DECSA DECSA LOADABLE IMAGE CZLDIAO AH-FF45A-MC 1 OF 1 JUL 1985 COPYRIGHT© 1985 digital MADE IN USA B1 À ;; MASSBUS .REM # **IDENTIFICATION** PRODUCT CODE: AC-FF44A-MC 1123456789012345678901234567 PRODUCT NAME: CZLDIAO DECSA LOADABLE IMAGE PRODUCT DATE: 1-APRIL-85 MAINTAINER: DISTRIBUTED SYSTEMS DIAGNOSTIC ENGINEERING THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION. DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT. NO RESPONSIBILITY IS ASSUMED FOR THE USE OR RELIABILITY OF SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL OR ITS AFFILIATED COMPANIES. COPYRIGHT (C) 1985 BY DIGITAL EQUIPMENT CORPORATION THE FOLLOWING ARE TRADEMARKS OF DIGITAL EQUIPMENT CORPORATION: DIGITAL PDP UNIBUS DEC DECUS DECTAPE CZLDIAO LOADABLE IMAGE MACRO M1200 25-APR-85 14:05 PAGE 2 DECSA LOADABLE DIAGNOSTIC IMAGE USERS GUIDE APRIL 1985 AC-FF44A-MC | 60
61 | SECTION ONE Loadable Diagnostic Image | | |--|--|----------------------------------| | 62
63 | 1.0 General Information for the Loadable Diagnostic Image | | | 64
65 | SECTION TWO PAM Repair Diagnostics | | | 66
67 | 2.0 General Information for CIDSAA and CIDSBA PAM Tests | No. | | 68 | 2.1 Program Abstract | | | 69 | 2.2 System Requirements 2.3 Releated Documents and Standards | | | 69
70
71
72
73
74
75
76
77 | 2.4 Diagnostic Hierarchy Prerequisites | | | 71 | 2.5 Assumptions - Restrictions | | | 72
73 | 2.6 Operating Instructions | | | 74 | 2.7 Commands | 1 | | 75 | 2.8 Switches | 1 | | 76 | 2.9 Flags 2.10 Hardware Questions | | | 77 | 2.11 Types of Error Messages | 10 | | 78 | 2.12 Device Error Messages | 1 | | 79 | 2.13 Test Summaries for CIDSAA PAM Test #1 | 1 | | 80
81 | 2.14 Test Summaries for CIDSBA PAM Test #2 | 5 | | 79
80
81
82
83
84 | SECTION THREE Line Card Repair Diagnostics | | | 84 | 3.0 General Info for CIDSCA and CIDSDA Line Card Tests | 38 | | 85 | 5.0 Program Abstract | 38 | | 86
87 | 3.1 System Requirements | 38 | | 88 | 3.3 Diagnostic Hierarchy Prerequisites | 38 | | 89 | 3.4 Assumptions - Restrictions | 38 | | 90 | 3.5 Operating Instructions 3.6 Hardware Questions | 38
38
39 | | 91 | 3.7 Error Information | | | 92 | 3.8 Configuration Information | 40 | | 93 | 3.9 Test Summaries for CIDSCA Line Cand Test 41 | 41 | | 94
95
96 | 3.10 Test Summaries for CIDSDA Line Card Test #2 | 4 | | 96
97 | SECTION FOUR CBT Repair Diagnostic | | | 98 | 4.0 General Information for CIDSEA CBT Test | 51 | | 99 | 4.1 Program Abstract | 51 | | 100 | 4.2 System Requirements | 51 | | 102 | 4.5 Assumptions | 51 | | 103 | 4.6 Operating Instructions 4.7 Hardware Questions | 52 | | 104 | 4.8 Software Questions | 52 | | 105 | 4.9 Error Message Formats | 53 | | 106
107 | 4.10 Test Summaries for CIDSEA | 51
52
52
53
53
54 | | 108 | SECTION FIVE System Exerciser | | | 110 | 5.0 General Information for SYSEXE - System Exerciser | 57 | | 111 | 5.1 Operating Instructions | 57 | | 112
113 | 5.2 Line and Slot Identification Under SYSEXE | 57 | | 114
115 | SECTION SIX Updating the LDI to BLO6 - CSVLDI.SYS | 58 | | 116 | SECTION SEVEN Known Problems with LDI BLO6 | 59 | | | | | | 118 | | |---------------------------------|--| | 119 | | | 120
121
122
123 | | | 122 | | | 124
125 | | | 125 | | | 126
127 | | | 128 | | | 129 | | | 128
129
130
131
132 | | | 132 | | | 133 | | | 134
135 | | | 136 | | | 137 | | | 138
139 | | | 140 | | | 141 | | | 142
143 | | | 144 | | | 145 | | | 146
147 | | | 148 | | | 149 | | | 150
151 | | | 152 | | | 153 | | | 154
155 | | | 156 | | | 157 | | | 158
159 | | | 160 | | | 161
162 | | | 163 | | | 164 | | | 165 | | | 166
167 | | | 168 | | | 169 | | | | | # 1.0 GENERAL INFORMATION for the Loadable Diagnostic Image The LDI consists of many software components residing in one large image. The purpose of one image is to allow the testing of the DECSA Subsystem as configured without user interaction. Execution of the LDI (once the image has been loaded) requires PLUMON to be loaded in a run state. The VMR utility allows you to issue a RUN command to an installed task before the image is saved. Both the RSX-11S and PLUMON (PLU>) will be in this state. PLUMON is the initial controlling task for the LDI. Upon initial execution PLUMON will determine the mode of operation, AUTO or MANUAL. The mode selection in made from a value in a CBT read/write register. The CBT ROM code will deposit a -1 value in this register for AUTO mode and clear it for MANUAL mode. DECSA short self-test and LDI load is selected by first pressing the "start" button and then when the LEDs are flashing at the quick rate pressing the "test" button. Manual mode is selected by putting the test button in the out position while the LDI is being loaded, as indicated by the L 5n in the LEDs. Automatic mode is selected by the "test" button being in the "in" position when the LDI has completed loading and has started. Uses of the DECSA TEST BUTTON. | test button | mode | comments | |-------------|----------------|--| | in | automatic mode | The 5 diags + sysexe should execute followed by operating system boot. Verify all diags are complete. | | out | manual mode | The PLU> should be displayed.
Run SYSEXE selecting # of
passes and loopback. | | out | manual mode | The PLU> should be displayed.
Run each of the 5 diags. Run
the diags selecting external
loopback. | | out | manual mode | The PLU> should be displayed. Type in "AUTO". The 5 diags and SYSEXE should run followed by a boot request for the operating system. | # CZLDIAO LOADABLE IMAGE MACRO M1200 25-APR-85 14:05 PAGE 5 | 171
172
173
174 | Currently there are five diagnostics and a system exerciser that can be executed either in AUTO mode or executed separately in MANUAL mode. | |--------------------------|---| | 175
176 | DIAGNOSTICS: | | 177
178
179 | CIDSAA REV C PAM REPAIR TEST #1 CIDSBA REV C PAM REPAIR TEST #2 | | 179
180
181 | CIDSCA REV C LINE CARD REPAIR TEST #1 CIDSDA REV C LINE CARD REPAIR TEST #2 | | 182
183 | CIDSEA REV C CBT TEST SYSTEM EXERCISER: | | 184
185
186 | SYSEXE | | 100 | | | LOADABLE DIAGNOSTIC IMAG | | |--------------------------|----| | *************** | × | | * 00000 | 1 | | * RSX11-S | - | | | * | | ************* | r: | | | | | * DECNET | , | | * UNA MICROCODE | 1 | | * PAM MICROCODE | * | | | 1 | | ************* | * | | | 1 | | * PLUMON | 1 | | | 1 | | ************* | | | | | | * FRUMON | 1 | | • | , | | *************** | | | | | | * DRS/RSX MODULE | 4 | | * | 4 | | ******** | | | | - | | * PAM DIAGNOSTICS | - | | + 1411 DINGHO311C3 | - | | ************* | | | ************ | | | * LINE CARD DIAGNOSTICS | - | | - FTHE CHAIN DIMONOSITCS | | | . | * | | | | | + CPT DTACMOSTES | | | * CBT DIAGNOSTIC | | | | * | | *************** | * | | everur | * | | * SYSEXE | * | | • | * | | *************** | * | | • | * | | * COMMON MSG BUFFER | * | | * COMMON DATA BUFFER | * | | * DEVICE I/O PAGE DEF | * | | | * | | ****** | | | 236 | | |--|--| | 22222222222222222222222222222222222222 | | | 240 | | | 242 | | | 244
245 | | | 246
247 | | | 248
249 | | | 250
251 | | | 252
253 | | | 255
256 | | | 257
258 | | | 259
260 | | | 261
262 | | | 263
264 | | | 265
266 | | | 267
268 | | | 269
270 | | | 272 | | | 274 | | | 276
277 | | | 78
279 | | | 280 | | | 282 | | # 2.0 GENERAL INFORMATION for CIDSAA and CIDSBA PAM Tests # 2.1 PROGRAM ABSTRACT The "PAM" repair level diagnostic (1) programs is meant to provide field service and manufacturing with a tool to maintain the "digital ethernet communication server," "protocol assist modules (PAM). "The program will provide the coverage necessary to detect failures in the "PAM" module set only. Fault detection is to the functional level, while fault isolation is to board (M3110 or M3111). # 2.2 SYSTEM REQUIREMENTS In order to run this diagnostic program, the following minimum hardware is required: - A PDP-11 CPU "PROTOCOL PROCESSOR (PP)" (PDP 11/24) - MINIMUM OF 256K WORDS OF SYSTEM MEMORY - CONSOLE BOOT TERMINATOR (CBT) - RSX11-S "LDI" SOFTWARE OR XXDP+ SUPPORTED LOAD MEDIA AT LEAST ONE "PAM" MODULE SET CONSISTING OF AN M3110 AND M3111 # 2.3 RELATED DOCUMENTS AND STANDARDS - XXDP+ USER'S MANUAL (CHQUS?.SEQ WHERE ? IS THE REV. LEVEL OF THE MANUAL - "C" IS THE CURRENT REV.). # 2.4 DIAGNOSTIC HIERARCHY PREREQUISITES The goal of the "PAM" diagnostic program is to test the M3110 and M3111 therefore, it is assumed that the "self test diagnostic" has run, and the "CBT" and "system memory" are fully functional. A failure in the aforementioned devices could fail this diagnostic and the user should be aware of this possibility. # 2.5 ASSUMPTIONS - RESTRICTIONS It is assumed that the prerequisite diagnostics have been executed (refer to section 2.4). The operator should also be familiar with the operating instructions in section 2.6. # 2.6 OPERATING INSTRUCTIONS Section 2.7 - 2.10 contains a brief description of the Pluto runtime services (PLU>). For detailed information, refer to the XXDP+ user's manual (CHQUS). # 2.7 COMMANDS There are eleven legal commands for the diagnostic runtime services (SUPERVISOR). This section lists the commands and gives a very brief description of them. The XXDP+ user's manual has more details. | COMMAND EFFECT | | |---|-----------------------
 | | | | START THE DIAGNOSTIC FROM | AN INTITAL STATE | | RESTART START THE DIAGNOSTIC WITH | OUT INTITAL TAINS | | CONTINUE CONTINUE AT TEST THAT WAS | TNTERRIBTER | | PROCEED CONTINUE FROM AN ERROR HA | T T | | *EXIT RETURN TO PLUMON (SEE NOT | | | ADD ACTIVATE A UNIT FOR TESTI CONSIDERED TO BE ACTIVE A | NG (ALL UNITS ARE | | DROP DEACTIVATE A UNIT | I START ITHE) | | PRINT PRINT STATISTICAL INFORMA BY THE LDI) | TION (NOT IMPLEMENTED | | DISPLAY TYPE A LIST OF ALL DEVICE | TNEORMATTON | | FLAGS TYPE THE STATE OF ALL FLAG | ES COMMITTEE | | ZFLAGS CLEAR ALL FLAGS | | A command can be recognized by the first three characters. So you may, for example, type "STA" instead of "START". *NOTE: After completion of a diagnostic run, type "EXIT" at the DR> prompt to get back to the PLUMON prompt "PLU>" to run the next diagnostic or SYSEXE. Also refer to the NOTE in section 2.8 on switches. # 2.8 SWITCHES There are several switches which are used to modify supervisor operation. These switches are appended to the legal commands. All of the legal switches are tabulated below with a brief description of each. In the descriptions below, a decimal number is designated by "DDDDD". | SWITCH | EFFECT | |-------------|--| | | *************************************** | | /TESTS:LIST | EXECUTE ONLY THOSE TESTS SPECIFIED IN THE LIST. LIST IS A STRING OF TEST NUMBERS, FOR EXAMPLE - /TESTS:1:5:7-10. | | | THIS LIST WILL CAUSE TESTS 1,5,7,8,9,10 TO BE RUN. ALL OTHER TESTS WILL NOT BE RUN. | | /PASS:DDDDD | EXECUTE DDDDD PASSES (DDDDD = 1 TO 64000) | | /FLAGS:FLGS | SET SPECIFIED FLAGS. (SEE SECTION 2.9) | | /EOP:DDDDD | REPORT END OF PASS MESSAGE AFTER EVERY DDDDD PASSES ONLY. (DDDDD = 1 TO 64000) | | /UNITS:LIST | TEST/ADD/DROP ONLY THOSE UNITS SPECIFIED IN THE LIST. LIST EXAMPLE - /UNITS:0:5:10-12 USE UNITS 0,5,10,11,12 (UNIT NUMBERS = 0-63) | | | 302 3.12.0 4.3.14.11.12 (ON11 NOTIBERS - 0-03) | | 34423
34423
34445
3445
3445
3445
3455
345 | | | |--|--|--| | 369
370
371
372
373
374 | | | | 376
377
378
379 | | | | 381
382
383
384 | | | | 385
386
387
388 | | | | 399
391
392
393
394
395
396 | | | # EXAMPLE OF SWITCH USAGE: # START/TESTS:1-5/PASS:1000/EOP:100 The effect of this command will be: 1) TESTS 1 THROUGH 5 WILL BE EXECUTED. 2) ALL UNITS WILL TESTED 1000 TIMES. 3) THE END OF PASS MESSAGES WILL BE PRINTED AFTER EACH 100 PASSES ONLY. A switch can be recognized by the first three characters. you may, for example, type "/TES:1-5" instead of "/TESTS:1-5". NOTE: When running under the LDI it is good practice to set the PASS and HALT ON ERROR Flags, so you can get back to the PLU> prompt by typing "EXII". # STA/PASS:1/FLA:HOE BELOW IS A TABLE THAT SPECIFIES WHICH SWITCHES CAN BE USED BY EACH COMMAND. | | TESTS | PASS | FLAGS | EOP | UNITS | |--------------------------------|-------|------|-------------|-----|-------| | START | X | Х | X | X | Х | | RESTART
CONTINUE
PROCEED | : X | X | X
X
X | X | X | | DROP
ADD
PRINT | | | | | X | | DISPLAY
FLAGS | | | | | X | | ZFLAGS
EXIT | | | | | | # 2.9 FLAGS Flags are used to set up certain operational parameters such as looping on error. All flags are cleared at startup and remain cleared until explicitly set using the flags switch. Flags are also cleared after a start command unless set using the flag switch. The ZFLAGS command may also be used to clear all flags. With the exception of the START and ZFLAGS commands, no commands affect the state of the flags they remain set or cleared as specified by the last flag switch. | FLAG | EFFECT | |------|--| | | | | HOE | HALT ON ERROR - CONTROL IS RETURNED TO
RUNTIME SERVICES COMMAND MODE | | LOE | LOOP ON ERROR | | IER* | INHIBIT ALL ERROR REPORTS | | IBE* | INHIBIT ALL ERROR REPORTS EXCEPT
FIRST LEVEL (FIRST LEVEL CONTAINS | | IXE* | ERROR TYPE, NUMBER, PC, TEST AND UNIT) INHIBIT EXTENDED ERROR REPORTS (THOSE | | | CALLED BY PRINTX MACRO'S) | | 700 | | |-----|---| | 398 | PRI DIRECT MESSAGES TO LINE PRINTER | | 399 | PNT PRINT TEST NUMBER AS TEST EXECUTES | | 400 | BOE "BELL" ON ERROR | | 401 | UMATTENDED MODE (NO MANUAL INTERVENTION) | | 402 | ISR INHIBIT STATISTICAL REPORTS (DOES NOT | | 403 | APPLY TO DIAGNOSTICS WHICH DO NOT SUPPORT | | 404 | STATISTICAL REPORTING) | | 405 | IDR INHIBIT PROGRAM DROPPING OF UNITS | | 406 | | | 407 | | | 408 | LOT LOOP ON TEST | | 409 | EVL EXECUTE EVALUATION (ON DIAGNOSTICS WHICH | | | HAVE EVALUATION SUPPORT) | | 410 | | | 411 | *ERROR MESSAGES ARE DESCRIBED IN SECTIONS 2.11. 3.10 AND 4.7 | | 412 | | | 413 | See the XXDP+ user's manual for more details on flags. You may | | 414 | specify more than one FLAG with the flag switch. For example, | | 415 | to cause the program to loop on error, inhibit error reports | | 416 | and type a "RELL" on appear were arror, inhibit error reports | | 417 | and type a "BELL" on error, you may use the following string: | | 410 | 그는 그는 그는 그는 그는 그는 그는 그들은 그래요? 그 사람들은 사람들은 그들은 그들은 그들은 그들은 그들은 그들은 그들은 그를 모르는 것이다. | # 2.10 HARDWARE QUESTIONS /FLAGS:LOE:IER:BOE When a diagnostic is started, the runtime services will prompt the user for hardware information by typing "CHANGE HW (L)?" you must answer "Y" after a start command unless the hardware information has been "preloaded" using the setup utility (see chapter 6 of the XXDP+ user's manual). When you answer this question with a "Y", the runtime services will ask for the number of units (in decimal). The "PAM" repair diagnostic will test up to two units. However, the diagnostic automatically checks to see if the requested units for test are there and drops any not responding. Also, the "CBT" is checked for a one or two "PAM" system indicator (CBT DCR BITO) and drops those units that do not, according to the sizing program, belong. The user may wish to inhibit the droping of units by setting the flag "inhibit program drop macro (IDU)". | | 46
46
46
47
47
47
47
47
47
47
47
47
47
47
47
47 | 4444444555555555678901234567890123456789012515 | | |---|--|--|--| | 4 | 84 | | | ### # UNITS (D) ? 2<CR> UNIT 0 Unibus Address of "PAM" ? 171200<CR> Hard Error Interrupt Vector ? 130 <CR> Soft Error Interrupt Vector ? 134 <CR> UNIT 1 Unibus Address of "PAM" ? 171000<CR> Hard Error Interrupt Vector ? 140 <CR> Soft Error Interrupt Vector ? 144 <CR> # 2.11 TYPES OF ERROR MESSAGES There are three levels of error messages that may be issued by a diagnostic: general, basic and extended. General error messages are always printed unless the "IER" flag is set (section 2.9). The general error message is of the form: NAME TYPE NUMBER ON UNIT NUMBER TST NUMBER PC:XXXXXX ERROR MESSAGE WHERE NAME = DIAGNOSTIC NAME TYPE = ERROR TYPE (SYS FATAL, DEV FATAL, HARD OR SOFT) NUMBER = ERROR NUMBER UNIT NUMBER = O - N (N IS LAST UNIT IN PTABLE) TST NUMBER = TEST AND SUBTEST WHERE ERROR OCCURRED PC:XXXXXX = ADDRESS OF ERROR MESSAGE CALL Basic error messages are messages that contain some additional information about the error. These are always printed unless the "IER" or "IBE" flags are set (section 2.9). These messages are printed after the associated general message. Extended error messages contain supplementary error information such as register contents or good/bad data. These are always printed unless the "IER", "IBE" or "IXE" flags are set (section 2.9). These messages are printed after the associated general error message and any associated basic error messages. # 2.12 DEVICE ERROR MESSAGES Error messages that occur in the initialize code, due to the SIZING program finding fault with the expected and received PAM configuration, are as follows: - a. The SIZE program couldn't find PAM1 in the system. - a.1. PAM1 is not in the system and should be: Unit 0 dropped - b. The SIZE program couldn't find PAM2 in the system but the CBT indicates it should be there (BITO=0 in DCR). | 493
494 | b.1. PAM2 is not in the system and should be: Unit 1 dropped | |--|--| | 495
496
497 | c. The SIZE program found PAM2 in the system but the CBT indicates that it shouldn't be there (BITO=1 in DCR). | | 498
499 | c.1. PAM2 is present and should not be. | | 500
501
502 | The following is a list of the basic format followed in printing Device Error messages in this diagnostic. | | 503
504 | ; | | 505
506
507 | This message says that the Micro-Instruction LSI[] failed to move data to Local Storage correctly. | | 508
509 | Local Storage Address Mux Test Failed | | 510
511 | Local Storage Addressing Scheme LSI[] Failed | | 51 <i>2</i> | Address in Error == 171234 | | 513
514 | Expected Data == 125 | | 515
516 | Received Data == 333 | | 517
518 | Contents of (SEQA) == 00043 | | 519
520 | : | | 520
521
522
523 | This message says that the Soft error Interrupt occurred before the hard error interrupt. | | 524
525 | Force Hard/Soft error Interrupt test failed | | 526
527 | Interrupts occurred out of sequence | | 528
529 | Lest Interrupt Expected == 130 | | 530
531 | last Interrupt Received == 134 | | 532
533 | · · · · · · · · · · · · · · · · · · · | | 533
534
535
536
537
538 | This message says that an ADD instruction failed in the high nibble 2901 slice. | | 538 | ALU (2901) Function test failed | | 539
540 | Expected results ==
340 | | 541
542 | Oprnd 1 ==000 | | 543
544 | Oprnd 2 ==340 | | 545
546 | Function == ADD | | | | Results == 240 2.13 TEST SUMMARIES For CIDSAA PAM Test #1 ### TEST 1 This test will check the ability to Read/Write all locations in the PAM address space. The interrupt service routine (VECTOR 4) will set an error flag to indicate that an interrupt occurred. The diagnostic does a Read, checks the error flag, Write and checks the error flag again. If an error flag was set after the read or write, the diagnostic will report the address and the function in error. # TEST 2 This test will check that CSR1 R/W bits can be set and cleared from the Unibus and can be cleared by "INIT" (Bit 03). All bits are first written with ones (except "FORCE PE", "LCPRS", "INTENB", "INIT", "RUN" "SINGLE STEP") and then checked to see that the correct bits were set. CSR1 is then written with zeros and reread to check that the bits cleared. CSR1 is again written with ones (except "FORCE PE", "LCPRS", "INTENB", "RUN" and "SINGLE STEP") but this time "INIT" is set (Bit 03) also. All bits, except Line card Present which is not checked, should be cleared when reread. # TEST 3 This test will check that CSR2 R/W bits can be set and cleared from the Unibus and can be cleared by "INIT" (CSR1 Bit 03). The register is written with different data patterns and checked to see that the correct bits were set or cleared. CSR2 is again written with ones but this time "INIT" is set in CSR1. All bits should be cleared when read and rechecked by the diagnostic. ### TEST 4 This test checks for SA1 and SAO bits in the WCSA register by writing several data pattern to the register and reading/verifying the results of the write. The following patterns are used: # TEST 5 This test will check for SAO and SA1 bits in WCS by first writing all location with a given pattern and then reading WCS to verify the data. The diagnostic will dump the address in error, expected data, received data and XOR data. The following patterns are used: ### TEST 6 This test will perform a dynamic check of WCS by using a modified Moving Inversions algorithm. Starting with WCS cleared to all zeros, 24 passes are made (one for each data bit) from the lowest to the highest address. Each location is first read to verify that the background pattern was stored correctly, then a single bit is rewritten to the location and reread to verify that the new-pattern was stored correctly. This process is repeated until WCS is filled with all ones. The next step (step 2) is to repeat the above process on WCS, now with an all ones background pattern, but this time each individual bit is cleared. This will leave WCS filled with zeros and ready for the next step. Step 3 and 4 are the same as 1 and 2 but the sequence starts at the Highest WCS address and works to the lowest. The key to the moving inversions test is doing the Read-Write-Read sequence as fast as possible. Therefore, the check of data is done after the Read-Write-Read sequence has completed. # TEST 7 This test will check for SA1 and SAO bits in Local Storage. All Local Storage location are first written with a given data pattern. The diagnostic then reads all locations and verifies the data. If an error occurs, the LS Address, Data Written, Data Read and the XOR Data are output to the terminal. # TEST 8 This test will perform a dynamic check of Local Storage by using a modified Moving Inversions algorithm. Starting with local storage cleared to all zeros, 8 passes are made (one for each data bit) from the lowest to the highest address. Each location is first read to verify that the background pattern was stored correctly, then a single bit is rewritten to the location and reread to verify that the new-pattern was stored correctly. This process is repeated until local storage is filled with all ones. The next step (step 2) is to repeat the above process on local storage, now with an all ones background pattern, but this time each individual bit is | 6534
6556
6556
6556
6556
6656
6656
6657
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6757
6 | | |
---|--|--| | 686
687
688
689
690
691
692
693
694
695 | | | | 694
695 | | | 697 698 cleared. This will leave local storage filled with zeros and ready for the next step. Step 3 and 4 are the same as 1 and 2 but the sequence starts at the Highest local storage address and works to the lowest. The key to the moving inversions test is doing the Read-Write-Read sequence as fast as possible. Therefore, the check of data is done after the Read-Write-Read sequence has completed. ### TEST 9 This test will check that a Local Storage parity error can be forced by using "Force Parity Error" in CSR1. Force Parity error (FPE) is set in CSR1 and then data is written in Local Storage. The data written should have bad parity and should cause a parity error (LSPE) when read. The diagnostic will read the Local Storage location and then check that LSPE and PE both set in CSR1. Several data patterns are used when loading local Storage to assure the integrity of the Parity checkers and generators. ****** Interrupts are disabled in this test ***** # TEST 10 This test will check that the 2911 Microsequencers are able to Sequence through all WCS Addresses. This is accomplished by loading all locations in WCS with A HALT instruction then overwriting locations as follows: # Location Instruction ``` 0000 R[0] <-- [1] : Load A number in Reg. 0001 LS[7760] <-- R[0] : Write LS 0001 BR[1463] : Branch 1463 LS[7761] <-- R[0] : Write LS+1 1464 BR[2525] ; Branch 2525 LS[7762] <-- R[0] : Write LS+2 2526 BR[7417] : Branch 7417 LS[7763] <-- R[0] ; Write LS+3 7420 LS[END] <-- [-1] ; Set done 7421 HALT : HALT ``` When this Microroutine Runs, Local Storage Locations 7760 to 7763 will be Incremented and the Microsequencers should halt at Location 7421. The Macrocode will report, if an error occurs, the Expected and Received HALTED SEQUENCER ADDRESS, and the Expected and Received contents of LOCAL STORAGE. # TEST 11 This is a test of the ability to read and write the MSR. Command-Segment-Descriptor-Block-Entry is first set in CSR1 and then microcode is started. The micro-code will write zeros to all bits except 6 (Clock) in the MSR and then store the contents of MSR in Local Storage. All bits in the MSR are then written with ones except 7,6 and 1 (hrd-err-int, clock and sft-err-int). After several micro-cycles the MSR is again read and the contents stored. The micro-cycles between write and read of the MSR is to allow bit 6 (clock) to reset. This test is not a check of Clock timing, only a check of read/write bits in the MSR. ### TEST 12 This test will check to see that the Local Storage Address Mux can properly select the correct input for the different Local Storage Addressing modes. Local Storage 2525 and 5252 are the locations used as the sources and destinations for for the MOV instructions. ### LIMITATIONS: The Programmable Line Number register must be operational for this test to work. The Local Storage addressed by Special Character MOV instruction is not used in this test. This instruction will be tested in a later test. ### TEST 13 This test will check that there are no Ram A/B address lines SA1/SAO or shorted together. All Ram locations, except locations "5", "12", and "14", are first written with Zero. The locations 5,12, and 14 are then written with Ones, followed by a read of all other locations to Local Storage. The action of writing the ones will overwrite any zero'd locations address with ones if the address lines are tied together. Fore example: if address lines 0 and 1 are shorted, then when address 5 is written, location 7 would be overwritten with Ones. The next step is to rewrite all locations with zero except locations 5,12 and 14 and then read and save in Local Storage the unwritten locations (5,12,14). The action of writing the locations will again force an overwrite into one of the unwritten locations (5,12,14) if the address lines are shorted. The diagnostic will read Local Storage an verify the integrity of the data written to each Ram location. # TEST 14 This test will check the 2901 Ram locations for SA1 and SA0 bits. Data patterns are written to Ram and the Ram is written to local storage for verification by the diagnostic. The following patterns are used: 125, 252, 314 and 360. | 755 | | |--------------------------|--| | 755
756 | | | 757 | | | 758 | | | 759 | | | 760
761 | | | 762 | | | 763 | | | 764 | | | 765 | | | 766 | | | 767
768 | | | 769 | | | 770 | | | 771 | | | 772 | | | 773 | | | 774 | | | 775
776
777
778 | | | 777 | | | 778 | | | 779 | | | 780 | | | 781 | | | 782 | | | 783
784 | | | 785 | | | 786 | | | 787 | | | 788 | | | 789 | | | 790
791 | | | 792 | | | 793 | | | 792
793
794
795 | | | 795 | | | 796
797 | | | 797 | | | 798
799 | | | 800 | | | 801 | | | 802 | | | 803 | | | 804 | | | 805 | | | 806
807 | | | 808 | | | 300 | | # TEST 15 This test will check the ability of the 2901 to rotate the RAM left. A ram location is loaded with data to be shifted. The data is then shifted and written to Local Storage for examination by the diagnostic. Local Storage should look as follows when the test completes: | LS Address | Data | |------------|------| | 7760 | 902 | | 7761 | 004 | | 7762 | 010 | | 7763 | 020 | | 7764 | 040 | | 7765 | 100 | | 7766 | 200 | | 7767 | 001 | | | | # TEST 16 This test will check that the 2901 RAM can be shifted Right. Data is loaded into a ram location to be shifted. The RAM location is then shifted and the results written to Local Storage for examination by the diagnostic. Local Storage should look as follows when the test completes: | Local | Storage | Address | DAT | |-------|---------|---------|-----| | | 7760 | | 100 | | | 7761 | | 040 | | | 7762 | | 020 | | | 7763 | | 010 | | | 7764 | | 004 | | | 7765 | | 002 | | | 7766 | | 001 | | | 7767 | | 200 | # TEST 17 This test will check that the Q register and the RAM can be shifted left. Both the Q and a RAM location are loaded with data to be shifted. The registers are shifted eight times and read after each shift to Local Storage. Local Storage should look as follows when the test completes: | _ocal | Storage | address | Data | | | |-------|------------------------------|---------|--------------------------|-------------------|---| | | 7740
7741
7742
7743 | | 002
004
010
020 | (Q register data |) | | | 7744
7745 | | 040
100 | | | 826 827 828 834 835 856 857 858 | 810
811
812 | 7746
7747 | 200
001 | | |-------------------|----------------------|-------------------|------------| | 813
814 | 7750
7751 | 002
004 | RAM data) | | 815
816
817 | 7752
7753 | 010
020 | | | 818
819 | 7754
7755
7756 |
040
100
200 | | | 820
821
822 | 7757 | 001 | | | 823 | TEST 18 | | | This test will check that the Q register and the RAM can be shifted Right. Both the Q and a RAM location are loaded with data to be shifted. The registers are shifted eight times, each time writing the shifted data to Local Storage. Local Storage should look as follows when the test completes: | Local Store | age address | Data | | | | | | |--|----------------------------|--|---|-----|---------|--------|---| | 774
774
774
774
774
774
774 | 11
12
13
14
15 | 100
040
020
010
004
002
001
200 | (| Qr | egister | · data |) | | 775
775
775
775
775
775
775
775 | 1
2
3
4
5
6 | 100
040
020
010
004
002
001
200 | C | RAM | data) | | | # TEST 19 This test will check the Q register for SA1/SAO bits and Check that writing the Q/RAM locations do not affect each other. The Q is first written with data patterns and each time the contents is saved in Local Storage. Next, Ram location 0 is cleared and the Q written with 377. The RAM location is then saved in local storage and again written with ZERO. The contents of the Q is then saved in Local Storage. | 860
861 | | |------------|--| | 862
863 | | | 864
865 | | | 866 | | | 867
868 | | | 869
870 | | | 871 | | | 872
873 | | | 874
875 | | | 876 | | | 877
878 | | | 879 | | | 880
881 | | | 882
883 | | | 884
885 | | | 886 | | | 887
888 | | | 889 | | | 890
891 | | | 892
893 | | | 894 | | | 895
896 | | | 897
898 | | | 899 | | | 900
901 | | | 902
903 | | | 904 | | | 905
906 | | | 907 | | | 908 | | | 910 | | | 915 | | | | | # TEST 20 This test will check the ALU (2901) functions using the microcode CALC instructions (the opcode roms are not tested). The microcode will fetch two Operands from Local Storage. Each function is executed on the Operands and the results written to an assigned Local Storage location. The diagnostic will read and verify the results of each operation. Several passes through the diagnostic are made with different operand pairs to fully check 2901 operation. Local Storage locations are assigned as follows: | ocal | Storage | Address | Function | assigned | |------|---------|---------|----------|----------| | | 7760 | | "OR" | results | | | 7761 | | "AND" | results | | | 7762 | | "XOR" | results | | | 7763 | | "XNOR" | results | | | 7764 | | "NOTRS" | results | | | 7765 | | "ADD" | results | | | 7766 | | "SUBR" | results | | | 7767 | | "SUBS" | results | | | 7770 | | Operand | | | | 7771 | | Operand | | # TEST 21 This test will check the ALU (2901) functions using the microcode Opcode "G" instructions in an attempt to check the I/O of the opcode roms. Each function is executed on an Operand and the results written to an assigned Local Storage location. This test is not an attempt to check the 2901 ALU, only the opcode roms inputs and outputs. Local Storage locations are assigned as follows: | Local Storage Address | Function assigned | |-----------------------|---| | 7760
7761 | "ADD" results (Opcode 40) | | 7762 | "ADD" results (Opcode 50) "SUBS" results (Opcode 41) | | 7763 | "SUBS" results (Opcode 51) | | 7764
7765 | "SUBD" results (Opcode 42) | | 7766 | "SUBD" results (Opcode 52) "OR" results (Opcode 43) | | 7767 | "OR" results (Opcode 53) | | 7770
7771 | "AND" results (Opcode 44) "AND" results (Opcode 54) | | 7772 | "XOR" results (Opcode 46) | | 7773 | "XOR" results (Opcode 56) | | 7774
7775 | "XNOR" results (Opcode 47) "XNOR" results (Opcode 57) | | 7776 | Anon results (upcode 57) | | 7777 | DONE FLAG | ### TEST 22 This test will check that all read modify write instructions used on Local Storage work correctly. The test mainly checks the two Opcode Decode Roms on the M3110 board. Microcode operates on instruction dependent operands stored in Local Storage. The operands are chosen to assure that Both 2901 slices must work on the data. The Diagnostic will then check Local Storage locations for correctness of data and report any errors. ### TEST 23 This test will check that the CALL and RTS functions in Microcode work and the Micro-Stack is the correct depth. Four consecutive CALLS are made to different routines in WCS. Each routine does a CALL to the next routine until the last routine is reached. The last (routine 4) Microroutine writes a location in Local Storage and then does an RTS to the previously called routine which also increments a Local Storage location and an RTS. The process is continued (Increment Local Storage then do RTS) until the Micro-Stack is empty and the Micro-PC has returned to the starting Micro-Address+1. Local Storage will then be read by the Diagnostic to verify that all Micro-Routines were hit. Local Storage should contain the following: | Address | Data | |---------|------| | 7760 | 001 | | 7761 | 001 | | 7762 | 001 | | 7763 | 001 | | 7764 | 001 | It should be noted that the Micro-Routines are NOT loaded in contiguous WCS locations as it may appear in the listing. # TEST 24 This test will check the POP function in Microcode. Four consecutive CALLS are made to different routines in WCS. Each routine does a CALL to the next routine until the last routine is reached. The last Microroutine (routine 4) writes a location in Local Storage and then does three consecutive POPs of the Micro-Stack followed by an RTS. The RTS should bring the Micro-PC back to the starting Micro-Address+1. Local Storage will then be read by the Diagnostic to verify that the first and last Microroutines increment Local Storage (NO OTHER MICROROUTINE WAS RETURNED TO). Local Storage should contain the following: | 2202110 | LONDADEL 3 | LINGL | TINCHO TITEOU | 23-MFK-03 | 14:05 | PAGE 21 | |--|------------|-------|---------------|-----------|--|---| | 967
968 | | | | | | Address | | 969
970
971
972
973
974 | | | | | , | 7760
7761
7762
7763
7764 | | 975
976
977 | | | | | | should be r | | 978
979 | | | | | TEST 2 | 25 | | 980
981
982
983
984
985
986
987
988
989 | | | | | Steppi
addres
single
the co
is cor
single
Micro- | est checks ng through s register s-stepped to rect in the s-stepped a routine ha that all | | 990
991 | | | | | Local | Storage s | | 992 | | | | | | Address | | 994
995
996 | | | | | | 7760
7761
7762 | | Address | Data | |---------|------| | | | | 7760 | 001 | | 7761 | 000 | | 7762 | 000 | | 7763 | 000 | | 7764 | 001 | It should be noted that the Micro-Routines are NOT loaded in contiguous WCS locations as it may appear in the listing. This test checks that the Micro-sequencer is capable of Single Stepping through a Microroutine and the Micro-sequencer address register is operating correctly. The micro-routine is single-stepped through each micro-instruction while examining the contents of the Sequencer address register. If the address is correct in the register, then the Sequencer is single-stepped again. This process continues until the Micro-routine has halted. Local Storage is then examined to verify that all instructions functioned correctly. Local Storage should contain the following: | Address | Data | |---------|------| | 7760 | 001 | | 7761 | 001 | | 7762 | 001 | | 7763 | 001 | | 7764 | 001 | It should be noted that the Micro-Routines are NOT loaded in contiguous WCS locations as it may appear in the listing. # TEST 26 This test will check that the SYNC bit in the Microword will halt the Microprocessor and will set PE and SYNC ACK in CSR1. A Microroutine is loaded that has SYNC set in two of the microwords. The diagnostic will start the microcode and wait for SYNC ACK and PE to set and the RUN bit to clear in CSR1. SYNC ACK and PE are then cleared and RUN reset to allow the Microroutine to continue. Again the aforementioned sequence is repeated and the expected results of the Microroutine is examined. Any errors in status or the Microroutine results is reported. | 1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1030
1031
1032
1033
1034
1035
1036
1037
1038
1040
1041
1042
1043
1044
1045
1046 | | |--|--| | 1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062 | | | 1064
1065
1066
1067 | | # TEST 27 This test will check that a WCS parity error can be forced and the correct bits set in CSR1. A Microroutine is loaded in WCS with a bad parity microwords. The diagnostic will start the routine and check that WCSPE and PE both set in CSR1. Process on error is also set so the Microroutine should complete the Microroutine correctly. ***** Interrupts are disabled in this test ***** Local Storage locations are assigned as follows: | ocal | Storage | Address | Function | assign | |------|---------|---------|----------|---------| | | 7760 | | "OR " | results | | | 7761 | | "AND" | results | | | 7762 | | "XOR" | results | | | 7763 | | "XNOR" | results | | | 7764 | | "NOTRS" | results | | | 7765 | | "ADD" | results | | | 7766 | | | results | | | 7767 | | | results | | | 7770 | | Operand | | | | 7771 | | Operand | | | | | | | | # TEST 28 This is a check of the Special Character Recognition Register bits 0 to 2 and Mux. The microcode loads the
Special Character register (SCR) by doing consecutive loads of the Destination Register (DR). Bits 0 to 2 of the SCR select the bit in the DR to be tested. If the selected bit is set then the Branch on Special Condition will be taken. Both branch and no branch conditions are tested (bit under test set and cleared) for all bits in the destination register. ### TEST 29 This is a check that Local Storage can be addressed by Special Char. register. Local Storage can be addressed by a combination of Special Character register, Line Number register and Microword. The Line Number register contents is used as LS address bits 3 to 7, while the Special Char. reg. contents is used as LS address bits 0 to 2 and 8 to 9. LS address bits 10 and 11 are derived from the Microword. Locations 2525 and 5252 in Local Storage are used in the transfer of data. These locations correspond to setting and clearing each bit in the Local Storage address. The test is successful if data is correctly moved to and from these locations. | 1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1081
1083
1084
1085
1086
1087
1088
1089
1090
1091
1093
1094
1095
1096
1107
1108
1108
1108
1108
1108
1108
1108 | | |--|--| | 1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121 | | # TEST 30 This test will check that the Interlock function is working correctly. The microcode loads a location in Local Storage with Bit O Set. The location is then complemented-leaving the location with bit O clear (376) - and the interlock branch is tested. Since Bit O was set before the compliment function, the interlock flop will set and the branch will be taken. The local storage location is again complimented (001) leaving bit O set and the branch is again tested. Since bit O was clear before the compliment, the branch will not be taken. # TEST 31 This test will check that the microcode can do a CALL, RIS and POP on a condition code. The interlock condition is used only because forcing interlock requires minimal hardware and because it has already been tested. No attempt is made to test all the possible condition codes only the Micro-sequencer control bits are tested. Local Storage locations are used to save function indicator codes as follows: | Local Storag | e Address fur | nction | code | | |--|--|--------|--|--| | 7760
7761
7761
7761
7775
7776
7777 | Work Location
CALL_IL []
RTS_IL
POP_IL
ERROR FLAG
ERROR FLAG
DONE FLAG | 3 or | 2 (condition
4 (condition
6 (condition | set - clear)
set - clear)
set - clear)
tack error)
error) | When the function is started (CALL_IL, POP_IL or RTS_IL), the routine will write its code to Local Storage. If the routine worked then the test continues to the next function; but, if the routine failed then the error flag is set and the Microroutine halts leaving the failing function code in Local Storage. # TEST 32 This test will check the Micro-Sequencer control logic and the Oring Mux during a CALL on Low Nibble. The destination register is loaded with a data pattern and a CALL_LN [] is done to a 16 location target area. The CALL_LN will "OR" the low nibble of the destination register with bits 0 to 3 of the called address. Each location in the target area will increment the same location in Local Storage until the table is exhausted and the RTS is performed. If the first location in the table is hit (lowest address in the table), then the number in Local Storage when when the RTS is performed will be "20" (octal) if the location "12" (oct.) is hit then the Local Storage location will contain a "6". Several data patterns are | 1123
1124
1125
1126
1127
1128
1129
1130
1131
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 | | |--|--| | 1147
1148
1149
1150
1151 | | | 1152
1153
1154
1155 | | | 1156
1157
1158
1159 | | | 1160
1161
1162
1163
1164 | | | 1165
1166
1167
1168 | | | 1169
1170
1171
1172 | | | 1173
1174
1175
1176
1177 | | | | | loaded to the destination register to check the integrity of the Oring Mux during the call and are as follows: # TEST 33 This test will check the Micro-Sequencer control logic and the Oring Mux during a CALL on High Nibble. The destination register is loaded with a data pattern and a CALL_HN [] is done to a 16 location target area. The CALL_HN will "OR" the high nibble of the destination register with bits 0 to 3 of the called address. Each location in the target area will increment the same location in Local Storage until the table is exhausted and the RTS is performed. If the first location in the table is hit (lowest address in the table), then the number in Local Storage when when the RTS is performed will be "20" (decimal) if the location "12" (oct) is hit then the Local Storage location will contain a "6". Several data patterns are loaded to the destination register to check the integrity of the Oring Mux during the call and are as follows: # TEST 34 This test will check that the Micro-sequencer is able to branch correctly on High Nibble and Low Nibble. The test only checks that the branches can be taken properly without affecting the micro-stack. It should be assumed that the Oring Mux is working properly by virtue of previous testing. ### TEST 35 This test will check Bit-Test Mux and the Micro-sequencer functionality by using micro-code Bit-Test instructions. The micro-code floats a "1" on a background pattern of zeros and a "0" on a background pattern of ones through the destination register. The Micro-code sequence is as follows: - A. Do the following for bits 0 to 7 - 1. Set the bit to test. - 2. Test the bit. - 3. Compliment the bit pattern. - 4. Test the bit. | 1179
1180 | | |--|-----| | 1181
1182
1183
1184
1185
1186 | | | 1187
1188
1189
1190 | | | 1191
1192
1193
1194
1195 | | | 1196
1197
1198
1199
1200 | * - | | 1201
1202
1203
1204
1205 | | | 1206
1207
1208
1209 | | | 1210
1211
1212
1213
1214 | | | 1215 | | | 1217
1218
1219
1220
1221
1222
1223
1224 | | | 1226 | | | 1228
1229
1230
1231
1232 | | | | | # TEST 36 This test will check that the "N" bit will set/clear and not effect, or be affected by the Z,C or V condition codes. The Micro-code will write a register with a negative number and then store the register contents in Local Storage. The condition codes are then checked by taking the correct branch. If the branch fails, an error flag, CC set/clear flag, data used and a function code are written to Local Storage. The function codes are as follows: BMI == 0 BPL == 1 BEQ == 2 BNE == 3 BCS == 4 BCC == 5 BVS == 6 BVC == 7 # TEST 37 This test will check that the "C" bit will set/clear and not effect, or be affected by the Z,N or V condition codes. The Micro-code will write two registers with different operands for the ALU to to ADD. The condition codes are then checked by taking the correct branch. If the branch fails, an error flag. CC set/clear flag, data used, results of the add and a function code are written to Local Storage. The function codes are as follows: BMI == 0 BPL == 1 BEQ == 2 BNE == 3 BCS == 4 BCC == 5 BVS == 6 BVC == 7 ### TEST 38 This test will check that the "V" bit will set/clear and not effect, or be affected by the Z,N or C condition codes. The Micro-code will write two registers with different operands for the ALU to to ADD. The condition codes are then checked by taking the correct branch. If the branch fails, an error flag. CC set/clear flag, data used, results of the add and a function code are written to Local Storage. The function codes are as follows: BMI == 0 BPL == 1 BEQ == 2 | 1234
1235 | | |----------------------|---| | 1236
1237 | | | 1238 | | | 1239
1240 | | | 1241
1242 | | | 1243 | | | 1244
1245 | | | 1246
1247 | | | 1248 | | | 1249
1250 | | | 1251 | | | 1252
1253
1254 | | | 1254
1255 | | | 1256
1257 | | | 1257
1258 | | | 1259
1260 | | | 1261 | | | 1262
1263 | | | 1264 | | | 1265
1266 | | | 1267
1268 | | | 1269 | | | 1270 | | | 1271
1272
1273 | | | 1274 | | | 1275
1276 | * | | 1277 | | | 1278
1279 | | | 1280 | | | 1281
1282 | | | 1283 | | | 1284
1285 | | | 1286
1287 | | | 250 | | BNE == 3 BCS == 4 BCC == 5 BVS == 6 BVC == 7 TEST 39 This test will check that the "Z" bit will set/clear and not effect, or be affected by the N,C or V condition codes. The Micro-code will write a register with data patterns to set or clear the Z Bit. The condition codes are then checked by taking the correct branch. If the branch fails, an error flag, CC set/clear flag, data used and a function code are written to Local Storage. The function codes are as follows: BMI == 0 BPL == 1 BEQ == 2 BNE == 3 BCS == 4 BCC == 5 BVS == 6 BVC == 7 TEST 40 This test will check the hard error interrupt control function through interrupt vector 130 or 140 (PAM1 or PAM2). An interrupt is forced by setting "Hard Error Interrupt" in
the Micro-code Status register. The interrupt service routine (HARDSERV) will save the status in CSR1, clear the error condition and restart the micro-code. The interrupt service routines for hard and soft error interrupts use a common flag word in memory and its format is as follows: Bits 0 to 7 = Interrupt Vector (Written by Service routine) Bit 8 = Hard Error Interrupt (Vector 130/140 Ser. rout. sets) Bit 9 = Soft Error Interrupt (Vector 134/140 Ser. rout. sets) Bit 10 = Double interrupt through vector 130/140 Bit 11 = Double interrupt through vector 134/144 If the reported CSR1 status is 0 then the interrupt service routine did not read status at time of interrupt. # TEST 41 This test will check the Soft error interrupt control function through interrupt vector 134 or 144 (PAM1 OR PAM2). An interrupt is forced by setting "Status Segment Descriptor Block Interrupt" in the Micro-code Status register. The interrupt service routine(SOFTSERV) will save the status | 1289 | | |------------------------------|---| | 1290 | | | 1291
1292 | | | 1293 | | | 1294 | | | 1295 | | | 1296
1297 | | | 1298 | | | 1299 | | | 1300 | | | 1301
1302 | | | 1303 | * | | 1304 | | | 1305 | | | 1306
1307 | | | 1308 | | | 1309 | | | 1310 | | | 1311 | | | 1312
1313 | | | 1314 | | | 1315 | | | 1316 | | | 1317 | | | 1318
1319 | | | 1320 | | | 1321 | | | 1322 | | | 1323
1324 | | | 1325 | | | 1326 | | | 1326
1327
1328 | | | 1328 | | | 1329 | | | 1330
1331
1332 | | | 1332 | | | 1333 | | | 1334 | | | 1335 | | | 1336
1337
1338
1339 | | | 1338 | | | 1339 | | | 1340
1341 | | | 1241 | | in CSR1 at interrupt time and load the interrupt flag word. The status in CSR1 should reveal that the Run bit remained set. The interrupt service routines for hard and soft error interrupts use a common flag word in memory and its format is as follows: Bits 0 to 7 = Interrupt Vector (Written by Service routine) Bit 8 = Hard Error Interrupt (Vector 130/140 Serv. rou. sets) Bit 9 = Soft Error Interrupt (Vector 134/144 Serv. rou. sets) Bit 10 = Double interrupt through vector 130/140 Bit 11 = Double interrupt through vector 134/144 If the reported CSR1 status is 0 then the interrupt service routine did not read status at time of interrupt. # TEST 42 This test will attempt to force both Hard error and Soft error interrupts through interrupt vectors 130/140 and 134/144, respectively. The interrupts are forced by setting "Hard Error Interrupt" and "Status Segment Descriptor Block Interrupt" in the Microcode Status register. Both bits, in the microcode Status register, are set at the same time this should cause the Hard Error Interrupt to occur first (Vector 130/140) and then the Soft Error Interrupt (Vector 134/144). The hard error interrupt will halt the PAM; therefore, the RUN bit is reset by the interrupt service routine. The soft error interrupt has no effect on the PAM microprocessor and will not halt the PAM. The interrupt service routines use a common flag word in memory to indicate which interrupt occurred first. The Flag Word is written as follows: Bits 0 to 7 = Interrupt Vector (Written by Service routine) Bit 8 = Hard Error Interrupt (Vector 130/140 Ser. rout. sets) Bit 9 = Soft Error Interrupt (Vector 134/144 Ser. rout. sets) Bit 10 = Double interrupt through vector 130 or 140 Bit 11 = Double interrupt through vector 134 or 140 2.14 TEST SUMMARIES for CIDSBA PAM Test #2 # TEST 1 This test will check the path to and from the Dash Bus using Scanner "Maintenance Mode" in "Address Wrap" and the 11/24 Dash Bus Window. The test sequence is as follows: - 1. Set CSR2 Bit 13 (Data Address Wrap) 2. Set CSR1 Bit 5 (Maintenance Mode) - 3. Read Dash Bus address window | | 13445
133445
133447
133447
133447
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13353
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
1353
13533
13533
13533
13533
13533
13533
13533
13533
13533
13533
135 | | |----|--|--| | 13 | 90 | | | 13 | 92 | | | 13 | 94 | | The data read from the Dash Bus window should consist of the contents of
CSR2 Bits 0-3 in the high nibble (Bits 4-7) the current Dash Bus window number should be in the low nibble (Bits 0-3). # TEST 2 This test will check the path to and from the Dash Bus using Scanner "Maintenance Mode" in "Data Wrap" and the 11/24 Dash Bus Window. The test sequence is as follows: - 1. Clear CSR2 Bit 13 (Data Address Wrap) - 2. Set CSR1 Bit 5 (Maintenance Mode) 3. Write the Dash Bus address window - 4. Read the Dash Bus address window The data read from the Dash Bus window should be the same as the data written. Any window location read should fetch the same data, indifferent to the window location written. ### TEST 3 This test will attempt to force a DASH BUS parity error through the 11/24 DASH BUS Window. The diagnostic will set "Maintenance Mode" and "Force Parity Error" in CSR1 (Bits 5 and 4) and then read an address in the Dash Bus Window. Status is then checked to see that "Dash PE" sets in CSR1 and "11/24 Dash PE" sets in CSR2. The process is again repeated and the error bits are written with a 1 to check that both clear. The final check is to force the error and then set INIT to again check that the error bits clear. # TEST 4 This test will check the ability of the PAM to read data from the Dash Bus. This is accomplished by setting the "Address Wrap" bit in CSR2, "Maintenance Mode" in CSR1 and having the PAM microcode do reads to the Dash Bus. The microcode loads the desired line number, using the programmable line register, and reads the desired Dash Bus Register (DBR). The data read should be a combination of the Line Number and the Register number: BITS 7 TO 4 == Line Number BITS 4 TO 0 == Register Number Local Storage will look as follows: 7760 == 17 (last line number used) If the branch condition fails for a specific line number, the line number in error will be saved in 7760 and one of the error flags will set as described below. ``` 1397 7761 == 125 (Register and line number wrapped) 1398 7762 == 252 (Register and line number wrapped) 1399 7763 == 314 Register and line number wrapped) 1400 7764 == 360 (Register and line number wrapped) 1401 1402 7775 == Dash Bus Parity Error (BPE) Branch was taken 1403 if bit 0 == 1. 1404 7776 == Read Not Done OR Dash Bus Parity Error (BDE) 1405 Branch did not clear if bit 0 == 1. 1406 1407 NOTE!! This is the first test that will check the branch 1408 conditions "BPE" (Branch on Dash Parity error) and 1409 "BDE" (Branch on Read Not Done or Dash Parity Error). 1410 1411 TEST 5 1412 1413 This test will check the ability of the PAM to do WRITES to 1414 the Dash Bus. This is accomplished by clearing Data/Adrs wrap 1415 in CSR2. Setting "Maintenance Mode" in CSR1 and having the PAM microcode write data to the DBR's. The microcode loads the the 1416 1417 line number and writes a Dash Bus Register with a data 1418 pattern. A different DBR is read to verify that the data 1419 pattern is the same as was written. The above process (write 1420 DBR - read different DBR) is done with several data patterns 1421 to verify the integrity of the data path. An attempt is is 1422 also made to test the STALL feature by doing successive writes, 1423 with different data patterns, to the dash bus each time a 1424 write/read cycle is done. 1425 1426 Local Storage will look as follows: 1427 1428 7760 == 360 (Last Data Pattern Written) 1429 1430 If the branch condition fails for a specific data pattern 1431 used, the pattern in error will be saved in 7760 and one of 1432 the error flags will set as described below. 1433 1434 1435 7761 == 125(Data Pattern Read)**If NO Parity Error on read ** 7762 == 252(Data Pattern Read)**If NO Parity Error on read ** 1436 7763 == 314(Data Pattern Read)**If NO Parity Error on read ** 1437 1438 7764 == 360(Data Pattern Read)**If NO Parity Error on read ** 1439 1440 7775 == Dash Bus Par Error (BPE) Branch was taken if bit 0=1. 1441 7776 == Read Not Done OR Dash Bus Parity Error (BDE) Branch 1442 did not clear if bit 0 == 1. 1443 1444 TEST 6 1445 1446 This test will attempt to force an Underrun condition and 1447 Transmit Error in Scanner "Maintenance Mode". The PAM 1448 microcode writes data to the Dash Bus that has "Bit 2" set 1449 (Bit 2 corresponds to XMIT ERR in the line status registers). ``` | 1451
1452
1453
1454
1455
1456
1457
1458
1459
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476 | | |--|--| | 1477
1478
1479
1480 | | | 1481
1482 | | | 1483
1484 | | | 1485
1486 | | | 1487
1488
1489 | | | 1490
1491
1492 | | | 494 | | | 495
496
497
498 | | | .499
.500
.501 | | | 502
503 | | Microcode informs the diagnostic that the data was written and then waits for a response. The Macrocode will set "Sync", "Transmit Flag" and "Maintenance Mode", then tell the Microcode to proceed. The PAM microcode will, when "Scan Entry" sets in the MSR, read and in Local Storage, store the contents of the "Data FIFO", "Status FIFO" and the "MSR". The Microcode then informs the Macrocode that the function is done. If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. ### TEST 7 This test will attempt to force a "Receive Error" condition in "Synchronous mode", using Maintenance mode. The PAM microcode writes a data pattern, that the Macrocode has passed to Local Storage, to the Dash Bus and waits for a response from the diagnostic. The Macrocode will then set "Sync" and "Receive Flag" in CSR2, set "Maintenance Mode" in CSR1 and tell the microcode to continue. The PAM microcode will, when "Scan Entry" sets in the MSR, read and store (in Local Storage) the contents of the "Data FIFO", "Status FIFO" and the "MSR". The Microcode then informs the Macrocode that the function was done. The contents of the "Status FIFO" and "Data FIFO" is dependent on the data pattern written to the "Dash Bus" and whether the "Sync" bit is set in "CSR2". In "Synchronous" mode bits 0 to 3 will cause a "Receive Error" to set in the "Status FIFO". Two entries will be entered in each FIFO for the error condition as follows: | STATUS FIFO | DATA FIFO | | |-----------------|---------------|--------------| | 1. Error set | Line Reg. 1 (| DATA WRITTEN | | 2. No error set | | DATA WRITTEN | Bits 4 to 7 should not cause an error condition and the FIFOS' will look as follows: | S | TATU: | S FIFO | | D | ATA | FIF(|) | |---|-------|--------|-----|---|------|------|------| | 1 | . No | Error | set | 6 | lece | ived | Char | | 2 | . NO | Error | set | R | lece | ived | Char | If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. | 1505 | | |----------------------|---| | 1506
1507 | | | 1508
1509 | , | | 1510
1511 | | | 1512
1513 | | | 1514 | | | 1515
1516
1517 | | | 1518 | | | 1519
1520 | | | 1521
1522 | | | 1523
1524 | | | 1525
1526 | | | 1527
1528 | | | 1529
1530 | | | 1531 | | | 1532
1533
1534 | | | 1535 | | | 1535
1536
1537 | | | 1538 | | | 1540
1541 | | | 1542
1543 | | | 1544
1545 | | | 1546
1547 | | | 1548
1549 | | | 1550
1551 | | | 1552
1553
1554 | | | 1554 | | | 1555
1556
1557 | | | 1557
1558 | | | | | TEST 8 This test will attempt to force a "Receive Error" condition in "Asynchronous mode", using Maintenance mode. The PAM microcode writes a data pattern, that the Macrocode has passed to Local Storage, to the Dash Bus and waits for a response from the diagnostic. The Macrocode will then set "Enable Scan Cntr" and "Receive Flag" in CSR2, then set "Maintenance Mode" in CSR1 and again wait for response from the PAM. The PAM microcode will, when "Scan Entry" sets in the MSR, read and store (in Local Storage) the contents of the "Data FIFO", "Status FIFO" and the "MSR". The Microcode then informs the Macrocode that the function was done. The contents of the "Status FIFO" and "Data FIFO" is dependent on the data pattern written to the "Dash Bus" and whether the "Sync" bit is set in "CSR2". In "Asynchronous" mode bits 3 to 5 will cause a "Receive Error" to set in the "Status FIFO". Two entries will be entered in each FIFO for the error condition as follows: | STATUS FIFO | DATA FIFO | |-----------------|--------------------------------| | 1. Error set | Line Reg. 1 (DATA WRITTEN) | | 2. No error set | Char. in Err. (DATA WRITTEN) | All bits, other than bits 3 to 5, should not cause an error condition and the FIFOS' will look as follows: | STATUS FIFO | DATA FIFO | |-----------------|----------------| | 1. No Error set | Received Char. | | 2. No Error set | Received Char. | If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. TEST 9 This test will attempt to force a "Receive Error" condition in "Synchronous mode", using Address Wrap. The Microcode writes a location in Local Storage informing the Macrocode that it is ready to proceed. The Macrocode will then set "Sync", "Receive Flag" and "Address Wrap" in CSR2 and then set "Maintenance mode" in CSR1. The Diagnostic then informs the PAM that the function was done. The PAM Microcode will, when "Scan Entry" sets in the MSR, | 1561
1562
1563
1564
1566
1566
1566
1566
1571
1577
1577
1577 | | |--|--| | 1605
1606
1607
1608
1609
1610
1611
1612 | | read and store (in Local Storage) the contents of the "Data FIFO", "Status FIFO" and the "MSR".
The Microcode then informs the Diagnostic that the function is done. This test loops through all the line numbers. The contents of the "Status FIFO" and "Data FIFO" is dependent on the "Dash Bus" address the "Scanner" is referencing and whether the "Sync" bit is set in "CSR2". The Scanner reads Line Register "1", when it sees a Receive Flag in Line Register "9" the address currently on the Dash Bus (Line Register 1) will appear as data of Line Register "1". Therefor, an error will be recorded in the status FIFO because "Bit 00" will be set. In "Synchronous" mode bits 0 to 3 will cause "Error" to set in the "Status FIFO". Two entries will be entered in each FIFO for the error condition as follows: | STATUS FIFO | DATA FIFO | |-----------------|-------------------------------| | 1. Error set | Line Reg. 1 (ADDRESS WRITTEN) | | 2. No error set | Line Reg. 0 (ADDRESS WRITTEN) | If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. TEST 10 This test will attempt to force a "Receive Error" condition in "Asynchronous mode", using Address Wrap. The Microcode writes a location in Local Storage informing the Macrocode that it is ready to proceed. The Macrocode will then set "Receive Flag" and "Address Wrap" in CSR2 and then sets "Maintenance mode" in CSR1. The Diagnostic then informs the PAM that the function was done. The PAM Microcode will, when "Scan Entry" sets in the MSR, read and store (in Local Storage) the contents of the "Data FIFO", "Status FIFO" and the "MSR". The Microcode then informs the Macrocode that the function is done. This test will loop through all the line numbers. The contents of the "Status FIFO" and "Data FIFO" is dependent on the "Dash Bus" address the "Scanner" is referencing and whether the "Sync" bit is set in "CSR2". The Scanner reads Line Register "1", when it sees a Receive Flag in Line Register "9", and the address currently on the Dash Bus (Line Register 1) will appear as the data of Line Register "1". An error will "NOT" be recorded in the status FIFO for the following Line Numbers: 0,4,8 and 12 all Line | 1616
1617
1618
1619
1620
1621
1623
1624
1626
1627
1628
1629
1631
1633
1633
1635
1636
1637
1638
1640
1642
1643
1644
1645
1646 | | |--|--| | 1659 | | Numbers, except those listed, will cause an Error bit to set in the Status FIFO. In "Asynchronous" mode bits 3 to 5 will cause "Error" to set in the "Status FIFO". Two entries will be entered in each FIFO for the error condition as follows: STATUS FIFO 1. Error set 2. No error set DATA FIFO Line Reg. 1 (ADDRESS WRITTEN) Char. in Err.(ADDRESS WRITTEN) If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. # TEST 11 This test will force the scanner to record a Modem Change for all line numbers. The test will start by forcing a Modem Change for all lines, with a known data pattern (zeros'). The Status and FIFO entries are ignored for the first data pattern used, since the initial values in the modem change ram is unknown. Subsequent patterns should yield the following: MEC should set in the STATUS FIFO the DATA FIFO should have the EXCLUSIVE "OR" of the previous pattern and the pattern written. The pattern used (after the pattern of ZEROS) is incrementing from 1 to 20 (OCT.). This pattern sequence will verify the DEPTH of the Modem Change Ram (16 Decimal locations). If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. # TEST 12 This test will force the scanner to record a Modem Change for all line numbers. The test will start by forcing a Modem Change for all lines with a known data pattern (zeros'). The Status and FIFO entries are ignored for the first data pattern used, since the initial values in the modem change ram is unknown. Subsequent patterns should yield the following: MEC should set in the STATUS FIFO the DATA FIFO should have the EXCLUSIVE "OR" of the previous pattern and the pattern written. Four data patterns are used to verify the data integrity of the ram, as follows: - 1. 252 Alternate zeros and ones - 2. 125 Above shifted right - 3. 063 Adjacent bits set and cleared 4. 017 Adjacent nibbles set and cleared If the microcode is unable to flush the FIFO's correctly. | 1669
1670
1671
1672
1673
1674
1675 | | |--|--| | 1676
1677
1678
1679
1680
1681
1682
1683 | | | 1685
1686
1687
1688
1689
1690
1691 | | | 1694
1695
1696
1697
1698
1699
1700 | | | 1669
1671
1672
1673
1674
1675
1676
1677
1678
1681
1682
1683
1684
1683
1684
1689
1693
1694
1695
1696
1701
1703
1704
1707
1708
1709
1709 | | | 1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721 | | | 1718
1719
1720
1721 | | which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. # TEST 13 This test will force a Dash Bus parity error for PAM Writes to the Dash Bus. The Microroutine first flushes the FIFO's and waits for the diagnostic to setup the function. The diagnostic will set Force PE, in CSR1, and informs the microcode that the function was done. When the microcode writes the Dash Bus window, Line in error and Dash Bus Parity error bit, along with the bad data, will load in the FIFOS. The contents of the Data and Status FIFOS is stored in local Storage. The Microcode will then test two Condition codes while the Force PE is set. A read will indicate the parity error by setting two microbranch condition codes: "Read Not Done or Parity Error"and "Read Dash Bus Parity Error". The state of the condition codes is saved in Local Storage for the Read and Write operations. The transfer of data to and from Local Storage will cause a "Local Storage Parity error" when Force Parity error is set. Therefore, the existence of this error bit is expected. It should also be noted that the contents of the Status and Data FIFO's is invalid unless Scan Entry is set in the MSR for each entry read. # TEST 14 This test will check that the Scanner can be disabled by setting Disable Scan in CSR2 (Bit 6) and starting a XMIT/REC function in "Maintenance Mode". The diagnostic first does a valid Scanner function to assure that known data will appear in the FIFO's. Scanner Disable is then set, the FIFO's flushed and a different type of Scanner function started. There should be no entries into any of the FIFO's form subsequent transfers and this will be verified by the diagnostic. If the microcode is unable to flush the FIFO's correctly, which indicates that Scanner Entry remains set, the microcode will set a Timeout flag in LS location 7776. # TEST 15 This test will check the Block Mover memory address register bits 0 to 21. A pattern is passed to Local Storage for the microcode to read and pass to the Block Mover address register. The microcode then starts a one word DATA-IN to Local Storage with the Block Mover. When the block move stops, the microcode will pass the contents of Last Memory Address register to Local Storage for verification by the program. The following patterns are used as addresses: 1. 05252525 2. 12525252 3. 14631463 #### TEST 16 The block mover is given an address of ALL ONES and a block move is started. The "PAM" should detect an "NXM" in the Micro-Status register and the block mover should stop. The microcode should be "Forced to Zero" when the "NXM" condition occurs and a check is made to see that the force condition occurred once only. #### TEST 17 This is a test of the Block Movers ability to do a DATA-IN form system memory. A data pattern is first written into system memory for the Block Mover to transfer. The Microcode fetches the memory address to write the data, number of words to transfer and Local Storage location to write, from the Pseudo CSR locations. The Block mover should be able to read the data from system memory (BUFFER) and write it to contiguous Local Storage locations. The pattern used is incrementing from 1 to 40 (octal). The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 18 This is a test of the Block Movers ability to do a DATA-OUT to system memory. A data pattern is first written into Local Storage for the Block Mover to transfer. The Microcode fetches the memory address to write the data, number of words to transfer and Local Storage location to read from the Pseudo CSR locations. The Block mover should be able to read the data from Local Storage and write it to a system memory location called BUFFER. The pattern used is incrementing from 1 to 40 (octal). The total transfer should be 16 Words. The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 19 This is a test of the Block Mover Local Storage address register. A data pattern is first written into Local Storage for the Block Mover to READ. The Microcode
fetches the memory address to write the data and number of words to transfer from the Pseudo CSR locations. The Block mover should be able to | 1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1797
1798
1799
1800
1801
1802
1804
1805
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817 | | |--|--| | 1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829 | | read the data from Local Storage and write it to a system memory location called BUFFER. The following Local Storage locations are used: | LS | Address | LS Data | |----|---------|---------| | | 5252 | 1 | | | 5253 | 2 | | | 2525 | 3 | | | 2526 | 4 | | | 1463 | 5 | | | 1464 | 6 | | | 3777 | 7 | | | 4000 | 10 | The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 20 This test will check the Block Movers ability to do a DATA_IN followed by a DATA_OUT. The PAM microcode first reads Local Storage to fetch Memory address, Word transfer count and starting function (DATA_IN). The microcode will then start, wait for BM to finish and then write the data read back to system memory. A check is made to see that STATUS, MSR and LAST MEMORY ADDRESS registers are correct. The data in system memory is then checked for correctness. The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 21 This test will force a Local Storage Parity error and see that the Block Mover will stop when the parity error is detected. Force Parity error is set in CSR1 and a location in Local Storage is written causing that location to have bad parity. When the Block Mover is started and reads the Bad Parity Location, it should stop the transfer. LSPE and PE should set in CSR1 but the microcode should not be Forced to Zero for this error condition. The first pass through the diagnostic POERR is set in CSR1. This will allow the block mover to complete the transfer of data. The second pass will CLEAR POERR and should halt the BLOCK MOVER and MICROCODE when bad parity is read. The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 22 This test will check the Block Movers ability to do a DATA IN followed by a DATA_OUT while the previous Block Move is still in progress. The PAM microcode first reads Local Storage to fetch Memory address, Word transfer count and function for both transfers. The microcode will start the DATA_IN then immediately start a Data-out with both transfers using the same Local Storage locations. If the Block Mover hasn't finished when another block move is started, a STALL of the microcode takes place until the first block move has finished. The Block Mover should be able to complete both block move operations. A check is made to see that Status, MSR and Last Memory address registers are correct; the data in system memory is then checked for correctness. The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. #### TEST 23 This test will check that the STEAL IBUS cycle operates correctly from the Fast-bus (Unibus) and PAM sides of the IBUS. A DATA_OUT block move is started by the Pam Microcode. While the block mover is operating, a series of reads and writes are done to Local Storage from the Pam and Unibus at the same time. Each time the IBUS is requested while the block mover is operating, the requesting operation will Steal an IBUS cycle from the block mover. Both the block move and the function that did the steal should continue to completion without error. The microcode is "Forced to Zero" for the following conditions: "NXM" (Non Existent Memory), "MPE" (Memory Parity Errors). A check is made to see that only one traverse through micro-location zero is made (START) by the Microroutine. | 1874
1875
1876
1877
1887
1887
1888
1888
1888
1888 | | |--|--| | | | - 3.0 GENERAL INFORMATION For CIDSCA and CIDSDA Line Card Tests - 3.1 PROGRAM ABSTRACT The line card repair level diagnostic (1) programs is meant to provide field service and manufacturing with a tool to maintain "digital ethernet communication server" digital manufactured line cards. The program will provide the coverage necessary to detect a failure in a line card function. The diagnostic is usually capable of isolating a fault to a particular line card. Line card types covered are M3100 sync, M3101 high speed sync, and the M3102 dual async line card. #### 3.2 SYSTEM REQUIREMENTS In order to run this diagnostic program, the following minimum hardware is required: - A PDP-11 CPU "PROTOCOL PROCESSOR (PP)" (PDP 11/24) - MINIMUM OF 256K WORDS OF SYSTEM MEMORY - CONSOLE BOOT TERMINATOR (CBT) - RSX11-S "LDI" SOFTWARE OR XXDP. SUPPORTED LOAD MEDIA - AT LEAST ONE "PAM" MODULE SET CONSISTING OF AN M3110 & M3111 - THE LINE CARD UNDER TEST # 3.3 DIAGNOSTIC HIERARCHY PREREQUISITES The goal of the "PAM" diagnostic program is to test digital manufactured line cards. It is assumed that the "self test diagnostic" has run, and the "CBT", "SYSTEM MEMORY" and "PAM(S)" are fully functional. A failure in the aforementioned devices could fail this diagnostic and the user should be aware of this possibility. ### 3.4 ASSUMPTIONS - RESTRICTIONS It is assumed that the prerequisite diagnostics have been executed (refer to section 3.3). The operator should also be familiar with the operating instructions in section 3.5. #### 3.5 OPERATING INSTRUCTIONS Refer to section 2.6 for a complete description of the operating instructions. NOTE: After making one pass of the diagnostic the UNIT flag can be used to test a single unit or more. STA/PASS:1/FLA:HOE/UNIT:1 !test unit 1 only. STA/PASS:1/FLA:HOE/UNIT:0-4 !tests units 0-4 only. | 1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939 | | |--|--| | 1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955 | | | 1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971 | | 1973 1974 STA/PASS:1/FLA:HOE/UNIT:1:3:6 !tests units 1,3 and 6 #### 3.6 HARDWARE QUESTIONS When a diagnostic is started, the runtime services will prompt the user for hardware information by typing "CHANGE HW (L) ?". If you answer "NO" the program will run with parameters in the hard coded hardware P-tables. If you answer "Y" after a start command, the runtime services will ask for the number of units (in decimal). #### ***** WARNING ***** # [THE NUMBER OF UNITS MUST ALWAYS BE 16.] The line card repair diagnostic will test up to 16 units. However, the diagnostic automatically checks to see if the requested units for test are there and drops any not responding. Also, the "CBT" is checked for a one or two "PAM" system indicator and drops line card unit associated with any PAM not present or not responding. If the PAM configuration does not agree with valid PLUTO configurations or with information in the CBT configuration register an initialization error message is output. An initialization error message is also output if the program has difficulty sizing line cards. Initialization error messages are indicated by error numbers of the form INI XXXXXX. The hardware P-tables exist to communicate operational parameters for each unit to the diagnostic. These parameters consist of an "LOOPBACK" flag. Loopback indicates that loopback connector(s) are permanently installed on all the line cards that are selected and that external loopback tests may be run without operator intervention. The DRS prompting for P-table parameters includes a indication of the default value which may be used by responding with a <CR>. All remaining P-table questions for any unit may be defaulted by typing a single <CTRL Z>. The operational parameters are: LOOP-BACK MODE - Indicates if external loopback connectors are permanently installed on all the selected line cards. The following P-table dialog alters the default by setting loopback mode for units 0 and 1. ``` 1976 # UNITS (D) ? 16<CR> 1977 1978 UNIT 0 1979 1980 1981 1982 1983 1984 1985 1986 UNIT 1 1987 1988 UNIT 2 1989 1990 1991 1992 1993 UNIT 15 1994 1995 3.7 ERROR INFORMATION 1996 1997 1998 1999 2000 2001 2002 2003 ERROR MESSAGE 2004 LILIERE 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 ``` 2021 2022 2023 2024 2025 2026 2027 2028 INPUT MARGIN O CONDITION: (0) 0 ?<CR> INPUT MARGIN 1 CONDITION: (0) 252 ?<CR> INPUT MARGIN 2 CONDITION: (0) 252 ?<CR> INPUT MARGIN 3 CONDITION: (0) 152 ?<CR> INPUT MARGIN 4 CONDITION: (0) 125 ?<Ch> TEST IN AUTO-LOOPBACK MODE ? (L) N ? <CR> INPUT MARGIN O CONDITION: (0) 0 ?<CTRL Z> INPUT MARGIN O
CONDITION: (0) 0 ?<CTRL Z> There are three levels of error messages that may be issued by a diagnostic: general, basic and extended. General error messages are always printed unless the "IER" flag is set (section 2.7). The general error message is of the form: NAME TYPE NUMBER ON UNIT NUMBER TST NUMBER PC:XXXX NAME - DIAGNOSTIC NAME TYPE - ERROR TYPE (SYS FATAL, DEV FATAL, HARD OR SOFT) NUMBER = ERROR NUMBER UNIT NUMBER = 0 - N (N IS LAST UNIT IN PTABLE) TST NUMBER = TEST AND SUBTEST WHERE ERROR OCCURRED PC:XXXXXX = ADDRESS OF ERROR MESSAGE CALL Basic error messages are messages that contain some additional information about the error. These are always printed unless the "IER" or "IBE" flags are set (section 2.7). These messages are printed after the associated general message. Extended error messages contain supplementary error information such as register contents or good/bad data. These are always printed unless the "IER", "IBE" or "IXE" flags are set (section 2.7). These messages are printed after the associated general error message and any associated basic error messages. This diagnostic does not use any extended error messages. Initialization error messages are of the format : #### NAME INI NUMBER MESSAGE These are always printed and occur because of configuration errors found in the diagnostic initialization, problems sizing | 2030
2031
2033
2033
2033
2033
2033
2033 | | |--|--| | 2033
2034
2035
2036 | | | 2037
2038
2039
2040 | | | 2041
2042
2043
2044 | | | 2045
2046
2047 | | | 2049
2050
2051 | | | 2052
2053
2054
2055 | | | 2056
2057
2058
2059 | | | 2060
2061
2062 | | | 2063
2064
2065
2066 | | | 2067
2068
2069 | | | 2070
2071
2072
2073
2074
2075 | | | 2074
2075
2076 | | line cards or operational parameters which should not be used with this specific diagnostic. After the error is output, the diagnostic is aborted. A warning is output when the diagnostic is run and no standard line card is found. The diagnostic is then aborted. #### 3.8 CONFIGURATION INFORMATION The Pluto system configuration presumes that 1 or 2 PAMS are attached to the PDP-11/24 protocol processor and that each PAM has 8 dash bus slots. The PAM UNIBUS addresses for PAMO and PAM1 are known. PAM sizing is done via accessing a PAMO and PAM1 register. If a Timeout interrupt results then it is assumed that either the PAM is not present or it is incapable of responding. The number of PAMS which should reside in a system is determined by reading the display/configuration register in the console-boot-terminator module. If one PAM exists in a system it should be PAMO. Line cards of any type(s) may be arbitrarily inserted into the dash bus slots subject to system constraints. The dash bus is sized to determine what type of line cards, if any, are attached to each dash bus slot. Default hardware P-tables are set up to run diagnostics on all line cards in both PAMS. Automatic sizing determines the appropriate line card tests to be run. Empty dash bus slots are skipped, i.e. no tests are run. User and undefined line cards are not tested. If line card types are such that no tests can be run from this or companion line card diagnostics, a warning message will be displayed. Errors or system configuration violations, if found by the diagnostic initialization, will result in initialization error messages and will cause an abort. The auto-loopback question is asked for each unit. This informs DRS that a loopback connector (2 connectors for dual line cards) is permanently installed on that unit. All applicable tests, including external loopback tests, are executed. If the auto-looback question was answered NO and DRS is run in UNATTENDED MODE, no external loopback tests are run. If NOT in UNATTENDED MODE, the operator is prompted to install a loopback connector on the appropriate line card port/unit. | 2079
2080 | 7 | | | | | | |------------------------------|---|------------------|---------|---------|-----|-------| | 2081 | E
S | M. | 3 | 7 | 6 6 | 2 1 6 | | 2082 | | | i | | | 5 T 1 | | 2083 | T | ō | ō | | ĭ | | | 2084
2085 | | | 1 | | | LI | | 2086 | N
O | | | | A | . 0 0 | | 2087 | | | | | S | . 0 (| | 2088 | 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 | | | | | . P F | | 2089 | | | • | | N. | | | 2090 | 그는 그는 그리고 있는데 그리고 그렇게 되었는데 얼마를 하는데 살아 없었다. 그리고 얼마나 없는데 없다. | | • | | | | | 2091 | TEST 1 | | | | | • • • | | 2092
2093 | Line card INIT, led and dash bus dual addressing to | est.X | X | X | | | | 2093
2094 | | | | | | | | 2095
2096
2097
2098 | This test verifies that the led bit can be set via line card INIT or by writing a 1 to the led bit, at that the bit can be cleared, this test also checks dash bus dual addressing. | nd | | | | | | 2099 | TEST 2 | | | | | | | 2100 | Line card generate bad parity check. | | | | | | | 2101 | time care generate bad parity check. | X | X | | | | | 2102 | This test bit bangs the line parameter reg for the | 0110000 | | | | | | 2103 | of determining if the generate bad parity bit has a | purpos | ch | | | | | 2104 | at or short type faults. | , stu | - | | | | | 2105 | | | | | | | | 2106
2107 | TEST 3 | | | | | | | 2108 | Line card reg clear on INIT test. | X | -) | (| | | | 2109 | This tast inits the line and and the line | | | | | | | 110 | This test inits the line card and then checks if the registers which should be cleared on INIT are in fac | e 2661 | | | | | | 2111 | cleared. | CE | | | | | | 2112 | | | | | | | | 2113 | TEST 4 | | | | | | | 2114 | Line card register initialization test. | X | x . | 4 10 10 | | | | 2115 | | | | | | | | 2116
2117
2118
2119 | This test inits the line card and then checks if the registers which should be cleared on INIT are in faccleared. | e 2652
ct | | | | | | 120 | TEST 5 | | | | | | | 121 | Line card 2661 register dual addressing test. | | | | | | | 122 | time card boot register dual addressing test. | | - x | | • • | | | 123
124
125 | This test inits the line card and checks the 2661 re (reg space 0 - 7) and generic registers (reg space 8 for dual addressing. | gister
3 - 15 | rs
) | | | | | 126
127 | | | | | | | | 128 | TEST 6 | | | | | | | 129 | Line card 2652 register dual addressing test. | X) | X - | | - | | | 130
131
132 | This test inits the line card and checks the 2652 re (reg space 0 - 7) and generic registers (reg space 8 for dual addressing. | gister
- 15 | rs
) | | | | | 2134
2135
2136 | T
E
S | M M | | | 2 I E | |--------------------------------------|---|-----------------------|------|----------|-------| | 2137 | Ť | 0 0 | 0 | 6 | 5 T T | | 2138
2139 | N | 0 1 | 2 | | . L L | | 2140 | Ö | | | | | | 2141 | | :: | | | . 0 0 | | 2142
2143 | | | | | : : : | | 2144 | 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 | | | C | | | 2145 | ŤEST 7 | | | ٠ | | | 2146
2147
2148
2149
2150 | Line card 2661/2652 register interference test. (THIS TEST IS SKIPPED BECAUSE 2661 MODE WAS REMOVE This test checks for interference between register 2661 and 2652 protocol chips. | D FROM TO
s of the | HE I | _
M31 | 00.) | | 2151 | TEST 8 | | | | | | 2152
2153 | Line card 2661/2661 register interference test. | | X | - | | | 2154
2155
2156 | This test checks for interference between register the 2 2661 protocol chips on the line card. | s of the | | | | | 2157
2158
2159 | TEST 9 Bit bang 2661 and generic registers. | | X | | | | 2160
2161
2162
2163
2164 | This test bit bangs the line card generic registers addr 8 - 15) and the 2661 registers (reg addresses Also checks scanner retry on mode registers with for par err. | 0 - 7) | | | | | 2165 | TEST 10 | | | | | | 2166
2167 | Bit bang line card 2652 and generic registers. | хх | • | - | | | 2168
2169
2170 | This test bit bangs the line card generic registers addr 8 - 15) and the 2652 registers (reg addresses | (reg
0 - 7). | | | | | 2171
2172
2173 | TEST 11
Modem in register external loopback test. | хх | X | • | x | | 2174
2175
2176 | This test bit bangs the modem in register via the moutput register and an external loopback connector. | nodem | | | | | 2177
2178
2179 | TEST 12
2652 select and 2661 xmitter ready test. | | X | . , | x | | 2180
2181
2182
2183 | This test verifies that 2661 and 2652 mode can be sif applicable. Functioning of 2661 xmit buff avail xmitter empty <txemt> and xmitter ready <txrdy> bit verified.</txrdy></txemt> | <txrav></txrav> | | | | | 85
86 | M M M M 2 2 I 3 3 3 6 6 N | |------------------|--| | 87
88 | 11165T | | 89 | 00012. | | 90 | N 012 | | 91 | 0 | | 92
9 3 | Y . P | | 94 | · N | | 5 | · C | | 96 | ŤEST 13 | | 3 | 2652 xmitter ready test. X X X - | | | · | | | This test checks the functioning of the 2652 transmitter related bits <txbav>, <txen2> and <tsom>. No data is actually looped. Checks are made in both BOP and BCP modes.</tsom></txen2></txbav> | | | TEST 14 | | | 2661 receiver check. | | | | | | This test checks the functioning of the 2661 RCV data avail | | | KCVURY and KLVK enable (KXENI) bits. The test is performed | | | in async mode. Verifies operation of line par <sync err="" xmit="">.</sync> | | | TEST 15 | | | 그는 그를 가고 꾸 수 있다. 그는 그들은 | | | 2002 receiver check. $\chi \chi = -\chi \chi$ | | | This
test checks the functioning of the 2652 RCV data | | | avail <rxdav> and RCVR enable <rxen2> bits.</rxen2></rxdav> | | | | | | TEST 16 | | | 2661 all character length data xfer test x x - x | | | | | | Loop data pattern through 2661 (async mode) for 5, 6, 7 and 8 bit characters at 19.2 kbaud. | | | and o bit characters at 19.2 Kbaud. | | | TEST 17 | | | M3101 transmit buffer ram address sequence test x | | | | | | Insure that transmitter buffer ram address pointer is | | | being autoincremented, following each write to the ram | | | control byte, when 'load ram' is set in transmit buffer | | | control register. | | | TEST 18 | | | - Barana Barana Barana - Barana Ba | | | M3101 transmit ram data test x | | | | | | Verify that all transmit data, and command byte ram bytes | | 223
223
223
223 | 7
8
8
9 | 1 | 1 | 1 | 266 | 5 | T | EXT | |---|--|--------------|-----|---|-----|---|---|-----| | 224 | | ŏ | ĭ | 2 | 1 | - | L | i | | 224
224 | | | | | A | | 0 | 0 | | 224 | | | | | S | | 0 | 0 | | 224 | | | | | Y | | | | | 224 | | | | | N | | | | | 224 | | | | | C | | | | | 224 | | | • | • | • | • | | • | | 224 | | | Y | _ | - | | | | | 224
225
225
225
225
225
225 | Verify that with 'load ram' set in transmit buffer contract that a data byte written to the multi memory register be placed into the data portion of the transmit ram, the same time, causes a default value to be placed in same ram address, then autoincrements the remaddress. | ntro
wi] | ol. | | | | | | | 2256
2257
2258 | TEST 20 M3101 low speed transmit ram data transfer test | - | X | - | | | x | • | | 2259
2260
2261
2262 | This test, operating in the maintenance mode at 19 2 | kbau
fere | d, | | | | | | | 2263
2264
2265 | TEST 21
M3101 transmit buffer ram address overflow test. | - | x | - | - | • | x | • | | 2266
2267
2268
2269 | Operating in the maintenance mode at 19.2 kbaud this will verify that an overflow of the ram address buffe will set 'end of buffer' and 'transmit buffer avail'. | | | | | | | | | 2270 | TEST 22 | | | | | | | | | 2271
2272 | M3101 buffered mode transmitter underrun test. | - | X | • | • | • | x | • | | 2273
2274
2275
2276
2277 | Operating in the maintenance mode at 19.2 kbaud this will verify that while a data transmission from the tbuffer ram is taking place, clearing 'send ram' will a transmitter underrun. | - | | t | | | | | | 2278
2279
2280
2281 | TEST 23 M3101 high speed bop internal loopback test. (UTILIZES DIAGNOSTIC MICROCODE) | - | x | • | - | | × | • | | 2282
2283
2284
2285 | Operating in maintenance mode at 500 kbaud, internal loopback, bop mode, with the line card in the buffered mode, will verify that data can be successfully transferred. | | | | | | | | | 2287 | T | | | | • | • | | | |------------------------------|--|---|---|---|-----|---|-----|--| | 2288
2289 | E
S | | 3 | | 6 | 6 | NX | | | 2290 | | 1 | 1 | 1 | 6 | 5 | TT | | | 2291 | 그렇다 그 그 그 그 그 그 그 그 그 그 그 그 그는 그리아 살아가지 않는 것이 없었다. 그 그 그리 | | 0 | | 1 | 2 | ii | | | 2292
2293 | N | | | | À | : | ōō | | | 2294 | | | | | | | 0 0 | | | 2295 | | | | | | | PP | | | 2296 | | | | | | | : : | | | 2297 | 그렇게 들었다. 그리다 하는 이 아들 맛이 되었다면서 하는 사람들이 들어 가득하게 됐다면 하는 하는데 이 하는데 하는데 하다 하는데 | | | | 100 | | : : | | | 2298
2299 | 1231 24 | | | | | | | | | 2300
2301 | M3101 high speed bop external loopback test. (UTILIZES DIAGNOSTIC MICROCODE) | - | X | • | • | • | - X | | | 2302
2303 | SAME AS #24, EXCEPT IN EXTERNAL LOOPBACK | | | | | | | | | 2304 | TEST 25 | | | | | | | | | 2305
2306 | M3101 high speed BCP internal loopback test. (UTILIZES DIAGNOSTIC MICROCODE) | - | X | - | - | • | x - | | | 2307 | | | | | | | | | | 2308
2309
2310
2311 | Operating in maintenance mode at 500 kbaud, internal loopback, BCP mode, with line card in the buffered mode, will verify that data can be successfully transferred. | | | | | | | | | 2312
2313 | TEST OF | | | | | | | | | 2314
2315 | TEST 26 M3101 high speed, BOP mode, force XMT BUFF RAM parity error. (UTILIZES DIAGNOSTIC MICROCODE) | • | x | • | - | - | x - | | | 2316
2317
2318
2319 | This test will verify that on detection of a transmit buffer ram parity error, during a data transfer attempt 'transmitter error' bit will set. | | | | | | | | | | | | | | | | | | | T | M | M | M | 2 | 2 | TE | | |---|---------------|----|---|---|---|-----|--| | E
S | 3 | 3 | 3 | 6 | 6 | NX | | | S | | | ĭ | | 5 | TT | | | T | ō | ō | ō | ĭ | 2 | | | | | 0 | 1 | 5 | - | | LL | | | N | | | | A | | 0 0 | | | 0 | | | | S | | 0 0 | | | | | | | Y | | PP | | | | | | | N | | | | | | | | | C | | | | | TEST 1 All baud rates data xfer test. | : | : | ż | ż | : | x : | | | | | | ^ | ^ | | ^ - | | | Loop and check data data pattern through 2661 (async via internal at all baud rates from 50mbaud to 19.2 Baud rate accuracy is not checked. | mode
kbaud | d. | | | | | | | TEST 2 2661 All stop bit length data xfer test. | | - | x | X | | x - | | | Loop data pattern via 2661 seven made vial a 4 5 | | | | | | | | | Loop data pattern via 2661 async mode with 1, 1.5 and stop bits. Check data and relative timing to verify the correct number of stop bits are being used. | d 2
that | | | | | | | | TEST 3 2652 Sync generation test. | X | X | | _ | X | - x | | | | | | | | | | | | Check the ability of the 2652 to generate syn charact | ters | | | | | | | | from the syn register and xmit holding register. Also | • | | | | | | | | check the ability to strip the 1st 2 syn characters a | and | | | | | | | | the ability to discriminate against non-syn character | rs. | | | | | | | | TEST 4 2652 Transmitter flag compation test | | | | | | | | | TEST 4 2652 Transmitter flag generation test. | X | X | • | • | X | X - | | | Check the ability of the 2661 (bop mode) to generate | | | | | | | | | strip flags characters. transmit data where data = fl | and | | | | | | | | Data integrity verifies 0 stuffing. | ay. | | | | | | | | | | | | | | | | | TEST 5 2652 BOP mode 2ndary addr RSOM and REOM test. | × | X | | | Y | - Y | | | | | | | | ^ | ^ | | | Loop data in 2652 bop internal loopback mode with sec | onda | rv | | | | | | | address recognition enabled. Data integrity. RCVR err | ors | | | | | | | | and the ability of REOM to set and clear is checked. | | | | | | | | | | | | | | | | | | TEST 6 2652 BCP mode internal data wrap test. | X | X | - | | X | X - | | | | | | | | | | | | Loop a data pattern in 2652 internal loopback mode an verify the data integrity. Test is performed at 19.2 and for 5 thru 8 bit character lengths. | d
kbau | d | | | | | | | 2371
2372
2373 | M M M M 2 2 I E 3 3 3 6 6 N X | |--------------------------------------|--| | 2374 | 1 1 1 6 5 T T
0 0 0 1 2 | | 2375 | 012 11 | | 2376
2377 | N A . O O | | 2378 | 5 . 0 0 | | 2379 | Y . P P | | 2380 | · | | 2381
2382
2383 | TEST 7 2652 BOP mode data wrap/ bit stuff test. | | 2384
2385
2386
2387 | Loop a data pattern in 2652 bop mode at 19.2 kbaud for 4 thru 8 bits/char, and at 4.8 kbaud for 2-3 bits/character. The data pattern exercises the 2652 bit stuffing feature. | | 2388
2389 | TEST 8 2652 0/1/2 Starting syn test. X X X X - | | 2390
2391
2392
2393 | Attempt to loop data in 2652 internal loopback bop mode with 0, 1 and 2 starting syn characters. The receiver should sync up only with 2 leading syns. | | 2394
2395 | TEST 9 2652 Mult start syns w/wo strip sync. X X X X - | | 2396
2397
2398
2399
2400 | Loop a data pattern with multiple starting and embedded syns. with strip syn disabled verify that 2 starting syns are stripped. With strip syn enabled, verify that all starting syns are stripped. | | 2401
2402 | TEST 10 2652 Multiple syn character test. X X X X - | | 2403
2404
2405 | Data patterns are looped using different syn characters to find stuck bits or lines in the syn related circuitry. | | 2406
2407 | TEST 11 2652 Syn character discrimination test. X X X X - | | 2408
2409
2410
2411
2412 | An attempt is made to loop data using xmitted syn characters differing from syn characters in the low byte par reg by 1 bit. If the RCVR syncs up an error is indicated. Correct syn chars are also xmitted to verify thet the RCVR can sync up. | | 2413
2414 | TEST 12 2652 Secondary address mode test. X X X X - | | 2415
2416
2417 | This test checks the ability of the 2652 2ndary address mode bit to put the 2652 into 2ndary address mode. | | 2418
2419 | TEST 13 Right/wrong secondary address test. X X X X - | | 2420
2421
2422 | Attempt to loop data patterns 2ndary addresses which are incorrect by 1 bit. No data xfer should occur. Correct 2ndary addresses are also used to verify that data xfers can occur. | | 2424 | Т | 2 : | , т | | |------|---|-----|-----|---| | 2425 | 3 3 3
5 | 6 6 | N | × | | 2426 | 5 111 | | T | Ŷ | | 2427 | T 0 0 0 | 1 | | • | | 2428 | 0.1.2 | | | · | | 2429 | N | à · | ō | 5 | |
2430 | 0 | e . | ő | č | | 2431 | | Ž . | ĕ | 0 | | 2432 | | | | | | 2433 | | | | | | 2434 | | 1 | | - | | 2435 | TEST 14 2652 All parties addressed enable test. X X : | . : | . : | | | 2436 | A A . | - , | | - | | 2437 | This test checks the ability of the 2652 to reject an all | | | | | 2438 | parties message when not in the all parties addressed mode. | | | | | 2439 | per tres message when not in the all parties addressed mode. | | | | | 2440 | TEST 15 2652 All parties addressed detection | | | | | 2441 | TEST 15 2652 All parties addressed detection X X - discrimination test. | -) | X | • | | 2442 | Cracrimination test. | | | | | 2443 | With all pasting addressed (see) | | | | | 2444 | With all parties addressed (apa) set, attempt to loop data | | | | | 2445 | with 2ndary addresses differing from all parties address | | | | | 2446 | (377) by 1 bit. Data should not be received. The correct all | | | | | 2447 | parties address (377) is also used to verify that data can | | | | | 2448 | be received in this mode. A correct 2nd addr is sent to | | | | | | verify reception in apa mode. | | | | | 2449 | | | | | | 2450 | TEST 16 2652 Abort detection/generation test. X X - | - X | × | | | 2451 | | | | | | 2452 | While looping data a check is made that setting TEOM sends | | | | | 2453 | abort it idle " U and sends a flag if idle = 1 Abort | | | | | 2454 | reception should cause RAB and RFOM to set A check to made | | | | | 2455 | that these bits properly clear. Flag reception should allow | | | | | 2456 | receipt of the character before the flag. | | | | | 2457 | | | | | | 2458 | TEST 17 2652 Go-shead gen/detect, abort with go-shead X X - | | | | | 2459 | test. | - X | X | • | | 2460 | | | | | | 2461 | Check the functionality of the 2652 or should account | | | | | 2462 | Check the functionality of the 2652 go-ahead generation and detect features incl the <rab'ga>, <teom> and <tga> bits.</tga></teom></rab'ga> | | | | | 2463 | detect reactives inc. the known, cicums and cicas bits. | | | | | 2464 | 75C7 18 2661 Annua Provident Land | | | | | 2465 | TEST 18 2661 Async forced break test x ; | X - | X | • | | 2456 | Venido, Abras Abras Arres | | | | | 2407 | Verify that the 2661 command register break bit | | | | | 2463 | is functional. | | | | | 2469 | | | | | | | TEST 19 2661 Async mode parity error test (no error) x) | K - | | X | | 2470 | | | | | | 2471 | Verify 2661 async mode data can be looped with odd and even | | | | | 2472 | parity checking enabled without a parity error occurring. | | | | | 2473 | | | | | | 2474 | TEST 20 2661 Async mode odd/even parity gen/det test x > | | ¥ | | | 2475 | | | | | | 2476 | Loop data with odd and even parity checking enabled. Parity | | | | | 2477 | errors are forced and verified via the parity error bit. | | | | | 2478 | With with panity disabled the conity and the parity error bit. | | | | | | With with parity disabled, the parity err bit should not set. | | | | | | | | | | | 2480 | T | | | | - | - | | _ | |------|---|------|------|--------|---|---|-----|-----| | 2481 | E
S | 3 | 3 | 3 | 5 | 2 | 1 | 5 | | 2482 | S | | | i | 6 | 5 | T | î | | 2483 | T | | | ô | 1 | 3 | , | • | | 2484 | | ŏ | ĭ | ž | • | ~ | i | | | 2485 | N . | | | • | à | | 0 | | | 2486 | 0 | _ | - | | | | 0 | | | 2487 | | | • | | 2 | | P | | | 2488 | | | | 100 | N | | | | | 2489 | | | | 235776 | C | | | • | | 2490 | 그 늦다면 하다 하는데 하다 살아 아니다. 그렇게 하는데 되었다. 그 나는 그렇게 되었다. | | | | | | • | • | | 2491 | TEST 21 2661 Async overrun test. | | | × | | : | × | • | | 2492 | | | | _ | - | | • | | | 2493 | Generate an overrun while looping data in 2661 async m | ande | | | | | | | | 2494 | and verify that the overrun bit sets. | - | | | | | | | | 2495 | | | | | | | | | | 2496 | TEST 22 2661 Async mode framing error test. | | | ¥ | × | | Y | | | 2497 | | | | | | 4 | _ | | | 2498 | Check the ability to detect a framing error. Framing | | | | | | | | | 2499 | errors are generated by looping data at different value | | | | | | | | | 2500 | and RCV clock rates. | | | | | | | | | 2501 | | | | | | | | | | 2502 | TEST 23 2652 Error control modes test. | ¥ | ¥ | | | ¥ | Y | 190 | | 2503 | | | | | | ^ | • | | | 2504 | This test loops data in each of the 2652 error control | - | a de | | | | | | | 2505 | trrors are generated and error detection is verified | A - | - | ack | | | | | | 2506 | is also made to verify that error detection can be dis | abi | 01 | 4 | | | | | | 2507 | | | | | | | | | | 2508 | TEST 24 2652 Underrun test. | X | X | | | ¥ | X . | | | 2509 | | | | | | • | • | | | 2510 | The 2652 response to an underrun is checked in both | | | | | | | | | 2511 | BOP and BCP mode with the IDLE bit both set and clear. | | | | | | | | | 2512 | | | | | | | | | | 2513 | TEST 25 2652 Overrun test. | ¥ | ¥ | | | ¥ | x . | | | 2514 | | | | | | ^ | • | | | 2515 | Generate an overrun in both BOP and BCP mode. Verify t | hat | | | | | | | | 2516 | the KLVK Status reg overrun bit is set and that it an | | | | | | | | | 2517 | be cleared via a RCVR status reg read, a reset error c | 000 | 185 | nd | | | | | | 2518 | or by disabling the receiver. | | | ٠. | 2522345
252245
252245
252225
252225
252225
253345
253345
253345
253345
253345
253345
253345
253345
253345
253345
253345
253345
25335
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
25336
2536
25 | |
---|--| | 2551
2552
2553
2554
2555
2556
2557 | | | 2558
2559
2560
2561
2562
2563
2564
2565
2566
2566 | | - 4.0 GENERAL INFORMATION For CIDSEA CBT Test - 4.1 PROGRAM ABSTRACT This program is a repair level diagnostic for the M3112 CBT (Console, Boot, Terminator) module. The CBT (M3112) is A standard Hex module with Unibus SPC pinout that contains: - 1. ROM Bootstrap supporting 8 ROM sockets (64kb total). - 2. Off/On/Lock/Standby key switch - 3. Start and Test pushbuttons - 4. Four seven segment leds to identify operator action (e.g. replace bad unit) - 5. Serial Line Unit fixed at 1200 baud, for a virtual console. - 6. EIA console serial line connector, for local control of the 11/24. - 7. Unibus terminator for the end of the Unibus. This diagnostic has been written for use with the diagnostic runtime services software (DR>). These services provide the interface to the operator and to the software environment. ### 4.2 SYSTEM REQUIREMENTS The Minimum system required is: - 1. 11/24 Processor with its SLU1 set to 1200 baud - 2. 28Kw of Unibus memory - 3. CBT (Console, Boot, Terminator) module # 4.4 PREREQUISITES The 11/24 option diagnostic (CJDFA) or equivalent must be run to insure a working SLU1. #### 4.5 ASSUMPTIONS The SLU1 in the 11/24 Processor must be functional. | 2570 | 4.6 OPERATING INSTRUCTIONS | |--|--| | 2571 | 4.0 OPERATING INSTRUCTIONS | | 2572
2573
2574 | Refer to section 2.6 for a complete description of the operating instructions. | | 2575
2576 | The following is a sample CBT diagnostic run: | | 2577
2578 | Start the Diagnostic under DRS | | 2579
2580 | DR> STA/FLA:PNT:HOE/PAS:1 | | 2581
2582 | CHANGE HW (L) ? N | | 2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609 | TST 001: READ/WRITE REGISTER TEST TST 002: PCR REGISTER TEST TST 004: RECEIVER CSR REGISTER TEST TST 004: RECEIVER CSR REGISTER TEST TST 005: DLART INTERNAL LOOPBACK TEST (10 SECS) TST 006: CBT TO 11/24 SLU1 TEST (20 SECS) TST 007: UNIBUS REGISTER ADDRESS DECODE TEST TST 008: ROM CRC-16 CHECKWORD TEST TST 009: SEVEN SEGMENT DISPLAY REGISTER TEST TST 010: SINGLE LEDS DISPLAY TEST TST 011: CONFIGURATION REGISTER PRINTOUT TEST CONFIGURATION REGISTER CONTENTS BIT (8>=1 JUMPER W1 IS NOT INSTALLED BIT (5>=1 JUMPER W1 IS NOT INSTALLED BIT (5>=1 JUMPER W2 IS NOT INSTALLED BIT (5>=1 JUMPER W3 IS NOT PRESENT BIT (2>=0 UNUSED BIT (2>=0 UNUSED BIT (2>=0 UNUSED BIT (1>=1 TEST PUSHBUTTON IS OFF BIT (0>=1 ONE PAM SET IS PRESENT TST 012: ROM CONFIGURATION PRINTOUT TEST ROM 0 - PART NUMBER IN ROM = 23-abcde-fg SIZE IN ROM = 1KB CRC CALCULATED = 0000000 | | 2610
2611 | (THIS IS REPEATED FOR ALL EIGHT ROMS) | | 2612
2613 | DR> | | 2614
2615 | Tests 11 and 12 will be skiped when the UAM flag is set. | | 2616
2617 | Example: DR> START/FLA:PNT:UAM | | 2618
2619 | 4.7 HARDWARE QUESTIONS | | 2620 | When a diagnostic is started, the runtime services will prompt | the user for hardware information by printing: CHANGE HW (L) ? You must enter Y after a STArt command, unless the information has been preloaded via the setup utility. See the XXDP+ manual for more information on the setup utility. The DRS will then ask for the number of units to test. For this diagnostic always answer 1. For Example: CHANGE HW (L) ? Y # UNITS (D) ? 1 #### 4.8 SOFTWARE QUESTIONS This diagnostic does NOT ask any software questions. ### 4.9 ERROR MESSAGE FORMATS The error messages are in the following format: M3112 HRD ERR 00514 ON UNIT 00 TST 005 SUB 007 PC:12762 CBT Data error in loopback mode EXPD: 000005 RECV: 000004 XOR: 000001 #### Where: - 1. "M3112" is the CBT module name - 2. "HRD ERR" indicates a non-recoverable (hard) error. All CBT errors are considered hard errors, or fatal (FTL ERR) errors. - 3. "00514" is the test and error number. This example is test 5 error number 14. - 4. "ON UNIT 00" is Fixed. The CBT consists of only one unit per processor. - 5. "TST 005 SUB 007" indicates test 5 subtest 7 was executing at error call. - 6. "PC:12762" is the virtual pc at the error. The program may actually be executing at a different physical PC if it is running under a monitor other than XXDP. | 2671
2672 | | |--|--| | 2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683 | | | 2684
2685
2686
2687
2688
2689
2690
2691
2692
2693 | | | 2694
2695
2696
2697
2698
2699
2700 | | | 2701
2702
2703
2704
2705
2706
2706
2708
2710
2711
2712
2713
2714
2715
2716
2717
2718
2718
2719
2720 | | - 7. "EXPD:" is the expected data. - 3. "RECV:" is the received data. - 9. "XOR: " is the bits that are different between the EXPD and RECV data. ### 4.10 TEST SUMMARIES for CIDSEA # TEST 1: READ/WRITE REGISTER TEST This test verifies the READ/WRITE register is addressable from the 11/24 and has no bits shorted together or stuck at a high or low level. # TEST 2: PAGE CONTROL REGISTER (PCR) TEST This test verifies the PCR is addressable from the 11/24 and has no bits shorted together or stuck at a high or low level. # TEST 3: MAINTENANCE REGISTER TEST This test verifies the MAINTENANCE register is addressable from the 11/24 and has no bits shorted together or stuck at a high or low level. # TEST 4: CBT RECEIVER CSR REGISTER TEST This test verifies the DLART RECEIVER CSR register is addressable from the 11/24 and has no bits shorted together or stuck at a high or low level. # TEST 5: CBT DLART INTERNAL LOOPBACK TEST This test verifies that data can be transmitted to the CBT serial line unit (DLART) and received in loop back mode. In addition the DLART status bits are checked. # TEST 6: CBT TO 11/24 SLU1 TEST This test verifies data can be transmitted between the CBT serial line unit (DLART) and the 11/24 serial line unit (SLU1). # TEST 7: UNIBUS REGISTER ADDRESS DECODE TEST This test verifies that the
CBT register address decode logic is functioning correctly so that each register will only respond to their valid Unibus addresses. | 2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2743 | | |--|--| | 2743
2744
2745
2746
2747
2748
2749
2750
2753
2754
2755
2756
2757
2758
2758
2758
2761
2763
2764
2765
2764
2765
2764
2765
2766
2767
2768
2768
2769 | | # TEST 8: ROM CRC-16 CHECKWORD TEST This test verifies each ROM CRC-16 CHECKWORD (checksum) is correct. The test first searches all eight ROM slots for roms. A slot is assumed empty if -1 is read back from the first and last locations. Each ROM is read and a CRC-16 CHECKWORD is calculated. It is verified the result of the CRC calculation including the CHECKWORD blasted into the ROM is zero. # TEST 9: SEVEN SEGMENT LEDS DISPLAY TEST This test will verify the display register will cause a Unibus Timeout if written into with a byte instruction. The Seven segment led display is also tested. Here is how the digits are formed in the seven segment display test: Each segment and decimal points are lit individually in sequence. # TEST 10: SINGLE LEDS DISPLAY TEST This test will light the single leds in a fixed sequence. The CBT contains Four single leds (with room reserved for two more) arranged in a row. They will be used to indicate status such as cable faults or line faults. There are two other leds located in the TEST and START switches. The test will light the leds in the following sequences: - 1. All Leds - 2. No Leds - 3. Light each Led in turn from left to right - 4. Turn off each led in turn from left to right This is not a Manual Intervention test but will require an operator to determine if the display is correct. | 2771
2772
2773
2774
2775
2776
2777 | | |--|--| | 2778
2779 | | | 2780
2781 | | | 2782
2783 | | | 2784
2785 | | | 2786 | | ### TEST 11: CONFIGURATION PRINTOUT TEST This is a Manual Intervention test to printout the contents of the Configuration Register. The Configuration Register is a Read-only register that indicates which options are present, such as hardware jumpers on the CBT module. # TEST 12: ROM CONFIGURATION PRINTOUT TEST This is a Manual Intervention test to printout the configuration of the Roms currently installed in the CBT. The test sizes automatically for the roms and calculates the CRC-16 on each ROM. The calculated CRC-16 is always required to be zero, since it includes the CHECKWORD blasted into the ROM. | 2789
2789
27792
27993
27993
27993
27993
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
27999
2799
2799
27999
27999
27999
27999
27999
27999
27999
27999
27999
2799 | | |---|--| | 2829
2830
2831
2832
2833
2834
2835
2836
2837 | | # 5.0 GENERAL INFORMATION for SYSEXE The system exerciser (SYSEXE) is a RSX11-S task which is part of the DECSA Loadable Diagnostic Image (LDI). Its purpose is to create as much activity between the PDP-11/24 and PAM/LINE units as possible. This is accomplished by transmitting and receiving 576 byte data messages on all available lines. These lines may be M3100/M3101 SYNC or M3102 ASYNC and the DEUNA. If mixed line cards are sized by SYSEXE, the majority line type will be exercised. Activity is built up gradually by phases. - PHASE O START PAM O AND LOOP DATA MESSAGES ON EACH LINE PRESENT. - PHASE 1 START PAM 1 WHILE KEEPING PAM O GOING. LOOP DATA MESSAGES ON EACH LINE PRESENT. - PHASE 2 KEEPING BOTH PAMS GOING START THE UNA LOOPING DATA MESSAGES. # 5.1 OPERATING INSTRUCTIONS To execute SYSEXE at the PLU>
prompt type "RUN SYSEXE" it will then prompt you for number of passes and if you want to run with loopbacks connected. # 5.2 LINE AND SLOT IDENTIFICATION UNDER SYSEXE | | | LI | NE | | | | LI | NE | | |-----------|---|----|----|---|-----------|---|----|----|---| | slot
1 | | 0 | 8 |) | slot
2 | | | 9 |) | | 3 | } | 2 | 10 |) | 4 |) | 3 | 11 | } | | 5 | } | 4 | 12 | } | 6 | } | 5 | 13 | } | | 7 |) | 6 | 14 | } | 8 | } | 7 | 15 | } | | | > | | |) | | } | | | } | | 9 |) | 0 | 8 | } | 10 |) | 1 | 9 | } | | 11 |) | 2 | 10 | } | 12 | } | 3 | 11 | } | | 13 |) | 4 | 12 | > | 14 | } | 5 | 13 | } | | 15 | } | 6 | 14 |) | 16 | } | 7 | 15 | } | ``` 2839 6.0 UPDATING CSVLDI.SYS (LDI BLO6) 2840 2841 These instruction are intentionally general due to the large 2842 number of possible load device names on VMS and RSX11m+ 2843 systems. See the system manager for the specific device name 2844 of RLO2 or magtape on the target system. It is also 2845 recommended that you verify the location of the disk:[targetuic](this area was created when the operational 2846 2847 DECSA software package was installed) for the LDI with the 2848 system manager. 2849 2850 The distribution media is in Files11 format. Label name is 2851 CZLDIA. After copying, verify CSVLDI.sys size is 1002 blocks. 2852 2853 VMS installation do: 2854 For RL02 do: 2855 2856 $ mount r102:czldia 2857 $ copy/contiguous 2858 $_From: r102:[1di]csvldi.sys 2859 $_To: sys$system:csvldi.svs 2860 2861 End RL02. 2862 2863 For Tape do: 2864 2865 $ mount tape:czldia 2866 $ copy/contiguous 2867 $_From: tape:csvldi.svs 2868 $_To: sys$system:csvldi.sys 2869 2870 End Tape. End VMS installation. 2871 2872 2873 RSX11m+ installation do: 2874 For RLO2 do (DCL assumed): 2875 2876 > mount r102:czldia 2877 > copy/contiguous 2878 From? r102:[ldi]csvldi.sys 2879 To? disk:[targetuic]csvldi.sys 2880 2881 End RL02. 2882 2883 For Tape do (DCL assumed): 2884 2885 > mount tape:czldia 2886 > copy/contiguous 2887 From? tape:csvldi.sys 2888 To? disk:[targetuic]csvldi.sys 2889 2890 End Tape. 2891 End RSX11. ``` | 2007 | | | | |------------------------------|--------|---|------------------------------------| | 2893
2894 | | 7.0 KNOWN PROBLEMS WITH LDI BLO6 | | | 2895
2896
2897
2898 | | This is the current list of problems with assumed that these are software problems a in BL07. | LDI BLO6. It is nd should be fixed | | 2899
2900
2901 | | o SYSEXE errors when started the second to
The LDI must be reloaded. | ime from PLU >. | | 2902
2903 | | o Control C not handled by PLUMON. | | | 2904
2905
2906 | | Refer to sections 2.7 and 2.8 "NOT problem. | ES" for help on this | | 2907
2908
2909 | | o M3101 in slot 1 causing M3100s in other while running SYSEXE. | slots to error | | 2910 | 000001 | .END | | | | | | | CZLDIAO LOADABLE IMAGE MACRO M1200 25-APR-85 14:05 PAGE 60 SYMBOL TABLE . ABS. 000000 000 000000 001 ERRORS DETECTED: 0 VIRTUAL MEMORY USED: 19 WORDS (1 PAGES) DYNAMIC MEMORY: 20324 WORDS (78 PAGES) ELAPSED TIME: 00:01:16 .CZLDIA.SEQ/-SP=CZLDIA.MEM