[

PRODUCT NAME:
PRODUCT NAME:
PRODUCT DATE:
MAINTAINER:

51

IDENTIFICATION
AC-U036A-MC
CHQDPAC XXDPV2 Drvr Progr Gd
8 Oct 1984

Low End D agnostic Engineer 'ng

The information in this document is subject to change without
not ce and should not be construed as a commitment by D'gital
Eau .pment Corporation. Digital Equipment Corporation assumes

no responsibility for any errors that may appear in this document,

No responsibility is assumed for the use or reliab’l 'ty of
software on equ pment that is not supplied by Digital or "ts
affiliated companies.

Copyrght (L):

1984 by Dig tal Equipment Corporat on

"he following are trademarks of Dig tal Equipment Corporat on:
D'g tal. PDP, UNIBUS, MASSBUS, DEC, DECUS, DECtepe, DEC/X11

SEQ 00C

XXDP ve

Cl

Page 2

Oriver Programmer's Guide

Manual Revision: 0.1

XXDF Version: 2.0

Maintained by: MSD Diegnostic Engineering

Revis’'on History:

Rev.sion Date

0.0 1-.un-84
0.1 B-Oct-84

DAL
LSP

Description
Driginal Document
Reformeat

5£Q 0002

D1

Page 3

Teble of Contents

-------------- Page
1.0 Introduct ‘on 4
2.0 Device Driver Layout S
3.0 Device Driver Functions 11
4.0 Writing a Driver 15
5.0 Device Driver Characteristics 17
6.0 Glossr~y 19
7.0 Bibl shy 19

Rppendix: A - Driver Example

‘ppendix: B - RAssembly and Linking Instructions
hppendix: C - Driver Equates

Append’x: D - Device Type Codes

5£Q 0003

1.¢

-

b

bl

Page 4

Introduct ‘on

This document is intended as 8 guide to those who need
to understand and/or write device drivers for tne XXDP.
Ve system. Section 1.0 below describes the bes ¢
differences between V1 and V2 drivers, Sect'on 2.0
outines the ph¥sicol layout of the driver. Section 3.0
describes the functions performed by drivers while

sect on 4.0 offers advice to those intending to
maintain or write a device driver themselves.

Throughout this document there are many references to
the mnemonics of the file structure. TKese.ore listed
in the glossary for convenience. A desription of the
file structure may be found in the file structure
document listed in the biblography.

Differences between Vi ang V2 Drivers

One me jor purpose of XxDP+ V2 is to simplify the
maintenance of XXDP components. A facet of this

s'mpl fication is to make drivers as uniform as possible.

To this end:

8) Functionality which seemed more file-oriented than
device-oriented (e.9. file search) was migrated to
s front-end, which s now incorpora‘ed in o
version of UPD2 and other utilities.

b, Read-only and Read-write functionality was
recombined so that a single driver may be used
both by the Monitor and by utilities.

c) Some functional aspects of individual drivers were
changed. For instance, most drivers will now
support two units (previously a different copy
was needed for each unit).

d) The leyout of all drivers was made as uniform as
possible.

e) D'sk organization has been made uniform (MFD
var ety #1°' has been retired).

f) Some functional aspects of the Utilities were
changed. UPD2 will no longer permit an Image
copy between devices with differing sizes, and
n.ll not copy the Monitor during a F'le copy.

£Q 0004

[

[,¥]

n

.
r,

>a

1

Page 5

Compatibility

anp.tibilitI between V2 and V1 has been maintained,
with the following exceptions:

1) The V1 DL and DM disk layout did not allow
for a 32k Monitor. If the V2 Monitor ‘s 'nstalled
on & V1 medium, the first file (or two) after the
mon:tor area will be corrupted.

2) The MFD variety 01 has been retired for the DB,
DD, DU end DY drivers. V2 drivers may be used to
read or write V1l media. V! drivers may be used
to read V2 media, but not to write. (Except in
the case: V1 MS drivers will not read V2 MS tapes.)

3) V2 media will have the octal constant 1002 at
octal displacement 14 (the old MFD2 pointer) in
the MFD. V] media will have some other value.
The MFD is not currently read by most drivers, so
this fact is not used.

4) The V1 MM and MS tape layouts each had two Monitors
at the tape beginning. selected according to what
dev.ce was being booted. The V2 layouts have only
one Monitor as the first file on the tape.

Device Driver Layout

This section describes the lexical structure of XXDP
Version 2 device drivers. The requisite components are
outlined below with descri.ptions as to their functions
and usage. Definitions of terms relatina to file
structure may be found in (AC-S866R-MO) CHGFSARQ XXDP.
File Structure Document.

Driver Revision History

This section contains a brief history of sttributed
source coge revis.ons, a8s ;s standard for DEC software.

5£Q 0005

[
[

2.2.2

Gl

Page 6

Symbolic Equates
Device-Independent Equates

This section contains definitions for data structure
offsets and other equates which are more or less common
to all drivers,

1) DIRBLK Offsets

These equates describe the DIRBLK structure in
the driver, discussed below. The DIRBLK contains e
description of the (disk) layout.

2) DDB Equates

These equates describe the 'Device Descriptor
Block' (DDB), a data structure which is found in
the utilities, and 8 subset of which is found in
the Monitor. The DDB provides the driver’'s data
interface. The driver's Parameter Table will
overlay or be copied to the DDB.

3) Device Command Codes
These equates are the command codes., issued by @
utility or the monitor, to which the driver
responds. Some command codes, e.g. WRITES, are
used by all drivers. Others may be specific to

device type (e.?. bad-blocking) or to the device
itself (e.g.RFSIFN- reformat RX02 single density).

4) Parameter Table Equates
When the driver is loadedby & utility, its

parameter table is copied into the DUB. These
equates are thus actuelly DDB offsets.

S) Device Returned Status Byte
These equates describe the meaning of the bits in
the sbove-mentioned DVSB byte. They concern disk
density and tepe drive stetus.
Device-Dependent Equates
These are equates particular to the device and driver code.
1) Progrem Equates

These equates are typically mnemonics (e.g. LF
or CR) used for convenience in the code.

¢) Device Equates

These equates describe internal device codes,
status words, commands, and packet formats.

£Q 0006

2.3
2.3.1

11

Page 7

Data Structures
Device Parameter Table

This date structure begins the driver’'s actual code.
When the the Monitor is CREATED by the UPDATE util 'ty
the driver is aYpended to the end of the monitor and
this table overlays the Monitor's DDB. When the driver
is loaded by a utility, this table is copied into the
utility's DDB, addresses being relocated appropr ately.
From this time on, the table is referenced lorgely
through this DDB copy; the driver s copy is used only by
the driver's INIT routine in anticipation of the next
load. All driver routines assume that RS points to the
command register entry in the NDB.

(Note: in order to_save space, some of the parameters
have been given INITIAL values and functions which are
not related to their functions during execution.)

A Parameter Table Example is:

PARAM: DISPAT ;DISPATCH ROUTINE
.WORD “DZ ;:CRIVER NAME
.BYTE BBSUP$;DEVICE CODE
.BYTE 44 ;RETURNED STATUS (INITIAL DEV%SEE)

_MORD BCODE :;BOOT CODE OFFSET

UNIT: .BYTE 0 ;UNIT @& (INITIAL REV @)
ERRB : .BYTE 0 ;ERROR STATUS (INITIAL PATCH &)
CMDREG: 174400 ;COMMAND REGISTER ADOR
WCOUNT: O ;s WORD COUNT
BUSADR: O ;:BUS ADDRESS
pLOCK: O ;BLOCK NUMBER
CoMD: 0 ; COMMAND
DIRPTR: DIRBLK ;POINTS TO 1ST DIR BLOCK.
siggﬂg: 0 ;FOR MONITOR COMPATIBILITY
ND:

1) Dispatch Routine Address
Th's entry is the address of the dispatch
routine, which determines which driver routines
to invoke. All driver services are provided
through this entry,

2) Dr’ver Name

Th's entry is the device's two byte mnemonic neme.

LEQ 0007

11

Page 8
3) Device Code
This static byte is used to indicate that the

device has special features of interest to
utilities. Current flags are:

BBSUPS - Device provides bad block support.
NODIR$ - Not a directory device

TAPEDS - Tape device

REFON$ - Supports single/double density reformat.

MULUNS Driver supports 2 units/driver
NOREN$ - Device does not support file rename.
FLOADS - Device may have floating address.

4) Device Status
This byte is returned by some drivers in response

to inquiries concerning disk density or tape
status. Current flags are:

ODDEN$ - Disk is double density
BOTTP$ - Tape is at physical bot
TMKTP$S - Tape is at tape mark

EQTTPS - Tape is at ohysical eot

(The INITIAL velue of this Lyte communicates a device
type code to the Hon.tcr .mmediately after the
driver is loaded. See sprendix D.)

S) Boot Code Offset

This entry conteins the displacement to the boot
code, i.e. to the end of driver code. This is
used by the Monitor and does not further concern
the driver itself.

6) UNIT

This byte entry communicates the device unit ¢
to the driver. This is commonly addressed as
XON(RS). .

(The INITIAL value of this byte communicates the
version number of the driver.)

7) ERRB

This byte entry is used by the driver to
commun:cate errors and (sometimes) attention
conditions. It is tested immediately prior to
driver exit (as XER(RS)).

(The INITIAL value of this byte communicates the
patch number of this driver.

8) CMDREG
Th's is the address of the primary device command

register. It is the focus of the DDB and is used
by the dr’'ver to access all device registers.

SEQ 0008

2.3.2

2.3.3

2.3.4

ul

Page 9

9) WCOUNT, BUSADR, BLOCK

These entries are used to communicate to the
driver, the count, address, and block number of
a transfer command.

10) coMp

This entry contains the coded command to be
performed by the driver. This code is
interpreted in the driver’s dispatch routine,

11) DIRPTR

This entry points to the driver data structure
DIRBLK, & table which describes the physical

loyout of & disk. This pointer is the only

exception to the rule that local entries in this
table (as opposed to their conies in the DDB)

are not used. The driver’'s INIT routine may toggle
this pointer for some "two-unit” drivers to point to
on alternate DIRBLK structure to be active on the
next load. This feature permits one driver to be used
with two units with differing densities, etc.

DIRBLK

This data structure communicates particulars of the
device's physical layout. Its first several entries
mirror the structure of a variety 02 MFD, which is now
used for non-bad-blocking devices as well. Note that
for non-bad-blocking devices, the data contained in
DIRBLK is constant and the MFD need never be actuall
read. For some drivers which support two units, DIRBLK
will be replicated, and DIRPTR will be toggled back and
forth by the driver's INIT routine.

Local datea

This section contains data structures used internally by
the driver to store state information, construct packets,
etc. Some unit-dependent local data may be appended to
DIRBLK to teke advantage of DIRBLK switching for two-unit
drivers,

Error Messages

Th's section contains the error messages printed by the
driver. The utilities may append information to such
messages, e.g. if the driver prints “RD ERR", the utility
will note the error through the error byte XER(RS), and
may append, for example, “IN INPUT DIRECTORY",

SEQ 0009

2.4.2

2.4.3

2.4.4

(1

Page 'V

Executable Code
DISPATCH Routine

The dispatch routine receives control from the util ty or
monitor, examines the command code in the DDB, and gives
control to subordinate routines. Dispatch may, in
addition, perform code sequences common to its sub-
ordinates or indeed perform some simple commands. Just
prior to exit, the dispatch routine tests the error byte
XER(RS) so that the calling utility may make an immediate
branch on error. At present, some dispatches are "“test
and call” and some table driven. In drivers with more
than 4 such tests, a table driven approach may save
space.

INIT Routine

The init routine receives control from dispatch. Its
primary function is to perform any physical initial-
ization and to set local DIRBLK variables to reflect unit
characteristics. It i1s assumed to have been called
immediately after the driver is loaded. Init may also
perform auxillary functions, such as determining device
density.

DRIVER Routine

The driver routine receives control from dispatch. It
commonly handles I/0 transfers. In many cases, the code
in this routine is largely unchanged from that in V1.

Auxillary Routines
These routines are called by DISPATCH, INIT and JDRIVER.

SEQ 0010

3.0
3.1

L1

Page 11

Device Drivers Funct ons
All Drivers

There is a minimal set of funct ons which all drivers are
expected to perform:

INITS

This function is invoked once per device-unit,

either after the Monitor has been loaded or immediately
after a utility 'loads' a driver. Note that if &

gtalgt{ finds the requested driver to be already present,
it will not load a fresh copK. Before INITS is invoked,
parameter table information has been copied (or in the
coase of the Monitor, overlayed) on to the DDB; in
particular DIRPTR has been converted from relative to
absolute address (but only on a fresh load).

Tasks to be performed at this time include device
initiaslization (e.g. DU performs an initialization
sequence at this time when the value of a local variable
signifies that it is a fresh 'load’') and intialization
of local variables. Disk drivers which support bed-
blocking use this occasion to read the disk MFD and

set DIRBLK variables accordingly. Some drivers which
support two units with difFer:n? characteristics (e.a.
density) will togﬁle the (local) pointer DIRPTR ot this
time so that on the next 'load’', a different DIRBLK w:ll

be used.

You will see that, in those drivers which have a GTMFDI1
routine to read the MFD, a DIRBLK fle? XXMFID is checked
before any disk read is done. This f ag is raised b
the driver loading routine in the utility when & ZER
directive is in progress - in order to avoid reading
junk from a disk which is about to be cleared. The
IRBLK structure is updated by the utility during the
ZERO execution.

RES$FN

This function is invoked by the Monitor to read some_
blocks from the Monitor image, presumably after possible
corruption.

At this time the code relocates the requested block
number by the starting Monitor block number. The code
may assume that this entry in DIRBLK is either &
constant or has been updated during INIT$ processing.

SEQ 0011

M1

Page 12

This function is used by all drivers except LP:.

It is invoked by the Monitor or the utility to read

8 block or series of blocks from the device. The word
count, buffer address and starting block number (for
direct access devices) are found in the DCB.

It is the driver's function to convert the word count
and block numbers if necessary, to initiate the transfer,
and to weit until successful completion. If an error is
detected, the driver may try to effect recovery (e.g.
several disk drivers now have ECC correction routines).
If recovery is impossible, failure is communicated by
setting the XER byte in the DDB to a non-zero value.

WRITE$

This function is used by all drivers. All comments
concerning READ$ above are applicable here.

SEQ 0012

3.2

N1

Page 13

Disk Drivers

Disk devices are all directory structured. This is
signalled to the utility by having a positive first entry
in the DIRBLK table. A disk driver may have functions in
addition to those above:

RED$FN

This function requests the read of an absolute
cylinder/track/sector from a bad-blocking device. It
is invoked by the ZERO command execution in UPD2.
UPD2 places the c¥1inder. track and sector addresses
of the bad-block file (determined from DIRBLK) into
the DDB and issues the call.

CMPS$FN

The format of the bad-block file is a list of)
cylinder/track/sectors. The ZERO routine in UPD2 issues
a CMPSFN to convert these to block numbers, which it
uses to set the appropriate bit-maps.

DENSFN

The ZERO routine in UPD2 needs to know the disk density
to find the correct location of the bad-block file.

The driver returns a flag in the DDB status byte DVSB.

0 = single density
1 = double density

RFSFN,RFDFN

The DY driver performs hardware re-formatting of a disk
to s'ngle or couble density (as communicated to UPD2
through the ZERO command).

SEQ 00:3

3.3

B2

Page 14
Tepe Drivers

Orivers for toﬁe devices (communicated via the device
code byte in the DDB and by 8 negative first word in
DIRBLK) prov'de a variety of functions not needed for
disk devices. Tapes are not directory devices - every

file is preceded by a header which contains the file name.

The lo?icol end of tepe is a double EOF. In addition to
those funct ' ons listed as common to all dr,vers above:

PRE$TP

This function is invoked to set up the tepe controller
for subsequent commands.

REWSTP

This function is called to rewind the tape.

SPReTP

This funct'on ‘s called to backspace the tape.

Th's function is called to write & 7 word header.

RHD$TP

"his function is called to resd a header.

SEFSTP
This function is invoked to skip to an EOF, i.e. to
skip the rema ' nder of a file.

This function is called to write an EOF on tape.

SETSTP
This function is called to skip to the logical end
of tape, “.e. after all files.

STASTP

This function is invoked to return the tape status

(et BOT,TMK,physical EOT) through the device status
byte in the DDB. The two existing tape drivers, MM
and MS spprosch this differentl¥. MM backspaces the
tape ond then forward speces. f BOT was detected
during the backspace, this is returned as status.
Otherwise the status detected dur ng the forward space
‘s returned.The MS driver interrogates the controller
in real tme.

5EQ 0014

£

(9}

Ce

Page 15

Wr't'ng a Dr,ver

The best approach to writing a driver is to model it on
ex’'st ' ng ones. The drivers that presently exsist provide
a wide variety from which to choose, and are br'eny
characterized along several dimensions at the end of this
section. Some points to note:

1) Much of the driver preamble is device-independent and
may be copied wholesale. Look at the preamble of UPD2
to determine the symbolic command codes etc. with
which the utilities and drivers commun cate.

2) The device-dependent components of the preamble
follow informal conventions, e.g. control reg'ster
names are often similar from device to device. You
mey be able to copy this, with minor changes, from
some driver with a8 similar communications structure.

3) The parameter tables of all drivers are quite similar.

4) The DIRBLK specifies the physical layout of a disk
device. Be careful how you lay out a disk structure -
do not lock yourself into a structure which cannot be
easily expended to meet similar but larﬂ:; devices.
For example, you might want to put the itor im
towards the beginning of the disk, before the UFD and
Bitmaps, so that the bootstrap routine doesn’'t have
to contend with these areas as they change from device

t0 dev:ce.
Arn example of 8 good structure might be:
Block Purpose
0 Secondary bootstrap
1 MFD1 .
3 Start of Monitor .mage
3S. First UFD block
I5. « N First bit map
36, - N M # of blocks to oreallocate

Remember that, even though they are linked, UiD ond
bt map space are allocated conti usly by UPD2 et
dev'ce ZEROing. It is, in fact, this contiguity which
results in the possibility that the actual parameters
may differ among bad-blocking devices.

S; The DDB error byte ERR(RS) is used to communicate
failure. The driver must test this byte immediately
pefore ex'ting. Note that the polarity of this device
‘s used to commun cate different flavors of fa lure:
e.g. -1 often means 'dev'ce full'.

EQ 0015

6)

8)

9)
10)

De

Page 16

If you plen to have zgur driver support 2 disparate
devices at the same time (e.g. bad-blocking devices
ere disparate because the actuel location of some
things may change. There is a limit to this: the
boot routine may assume a constant location for the
Monitor image), you may want to toggle between two
DIRBLI('s. Be careful, in this case, to remember that
the parameter table acguallx overlays the DDB when
the driver is linked with the Monitor; toggle before
any changes are made to DIRBLK.

The DRIVER routine_in many drivers dissmbiguates some
of the commands. This is due to historical reasons
and commonality of some code.

Driver code must be location-independent. In part-
icular, this means that if addresses of local deate
sre manipulated, they must be calculated dynamically
rather than by the linker. E.g.

MOV #TABLE.RO ; will not get the address of
: TABLE

but

MOV PC,RO
ADD STABLE-. . R0 ; will work

All code must be processor independant.

The disk layout (reflected in DIRBLK) of some bad-
block ing devices depends on the medium density. When
a driver is 'loaded' as a result of a ZERDO command,
the MFD refreshed indicator in the DIRBLK s set by
UPD2 prior to invoking the INIT function. This is
tested in the driver's GTMFDl routine to bigass an
MFD read (the MFD may be junk). The UPDZ2 ZERO
command will issue a DENSFN to the driver to
determine the disk density, and will compute the

bed block file and bad-block dependent attributes
(first UFD, bitmap. and Monitor) accordingly. It will
not, however, set up the remaining density-dependent
DIRBLK entries: this should be done by the dgriver's
INIT code with consideration that the MFD might not
be read.

The MFD for all devices is written by UPD2 during a
ZERD command, and, for bad-blocking devices, must be
referenced (because it contains variable information)
b¥ the driver during an INIT function to update the
DIRBLK. The variables to be updated are starting UFD,
Mon tor, and bitmap block numbers. Except for this
reference, the driver need not concern itself with
the MFD variety or structure.

-£Q 0016

E2

Pege 17

S.0 Dev'ce Driver Characteristics

oe -

oy

DL

oM

RJPO4,5,6

Type .
Bed-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispeatch

- TUSH

Type .
Bed-blocking
Error-recovery
Communications
DIRBLK .
Two units/driver
Dispatch

- RLO1,02

Type .
Bed-blocking
Error-recovery
Communications
DIRBL¥

Two units/driver
Dispatch

- RK06,7

Type)
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

- RMO2,03

Type .
Bead-blocking
Error-recovery
Commun cations
DIRBLV

Two units/dr’ ver
Dispatch

) L] 4) ')) L]) L]) []

LN T N

Disk

No

ECC correction,retry
Device registers
Constant

Yes

Table

g;sk (directory structured tape)

Retry
Packet
Constant
Yes
Table

Disk

Yes

Retry

Device Registers

Veriasble according to bed-blocking
and density.

Yes
Table

Disk

Tes .

ECC correction,retry

Device Registers

¥oruable sccording to bad-blocking
es

Teble

Disk

Tes

€CC correction,retry

Device Registers

¥ariable according to bad-blocking
es

Table

5EQ 0017

OV - UDA SO,RD/RX

Type .
Bad-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

Dy

Type .
Bad-blocking
Error-recovery
Communications
DIRBLK

Two un ' ts/driver
Dispatch

LP - Line printer

Type .
Bead-blocking
Error-recovery
Communications
DIRBLK

Two units/driver
Dispatch

™ - TMO2

Type .
Bad-block ing
Error-recovery
Communications
DIRBLK

Two units/griver
Dispatch

MS TS04/7511

TVDC]
Bed-blocking
€rror recovery
Communicat ‘ons
DIRBLK

Two units/dr ver
0 spatch

I R SR B B}

. 4) +)) s

1)) 1 T ')

D sk
Transparent to driver

MSCP

Variable according to drive capsacity

Yes
Test and call

- R%02,01 (does not boot RX01l)

Disk

No

Retry

Device Registers

Variable according to RX01/02

Yes
Table

Line printer
Huh?
Device registers
Constant

No

Test and call

Tepe

Retry

Device registers
Constant -1

Yes

Table

Tepe

Retry
Packet
Constant -1
res

Table

G2

Page 19
5@ 0019

6.0 GLOSSARY
IRG - Tnterrecord gap. The 209 that is written

between records on magtape.

MFD - Master File Directory

RAD-S0 - RADIX-50. A method of encoding 3 ASCll
characters into one 16 bit word.

U D - User File Directory,.

vIC - User Identification code.

7.0 Bibl iography

XXDP./SUPR USE MAN, CHQUS??, AC-F348F-MC, current
XXDP. FILE STRUCT DOC, CHQFSRO, AC-S866A-MO, April, 1981

ro

EQ 0020

Appedicies

Appendix A Driver and Boot Example

The following is an example of & working driver (DB:), ed ted
slightlly to explicate structure.

.NLIST CNOD
.TI'LE RJPO4,5,6 - XXDP. V2 DRIVER

.SBTTL DRIVER REVISION HISTORY

: REV DATE CHANGE
: 1.0 31-JuL-78 INITIAL ISSUE
: 1.1 17-NOv-78 MAKE COMPATABLE WITH BIG DRVCOM
: 2.0 11-AUG-80 XXDP+ V1.1 COMPATIBLE
: REMOVED READ-ONLY CODE
: ADDED XER(RS) AS RESULT STATUS
: ADDED INIT ROUTINE
; REMOVED CLEAR MAPS ROUTINE
: 21-FEB-84 CHANGE FOR V2, INCLUDING ECC CORRECT
: 06-MAR-84 TWO UNITS/DRIVER - GOT RID OF GTMFDI
: 18 MAR-84 TABLE DRIVEN DISPATCH
: 35-APR-84 INITIALIZE RETURNED STATUS BYTE
PAGE
_NLIST ME,CND
INLIST MC
LIST MEB

.SBTTL DEVICE-INDEPENDENT EQUATES

XDIR =0 ;15T DIR BLOCK.

XDIRN =2 ;» OF DIR BLOCKS.

XMP =4 :1MAP BLOCK 3,

XMPN =6 ;& OF MAP BLOCKS.

AMFD1 =10 ;MFD1 BLOCK ¢&.

XVERS =12 ; AXDP_VERSION ¢ (1002 = VERSION 2)
AMxBr =14 ;MAX BLOCKS WORD.

RSBK =16 ;% OF BLOCKS TO RESERVE.
ITLVE =20 ; INTERLEAVE FACTOR.

BOoTBK =22 ;8007 BLOCK.,

MNEK =24 ;MONITOR CORE IMAGE BLOCK.
AMFID -26 :MFD REFRESHED INDICATOR.

; DEVICE DESCRIPTER BLOCK (DDB) EQUATES
DDB OFFSETS FOR R/W DRIVER

.
.

DDB OFFSETS FOR

XREW
XWCTR
XWILD
XFLONT
XSVMAP
XSVBLK
XSVDAT
XBKLGT
XLSTBK
XBUF
XSVCNT
XSVNAM
XSVEXT
X1STBK
XSV
XDN
XER
XCM
XWC
XBA
XD7T
XCO0
XDR
XXNAM
XBC
XNB
XCKSUM

SvC

MONITOR ARE A SUBSET

-50 ;INDEX TO INHIBIT REWIND INDCATOR
-46 ;INDEX TO WRITE COUNTER

-44 ;INDEX TO WILDCARD INDICATOR

-42 ;INDEX TO FILE COUNT

10 ;INDEX TO
12 ;INDEX TO
14 ;INDEX TO
16 ;;INDEX TO
20 ;INDEX TO

SERVICE ROUTINE (DRIVER)
INDEX

COMMAND REGISTER

WORD COUNT

BUS ADDRESS

BLOCK NUMBER OR TAPE SKIP ¢
COMMAND

1ST DIR BLOCK POINTER

ASCII NAME IN DDB

REQUESTED BLOCK COUNT

LAST BLOCK # ALLOCATED

= -40

= -36

= .34 :

= -3

= -30

= -26

= .24 :

= -22

= -16

= -14 :

= -12 ;INDEX TO

= -2 :DRIVE NUMBER
= 1 ;RESULT STATUS
= 0 : INDEX TO

= 2 ; INDEX TO

= 4 : INDEX TO

- 6 ; INDEX TO

22 ;CHECKSUM

[
>
w
<

CALCULATION IN SEARCH

;ALTERNATE NAME

INITS
READS
WRITES
RESS$FN

; INITIALIZE DEVICE AND BRING ON LINE
; READ

nuoew
W= O

: WRITE
: RESTORE

FUNCTION FOR MONITOR

; DISPATCH TABLE

..

P CODE BYTE

HULUNS

= 100 ; DRIVER PERMITS MULTIPLE DEVICES

SEQ 0021

.PAGE

Je

.SBTTL DEVICE-DEPENDENT EQUATES

RPUWC
RPBA
RPDA
RPCS2
RPER]
RPOF
RPOC
RPEC]
R2EC2

RJREAD
RJUWRITE

WORC COUNT REGISTER

BUS ADDRESS REGISTER

DESIRED SECTOR/TRACK REGISTER
CONTROL STATUS REGISTER 2
ERROR REGISTER 1

OFFSETT REGISTER

DESIRED CYLINDER REGISTER

€CC POSITION

ECC PATTERN

READ COMMAND
WRITE COMMAND

SEQ 0022

.PAGE

.SBTTL XXDP DEVICE DRIVER PARAMETER TABLE

THESE PARAMETERS ARE JSED IN COMMUNICATION WITH THE UTILITY

; PROGRAM
PARAM: DISPAT
.WORD
.BYTE
.BYTE
.WORD
UNIT: .BYTE
ERRB: .BYTE
CMDREG: 176700
WCOUNT: 0O
BUSADR: 0
BLOCK: O
COMD: 0
DIRPTR: DIRBLK
ASNAM: O

;DISPATCH ROUTINE

;:ORIVER NAME

;DEVICE CODE

;RETURNED DEVICE STATUS (INT DEVICE TYPE)
:800T CODE OFFSET

;UNIT ¢# (INTIAL REV # A)
;ERROR STATUS (INTIAL PATCH # 1)
; COMMAND REGISTER ADDR

; WORD COUNT

;BUS ADDRESS

;BLOCK NUMBER

: COMMAND

;POINTS TO 1ST DIR BLOCK.
;:FOR MONITOR COMPATIBILITY

SEQ 0023

.PAGE
.SBTTL DIRBLK TABLE

DIRBLK: 3 :1ST UFD BLOCK ADDR
170. :NUMBER OF UFD BLOCKS
173. ;1ST BIT MAP BLOCK ADDR
50. ;NUMBER OF MAP BLOCKS
1 ;MFD1 BLOCK ADDR
1002 ; VERSION 2 FLAG (NOT UPDATED)
48000. ;MAX_NUMBER OF BLOCKS ON DEVICE
255. ;@ OF BLOCKS TO PREALLOCATE AT ZERO
1 : INTERLEAVE FACTOR
0 ;800T BLOCK @
MONBLK: 223. :MONITOR CORE IMAGE BLOCK ¢
0 ;MFD REFRESHED FLAG. 0=NO, NON O=YES

.SBTTL LOCAL DATA

ECCPAT: .WORD 0,0 :STORAGE FOR ECC CORRECTION

.SBTTL ERROR MESSAGES

MWTERR: .ASCIZ <40><40>'? WT ERR'
MRDERR: _ASCIZ <40><40>'? RD ERR'
ILLERR: .éagﬁz <40><40>'? JLLEGAL CMND ERR'’

EQ 0024

.PAGE

.SBTTL MAIN DISPATCH ROUTINE

R R R R R R R R R R R 2 R R R R 2R R a2)}

DISPATCH ROUTINE FOR DRIVER

THIS ROUTINE RECEIVES CONTROL FROM A UTILITY
IT EXAMINES THE COMMAND CODE IN
XCO(RS) IN THE DDB, AND CALLS THE APPROPRIATE
LOCAL FUNCTION.

OR DRVCOM.

" CALLS APPROPRIATE INTERNAL FUNCTION.

TESTS ERROR BYTE BEFORE RETURN

INPUT
XCO(RS)
QUTPUT
REGISTERS CHANGED:
NONE

DISPAT: MOV RO, -(SP)

MOV R1,-(SP)

MoV R3,-(SP)

MOV R4, -(SP)

MoV PC.R1

suB #.,R1

MoV #TABLE-2,R0O

ADD R1,RO
10$: 1ST (RO).

TST (RO)

BMI 110$

CMP (RO)- ,XCO(RS)

BNE 10$

RDD (RO),R]

JSR PC,(R1)

BR 240¢

;: HERE IF ILLEGAL FUNCTION
110$: $ABORT AILLERR

MovB

2808: MOV
MOV
MOV
MOV
MoV
1578
RTS

sFUNCTION TABLE

TRBLE: .WORD

#-1,XER(RS)

(SP). R4
(SP)« ,R3
(SP)« ,Re
(SP)+,R1
(5P).,RO
XER(RS)

PC

- FIRST ELEMENT IS FUNCTION, SECOND IS ROUTINE

INITS , INIT

RES$FN,RESTOR
READS,DRIVER
H?ITEs.DRIVER

; SAVE

; TRUE ADDRESS

;:DIFFERENCE BETWEEN TRUE &

; APPARENT

M2

(21332 23R R 3RS 2 2R SRR3R 222 2222222222222 22222222 X2

;00 A TABLE SEARCH

;:GET REAL ADDRESS
;7O NEXT FUNCTION
;END OF TABLE ?

;MI = YES

;IS IT OUR FUNCTION ?
NE

: = NO
;ELSE GET REAL ADDRESS

:AND DO I7
;AND LEAVE

;NOT LEGAL COMMAND

;s SIGNAL
;RESTORE

:Set error indicator

;INITIALIZE

;MONITOR RESTORE

;BLOCK READ
;BLOCK WRITE

;END OF TABLE

— o e me ee———

“EQ 0025

N2
PAGE
S
.SBTTL. MAIN ROUTINE: INIT EQ 0026

RS IR IS IR RS Rl R i R s st st s P i e s 2222222l

;ROUTINE TO INITIALIZE THE DEVICE

S INPUTS:
: NONE

{ OUTPUTS :
:ROUTINES CALLED:
:REGISTERS CHANGED: NONE

R i 22 R 222 R 2 Rt R R e R R PR S R 2222222222

INIT: CLRB XER(RS) ;ASSUME GOOD RESULT
RTS PC

B3

.PAGE
.SBTTL MAIN ROUTINE: RESTORE

B T T T L T T T T T T
; ROUTINE TO READ PART OF THE MONITOR CORE IMAGE

: CALL AS FOLLOWS:
PUT BLOCK NUMBER RELATIVE TO MONITOR IN XDT(RS)

PUT NUMBER OF WORDS TO READ IN XWC(RS)
PUT ADDRESS TO READ INTO IN XBA(RS)
PUT REWSS$FN IN XCO(RS)

JSR PC,80IS(RS)

;

i GOOD RETURN:DATA READ
: ERROR RETURN: DIS TESTS XER(RS) BEFORE RETURN
: ROUTINES CALLED: DIS(RS)

. REGISTERS CHANGED: NONE

HERE I 22 A A AR A A R A R S A 222 2 2 R R 2 A2 R 2 22 R QR 2222222222 2222222222222 22/

RESTOR: ADD MONBLK ,XDT(RS) ;MAKE BLK NUMBER RELATIVE T0 0
MoV OREADS$, XCO(RS) ;D0 A READ FUNCTION
d?g :E.ODIS(RS) :LET DRIVER DO IT

SEQ 0027

.PAGE
.SBTTL MAIN ROUTINE: DRIVER

;oo.....................‘..O‘..‘...“.‘““““““““ttt“t“‘

; READ-WRITE DRIVER FOR THE RUPO4

' CALLED FROM DISPATCH
: PERFORMS READS AND WRITE$ FUNCTIONS

; GOOD RETURN:

: TRANSFER EFFECTED. XER(RS) CLEARED
; ERROR RETURN:

H MESSAGE TYPED, XER(RS) NONZERO

; REGISTERS CHANGED:

; RO,R1,R2,.R3,R4

--‘“..‘....‘...““‘.‘t...“““‘““““ttt“‘i“t“““tt‘t‘

DRIVER
CLRB XER(RS) ; ASSUME SUCCESSFUL RESULT
MOV e11.,.R4 ;& OF TIMES TO RETRY ON ERRORS
RPDRV1: DEC R4 :SHOULD WE CONTINUE?
BLE 33¢ :NO,SO REPORT ERROR
MOV (RS),R3 :DEVICE ADR
MOV XDN(RS) RO ;GET_UNIT NUMBER
B8IC 2177400,R0 ;STRIP OFF ANY JUNK
MOV RO,RPCS2(R3) :LOAD RESULT INTC RPCS2
MOV ¢10000,RPOF(R3) ;SET 16 BIT FORMAT IN RFOF REG
MOV #23,(R3) :DO A FACK ACK TO SET vv BIT
al')] XWC(RS),RPWC(R3) ;WORD COUN
NEG RPUC(R3) :TWO'S COHPLEHENT OF WC
MOV XBACRS).RPBA(R3) ;BUS ADR
MOV XDT(RS),R] ;BLOC_NUMBER
gog gg?..R? :22 SECTORS PER TRACK
L
is: gU% 3%.91 ;:DIVIDE BY SECTOR SIZE
L
INC RO ;UP TRACK COUNT
BR 1$
£s: ADD R2,R1 ;WENT T00 FAR
EOX gi.-(sp) :PUT SECTOR & ON STACK
L
MoV ¢19.,R2 :19 TRACKS PER CYLINDER
L 3 suB R2,R0 ;:DIVIDE BY TRACKS PER CYL
BLO 43 :TO GET TRACK AND CYL #
INC R1 :UP CTL COUNT IN Rl
BR 38 ;RO IS HOLDING TRACK ¢
4s: ADD R2,R0O sMAKE UP FOR GOING 10O FAR
SWAE RO :MOVE TRACK o T0 LEFT
8IS (SP).,RO ;OR IN RIGHT SIDE (SECTOR)
MoV RO,RPOA(RZ) :T0 DSK ADR REG
Hov R1,RPDC(RY) ;70 DSK CYL ADR REG
cP 2READS , XCO(RS) ;IS A READ ?
ENE 10¢ iNE = NO, MUST BE A WRITE
MOV #RUREAD, (R3) :ELSE START IT

ee 708
ics: noJ aRUWRIT, (R sSTART WRITE

SEQ 0028

32%:
3Ss:

33s:

36%:
20%:

0DONE 'ERROR, (R3)
30

20

gl?OOOO.RPERl(RS)

é
2100,RPERI(RY)
324

PC,ECCCOR

840 ,RPCS2(R3)
(R3)

314

204

(R3),RO
240,RPCS2(R3)
(R3)

35¢

640000,R0
RPDRV]

XER(RS)
XCO(RS),SREADS
364

AMUTERR

20$
SMRDERR
PC

:OONE OR ERROR?
;NEITHER

; DONE

;WAS A DATA CHECK FRROR?
;EQ = NO

;YES, IS IT CORRECTABLE?
;:NE = NO

;ELSE CORRECT IT
:CLEAR ERROR CONDITION
:WAIT TILL DONE

;AND LEAVE

;SAVE ERROR INFORMATION
:CO“E?OLLER CLEAR

:USS IT HARD ERROR?

; INDICATE ERROR
;:WAS ERROR ON READ?

; YES

sPRINT WRITE ERROR
;RETURN TO CALLER
;sPRINT READ ERROR

SEQ 0029

.PAGE
.SBTTL ROUTINE ECCCOR

{e BN 00SR0000RRNIENNITRIIEIITPIISERISEINIREERNEREEEEOREENIINIEIIS
; CORRECT A SOFT ECC ERROR
(ALGORITHM ADAPTED FROM THAT IN CZR6PD)

USES HARDWARE ERROR BURST PATTERN TO CORRECT A FAULTY
SEQUENCE OF UP TO 11 BITS

ECCCOR: MOV
CLR

MOV
MOV
MOV
MOV
ASL
MOV
ADD
DEC
MOV
ASR

CALLED BY DRIVER

GOOD RETURN:
DATA CORRECTED IN BUFFER

REGISTERS CHANGED:
R R4

ECCPAT.2
R3,-(SP)
RPEC1(R3),R1
XBA(RS),R3
EUC(RS).R4

4
R3,-(SP)
R4,(SP)

2177760.R0
5%

ECCPAT
ECCPAT.2
RO

38

(R3),R0
ECCPAT R}
ECCPAT,(R3)

(SP)e
(5P).,R3
pC

E3

200800000t e0 R0ttt Res sttt Rttt Rttt ettt Rttt

RPEC2(R3),ECCPAT

;:ERROR BURST PATTERN

;WILL SHIFT INTO THIS

:SAVE

;ERROR BURST POS COUNT
;BUFFER ADDRESS

:WORD COUNT

:NOW BYTE COUNT

sCALCULATE END OF

: TRANSFER

;CONVERT T0O BIT DISPLACEMENT

; SAVE
;:COMPUTE BYTE DISPLACEMENT

;WORD DISPLACEMENT

;ERROR WITHIN TRANSFER?

;HIS = NO, RETURN

;COMPUTE BUFFER ADDRESS OF ERR
;:STARTING BIT DISPLAC IN WORD
:EQ = ON WORD BOUNDARY

;SHIFT PATTERN 1 BIT LEFT
;POOR MAN'S ASHC
;DECREMENT COUNT

;UNTIL DONE

;CORRECT FIRST WORD

;WITH XOR OF PATTERN
;POOR MAN‘'S XOR

;CRECK IF SECOND WORD IS
:IN BUFFER, EQ= NO, ALL DONE
;ELSE DO NEXT WORD

;BUMP TEMP STORAGE

— o . e v ———

SEQ 0030

F3

SEQ 0031

| SECONDARY BOOT CODE AREA

éébDE:
_PAGE
'SBTTL BOOTSTRAP REVISION HISTORY
: REV DATE CHANGE
1.0 12-JUL-78 INITIAL ISSUE
1.1 17-NOV-78 MAKE COMPATABLE WITH XXOP.
1.2 12 JUL-82 MODIFIED TO SUIT VAX ASSEMBLER
1.3 29-MAR-83 WHEN TRYING 70 BOOT TO UNIT OTHER

THAN O AND UNIT O NOT ON BUSS, A
HALT AT 216 OCCURS
21-FEB-84 V2 CHANGE STACK AND MON SIZE

.PAGE

.SBTTL BOOTSTRAP

RBBO0T:

RBCSA:
START:

STAA™1

5¢:
10¢:

LNLIST
.LIST

RBCS1
REWC
RBBA
RBDA
RBCS2
RBDS
RBDC
BEGIN
MONCNT

NOP
BR
.WORD
HALT
.WORD
HALT
.BLKB

.WORD

NOP
BR
.BLKB
.WORD
.BLKB

: MOV

MOV
MOV
MOV
BIC
MOV
MOV
BIT
BEQ
BMI
1578
BPL
MOV
MOV
MOV
MOV
MOV
B8IT
BEQ
EP.
MOV
MOV
HALT
BR
MOV
JMP

.END

CND
MEB

LI I I TR T O]
—
o

20000 256.
START
6

12
4

176700

START]
12

0.0
24

#60000, SP
RBCSA,RS
#23,(R5)
RBCS2(RS),R2
#177770,R2

#40,RBCS2(RS)

R2 ,RBCS2(RS)
#100200, (RS)
104

254
RgDS(RS)

#-MONCNT,RBUWC(RS) ;
£1000,RBBA(RS)
#5003+ 1,RBDA(RS)

#0,RBDC(RS)
#71,(RS)
£100200,(RS)
204

304

(RS).RO
RBCS2(RS),RL

5
RS5,R1
34BEGIN

; SK1P B0OOT BLOCK

;START BOOT ROUTINE

TRAP CATCHER
;RESERVED INSTRUCTION ERR
TRAP CATCHER

G3

;RJPO4 DEFAULT CSR ADDRESS

:SET UP STACK

:GET RBCS1 ADDRESS

;00 PACK ACK TO SET VvV BIT

;GET UNIT NUMBER

;CLEAR CONTROLLER
;SET UNIT NUMBER

:READY?

;NO

;ERROR

DgIVE READY?
:SET UP WORD COUNT
LOAD AT LOCATION 1000
BLOCK # OF MONITOR

CYL
DO READ COMMAND
:DONE OR ERROR?

;NOT DONE
DO E
;SAVE STATUS

;AND ANY ERRORS
:HALT ON ERROR
;0K, TRY AGAIN

;PUT CSR ADDRESS IN DRIVER TABLE

; START UP HIMON

SEQ 0032

H3

SEC

Appendix: B Assembly and Linking Instructions

The Dr ver and Boot must be merged together and then
assmbled as a .MAC file. They should be maintained
separetly as shown in appendix A, that is they have

their own revision blocks. Assembling them together

helps to eliminate double references that would otherwise
occur. References to an absolute location by the BOOT code
must be done via an offset from BCODE:, which will be at
absolute zero dur 'ng the boot operation.

Command file to create a XXDP V2 DB DRIVER
MCR MAC DB,DB/CRF/-SP=MACROM.MAC,DB.MAC

Set the address limits for the driver and create
a binary file

MCR TKB
DB/NOMM/NQHD/SQ,DB/ -SP-0B
/

PAR=DUMMY:0:3200
STACK=0

/

$ WRITE SYS$QUTPUT “ Now type TKBBIN <CR> , *

$ WRITE SYS$SOUTPUT " When prompted for the file name enter DB."
$ WRITE SYSSOUTPUT " will create a driver called DB.BIN .*

Prere I I I I@ e

13

SEQ 0034
Appendix: C - Driver Equates

; XXDP+ Version 2 Equate Definitions

; DEVICE COMMAND CODES

INITS =0 ; INITIALIZE DEVICE and BRING ON LINE
READS =1 ; READ

WRITES = 2 ; WRITE

RES$FN =3 ; RESTORE FUNCTION for XXDP-SM
RFS$FN = 100 ; REFORMAT SINGLE DENSITY

RFDSFN = 101 ; REFORMAT DOUBLE DENSITY

PRESTP = 200 ; TAPE - PREPARE

REWSTP = 20} ; TAPE - REWIND

SPR$TP = 202 ; TAPE - REVERSE SPACE

WHDSTF = 203 ; TAPE - WRITE HEADER

RHDSTP = 204 ; TAPE - READ HEADER

SEFSTP = 206 ; TAPE - SKIP to EOF

WEFS$IP = 207 ; TAPE - WRITE EOF

SET$TP = 210 ; TAPE - SKIP to EOT

STA$TP = 211 ; TAPE - RETURN STATUS CODE

DENSFN = 374 ; RETURN DENSITY (0 = LOW, 1 = HIGH)
CMPS$FN - 375 ; COMPUT BLOCK # from SECTOR
WRTS$FN = 376 ; WRITE absolute SECTOR

REDSFN = 377 ; READ sbsolute SECTOR

DEVICE CODE BYTE

BBSUPS = 2 ; BAD BLOCK SUPPORT

NORENS = 4 ; TAPE CANNOT RENAME FILE

NODIR$ 10 ; NOT A DIRECTORY DEVICE

TAPEDS - 20 ; IS A TAPE DEVICE

REFDNS$ = 40 ; SUPPORTS SINGLE/DOUBLE DENSITY FORMAT
MULUNS = 100 ; DRIVER SUPPORTS MULTIPLE UNITS/DRIVER

: DEVICE RETURNED STATUS BYTE

BOTTPS - 2 ; TAPE IS AT BOT
TMKTPS = 4 ; TAPE IS AT TAPE MARK
EQCTTPY = 10 ; TAPE IS AT EOT

J3

SEQ 0035
Appendix: D - Device Type Codes

The Device Type Code (DTC) is placed 'nto bxte locat 'on 41 by tne
mon i tor everx time a binary File is run. This byte i1s then
e

designated the “losd medium indicator”. DTC's are assigned as
follows:
DTC DEVICE Type XXDP+ Version Notes
0 rt or ACTi1 1.3
1 ?ng (DECtape) 1.3
2 RKOS (disk) 1.3
3 RP0O2/RPO3 (disk) 1.3
4 TM10 (magtape) 1.3
S TA1l (cassette) 1.3
6 TU16/TM02 (magtape) 1.3 2.0
7 not used
10 RX01 (flopsz disk) 1.3
11 RP0O4/RS0S/RP06 (disk) 1.3 2.0
12 RSO03/RS04 (disk) 1.3
13 RK06/RK07 (disk) 1.3 2.0
14 RLO1/702 (disk) 1.3 2.0
15 RX02 (disk) 1.3 2.0
16 RM02/RMO3 (disk) 1.3 2.0
17 TUS8 (cassette) 1.3 2.0
20 TUS8/PDT1]1 (cassette) 1.3
2l 7504 (tape) 1.3 2.0
22 TM78 (tape) 1.3
23 UDA (disk MSCP) 1.3 2.0 1
24 TR79 (tape) 1.3
2S RD/RXS0 (disk) 1.3 2.0 i
26 RC2S (disk) 1.3 2.0 1
27 TKSO (tape MSCP TMSCP) 1.3 2.0
NOTES

1. These are MSCP class devices and under XXDP V2 are
handled by one driver which uses DTC = 23

	0000_fiche=1,x=00,y=00
	0001_fiche=1,x=00,y=01
	0002_fiche=1,x=00,y=02
	0003_fiche=1,x=00,y=03
	0004_fiche=1,x=00,y=04
	0005_fiche=1,x=00,y=05
	0006_fiche=1,x=00,y=06
	0007_fiche=1,x=00,y=07
	0008_fiche=1,x=00,y=08
	0009_fiche=1,x=00,y=09
	0010_fiche=1,x=00,y=10
	0011_fiche=1,x=00,y=11
	0012_fiche=1,x=00,y=12
	0013_fiche=1,x=01,y=00
	0014_fiche=1,x=01,y=01
	0015_fiche=1,x=01,y=02
	0016_fiche=1,x=01,y=03
	0017_fiche=1,x=01,y=04
	0018_fiche=1,x=01,y=05
	0019_fiche=1,x=01,y=06
	0020_fiche=1,x=01,y=07
	0021_fiche=1,x=01,y=08
	0022_fiche=1,x=01,y=09
	0023_fiche=1,x=01,y=10
	0024_fiche=1,x=01,y=11
	0025_fiche=1,x=01,y=12
	0026_fiche=1,x=02,y=00
	0027_fiche=1,x=02,y=01
	0028_fiche=1,x=02,y=02
	0029_fiche=1,x=02,y=03
	0030_fiche=1,x=02,y=04
	0031_fiche=1,x=02,y=05
	0032_fiche=1,x=02,y=06
	0033_fiche=1,x=02,y=07
	0034_fiche=1,x=02,y=08

