Synergy Programmer’s
Manual

Order No. AA-EU61A-TH

Order No. AD-EUG1A-T1

December 1985

This manual describes the tools and procedures that you
use to build an application that can be installed and run
in the Synergy environment.

REQUIRED SOFTWARE: Professional Host Tool Kit V3.0,
PRO/Tool Kit, 3.0 or later,
Synergy V2.0 or later

OPERATING SYSTEM: P/OS V3.0 or later

mnaﬂnan“‘

DIGITAL EQUIPMENT CORPORATION
Maynard. Massachusetts 01754-2571

First Printing, February, 1985
Updated, December, 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished wunder a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed for the wuse or reliability of
software on equipment that 1is not supplied by DIGITAL or its
affiliated companies.

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used in whole or 1in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow

DEC PDP RSTS

DECmate P/0S RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS

DECUS Professional VAX

DECwriter PRO/FMS VMS

DIBOL PRO/RMS VT

o] i[t]a]1 e PROSE Work Processor

PROSE PLUS

CONTENTS

PREFACE

CHAPTER 1 SYNERGY OVERVIEW

CHAPTER

INTRODUCTION TO SYNERGY
APPLICATION CONTROL « « « « « &
The Active Application
Installing and Removing Appllcatlons .
Starting and Exiting the Application .
Task Control Services Overview
WINDOWS IN SYNERGY e e e e e e e e e
Window Description
Window Attributes
Video Protocols
Resources e e e e e e
Changing the Wlndow Slze e e e e e e
Coordinate Systems
GIDIS Coordinates
Window Dimensions
Window Positions
Window Services Overview
MENUS e e e e e e .
High-level Menu Serv1ces e e e e e e
Primitive Menu Services

o e o o o o
DA A WWwWwwWwwwuwwwwwdhdhdbNne
. . o
=W

Y
[N

o e e o o o
OO UL W

PR R R R R R RRRRRRRR R R R
. . . .

.

NP

(2]

DESIGNING A NEW APPLICATION

THINKING ABOUT THE HUMAN INTERFACE . . .
The Type of Interaction
The Screen Contents
The Keyboard

The Format of HELP

The Handling of Errors
User Errors . . e e e e e e
Programming Errors e e e e e .
Resource Errors . . . « « « « « « =
Application Abort . . . e e e .

FITTING INTO THE SYNERGY MODEL « e o o e

BUILDING THE APPLICATION
Task Names . . . e e e
The Synergy Interface lerary

INSTALLING THE APPLICATION
Synergy Install File (.INS)
SYNERGY INSTALL FILE (.INB) FOR SHARED
APPLICATIONS
Installing a standard P/OS appllcatlon

. e« s s o & & o
[S2 N0 GRG0 - VO RN A

.
=W e

o

DO DO RO DO RO R RN RD NN NN NN NN
e e e e e e . . e e e e e .
BESWWWNR R R R R PR PP
. .
[

[

(2]
>N
w

iii

NN

I I | | IR S R |
P OWN&L&DDWwWWNDNDE

Il PR PRPPPRRPRERR
|

=

| [| N T N |
OWWOWWOWOI~JOOOUNUTULE WWE

NN NDNDNDNDNDNDNDDNDNDNDNDDNDDND
1

]
e
w N

CHAPTER

CHAPTER

CHAPTER

2.5

3

3.1
3.2
3.3
3.3.1
3.4
3.4.1
3.4.2
3.5

4

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.5
4.5.1
4.5.2
4.6
4.6.1
4.6.2
4.7
4.7.1
4.8
4.9
4.10
5

5.1

RUNNING FROM THE TOOL KIT AND OTHER

APPLICATIONS

ADAPTING A P/0OS APPLICATION

KEYBOARD USE e e e
SUSPENDING THE APPLICATION « e
SCREEN USE e e .
Retaining the VT Wlndow Type .
MODIFICATIONS TO OTHER FILES . .
Task Build Files
Install File
USING THE CLIPBOARD

THE SYNERGY INTERFACE

INITIAL STATE . . . e e e s .
At Synergy Start- Up e e e e .
At Window Creation .

On Return from Suspend . .
After Other Window Operations

COLOR MAP- .

WIZPSC - Zap Prlmary/Secondary
WIZCMP - Zap Color Map Entry .
WIRCMP - Reload Color Map .

FONTS AND ALPHABETS
User-Defined Fonts
WIRFNT - Restore Fonts .
Special Font
Text Fonts .

Printing the Synergy Character
Boxed Font . . e e e e e

IMPOSED DEVICE SPACE .« . .

INTERTASK COMMUNICATION METHOD .
Synergy Task Communication . .
Receiving Data Packets

Colors

.

CALL INTERFACE TO SYNERGY SERVICES

Parameters
WICAL -- Call Wlndow Serv1ce

PASSING TYPE-AHEAD TO SYNERGY ROUTINES

MGTCB - Expand Call-Back Code
FILE USAGE « « « «
SPECIFYING KEY CODES . . .
RESTRICTIONS . . .

TASK CONTROL SERVICES

TASK CONTROL SERVICES

iv

i I T |
BB D W NN

Wwwwwwww
|

I S . T T =S S VA S S S S Y SN SN
|

i
NNOOOONIJOUTUTESE DS WNDNDNR

NN N NG NN
oo
N
ENFIVIN

4-15
4-15
4-19
4-22
4-22
4-23
4-25

CHAPTER

CHAPTER

U

[e))

~ (o2} e 23«2 We2Ne)We)We W W e N e) o) Mo W e N0

EC T JRC NG I [N IR N B IR S [P IR RN I
e e e e P

1o ooy OO

OOV O OV O
o« o o

.
R
.

.
PRPRPRRERRRR R
e e e e . e .

DN
e e e

« e e s o o
NN NDNNDNDNNDND PP PP
. e o e o e e

SwW N

. e o o &
W oo U W
.

.
[N

w N

(B9

WIDON - Application Done
WIINI - Application Inltlallzatlon
WIINT - Suspend the Application

WISYP - Get System Parameters

SYNERGY MESSAGE BOARD
MGMSG - Send Message to Synergy Message
Board

MGDMS - Delete Message from Message Board

WINDOW SERVICES

WINDOW SERVICES
Window Descriptor Block
Specifying Window Coordinates
Specifying Window IDs

WICHW - Change the Size and P051tlon of a

Window

WICRW - Create a Window

WIDSW - Destroy a Window .

WIERW - Display Error Window

WIEWT - End Wait Message

WIGEW - Get Window Parameters

WIHDW - Hide a Window .

WIIDA - ID of a Window at a P01nt
WIPOW - Change Position of a Window
WIPSW - Push a Window

WISLW - Select a Window .

WISWP - Set Window Parameters

WISWT - Start Wait Message .
WITTL - Change Title of Front Wlndow .
WIXSWT - Start Wait with Message Frame

MENU SERVICES

FRAME FILE SERVICES
OPENME - Open Frame File
CLOSEM - Close Frame File
WIRMS - Read Message Frame
HIGH-LEVEL MENU SERVICES
Menu Renditions
Key Usage .
Termination Key LlSt
Single-Choice Menus .
EXSING - Static Single- Ch01ce Menu
DSINGL - Dynamlc Single-Choice Menu
HELP Menu .
EXHELP - Static HELP Menu
Multiple-Choice Menus .
EXMULT - Static Multiple- Ch01ce Menu

oo O\ O
1]]] ! I
SN P

I YO OO0 O
|

P !
COWVWWWmOD-=I~JOo U U

o OOV O O
] i

B

N B

1

S S B B N N e
|

1
e aa I
COOOOWVWWVWW®ELTASWWNR

~N N d
i

CHAPTER

o]

B e B e e i B B B B B N e T B B B A e B B B e VA" I B AN NN NS [N RN (R [N (R TR R SR R I |
« 0 s e s e & e & & o s s s @ e e e e e e o e e

0 00 0 ™

¢« o s & o & o & o o & s s o e PR o
OO OOV OV OV UT UT U b B B B D DD D LW WD DN B BN B RN N
P e o e o s e o s s o o o o e e o e

o e
NN
o

e e s+ o o o
WO ~JO0 U W

¢ e e
OO0 10U Wk -

.10
.11
.12
.13
.14
.15
.16
17
.18
.19

N -

N

[N

DMULTI - Dynamic Multiple-Choice Menu

Flow Control Menus .

EXFLOW - Static Flow Control Menu

DFLOW - Dynamic Flow Control Menu

Set-Up Menu .

WIXPS - Static Set Up Menu

WIPS - Dynamic Set-Up Menu

Messages

EXMESS - Statlc Message Frame

DMESSA - Dynamic Message Frame
STRING EDITING

WIXSTR - Alphanumerlc Strlng Edltlng

WIXNUM - Numeric String Editing
FILENAME SERVICES e e e .

0ld File e e e e e

WIXOLD - Static 0ld File

OLDFLE - Dynamic 0ld File

WICOLD - Get Selected Filename

New File e e e e e .

WIXNEW - Static New File

NEWFLE - Dynamic New File

Any File e e e e e

WIXANY - Static Any File
DIRECTORY NAME SERVICES

WIXCHD - Get Directory Name

WIXSHD - Show Directory Names
PRIMITIVE MENU AND EDITING SERVICES

String Editing Primitives

WICRS - Create String Editing Wlndow
WIDES - Destroy String Editing Window

WIEF - Edit String Field

WIGKS - Get Key from String Edltlng Wlndow

WIHDR - Change header

Menu Primitives .
WICRM - Create Menu Wlndow .
WIDEM - Destroy Menu Window
WIENM - Change Option in a Menu
WIGKM - Get Key from a Menu
WIHDR - Change Header Line
WIPOF - Turn Cursor Bar Off
WIPON - Turn Cursor Bar On
WIPPS - Change Cursor Bar P051t10n
WISCM - Scroll Menu Options

THE FRAME COMPILER, FCT
INTRODUCTION TO FCT
FCT LANGUAGE

. TABLE .
.FRAME Command L1ne

vi

7-10
7-11
7-12
7-12
7-12
7-13
7-14
7-16
7-16
7-17
7-17
7-17
7-18
7-18
7-19
7-21
7-21
7-21
7-22
7-23
7-23
7-23
7-24
7-24
7-25
7-25
7-25
7-26
7-26
7-28
7-28
7-29
7-30
7-30
7-30
7-32
7-33
7-33
7-34
7-34
7-34
7-34
7-35

8.2.3 .HOME Command Line 8-6
8.2.4 .OPTIONS Command Line B8-8
8.2.5 .KEYS Command Line 8-9
8.2.6 Blank Line. . . 8-9
8.2.7 Text Line . < R A
8.2.8 A Binary Message Llne e e e e e e e o« . . 8-13
8.3 FCT LIMITATIONS « « &« « « « . . 8-15
8.4 FRAME FORMATION RULES 8-15
8.4.1 Flow Control Menu . . . 8-15
8.4.2 Single-Choice and Multlple Ch01ce Menus . 8-17
8.4.3 Set-Up Menu « « ¢« « « « « « « - . 8-18
8.4.4 HELP Frame & + o o « o o « « « « o 8-20
8.4.5 Message Frame . . e e e e e e e e« . . 8-21
8.4.6 Binary Message Frame e e . . o« . . 8-22
8.4.7 Alphastring and Numerlcstrlng Menu .« . . 8-23
8.4.8 VECTOR TABLE . . . e e e e e 8-24
8.5 FCT OPERATING INSTRUCTIONS e« s+ e+« « + . . 8-26
8.5.1 FCT on VMS . . . e A
8.5.2 FCT on PRO/Tool K1t e e e e s e+ e 8-26

CHAPTER 9 DEBUGGING THE APPLICATION'S WINDOWS
9.1 VUE APPLICATION 9-1
9.1.1 Installing VUE 9-2
9.1.2 Using VUE . . 9-2
9.2 MAKE SCREEN WHITE APPLICATION 9-3
9.3 PRINTING THE SYNERGY SCREEN 9-4
9.4 FDT TO FCT CONVERSION 9-4

CHAPTER 10 THE CLIPBOARD
10.1 INTRODUCTION TO THE CLIPBOARD 10-1
10.2 THE TEXT FILE « « « « « « o« « « . 10-2
10.3 THE TABLE FILE e e e e e e e e < . 10-2
10.3.1 Special Record Format e e e e+« &« . . 10-3
10.3.2 Data Record Format « . « . « . . 10-4
10.4 TABLE FILE EXAMPLES e e e e e e e e e« . . 10-5

CHAPTER 11 SYNERGY CONVENTIONS
11.1 WINDOW CONVENTIONS « « o « « o .« . 11-2
11.1.1 TitleS . « « v v v @ e e e e e e o e ..o . 11-2
11.1.2 CUrSOr USE v v v v o« o o o o o o o « o« « . 11-3
11.1.3 Size and Location 11-4
11.2 MENU CONVENTIONS « « « « « « « « « . 11-5
11.2.1 Placement . . B &
11.2.2 Spelling and Capltallzatlon O &)
11.2.3 Structure and Wording 11-7

vii

APPENDIX

APPENDIX

INDEX

EXAMPLES

SO >
P OWOJO U WN

11.3
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
11.5
11.5.1
11.5.2
11.6
11.6.1
11.6.2
11.7
11.7.1
11.7.2

A

B

| I B |

i

o 0O 0O 00 O O ™ W
I
O U WN

HELP CONVENTIONS
Placement
Types of HELP Users
Structure of HELP

KEY USAGE CONVENTIONS

The Auxiliary Keypad . e .
Individual Keys
FILE CONVENTIONS . . .- .
File Access
Filenames
ALTERNATE CONVENTIONS
Graph
Calculator
DOCUMENTATION CONVENTIONS
Terminology
Organization

BATON TWIRLER

INTRODUCTION TO BATON TWIRLER
THE BATON.PAS FILE e e e
THE GIDISOPS.PAS FILE
THE SYNERGY.PAS FILE
THE GIDIS.PAS FILE
THE BATONFRMS.SFF FILE
THE BATON.CMD FILE . o o e
THE BATON.ODL FILE
THE BATON.INS FILE .« e

The BATON.INB File
THE BUILD.CMD FILE

TABLE OF SYNERGY SERVICES

GLOSSARY « « « « .

Comments in a Frame File

Flow Control Menu
Single-Choice Menu
Multiple-Choice Menu e
Set-Up Menu
HELP Frame
Message Frame c e e
An Alphastring Menu

PP

viii

11-9

11-9
11-10
11-10
11-13
11-13
11-13
11-16
11-16
11-18
11-19
11-19
11-20
11-21
11-21
11-22

A-1

A-3
A-41
A-45
A-50
A-62
A-69
A-70
A-T71
A-T71
A-72

8-3
8-16
8-17
8-18
8-19
8-21
8-22
8-23

8-9 A Numericstring Menu 8-23

FIGURES
1-1 Windows on the Screen e
1-2 The Display Process « . « .« . . 1-6
1-3 A Titled Window . 1-8
1-4 Logical Pixel Mapp1ng (GOS Unlts) < e o« . . 1-13
1-5 Window Dimensions in GOS Units 1-14
2-1 Sample Install File . . e e e e e e e e . 2-12
2-2 Sample (.INB) Install F11e e e e e e e e . . 2-13
7-1 0ld File Menu < .« < < . 1-20
7-2 New File Menu . . e e e e e e 0 e ... T1-23
7-3 String Editing W1ndow e e e e e e e e . 12T
7-4 Single-Choice Menu 7-32

TABLES
4-1 Synergy Character Set 4-10
4-2 Returned Status values 4-16
4-3 Key Encodings . . e e e e e e e e .. 4-24
6-1 Window Descriptor Block B R
6-2 Window Coordinates e e e e e e e e . . b-3
B-1 Table of Synergy Services B-1

ix

PREFACE

MANUAL OBJECTIVES
This manual tells you how to build an application that can be

installed and executed in the Synergy environment. Synergy
software tools are also described.

INTENDED AUDIENCE
You should have some experience developing applications for the
Professional wunder P/0OS. 1In particular, you should be familiar

with the Tocl Kit, P/0S, PRO/GIDIS, and Synergy software for the
Professional.

SYSTEM REQUIREMENTS
You should have the following software:

e Professional Host Tool Kit v2.0, or later,
or PRO/Tool Kit v2.0, or later

e P/0S Vv2.0, or later

e Synergy V1.0, or later

STRUCTURE OF THIS DOCUMENT
The manual has eleven chapters, two appendices, and a glossary:

® Synergy Overview introduces the Synergy environment, as seen
by an application developer.

@ Designing a New Application describes all aspects of
application design specific to the Synergy environment.

e Adapting a P/0OS Application describes the modifications
needed to move an application into the Synergy environment.

e The Synergy Interface provides a general description of the
call interface between the application and Synergy services.

xi

PREFACE

Task Control Services describes each of the Synergy services
that are used to control the execution of the application.

Window Services describes each of the Synergy services that
are used to create and manipulate the application windows.

Menu Services describes each of the Synergy services that are
used to display menus and solicit input from the end user.

The Frame Compiler describes the software tool that is used
to prepare menu, HELP and message frames.

Debugging the Application’s Windows describes additional
software tools that are used to check the output of the Frame
Compiler and to take screen dumps on a printer.

The Clipboard describes the clipboard files and the rules for
their use.

Synergy Conventions describes the conventions that are used
in Synergy applications.

Baton Twirler provides listings of the files needed to build
a sample window application.

Table of Synergy Services is an alphabetized list of all
Synergy Services.

Glossary defines special terms used in the Synergy context.

ASSOCIATED DOCUMENTS

Tool Kit User’s Guide

Tool Kit Reference Manual
P/0S System Reference Manual
PRO/GIDIS Manual

Synergy User’s Guide

xii

PREFACE

CONVENTIONS USED IN THIS MANUAL

Convention or Term Meaning

[optional] In an FCT command 1line format, square
brackets indicate that the enclosed item is
optional. In a file specification, square
brackets are part of the required syntax.

UPPERCASE Uppercase words and letters, used in
examples, indicate that you should type the
word or letter exactly as shown.

<MixedCase> Mixedcase words 1in angle brackets, used in
FCT command line formats, indicate that you
should substitute a word or value of vyour
own. Usually the mixedcase word identifies
the type of substitution required.

.. A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter...]

Tool Kit This general term refers to the software you
use to develop applications to run on a
Professional computer.

Host Tool Kit | The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

PRO/Tool Kit The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

User The word "user" always refers to the person
utilizing the Synergy application that you
are building. You, as the application
builder, are never referred to as the user.

Synergy services are described in a standard format:

ABCD - Sample Service Call

Status 2 words (output)
StringLength word (input)
InputString() n bytes (input)

The uppercase symbol ABCD 1is the global symbol defined by

xiii

PREFACE

Synergy. The call shown above expects three parameters called
Status, StringLength, and InputString. Parameter names are
chosen only for their mnemonic content. An additional
explanation is provided if the intention of the parameter is not
clear from its name. An array parameter is shown with a () after
the name.

The parameter’s data type is shown to the right of each parameter
name. The use of the parameter as input or output is indicated.

The parameters must be supplied in the listed order.

Xiv

CHAPTER 1

CHAPTER 1
SYNERGY OVERVIEW

1.1 INTRODUCTION TO SYNERGY

Synergy is an application that runs wunder the P,/0S hard disk
operating system. Synergy provides an environment for the
execution of applications. An application that is built to run
in the Synergy environment can use Synergy services to:

e Create and manipulate windows on the screen

e Solicit user input through fields in its windows

@ Solicit user input through menus in special. windows

e Provide message and HELP information in special windows

® Suspend its execution, enabling other Synergy applications
and P/OS applications to run

e Exchange data with other Synergy applications through a
common data exchange file called a "clipboard"

An application that is built to run in the Synergy environment is
designed and implemented with the Tool Kit, using any of the Tool
Kit languages and run-time support facilities. (Existing
applications that run under the P/0S hard disk operating system
can run in the Synergy environment, with some changes.)

Applications that take full advantage of the Synergy screen
management techniques will use most of the facilities described
in this manual.

APPLICATION CONTROL

1.2 APPLICATION CONTROL

Synergy consists of a collection of tasks that provide the
environment for the Synerqgy applications. These tasks can be
thought of as providing two major functions:

e The window manager presents the Synergy Main Menu and
provides the user interface for controlling windows and
tasks. In the Synergy User’s Guide all the functions that
are not performed by applications are discussed as though
they were being performed by the window manager, in order to
simplify the terminology and present Synergy as a single
entity.

@ The window server does the actual work involved in moving
windows and provides menu and HELP services. Almost all
service calls from the application go to the window server.
(Even the window manager calls the window server to do its
screen manipulation.)

In this manual, we will speak of all the Synergy services being
provided by the window server.

1.2.1 The Active Application

Several Synergy applications can be running at the same time, but
only one application can alter information on the screen. This
is the active application.

The front window is the only window for which a GIDIS viewport is
defined, and thus it is the only window whose display can change.
The active application owns the front window and 1is the only
application that should write in this window.

The active application also receives all keyboard input.

An application may consist of one task or several tasks. The
application can run with the terminal attached and can use an AST
routine to read the keyboard. When an application gives up
control to the window server by calling the Suspend service, it
must detach the terminal and must ensure that none of its tasks
that continue to run do any I/0O through the terminal.

The window server can service only one application and one
request at a time. You must ensure that requests appear
serially, which means that any two tasks of your application must
not request a window service at the same time, and all tasks must
ensure that requests are sent in the proper order.

APPLICATION CONTROL

1.2.2 Installing and Removing Applications

Synergy applications are installed on both P/0S and Synergy
application menus, using the "Install application" option of the
P/0S Disk/Diskette Services Menu. After the user completes the
Application/Group Name Change Form, a window appears near the
bottom of the screen, requesting that the user take an additional
action to select a Synergy group in which the application name is
to appear.

This request for a Synergy application group 1is necessary to
insert the application’s name on the Synergy Main Menu. You must
place a special command in your application’s install file to
trigger this action during installation.

The wuser removes a Synergy application with the "Remove
application" option of the P/0OS Disk/Diskette Services Menu. A
special command that you place in your application’s install file
causes the application’s name to be removed from the Synergy Main
Menu. No additional action 1is required by the wuser during
removal of a Synergy application.

1.2.3 Starting and Exiting the Application

The user starts the Synergy application from either the P/0S
Application Menu or the Synergy Main Menu. When the application
is suspended, control returns to the Synergy Main Menu.

If the user suspends the application and then suspends the
Synergy Window Manager (in order to do some work at the P/OS
level), he can resume the application by simply starting it
again. Again, he has the choice of starting from either the P/OS
Application Menu or the Synergy Main Menu.

If the application exits without ever having been suspended, it
returns to the point from which it was started. Thus, an
application that is started from a P/OS Application Group menu
will return to that menu on exit, provided it has not been
suspended. However, once an application has been suspended and
resumed, it returns to the Synergy Main Menu on exit.

APPLICATION CONTROL

1.2.4 Task Control Services Overview

There are three major services that control the execution of a
Synergy application:

e Initialize - This service is called when the application
starts. It establishes a handshake with the Synergy system
and retrieves any application-specific data that was saved
the last time the application was run.

e Suspend - This service is called when the application is
suspending its execution, usually in response to a press of
the F5 key. Control is returned to the application when the
user tells the window manager to resume execution of the
application.

® Done - This service is called when the application is about
to exit. It passes application-specific data back to Synergy
so that it can be saved on behalf of the application.

1.3 WINDOWS IN SYNERGY
1.3.1 Window Description

A window is a rectangular area of the screen which serves to
focus the user’s attention. It usually has a dark border, called
the windowframe, and a 1light background. It contains dark

letters or graphic images.

NOTE

A special window type is available, called a VT
window, to ease migration of an application from
the P/0S hard disk environment to the Synergy
environment. A VT window always occupies the
full screen, with no windowframe. It wusually
displays light letters and graphic images against
a dark background. VT windows are discussed only
in Chapter 3. Applications that take full
advantage of Synergy window facilities do not use
VT windows.

WINDOWS IN SYNERGY

PROSE PLUS

b
e

A window is a rectangular area of {E I EEYETR
focus the end user’s attention. If

ground and a dark border, called tf (CLERRIL ¢ J{ 0 Jjscku]l

dark letters of fraphic images. | POCKET

An application creates one or more|[ALT |iMooE |[& [/ |
then writes to each window as

output screen. A1l write operatio -
g:hxrtkms. ﬂnCMﬁwrcurdhal P qLe s i
upper left corner of the windo
the window is positioned on the sci[_8 || 5][&6 1 *]
Now doing: Overtype Marg { 2 3 =
L Flie/Edit ——— fbtributee — ' | E | | g
I
CHGSH PRINT

Figure 1-1: Windows on the Screen

An application creates one or more windows on the screen and then
writes to each window as though it were a separate output screen.
All write operations are done with GIDIS instructions. The
cursor coordinates are given relative to the upper left corner of
the window, regardless of where the window is positioned on the
screen. GIDIS automatically translates the window-relative
coordinates to screen-relative coordinates, so the application
can be unaware of where the window actually is on the screen.

Windows are often smaller than a full screen. Window positions
may intersect, so that windows may obscure part or all of other
windows. Each window exists at some level, exactly analogous to
pieces of paper lying on a desk: The top paper covers the parts
of all papers it overlaps; the bottom paper 1is covered by the
parts of all other papers that overlap it.

We use the terms "top" and "bottom" to describe the stacked
pieces of paper on the desk. We use the terms "front" and "rear"
to describe the stacked windows on the screen.

Each window is independent of all other windows, so that the
application need not be concerned with whether the windows
overlap. There is no need to "tile" the windows on the screen.
The wuser may want to refer to two or more windows simultaneously
and thus may want to change the position of the windows in order

WINDOWS IN SYNERGY

to tile them. However, most applications can ignore this window
positioning activity.

Even when an application has more than one window, it can write
only to its front window. The application calls a Select Window
service to select any of its windows as the front window before
writing to it. The Select Window service moves the window in
front of all other windows.

In order to guarantee that an application writes only to its own
windows, the application 1is required to create the windows
through calls on the Synergy interface and then restrict its
writing to GIDIS instructions. Synergy adjusts the GIDIS state
so that the application is always addressing the front window.
The application avoids doing text-mode QIOs to the screen in
order to guarantee that the cursor position stays within the
front window and to guarantee that the entire screen will not

scroll.

Creation and display of special windows for menus and HELP are
handled entirely through the Synergy window server. These
windows, which usually have a short life on the screen, require
very little development effort and very little space within the
application’s address space.

WINDOW

SERVER \

APPLICATION
SOFTWARE

GIDIS

WINDOWS IN SYNERGY

1.3.2 Window Attributes

All windows have a position and a size. Windows may be
positioned anywhere on the screen, as long as they fit entirely
within the screen. They may be as large as the screen, or as
small as one character. The initial size, position, and
attributes of a window are defined when the window 1is created
with the Create Window service.

Windows consist of two parts: a windowframe and a writable area.
The windowframe is a black border surrounding the writable area
of the window. The position of the windowframe is defined by the
X and Y coordinates of its upper left hand corner. The writable
area of the window is specified by a width and height.

There are nine window attributes: stackable, titled, hidden,
color, white border, clear on change, VT, invisible, and
three-plane.

Giving a window the stackable attribute means that the
application promises to abide by some restrictions and that the
window server can take advantage of those restrictions and gain
some efficiencies in managing the window. Stackable windows are
treated as a stack, that is, on a first-in, last-out Dbasis. A
stackable window can be created in front of a nonstackable
window, but once a stackable window exists on the screen, only
stackable windows <can be created in front of it. Furthermore,
the stackable windows are destroyed in reverse order of their
creation. The creation and destruction of these windows is not
interrupted by any other window operations, such as changes in
window size or reordering of the stack of windows. The stackable
attribute is used largely by the window server when it is
creating menu and HELP windows in response to calls from the
application. It can be wused by applications, provided the
applications abide by the same rules. A maximum of four
stackable windows can exist on the screen at one time. Certain
menu services «can create up to three stackable windows, so you
should exercise care in calling menu services when you have
created more than one stackable window.

In a titled window the top of the windowframe is thicker and
contains title text. When the titled window is the front window,
its title is highlighted (light letters on a dark background).

WINDOWS IN SYNERGY

\
This is a titled window. \
\

\

That’s the title up there.

Figure 1-3: A Titled Window

A hidden window is not visible at all on the screen, unless it is
the front window. (Windows that are mnot hidden are always
visible unless they are totally obscured by the windows in front
of them.)

A color window can display color graphics. A noncolor window
displays only black-and-white, 1i.e., monochrome. Because the
window server must manipulate three times as much information
when dealing with a color window, manipulation of a color window
is slower than manipulation of a monochrome window. Normal
drawing speed 1is the same in monochrome and color windows,
however.

A window may have a white border between the windowframe and the
writable portion of the window. The white border attribute is
optional, since some applications may need to write to the edge
of the window.

A window with the clear on change attribute is blanked by the
window server after the wuser has changed the window size. 1If
clear on change is not requested, the window contents are redrawn
after the change. Redrawing can take several seconds for large
color windows. An application that refreshs the entire window
following any size change should request the clear on change
attribute, so that time is not wasted.

e o e o e e e ————— e ———— e —————— e ——

WINDOWS IN SYNERGY

A VT window is a special, full-screen window that permits the
full range of terminal subsystem instructions, both text mode and
graphics mode. See Chapter 3.

An invisible window is one for which Synergy does not do any of
the normal video drawing operations. That is, ordinarily when a
window is created, Synergy fills it in with white, and draws the

windowframe around it. For a window with the invisible
attribute, this is NOT done (no drawing whatsoever is done when
an invisible window 1is created -- the video display is

unaffected). Also, ordinarily when a Synergy window is deleted,
the portion of the display "underneath" the window (other
windows, etc.) is restored automatically. When an invisible
window 1is deleted, this 1is not done. The video display is
unaffected so that whatever was drawn into the invisible window
REMAINS after the invisible window is deleted. ©Note that this is
a dangerous thing to do, in that you can affect the contents of
other windows, or even of the gray Synergy background.

There are situations where it is advantageous to use an invisible
window. You might want to use an invisible window to guarantee
that a certain sequence of PRO/GIDIS drawing instructions will be
restricted to a portion of the application’s normal drawing
window, especially when the application does not have full
control over what that sequence of PRO/GIDIS instructions is (for
example .GID files that reset global addressing parameters). You
could create a normal window and display the contents in it, but
deleting the window will make the drawing disappear (which you
may not want). Using an invisible window, you can do the above,
with the result that the drawing will appear in the portion of
the main window and will remain until that main window itself is
deleted.

The three-plane attribute is similar to the COLOR attribute,
except that a three-plane window requires that only EBO hardware
be present. (Unlike the color attribute which requires a color
monitor and end-user authorization wusing the Synergy setup
feature). For example, the three-plane attribute makes gray
scale windows possible on a monochrome display.

1.3.3 Video Protocols

Synergy supports both text and graphics in non-VT windows by
requiring the wuse of the GIDIS protocol. Notice that GIDIS,
although designed primarily as a graphics protocol, 1is quite
capable of displaying text as well.

1-9

WINDOWS IN SYNERGY

In order to avoid interference between windows, Synergy maintains
a private copy of the state of GIDIS for each window. 1If an
application creates more than one window, it switches between
them by selecting the desired window with a call on the Select
Window service. Synergy saves the GIDIS state of the old window
and establishes the GIDIS state of the new window.

There is no "virtual window" larger than the actual window. Data
scrolled off a window is lost, just as data scrolled off the top
or bottom of a VT102 screen is lost. An attempt to write with
coordinates that are outside the actual size of the current
window results in clipping and loss of the data that 1is outside
the writable area of the window.

GIDIS provides the following character renditions: italic (both
forward and backward) and reverse video. Dim, bold and underline
renditions can each be emulated by defining a font; Synergy
defines special fonts that provide these character renditions.
Blink is the only VT102 rendition that is not available, although
the GIDIS block cursor can be used to blink a single rectangle of
any size.

Nearly all GIDIS operations are available, but applications must
observe certain restrictions (see Section 4.10).

1.3.4 Resources

Synergy copies a window’s part of the video bitmap to disk in
order to save the contents of the window for later restoration.

Each full-screen monochrome window requires 64 blocks (32 KB) of
disk memory to hold the bitmap, plus approximately two blocks to
hold the GIDIS state information. A color window has three
planes of bitmap memory, so the requirements for storing the
color window’s bitmap memory are tripled. (The user must have a
color monitor, and must choose the color option on the Synergy
Set-Up Menu, before the application can create a color window.)

Synergy allocates a raster file on the hard disk for wuse as a
storage area for application windows. Demands on the raster file
increase as the user suspends applications and starts additional
applications. If a peak demand exceeds the available raster
space, Synergy extends the raster file. The raster file shrinks
back to a minimum size when Synergy exits. (Notice that Synergy
can exit only when all the Synerqgy applications have exited.
Suspending an application and suspending Synergy in order to
return to P/0S level does not constitute an exit.)

WINDOWS IN SYNERGY

If disk space is exhausted it may be impossible to extend the
raster file. This condition can arise when the Synergy window
server is creating a new window in response to a service call
from your application. The "Raster error" condition is returned
to your application. The application must detect this error
return and alert the user. The procedure is outlined in Section
2.1.5.

When an application starts, it wusually creates at least one
window. Although applications can create additional windows,
they should destroy any windows that are no longer needed. This
frees space in the raster file and also keeps the screen from
being cluttered. (All application windows are destroyed
automatically when the application exits.)

There is a 1limit of 16 simultaneous windows. Since most
suspended applications have only one or two windows on the screen
at the time of suspension, this limit is rarely reached.

When a window is created (or removed) in front of a color window,
the color window is saved (or restored). The time required to
save or restore the color window is three times the time for an
egeivalent monochrome window. This tripling of time applies only
to the operadions on the color window, however. The time to save
or restore a monochrome window i30oot affected.

Copy time is approximately one second per full plana copied.
Therefore, changing from one full-screen color window to another
full-screen color window requires about six seconds.

NOTE

A window with the VT attribute is always treated
as a full-screen color window. All three planes
of video bitmap are saved and restored.

1.3.5 Changing the Window Size

An application can change its window size by calling a window
service. In addition, the wuser <can change an application
window’s size while +the application 1is suspended. The user
changes the window size by using a Synergy Main Menu option.
Applications must therefore be able to adjust to a new window
size when control is returned from the Suspend call (WIINT). The
window server returns a signal that the window size has changed
and also returns the new width and height. The application may
or may not need to repaint the window to conform to the new size
(depending on what is being shown).

1-11

WINDOWS IN SYNERGY

Applications can restrict size changes by setting upper and lower
bounds on the window dimensions, and can create windows whose
size may not be changed at all.

The application never receives notification that the wuser has
moved the window to a new location on the screen, and there is no
way for the application to restrict such movement. An
application that 1is sensitive to the screen position of its
windows can call the Get Window Parameters service, after each
Suspend call to determine the window position.

1.3.6 Coordinate Systems

The video hardware consists of an array of pixels, 1008 wide and
240 high. (The video hardware is 1024 pixels wide, but Synergy
uses only the leftmost 1008 pixels.) Hardware coordinates are not
used to specify screen positions, however.

1.3.6.1 GIDIS Coordinates - GIDIS requires that coordinate
systems be isotropic. A horizontal movement of N units must
cover the same physical distance on the screen as a vertical
movement of N units, so that geometric figures (such as circles)
have the correct proportions (e.g., round circles, not ovals).

A coordinate system based on hardware pixels 1is not isotropic
because the pixels on a Professional screen are not sguare --
they have an aspect ratio of 2:5. They are two and a half times
higher than they are wide.

Synergy defines a matrix of "logical" pixels that 1is mapped to
the hardware pixels. The logical pixels are isotropic and
smaller than hardware pixels. Specifically, a logical pixel is
half as wide and one fifth as high as a hardware pixel.

This gives Synergy a coordinate system with horizontal positions
ranging from 0 on the left to 2015 on the right, and vertical
positions ranging from 0 at the top to 1199 at the bottom. This
defines a screen which 1is 2016 logical pixels horizontally by
1200 logical pixels vertically.

Notice that since the standard character cell 1is 12 hardware

pixels wide (24 logical pixels), the Synergy screen holds
2016,/24, or 84 full characters, rather than the wusual 80
characters. In a window that has a windowframe and a white

border, the writable area is reduced to 2000 GOS units, or 83 1/3
characters.

WINDOWS IN SYNERGY

5 GOS UNITS 1 HARDWARE PIXEL

<——— 2GOSUNITS —p»

Figure 1-4: Logical Pixel Mapping (GOS Units)

Logical pixels are defined by Synergy and are known as GOS wunits
(GIDIS Output Space units). (An application can define its own
GOS units since they are part of the state information that is
saved and restored for each of the application’s windows.)
Further discussions of coordinates in this document refer to the
Synergy-defined GOS units.

1.3.6.2 Window Dimensions - Synergy defines the windowframe to
be 2 GOS units wide on the left, 6 units on the right, and 10
units on the bottom. If there is a title, the top of the

1-13

WINDOWS IN SYNERGY

windowframe is 65 units high. 1If there is no title, the top of
the windowframe is 5 units high.

WINDOWFRAME

| WHITE
BORDER

OVERALL
WINDOW
HEIGHT

000050000000000000008000000sd00080000s00000000000000000000 ’

OV|ERALL WINDOW WIDTH

Figure 1-5: Window Dimensions in GOS Units

The windowframe is thicker on the right and at the bottom to give
a shadow effect.

WINDOWS IN SYNERGY

The optional white border between the windowframe and the
writable area is 5 GOS units above and below the writable area,
and 4 GOS units to the left and right of the writable area. Most
applications request the white border so that the information
that they place 1in the writable area cannot touch the
windowframe.

The outside dimensions of the windowframe must be a multiple of
32 GOS wunits in width and a multiple of 5 GOS units in height.
You request the window size by specifying the dimensions of the
writable area, however. The window server will scale your
requested size upward, if necessary, to guarantee that when the
optional white border and windowframe are added, the total window
size satisfies these multiples.

Normally an application is not concerned with exactly how large
the window 1is, although there is a window service (WIGEW) that
returns all of the exact sizes to your application.

An attempt to create a window with a writable area greater than
the width or height of the screen returns an error. If the width
and height for the writable area can be accommodated, but the
frame and white border <cannot, the window server reduces the
writable area to accommodate the full window. Thus, a request
for a window with a writable area that is 2010 units wide and
1190 units high would create a window with a writable area that
is 2000 units wide and 1170 units high.

Creating a window of width and height equal to zero results in a
full screen window with no white border or window frame.

1.3.7 Window Positions

You can request that a window be placed at any horizontal or
vertical position, but the window server always adjusts the
coordinates that you supply by rounding them down to the nearest
positioning unit. Synergy positions every window horizontally on
units of 16 hardware pixels, or 32 GOS units. Synergy positions
every window vertically on a hardware pixel, or 5 GOS units.
This means that if you specify a window position that is anywhere
between 0,0 and 31,4, the window server adjusts the position down
to 0,0. Likewise a requested position that is between 32,5 and
63,9 is adjusted to 32,5.

1.3.8 Window Services Overview

There are numerous window services, but the primary service 1is

1-15

WINDOWS IN SYNERGY

the call to create a window. This service must be called to
create the application’s window. If the application uses
additional windows, the call 1is repeated to create each such
window.

The remaining window services are used to modify the window’s
size, position, or title. There is a service that requests an
update of the window information from the window server, in case
the wuser has modified the window’s size or position while the
application is suspended.

1.4 MENUS

A menu is a special window that is used to solicit input from the
user. The input can be in the form of a selection from the menu
choices, or entry of a string of characters or numbers.

It is, important that menu operations be wuniform for all
applications, so that the wuser need not 1learn a new human
interface for each application.

Menu services are defined at two levels:

@ The high-level services typically create a window, display
information in it, solicit a response from the user, destroy
the window, and return the response to the application, all
in a single call.

e The low-level services, called primitives, can be used to
perform the same action over a sequence of calls. You can
use primitives when you want to alter the system’s behavior
in its interaction with the user.

1.4.1 High-level Menu Services

High-level services are provided for your convenience and to
foster a consistent human interface among different applications.
(All high-level menu functions are actually implemented within
the window server by calls on primitives.)

Services are provided for single and multiple choice menus,
message frames, HELP frames and HELP menus, and set-up menus.

MENUS

Many services are available in two forms, static or dynamic. A
static call passes a frame ID and relies on the window server to
fetch most of the window description from a frame file. A

dynamic call passes all window data directly from the application
at run time.

A frame file is a file that accompanies the application’s task
image (or images). It contains frame descriptions, which can be
specified using a frame ID. Each frame description includes a
frame type, positioning information, and text that is to appear
in the frame. The application can have only one frame file open

at any one time. The frame file contains all types of frames
(menu, HELP, etc.).

1.4.2 Primitive Menu Services

The primitive menu services provide a means for creating a menu
or an editing window with one <call, then manipulating the
contents of the window with additional calls. The window must be
destroyed with yet another call when interaction with the user is
completed. This requires more work on the part of the
application developer, but lends flexibility and control to the
behavior of the menu.

CHAPTER 2

CHAPTER 2
DESIGNING A NEW APPLICATION

This chapter presents guidelines for designing a new application.
Perhaps no application can truly be called a new application,
since most embody some aspects of an existing application, if not
the actual source code. "New" in this context simply means that
the developer has the inclination (and the time!) to consider the
visible, interactive part of the application and to design or
redesign it so that it is consistent with the existing Synergy
models of the human interface.

2.1 THINKING ABOUT THE HUMAN INTERFACE

An excellent discussion of the human interface appears in the
Digital Press Book, The Human Factor, by Richard Rubinstein and
Harry Hersh. This book develops over 80 guidelines for good
human interface design.

Although the Synergy tools and services make it convenient to
build an application that has a well-designed human interface,
good design does not happen automatically. There are a large
number of decisions that must be made at every level of design to
ensure a consistently good human interface.

The Human Factor urges the reader to test an application with
representative users before committing it to distribution. The
experience of the Synergy developers enforces this message. Even
a small amount of such testing can reveal important flaws in the
design. Often, design is based on assumptions about the wuser’s
experience or ability to cope with mistakes. Testing can reveal
whether these assumptions are true and can suggest minor changes
that may make a large difference in the user’s success with the
application.

THINKING ABOUT THE HUMAN INTERFACE

The Synergy applications are "integrated." Integration involves
two things:

e The movement of data between applications
e The human interface of the applications

The clipboard method of moving data between applications employs
an easy-to-use data file. The clipboard uses no new programming
technique. It is simply a standardized file format and file
naming convention. The clipboard provides the wuser with a
conceptual model of the data flow between applications that
parallels the passing of a <clipboard containing written
information between two people. Furthermore, each application
that wuses the clipboard names it, discusses it, and displays the
options for using it, in the same way. The utility of the
clipboard relies on adherence by all applications to the
conventions that create it as a model.

Nothing prevents the design of Synergy applications that can
share data using techniques other than the clipboard. The user’s
expectation, however, is that the clipboard 1is the medium for
data sharing; and users will expect to see a Synergy application
use the clipboard. Alternate methods of data sharing may puzzle
users and require additional learning on their part.

The remainder of Synergy’s integration relies entirely on the
window and menu interface and the wuser’s manipulation of it
through the keyboard.

Each application appears to the user through one or more windows
on the screen. Each application solicits input from the user
through standard pop-up windows that contain menus or forms. The
use of the keyboard to respond to these menus and forms is
uniform across all the applications.

The Synergy system provides a large number of service calls that
make it convenient for you to present this human interface in
your application. Although the text in your menus and forms 1is
unique to your application, the user is already familiar with the
look and feel of this interface, since all Synergy applications
use it.

Chapter 11 presents the conventions that are recommended for
designing a fully integrated Synergy application. You may
encounter a conflict between the model established by the Synergy
applications and an alternative model that may be suggested by
your application. You must decide on the tradeoffs between
conflicting models. Within the applications that make up the
Version 1.0 Synergy system, there is evidence of these tradeoffs.
In certain cases, the developer either felt that the Synergy

2-2

THINKING ABOUT THE HUMAN INTERFACE

conventions were too restrictive or that an alternative model was
already established in the wuser’'s mind and so <chose an
alternative to the Synergy model. Chapter 11 contains a
discussion of some tradeoffs that were made in the Version 1.0
Synergy applications.

2.1.1 The Type of Interaction

The Synergy conceptual model is to put information on the screen
in such a way that the wuser sees as much as possible of his
immediate memory portrayed in front of him. The intention is to
reduce the need for the user to remember things, over either the
short term or the long term.

This is the point of a menu-driven system versus a command-driven

system. Instead of remembering the syntax and spelling of a
command line, the user sees the relevant information on the
screen and chooses from it. The menu of relevant choices is

portrayed in a window that is just big enough to contain it.
This tends to focus the user’s attention to the smallest amount
of information required for the next action and also 1leaves the
most recent events in view, represented by other windows behind
the menu.

If the user asks for HELP, the HELP text appears in another
window, which again focuses attention and leaves the recent
context in view behind the window.

The same +type of interaction can carry over into the
application’s use of windows. The application can show the user
what the current information is, and can invite the wuser to
interact directly with that information in the window. The
application can switch between two or more windows, if the
information takes different shapes (the Graph application puts
data in one window and the picture of the data in another
window), or if the 1information comes from different locations
that must be shown each in its own context.

2.1.2 The Screen Contents

The Synergy screen consists of overlapping windows. One of the
windows is always the front window, the window that commands the
user’s most immediate attention. The windows behind the front
window present a context for the user. They can be ignored if
they are not needed in order to deal with the front window, or
they can be consulted. The user is given a standard interface
for moving the application windows about on the screen, so that

2-3

THINKING ABOUT THE HUMAN INTERFACE

windows that are moderate 1in size can be located so that they
remain in view while the front window is addressed.

In planning your application’s use of windows, keep in mind that
the windows behind the front window may be useful to the user,
either because he actually wants to <consult them for their
information, or because they provide a reminder of the most
recent actions.

The front window autcomatically provides an area of greatest
attention, but within the window there should always be a point
of attention. This is usually a blinking cursor or cursor bar.
The movement of this point of attention provides clues to the
user concerning the action of the program. Confirmation of the
user’s actions is often shown by a simple change in the shape or
location of the cursor.

2.1.3 The Keyboard

Synergy uses the keyboard in essentially the same way as P/0S,
but adds specific meaning to more of the function keys. Aall
Synergy applications assign the same meaning to the F5 key, and
most Synergy applications assign a common meaning to the F11,
F12, F13, and ADDTNL OPTIONS keys, which 1is to display the
application’s top level menu, called the flow control menu.

Synergy provides a menu and HELP interface similar to the P/0S
menu and HELP interface. Users can make menu choices by using
the ARROW keys to move the cursor or by typing the leading
characters of the menu option. The DO, RETURN, and HELP keys are
used in the same way.

The Synergy interface presents a model in which the keyboard 1is
attached only to the front window. When menus appear on the
screen, keyboard actions are taken as responses to the menu
window. When the menu is removed, the keyboard actions are taken
as responses to the new front window. In addition, the Synergy
Window Manager permits the user to define certain keys as strings
of keystrokes. When the user presses one of these user-defined
keys (UDK), the Synergy Window Manager substitutes the string of
keystrokes.

This model of keyboard use requires that all Synergy applications
buffer their keyboard input through a character-passing buffer.
The character-passing buffer is an implied parameter of many
Synergy service calls. A detailed description of the character-
passing buffer and its use is given in Section 4.7.

THINKING ABOUT THE HUMAN INTERFACE

2.1.4 The Format of HELP

Synergy HELP is always invoked by the HELP key and always appears
in a window. Each HELP window contains a HELP message and menu
options that lead to more HELP.

Since the HELP window is in front of the most recent window, the
context in which the user requested the HELP is usually visible.
The HELP services that are provided and the conventions that are
recommended in Chapter 11 make it possible to provide extensive
on-line HELP that most users can use without feeling lost.

2.1.5 The Handling of Errors

Error conditions are detected at various 1levels during the
execution of your application:

e User errors

® Programming errors
® Resource errors

e Application abort

The methods for handling these errors are discussed in the
following sections.

2.1.5.1 User Errors - When the user makes an error responding to
your application, you may want to inform the user by displaying a
message in your application window or by displaying a message 1in
a special message window. If you choose to show the message in a
special window, the Synergy convention is to request that the
user press the RESUME key in order to proceed.

You may want to keep the message window short, assuming that the
user’s mistake is one of carelessness rather than ignorance. The
Synergy service that displays your message frame has an option

for 1linking a HELP frame to the message frame. If the user
presses the HELP key while the short message frame is on the
screen, he sees another window with the HELP message in it. You

can place the longer explanation of the error condition (and how
to correct or avoid it) in the HELP window. The HELP window can

even lead into a tree of additional HELP information. You can
design and program much of this user assistance in a way that
keeps it outside your application task. Thus, the application

code merely detects the error condition and makes a single call

2-5

THINKING ABOUT THE HUMAN INTERFACE

on the Synergy service to start the user assistance.

2.1.5.2 Programming Errors - These are the errors that you
expect will never happen, such as hardware faults or bounds
checks on array accessing.

Many of the Tool Kit languages supply run-time systems that
attempt to report these kinds of errors on the terminal, either
by writing error messages directly to the screen (in text mode),
or by calling a service in the POSRES cluster library. You must
short-circuit these potential text-mode outputs to the screen,
since such a message would 1likely be written outside your
application window. You should request that all error conditions
be returned to your application code, so that you can report the
error without affecting the remaining application windows. (You
may be able to sever the requirement that the language run-time
system makes on the POSRES cluster library, and remove the POSRES
library name from the command file that you use to build the
application task.)

When your application reports this type of errcr to the user, it
should tell the user that the error is not his error. It should
also give the wuser some information that will help you to
pinpoint the problem when the error is reported.

2.1.5.3 Resource Errors - When you create a window or execute a
menu service that creates a window, the window server may need to
extend the raster file. 1If the disk is full the extend request
fails and the service returns an error status. You may encounter
the resource problem again if you try to display an error message
in a normal message window, since this will also try to create a
new window. Synergy always reserves the resources necessary to
display a special window called the error window. If your
application detects the status return that signals a resource
error, you should call the Error Window service, then exit the

application.

2.1.5.4 Application Abort - The user can press INTERRUPT DO (or
CTRL/C) while your application is running. If you have requested
that the signal be returned to your application, it is returned.
If your application does not make this request, the Synergy
window manager gets the signal and terminates your application,
with a message to the user.

FITTING INTO THE SYNERGY MODEL

2.2 FITTING INTO THE SYNERGY MODEL

Most Synergy applications have a sequence of interactions with
the user that follow this pattern:

1. On starting, the application creates its titled window on the
screen.

2. 1If the application normally deals with data in a file, the
application puts a file selection or file creation window on
the screen in front of its application window. (The
application can supply copyright information or welcoming
information in the application window or in the header area
of the file selection window.)

3. The user indicates what file is desired.
4. The application begins its work in the application window.

5. The user reacts with data in the application window and calls
up menus by pressing any of the F11, F12, F13 or ADDTNL
OPTIONS keys.

6. The user asks for HELP at any time by pressing the HELP key.

7. The user suspends the application to do work in other
applications, or to manipulate windows on the screen, by
pressing the F5 key. The user resumes the application by
selecting the application again.

8. The user leaves the application by pressing the MAIN SCREEN
key or the EXIT key. MAIN SCREEN causes the application to
save any work that has been done. EXIT causes the
application to give the user a choice of saving new work or
quitting without saving it. Both keys return the user to the
Synergy Main Menu.

2.3 BUILDING THE APPLICATION

Your application consists of one or more task 1images and an
install file that tells P/0S how to install and remove the
application and how to start it when the user selects it from a
P/0S Application Group Menu.

An application task image is constructed with the Professional
Application Builder (PAB), wusing your object modules and the
object library supplied with the assembler or compiler that " you
are using. The files and procedures to be followed are described

2-17

BUILDING THE APPLICATION

in the Tool Kit User’s Guide and the Tool Kit Reference Manual
and in the documentation that accompanies the assembler or
compiler that you are using.

A Synergy application uses Synergy services to manipulate windows
and to display menu and HELP frames. The Synergy services are

supplied in separate task images and an object library. Your
application task interfaces to these Synergy services through
routines that are 1linked as part of vyour task image. The

interface routines are drawn from the Synergy Interface Library,
which you supply during task build.

In addition to the install file and the task images, your
application contains an object frame file. The object frame file
contains the menus, HELP frames and message frames that are
displayed by the tasks during their execution. You create the
source frame file by writing it in a frame language. The source
frame file 1is then compiled into an object frame file by the
Frame Compiler Tool, FCT.

2.3.1 Task Names

All Synergy applications run as spawned tasks from the Synergy
window manager task. lence all Synergy tasks must have unique
task names.

The following names are already in use by Synergy Version 1.0
tasks:

CETSK - PROSE PLUS SPSRES - Spreadsheet

CHESS - Chess WIAG - Graph

GEDF01 - PROSE PLUS WICAF - Calculator

GEDSYN - PROSE PLUS WICAT - Calculator

MXPRO - Communications WICNV - Datamanager Convert
PRSSK - PROSE PLUS WIFSV - File Services
PVUSYN - File Services WIRG - Datamanager

SPLCHK - PROSE PLUS WIRS - Datamanager

SPSHEE - Spreadsheet

All task names used in future releases of Synergy will have the
WI prefix, so vyou can avoid conflicts by not using the above
names or any names beginning with WI.

BUILDING THE APPLICATION

2.3.2 The Synergy Interface Library

The name of the Synergy Interface Library is LB:[1,5]WINLIB.OLB.

The application in Appendix A makes reference to this library
(see Page A-70).

2.4 INSTALLING THE APPLICATION

A Synergy application is installed on a P/0S Application Group

menu and also on the Synergy Main Menu. The Synergy application
can be started from either menu.

Some special commands are required in the install file of a
Synergy application. There are additional rules for the install
file if you wish to create a "shared" application to be run from
P/0S V3.0. Shared applications in P/0S V3.0 require an .INB file
in addition to the .INS file required for P/0S V2.0 (see
PRO/Toolkit Manual). The following sections describe
modifications needed for both the .INB file and the .INS file.

2.4.1 SYNERGY INSTALL FILE (.INS)

The application installation file (the .INS file) must begin with
a special comment line:

! SYNERGY/I2

Do not insert a space between the exclamation point and the
following S. This line indicates to Synergy that this is a valid
Synergy application install file. There are additional switches
that can be applied to this line and these will be described
later.

The next modification to the .INS file is immediately after the
'rName’ command line. Insert these three lines after the ’'Name’
command line:

FILE [ZZPROVUE]SYNCHK2.TSK/DELETE
FILE [ZZPROVUE |SYNERR.HLP/KEEP
EXECUTE [ZZPROVUE]SYNCHK2.TSK/INS

These commands copy two files to the hard disk upon 1installation
and execute the SYNCHK2 task. The purpose of the SYNCHK2 task is
to verify that correct version of the Synergy Window Manager
(V2.0) is already installed on the user’s system. If the correct
version of the Synergy Window Manager is not on the user’s system

2-9

INSTALLING THE APPLICATION

an appropriate error message will be displayed.

The two file lines imply that you must have these two files
(SYNCHK2.TSK and SYNERR.HLP) on your application diskette in
directory [ZZPROVUE]. Therefore, before completing your
application diskette you must copy these files from the Synergy
Tool Kit diskette (SYNTK1l) to your first application diskette 1in
directory [ZZPROVUE].

The next modifications to your .INS file allows Synergy to update
its Main Menu whenever the application is installed or removed
from the P/0OS application menus.

e Application installation:
EXECUTE [ZZPROVUE]INSAPP.TSK/INS
This command is placed in the install file immediately before
the first "Install" command line. When the user installs the
application, INSAPP.TSK ensures that the application name is
added to the Synergy Main Menu.
® Application removal:
EXECUTE [ZZPROVUE]REMEXE.TSK/REM
This command is placed in the install file immediately before
the first "File" command line. If the user removes the
application, REMEXE.TSK ensures that the application name is

also removed from the Synergy Main Menu.

After installation, the Synergy application can be started £from

either the P/0S Application Menu or the Synergy Main Menu. (If
the application is suspended with the F5 key, control returns to
the Synergy Main Menu.) In order to ensure that the Synergy

Window Manager is in control when the application is started from
the P/0S menu, the install file does not call for the running of
the application, but instead directs P/0S to run the Synergy
Window Manager. The commands that would normally be in the
install file for running the application are made 1into comment
lines by placing an exclamation mark in front of the command.

When the window manager begins to run, it reads the install file
and executes the commented commands; and then it starts the
application by spawning it.

If the application were not a Synergy application, its .INS file
might have the following commands: (Assume the application task
name is APLNAM in the file APPLFILE.TSK.)

INSTALLING THE APPLICATION

INSTALL [ZZSYS]PBFSML.TSK/LIBRARY
INSTALL APPLFILE.TSK/TASK
RUN APLNAM

As a Synergy application, the INSTALL and RUN commands are made
into comments and two new commands are inserted, causing the
Synergy Window Manager to be started. The result is:

!INSTALL [ZZSYS]PBFSML.TSK/LIBRARY
!INSTALL APPLFILE.TSK

!RUN APLNAM
INSTALL [ZZPROVUE]SYNRUN.TSK/TASK
RUN WISMGR

If the .INS file contains ASSIGN commands, these too must be made

into comments. Thus, an ASSIGN MENU MYMENU.MNU line becomes
!ASSIGN MENU MYMENU.MNU.

Figure 2-1 shows a side-by-side comparison of an application’s
.INS file as it would be for a non-Synergy application and as it
is after Synergy modifications. Assume that the original
application wuses the P/0S menu and HELP services available
through the POSRES cluster library. Assume that the application
is rewritten to 1include some Synergy menu services that use a
Synergy frame file, but that it continues to use the P/0S menu
and HELP services as well.

BEFORE AFTER
ISYNERGY/12
NAME "Sample" NAME "Sample"

FILE [ZZPROVUE]SYNCHK2.TSK/DELETE
FILE [ZZPROVUE]SYNERR.HLP/KEEP
EXECUTE [2ZPROVUE]SYNCHK2.TSK/INS
EXECUTE [ZZPROVUE]REMEXE.TSK/REM
FILE SAMPLEFRM.OFF/DELETE

FILE SAMPLEV1.TSK/DELETE FILE SAMPLEV1.TSK/DELETE
ASSIGN MENU MYMENU.MNU ASSIGN MENU MYMENU.MNU
ASSIGN HELP MYHELP.HLP ASSIGN HELP MYHELP.HLP

EXECUTE [ZZPROVUE]INSAPP.TSK/INS
INSTALL [ZZSYS]PBFSML.TSK/LIBRARY !INSTALL [Z2ZSYS]PBFSML.TSK/LIBRARY

INSTALL SAMPLEV1.TSK/TASK ' INSTALL SAMPLEV1.TSK/TASK

RUN SAMPLE {RUN SAMPLE
INSTALL [ZZPROVUE]SYNRUN.TSK/TASK
RUN WISMGR

Figure 2-1: Sample (.INS) Install File

INSTALLING THE APPLICATION

2.4.2 SYNERGY INSTALL FILE (.INB) FOR SHARED APPLICATIONS

As mentioned in a previous section, the L.(INB file allows an
application to be shared on the P/0S V3.0 application
environment. The .INB file is similar to the .INS file except
that it contains additional information on the specific placement
of the application files. Refer to the Tool Kit Reference Manual
for more information on shared applications.

To create a shared application, you will need both a .INS f£file
and a .INB file on your application diskette. If you do not wish
to create a shared application you will not need the .INB file
which is described in this section.

NOTE

The .INB file can only be tested on a P/0S V3.0
system.

As with the .INS file, the shared application installation file
(the .INB file) must begin with a special comment line:

! SYNERGY/I2

The next modification to the .INB file is immediately after the
'Name’ command line. Insert these four lines after the ‘Name’
command line:

FILE [ZZPROVUE]SYNCHK2.TSK/DELETE
FILE [ZZPROVUE]SYNERR.HLP/KEEP
EXECUTE [ZZPROVUE]SYNCHK2.TSK/INS/USR
EXECUTE [ZZPROVUE]SYNCHK2.TSK/INS

The next modifications to your .INB file allows Synergy to update
its Main Menu whenever the application is installed or removed
from the P/0OS application menus.

Insert the following two command lines before the first "Install"
command line:

EXECUTE [ZZPROVUE]INSAPP.TSK/INS/USR
EXECUTE [(ZZPROVUE]INSAPP.TSK/INS

Then insert the following two command lines Dbefore the first
"File" command line:

EXECUTE [ZZPROVUE]REMEXE.TSK/INS/USR
EXECUTE [ZZPROVUE]REMEXE.TSK/INS

After installation, the Synergy application can be started from

2-12

INSTALLING THE APPLICATION

either the P/0S Application Menu or the Synergy Main Menu. If
the shared application were not a Synergy application, its .INB
file might have the following commands:

INSTALL [ZZSYS]PBFSML.TSK/LIBRARY/CLUSTER
INSTALL APPLFILE.TSK/TASK/NETWORK
RUN APPLNAM

As a Synergy application, the INSTALL and RUN commands are made
into comments and two new commands are inserted causing the
Synergy Window Manager to be started. The result is:

!INSTALL [ZZSYS]PBFSML.TSK/LIBRARY/CLUSTER
!INSTALL APPLFILE.TSK/TASK/NETWORK

!RUN APLNAM

INSTALL [ZZPROVUE]SYNRUN.TSK/TASK/CLUSTER
RUN WISMGR

If the .INB file contains ASSIGN commands, these too must be made
into comments. For example, an ASSIGN MENU MYMENU.MNU line
becomes !ASSIGN MENU MYMENU.MNU.

Figure 2-2 shows a side-by-side comparison of an applications’s
.INB file as it would be for a non-Synergy application and as it
is after Synergy modifications.

BEFORE AFTER
ISYNERGY/12
NAME "Sample” NAME "Sample”

FILE [ZZPROVUE]SYNCHK2.TSK/DELETE
FILE [ZZPROVUE]SYNERR.HLP/KEEP
EXECUTE [ZZPROVUE]SYNCHK2.TSK/INS/USR
EXECUTE [ZZPROVUE]SYNCHK2.TSK/INS
EXECUTE [ZZPROVUE]REMEXE.TSK/REM/USR
EXECUTE [ZZPROVUE]REMEXE.TSK/REM

FILE SAMPLEFRM.OFF/DELETE

FILE SAMPLEV1.TSK/DELETE/NETWORK FILE SAMPLEV1.TSK/DELETE/NETWORK
ASSIGN MENU MYMENU.MNU {ASSIGN MENU MYMENU.MNU
ASSIGN HELP MYHELP.HLP {ASSIGN HELP MYHELP.HLP

EXECUTE [ZZPROVUE]INSAPP.TSK/INS/USR
EXECUTE [ZZPROVUE]INSAPP.TSK/INS

TER
FSML . TSK/L1BRARY/CLUSTER {INSTALL [ZZSYS]PBFSML.TSK/LIBRARY/CLUS
i:??iit éiﬁizgagaTSK/TASK/NBTNORK { INSTALL SAMPLEV1.TSK/TASK/NETWORK
AMP) {RUN SAMPLE
RUN_ SAMPLE INSTALL [ZZPROVUE]SYNRUN,TSK/TASK/CLUSTER
RUN WISMGR

Figure 2-2: Sample (.INB) Install File

2.4.3 Installing a standard P/OS application

It is possible to install a standard (non-Synergy) application
into the Synergy environment. The main advantage of this is to
allow a non-Synergy application to be ,run from the Synergy Main
Menu as well as the P/0S application menus.

INSTALLING THE APPLICATION

To install a non-Synergy application, modify the non-Synergy
application’s install file as specified in the previous sections
(2.4.1 and 2.4.2). Then place a "VTI" switch on the "!Synergy/I2"
command line. The Synergy command line should appear as follows
in your install file:

! SYNERGY/I2/VT

Once you have made these modifications to your non-Synergy
application’s install file and have installed the application, it
will appear in both the Synergy Main Menu and the P/0S
Application Menu.

You can now run this appliction from the Synergy Main Menu. The
"VT" switch that appears 1in the install file tells Synergy to
create a full screen VT style window before starting the
application. This preserves the rest of the Synergy environment
while you are running in Synergy. When you exit the application
the VT style window is deleted and the Synergy environment is
restored.

NOTE

This modification does not provide any additional
functionality to the application. It simply
allows you to run a non-Synergy application from
the Synergy environment. If you wish additional
"Synergy-type’ functionality in the application
(such as Suspend or Window menus) the application
itself must be modified.

2.5 RUNNING FROM THE TOOL KIT AND OTHER APPLICATIONS

When you are developing an application from the PRO/Tool Kit, it
is <convenient to be able to start the application from the Tool
Kit, rather than from P/0S Main Menu level. 1In addition, it may

be desirable to start a Synergy application by spawning it from a

non-Synergy application.
NOTE

The execution of a Synergy application from the
Tool Kit may place a heavy demand on system
resources.

The Synergy Window Manager accepts a command line at start-up and
uses the command line to determine the context under which it is
being started.

RUNNING FROM THE TOOL KIT AND OTHER APPLICATIONS

The application can be started by selecting it from either
the P/0S Application Group menu or the Synergy Main Menu.
This method of starting uses the application’s install file.
The commands in the install file call for installation of the
SYNRUN.TSK file and execution of the window manager task, as
described in the preceding section. 1In this case, there is
no command line being passed to the window manager.

The window manager can be started from DCL by executing the
following three commands:

S INSTALL LB:[ZZPROVUE]SYNRUN.TSK
S RUN WISMGR/COMMAND="MANAGER"
S REMOVE WISMGR

This method of starting passes the command "MANAGER" to the
window manager. The window manager displays the Synergy Main
Menu. You can then select any application that has been
installed on the Synergy Main Menu. This is equivalent to

starting the Synergy Window Manager from a P,/0S Application
Group menu.

A Synergy application can be started directly from DCL by
executing the following three commands:

$ INSTALL LB:[ZZPROVUE]SYNRUN.TSK
$ RUN WISMGR/COMMAND="START [appldir]"
$ REMOVE WISMGR

You replace "appldir" with the directory name that contains
the application’s installation file. 1If the application
under development is called FOO and it has been
fast-installed from the directory [FOO], the DCL line would
be

$ RUN WISMGR/COMMAND="START [FOO]"

If the application has been installed with P/0S Disk/Diskette
Services and installation placed it in [ZZAP00143], the
command would be

$ RUN WISMGR/COMMAND="START [ZZAP00143]"

Notice that the application must have a properly constructed
(Synergy) INS file (see Section 2.4.1).

Either of the command lines may be passed to the PROTSK
routine with the install/run/remove option. This enables a
running application to start the Synergy window manager at
its Main Menu level, or to start a Synergy application. (See
the PROTSK routine, described in the P/0S System Reference

2-15

RUNNING FROM THE TOOL KIT AND OTHER APPLICATIONS

Manual.)

In either case, the Synergy application’s exit status is not
returned by the PROTSK routine until the Synergy window
manager exits. The window manager exits with either success
(1) or failure (greater than 1), which it derives from the
application’s exit status.

When a Synergy application is started using the "START []"
command, the application is considered to belong to the
application that calls the PROTSK routine. As long as the
Synergy application does not suspend itself (using the
Suspend service), the window manager remembers its owner, so
that when the Synergy application exits, the window manager
exits as well, returning status as described above. The
application that called the PROTSK routine then receives
control.

However, if the Synergy application suspends itself (in
response to the F5 key), the window manager displays the
Synergy Main Menu. At this point, the user can start other
Synergy applications and can even suspend the Synergy
environment. Since all these possibilities exist, the window
manager assumes ownership of the application. 1If the user
suspends the window manager, the window manager exits by
issuing success status to the task that called the PROTSK
routine. Notice that the Synergy application (the callee)
may still be executing. 1If the task that called the PROTSK
routine (the caller) requires that the Synergy application
complete its execution before the caller can proceed, the
caller and callee must establish some other method of
communicating exit status.

CHAPTER 3
ADAPTING A P/OS APPLICATION

This chapter supplies gquidelines for the developer who is
modifying a P/0S hard disk application so that it will run in the
Synergy environment. All necessary modifications are described
in general terms. The details are provided in other chapters.

Use this chapter to determine the scope of your work and to
organize and plan the modifications.

The application’s source code must be modified so that it
communicates with the Synergy services. There are three areas in
which the source code must be modified:

e Reading the keyboard and using the character-passing buffer
e Suspending the application
® Using the screen

The files that control the application’s task build and
installation must be modified also.

You should also consider whether the application can profit from
use of the clipboard as an input or an output medium, or both.

3.1 KEYBOARD USE

Synergy provides a buffer for keyboard input called the
character-passing buffer. The character-passing buffer is passed
to an application when Synergy starts or resumes the application.
The application must use any bytes in the character-passing
buffer before doing any QIOs to read the keyboard directly.
Likewise, when the application <calls a Synergy service, all
keystrokes that have been read (but not used) must be placed 1in
the character-passing buffer for use by the Synergy service. The
character-passing buffer gets passed back and forth between the

3-1

KEYBOARD USE

application and Synergy.

In effect, all keyboard input flows through the character-passing
buffer. A detailed description of the character-passing buffer
and its use is given in Section 4.7.

Since all Synergy applications use the Synergy character-passing
buffer, they are all required to read the auxiliary keypad in the
same mode; namely, 8-bit, application keypad mode. This
distinguishes the numeric and punctuation keys on the keypad from
the same keys on the main array of the keyboard.

You can assign the same meaning to these keys as to their
counterparts on the main array of the keyboard, so that the user
is not aware of the distinction in the way that they are read.
However, in order to unambiguously pass any type-ahead on to
other applications, all applications must read the keys in the
mode that distinguishes the actual key that has been pressed.

3.2 SUSPENDING THE APPLICATION

All Synergy applications recognize the F5 key in their keyboard
input and call a task control service which suspends the
application. The F5 key should be recognized at all times, and
the task should never require additional keystrokes before it

suspends its execution.

If the application spawns additional tasks, the developer need
not stop all the tasks before calling the Suspend service, but
must ensure that any tasks that continue to run execute no input
or output to the terminal while the calling task is suspended.

3.3 SCREEN USE

You have three choices of how to use the screen. Each of the
choices involves the creation of a window, but two of the choices
mean fewer changes to the application code.

® You create the window with the VT attribute, and you do all
remaining screen operations exactly as in the P/0S hard disk
environment, including using the menu and HELP services of
P/0S available in the POSRES cluster library.

® You create the window with the VT attribute so that you can
continue to do the same terminal output that you did in the
P/0S environment, but you replace the calls on POSRES by
calls on the Synergy menu and HELP services. This means

3-2

SCREEN USE

creating a Synergy frame file from the frame files produced
with the Frame Development Tool (FDT).

@ You create the window without the VT attribute -- as a
standard Synergy window, probably smaller than the full
screen. This means you must do all screen output with GIDIS
QIOs and that you must not use the menu and HELP services of
P/0S.

3.3.1 Retaining the VT Window Type

A Synergy application must avoid any screen output until it calls
a service that creates a window. The window may be created with
a special attribute called the VT attribute. This creates a
full-screen window.

It is possible to use either the P/0S menu and HELP services (in
POSRES) or the Synergy menu and HELP services, or even a mixture
of the two.

The application can suspend itself by calling the Suspend
service, since Synergy saves the screen contents and the GIDIS
state of the terminal subsystem. When the application is
restarted after the Suspend service, Synergy guarantees that the
screen 1is correctly restored and that the GIDIS state 1is
restored. The application must restore the text-mode state of
the terminal subsystem; and if it has altered the color map, it
must repeat the color map set-up.

Notice that Synergy restores the video bitmap so that the screen
looks right to the wuser. However, the terminal subsystem
maintains additional screen information, which is not restored by
Synergy. If the wuser presses the PRINT SCREEN key after the
application resumes, the printed result might not be an accurate
representation of the screen. To guarantee that PRINT SCREEN
will work correctly after suspending and resuming, you must
repaint the entire text-mode contents of your VT window (with any
character attributes that were used initially).

Keep in mind that the window server always saves three planes of
video bitmap for a VT window (if they are present), regardless of
whether the user has asked the Synergy Window Manager to allow
the use of color windows, and regardless of whether the
application requests that the window be created with the color
attribute.

3-3

MODIFICATIONS TO OTHER FILES

3.4 MODIFICATIONS TO OTHER FILES
3.4.1 Task Build Files

You must modify any ODL file that you submit to the Professional
Application Builder to build a task that references a Synergy
service. The ODL file must include a reference to the Synergy
Interface Library. The library routines add about 2000 (decimal)
bytes to your task image. If you are replacing calls on the
POSRES <cluster library, you may be able to remove the reference
to the POSRES 1library in the command file and regain an
equivalent amount of space.

3.4.2 Install File

In addition to telling Disk/Diskette services how to install and
remove your application, the install file tells P/0OS how to start
your application when the user selects it from a P/0OS application
menu. When your application becomes a Synergy application, its
main task image is no longer started by P/OS. You must modify
the 1install file in such a way that the install file tells P/0S
to start the Synergy Window Manager. The Synergy Window Manager
then reads the install file and spawns your application’s main
task image as a subtask.

3.5 USING THE CLIPBOARD

The clipboard consists of two files that are used to pass user
data between Synergy applications. The files have fixed names
and are always stored in a system directory. Applications follow
a set of simple rules in writing and reading these files.

The advantage to the user is that he need not name the files or
remember where they are.

If you decide to modify your application to read from or write to
the <clipboard, vyou should follow these rules. You should also
follow the conventions for describing the clipboard actions in
menus and in your user documentation. For example, it would be a
mistake to tell the wuser that your application wuses the
clipboard, and then require him to type the directory name and
filename of the clipboard file every time that he wants vyour
application to use it!

CHAPTER 4

CHAPTER 4
THE SYNERGY INTERFACE

4.1 INITIAL STATE

Your application calls Synergy services to perform various
actions on its behalf. Many of the services read the keyboard or
alter the screen contents. One of the services, Suspend, even
gives the user a chance to start another application.

These actions that take place outside the application’s code may
alter the states of the terminal. Synergy sets the terminal back
to a known state on return from each call. These initial states
are described in the following sections.

4.1.1 At Synergy Start-Up
At Synergy start-up, the server performs the following actions:

Text mode set-up:
Text cursor home
Text cursor off
Keyboard set-up:
Set ANSI cursor key mode
Set application keypad mode
Set 8-bBit codes only (CSI, not ESC [)
GIDIS set-up:
Initialize (-1 - Everything)
Load Synergy alphabets
Set output cursor (No cursor)
Set writing mode (6 - Replace)
Set alphabet (0)
Set cell display size (24,50)
Set cell unit size (24,50)
Set Synergy colors in the color map
Create gray background

INITIAL STATE

4.1.2 At Window Creation
When a window is created, the following actions occur:

GIDIS set-up:
Set IDS to size of writable area
Initialize (2!4!8 -Reset Global attributes,
Text, and Cursor)
Set output cursor (No cursor)
Set writing mode (6 - Replace)
Set alphabet (0)
Set cell display size (24,50)
Set cell unit size (24,50)
If it’s a color window then
Set plane access (7)
else if this system has EBO then
Set plane access (4)
else
Set plane access (1)
Set primary color (0)
Set secondary color (4)
Fill window with white
(GIDIS active position is at 0,0 in the window)

4.1.3 On Return from Suspend
After a Suspend, which may include a change in window size:

GIDIS set-up:
Set Synergy colors in the color map
Set IDS to size of writable area
Set alphabet (0)
Set cell display size (24,50)
Set cell unit size (24,50)

4.1.4 After Other Window Operations
After other window operations:

GIDIS set-up:
Set IDS to size of writable area
Set alphabet (0)
Set cell display size (24,50)
Set cell unit size (24,50)

4-2

INITIAL STATE

The keyboard is in application keypad mode: The keypad keys do
not return the characters "1", "2", etc., but return CSI
sequences. The keyboard is in 8-bit mode. Function keys return
8-bit sequences instead of the longer 7-bit sequences.

For VT windows, no GIDIS set-up is done, except for setting the
color map (see Section 4.2).

4.2 COLOR MAP

Synergy establishes the settings of the color map during start-up
with the following values:

Color % of % of % of
Index Red Green Blue Result
0 0 0 0 black
1 100 0 0 red
2 0 100 0 green
3 0 0 100 blue
4 100 100 100 white
5 0 100 100 cyan
6 100 0 100 magenta
7 100 100 0 yellow

You can change these settings by altering percentages, but you
should be aware of the effect of your changes and the rules that
must be followed:

e Changes that you make to the color map will be applied to all
windows on the screen, since there is no way to restrict the
effect of the color map to your window only.

e When you call a Synergy menu service, the menu will be
displayed using your color map settings. Since menus are
displayed with, color index 0 providing the primary color and
color index 4 providing the secondary color, you could make a
menu very hard to read by setting these color indices to
noncontrasting colors. Try to avoid modifying the 0 and 4
settings. If you must modify them, you may have to precede
each call on menu services with an adjustment that makes the
menu readable.

e When your application suspends itself or exits, Synergy
resets the color map to the Synergy settings. Thus, whenever
your application resumes after a suspend, you must reset the
color map to your own settings.

The application in Appendix A alters the color map (see Pages

4-3

COLOR MAP

A-5, A-7, A-14, A-15, and A-17).

4.2.1 WIZPSC - Zap Primary/Secondary Colors

Status 2 words (output)
PrimaryColor 1 word (input)
SecondaryColor 1 word (input)

This call alters the color indices that the server wuses when
drawing window frames and such things. The new color values
should be in the range 0-7. The server simply passes these
values on to PRO/GIDIS, in SetPrimaryColor and SetSecondaryColor
instructions. Once zapped, the specified indices will be used
for ALL future window operations (even other Synergy
applications). The primary and secondary colors are not reset
until the entire Synergy environment is exited (not suspended --
exited). 1In other words, the NEXT TIME Synergy is run, the
primary/secondary colors will be back to 0 and 4. If you want
the new primary/secondary colors to be in effect only until vyour
application exits, the application must zap them back to 0 and 4
when it exits.

Note that zapping either the primary or secondary to be values
other than 0 or 4 forces all future windows to become color
windows (because all three planes of bitmap must be
saved/restored). This includes stackable windows, and further
includes stackable windows that Menu Services creates.

In fact, you should not issue this call if there are ANY windows
that have already been created (even windows from other
applications). Synergy will not crash or become corrupted if you
do so, but the on-screen appearance of the old windows (and the
old gray background) can be wrong.

4.2.2 WIZCMP - Zap Color Map Entry

Status 2 words (output)
Map 1 word (input)
Index 1 word (input)
Red 1 word (input)
Green 1 word (input)
Blue 1 word (input)
Mono 1 word (input)

COLOR MAP

This call zaps the color map entries that Synergy enforces. The
six input parameters are the same parameters that the PRO/GIDIS
SetColorMapEntry instruction takes.

Similar to the WIZPSC call, any changes to the <color map made
using this call remain in effect wuntil the entire Synergy
environment is exited.

Note that if all you want is to change the on-screen colors while
your application 1is running, you should not wuse this call.
Instead you should simply issue GIDIS SetColorMapEntry
instructions from your application; then Synergy will reset the
color map to the Synergy defaults when the application exits or
suspends. The WIZCMP call 1is provided to change the defaults
that Synergy uses, so they are permanent for the duration of the
Synergy environment.

4.2.3 WIRCMP - Reload Color Map

The following call causes Synergy to reset the PRO/GIDIS color
map back to the default Synergy colors.

Status 2 words (output)

This call is useful if your application changes the color map
using the PRO/GIDIS SetColorMapEntry instruction, and you wish to
return to the standard Synergy color map settings.

Synergy implicitly calls this routine whenever an application
exits (WIDON) or suspends (WIINT).

I1f the Zap Color Map (WIZCMP) routine has been used to change the
default Synergy color map, WIRCMP reloads the color map with
those changed default values -- not the original power-up color
pallete.

4.3 FONTS AND ALPHABETS

GIDIS defines alphabet 0 as the DEC Multinational Character Set.
The font style (character shape) is essentially the same as the
font style defined by the text mode of the terminal subsystem.

Synergy defines additional fonts for displaying characters in
menus, and for some special effects that it requires. At Synergy
start-up, the fonts are installed in common regions and then
loaded by name into GIDIS alphabets as follows:

FONTS AND ALPHABETS

Alphabet Font Font
Index Name Description
7 WISFO Special
8 (reserved)
9 WISF1 Dim
10 WISF2 Normal
11 WISF3 Bold
12 (reserved)
13 WISF5S Normal underlined
14 WISF6 Bold underlined
15 WISF8 Boxed

To display characters from one of the Synergy fonts in your
application window, you must use a GIDIS SET_ALPHABET instruction
to select the desired alphabet before issuing any DRAW_CHARACTERS
or DRAW_PACKED_CHARACTERS instructions. All Synergy fonts except
the Special font use the standard cell unit size and cell display
size of 24 wide by 50 high (GOS units), which is the same as the
terminal subsystem’s text-mode character that 1is 12 hardware
pixels wide and 10 hardware pixels high.

The application in Appendix A uses these fonts (see Page A-45).
Synergy defines these special fonts for various reasons:

e Synergy needs to provide various renditions of the standard
characters. The renditions provided are dim, bold, and
underlined versions of the normal character.

e Synergy needs to draw & box around certain text to make it
look like a key caption.

@ Synergy needs to combine some of the characters from the DEC
Special Graphics character set with the characters that form
the DEC Multinational character set.

e Synergy needs a few special characters that are not available
elsewhere.

"4.3.1 'User-Defined Fonts

You can load fonts that you design into any of the alphabets 1 to
6. However, when you call a Synergy window or menu service, or
when you suspend your application, vyou 1lose all vyour font
definitions. Thus, you must reload your fonts on return from the
Synergy services. Notice that this means that fonts must be

4-6

FONTS AND ALPHABETS

loaded after a window is created, not before. If you create two

windows, your fonts must be loaded each time you select a new
front window.

You should avoid loading your own font into any of the alphabets
used or reserved by Synergy. If you must load your font into an
alphabet that is used or reserved by Synergy, you must use the
Restore Fonts service (see below) that requests Synergy to reload
its font into that alphabet. This prevents the display of menus,
HELP, etc., using your fonts instead of the Synergy fonts. This
request must be made prior to any call on Synergy menu services,
prior to a call on the Suspend service, and prior to exiting your
application.

Synergy reloads its own fonts before returning control to your
application after a suspend.

4.3.2 WIRFNT - Restore Fonts

Status 2 words (output)
BitMask 1 word (input)

Bits in the BitMask correspond to alphabet numbers that Synergy
should restore. Thus, to instruct Synergy to reload its font
into alphabet 7, you would supply a BitMask with the wvalue 128
(2~ 7).

Synergy ignores bits 0 to 6 of the BitMask, so that you can
supply a mask of -1, which causes Synergy to reload all of its
fonts.

4.3.3 Special Font

The Special font uses a larger cell display size (16 by 16
hardware pixels) and has only two characters defined in it.
These are the arrow that the window manager uses to choose a new
front window, and a pattern that is used to create the gray
background.

4.3.4 Text Fonts

The Dim, Normal and Bold fonts, and the wunderlined versions of
Normal and Bold, all have exactly the same character shapes, with
the variation being in the number of pixels that are turned on
and whether or not the bottom row of pixels is turned on for

4-7

FONTS AND ALPHABETS

underlining., This is a full 256-character alphabet, which
contains the DEC Multinational printing characters and is
augmented with additional characters from the DEC Special
Graphics character set that are placed in the nonprinting
positions of the DEC Multinational set. This 1is the Synergy
Character Set, shown in Table 4-1.

Notice that characters 134 and 135 (decimal) when placed together
form the clock icon that is used in the wait message of the title
line of windows. Characters 136 and 137 (decimal) are reserved.
Characters 156 to 159 (decimal) are the multiplication and
division signs, the centered dot and the checkmark. Character
160 (decimal) is the ellipsis used in various ways by PROSE PLUS,
Graph, and Spreadsheet. The remaining special characters in the
128 to 155 (decimal) positions are various characters from the
DEC Special Graphics character set, 1including the <characters
known as the line-drawing characters.

Notice that these characters can be placed in a frame file,
providing that vyou edit the frame file with an editor that
handles nonprinting 8-bit characters. To use the text fonts in a
menu, HELP or message frame, see Section 7.2.1. Be sure to
observe the conventions that are established for these text fonts
(see Chapter 11).

4.3.5 Printing the Synergy Character Set

I1f these fonts are displayed in your application window, and the
window is printed on a dot-matrix printer such as the LA50 with
the PRINT SCREEN key, they will be printed correctly on the
paper. This 1is because the PRINT SCREEN key sends the actual
video bitmap to the printer (as sixels).

However, if your application tries to store these characters in a
file, and the wuser prints the file using Print Services, the
characters will be sent to the printer for interpretation as DEC
Multinational characters. Thus, all the special Synergy
characters will print as blanks or reserved symbols, since they
are placed 1into the nonprinting area of the DEC Multinational
Character Set.

4.3.6 Boxed Font

The Boxed font is the same as the Synergy Character Set, with the
addition of a dim line above each character (the top of the box)
and a normal line below each character (the bottom of the box).
All the characters of the Synergy Character Set are available

4-8

FONTS AND ALPHABETS

except the following:

e The ASCII codes for curly braces (decimal 123 and 125) are
used to select the character shapes that form the left and
right ends of the box.

e The ASCII codes for the lowercase letters, u, d, 1, and r
(decimal 117, 100, 108, and 114) are used to select the
character shapes for the up arrow, down arrow, left arrow and
right arrow, respectively.

The boxed font is intended solely for displaying key captions,
and all key captions are displayed in uppercase, by convention
(see Chapter 11). To use the boxed font in a menu, HELP, or
message frame, see Section 7.2.1.

4-9

FONTS AND ALPHABETS

Table 4-1: Synergy Character Set
COLUMN 0 1 2 3
e BITS| , 0 o 0
b7 0 0 0 0
S 0 0 1
1 1
ROW| b4 b3 b2 b1 0 ! 0 ! 0 0
0 20 40 60 100 120 140 160
Ol oooo 0 6| SP | 22 0 48 64 80 96 112
0 10 20 30 40 50 60 70
1 21 a1 61 101 121 141 161
1{ 000 1 1 17 ! 33 1 49 65 81 97 113
1 11 21 31 2 51 61 71
2 22 " 42 62 102 122 142 162
21 00 10 2 18 34 2 50 66 82 98 114
2 12 22 32 42 52 62 72
3 23 43 63 103 123 143 163
3] 0011 3 19 # | > 3 | 67 83 99 115
3 13 23 33 43 53 63 73
4 24 41 64 104 124 144 164
a4l 0100 4 20 $ || 4 |52 68 84 100 116
4 14 24 34 44 54 64 74
5 25 45 65 105 125 145 165
5| o101 5 21 % | 37 5 |s3 69 85 101 17
5 16 25 35 45 55 65 75
6 26 46 66 106 126 146 166
61 o110 6 22 & |33 6 |54 70 86 102 118
6 16 26 36 46 56 66 76
7 27 , 47 67 107 127 147 167
71 0111 7 23 39 7 55 71 87 103 119
7 17 27 37 47 57 67 77
10 30 50 70 110 130 150 170
8| 1000 8 2 (40 8 56 72 88 104 120
8 18 28 38 48 58 68 78
1 31 51 71 11 131 151 171
91 1001 9 25) 4 9 57 73 89 105 121
9 19 29 39 49 59 69 79
12 32 52 72 112 132 152 172
0] 10 1 o0 10 26 * 42 . 58 74 90 106 192
A 1A 2A) 3A 4A 5A 6A 7A
13 33 53 73 113 133 153 173
14! 1 0 1 1 1 27 + 43 . 59 75 91 107 123
B B 28 ’ 38 4B 58 8B 7B
12 34 54 74 114 134 154 174
121 1 1 0 o 12 28 a| < 60 76 92 108 124
c ic ’ 2C 3C 4C 5C 6C 7C
15 35 55 75 115 135 155 175
i3 11 01 13 29 - 45 = 61 77 93 109 125
D 1D 2D 3D 4D 5D 6D 7D
16 36 56 76 116 136 156 176
141 1+ 1 1 0 14 30 . 46 > 62 78 94 110 126
E 1€ 2E 3E 4E 5E 6E 7E
17 37 57 77 17 137 157 177
151 1 1 1 1 15 31 / 47 ? 63 79 95 11 127
F 1F 2F 3F 4F 5F 6F 7F
CHARACTER| P [40 | OCTAL
32 | DECIMAL
r 20 | HEX

FONTS AND ALPHABETS

Table 4-1 (continued)
8 9 10 11 12 13 14 15 COLUMN
1 1 1 1 1 1 1 1 b8
0 0 0 0 1 1 1 1 w7 BITS
1 1 0 0 1 1 b6
0 1 0 1 0 1 0 1 b5
b4 b3 b2 b1 |ROW
140 _ 160 | 240 ° 260 N 300 320 e 360
¢ :g soan s 1;3 ”i% 17% A | 192 208 a |22 240f ooo0o0 |0
B Co DO EO FO
141 161 241 261 301 321 341 361
p— ® Y 4 Lad
i 97 113 i w] oA 193] N |20 42 25| W 241 o000 1|1
61| scans| 71 A B1 ci D1 E1 F1
142 162 242 2 262 A 302 1 322 A 342 1 362
q 98 - 114 ¢ 162 78l A | 194 o |20 a |6 O |242] o010} 2
62| SCAN7 | 72 A2 B2 c2 D2 E2 F2
143 163 243 3 263 303 323
o ” 343 363
k 9| _ [us) £ |63 ol A sl O |2 @ |z| 6 |23) oo 11]3
63| sCANO | 73 A3 B3 c3 D3 E3 F3
144 164 244 264 304 324
0o A 344 364
& 100 I— e 164 WA | 0|22 S |2s| & |ua| o100 |4
c4 D4 E4 Fa4
145 165 245 265 305 325
. o . 345 365
* 101 «1 117 ¥ 165 M 181 A 197 0 213 a 229 '6 2454 0 1 0 1 5
65 75 AB B5 C5 D5 E5 F5
146 166 246 266 306 326 346
366
®e
C 102 L 118 166 ﬂ 182 M | 198 o |24] e |0 © |us}] 011016
66 76 A6 B6 Cc6 D6 E6 F6
147 167 247 267 307 327 347 367 .
D 103 T 19 § 167 s 183 9 199 E |25 [231 oe 247 01 11 7
67 77 A7 B7 c7 D7 E7 F7
150 170 250 270 310
1 330 350 370
4] | 1200 X |es | g |20 @ |26] & |22 @ |28| 1000 |8
68 78 A8 B8 cs D8 E8 F8
151 m 251 271 311 31 351
105 & | i21] © |60 V% E 20| Q) sl oz o]y ldel 100 9
69 79 A9 BY c9 u D9 e EQ u F9
162 172 a |2 (o} 272 A 312 s |32 A 352 372
J 0] > | 122 170 | g | 202 U |2® e |23 Fol2s0] 10 1 0 |40
6A 7A AA BA ca DA eal Y | kA
153 173 253 273 oo | 313 A |33 353 A 373
1 107 n 123 « 171 > 187 E 203 U 219 e |23 u 251 1o 11 |11
68 78 AB BB c DB EB FB
154 174 254 274 Y 314 334 354 374
®
r 18] D | 124 172 VYa |88 o204 U |22 T o= W |22 1100 |12
6C 7c AC BC cc DC EC FC
155 175 255 275 315 335 355 375
L 109] -2 | 125 13| Va2 |ase |’ 08| |22 r Jar| Y 23| 11001 |13
6D 7D AD BD CD DD ED FD
156 176 256 276 A |38 336 356 376
+ mo| o« | 126 174 wo | | |208 22| 4 |3 | 111 0 (14
6E 7€ AE BE CE DE EE FE
- 157 177 257 A 277 e |37 337 357 377
LR J 127 175 & 191 | 207 B 223 T |23 2554 1 1 11 |15
SCAN1| 6F 7F AF BF CF DF EF FF
CHARACTER 306 focTAL
/E 198 | DECIMAL
C6 | HEX

IMPOSED DEVICE SPACE

4.4 IMPOSED DEVICE SPACE

When your application receives control from Synergy, the GIDIS
Imposed Device Space has been set to the writable area of your
front window. This prevents you from writing outside vyour
window, since the clipping region is the same as the IDS.

You can issue the GIDIS SET_CLIPPING_REGION instruction, however,
in order to modify the clipping region. You should be careful to
keep the new clipping region within your window’s writable area.
GIDIS does not prevent you from setting the clipping region
beyond the IDS boundaries. 1If you do this, it is then ©possible
to issue GIDIS instructions that write outside your window’s
writable area.

4.5 INTERTASK COMMUNICATION METHOD

If your application consists of more than one task, you should be
aware of the task operations that occur within Synergy. You
should not interfere with these operations.

If your application desires to receive data through ASTs, vyou
will need to use a special interface described below.

4.5.1 Synergy Task Communication

The applications and the window manager communicate only with the
window server. Communication is totally synchronous and can be
likened to an interprocess coroutine call. This is implemented
through a VARIABLE SEND DATA/VARIABLE RECEIVE DATA OR STOP pair
of directives in each direction, to the window server (input
parameters), and from the window server (output parameters).
Before the packet is sent, the window server is stopped (a state
in P/0S in which a task does not execute, and does not compete
for memory). Once the packet is sent, the caller will stop, and
the window server is allowed to execute. On the return path, the
roles are reversed.

VARIABLE SEND DATA restricts data packets to be smaller than 512

bytes. This 1is too small for many of the parameter packets.
Therefore, multiple VARIABLE SEND DATA directives are wused to
implement packets of up to 2048 bytes. Additional SEND

directives are used only if the packet is larger than 512 bytes.

INTERTASK COMMUNICATION METHOD

The interprocess calls are accomplished by subroutines in the
Synergy Interface Library that are linked into each application
task that uses Synergy services. These modules, including a
512-byte buffer and the Synergy character-passing buffer, occupy
about 2000 decimal bytes of your task’s address space.

You can overlay all or part of this area, by calling the modules
out explicitly in the ODL file that is used to link your task.
The module name is the same as the global symbol name for each
service.

When an application receives the F5 key as input, it calls the
Suspend service (WIINT). The interprocess call that follows does
not return until some later time. Instead of returning to the
calling task, the server "returns" to the window manager. The
window manager eventually calls the TRANSFER CONTROL service 1in
the window server, passing the task that is to be activated.
Instead of the window server returning control directly to the
window manager, it "returns" to the task that is to be activated.

NOTE

When you call a Synergy service, the interface
routine stops the task while it waits to receive
the data packet that is returned by the window
server. A stop is not a legal operation if the
task is at AST state. Therefore, you must not
call Synergy services from AST state.

4.5.2 Receiving Data Packets

If your application task executes Receive Data directives in
order to communicate with other tasks, your use of this facility
can conflict with Synergy’s use.

No conflict arises if you execute your Receive Data directives
from user state (as opposed to AST state). Since Synergy’s use
of the Send and Receive Data directives is strictly synchronous,
the Synergy interface routine stops your task until the window
server sends back the result of the service call. Furthermore,
the interface routine specifies that it should receive only those
packets that are sent by the Synergy window server.

However, if your task is using ASTs (perhaps an
unsolicited-input-character AST), and you execute a Receive Data
directive while at AST state, you could potentially receive a
data packet that is intended for the Synergy interface routine.
You can guard against this by always specifying the sender task

4-13

INTERTASK COMMUNICATION METHOD

name from which you are expecting data in any Receive Data
directive done from AST state.

4.6 CALL INTERFACE TO SYNERGY SERVICES

The Synergy services are implemented as interface routines in the
Synergy Interface Library. The library is referenced in the .0ODL
file used to build the Synergy application.

In the following sections, each service is described individually
with the global symbol that is defined in the Synergy Interface
Library. The parameters that are passed on the call are 1listed
in the expected order, with aneindication of the data type and
whether the parameter’s value’ is supplied as input to the call or
output from the call, or both input and output. Examples are
given for most calls.

Synergy interface routines conform to the calling conventions for
other P/0S library routines (the PDP-11 R5 sequence), with the
additional feature that no registers are modified by the call.

Notice that the interface routines lie between your application
code and the window server task. The interface routines pack
your input parameters into a data packet. If you supply a null
entry (-1 in the pointer of the parameter list) for an input
parameter, the interface routine supplies a 0 or null string in
the packet. This means the window server does not see a missing
integer parameter; it sees a 0O-valued parameter.

The window server task sends back all the output parameters in a
data packet. The interface routine unpacks the returned values
into the output parameters that you requested. If you supply a
null entry for an output parameter, the interface routine just
ignores the value returned in the data packet.

The interface routines and the window server do very little
checking on the validity of input parameters. It is possible to
pass faulty input, or no input, and get back a status value that
indicates the <call was successful. If your application is
calculating parameter values dynamically, you may want to build
in your own checking code to ensure that the calculated values
are acceptable before using them in the service call. Such code
could be made conditional, so that it can be easily removed when
debugging is completed.

The interface routines pass the call to the window server task,
and wait for its return (see Section 4.5.1).

4-14

CALL INTERFACE TO SYNERGY SERVICES

4.6.1 Parameters
Words are 16-bit integers, unless otherwise noted.

Boolean values are stored as one-word integers. The value "true"
is represented by the integer -1, and the value "false" is
represented by the integer 0. No other values should be used.

Strings are sequences of bytes whose values may include any
graphic character, including multinational characters. Unless
specifically stated, string parameters should not include control
characters (less than ASCII space) or escape sequences. Most
strings are straight text, and include no formatting information.
In particular, horizontal tab has no meaning in a window.

Make sure that paramters which are unused or are documented as
reserved are passed zero values in the call.

All services pass back a status code in the first parameter. The
status parameter is a two-word integer array that indicates the
results of the requested operation. The first word indicates the
general result, while the second word may contain additional
information. See Table 4-2.

4.6.2 WICAL -- Call Window Service

Unlike all other Synergy calls, the following routine does not
use the PDP-11 R5 Calling Sequence format. Rather, it expects
its two parameters to be pushed onto the stack by the caller
(followed by the normal JSR PC, WICAL).

Routine address 1 word (input)
Parameter block address 1 word (input)

This call is an optional means of indirectly calling Synergy
services. This routine saves R5, then loads R5 with the second
parameter (parameter block address). Then WICAL (JSR) calls to
the routine specified by the routine address. Upon return from
the called routine, WICAL restores the original value of RS,
cleans the two parameters off of the stack, and then returns to
the application. (In fact WICAL may be used to call any PDP-11
R5 sequence routine, not just Synergy services.)

WICAL is useful in two cases:
e When the parameter block is constructed at run-time
(rather than statically at compile-time by the language

compiler) so that you cannot call the routine directly
from the source code using a normal CALL type statement.

4-15

CALL INTERFACE TO SYNERGY SERVICES

For example, you can allocate the parameter block as an
array of integers (do not forget to include the
parameter count word, as defined by the R5 Calling
Sequence Standard); assign the addresses of the
individual parameters into elements of the array; then
pass the routine you want to call and the address of the
array to WICAL.

e When calling Synergy routines with static argument lists
from PRO/Pascal, you may find that large parameter lists
exceed the limits of the compiler. 1In this case, you
can allocate and construct the parameter block yourself
in Pascal, and then use WICAL. For example:

PROCEDURE DFLOW; SEQ11; { Routine with lots of params }

PROCEDURE WICAL(PROCEDURE SEQl1Procedure;
VAR ParamBlock: [Unsafe] Integer); EXTERNAL;

PROCEDURE ThisCallsDFLOW;

CONST
ParamCount = 100;

VAR
FlowPB: ARRAY [0O..ParamCount] OF Integer;
StatusBlock: ARRAY [1..2] OF Integer;

BEGIN { of procedure ThisCallsDFLOW }
FlowPB[0] := ParamCount;
FlowPB[1] IAddress(StatusBlock); { 1lst parameter }

WICAL(DFLOW, FlowPB); { Call the Synergy routine }
END; { of procedure ThisCallsDFLOW }

Table 4-2: Returned Status Values

WORD 1 WORD 1 MEANING WORD 2 MEANING
VALUE
1 Success Not specified
-1 Directive error DSW
(in window server) (Directive Status Word)
-2 RMS error RMS I/0 error

(in window server)

WORD 1
VALUE

-10

-11

-12

-13

-14

-16

CALL INTERFACE TO SYNERGY SERVICES

WORD 1 MEANING
Bad value
(in application)

Receive error
(in application)

Send error
(in application)

Interpreter error

Protocol error

Bad Currentvalue for
class 2 option in
set-up menu call

Frame type incompatible
with menu call

Network error

No more names to return
from 01ld File
selections

Mismatch of option
classes in set-up menu

call

String size too large
in set-up menu call

Wrong number of options
in set-up menu call

WIRMS message too big

WORD 2 MEANING

Parameter number in error

DSW
(Directive Status Word)

DSW
(Directive Status Word)

0 - Unknown

1 - Invalid function
2 - Not implemented

0 - Unknown

1 - Invalid function
2 - Not implemented

undefined

Frame found

DECnet error codes

Undefined

Undefined

Undefined

Undefined

Undefined

CALL INTERFACE TO SYNERGY SERVICES

WORD 1 WORD 1 MEANING

VALUE

-17

-18

-19

Window error

Block I/0 error

Menu primitive error

WORD 2 MEANING

U W N

0o

Ul W N
o 6o e e e

@0 ~J O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Too many windows
Invalid position
Invalid size

No active window
Window has no title
Window must be front
window

Invalid window ID
Invalid operation

Cannot create file

End of file

Device full

No such file

File not open on
specified channel
Memory unavailable

No channel is available
Invalid file
specification

Invalid channel number
System directive error
File is locked

Illegal operation

Not at end of file
Privilege violation
Line too long

File already exists
Not a sequential file
Invalid record address
Invalid record format
System I/0 error

No menu or string
editing window exists
Front window is not a
menu window

Front window is not a
string editing window
Too many menus and
string editing windows
Too many headers
Header too wide

Wwindow too wide

Too many entries

Entry too wide
Nonprinting character
Invalid entry position

CALL INTERFACE TO SYNERGY SERVICES

WORD 1 WORD 1 MEANING WORD 2 MEANING
VALUE
-20 Terminal error 1. Buffer length invalid
2. Initial length invalid

3. Initial position
invalid
4. Directive failure
-21 Raster error Bad parameter value
No rasters available
Insufficient file space

w N -
e o e

-22 Internal error Stack pointer corrupted

Packet protocol

Directive failed

Bad packet type

New task interrupted

packet stream

6. New function
interrupted packet
stream

7. Invalid length for task
context block

Ul w o
e s e+ e e

-23 Memory error 1. Internal error

2. Attempt to DISPOSE with
an invalid pointer

3. NEW received a negative
size

4. Zero or negative size
block

5. Memory not available

6. Free memory list has
invalid pointer

7. Memory block larger

than 1024

8. Free memory list has
loop

9. Memory block overruns
end of pool

4.7 PASSING TYPE-AHEAD TO SYNERGY ROUTINES

The terminal subsystem automatically collects keyboard input in a
type-ahead buffer. Characters are released from this buffer in
response to QIOs that are executed by the application code.

4-19

PASSING TYPE-AHEAD TO SYNERGY ROUTINES

4.7.1 MGTCB - Expand Call-Back Code
Status 2 words (output)

Before the service is called, the application must ensure that
the character-passing buffer is in the correct format.
Specifically, the call-back code must be removed from the buffer,
any additional characters left-justified, and the buffer length
field set to the correct value.

NOTE

Do not assume that the character-passing buffer
is empty beyond the <call-back code. There is
always at least one character in the buffer
beyond the <call-back code, and if there are
applications running that use an AST routine to
read the keyboard, they may be appending
characters to the end of the character-passing
buffer while the call-back code is in the buffer.

The application in Appendix A uses the character-passing buffer
(see Pages A-10 and A-47).

4.8 FILE USAGE

Your application can be suspended by the wuser while other
applications are run. This puts a demand on system resources.
The following suggestions are offered:

e Before you call the Suspend service, you should free as many
system resources as possible. One way to do this is to close
data files. You can close the data file before the WIINT
call and reopen it on return from the WIINT call. (Notice
that the window server automatically closes the frame file
for you and then reopens it before returning control to your
application.)

e If you close files before suspending, you may want to do a
fast reopen of the file using the device and file identifier
in the NAM block that was supplied on the first open, rather
than doing a reopen with the file specification. However,
you should be aware that if the file is on another node of a
network, the device and file identifiers are meaningless and
the open will fail.

FILE USAGE

@ Your application is more susceptible to an abnormal
termination while it is suspended, since the user may forget
that your application is running and may turn off the
computer. If you leave a file open during the suspend, your
application should anticipate a locked file error return when
it tries to open the file on start-up. Alternatively, you
may want to open the file with a request that RMS not lock
the file if it is closed abnormally.

e Open your data files with the minimum required access in
order to reduce the resource requirements.

® When opening data files in the user’s default directory,
address them with the pseudo device name, SY:[], rather than
making explicit reference to a device name.

4.9 SPECIFYING KEY CODES

Many of the menu service routines read the keyboard (through the
character-passing buffer, of course) and return the keystroke
that terminates the service (often the DO key) to the
application. Many of the terminating keystrokes are multi-byte
CSI sequences, which would require returning a variable-length
string of bytes as the terminating code. 1Instead, the window
server returns a key code as a 16-bit integer.

Normal keys, like "A" or space or "?", are represented by their
ASCII codes. For example, "A" 1is represented by decimal 65.
Multinational keys are represented by the appropriate values --
the copyright key is represented by decimal 169. Any key value
less than decimal 255 is a printable, or graphic, character.

Control keys (normally represented by decimal 0 to 31) are
specified by decimal 256 plus their normal value. For example,
the normal value of CTRL/C is 3, but CTRL/C 1is represented 1in
this scheme by 256 + 3, or decimal 259.

Invalid keys (invalid escape sequences) are specified by decimal
1024.

Remember that the HOLD SCREEN and PRINT SCREEN keys are never
accessible to applications in P/0S.

The other keys -- function keys, ARROW keys, keypad keys -- are
represented by values between 512 and 1024 (see Table 4-3). For
a discussion of the use of the keys in termination key lists, see
Section 8.2.5.

SPECIFYING KEY CODES

The application in Appendix A defines the key codes (see Page
A-45).

Table 4-3: Key Encodings

KEY CAPTION ENCODING KEY CAPTION ENCODING
BREAK 512 + 13 = 525 F5 512 + 15 = 527
SETUP 512 + 14 = 526

INTERRUPT 512 + 17 = 529 MAIN SCREEN 512 + 20 = 532
RESUME 512 + 18 = 530 EXIT 512 + 21 = 533
CANCEL 512 + 19 = 531

F11 512 + 23 = 535 F13 512 + 25 = 537
F12 512 + 24 = 536 ADDTNL OPTIONS 512 + 26 = 538
HELP 512 + 28 = 540 DO 512 + 29 = 541
F17 512 + 31 = 543 F19 512 + 33 = 545
F18 512 + 32 = 544 F20 512 + 34 = 546
PF1 512 + 35 = 547 PF3 512 + 37 = 549
PF2 512 + 36 = 548 PF4 512 + 38 = 550
FIND 512 + 1 = 513 SELECT 512 + 4 = 516
INSERT 512 + 2 = 514 PREV SCREEN 512 + 5 = 517
REMOVE 512 + 3 = 515 NEXT SCREEN 512 + 6 = 518
UP ARROW 512 + 39 = 551 RIGHT ARROW 512 + 41 = 553
DOWN ARROW 512 + 40 = 552 LEFT ARROW 512 + 42 = 554
Keypad , 512 + 43 = 555 Keypad 3 512 + 50 = 562
Keypad - 512 + 44 = 556 Keypad 4 512 + 51 = 563
Keypad . 512 + 45 = 557 Keypad 5 512 + 52 = 564
Keypad Enter 512 + 46 = 558 Keypad 6 512 + 53 = 565
Keypad 0 512 + 47 = 559 Keypad 7 512 + 54 = 566
Keypad 1 512 + 48 = 560 Keypad 8 512 + 55 = 567
Keypad 2 512 + 49 = 561 Keypad 9 512 + 56 = 568

<X] (delete) 512 57 569

+

RESTRICTIONS

4.10 RESTRICTIONS

Synergy does not fully protect applications from one another, and
cannot protect 1itself from abuse by applications. 1In order for
Synergy and its applications to all work properly, each
application must abide by certain restrictions.

e An application must not use text-mode QIOs to the terminal
for screen output, and it must be careful not to use any
system service that would issue such output QIOs (such as
standard P/0OS menu services). The only exception is the use
of instructions that change keyboard characteristics. These
may be used, but the application must reset their state on
return from each Suspend (WIINT) call, since the keyboard
state will have been reset by the window server. If the
application is using a VT window, this reset does not occur.

e An application may change terminal driver characteristics (by
sending a SF.SMC QIO to the terminal susbsystem), but it must
reestablish the desired characteristics on return from each
WIINT call, since the terminal driver state will have been
reset by the window server.

® An application may attach the terminal (to do unsolicited
input character ASTs), but must detach the terminal before
calling any window service.

® An application must check all keyboard input and call the
Suspend service, whenever the F5 key is pressed. The
application may or may not choose to process any characters
that precede the F5 key, but should not wait for more
characters before suspending. An application in the middle
of some noninteractive operation, such as a database update,
may choose to complete the operation before suspending, or
may choose to abort the operation. Since the user’s next
action is not predictable, application files and other
context should be in known states before suspending.

e An application should be able to refresh its window after a
Suspend service if it allows the window size to be changed by
the user and if the display would not look right in the newly
sized window.

@ All stackable windows are destroyed by the Suspend service.

e Exercise care in changing the color map, since that action
changes the colors in other windows as well. Since the color
map is not saved, and is reset whenever the application is
suspended, it remains the application’s responsibility to
reestablish its own color map when the application resumes
after each such suspension.

4-25

RESTRICTIONS

An application should not change the GIDIS imposed device
space. The clipping region and the GOS units can be changed.
The window server always sets these for a newly created
window, and after a return from a suspension, the window
server reestablishes these values for the front window.

An application may use GIDIS named fonts, and may define
additional named fonts beyond those provided by Synergy. An
application can define implicitly named fonts (those defined
at run time, one character at a time), but they will have to
be reestablished after a call to any Synergy service.

CHAPTER 5

CHAPTER 5
TASK CONTROL SERVICES

5.1 TASK CONTROL SERVICES

These operations are used to initialize the interface between the
application task and the Synergy services, and to pass control
and information back to the services. They are described here in
alphabetical order.

5.1.1 WIDON - Application Done

Status 2 words (output)
ContextBlockLength word (input)
ContextBlock () n bytes (input)

This service is called when the application is about to- exit.
The application can pass up to 32 bytes of context data, which
the window server saves on its behalf. The context block 1is
returned by the 1Initialize service (WIINI) the next time the
application runs. The window server does not attempt to apply
any meaning to the context block. Each application can use the
context block in its own way. (Do not confuse this data with the
window descriptor block.) The application in Appendix A uses the
context block (see Pages A-6, A-14, and A-15).

Like all other services, this service returns to the application.
It does not cause the application to exit.

Once the Done service has been called, the application must not
make any additional <calls on the window server and must not do
any more terminal I/O.

The application in Appendix A uses the WIDON service (see Pages
A-15 and A-48).

TASK CONTROL SERVICES

5.1.2 WIINI - Application Initialization

Status 2 words (output)
ExpectVersion word (input)
ActualVersion word (output)
ContextBlockLength word (input and output)
ContextBlock() n bytes (output)
ScreenWidth word (output)
ScreenHeight word (output)
Characterwidth word (output)
CharacterHeight word (output)
PixelWidth word (output)
PixelHeight word (output)
Color word (output)

This service initiates communication between the application and
Synergy.

NOTE

This service can be called only once per
execution of the application, and must be called
before any other service or any terminal I/0.

ExpectVersion is the version of the window server expected by the
application; it should be set to 2 with this release.
Actualversion is the actual version of the window server.

ContextBlock is a block of up to 32 bytes. An application wuses
this area to retrieve information stored by the Done service the
last time the application executed. The length of the context
block is both input and output. As input it specifies the
maximum number of bytes to be returned. As output it specifies
the number of bytes actually returned. If the returned length is
0, it signifies that this is the first time the application was
run. (It is recommended that this area be used to save the X and
Y coordinates of the windowframe and the width and height of the
writable area of the window. This information can then be used
to create a window of the position and size the wuser last
wanted.)

The widths and heights are the sizes of the screen, of the
default character, and of the actual hardware pixel in the
Synergy coordinate system (GOS units). The values can be used as
a basis for graphics calculation if you want to write an
application that is independent of the current hardware.

The Color parameter is boolean; it is true if color (meonitor and
three planes of video bitmap) is being used; it is false if color
is not being used (only one plane in use). The user selects the
use of color from the Synergy Set-Up Menu. This output parameter

5-2

TASK CONTROL SERVICES

is not simply an indication of whether the hardware is present to
do color images on the screen; it indicates that the hardware is
present and that the user wants to use it. (To find out whether
the color hardware is present, see the EBO parameter to the WISYP
call.) Applications should not create windows:that use color (see
Section 6.1.5) unless the Color parameter returned by the
Initialize service is true, or unless the application is creating
a window with the VT attribute.

The application in Appendix A uses the WIINI service (see Pages
A-14 and A-48).

5.1.3 WIINT - Suspend the Application

Status 2 words (output)
WhyReturn word (output)
WindowID word (output)
Width of writable area word (output)
Height of writable area word (output)

This service suspends execution of the application and gives
control to the window manager. This service must be called when
the application sees the F5 key in its own keyboard input, and
when the application sees the F5 key returned by any service
call.

If the application has created any stackable windows, they must
be destroyed before this service is called.

The window manager can return control from the Suspend service to
the application under two different conditions:

@ When the user tells the window manager to resume execution of
the application, the window manager returns from the Suspend
service with the WhyReturn parameter set to 0. This tells
the application to continue its execution. 1If the
application has created only one window, it can ignore the
WindowID, Width and Height parameters. If the application
has created more than one window, it can use the WindowID
parameter that is returned to learn which of its windows is
in front.

e If the application has allowed its window(s) to be changed in
size, and the user has requested a size change, the window
manager returns immediately after completing the size change
action with the WhyReturn parameter set to 1. This tells the
application to adjust the window whose size has been changed,
but does not give the application permission to continue
execution. The application is required to adjust the window

5-3

TASK CONTROL SERVICES

and immediately call the Suspend service again, since the
user still thinks he is manipulating the windows with the
window manager.

The application is told which window was changed (WindowID)
and the new dimensions (Width and Height). When a window
size changes, the contents of the window depend on the window
attribute "clear on change." If this attribute is true, the
window manager blanks the entire writable area of the window,
and the application must refresh it. If "clear on change" 1is
false, the window manager merely retains whatever was in the
writable area before the size changed. When a window is made
larger, the new portion (bottom or right side) is cleared
(with white). When a window is made smaller, the writable
area is restored with the previous contents (upper left
corner). Data outside the new writable area is lost.

When the user moves the front window to a new location on the
screen, no indication 1is given to the application. Therefore,
your application should not assume that the screen position of
any window is unchanged over a Suspend service call. TIf the
application depends on the screen position of its window, you
must call the Get Window Parameters service (WIGEW) on return
from WIINT to update the window descriptor block with the current
screen location.

The application in Appendix A uses the WIINT service (see Pages
A-20 and A-48).

5.1.4 WISYP - Get System Parameters

Status 2 words (output)
ExpectVersion word (input)

ActualVersion word (output)
ScreenWidth word (output)
ScreenHeight word (output)
Characterwidth word (output)
CharacterHeight word (output)
PixelwWidth word (output)
PixelHeight word (output)
Color word (output)
EBO word (output)
GuideMode word (output)

This service supplies the information normally returned by the
Initialize service (WIINI), but without the implication that the
application is just starting. (See Section 5.1.2.) In addition,
two optional extra parameters exist that are not available with
the WIINI call.

TASK CONTROL SERVICES

The EBO parameter is boolean; it is true if the Extended Bitmap

Option Module (three planes of video bitmap) is present in the
system.

The GuidelMode parameter is boolean; it is true if the Guide Mode
setting on the Synergy Setup Menu is true. If you wanted your
application to have facilities for doing things differently for
new users than for experienced users, you might use this flag to
determine whether to treat the user as new or experienced.

5.2 SYNERGY MESSAGE BOARD

The Synergy Message Board calls are intended for applications
that wish to send messages to the Synergy Message Board. For
example, you might want a mail program to use the Message Board
services to notify users when they have new mail messages. To
view any messages, users must return to the Synergy Main Menu.

The Synergy Message Board is a very limited resource and should
be wused with restraint. The message board can contain a maximum
of 5 (five) messages at one time. Each message can be up to 40
characters in length.

If the message board receives more than five messages at one
time, the oldest message is automatically deleted.

5.2.1 MGMSG - Send Message to Synergy Message Board

Status 2 words (output)
GroupID word (input)
MessageLength word (input)
MessageText n bytes (input)

The MGMSG call sends one message to the Synergy Message Board.
Message length must be less than 40 characters. The Group ID is
a 16-bit integer choosen by the caller to indicate a group or
category for the message.

In practice, each application should use the same group ID for
all of its messages. The caller should also make sure that the
group ID is significantly random so that it does not conflict
with a group ID of another application.

5-5

SYNERGY MESSAGE BOARD

5.2.2 MGDMS - Delete Message from Message Board

Status 2 words (output)
GroupID word

The MGDMS call deletes all messages with the same ID as the one
specified in the Group 1ID parameter. This call allows an
application to delete all of its messages (or specific group of
messages) with a single call.

5-6

CHAPTER 6

WINDOW SERVICES

Table 6-1: Window Descriptor Block

WORD MEANING
1 Window ID
2 X coordinate of upper left corner of windowframe
3 Y coordinate of upper left corner of windowframe
4 Width of the writable area of the window
5 Height of the writable area of the window
6 Flag Word (1 = true, 0 = false)
Bit 0 Stackable
Bit 1 Titled
Bit 2 Hidden
Bit 3 Color
Bit 4 white border
Bit 5 Clear on change size
Bit 6 (Reserved, must be 0)
Bit 7 VT
Bit 8 Invisible
Bit 9 (Reserved, must be 0)

Bit 10 3 planes
Bit 11 to 15 (Reserved, must be 0)
7 Minimum width of writable area of the window
8 Minimum height of writable area of the window
9 Maximum width of writable area of the window
10 Maximum height of the writable area of the window
11 X offset from windowframe to writable area of window
12 Y offset from windowframe to writable area of window
13 Overall width of the window
14 Overall height of the window
15 Owner task, word 1 of RADS50 name
16 Owner task, word 2 of RAD50 name

6.1.2 Specifying Window Coordinates

When a window is created, 1its position can be specified in
coordinates expressed in GOS wunits. The position can also be
specified with pseudo coordinates, that indicate a general
location on the screen. The window server interprets the pseudo
coordinates and determines the -exact positioning. By using
pseudo coordinates, you can avoid a great deal of computation in
your application.

Positions in both X (horizontal) and Y (vertical) may be
specified using the coordinates shown in Table 6-2.

WINDOW SERVICES

Table 6-2: Window Coordinates

VALUE MEANING

-32767 Don’t care

-32766 Off window

-32765 Screen minimum

-32764 Screen maximum

-32763 Screen centered

-32762 Window minimum

-32761 Window maximum

-32760 Window centered

-4095..-1 Window-relative position
(The upper left-hand corner of a window can be
positioned to the left or right of the upper left
corner of an existing window. When positioning to
the left of the existing window, negative
coordinates are used, so a position 300 pixels to
the left is -300. In order to encode
window-relative positions, subtract 2048 from the
relative coordinate. Therefore -300 pixels to the
left is encoded as -2348, and 2047 pixels to the
right is encoded as -1. -2048 is the upper left
corner of the window.)
0..2015 Screen (or absolute) horizontal position
(1008 is middle of screen)
0..1199 Screen (or absolute) vertical position

(600 is middle of screen)

Any value not specified in Table 6-2 is an invalid position.

When there is no window on the screen, the window-oriented

positions are handled as though a window existed that is exactly
the size of the screen.

When a window is created or moved and its position 1is specified
in such a way as to make part of the window fall off the screen,
the window server adjusts the coordinates automatically to bring
all of the window onto the screen. The coordinates that you
specify and the size of the window must be wvalid before this
adjustment can take place, however. The window server never
shrinks or truncates an oversized window, and it never corrects
an invalid coordinate.

For example, a horizontal position of 2016 1is not a wvalid
starting position. However, a horizontal position of 2015 is
valid and is equivalent to specifying -32764. Either 2015 or
-32764 guarantees that the window will be on the far right of the
screen.

WINDOW SERVICES

(Notice that video hardware may have larger screens 1in the
future. On a wider screen, -32764 will still mean "right side,"
but 2015 may not have that meaning.)

6.1.3 Specifying Window IDs

Each window has a unique ID that is assigned by the window server
when the window is created, and is returned to the application.
The application uses the window ID to identify the window when an
operation 1is requested. Four special IDs can be used as input
parameters to some of the operations.

An ID with the value -1 can be wused 1in the Select operation
(WISLW) to get access to the entire screen. This is not strictly
a window; the technique is used primarily by the window manager.
Any application wusing this pseudo window must "undo" its
modifications to the screen and thus restore the screen to its
state before the application used the pseudo window. (The window
manager uses this technique when it draws window corners and
blinking bars during window operations. It draws them in
complement mode, then draws them again in complement mode to
erase them.)

An ID with a value of -2 can be used as input to any of the
window operations as a reference to the front window. An
application can always refer to its front window with an ID of
-2, instead of using the window ID that is returned in the window
descriptor block. An application that creates more than one
window must be certain that it knows which window is the front
window, however. On return from a suspension, it can check the
WindowID parameter that is returned to see that it matches the
desired window’s ID. If it does not match, the application can
call the Select Window service (WISLW) using the desired window’s
ID to bring that window to the front.

An ID with a value of -3 is used to indicate the next window.
This 1is accepted as input by the Select (WISLW) operation. This
is a window server operation, and should not be wused by
applications, 1lest they obtain a window belonging to another
application.

An ID of -4 is wused to indicate the rear window. This 1is
accepted as input by the Select (WISLW) operation. This is a
window server operation, and should not be used by applications,
lest they obtain a window belonging to another application.

WINDOW SERVICES

6.1.4 WICHW - Change the Size and Position of a Window

Status 2 words (output)
DescriptorLength word (input)
WindowDescriptor() n bytes (input)

This service is used to change the size and position of the front
window. It is an error to attempt to change a stackable window
or a window that is not the front window. When a window changes
size, any text in the title is centered in the new title area,
and is truncated if necessary (on the right side only).

The input from the window descriptor block is the window 1ID, X

and Y coordinates of the windowframe, and the width and height of
the writable part of the window.

6.1.5 WICRW - Create a Window

Status 2 words (output)
DescriptorLength word (input)
WindowDescriptor() n bytes (input and output)

This service saves the front window (if any), and creates a new
window. The new window becomes the front window. It is an error
to create a nonstackable window when the front window 1is
stackable.

The input from the window descriptor block 1is the X and Y
coordinates of the windowframe, of the window, and the window
attributes: stackable, titled, color, white border, <clear on
change, VT, invisible, and three-plane. The output is the window
ID.

Creating a window of width and height equal to zero results in a
full screen window with no white border or windowframe.

I1f you request a color window but the wuser has not told the
Synergy Window Manager to permit color windows, your request for
a color window is ignored and you get a monochrome window. This
means that the window server will save only one plane of the
video bitmap.

You must be certain that the window server returned a TRUE
setting for the Color parameter on the Initialize (WIINI) call
before you assume that your request for a color window was
granted. Do not write to planes two or three of the video bitmap
unless all three planes are being saved.

6-5

WINDOW SERVICES

This caution does not apply to windows with the VT attribute,
since these windows are always considered to be three-plane
windows.

Also, the three-plane attribute will always give you a
three-plane window, so long as the EBO option is present on the
system.

Notice that you cannot specify the hidden attribute in the WICRW
call. You must first create the window and then ask that it be
hidden by calling the WIHDW service.

Notice also that only the window ID field of the window
descriptor block 1is returned by this service. To update the
other entries of the window descriptor block, you must call the
Get Window Parameters (WIGEW) service.

When a window is created, the maximum and mininum sizes default
to the actual window size, so the size of the newly created
window cannot be changed by the user. You must call the Set
Window Parameters (WISWP) service to change the maximum and
minimum sizes id you want to allow the wuser to modify the
window’s size.

If you request a title, but the window’s writable area 1is too
large to permit a title line on the screen, the title is omitted.

The application in Appendix A uses the WICRW service (see Pages
A-16, A-26, A-29, A-33, and A-48).

6.1.6 WIDSW - Destroy a Window

Status 2 words (output)
WindowID word (input)

When a window 1is no longer needed, it must be destroyed.
Destroying a window removes it from the screen, uncovering any
windows occluded by it. All storage allocated to the window 1is
freed.

The window being destroyed must be the front window. The next
window becomes the front window, whether or not it is owned by
the same application. If the application has another window, it

must call the Select Window (WISLW) service to ensure that its
next GIDIS output actually goes to its own window.

The application in Appendix A uses the WIDSW service (see Pages
A-15, A-28, A-31, A-36, and A-48).

6-6

WINDOW SERVICES

6.1.7 WIERW - Display Error Window

Status 2 words (output)
Up to 5 strings:

TextLength word (input)

Text () n bytes (input)

The window server maintains a hidden window, called the error
window. It is wused only when an application calls the WIERW
service (typically, when the application cannot create a window
of its own due to a lack of resources). The Display Error Window
service allows the application to display information to the
user. Since the error window is created at Synergy start-up, it
is always available, even when the raster file is full.

The application supplies up to five lines of text. The maximum
length of each text line is 40 printing characters, although you
can include additional characters to control renditions (see
Section 7.2.1). The window server selects the error window and
displays the text in it. Control returns to the application only
when the user presses RESUME.

NOTE

The WIERW service can be called at any time, even
after the failure of a WIINI call, or before the
WIINI call 1is attempted. The WIERW service
destroys any windows that the application has
already created. The WIERW service can be
followed only by a WIDON call, and then an exit
from the application.

The application in Appendix A uses the WIERW service (see Pages
A-9 and A-50).

6.1.8 WIEWT - End Wait Message

Status 2 words (output)
This service erases the message and clock icon created by the
WISWT or WIXSWT service. The window manager redisplays the
previous title -- centered or right-truncated -- in the title

line of the front window.

WINDOW SERVICES

6.1.9 WIGEW - Get Window Parameters

Status 2 words (output)
DescriptorLength word {input)
WindowDescriptor() n bytes (input and output)

This service is used to retrieve a full description of a window.

The input from the window descriptor block is the window ID. The
window ID may be set to -2, in which case the descriptor block is
filled with information about the front window. The entire
descriptor block is output, including the actual window ID of the
window being described.

Notice that five services use the window descriptor block as a
parameter, and may return output information 1in the window
descriptor block. Only the Get Window Parameters service updates
all fields of the window descriptor block, however. Before using
values in the window descriptor block (such as location or
dimension) your application may need to call the WIGEW service.

The application in Appendix A uses the WIGEW service (see Pages
A-15, A-20, and A-48).

6.1.10 WIHDW - Hide a Window

Status 2 words (output)
WindowID word (input)

This service is used to remove a window from the display. It 1is
not destroyed -- Select a window (WISLW) will bring it back --
but it is not visible. A hidden window is not in the stack of
windows; thus it cannot be selected by the user.

The specified window must be the front window. The next window
becomes the front window, whether or not it belongs to your
application.

An error occurs when an attempt 1is made to hide a stackable
window.

WINDOW SERVICES

6.1.11 WIIDA - ID of a Window at a Point

Status 2 words (output)
X word (input)
Y word (input)
Present word (output)
WindowID word (output)

This service is used to determine whether a visible window exists
at point X,Y on the screen. If it does, Present is returned as
true and WindowID contains the window ID of the visible window at
that point. If no visible window exists there, Present is
returned as false.

6.1.12 WIPOW - Change Position of a Window

Status 2 words (output)
DescriptorLength word (input)
WindowDescriptor() n bytes (input and output)

This service is used to move a window to a new location. The

window must be the front window.

The input from the window descriptor block is the window ID, and
the X and Y coordinates of the windowframe. The X and Y
coordinates may be pseudo values (such as -32763 for screen
center). Be sure to <call the Get Window Parameters (WIGEW)
service if you want the window descriptor block updated after the
WIPOW call.

6.1.13 WIPSW - Push a Window

Status 2 words (output)
WindowID word (input)

This service moves the specified window to the rear of the
display (behind all other windows).

When the specified window is the front window, the next window
becomes the front window, whether or not it belongs to your
application. The highlighting of titles on the former front
window and the new front window is adjusted automatically.

An error occurs when an attempt is made to push a stackable
window, since stackable windows cannot be reordered.

6-9

WINDOW SERVICES

6.1.14 WISLW - Select a Window

Status 2 words (output)
WindowID word (input and output)

This service is used to bring a specified window to the front of
the display, whether or not it is a hidden window. The current
front window is saved (as the second window in the stack) and the
specified window becomes the front window.

GIDIS output is directed only to the front window. If vyour
application uses more than one window, use this service to ensure
that the correct window 1is in front before vyou issue GIDIS
instructions.

An error occurs when an attempt is made to select a window when
the current front window is stackable, since stackable windows
cannot be reordered or covered by a nonstackable window.

This routine accepts two special pseudo wvalues in WindowID.
Value -3 refers to the second window, the window immediately
behind the front window. Value -4 refers to the rear window. 1If
two windows exist on the screen, both -3 and -4 select the rear
one. If only one window exists, both -3 and -4 select it. 1If no
window exists, both -3 and -4 select the pseudo-window that is
the entire screen.

The highlighting of titles on the former front window and the new
front window is adjusted automatically.

6.1.15 WISWP - Set Window Parameters

Status 2 words (output)
DescriptorLength word (input)
WindowDescriptor() n bytes (input)

This service sets the maximum and minimum width and height of the

window. These values control how much the user may change the
size of a window. When a window is created (with WICRW) these
values are defaulted to the actual window size. So, call the Set

Window Parameters service if you want to allow the wuser to be
able to modify the window size.

This routine will not set a limit that is more restrictive than
the current size. An attempt to do so will set the appropriate
limit to the current size.

WINDOW SERVICES

The input from the descriptor block is the window ID, minimum and
maximum widths, minimum and maximum heights and the window
attribute, "clear on change" and "invisible." There is no output
from this service.

The application in Appendix A uses a window descriptor block (see
Pages A-16 and A-48).

6.1.16 WISWT - Start Wait Message

Status 2 words (output)
MessageLength word (input)
MessageText () n bytes (input)

This service displays a clock icon and a message in the title

area of the front window. The current title is temporarily
erased. An error occurs if the front window does not have a
title. This service 1is wused to inform the wuser that a
time-consuming operation is 1in progress. The <clock 1icon 1is

automatically added to the front of the message, so you should
not include it in the message text.

You must call the End Wait Message (WIEWT) service to restore the
original title of the window when the time-consuming operation is
completed.

If you permit the user to adjust the window size, plan your wait
message so that it makes sense in the narrowest window that you
allow.

See Section 6.1.18 for a variation on this service.

6.1.17 WITTL - Change Title of Front Window

Status 2 words (output)
TitleLength word (input)
TitleText() n bytes (input)

This service erases the current title of the front window and
displays the specified title in 1its place. Do not call this
service to change the title of a window that is displaying the
wait message; use the End Wait Message service, WIEWT.

The application in Appendix A uses the WITTL service (see Pages
A-16 and A-48).

WINDOW SERVICES

6.1.18 WIXSWT - Start Wait with Message Frame

Status 2 words (output)
FramelD word (input)

This service combines the action of two other services, WIRMS
(Read Message Frame) and WISWT (Start Wait Message). The message
frame specified by FrameID 1is read into the window server’s
buffer, and its first 1line is taken as the wait message. The
wait message is displayed with the clock icon in the title area
of the front window. The message text is not made available to
the application. The clock icon is added automatically to the
front of the message, so you should not include it in the message
frame.

CHAPTER 7

CHAPTER 7
MENU SERVICES

This chapter includes descriptions of all services that are
referred to generally as menu services. This includes:

e Frame file services

e High-level menu services
e Filename services

e Directory name services

e Primitive menu and string editing services

7.1 FRAME FILE SERVICES

Many of the services described in this chapter wuse a FramelD
parameter to refer to a menu in the application’s frame file.
Before the frame file can be referenced, it must be explicitly
opened. The frame file should be closed before the application
exits. When cooperating tasks use different frame files, each
task must close 1its frame file before relinquishing control to
the other task.

FRAME FILE SERVICES

7.1.1 OPENME - Open Frame File

Status 2 words (output)
FrameFileSynchNumber (SFCTVS) word (input)
FilenameLength word (input)
FilenameText () n bytes (input)

Opens the frame file for use by the application.

The FrameFileSynchNumber is the number that the Frame Compiler
Tool equates to the global symbol, SFCTVS. The OPENME service
checks the number against a number stored in the frame file that
it opens. If the numbers match, the application was built with
the global symbols that FCT defined for the actual frame file
that 1is being opened. If the numbers do not match, an error
message is displayed by the OPENME service, although execution is
allowed to proceed. (This is a debugging error and should never
occur in a production application.)

Only one frame file <can be open at any point during the
application’s execution. Notice, however, that there is no error
return if you try to open a second frame file. The OPENME
service assumes that you are trying to open the same file that is
already open and simply ignores the call.

The window server closes the frame file when the application
calls the Suspend service and then automatically reopens the
correct frame file before it reactivates the application and
returns to it from the Suspend call.

There is no restriction against using two or more frame files in
an application, but since each frame file defines the S$FCTVS
symbol, you will get a multiple-symbol definition error during
the task build if two files are used by the same task. You must
alter the MACRO file produced by FCT for the second frame file by
changing the SFCTVS symbol to, say, SFCT2$. Thus, if you wanted
two frame files in the same task, you could open the first file
using the symbol $FCTVS$. Then after closing it, you could open
the second frame file using the SFCT2S symbol.

There doesn’t seem to be any advantage to using two frame files
in one task, unless you want to try to put the majority of your
HELP frames in a second frame file and locate it on a separate
diskette. Then the user who wants HELP would insert the diskette
while running your application. Notice that it is not possible
to read menus from one frame file and have menu services
automatically read HELP frames from the other frame file.
Switching between two frame files must be done by calling CLOSEM
and OPENME services from the application code.

FRAME FILE SERVICES

The default file specification is APPL$DIR:. Therefore, if you
omit the device and directory name from the file specification
for the frame file, it will automatically be opened from the
[ZZAPnnnnn] directory.

The application in Appendix A uses the OPENME service (see Pages
A-15 and A-50).

7.1.2 CLOSEM - Close Frame File
Status 2 words (output)

Closes the frame file.

7.1.3 WIRMS - Read Message Frame

Status 2 words (output)
CountOfLinesReturned word (output)
Offsets() n words (output)
MessageBuffer() n bytes (output)
FrameID word (input)
MaxBufferLength word (input)

Reads a message frame from the frame file and returns it to the
application.

The message text is returned in the MessageBuffer as a single
string of characters (no separators, no CRLFs). The Offsets
array contains byte offsets into the MessageBuffer for each 1line
of the message. (The first offset is always 0.) The Offsets
array must have at least one more entry than the number of lines
expected in the message, since the last offset points to the byte
beyond the last line. The length of each line can be computed by
subtracting the line’s offset from the offset of the next line.

An error is returned if the message frame’s text exceeds the
buffer size declared by MaxBufferLength. Notice that
CountOfLinesReturned is not an input parameter; there is no
bounds check on the Offsets array.

A message frame can also be displayed directly on the screen in a
message window by calling a menu service (see Section 7.2.17).

The application in Appendix A uses the WIRMS service (see Pages
A-8 and A-50).

HIGH-LEVEL MENU SERVICES

7.2 HIGH-LEVEL MENU SERVICES

High-level menu services display menus, solicit input from the
user, and return the user’s input to the application. High-level
menu services are provided as a convenience to the application
developer, and to foster consistency in the user interface.

An application requests a high-level menu service through a call
on the window server. Many of the services offer a static or
dynamic form of call. The static call retrieves the text of the
menu from a frame file wusing a frame ID which is passed as a
parameter. The dynamic call passes all the text directly from
the application.

A high-level menu service creates a window for the menu,
determining the window size automatically. The window’s position
on the screen is controlled by parameters that have been stored
in the frame file or that are passed on the call. The service
then reads the keyboard (through the character-passing buffer),
and responds to the user’s actions. When an appropriate action
has been taken by the user -- that signals the end of the menu
interaction -- the menu service destroys the menu window and
returns appropriate values to the application.

A menu consists of headers and options. Headers are displayed at
the top of the menu. The text of each header is left-justified.
Options are displayed on lines below the 1last header. Options
may be stacked in a single column, spread across a single row, or
arranged in a matrix of rows and columns. The number of options
supplied must be equal to the row count times the column count.
(One or more options may be blank, however. See the SKIP and
NOCHOOSE attributes, described below.)

One of the actions that the user can take is to press the HELP
key. Menu services recognize the HELP key and automatically
retrieve a HELP frame from the frame file using the appropriate
frame ID which either was passed from the application or was
stored in the menu frame in the frame file. The HELP frame 1is
displayed in another window, and the menu service permits the
user to move around a HELP tree if one has been provided in the
frame file. Eventually, the user presses the RESUME key to leave
HELP. The menu service then resumes menu processing. This
processing of the HELP key is totally automatic. When the menu
service eventually returns the user’s response to the menu, it
gives no notification to the application that HELP was used.

Each option on a menu can have an associated HELPframelD. The
HELPframeID contains the frame ID of the HELP frame to be used,
should the user ask for HELP when the cursor bar is positioned on
the option. If the user asks for HELP on an option that has a 0
HELPframeID, the window server displays a window that informs him

7-4

HIGH-LEVEL MENU SERVICES

that no HELP is available. The user must then press RESUME to
continue without HELP. This 1is annoying to most users,
especially in the Synergy environment, where HELP always seems to
be present. On the rare occasion when you do not want to supply
HELP for a user, it may be less annoying to him if you code the
HELPframeID with a -1 value (NOHELP). When the window server is
asked to provide HELP on an option whose HELPframeID is -1, it
simply beeps. The same message is conveyed to the user, but he
need not read a new window, and he need not press a key to
continue.

Each option can have an associated OptionvValue. The OptionValue
is a number that identifies the option. Rather than return the
text of the option that was chosen by the wuser, menu services
return the Optionvalue.

OptionValues must range between 0 and 255. Optionvalues 254 and
255 have a special meaning:

e Optionvalues 254 (NOCHOOSE) are displayed in dim rendition
and cannot be chosen by the user. NOCHOOSE options are
useful on menus which are displayed often, but have options
which are sometimes invalid. The user always sees the menu
in a familiar form -- with the same options -- and moves the
cursor bar the same way. Options in dim rendition signal to
the user that they will simply beep when selected.

e Optionvalues 255 (SKIP) are displayed in bold rendition, and
the cursor bar never stops on them. SKIP options can be used
to provide blank lines or extra text on the menu.

When options are arranged in a matrix and blank options are wused
to group the options into logical subgroups, you should use the
NOCHOOSE attribute rather than the SKIP attribute. A blank line
with the NOCHOOSE attribute lets the cursor move smoothly over
it, whereas the SKIP attribute prevents the cursor bar from
moving sideways onto it.

Single-choice and flow control menus also associate a nextframeID
with each option, in addition to the HELPframeID and the
Optionvalue. The nextframeID points to another frame in the
frame file. When an option is chosen by the user, the associated
nextframeID is not wused by the menu service; it 1is merely
returned to the application as an output parameter. The
application can use it to select the menu to be displayed on the
next call to menu services.

NextframeIDs provide a mechanism for storing the structure of a
menu tree in the frame file. Their use is not required, although
the actual frameID is always present in the frame file or in the
dynamic call, probably set to 0.

7-5

HIGH-LEVEL MENU SERVICES

The rendition of options is controlled by menu services. Options
are wusually displayed in normal rendition. When selections are
being made on multiple-choice menus, the currently selected
options are redisplayed in dim italics.

7.2.1 Menu Renditions

A rendition is a variation in the way a character is displayed on
the screen. For example, a character -- say an "A" -- might be
displayed at one of three different levels of brightness; dim,
normal or bold. Each of these brightness levels is considered a
rendition. Giving the character a slant (italic rendition) or
drawing a line under it (underline rendition) are other examples.

Text in menus is generally in normal rendition, but you can vary
the rendition by inserting special nonprinting character
sequences within the headers and the options in menus and string
editing windows, and in the prompt strings in string editing
windows.

The nonprinting sequence starts with a character with the value

28 decimal. One, two, or three digits follow, and the sequence
ends with either a "+" or a "-". The digits are characters "0O"
through "9". FCT will accept character 28 in the source frame

file, but it will also translate the two-character sequence "\$"
into character 28 in headers and options (see Section 8.2.6).

® The digits form numbers in the range 0 to 999.

e These numbers represent a binary value whose bits stand for
individual attributes.

@ The last character determines whether these values are set or
cleared; "+" sets attributes (i.e., the value is ORed with
the current rendition), "-" clears attributes (i.e., the
value is NOT ANDed with the current rendition).

Bit vValue Attribute

Intensity
Intensity
Italic
Underline
Reverse
Boxed

s Wik o
O S DB

1
3
Intensities are determined by using bits 1 and 0 in combination.
There are three levels of intensity -- dim, normal, and bold.

7-6

HIGH-LEVEL MENU SERVICES

Bits 1 and 0 Intensity
00 Dim
01 Normal
11 Bold

The combination of dim and wunderline is not supported. The
default renditions are:

Headers: Normal
Options: Normal
Prompt string: Normal
SKIP option: Bold
NOCHOOSE option: Dim

To underline the word ABC in a line, you must precede it with the
special character, 28, followed by "8+" and then follow the word
with the special character 28 and "8-". 1In a text line for FCT,
the sequence would be:

Here is the \$8+ABC\$8- word, underlined.

The string "Press \$32+{RESUME}\$32- to leave HELP." will set the
font to be the boxed font at the start of the string "{RESUME}"
and set it back after it (see Section 4.3.6).

The application in Appendix A displays strings in its own window
and does its own interpretation of the embedded control sequences
(see Pages A-11 through A-13).

7.2.2 KEY USAGE

Each high-level menu service predefines a set of function keys.

For all menus except HELP menus, the MAIN SCREEN, EXIT, and F5
keys are returned to the application with success status, with
all other output parameters returned as zeros. User selections
for the set-up menu are ignored. You should always check the
KeyPressed parameter on a success return to see if the wuser has
pressed one of these keys.

The CANCEL key undoes all selections, returns the cursor bar to
the first item on a menu, and waits for further input from the
user.

HIGH-LEVEL MENU SERVICES

The SELECT key 1is recognized on multiple-choice menus. It
changes the rendition of an option, updates the count of selected
options, and waits for further input from the user.

The DO and RETURN keys mean an action is to be performed. On
single-choice, flow control, and multiple-choice menus, the
option the cursor bar is on is selected, the menu is destroyed,
and control returns to the application with successful status and
all output parameters. Set-up menus do not return to the
application when these keys are pressed. These keys are used to
perform the operation for the option and the menu remains
displayed with the cursor bar moved to the next set-up option. A
set-up menu is successfully terminated only when the user presses
EXIT. See Chapter 11 for the conventions used to display set-up
menus.

The HELP key displays the HELP frame associated with the option
the cursor bar 1is on. During the display of HELP frames, the
NEXT SCREEN and PREV SCREEN keys are used to move forward and
backward within the HELP tree. The RESUME key terminates the
display of HELP frames, and returns to the menu.

I1f a HELP frame has options, a cursor bar is displayed on one of
the options, and the DO and RETURN keys are also enabled. TIf the
user presses DO, RETURN, or NEXT SCREEN, the current HELP frame
is destroyed, a new HELP frame is read from the frame file using
the NextFrameID of the current option, and the user’s response to
the new HELP frame is solicited.

7.2.2.1 Termination Key List - You can enhance the definition of
keys by supplying a termination key list. If a key that is in
the termination key list is pressed, the menu service treats it
as a success, destroys the window, and returns all selections.

For example, you may want to treat the ADDTNL OPTIONS key as a
special key on one of your menus. You put the ADDTNL OPTIONS key
on the termination key list. When the menu service detects an
ADDTNL OPTIONS key while displaying that menu, it returns the key
to your application instead of just beeping.

Menu services consults the termination key 1list before it
responds with the usual processing of the key. Thus, if you put
the SELECT or CANCEL keys on the termination key 1list, you are
telling menu services that it should not process that key but
should return it to the application as a "success" response.

HIGH-LEVEL MENU SERVICES

7.2.3 Single-Choice Menus

A single-choice menu allows the user to make one choice

control returns to the application.

7.2.4 EXSING - Static Single-Choice Menu

Status 2 words
KeyPressed word
NextFrameIDChosen word
OptionvValueChosen word
FramelD word

7.2.5 DSINGL - Dynamic Single-Choice Menu

Status 2 words
KeyPressed word
NextFrameIDChosen word
OptionvValueChosen word
TerminationKeyCount word
TerminationKeyList() n words
X word
Y word
HeaderCount word
For each header:
HeaderLength word
HeaderText () n bytes
RowCount word
ColumnCount word
For each option:
OptionHelpFramelID word
OptionNextFramelD word
OptionLength word
OptionText () n bytes
OptionValue word

(output)
(output)
(output)
(output)
(input)

(output)
(output)
(output)
(output)
(input)
(input)
(input)
(input)
(input)

(input)
(input)
(input)
(input)

before

HIGH-LEVEL MENU SERVICES

7.2.6 HELP Menu

The application can call the window server to display a HELP
frame from the frame file. There is no dynamic version of this
call.

See the description of HELP key processing in Section 7.2 and the
discussion of HELP frames in Chapter 11.

7.2.7 EXHELP - Static HELP Menu

Status 2 words (output)
FramelD word (input)

The application in Appendix A uses the EXHELP service (see Pages
A-38 and A-50).

7.2.8 Multiple-Choice Menus

Multiple-choice menus allow the user to make multiple selections
before returning to the application. The menu service inserts a
header just above the options that indicates the maximum number
of selections allowed and the number of selections that have been
made. This header is updated automatically by the menu service
as the wuser moves around the menu, making and cancelling
selections with the SELECT key. The last selection is made and
the menu is terminated when the user presses the DO or RETURN

key.

7.2.9 EXMULT - Static Multiple-Choice Menu

Status 2 word (output)
KeyPressed word (output)
CountOfOptionsChosen word (output)
OptionvaluesChosen() n bytes (output)
FrameID word (input)
7.2.10 DMULTI - Dynamic Multiple-Choice Menu
Status 2 words (output)
KeyPressed word (output)
CoutOfOptionsChosen word (output)
OptionValuesChosen() n bytes (output)

HIGH-LEVEL MENU SERVICES

TerminationKeyCount word (input)
TerminationKeyList() n words (input)
X word (input)
Y word (input)
MaxChoices word (input)
HeaderCount word (input)
For each header:

HeaderLength word (input)

HeaderText () n bytes (input)
RowCount word (input)
ColumnCount word (input)
For each option:

OptionHelpFramelID word (input)

OptionLength word (input)

OptionText () n bytes (input)

Optionvalue word (input)

7.2.11 Flow Control Menus

The flow control menu services display a two-level menu, get a
choice from the user, and return the choice to the application.
A flow control menu provides an easy way to compress two levels
of a menu hierarchy.

A flow control menu is a list of titles across the top of the
screen, with a single-choice, single-column submenu "hanging"
from one of the titles. The call specifies the InitialSubmenu to
be displayed (numbered from 0, left-to-right). As the left and
right ARROW keys are pressed, the original submenu disappears and
a different submenu appears below the title to the left or right.
The function keys F11, F12, F13 and ADDTNL OPTIONS correspond to
the first four submenus.

NOTE

Although more than four submenus are permitted,
you should restrict vyour flow control menu to
four submenus since there is a convention that
maps these four function keys onto these four
submenus.

Once the flow control menu is displayed by a flow control menu
call, these keys are recognized by menu services; and they cause
the corresponding submenu to be displayed, without displaying the
submenus in between. If there are less then four submenus, the
rightmost of these function keys display the rightmost menu.

DO or RETURN signifies selection and

HIGH-LEVEL MENU SERVICES

application.

successful

return to the

A flow control menu must have at least one title; each title must
have a submenu with at least one option.

7.2.12 EXFLOW - Static Flow Control Menu

Status

KeyPressed
NextFrameIDChosen
OptionvValueChosen
FrameID
InitialSubMenu

2 words
word
word
word
word
word

(output)
(output)
(output)
(output)
(input)
(input)

The application in Appendix A uses the EXFLOW service (see Pages
A-37 and A-50).

7.2.13 DFLOW - Dynamic Flow Control Menu

Status
KeyPressed
NextFrameIDChosen
OptionvalueChosen
TerminationKeyCount
TerminationKeyList()
InitialSubMenu
X
Y
TitleCount
For each title:
TitleLength
TitleText()
SubmenuOptionCount
For each submenu option:
OptionHelpFramelD
OptionNextFramelD
OptionLength
OptionText()
OptionValue

7.2.14 Set-Up Menu

2 words
word
word
word
word
n words
word
word
word
word

word
n bytes
word

word
word
word
n bytes
word

(output)
(output)
(output)
(output)
(input)

(input)
(input)
(input)
(input)
(input)

(input)
(input)
(input)

Set-up menus are special-purpose menus that display the current
for a number of diverse characteristics. The user can

settings

7-12

HIGH-LEVEL MENU SERVICES

confirm the current setting by not changing it, or can change the
setting to a new value. Control returns to the application when
the user presses the EXIT key or any other key in the termination
key list. There is no validation of new values by menu services.

Each option has a c¢lass associated with it. There are six
classes, numbered as follows:

1. A Binary class option has two text strings associated with
it, supplied by the application. The user toggles between
them, by pressing the DO key.

2. A Menu class option has a single-choice menu associated with
it that supplies the text string appropriate to the
characteristic. The user chooses a value for the
characteristic by pressing the DO key to see the menu, then
making a selection on the menu.

3. An Alphastring class option has a text string as a value.
The user changes it by editing the text string.

4. A Numericstring class option has a number string as a value.
The user changes it by editing the number string. Numbers
are unsigned integers that range between 0 and 65535.

5. An Alphastring/NOECHO class option has a text string as a
value. The user changes it by editing the text string. The
string is not echoed to the screen, except as a checkerboard
character in each character position. This option class is
used to permit users to enter text strings, such as
passwords, without echoing the text on the screen.

6. A Numericstring/NOECHO class option has a number string as a
value. The user changes it by editing the number string.
Numbers are unsigned integers that range between 0 and 65535.
The digits are not echoed to the screen, except as a
checkerboard character in each character position. This
option class is used to permit users to enter numbers without
echoing them on the screen.

7.2.15 WIXPS - Static Set-Up Menu

Status 2 words (output)
KeyPressed word (output)
CountOfOptionsChanged word (output)
OptionvaluesChanged() n bytes (output)
FramelD word (input)
RowCount word (input)

7-13

HIGH-LEVEL MENU SERVICES

For each option:
OptionClass word (input)
If Binary (1):
CurrentFlag (0=first,

l=second) word (input & output)

If Menu (2):

Currentvalue word (input & output)
If Alphastring (3) or Alphastring/NOECHO (5):

MaxStringLength word (input)

CurrentStringLength word (input & output)

CurrentStringText() n bytes (input & output)
If Numericstring (4) or Numericstring/NOECHO (6):

CurrentNumber word (input & output)

The set-up menu in the frame file supplies the position, headers,
termination key 1list, and options. The input parameters supply
the initial setting of each option. You supply the initial
setting for each option in the order that the options appear in
the frame file. The window server checks that the OptionClass
parameter matches the class that FCT provided when it compiled

the frame.

The set-up menu in the frame file may have options with the SKIP
attribute. These have an option class that tells menu services
to ignore them. Do not include parameters for these options.

See the description of output parameters under Section 7.2.16.

The application in Appendix A uses the WIXPS service (see Pages
A-21 and A-50).

7.2.16 WIPS - Dynamic Set-Up Menu

Status 2 words (output)
KeyPressed word (output)
CountOfOptionsChanged word (output)
OptionvaluesChanged() n bytes (output)
TerminationKeyCount word (input)
TerminationKeyList () n words (input)
X word (input)
Y word (input)
HeaderCount word (input)
For each header line:

HeaderLength word (input)

HeaderText () n bytes (input)
OptionCount word (input)
For each option:

OptionHelpFramelID word (input)

OptionLength word (input)

HIGH-LEVEL MENU SERVICES

OptionText() n bytes (input)
OptionValue word (input)
OptionClass word (input)

If SKIP (0): nothing else
If Binary (1):

CurrentFlag
(0=first, l=second) word (input & output)
FirstTextLength word (input)
FirstText() n bytes (input)
SecondTextLength word (input)
SecondText () n bytes (input)
If Menu (2):
NextFramelD word (input)
CurrentvValue word (input & output)
If Alphastring (3) or Alphastring/NOECHO (5):
MaxStringLength word (input)
CurrentStringLength word (input & output)
CurrentStringText () n bytes (input & output)
If Numericstring (4) or Numericstring/NOECHO (6):
CurrentNumber word (input & output)

The output parameters from WIXPS and WIPS services are as
follows:

CountOfOptionsChanged - This is 0 if the user has not changed
any of the set-up options. If the user changes one or more
set-up options, the count is returned in this field.

OptionvValuesChanged - Notice that this is a byte array.

These bytes have unspecified values if CountOfOptionsChanged
is 0. Otherwise, the first n bytes in this string supply the
OptionvValue of the n options that have been changed. An
OptionValue is a number less than 254, so it fits in a byte.
Be sure there are as many bytes in this string as there are
options on the set-up menu. The OptionvValues of the changed
options are not returned in any order.

CurrentFlag - For each Binary class option, you supply the
initial setting of the option in this field on input, and you
receive the final setting of the option in this field on
output.

CurrentValue - For each Menu class option, you supply the
OptionvValue of the option on the pop-up menu that should be
used as the initial setting. The Optionvalue of the final
option chosen from the pop-up menu is returned in this
parameter.

7-15

HIGH-LEVEL MENU SERVICES

@ CurrentStringLength and CurrentStringText - For each
Alphastring and Alphastring/NOECHO class option, you supply
the initial string’s length and text in these fields on
input, and you receive the final string’s length and text in
these fields on output.

® CurrentNumber - For each Numericstring and
Numericstring/NOECHO class, you supply the initial number in
this field on input, and you receive the final number in this
field on output.

There is some redundancy in the output parameters. You <can, if
you want, simply ignore the CountOfOptionsChanged and the
OptionValuesChanged. 1In this case, you would look at each of the
set-up options to see what values were returned.

You can use CountOfOptionsChanged to bypass this scan of all the
set-up options. If the CountOfOptionsChanged shows that no
options were changed, you need not check the other outputs. If
the CountOfOptionsChanged shows that some options were changed,
the first byte in OptionValuesChanged identifies the OptionValue
of the first option that was changed, the second byte identifies
the Optionvalue of the second option that was changed, etc.

7.2.17 Messages

Message menus are menus without any options. They consist only
of headers. The menu service displays the headers and waits
until the user presses a termination key. The EXIT, MAIN SCREEN,
and F5 keys are always recognized as terminators by the service.
You should supply other keys as termination keys. Be sure to
check the KeyPressed parameter on return from the service, to see
what action to take (see Section 11.2.3).

Message frames are also used to store text strings in the frame
file. You can read the text of the message frame into memory
without putting it on the screen by calling the WIRMS service
(see Section 7.1.3).

7.2.18 EXMESS - Static Message Frame

Status 2 words (output)
KeyPressed word (output)
FramelD word (input)

HIGH-LEVEL MENU SERVICES

The application in Appendix A uses the EXMESS service (see Pages
A-37 and A-50).

7.2.19 DMESSA - Dynamic Message Frame

Status 2 words (output)
KeyPressed word (output)
TerminationKeyCount word (input)
TerminationKeyList() n words (input)
X word (input)
Y word (input)
HelpFramelID word (input)
HeaderCount word (input)
For each header:

HeaderLength word (input)

HeaderText () n bytes (input)

7.3 STRING EDITING

The string editing menu services provide all the functionality of
the string editing primitives in a single call. They create a
string editing window, read and echo the user’s keystrokes, and
then destroy the window. The string editing services require a
frame ID to supply the header and prompt. There are no dynamic
versions of these calls. To vary the interactive behavior, you
must use the primitives.

Notice that there is a string editing primitive, Edit String
Field (WIEF), that allows you to create a string editing field in
your application window, without creating a special window (see
Section 7.6.4).

When reading keystrokes into a string field, control characters
are accepted and echo in the dim font. Also, the ENTER key on
the numeric keypad inserts a control-M (carriage return)
character into the string.

7.3.1 WIXSTR - Alphanumeric String Editing

Status 2 words (output)
KeyPressed word (output)
ReturnStringLength word (output)
ReturnString() n bytes (output)
FramelD word (input)
InitialStringLength word (input)

7-17

STRING EDITING

InitialString() n bytes (input)

The frame-type of the frame specified in the call must be
"Alphastring."

The frame file supplies two options. The text of the first
option is taken as the prompt; the text of the second option as
the initial value of the string to be edited.

If 1InitialStringLength is 0, 1InitialString is ignored. If
InitialStringLength 1is nonzero, the InitialString overrides the
default string stored in the frame file.

The frame file’s default string (second option) gives the maximum
length of the field, however. Be sure to allocate this many
bytes for the ReturnString parameter.

The two options in the frame file are displayed on a single 1line

in the window, so their combined length cannot exceed the
allowable window width of 78 characters.

7.3.2 WIXNUM - Numeric String Editing

Status 2 words (output)
KeyPressed word (output)
ReturnNumber word (output)
FrameID word (input)
InitialNumber word (input)

The frame-type of the frame specified 1in the call must be
"NumericString."

The frame file supplies two options. The text of the first 1is
taken as the prompt, the second 1is ignored. You supply the
starting number in the InitialNumber parameter. A five-byte
field in the window is provided for the number.

The user can edit or enter an integer value from 0 to 65535. The
number 1is converted to binary and returned in ReturnNumber. The
user cannot enter a plus or minus sign, or a decimal point. You
must call the Alphanumeric String Editing service (WIXSTR) and do
your own parsing of the input if you want to allow signed numbers
or decimal points.

7.4 FILENAME SERVICES

These services are used to retrieve the names of files. A full

7-18

FILENAME SERVICES

file specification is returned to the application. The full file
specification has the usual format:

NODE: :DEVICE: [DIRECTORY |FILENAME.TYP;VERSION

In a DECnet or cluster environment the file specification can be
up to 70 characters long. You should plan ahead for these
environments and reserve 70 bytes in your parameters so that
these longer file specifications can be returned.

7.4.1 Old File

This service displays a list of existing files 1in one or more
directories and allows the user to make selections.

Your application supplies a wildcard specification as the last
header. The service prepares a menu window using all the headers
and a matrix of options that is always six rows by three columns.

The initial display of options contains all filenames that match
the wildcard specification. If more than 18 filenames match the
wildcard specification, the service displays a down arrow on the
menu to 1indicate that the user can scroll the menu window down
onto additional matching filenames. As soon as scrolling 1is
started, an up arrow is displayed to show the user that he can
scroll back up over the filenames. Up to 256 filenames may be
presented at a time.

If the user’s directory contains more than 256 files, or if the
user wants to 1look at multiple directories and the combined
number of filenames exceeds 256, then the user must extract some
subset of files by using a new wildcard specification. The user
modifies the wildcard specification by pressing the FIND key and
entering a new specification. The current and new specifications

are then merged and redisplayed in the last header. The matrix
of options 1is wupdated with files matching the new wildcard
specification. The service permits the wuser to enter a node

name, in case the system is tied into DECnet.

If the wuser presses FIND, then supplies a new wildcard
specification, then presses SELECT instead of DO, all filenames
that match the new specification (up to the maximum allowed) are
selected automatically and redisplayed in dim italic.

If the user presses ADDTNL OPTIONS, the window server displays a
second menu showing a matrix of options that contains volume and

user directory names. (System directories are not displayed.)
The matrix is four rows by three columns, and it also scrolls.
If the user chooses a new directory name, the new volume and

7-19

FILENAME SERVICES

directory name replace the volume/directory names in the wildcard
specification, and the 0ld File menu 1is wupdated with a new
wildcard specification and a new matrix of filenames.

The matrix of filenames shows the filename, type and version
number for each file. Only the highest version number is shown
for each file, unless the wildcard specification has an asterisk
in the version number field.

If the wildcard specification has an asterisk in the directory
name field, then all directories on the volume are shown, and the
filenames are grouped by directory name.

Applications that use a particular file type should probably
supply that file type in the wildcard specification, which will
serve to reduce the number of files that the user has to view.
(See Section 11.5.)

The service interprets the SELECT, DO, and CANCEL keys in the
same manner as they are interpreted on the multiple-choice menu.

On return from OLDFLE or WIXOLD, the first filename is returned
to the application with a count of the number of filenames
(options) selected. To retrieve the remaining filenames, WICOLD
must be called, before calling any other services.

Wildcard Specification Headers

Synergy PROSE PLUS Version 1.0
DOCUMENT file name selection. Choose the document to edit.

Press [INSERT HERE] to create a new document.
— BIGVOLUME : [USERFILES]*.DOC
CH.CPRINT.M;é DICKB.DOC; 1 EXAMPLE.DOC: 1
F00.DOC;3 FDOPRINT.DOC; 2 GUIDE.DOC:5
NEWFILE.DOC;1 NEWPRINT.DOC; 2 NOVi3REP.DOC: 4
REPORT.DOC; 1

Figure 7-1: Old File Menu

FILENAME SERVICES

7.4.2 WIXOLD - Static Old File

Status 2 words (output)
KeyPressed word (output)
CountOfNamesChosen word (output)
FilenameLength word (output)
FilenameText () n bytes (output)
FrameID word (input)
MaxChoices word (input)
FrameID must select a message frame. The message frame supplies
the positioning information for the window, the termination key
list, the HELPframeID, and the headers including the wildcard
specification. The wildcard specification is supplied by the
last header in the message frame. (See Section 8.4.5 for a
description of message frames.)
7.4.3 OLDFLE - Dynamic Old File
Status 2 words (output)
KeyPressed word (output)
CountOfNamesChosen word (output)
FilenameLength word (output)
FilenameText () n bytes (output)
TerminationKeyCount word (input)
TerminationKeyList () n words (input)
MaxChoices word (input)
X word (input)
Y word (input)
HelpFramelID word (input)
HeaderCount word (input)
For each header:
HeaderLength word (input)
HeaderText () n bytes (input)
The last line of header text supplies the initial wildcard
specification.
7.4.4 WICOLD - Get Selected Filename
Status 2 words (output)
FilenameLength word (output)
FilenameText () n bytes (output)

FILENAME SERVICES

You use WICOLD when more than one filename was selected by a call
to OLDFLE or WIXOLD. Each time WICOLD 1is called, one more
filename is returned to the application. An error 1is returned
after all filenames have been retrieved. Be sure to retrieve all
the filenames before calling any other services.

7.4.5 New File

These services display a string editing window and accept file
specifications as input.

The application supplies an initial file specification in
InitialString which is merged with system defaults and displayed
as the default file specification. The user can edit any portion
of the default file specification. The final string is returned
to the application in FilenameText.

The user can press the ADDTNL OPTIONS key to display a second
menu showing a matrix of options containing volume and directory
names. The matrix is four rows by three columns, and it scrolls.
If the user chooses a new directory name, the new volume and
directory name replace the volume/directory names in the file
specification, but editing continues.

The last header line is used as a prompt. If a prompt is not
desired, the 1last header should have length zero. The maximum
string size 1is 78 Dbytes. The prompt and default file
spe:-ifications are displayed on a single line in the window, so
their combined length cannot exceed the allowable window width of
78 characters. See Section 11.5 for conventions to be followed

when using these Filename services.

Header

- Enter the new document name and press [00].
— BIGVOLUME : CUSERFILES].DOC

Initial File Specification

Figure 7-2: New File Menu

FILENAME SERVICES

7.4.6 WIXNEW - Static New File

Status 2 words (output)
KeyPressed word (output)
FilenameLength word (output)
FilenameText () n bytes (output)
FrameID word (input)
InitialStringLength word (input)
InitialString() n bytes (input)

FrameID must select a message frame. The message frame supplies
the positioning information for the window, the termination key
list, the HELPframeID, the headers, and the prompt as the last
header (See Section 8.4.5 for a description of message frames.)

7.4.7 NEWFLE - Dynamic New File

Status 2 words (output)
KeyPressed word (output)
FilenameLength word (output)
FilenameText () n bytes (output)
TerminationKeyCount word (input)
TerminationKeyList() n words (input)
InitialStringLength word (input)
InitialString() n bytes (input)
X word (input)
Y word (input)
HelpFrameID word (input)
HeaderCount word (input)
For each header:

HeaderLength word (input)

HeaderText () n bytes (input)

7.4.8 Any File

An application can combine the actions of the static services
WIXOLD and WIXNEW by calling the Static Any File service, WIXANY.
Two message frames must be supplied, one for the 0ld File part
and one for the ©New File part of WIXANY. The window server
starts by displaying the 0ld File menu, but reacts to the INSERT

HERE key. If the wuser presses INSERT HERE, the window server
destroys the 0ld File menu and automatically displays the New
File menu. (Be sure to avoid putting the INSERT HERE key on

either menu’s termination list!)

7-23

FILENAME SERVICES

7.4.9 WIXANY - Static Any File

Status 2 words (output)
KeyPressed word (output)
CountOfNamesChosen word (output)
FilenameLength word (output)
FilenameText () n bytes (output)
O0ldfileFramelD word (input)
MaxChoices word (input)
NewfileFramelID word (input)
InitialFilenameLength word (input)
InitialFilenameText() n bytes (input)

OldfileFrameID and NewfileFrameID must select message frames.
The message frames supply the positioning information for the
windows, the termination key lists, the HELPframeIDs, and the
headers -- including the wildcard specifications in the 014 File
menu and the prompt in the New File menu. (See Section 8.4.5 for
a description of message frames.)

Your application determines whether the 0ld File menu or the New
File menu supplied the filename by examining both the Status and
the CountOfNamesChosen parameters after return from the service:

e If Status shows success and CountOfNamesChosen is nonzero,
the 01d File menu was used to select one or more filenames.
The first filename is in FilenameText. Use WICOLD to
retrieve the additional filenames.

e If Status shows success, CountOfNamesChosen is zero, and
KeyPressed is the DO key, then the New File menu was used to
supply a name, which is in FilenameText.

e If Status shows success, CountOfNamesChosen is zero, and
Keypressed is other than the DO key, the user terminated the
menu without supplying any filename. Check for MAIN SCREEN,
EXIT, F5 or a key on one of your termination lists.

7.5 DIRECTORY NAME SERVICES

These services are used to show a list of directories to the user
and to permit the user to choose a directory name from the list.
Only directories that are on the local network node are shown.

You pass the frame ID of a message frame. The message frame
supplies positioning information for the window, the HELPframelD,
and headers.

DIRECTORY NAME SERVICES

7.5.1 WIXCHD - Get Directory Name

Status 2 words (output)
KeyPressed word (output)
DirectoryNameLength word (output)
DirectoryNameText () n bytes (output)
FramelID word (input)

The wuser’s choice of directory name is returned in the
DirectoryNameLength and DirectoryNameText parameters. Be sure to
examine the KeyPressed parameter to determine if any selection
was made. Interpret the EXIT key to mean "no selection," rather
than "exit from application."

7.5.2 WIXSHD - Show Directory Names

Status 2 words (output)
KeyPressed word (output)
FramelD word (input)

The user can press RESUME or EXIT to terminate the display of the
directory names.

7.6 PRIMITIVE MENU AND EDITING SERVICES

The primitive services that are described in this section are
used by the Synergy high-level menu services to manipulate the
screen and keyboard. These primitive services are available for
application wuse in situations where the high-level services do
not provide the desired effect.

These primitive services provide a fine degree of control over
the appearance of menus and the interactions between the user and
the system. However, for most situations the high-level services
may be more than adequate. You should gain a good understanding
of the capabilities of the high-level menu services before
deciding that you must use these primitive services.

The primitive services are generally used in a sequence:
1. Create the window by calling a Create service.
2. Execute a loop, reading keys by calling a Get Key service and

examining the output of the call until a satisfactory
termination key is pressed.

PRIMITIVE MENU AND EDITING SERVICES

3. Destroy the window by calling a Destroy service.

Notice that the high-level menu services automatically do certain
user-friendly operations that are not performed by the primitive

services, although you can program them yourself,. Specifically,
the high-level services 1look at the type-ahead buffer before
creating the window. If the type-ahead buffer supplies an

acceptable response, the display of the window is completely
bypassed. Also, the high-level menu services match the user’s
typed responses against the menu options as a method of
positioning the cursor bar, as well as responding to the ARROW

keys.
There are two categories of primitive services:
e String editing (soliciting typed input from the user)

@ Menus (soliciting menu choices from the user)

7.6.1 String Editing Primitives

String editing primitives solicit typed input from the wuser and
return it as a string to the application. You can create and use
a special window to do the editing, or you can request that the
editing be done in the application window.

When reading keystrokes into a string field, control <characters
are accepted and echo in the dim font. Also, the ENTER key on
the numeric keypad inserts a control-M (carriage return)
character into the string.

7.6.2 WICRS - Create String Editing Window

Status 2 words (output)
X word (input)
Y word (input)
HeaderCount word (input)
For each header:

HeaderLength word (input)

HeaderText () n bytes (input)
PromptLength word (input)
PromptText() n bytes (input)
DefaultLength word (input)
DefaultText () n bytes (input)
CursorPosition word (input)
InputType word (input)

7-26

PRIMITIVE MENU AND EDITING SERVICES

MaxLength word (input)

This service creates a string editing window. String editing
windows are stackable.

The X and Y coordinates position the upper left-hand corner of
the windowframe. From 0 to 20 headers may be supplied, and are
displayed at the top of the window, left-justified. HeaderLength
must not exceed 78. The prompt text is displayed to the left and
on the same 1line as the default text. PromptLength and/or
DefaultLength may be 0. DefaultLength must not exceed MaxLength.
The sum of PromptLength and MaxLength must not exceed 78.
CursorPosition specifies the initial setting of the editing
cursor in the type-in area. It is customary to place it at the
right end of the default text; just set CursorPosition equal to
DefaultLength. If there is no default text, a setting of 0 or 1
positions the cursor on the leftmost character.

InputType specifies either Alpha (0) or Numeric (1). Numeric
string editing windows permit only the numeric keystrokes and are
thus limited to positive integers. If you want to permit the
user to type signed or fractional numbers, you must use the Alpha
setting and do your own check of the keystrokes for correctness.

Header

—> Please enter the daily commuting mileage:
Round trip mileage: 0

N e

I

Prompt Initial Value

Figure 7-3: String Editing Window

Remember that text displayed in a string editing window may
appear in different renditions. (See Sections 7.2.1 and 8.2.7.)

Notice that this service is limited to creation of the string
editing window and display of its initial contents. The actual
editing does not begin until you call the Get Key from String
Editing Window service (WIGKS).

PRIMITIVE MENU AND EDITING SERVICES

7.6.3 WIDES - Destroy String Editing Window

Status 2 words (output)
This service is used to destroy the string editing window. A
string editing window 1is a stackable window and must be

explicitly destroyed before a nonstackable window is created or
the Suspend service is called.

7.6.4 WIEF - Edit String Field

Status 2 words (output)
KeyPressed word (output)
CursorPosition word (input and output)
InputType word (input)

MaxLength word (input)
StringLength word (input and output)
StringText () n bytes (input and output)

This service provides the string editing features of a string
editing window, without creating a special window. The service
is used to provide string editing directly in the application’s
front window. You must position the GIDIS cursor at the point in
the front window where you want the user’s keystrokes to be
echoed. You then call the WIEF service, and on return you
retrieve the data from the StringText parameter. The WIEF
service provides string editing in insert mode with use o0f the
left and right ARROW keys and the delete key.

Since there are no X and Y parameters, this primitive relies on
the current GIDIS cursor position as the leftmost character
position of the editing area. MaxLength specifies how long the
editing area 1is; 78 is the maximum value, assuming you have put
the GIDIS cursor on the left edge of a screen-wide window. You
must be sure that the StringText parameter has the same number of
bytes as the MaxLength value. You can supply default text for
the string by passing the default text in the StringText
parameter and setting the StringLength parameter to the length of
your default text. Set StringLength to 0 if you have no default
text. The WIEF service displays the default text, left-justified

and space filled, in the type-in area. It then places an editing
(blinking) cursor on the character position specified by
CursorPosition (use 0 or 1 for the leftmost character), and

begins to read the keyboard through the character-passing buffer.
InputType specifies the type of keystroke that is accepted, as in
the WICRS service (see Section 7.6.2).

PRIMITIVE MENU AND EDITING SERVICES

When the user presses a function key other than a left or right
ARROW key, or the delete key, the editing is terminated and WIEF

returns to the application. You get back in the StringText
parameter all characters as they appear on the screen, that is,
as the wuser sees them. StringLength counts the rightmost

character that the user sees, even though the user may have moved
the cursor (with left arrow) back to the beginning of the string
at the time of termination. StringLength includes any spaces
that the user explicitly entered on the end of the string, but
does not include spaces that were supplied by WIEF during the
expansion of the default text. The final position of the editing
cursor 1is returned 1in CursorPosition. The terminating key is
returned in KeyPressed.

7.6.5 WIGKS - Get Key from String Editing Window

Status 2 words (output)
InitialCursorPosition word (input)
KeyPressed word (output)
FinalCursorPosition word (output)
StringLength word (input and output)
StringText () n bytes (input and output)

This service begins editing the field in the string editing
window created by WICRS. Keystrokes are echoed in insert mode in
the editing area, and the cursor is moved appropriately. Left
and right ARROW keys are recognized, and the delete key deletes
the character to the left of the cursor. Control returns to the
application when any other key is pressed.

Although the WICRS call can supply a default string and a
starting position for the cursor, the WIGKS call can also supply
these wvalues. This allows the WIGKS service to be used
repeatedly in the same string editing window. For example, the
application may determine that the string supplied by the user in
the first WIGKS call is in error. The application may offer the
user an error message in a new window. When the wuser presses
RESUME and the error window is removed, the application may call
the WIGKS service again with a corrected version of the string as
the new default value, and allow the user to continue to edit the
string.

The application supplies an initial string using the StringLength
and StringText parameters, and locates the cursor within the
editing area using the InitialCursorPosition parameter (0 or 1
for the leftmost character). The cursor position must be between
zero and MaxLength (set on the WICRS call). WIGKS returns the
KeyPressed, the FinalCursorPosition, and the resultant
StringLength and StringText. Notice that the initial string and

7-29

PRIMITIVE MENU AND EDITING SERVICES

the resultant string share the same application buffer.

An error occurs if the active window is not a string editing
window.

7.6.6 WIHDR - Change header

This service changes the text of a header 1line in a string
editing window. It is described in Section 7.6.12, since it also
can be applied to a menu.

7.6.7 Menu Primitives

Menu primitives create and manipulate the contents of menus, and
in so doing solicit menu choices from the user. The Synergy
window server does most of the work of formatting the menu from
the text that you supply and then moving the blinking cursor bar
in response to the user’s keystrokes. The user generally makes a
menu choice by pressing the DO or RETURN key when the cursor bar
is on the desired option.

The actual text of a menu option is never returned; rather an
Optionvalue associated with the option is returned. OptionValues
are integers in the range 0 to 255. OptionvValues 254 and 255 are
used for options that appear on the menu but are not selectable
by the user. Options that have Optionvalue 254 are called
NOCHOOSE options and are automatically displayed in dim
rendition. The cursor bar can be moved onto these options; but
if the user attempts to select them the window manager beeps the
keyboard. Options that have Optionvalue 255 are displayed in
bold font and are <called SKIP options because the cursor bar
skips over them. Options with OptionvValue 254 or 255 may have
blank text.

Option parameters are listed column by column.

7.6.8 WICRM - Create Menu Window

Status 2 words (output)
X word (input)
Y word (input)
HeaderCount word (input)
For each header:
HeaderLength word (input)
HeaderText () n bytes (input)

7-30

PRIMITIVE MENU AND EDITING SERVICES

RowCount word (input)
ColumnCount word (input)
For each option:
OptionLength word (input)
OptionText () n bytes (input)
Rendition word (input)
Optionvalue word (input)

This service creates a menu as a stackable window. The X and Y
coordinates position the wupper left corner of the windowframe.
The lines of header text are displayed at the top of the window,
and the options are displayed below them. The width of the
window is determined by the 1longest header 1line, or by the
longest 1line containing options. The height of the window is
determined by the number of headers and the number of rows of
options. There are 20 text lines available and each line can be
up to 78 bytes long. When more than one option is placed on a
line, each option requires enough bytes to contain the longest
option plus 2. Thus, each column has the same width. If two
columns of options are intended, no OptionLength can exceed 37
bytes.

The product of the RowCount and ColumnCount parameters determines
the total number of options that must be present. Options may be
arranged in as many rows and columns as desired, subject to the
maximum of 20 text lines and 78 bytes per line. A menu with no
options is allowed (and is used to implement the high-level HELP
service).

Each option is a text string with an integer OptionValue that
will be returned when the option is selected. 1If there is more
than one column of options, the parameters supply all options for
the first column, then all options for the second column, etc.

PRIMITIVE MENU AND EDITING SERVICES

Headers

‘ > An illustration of a simple
two-column, single—choice meru.

~@—— Cursor Position

Choice 1 | Choice 4
e Choice 2 Choice 5

Choice 3

Options

Figure 7-4: Single-Choice Menu

Notice that this service only creates the menu window and
displays the text in 1it. The actual solicitation of the menu

choice must be done by calling the Get Key from a Menu service

7-32

PRIMITIVE MENU AND EDITING SERVICES

(WIGKM) .

The cursor bar is initially positioned on the first menu option
(row 0, column 0), even if this option has an Optionvalue of 255
(SKIP). 1If necessary, you should call the WIPPS service to
position the cursor bar onto a non-SKIP option. The cursor bar
is automatically turned on.

7.6.9 WIDEM - Destroy Menu Window
Status 2 words (output)
This service destroys the menu window. It must be called after

WICRM and before a nonstackable window is created or the Suspend
service is called.

7.6.10 WIENM - Change Option in a Menu

Status ' 2 words (output)
OptionRow word (input)
OptionColumn word (input)
OptionLength word (input)
OptionText() n bytes (input)
Rendition word (input)
Optionvalue word (input)

This service changes the OptionText and/or OptionvValue for a menu
option. The o0ld text and value are discarded and replaced with
the new ones.

OptionRow and OptionColumn are counted from zero.

An error occurs if the menu i1s not the front window.

7.6.11 WIGKM - Get Key from a Menu

Status 2 words (output)
OptionvalueChosen word (output)
RowChosen word (output)
ColumnChosen word (output)
KeyPressed word (output)

7-33

CHAPTER 8
THE FRAME COMPILER, FCT

8.1 INTRODUCTION TO FCT

FCT is a program that converts a source frame file into an object
frame file.

A source frame file is an ASCII text file, created with EDT or a
similar editor, that contains menu frames, HELP frames, and
messages that have been described with the FCT language.

An object frame file is an RMS sequential file that contains menu
frames, HELP frames, and messages in a format that is optimized
for use by the window server.

FCT compiles the source frame file, producing the object frame
file, optionally a 1listing file, and some symbol definition
files.

FCT diagnoses various errors in the source file with a message to

the terminal. The message shows the offending line from the
source file, the line number of the offending line, and an error
message stating the nature of the error. FCT continues to

compile by recovering either on the next token of the source
line, or on the next line of the source file.

FCT produces a listing file that shows all lines of the source
file (numbered) and a cross reference listing that shows all
frame names and the references to them from within the frame
file. Diagnostic messages are also embedded in the listing file.

FCT produces a MACRO source file that defines each frame name
from the source frame file as a global symbol, equated to a frame
identifier (16-bit integer). This MACRO file must be assembled
and 1linked with the application code that expects to refer to
these frames in calls on menu services. The task builder (PAB)
resolves references to the global symbols, replacing them with
the frame identifiers.

INTRODUCTION TO FCT

For PASCAL programmers, FCT produces a PASCAL source file that
defines the frame names as named constants. This file may be
included in any PASCAL source that expects to refer to the
frames.

FCT recognizes references to frame names from within the source
frame file 1itself, and resolves these references automatically.
Unresolved references are diagnosed as missing frames.

8.2 FCT LANGUAGE

The purpose of the language is to define frames, that is, Dblocks
of text and the attributes that are needed to use them as menus,
HELP, and messages in Synergy applications.

Most of what appears in a source frame file is the text of the
frame. The language is designed to make that text easy to edit
and easy to visualize in a window.

The first character of each 1line designates what that line
contains. Since all commands begin with a period (.), lines that
begin with a period are called command lines. Lines that do not
begin with a period are either blank lines or text lines. .A line
that begins with two adjacent periods is treated as a text 1line;
one of the periods is removed by FCT.

Command lines contain tokens such as keywords, integers,
punctuation characters, or quoted strings. The tokens may be
separated by any combination of spaces, commas, and horizontal
tabs. Any command line may end with a comment; the comment is
introduced by an exclamation mark. FCT ignores all text to the
right of the exclamation mark.

Command lines are short. There is no need to continue a command
on a second line.

All keywords must be spelled out in full, or abbreviated to the
first three characters. No other abbreviations are allowed.
Keywords and their abbreviations are not reserved words, hence
they can be used as frame names. Keywords are case-insensitive.

A command line may have no command, which is useful for inserting
long comments.

FCT LANGUAGE

o b dedededek
.1 %kdk NOTE TO INTERNATIONALIZERS *k%x
.! The text lines of this frame must not exceed
! 30 characters. Here is a handy ruler.
]
i

1 2 3
. 134567890123456789012345678390

Example 8-1: Comments in a Frame File

Integers may be signed plus or minus. The default is plus, if no
sign character is supplied. An integer may be followed by a "b"
(or "B"), which indicates that the integer value must be stored
in a single byte in the object frame file. The byte-sized
integer is needed only within binary message frames (see Section
8.4.6).

Quoted strings use double-quote characters as delimiters. You
can embed a double-quote character in the string by using two
adjacent double-quote characters. Thus "A""B" forms the string
A"B. Quoted strings must not contain control characters such as
TAB.

In the following line formats, the brackets ([and]) indicate
optional portions of the line. The <xyz> format indicates the
metasymbol xyz, which must be replaced according to the
explanatory text that follows the format. The ellipsis, ...,
indicates repetition of the preceding construct. There are eight
line types:

.TABLE

.FRAME command line
.HOME command line
.OPTIONS command line
.KEYS command line
Text line

Binary message line
Blank line

Formats for the eight line types are described below, then the
rules for constructing frames are given in Section 8.4.

FCT LANGUAGE

8.2.1 .TABLE
.TABLE

This line must be the FIRST non-blank and non-comment line in the
source frame file (i.e. Dbefore any .FRAME lines).

The .TABLE line starts the definition of a vector table that
creates an index of the frames in the frame file. This vectored
index is used by Synergy at run-time to locate frames in the
object frame file, given a Frame ID.

8.2.2 .FRAME Command Line
.FRAME <FrameName> <FrameType>

This line terminates any previous frame and introduces a new
frame.

A FrameName is required and must be from one to six characters
long, consisting of RADS50 characters (A to Z, 0 to 9, dollar sign
and period). The leading character must not be numeric. The
FrameName becomes a global symbol for the newly introduced frame.
It is the name by which the frame may be referenced from within
other frames, and from the application code. Keywords and their
abbreviations are acceptable as FrameNames. The FrameType 1is
required and must be one of the following:

FLOW

SINGLE

MULTI [<MaxChoices>]
HELP

MESSAGE [BINARY |
ALPHASTRING
NUMERICSTRING

SETUP

For the frame type MULTI, MaxChoices can be supplied. This is an
integer that indicates the maximum number of choices that the
application is prepared to receive on a multiple-choice menu. If
MaxChoices is omitted, it defaults to the number of options that
are supplied in the frame. TIf MaxChoices is supplied, it must
not be greater than the number of options supplied.

For the frame type MESSAGE, the attribute BINARY can be supplied.
This frame type, known as a binary message frame, is distinct
from the standard MESSAGE frame type (see Section 8.4.6).

FCT LANGUAGE

Notice that the frame type SETUP is not spelled with a hyphen.
The word PROPERTY can be used in place of the word SETUP.

8.2.3 .HOME Command Line
.HOME [<HorizontalSpec>] [<VerticalSpec>]

This line provides screen positioning information for the frame.
The frame may be positioned along the vertical axis and along the
horizontal axis, independently. Furthermore, either positioning
is either relative to the screen or relative to the application’s
current window (the front window). The positioning information
is approximate; that 1is, the window server may adjust any
coordinates so that the frame can be properly displayed.

Although the format shows the HorizontalSpec first, the order of

the two specs does not matter. There are two formats for the
horizontal spec:

[LEFT]

[SCREEN] [CENTER]

COLUMN : [WINDOW] : [RIGHT]
[<Integer>]

COLUMN : OFF

For either the SCREEN or the WINDOW, LEFT specifies that the
frame should be located farthest left; CENTER specifies that the
frame should be centered horizontally; RIGHT specifies that the
frame should be located farthest right. An integer value may be
supplied as an approximation of the horizontal coordinate of the
left edge of the windowframe. If the SCREEN keyword has been
used, the integer relates to the coordinates of the screen. If
the WINDOW keyword has been used, the integer is relative to the
left edge of the window. In this case a negative horizontal
coordinate may be given, which means that the frame is to be
positioned n units to the left of the front window (see Section
6.1.2).

OFF means that the frame should be located so as not to overlap
the front window, if possible. This means that the frame may be
placed to the left or right of the window, as determined by the
window server.

FCT LANGUAGE

There are two formats for the vertical spec:

[TOP]

[SCREEN] [CENTER]

ROW : [WINDOW] : [BOTTOM]
[<Integer>]

ROW : OFF

For either the SCREEN or the WINDOW, TOP specifies that the frame
should be located farthest toward the top; CENTER specifies that
the frame should be centered vertically; BOTTOM specifies that
the frame should be located farthest toward the bottom. An
integer value may be supplied as an approximation of the wvertical
coordinate of the top edge of the windowframe. If the SCREEN
keyword has been used, the integer relates to the coordinates of
the screen. 1If the WINDOW keyword has been used, the integer is
relative to the top edge of the front window. In this case a
negative vertical coordinate may be given, which means that the
frame is to be positioned n units above the front window (see
Section 6.1.2).

OFF means that the frame should be located so as not to overlap
the front window, if possible. This means that the frame may be
placed above or below the window, as determined by the window
server.

Either the VerticalSpec or the HorizontalSpec may be omitted from
the .HOME command line. If the spec 1is not present, that

specification is determined by the window server at run time. It
can be regarded as a "don’t care" specification.

If the entire .HOME command line is omitted, both vertical and
horizontal positioning fall into the "don’t care" category.

Some examples follow.
.HOME COLUMN:WINDOW:LEFT ROW:WINDOW:TOP
This puts the frame in the upper left corner of the front window.
.HOME COLUMN:OFF ROW:WINDOW:CENTER
This puts the center of the frame on the same vertical center as
the front window, but moves the frame horizontally, to the left
or right of the front window, so as to obscure it as 1little as

possible.

.HOME ROW:SCREEN:BOTTOM

FCT LANGUAGE

This puts the frame at the bottom of the screen, and leaves its
horizontal placement up to the window server.

.HOME COLUMN:SCREEN:LEFT

This puts the frame along the left edge of the screen, with the
vertical placement determined by the window server.

.HOME COLUMN:WINDOW:20 ROW:WINDOW:20

This puts the upper left corner of the windowframe about 20
coordinates in and down from the upper left corner of the front
window.

Although the .HOME command line is generally placed immediately

after the .FRAME command line, it can occur anywhere within the
frame definition.

8.2.4 .OPTIONS Command Line
.OPTIONS [COLUMNS:<ColumnCount>] [ROWS:<RowCount>]

This line introduces a set of options for the frame and
determines how they are to be displayed within the frame. To
display a single column of options, the line should read,

.OPTIONS COLUMNS:1

that is, the ROWS parameter may be omitted. To display a single
row of options, the line should read,

.OPTIONS ROWS:1

that is, the COLUMNS parameter may be omitted. To display a
matrix of options, both the COLUMNS and ROWS parameters must be
supplied. ©Note that if both parameters are omitted, that 1is,
only the command itself is given, a default of COL:1 is assumed.

The text of the options appears on lines that follow the .OPTIONS
command line. They are text 1lines; the text of each option
appears on a separate line. The option 1lines are entered in
column-major order, that is, top-to-bottom, left-to-right order.
Thus, twelve options arranged in a three-column grid would
require twelve lines, representing the twelve options in the grid
as shown below.

FCT LANGUAGE

1 5 9
2 6 10
3 7 11
4 8 12

If fewer than twelve options are supplied, FCT supplies any blank
options (called SKIP lines) that are needed to complete the grid.
If more than twelve options are supplied, FCT produces a
diagnostic message.

8.2.5 .KEYS Command Line
.KEYS <KeyCode> [<KeyCode>]...

This line introduces one or more termination keys for the frame.
(Termination keys tell the window server to terminate menu
processing when the key is pressed and to return the key value to
the application.) The KeyCode is any of:

@ An integer in the range 1 to 569
® A quoted character, such as "a"
e A keyword, such as RESUME (or its abbreviation, RES)

The integer values and keywords used for key codes are supplied
in Table 4-2. When the key caption is two words, only the left
word should be used. Thus, MAIN is sufficient for MAIN SCREEN.
Keys on the auxiliary keypad must be coded as their numeric
values. Thus, Keypad Enter is coded as 558.

A maximum of 30 keys may be supplied wvia .KEYS command lines.
Although the .KEYS command lines are usually placed immediately
after the the .HOME or .FRAME command 1lines, they <can occur
anywhere in the frame definition.

8.2.6 Blank Line.

A blank line with no characters at all, or only space characters
is totally ignored by FCT. It may be used to make the source
frame file easier to read. A blank line does not produce a blank
header or blank option line in the frame.

See the next section for a method of specifying blank header or
option lines.

FCT LANGUAGE

8.2.7 Text Line
<Textstring> [\ [<attribute list>]]

The text line is used to supply a text string that appears in the
frame.

If the leading character of Textstring is a period, two adjacent
periods must be supplied. FCT removes one period and treats the
remainder of Textstring as a normal text line. A double period

is equated to a single period only in the leading character
position of Textstring.

Leading or trailing space characters within Textstring are not
removed. Textstring must not contain control characters less
than ASCII 28, such as a TAB character.

Textstring is terminated by a backslash if there are attributes
to follow. In order to embed a backslash in Textstring, two
adjacent backslashes are required. Thus,

ABC\\DEF \

yields a ten-character string of text, that looks like
ABC\DEFbbb

where b’s represent spaces.

The ASCII 28 character is used to introduce a special control
sequence used by the window server. The ASCII 28 may be inserted
in Textstring with an editor, but since it 1is a nonprinting
character it is difficult to deal with. FCT provides an
alternative method of embedding ASCII 28 in Textstring. The
2-byte sequence "\$" (backslash and dollar sign) can be used in
place of the ASCII 28. This 2-byte sequence is converted into a
single ASCII 28 character in the object frame file. The \$
sequence may appear anywhere in the Textstring. The control
sequences are described in Section 7.2.1.

The attribute 1list, 1if present, consists of one or more
attributes, supplied 1in any order. Attributes are tokens, and
follow the same separation rules as tokens on a command line;
namely, spaces, commas, and tabs in any combination.

Attributes generally accompany the text lines that serve as
options on menus. When the window server displays a menu, it
uses the attributes associated with each option line to control
the action that takes place if the user chooses that option.

FCT LANGUAGE

The attributes are:

<Optionvalue>

? <HelpName>

> <NextName>

< <PrevName>

SKIP

BINARY <0-String> <1-String>
ALPHASTRING [NOECHO]
NUMERICSTRING [NOECHO]

An OptionvValue, if present, is a numeric quantity in the range 0
to 255, The OptionvValue defaults to 0 if it is omitted. The
Optionvalue is returned to the application by the window server
when the user chooses this option.

A HelpName is signaled by the question mark that precedes it. 1If
present, it is the name of a HELP frame that is associated with
this text. FCT converts the HelpName into a HELPframelD. (The
window server uses the HELPframeID to display the HELP frame if
the user presses HELP while the cursor bar is on this option.)
The word NOHELP is reserved (in this context only) to mean that
the HELPframeID should be coded as -1 for interpretation by the
window server. Normally, the window server provides a "no HELP
available" message if it finds a 0O-valued HELPframeID when the
user presses HELP. There are times when even this message should
be suppressed, and ?NOHELP achieves that effect. When the window
server finds a -1 for a HELPframeID, it simply beeps and takes no
other action.

A NextName is signaled by the right angle bracket that precedes
it. If present, it 1is the name of a frame that is to be
associated with this text. FCT converts the NextName into a
nextframelD. (This is the name of the next frame that should be
used if the user presses DO while the cursor bar 1is on this
option. In the case of a HELP frame, the window server acts on
this name when the NEXT SCREEN key is pressed, and automatically
displays the next HELP frame. In other instances the window
server merely returns the nextframeID to the application.) The
NOHELP name may be wused in this context with the same meaning
that it has as a HELP name (see above).

A PrevName is signaled by the left angle bracket that precedes
it. If present, it 1is the name of a HELP frame that is to be
associated with this frame. A PrevName can be supplied only on a
HELP frame; it is used to provide a backward link to another HELP
frame. The window server acts on this name when the PREV SCREEN
key 1s pressed, and automatically displays the previous HELP
frame. The NOHELP name may be used in this context with the same
meaning that it has as a HELP name (see above).

FCT LANGUAGE

The SKIP keyword signals that the line is to be skipped by the
cursor bar as it moves over the options of a menu. The
Textstring of such a line need not be null. The SKIP attribute
is always mutually exclusive with the other attributes.
(Although FCT translates a SKIP attribute into an OptionvValue of

255, you should not supply an Optionvalue of 255. Use the SKIP
keyword instead.)

The BINARY attribute supplies two strings that are wused in a
special case of an option on a set-up menu. The 0-string and the
l1-string are coded as quoted strings. They are the two
"settings" of a set-up characteristic that can be toggled. For
example, the entire option line might be coded as

Scroll: N\ 4 BINARY "Smooth" "Jump" ? HELPXY

The ALPHASTRING and NUMERICSTRING attributes appear only within

set-up menus. The optional word NOECHO tells the window server
that the characters that the user enters are not to be echoed to
the screen. Instead, the window server echoes the checkerboard

character to the screen. Use NOECHO when coding a set-up option
that requests private information such as a password.

The use of attributes 1is dependent on where the text line
appears. A text line that appears ahead of the .OPTIONS command
line is a header line and, except for certain HELP frames, does
not have any attributes. A text line appearing after an .CPTIONS
command line is an '"option" and generally does require
attributes. The rules for use of attributes depend on the frame
type (see Section 8.4).

There are instances in which the text of a header 1line or an
option 1line 1s to be blank. For example, the message of a HELP
frame consists of header lines that might be grouped into
paragraphs and separated by blank lines. Also, the '"rest
position" of the cursor bar on a menu may be a blank option.

In no case should blank text be coded as a totally blank line in
the source frame file, since blank lines are ignored by FCT.

A blank header or option is coded as a line with a backslash as

the first character (thus the Textstring is null). If this is a
header line, it contains only the backslash:

AN
If thig is an option line and the line is to be skipped by the
cursor bar, the attribute "SKIP" appears in lieu of any other
attributes. The line appears as:

\SKIP

8-11

FRAME FORMATION RULES

e Each option can have a HelpName attribute.

e No option can have the BINARY, ALPHASTRING, or NUMERICSTRING
attribute.

e .KEYS command lines can appear anywhere in the frame
definition.

.! Two-column, single-choice menu
: X
:?RzléR:;EZOQ?; are abbreviated. an illustration of a silple
.HOM ROW:SCR1CEN COL:SCR:CEN two-column, single-choice menu.
An illustration of a simple . .
two-column, single-choice menu. Choice 1 Choice 4
LOPT COL:2 ROW:3 Choice 2 Choice 5
Choice 1\ 1 ?HLPSI1 Choice 3
Choice 2\ 2 ?HLPSIZ2

Choice 3\ 3 ?HLPSI3
Choice 4\ 4 ?HLPSIA4
Choice S\ S5 ?HLPSIS

Example 8-3: A Single-Choice Menu

8-16

FRAME FORMATION RULES

./ A multiple-choice menu, that

.! allows three choices. The program must
.! check that they are a legal combination.
.FRAME MULTI3 MULTI 3

+HOME ROW:WINDOW:100 COL:WINDOW:100

.KEYS NEXT

Please choose one entry in each column.

Press \$32+{NEXT SCREENX>\$32- if you do not want
ice cream at this time.

AN

! (The menu service inserts a line here.)

+OPTIONS COLUMNS:3 ROWS:S

Type\SKIP

\SKIP

Sugar cone\ 11 ?HLPM11

Plain cone\12 ?HLPM12 .

Dish\ 13 PHLPM13 Please mt.rg in each column.
Press [NEXT SCREEN] if you do not want

Flavor\SKIP ice cream at this time.

\SKIP .

Chocolate\ 21 ?HLPM21 Choose up to 3 itews, 0 chosen

Vanilla\ 22 ?HLPM22

Strawberry\ 23 ?HLPM23 Type Flavor Scoops

Scoops\SKIP Sugar cone Chocolate Triple

;SKIT N 33 PHLPM33 Plain cone Vanilla Double

riple ’ Dish Strawberry Single

Double\ 32 ?HLPM32 ™

Single\ 31 ?HLPM31

Example 8-4: A Multiple-Choice Menu

8.4.3 Set-Up Menu
(Set-up menus were previously called property sheets.)

e Text lines that precede the first .OPTIONS command line are
regarded as header lines for the frame. They cannot have
attributes.

e There can be only one .OPTIONS command line, which is
followed by the text lines that supply the text of the
options.

® The .OPTIONS command line must implicitly or explicitly
specify that the options are to be arranged in a single
column, that is, .OPTIONS COL:1.

FRAME FORMATION RULES

e Each option must have one of the attributes, BINARY,
ALPHASTRING, NUMERICSTRING, SKIP, or NextName. If NextName
is given, the name must be the name of a single-choice menu.
The window server uses the NextName attribute to display the
single-choice menu for setting the characteristic. The
window server ignores the .HOME command line in this menu,
and attempts to position it to the right of the set-up menu
option.)

e Each option can have a HelpName attribute.

e .KEYS command lines can appear anywhere in the frame
definition. Do not put the EXIT key on the termination key
list. You can put RIGHT ARROW or LEFT ARROW on the
termination key list. The window server then recognizes
these keys as terminators, but only when the cursor is on
options with the BINARY, Nextname or SKIP attribute. When
the cursor is on an option with the Alphastring or
Numericstring attribute, the window server responds to the
ARROW key by moving the cursor within the string being
edited.

Indicate your choices for
the doorbell switch.

.! Setup menu
.FRAME SETUP1 PRO
+HOME COL:WINDOW:CENTER ROW:WINDQOW:CENTER Liy“md: YES

Indicate your choices for Style: Colonial
the doorbell switch. Name:
.OPTIONS COL:1 Quantity: 2
Lighted: N\ 1 BINARY "YES* " NO" ?HLPSUl ty
Style: \ 2 >STYLEM ?HLPSU2 .
Name : \ 3 ALPHASTRING PHLPSU3 Press to accept values.
Quantity: \ 4 NUMERICSTRING ?HLPSU4
\SKIP

Press \$32+{EXIT>\$32- to accept values.\SKIP

.FRAME STYLEM SINGLE
LOPTIONS COL:1
Ranch\ 1 ?HLPSM1
Colonial\ 2 ?HLPSM2
Revival\ 3 ?HLPSM3
Modern\ 4 ?HLPSM4

Example 8-5: A Set-Up Menu

8.4.4 HELP Frame

A HELP frame can consist of a block of text; it may also have
options 1like a single-choice menu. If it has options, the
options are introduced by a .OPTIONS command line, and the
options have a NextName that points to another HELP frame. If

8-18

FRAME FORMATION RULES

there are no options -- that is, no .OPTIONS command line -- a
NextName may be given on the first text line of the frame. This
NextName points to another HELP frame that is displayed when the
user presses the NEXT SCREEN key.

All HELP frames, regardless of whether they have a .OPTIONS
command line, can specify a PrevName on the first text line. The
PrevName, if present, must point to another HELP frame, which is
the frame displayed when the user presses the PREV SCREEN key.

® Text lines that precede the .OPTIONS command line are
regarded as header lines for the frame. These lines provide
the HELP text for the frame. These lines cannot have
attributes, except for the first text line, which can have a
PrevName and a NextName.

@ There can be only one .OPTIONS command line, which is
followed by the text lines that supply the text of the
options. The .OPTIONS command line can be omitted if there
are no options.

@ Option lines cannot have OptionvValue, HelpName, BINARY,
ALPHASTRING, or NUMERICSTRING attributes.

@ Option lines that have text of nonzero length must have
either a SKIP or NextName attribute. The NextName attribute
must reference a HELP frame.

e Option lines that have no text can have either a SKIP
attribute or no attribute at all. When no attribute is
present, the line is assumed to be a "rest line."

® .KEYS command lines are not allowed.

FRAME FORMATION RULES

.! A context-sensitive help frame.
.! PREV SCREEN takes user to the HELP Index.
.FRAME HLPMSG HELP
+HOME COL:WIN:CEN ROW:0FF
Your selections have been combined with the information that you\ <HLPIDX
supplied about the system to determine the requirements regarding
cables and connectors required for a completed configuration.
AN
[f you want to change the order in any way, just press \$32+{F17>\$32-,
You will be given an opportunity to add or drop individual items
from the list.
AN
Press \$32+{RESUME}\$32- to leave HELP.
.OPTIONS ROWS:2

How cables are chosen\ >HLPMS1
How connectors are chosen\ >HLPMS2
HELP index\ YHLPIDX

Your selections have been combined with the information that you
supplied about the system to determine the requirements regarding
cables and comnectors required for a2 completed configuration.

If you want to change the order in any way, just press [F17]
You will be given an opportunity to add or drop individual items

from the list.
Press [REGOFE] to leave HELP.
How cables are chosen HELP index

How comnectors are chosen

Example 8-6: A HELP Frame
8.4.5 Message Frame

e All text lines are regarded as header lines for the frame.
These lines cannot have attributes, except for the first text
line, which can have a HelpName.

@ .OPTIONS command lines are not allowed.

e One or more .KEYS command lines are required to specify the
termination keys that can be used by the user to proceed from
this menu. The order of the .KEYS command lines is not
significant.

FRAME FORMATION RULES

.! Sample message frame
.FRAME FINAL1 MESSAGE
+HOME COL:WIN:CEN ROW:WIN:BOT
.KEYS CANCEL, F17, DO
*%kk \$10+FINAL\$10- ORDER CONFIRMATION %%\ ?HLPMSG
AN
This is a final listing of the products that you have
selected and the cables/connectors that are needed.
AN
Your confirmation at this point completes the ordering
process and begins scheduling for shipment and billing.
You will have additional opportunities to cancel this
order, but this is your last opportunity to \$8+change\$8- it
short of a complete cancellation.
AN
Press: \$32+{(D0O>\$32- to confirm it.
\$32+{F17>\$32- to make any changes.
\$32+{CANCEL>\$32- to start over.

FINAL ORDER CONFIRMATION #x#

This is a final listing of the products that you have
selected and the cables/comnectors that are needed.

Your confirmation at this point completes the ordering
process and begins scheduling for shipment and billing.
You will have additional opportunities to cancel this
order, but this is your last opportunity to change it
short of a complete cancellation.

Press: to confirm it.
to make any changes.
to start over.

Example 8-7: A Message Frame

8.4.6 Binary Message Frame

e Only binary message lines, blank lines, and comment lines may
appear in a binary message frame. Blank lines and comment
lines do not terminate a continued binary message line.

8.4.7 Alphastring and Numericstring Menu

e Any text lines that precede the .OPTIONS command line are
regarded as header lines. These lines cannot have

attributes.

FRAME FORMATION RULES

® One .OPTIONS ROWS:1 command line is required, followed by two
options (text lines).

@ The first option line supplies the prompt text. Null prompt
text is coded as a line that begins with a backslash. The
line cannot have attributes.

@ The second option line supplies the default text for the
string; the length of its Textstring supplies the MaxLength
of the allowed string. Be sure to pad it with spaces to the
length of the longest string that the user is allowed to
enter. This line can have a HelpName attribute, but other
attributes are not allowed.

@ .KEYS command lines are not allowed.

.! Alphastring menu
.FRAME ASTRGF ALPHASTRING Enter the ring’s inscription.

Enter the ring’s inscription. LT
The limit is 30 characters. The limit is 30 characters.
.OPTIONS ROW:l

N

\ ?HLPALF

Example 8-8: An Alphastring Menu

.! Numeric string menu

.FRAME NSTRGF NUMERICSTRING) ‘ '
Please enter the daily commuting mileage: Please enter the daily commuting mileage:

.OPTIONS ROW:1) .
Round trip mileage: Round trip mileage: 0

N ZHLPNUM
Example 8-9: A Numericstring Menu

8.4.8 VECTOR TABLE

On lines following the .TABLE line (which must be the £first
source line in the frame file), list the names of all of the
Frame IDs that are ever referenced in the source <code of your
application.

For example, suppose you have a frame £file that <contains ten

frames. 0Of those ten, six are referenced by the source code of
the application (passed as FrameID parameters in some static Menu
Service call such as EXFLOW). Assume the names of these six

frames are FLOWl, SINGLX, DIALUP, CANTGO, ADDOPT, and NOTYET.
The remaining four frames in the file are not directly referenced

8-22

FRAME FORMATION RULES

from the source, but are referenced from other frames in the
frame file (for example, help frames). Assume their names are
HELPAD, HELPX, HLPFLO, and STRNG5. 1In this example, the sequence
of lines for the vector table would look like:

.! Table of frame IDs used from the application source code.

.TABLE

FLOW

SINGLX

NOTYET

DIALUP

CANTGO

ADDOPT
The order of the frames is arbitrary, but there are some cautions
relating to changing the order. The order of the frame IDs in
the table has no correspondence with the order of the frames
themselves in the frame file.

The above example creates a table (which is stored at the
beginning of the object frame file <created by FCT) with six
entries in it. These six frames are the only ones which your
application source code can refer to. (You can also include
frames in the table which are never passed at run-time to
Synergy, but those frames simply take up unnecessary space in the
object frame file’s vector table.)

Each frame ID in the vector table is assigned an ordinal number;
succeeding table entries are assigned increasing numbers. Thus,
the frame’s number depends on its position in the table (frames
not included in the table are not assigned numbers and thus
cannot be passed in Menu Service calls). If you change the order
of the frames in the table, the numbers assigned to the frames
will change, which will require re-task-building the application
(and for PRO/Pascal sources, recompilation).

At run-time, the application passes a FrameID to Synergy. The
actual Dbinary number that is passed is the frame’s ordinal
number. Synergy uses this ordinal as an index 1into the vector
table. The 1indexed entries in the table contain sufficient
information (internal to Synergy) to allow Synergy to find and
retrieve the actual contents of the specified frame in the object
frame file.

The application does not have to explicitly know what ordinal
number is assigned to what frame ID. FCT produces a .MAC file
that contains global definitions equating FrameID symbol names to
their ordinal values. Once you assemble this WHATEVER.MAC file
(using the command "$ MACRO WHATEVER") and link the resulting
WHATEVER.OBJ module in with your application task(s), the
relationship between FrameID symbol and ordinal value will Dbe
taken care of by the linker. For PRO/Pascal programs, FCT also
produces a .PAS file which you can include in your source files

8-23

FRAME FORMATION RULES

using $%INCLUDE. The include file contains CONST definitions
equating FrameID identifiers with their ordinal numbers.

Once the frame file is set up with the frames in the table, vyou
can make changes to the bulk of the frame file, without ever
having to recompile or relink the application again.
Specifically, you can add or delete information in the frames,
and you can even move the frames around in the frame file. (For
example, if the frame file 1is translated into a different
language, the application tasks do not need to be changed.)

If you ever change the table itself, then the application will
need to be relinked. 1In addition, for Pascal the sources need to
be recompiled so that the new .PAS include file 1is used. But
note that as long as you simply add new frames to the end of the
table, then only those modules that refer to those new frames
need to be recompiled, since the ordinal numbers for the original
frames are unaffected by subsequent table entries.

8.5 FCT OPERATING INSTRUCTIONS

FCT operates as a native VMS program or as a PRO/Tool Kit
program.

8.5.1 FCT on VMS

FCT is started from VMS command 1level with a RUN command
addressing the FCT.EXE file.

FCT prompts for a source filename. You enter the name, and press
RETURN. Append /LIST to the source filename if you want a
listing file.

If the source file is not in your default directory, you can give
a logical name as part of the file specification. Use the VMS
ASSIGN command to equate the logical name to a desired device and
directory.

If you supply a file type, FCT removes it and substitutes "SFF"
as the file type, so be sure to name source files with the .SFF
file type.

All output files go into the default directory. All output
filenames match the input filename, and are distinguished by
their file types:

FCT OPERATING INSTRUCTIONS

OFF is the object frame file.
LST is the listing file.

MAC is the MACRO symbol file.
PAS is the PASCAL symbol file.

8.5.2 FCT on PRO/Tool Kit
To run FCT in the PRO/Tool, Kit, enter the Tool Kit and type

RUN SFCT
In order to run, FCT requires that the BASIC-PLUS-2 Resident
Library be installed. 1If it is not installed, type the following
command:

INSTALL LB:[ZZSYS]BP2RES
FCT prompts for a source filename. You enter the name, and press
RETURN. Append /LIST to the source filename if you want a

listing file. The source file -must be in the current wuser
directory. All output files go to the same directory.

CHAPTER 9

CHAPTER 9
DEBUGGING THE APPLICATION’S WINDOW

This chapter describes additional tools that may be useful during
application development.

9.1 VUE APPLICATION

VUE is a Synergy application that can be used during development
to look at the frames in a frame file without executing the
application that owns the frame file.

Suppose you are working on a source frame file for the XYZ
application. You are trying to imagine what the frames will look
like when displayed by the application. VUE lets you see most
frames on the screen. In the <case of frames that contain
references to other frames, such as a HELP tree, vyou can walk

around the tree just as you would when the XYZ application is
running.

You should use VUE to examine every frame in a frame file before
releasing the application. It 1is possible to create a frame,
such as a HELP frame, that is too large to be displayed on the
screen. Normal quality assurance procedures applied to your
application may not discover this problem. A thorough
examination of every frame 1in the frame file, wusing VUE,
guarantees that all frames <can be displayed. You will also
discover that viewing a frame on the screen is a far better way
to evaluate it for correctness and effectiveness than looking at
it in a listing.

Set-up menus cannot be examined with VUE, since VUE cannot
provide all the parameters required for the service call to
display a set-up menu.

VUE APPLICATION

Also, only those frames included in the frame file’s vector table
may be examined (you can add any frames you want to the table).

9.1.1 Installing VUE

VUE 1is installed like any Synergy application. After
installation is complete, you must find the ZZAPnnnnn directory
in which VUE was installed. Copy down the number nnnnn.

If you are using a Professional Host Tool Kit, copy the file
named VUE.COM to the directory on your host machine where you
expect to work on the frame file. (If you are using the PRO/Tool
Kit, this step is unnecessary.)

You are now ready to use VUE.

9.1.2 Using VUE

When you are ready to view your source frame file do the
following:

1. Run FCT on the source frame file to obtain an object frame
file. Assuming this operation is error-free, continue
below.

2. FCT produces a .MAC file that has the same name as the
source frame file. Print this on your local printer.

3. If you are using a Professional Host Tool Kit, execute the
VUE.COM file with two additional parameters as follows:

@VUE nnnnn fffffff
"nnnnn" is the ZZAPnnnnn directory number where you
installed VUE. "ffffff" is the filename of your frame file
(no file type). Example:

@VUE 78 MYFRAMES

4. If you are using the PRO/Tool Kit, copy the object frame

file produced by FCT to the VUE application directory,
renaming it VUE.OFF. 1If the object frame file is named
MYFRAMES.OFF, this copy command might resemble:

$ COPY MYFRAMES.OFF [ZZAP00078]VUE.OFF

9-2

VUE APPLICATION

5. Start the VUE application.

6. VUE requests that you supply the synchronization number
placed in the frame file by Synergy. This is the symbol
SFCTVS which is defined on the eighth line of the MAC file
that you printed out. Just enter the number that you see
there. (The number may be negative.) Assuming that you do
not get an error message from the window server, continue
below.

7. VUE requests a frame ID. Frame IDs are the numbers to which
the frame names are equated in the MAC file. Type any of
those numbers in order to see the corresponding frame. If
you have a frame called HLPDIR, you will find its name
equated to a number, such as HLPDIR=732. Enter 732 and a
RETURN in order to see the HLPDIR frame.

If the frame is a HELP frame or a menu frame that references
HELP frames in its options, you can use the keyboard to
travel around the HELP tree, just as you would when the
application is running.

Various error conditions are shown on the screen, so if you
have created a frame that is too big, etc., you will see the
error message instead of the frame. Consult the list of
error codes in Table 4-2.

8. To stop viewing a frame, do the following:

e If it is a HELP frame, press RESUME.
e If it is some other kind of frame, press EXIT.

VUE prompts you for a new frame ID.

9. To leave the VUE application, press EXIT when you are being
prompted for a frame ID. (VUE cannot be suspended; it
ignores F5.)

9.2 MAKE SCREEN WHITE APPLICATION

This application provides a white background on which vyour
application’s windows can be displayed. (The normal background
for Synergy is gray.) A white background may be wuseful when
making printouts of the screen with the PRINT SCREEN key.

MAKE SCREEN WHITE APPLICATION

The application is installed like any Synergy application.

When run, the application creates a full-screen window and then
automatically suspends itself. When you tell the window manager
to resume its execution, it exits.

9.3 PRINTING THE SYNERGY SCREEN

The action of the PRINT SCREEN key reverses the black and white
areas of the screen. The assumption is that you are running the
Professional in a mode that displays light lettering on a dark
background, and that the printout is more useful if it shows dark
lettering on a white background.

However, the normal window in Synergy displays dark lettering on
a light background. When this is reversed by the action of the
PRINT SCREEN key, the printout is not very useful.

A patch command file, SYNREVERS, is included in the Tool Kit, to
enable vyou to reverse the Synergy displays. Once the patch has
been made, Synergy will display dark windows (with a 1light
windowframe), and the lettering within the window will be light.
When the windows are displayed in this manner, the PRINT SCREEN
key produces a printout that 1looks 1like the normal Synergy
screen. Screen prints can be very useful when documenting your
application for end users.

The patch can be applied from DCL by running the ZAP program and
supplying an indirect reference to the command file,
SYNREVERS.CMD. The patch should be applied when Synergy 1is not
running, since it will not take effect wuntil Synergy is
started-up.

After you have obtained the desired screen prints, you can
reverse the action of the SYNREVERS patch by running the ZAP
program again and supplying an indirect reference to the command
file, SYNNORMAL.CMD.

Again, the patch does not take -effect wuntil Synergy is
started-up.

9.4 FDT TO FCT CONVERSION

The Frame Development Tool, FDT, has been augmented with a WINDOW
command. This command converts a frame file produced with FDT
into a source frame file for FCT use. Additional editing 1is
required, but the major portion of the text is converted. The

9-4

FDT TO FCT CONVERSION

details of the conversion are described in the Tool Kit User’s
Guide.

CHAPTER 10
THE CLIPBOARD

The clipboard is a method of moving data between Synergy
applications. The «clipboard relieves the user of the need to
supply a filename when the data is written and then select a
filename when it is read back.

10.1 INTRODUCTION TO THE CLIPBOARD

The clipboard consists of two files. The files have the
following names and locations:

® OSYSDISK:[ZZPROVUE]CLIPBOARD.TAB -- a table file
® SYSDISK:[ZZPROVUE]CLIPBOARD.DOC -- a text file

When your application receives a request to "Write to clipboard,"
the application should delete all existing clipboard files. The
application should then create CLIPBOARD.TAB and/or
CLIPBOARD.DOC.

When an application writes data to the clipboard, it is not known
where that data will be read. For example, Spreadsheet data may
be included as text in a PROSE PLUS document and as input to
Graph. In the first case only ASCII text is needed, but for the
graph a table file is required. Thus, Spreadsheet creates both
CLIPBOARD.DOC and CLIPBOARD.TAB, 1in order to permit both paths
for the data. 1If your application can write data in its tabular
format as well as a report or text format, it should write both
formats.

There are some applications that do not wunderstand table files
(such as editors). These need not create CLIPBOARD.TAB when they
create CLIPBOARD.DOC, but they should ensure that any existing
CLIPBOARD.TAB files are deleted, so that if both files of the
clipboard exist, they are synchronized.

10-1

INTRODUCTION TO THE CLIPBOARD

When an application receives a request to "Read from clipboard,"
the appropriate clipboard file should be retrieved. If the file
is not there, the application should inform the wuser that it
cannot use the data in the clipboard.

NOTE

It is possible for there to be data in the
clipboard, even if the desired file does not
exist, so the application should NOT say "no data
exists" wunless it has verified that neither
CLIPBOARD.DOC nor CLIPBOARD.TAB exist.

Do not delete the clipboard files after a read operation, since
they may be read into another application.

10.2 THE TEXT FILE

CLIPBOARD.DOC contains only ASCII text. When a GIDIS file is
being copied to the <clipboard, CLIPBOARD.DOC 1is created and
should contain a VDM reference to the GIDIS file. The
application should wuse the file service NEWFLE or WIXNEW to
request a name for the GIDIS file. The actual GIDIS file is not
considered part of the <clipboard and should be stored in the
SY:[] directory, if the wuser does not supply a device or
directory with the filename.

If the clipboard file is present, but the .GID file that it
refers to 1is not in the user’s directory, you should inform the
user that the graphics file cannot be found in the local
directory. A good example of the technique, with suggested
wording of the message and HELP frames, can be found in the PROSE
PLUS application. To see it, rename the EXAMPLECV.GID file that
comes with PROSE PLUS to some other name, start up PROSE PLUS and
try to edit picture EXAMPLECV.GID.

The file specification in the VDM reference has only the filename
and file type.

10.3 THE TABLE FILE

The table file represents an array of string and numeric values,
along with some information about the values, and possibly,
private information. The array consists of rows and columns;
each intersection holds a single value or element. The elements
are stored in row order; all the elements of row 1 are stored
before the elements of row 2, etc. The elements in a column or

10-2

THE TABLE FILE

row may be all numeric, all string, or a combination of both.

Tables are stored in an RMS variable-length record file. Each
record contains ASCII text -- up to 256 bytes. There need not be
a regular mapping from a row of table elements to a single
record, or an integral number of records. At least one table
element exists in each record, and there may be as many table
elements in a record as can fit within the record size of 256
bytes. This limit is set so that applications can allocate a
reasonably small record buffer.

10.3.1 Special Record Format

Special records contain information outside of the actual values
in the array. There are four kinds of special records --
version, source, size and private.

Version, source, and size records precede the array, while
private records follow the array. Each special record starts
with an exclamation point character (!) in the first byte, and
has a keyword in uppercase letters. The syntax is strictly
defined. 1In the explanations below, the underscore character (_)
is used to indicate a required space. No leading spaces or extra
embedded spaces are allowed.

All table files have a version number record which is always the
first record in the file. This record has the following form:

!VERSION_2
Table files may have a source record immediately following the
version record. The source record identifies the application
that created the table file. This record has the following form:
! SOURCE_ ' <name>"’
where <name> indicates a name string up to 16 nonblank characters
in length. The single quotes are required; the angle brackets
are part of the notation, and are not entered.
All table files have a table size record immediately preceding
the records that contain the elements of the array. The table
size record describes the size of the array. The table size
record has the following form:

{SIZE_<n>,<n>

where the <n>s are decimal integers indicating the number of rows
and the number of columns in the array. The angle brackets are

10-3

THE TABLE FILE

part of the notation, and are not entered. A table of 20 rows by
8 columns would have the following table size record:

!SIZE_20,8

Tables may have private data. If so, the data is stored in
separate records after a special record that follows the array
and introduces the private data. The private data introducer
record has the following form:

!PRIVATE

10.3.2 Data Record Format

Each data record consists of a list of data values separated by
commas.

Spaces and tabs between data items are ignored. The following
example shows two typical data records:

'Goods’, ’'Canned’, 'January 12th’, 11.43
'Shipments (in thousands)’, 57.6,58.2,58.2,59

Synergy Version 2 table files include four types of data --
unformatted number, formatted number, string, and date. (Version
1 table files included only two types of data -- unformatted
number and string. Table files are upward compatible.)

® Unformatted numeric data items may be whole numbers, or real
numbers in either floating point or exponential (scientific)
notation. Dollar signs and commas are not allowed. Numbers
may be signed. Numbers must be convertible to 64-bit
double-precision quantities. Exponential (E) notation may be
used. Examples:

1 -2.3
0 0.0
123.456 .123456789123E+23
.0000001 +100.000E-8
e Formatted numeric data items may contain commas and dollar
signs. If commas or a dollar sign are included in a number,
the number must be bracketed with the # character. Commas

may be used to punctuate the integer portion of the number at
thousands intervals. The limitation on the range of the
number and the manner in which the number is expressed is the
same as unformatted numeric data items. Examples:

10-

o=

THE TABLE FILE

#51.00% #92.30#
#-123.456% #-.123456789123E+23#%
#123,456.00000014% #$123,456,789.88%

e String data items are bracketed with single-quote characters
("). If the string contains embedded single-quotes, each
embedded quote must appear twice (’’). The length of string
data items must be less than or equal to 132. Examples:

"abcdef’

1123

"7'what,’’ she asked, “’is thatz’'’
'Double-quotes (") are not treated specially.’

® Date data items are represented in two ways:
&MM/DD/YY& or &MM/DD/YYYY&

MM is the one- or two-digit month, DD is the day, and YY or
YYYY 1is the year. When YY is wused for the year, it is
interpreted as the 20th century, but only if YY 1is greater
than or equal +to 50; and as the 21st century if YY is less
then 50. A date is bracketed by the & character, as in this
example:

&04,/09/52&

A table entry may be omitted. 1It’s position in the table is said
to hold a null data item. For example, a pair of unseparated
commas, or a comma in the first or last position in a record,
represents a null data item. Also, a zero-length record (a blank
line) in a table represents a null data item.

Null data items represent missing data, and have no data type. A
spreadsheet may have cells that have no value, for example.
Applications reading in a table should treat null data items 1in
some reasonable way, perhaps as null strings or zero-valued
numbers. However, applications should not output null data items
as an abbreviation for =zero-length strings or zero-valued
numbers.

10.4 TABLE FILE EXAMPLES

The following are examples of table files showing all supported
data types:

!'VERSION 2

10-5

TABLE FILE EXAMPLES

! SOURCE 'YOURPROGRAM’

!SIZE 4,5
,&7/1/84&,68/1,/84&,&9/1/84&,810/1 /8464
'Bill",24.8,24.7,25.2,25.3
'RKate’,23.4,22.5,21,22.1
"Totals:’,#S48.20#,4#347.204,#546.20#,#S47.40#
!{PRIVATE

B4=B2+B3

C4=C2+C3

D4=D2+D3

E4=E2+E3

The same table in a different format:

!VERSION 2
! SOURCE ’'YOURPROGRAM'
!SIZE 4,5

&7/1/84¢&
&8/1/84&
&9/1/844&
&10/1/84&
'Bill’
24.8
24.7
25.2
25.3
"Kate’
23.4
22.5

21

22.1
'Totals:’
#548.204
$#$47.204#
$#$46.204#
#547.404
!PRIVATE
B4=B2+B3
C4=C2+C3
D4=D2+D3
E4=E2+E3

The text version (.DOC) of these table files is:
7/1/84 8/1/84 9/1/84 10/1/84
Bill 24.8 24.7 25.2 25.3

Kate 23.4 22.5 21 22.1
Totals: $48.20 $47.20 $46.20 $47.40

10-6

CHAPTER 11
SYNERGY CONVENTIONS

Consistency of the human interface, within an application and
from one application to the next, contributes to ease of use.
The user learns to recognize familiar words and formats and
familiar actions on the screen, and familiar keystrokes on the
keyboard. The user develops a consistent conceptual model of the
system so that new areas of an application can be explored with a
measure of confidence and a minimum of surprise.

Synergy provides such a consistent framework with:

e Application windows that have common features

e A window manager that is independent of all applications
@ The clipboard for moving data between applications

e A menu and HELP interface that has a consistent feel from one
application to the next

However, there is still a wide margin for variation within the
Synergy framework. The wording of menu optiomns, the method of
handling files, the movement of the cursor in windows, even the
meanings of words, can vary from one application to another.

Sometimes there are valid reasons for this wvariation. Each
application developer has to make the tradeoffs between meeting
the needs of the application and being consistent with the rest
of the applications.

This chapter presents the Synergy conventions as they were
conceived and practiced by Synergy developers. A few of the
conventions are arbitrary, but many reflect carefully chosen
compromises. Most of the conventions are the result of much
trial and error.

Section 11.6 discusses some alternative models that were adopted
by the developers of the Synergy applications to handle certain
demands of the applications.

11.1 WINDOW CONVENTIONS

These are the conventions that apply to application windows, as
opposed to the more specialized windows that are used for menus
and HELP.

11.1.1 Tities

e Applications should use titles on all windows. A title area
is highlighted automatically when the window is the front
window, which gives the user a constant cue as to where the
center of attention is. Furthermore, the title area can be
used for the clock icon and a waiting message when the
application starts a time-consuming operation.

e If the application uses only one window, the application name
might go in the title. But if the application has two or
more windows, the title should probably name the contents of
the window. Applications such as Spreadsheet and Calculator
accomplish both aims in one word. The Graph application
labels one window "Data", and the other "Graph." "Graph Data"
and "Graph Picture" are alternate choices.

@ Be sure to consider using the clock icon and a message in the
title area when your application performs a time-consuming
task. You should turn off the blinking cursor in your window
when the clock icon is shown. (If the cursor remains on, the
user is led tc believe that he should be typing. See Cursor
Use, below.)

The waiting message that accompanies the icon should be short
and should use a word or phrase fr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>