Protection code of region.
23-30 Reserved; should be zero.

Data Returned

Bytes Meaning
5-6 Region ID.
13 Size of the created region, in K words.

Privileges Required
INSTAL. See Discussion.