.REM & IDENTIFICATION PRODUCT CODE: AC-T006B-MC PRODUCT NAME: CVCDCBO MDE/T-11 TARGET EMUL DIAG PRODUCT DATE: APRIL 1982 MAINTAINER: DIAGNOSTIC ENGINEERING THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION. DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT. NO RESPONSIBILITY IS ASSUMED FOR THE USE OR RELIABILITY OF SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL OR ITS AFFILIATED COMPANIES. COPYRIGHT (C) 1981,1982 BY DIGITAL EQUIPMENT CORPORATION THE FOLLOWING ARE TRADEMARKS OF DIGITAL EQUIPMENT CORPORATION: DIGITAL PDP UNIBUS MASSBUS ## REVISION HISTORY REVISION DATE REASONS AB SEPTEMBER 1981 APRIL 1982 FIRST RELEASE FIXED PROBLEM THAT ALLOWED BOTH THE SIGNAL COLB L AND DBLB L TO BE ENABLED AT THE SAME TIME. ## TABLE OF CONTENTS | 1.0
1.1
1.2
1.3
1.4 | GENERAL INFORMATION PROGRAM ABSTRACT SYSTEM REQUIREMENTS RELATED DOCUMENTS AND STANDARDS DIAGNOSTIC HIERARCHY PREREQUISITE ASSUMPTIONS | |---------------------------------|--| | 2.0 2.1 2.2 2.3 2.4 2.5 2.7 | OPERATING INSTRUCTIONS COMMANDS SWITCHES FLAGS HARDWARE QUESTIONS SOFTWARE QUESTIONS EXTENDED P-TABLE DIALOGUE QUICK STARTUP PROCEDURE | | 3.0 | ERROR INFORMATION | | 4.0 | PERFORMANCE AND PROGRESS REPORTS | | 5.0 | DEVICE INFORMATION TABLES | | 6.0 | TEST SUMMARIES | - 1.0 GENERAL INFORMATION - 1.1 PROGRAM ABSTRACT THE CDS-11 TARGET EMULATOR DIAGNOSTIC WILL TEST ALL THE LOGIC ON THE TARGET EMULATOR MODULE AND THE "POD" THAT IS TESTABLE WITHOUT THE ADDITION OF OTHER CDS MODULES. ALL DATA PATHS AND REGISTERS WITHIN THE TARGET EMULATOR MODULE ARE TESTED. HOWEVER, THE OUTPUT AND INPUT SIGNALS TO AND FROM THE TARGET SYSTEM ARE NOT TESTED. LIMITED TESTING OF THE SYSTEM BUS IS PERFORMED. THE PROGRAM ALSO CHECKS THAT THE TARGET EMULATOR MODULE CAN GENERATE INTERRUPTS TO THE LSI-11. THE I-11 CHIP WILL BE ENABLED IN THE LAST PART OF THIS DIAGNOSTIC, HOWEVER, ONLY LIMITED TESTING OF THE I-11 WILL BE PERFORMED. THIS DIAGNOSTIC HAS BEEN WRITTEN FOR USE WITH THE DIAGNOSTIC RUNTIME SERVICES SOFTWARE (SUPERVISOR). THESE SERVICES PROVIDE THE INTERFACE TO THE OPERATOR AND TO THE SOFTWARE ENVIRONMENT. THIS PROGRAM CAN BE USED WITH XXDP+, ACT, APT, SLIDE AND PAPER TAPE. FOR A COMPLETE DESCRIPTION OF THE RUNTIME SERVICES, REFER TO THE XXDP+ USER'S MANUAL. THERE IS A BRIEF DESCRIPTION OF THE RUNTIME SERVICES IN SECTION 2 OF THIS DOCUMENT. NOTE: THIS PROGRAM HAS NOT BEEN TESTED IN THE APT ENVIRONMENT, HOWEVER, THE APT INTERFACE HAS BEEN PROVIDED IN THE DIAGNOSTIC. NOTE: THE T-11 POD MUST BE CONNECTED TO THE TARGET EMULATOR MODULE AND DISCONNECT FROM THE TARGET SYSTEM BEFORE EXECUTION OF THIS PROGRAM. #### 1.2 SYSTEM REQUIREMENTS - 1. LSI-11 OR EQUIVALENT TYPE CPU WITH Q-BUS - 2. MINIMUM OF 16K WORDS OF MEMORY 3. CONSOLE TERMINAL AND CONTROLLER 4. CDS-11 BACKPLANE AND CABLES - 5. TARGET EMULATOR MODULE(S) (M8742) 6. T-11 POD(S) - 7. MXV11 MODULE AND CDS-11 ROMS - 8. STORAGE DEVICE WITH CONTROLLER (OPTIONAL) 9. XXDP+ MEDIA FOR STORAGE DEVICE (OPTIONAL) - 1.3 RELATED DOCUMENTS AND STANDARDS CHQUS? XXDP+ USER'S MANUAL (THE ""?" IN CHQUS INDICATES THE REVISION LEVEL OF THE DOCUMENT. AT THE TIME THIS PROGRAM WAS WRITTEN, THE REVISION LEVEL WAS "E". 1.4 DIAGNOSTIC HIERARCY PREREQUISITES ALL HARDWARE THAT IS SPECIFIED IN SECTION 1.2 OF THIS DOCUMENT MUST BE OPERATIONAL AND FREE OF ALL FAULTS. - 1.5 ASSUMPTIONS - 2.0 OPERATING INSTRUCTIONS THIS SECTION CONTAINS A BRIEF DESCRIPTION OF THE RUNTIME SERVICES. FOR DETAILED INFORMATION, REFER TO THE XXDP+ USER'S MANUAL (CHQUS). ## 2.1 COMMANDS THERE ARE ELEVEN LEGAL COMMANDS FOR THE DIAGNOSTIC RUNTIME SERVICES (SUPERVISOR). THIS SECTION LISTS THE COMMANDS AND GIVES A VERY BRIEF DESCRIPTION OF THEM. THE XXDP+ USER'S MANUAL HAS MORE DETAILS. | COMMAND | EFFECT | |----------|--| | | | | START | START THE DIAGNOSTIC FROM AN INITIAL STATE | | RESTART | START THE DIAGNOSTIC WITHOUT INITIALIZING | | CONTINUE | CONTINUE AT TEST THAT WAS INTERRUPTED (AFTER ^C) | | PROCEED | CONTINUE FROM AN ERROR HALT | | EXIT | RETURN TO XXDP+ MONITOR (XXDP+ OPERATION ONLY!) | | ADD | ACTIVATE A UNIT FOR TESTING (ALL UNITS ARE | | | CONSIDERED TO BE ACTIVE AT START TIME | | DROP | DEACTIVATE A UNIT | | PRINT | PRINT STATISTICAL INFORMATION (IF IMPLEMENTED | | | BY THE DIAGNOSTIC - SECTION 4.0) | | DISPLAY | TYPE A LIST OF ALL DEVICE INFORMATION | | FLAGS | TYPE THE STATE OF ALL FLAGS (SEE SECTION 2.3) | | ZFLAGS | CLEAR ALL FLAGS (SEE SECTION 2.3) | A COMMAND CAN BE RECOGNIZED BY THE FIRST THREE CHARACTERS. SO YOU MAY, FOR EXAMPLE, TYPE 'STA' INSTEAD OF 'START'. ## 2.2 SWITCHES THERE ARE SEVERAL SWITCHES WHICH ARE USED TO MODIFY SUPERVISOR OPERATION. THESE SWITCHES ARE APPENDED TO THE LEGAL COMMANDS. ALL OF THE LEGAL SWITCHES ARE TABULATED BELOW WITH A BRIEF DESCRIPTION OF EACH. IN THE DESCRIPTIONS BELOW, A DECIMAL NUMBER IS DESIGNATED BY "DDDDD". | SWITCH | EFFECT | |--------------|--| | /TESTS:LIST | EVECUTE ONLY THOSE TESTS SPECIFIED IN | | / 1E313:E131 | EXECUTE ONLY THOSE TESTS SPECIFIED IN THE LIST. LIST IS A STRING OF TEST | | | NUMBERS, FOR EXAMPLE - /TESTS:1:5:7-10. | | | THIS LIST WILL CAUSE TESTS 1,5,7,8,9,10 TO | | | BE RUN. ALL OTHER TESTS WILL NOT BE RUN. | | /PASS:DDDDD | EXECUTE DDDDD PASSES (DDDDD = 1 TO 64000) | | /FLAGS:FLGS | SET SPECIFIED FLAGS. FLAGS ARE DESCRIBED | | | IN SECTION 2.3. | | /EOP:DDDDD | REPORT END OF PASS MESSAGE AFTER EVERY | | | DDDDD PASSES ONLY. (DDDDD = 1 TO 64000) | | /UNITS:LIST | TEST/ADD/DROP ONLY THOSE UNITS SPECIFIED | | | IN THE LIST. LIST EXAMPLE - /UNITS:0:5:10-12 | | | USE UNITS 0,5,10,11,12 (UNIT NUMBERS = 0-63) | EXAMPLE OF SWITCH USAGE: START/TESTS:1-5/PASS:1000/E0P:100 THE EFFECT OF THIS COMMAND WILL BE: 1) TESTS 1 THROUGH 5 WILL BE EXECUTED, 2) ALL UNITS WILL BE TESTED 1000 TIMES AND 3) THE END OF PASS MESSAGES WILL BE PRINTED AFTER EACH 100 PASSES ONLY. A SWITCH CAN BE RECOGNIZED BY THE FIRST THREE CHARACTERS. YOU MAY, FOR EXAMPLE, TYPE "/TES:1-5" INSTEAD OF "/TESTS:1-5". BELOW IS A TABLE THAT SPECIFIES WHICH SWITCHES CAN BE USED BY EACH COMMAND. | | TESTS | PASS | FLAGS | EOP | UNITS | |---|-------|-------------|-------------|-------------|--------| | START
RESTART
CONTINUE
PROCEED
DROP | X | X
X
X | X
X
X | X
X
X | X
X | | ADD
PRINT | | | | | X | | DISPLAY
FLAGS
ZFLAGS
EXIT | | | | | X | ## 2.3 FLAGS FLAGS ARE USED TO SET UP CERTAIN OPERATIONAL PARAMETERS SUCH AS LOOPING ON ERROR. ALL FLAGS ARE CLEARED AT STARTUP AND REMAIN CLEARED UNTIL EXPLICITLY SET USING THE FLAGS SWITCH. FLAGS ARE ALSO CLEARED AFTER A START COMMAND UNLESS SET USING THE FLAG SWITCH. THE ZFLAGS COMMAND MAY ALSO BE USED TO CLEAR ALL FLAGS. WITH THE EXCEPTION OF THE START AND ZFLAGS COMMANDS, NO COMMANDS AFFECT THE STATE OF THE FLAGS; THEY REMAIN SET OR CLEARED AS SPECIFIED BY THE LAST FLAG SWITCH. | FLAG | EFFECT | |------|--| | HOE | HALT ON ERROR - CONTROL IS RETURNED TO RUNTIME SERVICES COMMAND MODE | | LOE | LOOP ON ERROR | | IER* | INHIBIT ALL ERROR REPORTS | | IBE* | INHIBIT ALL ERROR REPORTS EXCEPT | | | FIRST LEVEL (FIRST LEVEL CONTAINS | | | ERROR TYPE, NUMBER, PC, TEST AND UNIT) | | IXE* | INHIBIT EXTENDED ERROR REPORTS (THOSE | | | CALLED BY PRINTX MACRO'S) | | PRI | DIRECT MESSAGES TO LINE PRINTER | | PNT | PRINT TEST NUMBER AS TEST EXECUTES | | BOE | "BELL" ON ERROR | | UAM | UNATTENDED MODE (NO MANUAL INTERVENTION) | | ISR | INHIBIT STATISTICAL REPORTS (DOES NOT | | | APPLY TO DIAGNOSTICS WHICH DO NOT SUPPORT | | | STATISTICAL REPORTING) | | IDR | INHIBIT PROGRAM DROPPING OF UNITS | | ADR | EXECUTE AUTODROP CODE | | LOT | LOOP ON TEST | | | | EVL EXECUTE EVALUATION (ON DIAGNOSTICS WHICH HAVE EVALUATION SUPPORT) *ERROR MESSAGES ARE DESCRIBED IN SECTION 3.1 SEE THE XXDP+ USER'S MANUAL FOR MORE DETAILS ON FLAGS. YOU MAY SPECIFY MORE THAN ONE FLAG WITH THE FLAG SWITCH. FOR EXAMPLE, TO CAUSE THE PROGRAM TO LOOP ON ERROR, INHIBIT ERROR REPORTS AND TYPE A 'BELL' ON ERROR, YOU MAY USE THE FOLLOWING STRING: /FLAGS:LOE: IER:BOE ## 2.4 HARDWARE QUESTIONS WHEN A DIAGNOSTIC IS STARTED, THE RUNTIME SERVICES WILL PROMPT THE USER FOR HARDWARE INFORMATION BY TYPING "CHANGE HW (L) ?" YOU MUST ANSWER "Y" AFTER A START COMMAND UNLESS THE HARDWARE INFORMATION HAS BEEN "PRELOADED" USING THE SETUP UTILITY (SEE CHAPTER 6 OF THE XXDP+ USER'S MANUAL). WHEN YOU ANSWER THIS QUESTION WITH A "Y", THE RUNTIME SERVICES WILL ASK FOR THE NUMBER OF UNITS (IN DECIMAL). YOU WILL THEN BE ASKED THE FOLLOWING QUESTIONS FOR EACH UNIT. CSR ADDRESS: VECTOR ADDRESS: DEVICE NUMBER: #### 2.5 SOFTWARE QUESTIONS AFTER YOU HAVE ANSWERED THE HARDWARE QUESTIONS OR AFTER A RESTART OR CONTINUE COMMAND, THE RUNTIME SERVICES WILL ASK FOR SOFTWARE PARAMETERS. THESE PARAMETERS WILL GOVERN SOME DIAGNOSTIC SPECIFIC OPERATION MODES. YOU WILL BE PROMPTED BY "CHANGE SW (L)?" IF YOU WISH TO CHANGE ANY PARAMETERS, ANSWER BY TYPING "Y". THE SOFTWARE QUESTIONS AND THE DEFAULT VALUES ARE DESCRIBED IN THE NEXT PARAGRAPH(S). THERE ARE NO SOFTWARE QUESTIONS IN THIS PROGRAM. ## 2.6 EXTENDED P-TABLE DIALOGUE WHEN YOU ANSWER THE HARDWARE QUESTIONS, YOU ARE BUILDING ENTRIES IN A TABLE THAT DESCRIBES THE DEVICES UNDER TEST. THE SIMPLEST WAY TO BUILD THIS TABLE IS TO ANSWER ALL QUESTIONS FOR EACH UNIT TO BE TESTED. IF YOU HAVE A MULTIPLEXED DEVICE SUCH AS A MASS STORAGE CONTROLLER WITH SEVERAL DRIVES OR A COMMUNICATION DEVICE WITH SEVERAL LINES, THIS BECOMES TEDIOUS SINCE MOST OF THE ANSWERS ARE REPETITIOUS. TO ILLUSTRATE A MORE EFFICIENT METHOD, SUPPOSE YOU ARE TESTING A FICTIONAL DEVICE, THE XY11. SUPPOSE THIS DEVICE CONSISTS
OF A CONTROL MODULE WITH EIGHT UNITS (SUB-DEVICES) ATTACHED TO IT. THESE UNITS ARE DESCRIBED BY THE OCTAL NUMBERS O THROUGH 7. THERE IS ONE HARDWARE PARAMETER THAT CAN VARY AMONG UNITS CALLED THE Q-FACTOR. THIS Q-FACTOR MAY BE O OR 1. BELOW IS A SIMPLE WAY TO BUILD A TABLE FOR ONE XY11 WITH EIGHT UNITS. # UNITS (D) ? 8<CR> UNIT 1 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 0<CR> Q-FACTOR (0) 0 ? 1<CR> UNIT 2 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 1<CR> Q-FACTOR (0) 1 ? 0<CR> UNIT 3 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 2<CR> Q-FACTOR (0) 0 ? <CR> UNIT 4 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 3<CR> Q-FACTOR (0) 0 ? <CR> UNIT 5 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 4<CR> Q-FACTOR (0) 0 ? <CR> UNIT 6 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 5<CR> Q-FACTOR (0) 0 ? <CR> UNIT 7 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 6<CR> Q-FACTOR (0) 0 ? 1<CR> UNIT 8 CSR ADDRESS (0) 160000<CR> SUB-DEVICE # (0) ? 7<CR> Q-FACTOR (0) 1 ? <CR> NOTICE THAT THE DEFAULT VALUE FOR THE Q-FACTOR CHANGES WHEN A NON-DEFAULT RESPONSE IS GIVEN. BE CAREFUL WHEN SPECIFYING MULTIPLE UNITS! AS YOU CAN SEE FROM THE ABOVE EXAMPLE, THE HARDWARE PARAMETERS DO NOT VARY SIGNIFICANTLY FROM UNIT TO UNIT. THE PROCEDURE SHOWN IS NOT VERY EFFICIENT. THE RUNTIME SERVICES CAN TAKE MULTIPLE UNIT SPECIFICATIONS HOWEVER. LET'S BUILD THE SAME TABLE USING THE MULTIPLE SPECIFICATION FEATURE. # UNITS (D) ? 8<CR> UNIT 1 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 0,1<CR> Q-FACTOR (0) 0 ? 1,0<CR> UNIT 3 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 2-5<CR> Q-FACTOR (0) 0 ? 0<CR> UNIT 7 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 6,7<CR> Q-FACTOR (0) 0 ? 1<CR> AS YOU CAN SEE IN THE ABOVE DIALOGUE, THE RUNTIME SERVICES WILL BUILD AS MANY ENTRIES AS IT CAN WITH THE INFORMATION GIVEN IN ANY ONE PASS THROUGH THE QUESTIONS. IN THE FIRST PASS, TWO ENTRIES ARE BUILT SINCE TWO SUB-DEVICES AND Q-FACTORS WERE SPECIFIED. THE SERVICES ASSUME THAT THE CSR ADDRESS IS 160000 FOR BOTH SINCE IT WAS SPECIFIED ONLY ONCE. IN THE SECOND PASS, FOUR ENTRIES WERE BUILT. THIS IS BECAUSE FOUR SUB-DEVICES WERE SPECIFIED. THE "-" CONSTRUCT TELLS THE RUNTIME SERVICES TO INCREMENT THE DATA FROM THE FIRST NUMBER TO THE SECOND. IN THIS CASE, SUB-DEVICES 2, 3, 4 AND 5 WERE SPECIFIED. (IF THE SUB-DEVICE WERE SPECIFIED BY ADDRESSES, THE INCREMENT WOULD BE BY 2 SINCE ADDRESSES MUST BE ON AN EVEN BOUNDARY.) THE CSR ADDRESSES AND Q-FACTORS FOR THE FOUR ENTRIES ARE ASSUMED TO BE 160000 AND 0 RESPECTIVELY SINCE THEY WERE ONLY SPECIFIED ONCE. THE LAST TWO UNITS ARE SPECIFIED IN THE THIRD PASS. THE WHOLE PROCESS COULD HAVE BEEN ACCOMPLISHED IN ONE PASS AS SHOWN BELOW. # UNITS (D) ? 8<CR> UNIT 1 CSR ADDRESS (0) ? 160000<CR> SUB-DEVICE # (0) ? 0-7<CR> Q-FACTOR (0) 0 ? 0,1,0,..,1,1<CR> AS YOU CAN SEE FROM THIS EXAMPLE, NULL REPLIES (COMMAS ENCLOSING A NULL FIELD) TELL THE RUNTIME SERVICES TO REPEAT THE LAST REPLY. 2.7 QUICK START-UP PROCEDURE (XXDP+) NOTE: THE T-11 POD MUST BE CONNECTED TO THE TARGET EMULATOR MODULE AND DISCONNECTED FROM THE TARGET SYSTEM BEFORE EXECUTION OF THIS DIAGNOSTIC. TO START-UP THIS PROGRAM: USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 10 CVCDCB.P11 01-APR-82 14:12 - 1. BOOT XXDP+ - 2. ANSWER ANY QUESTIONS ASKED AND GIVE THE DATE. - 3. TYPE 'R NAME', WHERE NAME IS THE NAME OF THE BIN OR BIC FILE FOR THIS PROGRAM - 4. TYPE "START" - 5. ANSWER THE "CHANGE HW" QUESTION WITH "Y" - 6. ANSWER ALL THE HARDWARE QUESTIONS - 7. ANSWER THE "CHANGE SW" QUESTION WITH "N" WHEN YOU FOLLOW THIS PROCEDURE YOU WILL BE USING ONLY THE DEFAULTS FOR FLAGS AND SOFTWARE PARAMETERS. THESE DEFAULTS ARE DESCRIBED IN SECTIONS 2.3 AND 2.5. - 3.0 ERROR INFORMATION - 3.1 TYPES OF ERROR MESSAGES THERE ARE THREE LEVELS OF ERROR MESSAGES THAT MAY BE ISSUED BY A DIAGNOSTIC: GENERAL, BASIC AND EXTENDED. GENERAL ERROR MESSAGES ARE ALWAYS PRINTED UNLESS THE "IER" FLAG IS SET (SECTION 2.3). THE GENERAL ERROR MESSAGE IS OF THE FORM: NAME TYPE NUMBER ON UNIT NUMBER TST NUMBER PC:XXXXXX ERROR MESSAGE WHERE; NAME = DIAGNOSTIC NAME TYPE = ERROR TYPE (SYS FATAL, DEV FATAL, HARD OR SOFT) NUMBER = ERROR NUMBER UNIT NUMBER = 0 - N (N IS LAST UNIT IN PTABLE) TST NUMBER = TEST AND SUBTEST WHERE ERROR OCCURRED PC:XXXXXXX = ADDRESS OF ERROR MESSAGE CALL BASIC ERROR MESSAGES ARE MESSAGES THAT CONTAIN SOME ADDITIONAL INFORMATION ABOUT THE ERROR. THESE ARE ALWAYS PRINTED UNLESS THE "IER" OR "IBE" FLAGS ARE SET (SECTION 2.3). THESE MESSAGES ARE PRINTED AFTER THE ASSOCIATED GENERAL MESSAGE. EXTENDED ERROR MESSAGES CONTAIN SUPPLEMENTARY ERROR INFORMATION SUCH AS REGISTER CONTENTS OR GOOD/BAD DATA. THESE ARE ALWAYS PRINTED UNLESS THE "IER", "IBE" OR "IXE" FLAGS ARE SET (SECTION 2.3). THESE MESSAGES ARE PRINTED AFTER THE ASSOCIATED GENERAL ERROR MESSAGE AND ANY ASSOCIATED BASIC ERROR MESSAGES. ## 3.2 SPECIFIC ERROR MESSAGES WHEN AN ERROR IS REPORTED ON THE CONSOLE TERMINAL, THE USER SHOULD REFER TO THE PROGRAM LISTING FOR THE TEST SEQUENCE BEING PERFORMED AT THE TIME THE ERROR WAS DETECTED. THE "PC" REPORTED IN THE ERROR MESSAGE INDICATES THE ADDRESS OF THE ERROR CALL. EACH STEP OF A TEST IS DESCRIBED IN DETAIL TO HELP THE USER UNDERSTAND THE TEST SEQUENCE. ONCE UNDERSTANDING THE TEST SEQUENCE, THE USER SHOULD BE ABLE TO DETERMINE THE FAULT OR FAULTS WHICH COULD CAUSE THE ERROR. THE ERROR PRINTOUTS WILL USE THE FOLLOWING WORDS TO INDICATE ERROR INFORMATION. A DESCRIPTION OF THE WORDS PRINTED OUT ARE AS FOLLOWS: REG: ONE OF THE TARGET EMULATOR MODULE'S CONTROL REGISTERS LOAD: DATA THAT WAS LOADED INTO THE CONTROL REGISTER OR EXPECTED DATA TO BE IN CONTROL REGISTER ON A READ READ: DATA THAT WAS READ FROM THE CONTROL REGISTER GOOD: EXPECTED CONTROL REGISTER DATA BAD: DATA 'READ' FROM THE CONTROL REGISTER XXXXXX: SIX OCTAL DIGITS INDICATING THE DATA FOR THE ABOVE WORDS THERE ARE FIVE ERROR NUMBERS ASSOCIATED WITH THIS DIAGNOSTIC. THE ERROR NUMBERS AND THEIR MEANINGS ARE DESCRIBED BELOW: ERROR NUMBER 1 - ERROR DETECTED CHECKING CONTROL REGISTER 0 ERROR NUMBER 2 - ERROR DETECTED CHECKING CONTROL REGISTER 2 ERROR NUMBER 3 - ERROR DETECTED CHECKING CONTROL REGISTER 4 ERROR NUMBER 4 - ERROR DETECTED CHECKING CONTROL REGISTER 6 ERROR NUMBER 5 - ERROR DETECTED TRYING TO RUN THE T-11 CHIP EXAMPLES OF EACH TYPE OF CONTROL REGISTER ERROR PRINTOUT ARE SHOWN BELOW: ** CONTROL REGISTER O ERROR MESSAGES ** CVCDC DVC FTL ERR 00001 ON UNIT 00 TST 001 SUB 000 PC: XXXXXX GDAL 15:0 REG ERROR CONTROL REG 0 ERROR REG0 = LOAD: XXXXXX GOOD: XXXXXX BAD: XXXXXX THE ABOVE ERROR MESSAGE WILL BE PRINTED OUT FOR ALL CONTROL REGISTER O ERRORS EXCEPT THOSE ERRORS DETECTED WHILE TESTING THE TARGET EMULATOR INTERRUPT LOGIC. IF AN ERROR WAS DETECTED WHILE CHECKING THE TARGET EMULATOR INTERRUPT LOGIC, THE ABOVE ERROR MESSAGE WILL BE REPORTED, HOWEVER, THE MESSAGE 'GDAL 15:0 REG ERROR' WILL BE REPLACED WITH EITHER 'UNEXPECTED INTERRUPT OCCURED' OR 'FAILED TO INTERRUPT'. THE INFORMATION PRINTED OUT FOR CONTROL REGISTER 0 MAY HELP THE USER IN DETERMINING THE ERROR, HOWEVER, THE GOOD AND BAD DATA MAY BE THE SAME, THEREFORE REFER TO THE PROGRAM LISTING FOR THE TEST SEQUENCE BEING PERFORMED AT THE TIME THE ERROR OCCURED. TIME OUT ERROR ADDRESSING CONTROL REG O THE ABOVE ERROR PRINTOUT IS GIVEN WHEN THE PROGRAM IS TRYING TO ADDRESS CONTROL REGISTER 0 AND CAN'T. THE PROGRAM THEN JUMPS TO TIME OUT VECTOR #4. ** CONTROL REGISTER 2 ERROR MESSAGE ** CVCDC DVC FTL ERR 00002 ON UNIT 00 TST 004 SUB 000 PC: XXXXXX ADAL 15:0 REG ERROR CONTROL REG 2 ERROR REG2 = LOAD: XXXXXX READ: XXXXXX USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 12 CVCDCB.P11 01-APR-82 14:12 THE ABOVE ERROR MESSAGE WILL BE PRINTED FOR ALL CONTROL REGISTER 2 ERRORS EXCEPT A TIME OUT ERROR. TIME OUT ERROR ADDRESSING CONTROL REG 2 THE ABOVE ERROR PRINTOUT IS GIVEN WHEN THE PROGRAM IS TRYING TO ADDRESS CONTROL REGISTER 2 AND CAN'T. THE PROGRAM THEN JUMPS TO TIME OUT VECTOR #4. ** CONTROL REGISTER 4 ERROR MESSAGE ** CVCDC DVC FTL ERR 00003 ON UNIT 00 TST 006 SUB 000 PC: XXXXXX VDAL 7:0 OR PAUSE STATE MACHINE ERROR CONTROL REG 4 ERROR REG4 = LOAD: XXXXXX GOOD: XXXXXX BAD: XXXXXX THE ABOVE ERROR MESSAGE WILL BE REPORTED FOR ALL CONTROL REGISTER 4 ERRORS EXCEPT A TIME OUT ERROR. TIME OUT ERROR ADDRESSING CONTROL REG 4 THE ABOVE ERROR PRINTOUT IS GIVEN WHEN THE PROGRAM IS TRYING TO ADDRESS CONTROL REGISTER 4 AND CAN'T. THE PROGRAM THEN JUMPS TO TIME OUT VECTOR #4. ** CONTROL REGISTER 6 ERROR MESSAGE ** THERE ARE THREE TYPES OF ERROR MESSAGES THAT ARE REPORTED FOR CONTROL REGISTER 6 ERRORS WHICH ARE SHOWN BELOW. CVCDC DVC FTL ERR 00004 ON UNIT 00 TST 008 SUB 000 PC: XXXXXX ERROR TYPE MESSAGE (SEE BELOW) CONTROL REG 6 ERROR REG0 = LOAD: XXXXXX GOOD: XXXXXX BAD: XXXXXX REG6 = LOAD: XXXXXX READ: XXXXXX CVCDC DVC FTL ERR 00004 ON UNIT 00 TST 021 SUB 000 PC: XXXXXX ERROR TYPE MESSAGE (SEE BELOW) CONTROL REG 6 ERROR REGO = LOAD: XXXXXX GOOD: XXXXXX BAD: XXXXXX REG2 = LOAD: XXXXXX READ: XXXXXX REG2 = LOAD: XXXXXX READ: XXXXXX REG6 = LOAD: XXXXXX READ: XXXXXX CVCDC DVC FTL ERR 00005 ON UNIT 00 TST 021 SUB 000 PC: XXXXXX ERROR TYPE MESSAGE (SEE BELOW) CONTROL REG 6 ERROR REGO = LOAD: XXXXXX GOOD: XXXXXX BAD: XXXXXX REG2 = LOAD: XXXXXX READ: XXXXXX REG6 = LOAD: XXXXXX READ: XXXXXX IN THE ABOVE ERRORS, REFER TO THE LINE INDICATING "REG6 =" FOR CONTROL REGISTER 6 ERROR INFORMATION. THE REMAINING CONTROL REGISTER INFORMATION IS GIVEN TO INDICATE WHAT WAS LOADED INTO THOSE REGISTERS PREVIOUS TO THE ERROR. THIS IS DONE TO AID THE USER IN DETERMINING THE FAULT ON ERRORS WHICH NEED PREVIOUS CONTROL REGISTER SETUP. USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 13 CVCDCB.P11 01-APR-82 14:12 IF THE NUMBER REPORTED FOR "DVC FTL ERR" WAS 00005, THEN THE ERROR OCCURED AS A RESULT OF THE PROGRAM TRYING TO TEST THE T-11 CHIP. THE ERROR TYPE MESSAGE IN THE ABOVE ERROR REPORTS WILL BE ONE OF THOSE LISTED BELOW. THESE MESSAGES ARE REPORTED TO HELP THE USER IDENTIFY THE AREA OF LOGIC BEING TESTED IN WHICH THE ERROR WAS DETECTED. THESE ERROR TYPE MESSAGES ARE AS FOLLOWS:
HDAL 15:0 REG ERROR MR 15:0 REG ERROR FDAL 7:0 REG ERROR EOAI 7:0 OR FDAL 7:0 REG ERROR DIAG ADDR 15:0 REG ERROR FORCE JUMP ADDRESS READBACK REG ERROR INSTR REG TO EODAL BUS READBACK ERROR MODE REG TO EODAL BUS READBACK ERROR FORCE JUMP ADDRESS REG TO EODAL BUS READBACK ERROR CTL 7:0 OR FDAL 7:0 REG ERROR MODE REG TO EIDAL BUS READBACK ERROR MODE REG TO TARGET MODE REG ERROR MODE REG TO ADDRESS BUS READBACK ERROR OLD FJA TO EIDAL BUS ERROR OLD FJA TO ADDRESS BUS ERROR OLD FJA TO TOAL LATCH EIDAL BUS ERROR TDAL LATCH TO EIDAL TO DATA TO EODAL BUS ERROR FDAL REG TO EODAL BUS ERROR FDAL REG TO EODAL BUS ERROR PAUSE STATE NOT ENTERED WHEN T-11 IS POWERED UP FORCE JUMP ADDRESS NOT = EXPECTED T-11 START-RESTART ADDRESS TIME OUT ERROR ADDRESSING CONTROL REG 6 THE ABOVE ERROR PRINTOUT IS GIVEN WHEN THE PROGRAM IS TRYING TO ADDRESS CONTROL REGISTER 0 AND CAN'T. THE PROGRAM THEN JUMPS TO TIME OUT VECTOR #4. ## 4.0 PERFORMANCE AND PROGRESS REPORTS AT THE END OF EACH PASS, THE PASS COUNT IS GIVEN ALONG WITH THE TOTAL NUMBER OF ERRORS REPORTED SINCE THE DIAGNOSTIC WAS STARTED. THE "EOP" SWITCH CAN BE USED TO CONTROL HOW OFTEN THE END OF PASS MESSAGE IS PRINTED. SECTION 2.2 DESCRIBES SWITCHES. 5.0 DEVICE INFORMATION TABLES CONTROL REGISTER 0 (163010) - GDAL REGISTER 15 GDAL15 BIT 15 = 1 READ DEVICE TYPE IN BITS 15-8. TARGET EMULATOR DEVICE TYPE EQU. 1.5 0 (0000) BIT 15 = 0 READ DEVICE NUMBER INTO BITS 11:8. 14 GDAL14 ALWAYS A O ON READ 13 GDAL13 ALWAYS A O ON READ ``` USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 14 CVCDCB.P11 01-APR-82 14:12 ``` ``` 12 GDAL12 ALWAYS A O ON READ ``` BITS 11:8 ARE USED TO SELECT THE DEVICE NUMBER OF THE TARGET EMULATOR. THESE BITS MUST BE EQUAL TO THE SETTING OF SWITCHES DEV 3, DEV 2, DEV 1 AND DEV 0. ``` GDAL11 DEVICE NUMBER/TYPE DEVICE NUMBER/TYPE DEVICE NUMBER/TYPE GDAL10 GDAL9 DEVICE NUMBER/TYPE GDAL8 GDAL7 SINGLE STEP BREAK INDICATOR (READ ONLY) GDAL6 TIMEOUT BREAK INDICATOR (READ ONLY) GDAL5 MEMORY SIMULATOR BREAK INDICATOR (READ ONLY) STATE ANALYZER BREAK INDICATOR (READ ONLY) GDAL4 TARGET EMULATOR INTERRUPT ENABLE (R/W) GDAL3 POINTER FOR EXTENDED REGISTER SELECT (R/W) GDAL 2 POINTER FOR EXTENDED REGISTER SELECT (R/W) GDAL1 POINTER FOR EXTENDED REGISTER SELECT (R/W) GDALO ``` ## EXTENDED REGISTER SELECTED VIA GDAL BITS 2:0 | GDAL2 | GDAL1 | GDAL0 | REGISTER SELECTED VIA R/W TO CONTROL REGISTER 6 | |-------|-------|-------|---| | 0 | 0 | 0 | WRITE DIAGNOSTIC ADDRESS REGISTER | | 0 | 0 | 1 | WRITE NEW FORCE JUMP ADDRESS REGISTER | | 0 | 1 | 0 | READBACK OF FORCE JUMP ADDRESS READBACK REG
WRITE FDAL AND EDAI REGISTER | | 0 | 1 | 1 | READBACK OF FDAL/EOAI OR FDAL/CTL REG
R/W HDAL REGISTER
R/W MODE REGISTER | | 1 | 0 | 0 | READBACK OF TARGET MODE REGISTER READBACK OF EIDAL BUS READBACK OF EODAL BUS | ## CONTROL REGISTER 2 (163012) - ADAL REGISTER ``` SELECT COLUMN AI FOR STATE ANALYZER (1) ADAL15 ADAL14 14 SELECT ROW/COLUMN AI FOR STATE ANALYZER (1) SELECT SERVICE AI FOR STATE ANALYZER (0) ENABLE SERVICE FROM TARGET EMULATOR (1) ENABLE SERVICE FROM THE TARGET (0) ENABLE MODE FROM TARGET EMULATOR (1) ENABLE MODE FROM THE TARGET (0) ENABLE MODE FROM THE TARGET (1) ADAL13 ADAL12 DISABLE SERVICE TO THE TARGET (1) ENABLE SERVICE TO THE TARGET (0) ADAL11 MASTER SWITCH 10 ADAL10 ENABLE STATE ANALYZER CLOCKS (1) ADAL9 ENABLE TIMEOUT BREAK (1) ADAL8 DISABLE TIMEOUT BREAK (0) ENABLE REFRESH TO STATE ANALYZER (1) ADAL7 DISBALE REFRESH TO STATE ANALYZER (0) ADAL6 SPARE ENABLE SINGLE STEP BREAK (1) ADAL5 DISABLE SINGLE STEP BREAK (0) ``` ``` 01-APR-82 14:12 ENABLE PAUSE STATE TO RUN MODE (1) ENABLE PAUSE STATE TO PAUSE MODE (0) ADAL4 POWER UP FROM TARGET (1) ADAL3 POWER UP FROM TARGET EMULATOR ADAL2 ADAL 1 SELECT TARGET EMULATOR CRYSTAL CLOCK (1) SELECT CLOCK FROM THE STATE ANALYZER (0) RESET BREAK LOGIC - ZEROES BREAK LATCH FLIP-FLOP, SINGLE 0 ADALO STEP BREAK FLIP-FLOP AND MEMORY SIMULATOR BREAK LATCH FLIP-FLOP CONTROL REGISTER 4 (163014) - VDAL REGISTER TNFJ H - TAKE NEW FORCE JUMP ADDRESS F/F (READ) VDAL 15 EP8N H - 8 BIT ADDRESS HB F/F (READ) EP8G H - 8 BIT ADDRESS LB F/F (READ) EP8F H - 8 BIT INSTRUCTION HB F/F (READ) VDAL14 VDAL13 VDAL12 EPFN H - 16 BIT ADDRESS F/F (READ) VDAL11 EPSF H - PAUSE STATE SYNC F/F (READ) PSMW H - PAUSE STATE WORKING F/F (READ) VDAL 10 VDAL9 OUTNEW H - GET NEW ADDRESS F/F (READ) VDAL8 DIAGNOSTIC FETCT H (READ/WRITE) VDAL7 MSDI H - DATA IN LOGIC LEVEL (READ) VDAL6 VDAL5 VDAL4 EDEOC H - LOGIC LEVEL OF STATE ANALYZER CLOCK (READ) VDAL3 READ H - LOGIC LEVEL OF REAT H (READ) VDAL2 DIAGNOSTIC RESET OF THE TARGET EMULATOR MODULE AND CLOCKS THE TAI AND TDAL LATCHES (READ/WRITE) VDAL 1 SPARE (READ/WRITE) VDALO ENABLE TAI AND TDAL READBACK FROM POD (READ/WRITE) CONTROL REGISTER 6 (163016) - FDAL REIGSTER (EOAI/CTL ON FDAL 15:8) FDAL7 INTERRUPT VECTOR FDAL6 INTERRUPT VECTOR INTERRUPT VECTOR FDAL5 INTERRUPT VECTOR FDAL4 FDAL3 INTERRUPT VECTOR FDAL2 INTERRUPT VECTOR FDAL1 SPARE FDALO SELECT EOAI REG TO BE READBACK ON FDAL BITS 15:8 (1) SELECT CTL REG TO BE READBACK ON FDAL BITS 15:8 (0) CONTROL REGISTER 6 (163016) - HDAL REGISTER - DIAGNOSTIC CONTROL BITS DIAGNOSTIC CONTROL OF PPI L WHEN HDALZ EQUALS A ONE DIAGNOSTIC CONTROL OF EIDAL17 H WHEN HDALZ EQUALS A ONE HDAL14 HDAL13 DIAGNOSTIC CONTROL OF PCAS H WHEN HDALZ EQUALS A ONE DIAGNOSTIC CONTROL OF PRAS H WHEN HDALZ EQUALS A ONE HDAL12 DIAGNOSTIC CONTROL OF EIDAL16 H WHEN HDAL2 EQUALS A ONE HDAL 11 10 HDAL 10 SPARE HDAL9 ENABLE DIAGNOSTIC ADDRESS REGISTER TO ADDRESS BUS DIAGNOSTIC CONTROL OF CREADY L WHEN HDAL2 EQUALS A ONE DIAGNOSTIC CONTROL OF PBCLR H WHEN HDAL2 EQUALS A ONE DIAGNOSTIC CONTROL OF PSEL1 L WHEN HDAL2 EQUALS A ONE DIAGNOSTIC CONTROL OF PSEL0 L WHEN HDAL2 EQUALS A ONE HDAL8 HDAL 7 HDAL6 HDAL 5 HDAL4 DIAGNOSTIC CONTROL OF PR/WHB L WHEN HDALZ EQUALS A ONE ``` ``` USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 16 ``` ``` DIAGNOSTIC CONTROL OF PR/WLB L WHEN HDALZ EQUALS A ONE HDAL3 HDAL2 ENABLES PROGRAM TO GENERATE T-11 SIGNALS LISTED IN HDAL (1) ENABLES T-11 TO GENERATE T-11 SIGNALS LISTED IN HDAL (0) HDAL 1 SPARE HDAL O DIAGNOSTIC CONTROL OF MSDI H WHEN HDALZ EQUALS A ONE CONTROL REGISTER 6 (163016) - MODE REGISTER MR15 T-11 START/RESTART ADDRESS SELECT MR14 START/RESTART ADDRESS SELECT MR13 T-11 START/RESTART ADDRESS SELECT MR12 T-11 USER MODE (1) T-11 TESTER MODE (0) 11 MR11 SELECT 8 BIT BUS (1) SELECT 16 BIT BUS (0) MR10 T-11 DYNAMIC MODE ONLY - SELECTS 4K/16K (1) T-11 DYNAMIC MODE ONLY - SELECTS 64K (0) MR9 T-11 STATIC MEMORY SELECT (1) T-11 DYNAMIC MEMORY SELECT (0) MR8 T-11 DELAYED READ/WRITE SELECT (1) T-11 NROMAL READ/WRITE SELECT (0) NOT DEFINED MR6 NOT DEFINED MR5 NOT DEFINED MR4 NOT DEFINED MR3 NOT DEFINED MR2 NOT DEFINED MR1 T-11 STANDARD MICROCYCLE (1) T-11 LONG MICROCYCLE (0) 0 MRO T-11 PROCESSOR CLOCK (1) T-11 CONSTANT CLOCK (0) ``` #### 6.0 TEST SUMMARIES #### TEST 1: THIS TEST WILL CHECK THAT THE TARGET EMULATOR MODULE CAN BE SELECTED AND INITIALIZED TO A KNOWN STATE. THE TEST DESCRIBED BELOW WILL BE EXECUTED AT THE BEGINNING OF EACH TEST TO PUT THE TARGET EMULATOR MODULE IN A KNOWN STATE. THE TEST WILL LOAD AND CHECK THAT THE DEVICE NUMBER CAN BE LOADED INTO AND READ FROM CONTROL REGISTER O. ALL THE READ/WRITE BITS WILL BE LOADED AND CHECKED FOR ZEROES. THE TEST WILL CHECK THAT THE TARGET EMULATOR DEVICE TYPE CAN BE READ BY SETTING CONTROL REGISTER O BIT 15 TO A ONE AND THEN READING CONTROL REGISTER O. THE TEST WILL SET CONTROL REGISTER BIT 15 TO A ZERO AND BITS 1 AND O TO ONES. BIT15 ON A ZERO WILL ENABLE THE DEVICE NUMBER TO BE READ AGAIN. BITS 1 AND O SET TO ONES WILL CAUSE THE HDAL REGISTER TO BE SELECTED ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6. THE TEST WILL NOW LOAD, READ AND CHECK THE HDAL REGISTER WITH HDAL2 SET TO A ONE AND ALL OTHER HDAL BITS CLEARED. HDAL2 SET TO A ONE WILL ENABLE THE PROGRAM TO GENERATE THE T-11 TIMING AND CONTROL SIGNALS USING HDAL REGISTER BITS. THE TEST WILL NOW SET CONTROL REGISTER O BITS 1 AND O TO ZEROES AND SET BIT 2 TO A ONE. CONTROL REGISTER O BIT 2 ON A ONE WILL CAUSE THE MODE REGISTER TO BE SELECTED ON A WRITE OR READ COMMAND TO CONTROL REGISTER OF ALL ZEROES. MODE REGISTER BIT 11 ON A ZERO WILL CAUSE 16 BIT ADDRESS MODE TO BE SELECTED. THE TEST WILL SET ADAL REGISTER BIT 0 TO A ONE AND THEN ZERO. ALL OTHER ADAL REGISTER BITS WILL BE LOADED AND CHECKED FOR ZEROES. ADALO BEING SET TO A ONE WILL CLEAR THE BREAK LATCH FLIP-FLOP, THE SINGLE STEP BREAK FLIP-FLOP, AND THE MEMORY SIMULATOR BREAK FLIP-FLOP. ADAL REGISTER BIT 2 ON A ZERO WILL CAUSE THE T-11 TO BE TURNED OFF. THE TEST WILL THEN READ AND CHECK CONTROL REGISTER O TO CHECK THAT ALL THE BREAK INDICATOR BITS ARE CLEARED. THE TEST WILL NOW SET VDAL REGISTER BIT 2 TO A ONE AND THEN A ZERO. ALL OTHER VDAL READ/WRITE BITS WILL BE LOADED AND CHECKED FOR ZEROES. VDAL REGISTER BIT 2 ON A ONE WILL CAUSE ALL THE FLIP-FLOPS ON THE TARGET EMULATOR MODULE, EXCEPT THOSE INITIALIZED BY ADALO, TO BE SET TO A KNOWN STATE. ## TEST 2: THIS TEST WILL CHECK THAT CONTROL REGISTER O READ/WRITE BITS, GDAL 3:0, CAN BE SET TO ALL ONES (17), AND THEN SET TO ALL ZEROES. THE READ ONLY BITS, GDAL7:4, ARE CHECKED TO BE CLEARED DURING THIS TEST. ## TEST 3: THIS TEST WILL CHECK THAT CONTROL REGISTER O READ/WRITE BITS GDAL 3:0, CAN BE LOADED WITH ONES AND ZEORES (12) AND THEN LOADED WITH ZEROES AND ONES (5). THE READ ONLY BITS GDAL 7:4 ARE CHECKED TO BE CLEARED DURING THIS TEST. ## TEST 4: THIS TEST WILL CHECK CONTROL REGISTER O R/W BITS USING A BINARY COUNT PATTERN. THE PATTERN WILL START INITIALLY AT O AND INCREMENT BY ONE UNTIL THE PATTERN EQUALS 17. THE READ ONLY BITS, GDAL 7:4, ARE CHECKED TO BE CLEARED DURING THIS TEST. #### TEST 5: THIS TEST WILL CHECK THAT CONTROL REGISTER 2 BITS ADAL 15:0 CAN BE SET TO ALL ONES (177777) AND THEN ALL ZEORES (000000). #### TEST 6: THIS TEST WILL CHECK CONTROL REGISTER 2 READ/WRITE BITS ADAL 15:0 WITH AN ALTERNATING ONES AND ZEROES DATA PATTERN (125252) AND THEN WITH AN ALTERNATING
ZEROES AND ONES DATA PATTERN (052525). ## TEST 7: THIS TEST WILL CHECK CONTROL REGISTER 2 READ/WRITE BITS ADAL 7:0 USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH A PATTERN OF 0 AND INCREMENT TO 377 BY AN INCREMENT OF ONE. #### TEST 8: THIS TEST WILL CHECK CONTROL REGISTER 2 READ/WRITE BITS ADAL 15:8 USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH A PATTERN OF 0 AND INCREMENT BY 400 UNTIL THE PATTERN 177400 HAS BEEN LOADED. ## TEST 9: THIS TEST WILL CHECK THAT CONTROL REGISTER 4 READ/WRITE BITS VDAL7, VDAL2, VDAL1 AND VDALO CAN BE SET AND CLEARED. THE TEST WILL CHECK THESE BITS USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 18 CVCDCB.P11 01-APR-82 14:12 USING A DECREMENTING BINARY COUNT PATTERN. THE READ ONLY BITS WILL BE CHECKED TO BE ZEROES DURING THIS TEST. READ ONLY BITS VDAL 15:8 SHOULD BE ZERO AS A RESULT OF VDAL2 H BEING SET TO A ONE DURING THIS TEST. READ ONLY BITS 6:3 SHOULD BE A ZERO AS A RESULT OF ADAL BIT 10 BEING A ZERO. THE ADAL REGISTER WAS CLEARED IN THE ABOVE ROUTINE "INITTE". #### **TEST 10:** THIS TEST WILL CHECK THAT HDAL REGISTER BITS 15:0 CAN BE SET TO ALL ONES (177777) AND THEN TO ALL ZEROES (000000). TO SELECT THE HUAL REGISTER, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, PULSES WILL OCCUR ON THE SIGNALS WPT3 LB H AND WPT3 HB H. THESE PULSES WILL CAUSE THE DATA ON THE WRITE COMMAND TO BE LOADED INTO THE HDAL REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, A PULSE WILL OCCUR ON THE SIGNAL RPT3 L. THIS SIGNAL WILL CAUSE THE HDAL REGISTER TO BE READBACK. ## **TEST 11:** THIS TEST WILL CHECK THAT HDAL REGISTER BITS 15:0 CAN BE LOADED WITH AN ALTERNATING ONE AND ZEROES DATA PATTERN (125252) AND AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525). TO SELECT THE HDAL REGISTER, THE TEST WILL SET GDAL1 AND GDAL0 TO ONES IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDAL0 SET TO ONES, PULSES WILL OCCUR ON THE SIGNALS WPT3 LB H AND WPT3 HB H. THESE PULSES WILL CAUSE THE DATA ON A WRITE COMMAND TO BE LOADED INTO THE HDAL REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, A PULSE WILL OCCUR ON THE SIGNAL RPT3 L. THIS SIGNAL WILL CAUSE THE HDAL REGISTER TO BE READBACK. #### **TEST 12:** THIS TEST WILL CHECK THE LOW BYTE OF THE HDAL REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH 0 AND INCREMENT BY ONE UNTIL THE PATTERN 377 HAS BEEN LOADED INTO THE HDAL REGISTER. THE BITS BEING TESTED ARE HDAL BITS 7:0. TO SELECT THE HDAL REIGSTER, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE HDAL REGISTER VIA THE SIGNALS WPT3 LB H AND WPT3 HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ FROM THE HDAL REGISTER VIA THE SIGNAL RPT3 L. #### **TEST 13:** THIS TEST WILL CHECK THE HIGH BYTE OF THE HDAL REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH 0 AND INCREMENT BY 400 UNTIL THE PATTERN 177400 HAS BEEN LOADED INTO THE HDAL REGISTER. THE BITS BEING TESTED ARE HDAL BITS 15:8. TO SELECT THE HDAL REIGSTER, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE HDAL REGISTER VIA THE SIGNALS WPT3 LB H AND WPT3 HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ FROM THE HDAL REGISTER VIA THE SIGNAL RPT3 L. ## **TEST 14:** THIS TEST WILL CHECK THAT MODE REGISTER BITS 15:0 CAN BE SET TO ALL ONES (177777) AND THEN TO ALL ZEROES (000000). TO SELECT THE MODE REGISTER, THE TEST WILL SET GDAL2 TO A ONE IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE, PULSES WILL BE OCCUR ON THE SIGNALS WPT4 LB H AND WPT4 HB H. THESE PULSE WILL CAUSE THE DATA ON THE WRITE COMMAND TO BE LOADED INTO THE MODE REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET IN CONTROL REGISTER O, A PULSE WILL OCCUR ON THE SIGNAL RPT4 L. THIS SIGNAL WILL CAUSE THE MODE REGISTER TO BE READBACK ## **TEST 15:** THIS TEST WILL CHECK THAT MODE REGISTER BITS 15:0 CAN BE LOADED WITH AN ALTERNATING ONE AND ZEROES DATA PATTERN (125252) AND AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525). TO SELECT THE MODE REGISTER, THE TEST WILL SET GDAL2 IN THE LOW BYTE OF CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE IN REG 0, PULSES WILL OCCUR ON THE SIGNALS WPT4 LB H AND WPT4 HB H. THESE PULSES WILL CAUSE THE DATA ON A WRITE COMMAND TO BE LOADED INTO THE MODE REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE, A PULSE WILL OCCUR ON THE SIGNAL RPT4 L. THIS SIGNAL WILL CAUSE THE MODE REGISTER TO BE READBACK. ## **TEST 16:** THIS TEST WILL CHECK THE LOW BYTE OF THE MODE REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH O AND INCREMENT BY ONE UNTIL THE PATTERN 377 HAS BEEN LOADED INTO THE MODE REGISTER. THE BITS BEING TESTED ARE MR BITS 7:0. TO SELECT THE MODE REGISTER, THE TEST WILL SET GDAL2 TO A 1 IN LOW BYTE OF CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE MODE REGISTER VIA THE SIGNALS WPT4 LB H AND WPT4 HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ FROM THE MODE REGISTER VIA THE SIGNAL RPT4 L. #### **TEST 17:** THIS TEST WILL CHECK THE HIGH BYTE OF THE MODE REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH O AND INCREMENT BY 400 UNTIL THE PATTERN 177400 HAS BEEN LOADED INTO THE MODE REGISTER. THE BITS BEING TESTED ARE MR BITS 15:8. TO SELECT THE MODE REGISTER, THE TEST WILL SET GDAL2 TO A 1 IN LOW BYTE OF CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE MODE REGISTER VIA THE SIGNALS WPT4 LB H AND WPT4 HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ FROM THE MODE REGISTER VIA THE SIGNAL RPT4 L. #### **TEST 18:** THIS TEST WILL CHECK THAT FDAL REGISTER BITS 7:0 CAN BE SET TO ALL ONES (377) AND THEN TO ALL ZEROES (000). TO SELECT THE FDAL REGISTER, THE TEST WILL SET GDAL1 TO A ONE IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO FDAL REGISTER BITS 7:0 VIA THE SIGNAL WPT2 LB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE FDAL REGISTER VIA THE SIGNAL RPT2 L. THE HIGH BYTE, WHICH IS ANOTHER REGISTER, WILL BE IGNORED DURING THIS TEST. #### **TEST 19:** THIS TEST WILL CHECK THAT FDAL REGISTER BITS 7:0 CAN BE LOADED WITH AN ALTERNATING ONES AND ZEROES DATA PATTERN (252) AND AN ALTERNATING ZEROES AND ONES DATA PATTERN (125). TO SELECT THE FDAL REGISTER, THE TEST WILL SET THE SIGNAL GDAL1 TO A ONE IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO FDAL REGISTER BITS 7:0 VIA THE SIGNAL WPT2 LB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE FDAL REGISTER VIA THE SIGNAL RPT2 L. THE HIGH BYTE, WHICH IS ANOTHER REGISTER, WILL BE IGNORED DURING THIS TEST. ## TEST20: THIS TEST WILL CHECK FDAL REGISTER BITS 7:0 USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START AT 0 AND INCREMENT BY ONE UNTIL THE PATTERN 377 HAS BEEN LOADED INTO THE FDAL REGISTER. TO SELECT THE FDAL REGISTER, THE TEST WILL SET GDAL1 TO A ONE IN CONTROL REGISTER 0. ON A WRITE COMMANND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE FDAL REG VIA THE SIGNAL WPT2 LB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ FROM THE FDAL REG VIA THE SIGNAL RPT2 L. #### **TEST 21:** THIS TEST WILL CHECK EOAI REGISTER BITS 7:0 USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH ZERO AND INCREMENT BY ONE UNTIL A PATTERN OF ALL ONES HAS BEEN LOADED INTO THE EOAI REGISTER AND CHECKED. THE EOAI REGISTER IS THE HIGH BYTE OF THE FDAL REGISTER. DATA IS LOADED INTO THE EOAI REGISTER VIA THE SIGNAL WPT2 HB H WHEN A WRITE COMMAND IS ISSUED TO CONTROL REGISTER 6 AND THE FDAL REGISTER IS SELECTED VIA GDAL BITS 2:0. TO READ THE EOAI BUS, THE PROGRAM WILL SET FDALO H TO A ONE TO SELECT THE EOAI BUS TO BE READ INSTEAD OF THE CTL BUS. THE EOAI BUS IS READ BACK TO THE LSI-11 VIA THE SIGNAL RAT2 L WHEN A READ COMMAND IS ISSUED TO CONTROL REGISTER 6 AND THE FDAL REGISTER IS SELECTED. #### **TEST 22:** THIS TEST WILL CHECK THAT THE DIAGNOSTIC ADDRESS REGISTER BITS ADDR 15:0 CAN BE LOADED WITH ALL ONES (177777) AND THEN ALL ZEROES (000000). TO ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS REGISTER ONTO THE ADDRESS BUS AND TO DISABLE THE EIDAL BUS TO THE ADDRESS BUS, THE TEST WILL SET HDAL9 H IN THE HDAL REGISTER TO A ONE. TO SELECT THE HDAL REG, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE HDAL REGISTER WILL BE SELECTED BY THE WRITE SIGNALS WRT3 LB H AND WRT3 HB H, AND BY THE READ SIGNAL RPT3 L. TO SELECT THE DIAGNOSTIC ADDRESS REGISTER, THE TEST WILL CLEAR GDAL BITS 2:0 IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL BITS 2:0 CLEARED, DATA WILL BE LOADED INTO THE ADDRESS REGISTER BY PULSES ON THE SIGNALS WPTO LB H AND WPTO HB H. ON A READ COMMAND TO CONTROL REGISTER 6, A PULSE WILL OCCUR ON THE SIGNAL RPTO L WHICH WILL CAUSE THE DATA TO BE READBACK FROM THE DIAGNOSTIC ADDRESS REGISTER. #### **TEST 23:** THIS TEST WILL CHECK THAT THE DAIGNOSTIC ADDRESS REGISTER BITS ADDR 15:0 CAN BE LOADED WITH AN ALTERNATING ONES AND ZEROES DATA PATERN (125252) AND AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525). TO ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS REGISTER ONTO THE ADDRESS BUS AND TO DISABLE THE EIDAL BUS TO THE ADDRESS BUS, THE TEST WILL SET HDAL9 H IN THE HDAL REGISTER TO A ONE. TO SELECT THE HDAL REG, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE HDAL REGISTER WILL BE SELECTED BY THE WRITE SIGNALS WRT3 LB H AND WRT3 HB H, AND BY THE READ SIGNAL RPT3 L. TO SELECT THE
DIAGNOSTIC ADDRESS REGISTER, THE TEST WILL CLEAR GDAL BITS 2:0 IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL BITS 2:0 CLEARED, DATA WILL BE LOADED INTO THE ADDRESS REGISTER BY PULSES ON THE SIGNALS WPTO LB H AND WPTO HB H. ON A READ COMMAND TO CONTROL REGISTER 6, A PULSE WILL OCCUR ON THE SIGNAL RPTO L WHICH WILL CAUSE THE DATA TO BE READBACK FROM THE DIAGNOSTIC ADDRESS REGISTER. ## **TEST 24:** THIS TEST WILL CHECK THE LOW BYTE OF THE DIAGNOSTIC ADDRESS REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH O AND INCREMENT BY ONE UNTIL THE PATTERN 377 HAS BEEN LOADED INTO DIAGNOSTIC ADDRESS REGISTER BITS ADDR 7:0. THE HIGH BYTE OF THE DIAGNOSTIC ADDRESS REGISTER WILL BE LOADED WITH ZEROES DURING THIS TEST. TO ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS REGISTER ONTO THE ADDRESS BUS AND TO DISABLE THE EIDAL BUS TO THE ADDRESS BUS, THE TEST WILL SET HDAL9 H IN THE HDAL REGISTER TO A ONE. TO SELECT THE HDAL REG, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE HDAL REGISTER WILL BE SELECTED BY THE WRITE SIGNALS WRT3 LB H AND WRT3 HB H, AND BY THE READ SIGNAL RPT3 L. TO SELECT THE DIAGNOSTIC ADDRESS REGISTER, THE TEST WILL CLEAR GDAL BITS 2:0 IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL BITS 2:0 CLEARED, DATA WILL BE LOADED INTO THE ADDRESS REGISTER BY PULSES ON THE SIGNALS WPTO LB H AND WPTO HB H. ON A READ COMMAND TO CONTROL REGISTER 6, A PULSE WILL OCCUR ON THE SIGNAL RPTO L WHICH WILL CAUSE THE DATA TO BE READBACK FROM THE DIAGNOSTIC ADDRESS REGISTER. ## **TEST 25:** THIS TEST WILL CHECK THE HIGH BYTE OF THE DIAGNOSTIC ADDRESS REGISTER USING A BINARY COUNT PATTERN. THE TEST PATTERN WILL START WITH 0 AND INCREMENT BY 400 UNTIL THE PATTERN 177400 HAS BEEN LOADED INTO DIAGNOSTIC ADDRESS REGISTER BITS ADDR 15:8. THE LOW BYTE OF THE DIAGNOSTIC ADDRESS REGISTER WILL BE LOADED WITH ZEROES DURING THIS TEST. TO ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS REGISTER ONTO THE ADDRESS BUS AND TO DISABLE THE EIDAL BUS TO THE ADDRESS BUS, THE TEST WILL SET HDAL9 H IN THE HDAL REGISTER TO A ONE. TO SELECT THE HDAL REG, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE HDAL REGISTER WILL BE SELECTED BY THE WRITE SIGNALS WRT3 LB H AND WRT3 HB H, AND BY THE READ SIGNAL RPT3 L. TO SELECT THE DIAGNOSTIC ADDRESS REGISTER, THE TEST WILL CLEAR GDAL BITS 2:0 IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL BITS 2:0 CLEARED, DATA WILL BE LOADED INTO THE ADDRESS REGISTER BY PULSES ON THE SIGNALS WPTO LB H AND WPTO HB H. ON A READ COMMAND TO CONTROL REGISTER 6, A PULSE WILL OCCUR ON THE SIGNAL RPTO L WHICH WILL CAUSE THE DATA TO BE READBACK FROM THE DIAGNOSTIC ADDRESS REGISTER. ## **TEST 26:** THIS TEST WILL CHECK THAT THE MODE REGISTER CAN BE READBACK ON THE EDDAL BUS. THE MODE REGISTER WILL BE LOADED WITH THE FOLLOWING PATTERNS: 125252,052525, USER DOCUMENTATION MACY11 30A(1052) 01-APR-82 14:48 PAGE 22 CVCDCB.P11 01-APR-82 14:12 177400, 000377, 177777, AND 0000000. FOR EACH PATTERN LOADED THE TEST WILL ENABLE THE MODE REGISTER ONTO THE EDDAL BUS AND READ AND CHECK THE EDDAL BUS FOR THE CORRECT MODE REGISTER PATTERN. THE MODE REGISTER WILL BE ENABLED TO THE EDDAL BUS WHEN ADAL12 H IS SET TO A ONE AND THE SIGNAL XBCLR H IS ASSERTED HIGH. #### **TEST 27:** THIS TEST WILL CHECK THE FORCE JUMP ADDRESS READBACK REGISTER WITH THE FOLLOWING DATA PATTERNS 125252, 052525, 177400, 000377, 1777777, AND 000000. THE DIAGNOSTIC ADDRESS REGISTER WILL PROVIDE THE DATA ON THE ADDRESS BUS TO THE FORCE JUMP ADDRESS REGISTER AND FORCE JUMP ADDRESS REGISTER. ## **TEST 28:** THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 16 BIT ADDRESS MODE. THE PAUSE STATE MACHINE FLIP-FLOPS, PAUSE STATE WORKING, AND PAUSE STATE SYNC AND 16 BIT ADDRESS WILL BE CLOCKED TO ONES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND ADAL8 H WILL BE SET TO A ZERO AND ADALO H WILL BE SET TO A ONE DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK AND ADALO H ON A ONE WILL CLEAR THE BREAK LOGIC, THUS SETTING THE SIGNAL BRK H TO A ZERO. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE OLD FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS. THE OLD FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125252, 052525 177400, 000377, 177777, AND 000000. THE OLD FORCE JUMP ADDRESS REGISTER GETS ITS DATA FROM THE DIAGNOSTIC ADDRESS REGISTER WHICH IS ENABLED ON THE ADDRESS BUS DURING THIS TEST. #### **TEST 29:** THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 16 BIT ADDRESS MODE. THE PAUSE STATE MACHINE FLIP - FLOP'S, PAUSE STATE WORKING, PAUSE STATE SYNC AND 16 BIT ADDRESS WILL BE CLOCKED TO ONES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND ADAL8 H WILL BE SET TO A ZERO AND ADALO H WILL BE SET TO A ONE DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK AND ADALO H ON A ONE WILL CLEAR THE BREAK LOGIC, THUS SETTING THE SIGNAL BRK H TO A ZERO. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE NEW FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS. THE NEW FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125252, 052525 177400, 000377, 177777, AND 000000. THE NEW FORCE JUMP ADDRESS REGISTER IS LOADED AT THE BEGINNING OF THE TEST. #### **TEST 30:** THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN "RUN" AND 16 BIT ADDRESS MODE. WHEN THE PAUSE STATE MACHINE IS SETUP IN "RUN" MODE VIA ADAL4 H ON A ONE AND A PULSE ON THE SIGNAL XRAS H, THE PAUSE STATE MACHINE CAN ONLY BE ENTERED WHEN A BREAK CONDITION IS RECEIVED ON THE SIGNAL "BRK H". THIS TEST WILL USE THE TIMEOUT BREAK ONE SHOT TO GENERATE THE BREAK CONDITION. THE TEST WILL CHECK THAT THE PAUSE STATE MACHINE IS NOT ENTERED WHEN NO BREAK CONDITION IS RECEIVED AND THAT IT IS ENTERED WHEN A BREAK CONDITION IS RECEIVED. THE TEST WILL CHECK ALL THE PAUSE STATE LOGIC ASSOCIATED WITH THE SIGNAL 'BRK H'. THE TEST WILL CHECK THAT THE SIGNAL 'TOBRK H' IS SET IN CONTROL REGISTER O WHEN THE TIME OUT BREAK ONE SHOT IS NOT BEING FIRED AND THAT IT IS NOT SET WHEN THE TIME OUT BREAK ONE SHOT IS BEING FIRED. ## **TEST 31:** THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN "RUN" AND 16 BIT ADDRESS MODE. WHEN THE PAUSE STATE MACHINE IS SETUP IN "RUN" MODE VIA ADAL4 H ON A ONE AND A PULSE ON XRAS H, THE PAUSE STATE MACHINE CAN ONLY BE ENTERED WHEN A BREAK CONDITION IS RECEIVED ON THE SIGNAL "BRK H". THIS TEST WILL USE THE SINGLE STEP BREAK FLIP-FLOP TO GENERATE THE BREAK CONDITION. THE TEST WILL CHECK THAT THE PAUSE STATE MACHINE IS NOT ENTERED WHEN THE SINGLE STEP BREAK FLIP-FLOP IS CLEARED AND THAT IT CAN BE ENTERED WHEN THE SINGLE STEP BREAK FLIP-FLOP IS SET TO A ONE. THE TEST WILL CHECK THAT THE SINGLE STEP BREAK FLIP-FLOP ONCE SET, WILL REMAIN LATCHED TO THE SET STATE UNTIL CLEARED BY A PULSE BEING ISSUED ON THE SIGNAL "BRKRES L". THE TEST WILL SET THE PAUSE STATE MACHINE FLIP-FLOP'S: PAUSE STATE WORKING, PAUSE STATE SYNC AND 16 BIT ADDRESS VIA THE SIGNALS XRAS H AND XCAS H. ONCE ALL THESE FLIP-FLOPS ARE SET TO THE ONE STATE, THE TEST WILL CHECK THAT THEY CAN BE CLEARED BY ISSUING A PULSE ON THE SIGNAL "INVOL". ## **TEST 32:** THIS TEST WILL CHECK THAT THE EDFET FLIP-FLOP CAN BE CLEARED WHEN A PULSE IS ISSUED OF THE SIGNAL XPI L. THE TEST WILL SET ADAL4 H TO A ZERO TO CAUSE THE PAUSE MODE FLIP-FLOP TO BE SET TO THE PAUSE MODE WHEN A PULSE IS ISSUED ON THE SIGNAL XRAS H. THE TEST WILL SET THE SIGNAL FETCT H TO THE HIGH STATE BY SETTING VDAL7 H TO A ONE. THE TEST WILL THEN PULSE XRAS H TO SET THE EDFET FLIP-FLOP TO A ONE AND TO SET THE PAUSE MODE FLIP-FLOP TO THE PAUSE MODE. WHEN EDFET FLIP-FLOP IS SET TO A ONE AND THE PAUSE MODE FLIP-FLOP IS SET TO THE PAUSE MODE, THE PAUSE STATE WORKING FLIP-FLOP WILL BE DIRECT SET TO A ONE. THE TEST WILL NOW PULSE THE SIGNAL XPI L TO CLEAR THE EDFET FLIP-FLOP. WHEN THE EDFET FLIP-FLOP IS CLEARED, THE SIGNAL PB H WILL BE ASSERTED LOW. THE SIGNAL PB H IS THE DATA INPUT LEAD TO THE PAUSE STATE WORKING FLIP-FLOP. THE TEST WILL NOW PULSE THE SIGNAL XCAS H. WHEN A PULSE IS ISSUED ON THE SIGNAL XCAS H AND THE SIGNAL PB H IS ASSERTED LOW, THE PAUSE STATE SYNC FLIP-FLOP WILL BE CLOCKED TO A ZERO. THE SIGNAL XCAS H WILL ALSO CLOCK THE PAUSE STATE WORK-ING FLIP-FLOP TO A ONE. #### **TEST 33:** THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 8 BIT ADDRESS MODE. THE PAUSE STATE WORKING FLIP - FLOP'S, PAUSE STATE WORKING, PAUSE STATE SYNC, 8 BIT INSTRUCTION HB, 8 BIT ADDRESS LB AND 8 BIT ADDRESS HB WILL BE CLOCKED TO ONES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND AND ADAL8 H WILL BE SET TO A ZERO DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK. ADALO H WILL BE SET AND CLEARED IN CLEAR THE BREAK LOGIC. WITH THE TIMEOUT BREAK DISABLED AND THE BREAK LOGIC CLEARED, THE SIGNAL BRK H WILL BE A ZERO. MR BIT 11 WILL BE SET TO A ONE IN THE MODE REGISTER TO ENABLE 8 BIT ADDRESS MODE. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE OLD FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS IN 8 BIT ADDRESS MODE. THE OLD FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125125, 052652, 000377, 177400, 125252, 052525, 177777, AND 000000. THE OLD FORCE JUMP ADDRESS REGISTER GETS ITS DATA FROM THE DIAGNOSTIC ADDRESS REGISTER WHICH IS ENABLED TO THE ADDRESS BUS DURING THIS TEST. ## **TEST 34:** THIS TEST WILL CHECK
THE PAUSE STATE MACHINE IN 8 BIT ADDRESS MODE. THE PAUSE STATE MACHINE FLIP - FLOP'S, PAUSE STATE WORKING, PAUSE STATE SYNC, 8 BIT INSTRUCTION HB, 8 BIT ADDRESS LB AND 8 BIT ADDRESS HB WILL BE CLOCKED TO ONES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND AND ADAL8 H WILL BE SET TO A ZERO DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK. ADALO H WILL BE SET AND CLEARED TO CLEAR THE BREAK LOGIC. WITH THE TIMEOUT BREAK DISABLED AND THE BREAK LOGIC CLEARED, THE SIGNAL BRK H WILL BE A ZERO. MR BIT 11 WILL BE SET TO A ONE IN THE MODE REGISTER TO ENABLE 8 BIT ADDRESS MODE. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE NEW FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS IN 8 BIT ADDRESS MODE. THE NEW FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125125, 052652, 000377, 177400, 125252, 052525, 177777, AND 000000. THE NEW FORCE JUMP ADDRESS REGISTER IS LOADED WITH THE DATA AT THE BEGINNING OF THE TEST. ## TEST 35: THIS TEST WILL CHECK THAT THE PAUSE STATE MACHINE FLIP - FLOPS, PAUSE STATE WORKING, PAUSE STATE SYNC, 8 BIT INSTRUCTION HB, 8 BIT ADDRESS LB, AND 8 BIT ADDRESS HB, CAN BE CLEARED WHEN THE SIGNAL VDAL2 H IS ASSERTED HIGH. ALL THE ABOVE FLIP-FLOPS ARE SET TO A ONE BY SETTING THE SIGNAL FETCT H TO A ONE, SETTING THE SIGNAL ADAL4 H TO A ZERO, AND PULSING THE SIGNALS XRAS H AND XCAS H. ONCE ALL THE FLIP-FLOPS ARE SET TO ONES, THE TEST WILL SET THE SIGNAL VDAL2 H AND CHECK THAT ALL THE PAUSE STATE MACHINE FLIP-FLOPS CLEARED. #### **TEST 36:** THIS TEST WILL CHECK THAT THE EOAI REGISTER BITS 7:0 CAN BE LOADED AND READ BACK CORRECTLY. THE TEST WILL ALSO CHECK THE DATA PATH TO BE CONNECTED AND FUNCTIONING PROPERLY FROM THE EOAI REGISTER TO THE EOAI BUS, TO THE CAI BUS, TO THE CAI BUS, TO THE CAI BUS, TO THE TEST WILL CHECK THE DATA PATH FROM THE EOAI REGISTER TO THE EOAI BUS, TO THE CAI BUS, TO THE TAI DIAGNOSTIC LATCH, AND BACK FROM THE TAI DIAGNOSTIC LATCH TO THE CAI BUS, TO THE EIAI BUS, TO THE CTL BUS AND INTO THE CTL REGISTER. THE DATA PATTERN USED DURING THIS TEST WILL BE AN INCREMENTING BINARY COUNT PATTERN. THE DATA READBACK FROM THE CTL REGISTER WILL BE THE ONES COMPLEMENT OF THE DATA LOADED INTO THE EOAI REGISTER. #### TEST 37: THIS TEST WILL CHECK THE DATA PATH FROM THE MODE REGISTER TO THE ADDRESS BUS. TO DO THIS, THE TEST WILL ENABLE THE DATA PATH FROM THE MODE REGISTER TO THE EDDAL BUS, TO THE CDAL BUS, TO THE EIDAL BUS, AND TO THE ADDRESS BUS. THIS IS DONE BY SETTING XBCLR H AND PBCLR H TO THE HIGH STATE AND BY SETTING ADAL12 H AND ADAL10 H TO ONES. THE TARGET MODE READBACK REGISTER WILL ALSO BE CHECKED TO HAVE BEEN LOADED WITH THE EIDAL BUS DATA WHEN THE SIGNAL XBCLR L IS SET TO THE HIGH STATE FROM THE LOW STATE. THE MODE REGISTER WILL BE LOADED WITH THE FOLLOWING DATA PATTERNS, 146063, 031714, 125252, 052525, 177777 AND 000000. FOR EACH DATA PATTERN LOADED, THE PROGRAM WILL CHECK THE DATA TO BE PRESENT ON THE THE EODAL BUS, THE EIDAL BUS, AND THE ADDRESS BUS. THE TEST WILL ALSO CHECK THAT EACH PATTERN CAN BE LOADED INTO THE TARGET MODE READBACK REGISTER. ## **TEST 38:** THIS TEST WILL CHECK THE DATA PATH FROM THE DIAGNOSTIC ADDRESS REGISTER TO THE OLD FORCE JUMP ADDRESS REGISTER, TO THE EODAL BUS, TO THE EIDAL BUS, AND TO THE ADDRESS BUS. THIS PART OF THE TEST USES THE PAUSE STATE MACHINE LOGIC TO LOAD THE OLD FORCE JUMP ADDRESS REGISTER DATA ONTO THE EODAL BUS. WHEN THE OLD FORCE JUMP ADDRESS REGISTER DATA IS ENABLED TO THE EODAL BUS, THE TEST WILL ENABLE THE DATA TO THE TDAL BUS AND LATCH THE DATA INTO THE TDAL DIAGNOSTIC LATCHES. THE NEXT PART OF THE TEST WILL CHECK THAT THE TDAL DIAGNOSTIC LATCHES CAN BE ENABLED TO THE EIDAL BUS AND THAT THE EIDAL BUS CAN BE ENABLED TO THE EODAL BUS THROUGH THE DATA BUS. #### **TEST 39:** THIS TEST WILL CHECK THAT THE FDAL REGISTER CAN BE ENABLED TO THE EDDAL BUS VIA THE SIGNAL INTER L AND THAT THE EDDAL BUS CAN BE ENABLED TO THE EIDAL BUS VIA THE SIGNAL COLB L. THE TEST WILL ALSO CHECK THAT THE EDAI REGISTER CAN BE CLEARED WHEN THE SIGNAL INTER L IS ASSERTED LOW. A BINARY COUNT DATA PATTERN WILL BE LOADED INTO THE FDAL REGISTER STARTING WITH A DATA PATTERN OF ONE AND INCREMENTING BY FOUR UNTIL THE DATA PATTERN 375 HAS BEEN LOADED AND CHECKED. #### **TEST 40:** THIS TEST WILL CHECK THAT THE SIGNALS READ H AND MSDI H CA N BE ASSERTED HIGH AND LOW. THESE SIGNALS ARE ASSERTED HIGH AND LOW BY CHANGING THE LOGIC LEVELS ON THE INPUT SIGNALS TO THE GATES WHICH GENERATE THE SIGNALS. THE SIGNALS READ H AND MSDI H ARE READ IN THE VDAL REGISTER AS BITS 3 AND 6 RESPECTIVELY. #### **TEST 41:** THIS TEST WILL CHECK THAT THE SIGNALS FETCT H AND BTS1 H CAN BE ASSERTED HIGH AND LOW. THESE TWO SIGNALS ARE ASSERTED HIGH AND LOW BY CHANGING THE INPUT SIGNALS TO THE GATES WHICH GENERATE THESE SIGNALS. THE PAUSE STATE MACHINE LOGIC IS USED TO TEST THE SIGNAL FETCT H. THE SIGNAL FETCT H IS ALSO CHECKED ON THE SIGNAL BTS1 H. THE SIGNAL BTS1 H IS READ IN THE VDAL REGISTER ON BIT 5. ## TEST 42: THIS TEST WILL CHECK THAT THE SIGNAL EDEOC H CAN BE SET TO THE HIGH STATE AND TO THE LOW STATE. THE SIGNAL EDEOC H IS READ IN THE VDAL REGISTER ON BIT 4 WHEN ADAL REAGISTER BIT 10 IS SET TO A ONE. THE PROGRAM WILL CHECK THE SIGNAL EDEOC H TO SET AND CLEAR BY CHANGING THE LOGIC LEVELS ON THE FOLLOWING SIGNALS: ADAL9 H, PSM L, INTER L, REFR L, XRAS H, XRAS L, XCAS H, XCAS L AND SOP L. THE TEST WILL USE THE SIGNAL EDEOC H TO CHECK THAT THE REFR FLIP-FLOP CAN BE SET AND CLEARED. THE REFR FLIP-FLOP WILL BE CHECKED TO BE CLEARED BY CHANGING THE LOGIC LEVELS ON THE SIGNALS ADAL? H AND XCAS H. THHE REFR FLIP-FLOP CAN NOT BE CHECKED TO BE CLEARED BY THE SIGNAL INVO L BECAUSE OF THE LOGIC DESIGN. ## **TEST 43:** THIS TEST WILL CHECK THE TARGET EMULATORS INTERRUPT LOGIC USING THE SIGNALS TOBRK H AND BRK H TO CAUSE INTERRUPT REQUESTS. THE TEST WILL CHECK THAT NO INTERRUPTS OCCUR WHEN THE INTERRUPT ENABLE BIT IS CLEARED AND THE INTERRUPT REQUEST SIGNAL IS ASSERTED HIGH. THE TEST WILL CHECK THAT AN INTERRUPT WILL OCCUR WHEN THE INTERUPT ENABLE BIT IS SET AND THE SIGNAL TOBRK H IS ASSERTED HIGH. THE TEST WILL CHECK THAT THE BREAK LATCH FLIP-FLOP CAN BE SET, CLEARED, AND THAT IT CAN CAUSE AN INTERRUPT. ## **TEST 44:** THIS TEST WILL CHECK THAT THE SIGNALS ADAL 15:9, ADAL 7:3, ADAL 1:0, HDAL 15:0, FDAL7 H - FDALO H, VDAL7 H, VDAL2 H - VDALO H, GDAL15 H, GDAL2 H - GDALO H, AND MR15 H - MRO H CAN ALL BE SET TO ONES. THEN A BRESET INSTRUCTION IS ISSUED AND THESE SIGNALS ARE TESTED TO THEN BE ZEROS. THEN THE PAUSE STATE WORKING FLIP-FLOP AND THE SINGLE STEP BREAK FLIP-FLOP ARE SET TO ONES AND AGAIN A BRESET INSTRUCTION IS ISSUED AND THESE FLIP-FLOPS ARE TESTED TO THEN BE ZEROS. #### **TEST 45:** THIS TEST WILL CHECK THAT THE T-11 CAN BE POWERED-UP TO ALL ITS STARTING ADDRESSES AND THAT IT CAN RUN WITH DIFFERENT MODES SELECTED. THE PROGRAM WILL USE THE PAUSE STATE MACHINE TO CHECK THAT THE T-11 POWERED-UP TO THE STARTING ADDRESS SELECTED BY THE MODE REGISTER. THE PROGRAM WILL SELECT THE FOLLOWING T-11 MODES; 16 BIT STATIC, 16 BIT DYNAMIC 4K/16K, 16 BIT DYNAMIC 64K, 8 BIT STATIC, 8 BIT DYNAMIC 4K/16K AND 8 BIT DYNAMIC 64K. FOR EACH MODE SELECTED, THE PROGRAM WILL CHECK THAT THE T-11 CAN BE POWERED-UP AT EACH OF ITS STARTING ADDRESSES. THE PROGRAM WILL SELECT THE CLOCK ON THE TARGET EMULATOR MODULE TO PROVIDE THE TIMING TO THE T-11 CHIP. THE TEST WILL ALSO CHECK THAT THE NEW FORCE JUMP ADDRESS REGISTER CAN BE LOADED AND THAT ITS CONTENTS CAN BE LOADED INTO THE OLD FORCE JUMP ADDRESS REGISTER. ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 27 USER DOCUMENTATION CVCDCB.P11 01-APR-82 14:12 .TITLE PROGRAM HEADER AND TABLES .SBTTL PROGRAM HEADER .ENABL ABS AMA . ENABL GBL .DSABL 002000 2000 = 002000 BGNMOD : THE PROGRAM HEADER IS THE INTERFACE BETWEEN : THE DIAGNOSTIC PROGRAM AND THE SUPERVISOR. 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 002000 POINTER BGNSETUP 002000 HEADER CVCDC,B,0,60.,0,PRIO7 002000 L$NAME :: :DIAGNOSTIC NAME 002000 103 .ASCII /C/ 126 103 104 103 002001 .ASCII /V/ 002002 .ASCII /C/ .ASCII /D/ .ASCII /C/ 1391 1392 000 BYTE 000 .BYTE 002006 1393 000 002007 .BYTE 1394 1395 002010 L$REV:: :REVISION LEVEL 002010 102 .ASCII /B/ 1396 1397 002011 L$DEPO:: :0 002011 060 101 .ASCII 1398 1399 002012 L$UNIT:: ; NUMBER OF UNITS 002012 002014 000001 . WORD T$PTHV 1400 LSTIML:: :LONGEST TEST TIME 1401 1402 002014 000074 . WORD 60. 002016 L$HPCP:: ; POINTER TO H.W. QUES. 1403 002016 036350 . WORD L$HARD 002020 002020 1404 L$SPCP:: ; POINTER TO S.W. QUES. 1405 1406 1407 1408 000000 . WORD 002022 L$HPTP:: :PTR. TO DEF. H.W. PTABLE . WORD 002260 L$HW L$SPTP:: PTR. TO S.W. PTABLE 1409 1410 000000 . WORD 0 L$LADP:: ;DIAG. END ADDRESS 1411 036542 . WORD L$LAST 1412 L$STA:: RESERVED FOR APT STATS . WORD 002030 000000 1414 002032 L$CO:: 1415 002032 000000 . WORD 1416 L$DTYP:: :DIAGNOSTIC TYPE 002034 000000 . WORD 1418 L$APT:: ; APT EXPANSION 002036 000000 . WORD ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 28 PROGRAM HEADER AND TABLES CVCDCB.P11 01-APR-82 14:12 PROGRAM HEADER 002040 002040 002042 LSDTP:: PTR. TO DISPATCH TABLE 002124 . WORD L$DISPATCH L$PRIO:: ; DIAGNOSTIC RUN PRIORITY 000340 - WORT PRI07 L$ENVI:: FLAGS DESCRIBE HOW IT WAS SETUP 000000 . WORD L$EXP1:: :EXPANSION WORD 000000 . WORD L$MREV:: :SVC REV AND EDIT # .BYTE C$REVISION 00205 003 .BYTE C$EDIT 002052 L$EF:: :DIAG. EVENT FLAGS 002052 000000 -WORD 002054 000000 0 . WORD 1434 1435 1436 1437 1438 1439 002056 L$SPC:: 002056 002060 002060 000000 . WORD L$DEVP:: ; POINTER TO DEVICE TYPE LIST L$DVTYP 002350 . WORD 002062 L$REPP:: ;PTR. TO REPORT CODE . WORD 002062 000000 1440 002064 LSEXP4:: 1441 1442 1443 002064 000000 . WORD 002066 L$EXP5:: 002066 000000 . WORD 1444 002070 L$AUT:: PTR. TO ADD UNIT CODE 002070 000000 . WORD 1446 L$DUT:: :PTR. TO DROP UNIT CODE 000000 . WORD 1448 L$LUN:: :LUN FOR EXERCISERS
TO FILL 002074 000000 . WORD 1450 1451 002076 L$DESP:: ; POINTER TO DIAG. DESCRIPTION 002076 002360 . WORD L$DESC 002100 L$LOAD:: GENERATE SPECIAL AUTOLOAD EMT 1453 002100 104035 EMT E$LOAD 1454 002102 LSETP:: POINTER TO ERRIBL 1455 002102 000000 0 1456 1457 1458 1459 002104 L$ICP:: ;PTR. TO INIT CODE 002104 002106 002106 010066 L$INIT . WORD LSCCP:: ;PTR. TO CLEAN-UP CODE 010300 . WORD L$CLEAN 1460 002110 LSACP:: PTR. TO AUTO CODE 1461 010276 L$AUTO . WORD 1462 LSPRT:: PTR. TO PROTECT TABLE 1463 1464 1465 1466 1467 002112 010060 . WORD L$PROT 002114 L$TEST:: : TEST NUMBER 002114 000000 . WORD 002116 LSDLY:: ; DELAY COUNT 002116 002120 002120 000000 . WORD 1468 L$HIME :: :PTR. TO HIGH MEM 1469 1470 000000 . WORD 0 ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 29 PROGRAM HEADER AND TABLES CVCDCB.P11 01-APR-82 14:12 DISPATCH TABLE .SBTTL DISPATCH TABLE 1472 1473 : THE DISPATCH TABLE CONTAINS THE STARTING ADDRESS OF EACH TEST. : IT IS USED BY THE SUPERVISOR TO DISPATCH TO EACH TEST. 1476 1477 1478 002122 1479 002122 1480 002124 1481 002124 1482 002126 1483 002130 1484 002132 1485 002134 1485 002136 DISPATCH 45. 000055 . WORD 45 L$DISPATCH:: 010344 010352 010436 . WORD 13 . WORD . WORD 010524 010574 . WORD T5 1485 1487 010660 T6 . WORD 002140 002142 002144 010746 . WORD 1488 1489 1490 011016 . WORD 18 011062 . WORD 19 002146 002150 002152 002154 002156 002160 002162 011160 . WORD T10 1491 011250 . WORD T11 1492 1493 011342 . WORD 011416 . WORD 1494 1495 011466 . WORD T14 011556 . WORD T15 1496 1497 011650 . WORD T16 011724 . WORD 117 002166 002170 002172 002174 1498 011774 . WORD T18 1499 012072 . WORD T19 1500 1501 1502 1503 012172 . WORD . WORD 002176 . WORD 002200 002202 002204 002206 002210 002212 . WORD 1504 . WORD 1505 1506 1507 - WORD . WORD . WORD 1508 . WORD 1509 002214 014570 . WORD 002216 002220 002222 002224 002226 002230 002232 002234 002240 002246 002246 002250 002252 1510 015562 016752 . WORD 1511 1512 1513 . WORD 020046 020316 . WORD . WORD 1514 . WORD 1515 . WORD 1516 1517 . WORD . WORD T38 T39 1518 . WORD 1519 . WORD 026552 030472 031502 033236 034452 1520 . WORD T40 1521 1522 1523 1524 1525 1526 . WORD T41 T42 T43 T44 T45 . WORD . WORD . WORD . WORD ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 30 PROGRAM HEADER AND TABLES CVCDCB_P11 01-APR-82 14:12 DEFAULT HARDWARE P-TABLE 1527 1528 1529 1530 .SBTTL DEFAULT HARDWARE P-TABLE THE DEFAULT HARDWARE P-TABLE CONTAINS DEFAULT VALUES OF THE TEST-DEVICE PARAMETERS. THE STRUCTURE OF THIS TABLE IS IDENTICAL TO THE STRUCTURE OF THE HARDWARE P-TABLES. AND IS USED AS A "TEMPLATE" FOR BUILDING THE P-TABLES. 1534 1535 1535 1536 002256 1537 002256 1538 002260 1539 002260 1540 002262 1541 002262 1543 002264 1544 1545 1546 002266 1547 002266 1548 1549 1550 1551 BGNHW DFPTBL . WORD 000003 L10000-L$HW/2 L$HW:: DFPTBL:: 163010 000370 . WORD 163010 : CSR ADDRESS . WORD 370 : VECTOR ADDRESS 000002 . WORD DEVICE SELECTION NUMBER ENDHW L10000: .SBTTL SOFTWARE P-TABLE 1551 : THE SOFTWARE TABLE CONTAINS VARIOUS DATA USED BY THE PROGRAM AS OPERATIONAL PARAMETERS. THESE PARAMETERS ARE 1554 1554 1555 1556 1557 1558 002266 1559 002270 1561 002270 1562 1563 1564 002270 1565 002270 1566 1566 ; SET UP AT ASSEMBLY TIME AND MAY BE VARIED BY THE OPERATOR ; AT RUN TIME. BGNSW SFPTBL L10001-L$SW/2 000000 . WORD L$SW:: SFPTBL:: ENDSW L10001: ENDMOD ``` ``` F 3 MACY11 30A(1052) 01-APR-82 14:48 PAGE 31 01-APR-82 14:12 SOFTWARE P-TABLE GLOBAL AREAS CVCDCB.P11 1568 1569 1570 .TITLE GLOBAL AREAS .SBTTL GLOBAL EQUATES SECTION 1571 1572 1573 1574 002270 BGNMOD 1575 1576 1577 : THE GLOBAL EQUATES SECTION CONTAINS PROGRAM EQUATES THAT : ARE USED IN MORE THAN ONE TEST. 1578 1579 1580 002270 EQUALS 1581 1582 1583 1584 1585 BIT DIFINITIONS 100000 BIT15== 100000 BIT14== 40000 BIT13== 20000 BIT12== 10000 BIT11== 4000 040000 020000 1586 1587 1588 1589 1590 010000 004000 002000 BIT10== 2000 BIT09== 1000 BIT08== 400 001000 1591 000400 1592 000200 BIT07== 200 1593 1594 1595 BIT06== 100 BIT05== 40 000100 000040 000020 BIT04== 20 BIT03== 10 BIT02== 4 BIT01== 2 1596 1597 000010 000004 000002 000001 1598 1599 BIT00== 1 1600 1601 001000 BIT9== BIT09 BIT8== BIT08 BIT7== BIT07 BIT6== BIT06 1602 000400 1603 000200 000100 000040 000020 1604 1605 1606 BIT5== BIT05 BIT4== BIT3== BIT04 1607 000010 BIT03 1608 000004 BIT2== BIT02 000002 000001 1609 BIT1== BIT01 1610 BITO== BITOO 1611 1612 1613 EVENT FLAG DEFINITIONS EF32:EF17 RESERVED FOR SUPERVISOR TO PROGRAM COMMUNICATION 1614 000040 000037 1615 EF.START== START COMMAND WAS ISSUED 1616 1617 1618 EF.RESTART == RESTART COMMAND WAS ISSUED 000036 000035 30. 29. 28. EF.CONTINUE == CONTINUE COMMAND WAS ISSUED EF.NEW == A NEW PASS HAS BEEN STARTED 1619 000034 EF.PWR== ; A POWER-FAIL/POWER-UP OCCURRED 1620 1621 1622 1623 PRIORITY LEVEL DEFINITIONS ``` SEQ 0031 | | | | G 3 | | |--|--|--|--|---| | | GLOBAL AREAS
CVCDCB.P11 | MACY11 30A(1052)
01-APR-82 14:12 | 01-APR-82 14:48 PAGE 32
GLOBAL EQUATES SECTION | | | The second secon | 1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639 | 000340
000300
000240
000200
000140
000100
000040 | PRIO7== 340 PRIO6== 300 PRIO5== 240 PRIO4== 200 PRIO3== 140 PRIO2== 100 PRIO1== 40 PRIO0== 0 ; | | | | 1634
1635
1636
1637
1638
1639 | 000004
000010
000020
000040
000100 | OPERATOR FLAG BITS EVL == 4 LOT == 10 ADR == 20 IDU == 40 ISR == 100 | | | And in case of the last | 1640
1641
1642
1643
1644
1645 | 000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000 | ISR== 100
UAM== 200
BOE== 400
PNI== 1000
PRI== 2000
IXE== 4000
IBE== 10000
IER== 20000 | | | The second secon | 1647
1648
1649
1650
1651
1652
1653
1654 | 040000
100000 | LOE == 40000
HOE == 100000
CONTROL REGISTER 0 (GDAL BITS 15:0) | | | | 1654
1655
1656
1657
1658
1659 | 100000 | GDAL15==BIT15 | :BIT15=1 READ DEVICE TYPE IN 15:8
:TE DEVICE TYPE EQUALS 0000
:BIT15=0 READ DEVICE NUMBER INTO
:BITS 11:8 | | | 1660
1661
1662
1663 | 040000
020000
010000 | GDAL14==BIT14
GDAL13==BIT13
GDAL12==BIT12 | ;ALWAYS A O ON READ
;ALWAYS A O ON READ
;ALWAYS A O ON READ | | | 1664
1665 | 004000
002000
001000
000400 | GDAL11==BIT11
GDAL10==BIT10
GDAL9== BIT9
GDAL8== BIT8 | ;BITS 11-8 ARE USED TO SELECT THE ;DEVICE NUMBER TO ASSERT THE SIGNAL ;DEVE L. WHEN SELECTING TE THESE BITS ;MUST = THE SETTING OF DEV 3 - DEV 0 | | The second second second second second second | 1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678 | 000200
000100
000040
000020
000010
000004
000002
000001 | GDAL7== BIT7
GDAL6== BIT6
GDAL5== BIT5
GDAL4== BIT4
GDAL3== BIT3
GDAL2== BIT2
GDAL1== BIT1
GDAL0== BIT0 | ;SINGLE STEP BREAK INDICATOR (READ ONLY) ;TIMEOUT BREAK INDICATOR (READ ONLY) ;MEMORY SIM BREAK INDICATOR (READ ONLY) ;STATE ANALYZER BREAK INDICATOR (READ ONLY) ;ENABLE INTERRUPTS WHEN = TO 1 ;POINTER FOR EXTENDED REG SELECT ;POINTER FOR EXTENDED REG SELECT ;POINTER FOR EXTENDED REG SELECT | | | 1678
1679 | 000200
000100 | SSBRK== GDAL7
TOBRK== GDAL6 | ;SINGLE STEP BREAK INDICATOR
(READ ONLY)
;TIMEOUT BREAK INDICATOR (READ ONLY) | | | BAL AREAS | MACY11 30A(1052)
01-APR-82 14:12 | 01-APR-82 14:48 PAGE 33
GLOBAL EQUATES SECTION | SEQ 0033 | |-------------------|---|--|--|--| | 1 | 680
681
682 | 000040
000020 | MSBRK== GDAL5
EDBRK== GDAL4 | :MEMORY SIM BREAK INDICATOR (READ ONLY) :STATE ANALYZER BREAK INDICATOR (READ ONLY) | | 1 | 682
683
684
685
686 | | CONTROL REGISTER 2 (ADAL BITS 15:0) | | | 1 | 687
688
689
690 | 100000
040000 | ADAL15==BIT15
ADAL14==BIT14 | :SELECT COLUMN AI FOR STATE ANALYZER
:1 - SELECT ROW/COLUMN FOR AI TO STATE ANALYZER
:0 - SELECT SERVICE FOR AI TO STATE ANALYZER | | 1 | 691
692
693
694
695
696 | 020000
010000
004000
002000
001000
000400
000200 | ADAL13==BIT13
ADAL12==BIT12
ADAL11==BIT11
ADAL10==BIT10
ADAL9== BIT9
ADAL8== BIT8
ADAL7== BIT7 | :ENABLE SERVICE FOR EMULATOR :ENABLE MODE FROM EMULATOR :DISABLE SERVICE TO THE TARGET :MASTER SWITCH :ENABLE STATE ANALYZER CLOCKS (1) :ENABLE TIMEOUT BREAK :ENABLE REFRESH TO STATE ANALYZER | | 1 | 697
698 | 000100
000040 | ADAL6== BIT6
ADAL5== BIT5 | 1 - ENABLE SINGLE STEP BREAK | | 1 1 | 699
700
701 | 000020 | ADAL4== BIT4 | :0 - DISABLE SINGLE STEP BREAK
:1 - PAUSE STATE MACHINE (RUN MODE) | | 1 1 1 | 702
703
704
705
706 | 000010
000004
000002
000001 | ADAL3== BIT3
ADAL2== BIT2
ADAL1== BIT1
ADAL0== BIT0 | ;0 - PAUSE STATE MACHINE (PAUSE MODE)
;POWER-UP FROM TARGET (1)
;POWER-UP FROM T-11
;ENABLE INTERNAL CLOCK (1)
;RESETS BREAK LOGIC (1) | | 1 | 707
708
709 | | CONTROL REGISTER 4 (VDAL BITS 15:0) | | | 1 1 1 1 1 1 1 1 1 | 710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
727
728
727
728
730
731
732
733
734
735 | 100000
040000
020000
010000 -
004000
001000
000400
000200
000100
000040
000020
000010
000004
000004 | VDAL15==BIT15 VDAL14==BIT14 VDAL13==BIT13 VDAL12==BIT12 VDAL10==BIT10 VDAL9== BIT9 VDAL8== BIT8 VDAL7== BIT7 VDAL6== BIT6 VDAL5== BIT5 VDAL4== BIT4 VDAL3== BIT3 VDAL2== BIT2 VDAL1== BIT1 VDAL0== BIT0 CONTROL REGISTER 6 (HDAL BITS 15:0) | ;TDFI H - TAKE NEW FORCE JUMP ADDRESS (READ ONLY) ;EP8N H - 8 BIT ADDRESS HB F/F (READ ONLY) ;EP8G H - 8 BIT ADDRESS LB F/F (READ ONLY) ;EP8F H - 8 BIT INSTR HB F/F (READ ONLY) ;EPFN H - 16 BIT ADDRESS F/F (READ ONLY) ;EPSF H - PAUSE STATE SYNC F/F (READ ONLY) ;PSMW H - PAUSE STATE WORKING F/F (READ ONLY) ;PSMW H - GET NEW ADDRESS F/F (READ ONLY) ;DIAGNOSTIC FETCT H (R/W) ;MSDI H - LOGIC LEVEL MSDI H (READ ONLY) ;BTS1 H - LOGIC LEVEL BTS1 H (READ ONLY) ;EDEOC H - LOGIC LEVEL EDEOC H (READ ONLY) ;READ H - LOGIC LEVEL READ H (READ ONLY) ;CLOCK TAI, TDAL, O PAUSE STATE MACHINE (R/W) ;SPARE ;ENABLE TAI AND TDAL READBACK FROM POD (R/W) | | 1 | 732
733
734
735 | 100000
040000
020000
010000 | HDAL15==BIT15
HDAL14==BIT14
HDAL13==BIT13
HDAL12==BIT12 | ;1/0 - PULSE SIGNAL XPI L
;1/0 - PULSE SIGNAL EIDAL17 H
;1/0 - PULSE SIGNAL XCAS H
;1/0 - PULSE SIGNAL XRAS H | | | | | | | | GLOBAL AREAS
CVCDCB.P11 | MACY11 30A(1052)
01-APR-82 14:12 | 01-APR-82 14:48 PAGE 35
GLOBAL EQUATES SECTION | J | 3 | | |--|---|---|---|---|--| | 1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810 | 100000
040000
020000
010000
004000
002000
001000
000400
000200
000100
000040
000020
000010
0000020
000001 | ; ADDR15==BIT15 ADDR14==BIT14 ADDR13==BIT13 ADDR12==BIT12 ADDR11==BIT11 ADDR10==BIT10 ADDR9== BIT9 ADDR8== BIT8 ADDR7== BIT7 ADDR6== BIT6 ADDR5== BIT5 ADDR4== BIT4 ADDR3== BIT3 ADDR2== BIT1 ADDR0== BIT1 ADDR0== BIT1 | | | | | ACY11 30A(1052) 01-APR
APR-82 14:12 | R-82 14:48 PAGE
GLOBAL DATA SECT | E 36
TION | к 3 | | |--|---|--|--|--| | | .SBTTL GLOBAL | DATA SECT | TION | | | | ; THE GLOBAL DAT | TA SECTIONE TEST. | ON CONTAINS DATA | THAT ARE USED | | 00000
00000
00000 | ERRTBL L\$ERRTPL:: ERRTYP:: ERRNBR:: ERRMSG:: ERRBLK:: | . WORD | 0 0 0 0 0 | | | | GLOBAL DATA FOR | RTARGET | EMULATOR | | | 65014 | REG4:: .WORD | 163010
163012
163014
163016 | | CONTROL REGISTER 0 CONTROL REGISTER 2 CONTROL REGISTER 4 CONTROL REGISTER 6 | | 00000 | IDDEV:: .WORD TEVECT::.WORD UNITNB::.WORD IDTYPE::.WORD | 0 | | :TARGET EMULATOR DEVICE # (11:8) :TARGET EMULATOR VECTOR ADDRESS :TARGET EMULATOR DEVICE TYPE (15-8) | | 00000
00000 | ROGOOD::.WORD
ROMASK::.WORD | 0000 | | :WORD LOADED INTO REGISTER O :EXPECTED REG O :BITS TO BE IGNORED ON COMPARE :DATA READ MASKED WITH ROMASK | | | | 0 | | ;WORD LOADED INTO REGISTER 2
;ACTUAL REG 2 READ | | 00000 | R4GOOD::.WORD | 0 | | :WORD LOADED INTO REGISTER 4
:EXPECTED DATA FROM REGISTER 4
:DATA READ FROM REGISTER 4 | | 00000 | R6READ::.WORD | 0 | | :WORD LOADED INTO REGISTER 6
:ACTUAL REGISTER 6 READ
:BITS TO BE IGNORED | | | APR-82 14:12 00000 00000 00000 00000 00000 00000 0000 | ###################################### | ### ### ### ########################## | ACY11 30A(1052) 01-APR-82 14:48 PAGE 36 APR-82 14:12 GLOBAL DATA SECTION .SBTL GLOBAL DATA SECTION .THE GLOBAL DATA SECTION CONTAINS DATA .IN MORE THAN ONE TEST. ERRTBL LSERTBL: ERRTBL: ERRTSC: .WORD 0 ERRMSG: .WORD 0 .GLOBAL DATA FOR TARGET EMULATOR .GAUTO .GAU | | | | | | .SBTTL GLOBAL TEXT SECTION | |--|--|---|--------------------------------------|--| | | | | | THE GLOBAL TEXT SECTION CONTAINS FORMAT STATEMENTS, MESSAGES, AND ASCII INFORMATION THAT ARE USED IN MORE THAN ONE TEST. | | | | | | NAMES OF DEVICES SUPPORTED BY PROGRAM | | 002350 | | | | DEVTYP <cds-11></cds-11> | | 002350 |
042103 | 026523 | 030461 | L\$DVTYP:: .ASCIZ /CDS-11/ | | 002356 | 000 | | | .EVEN | | | | | | ; TEST DESCRIPTION | | 002360 | | | | DESCRIPT <target diag.="" emulator=""></target> | | 002350
002350
002350
002356
002360
002360
002366
002374
002402 | 040524
042440
047524
043501 | 043522
052515
020122 | 052105
040514
044504 | L\$DESC:: .ASCIZ /TARGET EMULATOR DIAG./ | | 002402 | 043301 | 000056 | | .EVEN | | | | | | ASCII MESSAGES USED BY ERROR CALLS | | | | | | CONTROL REGISTER O ERROR MESSAGES | | 002406
002414
002422 | 042107
035065
020107 | 046101
020060
051105 | 030440
042522
047522 | GDALRG::.ASCIZ /GDAL 15:0 REG ERROR/ | | 002414
002422
002430
002432
002440
002446
002454
002462 | 035065
020107
000122
047125
052103
052116
052120
051125 | 054105
042105
051105
047440 | 042520
044440
052522
041503 | UNEXIN::.ASCIZ /UNEXPECTED INTERRUPT OCCURED/ | | 002467
002474
002502
002510 | 106
020104
052116
052120 | 042105
044501
047524
051105
000 | 000
042514
044440
052522 | NOINT:: .ASCIZ /FAILED TO INTERRUPT/ | | | | | | CONTROL REGISTER 2 ERROR MESSAGES | | 002513
002520
002526
002534 | 101
032461
043505
051117 | 040504
030072
042440
000 | 020114
051040
051122 | ADALRG::.ASCIZ /ADAL 15:0 REG ERROR/ | | GLOBAL AREAS MACY11 30A(10 CVCDCB.P11 01-APR-82 14:12 | | GE 39
CTION | |--|--|--| | 1967 003147 106 05111 1968 003154 045040 04652 1969 003162 042101 05110 1970 003170 020123 04252 1971 003176 047524 04244 1972 003204 046101 04104 1973 003212 051040 04050 1974 003220 041501 02011 1975 003226 047522 00012 1976 003232 052103 02011 1977 003240 020060 05111 1978 003246 040504 02011 1979 003254 020060 04252 1980 003262 051105 04752 1981 003270 047515 04250 1982 003276 043505 05204 1983 003304 044505 04050 1984 003312 052502 02012 1985 003320 042101 04050 1986 003326 042440 05112 1987 003334 000 1988 003335 115 04211 1989 003356 020124 04751 1990 003356 020124 04751 1991 003356 020124 04751 1992 003364 051040 04350 1993 003377 115 04211 1994 003377 115 04211 1995 003404 042522 02010 1996 003412 040440 04210 1997 003420 051523 04104 1998 003426 051040 04050 1998 003426 051040 04050 | 7 042503 FEODAL::.ASCIZ
5 020120
4 051505
2 020107
0 042117
0 051525
5 041104
3 051105 | /FORCE JUMP ADDRESS REG TO EODAL BUS READBACK ERROR/ | | 1976 003232 052103 02011
1977 003240 020060 05111
1978 003246 040504 02011
1979 003254 020060 04252
1980 003262 051105 04752 | 4 035067 CTLFDL::.ASCIZ
7 043040
4 035067
2 020107
2 000122
4 051040 MEIDAL::.ASCIZ | /CTL 7:0 OR FDAL 7:0 REG ERROR/ | | 1969 003162 042101 05110 1970 003170 020123 04252 1971 003176 047524 04244 1972 003204 046101 04104 1973 003212 051040 04050 1974 003220 041501 02011 1975 003226 047522 00012 1976 003232 052103 02011 1977 003240 020060 05111 1978 003246 040504 02011 1979 003254 020060 04252 1980 003262 051105 04752 1981 003270 047515 04250 1982 003276 043505 05204 1983 003304 044505 04050 1984 003312 052502 02012 1985 003326 04240 05112 1986 003326 042440 05112 1987 003334 000 1988 003335 115 04211 1989 003342 042522 02010 1990 003350 052040 05110 1991 003356 020124 04751 1992 003364 051040 04350 1993 003377 115 04211 1994 003377 115 04211 1995 003404 042522 02010 1996 003412 040440 04210 1997 003420 051523 04104 1998 003426 051040 04050 | 4 051040 MEIDAL::.ASCIZ
0 020117
4 020114
3 042522
2 045503
2 051117 | /MODE REG TO EIDAL BUS READBACK ERROR/ | | 1987 003334 000
1988 003335 115 04211
1989 003342 042522 02010
1990 003350 052040 05110
1991 003356 020124 04751
1992 003364 051040 04350 | 7 020105 MTOTMR::.ASCIZ
7 047524
1 042507
5 042504
5 042440 | /MODE REG TO TARGET MODE REG ERROR/ | | 1988 003335 115 04211 1989 003342 042522 02010 1990 003350 052040 05110 1991 003356 020124 04751 1992 003364 051040 04350 1993 003372 051122 05111 1994 003377 115 04211 1995 003404 042522 02010 1996 003412 040440 04210 1997 003420 051523 04104 1998 003426 051040 04050 1999 003434 041501 02011 2000 003442 047522 00012 2001 003446 046117 02010 2002 003454 020101 04752 2003 003462 042111 04610 2004 003470 051525 04244 | 7 000
7 020105 MADDRS::.ASCIZ
7 047524
4 042522
0 051525
5 041104
3 051105 | /MODE REG TO ADDRESS BUS READBACK ERROR/ | | 2001 003446 046117 02010
2002 003454 020101 04752
2003 003462 042111 04610
2004 003470 051525 04244
2005 003476 051117 000 | 4 045106 FJAEID::.ASCIZ
4 042440
1 041040
0 051122 | /OLD FJA TO EIDAL BUS ERROR/ | | 2006 003501 117 04211
2007 003506 040512 05204
2008 003514 042101 05110
2009 003522 020123 05250
2010 003530 051105 04752 | 4 043040 FJAADR::.ASCIZ
0 020117
4 051505
2 020123
2 000122 | /OLD FJA TO ADDRESS BUS ERROR/ | | 1989 003342 042522 02010 1990 003350 052040 05110 1991 003356 020124 04751 1992 003364 051040 04350 1993 003372 051122 05111 1994 003377 115 04211 1995 003404 042522 02010 1996 003412 040440 04210 1997 003420 051523 04104 1998 003426 051040 04050 1999 003434 041501 02011 2000 003442 047522 00012 2001 003446 046117 02010 2002 003454 020101 04752 2003 003462 042111 04610 2004 003470 051525 04244 2005 003476 051117 000 2006 003501 117 04211 2007 003506 040512 05204 2008 003514 042101 05110 2009 003522 020123 05250 2010 003530 051105 04752 2011 003536 046117 02010 2012 003544 020101 04752 2013 003552 040504 02011 2014 003560 041524 02011 2015 003566 042440 04211 2016 003574 041040 05152 2017 003602 051122 05111 2018 003607 124 04050 2019 003614 040514 04152 2020 003622 047524 04244 2021 003630 046101 05204 2022 003636 040504 04052 | 0 020117
0 020117
0 051505
2 020123
2 000122
4 045106 FJATDL::.ASCIZ
0 047524
0 047524
1 046101
5 042440
7 000 | /OLD FJA TO TDAL LATCH TO EIDAL BUS ERROR/ | | 2018 003607 124 04050
2019 003614 040514 04152
2020 003622 047524 04244
2021 003630 046101 05204
2022 003636 040504 04052 | 0 020117 | /TDAL LATCH TO EIDAL TO DATA TO EODAL BUS ERROR/ | | GLOBAL | AREAS | MACY11 | 30A(1052 |) 01-AP | R-82 14:48 PAG | GE 40 | |--|--|--|--|---|-----------------|--| | CVCDCB. | | 01-APR-82
020117 | | | GLOBAL TEXT SEC | CTION | | 2024
2025
2026
2027
2028
2029 | 003652
003660
003666
003674
003702
003710 | 020114
051105
042106
043505
047505
052502 | 052502
047522
046101
052040
040504
020123 | 040504
020123
000122
051040
020117
020114
051105 | FDALEO::.ASCIZ | /FDAL REG TO EODAL BUS ERROR/ | | 2031
2032
2033
2034
2035
2036 | 003716
003722
003730
003736
003744
003752 | 047522
042106
043505
047505
052502
042440
041040 | 000122
046101
052040
040504
020123
042111
051525 | 051040
020117
020114
047524
046101
042440 | FDALEI::.ASCIZ | /FDAL REG TO EODAL BUS TO EIDAL BUS ERROR/ | | 2037
2038
2039
2040
2041
2042
2043
2044
2045 | 003644
003652
003660
003666
003702
003710
003722
003730
003736
003744
003752
003760
003760
003760
004006
004014
004022
004030
004036
004060
004060
004060
004060
004074
004110
004116
004132 | 051122
051440
047040
052116
053440
026524
044510
050040 |
047505
052502
047522
046101
052040
040504
020123
046101
052040
040504
020123
042111
051525
052117
052501
052117
052501
052117
052455
041522
052117
052117
052117
052117
052117
052117
052117
052117
052117
052117
052117
052117
052117
052117 | 000
042523
042524
042440
042105
020116
041440
051511
051105
000120
020105
040440
051523
036440
041505
026524
040524 | NOPSM:: .ASCIZ | /PAUSE STATE NOT ENTERED WHEN T-11 CHIP IS POWERED-UP/ | | 2025
2026
2026
2027
2028
2030
2031
2032
2033
2033
2035
2036
2043
2044
2045
2046
2047
2048
2049
2050
2051
2053
2055
2055
2055 | 004060
004066
004074
004102
004110
004116
004124
004132
004140
004146 | 020117
020114
051105
042106
043505
047505
042106
047505
042106
047505
042106
041040
051122
041040
052116
052116
052116
052512
042105
042105
042105
042104
042105
042104
042104
042104
042104
042104
042104
042104
042104
042104
042104
042104 | 052433
041522
050115
042522
052117
050130
020104
051440
051055
052122
042522 | 040440 | FJSTAD::.ASCIZ | /FORCE JUMP ADDRESS NOT = EXPECTED T-11 START-RESTART ADDRESS/ | | 2057
2058
2059 | 004154 | 000 | | | .EVEN | | | 2060
2061
2062
2063 | | | | | FORMAT STATEM | MENTS USED IN PRINT CALLS | | 2063
2064
2065
2066 | 004156
004164
004172 | 040445
047522
020107 | 047503
020114
020060 | 052116
042522
051105
000116
052116 | EMSGRO::.ASCIZ | /%ACONTROL REG 0 ERROR%N/ | | 2067
2068
2069
2070 | 004200
004206
004214
004222 | 047522
040445
047522
020107 | 022522
047503
020114
020062 | 000116
052116
042522
051105 | EMSGR2::.ASCIZ | /%ACONTROL REG 2 ERROR%N/ | | 2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078 | 004156
004164
004172
004200
004206
004214
004230
004236
004244
004252
004266
004274
004302 | 040445
047522
020107
047522
040445
047522
040445
047522
020107
047522
040445 | 047503
020114
020060
022522
047503
020114
020062
022522
047503
020114
020064
022522
047503 | 042522
051105
000116
052116
042522
051105 | EMSGR4::.ASCIZ | /%ACONTROL REG 4 ERROR%N/ | | 2075
2076
2077
2078 | 004260
004266
004274
004302 | 047522
040445
047522
020107 | 022522
047503
020114
020066 | 042522
051105
000116
052116
042522
051105 | EMSGR6::.ASCIZ | /%ACONTROL REG 6 ERROR%N/ | | | | | | | | | | GLOBAL | AREAS | MACY11 | 30A(1052 |) 01-AP | R-82 14:48 PAG
GLOBAL TEXT SEC | GE 41 | |--|--|---|--|---|-----------------------------------|---| | CVCDCB. | | | 14:12 | | GLOBAL TEXT SEC | CTION | | 2079
2080 | 004316 | 047522 | 022522 | 000116
030107 | REGOEQ::.ASCIZ | /%AREGO = / | | 2082 | 004330 | 040445 | 042522 | 031107 | REG2EQ::.ASCIZ | /%AREG2 = / | | 2083 | 004336 | 036440 | 000040
042522
000040
042522
000040
042522 | 032107 | REG4EQ::.ASCIZ | /%AREG4 = / | | 2086 | 004354 | 040445 | 042522 | 033107 | REG6EQ::.ASCIZ | /%AREG6 = / | | 2087
2088
2089
2090
2091
2092 | 004316
004324
004336
004336
004354
004354
004366
004374
004402
004410 | 042117 | 047514 | 042101
022466
047507
047445
040445 | FRMTRO::.ASCIZ | /%ALOAD: %06%\$1%AGOOD: %06%\$1%ABAD: %06%N/ | | 2093
2094 | 004424 | 040502 | 035104 | 040445
022440
000 | | | | 2095
2096
2097
2098
2099 | 004424
004432
004437
004444
004452
004466 | 051445 | 040473
020072
030523
035104
047045
046101
022440
022461
035104
047045 | 000
040517
033117
051101
022440 | FRMTR2::.ASCIZ | /%ALOAD: %06%S1%AREAD: %06%N/ | | 2079
2081
2082
2083
2084
2085
2086
2087
2088
2090
2091
2092
2093
2094
2095
2096
2097
2098
2101
2102
2103
2104
2106
2109
2109
2109
2109
2109
2109
2109
2109 | 004466
004473
004500
004506
004514
004522
004536 | 045
020105
051105
042101
044523
047117
051040 | 052517
047522
051104
043516
051124
043505 | 000
046511
020124
020122
051505
041440
046117
030040 | MSGTMO::.ASCIZ | /%ATIME OUT ERROR ADDRESSING CONTROL REG 0%N/ | | 2111 | 004544
004547
004554
004562
004570
004576
004604 | 045
020105
051105
042101
044523
047117
051040 | 000
052101
052517
047522
051104
043516
051124
043505 | 046511
020124
020122
051505
041440
046117
031040 | MSGTM2::.ASCIZ | /%ATIME OUT ERROR ADDRESSING CONTROL REG 2%N/ | | 2116
2117
2118
2119
2120
2121
2122 | 004620
004623
004630
004636
004644
004652
004660
004666 | 020105
051105
042101
044523
047117
051040 | 000
052101
052517
047522
051104
043516
051124
043505
000
052101
052517
047522
051104
043516 | 046511
020124
020122
051505
041440
046117
032040 | MSGTM4::.ASCIZ | /%ATIME OUT ERROR ADDRESSING CONTROL REG 4%N/ | | 2112
2113
2114
2115
2116
2117
2118
2120
2121
2122
2123
2124
2127
2128
2129
2130
2131
2132
2133 | 004677
004704
004712
004726
004734
004742 | 045
020105
051105
042101
044523
047117
051040
047045 | 052101
052517
047522
051104
043516
051124
043505
000 | 046511
020124
020122
051505
041440
046117
033040 | MSGTM6::.ASCIZ | /%ATIME OUT ERROR ADDRESSING COMTROL REG 6%N/ | | 2132 | | 004754 | | | .EVEN | | | GLOBAL
CVCDCB. | | MACY11
1-APR-82 | 30A(1052)
14:12 | | | D
SE 42
PORT SECTION | 4 | | | | | |--|--|----------------------------|--------------------|---------|------------------------|----------------------------|---|-----------|----------|----------|----------------| | 2134 | | | | .SBTTL | GLOBAL | ERROR REPORT | SECTION | | | | | | 2134
2135
2136
2137
2138
2139
2140
2141 | | | | THE G | BY MORE | THAN TEST TO | ECTION CONTAIN
OUTPUT ADDITE
DED) CALLS ARE | IONAL ERR | OR INFOR | MATION. | PRINTB
CES. | | 2142 | 004754
004754 | | | 005000 | BGNMSG | ROEROR | | | | | | | 2145 | 004754 | 004537 | 005160 | ROEROR: | JSR | R5 PRNTBS | | GO PRINT | CONTROL | REG THAT | FAILED | | 2147
2148 | 004762
004766 | 004737 | 005230 | | .WORD
JSR
ENDMSG | PC, PRNTRO | | GO PRINT | CONTROL | REGISTER | 0 INFO | | 2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160 | 004766
004766 | 104423 | | L10002: | TRAP | C\$MSG | | | | | | | 2152 | 004770 | | | | BGNMSG | R2EROR | | | | | | | 2154 | 004770
004770
004774 | 004537
004206 | 005160 | R2EROR: | JSR | R5 PRNTBS | | GO PRINT | CONTROL | REG THAT | FAILED | | 2156
2157 | 004776
005002 | 004737 | 005306 | | .WORD
JSR
ENDMSG | EMSGR2
PC,PRNTR2 | | GO PRINT | CONTROL | REGISTER | 2 INFO | | 2158
2159 | 005002
005002 | 104423 | | L10003: | TRAP | C\$MSG | | | | | | | 2161
2162
2163 | 005004
005004 | | | D/EDOD. | BGNMSG | R4EROR | | | | | | | 2163
2164 | 005004
005010 | 004537
004236 | 005160 | R4EROR: | JSR
.WORD | R5,PRNTBS
EMSGR4 | | GO PRINT | CONTROL | REG THAT | FAILED | | 2165
2166 | 005012
005016 | 004737 | 005360 | | JSR
ENDMSG | PC,PRNTR4 | | GO PRINT | CONTROL | REGISTER | 4 INFO | | 2167
2168 | 005016
005016 | 104423 | | L10004: | TRAP | C\$MSG | | | | | | | 2170 | 005020 | | | 20/522 | BGNMSG | R06ERR | | | | | | | 2172 | 005020 | 004537
004266
004737 | 005160 | RO6ERR: | JSR | R5 PRNTBS | | GO PRINT | CONTROL | REG THAT | FAILED | | 2174
2175 | 005020
005020
005020
005024
005026
005032
005032 | 004737 | 005200 | | .WORD
JSR
ENDMSG | EMSGR6
PC,PRO6R | : | GO PRINT | CONTROL | REG O AN | 0 6 INFO | | 2176
2177 | 005032
005032 | 104423 | | L10005: | TRAP | C\$MSG | | | | | | | 2178
2179 | | | | | BGNMSG | R026ER | | | | | | | 2180 | 005034 | 004537 | 005160 | R026ER: | JSR | R5, PRNTBS | | GO PRINT | CONTROL | REG THAT | FAILED | | 2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188 | 005034
005034
005034
005040
005042
005046 | 004537
004266
004737 | 005212 | | .WORD
JSR
ENDMSG | EMSGR6
PC,PR026R | | | | | | | 2185
2186 | 005046
005046 | 104423 | | L10006: | TRAP | CSMSG | | | | | | | 2188
2189 | 005050
005050 | | | ROTM:: |
BGNMSG | ROTM | | | | | | | | | | | | | | | | | | | ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 43 GLOBAL AREAS CVCDCB.P11 01-APR-82 14:12 GLOBAL ERROR REPORT SECTION 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2201 2202 2203 005050 PRINTB #MSGTMO 012746 005050 004473 MOV #MSGTMO,-(SP) 000001 005054 MOV #1,-(SP) SP.RO 010600 005060 MOV 005062 005064 005070 104414 062706 TRAP C$PNTB 000004 ADD #4.SP ENDMSG 005070 L10007: 005070 104423 TRAP C$MSG 005072 005072 BGNMSG R2TM R2TM:: #MSGTM2 #MSGTM2,-(SP) 005072 PRINTB 005072 005076 005102 012746 012746 010600 MOV 000001 MOV #1,-(SP) SP.RO MOV 104414 062706 005104 TRAP CSPNTB 005106 000004 ADD #4.SP 005112 005112 005112 ENDMSG L10010: 104423 TRAP C$MSG 005114 BGNMSG R4TM 005114 R4TM:: 005114 PRINTB #MSGTM4 005114 005120 005124 005126 005130 012746 004623 MOV #MSGTM4,-(SP) 000001 MOV #1,-(SP) 010600 SP.RO MOV 104414 CSPNTB TRAP 062706 000004 #4.SP ADD 005134 ENDMSG 005134 L10011: 005134 104423 TRAP C$MSG 005136 BGNMSG R6TM 005136 005136 005136 005142 R6TM:: PRINTB #MSGTM6 012746 004677 MOV #MSGTM6,-(SP) 000001 MOV #1,-(SP) SP.RO 005146 010600 MOV 005150 104414 C$PNTB TRAP 062706 005152 000004 ADD #4.SP 005156 ENDMSG 005156 005156 L10012: 104423 TRAP C$MSG ROUTINE TO PRINT WHAT CONTROL REGISTER DETECTED THE ERROR. 005160 PRNTBS::PRINTB (R5) + 005160 012546 MOV (R5)+,-(SP) #1,-(SP) SP,RO C$PNTB 005162 000001 MOV 005166 005170 010600 MOV 104414 062706 000205 TRAP 005172 005176 #4.SP 000004 ADD RTS ``` ``` GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 44 CVCDCB.P11 01-APR-82 14:12 GLOBAL ERROR REPORT SECTION 2246 2247 2248 2249 2250 2251 2252 2253 ROUTINE TO PRINT CONTROL REGISTER 0 AND 6 ERROR INFORMATION 005200 004737 005230 005436 PC, PRNTRO PRO6R:: JSR 005204 005210 004737 JSR PC, PRNTR6 000207 RTS ROUTINE TO PRINT CONTROL REGISTER 0, 2 AND 6 ERROR INFORMATION 005212 005216 005222 005226 004737 004737 004737 2254 2255 2256 2257 2258 2259 2261 2262 2263 2264 2265 2266 2266 2268 2268 005230 005306 PC, PRNTRO GO PRINT CONTROL REGISTER O INFO PR026R::JSR JSR PC.PRNTR2 005436 JSR PC, PRNTR6 GO PRINT CONTROL REGISTER 6 INFO 000207 PRINT CONTROL REGISTER O ERROR INFORMATION 005230 005230 005234 PRNTRO::PRINTX #REGOEQ 012746 012746 010600 #REGOEQ,-(SP) 004316 MOV #1,-(SP) SP,R0 000001 MOV 005234 005240 005242 005244 005250 MOV 104415 062706 TRAP CSPNTX 000004 ADD #4.SP WFRMTRO, ROLOAD, ROGOOD, ROBAD PRINTX 013746 013746 002326 002322 MOV ROBAD,-(SP) 005254 ROGOOD, -(SP) MOV 005260 005264 005270 005274 005276 005300 002320 004366 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 013746 ROLOAD, -(SP) MOV 012746 012746 #FRMTRO,-(SP) MOV 000004 MOV #4,-(SP) SP.RO CSPNTX 010600 MOV 104415 062706 000207 TRAP 000012 ADD #12,SP 005304 RTS PRINT CONTROL REGISTER 2 ERROR INFORMATION 2280 005306 PRNTR2::PRINTX #REG2EQ 012746 012746 010600 2281 2282 2283 2284 2285 2286 2287 2288 2289 2291 2291 2292 2293 2294 2296 2297 2298 2299 2300 005306 004330 MOV #REG2EQ,-(SP) 005312 000001 MOV #1,-(SP) SP.RC CSPNTX 005316 VCM 005320 005322 104415 062706 TRAP 000004 ADD #4.SP 005326 005326 005332 005336 PRINTX #FRMTR2,R2LOAD,R2READ 013746 013746 012746 012746 002332 002330 MOV R2READ, -(SP) R2LOAD, -(SP) #FRMTR2, -(SP) VCM 004437 MOV 005342 000003 #3,-(SP) SP,R0 MOV 005346 010600 MOV 104415 062706 000207 005350 CSPNTX TRAP 005352 005356 000010 #10,SP ADD PC RTS PRINT CONTROL REGISTER 4 ERROR INFORMATION 005360 005360 PRNTR4::PRINTX #REG4EQ 012746 004342 MOV #REG4EQ,-(SP) 005364 005370 000001 #1,-(SP) SP,R0 MOV 010600 MOV ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 45 01-APR-82 14:12 GLOBAL ERROR REPORT GLOBAL AREAS CVCDCB.P11 GLOBAL ERROR REPORT SECTION 005372 005374 2303 2304 2305 2306 2306 2307 2310 2311 2311 2311 2311 2311 2311 2312 2 104415 062706 TRAP CSPNTX 000004 ADD #4.SP 005374 005400 005400 005410 005414 005420 005424 005426 005430 005434 #FRMTRO,R4LOAD,R4GOOD,R4BAD PRINTX 013746 013746 013746 012746 012746 010600 002340 002336 002334 004366 000004 R4BAD,-(SP) R4GOOD,-(SP) R4LOAD,-(SP) #FRMTRO,-(SP) MOV MOV MOV MOV MOV #4,-(SP) SP.RO MOV 104415 062706 TRAP CSPNTX 000012 ADD #12,SP 000207 RTS PRINT CONTROL REGISTER 6 ERROR INFORMATION 005436 005436 005442 005446 PRNTR6::PRINTX #REG6EQ 012746 004354 012746 000001 #REGGEQ,-(SP) MOV MOV #1,-(SP) 010600 MOV SP.RO 005450 005452 104415 062706 TRAP CSPNTX 000004 ADD #4.SP 005456 #FRMTR2, R6LOAD, R6READ PRINTX 005456 005462 005466 005472 005476 013746 013746 012746 012746 002344 002342 004437 R6READ, -(SP) MOV R6LOAD,-(SP) #FRMTR2,-(SP) #3,-(SP) SP,R0 C$PNTX MOV MOV 000003 MOV 010600 MOV 005500 005502 005506 104415 062706 000207 TRAP 000010 ADD #10,SP RTS ``` : CALLING SEQUENCE: JSR PC.INITTE ;-- ``` GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 47 CVCDCB_P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 2389 2390 2391 ; NOTE: ON A START OR RESTART COMMAND TO THE DIAGNOSTIC SUPERVISOR, A BUS RESET INSTRUCTION WILL BE ISSUED TO CLEAR ALL MODULES. THIS IS NEEDED TO CLEAR SIGNALS COMING INTO THE TARGET EMULATOR THAT 2392 2393 MAY BE SET ON THE MEMORY SIMULATOR MODULE OR STATE ANALYZER MODULE. 2394 2395 2396 2397 005510 INITTE:: BGNSEG ROUTINE TO INIT TE MODULE 005510 104404 C$BSEG TRAP 2398 2399 005512 SETVEC #4,#1$,#PRIO7 #PRIO7,-(SP) :SETUP VECTOR 012746 012746 012746 012746 104437 005512 000340 MOV 2400 005630 #1$,-(SP) 005516 MOV 005522 005526 005532 2401 #4,-(SP) 000004 MOV 2402 2403 2404 2405 2406 2407 000003 MOV #3,-(SP) TRAP C$SVEC 005534 062706 000010 ADD #10.SP :LOAD DEVICE NUMBER INTO REGISTER O AND CHECK IT 000300 002310 002320 002320 012737 013737 002324 002320 005540 MOV #SSBRK!TOBRK,ROMASK :SETUP TO IGNORE TE BREAK SIGNALS 005546 MOV IDDEV, ROLOAD GET USER DEFINED DEVICE NUMBER ROLOAD, ROGOOD ROLOAD, AREGO AREGO, ROBAD 005554 013737 002322 PUT DATA LOADED INTO EXPECTED MOV 005562 013777 MOV ; WRITE WORD TO REGISTER O 002326 002326 002326 174504 005570 017737 MOV READ REGISTER CONTENTS BACK 043737 023737 001414 002324 002322 005576 BIC ROMASK, ROBAD CLEAR OUT UNWANTED BITS 005604 005612 CMP ROGOOD, ROBAD : COMPARE EXPECTED WITH THAT READ BEQ : IF COMPARE WAS GOOD THEN CONT 005614 ERRDF 1, GDALRG, ROEROR :DEVICE # OR LB NOT = EXPECTED 005614 104455 TRAP CSERDF 005616 000001 . WORD 005620 005622 005624 005624 005626 002406 . WORD GDALRG WORD ROEROR CKLOOP CSCLP1 104406 TRAP 000406 005726 BR BRANCH AROUND TIME OUT ERROR 005630 (SP)+ TST CLEAN UP STACK 005632 005634 005634 005726 TST (SP)+ :CLEAN UP STACK ERRDF 1. ROTM :TIME OUT ERPOR REG O 104455 TRAP C$ERDF 005636 000001 . WORD 005640 000000 . WORD 005642 005050 WORD ROTM 005644 25: CLRVEC :CLEAR VECTOR 005644 005650 005652 012700 104436 000004 #4_RO MOV TRAP C$CVEC ENDSEG 005652 10000$: 005652 104405 TRAP C$ESEG :READ DEVICE TYPE IN REGISTER 0 - DEVICE TYPE SHOULD EQUAL O 005654 BGNSEG 005654 104404 052737 013737 TRAP C$BSEG 100000 002320 005656 MGDAL 15 , ROLOAD ID TYPE , ROGOOD BIS SETUP TO READ DEVICE TYPE 002316 006562 005664 005672 MOV SETUP EXPECTED DATA 004737 JSR PC.LDRDOR :LOAD, READ AND COMPARE REG O ``` ``` GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 48 CVCDCB_P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 005676 005700 001404 BEQ : IF EQUAL THEN DEVICE TYPE COMPARED ERRDF 1.GDALRG.ROEROR DEVICE TYPE NOT EQUAL EXPECTED 005700 104455 TRAP CSERDF 005702 005704 2448 2449 2450 2451 2453 2454 2455 2456 2457 2460 2461 2462 2463 2464 2465 000001 . WORD 002406 . WORD GDALRG 005706 WORD ROEROR 005710 ENDSEG 10001$: 005710 005710 104405 TRAP C$ESEG RESET THE SIGNAL GDAL15 H TO A O SO THAT THE DEVICE NUMBER WILL BE READ AGAIN. SET GOALT H AND GDALO H TO ONES AND GDALZ H TO A ZERO. THIS IS DONE SO THAT THE HOAL REGISTER CAN BE SELECTED AND INITIALIZED. 005712 BGNSEG 104404 013737 052737 004737 005712 TRAP C$BSEG 002310 IDDEV, ROLOAD #GDAL1! GDALO, ROLOAD 005714 GET USER DEFINED DEVICE NUMBER SET BITS TO SELECT THE HDAL REGISTER MOV 005722 005730 002320 BIS 006554 JSR PC, LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 005734 001405 BEG ; IF LOADED OK THEN CONTINUE 005736 ERRDF 1,GDALRG,ROEROR GDAL REGISTER NOT EQUAL TO EXPECTED 005736
005740 005742 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2478 2479 2480 104455 TRAP CSERDF . WORD 002406 004754 . WORD GDALRG 005744 005746 . WORD ROEROR CKLOOP 005746 104406 TRAP C$CLP1 ;LOAD, READ AND CHECK THE HDAL REGISTER WITH A DATA PATTERN OF FOUR. ;HDAL2 H SET TO A ONE WILL ENABLE THE PROGRAM TO GENERATE AND CONTROL THE T-11 TIMING AND CONTROL SIGNALS INSTEAD OF THE T-11 GENERATING THEM. ON A WRITE COMMAND TO CONTROL REIGSTER 6 WITH GDAL BITS 1 AND 0 SET, PULSES WILL OCCUR ON THE SIGNALS WPT3 LB H AND WPT3 HB H. THESE PULSES WILL LOAD THE DATA INTO THE HDAL REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6. DATA WILL BE READBACK FROM THE HDAL REGISTER : VIA THE SIGNAL RPT3 L. 2481 2482 2483 2484 2485 2486 2487 2488 2490 2491 2493 2494 2496 2497 2498 2499 005750 SETVEC #4,#5$,#PRI07 MOV #PRI07,-(SP) 45: :SETUP VECTOR 012746 012746 012746 012746 104437 062706 012737 005037 005750 000340 005754 006056 #5$,-(SP) MOV 005760 #4,-(SP) #3,-(SP) MOV 005764 005770 000003 MOV C$SVEC TRAP 005772 005776 006004 006010 006016 006024 006032 ADD #10,SP 000010 000004 002346 002342 174264 002346 002342 WHDAL2, R6LOAD 002342 MOV SETUP BIT TO BE LOADED SETUP MASK WORK TO COMPARE ALL BITS R6MASK CLR 174270 002344 002344 002344 R6LOAD, aREG6 013777 MOV :WRITE WORD INTO REG 6 017737 043737 023737 001414 MOV areg6, RGREAD READ THE WORD BACK CLEAR OUT ANY UNWANTED BITS BIC R6MASK, R6READ CMP R6LOAD, R6READ COMPARE DATA LOADED WITH DATA READ 006040 BEQ ; IF COMPARE WAS GOOD THEN CONT 006040 006042 006044 006046 006050 ERRDF ,HDALRG,ROGERR HDAL REGISTER NOT EQUAL TO EXPECTED 104455 TRAP CSERDF 000004 002605 005020 . WORD . WORD HDALRG 2500 . WORD RO6ERR ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 49 GLOBAL AREAS CVCDCB_P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 006052 006052 006054 006056 006060 CKLOOP 104406 000406 005726 C$CLP1 TRAP 6$ BR BRANCH AROUND TIME OUT ERROR 5$: (SP)+ TST CLEAN UP STACK 005726 TST (SP)+ :CLEAN UP STACK 006062 006062 006064 006066 ERRDF ...ROTM :TIME OUT ERROR REG 6 104455 TRAP CSERDF 000004 . WORD 000000 . WORD 006070 005136 WORD R6TM 006072 6$: CLRVEC #4 :CLEAR VECTOR 006072 006076 012700 000004 #4.RO MOV TRAP C$CVEC 006100 006100 ENDSEG 10002$: 006100 104405 TRAP C$ESEG SELECT THE MODE REGISTER BY SETTING GDAL BIT 2 TO A ONE AND GDAL BITS 1 AND 0 TO ZEROES. THIS IS DONE SO THAT THE MODE REGISTER CAN BE ; SELECTED AND CLEARED. 006102 006102 006104 006112 006120 BGNSEG 104404 013737 052737 004737 TRAP C$BSEG 002310 IDDEV, ROLOAD #GDAL2, ROLOAD MOV GET USER DEFINED DEVICE NUMBER 002320 BIS GET BIT TO SELECT MODE REGISTER 006554 JSR PC,LDRDRO GO LOAD, READ AND CHECK MODE REGISTER 006120 006124 006126 006130 006132 006134 006136 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 1, GDALRG, ROEROR GDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP CSERDF 000001 . WORD 002406 . WORD GDALRG 004754 . WORD ROEROR CKLOOP 104406 TRAP C$CLP1 ; LOAD, READ AND CHECK THE MODE REGISTER WITH A DATA PATTERN OF ALL ZEROES. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL BIT 2 SET TO A ONE AND GDAL BITS 1 AND 0 SET TO ZEROES, PULSES WILL OCCUR ON THE SIGNALS WHAT I BE HAND WHAT HE HAND THE SET TO THE WRITE COMMAND INTO THE MODE REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE MODE REGISTER VIA THE SIGNAL RPT4 L. 2540 2541 2542 2543 2544 2545 2546 2546 2550 2551 2555 2556 006140 002342 005037 75: CLR R6LOAD SETUP TO LOAD ALL ZEROES INTO MODE REG 006144 006150 006152 006152 006154 004737 001404 JSR PC.LDRDR6 GO LOAD, READ AND CHECK MODE REGISTER : IF LOADED OK THEN CONTINUE 8$ BEQ ERRDF 4.MODREG,ROGERR MODE REGISTER NOT EQUAL EXPECTED 104455 C$ERDF TRAP 000004 . WORD 006156 006160 006162 006162 006162 002631 005020 . WORD MODREG WORD RO6ERR ENDSEG 10003$: 104405 TRAP C$ESEG 006164 006164 BGNSEG 104404 TRAP C$BSEG ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 50 GLOBAL AREAS CVCDCB_P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 2557 2558 2559 2560 2561 2562 2563 2564 ;SET AND CLEAR ADALO IN CONTROL REGISTER 2 TO CLEAR SINGLE STEP BREAK;FLIP-FLOP. ALL OTHER BITS IN CONTROL REGISTER 2 WILL BE CLEARED. ;ADAL8 ON A ZERO WILL INHIBIT THE TIMEOUT BREAK ONE SHOT OUTPUT TO ;BE READ IN ITS LOGICAL STATE. THE SIGNAL, TOBRK H, WILL BE ASSERTED;LOW WHEN ADAL8 IS A ZERO. AFTER SETTING AND CLEARING ADALO IN CONTROL;REGISTER 2, THE TEST WILL READ CONTROL REGISTER 0 AND CHECK THAT SINGLE STEP BREAK FLIP-FLOP AND THE TIMEOUT BREAK SIGNALS ARE READBACK AS : ZEORES. SETVEC #4,#9$,#PRIO7 MOV #PRIO7,-(SP) MOV #9$,-(SP) 006166 :SETUP VECTOR 012746 000340 012746 006262 012746 000004 012746 000003 104437 062706 000010 012737 000001 013777 002330 006166 006172 006176 006202 006206 006210 006214 006222 006230 MOV #4,-(SP) #3,-(SP) MOV C$SVEC TRAP #10,SP ADD SETUP BIT TO BE LOADED TO 0 SSBRK F/F WRITE BITS INTO REGISTER 2 READ REGISTER 2 BACK CHECK IF EXP EQUALS ACTUAL IF COMPARE WAS GOOD THEN CONT 000001 002330 002330 174052 MOV #ADALO, R2LOAD VOM R2LOAD, aREG2 017737 023737 001415 174046 002330 002332 aREG2, R2READ MOV 006230 006236 005244 006246 006250 006252 006254 006256 006256 CMP R2LOAD, R2READ BEQ 10$:REG 2 NOT EQUAL TO ADAL O ERRDF 2,ADALRG,R2EROR 104455 TRAP C$ERDF 000002 . WORD 002513 004770 . WORD ADALRG . WORD R2EROR CKLOOP 104406 TRAP C$CLP1 000407 10$:BRANCH AROUND TIME OUT ERROR BR 006260 006264 006266 006270 006272 006274 006276 006276 005726 TST (SP)+ CLEAN UP STACK 005726 TST (SP)+ :CLEAN UP STACK 2.,R2TM ERRDF :TIME OUT ERROR REG 2 104455 TRAP CSERDF 000002 -WORD 000000 . WORD 005072 . WORD R2TM CKLOOP 104406 TRAP C$CLP1 10$: CLRVEC :CLEAR VECTOR 006300 006304 012700 000004 #4.RO MOV 104436 005037 004737 001405 TRAP C$CVEC 006306 006312 006316 002330 CLR R2LOAD SETUP TO CLEAR ADALO GO LOAD, READ AND CHECK REGISTER 2 006614 JSR PC,LDRDR2 BEQ 006320 006320 006322 006324 006326 006330 ERRDF 2, ADALRG, RZEROR REGISTER 2 NOT EQUAL EXPECTED 104455 000002 002513 004770 TRAP C$ERDF . WORD . WORD ADALRG . WORD R2EROR CKLOOP 006330 104406 TRAP C$CLP1 ``` ; LOAD, READ AND CHECK CONTROL REGISTER O. CHECK THE TIMEOUT BREAK AND ; THE SINGLE STEP BREAK FLIP-FLOPS TO BE CLEARED AS A RESULT OF ADALO H BEING SET AND CLEARED IN THE PREVIOUS CHECK. | GLOBAL
CVCDCB | AREAS
P11 (| MACY11
)1-APR-82 | 30A(1052
14:12 | ?) 01-AF | R-82 14
GLOBAL | :48 PAG
SUBROUTI | E 51
NES SECTION | | |--|--|--|--|--|----------------------------|--|--|--| | 2613
2614
2615
2616
2617
2618
2619
2620
2621
2623
2624
2625
2626
2627
2636
2631
2632
2633
2634
2635
2636
2637
2638
2638
2640
2641
2642
2643 | 006332
006336
006342
006346
006350
006350
006352
006356
006360
006360 | 005037
105037
004737
001404
104455
000001
002406
004754 | 002324
002320
006554 | | 11\$:
12\$:
10004\$: | CLR
CLRB
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | ROMASK
ROLOAD
PC.LDRDRO
12\$
1.GDALRG,ROEROR
C\$ERDF
1
GDALRG
ROEROR | CLEAR MASK TO CHECK ALL BITS IN REG O SETUP TO CLEAR THE LOWER BYTE GO LOAD, READ AND CHECK GDAL REGISTER IF ALL BITS CHECKED THEN CONTINUE REGISTER O NOT EQUAL TO DEVICE NUMBER | | 2625 | 006360 | 104405 | | | 100043. | TRAP | C\$ESEG | | | 2627
2628
2629 | 006362
006362 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | | 2630
2631
2632
2633
2633 | | | | | | ;SET AN
;ONE, T
;ARE RE
;WRITE | D CLEAR VDAL2 IN CONTROL
HE PAUSE STATE MACHINE F
ADBACK IN VDAL REGISTER
BITS WILL BE LOADED AND | REGISTER 4. WHEN VDAL2 IS SET TO A FLIP-FLOPS WILL BE CLEARED. THESE F/F'S BITS 15:8. THE REMAINING VDAL READ/CHECKED FOR ZEORES. | | 2644
2645
2646 | 006364
006370
006374
006400
006406
006412
006420
006426
006434
006452
006452 | 012746
012746
012746
012746
104437
062706
012737
013737
013777
017737
023737
001415 | 000340
006466
000004
000003
000004
002334
002334
173644
002336 | 002334
002336
173650
002340
002340 | | SETVEC
MOV
MOV
MOV
TRAP
ADD
MOV
MOV
MOV
CMP
BEQ
ERRDF
TRAP | #4,#13\$,#PRIO7 #PRIO7,-(SP) #13\$,-(SP) #4,-(SP) #3,-(SP) C\$SVEC #10,SP #VDAL2,R4LOAD R4LOAD,R4GOOD R4LOAD,AREG4 AREG4,R4BAD R4GOOD,R4BAD 14\$ 3,VDALRG,R4EROR C\$ERDF | SETUP BIT TO BE LOADED SETUP EXPECTED DATA WRITE WORD INTO REGISTER 4 READ WORD BACK FROM REGISTER 4 COMPARE WORD EXPECTED WITH READ IF LOADED OK THEN CONT VDAL REGISTER NOT EQUAL TO 2 | | 2647
2648
2649
2650
2651
2652
2653
2654
2655
2656 | 006452
006452
006454
006456
006460
006462
006462 | 000003
002537
005004
104406
000407 | | | | .WORD
.WORD
.WORD
CKLOOP
TRAP
BR | VDALRG
R4EROR
C\$CLP1
14\$ | ;BRANCH AROUND TIME OUT ERROR | | GLOBAL AREAS | MACY11
01-APR-8 | 30A(1052
2 14:12 |) 01-AP | R-82 14
GLOBAL | :48 PAG | N 4
SE 52
NES
SECTION | | |---|--|---------------------|------------------|-------------------|--|---|---| | 2657 0064
2658 0064
2659 0064 | 72 | | | 13\$: | TST
TST
ERRDF | (SP)+
(SP)+
3,,R4TM | CLEAN UP STACK CLEAN UP STACK TIME OUT ERROR REG 4 | | 2660 0064
2661 0064
2662 0064
2663 0065 | 74 000003
76 000000
00 005114 | | | | TRAP
.WORD
.WORD | CSERDF
3
0
R4TM | | | 2664 0065
2665 0065
2666 0065
2667 0065
2668 0065 | 02 104406
04 012700 | 000004 | | 14\$: | CKLOOP
TRAP
CLRVEC
MOV | C\$CLP1
#4
#4,R0 | CLEAR VECTOR | | 2668 006
2669 006
2670 006
2671 006
2672 006 | 12 005037
16 004737 | 002334
006640 | | | TRAP
CLR
JSR
BEQ | C\$CVEC
R4LOAD
PC,LDRDR4
15\$ | SETUP TO CLEAR VDAL2 GO LOAD, READ AND CHECK VDAL REG IF LOADED OK THEN CONTINUE | | 2657 0066
2659 0066
2660 0066
2661 0066
2662 0066
2663 0066
2665 0066
2665 0066
2667 0066
2667 0066
2671 0066
2672 0066
2673 0066
2674 0066
2675 0066
2677 0066
2677 0066
2678 0066
2679 0066 | 104455
126 000003
130 002537
132 005004 | | | 15\$:
10005\$: | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 3. VDALRG, R4EROR
C\$ERDF
3
VDALRG
R4EROR | VDAL REG NOT EQUAL TO 0 | | 2679 0065 | 34 104405 | | | 100053: | TRAP | C\$ESEG | | | 2681 0065
2682 0065
2683 0065
2684 | 44 012737 | 000000 | 002324
002346 | | MOV
MOV
RTS | #0,ROMASK
#0,R6MASK
PC | CLEAR CONTROL REGISTER O MASK WORD CLEAR CONTROL REGISTER 6 MASK WORD RETURN BACK TO TEST | | CVCDCB.P11 U1-APK-02 14:12 | | GLOBAL SOBKOOLINES SECLION | | | | | | | | | | | |--|--|--------------------------------------|--|---|-------------------------------|--|---|---|--|--|--|--| | 2685
2686
2687
2688 | | | :ROUTIN | ROUTINE TO LOAD, READ, AND COMPARE CONTENTS OF REGISTER O CONDITION CODES ARE SET ON EXIT AS RESULT OF THE "CMP" INSTRUCTION. | | | | | | | | | | 2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695 | 006554
006562
006570
006576
006604
006612 | 013777
017737
043737
023737 | 002320
002320
173504
002324
002322 | 002322
173510
002326
002326
002326 | LDRDRO:
LDRDOR:
READRO: | :MOV | ROLOAD, ROGOOD
ROLOAD, AREGO
AREGO, ROBAD
ROMASK, ROBAD
ROGOOD, ROBAD
PC | ;PUT DATA LOADED INTO EXPECTED
;WRITE WORD TO REGISTER O
;READ REGISTER CONTENTS BACK
;CLEAR OUT UNWANTED BITS
;COMPARE EXPECTED WITH THAT READ
;EXIT WITH CONDITION CODES SET | | | | | | 2696
2697
2698 | 2696
2697 | | | ROUTIN; CONDIT | ION CODE | D, READ, AND COMPARE CON
S ARE SET ON EXIT AS RES | NTENTS OF REGISTER 2. SULT OF 'CMP' INSTRUCTION | | | | | | | 2699
2700
2701
2702
2703
2704
2705 | 006614
006622
006630
006636 | 017737 | 002330
173454
002330 | 173460
002332
002332 | LDRDR2:
READR2: | | R2LOAD, @REG2
@REG2, R2READ
R2LOAD, R2READ
PC | :WRITE BITS INTO REGISTER 2
:READ REGISTER 2 BACK
:CHECK IF EXP EQUALS ACTUAL
:EXIT WITH CONDITION CODES SET | | | | | | 2704
2705
2706 | | | ROUTIN; CONDIT | ROUTINE TO LOAD, READ AND COMPARE CONTENTS OF REGISTER 4. CONDITION CODES ARE SET ON EXET AS RESULT OF "CMP" INSTRUCTION. | | | | | | | | | | 2707
2708
2709
2710
2711 | 006640
006646
006654
006662
006670 | 013777
017737
023737 | 002334
002334
173424
002336 | 002336
173430
002340
002340 | LDRDR4:
LDRD4R:
READR4: | :MOV | R4LOAD,R4GOOD
R4LOAD, aREG4
aREG4,R4BAD
R4GOOD,R4BAD
PC | SETUP EXPECTED DATA WRITE WORD INTO REGISTER 4 READ WORD BACK FROM REGISTER 4 COMPARE WORD EXPECTED WITH READ RETURN WITH CONDITION CODES SET | | | | | | 2712
2713
2714
2715 | | | | | :ROUTIN | ROUTINE TO LOAD, READ AND COMPARE CONTENTS OF CONTROL REGISTER 6 CONDITION CODES ARE SET ON EXIT AS RESULT OF 'CMP' INSTRUCTION. | | | | | | | | 2716
2717
2718
2719 | 006672
006700
006706
006714
006722 | 017737
043737
023737 | 002342
173402
002346
002342 | 173406
002344
002344
002344 | LDRDR6:
READR6: | | R6LOAD, aREG6
aREG6, R6READ
R6MASK, R6READ
R6LOAD, R6READ
PC | WRITE WORD INTO REGISTER 6 READ THE WORD BACK CLEAR OUT ANY UNWANTED BITS COMPARE DATA LOADED WITH DATA READ EXIT WITH CONDTION CODES SET | | | | | | 2722 | 2721
2722
2723 | | | ; TARGET | EMULATO | R INTERRUPT SERVICE ROUT | TINE | | | | | | | 2724
2725 | 006724
006724 | | | | INTSRV: | BGNSRV : | INTSRV | | | | | | | 2726
2727
2728
2729 | 006724
006732
006736
006736
006736 | 017737
012702 | 173350
177777 | 002326 | L10013: | MOV
MOV
ENDSRV | arego, robad
#-1, r2
#prio7 | :READ GDAL REGISTER AND SAVE
:SET SOFTWARE INTERRUPT FLAG | | | | | | 2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733 | 006736
006744
006752 | 122/00 | 000340
000340 | 000002 | 210013: | BICB
BISB
RTI | #340,2(SP)
#PRI07,2(SP) | | | | | | ``` C 5 MACY11 30A(1052) 01-APR-82 14:48 PAGE 54 GLOBAL AREAS CVCDCB.P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 2734 2735 2736 2737 THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O GDAL BITS 2:0 TO SELECT THE HDAL REGISTER. THE HDAL REGISTER WILL BE SELECTED BY EITHER A WRITE OR READ COMMAND TO CONTROL REGISTER 6 WHEN GDAL BITZ EQUALS A O AND GDAL BIT 1 AND GDAL BIT O EQUAL A ONE. 006754 006754 006756 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2750 2751 2752 2753 2754 SLHDAL::BGNSEG 104404 112737 004737 TRAP C$BSEG #GDAL1!GDALO, ROLOAD 000003 002320 MOVB SETUP BITS TO BE SELECTED 006764 006554 JSR PC,LDRDRO GO LOAD, READ AND CHECK GDAL REG 006770 001404 BEQ ; IF LOADED OK THEN CONTINUE 006772 006772 006774 ERRDF 1, GDALRG, ROEROR GDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP CSERDF 000001 002406 004754 . WORD 006776 . WORD GDALRG 007000 . WORD ROEROR 007002 ENDSEG 007002 10000$: 007002 104405 TRAP CSESEG. 007004 000207 RTS :RETURN BACK TO TEST :THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER 0 GDAL BITS 2:0 TO SELECT THE MODE REGISTER. THE MODE REGISTER WILL BE SELECTED BY EITHER 2756 2757 A WRITE OR READ COMMAND TO CONTROL REGISTER 6 WHEN GDAL BIT 2 EQUALS A CNE :AND GDAL BIT 1 AND GDAL BIT 0 EQUALS A ZERO. 2758 2759 2760 2761 2762 2763 2765 2765 2766 2767 2776 2771 2772 2773 2774 2776 2776 007006 SLMODR::BGNSEG 104404 112737 004737 007006 C$BSEG #GDAL2,ROLOAD TRAP 007010 000004 002320 MOVB :SETUP BITS TO SELECT MODE REGISTER 007016 006554 JSR PC.LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 007022 007024 001404 BEQ ; IF LOADED OK THEN CONTINUE 1, GDALRG, ROEROR ERRDF GDAL REGISTER NOT EQUAL EXPECTED 007024 104455 TRAP C$ERDF 000001 002406 004754 007026 007030 . WORD . WORD GDALRG 007032 . WORD ROEROR 007034 ENDSEG 007034 100015: 007034 104405 TRAP C$ESEG 007036 000207 RTS RETURN BACK TO TEST THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O GDAL BITS 2:0 TO SELECT THE ADDRESS BUS TO BE READBACK VIA THE SIGNAL RPT1 L WHEN A READ COMMAND IS :ISSUED TO CONTROL REGISTER 6. ON A WRITE COMMAND TO CONTROL REGISTER 6, THE NEW FORCE JUMP ADDRESS REG WILL BE LOADED WITH LSI-11 Q-BUS DATA BY THE SIGNALS 2778 WPT1 LB H AND WPT1 HB H. SELECT POINTER ONE BY SETTING GDALO H TO A ONE AND 2779 :GDAL1 H AND GDAL2 H TO A ZERO. 2780 2781 2782 2783 2784 2785 2786 2787 2788 007040 SLFJAR:: BGNSEG 007040 007042 007050 104404 112737 004737 TRAP C$BSEG 000001 002320 #GDALO, ROLOAD MOVB SETUP TO SET GDALO H TO A ONE 006554 JSR PC,LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 001404 007054 BEQ ; IF LOADED OK THEN CONTINUE 007056 1, GDALRG, ROEROR ERRDF GDAL REGISTER NOT EQUAL EXPECTED 007056 104455 TRAP C$ERDF 007060 . WORD 007062 002406 . WORD GDALRG ``` ``` D 5 GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 55 CVCDCB.P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 007064 2790 2791 2792 2793 2794 2795 2796 2797 004754 - WORD RUEROR 007066 ENDSEG 007066 10002$: 007066 TRAP C$ESEG 000207 PC RTS RETURN BACK TO TEST THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O GDAL BITS 2:0 TO SELECT THE DIAGNOSTICE ADDRESS REGISTER. THE DIAGNOSTIC ADDRESS REGISTER WILL BE SELECTED BY EITHER A WRITE OR READ COMMAND TO CONTROL REGISTER 6 WHEN GDAL :BITS 2:0 ARE EQUAL TO A ZERO. 2800 007072 SLDADR::BGNSEG 007072 104404 TRAP C$BSEG 105037 004737 001404 007074 CLRB ROLOAD SETUP TO CLEAR LOWER BYTE 007100 007104 006554 JSR GO LOAD, READ AND CHECK GDAL REGISTER IF LOADED OK THEN CONTINUE PC,LDRDRO BEQ 007106 1, GDALRG, ROEROR ERRDF GDAL REGISTER NOT EQUAL EXPECTED 007106 104455 TRAP CSERDF 000001 007110 . WORD 002406 007112 . WORD GDALRG 007114 . WORD ROEROR 007116 ENDSEG 10003$: 007116 007116 104405 TRAP C$ESEG
007120 000207 RTS RETURN BACK TO TEST :THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER 0 GDAL BITS 2:0 :TO SELECT THE EODAL 15:0 BUS TO BE READBACK TO THE LSI-11 BUS WHEN A READ COMMAND IS ISSUED TO CONTROL REGISTER 6. CONTROL REGISTER O GDAL BITS 2:0 WILL BE SET TO ONES TO SELECT THE EDDAL BUS READBACK. 007122 007122 SEODAL::BGNSEG 104404 112737 004737 TRAP C$BSEG 007124 007132 007136 000007 #GDAL2!GDAL1!GDALO, ROLOAD ; SETUP BITS TO BE LOADED 002320 MOVB 006554 PC,LDRDRO JSR ; GO LOAD, READ AND CHECK GDAL REGISTER 001404 BEQ ; IF LOADED OK THEN CONTINUE 007140 ERRDF 1, GDALRG, ROEROR GDAL REGISTER NOT EQUAL TO EXPECTED 007140 104455 TRAP CSERDF 007142 000001 -WORD 002406 004754 007144 . WORD GDALRG 007146 . WORD ROEROR 007150 ENDSEG 007150 100045: 007150 104405 TRAP C$ESEG 007152 000207 RTS THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O BITS 2:0 TO SELECT THE ; FDAL REGISTER. THE FDAL REGISTER WILL BE SELECTED BY EITHER A READ OR WRITE ; COMMAND TO CONTROL REGISTER 6 WHEN GDAL BIT 1 IS SET TO A ONE AND GDAL BITS ; 2 AND 0 ARE SET TO ZEROES. 2840 2841 2842 2843 2844 007154 007154 007156 007164 007170 SLFDAL::BGNSEG 104404 TRAP C$BSEG 002320 MOVB #GDAL1 . ROLUAD SETUP TO SET GDAL1 H TO A ONE 004737 006554 JSR PC, LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 001404 BEQ : IF LOADED OK THEN CONTINUE ``` ``` E 5 GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 56 CVCDCB.P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 2846 2847 2848 2849 2850 007172 ERRDF 1,GDALRG,ROEROR :GDAL REGISTER NOT EQUAL EXPECTED 007172 104455 TRAP CSERDF 000001 002406 007174 . WORD 007176 . WORD GDALRG 007200 004754 . WORD ROEROR 2851 2852 2853 2854 2855 2856 007202 007202 007202 ENDSEG 10005$: 104405 TRAP CSESEG 007204 000207 RTS PC :THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O BITS 2:0 TO SELECT THE 2857 2858 2859 ; TARGET MODE REGISTER. THE TARGET MODE REGISTER WILL BE SELECTED ON A READ COMMAND TO CONTROL REGISTER 6 WHEN GDAL BITS 2 AND 0 ARE SET AND GDAL BIT1 :IS CLEARED. 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 007206 SELTMR:: BGNSEG 007206 007210 104404 112737 004737 C$BSEG #GDAL2!GDAL0,ROLOAD TRAP 000005 002320 MOVB SETUP BITS TO BE LOADED 007216 007222 007224 006554 JSR PC,LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 001404 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 1.GDALRG, ROEROR GDAL REGISTER NOT EQUAL EXPECTED 007224 104455 TRAP C$ERDF 007226 007230 007232 000001 . WORD 002406 . WORD GDALRG WORD ROEROR 007234 ENDSEG 007234 007234 007236 10006$: 104405 TRAP C$ESEG 000207 RTS :THE FOLLOWING ROUTINE WILL SETUP CONTROL REGISTER O BITS 2:0 TO SELECT THE 2877 FIDAL BUS TO BE READBACK. THE EIDAL BUS WILL BE SELECTED ON A READ COMMAND TO CONTROL REGISTER 6 WHEN GDAL BITS 2 AND 1 ARE SET TO ONES AND GDAL BIT O 2878 2879 :IS A ZERO. 2880 2881 2882 2883 2884 2885 2886 2886 2888 2889 2890 007240 SEIDAL:: BGNSEG 007240 007242 007250 104404 112737 004737 C$BSEG #GDAL2!GDAL1,ROLOAD TRAP 000006 002320 MOVB :SETUP BITS TO BE LOADED 006554 JSR PC,LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 007254 001404 BEQ : IF LOADED OK THEN CONTINUE 007256 007256 ERRDF 1,GDALRG,ROEROR GDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP C$ERDF 000001 007260 . WORD 007262 007264 002406 004754 . WORD GDALRG . WORD ROEROR 2891 007266 ENDSEG 2892 2893 2894 007266 10007$: 007266 007270 TRAP C$ESEG 000207 RTS ``` THE T-11 TIMING AND CONTROL SIGNALS SUCH AS ABOVE. | GLOBAL
CVCDCB.
2951 | P11 0 | 1-APR-82 | |) 01-AP | GLOBAL | | NES SECTION | | |--|--|--|----------------------------|------------------|--|---|--|---| | 2952 | 007376
007402
007406 | 004737
004737
000207 | 007410
007442 | | XCAS:: | JSR
JSR
RTS | PC,XCASH
PC,XCASL
PC | GO SET XCAS H (HIGH) AND XCAS L (LOW); GO SET XCAS H (LOW) AND XCAS L (HIGH) | | 2956
2957
2958
2959 | | | | | ON A C | LLOWING
LLOW THE
INE WILL
ASSERTED | CAUSE THE SIGNAL XCAS H | B H AND HDAL2 H TO ONES. HDAL2 H ON A ONE
E T-11 TIMING AND CONTROL SIGNALS. HDAL13 H
H TO BE ASSERTED HIGH AND THE SIGNAL XCAS L | | 2953
2954
2955
2956
2957
2958
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2978
2978
2979 | 007410
007410
007412
007420
007424
007426 | 104404
052737
004737
001404 | 020004
006672 | 002342 | XCASH:: | BGNSEG
TRAP
BIS
JSR
BEQ
ERRDF | C\$BSEG
#HDAL13!HDAL2,R6LOAD
PC,LDRDR6
1\$
4,HDALRG,R06ERR | ;SETUP BITS TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | 2967
2968
2969
2970
2971 | 007426
007430
007432
007434
007436 | 104455
000004
002605
005020 | | | 1\$: | TRAP .WORD .WORD .WORD ENDSEG | C\$ERDF
4
HDALRG
ROGERR | , ADAL REGISTER NOT ENOAL EXPECTED | | 2972
2973
2974
2975 | 007436
007436
007440 | 104405
000207 | | | 10012\$: | TRAP | CSESEG
PC | | | 2976
2977
2978
2979
2980 | | | | | :HDAL2 | H ON A C
L SIGNAL | INE WILL ALLOW THE PROGR | B H TO A ZERO AND HDAL2 H TO A ONE. RAM TO CONTROL THE T-11 TIMING AND WILL CAUSE THE SIGNAL XCAS H TO BE D BE ASSERTED HIGH. | | 2981
2982
2983
2984
2985
2986
2987
2988
2989
2991
2991
2992
2993
2995
2996
2997 | 007442
007442
007444
007452
007460
007466
007466
007470
007472
007474 | 104404
052737
042737
004737
001404
104455
000004
002605
005020 | 000004
020000
006672 | 002342
002342 | 15: | BGNSEG
TRAP
BIS
BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
ENDSEG | C\$BSEG
#BIT2,R6LOAD
#HDAL13,R6LOAD
PC,LDRDR6
1\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR | ;SETUP DIAGNOSTIC CONTROL BIT
;SETUP BIT TO BE CLEARED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | 2993
2994
2995
2996 | 007476
007476
007500 | 104405
000207 | | | 10013\$: | TRAP | CSESEG
PC | RETURN BACK TO TEST | | 2998 | | | | | ; THE FO
; BEING
; HDAL2
; TIMING | LLOWING
SET AND
H WILL A
AND COM | ROUTINE WILL SET AND CL
CLEARED WILL CAUSE A PU
ALSO BE SET TO A ONE TO
ITROL SIGNALS SUCH AS AB | EAR HDAL15 IN THE HDAL REGISTER. HDAL15 ULSE TO OCCUR ON THE SIGNAL "XPI H". ALLOW THE PROGRAM TO CONTROL THE T-11 BOVE. | | 3000
3001
3002
3003
3004
3005
3006 | 007502
007506
007512 | 004737
004737
000207 | 007514
007546 | | XPI:: | JSR
JSR
RTS | PC.XPIH
PC.XPIL
PC | GO SET PPI L AND XPI L TO THE LOW STATE GO SET PPI L AND XPI L TO HIGH STATE RETURN BACK TO TEST | | 3006 | | | | | ;THE FO | LLOWING | ROUTINE WILL SET HDAL15 | H AND HDALZ H TO ONES. HDALZ H ON A ONE | | - | GLOBAL
CVCDCB. | AREAS
P11 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14
GLOBAL | :48 PAG
SUBROUTI | SE 59
INES SECTION | | |---|--|--|--|----------------------------|------------------|-------------------|---|---|---| | - | 3007
3008
3009 | | | | | :WILL A | LLOW THE | PROGRAM TO CONTROL THE ASSERT THE SIGNALS PPI L | T-11 TIMING AND CONTROL SIGNALS. HDAL15 H
AND XPI L TO THE LOW STATE. | | | 3010
3011
3012
3013
3014
3015
3016
3017
3018 | 007514
007516
007516
007524
007530
007532
007532
007534
007536 | 104404
052737
004737
001404
104455
000004
002605 | 100004
006672 | 002342 | XPIH:: | BGNSEG
TRAP
BIS
JSR
BEQ
ERRDF
TRAP
.WORD | C\$BSEG
#HDAL15!HDAL2,R6LOAD
PC.LDRDR6
1\$
4,HDALRG,R06ERR
C\$ERDF
4 | ;SETUP BITS TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | | 3020
3021
3022 | 007542 | 104405 | | | 1\$:
10014\$: | . WORD
ENDSEG
TRAP | R06ERR
C\$ESEG | | | | 3023
3024
3025 | 007544 | 000207 | | | ·THE FO | RTS | POLITINE WILL SET HOAL 15 | RETURN BACK TO TEST | | | 3026
3027 | | | | | ON A OF | H ON A | ALLOW THE PROGRAM TO CON
ZERO WILL CAUSE THE SIGN | H TO A ZERO AND HDAL2 H TO A ONE. HDAL2 H ITROL THE T-11 TIMING AND CONTROL SIGNALS. HALS PPI L AND XPI L TO BE ASSERTED HIGH. | | |
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3021
3022
3023
3024
3025
3026
3027
3028
3030
3031
3032
3033
3036
3037
3038
3039 | 007546
007546
007550
007556
007564
007570
007572
007572
007574
007576 | 104404
052737
042737
004737
001404
104455
000004
002605
005020 | 000004
100000
006672 | 002342
002342 | XPIL:: | BGNSEG
TRAP
BIS
BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | C\$BSEG
#HDAL2,R6LOAD
#HDAL15,R6LOAD
PC,LDRDR6
1\$
4,HDALRG,RO6ERR
C\$ERDF
4
HDALRG
RO6ERR | ;SETUP DIAGNOSTIC CONTROL BIT
;SETUP BIT TO BE CLEARED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | | 3040
3041
3042 | 007602
007602
007602 | 104405 | | | 1\$:
10015\$: | ENDSEG | C\$ESEG | | | ١ | 3043
3044 | 007604 | 000207 | | | | RTS | PC | RETURN BACK TO TEST | | | 3040
3041
3042
3043
3044
3045
3046
3047
3048 | | | | | ;BEING : | SET AND
H WILL A | ROUTINE WILL SET AND CLE
CLEARED WILL CAUSE A PUL
LISO BE SET TO A ONE TO A
ITROL SIGNALS SUCH AS ABO | AR HDAL7 IN THE HDAL REGISTER. HDAL7 SE TO OCCUR ON THE SIGNAL XBCLR H + PBCLR H. LLOW THE PROGRAM TO CONTROL THE T-11 VE. | | | 3049
3050
3051
3052
3053 | 007606
007612
007616 | 004737
004737
000207 | 007620
007652 | | XBCLR:: | JSR
JSR
RTS | PC.XBCLRH
PC.XBCLRL
PC | ;SET XBCLR H AND PBCLR H TO HIGH STATE
;SET XBCLR H AND PBCLR H TO LOW STATE
;RETURN BACK TO TEST | | | 3054
3055
3056
3057 | | | | | :WILL A | LLOW THE | PROGRAM TO CONTROL THE | AND HDAL2 H TO ONES. HDAL2 H ON A ONE
T-11 TIMING AND CONTROL SIGNALS. HDAL7 H
H AND PBCLR H TO THE HIGH STATE | | | 3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062 | 007620
007620
007622
007630
007634 | 104404
052737
004737
001404 | 000204
006672 | 002342 | XBCLRH: | BGNSEG
TRAP
BIS
JSR
BEQ | C\$BSEG
#HDAL7!HDAL2,R6LOAD
PC,LDRDR6
1\$ | ;SETUP BITS TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE | | GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 60
CVCDCB.P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION | | | | | | | | | | |--|--|--|--|------------------|--|---|---|---|--| | 3063
3064
3065
3066
3067
3068 | 007636
007636
007640
007642
007644
007646 | 104455
000004
002605
005020 | | 002342
002342 | 1\$:
10016\$: | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 4, HDALRG, ROSERR
CSERDF
4
HDALRG
ROSERR | ;HDAL REGISTER NOT EQUAL EXPECTED | | | 3070
3071
3072 | 007646
007650 | 104405
000207 | 000004 00234
000200 00234
006672 | | | TRAP | CSESEG
PC | RETURN BACK TO TEST | | | 3073
3074
3075
3076 | | | | | THE FOLLOWING ROUTINE WILL SET HDAL? H TO A ZERO AND HDAL2 H TO A ONE. HDAL2 H ON A ONE WILL ALLOW THE PROGRAM TO CONTROL THE T-11 TIMING AND CONTROL SIGNALS. HDAL? H ON A ZERO WILL CAUSE THE SIGNALS XBCLR H AND PBCLR H TO BE A TERTED LOW | | | | | | 3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092 | 007652
007652
007654
007662
007670
007676
007676
007700
007702
007704
007706
007706
007710 | 104404
052737
042737
004737
001404 | | | XBCLRL: | BGNSEG
TRAP
BIS
BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
ENDSEG | C\$BSEG
#HDAL2,R6LOAD
#HDAL7,R6LOAD
PC,LDRDR6
1\$ | SETUP DIAGNOSTIC CONTROL BIT SETUP BIT TO BE CLEARED GO LOAD, READ AND CHECK HDAL REGISTER IF LOADED OK THEN CONTINUE | | | | | 104455
000004
002605
005020 | | | 1\$:
10017\$: | | 4, HDALRG, ROGERR
CSERDF
4
HDALRG
ROGERR | HOAL REGISTER NOT EQUAL EXPECTED | | | | | 104405
000207 | | | | TRAP | CSESEG
PC | RETURN BACK TO TEST | | ``` J 5 MACY11 30A(1052) 01-APR-82 14:48 PAGE 61 GLOBAL AREAS CVCDCB.P11 GLOBAL SUBROUTINES SECTION 01-APR-82 14:12 3094 3095 THE FOLLOWING ROUTINE WILL SET AND CLEAR VDAL2 H IN CONTROL REGISTER 4. VDAL2 H ON A ONE WILL CLEAR THE FOLLOWING FLIP-FLOPS: PAUSE STATE WORKING PAUSE STATE SYNC PSMW H EPSF H 3098 16 BIT ADDRESS EPFN H 8 BIT INSTRUCTION HB EP8F H 3100 BIT ADDRESS LB EP8G H 3101 8 BIT ADDRESS HB EP8N H 3102 TAKE NEW F.J. ADDRESS GET NEW ADDRESS FLIP-FLOP TNFI H 3103 OUT NEW PAUSE MODE FLIP-FLOP REFRESH FLIP-FLOP 3104 PAUSE L 3105 REFR H 3106 FETCT LATCH FLIP-FLOP EDFET H O 3107 SETTING AND CLEARING VDAL2 H WILL ALSO CLOCK THE TAI AND TDAL BUSSES INTO THE 3108 :DIAGNOSTIC LATCHES. 3109 3110 007712 CLRPSM: : BGNSEG 007712 104404 052737 004737 3111 C$BSEG #VDAL2,R4LOAD TRAP 3112 3113 007714 002334 000004 BIS SETUP BIT TO SET VDAL2 H TO A ONE 007722 007726 006640 JSR PC,LDRDR4 GO LOAD, READ AND CHECK VDAL REGISTER : IF ALL OTHER BITS CLEARED THEN CONT 3114 001405 BEQ 3115 007730 ERRDF 3, VDALRG, R4EROR : VDAL REG OR PAUSE STATE MACHINE ERROR 3116 104455 000003 002537 007730 TRAP C$ERDF 3117 3118 3119 3120 3121 007732 . WORD 007734 007736 . WORD VDALRG 005004 . WORD R4EROR 007740 CKLOOP 104406 042737 004737 007740 TRAP CSCLP1 007742 000004 002334 15: BIC #VDAL2.R4LOAD :SETUP TO CLEAR VDAL2 H 007750 006640 GO LOAD, READ AND CHECK VDAL REGISTER : IF LOADED OK THEN CONTINUE JSR PC.LDRDR4 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 007754 001404 BEQ 007756 ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 007756 104455 TRAP CSERDF 007760 000003 . WORD 007762 002537 . WORD VDALRG 007764 005004 . WORD R4EROR 007766 2$: 10020$: ENDSEG 007766 007766 104405 TRAP C$ESEG 007770 000207 RTS PC RETURN BACK TO TEST 3134 ``` GLOBAL AREAS MACY11 30A(1052) 01-APR-82 14:48 PAGE 62 CVCDCB_P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 3135 3136 3137 THE FOLLOWING ROUTINE WILL SET ADALO H TO A ONE AND THEN ZERO. ADALO H BEING SET AND CLEARED WILL CAUSE A PULSE ON THE SIGNAL 'BRKRES L'. THE SIGNAL 'BRKRES L' WILL CLEAR THE SINGLE STEP BREAK FLIP-FLOP AND INTERRUPT RELATED 3138 3139 :LOGIC. 3141 3142 3143 007772 007772 007774 BRKRES::BGNSEG 104404 052737 004737 TRAP C\$BSEG MADALO, R2LOAD 000001 002330 BIS SETUP BIT TO BE LOADED 3144 3145 3146 3147 010002 010006 006614 **JSR** PC.LDRDR2 :GO LOAD, READ AND CHECK ADAL REGISTER 001405 BEQ : IF LOADED OK THEN CONTINUE 010010 ERRDF 2, ADALRG, RZEROR :ADAL REGISTER NOT EQUAL EXPECTED 104455 010010 TRAP C\$ERDF 3148 010012 . WORD 002513 004770 3149 010014 . WORD ADALRG 3150 3151 010016 . WORD R2EROR 010020 CKLOOP 104406 042737 004737 001404 3152 3153 010020 TRAP C\$CLP1 010022 000001 002330 #ADALO, R2LOAD 15: BIC SETUP GIT TO BE CLEARED 010030 PC,LDRDR2 2\$ 2,ADALRG,R2EROR 006614 GO LOAD, READ AND CHECK ADAL REGISTER : IF LOADED OK THEN CONTINUE JSR 3155 3156 3157 3158 3159 010034 BEQ 010036 ERRDF ADAL REGISTER NOT EQUAL EXPECTED 010036 104455 TRAP C\$ERDF 000002 010040 . WORD 010042 . WORD ADALRG 3160 004770 010044 . WORD R2EROR 3161 2\$: 10021\$: 010046 **ENDSEG** 3162 3163 3164 3165 010046 010046 010050 104405 TRAP C\$ESEG 000207 RTS RETRUN BACK TO TEST 3166 3167 3168 010052 **ENDMOD** K 5 ``` MISCELLANEOUS SECTIONS MACY11 30A(1052) 01-APR-82 14:48 PAGE 63 CVCDCB.P11 01-APR-82 14:12 GLOBAL SUBROUTINES SECTION 3169 3170 3171 .TITLE MISCELLANEOUS SECTIONS .SBITL REPORT CODING SECTION 010052 BGNMOD : THE REPORT CODING SECTION CONTAINS THE : "PRINTS" CALLS THAT GENERATE STATISTICAL REPORTS. 3177 3178 3179 010052 3180 010052 3181 3182 3183 010052 3184 010052 3185 010054 3186 3187 BGNRPT L$RPT:: EXIT RPT 000167 J$JMP . WORD . WORD L10014-2-. 3188 .EVEN 3189 3190 010056 3191 010056 ENDRPT L10014: 3192 3193 010056 104425 TRAP C$RPT 3194 3195 3196 .SBTTL PROTECTION TABLE : THIS TABLE IS USED BY THE RUNTIME SERVICES : TO PROTECT THE LOAD MEDIA. 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 010060 BGNPROT 010060 L$PROT:: 010060 010062 010064 OFFSET INTO P-TABLE FOR CSR ADDRESS OFFSET INTO P-TABLE FOR MASSBUS ADDRESS OFFSET INTO P-TABLE FOR DRIVE NUMBER 177777 177777 -1 177777 -1 010066 ENDPROT ``` | MISCELLAN
CVCDCB.P1 | EOUS SE | CTIONS
1-APR-82 | MACY17
14:12 | 30A(1052 | O1-AS | PR-82 14 | :48 PAGE 64 | | |--|--|--|--------------------------------------|----------|---------|-------------------------------------|---
---| | 3210
3211 | | | | | .SBTTL | INITIAL | IE SECTION | | | 3210
3211
3212
3213
3214
3215
3216 | | | | | THE I | INITIALIZ
HE BEGINN | E SECTION CONTAINS
ING OF EACH PASS. | THE CODING THAT IS PERFORMED | | 3217 0 | 10066
10066 | | | | LSINIT: | BGNINIT | | | | 3219 0
3220 0 | 10066 | 012700
104447 | 000040 | | Lorinir | READEF
MOV
TRAP | WEF.START
WEF.START,RO
C\$REFG | ; SEE IF A START COMMAND | | 3222 0 | 10074 | | | | | BCOMPLE | TE 1\$ | ;BRANCH IF START COMMAND | | 3224 0
3225 0 | 10066
10072
10074
10074
10076
10076 | 103410 | 000037 | | | BCS
READEF
MOV | #EF.RESTART | ;SEE IF A RESTART COMMAND | | 3227 0 | 10102
10104
10104 | 104447 | | | | BCOMPLE | | ;BRANCH IF RESTART | | 3229 0
3230 0 | 10104
10106
10106
10112 | 103404 | 000034 | | | BCS
READEF
MOV | 1\$
#EF.PWR
#EF.PWR,RO | ; SEE IF RECOVERING FROM A POWER FAIL | | 3231 0°
3232 0° | 10112
10114 | 104447 | | | | TRAP
BNCOMPL | C\$REFG | ; IF NOT CHECK IN CONTINUE | | 3233 0 | 10114
10114
10116 | 103014 | | | 15: | BCC
BRESET | 2\$ | ; ISSUE A BUS RESET | | 3235 0 | 10116 | 104433 | | | | TRAP | C\$RESET | | | 3238 0
3239 0
3240 0 | 10120
10120
10124
10130
10134
10140 | 012746
012746
012746
012746
104437 | 000002
000102
000100
000003 | | | SETVEC
MOV
MOV
MOV
TRAP | #100,#102,#RTI
#RTI,-(SP)
#102,-(SP)
#100,-(SP)
#3,-(SP)
C\$SVEC | ;SETUP CLOCK VECTOR TO DO A RETURN | | 3242 0 | 10142
10146 | 062706 | 000010 | | 2\$: | ADD | #10.SP | .CEE IE A NEU DACC | | 3244 0
3245 0 | 10146 | 012700
104447 | 000035 | | 29: | READEF
MOV
TRAP | WEF.NEW,RO
C\$REFG | ; SEE IF A NEW PASS | | 3246 0
3247 0 | 10154 | 103003 | | | | BNCOMPL
BCC | 3\$ | ; IF NOT GO CHECK IF CONTINUE | | 3248 0
3249 0
3250 0 | 10156
10164
10164 | 012737 | 177777 | 002314 | 3\$: | MOV
READEF
MOV | #-1,UNITHB #EF.CONTINUE #EF.CONTINUE,RO | :SETUP TO INIT UNIT NUMBER
:CHECK IF CONTINUE | | 3251 0
3252 0 | 10170 | 104447 | | | | TRAP
BCOMPLE | C\$REFG | ; IF YES THEN EXIT | | 3253 0 | 10172 | 103433
005237 | 002314 | | 45: | BCS | 6\$ | | | 3255 0
3256 0 | 10200 | 013700 | 002314 | | 43: | INC
GPHARD
MOV | UNITHB
UNITHB,R5
UNITHB,R0 | ; INC TO NEW UNIT NUMBER
; GET DEVICE INFORMATION | | 3258 O | 10204 | 104442
010005 | | | | TRAP
MOV | C\$GPHRD
RO,R5 | | | 3259 0
3260 0 | 10210
10210 | 103371 | | | | BNCOMPL
BCC | ETE 48 | GO TRY ANOTHER UNIT | | 3261 0
3262 0
3263 0
3264 0
3265 0 | 10146
10152
10154
10154
10156
10164
10170
10172
10172
10174
10200
10200
10200
10210
10210
10210
10212
10216
10222
10224 | 103371
012701
005002
011511
060221
005202 | 002300 | | 5\$: | MOV
CLR
MOV
ADD
INC | #REGO,R1
R2
(R5),(R1)
R2,(R1)+
R2 | ADDRESS OF ED DEVICE ADDRESS TABLE CLEAR OFFSET TO ADD TO TABLE ADDRESS GET ADDRESS AND SAVE ADD OFFSET TO ADDRESS UPDATE OFFSET BY 2 | | MISCELL
CVCDCB. | ANEOUS S | SECTIONS
01-APR-82 | MACY11
14:12 | 30A(1052) | 01-AP | R-82 14
IZE SECT | :48 PAGE 65 | |--|--|--|--|-----------|---------|--|---| | 3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286 | 010226
010230
010234
010236
010240
010244
010250
010254
010262
010262 | 005202
022702
001371
005725
012537
005037
111537
012737 | 000010
002312
002310
002311
100000
000340 | 002316 | 6\$: | INC
CMP
BNE
TST
MOV
CLR
MOVB
MOV
SETPRI
MOV
TRAP | R2
#10,R2
5\$
(R5)+
(R5)+,TEVECT
IDDEV
(R5),IDDEV+1
#GDAL15,IDTYPE
#PRIO7
#PRIO7,RO
C\$SPRI | | 3278
3279
3280
3281
3282
3283
3284
3285 | 010270
010270
010272 | 104432
000002 | | • | | EXIT
TRAP
.WORD | INIT
C\$EXIT
L10016 | | 3286
3287
3288 | 010274
010274
010274 | 104411 | | | L10016: | ENDINIT
TRAP | C\$INIT | CHECK IF DONE LOADING TABLE GO UPDATE NEXT ADDRESS UPDATE THE POINTER GET TARGET EMULATOR VECTOR ADDRESS CLEAR OUT DEVICE NUMBER GET THE TE DEVICE NUMBER SETUP TE DEVICE TYPE RAISE PROCESSOR PRIORITY ``` MISCELLANEOUS SECTIONS MACY11 30A(1052) 01-APR-82 14:48 PAGE 66 CVCDCB.P11 01-APR-82 14:12 AUTODROP SECTION .SBTTL AUTODROP SECTION ; THIS CODE IS EXECUTED IMMEDIATELY AFTER THE INITIALIZE CODE IF THE "ADR" FLAG WAS SET. THE UNIT(S) UNDER TEST ARE CHECKED TO SEE IF THEY WILL RESPOND. THOSE THAT DON'T ARE IMMEDIATELY DROPPED FROM TESTING. 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 010276 BGNAUTO 010276 L$AUTO:: 010276 010276 010276 ENDAUTO L10017: 104461 TRAP C$AUTO .SBTTL CLEANUP CODING SECTION : THE CLEANUP CODING SECTION CONTAINS THE CODING THAT IS PERFORMED : AFTER THE HARDWARE TESTS HAVE BEEN PERFORMED. 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3327 3328 3329 010300 BGNCLN 010300 010300 L$CLEAN:: SETPRI #PRI07 ; RAISE THE CPU PRIORITY LEVEL TO 7 010300 012700 000340 MOV #PRI07,RO 104441 013777 010304 TRAP C$SPRI 010306 002310 171764 MOV IDDEV, aREGO :CLEAR CONTROL REGISTER O EXCEPT FOR DEVICE NUMBER 010314 012777 000000 171760 MOV #0. aREG. :CLEAR REGISTER 2 010322 010322 010324 EXIT CLN CSEXIT 104432 000002 TRAP . WORD L10020-. .EVEN 010326 ENDCLN 010326 010326 L10020: 104412 TRAP C$CLEAN ``` ``` MISCELLANEOUS SECTIONS MACY11 30A(1052) 01-APR-82 14:48 PAGE 67 CVCDCB.P11 01-APR-82 14:12 DROP UNIT SECTION .SBTTL DROP UNIT SECTION ; THE DROP-UNIT SECTION CONTAINS THE CODING THAT CAUSES A DEVICE ; TO NO LONGER BE TESTED. 33389 33389 333840 333845 333845 33385 33385 33385 33385 33386 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 3366 010330 BGNDU 010330 LSDU:: 010330 DU J$JMP EXIT 010330 010332 000167 . WORD 000000 L10021-2-. -WORD .EVEN 010334 ENDDU L10021: 010334 104453 TRAP C$DU .SBTTL ADD UNIT SECTION THE ADD-UNIT SECTION CONTAINS ANY CODE THE PROGRAMMER WISHES TO BE EXECUTED IN CONJUNCTION WITH THE ADDING OF A UNIT BACK TO THE TEST CYCLE. 010336 BGNAU 010336 L$AU:: 010336 AU J$JMP EXIT 010336 000167 . WORD 010340 000000 L10022-2-. . WORD .EVEN 010342 ENDAU L10022: 010342 104452 TRAP C$AU 010344 ENDMOD ``` **ENDTST** **CSETST** TRAP L10023: 010350 010350 010350 104401 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 69 CVCDCB.P11 01-APR-82 14:12 TEST 2: GDAL 3:0 R/W REG TEST (1'S AND 0'S) .SBTTL TEST 2: GDAL 3:0 R/W REG TEST (1'S AND 0'S) : THIS TEST WILL CHECK THAT CONTROL REGISTER O READ/WRITE BITS, GDAL 3:0, CAN ; BE SET TO ALL ONES (17), AND THEN SET TO ALL ZEROES. THE READ ONLY BITS, : GDAL7:4. ARE CHECKED TO BE CLEARED DURING THIS TEST. 010352 BGNTST 12:: 010352 004737 005510 JSR PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 010356 BGNSEG 010356 104404 TRAP C$BSEG CHECK THAT R/W BITS GDAL 3:0 CAN BE SET TO ALL ONES 010360 112737 004737 SETUP BITS TO BE LOADED GO LOAD, READ AND CHECK REG O 000017 002320 MOVB #17, ROLOAD 010366 010372 006554 JSR PC.LDRDRO 001404 BEQ 15 ; IF LOADED OK THEN CONTINUE 010374 ERRDF 1,GDALRG,ROEROR :REGISTER O NOT EQUAL 17 010374 104455 TRAP CSERDF 000001 010376 . WORD 002406 010400 . WORD GDALRG 010402 ROEROR . WORD
010404 ENDSEG 010404 10000$: 010404 104405 TRAP C$ESEG 010406 BGNSEG 010406 104404 C$BSEG TRAP CHECK THAT R/W BITS GDAL 3:0 CAN BE SET TO ALL ZEROES 010410 105037 002320 CLRB ROLOAD SETUP TO CLEAR ALL BITS 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 010414 004737 006554 PC,LDRDRO JSR GO LOAD, READ AND CHECK REG O 010420 001404 BEQ : IF LOADED OK THEN CONTINUE 010422 010422 010424 010426 010430 010432 ERRDF 1, GDALRG, ROEROR REGISTER O R/W BITS NOT EQUAL O 104455 TRAP CSERDF 000001 . WORD 002406 004754 . WORD GDALRG . WORD ROEROR ENDSEG 2$: 10001$: 010432 104405 TRAP C$ESEG 010434 ENDTST 010434 L10024: 010434 104401 TRAP CSETST 3481 ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 70 CVCDCB.P11 01-APR-82 14:12 TEST 3: GDAL 3:0 R/W REG TEST (1'S + 0'S, 0'S + 1'S) .SBTTL TEST 3: GDAL 3:0 R/W REG TEST (1'S + 0'S, 0'S + 1'S) 3482 3483 3485 3486 3486 3488 3491 3492 3493 3495 3496 3497 3498 : THIS TEST WILL CHECK THAT CONTROL REGISTER O READ/WRITE BITS GDAL 3:0, CAN BE LOADED WITH ONES AND ZEORES (12) AND THEN LOADED WITH ZEROES AND ONES (5). ; THE READ ONLY BITS GDAL 7:4 ARE CHECKED TO BE CLEARED DURING THIS TEST. 010436 BGNTST 010436 T3:: 010436 004737 005510 JSR PC, INITTE SELECT AND INITIALIZE TARGET EMULATOR 010442 010442 BGNSEG 104404 TRAP C$BSEG :LOAD READ/WRITE BITS GDAL 3:0 WITH AN ALTERNATING ONES AND ZEROES DATA :PATTERN (12). 010444 010452 010456 112737 004737 3500 000012 002320 SETUP BITS TO BE LOADED GO LOAD, READ AND CHECK REGISTER O MOVB #12_ROLOAD 3501 3502 3503 006554 JSR PC,LDRDRO 001404 BEQ 15 ; IF LOADED OK THEN CONTINUE 010460 ERRDF 1, GDALRG, ROEROR REGISTER O NOT EQUAL TO 12 3504 3505 010460 104455 TRAP C$ERDF 010462 . WORD 002406 3506 010464 . WORD GDALRG 3507 010466 004754 . WORD ROEROR 3508 010470 ENDSEG 3509 010470 10000$: 3510 010470 104405 TRAP C$ESEG 3511 3512 3513 3514 3515 3516 3517 010472 BGNSEG 104404 TRAP C$BSEG ;LOAD READ/WRITE BITS GDAL 3:0 WITH AN ALTERNATING ZEROES AND ONES DATA : PATTERN 3518 112737 004737 010474 000005 002320 MOVB #5, ROLOAD SETUP BITS TO BE LOADED 3519 3520 3521 3522 3523 010502 006554 JSR PC, LDRDRO GO LOAD, READ AND CHECK REGISTER O 010506 001404 BEQ : IF LOADED OK THEN CONTINUE 010510 ERRDF ,GDALRG,ROEROR REGISTER O NOT EQUAL TO 5 010510 104455 TRAP C$ERDF 000001 002406 004754 010512 . WORD 3524 3525 3526 3527 3528 3529 010514 . WORD GDALRG 010516 010520 010520 010520 WORD ROEROR ENDSEG 25: 100015: 104405 TRAP C$ESEG 010522 ENDTST 010522 010522 3530 L10025: 104401 TRAP C$ETST ``` | HARDWAR CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052 |) 01-AF | R-82 14
TEST 4: | :48 PAG
GDAL 3: | E 71
O R/W REG TEST VIA BINAR | Y COUNT | |---|--|--|------------------|---------|-----------------------|--|--|---| | 3532 | | | | | .SBTTL | TEST 4: | GDAL 3:0 R/W REG TEST V | IA BINARY COUNT | | 3534
3535
3536
3537
3538
3539 | | | | | THIS THE P EQUAL THIS | 5 1/. 1 | L CHECK CONTROL REGISTER
VILL START INITIALLY AT O
THE READ ONLY BITS, GDAL | 0 R/W BITS USING A BINARY COUNT PATTERN. O AND INCREMENT BY ONE UNTIL THE PATTERN 7:4, ARE CHECKED TO BE CLEARED DURING | | 3541 | 010524
010524 | | | | T4:: | BGNTST | | | | 3543 | 010524 | 004737 | 005510 | | 14:: | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 3545 | 010530 | 105037 | 002320 | | | CLRB | ROLOAD | SETUP TO START PATTERN AT 0 | | 3533
3533
3533
3533
3533
3533
3533
353 | 010534
010534
010536
010542
010544
010546
010550
010552
010554 | 104404
004737
001404
104455
000001
002406
004754 | 006554 | | 1\$:
2\$: | BGNSEG
TRAP
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | C\$BSEG
PC,LDRDRO
2\$
1,GDALRG,ROEROR
C\$ERDF
1
GDALRG
ROEROR | GO LOAD, READ AND CHECK CONTROL REG OF IF LOADED OK THEN CONTINUE REGISTER O NOT EQUAL EXPECTED | | 3558
3559
3560
3561
3562
3563 | 010554
010554
010556
010562
010570
010572
010572 | 104405
005237
122737
001361 | 002320
000020 | 002320 | 10000 \$: | TRAP
INC
CMPB
BNE
ENDTST | C\$ESEG
ROLOAD
#20, ROLOAD
1\$ | :UPDATE REGISTER O BY ONE
:CHECK IF ALL R/W BITS TESTED
:IF NOT THEN LOAD NEXT PATTERN | | 3564
3565 | 010572 | 104401 | | | | TRAP | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 72 CVCDCB.P11 01-APR-82 14:12 TEST 5: ADAL 15:0 REG TEST (1'S AND 0'S) 3566 3567 3568 .SBTTL TEST 5: ADAL 15:0 REG TEST (1'S AND 0'S) 3569 ; THIS TEST WILL CHECK THAT CONTROL REGISTER 2 BITS ADAL 15:0 CAN BE SET TO ; ALL ONES (177777) AND THEN ALL ZEORES (000000). 3572 3573 010574 **BGNTST** 010574 15:: 010574 004737 005510 JSR PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 3576 3577 3578 010600 BGNSEG 010600 104404 TRAP C\$BSEG 3579 3580 ;LOAD, READ AND CHECK CONTROL REGISTER 2 WITH A DATA PATTERN OF ALL ONES 3582 3583 010602 010610 010614 012737 177777 002330 MOV #177777, R2LOAD SETUP FOR ALL ONES DATA PATTERN GO LOAD, READ AND CHECK REGISTER 2 JSR 006614 PC.LDRDR2 3584 001404 BEQ 15 ; IF LOADED OK THEN CONTINUE 3585 010616 ERRDF 2, ADALRG, RZEROR REGISTER 2 NOT EQUAL 177777 010616 104455 TRAP **CSERDF** 010620 010622 010624 000002 002513 3587 . WORD 3588 . WORD ADALRG 3589 004770 . WORD R2EROR 3590 010626 **ENDSEG** 010626 010626 3591 10000\$: 3592 3593 3594 104405 TRAP C\$ESEG 010630 BGNSEG 010630 3595 104404 TRAP C\$BSEG 3596 3597 ;LOAD, READ AND CHECK CONTROL REG 2 WITH A DATA PATTERN OF ALL ZEROES. 3598 010632 010636 005037 3599 002330 CLR R2LOAD SETUP ALL ZEROES DATA PATTERN 3600 3601 3602 3603 3604 3605 3606 3607 GO LOAD, READ AND CHECK REGISTER 2 004737 006614 JSR PC.LDRDR2 010642 010644 010644 010646 010650 001404 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 2.ADALRG,R2EROR REGISTER 2 NOT EQUAL TO 000000 104455 TRAP C\$ERDF 000002 . WORD 002513 . WORD ADALRG 010652 004770 WORD R2EPOR 010654 2\$: 10001\$: **ENDSEG** 3608 010654 3609 3610 3611 3612 3613 010654 104405 TRAP CSESEG 010656 **ENDTST** 010656 L10027: 010656 104401 TRAP **CSETST** ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 73 CVCDCB.P11 01-APR-82 14:12 TEST 6: ADAL 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) .SBTTL TEST 6: ADAL 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) THIS TEST WILL CHECK CONTROL REGISTER 2 READ/WRITE BITS ADAL 15:0 WITH AN ALTERNATING ONES AND ZEROES DATA PATTERN (125252) AND THEN WITH AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525). 010660 BGNTST 010660 T6:: 010660 004737 005510 JSR PC, INITTE SELECT AND INITIALIZE TARGET EMULATOR 010664 BGNSEG 010664 104404 TRAP C$BSEG :LOAD, READ AND CHECK CONTROL REGISTER 2 WITH AN ALTERNATING ONES AND :ZEORES DATA PATTERN (125252) 012737 010666 125252 002330 #125252, R2LOAD SETUP DATA PATTERN TO BE LOADED 006614 JSR PC,LDRDR2 :GO LOAD, READ AND CHECK REGISTER 2 010700 001404 BEQ : IF LOADED OK THEN CONTINUE 010702 ERRDF 2, ADALRG, RZEROR REGISTER 2 NOT EQUAL 125252 010702 104455 TRAP CSERDF 000002 010704 . WORD 010706 . WORD ADALRG 004770 010710 . WORD R2EROR 010712 ENDSEG 010712 10000$: 010712 TRAP 104405 C$ESEG 010714 BGNSEG 010714 104404 C$BSEG TRAP :LOAD, READ AND CHECK CONTROL REGISTER 2 WITH AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525) 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 012737 004737 010716 052525 002330 #052525,R2LOAD MOV SETUP PATTERN TO BE LOADED 010724 006614 JSR PC,LDRDR2 GO LOAD, READ AND CHECK REGISTER 2 001404 BEQ : IF LOADED OK THEN CONTINUE 010732 010732 ERRDF ,ADALRG,R2EROR REGISTER 2 NOT EQUAL 052525 104455 TRAP C$ERDF 010734 000002 . WORD 010736 002513 . WORD ADALRG 010740 004770 WORD R2EROR 010742 ENDSEG 010742 100015: 010742 104405 TRAP C$ESEG 010744 ENDTST 3662 3663 3664 010744 L10030: 010744 104401 TRAP C$ETST ``` | HARDWAR | RE TESTS | MACY11
01-APR-82 | 30A(105) | 2) 01-A | PR-82 14
TEST 7: | | | E) USING BINARY COUNT | |--|--|--|------------------|---------|--------------------------|--|--|---| | 3665 | | | | | .SBTTL | TEST 7 | ADAL 15:0 REG TEST | (LOW BYTE) USING BINARY COUNT | | 3668
3669
3670
3671 | | | | | THIS BINAR INCRE | TEST WIL
RY COUNT
MENT TO | L CHECK CONTROL REGIS
PATTERN. THE TEST PO
377 BY AN INCREMENT | STER 2 READ/WRITE BITS ADAL 7:0 USING A ATTERN WILL START WITH A PATTERN OF 0 AND OF ONE. | | 3673
3674
3675 | 010746
010746
010746 | 004737 | 005510 | | 17:: | BGNTST
JSR | PC,INITTE | ;SELECT AND INITIALIZE TARGET EMULATOR | | 3676
3677 | 010752 | 005037 | 002330 | | | CLR | R2LOAD | SET PATTERN INITIALLY TO 0 | | 3665
3666
3667
3668
3669
3670
3671
3672
3673
3676
3676
3680
3681
3682
3683
3685
3686
3686
3687
3689
3690
3691
3692
3693 | 010756
010756
010760
010764
010766
010770
010772
010774
010776 | 104404
004737
001404
104455
000002
002513
004770 | 006614 | | 1\$:
2\$:
10000\$: |
BGNSEG
TRAP
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | C\$BSEG
PC.LDRDR2
2\$
2,ADALRG,RZEROR
C\$ERDF
2
ADALRG
RZEROR | GO LOAD, READ AND CHECK REGISTER 2; IF LOADED OK THEN CONTINUE; REGISTER 2 NOT EQUAL EXPECTED | | 3690
3691
3692
3693
3694
3695 | 010776
011000
011004
011012
011014
011014 | 104405
005237
032737
001761 | 002330
000400 | 002330 | L10031: | TRAP
INC
BIT
BEQ
ENDTST | C\$ESEG
R2LOAD
#ADAL8,R2LOAD
1\$ | ;UPDATE TEST PATTERN BY ONE
;CHECK IF PATTERN DONE
;IF NOT THEN DO NEXT PATTERN | | 3696 | 011014 | 104401 | | | | TRAP | CSETST | | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 | 2) 01-AF | PR-82 14
TEST 8: | | | TE) USING BINARY COUNT | |--|--|--|-------------------|----------|--------------------------|--|--|--| | 3697 | | | | | .SBTTL | TEST 8: | ADAL 15:0 REG TEST | (HIGH BYTE) USING BINARY COUNT | | 3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713 | | | | | : BINAR | Y COUNT | PATTERN. THE TEST PA | STER 2 READ/WRITE BITS ADAL 15:8 USING A ATTERN WILL START WITH A PATTERN OF 0 AND N 177400 HAS BEEN LOADED. | | 3705 | 011016 | | | | | BGNTST | | | | 3706
3707
3708 | 011016
011016 | 004737 | 005510 | | T8:: | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 3709 | 011022 | 005037 | 002330 | | | CLR | R2LOAD | SET PATTERN INITIALLY TO 0 | | 3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728 | 011026
011026
011030
011034
011036
011036
011040
011042
011044
011046 | 104404
004737
001404
104455
000002
002513
004770 | 006614 | | 1\$:
2\$:
10000\$: | BGNSEG
TRAP
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | C\$BSEG
PC,LDRDR2
2\$
2,ADALRG,R2EROR
C\$ERDF
2
ADALRG
R2EROR | ;GO LOAD, READ AND CHECK REGISTER 2
;IF LOADED OK THEN CONTINUE
;REGISTER 2 NOT EQUAL EXPECTED | | 3722
3723
3724
3725 | 011046
011050
011056
011060 | 104405
062737
001363 | 000400 | 002330 | | TRAP
ADD
BNE
ENDTST | C\$ESEG
#ADAL8,R2LOAD
1\$ | ;UPDATE TEST PATTERN BY ONE
;IF NOT DONE THEN DO NEXT PATTERN | | 3726
3727
3728 | 011060
011060 | 104401 | | | L10032: | TRAP | C\$ETST | | C\$ETST HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 77 CVCDCB.P11 01-APR-82 14:12 TEST 10: HDAL 15:0 REG TEST (1'S AND 0'S) 3778 3779 .SBTTL TEST 10: HDAL 15:0 REG TEST (1'S AND 0'S) 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 THIS TEST WILL CHECK THAT HDAL REGISTER BITS 15:0 CAN BE SET TO ALL ONES (177777) AND THEN TO ALL ZEROES (000000). TO SELECT THE HDAL REGISTER, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, PULSES WILL OCCUR ON THE SIGNALS WPT3 LB H AND WPT3 HB H. THESE PULSES WILL CAUSE THE DATA ON THE WRITE COMMAND TO BE LOADED INTO THE HOAL REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, A PULSE WILL OCCUR ON THE SIGNAL RPTS L. THIS SIGNAL WILL CAUSE THE HOAL REGISTER TO BE READBACK. 3790 3791 3792 3793 011160 **BGNTST** 011160 T10:: 004737 005510 011160 JSR PC, INITTE ; SELECT AND INITIALIZE TARGET EMULATOR 3795 BGNSEG 3797 011164 104404 TRAP C\$BSEG 3798 3799 3800 SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O TO SELECT THE HDAL REGISTER WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. 3801 011166 004737 006754 JSR PC.SLHDAL :SELECT HDAL REG VID GDAL BITS 2:0 3803 3804 3805 3806 ;LOAD, READ AND CHECK HDAL REGISTER BITS 15:0 WITH A DATA PATTERN OF ;ALL ONES (177777) BY ISSUING A WRITE AND READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET IN CONTROL REGISTER O. 3807 011172 011200 011204 3808 012737 177777 002342 MOV #177777, R6LOAD SETUP DATA TO BE LOADED 3809 006672 JSR :GO LOAD, READ AND CHECK HDAL REGISTER PC,LDRDR6 3810 3811 3812 3813 001404 BEQ ; IF LOADED OK THEN CONTINUE 011206 ERRDF 4, HDALRG, ROSERR HDAL REGISTER NOT EQUAL 177777 011206 104455 TRAP C\$ERDF 011210 000004 . WORD 3814 011212 002605 . WORD HDALRG 3815 011214 005020 . WORD RO6ERR 3816 3817 011216 ENDSEG 011216 10000\$: 3818 011216 104405 TRAP C\$ESEG 3819 | HARDWAR CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82 16
TEST 1 | 4:48 PAG
0: HDAL 1 | SE 78
15:0 REG TEST (1'S AND | 0'S) | |--|--|--------------------------------------|--------------------|------------------------|---|--|--| | 3820
3821
3822 | 011220
011220 | 104404 | | | BGNSEG
TRAP | C\$BSEG | | | 3821
3822
3823
3824
3825
3826 | | | | | :ALL ZE | ORES (000000) BY ISSUI | GISTER BITS 15:0 WITH A DATA PATTERN OF NG A WRITE AND READ COMMAND TO CONTROL ALO SET IN CONTROL REGISTER 0. | | 3827
3828
3829
3830 | 011222
011226
011232
011234 | 005037
004737
001404 | 002342
006672 | | CLR
JSR
BEQ
ERRDF | R6LOAD
PC.LDRDR6
2\$ | ;SETUP DATA TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL 000000 | | 3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841 | 011234
011236
011240
011242
011244 | 104455
000004
002605
005020 | | 2\$: | TRAP
.WORD
.WORD
.WORD
ENDSEG | 4, HDALRG, ROGERR
CSERDF
4
HDALRG
ROGERR | HOAL REGISTER NOT EQUAL GOODOO | | 3836
3837
3838 | 011244
011244
011246 | 104405 | | 10001\$ | TRAP
ENDIST | C\$ESEG | | | 3840
3841 | 011246
011246 | 104401 | | L10034 | TRAP | C\$ETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 79 CVCDCB.P11 01-APR-82 14:12 TEST 11: HDAL 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) 3842 3843 3845 3845 3846 3847 3848 3851 3853 3853 3853 3856 3857 3858 3859 .SBTTL TEST 11: HDAL 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) : THIS TEST WILL CHECK THAT HDAL REGISTER BITS 15:0 CAN BE LOADED WITH AN ALTERNATING ONE AND ZEROES DATA PATTERN (125252) AND AN ALTERNATING ZEROES AND ONES DATA PATTERN (052525). TO SELECT THE HDAL REGISTER, THE TEST WILL SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, PULSES WILL OCCUR ON THE SIGNALS WPT3 LB H AND WPT3 HB H. THESE PULSES WILL CAUSE THE DATA ON A WRITE COMMAND TO BE LOADED INTO THE HDAL REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES, A PULSE WILL OCCUR ON THE SIGNAL RPT3 L. THIS SIGNAL WILL CAUSE THE HDAL REGISTER TO BE READBACK. 011250 011250 **BGNTST** T11:: 011250 004737 005510 **JSR** PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 3860 3861 3862 3863 011254 011254 BGNSEG 104404 TRAP C\$BSEG SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O TO SELECT THE HDAL 3864 REGISTER WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 011256 004737 006754 JSR PC.SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 ;LOAD, READ AND CHECK HDAL REGISTER BITS 15:0 WITH AN ALTERNATING ONES ;AND ZEROES DATA PATTERN (125252) BY ISSUING A WRITE AND READ COMMAND :TO CONTROL REGISTER 6 WITH GDAL1 AND GDALO SET TO ONES IN CONTROL :REGISTER O. 011262 011270 011274 011276 011276 011300 012737 004737 125252 006672 002342 MOV #125252, R6LOAD SETUP DATA TO BE LOADED JSR PC, LDRDR6 GO LOAD, READ AND CHECK HOAL REGISTER 001404 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 4, HDALRG, ROSERR :HDAL REGISTER NOT EQUAL 125252 104455 TRAP C\$ERDF 000004 . WORD 011302 002605 . WORD HDALRG 3880 011304 005020 . WORD RO6ERR 3881 011306 ENDSEG 3882 3883 011306 10000\$: 011306 104405 TRAP C\$ESEG 3884 B 7 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 80 CVCDCB.P11 01-APR-82 14:12 TEST 11: HDAL 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) | 388
388
388
388
389
389 | 5
6 011310
7 011310
8
9
0 | 104404 | | | | :ZEROES | AND ONES DATA PATTERN (
D TO CONTROL REGISTER 6 | STER BITS 15:0 WITH AN ALTERNATING
052525) BY ISSUING A WRITE AND READ
WITH GDAL1 AND GDALO SET IN CONTROL | |--|--|--|------------------|--------|------------------|---|---|--| | 388
388
388
389
389
389
389
389
389
389 | 4 011312
5 011320
6 011324
7
011326
8 011326
9 011330
0 011332
1 011334
2 011336
3 011336 | 012737
004737
001404
104455
000004
002605
005020 | 052525
006672 | 002342 | 2\$:
10001\$: | MOV
JSR
BEQ
FRRDF
FRAP
.WORD
.WORD
.WORD
ENDSEG | #052525,R6LOAD
PC,LDRDR6
2\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR | ;SETUP DATA PATTERN TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL 052525 | | 390
390 | 6 011336 | 104405 | | | 100013. | TRAP | CSESEG | | | 390
390
390
390 | 6 011340
7 011340 | 104401 | L10035 | | | ENDTST
TRAP | C\$ETST | | | HARDWAR CVCDCB. | E TESTS
P11 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14
TEST 12 | :48 PAG
: HDAL 1 | 5:0 REG TEST (LOW BYTE) | USING BINARY COUNT | |--|----------------------------|--------------------|-------------------|---------|---|--|---|---| | 3910
3911 | | | | | .SBTTL | TEST 12 | : HDAL 15:0 REG TEST (LC | OW BYTE) USING BINARY COUNT | | 3912
3913
3914
3915
3916
3917
3918
3919
3921
3922
3923
3924
3925
3926
3927
3928
3929
3931
3932
3933 | | | | | PATTE
PATTE
ARE H
GDALO
6, DA | RN. THE
RN 377 H
DAL BITS
TO ONES
TA WILL
HB H. O | TEST PATTERN WILL START AS BEEN LOADED INTO THE 7:0. TO SELECT THE HDA IN CONTROL REGISTER 0. BE LOADED INTO THE HDAL | THE HDAL REGISTER USING A BINARY COUNT I WITH O AND INCREMENT BY ONE UNTIL THE HDAL REGISTER. THE BITS BEING TESTED AL REIGSTER, THE TEST WILL SET GDAL1 AND ON A WRITE COMMAND TO CONTROL REGISTER REGISTER VIA THE SIGNALS WPT3 LB H AND TROL REGISTER 6, DATA WILL BE READ FROM S L. | | 3923
3924 | 011342
011342 | | | | T12:: | BGNTST | | | | 3925
3926 | 011342 | 004737 | 005510 | | | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 3927 | 011346 | 005037 | 002342 | | | CLR | R6LOAD | START INITIAL PATTERN AT 0 | | 3929
3930
3931 | 011352
011352 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 3932
3933 | | | | | | | | COMMAND IS ISSUED TO CONTROL REGISTER 6. | | 3935 | 011354 | 004737 | 006754 | | | JSR | PC, SLHDAL | :GO SELECT HDAL REG VIA GDAL BITS 2:0 | | 3936
3937
3938
3939
3940 | | | | | | ; THE HI | READ ADN CHECK HDAL REGI
GH BYTE OF THE HDAL REGI
THIS TEST. | STER BITS 7:0 WITH A BINARY COUNT PATTERN ISTER WILL BE CHECKED TO CONTAIN ZEROES | | 3941 | 011360 | 004737 | 006672 | | | JSR | PC.LDRDR6 | GO LOAD, READ AND CHECK THE HOAL REG | | 3942
3943 | 011364
011366 | 001404 | | | | BEQ
ERRDF | 4, HDALRG, ROSERR | :IF LOADED OK THEN CONTINUE
:HDAL REG NOT EQUAL EXPECTED | | 3944
3945 | 011366
011370 | 104455 | | | | TRAP
.WORD | CSERDF | | | 3946
3947
3948
3949
3950
3951
3952
3953 | 011372
011374
011376 | 002605
005020 | | | 2\$:
10000\$: | . WORD | HDALRG
ROGERR | | | 3949
3950 | 011376
011376 | 104405 | | | 10000\$: | TRAP | C\$ESEG | | | 3951
3952 | 011400
011404
011412 | 005237
032737 | 002342
000400 | 002342 | | INC
BIT | RSLOAD
#HDAL8,R6LOAD | CHECK IF TEST PATTERN BY ONE CHECK IF TEST PATTERN DONE FOR THEN LOAD NEXT PATTERN | | 3953
3954 | 011412 | 001757 | | | | BEQ
ENDTST | 15 | ; IF NOT THEN LOAD NEXT PATTERN | | 3954
3955
3956
3957 | 011414 | 104401 | | | L10036: | TRAP | CSETST | | | 3731 | | | | | | | | | | HARDWARE TESTS | MACY11 30A(1052) | 01-AFR-82 | 14:48 | PAGE | 82 | | | | | | |----------------|------------------|-----------|--------|-------|-------|------|-------------|---------|--------|---| | CVCDCR P11 | 11-APP-82 14.12 | TECT | 13. HD | AI 15 | O DEC | TECT | /HICH DYTES | LICTAIC | DIMARY | * | SEQ 0082 | CACDCB. | P11 | 01-APR-82 | 14:12 | | TEST 13 | : HDAL 1 | 5:0 REG TEST (HIGH BYTE |) USING BINARY COUNT | |--|--|-----------|--------|--------|------------------|-----------------------------------|---|---| | 3958 | | | | | .SBTTL | TEST 13 | : HDAL 15:0 REG TEST (H | IIGH BYTE) USING BINARY COUNT | | 3958
3959
3960
3961
3962
3963
3964
3965
3966
3969
3970
3971
3972
3973
3976
3976
3976
3978
3978
3980
3981
3982 | | | | | · DAIIE | DN INE | TECT DATTEDM LITTLE CYAR | OF THE HDAL REGISTER USING A BINARY COUNT OF THE HDAL REGISTER. THE BITS BEING TESTED OF THE HDAL REGISTER. THE BITS BEING TESTED OF THE HDAL REGISTER, THE TEST WILL SET GDAL1 AND ON A WRITE COMMAND TO CONTROL REGISTER OF THE REGISTER VIA THE SIGNALS WPT3 LB H AND OF THE REGISTER 6, DATA WILL BE READ FROM TO SET THE REGISTER 6. | | 3971
3972 | 011416 | | 005510 | | T13:: | BGNTST | | | | 3974 | 011416 | 004737 | 005510 | | | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 3975 | 011422 | 005037 | 002342 | | | CLR | R6L0AD | START INITIAL PATTERN AT 0 | | 3977
3978
3979 | 011426
011426 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 3980
3981
3982 | | | | | | SET GD | AL1 AND GDALO TO ONES I
ER WHEN A WRITE OR READ | N CONTROL REGISTER O TO SELECT THE HDAL COMMAND IS ISSUED TO CONTROL REGISTER 6. | | 3983 | 011430 | 004737 | 006754 | | | JSR | PC,SLHDAL | GO SELECT HOAL REG VIA GDAL BITS 2:0 | | 3984
3985
3986
3987
3988 | | | | | | : THE LO | READ AND CHECK HDAL REGINER BYTE OF THE HDAL REGINER THIS TEST. | ISTER BITS 15:0 WITH A BINARY COUNT PATTERN
STER WILL BE CHECKED TO CONTAIN ZEROES | | 3989
3990
3991
3992
3993 | 011434
011440
011442 | 001404 | 006672 | | | JSR
BEQ
ERRDF | PC.LDRDR6
2\$
4.HDALRG.RO6ERR | GO LOAD, READ AND CHECK THE HDAL REG
FIF LOADED OK THEN CONTINUE
HDAL REG NOT EQUAL EXPECTED | | 3992 | 011442 | 104455 | | | | TRAP | CSERDF | HUNE REG NOT EGUAL EXPECTED | | 3995
3995
3996 | 011444
011446
011450
011452 | 002605 | | | 2\$:
10000\$: | .WORD
.WORD
.WORD
ENDSEG | HDALRG
ROGERR | | | 3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004 | 011452
011452
011452
011454
011462
011464 | | 000400 | 002342 | | TRAP
ADD
BNE
ENDTST | C\$ESEG
#HDAL8,R6LOAD
1\$ | ;UPDATE THE HIGH BYTE BY ONE
;IF PATTERN NOT DONE LOAD NEXT WORD | | 4002
4003
4004 | 011464
011464 | | | | L10037: | TRAP | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 83 CVCDCB.P11 01-APR-82 14:12 TEST 14: MODE REG 15:0 REG TEST (1'S AND 0'S) SBTTL TEST 14: MODE REG 15:0 REG TEST (1'S AND 0'S) 4006 4007 4008 THIS TEST WILL CHECK THAT MODE REGISTER BITS 15:0 CAN BE SET TO ALL ONES (177777) AND THEN TO ALL ZEROES (000C00). TO SELECT THE MODE REGISTER, THE 4009 4010 TEST WILL SET GDAL2 TO A ONE IN CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE, PULSES WILL BE OCCUR ON THE SIGNALS WPT4 LB H AND WPT4 HB H. THESE PULSE WILL CAUSE THE DATA ON THE WRITE COMMAND TO BE LOADED INTO THE MODE REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET IN CONTROL REGISTER 0, A PULSE WILL OCCUR ON THE SIGNAL RPT4 L. THIS SIGNAL WILL CAUSE THE MODE REGISTER TO BE READBACK 4011 4012 4013 4014 4015 4016 4017 4018 011466 **BGNTST** 4019 011466 T14:: 4020 4021 4022 4023 4024 4025 4026 004737 005510 011466 **JSR** PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 011472 BGNSEG 011472 104404 TRAP C\$BSEG :SET GDAL2 TO A ONE IN CONTROL REGISTER O TO SELECT THE MODE REGISTER : WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. 011474 004737 007006 JSR PC, SLMODR :GO SELECT MODE REG VIA GDAL BITS 2:0 4029 4030 4031 ;LOAD, READ AND CHECK MODE REGISTER BITS 15:0 WITH A DATA PATTERN OF ;ALL ONES (177777) BY ISSUING A WRITE AND READ COMMAND TO CONTROL 4032 REGISTER 6 WITH GDALZ SET IN CONTROL REGISTER O. 4033 011500 012737 177777 002342 #177777, R6LOAD MOV SETUP DATA TO BE LOADED 4035 004737 011506 006672 **JSR** GO LOAD, READ AND CHECK MODE REGISTER : IF LOADED OK THEN CONTINUE PC_LDRDR6 4036 011512 001404 BEQ 4037 011514 ERRDF 4, MODREG, ROGERR MODE REGISTER NOT EQUAL 177777 4038 011514 104455 TRAP C\$ERDF 4039 011516 000004 . WORD 011520 011522 011524 011524 4040 4041 4042 4043 002631 . WORD MODREG 005020 . WORD RO6ERR ENDSEG 10000\$: 4044 011524 104405 TRAP C\$ESEG G 7 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 84 CVCDCB.P11 01-APR-82 14:12 TEST 14: MODE REG 15:0 REG TEST (1'S AND 0'S) 4046 4047 4048 011526 011526 BGNSEG 104404 C\$BSEG TRAP 4049 4050 ;LOAD, READ AND CHECK MODE REGISTER BITS 15:0 WITH A DATA PATTERN OF ;ALL ZEORES (000000) BY ISSUING A WRITE AND READ COMMAND TO CONTROL ;REGISTER 6 WITH GDAL2 SET IN CONTROL REGISTER 0. 4051 4052 4053 4054 4055 4056 4057 011530 011534 011540 005037 004737 002342
006672 CLR R6LOAD SETUP DATA TO BE LOADED PC,LDRDR6 JSR :GO LOAD, READ AND CHECK MODE REGISTER 001404 BEQ ; IF LOADED OK THEN CONTINUE 011542 4, MODREG, ROSERR ERRDF ; MODE REGISTER NOT EQUAL 000000 4058 104455 TRAP C\$ERDF 011544 4059 . WORD 4060 4061 4062 4063 4064 4065 4066 4067 4068 011546 011550 002631 . WORD MODREG 005020 . WORD RO6ERR 011552 011552 011552 2\$: 10001\$: ENDSEG 104405 TRAP C\$ESEG 011554 011554 **ENDTST** L10040: 011554 104401 TRAP C\$ETST 4069 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 85 CVCDCB.P11 01-APR-82 14:12 TEST 15: MODE REG 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) .SBTTL TEST 15: MODE REG 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) 4071 4072 4073 THIS TEST WILL CHECK THAT MODE REGISTER BITS 15:0 CAN BE LOADED WITH AN ALTERNATING ONE AND ZEROES DATA PATTERN (125252) AND AN ALTERNATING ZEROES AND 4074 ONES DATA PATTERN (052525). TO SELECT THE MODE REGISTER, THE TEST WILL SET GDAL2 IN THE LOW BYTE OF CONTROL REGISTER O. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE IN REG O, PULSES WILL OCCUR ON THE SIGNALS WPT4 LB H AND WPT4 HB H. THESE PULSES WILL CAUSE THE DATA ON A WRITE COMMAND TO BE LOADED INTO THE MODE REGISTER. ON A READ COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE, A PULSE WILL OCCUR ON THE SIGNAL RPT4 L. THIS SIGNAL WILL CAUSE THE MODE REGISTER TO BE READBACK. 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 011556 BGNTST 4085 011556 715:: 4086 011556 004737 005510 JSR PC.INITTE :SELECT AND INITIALIZE TARGET EMULATOR 4087 011562 011562 4088 BGNSEG 4089 4090 104404 TRAP C$BSEG 4091 :SET GDAL2 TO A ONE IN THE LOW BYTE OF CONTROL REGISTER O TO SELECT THE 4092 :MODE REGISTER WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REG 6. 4093 011564 004737 007006 JSR PC, SLMODR :GO SELECT MODE REG VIA GDAL BITS 2:0 4095 ;LOAD, READ AND CHECK MODE REGISTER BITS 15:0 WITH AN ALTERNATING ONES ;AND ZEROES DATA PATTERN (125252) BY ISSUING A WRITE AND READ COMMAND ;TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE IN CONTROL REGISTER 0. 4096 4097 4098 4099 012737 004737 125252 006672 4100 011570 002342 MOV #125252, R6LOAD SETUP DATA TO BE LOADED 4101 011576 JSR PC, LDRDR6 GO LOAD, READ AND CHECK MODE REGISTER 4102 001404 011602 BEQ : IF LOADED OK THEN CONTINUE 011604 4.MODREG, ROGERR ERRDF MODE REGISTER NOT EQUAL 125252 011604 4104 104455 TRAP C$ERDF 4105 000004 002631 011606 . WORD 4106 011610 . WORD MODREG 011612 005020 WORD R06ERR 4108 011614 ENDSEG 10000$: 4109 011614 104405 4110 011614 TRAP C$ESEG 4111 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 86 CVCDCB.P11 01-APR-82 14:12 TEST 15: MODE REG 15 TEST 15: MODE REG 15:0 REG TEST (1'S + 0'S, 0'S + 1'S) 4112 4113 011616 4114 011616 104404 BGNSEG TRAP C\$BSEG ;LOAD, READ AND CHECK MODE REGISTER BITS 15:0 WITH AN ALTERNATING ;ZEROES AND ONES DATA PATTERN (052525) BY ISSUING A WRITE AND READ ;COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET TO A ONE IN CONTROL REG O. 4116 4118 4119 011620 011626 011632 011634 011634 012737 004737 001404 052525 006672 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 002342 #052525, R6LOAD SETUP DATA PATTERN TO BE LOADED MOV JSR PC.LDRDR6 GO LOAD, READ AND CHECK MODE REGISTER BEQ : IF LOADED OK THEN CONTINUE 4. MODREG, ROSERR ERRDF :MODE REGISTER NOT EQUAL 052525 104455 TRAP **CSERDF** 000004 002631 005020 . WORD 011640 011642 MODREG . WORD . WORD RO6ERR 011644 2\$: 10001\$: ENDSEG 011644 011644 104405 TRAP C\$ESEG 011646 **ENDTST** 011646 L10041: 4134 011646 104401 TRAP C\$ETST | HARDWAR
CVCDCB. | E TESTS | MACY11 | 30A(1052
14:12 |) 01-A | PR-82 14
TEST 16 | :48 PAG | SE 87
REG 15:0 REG TEST (LOW | BYTE) USING BINARY COUNT | | | | | |--|--|--|-------------------|--------|--|--|---|---|--|--|--|--| | 4136 | | | | | .SBTTL TEST 16: MODE REG 15:0 REG TEST (LOW BYTE) USING BINARY COUNT | | | | | | | | | 4137
4138
4139
4140
4141
4142
4143
4144
4146
4147
4148 | | | | | THIS PATTE ARE ME IN LO | TEST WILL RN. THE RN 377 H R BITS 7 W BYTE O TA WILL HB H. O | L CHECK THE LOW BYTE OF TEST PATTERN WILL STAND THE SERVICE THE MODE OF CONTROL REGISTER O. BE LOADED INTO THE MODE ON A READ COMMAND TO CONTROL REGISTER VIA THE SIGNAL RESTER VIA THE VIA THE SIGNAL RESTER VIA THE | OF THE MODE REGISTER USING A BINARY COUNT ART WITH O AND INCREMENT BY ONE UNTIL THE HE MODE REGISTER. THE BITS BEING TESTED DE REGISTER, THE TEST WILL SET GDAL2 TO A 1 ON A WRITE COMMAND TO CONTROL REGISTER DE REGISTER VIA THE SIGNALS WPT4 LB H AND ONTROL REGISTER 6, DATA WILL BE READ FROM PT4 L. | | | | | | 4149 | 011650
011650 | | | | T16:: | BGNTST | | | | | | | | 4151 | 011650 | 004737 | 005510 | | | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | | | | | 4152
4153
4154 | 011654 | 005037 | 002342 | | | CLR | R6LOAD | START INITIAL PATTERN AT 0 | | | | | | 4154
4155
4156
4157 | 011660
011660 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | | | | | 4157
4158
4159
4160 | | | | | | :SET GD
:MODE R | PALS TO A ONE IN THE LOREGISTER WHEN A WRITE | OW BYTE OF CONTROL REGISTER O TO SELECT THE OR READ COMMAND IS ISSUED TO CONTROL REG 6. | | | | | | 4161 | 011662 | 004737 | 007006 | | | JSR | PC,SLMODR | GO SELECT MODE REG VIA GDAL BITS 2:0 | | | | | | 4163
4164
4165
4166 | | | | | | ;LOAD,
;THE HI
;DURING | READ AND CHECK MODE REGH BYTE OF THE MODE REST. | EGISTER BITS 7:0 WITH A BINARY COUNT PATTERN EGISTER WILL BE CHECKED TO CONTAIN ZEROES | | | | | | 4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183 | 011666
011672
011674
011674
011676
011700
011702
011704
011704 | 004737
001404
104455
000004
002631
005020 | 006672 | | 2\$:
10000\$: | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | PC,LDRDR6
2\$
4,MODREG,RO6ERR
C\$ERDF
4
MODREG
RO6ERR | GO LOAD, READ AND CHECK THE MODE REG
FIF LOADED OK THEN CONTINUE
MODE REG NOT EQUAL EXPECTED | | | | | | 4176
4177
4178
4179
4180
4181 | 011704
011706
011712
011720
011722
011722
011722 | 104405
005237
032737
001757 | 002342
000400 | 002342 | L10042: | TRAP
INC
BIT
BEQ
ENDTST | C\$ESEG
R6LOAD
#MR8,R6LOAD
1\$ | ;UPDATE TEST PATTERN BY ONE
;CHECK IF TEST PATTERN DONE
;IF NOT THEN LOAD NEXT PATTERN | | | | | | 4182
4183 | 011722 | 104401 | | | 110042: | TRAP | CSETST | | | | | | | 4 | 184
185 | | | | .SBTTL | TEST 17 | : MODE REG 15:0 REG TES | T (HIGH BYTE) USING BINARY COUNT | |------------|--|----------------------------|--------|--------|---|---|--
---| | 4444444444 | 186
187
188
189
190
191
192
193 | | | | THIS PATTE PATTE ARE M IN LO 6, DA WPT4 THE M | TEST WILL RN. THE RN 17740 IR BITS 1 IW BYTE 0 ITA WILL HB H. 0 IODE REGI | L CHECK THE HIGH BYTE OF TEST PATTERN WILL STAR OF HAS BEEN LOADED INTO SELECT THE MODE OF CONTROL REGISTER O. BE LOADED INTO THE MODE ON A READ COMMAND TO CONTROL REGISTER VIA THE SIGNAL RPT | F THE MODE REGISTER USING A BINARY COUNT
TO WITH O AND INCREMENT BY 400 UNTIL THE
THE MODE REGISTER. THE BITS BEING TESTED
BE REGISTER, THE TEST WILL SET GDAL2 TO A 1
ON A WRITE COMMAND TO CONTROL REGISTER
REGISTER VIA THE SIGNALS WPT4 LB H AND
STROL REGISTER 6, DATA WILL BE READ FROM | | 4 | 97 011724 | | | | *17 | BGNTST | | | | 4 | 198 011724
199 011724 | 004737 | 005510 | | 117:: | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 4 | 01 011730 | 005037 | 002342 | | | CLR | R6LOAD | START INITIAL PATTERN AT 0 | | 44 | 03 011734
04 011734 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 4 | 206
207
208 | | | | | :SET GD
:MODE R | AL2 TO A ONE IN THE LOW
EGISTER WHEN A WRITE OR | BYTE OF CONTROL REGISTER O TO SELECT THE READ COMMAND IS ISSUED TO CONTROL REG 6. | | 4 | 09 011736 | 004737 | 007006 | | | JSR | PC,SLMODR | GO SELECT MODE REG VIA GDAL BITS 2:0 | | 444 | 199 011724
200 011730
202 011734
203 011734
204 011734
205 206
207 208
209 011736
211 212
213 214
215 011742
216 011746
217 011750
218 011750 | | | | | :LOAD,
:THE LO
:DURING | READ AND CHECK MODE REGINED BYTE OF THE MODE REGINED THIS TEST. | ISTER BITS 15:8 WITH BINARY COUNT PATTERN
STER WILL BE CHECKED TO CONTAIN ZEROES | | 4 | 15 011742 | 004737 | 006672 | | | JSR | PC.LDRDR6 | GO LOAD, READ AND CHECK THE MODE REG | | 4 | 216 011746
217 011750
218 011750 | 104455 | | | | BEQ
ERRDF
TRAP | 4, MODREG, ROSERR | MODE REG NOT EQUAL EXPECTED | | 4 | 219 011752 | 000004 | | | | .WORD | CSERDF
4
MODREG | | | 4 | 220 011754
221 011756
222 011760 | 002631
005020 | | | 28: | . WORD | ROGERR | | | 4 | 222 011760
223 011760
224 011760 | 104405 | | | 2\$:
10000\$: | TRAP | CSESEG | | | 4 | 224 011760
225 011762
226 011770 | 104405
062737
001361 | 000400 | 002342 | | ADD
BNE | #MR8,R6LOAD | ; UPDATE THE HIGH BYTE BY 1 ; IF PATTERN NOT DONE THEN LOAD NEXT | | 4 | 226 011770
227 011772
228 011772 | | | | L10043: | ENDTST | | , IT TATIENT NOT DONE THEN COAD NEXT | | 4 | 222 011760
223 011760
224 011760
225 011762
226 011770
227 011772
228 011772
229 011772 | 104401 | | | 2 | TRAP | C\$ETST | | | | | | | | | | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 89 CVCDCB.P11 01-APR-82 14:12 TEST 18: FDAL 7:0 REG TEST (1'S AND 0'S) .SBITL TEST 18: FDAL 7:0 REG TEST (1'S AND 0'S) THIS TEST WILL CHECK THAT FDAL REGISTER BITS 7:0 CAN BE SET TO ALL ONES (377) AND THEN TO ALL ZEROES (000). TO SELECT THE FDAL REGISTER, THE TEST WILL SET GDAL1 TO A ONE IN CONTROL REGISTER 0. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO FDAL REGISTER BITS 7:0 VIA THE SIGNAL WPT2 LB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE FDAL REGISTER VIA THE SIGNAL RPT2 L. THE HIGH BYTE, WHICH IS ANOTHER REGISTER, WILL BE IGNORED DURING THIS TEST. 011774 **BGNTST** 011774 T18:: 011774 004737 005510 **JSR** PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 012000 012000 BGNSEG 104404 TRAP C\$BSEG :SET GDAL1 IN CONTROL REGISTER O TO SELECT THE FDAL REGISTER WHEN A ; WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. 012002 004737 007154 **JSR** PC.SLFDAL :GE SELECT FDAL REG VIA GDAL BITS 2:0 :LOAD, READ AND CHECK FDAL REGISTER BITS 7:0 WITH A DATA PATTERN OF ALL :ONES (377) BY ISSUING A WRITE AND READ COMMAND TO CONTROL REGISTER 6 :WITH GDAL1 SET TO A ONE IN CONTROL REGISTER O. 012737 012737 004737 012006 177400 MOV SETUP TO IGNORE HIGH BYTE #177400,R6MASK 000377 012014 002342 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 MOV #377, R6LOAD SETUP DATA TO BE LOADED 012022 006672 JSR PC, LDRDR6 GO LOAD, READ AND CHECK FDAL REG 012026 001494 BEQ ; IF DATA LOADED OK THEN CONTINUE 012030 012030 ERRDF 4, FDALRG, ROGERR FDAL REGISTER NOT EQUAL TO 377 104455 TRAP C\$ERDF 012032 012034 000004 . WORD 002653 . WORD **FDALRG** 012036 005020 . WORD R06ERR 012040 012040 012040 **ENDSEG** 10000\$: 104405 TRAP C\$ESEG HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 90 CVCDCB.P11 01-APR-82 14:12 TEST 18: FDAL 7:0 REG TEST (1'S AND 0'S) | 4272
4273
4274
4275 | 012042
012042 | 104404 | | | BGNSEG
TRAP | C\$BSEG | | | |--|--------------------------------------|--------------------------------------|------------------|------------------|--|---|---|---------------------| | 4276
4277
4278
4279 | | | | | : ZEROÉS
: WITH (| READ AND CHECK FDAL
(000) BY ISSUING A
DAL1 SET TO A ONE II | REGISTER BITS 7:0 WITH WRITE AND READ COMMAND N CONTROL REGISTER 0. | A DATA PATTERN OF A | | 4280
4281
4282
4283 | 012044
012050
012054
012056 | 005037
004737
001404 | 002342
006672 | | CLR
JSR
BEQ | R6LOAD
PC,LDRDR6
2\$ | ;SETUP DATA TO BE
;GO LOAD, READ AND
;IF DATA LOADED OF | CHECK FDAL REG | | 4274
4275
4276
4277
4278
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4291
4291
4293
4294
4295 | 012056
012060
012062
012064 | 104455
000004
002653
005020 | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 4,FDALRG,ROGERR
CSERDF
4
FDALRG
ROGERR | FDAL REGISTER NOT | EQUAL TO 000 | | 4288
4289
4290 | 012066
012066
012066 | 104405 | | 2\$:
10001\$: | ENDSEG
TRAP | C\$ESEG | | | | 4292
4293 | 012070
012070 | | | L10044: | ENDTST | | | | | 4294
4295 | 012070 | 104401 | | | TRAP | C\$ETST | | | | creaco. | | | 14.16 | | 1631 17 | · I PAL I | | 0 0 . 1 0/ | |--|--|--------------------------------------|----------------------------|------------------|--|--|--|--| | 4296
4297 | | | | | | TEST 19 | : FDAL 7:0 REG TEST (1'S | + 0's, 0's + 1's) | | 4296
4297
4298
4299
4300
4301
-302
4303
4304
4305
4306
4307
4308 | | | | | ; NATIN
; DATA
; GDAL1
; 6, DA
; ON A
; REGIS | G ONES A PATTERN TO A ON TA WILL READ COM TER VIA | L CHECK THAT FDAL REGIST AND ZEROES DATA PATTERN (125). TO SELECT THE FD (125). TO SELECT THE FD (125). TO SELECT THE FD (125). THE LOADED INTO FDAL REGISTER THE SIGNAL RPT2 L. THE RED DURING THIS TEST. | ER BITS 7:0 CAN BE LOADED WITH AN ALTER-
252) AND AN ALTERNATING ZEROES AND ONES
AL REGISTER, THE TEST WILL SET THE SIGNAL
ON A WRITE COMMAND TO CONTROL REGISTER
STER BITS 7:0 VIA THE SIGNAL WPT2 LB H.
6, DATA WILL BE READBACK FROM THE FDAL
HIGH BYTE, WHICH IS ANOTHER REGISTER, | | 4308
4309
4310 | 012072
012072 | | | | T19:: | BGNTST | | | | 4311 | 012072 | 004737 | 005510 | | 117 | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 4309
4310
4311
4312
4313
4314
4315 | 012076
012076 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | | 4316
4317
4318 | | | | | | SET GD | OR READ COMMAND IS ISSUE | O TO SELECT THE FDAL REGISTER WHEN A D TO CONTROL REGISTER 6. | | 4319 | 012100 | 004737 | 007154 | | | JSR | PC.SLFDAL | GO SELECT FDAL REG VIA GDAL BITS 2:0 | | 4321
4322
4323 | | | | | | ;LOAD,
;AND ZE
;CONTRO | READ AND CHECK FDAL REGI
ROES DATA PATTERN (252)
DL REGISTER 6 WITH GDAL1 | STER BITS 7:0 WITH AN ALTERNATING ONES BY ISSUING A WRITE AND READ COMMAND TO SET TO A ONE IN CONTROL REGISTER 0. | | 4325
4326
4327
4328 | 012104
012112
012120
012124 | 012737
012737
004737
001404 | 177400
000252
006672 | 002346
002342 | | MOV
MOV
JSR
BEQ | #177400.R6MASK
#252.R6LOAD
PC.LDRDR6
1\$ | SETUP TO IGNORE HIGH BYTE SETUP DATA TO BE LOADED GO LOAD, READ AND CHECK FDAL REG IF DATA LOADED OK THEN CONTINUE | | 4316
4317
4318
4319
4320
4321
4323
4324
4325
4326
4327
4328
4329
4331
4333
4333
4334
4335 | 012126
012126
012130
012132
012134
012136 | 104455
000004
002653
005020 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 4, FDALRG, ROGERR
C\$ERDF
4
FDALRG
ROGERR | FDAL REGISTER NOT EQUAL TO 252 | | 4335
4336
4337 | 012136 | 104405 | | | 10000\$: | TRAP | C\$ESEG | | B HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 92 CVCDCB.P11
01-APR-82 14:12 TEST 19: FDAL 7:0 REG TEST (1'S + 0'S, 0'S + 1'S) 012140 012140 104404 BGNSEG TRAP C\$BSEG :LOAD, READ AND CHECK FDAL REGISTER BITS 7:0 WITH AN ALTERNATING ZEROES :AND ONES DATA PATTERN (125) BY ISSUING A WRITE AND READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 SET TO A ONE IN CONTROL REGISTER O. 012142 012150 012154 012156 012737 004737 001404 4346 4347 4348 4349 4350 4351 4352 4353 4355 4356 4357 4358 4360 4361 000125 006672 002342 #125, R6LOAD :SETUP DATA TO BE LOADED PC,LDRDR6 GO LOAD, READ AND CHECK FDAL REG FIF DATA LOADED OK THEN CONTINUE FDAL REGISTER NOT EQUAL TO 125 JSR BEQ 4, FDALRG, ROSERR ERRDF 012156 104455 TRAP C\$ERDF 012160 012162 012164 012166 012166 012166 000004 . WORD 002653 005020 . WORD FDALRG RO6ERR . WORD 2\$: 10001\$: ENDSEG 104405 TRAP CSESEG 012170 012170 **ENDIST** C\$ETST L10045: TRAP 012170 104401 | HARDWAR
CVCDCB. | E TESTS
P11 0 | MACY11 | 30A(1052
14:12 |) 01-AF | TEST 20 | :48 PAG | E 93
2:0 REG TEST USING BINAR | RY COUNT | |--|--|----------------------------|----------------------------|---------|-----------------------------|-----------------------------------|---|---| | 4362
4363 | | | | | .SBTTL | TEST 20 | : FDAL 7:0 REG TEST US | ING BINARY COUNT | | 4362
4363
4364
4365
4366
4367
4368
4369
4371
4372
4373
4375
4376
4377
4378
4377
4381
4382
4383
4384
4385
4386
4387
4388
4389
4391
4393
4394
4395 | | | | | ; WILL
; REGIS
; ON A | SET GDAL
TER 6, D
READ COM | NIO THE FDAL REGISTER.
1 TO A ONE IN CONTROL R | RITS 7:0 USING A BINARY COUNT PATTERN. THE CREMENT BY ONE UNTIL THE PATTERN 377 HAS TO SELECT THE FDAL REGISTER, THE TEST REGISTER 0. ON A WRITE COMMANND TO CONTROL OF THE FDAL REG VIA THE SIGNAL WPT2 LB H. FR. 6, DATA WILL BE READ FROM THE FDAL REG | | 4374 | 012172 | | | | T20:: | BGNTST | | | | 4376
4377
4378
4379 | 012172
012176
012202 | 004737
005037
012737 | 005510
002342
177400 | 002346 | | JSR
CLR
MOV | PC, INITTE
R6LOAD
#177400, R6MASK | SELECT AND INITIALIZE TARGET EMULATOR SET STARTING PATTERN TO ZERO SETUP TO IGNORE HIGH BYTE ON READ | | 4380
4381
4382 | 012210
012210 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 4383
4384
4385 | | | | | | SET GD | AL1 TO A ONE IN CONTROL WRITE OR READ COMMAND | REGISTER O TO SELECT THE FDAL REGISTER IS ISSUED TO CONTROL REGISTER 6. | | 4386
4387 | 012212 | 004737 | 007154 | | | JSR | PC,SLFDAL | GO SELECT FDAL REG VIA GDAL BITS 2:0 | | 4388
4389
4390 | | | | | | ;LOAD,
;FROM 0 | READ AND CHECK FDAL REG
TO 377 BY AN INCREMENT | SISTER BITS 7:0 WITH A BINARY COUNT PATTERN OF ONE. | | 4391
4392 | 012216 | 004737
001404 | 006672 | | | JSR
BEQ | PC,LDRDR6 | GO LOAD, READ AND CHECK FDAL REG | | 4393 | 012224 | 104455 | | | | ERRDF | 4.FDALRG.ROGERR
CSERDF | FDAL REG NOT EQUAL EXPECTED (0-377) | | | 012226
012230
012232
012234 | 000004
002653
005020 | | | 2\$:
10000\$: | .WORD
.WORD
.WORD
ENDSEG | FDALRG
ROGERR | | | 4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406 | 012230
012232
012234
012234
012234
012236
012242
012244
012244 | 104405
105237
001362 | 002342 | | 10000\$: | TRAP
INCB
BNE | CSESEG
R6LOAD
15 | :UPDATE TEST PATTERN BY ONE
:IF NOT 0 THEN LOAD NEXT PATTERN | | 4404
4405
4406 | 012244 | 104401 | | | L10046: | TRAP | CSETST | | | CV | CDCB.F | 11 | 01-APR-82 | 14:12 | | TEST 21 | : EOAI 7 | 0:0 REG TEST USING BINARY | COUNT | |-----|--|--|------------------|--------|--------|------------------|---------------|--|--| | | 4407 | | | | | .SBTTL | TEST 21 | : EOAI 7:0 REG TEST USIN | IG BINARY COUNT | | | 4408 | | | | | ;++ | | | | | - | 4410 | | | | | : THIS | TEST WIL | L CHECK EDAI REGISTER BI | TS 7:0 USING A BINARY COUNT PATTERN. THE INCREMENT BY ONE UNTIL A PATTERN OF ALL | | | 4412 | | | | | : ONES | HAS BEEN | LOADED INTO THE FOAT RE | GISTER AND CHECKED. THE FOAT REGISTER IS | | | 4413 | | | | | : THE H | IGH BYTE | OF THE FDAL REGISTER.
T2 HB H WHEN A WRITE COM | DATA IS LOADED INTO THE EDAI REGISTER VIA | | | 4415 | | | | | : THE F | DAL REGI | STER IS SELECTED VIA GDA | SELECT THE EDAI BUS TO BE READ INSTEAD OF CK TO THE LSI-11 VIA THE SIGNAL RATE L | | | 4417 | | | | | : THE C | TL BUS. | THE EDAI BUS IS READ BA | CK TO THE LSI-11 VIA THE SIGNAL RATE L | | | 4418 | | | | | : SELEC | A KEAD L | OMMAND IS ISSUED TO CONT | ROL REGISTER 6 AND THE FDAL REGISTER IS | | - | 4420 | | | | | ; | | | | | 4 | 4420
4421
4422
4423 | 012246 | | | | *21 | BGNTST | | | | - | 4424 | 012246
012246 | 004737 | 00551C | | T21:: | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 1 | 4424
4425
4426
4427
4428
4429
4430
4431 | 012252 | 012737 | 000001 | 002342 | | VCM | #FDALO,R6LOAD | SETUP EOAI FOAL ENABLES + DATA PATTERN | | 4 | 4427 | 012260 | | | | 1\$: | BGNSEG | ***** | | | - 7 | 4429 | 012260 | 104404 | | | | TRAP | C\$BSEG | | | 1 | 4430
4431 | | | | | | :SELECT | FDAL REGISTER BY SETTINGES IN CONTROL REGISTER | G GDAL1 H TO A ONE AND GDAL BITS 2 AND O | | - | | 012262 | 004737 | 007154 | | | | | | | | 4434 | 012202 | 004737 | 00/134 | | | JSR | | ; SELECT FDAL AND EOAI REG VIA GDAL 2:0 | | | 4434
4435
4436
4437
4438
4439 | | | | | | :LOAD, | READ AND CHECK EOAI REGINATION OF THE FOAT REGISTER IS | STER BITS 7:0 WITH THE BINARY COUNT DATA THE HIGH BYTE OF THE FDAL REGISTER. THE | | | 4437 | | | | | | ;DATA P | ATTERN WILL BE LOADED VI | A THE SIGNAL WPT2 HB H WHEN A WRITE | | - | 4439 | | | | | | :BE WRI | D IS ISSUED TO CONTROL R
TTEN INTO THE FDAL REGIS | TER ON THE WRITE COMMAND TO CONTROL | | | 4440 | | | | | | REGIST | ER 6. THE EDAI REGISTER COMMAND IS ISSUED TO CO | WILL BE READBACK VIA THE SIGNAL RAT2 L WHEN NTROL REGISTER 6 AND THE SIGNAL FDALO H IS | | - | 4442 | | | | | | SET TO | A ONE. THE SIGNAL FDAL | O H ON A ONE WILL CAUSE THE EOAI BUS TO BE NSTEAD OF THE CTL 7:0 BUS. | | | 4444 | | 00/777 | 00//70 | | | | | | | - 1 | 4446 | 012266 | 004737
001404 | 006672 | | | JSR
BEQ | PC,LDRDR6 | GO LOAD, READ AND CHECK FDAL + EOAI | | - 5 | 4447 | 012274 | 104455 | | | | ERRDF | 4,EOAIFD,RO6ERR | ; IF LOADED OK THEN CONTINUE
; EOAI REG OR FDAL REG ERROR | | 4 | 4449 | 012276 | 000004 | | | | . WORD | C\$ERDF | | | 2 | 4451 | 012300 | 002676
005020 | | | | . WORD | EOAIFD
ROGERR | | | 4 | 4452 | 012304 | | | | 2\$:
10000\$: | ENDSEG | | | | 4 | 4454 | 012266
012272
012274
012276
012300
012302
012304
012304
012304 | 104405 | | | 100003. | TRAP | C\$ESEG | | | 2 | 4456 | | | 000400 | 002342 | | ADD | #BIT8,R6LOAD | :UPDATE EOAI PATTERN BY ONE | | 1 | 4445
4446
4447
4448
4451
4451
4453
4454
4456
4458
4458 | 012314 | 103361 | | | | BCC
ENDTST | 1\$ | F NOT DONE LOAD NEXT PATTERN | | 4 | 4459 | 012306
012314
012316
012316
012316 | 10//01 | | | L10047: | | ****** | | | 2 | 4460 | 012310 | 104401 | | | | TRAP | CSETST | | | | | | | | | | | | | | CACDCR. LL | ' (| 11-APR-82 | 14:12 | | 1521 55 | : DIAG | ADDR 15:0 REG | TEST (1.2 W | MD 0.2) | | | | |---|--|--------------------------------------|------------------|--------|---|---|---|---|---|--|---|--| | 4462
4463 | | | | | .SBTTL | TEST 2 | 2: DIAG ADDR | 15:0 REG TES | T (1'S AN | D 0'S) | | | | 4464
4465
4466
4467 | | | | | THIS | TEST WII | LL CHECK THAT | THE DIAGNOS | TIC ADDRE | SS REGISTE
ZEROES (00 | R BITS ADDR | 15:0 CAN | | 4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479 | | | | | TO CO
WRT3
NOSTI
O. O
WILL
AND W | NTROL RI
LB H ANI
C ADDRES
N A WRI
BE LOADI
PTO HB I
E SIGNAI | E OUTPUTS OF TENDER STAND TO AND GDALO TO ONE EGISTER 6, THE DESTRUCTION OF THE AUTOMATIC TO THE AUTOMATIC TO A READ LESS REGISTER. | ES IN CONTRO
E HDAL REGIS
AND BY THE R
THE TEST WIL
CONTROL REG
DDRESS REGIS
COMMAND TO | TER WILL READ SIGNA L CLEAR G SISTER 6 W STER BY PU CONTROL R | R U. ON A BE SELECTE L RPT3 L. DAL BITS 2 ITH GDAL B LSES ON TH EGISTER 6. | WRITE OR R D BY THE WR TO
SELECT :0 IN CONTR ITS 2:0 CLE E SIGNALS W A PULSE WI | EAD COMMAND ITE SIGNALS THE DIAG- OL REGISTER ARED, DATA PTO LB H LL OCCUR | | 4481
4482 01
4483 01
4484 01
4485 | 2320
2320 | | | | T22:: | BGNTST | | | | | | | | 4484 01
4485 | 2320 | 004737 | 005510 | | | JSR | PC, INITTE | 4 | :SELECT | AND INITIA | LIZE TARGET | EMULATOR | | 4486 01
4487 01 | 2324
2324 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | | | | | | 4488
4489
4490
4491 | | | | | | :SET GI | DAL1 AND GDALO | TO ONES IN | CONTROL | REGISTER O | TO SELECT
GISTER 6. | THE HDAL | | 4492 01
4493 | 2326 | 004737 | 006754 | | | JSR | PC, SLHDAL | | :GO SELE | CT HDAL RE | G VIA GDAL | BITS 2:0 | | 4494
4495
4496
4497
4498
4499 | | | | | | : COMMAN | READ AND CHECOMMAND CAL REGISTER VON TO CONTROL VIA THE SIGNA | REGISTER 6, | STER BITS
REGISTER
IALS WPT3
DATA WIL | 15:0 WITH
6, DATA WI
LB H AND W
L BE READB | HDAL9 H SE
LL BE LOADE
PT3 HB H. (
ACK FROM TH | T TO A ONE. D INTO THE ON A READ E HDAL REG- | | 4500 01 | 2332
12340
12344 | 012737
004737
001405 | 001000
006672 | 002342 | | MOV
JSR
BEQ | #HDAL9,R6LOA
PC,LDRDR6
1\$ | ND ' | ; GO LOAD | ATA TO BE
, READ AND
LOADED OK | CHECK HDAL
THEN CONTI | REG | | 4501 01
4502 01
4503 01
4504 01
4505 01
4506 01
4507 01
4508 01
4509 01
4510
4511
4512
4513 | 2346
12346
12350
12352
12354
12356
12356 | 104455
000004
002605
005020 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 4, HDALRG, ROC
CSERDF
4
HDALRG
ROGERR | SERR | HDAL RE | GISTER NOT | EQUAL 1000 | | | 4509 01
4510 | 2356 | 104406 | | | | TRAP | C\$CLP1 | | | | | | | 4511
4512 | | | | | | :CLEAR
:ADDRES | GDAL BITS 2:0 | IN CONTROL | REGISTER
READ COM | O TO SELE | THE DIAG | VOSTIC
TER 6. | | 4514 01
4515 | 2360 | 004737 | 007072 | | 15: | JSR | PC, SLDADR | | ;SELECT | DIAG ADDRE | SS REG VIA | SDAL 2:0 | | 4516
4517 | | | | | | ;LOAD, | READ AND CHEC
PATTERN OF 177 | CK DIAGNOSTI | C ADDRESS
WRITE COM | REGISTER (| BITS 15:0 WINTROL REGIST | TH A
TER 6 | | | | | | | | | | | | | | | | CACDCO. | -11 | 1-APR-02 | 14:12 | | 1531 22 | : DIAG A | DON 13:0 KEG 1EST (1.2 A | ND 0.2) | | |--|--|--|------------------|--------|-----------------------------|---|---|---|---| | 4518
4519
4520
4521
4522
4523
4524 | | | | | | ;WITH G
;ADDRES
;COMMAN
;NOSTIC
;TEST,
;BITS O | DAL BITS 2:0 CLEARED, DA
S REGISTER VIA THE SIGNA
ID TO CONTROL REGISTER 6,
ADDRESS REGISTER VIA TH
HDAL9 WAS SET TO A ONE T
INTO THE ADDRESS BUS. | TA WILL BE LOADED INTO THE DIAGNOSTIC LS WPTO LB H AND WPTO HB H. ON A READ DATA WILL BE READBACK FROM THE DIAGE E SIGNAL RPTO L. PREVIOUSLY IN THIS O ENABLE THE DIAGNOSTIC ADDRESS REGISTER | , | | 4519
4520
4521
4522
4523
4525
4526
4527
4528
4529
4531
4532
4533
4533
4536
4537
4538
4538
4538
4538
4538 | 012364
012372
012376
012400
012400
012404
012406
012410
012410
012410 | 012737
004737
001404
104455
000004
002735
005020
104405 | 177777 006672 | 002342 | 2\$:
10000\$: | BGNSEG
TRAP | #177777,R6LOAD PC,LDRDR6 2\$ 4,ADDRRG,R06ERR C\$ERDF 4 ADDRRG R06ERR C\$ESEG C\$BSEG | SETUP DATA TO BE LOADED LOAD READ AND CHECK DIAG ADDRESS REG IF LOADED OK THEN CONTINUE DIAG ADDR REG NOT EQUAL 177777 | | | 4541
4542
4543
4544
4545
4546
4547
4548 | | | | | | :BITS 2
:REGIST
:TO CON
:ADDRES | TO A ONE TO ENABLE THE | C ADDRESS REGISTER BITS 15:0 WITH A DATA COMMAND TO CONTROL REGISTER 6 WITH GDAL LOADED INTO THE DIAGNOSTIC ADDRESS LB H AND WPTO HB H. ON A READ COMMAND LL BE READBACK FROM THE DIAGNOSTIC L RPTO L. PREVIOUSLY IN THIS TEST, HDAL DIAGNOSTIC ADDRESS REGISTER ONTO THE | 9 | | 4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563 | 012414
012420
012424
012426
012430
012432
012434
012436
012436
012440
012440
012440 | 005037
004737
001404
104455
000004
002735
005020
104405 | 002342
006672 | | 3\$:
10001\$:
L10050: | CLR JSR BEQ ERRDF TRAP .WORD .WORD ENDSEG TRAP ENDTST TRAP | R6LOAD PC,LDRDR6 3\$ 4,ADDRRG,R06ERR C\$ERDF 4 ADDRRG R06ERR C\$ESEG | SETUP DATA TO BE LOADED GO LOAD, READ AND CHECK ADDRESS REG IF DATA LOADED OK THEN CONTINUE DIAG ADDR REG NOT EQUAL 000000 | | | | | | | | | | | | | | CACDCR. b | 11 (| 11-APR-82 | 14:12 | | IEST 23 | : DIAG A | DDR 15:0 REG | TEST (1'S + | 0.2, 0.2 | + 1'5) | | | | |--|--|--------------------------------------|------------------|--------|---|--|---|--
--|---|---|--|--| | 4564
4565 | | | | | .SBTTL | TEST 23 | : DIAG ADDR 1 | 5:0 REG TEST | (1'5 + | 0's, 0's | + 1'5) | | | | 4566
4567
4568
4569
4570 | | | | | ; ALTER | NATING Z | L CHECK THAT THE AN ALTERNAT EROES AND ONE | S DATA PATTE | ERN (0525 | 25). | | | | | 4566
4567
4568
4569
4571
4572
4573
4576
4577
4578
4577
4578
4581
4583
4583
4586
4587
4588
4589
4591
4592
4593 | | | | | TO EN
BUS A
IN TH
SET G
TO CO
WRT3
NOSTI
O. O
WILL
AND W
ON TH
NOSTI | IABLE THE IND TO DI IE HDAL RIDAL1 AND INTROL RE LB H AND C ADDRES IN A WRIT BE LOADE IPTO HB H IE SIGNAL C ADDRES | OUTPUTS OF TO SABLE THE EID OF THE EID OF TO A CONTROL OF THE EID OF THE EID OF THE EID OF THE ADD | HE DIAGNOSTI
AL BUS TO THE
DNE. TO SELE
S IN CONTROL
HDAL REGIST
ND BY THE RE
HE TEST WILL
CONTROL REGIST
COMMAND TO COMMAND TO COMMAND TO COMMAND | IC ADDRESS HE ADDRESS HE ADDRESS HE REGISTE HE WILL HEAD SIGNA HEAD SIGNA HEAR G HEAR G HEAR BY PU | S REGISTE
S BUS, TH
DAL REG,
R O. ON
BE SELECT
L RPT3 L.
DAL BITS
ITH GDAL
LSES ON T
EGISTER 6
TO BE RE | R ONTO E TEST THE TES A WRITE ED BY T TO SE 2:0 IN BITS 2: HE SIGN A PUL ADBACK | THE ADDI
WILL SE
T WILL
OR REA
HE WRITI
LECT TH
CONTROL
O CLEAR
ALS WPTO
SE WILL
FROM TH | RESS
T HDAL9 H
D COMMAND
E SIGNALS
E DIAG-
REGISTER
ED, DATA
O LB H
OCCUR
E DIAG- | | 4585
4586
4587 | 012442
012442
012442 | 004737 | 005510 | | T23:: | BGNTST
JSR | PC, INITTE | | ;SELECT | AND INITI | ALIZE T | ARGET E | MULATOR | | 4589
4590
4591 | 012446
012446 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | | | | | | | 4594 | | | | | | :SET GD
:REGIST | AL1 AND GDALO
ER ON A WRITE | TO ONES IN OR READ COM | CONTROL MAND TO | REGISTER
CONTROL R | O TO SE | LECT THE | E HDAL | | 4595 | 012450 | 004737 | 006754 | | | JSR | PC.SLHDAL | | :GO SELE | CT HDAL R | EG VIA | GDAL BI | TS 2:0 | | 4597
4598
4599 | | | | | | ; LOAD,
; ON A W
; THE HD
; COMMAN
; ISTER | READ AND CHECK
RITE COMMAND T
AL REGISTER VI
D TO CONTROL K
VIA THE SIGNAL | C HDAL REGISTO CONTROL R
IA THE SIGNA
REGISTER 6,
RPT3 L. | REGISTER OF THE PARTY PA | 15:0 WIT
6, DATA W
LB H AND
L BE READ | H HDAL9
ILL BE
WPT3 HB
BACK FR | H SET
LOADED
H. ON
OM THE | TO A ONE. INTO THE A READ HDAL REG- | | 4604
4604
4605 | 012454
012462
012466 | 012737
004737
001405 | 001000
006672 | 002342 | | MOV
JSR
BEQ | #HDAL9,R6LOAD
PC,LDRDR6
1\$ | | SETUP DE GO LOAD : IF DATA : HDAL REC | ATA TO BE
, READ AN
LOADED O | LOADED
D CHECK
K THEN | HDAL RI | G | | 4010 | 012466
012470
012470
012472
012474
012476 | 104455
000004
002605
005020 | | | | ERRDF
TRAP
.WORD
.WORD | 4, HDALRG, ROSE
CSERDF
4
HDALRG
ROSERR | :KK | ;HDAL REG | GISTER NO | T EQUAL | 1000 | | | 4611
4612
4613 | 012500
012500 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | | | | | 4614
4615
4616 | | | | | | :CLEAR
:ADDRES | GDAL BITS 2:0
S REGISTER ON | IN CONTROL
A WRITE OR | REGISTER
READ COM | O TO SEL | ECT THE | DIAGNOS
REGISTER | STIC
R 6. | | 4617 | 012502 | 004737 | 007072 | | 1\$: | JSR | PC, SLDADR | | ;SELECT I | DIAG ADDR | ESS REG | VIA GD | AL 2:0 | | 4619 | | | | | | ;LOAD, | READ AND CHECK | DIAGNOSTIC | ADDRESS | REGISTER | BITS 1 | 5:0 WITH | 1 A | | HARDWAR
CVCDCB. | ETESTS | MACY11 | 30A(1052 |) 01-AF | R-82 14 | :48 PAG | E 98 | | |--|--|--------------------------------------|------------------|---------|---------|--|--|---| | CACOCO. | -11 | 1-APR-02 | 14:12 | | 1521 53 | | DDR 15:0 REG TEST (1'S | | | 4620
4621
4622
4623
4624
4625
4627
4628
4629
4631
4632
4633
4634
4635
4638
4638 | | | | | | , IESI, | ATTERN OF 125252. ON A DAL BITS 2:0 CLEARED, DO S REGISTER VIA THE SIGNAL TO CONTROL REGISTER 6 ADDRESS REGISTER VIA TO HDAL9 WAS SET TO A ONE WITO THE ADDRESS BUS. | WRITE COMMAND TO CONTROL REGISTER 6 ATA WILL BE LOADED INTO THE DIAGNOSTIC ALS WPTO LB H AND WPTO HB H. ON A READ , DATA WILL BE READBACK FROM THE DIAG- HE SIGNAL RPTO L. PREVIOUSLY IN THIS TO ENABLE THE DIAGNOSTIC ADDRESS REGISTER | | 4628
4629
4630 | 012506
012514
012520
012522 | 012737
004737
001404 | 125252
006672 | 002342 | | MOV
JSR
BEQ | #125252,R6LOAD
PC,LDRDR6
2\$ | SETUP DATA TO BE LOADED LOAD READ AND CHECK DIAG ADDRESS REG IF LOADED OK THEN CONTINUE | | 4632
4633
4634
4635
4636 | 012522
012524
012526
012530
012532 | 104455
000004
002735
005020 | | | 2\$: | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 4,ADDRRG,RO6ERR
C\$ERDF
4
ADDRRG
RO6ERR | ;DIAG ADDR REG NOT EQUAL 125252 | | 4637
4638
4639 | 012532
012532 | 104405 | | | 100008: | TRAP | C\$ESEG | | | 4640
4641
4642 | 012534
012534 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | ;LOAD, READ AND CHECK DAIGNOSTIC ADDRESS REGISTER BITS 15:0 WITH A DATA ;PATTERN OF 052525. ON A WRITE COMMAND TO CONTROL REGISTER 6 WITH GDAL ;BITS 2:0 CLEARED, DATA WILL BE LOADED INTO THE DIAGNOSTIC ADDRESS ;REGISTER VIA THE SIGNALS WPTO LB H AND WPTO HB H. ON A READ COMMAND ;TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE DIAGNOSTIC ;ADDRESS REGISTER VIA THE SIGNAL RPTO L. PREVIOUSLY IN THIS TEST, HDAL9 ;WAS SET TO A ONE TO ENABLE THE DIAGNOSTIC ADDRESS REGISTER ONTO THE ;ADDRESS BUS 052525 006672 002342 #052525,R6LOAD MOV **JSR** PC,LDRDR6 BEQ ERRDF 4, ADDRRG, ROGERR TRAP **CSERDF** -WORD . WORD **ADDRRG** . WORD RO6ERR 3\$: 10001\$: **ENDSEG** TRAP C\$ESEG ENDIST L10051: TRAP **CSETST** 4650 4651 4652 4653 4666 012536 012544 012550 012737 004737 001404 104455 000004 002735 104405 104401 ;SETUP DATA PATTERN TO BE LOADED ;GO LOAD, READ AND CHECK ADDRESS REG ;IF DATA LOADED OK THEN CONTINUE ;DIAG ADDR REG NOT EQUAL 052525 | | | | | F. 531 -4 | | | | | | | | |--------------------------------------|--|------------------|----------|-----------|----------|-----------------|------------------------------------|----------------------------|---|---|-------------------| | HARDWAR | E TESTS | MACY11 | 30A(1052 |) 01-AF | PR-82 14 | 4:48 PA | GE 99
ADDR 15:0 REG T | | YTE) USING BINARY (| OUNT | | | 4667 | | | | | | | | | T (LOW BYTE) USING | | | | 4668 | | | | | ;++ | | | | | | | | 4670 | | | | | : THIS | TEST WIL | LL CHECK THE LO | W BYTE OF | THE DIAGNOSTIC ADDR | ESS REGISTER USI | NG A | | 4672 | | | | | UNTIL | THE PAT | TTERN 377 HAS B | EEN LOADED | N WILL START WITH
O
INTO DIAGNOSTIC AD | DRESS REGISTER B | ITS | | 4674 | | | | | WITH | ZEROES | DURING THIS TES | T. | OSTIC ADDRESS REGIS | IEK MILL BE LUADE | ED | | 4676 | | | | | TO EN | MABLE THE | OUTPUTS OF TH | E DIAGNOST | IC ADDRESS REGISTER | ONTO THE ADDRESS | S | | 4677 | | | | | : IN TH | IE HDAL | REGISTER TO A O | NE. TO SELI | IC ADDRESS REGISTER
HE ADDRESS BUS, THE
ECT THE HDAL REG, T | HE TEST WILL SET HE | DAL9 H | | 4679
4680 | | | | | : TO CO | DALT AND | EGISTER 6, THE | IN CONTROL | L REGISTER Ö. ÖN A
TER WILL BE SELECTE | WRITE OR READ CO | OMMAND
I GNALS | | 4680
4681
4682
4683 | | | | | : WRT3 | LB H ANI | D WRT3 HB H, AN
SS REGISTER, TH | D BY THE RI
E TEST WILI | TER WILL BE SELECTE
EAD SIGNAL RPT3 L.
L CLEAR GDAL BITS 2 | TO SELECT THE DE | IAG-
GISTER | | 4684 | | | | | WILL | BE LOAD! | ED INTO THE ADD | RESS REGIS | TER BY PULSES ON TH | IIIS 2:0 CLEARED,
IE SIGNALS WPTO LE | BH | | 4685 | | | | | ; AND W | JPTO HB I | H. ON A READ C | OMMAND TO | CONTROL REGISTER 6,
THE DATA TO BE REA | A PULSE WILL OCC | CUR | | 4687
4688 | | | | | NOST | C ADDRES | SS REGISTER. | | | | | | 4689 | 012566 | | | | | BGNTST | | | | | | | 4691
4692 | 012566
012566 | 004737 | 005510 | | T24:: | JSR | PC, INITTE | | SELECT AND INITIA | I IZE TARGET EMILI | ATOR | | 4693
4694 | 012572 | 005001 | | | | CLR | R1 | | SET DATA PATTERN | INITIALLY TO 0 | ATON. | | 4695 | 012574
012574 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | | | | 4697
4698 | | | | | | | | TO ONES IN | CONTROL REGISTER O | TO SELECT THE HE | NAI. | | 4699
4700 | | | | | | :REGIST | TER ON A WRITE | OR READ COM | MMAND TO CONTROL RE | GISTER 6. | VAL | | 4701 | 012576 | 004737 | 006754 | | | JSR | PC, SLHDAL | | ;GO SELECT HDAL RE | G VIA GDAL BITS 2 | 2:0 | | 4702
4703
4704 | | | | | | LOAD. | READ AND CHECK | HDAL REGIS | STER BITS 15:0 WITH | HDAL9 H SET TO | ONE. | | 4704
4705
4706 | | | | | | THE HE | DAL REGISTER VI | A THE SIGN | STER BITS 15:0 WITH
REGISTER 6, DATA WI
ALS WPT3 LB H AND W
DATA WILL BE READB | PT3 HB H. ON A R | READ | | 4706
4707
4708
4709
4710 | | | | | | :ISTER | VIA THE SIGNAL | RPT3 L. | DATA WILL BE KEADS | ALK FRUM THE HDAL | L KEG- | | 4709 | 012602 | 012737
004737 | 001000 | 002342 | | MOV | #HDAL9,R6LOAD | | SETUP DATA TO BE | LOADED | | | 4/11 | 012614 | 001405 | 000072 | | | JSR
BEQ | PC.LDRDR6 | | GO LOAD, READ AND IF DATA LOADED OK | THEN CONTINUE | | | 4712
4713 | 012616 | 104455 | | | | TRAP | 4.HDALRG,ROGE | KK . | HDAL REGISTER NOT | EQUAL 1000 | | | 4714 | 012622 | 000004 | | | | . WORD | HDALRG | | | | | | 4716 | 012610
012614
012616
012616
012620
012622
012624
012626 | 005020 | | | | .WORD
CKLOOP | R06ERR | | | | | | 4718
4719 | 012626 | 104406 | | | | TRAP | C\$CLP1 | | | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 100 CVCDCB.P11 01-APR-82 14:12 TEST 24: DIAG ADDR 15:0 REG TEST (LOW BYTE) USING BINARY COUNT | | | | | | · vano i | 1510 NEG 1531 1508 0 | TIEZ OSTAG BIANT COOM! | |--|--|--|------------------|------------------|---|--|---| | 4720
4721
4722
4723
4724 | 012630 | 004737 | 007072 | 2\$: | CLEAR
; ADDRES | GDAL BITS 2:0 IN CONTROL
SS REGISTER ON A WRITE OR
PC,SLDADR | REGISTER O TO SELECT THE DIAGNOSTIC READ COMMAND TO CONTROL REGISTER 6. ;SELECT DIAG ADDRESS REG VIA GDAL 2:0 | | 4726
4727
4728
4729
4730
4731
4732
4733 | | | | | ; LOAD,
; BINARY;
; WITH G
; ADDRES
; COMMAN
; NOSTIC
; TEST,
; BITS O | READ AND CHECK DIAGNOSTI
COUNT PATTERN (0-377).
DAL BITS 2:0 CLEARED, DA
SS REGISTER VIA THE SIGNA
ID TO CONTROL REGISTER 6,
ADDRESS REGISTER VIA TH
HDAL9 WAS SET TO A ONE T
INTO THE ADDRESS BUS. | C ADDRESS REGISTER BITS 7:0 WITH THE ON A WRITE COMMAND TO CONTROL REGISTER 6 TA WILL BE LOADED INTO THE DIAGNOSTIC LS WPTO LB H AND WPTO HB H. ON A READ DATA WILL BE READBACK FROM THE DIAGE SIGNAL RPTO L. PREVIOUSLY IN THIS O ENABLE THE DIAGNOSTIC ADDRESS REGISTER | | 4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4736
4736
4737
4738
4739
4740
4741
4742
4743 | 012634
012640
012644
012646
012650
012652
012654
012656
012656 | 010137
004737
001404
104455
000004
002735
005020 | 002342
006672 | 3\$:
10000\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | R1,R6LOAD
PC,LDRDR6
3\$
4,ADDRRG,R06ERR
C\$ERDF
4
ADDRRG
R06ERR | SETUP DATA TO BE LOADED LOAD READ AND CHECK DIAG ADDRESS REG IF LOADED OK THEN CONTINUE DIAG ADDR REG NOT EQUAL 125252 | | 4744
4745
4746
4747
4748
4749
4750 | 012656
012660
012662
012664
012664 | 104405
105201
001344 | | | TRAP
INCB
BNE
ENDTST | CSESEG
R1
1S | :UPDATE THE TEST PATTERN BY ONE
:IF NOT 0 THEN LOAD NEXT PATTERN | | 4750
4751 | 012664 | 104401 | | L10052: | TRAP | CSETST | | | HARDWARE TE | | 11 30A(1052
-82 14:12 | ?) 01-AF | PR-82 14 | 4:48 PAG | SE 101
ADDR 15:0 REG TES | T (HIGH BYTE) USING BINARY COUNT | |--|--|--------------------------|----------|---|--|---|---| | 4752
4753 | | | | .SBTTL | TEST 2 | : DIAG ADDR 15:0 | REG TEST (HIGH BYTE) USING BINARY COUNT | | 4754
4755
4756
4757
4758
4759
4760
4761
4762 | | | | BINAF
UNTIL
ADDR
WITH | RY COUNT
THE PAI
15:8. I
ZEROES (| PATTERN. THE TEST TERN 177400 HAS THE LOW BYTE OF 1 OURING THIS TEST. | DIAGNOSTIC ADDRESS REGISTER ONTO THE ADDRESS | | 4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773 | | | | ; SET (C); TO (C); WRT3; NOSTI; O. (C); WILL; AND W.; ON TH | SDALT AND
DNTROL RE
LB H AND
IC ADDRES
DN A WRIT
BE LOADE
VPTO HB H
HE SIGNAL | D GDALO TO ONES INTERPOLATION OF THE HEAD WRT3 HB H, AND SE REGISTER, THE TE COMMAND TO CONED INTO THE ADDREST. ON A READ CONED INTO THE ADDREST. | BUS TO THE ADDRESS BUS, THE TEST WILL SET HDAL9 H . TO SELECT THE HDAL REG, THE TEST WILL N CONTROL REGISTER O. ON A WRITE OR READ COMMAND AL REGISTER WILL BE SELECTED BY THE WRITE SIGNALS BY THE READ SIGNAL RPT3 L. TO SELECT THE DIAG- TEST WILL CLEAR GDAL BITS 2:0 IN CONTROL REGISTER ITROL REGISTER 6 WITH GDAL BITS 2:0 CLEARED, DATA SS REGISTER BY PULSES ON THE SIGNALS WPTO LB H MAND TO CONTROL REGISTER 6, A PULSE WILL OCCUR LL CAUSE THE DATA TO BE READBACK FROM THE DIAG- | | 4775 012
4776 012
4777 012
4778 012 | 666
666
666 0047
672 0050 | 37 005510 | | T25:: | BGNTST
JSR
CLR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | 4779
4780 012
4781 012 | 674
674 1044 | 04 | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 4782
4783
4784 | | | | | :SET GE | PAL1 AND GDALO TO | ONES IN CONTROL REGISTER O TO SELECT THE HDAL READ COMMAND TO CONTROL REGISTER 6. | | 4785
4786 012
4787 | 676 0047 | 37 006754 | | | JSR | PC,SLHDAL | GO SELECT HDAL REG VIA GDAL BITS 2:0 | | 4788
4789
4790
4791
4792
4793 | | | | | ;LOAD,
;ON A W
;THE HD
;COMMAN
;ISTER | READ AND CHECK H
RITE COMMAND TO
PAL REGISTER VIA
ID TO CONTROL REG
VIA THE SIGNAL R | DAL REGISTER BITS 15:0 WITH HDAL9 H SET TO A ONE. CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE THE SIGNALS WPT3 LB H AND WPT3 HB H. ON A READ ISTER 6, DATA WILL BE READBACK FROM THE HDAL REGPT3 L. | | 4794 012
4795 012
4796 012
4797 012
4798 012
4799 012
4800 012
4801 012
4802 012
4803 012 | 702 0127
710 0047
714 0014
716 1044
720 0000
722 0026
724 0050
726 1044 | 55
04
05
20 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #HDAL9,R6LOAD
PC,LDRDR6
2\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR
C\$CLP1 | ;SETUP DATA TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REG
;IF DATA LOADED OK THEN CONTINUE | | | | | | | | DON 1310 NEG 1EG1 (MIGHT) | DITE OF THE STANKE COUNT |
--|--|--|------------------|------------------|---|--|--| | 4805
4806
4807
4808
4809 | 012730 | 004737 | 007072 | 28: | CLEAR
ADDRES | GDAL BITS 2:0 IN CONTROL
S REGISTER ON A WRITE OR
PC,SLDADR | REGISTER O TO SELECT THE DIAGNOSTIC READ COMMAND TO CONTROL REGISTER 6. ;SELECT DIAG ADDRESS REG VIA GDAL 2:0 | | 4810
4811
4812
4813
4814
4816
4817
4818
4819 | | | | | TEST, | WANTEDO KERTOLOLEK ATM IN | C ADDRESS REGISTER BITS 15:8 WITH THE 00). ON A WRITE COMMAND TO CONTROL REG 6 TA WILL BE LOADED INTO THE DIAGNOSTIC LS WPTO LB H AND WPTO HB H. ON A READ DATA WILL BE READBACK FROM THE DIAGE E SIGNAL RPTO L. PREVIOUSLY IN THIS O ENABLE THE DIAGNOSTIC ADDRESS REGISTER | | 4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4833
4834
4835
4836 | 012734
012740
012744
012746
012750
012752
012754
012756
012756 | 010137
004737
001404
104455
000004
002735
005020 | 002342
006672 | 3\$:
10000\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | R1,R6LOAD
PC,LDRDR6
3\$
4,ADDRRG,R06ERR
C\$ERDF
4
ADDRRG
R06ERR | SETUP DATA TO BE LOADED LOAD READ AND CHECK DIAG ADDRESS REG IF LOADED OK THEN CONTINUE DIAG ADDR REG NOT EQUAL 125252 | | 4830
4831
4832
4833
4834 | 012756
012760
012764
012766
012766 | 104405
062701
001343 | 000400 | L10053: | TRAP
ADD
BNE
ENDTST | CSESEG
#ADDR8,R1
1\$ | :UPDATE TEST PATTERN BY 400
:IF NOT 0 THEN LOAD NEXT PATTERN | | 4835 | 012766 | 104401 | | | TRAP | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 103 CVCDCB_P11 01-APR-82 14:12 TEST 26: READBACK MODE REG ON EODAL 15:0 BUS 4837 4838 4839 .SBTTL TEST 26: READBACK MODE REG ON EODAL 15:0 BUS 4840 4841 4842 THIS TEST WILL CHECK THAT THE MODE REGISTER CAN BE READBACK ON THE EDDAL BUS. THE MODE REGISTER WILL BE LOADED WITH THE FOLLOWING PATTERNS: 125252,052525, 177400, 000377, 177777, AND 0000000. FOR EACH PATTERN LOADED THE TEST WILL ENABLE THE MODE REGISTER ONTO THE EDDAL BUS AND READ AND CHECK THE EDDAL BUS FOR THE CORRECT MODE REGISTER PATTERN. THE MODE REGISTER WILL BE ENABLED TO THE EDDAL BUS WHEN ADAL12 H IS SET TO A ONE AND THE SIGNAL XBCLR H IS 4843 4844 4845 4846 ASSERTED HIGH. 4847 4848 4849 4850 012770 012770 **BGNTST** T26:: 005510 013220 PC.INITTE #7\$,R1 4851 012770 004737 JSR :SELECT AND INITIALIZE TARGET EMULATOR 4852 012774 012701 MOV GET ADDRESS OF STARTING DATA PATTERN 4853 4854 4855 4856 4857 013000 012702 000006 MOV #6,R2 COUNTER FOR NUMBER OF PATTERNS 013004 15: BGNSEG 013004 104404 TRAP C\$BSEG 4858 4859 SELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 4860 013006 004737 006754 JSR PC.SLHDAL :SELECT HDAL REGISTER VIA GDAL BITS 2:0 4861 4862 ; LOAD, READ AND CHECK THE HDAL REGISTER WITH HDAL7 H AND HDAL2 H SET TO 4863 ONES. HDAL2 H ON A ONE WILL ALLOW THE PROGRAM TO CONTROL THE T-11; TIMING AND CONTROL SIGNALS. HDAL7 H ON A ONE WILL CAUSE THE SIGNALS 4864 4865 4866 4867 :PBCLR H AND XBCLR H TO BE ASSERTED HIGH. 013012 005037 002342 R6LOAD SETUP TO CLEAR ALL OTHER HDAL BITS 4868 004737 007620 013016 JSR PC.XBCLRH ; SET XBCLR H (HIGH) AND HDAL2 H TO A 1 4869 4870 SELECT THE MODE REGISTER BY SETTING GDAL2 H TO A ONE AND GDAL BITS 4871 :1 AND O TO ZEROES. THE MODE REGISTER WILL BE SELECTED ON A WRITE OR 4872 :READ COMMAND TO CONTROL REGISTER 6. 4874 4875 4876 4877 013022 004737 007006 JSR PC, SLMODR :SELECT MODE REG VIA GDAL BITS 2:0 ;LOAD, READ AND CHECK MODE REGISTER WITH ONE OF THE FOLLOWING DATA ;PATTERNS: 125252, 052525, 177400, 000377, 177777, AND 000000. 4878 013026 013032 013036 011137 004737 002342 4879 MOV (R1), R6LOAD GET A DATA PATTERN FROM TABLE 4880 GO LOAD, READ AND CHECK MODE REGISTER : IF LOADED OK THEN CONTINUE **JSR** PC.LDRDR6 4881 4882 001405 BEQ 013040 ERRDF 4, MODREG, ROGERR :MODE REG NOT EQUAL TO EXPECTED 4883 013040 104455 C\$ERDF TRAP 4884 4885 4886 013042 013044 000004 . WORD 002631 . WORD MODREG 013046 005020 . WORD RO6ERR 4887 013050 CKLOOP 4888 4889 4890 013050 104406 TRAP C\$CLP1 4891 4892 ;SET ADAL12 H TO A ONE IN ADAL REGISTER. WHEN ADAL12 H IS SET TO A ONE ;AND THE SIGNAL XBCLR H IS ASSERTED HIGH, THE MODE REGISTER WILL BE ;ENABLED TO THE EODAL BUS. HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 104 CVCDCB.P11 01-APR-82 14:12 TEST 26: READBACK MODE REG ON EODAL 15:0 BUS | 4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904 | 013052
013060
013064
013066
013070
013072
013074
013076
013076 | 012737
004737
001405
104455
000002
002513
004770
104406 | 010000
006614 | 002330 | 2\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #ADAL12,R2LOAD PC,LDRDR2 3\$ 2,ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 | SETUP ADAL BITS TO BE LOADED GO LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | |--|--|--|------------------|--------|------|---|--|--| | 4905
4906
4907
4908
4909 | | | | | | ; SELECT
; THE MO
; TO CON
; TROUGH | THE EODAL BUS BY SETTING REGISTER WILL BE ENABUTED REGISTER 6, THE MODE THE EODAL BUS | G GDAL BITS 2:0 TO ONES. AT THIS POINT
LED TO THE EODAL BUS. ON A READ COMMAND
E REGISTER WILL BE READBACK TO THE LSI-11 | | 4910 | 013100 | 004737 | 007122 | | 3\$: | JSR | PC.SEODAL | ;SELECT EODAL BUS VIA GDAL BITS 2:0 | | 4911
4912
4913
4914
4915
4916 | | | | | | READ A
THROUG
6. TH | IND CHECK THAT THE MODE RESERVED A PROPERTY OF THE MODE REGISTER IS ENABLED HIGH AND A | EGISTER WAS READBACK ON THE LSI-11 BUS READ COMMAND IS ISSUED TO CONTROL REGISTER ED TO THE EODAL BUS WHEN THE SIGNAL DAL12 H IS SET TO A ONE. | | 4917
4918 | 013104
013110
013114
013116 | 011137
004737
001405 | 002342
006700 | | | MOV
JSR
BEQ
ERRDF | (R1),R6LOAD
PC,READR6
4\$
4,MEODAL,R026ER | GET MODE REGISTER DATA PATTERN GO READ MODE REG ON THE EODAL BUS IF DATA = MODE REG THEN CONTINUE MODE REGISTER TO EODAL BUS ERROR | | 4919
4920
4921
4922
4923
4924
4925
4926
4927 | 013116
013120
013122
013124
013126
013126 | 104455
000004
003102
005034 | | | | TRAP .WORD .WORD .WORD CKLOOP TRAP | CSERDF
4
MEODAL
RO26ER | | | 4927
4928 | 013120 | 104400 | | | | | C\$CLP1 | AL DITC 2.0 IN CONTROL DECLARED A | | 4929 | 017170 | 00/777 | 004354 | | | | | DAL BITS 2:0 IN CONTROL REGISTER 0 | | 4930
4931 | 013130 | 004737 | 006754 | | 45: | JSR | PC,SLHDAL | ;SELECT HDAL REGISTER VIA GDAL BITS 2:0 | | 4931
4932
4933
4934
4935
4936
4937
4938
4939 | | | | | | ; LOAD,
; ZEROES
; TIMING
; TIME,
; THE T-
; HIGH.
; EODAL | READ AND CHECK THE HDAL I
WHEN HDAL2 H IS SET TO
AND CONTROL SIGNALS TO
THE T-11 IS TURNED OFF AS
11 IS TURNED OFF, THE SIGN
THEREFORE, THE MODE REGI
BUS AS A RESULT OF XBCLR | REGISTER WITH A DATA PATTERN OF ALL D A ZERO, THE T-11 WILL PROVIDE THE THE TARGET EMULATOR MODULE. AT THIS S A RESULT OF ADAL2 H BEING A ZERO. WHEN GNALS PBCLR H AND XBCLR H WILL BE ASSERTED ISTER SHOULD STILL BE ENABLED TO THE H AND ADAL12 H BEING ASSERTED HIGH. | | 4940
4941
4942
4943
4944
4945
4946
4947 | 013134
013140
013144
013146
013146
013150
013152
013154
013156 | 005037
004737
001405
104455
000004
002605
005020 | 002342 | | | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | R6LOAD
PC,LDRDR6
5\$
4,HDALRG,RO6ERR
C\$ERDF
4
HDALRG
R06ERR | ;SETUP TO CLEAR ALL HDAL REGISTER BITS
;GO LOAD, READ AND CHECK THE HDAL REG
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | HARDWAR
CVCDCB. | E TESTS | MACY11
01-APR-82 | 30A(1052) | 01-APR-82 14
TEST 26 | :48 PAG | B 9 SE 105 ACK MODE REG ON EODAL 15: | 0 BUS | |--|--|--|------------------|-------------------------|---|--
--| | 4949
4950 | 013156 | 104406 | | | TRAP | C\$CLP1 | | | 4951 | | | | | ;SELECT | THE EODAL BUS VIA GDAL | BITS 2:0 IN CONTROL REGISTER 0 | | 4953 | 013160 | 004737 | 007122 | 5\$: | JSR | PC,SEODAL | ; SELECT EODAL BUS VIA GDAL BITS 2:0 | | 4953
4954
4955
4956
4957
4958
4959
4960
4961 | | | | | :AS A R
:TIMING
:TIME,
:THE SI
:AND AD
:THE EO | RESULT OF HDAL2 H BEING CONTROL SIGNALS TO THE T-11 IS TURNED OFF BEING CONTROL SIGNALS TO THE T-11 IS TURNED OFF BEING CONTROL TO THE T-11 IS TURNED HIGH SIGNAL BUS. | LEARED, THE T-11 WILL PROVIDE THE THE TARGET EMULATOR MODULE. AT THIS BY ADAL2 H BEING A ZERO, THEREFORE, H WILL BE ASSERTED HIGH. WHEN XBCLR HI, THE MODE REGISTER WILL BE ENABLED TO | | 4962
4963
4964 | 013164
013170
013174 | 011137
004737
001404 | 002342
006700 | | MOV
JSR
BEQ | (R1),R6LOAD
PC,READR6
6\$ | GET MODE REGISTER DATA PATTERN READ THE EODAL BUS FOR MODE REG DATA IF DATA OK THEN CONTINUE | | 4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973 | 013174
013176
013176
013200
013202
013204
013206
013206 | 104455
000004
003102
005034 | | 6\$:
10000\$: | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 4, MEODAL, ROZGER
CSERDF
4
MEODAL
ROZGER | MODE REG TO EODAL BUS ERROR | | 4972 | 013206 | 104405 | | 100003: | TRAP | C\$ESEG | | | 4974
4975
4976
4977
4978 | 013210
013212
013214
013216 | 005721
005302
001273
000406 | | | TST
DEC
BNE
BR | (R1)+
R2
1\$
8\$ | :UPDATE THE POINTER TO DATA TABLE
:CHECK IF ALL PATTERNS TESTED
:IF NOT THEN LOAD NEXT PATTERN
:IF YES THEN END OF TEST | | 49/9 | 013220
013222
013224
013226
013230
013232 | 125252
052525
177400
000377
177777
000000 | | 7\$: | .WORD
.WORD
.WORD
.WORD
.WORD | 125252
052525
177400
000377
177777
000000 | | | 4986
4987
4988
4989 | 013234
013234
013234 | 104401 | | 8\$:
L10054: | ENDTST
TRAP | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 106 CVCDCB.P11 TEST 27: WRITE DIAG ADRESS REG INTO FJA READBACK REG (READ VIA RPT1 L) 01-APR-82 14:12 .SBTTL TEST 27: WRITE DIAG ADRESS REG INTO FJA READBACK REG (READ VIA RPT1 L) 4991 4993 4994 4995 4996 ; THIS TEST WILL CHECK THE FORCE JUMP ADDRESS READBACK REGISTER WITH THE FOLLOWING ; DATA PATTERNS 125252, 052525, 177400, 000377, 1777777, AND 000000. THE DIAG- NOSTIC ADDRESS REGISTER WILL PROVIDE THE DATA ON THE ADDRESS BUS TO THE FORCE : JUMP ADDRESS REGISTER AND FORCE JUMP ADDRESS READBACK REGISTER. 4997 4998 013236 013236 013236 013242 013246 **BGNTST** 5000 5001 5002 5003 127:: 004737 012701 005510 PC, INITTE **JSR** SELECT AND INITIALIZE TARGET EMULATOR 013644 MOV GET ADDRESS OF DATA TABLE 012702 000006 MOV #6,R2 THE NUMBER OF DATA PATTERNS 5004 5005 5006 5007 5008 013252 013252 15: **BGNSEG** 104404 TRAP C\$BSEG SELECT THE HDAL REGISTER BY SETTING GDAL1 AND GDALO TO ONES IN 5009 CONTROL REGISTER O GDAL BITS 2:0. ON A WRITE COMMAND OR READ 5010 COMMAND TO CONTRCL REGISTER 6, THE HDAL REGISTER WILL BE SELECTED. 5011 5012 5013 013254 004737 006754 JSR PC, SLHDAL GO SELECT HDAL REG VIA THE GDAL REG 5014 :SET HDAL9 H AND HDAL2 H TO ONES IN THE HDAL REGISTER. HDAL9 H ON A :ONE WILL ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS REGISTER ONTO 5015 5016 5017 5018 5019 THE ADDRESS BUS AND DISABLE THE EIDAL BUS FROM THE ADDRESS BUS. ; HDAL2 H ON A ONE WILL ENABLE THE PROGRAM TO CONTROL THE T-11 TIMING ; AND CONTROL SIGNALS. ON A WRITE COMMAND TO CONTROL REGISTER 6, DATA WILL BE LOADED INTO THE HDAL REGISTER VIA THE SIGNALS WPT3 LB H AND WPT3 HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READBACK FROM THE HDAL REGISTER VIA THE SIGNAL RPT3 L. 5020 5021 5022 5023 5024 5025 013260 012737 001004 002342 #HDAL9!HDAL2,R6LOAD MOV SETUP DATA TO BE LOADED 013266 013272 004737 006672 PC,LDRDR6 2\$ 4,HDALRG,RO6ERR JSR GO LOAD, READ AND CHECK HDAL REGISTER 001405 BEQ ; IF LOADED OK THEN CONTINUE 5026 5027 5028 5029 5030 013274 013274 013276 013300 ERRDF :HDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP C\$ERDF 000004 . WORD 002605 . WORD HDALRG 013302 005020 . WORD RO6ERR 5031 013304 CKLOOP 5032 5033 5034 5035 013304 104406 TRAP C\$CLP1 SELECT THE DIAGNOSTIC ADDRESS REGISTER BY SETTING GDAL BITS 2:0 TO :ZEROES. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE 5036 :DIAGNOSTIC ADDRESS REGISTER WILL BE SELECTED. 5038 5039 5040 5041 5042 5043 013306 004737 007072 2\$: JSR PC.SLDADR GO SELECT DIAG ADDRESS REG VIA GDAL 2:0 ;LOAD, READ AND CHECK THE DIAGNOSTIC ADDRESS REGISTER WITH ONE OF THE ;FOLLOWING DATA PATTERNS 125252, 052525, 177400, 000377, 177777 OR ;000000. ON A WRITE COMMAND TO CUMTROL REGISTER 6, DATA WILL BE LOADED ;INTO THE DIAGNOSTIC ADDRESS REGISTER VIA THE SIGNAL WPTO LB H AND ;WPTO HB H. ON A READ COMMAND TO CONTROL REGISTER 6, DATA WILL BE READ-;BACK FROM THE DIAGNOSTIC ADDRESS REGISTER VIA THE SIGNAL RPTO L. 5045 C 9 | HARDWAR
CVCDCB. | E TESTS | MACY11 | 30A(1052 | ?) 01-AF | PR-82
TEST | 14:48 PAG
27: WRITE | D 9
E 107
DIAG ADRESS REG INT | FJA READBACK REG (READ VIA RPT1 L) | |--|--|--|------------------|----------|---------------|---|---|--| | 5046
5047
5048 | | | | | | :PREVIO
:BUS FR
:THE AD | USLY IN THIS TEST, I
OM THE ADDRESS BUS
DRESS BUS. | ADAL9 H WAS SET TO A ONE TO DISABLE THE EIDAL AND ENABLE THE DIAGNOSTIC ADDRESS REGISTER TO | | 5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060 | 013312
013316
013322
013324
013326
013330
013332
013334
013334 | 011137
004737
001405
104455
000004
002735
005020
104406 | 002342
006672 | | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | (R1),R6LOAD
PC,LDRDR6
3\$
4,ADDRRG,R06ERR
C\$ERDF
4
ADDRRG
R06ERR | : IF LOADED OK THEN CONTINUE | | 5061
5062
5063
5064 | | | | | | SET VD
AND CL
FLIP-F | EAR VDALZ H TO CLEAP | T THE SIGNAL FETCT H TO THE HIGH STATE. SET THE PAUSE STATE MACHINE FLIP-FLOPS AND OTHER | | 5065
5066
5067 | 013336
013344 | 012737
004737 | 000200
007712 | 002334 | 3\$: | MOV
JSR | #VDAL7,R4LOAD
PC,CLRPSM | SETUP BIT TO SET FETCT H
SET FETCT H AND CLEAR PAUSE STATE F/F'S | | 5068
5069
5070 | | | | | | ;RESELE
;XRAS H | CT THE HDAL REGISTER AND XRAS L CAN BE | PULSED BY SETTING AND CLEARING HDAL12 H. | | 5071
5072 | 013350 | 004737 | 006754 | | | JSR | PC, SLHDAL | GO SELECT HOAL REG VIA THE GOAL REG | | 5072
5073
5074
5075
5076
5077
5078
5079
5080 | | | | | | ;HDAL12
;EDFET
;CAUSE
;ONE AN
;ON THE
;ADDRES | H. THE SIGNAL XRAS
FLIP-FLOP, THUS SET
THE SIGNAL RASP H TO
D THE SIGNAL RASP H
SIGNAL DFET H. THE
S REGISTER WHICH IS | AND XRAS L BY SETTING AND CLEARING THE SIGNAL SH WILL CLOCK THE STATE OF FETCT H INTO THE TING EDFET H TO A ONE. THE SIGNAL XRAS H WILL DPULSE. WHEN THE EDFET FLIP-FLOP IS SET TO A IS PULSED, A PULSE WILL BE ISSUED SIGNAL DEET H WILL CLOCK THE DIAGNOSTIC ENABLED TO THE ADDRESS BUS INTO THE OLD FORCE THE FORCE JUMP ADDRESS READBACK REGISTER. | 5081 5091 5092 5093 5100 5101 013410 013354 012737 013362 004737 052737 004737 001405 104455 000003 002537 005004 001004 007272 001000 006654 002342 002336 JUMP ADDRESS REGISTER AND THE FORCE JUMP ADDRESS READBACK REGISTER. MOV RESET PREVIOUS CONTENTS OF HDAL REG #HDAL9!HDAL2,R6LOAD **JSR** PC.XRAS GO PULSE XRAS L AND XRAS H VIA HDAL12 H :ADAL4 H WAS SET TO A ZERO AT THE BEGINNING OF THIS TEST IN THE ROUTINE :"INITTE". PULSING THE SIGNAL XRAS H WILL CLOCK THE STATE OF ADAL4 H (0) : INTO THE PAUSE MODE FLIP-FLOP, THUS SETTING THE SIGNAL PAUSE L TO THE :HIGH STATE (1). THE SIGNAL PAUSE L BEING ASSERTED HIGH WILL CAUSE THE SIGNAL SOP H TO BE ASSERTED HIGH. WHEN SOP H AND EDFET H ARE ASSERTED HIGH, THE PAUSE STATE WORKING FLIP-FLOP WILL BE DIRECT SET TO A ONE, THUS SETTING THE SIGNAL PSMW H TO THE HIGH STATE. THE SIGNAL PSMW H :IS READ IN VDAL REGISTER AS VDAL9 H. SETUP TO EXPECT PSMW H TO BE A 1 : VDAL OR PAUSE STATE MACHINE ERROR : IF OK THEN CONTINUE GO READ VOAL AND PAUSE STATE MACHINE | DC DEADD! | |-------------------| | PC.READR4 | | 4\$ | | 3, VDALRG, R4EROR | | CSERDF | | 3 | | VDALRG | | R4EROR | | | | | | | | | | | | PERSONAL PROPERTY OF THE PROPE | The second secon | | |----------------------------|--
--|--|---|--|---|---|--|--|---| | TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AF | PR-82
TEST | 14:48 PAG
27: WRITE | E 108
DIAG ADRESS REG | INTO FJA REA | ADBACK REG (REAL | O VIA RPT1 L) | S | | 013412
013412 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | | | | | | | | SELECT
AND GD
REGIST
VIA TH | THE FORCE JUMP
AL1 H AND GDAL2
ER 6, THE FORCE
IE SIGNAL RPT1 L. | ADDRESS REGI
H TO ZEROES.
JUMP ADDRESS | ISTER BY SETTING
ON A READ COM
S READBACK REGIS | G GDALO H TO A ONE
MMAND TO CONTROL
STER WILL BE READBAC | ĸ | | 013414 | 004737 | 007040 | | 48: | JSR | PC, SLFJAR | ;60 | SELECT FJA REC | S VIA GDAL REG | | | | | | | | ; WAS PU | 172FD MILH LHE LE | .IP-FLOP EDFE | ET H SET TO A ON | VE. THE FORCE JUMP | H
ADDRESS | | 013420
013424
013430 | 011137
004737
001405 | 002342
006700 | | | MOV
JSR
REQ | (R1),R6LOAD
PC,READR6 | : GE
: GO | T PATTERN LOADE | D INTO DIAG ADDR RE | G
REG | | 013432 | 104455 | | | | ERRDF
TRAP | 4, FJADRG, ROGERA | ;FJ | A READBACK REG | NOT = DIAG ADDRESS | REG | | 013436 | 002766 | | | | .WORD | 4
FJADRG | | | | | | 013442 | | | | | CKLOOP | | | | | | | 013442 | 104406 | | | | | | | | | | | 017/// | 00/777 | 007072 | | | | | | | | | | 013444 | 004737 | 00/0/2 | | 55: | | | | | | 2:0 | | | | | | | ; PATTER | N OF 031463. | HE DIAGNOSTI | C ADDRESS REGIS | STER WITH A DATA | | | 013456 | 012737
004737
001405 | 031463
006672 | 002342 | | MOV
JSR
BEQ | #031463,R6LOAD
PC,LDRDR6
6\$ | ; G0 | LOAD, READ AND
LOADED OK THEN | CHECK DIAG ADDR RE | G | | 013464 | 104455 | | | | TRAP | C\$ERDF | ;DI | AG ADDRESS REG | NOT EQUAL EXPECTED | | | 013470 | 002735 | | | | . WORD | ADDRRG
BOSERR | | | | | | 013474 | | | | | CKLOOP | | | | | | | | | | | | | | TO A ZERO T | O ASSERT THE SI | GNAL FETCT H LOW. | | | 013476 | 042737 | 000200 | 002334 | 6\$: | BIC | #VDAL7,R4LOAD | | | | | | 013512 | 004737 | 006646 | 002336 | | JSR | PC_LDRD4R | ; SE
; G0 | LOAD, READ AND | SMW H TO
BE SET TO | 1 | | 013520 | | | | | ERRDF | 3, VDALRG, R4EROR | : VD | AL REG OR PAUSE | STATE MACHINE ERROR | R | | 013522
013524 | 000003 | | | | . WORD | 3 | | | | | | 013526
013530 | 005004 | | | | WORD | R4EROR | | | | | | | 013412
013412
013412
013412
013424
013434
013436
013436
013436
013442
013442
013442
013442
013442
013466
013466
013466
013470
013474
013474
013520
013520
013520
013520
013520
013520
013520
013520
013520
013520
013520
013520 | 013412 104406 013412 104406 013414 004737 013424 004737 013432 001405 013432 104455 013432 104455 013434 00004 013436 002766 013440 005020 013442 104406 013444 004737 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013474 104406 013474 104406 | 013412 104406 013412 104406 013414 004737 007040 013420 011137 002342 004737 006700 013432 104455 013432 104455 013442 104406 013444 004737 007072 013450 012737 031463 002766 013442 104406 013444 004737 007072 013450 012737 031463 004737 013464 104455 013464 104455 013464 104455 013464 104455 013464 104455 013464 104406 013476 042737 000200 013474 104406 013476 042737 000200 013474 104406 013476 042737 000200 013474 104406 013476 042737 000200 013474 104406 | 013412 104406 013412 104406 013414 004737 007040 013420 011137 002342 013430 001405 013432 104455 013432 104455 013434 000004 013436 002766 013442 104406 013444 004737 007072 013450 012737 031463 002342 013442 104406 013444 104406 013464 104455 013464 104455 013464 104455 013464 104455 013464 000004 013470 002735 013474 104406 013476 042737 000200 002334 013512 004737 013670 002735 013474 104406 013520 104455 013520 104455 013520 104455 013522 000003 013524 002537 | 013412 104406 013412 104406 013414 004737 007040 4\$: 013420 011137 002342 013424 004737 006700 013430 001405 013432 104455 013432 104455 013434 00004 013442 104406 013444 004737 007072 5\$: 013450 012737 031463 002342 013442 104406 013464 004737 007072 5\$: 013450 012737 031463 002342 013464 104455 013464 104455 013464 104455 013464 104455 013464 004737 006646 013474 104406 013474 104406 | 013412 01-APR-82 14:12 TEST 27: WRITE 013412 104406 | TESTS MACY11 304(1052) O1-APR-82 14:48 PAGE 108 | TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 108 | TESTS | 1831 1832 1832 1832 1832 1832 1833 1833 1833 1834 | | ARDWAR | E TESTS | MACY11 | 30A(1052 |) 01-APR | -82 | 14:48 PAGE 109 | |--|--|--|------------------|----------|--------|---| | 5158 | | 104406 | 14.12 | | IESI A | 27: WRITE DIAG ADRESS REG INTO FJA READBACK REG (READ VIA RPT1 L) TRAP CSCLP1 | | 5159
5160
5161 | | | | | | RESELECT THE HDAL REGISTER VIA THE GDAL REGISTER SO THAT THE SIGNAL RESERVED BY SETTING AND CLEARING HDAL 12 H. | | 5162
5163 | 013532 | 004737 | 006754 | | 7\$: | | | 5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177 | | | | | | TOGGLE THE SIGNAL XRAS H BY SETTING AND CLEARING HDAL12 H. WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE EDFET FLIP-FLOP WILL BE SET TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL PB H WILL BE ASSERTED LOW. WHEN THE SIGNAL XRAS H IS ASSERTED PULSES WILL OCCUR ON THE SIGNALS RASP H AND RASP L. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE SIGNAL RASP L WHEN THE SIGNALS EPFN L, EPBN L AND PSMW H ARE ALL ASSERTED TO THE HIGH STATE. WHEN THE EDFET H FLIP-FLOP IS SET TO A ZERO AND THE SIGNAL RASP H IS PULSED, NO PULSE SHOULD OCCUR ON THE SIGNAL DFET H, THERFORE, THE DIAGNOSTIC ADDRESS REGISTER WHICH IS ENABLED TO THE ADDRESS BUS WILL NOT BE LOADED INTO THE OLD FORCE JUMP ADDRESS REGISTER; OR THE FORCE JUMP ADDRESS READBACK REGISTER. THE ADDRESS BUS PRESENTLY CONTAINS THE DIAGNOSTIC ADDRESS REGISTER DATA PATTERN 031463. | | 5179
5180
5181 | 013536
013544 | 012737
004737 | 001004
007272 | 002342 | | | | 5182
5183
5184
5185 | | | | | | CHECK THAT THE SIGNAL PSMW H IS STILL SET IN THE VDAL REGISTER AS A RESULT OF THE PAUSE STATE MACHINE WORKING FLIP-FLOP BEING SET. | | 5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195 | 013550
013554
013556
013560
013560
013564
013566
013566 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | | JSR PC.READR4 ;GO CHECK VDAL AND PAUSE STATE MACHINE BEQ 8\$;IF NO CHANGES THEN CONTINUE ERROR TRAP CSERDF ;VDAL OR PAUSE STATE MACHINE ERROR WORD VDALRG .WORD R4EROR CKLOOP TRAP C\$CLP1 | | 5196
5197
5198 | | | | | | RESELECT THE FORCE JUMP ADDRESS REGISTER VIA THE GDAL REGISTER BITS 2:0. ON A READ COMMAND TO CONTROL REGISTER 6. THE FORCE JUMP ADDRESS READBACK REGISTER WILL BE READBACK VIA THE SIGNAL RPT1 L. | | 5199
5200
5201 | 013570 | 004737 | 007040 | | 8\$: | JSR PC, SLFJAR ; GO SELECT THE FORCE JUMP ADDRESS REG | | 5200
5201
5202
5203
5204
5205
5206
5207
5208
5210
5211
5212
5213 | | | | | | ;READ THE FORCE JUMP ADDRESS READBACK REGISTER AND CHECK THAT THE NEW ;DATA (031463) WAS NOT LOADED INTO IT WHEN THE SIGNAL EDFET H IS ;ASSERTED LOW AND THE SIGNAL RASP H WAS PULSED. NO PULSES SHOULD ;OCCUR ON THE SIGNAL DFET H WHEN THE SIGNAL EDFET H IS LOW. | | 5206
5207
5308 | 013574 | 011137 | 002342 | | | MOV (R1), R6LOAD ;GET THE DATA PREVIOUSLY LOADED INTO | | 5209
5210
5211 | 013600
013604
013606 | 004737
001405 | 006700 | | | JSR PC.READR6 ; THE FORCE JUMP ADDRESS REGISTER GO READ FORCE JUMP ADDRESS REGISTER FORCE JUMP ADDRESS REGISTER FORCE JUMP ADDRESS READBACK REG ERROR FORCE JUMP ADDRESS READBACK REG ERROR | | 5213 | 013606
013610 | 104455 | | | | TRAP CSERDF
.WORD 4 | | | | | | | | | | | | | | | | | | *************************************** | |--|--|--|--------------------|-------------------------|--|--|------------|--| | HARDWAR
CVCDCB. | E TESTS
P11 0 | MACY11 | 30A(1052)
14:12 | 01-APR-82 14
TEST 27 | :48 PA | GE 110
DIAG ADRESS REC | S INTO FJA | READBACK REG (READ VIA RPT1 L) | | 5214
5215
5216
5217 | 013612
013614 | 002766
005020 | | | .WORD | FJADRG
ROGERR | | - 15 AATA 50.00 6 A74//7 Tugu A555 | | 5217
5218 | 013616 | 10//0/ | | | CKLOOP | | | : IF DATA EQUALS 031463 THEN DEET H WAS : PULSED WHEN FETCT H WAS ASSERTED LOW | | 5220
5221 | 013616 | 104406 | | | TRAP | CSCLP1 THE PAUSE STATE | MACHINE | BY SETTING AND CLEARING VDAL2 H | | 5222
5223
5224 | 013620
013624 | 005037
004737 | 002334
007712 | 9\$: | CLR
JSR | R4LOAD
PC,CLRPSM | | SETUP TO EXPECT PSMW H TO BE A O | | 5225
5226 | 013620
013624
013630
013630
013630 | | | 10000\$: | ENDSEG | | | | | 5228 | 013030 | 104405 | | | TRAP | C\$ESEG
| | | | 5229
5230
5231
5232 | 013632
013634
013636
013640 | 005721
005302
001410
000137 | 013252 | | TST
DEC
BEQ
JMP | (R1)+
R2
11\$
1\$ | | :UPDATE POINTER TO DATA TABLE
:CHECK IF ALL DATA PATTERNS LOADED
:IF YES THEN END OF THE TEST
:IF NOT LOAD NEXT PATTERN | | 5218
5219
5220
5221
5223
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5233
5236
5237
5238
5237
5238
5238
5238
5238
5238
5238
5238
5238 | 013644
013646
013650
013652
013654
013656 | 125252
052525
177400
000377
177777
000000 | | 10\$: | .WORD
.WORD
.WORD
.WORD
.WORD
.WORD | 125252
052525
177400
000377
177777 | | | | 5240
5241 | 013660
013660 | 00000 | | 11\$: | ENDTST | 00000 | | | | 5243 | 013660 | 104401 | | L10055: | TRAP | C\$ETST | | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 111 CVCDCB.P11 01-APR-82 14:12 TEST 28: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - OLD FJA 5244 5245 5246 5247 5248 .SBTTL TEST 28: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - OLD FJA : THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 16 BIT ADDRESS MODE. THE PAUSE STATE MACHINE FLIP-FLOPS, PAUSE STATE WORKING, AND PAUSE STATE SYNC AND 16 BIT ADDRESS WILL BE CLOCKED TO ONES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND ADAL8 H WILL BE SET TO A ZERO AND ADALO H WILL BE SET TO A ONE DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK AND ADALO H ON A ONE WILL CLEAR THE BREAK LOGIC, THUS SETTING THE SIGNAL BRK H TO A ZERO. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE OLD FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS. THE OLD FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125252, 052525 177400, 000377, 177777, AND 000000. THE OLD FORCE JUMP ADDRESS REGISTER GETS ITS DATA FROM THE DIAGNOSTIC ADDRESS REGISTER WHICH IS ENABLED ON THE ADDRESS BUS DURING THIS TEST. 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 013662 BGNTST 013662 013662 T28:: 004737 005510 PC.INITTE :SELECT AND INITIALIZE TARGET EMULATOR 013666 012701 014552 #19$_R1 MOV GET ADDRESS OF DATA TABLE 000006 MOV #6.R2 COUNTER FOR NUMBER OF DATA PATTERNS 013676 013676 15: BGNSEG 104404 TRAP C$BSEG SELECT THE MODE REGISTER BY SETTING GDAL2 TO A ONE AND GDAL1 AND GDALO :TO A ZERO. 013700 004737 007006 JSR PC.SLMODR :GO SELECT MODE REG VIA CONTROL REG O :LOAD, READ AND CHECK MODE REGISTER BITS MR 15:0 WITH ZEROES. MR BIT 11 ON A ZERO WILL ENABLE 16 BIT ADDRESS SELECTION TO THE PAUSE STATE :MACHINE. 005037 004737 013704 002342 SETUP DATA TO BE ZERO LOAD, READ AND CHECK MODE REGISTER CLR R6LOAD 013710 006672 JSR PC, LDRDR6 013714 001405 BEQ ; IF LOADED OK THEN CONTINUE 013716 4, MODREG, ROSERR ERRDF MODE REGISTER NOT EQUAL TO O 013716 TRAP C$ERDF 013720 013722 013724 000004 002631 . WORD . WORD MODREG 005020 . WORD RO6ERR 013726 CKLOOP 013726 104406 TRAP C$CLP1 SET GDALT AND GDALO TO ONES IN THE GDAL REGISTER TO SELECT THE HDAL REGISTER ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6. 013730 004737 006754 25: JSR PC, SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 ; LOAD, READ AND CHECK HDAL REGISTER WITH HDALP H AND HDALZ H SET TO ONES. ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 112 CVCDCB.P11 01-APR-82 14:12 TEST 28: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - OLD FJA ``` | PII 0 | 1-4-4-05 | 14:12 | | 1531 50 | : PAUSE | SINIE MACHINE - 10 BIL A | DDRESS - PAUSE MODE - OLD FJA | |--|--|---|---|---|---|---|---| | | | | | | :BUS. | HDALZ H ON A ONE WILL AL | LE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS
AND DISABLE THE EIDAL BUS FROM THE ADDRESS
LOW THE PROGRAM TO GENERATE THE T-11 | | 013734
013742
013746
013750
013750
013752
013754
013760
013760 | 012737
004737
001405
104455
000004
002605
005020
104406 | 001004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #HDAL9!HDAL2,R6LOAD
PC,LDRDR6
3\$
4,HDALRG,RO6ERR
C\$ERDF
4
HDALRG
R06ERR | SETUP BITS TO BE LOADED GO LOAD, READ AND CHECK HDAL REGISTER IF LOADED OK THEN CONTINUE HDAL REGISTER NOT EQUAL EXPECTED | | | | | | | :SELECT
:ZEROES
:NOSTIC | THE DIAGNOSTIC ADDRESS ON A WRITE OR READ CO | REGISTER BY SETTING GDAL BITS 2:0 TO MMAND TO CONTROL REGISTER 6, THE DIAGE SELECTED. | | 013762 | 004737 | 007072 | | 3\$: | JSR | PC,SLDADR | GO SELECT DIAG. ADDRESS REG VIA GDAL 2:0 | | | | | | | ; FOLLOW | ING DATA PATTERNS: 12525 | OSTIC ADDRESS REGISTER WITH ONE OF THE 2, 052525, 177400, 000377, 177777, AND | | 013766
013772
013776
014000
014000
014002
014004
014006
014010
014010 | 011137
004737
001405
104455
000004
002735
005020
104406 | 002342
006672 | | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | (R1),R6LOAD
PC,LDRDR6
4\$
4,ADDRRG,R06ERR
C\$ERDF
4
ADDRRG
R06ERR | GET DATA PATTERN RFOM TABLE GO LOAD READ AND CHECK DIAG ADDRESS REG IF LOADED OK THEN CONTINUE DIAG ADDRESS REG NOT EQUAL EXPECTED | | | | | | | :LOAD,
:ADALO
:WILL C
:WHEN T | READ AND CHECK ADAL REG
ON A ONE WILL HOLD THE BI
AUSE THE PAUSE STATE MAC
HE SIGNAL XRAS H IS PULS | ISTER WITH A DATA PATTERN OF OCOOO1. REAK LOGIC CLEARED. ADAL4 ON A ZERO HINE TO BE ENTERED ON A FETCH CYCLE ED. | | 014012
014020
014024
014026
014026
014030
014032
014034
014036 | 012737
004737
001405
104455
000002
002513
004770
104406 | 000001
006614 | 002330 | 48: | MOV
JSR
BEQ
ERRDF
TRAP
WORD
WORD
CKLOOP
TRAP
SET VD | #ADALO,R2LOAD PC,LDRDR2 5\$ 2.ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 AL2 H TO A ONE AND THEN THE PAUSE STATE MACHINE | SETUP BIT TO BE LOADED GO LOAD, READ AND CHECK ADAL REG IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL 1 CLEAR VDAL2 H. VDAL2 H ON A ONE WILL FLIP-FLOPS | | | 013734
013742
013746
013750
013752
013754
013756
013760
013760
013760
013760
014000
014000
014000
014000
014000
014000
014010
014010
014010
014010
014026
014026
014036
014036 | 013734 012737
013746 001405
013750 104455
013752 000004
013754 002605
013756 005020
013760 104406
013760 104406
013772 004737
013772 004737
013776 001405
014000 104455
014000 104455
014004 002735
014006 005020
014010 104406
014010 104406 | 013734 012737 001004
013742 004737 006672
013750 104455
013752 000004
013754 002605
013756 005020
013760 104406
013760 104406
013762 004737 007072
013776 001405
014000 104455
014002 000004
014004 002735
014006 005020
014010 104406
014010 104406 | 013734 012737 001004 002342 013742 004737 006672 013750 104455 013750 005020 013750 005020 013760 104406 013762 004737 007072 013766 011137 002342 013772 004737 006672 013776 001405 014000 104455 014002 000004 014004 002735 014004 002735 014006 005020 014010 104406 014012 012737 000001 002330 014010 014010 104406 | 013734 012737 001004 002342 004737 013746 001405 013750 104455 013752 000004 013760 005020 013760 013760 104406 013772 004737 007072 3\$: 013766 011137 002342 00377 007072 3\$: 013766 011137 002342 006672 013776 001400 014000 014000 014000 014000 014000 014000 014000 014000 014000 005020 014010 014010 014010 014010 014006 005020 014010 014010 014006 005020 014010 014010 014026 014026 014026 014026 014026 014026 014026 014026 014026 014026 014032 002513 014034 004770 014036 | ## ## ## ## ## ## ## ## ## ## ## ## ## | ### SET TO A ONE WILL ENAB | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 |
30A(1052
14:12 |) 01-AF | R-82
TEST | 14:48 PAGE
28: PAUSE S | 113
TATE MACHINE - | 16 BIT ADDRESS | - PAUSE MOD | E - OLD FJA | | |--|--|--|-------------------|---------|--------------|---|---|---|---|--|-------------------------------------| | 5356
5357
5358 | 014040
014044 | 005037
004737 | 002334
007712 | | 5\$: | CLR I | R4LOAD
PC,CLRPSM | ; SETUI
; GO SI | P TO CLEAR A | LL BITS IN VDAL | REG | | 5359
5360
5361
5362
5363 | | | | | | REGISTER | GDAL BITS 1 AN
R 6, DATA WILL
R AND THE TAKE | D 2 TO ZEORES.
BE LOADED INTO | ON A WRITE | TTING GDAL1 H T
COMMAND TO CON
CE JUMP ADDRESS
IP-FLOP WILL BE | TROL | | 5365 | 014050 | 004737 | 007040 | | | JSR F | PC, SLFJAR | ;SELE | CT FORCE JUM | P ADDRESS REG V | IA GDAL | | 5356
5357
5358
5359
5361
5362
5363
5364
5365
5365
5366
5367
5371
5372
5373
5374
5375
5376
5377
5378
5379
5381
5382
5383
5386
5386
5387
5388
5388
5389
5389
5389 | | | | | | ; 146514
; WPT1 HB
; WILL ALS
; ADDRESS
; JUMP ADD
; ADDRESS
; BE ENABL
; JUMP ADD | INTO THE NEW FO
H AND WPT1 LB
SO GET SET VIA
REGISTER IS WR
DRESS REGISTER
FLIP-FLOP IS S
LED TO THE EODA | RCE JUMP ADDRES H. THE TAKE NO THE SIGNAL WPT LITTEN WITH DATA IS ENABLED TO ET. THE OLD FO L BUS DURING TO | SS REGISTER EW FORCE JUM 1 LB H. THE A TO CHECK T THE EODAL BU DRCE JUMP AD HIS TEST. T | RITE THE DATA P VIA THE SIGNALS IP ADDRESS FLIP- NEW FORCE JUMP HAT THE CORRECT IS WHEN THE 16 B DRESS REGISTER HE TAKE NEW FOR THE CHECK THAT | FLOP
FORCE
IT
SHOULD
CE | | 5378 | 014054 | 012777 | 146314 | 166224 | | MOV 4 | 1146314, aREG6 | ;WRITE | NEW FORCE | JUMP ADDRESS RE | GISTER | | 5380
5381
5382
5383 | | | | | | ;FLOP IS | VDAL REGISTER
SET TO A ONE.
SIGNAL TNFJ H. | TO CHECK THAT THE FLIP-FLOP | THE NEW FOR WILL BE REA | CE JUMP ADDRESS
D IN THE VDAL R | FLIP-
EGISTER | | 5384
5385
5386
5387
5388
5389
5390
5391
5392
5393 | 014062
014070
014074
014076
014076
014100
014102
014104
014106 | 052737
004737
001405
104455
000003
002537
005004
104406 | 100000
006654 | 002336 | | BEQ 8
ERRDF 3
TRAP 3
.WORD 3
.WORD 6
.WORD 6 | VVDAL15,R4GOOD
CC,READR4
S
S,VDALRG,R4EROR
SERDF
JOALRG
R4EROR | ;GO RE | YFJ H SET TH | TNFJ H TO BE A
PAUSE STATE MA
EN CONTINUE
NOT SET IN VDAL | | | 5391
5392
5393
5394
5395
5396
5397
5398 | | | | | | ; TO CLEAR | 7 H TO A ONE TO
R THE PAUSE STA
PRESS FLIP-FLOP | TE MACHINE FLIP | L FETCT H. | SET VDAL2 H TO | A ONE
RCE | | 1 3344 | 014110
014116 | 012737
004737 | 000200
007712 | 002334 | 8\$: | | VVDAL7,R4LOAD
PC,CLRPSM | :SETUP
:GO SE | BIT TO SET | FETCT H
ND PULSE VDAL2 | н | | 5400
5401
5402
5403
5404
5405 | | | | | | :TO ONES. | BITS IN THE | HDAL REGISTER W | ILL BE SET | ERO AND GDAL1 AND CLEARED LATE
XRAS L, XCAS H | FR IN | | 5406
5407 | 014122 | 004737 | 006754 | | | JSR P | C, SLHDAL | ;GO SE | LECT HOAL R | EG VIA GDAL 2:0 | | | 5408
5409
5410
5411 | | | | | | HIGH, IN | IAL XRAS H WILL
ITO THE EDFET FI | CLOCK THE STAT
LIP-FLOP, THUS | E OF THE SIC | ND CLEARING HDAI
GNAL FETCT H, WI
SIGNAL EDFET H
ATE OF ADAL4 H, | HICH IS | SEQ 0114 TO THE HIGH STATE. THE SIGNAL SOP H WILL BE ASSERTED HIGH WHEN THE SIGNAL PAUSE L IS ASSERTED HIGH. WHEN SOP H AND FETCT H ARE ASSERTED HIGH, THE PAUSE STATE WORKING FLIP-FLOP WILL BE DIRECT SET TO A ONE. WHEN THE PAUSE STATE WORKING FLIP-FLOP IS SET TO A ONE, THE SIGNAL PSMW H WILL BE ASSERTED HIGH. THE SIGNAL PSMW H IS READ IN THE VDAL REGISTER AS VDAL9 H. WHEN EDFET H AND SOP H ARE ASSERTED HIGH, THE SIGNAL PB H WILL BE ASSERTED HIGH. THE SIGNAL PB H IS THE DATA INPUT LEAD TO THE PAUSE STATE SYNC FLIP-FLOP. THE SIGNAL XRAS H WILL CAUSE THE SIGNAL RASP H TO BE PULSED. WHEN THE SIGNAL RASP H IS PULSED AND THE SIGNAL EDFET H IS ASSERTED HIGH, A PULSE WILL BE ISSUED ON THE SIGNAL DEET H. THE SIGNAL DEET H WILL CLOCK THE ADDRESS BUS INTO THE OLD FORCE JUMP ADDRESS REGISTER. AT THE PRESENT TIME THE DIAGNOSTIC ADDRESS REGISTER IS ENABLED ONTO THE ADDRESS BUS. THEREFORE THE OLD FORCE JUMP ADDRESS REGISTER WILL BE LOADED WITH THE DATA FROM THE DIAGNOSTIC ADDRESS REGISTER. #HDAL9!HDAL2_R6LOAD JSR PC.XRAS :BITS PREVIOUSLY SET IN HOAL REG :PULSE XRAS H AND XRAS L VIA HDAL12 H CLEAR VDAL7 H IN THE VDAL REGISTER THUS SETTING THE SIGNAL FETCT H TO THE LOW STATE. CHECK THE PAUSE STATE MACHINE TO BE IN THE FOLLOWING STATE AS A RESULT OF SOP H AND EDFET H BEING ASSERTED HIGH. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 16 BIT ADDRESS - EPFN H - 0 #VDAL7, R4LOAD R4LOAD,R4GOOD #VDAL9,R4GOOD MOV BIS JSR PC,LDRD4R BEQ 11\$ 3, VDALRG, R4EROR ERRUF TRAP CSERDF . WORD . WORD VDALRG - WORD R4EROR CKLOOP TRAP CSCLP1 SETUP TO CLEAR FETCT H COPY DATA LOADED TO EXPECTED EXPECT PSMW H TO BE SET GO LOAD, READ AND CHECK VDAL REG : VDAL OR PAUSE STATE MACHINE ERROR ;SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE ;SIGNAL XCAS H GOING FROM A ZERO TO A ONE WILL CLOCK THE LEVEL OF THE ;SIGNAL 'PB H', WHICH IS HIGH, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS ;SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A ONE. THE SIGNAL XCAS H :WILL ALSO CLOCK THE PREVIOUS STATE OF THE PAUSE STATE SYNC FLIP-FLOP (0) :INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 16 BIT ADDRESS :FLIP-FLOP TO A ZERO. 014202 004737 007410 115: 014126 014140 014146 014154 014162 014166 014170 014170 014172 014174 014176 014200 014200 5466 5467 012737 004737 042737 013737 052737 004737 001405 104455 000003 002537 005004 104406 001004 007272 000200 002334 001000 006646 002342 002334 002336 002336 PC,XCASH JSR SET XCAS H TO THE HIGH STATE READ VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING SET TO 1. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 16 BIT ADDRESS - EPFN H - 0 | | | 1 7/11 02 | 14.16 | | 1231 20 | · TAUSE | STATE MACHINE - 10 BIT A | DUNESS - PAUSE MODE - OLD FJA | |--|--|--|------------------|--------|---------|--|---
---| | 5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478 | 014206
014214
014220
014222
014222
014224
014226
014230
014232
014232 | 052737
004737
001405
104455
000003
002537
005004
104406 | 002000
006654 | 002336 | | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL10,R4GOOD PC,READR4 12\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | ;SETUP TO EXPECT PAUSE STATE SYNC - EPSF
;GO READ AND CHECK PAUSE STATE MACHINE
;IF LOADED OK THEN CONTINUE
;EPSF H PROBABLE NOT SET IN VDAL REG | | 5480
5481
5482
5483
5484 | | | | | | ON A R | EAD COMMAND TO CONTROL R
LSI-11 BUS VIA THE SIGN | G GDAL BITS 2:0 TO ONES. THE 16 BIT ASSERTED ON THE ECDAL BUS AT THIS TIME. EGISTER 6. THE EODAL BUS WILL BE ENABLED AL RPT7 L. | | 5485
5486 | 014234 | 004737 | 007122 | | 12\$: | JSR | PC, SEODAL | ; SELECT EODAL BUS VIA GDAL BITS 2:0 | | 5487
5488
5489
5490
5491
5492
5493
5494
5495 | | | | | | : WHEN THE SECOND TO THE SECOND T | HE SIGNAL ACAS H IS ASSE
S SET TO A ONE, THE SIGN
THESE TWO SIGNALS WILL E
HE EODAL BUS. WHEN A RE
GDAL BITS 2:0 SET TO ON
. THE SIGNAL RPT7 L WIL | RTED HIGH AS A RESULT OF THE SIGNAL THE SIGNAL PSMW H BEING ASSERTED HIGH. RTED HIGH AND THE PAUSE STATE SYNC FLIP- HALS EDRL L AND EDRH L WILL BE ASSERTED NABLE THE 16 BIT INSTRUCTION REGISTER AD COMMAND IS ISSUED TO CONTROL REGISTER HES, A PULSE WILL BE ISSUED ON THE SIGNAL L READBACK THE 16 BIT INSTRUCTION REGIS- HOAL BUS AT THIS POINT IN TIME. | | 5497
5498
5499
5500
5501
5502 | 014240
014246
014252
014254
014254
014256
014260
014262 | 012737
004737
001405
104455
000004
003034
005020 | 000137
006700 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | #137,R6LOAD
PC,READR6
13\$
4,IEODAL,RO6ERR
C\$ERDF
4
IEODAL
RO6ERR | ;SETUP EXPECTED 16 BIT INSTRUCTION (JMP) ;READ 16 BIT INSTRUCTION REG ON EODAL BUS ;IF INSTRUCTION EQUALS "JMP" THEN CONT ;EODAL BUS ERROR, OR 16 BIT INSTRUCTION | | 5505 | | 003020 | | | | · word | NOCENA | REGISTER ERROR, OR 16 BIT INSTRUCTION | | 5506
5507
5508
5509 | 014264
014264 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | REGISTER NOT ENABLED TO THE BUS | | 5510
5511
5512 | | | | | | :RESELE | CT THE HDAL REGISTER BY TO ONES. | SETTING GDAL2 TO A ZERO AND GDAL1 AND | | 5513 | 014266 | 004737 | 006754 | | 13\$: | JSR | PC, SLHDAL | SELECT HDAL REGISTER VIA GDAL BITS 2:0 | | 5514
5515
5516 | | | | | | SET THE | E SIGNAL XCAS H TO A ZER | O BY CLEARING HDAL13 H IN HDAL REGISTER | | 5516
5517
5518
5519 | 014272
014300 | 012737
004737 | 021004
007442 | 002342 | | MOV
JSR | #HDAL13!HDAL9!HDAL2,R6L
PC,XCASL | OAD ; SETUP BITS PREVIOUSLY LOADED ; GO SET XCAS H TO THE LOW STATE | | 5518
5519
5520
5521
5522
5523 | | | | | | TOGGLE | THE SIGNAL XPI H BY SET S DONE TO SIMULATE A MAC | TING AND CLEARING THE SIGNAL HDAL15 H. | | 5523 | 014304 | 004737 | 007502 | | | JSR | PC,XPI | GO PULSE XPI H VIA HDAL15 H | ``` 5524 5525 5526 5527 5528 5529 5530 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. WITH THE SIGNAL FEICT H SET LOW AND A PULSE BEING ISSUED ON XRAS H. THE EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL :PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE 5531 SIGNAL RASP L WHEN EPFN L, EP8N L, AND PSMW H ARE ALL ASSERTED HIGH. 014310 004737 007272 JSR PC.XRAS GO PULSE XRAS H BY HDAL12 5535 5536 5537 5538 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. PAUSE STATE WORKING - PSMW H - 1 5539 PAUSE STATE SYNC - EPSF H - 1 5540 16 BIT ADDRESS - EPFN H - 0 004737 014314 006654 JSR PC, READR4 CHECK VDAL AND PAUSE STATE MACHINE 014320 : IF OK THEN CONTINUE ; PAUSE STATE WORKING F/F PROBABLY NOT SET 001405 BEQ 145 5544 5545 014322 014322 3, VDALRG, R4EROR ERRDF 104455 TRAP C$ERDF 5546 5547 5548 5549 014324 014326 014330 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR 014332 CKLOOP 014332 5550 104406 TRAP C$CLP1 5551 5552 ;SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE ;SIGNAL XCAS H GOING FROM A O TO A 1 WILL CLOCK THE LEVEL OF THE ;SIGNAL 'PB H', WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOW 5553 SIGNAL 'PB H', WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS CLOCKING THE PAUSE STATE SYNC FLIP-FLOP TO A ZERO. THE SIGNAL XCAS H WILL ALSO CLOCK THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC 5554 5555 5556 5557 :FLIP-FLOP (1) INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 5558 :16 BIT ADDRESS FLIP-FLOP TO A ONE. 5559 5560 014334 004737 007410 145: JSR PC.XCASH ; SET THE SIGNAL XCAS H TO HIGH STATE 5561 5562 : READ THE VDAL REGISTER AND AND CHECK THE PAUSE STATE MACHINE FLIP- 5563 FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING A 1. 5564 PAUSE STATE WORKING - PSMW H - 1 5565 PAUSE STATE SYNC - EPSF H - 0 16 BIT ADDRESS - EPFN H - 1 5566 5567 014340 014346 014354 042737 052737 004737 002336 002336 5568 002000 #VDAL10,R4GOOD #VDAL11,R4GOOD CLEAR BITS FOR EPSF H 5569 004000 BIS SET BIT FOR EPFN H 5570 006654 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 5571 014360 001405 BEQ 15$: IF OK THEN CONTINUE 5572 5573 014362 014362 ERRDF EPFN H PROBABLY NOT SET IN VDAL REG 3, VDALRG, R4EROR 104455 TRAP CSERDF 014364 014366 014370 014372 5574 000003 . WORD 5575 5576 5577 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 5578 014372 104406 TRAP C$CLP1 5579 ``` | | | | | | ON A | READ COMMAND TO C | Y SETTING GDAL BITS 2:0 TO ONES. THE FORCE SHOULD BE ENABLED ON THE EODAL BUS AT THIS TIME. ONTROL REGISTER 6, THE EODAL BUS WILL BE READ VIA THE SIGNAL RPT7 L. | |--------------------------------------|--------------------------------------|------------------|--------|-------|---|---|--| | 014374 | 004737 | 007122 | | 15\$: | JSR | FC, SEODAL | SELECT EDDAL BUS VIA GDAL BITS 2:0 | | | | | | | THE F
IN TH
(ADDR
THE S
RESUL
SIGNA
FLIP-
BIT 2
HIGH
THE S
REGIS
THE O | ORCE JUMP ADDRESS E DIAGNOSTIC ADDR ESS BUS TO FORCE ORCE JUMP ADDRESS IGNALS OEARH L AN T OF THE FLIP- LS EARH H AND EAR FLOP WAS CLEARED WAS SET AND CLEA AS A RESULT OF TH IGNAL ACAS H BEIN 6 BIT ADDRESS MOD IA THE SIGNAL RPT TER WAS LOADED IN LD FORCE JUMP ADD | AT THE BEGINNING OF THE TEST WHEN VDAL REGISTER RED. THE SIGNAL EARH H AND EARL H ARE ASSERTED IN THE SIGNAL EARH H AND EARL H ARE ASSERTED IN THE SIGNAL EARH H AND EARL H ARE ASSERTED IN THE SIGNAL EARH H AND EARL H ARE ASSERTED IN THE SIGNAL EARH H AND REGISTER BIT 11 SETUP E. THE FOLLOWING SECTION WILL READ THE EDDAL TO THE OLD FORCE JUMP ADDRESS REGISTER AND THAT RESS REGISTER IS ENABLED TO THE EDDAL BUS. | | | | | | | :14631
:DATA
:REGIS
:FLIP-
:FLOP
:FORCE
:THIS | 4 THEN THE WRONG PATTERN 146314 WA TER WHICH SHOULD FLOP TO CHECK THA WAS CLEARED BY VD JUMP ADDRESS REGTEST. THE OLD FO | OM THE FORCE JUMP ADDRESS REGISTER EQUALS FORCE JUMP ADDRESS REGISTER WAS READ. THE S WRITTEN INTO THE NEW FORCE JUMP ADDRESS NOT BE SELECTED. CHECK THE "GET NEW ADDRESS" IT IT IS CLEARED. THE "GET NEW ADDRESS" FLIP AL2 H AT THE BEGINNING OF THE TEST. THE OLD ISTER SHOULD BE ENABLED TO THE EODAL BUS DURING RCE JUMP ADDRESS REGISTER IS THAT REGISTER OM THE ADDRESS BUS. | | | 011137
004737
001405
104455 | 002342
006700 | | | MOV
JSR
BEQ
ERRDF
TRAP | (R1),R6LOAD
PC,READR6
16\$
4,FEODAL,RO6ERR
C\$ERDF | IT FUNCE JUMP ADDRESS REG UK THEN CUNT | | 014414
014416
014420
014422 | 000004
003147
005020 | | | | .WORD
.WORD
.WORD
CKLOOP | FEODAL
ROGERR | | | 014422 | 104406 | | | | TRAP | C\$CLP1 | STED BY SETTING GDAL 2 TO A 7500 AND COAL DITE 1 | | | | | | | | TO ZEROES. | STER BY SETTING GDAL2 TO A ZERO AND GDAL BITS 1 | | 014424 | 004737 | 006754 | | 16\$: | JSR | PC, SLHDAL | SELECT HDAL REG VIA GDAL BITS 2:0 | | | | | | | SET T | HE SIGNAL XCAS H
BY SETTING HDAL1 | WHICH IS PRESENTLY ASSERTED HIGH TO THE LOW 3 H TO A ZERO. | | 014430 | 012737
004737 | 021004 | 002342 | | MOV
JSR | #HDAL13!HDAL9!H | DALZ, R6LOAD ; SETUP BITS PREVIOUSLY LOADED ; GO SET XCAS H TO THE LOW STATE | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 118 CVCDCB_P11 01-APR-82 14:12 TEST 28: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - OLD FJA 5636 5637 :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING THE SIGNAL HDAL15 H. :THIS IS DONE TO SIMULATE A MACHINE CYCLE. 014442 004737 007502 JSR PC.XPI :GO PULSE XPI H VIA HDAL15 H 5640 5641 5642 5643 5644 :TOGGLE
THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS SETTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H ; AND RASP L WILL BE PULSED. ; THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ZERO BY RASP L ; WHEN THE SIGNALS EPRN L AND PSMW H ARE ASSERTED HIGH AND EPFN L IS ; ASSERTED LOW. A SHORT TIME AFTER RASP L, THE SIGNAL PSMW H WILL BE 5646 5647 5648 ASSERTED LOW AS A RESULT OF THE PAUSE STATE WORKING FLIP-FLOP BEING 5651 : CLEARED. 014446 004737 007272 PC, XRAS JSR :PULSE XRAS VIA THE SIGNAL HDAL12 5654 5655 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS 5656 5657 TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. PAUSE STATE WORKING - PSMW H - 0 PAUSE STATE SYNC - EPSF H - 0 16 BIT ADDRESS - EPFN H - 1 5658 5659 5660 5661 5662 5663 5664 042737 014452 001000 002336 BIC #VDAL9_R4GOOD SETUP TO EXPECT PSMW H TO BE O 014460 PC READR4 006654 JSR GO READ VDAL AND PAUSE STATE MACHINE 014464 001405 BEQ : IF OK THEN CONTINUE 014466 ERRDF 3, VDALRG, R4EROR :PSMW H PROBABLY NOT ZEROED 5665 014466 104455 TRAP CSERDF 5666 5667 5668 5669 5670 5671 5672 5673 5674 014470 000003 . WORD 002537 014472 . WORD VDALRG 005004 014474 . WORD R4EROK 014476 CKLOOP 014476 104406 TRAP CSCLP1 :TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13. THE SIGNAL XCAS H WILL CLOCK THE OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLEARING THE 16 BIT ADDRESS F/F. 014500 004737 007376 17$: JSR PC, XCAS GO PULSE XCAS H VIA HDAL13 H 5677 5678 5679 :READ VDAL REGISTER AND CHECK PAUSE STATE MACHINE FLIP-FLOPS TO BE IN :THE FOLLOWING STATE AS A RESULT OF XCAS H BEING PULSED. : PAUSE STATE WORKING - PSMW H - 0 : PAUSE STATE SYNC - EPSF H - 0 5680 5682 16 BIT ADDRESS - EPFN H - 0 5683 5684 5685 5686 014504 014512 042737 004737 004000 002336 #VDAL11_R4G00D SETUP TO EXPECT EPFN H TO BE O 006654 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 014516 001405 BEQ : IF OK THEN CONTINUE 014520 014520 014522 014524 5687 ERRDF 3, VDALRG, R4EROR EPFN H PROBABLY NOT CLEARED 5688 5689 5690 104455 TRAP CSERD. 000003 . WORD 002537 . WORD VDALRG 014526 5691 005004 . WORD R4EROR ``` | | | | | | | | | THE PARTY NAMED AND ADDRESS OF | | |--|--|--|----------------------------|--|---|--|--|---|------------------------------| | HARDWAR | E TESTS | MACY11 | 30A(1052) | 01-APR-82 | 14:48 PA | GE 120 D 10 | | | | | CACDCB. | P11 (|)1-APR-82 | 2 14:12 | TEST | 29: PAUSE | STATE MACHINE - | 16 BIT ADDRESS - PAUS | E MODE - NEW FJA | | | 5719
5720 | | | | .SBT | TL TEST 2 | 9: PAUSE STATE M | ACHINE - 16 BIT ADDRES | S - PAUSE MODE - NEW | FJA | | 5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737 | | | | ST. | USE STATE ATE SYNC A E SIGNALS TCT H. TH LL BE SET ATE MACHIN GNAL FROM | MACHINE FLIP
IND 16 BIT ADDRES
XRAS H AND XCAS
IF SIGNALS ADAL4 | SE STATE MACHINE IN 16 - FLOP'S , PAUSE STAT S WILL BE CLOCKED TO O H AND CHANGING THE LOG H AND ADAL8 H WILL BE THIS TEST. ADAL4 H ON ADAL8 H ON A ZERO WI AND ADALO H ON A ONE WH H TO A ZERO. | E WORKING , PAUSE
NES AND ZEROES BY PUL
IC LEVEL ON THE SIGNA
SET TO A ZERO AND ADA | TO H | | 5732
5733
5734
5735
5736
5737
5738 | | | | : THI
: FOI
: ADI
: 17:
: LO | RCE JUMP A
DRESS REGI
7400, 0003 | L ALSO CHECK THA
DDRESS REGISTER
STER IS TESTED W
377, 177777, AND
BE BEGINNING OF T | THE 16 BIT INSTRUCTI
ARE ENABLED TO THE EOD
ITH THE FOLLOWING DATA
DOOOOO. THE NEW FORCE
HE TEST. | ON REGISTER AND THE N
AL BUS. THE NEW FORC
PATTERNS: 125252, 05
JUMP ADDRESS REGISTE | EW
E JUMP
2525
R IS | | 5739
5740 | 014570
014570 | | | *20 | BGNTST | | | | | | 5741
5742
5743
5744 | 014570
014574
014600 | 004737
012701
012702 | 005510
015544
000006 | 129: | JSR
MOV
MOV | PC, INITTE
#17\$,R1
#6,R2 | GET ADDRESS | INITIALIZE TARGET EMU
OF DATA TABLE
NUMBER OF DATA PATTE | | | 5745
5746
5747 | 014604
014604 | 104404 | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | | | 5748
5749 | | | | | ; SELEC | T THE MODE REGIS | TER BY SETTING GDAL2 T | O A ONE AND GDAL1 AND | GDALO | | 5750
5751 | 014606 | 004737 | 007006 | | JSR | PC,SLMODR | ;GO SELECT M | DE REG VIA CONTROL R | EG O | | 5752
5753
5754
5755 | | | | | ;LOAD,
;ON A
;MACHI | ZERO WILL ENABLE | NODE REGISTER BITS MR
16 BIT ADDRESS SELECT | 15:0 WITH ZEROES. MR
ION TO THE PAUSE STATE | BIT 11 | | 5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770 | 014612
014616
014622
014624
014624
014630
014632
014634
014634 | 005037
004737
001405
104455
000004
002631
005020
104406 | 002342
006672 | | CLR JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP TRAP | R6LOAD
PC,LDRDR6
2\$
4,MODREG,RO6ERI
C\$ERDF
4
MODREG
R06ERR | ; IF LOADED O | TO BE ZERO
AND CHECK MODE REGIST
K THEN CONTINUE
ER NOT EQUAL TO O | ER | | 5768
5769 | | | | | ;SET G
;REGIS | DAL1 AND GDALO TO
TER ON A WRITE OF | ONES IN THE GDAL REG | ISTER TO SELECT THE HIROL REGISTER 6. | DAL | | 5771 | 014636 | 004737 | 006754 | 2\$: | JSR | PC, SLHDAL | SELECT HOAL | REG VIA GDAL BITS 2:0 | 0 | | 5772
5773
5774 | | | | | ;LOAD,
;HDAL9 | READ AND CHECK IN | DAL REGISTER WITH HDA | 9 H AND HDAL2 H SET | TO ONES. | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 121 CVCDCB.P11 01-APR-82 14:12 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA REGISTER ONTO THE ADDRESS BUS AND DISABLE THE EIDAL BUS FROM THE ADDRESS BUS. HDAL2 H ON A ONE WILL ALLOW THE PROGRAM TO GENERATE THE T-11 5776 5777 :TIMING AND CONTROL SIGNALS. 5778 014642 014650 5779 012737 001004 002342 SETUP BITS TO BE LOADED MOV #HDAL9!HDAL2,R6LOAD 004737 GO LOAD, READ AND CHECK HOAL REGISTER : IF LOADED OK THEN CONTINUE 5780 006672 JSR PC.LDRDR6 5781 014654 001405 BEQ 5782 5783 014656 ERRDF 4, HDALRG, ROGERR HDAL REGISTER NOT EQUAL EXPECTED 014656 104455 TRAP C$ERDF 5784 5785 014660 -WORD 014662 002605 . WORD HDALRG 5786 5787 014664 005020 RO6ERR - WORD 014666 CKLOOP 5788 014666 104406 TRAP C$CLP1 5789 5790 SELECT THE DIAGNOSTIC ADDRESS REGISTER BY SETTING GDAL BITS 2:0 TO ZEROES. ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6, THE DIAG- 5791 5792 :NOSTIC ADDRESS REGISTER WILL BE SELECTED. 5793 5794 014670 004737 007072 35: JSR PC_SLDADR :GO SELECT DIAG. ADDRESS REG VIA GDAL 2:0 5795 5796 :LOAD, READ AND CHECK THE DIAGNOSTIC ADDRESS REGISTER WITH A DATA PATTERN 5797 OF 146314. THE DIAGNOSTIC ADDRESS REGISTER IS WRITTEN WITH DATA TO CHECK THAT THE CORRECT FORCE JUMP ADDRESS IS ENABLED TO THE EDDAL BUS WHEN THE 16 BIT ADDRESS FLIP-FLOP IS SET. THE NEW FORCE JUMP ADDRESS REGISTER WILL BE ENABLED TO THE EDDAL BUS IN THIS TEST. 5798 5799 5800 5801 5802 5803 012737 004737 014674 146314 002342 #146314, R6LOAD :WRITE DIAG ADDRESS REG WITH
146314 014702 006672 JSR PC,LDRDR6 GO LOAD READ AND CHECK DIAG ADDRESS REG 5804 014706 001405 BEQ 45 ; IF LOADED OK THEN CONTINUE 5805 5806 014710 ERRDF 4.ADDRRG.ROGERR :DIAG ADDRESS REG NOT EQUAL EXPECTED 014710 104455 TRAP CSERDF 5807 014712 000004 . WORD 5808 014714 002735 . WORD ADDRRG 5809 005020 014716 . WORD R06ERR 5810 5811 5812 5813 5814 014720 CKLOOP 014720 104406 TRAP C$CLP1 READ AND CHECK ADAL REGISTER WITH A DATA PATTERN OF 000001. :ADALO ON A ONE WILL HOLD THE BREAK LOGIC CLEARED. ADAL4 ON A ZERO 5815 WILL CAUSE THE PAUSE STATE MACHINE TO BE ENTERED ON A FETCH CYCLE 5816 5817 5818 5819 WHEN THE SIGNAL XRAS H IS PULSED. 014722 014730 012737 004737 000001 002330 4$: MOV #ADALO, R2LOAD :SETUP BIT TO BE LOADED PC,LDRDR2 006614 JSR GO LOAD, READ AND CHECK ADAL REG 5820 5821 5822 5823 5823 014734 001405 BEQ : IF LOADED OK THEN CONTINUE 014736 ERRDF 2,ADALRG,R2EROR :ADAL REGISTER NOT EQUAL 1 014736 104455 TRAP C$ERDF 000002 002513 014740 . WORD 014742 . WORD ADALRG 5825 5826 5827 5828 5828 014744 004770 R2EROR . WORD 014746 CKLOOP 014746 104406 TRAP C$CLP1 ; SET VDAL2 H TO A ONE AND THEN CLEAR VDAL2 H. VDAL2 H ON A ONE WILL 5830 CLEAR THE PAUSE STATE MACHINE FLIP-FLOPS ``` | HARDWARE TESTS MACY11 30A(1052) | 01-APR-82 14:48 PAGE 122 | | |---------------------------------|--|--| | CVCDCB.P11 01-APR-82 14:12 | TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA | | | 5831
5832 | 014750 | 005037 | 002334 | | TEST 29 | CLR | STATE MACHINE - 1 | | R WORKING BI | TS FOR VDAL REG | |--|--|--------|------------------|----------------------------|---------|---|--|---|--|--| | 5833
5834
5835
5836
5837
5838
5839 | 014754 | 004737 | 007712 | | | REGIST | THE NEW FORCE JUI
ID GDAL BITS 1 AND
ER 6, DATA WILL B
ER AND THE TAKE | MP ADDRESS REG
2 TO ZEORES.
E LOADED INTO | GISTER BY SE
ON A WRITE
THE NEW FOR | 1 AND THEN 0 TTING GDALO H TO A COMMAND TO CONTROL CE JUMP ADDRESS IP-FLOP WILL BE SET | | 2040 | 014760 | 004737 | 007040 | | | JSR | PC, SLFJAR | ;SELE | CT FORCE JUM | P ADDRESS REG VIA GDAL | | 5841
5842
5843
5844
5845
5846
5847
5848
5849 | | | | | | ; FORCE
; JUMP A
; NEW FO
; SIGNAL | JUMP ADDRESS REGI
DDRESS REGISTER V
RCE JUMP ADDRESS | STER. THE DA
IA THE SIGNAL:
FLIP-FLOP WILL
DATA PATTERNS | TA WILL BE L
S WPT1 LB H
L ALSO BE CL
LOADED WILL | RITE DATA INTO THE NEW OADED INTO THE NEW FORCE AND WPT1 HB H. THE TAKE OCKED TO A ONE BY THE BE ONE OF THE FOLLOW-000000. | | 5850 | 014764 | 011177 | 165316 | | | MOV | (R1), aREG6 | ;WRITE | E NEW FORCE | JUMP ADDRESS REGISTER | | 5851
5852
5853
5854
5855 | | | | | | ; CHECK | AL7 H TO A ONE TO THAT THE SIGNAL WILLOP TO A ONE. | SET THE SIGNA
PT1 LB H CLOCA | AL FETCT H T
KED THE TAKE | O THE HIGH STATE (1).
NEW FORCE JUMP ADDRESS | | 5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868 | 014770
014776
015004
015012
015016
015020
015020
015022
015024
015026
015030
015030 | | 002334
100000 | 002334
002336
002336 | | MOV
MOV
BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL7,R4LOAD
R4LOAD,R4GOOD
#VDAL15,R4GOOD
PC,LDRD4R
6\$
3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | ; SETUI
; COPY
; SETUI
; GO LO
; IF LO
; TNFJ | P BITS TO BE
DATA LOADED
P TO EXPECT
DAD, READ AN
DADED OK THE
H PROBABLY | LOADED TO EXPECTED TNFJ H FLIP-FLOP = 1 D CHECK VDAL REGISTER N CONTINUE NOT SET IN VDAL REG | | 5869
5870
5871
5872 | | | | | | :TO ONE | S. BITS IN THE HI | DAL REGISTER W | JILL BE SET | ERO AND GDAL1 AND GDALO
AND CLEARED LATER IN
XRAS L, XCAS H, XCAS L | | 5873
5874 | 015032 | 004737 | 006754 | | 6\$: | JSR | PC, SLHDAL | ;60 SE | ELECT HOAL R | EG VIA GDAL 2:0 | | 5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886 | | | | | | THE SI
HIGH S
HIGH S
IS LOW
TO THE | GNAL XRAS H WILL (INTO THE EDFET FL.) TATE. THE SIGNAL , INTO THE PAUSE I HIGH STATE. THE PAUSE L IS ASSETS | CCTIVELY. THE
JLSED THE SIGN
LOCK THE STAT
IP-FLOP, THUS
XRAS H WILL (
MODE FLIP-FLOP
SIGNAL SOP H
TED HIGH. WHE | TE OF THE SIGNET THE STATE OF SOP HE AND SOP HE AND THE SOP HE | IN SET TO THESE STATES | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 123 CVCDCB_P11 01-APR-82 14:12 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA PSMW H WILL BE ASSERTED HIGH. THE SIGNAL PSMW H IS READ IN THE VDAL REGISTER AS VDAL9 H. WHEN EDFET H AND SOP H ARE ASSERTED HIGH, THE 5887 5888 5889 SIGNAL PB H WILL BE ASSERTED HIGH. THE SIGNAL PB H IS THE DATA INPUT 5890 :LEAD TO THE PAUSE STATE SYNC FLIP-FLOP. 5891 5892 5893 THE SIGNAL XRAS H WILL CAUSE THE SIGNAL RASP H TO BE PULSED. WHEN THE SIGNAL RASP H IS PULSED AND THE SIGNAL EDFET H IS ASSERTED HIGH, A 5894 5895 5896 PULSE WILL BE ISSUED ON THE SIGNAL DEET H. THE SIGNAL DEET H WILL CLOCK THE ADDRESS BUS INTO THE OLD FORCE JUMP ADDRESS REGISTER. AT THE PRESENT TIME THE DIAGNOSTIC ADDRESS REGISTER IS ENABLED ONTO THE 5897 ADDRESS BUS, THEREFORE THE OLD FORCE JUMP ADDRESS REGISTER WILL BE 5898 LOADED WITH THE DATA FROM THE DIAGNOSTIC ADDRESS REGISTER. 5899 5900 015036 012737 001004 002342 MOV #HDAL9!HDAL2,R6LOAD :BITS PREVIOUSLY SET IN HDAL REG 5901 5902 5903 5904 015044 004737 007304 JSR PC_XRASH :SET XRAS H HIGH AND XRAS L LOW VIA HDAL12 CLEAR VDAL7 H IN THE VDAL REGISTER THUS SETTING THE SIGNAL FETCT H TO THE LOW STATE. CHECK THE PAUSE STATE MACHINE TO BE IN THE FOLLOWING 5905 5906 5907 STATE AS A RESULT OF EDFET H AND SOP H BEING ASSERTED HIGH. THE "TAKE :NEW FORCE JUMP ADDRESS" FLIP-FLOP WAS SET TO A ONE EARLIER WHEN THE NEW FORCE JUMP ADDRESS REGISTER WAS LOADED WITH THE DATA PATTERN. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 16 BIT ADDRESS - EPFN H - 0 5908 5909 5910 5911 TAKE NEW FJ ADDRESS - TNFJ H - 1 5912 GET NEW ADDRESS - OUTNEW H - O 5913 000200 002334 101000 002334 002336 002336 042737 013737 5914 015050 #VDAL7,R4LOAD BIC SETUP TO CLEAR FETCT H 5915 015056 R4LOAD,R4GOOD #VDAL15!VDAL9,R4GOOD MOV COPY DATA LOADED TO EXPECTED 5916 5917 5918 052737 004737 015064 015072 BIS EXPECT PSMW H AND TNFJ H TO BE SET 006646 JSR PC,LDRD4R :GO LOAD, READ AND CHECK VDAL REGISTER 015076 001405 BEQ : IF LOADED OK THEN CONTINUE 5919 015100 ERRDF 3, VDALRG, R4EROR ; VDAL OR PAUSE STATE MACHINE ERROR 5920 015100 104455 TRAP CSERDF 5921 015102 000003 . WORD 5922 5923 5924 5925 5926 5927 5928 5929 5930 002537 015104 . WORD VDALRG 015106 005004 . WORD R4EROR 015110 CKLOOP 015110 104406 TRAP CSCLP1 THE SIGNALS XRAS H AND XRAS L ARE STILL ASSERTED TO THE HIGH AND LOW STATE PESPECTIVELY BY HDAL12 H BEING SET TO A ONE. THEY WILL REMAIN SET TO THESE STATES UNTIL THE SIGNALS XPI H AND XPI L HAVE BEEN PULSED 5931 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS H GOING FROM A ZERO TO A ONE WILL CLOCK THE LEVEL OF THE SIGNAL 'PB H', WHICH IS HIGH, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A
ONE. THE SIGNAL XCAS H WILL ALSO CLOCK THE PREVIOUS STATE OF THE PAUSE STATE SYNC FLIP-FLOP (0) 5932 5933 5934 5935 :INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 16 BIT ADDRESS :FLIP-FLOP TO A ZERO. 015112 004737 007410 75: JSR PC, XCASH ASSERT XCAS H TO HIGH STATE 5940 5941 5942 READ VOAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING SET TO 1. ``` ``` CVCDCB.P11 01-APR-82 14:12 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 5944 5945 16 BIT ADDRESS - EPFN H - 0 TAKE NEW FJ ADDRESS - TNFJ H - 1 GET NEW ADDRESS - OUTNEW H - O 052737 004737 015116 002000 002336 BIS #VDAL10,R4G00D :SETUP TO EXPECT PAUSE STATE SYNC - EPSF 5950 015124 GO READ AND CHECK PAUSE STATE MACHINE 006654 JSR PC.READR4 5951 5952 5953 001405 BEQ 015132 015132 ERRDF VDALRG R4EROR EPSF H PROBABLE NOT SET IN VDAL REG TRAP CSERDF 015134 015136 5954 000003 . WORD 5955 5956 . WORD VDALRG 015140 005004 . WORD R4EROR 5957 5958 5959 015142 CKLOOP 104406 TRAP C$CLP1 5960 5961 5962 5963 SELECT THE EDDAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE 16 BIT INSTRUCTION REGISTER SHOULD BE ASSERTED ON THE EODAL BUS AT THIS TIME. :TO THE LSI-11 BUS VIA THE SIGNAL RPT7 L. 5965 5966 5967 5968 5969 015144 004737 007122 8$: JSR PC.SEODAL :SELECT EODAL BUS VIA GDAL BITS 2:0 THE SIGNAL ACAS H WILL BE ASSERTED HIGH AS A RESULT OF THE SIGNAL XCAS H BEING ASSERTED HIGH AND THE SIGNAL PSMW H BEING ASSERTED HIGH. WHEN THE SIGNAL ACAS H IS ASSERTED HIGH AND THE PAUSE STATE SYNC FLIP- FLOP IS SET TO A ONE, THE SIGNALS EDRL L AND EDRH L WILL BE ASSERTED LOW. THESE TWO SIGNALS WILL ENABLE THE 16 BIT INSTRUCTION REGISTER ONTO THE EODAL BUS. WHEN A READ COMMAND IS ISSUED TO CONTROL REGISTER ONTO THE BODAL BITS 2:0 SET TO ONES, A PULSE WILL BE ISSUED ON THE SIGNAL PROPERTY L. THE SIGNAL RPT7 L WILL READBACK THE 16 BIT INSTRUCTION REGISTER TER WHICH IS ENABLED TO THE EODAL BUS AT THIS POINT IN TIME. 5970 5971 5972 5973 5974 5975 5976 5977 5978 012737 004737 015150 000137 002342 MOV #137, R6LOAD SETUP EXPECTED 16 BIT INSTRUCTION (JMP) 015156 006700 JSR PC , READR6 READ 16 BIT INSTRUCTION REG ON EODAL BUS 5979 001405 015162 BEQ 5980 015164 4. IEODAL, ROGERR ERRDF EODAL BUS ERROR, OR 16 BIT INSTRUCTION 5981 015164 104455 TRAP CSERDF 5982 5983 5984 5985 5986 5987 5988 5989 5990 015166 015170 000004 . WORD 003034 . WORD IEODAL 015172 005020 . WORD RO6ERR REGISTER ERROR, OR 16 BIT INSTRUCTION REGISTER NOT ENABLED TO THE BUS 015174 CKLOOP 015174 104406 C$CLP1 TRAP RESELECT THE HDAL REGISTER BY SETTING GDALZ TO A ZERO AND GDAL1 AND :GDALO TO ONES. 5992 5993 5994 5995 5996 015176 004737 006754 9$: JSR PC.SLHDAL SELECT HDAL REGISTER VIA GDAL BITS 2:0 :SET THE SIGNAL XCAS H TO A ZERO BY CLEARING HDAL13 H IN HDAL REGISTER 5997 5998 THE SIGNALS KRAS H AND KRAS L WILL REMAIN ASSERTED TO THE HIGH AND LOW STATE RESPECTIVELY BY HDAL12 H BEING SET TO A ONE. THEY WILL NOT BE ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 125 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA CVCDCB.P11 01-APR-82 14:12 :DEASSERTED UNTIL PULSES HAVE BEEN ISSUED ON XPI H AND XPI L. 6000 6001 015202 012737 031004 002342 #HDAL13!HDAL12!HDAL9!HDAL2,R6LOAD ;BITS PREVIOUSLY LOADED IN HDAL 015210 004737 JSR PC.XCASL SET XCAS H TO THE LOW STATE 6003 6004 :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING THE SIGNAL HDAL15 H. :THIS IS DONE TO SIMULATE A MACHINE CYCLE. 6006 6007 015214 004737 007502 JSR PC_XPI :GO PULSE XPI H VIA HDAL15 H 8008 ; READ THE VDAL REGISTER AGAIN TO CHECK THAT THE "TAKE NEW FORCE JUMP ; ADDRESS "FLIP-FLOP IS STILL SET. IT SHOULD NOT CLEAR UNTIL THE ; NEXT XCAS H PULSE. THE PAUSE STATE MACHINE FLIP-FLOPS SHOULD REMAIN ; UNCHANGED AFTER XPI H AND XPI L WERE PULSED. 6009 6010 6011 6012 6013 PAUSE STATE WORKING - PSMW H - 1 6014 PAUSE STATE SYNC - EPSF H - 1 6015 16 BIT ADDRESS - EPFN H - 0 6016 TAKE NEW FJ ADDRESS - TNFJ H - 1 6017 GET NEW ADDRESS - OUTNEW H - 0 6018 015220 015224 015226 6019 004737 006654 JSR PC_READR4 :GO READ VDAL AND PAUSE STATE MACHINE 6020 001405 10$ BEQ : IF OK THEN CONTINUE 6021 3, VDALRG, R4EROR ERRDF ; PAUSE STATE MACHINE CHANGED AFTER XPI 6022 6023 015226 104455 TRAP C$ERDF 015230 000003 . WORD 015232 015234 015236 015236 6024 6025 6026 6027 002537 . WORD VDALRG 005004 R4EROR . WORD CKLOOP 104406 TRAP C$CLP1 6028 6029 6030 6031 6032 SET THE SIGNALS KRAS H AND KRAS L TO THERE DE-ASSERTED STATE BY CLEARING ;HDAL12 H IN THE HDAL REGISTER. WHEN XRAS L IS RETURNED TO THE HIGH ;STATE, THE 'GET NEW ADDRESS' FLIP-FLOP WILL BE CLOCKED TO A ONE AS A ;RESULT OF THE 'TAKE NEW FORCE JUMP ADDRESS' FLIP-FLOP BEING SET AND THE ;'PAUSE STATE SYNC' FLIP-FLOP BEING SET. WHEN THE 'GET NEW ADDRESS' FLIP- ;FLOP IS SET, THE SIGNAL 'OUTNEW H' WILL BE ASSERTED HIGH. THE OUTNEW H 6033 6034 6035 SIGNAL IS READ IN THE VDAL REGISTER AS VDAL BIT 8. 6036 6037 015240 004737 007336 105: JSR PC, XRASL ; SET XRAS H LOW AND XRAS L HIGH VIA HDAL12 6038 6039 :READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO :BE IN THE FOLLOWING STATE. THE "GET NEW ADDRESS" FLIP-FLOP SHOULD HAVE 6040 6041 6042 6043 BEEN SET TO A ONE WHEN XRAS L WAS RETURNED TO THE HIGH STATE. THE "GET NEW ADDRESS" FLIP-FLOP WAS CLOCKED TO A ONE BY XRAS L WHEN THE "TAKE NEW FORCE JUMP ADDRESS" FLIP-FLOP AND THE "PAUSE STATE SYNC" 6044 :FLIP-FLOP WERE SET TO A ONE. 6045 PAUSE STATE WORKING - PSMH H - 1 PAUSE STATE SYNC - EPSF H - 1 6046 6047 6048 16 BIT ADDRESS - EPFN H - 0 TAKE NEW FJ ADDRESS - TNFJ H - 1 GET NEW ADDRESS - OUTNEW H - 1 6050 015244 015252 015256 015260 6051 6052 6053 052737 004737 000400 006654 002336 #VDAL8,R4GOOD BIS EXPECT OUTNEW H TO BE A ONE PC READR4 JSR GO READ VOAL AND PAUSE STATE MACHINE 001405 BEQ : IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR OUTNEW H PROBABLY NOT SET TO A ONE ``` ``` J 10 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 126 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA CVCDCB_P11 01-APR-82 14:12 6055 015260 6056 015262 6057 015264 6058 015266 6059 015270 6060 015270 104455 TRAP CSERDF 000003 -WORD VDALRG . WORD 005004 . WORD R4EROR CKLOOP 6060 6061 6062 104406 TRAP C$CLP1 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. 6063 :WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE 6064 EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL 6065 6066 6067 PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE 6068 6069 SIGNAL RASP L WHEN EPFN L. EP8N L. AND PSMW H ARE ALL ASSERTED HIGH. 6070 6071 015272 004737 007272 115: PC.XRAS JSR GO PULSE KRAS H BY HDAL12 6072 6073 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS 6074 TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 16 BIT ADDRESS - EPFN H - 0 6075 6076 6077 6078 TAKE NEW FJ ADDRESS - TNFJ H - 1 6079 GET NEW ADDRESS - OUTNEW H - 1 6080 6081 6082 015276 004737 PC, READR4 006654 JSR CHECK VDAL AND PAUSE STATE MACHINE 015302 001405 12$ BEQ : IF OK THEN CONTINUE 6083 015304 ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 6084 015304 104455 TRAP C$ERDF 015306 015310 6085 000003 002537 . WORD 6086 6087 6088 . WORD VDALRG 015312 005004 . WORD R4EROR 015314 CKLOOP 6089 015314 104406 TRAP C$CLP1 6090 6091 6092 6093 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS H GOING FROM A O TO A 1 WILL CLOCK THE LEVEL OF THE SIGNAL 'PB H'', WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS CLOCKING THE PAUSE STATE SYNC FLIP-FLOP TO A ZERO. THE SIGNAL SXCAS H WILL ALSO CLOCK THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC 6094 6095 6096 FLIP-FLOP (1) INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 6097 :16 BIT ADDRESS FLIP-FLOP TO A ONE. 6098 6099 THE SIGNAL XCAS H WILL ALSO CAUSE THE "TAKE NEW FORCE JUMP ADDRESS" FLIP-FLOP TO BE CLEARED WHEN THE "GET NEW ADDRESS" FLIP-FLOP IS SET 6100 6101 :TO A ONE. 6102 015316 004737 007410 125: JSR PC.XCASH :ASSERT XCAS H TO THE HIGH STATE 6104 6105 READ THE VDAL REGISTER AND AND CHECK THE PAUSE STATE MACHINE FLIP- 6106 FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING A 1. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 6107 6108 6109 16 BIT ADDRESS - EPFN H - 1 6110 TAKE NEW FJ ADDRESS - TNFJ H - 0 ``` K 10 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 127 CVCDCB_P11 01-APR-82 14:12 TEST 29: PAUSE STATE MACHINE - 16 BIT ADDRESS - PAUSE MODE - NEW FJA GET NEW ADDRESS - OUTNEW H - 1 6112 015322 015330 015336 015342 042737 052737 004737 102000 002336 002336 #VDAL15!VDAL10,R4GOOD CLEAR BITS FOR EPSF H AND TNFJ H 6114 6115 BIS #VDAL11,R4G00D :SET BIT FOR EPFN H PC READR4 006654 JSR GO READ VOAL AND PAUSE STATE MACHINE 6116 001405 BEQ : IF OK THEN CONTINUE 015344 ERRDF 3, VDALRG, R4EROR EPFN H PROBABLY NOT SET IN VDAL REG 015344 6118 TRAP CSERDF 015346 015350 6119 000003 . WORD 6120 6121 6122 6123 6124 6125 6126 002537 . WORD VDALRG 015352 005004 . WORD R4EROR 015354 CKLOOP 015354 104406 TRAP CSCLP1 SELECT THE EDDAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE NEW FORCE JUMP ADDRESS REGISTER SHOULD BE ENABLED ON THE EDDAL BUS AT THIS TIME. ON A READ COMMAND TO CONTROL REGISTER 6, THE EDDAL BUS WILL BE READ 6127 6128 6129 BACK TO THE LSI-11 BUS VIA THE SIGNAL RPT7 L. 015356 004737 007122 13$: JSR PC, SEODAL :SELECT EODAL BUS VIA GDAL BITS 2:0 6131 6132 6133 6134 6135 AT THIS POINT IN TIME, THE NEW FORCE JUMP ADDRESS REGISTER WILL BE ; ENABLED TO THE EODAL BUS VIA THE SIGNALS NEARH L AND NEARL L. THESE ; SIGNALS ARE ASSERTED LOW AS A RESULT OF THE 'GET NEW ADDRESS' FLIP-FLOP BEING SET AND THE SIGNALS EARH H AND EARL H BEING SASSERTED HIGH. THE "GET NEW ADDRESS" FLIP-FLOP WAS SET WHEN 6136 6137
THE PAUSE STATE SYNC FLIP-FLOP WAS A ONE, A PULSE WAS ISSUED ON THE TAKE NEW FORCE JUMP ADDRESS FLIP-FLOP WAS SET TO A ONE. 6138 6139 THE SIGNAL EARH H AND EARL H ARE ASSERTED HIGH AS A RESULT OF 16 BIT ADDRESS FLIP-FLOP BEING SET TO A ONE, THE SIGNAL ACAS H ASSERTED HIGH, AND MODE REGISTER BIT 11 SET TO A ZERO FOR 16 BIT ADDRESS MODE. THE FOLLOWING SECTION WILL READ THE EODAL BUS VIA THE SIGNAL RPT7 L AND CHECK THAT THE NEW FORCE JUMP ADDRESS REGISTER IS ENABLED TO THE EODAL BUS. THE NEW FORCE JUMP ADDRESS REGISTER WAS WRITTEN AT THE BEGINNING 6140 6141 6142 6144 6145 OF THIS TEST VIA THE SIGNALS WPT1 LB H AND WPT1 HB H. 6146 6147 : IF THE ADDRESS READ FROM THE FORCE JUMP ADDRESS REGISTER EQUALS 146314, 6148 THEN THE WRONG FORCE JUMP ADDRESS REGISTER WAS READ. THE DATA PATTERN 6149 :146314 WAS WRITTEN INTO THE OLD FORCE JUMP ADDRESS REGISTER VIA THE SIGNAL DEET H AND THE DIAGNOSTIC ADDRESS REGISTER. CHECK THE "GET NEW ADDRESS" FLIP-FLOP TO BE SET TO A ONE AND CHECK THE NEW FORCE 6150 6151 6152 6153 JUMP ADDRESS SELECTION LOGIC. 015362 015366 015372 6154 6155 011137 004737 002342 006700 MOV (R1), R6LOAD GET DATA LOADED INTO NEW FJA REG PC READRO JSR READ NEW FORCE JUMP ADDRESS ON EODAL BUS 6156 6157 001405 BEQ : IF FORCE JUMP ADDRESS REG OK THEN CONT 015374 ERRDF 4, FEODAL, ROSERR :NEW FORCE JUMP ADDRESS REG TO EODAL BUS ERR 6158 015374 104455 TRAP CSERDF 6159 000004 015376 . WORD 015400 6160 003147 . WORD FEODAL 015402 6161 005020 . WORD RO6ERR 6162 6163 CKLOOP 015404 104406 TRAP C$CLP1 6164 6165 RESELECT THE HDAL REGISTER BY SETTING GDAL2 TO A ZERO AND GDAL BITS 1 6166 :AND O TO ZEROES. ``` | ì | HARDWARE TEST | S MACY11 30A(1052) | 01-APR-82 | 14:48 PAGE 1 | 28 | | | | |---|---------------|---------------------------------------|-----------|---------------|------------|----------|-----------------|----------------| | | CVCDCB.P11 | S MACY11 30A(1052)
01-APR-82 14:12 | TEST | 29: PAUSE STA | TE MACHINE | - 16 BIT | ADDRESS - PAUSE | MODE - NEW FJA | | LVLULB. | , , | JI-APR-02 | 14:12 | | 1521 54 | : PAUSE | STATE MACHINE | - 10 BIL ADD | RESS - PAUSE I | MODE - NEW FJ | A | | |--|--|--|------------------|--------|---------|---|--|---|---|---|-----------------------|----| | 6167
6168
6169 | 015406 | 004737 | 006754 | | 14\$: | JSR | PC,SLHDAL | | SELECT HDAL RE | | | | | 6170
6171
6172 | | | | | | SET TH | E SIGNAL XCAS
G HDAL13 H TO | H, WHICH IS A ZERO. | PRESENTLY SET | HIGH, TO THE | LOW STATE | BY | | 6173
6174
6175 | 015412
015420 | 012737
004737 | 021004
007442 | 002342 | | MOV
JSR | #HDAL13!HDAL9
PC,XCASL | !HDAL2,R6LOA! | D ;SETUP BITS
SET XCAS H TO | PREVIOUSLY L | OADED | | | 6176
6177
6178 | | | | | | :TOGGLE | THE SIGNAL XP
S DONE TO SIMU | I H BY SETTI | NG AND CLEARIN | NG THE SIGNAL | HDAL15 H. | | | 6179
6180 | 015424 | 004737 | | | | JSR | PC,XPI | : | GO PULSE XP! | H VIA HDAL15 | н | | | 6181
6182
6183
6184
6185
6186
5187
6188
6189
6190
6191
6192 | | | | | | AND RA | THE SIGNALS X HE SIGNAL FETC FLIP-FLOP WILL H TO THE LOW S ILL BE ASSERTE SP L WILL BE P USE STATE WORK HE SIGNALS EP8 ED LOW. A SHO ED LOW AS A RE D. | D LOW. WHEN
ULSED.
ING FLIP-FLO
IN L AND PSMW
IRT TIME AFTE | P WILL BE CLOC
H ARE ASSERTE
R RASP L. THE | CKED TO A ZER
ED HIGH AND E
SIGNAL PSMW | RO BY RASP LEPFN L IS | | | 6193 | 015430 | 004737 | 007272 | | | JSR | PC,XRAS | ; | PULSE XRAS VI | A THE SIGNAL | HDAL12 | | | 6194
6195
6196
6197
6198
6199
6200
6201
6202
6203 | | | | | | PAI | HE VDAL REGIST IN THE FOLLOWI USE STATE WORK USE STATE SYNC BIT ADDRESS - KE NEW FJ ADDR T NEW ADDRESS | NG STATE AS A
ING - PSMW H
- EPSF H - (
EPFN H - 1
ESS - TNFJ H | A RESULT OF XF | ATE MACHINE F
RAS H BEING P | LIP-FLOPS
ULSED. | | | 6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6221 | 015434
015442
015446
015450
015452
015454
015456
015460
015460 | 042737
004737
001405
104455
000003
002537
005004
104406 | 001000
006654 | 002336 | | BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL9,R4GOOD
PC,READR4
15\$
3,VDALRG,R4ER
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | : (| SETUP TO EXPECT
GO READ VDAL A
IF OK THEN COM
PSMW H PROBABL | AND PAUSE STA | TE MACHINE | | | 6214
6215
6216
6217 | | | | | | :XCAS H | THE SIGNAL XC | E OUTPUT OF | THE PAUSE STAT | E SYNC FLIP- | FLOP INTO | | | 6218 | 015462 | 004737 | 007376 | | 15\$: | JSR | PC,XCAS | ; | GO PULSE XCAS | H VIA HDAL13 | H | | | 6220
6221
6222 | | | | | | READ VI | DAL REGISTER AND LLOWING STATE WORKING | ND CHECK PAUS
AS A RESULT O
NG - PSMW H - | SE STATE MACHI
OF XCAS H BEIN
- 0 | INE FLIP-FLOP
NG PULSED. | S TO BE IN | | | | HADDUAD | - TECTC | MACV11 | Z04/1053 | 01-40 | 0-02 1/ | ./0 DAC | E 120 M 10 | | | |---|--|--|--|--------------------|----------|------------------|---|---|--|--| | | CVCDCB. | P11 0 | 1-APR-82 | 30A(1052)
14:12 |) UI-API | TEST 29 | : PAUSE | STATE MACHINE - 16 | BIT ADDRESS - PAUSE MODE - NEW FJA | | | | 6223
6224
6225
6226 | | | | | | : 16
: TAK | SE STATE SYNC - EPS
BIT ADDRESS - EPFN
E NEW FJ ADDRESS -
NEW ADDRESS - OUTN | H - 0
TNFJ H - 0 | | | | 6223
6225
6226
6227
6228
6223
6233
6233
6233
6233
6233
6243
6243 | 015466
015474
015500
015502
015502 | 042737
004737
001405 | 004000
006654 | 002336 | | BIC
JSR
BEQ
ERRDF
TRAP | #VDAL11,R4GOOD
PC.READR4
16\$
3,VDALRG,R4EROR
C\$ERDF | ;SETUP TO EXPECT EPFN H TO BE 0
;GO READ VDAL AND PAUSE STATE MACHINE
;IF OK THEN CONTINUE
;EPFN H PROBABLY NOT CLEARED | | | | 6233
6234
6235
6236 | 015504
015506
015510
015512 | 000003
002537
005004 | | | | .WORD
.WORD
.WORD
CKLOOP | VDALRG
R4EROR | | | | | 6237
6238
6239 | 015512 | 104406 | | | | TRAP | C\$CLP1 THE SIGNAL XPI H B | Y SETTING AND CLEARING THE SIGNAL HDAL15 H. | | | ١ | 6241 | | | | | | ; THIS I | S DONE TO FINISH TH | E MACHINE CYCLE. | | | ١ | 6242 | 015514 | 004737 | 007502 | | 16\$: | JSR | PC,XPI | GO PULSE XPI H VIA HDAL15 H | | | | 6244
6245
6246 | | | | | | :TO CHE
:PROGRA
;ADDRES | CK THAT THE "GET NE
M WILL SET VDAL2 H
S" FLIP-FLOP WILL B | W ADDRESS" FLIP-FLOP CAN BE CLEARED, THE TO A ONE AND THEN A ZERO. THE "GET NEW E CLEARED WHEN VDALZ H IS SET TO A ONE. | | | | 6248
6249
6250 | 015520
015524 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC,CLRPSM | CLEAR WORKING BITS FOR VDAL REG | | | ١ | 6251 | 015530
015530 | | | | 100000 | ENDSEG | | | | | I | 6253 | 015530 | 104405 | | | 10000\$: | TRAP | CSESEG | | | | | 0220 | 015532
015534
015536
015540 | 005721
005302
001410
000137 | 014604 | | | TST
DEC
BEQ
JMP | (R1)+
R2
18\$
1\$ | :UPDATE POINTER TO DIAG ADDRESS DATA TABLE :CHECK IF ALL PATTERNS HAVE BEEN LOADED :IF YES THEN END OF TEST :IF NOT THEN LOAD NEXT PATTERN | | | | 6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269 | 015544
015546
015550
015552
015554
015556 | 125252
052525
177400
000377
177777
000000 | | | 17\$: | .WORD
.WORD
.WORD
.WORD
.WORD | 125252
052525
177400
000377
177777
000000 | | | | | 6266
6267
6268
6269
6270 | 015560
015560
015560 | 104401 | | | 18\$:
L10057: | ENDTST
TRAP | CSETST | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 130 CVCDCB.P11 01-APR-82 14:12 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE | 6271 | | | | | .SBTTL | TEST 30 | : CHECK TIMEOUT BRI | AK ONE SHOT IN | RUN MODE | | |--|--------------------------------------|--------------------------------------|------------------|--------|--|---|--|--
--|--| | 6273
6274
6275
6276
6277
6278
6281
6283
6283
6284
6285
6286
6287
6288
6290
6291
6293
6294
6295
6296
6297
6298
6299
6300 | | | | | THIS WHEN A PUL A BRE TIMEO THAT AND TI ALL TI CHECK BREAK BREAK | TEST WIL
THE PAUS
SE ON TH
AK CONDT
UT BREAK
THE PAUS
HAT IT I
HE PAUSE
THAT TH
ONE SHO
ONE SHO | L CHECK THE PAUSE : E STATE MACHINE IS E SIGNAL XRAS H, TI ION IS RECEIVED ON ONE SHOT TO GENERA E STATE MACHINE IS S ENTERED WHEN A BI STATE LOGIC ASSOC E SIGNAL "TOBRK H" T IS NOT BEING FIRED. | TATE MACHINE IN SETUP IN 'RUN' IE PAUSE STATE ME THE SIGNAL 'BRK TO NOT ENTERED WHE REAK CONDITION IN THE SET IN CONTRES AND THAT IT I | "RUN" AND 16 BIT MODE VIA ADAL4 HACHINE CAN ONLY ENTER THIS TEST WITH THE TEST OF TEST OF THE TEST OF THE TEST OF TEST OF THE TEST OF TEST OF TEST OF TEST OF TEST OF TEST | ADDRESS MODE. ON A ONE AND DE ENTERED WHEN VILL USE THE OT WILL CHECK TON IS RECEIVED TEST WILL CHECK THE TEST WILL ON THE TIME OUT THE TIME OUT | | 6286
6287 | 015562 | | | | | BGNTST | | | | | | 6288 | 015562
015562 | 004737 | 005510 | | T30:: | JSR | PC, INITTE | SELECT A | ND INITIALIZE TAR | GET EMULATOR | | 6291
6292 | 015566
015566 | 104404 | | | | BGNSEG
TRAP | C\$BSEG | | | | | 6293 | | | | | | ;SELECT | MODE REGISTER VIA | GDAL BITS 2:0 I | N CONTROL REGISTE | R O | | 6296 | 015570 | 004737 | 007006 | | | JSR | PC,SLMODR | ;SELECT M | ODE REGISTER VIA | GDAL BITS 2:0 | | 6298
6299 | | | | | | CLEAR WILL S | ALL BITS IN THE MOI
ELECT 16 BIT ADDRES | E REGISTER. MO | DE REGISTER BIT 1
PAUSE STATE MACHI | 1 ON A ZERO
NE. | | 6301
6302
6303 | 015574
015600
015604
015606 | 005037
004737
001405 | 002342
006672 | | | CLR
JSR
BEQ
ERRDF | R6LOAD
PC,LDRDR6
1\$
4,MODREG,RO6ERR | ;GO LOAD, | CLEAR ALL BITS READ AND CHECK P D OK THEN CONTINU ISTER NOT EQUAL E | ODE REGISTER | | 6304
6305
6306
6307
6308 | 015606
015610
015612
015614 | 104455
000004
002631
005020 | | | | TRAP
.WORD
.WORD
.WORD | C\$ERDF
4
MODREG
RO6ERR | , HODE REG | ISTER NOT ENGAL E | APECIED | | 6309
6310 | 015616
015616 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | | 6311 | | | | | | :SELECT | HDAL REGISTER VIA | GDAL BITS 2:0 I | N CONTROL REGISTE | R O | | 6314 | 015620 | 004737 | 006754 | | 1\$: | JSR | PC, SLHDAL | SELECT H | DAL REGISTER VIA | GDAL BITS 2:0 | | 6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318 | | | | | | :SET HD:
:ZERO.
:TIMING | AL REGISTER BIT 2 TO WHEN HDAL2 H IS SE AND CONTROL SIGNAL | O A ONE AND ALL
T TO A ONE, THE
S. | OTHER HDAL REGIS | TER BITS TO A | | 6320
6321
6322 | 015624
015632
015636 | 012737
004737
001405 | 000004
006672 | 002342 | | MOV
JSR
BEQ | #HDAL2,R6LOAD
PC,LDRDR6
2\$ | : GO LOAD. | T TO BE LOADED READ AND CHECK H | DAL REGISTER | | 6320
6321
6322
6323
6324
6325
6326 | 015640
015640
015642
015644 | 104455
000004
002605 | | | | ERRDF
TRAP
.WORD
.WORD | 4.HDALRG,ROGERR
CSERDF
4
HDALRG | HDAL REG | D OK THEN CONTINU
ISTER NOT EQUAL E | XPECTED | | 0320 | 017044 | 002003 | | | | . WUND | HUALKU | | | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 131 CVCDCB_P11 01-APR-82 14:12 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE 6327 6328 6329 6330 6331 6332 6333 015646 005020 . WORD RO6ERR 015650 CKLOOP 015650 104406 TRAP C$CLP1 SET ADAL REGISTER BIT 4 TO A ONE AND ALL OTHER ADAL REGISTER BITS TO A ; ZERO. WHEN A PULSE IS ISSUED ON XRAS H AND ADAL4 H IS SET TO A ONE, ; THE PAUSE MODE FLIP-FLOP WILL BE CLOCKED TO THE RUN MODE. WHEN THE ; PAUSE MODE FLIP-FLOP IS SET TO THE RUN MODE, THE SIGNAL PAUSE L WILL ; BE ASSERTED LOW. ADAL8 H ON A ZERO WILL CAUSE THE SIGNAL TOBRK H TO ; BE ASSERTED LOW. WHEN THE SIGNAL TOBRK H IS ASSERTED LOW, THE SIGNAL BRK H WILL ALSO BE ASSERTED LOW. 012737 6339 015652 002330 28: 000020 MOV #ADAL4, R2LOAD SETUP BIT TO BE LOADED 015660 PC,LDRDR2 006614 JSR GO LOAD, READ AND CHECK ADAL REGISTER 6341 6342 6343 6344 6345 6346 6347 6348 6349 015664 001405 BEQ : IF LOADED OK THEN CONTINUE 015666 ERRDF ADALRG, RZEROR :ADAL REGISTER NOT EQUAL EXPECTED 015666 104455 TRAP CSERDF 015670 000002 . WORD 015672 002513 . WORD ADALRG 015674 004770 . WORD R2EROR 015676 CKLOOP 015676 104406 TRAP C$CLP1 :TOGGLE THE SIGNAL INVO L BY SETTING AND CLEARING VDAL2 H IN THE VDAL 6351 REGISTER. A PULSE ON INVO L WILL CLEAR ALL THE FLIP-FLOPS ON THE MODULE EXCEPT THE SINGLE STEP BREAK FLIP-FLOP AND THE MEMORY SIMULATOR BREAK FLIP-FLOP. A PULSE ON INVO L WILL ALSO SET THE PAUSE MODE FLIP-FLOP TO THE RUN MODE, THUS ASSERTING THE SIGNAL PAUSE L TO THE LOW STATE. A PULSE ON INVO L WILL ALSO RESET THE TIMEOUT BREAK ONE-SHOT. 6353 6354 6355 6356 6357 015700 005037 3$: R4LOAD SETUP TO CLEAR VDAL R/W BITS 6358 6359 004737 015704 JSR PC, CLRPSM :GO PULSE INVD L VIA VDAL2 H 6360 6361 6362 SET ADAL REGISTER BIT 8 TO A ONE. ADAL8 H ON A ONE WILL ENABLE THE SIGNAL TOBRK H TO CONTROL REGISTER O AND TO THE BRK H LOGIC. AT THIS POINT IN TIME, THE TIMEOUT BREAK ONE SHOT HAS NOT BEEN FIRED BY THE 6363 6364 6365 6366 6367 ;SIGNAL DEET H, THEREFORE, THE SIGNAL TOBRK H WILL BE ASSERTED HIGH ;WHEN ADALS H IS ASSERTED HIGH (1). WHEN THE SIGNAL TOBRK H IS ASSERTED ;HIGH, THE SIGNAL BRK H WILL ALSO BE ASSERTED HIGH. 052737 004737 015710 000400 002330 BIS #ADAL8, R2LOAD SETUP BIT TO BE LOADED 015716 6368 006614 JSR GO LOAD, READ AND CHECK ADAL REGISTER PC.LDRDR2 6369 6370 6371 015722 015724 015724 015726 015730 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 2,ADALRG,R2EROR ADAL REGISTER NOT EQUAL EXPECTED 104455 TRAP CSERDF 000002 . WORD 002513 . WORD ADALRG 015732 015734 6374 6375 004770 . WORD R2EROR CKLOOP 015734 104406 TRAP CSCLP1 6377 6378 6379 READ CONTROL REGISTER O AND CHECK THAT THE SIGNAL TOBRK H IS SET TO A ONE WHEN THE ONE SHOT HAS NOT BEEN FIRED AND THE SIGNAL ADALS H IS 6380 :ASSERTED HIGH. 6381 015736 052737 000100 002322 4$: #TOBRK, ROGOOD BIS EXPECT TOBRK H TO BE A ONE ``` | HARDWARE TEST | S MACY11
01-APR-8 | 30A(1052)
14:12 | 01-APR-82
TEST | 14:48 PAGE
30: CHECK | E 132
TIMEOUT BREAK ONE | SHOT IN RUN MODE | | | |---|--|--------------------|-------------------|--|--|---|---|--------------------------------| | 6383 01574
6384 01575
6385 01575
6386 01575
6387 01575
6388 01575
6389 01576
6390 01576
6391 01576
6392
6393
6394
6395
6396 | 0 001405
2 104455
4 000001
6 002406
0 00475 | 006570 | | JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP TRAP | PC,READRO 5\$ 1.GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR C\$CLP1 | ;READ AND (
;IF OK THEN
;TOBRK H PR | CHECK GDAL REGISTE
N CONTINUE
ROBABLY NOT A ONE | R | | 6393
6394
6395 | | | | ;FLOPS [| HE VDAL REGISTER A
DID NOT CHANGE STA
ED HIGH. | AND CHECK THAT THE
ATE WHEN THE SIGNAL | PAUSE STATE MACHI
LS TOBRK H AND BRK | INE FLIP- | | 6397 01576
6398 01577
6399 01577
6400 01577
6401 01577
6402 01577
6403
01600
6404 01600
6405 01600 | 0 001405
2 104455
4 000003
6 002537
0 005004 | 006654 | 5\$: | JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP TRAP | PC,READR4
6\$
3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | ;READ VDAL
;IF OK THEM
;VDAL OR PA | AND PAUSE STATE M
N CONTINUE
AUSE STATE MACHINE | MACHINE
ERROR | | 6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418 | | | | ;SIGNAL
;SIGNAL
;BE CLOC
;ASSERTE | DE SIGNAL RASP P
DET H, THE TIMEO
TOBRK H WILL REMA
CKED TO THE RUN MO
ED HIGH (1). WHEN | H BY SETTING AND CLICT H IS ASSERTED LICT H IS ASSERTED LICHARD FLIP-FLOP WILL CLEARED AND A PULS H TO BE PULSED. IF OUT ONE SHOT WILL RAIN HIGH. THE PAUS DE BY XRAS H AS A I THE PAUSE MODE ON WILL BE ASSERTED | REMAIN UNFIRED AND
SE MODE FLIP-FLOP
RESULT OF ADAL4 H
NE SHOT IS SET TO | ON THE
THE
WILL
BEING | | 6419 01600 | 4 004737 | 007272 | 6\$: | | PC,XRAS | | CRAS H VIA HDAL12 | | | 6422
6423
6424 | | | | ; SET TO | A ONE AFTER A PUL
AS CLOCKED TO A ZE | TO CHECK THAT THE
SE WAS ISSUED ON X
RO. THE TIMEOUT B
FET H WHEN THE EDF | (RAS H AND THE EDF
BREAK ONE SHOT SHO | ET FLIP- | | 6420
6421
6422
6423
6424
6425
6426 01601
6428 01601
6429 01601
6430 01602
6431 01602
6432 01602
6433 01602
6435 6436
6437
6438 | 4 001405
6 104455
0 000001
2 002406
4 004754 | 006570 | | ;DID NOT | T GET SET TO A ONE | : IF OK THEN | PAUSE STATE WORKIN | G FLIP-FLOP | D 11 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 133 CVCDCB.P11 01-APR-82 14:12 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE 6439 : SHOULD BE ASSERTED LOW. 6440 6441 6442 6443 016030 016034 004737 006654 75: JSR PC, READR4 READ VOAL AND PAUSE STATE MACHINE 001405 BEQ : IF OK THEN CONTINUE 016036 ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 016036 TRAP 104455 **CSERDF** 6445 6446 6447 6448 6449 6451 6452 6453 000003 002537 016040 . WORD 016042 . WORD **VDALRG** 016044 005004 - WORD R4EROR 016046 CKLOOP 016046 104406 TRAP CSCLP1 :TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. A PULSE ON XCAS H WILL CLOCK THE LEVEL OF THE SIGNAL PB H, WHICH SHOULD BE 6454 6455 :ZERO. 6456 6457 6458 LOW AS A RESULT OF EDFET H BEING ASSERTED LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A 016050 004737 007376 8\$: **JSR** PC.XCAS GO PULSE XCAS H VIA HDAL13 H READ CONTROL REGISTER O TO CHECK THAT A PULSE ON XCAS H DID NOT CAUSE THE TIME OUT BREAK ONE SHOT TO BE FIRED. THIS CONDITION SHOULD :NEVER EXISTS. PC, READRO JSR READ AND CHECK GDAL REGISTER BEQ ; IF NO CHANGES THEN CONTINUE 1, GDALRG, ROEROR ERRDF ;TIMEOUT BREAK ONE SHOT FIRED TRAP C\$ERDF . WORD . WORD GDALRG . WORD ROEROR CKLOOP TRAP C\$CLP1 :READ THE VDAL REGISTER TO CHECK THAT THE PAUSE STATE SYNC FLIP-FLOP WAS CLOCKED TO A ZERO AS A RESULT OF THE SIGNAL EDFET H BEING ASSERTED :LOW. 016074 004737 006654 95: JSR PC.READR4 016100 001405 10\$ BEQ 016102 ERRDF 3, VDALRG, R4EROR 016102 104455 TRAP **C\$ERDF** 000003 002537 016104 . WORD 016106 . WORD **VDALRG** 005004 016110 . WORD R4EROR 016112 CKLOOP 016112 104406 TRAP C\$CLP1 002330 10\$: 6459 6460 6461 6462 6463 6464 6469 6475 6476 6477 6478 6479 6489 016054 016060 016062 016062 016064 016066 016070 016072 016072 104406 004737 001405 104455 000001 002406 004754 042737 004737 001405 000400 006614 006570 :SET THE SIGNAL ADALS H TO A ZERO. WHEN ADALS H IS A ZERO, THE SIGNAL TOBRK H WILL BE ASSERTED LOW WHICH WILL CAUSE THE SIGNAL BRK H TO BE :ASSERTED LOW. #ADAL8,R2LOAD BIC PC_LDRDR2 **JSR** BEQ ERRDF 2,ADALRG,R2EROR SETUP TO CLEAR ADAL BIT 8 :GO LOAD, READ AND CHECK ADAL REGISTER : IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED : READ VDAL AND PAUSE STATE MACHINE : VDAL OR PAUSE STATE MACHINE ERROR : IF OK THEN CONTINUE E 11 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 134 CVCDCB_P11 01-APR-82 14:12 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE 016130 104455 TRAP C\$ERDF 6496 6497 6498 016132 016134 000002 -WORD 002513 . WORD ADALRG 016136 004770 . WORD R2EROR 6499 6500 6501 6502 6503 016140 CKLOOP 016140 104406 TRAP CSCLP1 :READ CONTROL REGISTER O TO CHECK THAT THE SIGNAL TOBRK H IS READ AS :A ZERO WHEN ADAL REGISTER BIT 8 IS SET TO A ZERO. 6504 6505 6506 042737 004737 016142 000100 002322 11\$: BIC #TOBRK_ROGOOD EXPECT TOBRK H TO BE A ZERO 016150 PC READRO 006570 JSR READ AND CHECK GDAL REGISTER 6507 6508 6509 016154 001405 BEQ : IF OK THEN CONTINUE 016156 ERRDF 1, GDALRG, ROEROR :TOBRK K PROBABLY STILL HIGH 016156 TRAP CSERDF 6510 6511 6512 6513 000001 002406 016160 . WORD 016162 016164 . WORD GDALRG 004754 . WORD ROEROR 016166 CKLOOP 6514 016166 104406 TRAP CSCLP1 6515 6516 6517 ;SET THE SIGNAL FETCT H TO THE HIGH STATE BY SETTING VDAL7 H TO A ONE. ;CHECK THE PAUSE STATE MACHINE FLIP-FLOP'S TO BE CLEARED. 6518 6519 016170 012737 000200 002334 12\$: MOV #VDAL7,R4LOAD SETUP BIT TO SET FETCT H TO HIGH STATE 004737 6520 016176 006640 JSR :GO LOAD, READ AND CHECK VDAL REGISTER PC, LDRDR4 6521 6522 6523 6524 016202 016204 016204 001405 13\$ BEQ : IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 104455 TRAP **CSERDF** 016206 000003 . WORD 016210 016212 016214 016214 6525 6526 6527 6528 6529 6530 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 104406 TRAP C\$CLP1 :TOGGLE THE SIGNAL XRAS H BY SETTING AND CLEARING HDAL12 H. A PULSE 6531 ON XRAS H WITH THE SIGNAL FETCT H SET HIGH, WILL CAUSE THE EDFET 6532 6533 6534 :FLIP-FLOP TO BE CLOCKED TO A ONE, THUS SETTING THE SIGNAL EDFET H TO THE HIGH STATE. THE TIMEOUT BREAK ONE SHOT WILL ALSO BE FIRED AS A RESULT OF A PULSE ON THE SIGNAL DEET H. A PULSE OCCURS ON DEET H AS A RESULT OF THE EDEET FLIP-FLOP BEING SET AND THE SIGNAL RASP H BEING 6536 PULSED. THE SIGNAL RASP H IS PULSED VIA A PULSE ON THE SIGNAL XRAS H. 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 016216 004737 007272 13\$: JSR PC.XRAS :GO PULSE XRAS H VIA HDAL12 H SET THE SIGNAL FETCT H TO THE LOW STATE BY CLEARING VDAL7 H. CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE CLEARED AS A RESULT OF THE SIGNAL BRK H BEING ASSERTED LOW BY ADALS H BEING A ZERO AND THE :SIGNAL PAUSE L BEING ASSERTED LOW. 016222 016230 016234 016236 016236 016240 042737 004737 000200 002334 BIC #VDAL7,R4LOAD SETUP TO SET FETCT H TO LOW STATE 006640 PC.LDRDR4 GO LOAD, READ AND CHECK VDAL REGISTER JSR BEQ ERRDF . WORD TRAP 3. VDALRG, R4EROR **CSERDF** : IF OK THEN CONTINUE : VDAL OR PAUSE STATE MAHCINE ERROR 001405 104455 000003 6550 SEQ 0135 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 136 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE CVCDCB.P11 01-APR-82 14:12 6607 016340 CKLOC 016340 104406 6608 C$CLP1 TRAP 6609 6610 6611 SETUP A DELAY TO WAIT FOR THE TIMEOUT BREAK ONE SHOT TO FINISH FIRING. THE TIMEOUT BREAK ONE SHOT, ONCE FIRED, WILL NOT TIMEOUT UNTIL APPROXIMATELY ONE SECOND HAS OCCURED. 6612 6613 016342 016346 016350 6614 6615 6616 SETUP DOUBLE PRECISION COUNTER SETUP SINGLE PRECISION COUNTER 012702 175: 0000ύ2 005001 CLR R1 017703 18$: aREGO_R3 163724 MOV :READ GDAL REGISTER 016354 016360 016362 016364 6617 032703 000100 #TOBRK,R3 BIT CHECK IF TIMEOUT BREAK BIT SET 001004 6618 6619 6620 6621 6623 6624 6625 6626 6627 6628 6629 6630 BNE 19$: IF YES THEN GO READ REGISTER AGAIN 005301 DEC R1 DECREMENT THE FIRST COUNTER 001371 BNE 18$: IF NOT O THEN DO AGAIN 016366 005302 DECREMENT THE SECOND COUNTER DEC 001367 052737 004737 016370 BNE 18$: IF NOT O THEN DO AGAIN 016372 000100 002322 19$: BIS #TOBRK, ROGOOD EXPECT TOBRK H TO BE SET TO A ONE 016400 006570 JSR PC, READRO : READ AND CHECK GDAL REGISTER 016404 001405 BEQ 20$: IF OK THEN CONTINUE 016406 ERRDF 1, GDALRG, ROEROR :TOBRK H PROBABLY NOT SET 016406 104455 TRAP CSERDF 000001 002406 016410 . WORD 016412 . WORD GDALRG 016414 004754 ROEROR . WORD 6631 016416 CKLOOP 6632 6633 6634 6635 6636 016416 104406 TRAP CSCLP1 READ THE VDAL REGISTER TO CHECK THAT THE PAUSE STATE WORKING FLIP- :FLOP WAS SET TO A ONE AS A RESULT OF BRK H BEING ASSERTED HIGH BY :TOBRK H AND THE EDFET FLIP-FLOP BEING SET TO A ONE. 6637 016420 016426 016432 016434 016434 016440 6638 6639 6640 6641 6642 6643 6644 6645 6646 6649 6650 6651 052737 004737 002336 001000 20$: BIS #VDAL9_R4GOOD EXPECT PSMW H TO BE A ONE 006654 JSR READ VOAL AND PAUSE STATE MACHINE PC, READR4 : IF OK THEN CONTINUE :PSMW H NOT SET VIA BRK H + EDFET H 001405 BEQ 3. VDALRG, R4EROR ERRDF 104455 TRAP C$ERDF 000003 . WORD 002537 . WORD VDALRG 016442 005004 . WORD R4EROR 016444 CKLOOP 016444 104406 TRAP CSCLP1 :TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. THE SIGNAL :XCAS H WILL CLOCK THE LEVEL OF PB H, WHICH SHOULD BE ASSERTED HIGH AS :A RESULT OF BRK H AND EDFET H BEING ASSERTED HIGH, INTO THE PAUSE :STATE SYNC FLIP-FLOP, THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO 6652 6653 : A ONE. 6654 016446 004737 007376 21$: JSR PC.XCAS GO PULSE XCAS H VI, HDAL13 H 6656 6657 READ THE VDAL REGISTER TO CHECK THAT THE PAUSE STATE SYNC FLIP-FLOP 6658 6659 WAS SET TO A ONE BY XCAS H WHEN BRK H AND EDFET H WERE ASSERTED HIGH. 016452 6660 052737 002000 002336 BIS #VDAL10_R4GOOD EXPECT EPSF H TO BE A ONE READ VOAL AND PAUSE STATE MACHINE 6661 004737 006654 JSR PC.READR4 001405 016464 BEQ : IF OK THEN CONTINUE ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 137 TEST 30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE CVCDCB_P11 01-APR-82 14:12 6663 6664 6665 016466 016466 3. VDALRG, R4EROR ERRDF EPSF H NOT 1 VIA BRK H AND EDFET H 104455 TRAP CSERDF 016470 000003 WORD 6666 016472 016474 002537 . WORD VDALRG 6667 005004 R4EROR . WORD 6668 6669 6670 016476 CKLOOP 016476 104406 TRAP C$CLP1 6672 SET THE SIGNALS TOBRK H AND BRK H TO THE LOW STATE BY CLEARING ADAL :REGISTER BIT 8. 6673 042737 004737 016500 6674 000400 002330 225: #ADAL8,R2LOAD BIC ; SETUP BIT TO BE CLEARED 016506 016512 6675 006614 JSR PC,LDRDR2 GO LOAD, READ AND CHECK ADAL REGISTER 23$
2,ADALRG,R2EROR 6676 001405 BEQ ; IF LOADED OK THEN CONTINUE 6677 6678 016514 ERRDF :ADAL REGISTER NOT EQUAL EXPECTED 016514 104455 TRAP 6679 016516 000002 . WORD 6680 016520 002513 - WORD ADALRG 6681 016522 004770 . WORD R2EROR 6682 016524 CKLOOP 6683 6684 6685 016524 104406 TRAP CSCLP1 :TOGGLE THE SIGNAL XCAS H AGAIN BY SETTING AND CLEARING HDAL12 H. THE 6686 SIGNAL XCAS H WILL CLOCK THE LEVEL OF PB H, WHICH SHOULD BE ASSERTED LOW AS A RESULT OF BRK H AND PAUSE L BEING ASSERTED LOW, INTO THE 6687 6688 6689 PAUSE STATE SYNC FLIP-FLOP, THUS CLEARING THE PAUSE STATE SYNC FLIP- :FLOP. THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP, WHICH 6690 WAS HIGH, WILL BE CLOCKED INTO THE 16 BIT ADDRESS FLIP-FLOP BY XCAS H. 6691 THUS SETTING THE 16 BIT ADDRESS FLIP-FLOP TO A ONE. 6692 6693 016526 004737 007376 23$: JSR PC.XCAS GO PULSE XCAS H VIA HDAL13 H 6694 6695 6696 READ THE VDAL REGISTER TO CHECK THAT THE PAUSE STATE SYNC FLIP-FLOP WAS CLOCKED TO A ZERO BY XCAS H WHEN THE SIGNAL BRK H WAS ASSERTED 6697 :LOW. ALSO CHECK THAT THE 16 BIT ADDRESS FLIP-FLOP WAS CLOCKED TO 6698 ; A ONE. 6699 042737 052737 004737 016532 016540 6700 002336 002336 002000 #VDAL10,R4GOOD EXPECT EPSF H TO BE A O 004000 6701 BIS #VDAL11_R4GOOD EXPECT EPFN H TO BE A 1 6702 6703 016546 006654 PC.READR4 READ VOAL AND PAUSE STATE MACHINE JSR 016552 001405 BEQ : IF OK THEN CONTINUE 6704 016554 ERRDF 3, VDALRG, R4EROR BRK H PROBABLY NOT CLEARED 6705 016554 104455 TRAP CSERDF 6706 6707 016556 000003 . WORD 002537 016560 . WORD VDALRG 6708 016562 005004 . WORD R4EROR 6709 016564 CKLOOP 6710 016564 104406 TRAP C$CLP1 6711 6712 SET ADAL REGISTER BIT 8 TO A ONE. THIS WILL ENABLE THE SIGNALS 6713 : TOBRK H AND BRK H TO BE ASSERTED HIGH. 6714 016566 016574 052737 004737 6715 000400 002330 24$: BIS #ADAL8, R2LOAD SETUP BIT TO BE LOADED 6716 PC_LDRDR2 25$ GO LOAD, READ AND CHECK ADAL REGISTER : IF LOADED OK THEN CONTINUE 006614 JSR 016600 001405 BEQ 5718 016602 ERRDF 2,ADALRG,R2EROR ADAL REGISTER NOT EQUAL EXPECTED ``` I 11 | HARDWAI | P11 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82
TEST | 14:48 PAGE 138
30: CHECK TIMEOUT BREAK ONE SHOT IN RUN MODE | |--|--|--|----------------------------|------------------|--------------|---| | 6719
6720
6721
6723
6724
6725
6726
6728
6729
6730 | 016602
016604
016606
016610
016612
016612 | 104455
000002
002513
004770
104406 | | | | TRAP CSERDF .WORD 2 .WORD ADALRG .WORD RZEROR CKLOOP TRAP CSCLP1 :SET THE SIGNAL FETCT H TO THE HIGH STATE BY SETTING VDALZ H TO A ONE. | | 6727
6728
6729
6730 | | | | | | ;SET THE SIGNAL FETCT H TO THE HIGH STATE BY SETTING VDAL7 H TO A ONE. ;WHEN BRK H AND FETCT H ARE ASSERTED HIGH, THE PAUSE MODE FLIP-FLOP ;WILL BE FORCED INTO PAUSE MODE, THUS SETTING THE SIGNAL PAUSE L TO ;THE HIGH STATE. | | 6731 | 016614
016622
016630
016634 | 052737
052737
004737
001405 | 000200
000200
006646 | 002334
002336 | 25\$: | BIS #VDAL7,R4LOAD ;SETUP BIT TO BE LOADED BIS #VDAL7,R4GOOD ;SETUP BIT TO BE EXPECTED ON READ JSR PC,LDRD4R ;GO LOAD AND READ VDAL REGISTER BEQ 26\$;IF OK THEN CONTINUE | | 6732
6733
6734
6735
6736
6737
6738
6739
6740 | 016636
016636
016640
016642
016644 | 104455
000003
002537
005004 | | | | ERRDF 3, VDALRG, R4EROR ; PAUSE STATE MACHINE CHANGED TRAP CSERDF .WORD 3 .WORD VDALRG .WORD R4EROR | | 6741
6742
6743 | 016646
016646 | 104406 | | | | CKLOOP TRAP CSCLP1 ;SET ADAL REGISTER BIT 8 TO A ZERO TO ASSERT THE SIGNALS BRK H AND | | 6744 | 01//50 | 0/2777 | 000/00 | 002770 | 2/4 | TOBRE H TO THE LOW STATE. | | 6746
6747
6748
6749 | 016650
016656
016662
016664
016664 | 042737
004737
001405 | 000400
006614 | 002330 | 26\$: | BIC #ADAL8,R2LOAD ;SETUP BIT TO BE CLEARED ;GO LOAD, READ AND CHECK ADAL REGISTER BEQ 27\$;IF OK THEN CONTINUE ;ADAL REGISTER NOT EQUAL EXPECTED TRAP C\$ERDF | | 6751
6752
6753 | 016666
016670
016672
016674
016674 | 000002
002513
004770 | | | | .WORD 2 .WORD ADALRG .WORD R2EROR CKLOOP | | 6754
6755
6756
6757
6758 | 010074 | 104400 | | | | TRAP CSCLP1 : TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. THE | | 6758
6759
6760
6761
6762
6763
6764
6765 | | | | | | SIGNAL XCAS H SHOULD CLOCK THE PAUSE STATE SYNC FLIP-FLOP TO A ONE AS A RESULT OF PAUSE L BEING ASSERTED HIGH AND THE EDFET FLIP-FLOP BEING SET TO A ONE. THE SIGNAL PAUSE L SHOULD HAVE BEEN SET HIGH AS A RESULT OF THE SIGNAL BRK H AND FETCT H BEING ASSERTED HIGH PREVIOUSLY. THE 16 BIT ADDRESS FLIP-FLOP SHOULD BE CLOCKED TO A ZERO AS A RESULT OF XCAS H AND THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP, WHICH WAS LOW. | | 6766
6767 | 016676 | 004737 | 007376 | | 27\$: | JSR PC, XCAS ;GO PULSE XCAS H VIA HDAL13 H | | 6767
6768
6769
6770
6771
6772 | | | | | | READ THE VDAL REGISTER TO CHECK THAT BRK H AND FETCT H BEING ASSERTED HIGH PREVIOUSLY CAUSED THE PAUSE MODE FLIP-FLOP TO BE SET TO THE PAUSE MODE FROM THE RUN MODE. WHEN THE PAUSE MODE FLIP-FLOP IS SET TO THE PAUSE MODE, THE SIGNAL PAUSE L WILL BE ASSERTED HIGH. | | 6773
6774 | 016702
016710 | 042737
052737 | 004000
002000 | 002336
002336 | | BIC #VDAL11.R4GOOD :EXPECT EPFN H TO BE A O :EXPECT EPSF H TO BE A 1 | | - | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82 14
TEST 30 | :48 PAG | J 11
SE 139
TIMEOUT BREAK ONE | SHOT | IN RUN MODE | |---|--|--|--|--------------------|-------------------------|--|--|----------------|---| | | 6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6791
6791
6792
6793
6794
6795
6797 | 016716
016722
016724
016724
016726
016730
016732
016734 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | PC.READR4 28\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | | ; READ VDAL AND PAUSE STATE MACHINE
; IF OK THEN CONTINUE
; PAUSE L PROBABLY NOT SET HIGH | | | 6785
6786
6787 | | | | | ; THE SI | THE SIGNAL FETCT
GNAL INVO L WILL
CLEARED. | H AND
CAUSE | PULSE THE SIGNAL INVO L VIA VDAL2 H. THE PAUSE STATE MACHINE FLIP-FLOPS | | | 6789
6790 | 016736
016742 | 005037
004737 | 002334
007712 | 28\$: | CLR
JSR | R4LOAD
PC,CLRPSM | | SETUP TO CLEAR FETCT H
GO PULSE INVO L VIA VDAL2 H | | ١ | 6792 | 016746
016746 | | | 10000\$: | ENDSEG | | | | | | 6794
6795 | 016746
016750 | 104405 | | | TRAP
ENDIST | C\$ESEG | | | | | 6797
6798
6799 | 016750
016750 | 104401 | | L10060: | TRAP | CSETST | | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 140 CVCDCB_P11 TEST 31: PAUSE STATE MACHINE - 16 BIT ADDRESS - RUN MODE 01-APR-82 14:12 .SBITL TEST 31: PAUSE STATE MACHINE - 16 BIT ADDRESS - RUN MODE 6801 6802 THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 'RUN' AND 16 BIT ADDRESS MODE. WHEN THE PAUSE STATE MACHINE IS SETUP IN 'RUN' MODE VIA ADAL4 H ON A ONE AND A PULSE ON XRAS H, THE PAUSE STATE MACHINE CAN ONLY BE ENTERED WHEN A BREAK CONDITION IS RECEIVED ON THE SIGNAL 'BRK H'. THIS TEST WILL USE THE SINGLE STEP BREAK FLIP-FLOP TO GENERATE THE BREAK CONDITION. THE TEST WILL CHECK THAT THE PAUSE STATE MACHINE IS NOT ENTERED WHEN THE SINGLE STEP BREAK FLIP-FLOP IS CLEARED AND THAT IT CAN BE ENTERED WHEN THE SINGLE STEP BREAK FLIP-FLOP IS SET TO A ONE. THE TEST WILL CHECK THAT THE SINGLE STEP BREAK FLIP-FLOP ONCE SET, WILL REMAIN LATCHED TO THE SET STATE UNTIL CLEARED BY A PULSE BEING ISSUED ON THE SIGNAL 'BRKRES L'. THE TEST WILL SET THE PAUSE STATE MACHINE FLIP-FLOP'S: PAUSE STATE WORKING PAUSE STATE SYNC AND 16 RIT ADDRESS 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 MACHINE FLIP-FLOP'S: PAUSE STATE WORKING, PAUSE STATE SYNC AND 16 BIT ADDRESS ; VIA THE SIGNALS XRAS H AND XCAS H. ONCE ALL THESE FLIP-FLOPS ARE SET TO THE ; ONE STATE, THE TEST WILL CHECK THAT THEY CAN BE CLEARED BY ISSUING A PULSE ON ; THE SIGNAL "INVD L". 6814 6815 6816 6817 6818 6819 016752 016752 BGNTST 6820 6821 6822 6823 6824 6825 6826 6827 6828 6830 6831 6832 6833 T31:: 016752 004737 005510 JSR PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 016756 BGNSEG 016756 104404 TRAP C$BSEG ; SET AND CLEAR ADALO H IN THE ADAL REGISTER TO CAUSE A PULSE ON THE SIGNAL BRKRES L. THE SIGNAL BRKRES L WILL CLEAR THE SINGLE STEP BREAK FLIP-FLOP. 016760 005037 R2LOAD SETUP TO CLEAR ALL R/W BITS IN ADAL REG 016764 004737 007772 PC.BRKRES JSR GO PULSE BRKRES L VIA ADALO H SELECT THE MODE REGISTER VIA GDAL BITS 2:0 AND CHECK THAT NO BREAK CONDITIONS :ARE SET IN THE GDAL REGISTER. 6834 016770 004737 007006 JSR PC.SLMODR :SELECT THE MODE REG VIA GDAL BITS 2:0 6835 6836 6837 6838 ; LOAD,
READ AND CHECK THE MODE REGISTER WITH A DATA PATTERN OF ALL ZEROES. :MODE REGISTER BIT 11 ON A ZERO WILL ENABLE 16 BIT ADDRESS MODE. 6839 005037 016774 R6LOAD ; SETUP TO LOAD ALL ZEROES. 6840 6841 6842 6843 6844 6845 6846 6847 6848 6850 6851 6852 6853 017000 004737 006672 ; LOAD, READ AND CHECK MODE REGISTER JSR PC, LDRDR6 017004 001405 BEQ 15 ; IF LOADED OK THEN CONTINUE 017006 ERRDF 4_MODREG_ROGERR :MODE REGISTER NOT EQUAL EXPECTED 017006 104455 TRAP CSERDF 017010 000004 . WORD 017012 002631 . WORD MODREG 017014 005020 . WORD RO6ERR 017016 CKLOOP 017016 104406 TRAP CSCLP1 SELECT THE HDAL REGISTER VIA GGDAL BITS 2:0 IN CONTROL REGISTER O. 017020 004737 006754 15: JSR PC_SLHDAL :SELECT HDAL REGISTER VIA GDAL BITS 2:0 6854 6855 CLEAR ALL BITS IN THE HDAL REGISTER EXCEPT HDAL2 H. HDAL2 H WILL BE SET TO A 1 TO ALLOW THE PROGRAM TO GENERATE THE T-11 TIMING + CONTROL SIGNALS ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 141 CVCDCB.P11 01-APR-82 14:12 TEST 31: PAUSE STATE MACHINE - 16 BIT ADDRESS - RUN MODE | 6856
6857
6858
6859
6860
6861
6862
6863
6864
6865 | 017024
017032
017036
017040
017040
017042
017044
017046
017050
017050 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL2,R6LOAD PC,LDRDR6 2\$ 4,HDALRG,R06ERR C\$ERDF 4 HDALRG R06ERR C\$CLP1 | ;SETUP BIT TO BE LOADED
;LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | |--|--|--|------------------|--------|------|---|---|--| | 6866
6867
6868
6869
6870
6871
6872 | | | | | | : CLEARE | ER 4. INVD L WILL INITI
D BY THE SIGNAL BRKRES L | TTING AND CLEARING VDAL2 H IN CONTROL ALIZE ALL FLIP-FLOPS ON THE MODULE NOT . THE SINGLE STEP SYNC FLIP-FLOP WILL IG THE SIGNAL PSM L TO THE HIGH STATE. | | 6873
6874
6875 | 017052
017056 | 005037
004737 | 002334
007712 | | 2\$: | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO CLEAR ALL VDAL R/W BITS PULSE INVD L VIA VDAL2 H | | 6876
6877
6878
6879
6880
6881
6882
6883 | | | | | | SIGNAL
MODE",
STATE
ADAL R | AUSE THE PAUSE MODE FLIP
XRAS H IS PULSED. WHEN
THE SIGNAL PAUSE L WILL
MACHINE CAN ONLY BE ENTE
EGISTER BIT 5 ON A ONE W | TO ONES. ADAL REGISTER BIT 4 ON A ONE FLOP TO BE SET TO THE "RUN MODE" WHEN THE THE PAUSE MODE FLIP-FLOP IS SET TO "RUN BE ASSERTED LOW, THEREFORE, THE PAUSE RED WHEN A BREAK CONDITION IS RECEIVED. ILL ENABLE THE SINGLE STEP BREAK FLIP-ISSUED ON THE SIGNAL XRAS H AND THE ASSERTED HIGH. | | 6884
6885
6886
6887
6888
6889
6891
6892
6893
6894 | 017062
017070
017074
017076
017076
017100
017102
017104
017106
017106 | 012737
004737
001405
104455
000002
002513
004770
104406 | 000060
006614 | 002330 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #ADAL5!ADAL4,R2LOAD
PC,LDRDR2
3\$
2,ADALRG,R2EROR
C\$ERDF
2
ADALRG
R2EROR
C\$CLP1 | SETUP BITS TO BE LOADED LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | | 6896
6897 | | | | | | SET TH | E SIGNAL FETCT H TO THE | HIGH STATE BY SETTING VDAL7 H TO A ONE EGISTER. | | 6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908 | 017110
017116
017122
017124
017124
017126
017130
017132
017134 | 052737
004737
001405
104455
000003
002537
005004
104406 | 000200
006640 | 002334 | 3\$: | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL7,R4LOAD PC,LDRDR4 4\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | SETUP BIT TO BE LOADED LOAD, READ AND CHECK VDAL REGISTER IF LOADED OK THEN CONTINUE VDAL REGISTER NOT EQUAL EXPECTED | | 6910
6911 | | | | | | :TOGGLE | THE SIGNAL XRAS H BY SE | TTING AND CLEARING HDAL12 H. PULSING HE STATE OF ADAL4 H, WHICH IS HIGH, INTO | | CACDCR. | 11 0 | 1-APK-82 | 14:12 | | 1521 21 | : PAUSE | STATE MACHINE - 10 BILL A | DDKE22 - KUN MUDE | | |--|--|--------------------------------------|------------------|--------|---------|---|---|---|---| | 6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924 | | | | | | HIGH S IN THI ON XRA AS A R SINGLE BE ASS WHEN T WORKIN PSMW H MODE F BRK H | TATE. THE SINGLE STEP S S TEST THUS SETTING THE S H WILL CAUSE THE SINGL ESULT OF FETCT H, ADALS STEP BREAK FLIP-FLOP GE ERTED HIGH WHICH WILL CA HE SIGNALS SOP H AND EDF IG FLIP-FLOP WILL BE PRES AND PSMW L TO THE HIGH LIP-FLOP WILL BE SET TO BEING ASSERTED HIGH. TH | SETTING THE SIGNAL PAUSE L TO TO CLOCK THE STATE OF FETCT H, WHIT, THUS SETTING THE SIGNAL EDFET YNC FLIP-FLOP WAS PRESET TO A ON SIGNAL PSM L TO THE HIGH STATE. E STEP BREAK FLIP-FLOP TO BE SETH AND PSM L BEING ASSERTED HIGH. TS SET TO A ONE, THE SIGNAL "BREAK FLIP-FLOP HIGH. THE PAUSE THE ASSERTED HIGH. THE PAUSE TO A ONE, THUS SETTING THE SIGNAL TO A ONE, THUS SETTING THE SIGNAL ONE, THUS SETTING THE SIGNAL ONE, THUS SETTING THE SIGNAL PAUSE MODE AS A RESULT OF FETCT E SIGNAL PAUSE WILL BE ASSERTE FLIP-FLOP BEING SET TO PAUSE MODE | IE EARLIER A PULSE TO A ONE WHEN THE CH'' WILL SERTED HIGH. SE STATE GNALS IE PAUSE H AND ED HIGH | | 6927
6928 | 017136 | 004737 | 007272 | | 45: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | | 6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939 | | | | | | : IS SET | TO A ONE AS A RESULT OF | K THAT THE SINGLE STEP BREAK FLI
A PULSE ON THE SIGNAL XRAS H AN
LS H BEING ASSERTED HIGH. | P-FLOP
ID THE | | 6934
6935
6936 | 017142
017150
017154 | 052737
004737
001405 | 000200
006570 | 002322 | | BIS
JSR
BEQ | #SSBRK,ROGOOD PC,READRO 5\$ | :SETUP TO EXPECT SSBRK H TO EQU
:READ AND CHECK GDAL REGISTER
:IF OK THEN CONTINUE | | | 6938
6939
6940
6941
6942 | 017156
017156
017160
017162
017164
017166 | 104455
000001
002406
004754 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | 1.GDALRG,ROEROR
CSERDF
1
GDALRG
ROEROR | SSBRK H PROBABLY NOT SET TO A | | | 6943
6944 | 017166 | 104406 | | | | TRAP | C\$CLP1 | | | | 6945
6946
6947
6948 | | | | | | ; THE PA | HE VDAL REGISTER TO CHEC
USE STATE WORKING FLIP-F
SOP H AND EDFET H. | K THAT SSBRK H BEING ASSERTED HI
LOP TO GET SET TO A ONE VIA THE | GH CAUSED
SIGNALS | | 6949
6950 | 017170
017176
017202 | 052737
004737
001405 | 001000
006654 | 002336 | 5\$: | BIS
JSR
BEQ | #VDAL9,R4GOOD
PC,READR4
6\$ | :EXPECT PSMW H TO BE ASSERTED H
:READ AND CHECK VDAL REGISTER
:IF OK TTHEN CONTINUE | | | 6951
6952
6953
6954
6955
6956
6957
6958
6959 | 017202
017204
017204
017206
017210
017212 | 104455
000003
002537
005004 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 3, VDALRG, R4EROR
C\$ERDF
3
VDALRG
R4EROR | :VDAL REGISTER NOT EQUAL EXPECT | ED | | 6957
6958 | 017214 | 104406 | | | | CKLOOP | C\$CLP1 | | | | 6959
6960
6961
6962
6963
6964
6965 | V11214 | 104400 | | | | ;TOGGLE
;XCAS H
;OF THE
;PSM L
;TO A O | THE SIGNAL XCAS H BY SE
WILL CLOCK THE SINGLE S
SIGNAL PSMW L BEING ASS | TTING AND CLEARING HDAL13 H. TH
TEP SYNC FLIP-FLOP TO A ZERO AS
ERTED LOW. THIS WILL CAUSE THE
PAUSE STATE SYNC FLIP-FLOP WIL
H AND SOP H BEING ASSERTED HIGH | A RESULT | | 6967 | 017216 | 004737 | 007376 | | 6\$: | JSR | PC,XCAS | GO PULSE XCAS H VIA HDAL13 H | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 143 CVCDCB.P11 01-APR-82 14:12 TEST 31: PAUSE STATE MACHINE - 16 BIT ADDRESS - RUN MODE ``` | 1 | CVCDCB.PTT | U1-APR-82 | 14:12 | | 1521 21 | : PAUSE | STATE MACHINE - 16 BIT | ADDRESS - RUN MODE | | |---
--|--|------------------|--------|---------|--|--|--|---| | | 6968
6969
6970
6971 | | | | | READ T | HE VDAL REGISTER TO CH
A ONE BBY XCAS H WHEN | ECK THE THE PAUSE STATE SYNC FLIP
EDFETT H AND SOP H ARE ASSERTED | -FLOP WAS | | - | 6972 01722 | 0 004737
4 001405
6 104455 | 002000
006654 | 002336 | | BIS
JSR
BEQ
ERRDF
TRAP | #VDAL10,R4GOOD
PC,READR4
7\$
3,VDALRG,R4EROR
C\$ERDF | :EXPECT EPSF H TO BE SET TO A ;READ AND CHECK VDAL REGISTER ;IF OK THEN CONTINUE ;EPSF H PROBABLY NOT SET TO A | | | | 6974 01723
6975 01723
6976 01723
6977 01724
6978 01724
6979 01724
6980 01724
6981 01724 | 002537 | | | | .WORD
.WORD
.WORD
CKLOOP
TRAP | VDALRG
R4EROR
C\$CLP1 | | | | | 6983
6984
6985 | | | | | READ G | DAL REGISTER TO CHECK
A ONE AFTER XCAS H IS | THAT SINGLE STEP SYNC FLIP-FLOP IS PULSED. NO CHANGE SHOULD HAVE OC | S STILL
CURED. | | | 6981 01724
6982
6983
6984
6985
6986 01725
6988 01725
6988 01725
6989 01725
6990 01726
6991 01726
6992 01726
6993 01726
6994 01726 | 001405
104455
000001
002406
004754 | 006570 | | 7\$: | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | PC,READRO
8\$
1,GDALRG,ROEROR
C\$ERDF
1
GDALRG
ROEROR
C\$CLP1 | ;READ AND CHECK GDAL REGISTER
;IF OK THEN CONTINUE
;GDAL REGISTER NOT EQUAL EXPEC | TED | | | 6996
6997
6998
6999
7000
7001
7002 | | | | | ;TOGGLE
;IS DON
;A ONE,
;SIGNAL
;HIGH A
;FLIP-F | THE SIGNAL XRAS H AGA
E TO CHECK THAT ONCE T
IT WILL REMAIN SET TO
BRKRES L. AT THIS PO
ND THE SIGNAL PSM L SH
LOP WILL BE HELD IN PA | IN BY SETTING AND CLEARING HDAL12 HE SINGLE STEP BREAK FLIP-FLOP IS THAT STATE UNTIL CLEARED VIA A POINT IN TIME, FETCT H AND ADAL5 H OULD BE ASSERTED LOW. THE PAUSE I USE MODE VIA THE SIGNALS BRK H AND | H. THIS SET TO ULSE ON THE ARE ASSERTED MODE D FETCT H. | | ١ | 7003 017270
7004 | 0 004737 | 007272 | | 8\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | | | 7005
7006
7007 | | | | | ;READ G
;RESULT | DAL REGISTER TO CHECK
OF IT BEING LATCHED A | THAT SSBRK H IS STILL ASSERTED HID
ND A PULSE ON XRAS H. | GH AS A | | | 7008 017274
7009 017300
7010 017300
7011 017300
7012 017300
7013 017300 | 001405
104455
000001
002406 | 006570 | | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | PC,READRO 9\$ 1,GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR | :READ AND CHECK GDAL REGISTER
:IF OK THEN CONTINUE
:GDAL REGISTER NOT EQUAL EXPECT | TED | | - | 7014 017310
7015 017310
7016 017310
7017
7018
7019 | 104406 | | | | CKLOOP | C\$CLP1 | | | | | 7018
7019 | | | | | ;READ V | DAL REGISTER TO CHECK | THAT NO CHANGE OCCURED AFTER PULS | ING XRAS H. | | | 7020 017314
7021 017320
7022 017320
7023 017320 | 004737 | 006654 | | 9\$: | JSR
BEQ
ERRDF
TRAP | PC,READR4
10\$
3,VDALRG,R4EROR
C\$ERDF | :READ AND CHECK VDAL REGISTER
:IF NO CHANGE THEN CONTINUE
:VDAL REGISTER NOT EQUAL EXPECT | TED | | 1 | | | | | | | | | | | HARDWARE TE | STS MACY11
01-APR-8 | 30A(1052)
2 14:12 | 01-APR-82
TES | 14:48 PAG
1 31: PAUSE | E 144
STATE MACHINE - 16 BIT | ADDRESS - RUN MODE | |--|--|----------------------|------------------|---|--|--| | 7024 017
7025 017
7026 017
7027 017
7028 017
7029
7030
7031
7032
7033 017 | 324 000003
326 002537
330 005004
332 104406 | | | .WORD
.WORD
.WORD
CKLOOP
TRAP | 3
VDALRG
R4EROR
C\$CLP1 | | | 7029
7030
7031
7032 | | | | :TOGGLE | THE SIGNAL BRKRES L BE ON BRKRES L WILL CLE | Y SETTING AND CLEARING ADAL REGISTER BIT O. AR THE SINGLE STEP BREAK FLIP-FLOP. | | 7033 017 | 334 004737 | 007772 | 10\$ | : JSR | PC,BRKRES | ;PULSE BRKRES L VIA ADALO H | | 7035
7036
7037 | | | | :READ G
:BREAK | DAL REGISTER TO CHECK FLIP-FLOP. THE SIGNAL | THAT BRKRES L CLEARING THE SINGLE STEP
SSBRK H SHOULD BE ASSERTED LOW. | | 7039 017
7040 017
7041 017
7042 017
7043 017
7044 017
7045 017
7046 017 | 340 042737
346 004737
352 001405
354 104455
356 000001
360 002406
362 004754
364 104406 | 006570 | 002322 | BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #SSBRK,ROGOOD PC,READRO 11\$ 1,GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR C\$CLP1 | SETUP TO EXPECT SSBRK H TO BE O READ AND CHECK GDAL REGISTER IF OK THEN CONTINUE VDAL REGISTER NOT EQUAL EXPECTED | | 7048
7049
7050
7051 | | | | ;READ V | | THAT NO CHANGE OCCURED AS A RESULT OF | | 7053 017
7054 017
7055 017
7056 017
7057 017
7058 017
7059 017
7060 017 | 366 004737
372 001405
374 104455
376 000003
400 002537
402 005004
404 104406 | 006654 | 11\$ | JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP | PC,READR4 12\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | ;READ AND CHECK VDAL REGISTER
;IF NO CHANGE THEN CONTINUE
;VDAL REGISTER NOT EQUAL EXPECTED | | 7061
7062
7063
7064
7065
7066
7067
7068 | | | | ;STEP B
;SIGNAL
;WORKIN | REAK FLIP-FLOP SHOULD I
PSM L WAS ASSERTED LOW
G FLIP-FLOP WAS SET TO | SETTING AND CLEARING HDAL12 H. THE SINGLE NOT BE SET TO A ONE THIS TIME BECAUSE THE WEARLIER IN THIS TEST WHEN THE PAUSE STATE A ONE AND A PULSE WAS ISSUED ON THE SIGNAL -FLOP WILL BE SET TO "RUN MODE" AND THE TO A ONE WHEN THE SIGNAL XRAS H IS PULSED. | | 7069 017 | 406 004737 | 007272 | 12\$ | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 7070
7071
7072
7073
7074 | | | | ; NOT SE | T TO A ONE WHEN PSM L V | THAT THE SINGLE STEP BREAK FLIP-FLOP WAS WAS ASSERTED LOW, FETCT H AND ADALS H
SE WAS ISSUED ON THE SIGNAL XRAS H. | | 7075 017
7076 017 | 412 004737
416 001405 | 006570 | | JSR
BEQ | PC READRO | READ AND CHECK GDAL REGISTER | | 7077 017
7078 017 | 420
420 104455
422 000001 | | | ERRDF
TRAP
. WORD | 1.GDALRG, ROEROR
CSERDF | CHECK SIGNAL PSM L TO BE LOW | | DOLLAD | E TECTC | MACVII | 704/1053 | 01-40 | 0-02 | 1/./0 040 | c 12 | | |--|--------------------------------------|----------------------------|------------------|---------|--------|--|---|---| | CDCB. | P11 0 | 1-APR-82 | 14:12 |) UI-AF | TEST : | 14:48 PAG
31: PAUSE | STATE MACHINE - 16 BI | T ADDRESS - RUN MODE | | 7080
7081
7082
7083
7084
7085
7086 | 017424
017426
017430 | 002406
004754 | | | | .WORD
.WORD
CKLOOP | GDALRG
ROEROR | | | 7083
7084 | 017430 | 104406 | | | | TRAP | C\$CLP1 | | | 7085
7086 | | | | | | ;READ V | DAL REGISTER TO CHECK | THAT NO CHANGES HAVE OCCURED . | | 7087
7088
7089
7090 | 017432
017436
017440 | 004737
001405 | 006654 | | 13\$: | JSR
BEQ
ERRDF | PC,READR4
14\$
3,VDALRG,R4EROR | READ AND CHECK VDAL REGISTER IF NO CHANGE THEN CONTINUE VVDAL REGISTER NOT EQUAL EXPECTED | | 7090
7091 | 017440
017442 | 104455 | | | | TRAP
.WORD | C\$ERDF | | | 7091
7092
7093 | 017444 | 002537
005004 | | | | . WORD | VDALRG
R4EROR | | | 7094
7095
7096 | 017450
017450 | 104406 | | | | TRAP | C\$CLP1 | | | 7097
7098
7099
7100
7101 | | | | | | :CLEARI
:INITIA
:A PULS | NG VDAL2 H IN THE VDA | GH, PULSE THE SIGNAL INVO L BY SETTING AND L REGISTER. A PULSE ON INVO L WILL ON THE MODULE NOT CLEARED BY BRKRES L. PRESET THE SINGLE STEP SYNC FLIP-FLOP LL BE ASSERTED HIGH. | | 7102
7103
7104 | 017452 | 004737 | 007712 | | 14\$: | JSR | PC,CLRPSM | PULSE INVO L AND LEAVE FETCT H SET | | 7105
7106
7107
7108 | | | | | | ;TO CHE
;WILL P
;SET TO
;HIGH W | CK THAT INVO L PRESET
ULSE XRAS H AND EXPEC
A ONE AS A RESULT OF
HEN XRAS H IS PULSED. | THE PAUSE STATE SYNC FLIP-FLOP, THE TEST T THE SINGLE STEP BREAK FLIP-FLOP TO BE FETCT H, ADALS H AND PSM L BEING ASSERTED | | 7109 | 017456 | 004737 | 007272 | | | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 7111
7112
7113 | | | | | | ;READ G | DAL REG TO CHECK THAT | THE SINGLE STEP BREAK F/F WAS SET TO A ONE | | 114
1115
1116 | 017462
017470
017474 | 052737
004737
001405 | 000200
006570 | 002322 | | BIS
JSR
BEQ | #SSBRK,ROGOOD
PC,READRO
15\$ | ;
EXPECT SSBRK H TO BE SET HIGH
; READ AND CHECK GDAL REGISTER
; IF SET THEN CONTINUE | | 117 | 017476
017476 | 104455 | | | | ERRDF | 1.CDALRG,ROEROR
CSERDF | ; INVO L PROBALY DIDN'T PRESET PSM F/F | | 119
120
121 | 017500
017502
017504
017506 | 000001
002406
004754 | | | | .WORD
.WORD | 1
GDALRG
ROEROR | | | 123 | 017506 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | 7120
7121
7122
7123
7124
7125
7126
7127
7128
7130
7131
7132
7133
7134 | | | | | | ; RESULT | THAT THE PAUSE STATE OF EDFET H BEING ASSI | WORKING FLIP-FLOP WAS SET TO A ONE AS A ERTED HIGH AND SOP H BEING ASSERTED HIGH | | 7129 | 017510
017516 | 052737
004737 | 001000
006654 | 002336 | 15\$: | BIS | #VDAL9,R4GOOD
PC,READR4 | ; EXPECT PSMW H TO BE A ONE
; READ AND CHECK VDAL REGISTER | | 7131 | 017522
017524 | 001405 | | | | BEQ | 16\$
3.VDALRG.R4EROR | ; IF OK THEN CONTINUE
; VDAL REGISTER NOT EQUAL EXPECTED | | 133
134 | 017524 | 104455 | | | | TRAP
.WORD | C\$ERDF | The motion with Earlie Entreties | | 135 | 017526
017530 | 000003
002537 | | | | . WORD | VDALRG | | SEQ 0146 | CVCDCB. | P11 0 | 1-APR-82 | 14:12 |) UI-AF | TEST : | 31: PAUSE | STATE MACHINE - 16 BIT | ADDRESS - RUN MODE | |--|--|--|------------------|---------|--------|--|--|---| | 7192
7193
7194 | | | | | | :PSM FL | IP-FLOP WILL BE PRESET
H WILL BE SET LOW BY C | TO A ONE VIA THE SIGNAL INVO L. THE SIGNAL LEARING VDAL7 H IN THE VDAL REGISTER | | 7195 | 017632 | 004737 | 007772 | | 18\$: | JSR | PC,BRKRES | ; PULSE BRKRES L VIA ADALO H | | 7197
7198
7199 | 017636
017642 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC,CLRPSM | SET FETCT H TO THE LOW STATE GO PULSE INVO L VIA VDAL2 H | | 7200
7201
7202 | | | | | | ;READ G | DAL REGISTER TO CHECK
EARED BY BRKRES L. | THAT THE SINGLE STEP BREAK FLIP-FLOP | | 7203
7204
7205
7206
7207 | 017646
017654
017660
017662
017662 | 042737
004737
001405
104455 | 000200
006570 | 002322 | | BIC
JSR
BEQ
ERRDF | #SSBRK,ROGOOD
PC.READRO
19\$
1,GDALRG,ROEROR | :EXPECT SSBRK H TO BE A O
:READ AND CHECK GDAL REGISTER
:IF OK THEN CONTINUE
:GDAL REGISTER NOT EQUAL EXPECTED | | 7208
7209
7210
7211 | 017664
017666
017670
017672
017672 | 000001
002406
004754 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
1
GDALRG
ROEROR | | | 7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225 | 017072 | 104400 | | | | MILL N | C\$CLP1 THE SIGNAL XRAS H TO C IOT GET SET TO A ONE WH GNALS ADAL5 H AND PSM | HECK THAT THE SINGLE STEP BREAK FLIP-FLOP
EN THE SIGNAL FETCT H IS ASSERTED LOW AND
L ARE ASSERTED HIGH. | | 7218
7219 | 017674 | 004737 | 007272 | | 19\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 7220
7221
7222
7223 | | | | | | :DID NO | IT GET SET TO A ONE WHE | THAT THE SINGLE STEP BREAK FLIP-FLOP
N FETCT H WAS SET LOW, PSM L AND ADALS H
SE WAS ISSUED ON THE SIGNAL XRAS H. | | 7224
7225
7226
7227 | 017700
017704
017706
017706 | 004737
001405
104455 | 006570 | | | JSR
BEQ
ERRDF
TRAP | PC.READRO
20\$
1.GDALRG.ROEROR
C\$ERDF | READ AND CHECK GDAL REGISTER
FOR THEN CONTINUE
GDAL REGISTER NOT EQUAL EXPECTED | | 7228
7229
7230 | 017710
017712
017714 | 000001
002406
004754 | | | | . WORD
. WORD
. WORD | 1
GDALRG
ROEROR | | | 7232 | 017716
017716 | 104406 | | | | TRAP | C\$CLP1 | | | 7234
7235
7236 | | | | | | SET THE | E SIGNAL FETCT H TO THE | HIGH STATE AND CHECK ALL THE OTHER BITS | | 7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7247 | 017720
017726
017732
017734
017734
017736
017740 | 012737
004737
001405
104455
000003 | 000200
006640 | 002334 | 20\$: | MOV
JSR
BEQ
ERRDF
TRAP
. WORD | #VDAL7,R4LOAD
PC,LDRDR4
21\$
3,VDALRG,R4EROR
C\$ERDF | ;SETUP BIT TO SET FETCT H TO HIGH STATE
;LOAD, READ AND CEHCK VDAL REGISTER
;IF OK THEN CONTINUE
;VDAL REGISTER NOT EQUAL EXPECTED | | 7244 | 017742 | 002537
005004 | | | | .WORD | VDALRG
R4EROR | | | 7246
7247 | 017744 | 104406 | | | | CKL00P
TRAP | C\$CLP1 | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 148 CVCDCB.P11 01-APR-82 14:12 TEST 31: PAUSE STATE MACHINE - 16 BIT ADDRESS - RUN MODE ``` | | | 02 | | | 1631 31 | . 17035 | SINIE HACHTHE - 10 BILL W | DAKE 33 - KOM MODE | |--|--|--|------------------|--------|------------------------------|--|---|--| | 7248
7249
7250
7251 | | | | | | SET AD | AL REGISTER BIT 5 TO A Z
NGLE STEP BREAK FLIP-FLO
E IS ISSUED ON THE SIGNA | ERO. WHEN THIS BIT IS SET TO A ZERO. P SHOULD NOT GET SET TO A ONE WHEN L XRAS H. | | 7248
7249
7250
7251
7253
7253
7254
7255
7256
7261
7262
7263
7264
7265
7266
7267
7268
7270
7271
7272
7273
7274
7275
7276
7277
7278
7278
7278
7278
7278
7278 | 017746
017754
017760
017762
017762
017764
017766
017770
017772 | 042737
004737
001405
104455
000002
002513
004770
104406 | 000040
006614 | 002330 | 21\$: | BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #ADAL5,R2LOAD PC,LDRDR2 22\$ 2,ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 | ;SETUP TO CLEAR ADAL REGISTER BIT 5
;IF LOADED OK THEN CONTINUE
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | | 7263
7264
7265
7266 | | | | | | : WILL N | THE SIGNAL XRAS H TO CHE
OT GET SET WHEN ADALS H
SERTED HIGH. | CK THAT THE SINGLE STEP BREAK FLIP-FLOP IS ASSERTED LOW AND FETCT H AND PSM L | | 7267 | 017774 | 004737 | 007272 | | 22\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 7269
7270
7271 | | | | | | :READ G | DAL REGISTER TO CHECK THE | AT SINGLE STEP BREAK FLIP-FLOP DID NOT | | 7272
7273
7274
7275
7276
7277
7278
7279
7280
7281 | 020000
020004
020006
020006
020010
020012
020014
020016 | 004737
001405
104455
000001
002406
004754
104406 | 006570 | | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | PC,READRO 23\$ 1,GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR C\$CLP1 | :READ AND CHECK GDAL REGISTER :IF OK THEN CONTINUE :GDAL REGISTER NOT EQUAL EXPECTED | | 7282
7283
7284
7285 | | | | | | ; PULSIN | DAL REGISTER TO CHECK THE
G XRAS H WHEN ADALS H WAS
LOW STATE. | AT NO CHANGES OCCURED AS A RESULT OF S SET TO A ZERO. SET THE SIGNAL FETCT H | | 7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299 | 020020
020024
020030
020032
020032
020034
020036
020040
020042
020042
020042
020044
020044 | 005037
004737
001404
104455
000003
002537
005004
104405 | 002334
006640 | | 24\$:
10000\$:
L10061: | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
ENDSEG
TRAP
ENDTST | R4LOAD
PC,LDRDR4
24\$
3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$ESEG | SETUP TO CLEAR FETCT H LOAD, READ AND CHECK VDAL REGISTER IF NO CHANGE THEN CONTINUE VDAL REGISTER NOT EQUAL EXPECTED | | | | | | | | | | | | CACDCB. | -11 | UITAPR-02 | 14:12 | 1521 25 | : CHECK | EDTET FIF TO BE CLEARED | D VIA XPI L | | |--|--------------------------------------|------------------|------------------|--|---|--
--|--| | 7300 | | | | .SBTTL | TEST 32 | : CHECK EDFET F/F TO BE | E CLEARED VIA XPI L | | | 7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7321
7323
7324
7327
7328
7329
7330
7331
7332
7333 | | | | ; ISSUEI
; THE PA
; ON THI
; BY SE
; EDFET
; WHEN I
; THE PA
; THE EI
; THE EI
; SIGNAI
; TEST I
; XCAS I
; BE CLI | D OF THE AUSE MODE SIGNAL TTING VD. FLIP-FLE MODE MODEST WILL DEET FLIE WILL NOW H AND THE OCKED TO | SIGNAL XPI L. THE TEST WILL E FLIP-FLOP TO BE SET XRAS H. THE TEST WILL AL7 H TO A ONE. THE THE OP TO A ONE AND TO SET IP-FLOP IS SET TO A ONE E, THE PAUSE STATE WORK NOW PULSE THE SIGNAL P-FLOP IS CLEARED, THE S THE DATA INPUT LEAD PULSE THE SIGNAL XCAS E SIGNAL PB H IS ASSET | FLIP-FLOP CAN BE CLEARED WHEN A PULSE IS ST WILL SET ADAL4 H TO A ZERO TO CAUSE TO THE PAUSE MODE WHEN A PULSE IS ISSUED L SET THE SIGNAL FETCT H TO THE HIGH STATE EST WILL THEN PULSE XRAS H TO SET THE THE PAUSE MODE FLIP-FLOP TO THE PAUSE MODE AND THE PAUSE MODE FLIP-FLOP IS SET TO KING FLIP-FLOP WILL BE DIRECT SET TO A ONE XPI L TO CLEAR THE EDFET FLIP-FLOP. WHEN SIGNAL PB H WILL BE ASSERTED LOW. THE TO THE PAUSE STATE WORKING FLIP-FLOP. THE H. WHEN A PULSE IS ISSUED ON THE SIGNAL TED LOW, THE PAUSE STATE SYNC FLIP-FLOP WILL CAS H WILL ALSO CLOCK THE PAUSE STATE WORK- | | | 7320
7321
7322 | 020046
020046
020046 | | 005510 | T32:: | BGNTST
JSR | DC INITTE | ;SELECT AND INITIALIZE TARGET EMULATOR | | | 7323 | 020052 | | 003310 | | BGNSEG | PC, INITIE | SELECT AND INTITALIZE TARGET EMOLATOR | | | 7325
7326 | 020052 | | | | TRAP | C\$BSEG | | | | 7327
7328 | | | | | :SELECT | THE MODE REGISTER VIA | GDAL BITS 2:0 IN CONTROL REGISTER 0 | | | 7329
7330 | 020054 | 004737 | 007006 | | JSR | PC,SLMODR | ; SELECT MODE REG VIA GDAL BITS 2:0 | | | 7331
7332 | | | | | ;LOAD, | READ AND CHECK MODE REC | GISTER WITH A DATA PATTERN OF ALL ZEROES | | | | 020060
020064
020070
020072 | 004737
001405 | 002342
006672 | | CLR
JSR
BEQ
ERRDF | R6LOAD
PC,LDRDR6
1\$
4,MODREG,RO6ERR | ;SETUP TO CLEAR ALL BITS IN MODE REG
;GO LOAD, READ AND CHECK MODE REGISTER
;IF LOADED OK THEN CONTINUE
;MODE REGISTER NOT EQUAL TO ZERO | | | 7337
7338 | 020072
020074 | 104455 | | | TRAP.WORD | C\$ERDF | | | | 7339
7340 | 020076
020100 | 005020 | | | . WORD | MODREG
ROGERR | | | | 7342 | 020102
020102 | 104406 | | | CKLOOP
TRAP | C\$CLP1 | | | | 7344
7345
7346 | | | | | ;GO PUL | SE BRKRES L BY SETTING
HER ADAL REGISTER BITS | AND CELARING ADALO IN THE ADAL REGISTER. WILL BE SET TO A ZERO. | | | 7347
7348
7349 | 020104
020110 | 005037
004737 | 002330
007772 | 1\$: | CLR
JSR | R2LOAD
PC,BRKRES | ; SETUP TO CLEAR ALL ADAL BITS
; GO O ADAL REG AND PULSE ADALO H | | | 7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353 | | | | | ;PULSE
;SIGNAL
;CLEARE | INVD L WILL CAUSE THE | CLEARING VDAL2 H IN THE VDAL REGISTER. THE PAUSE STATE MACHINE FLIP-FLOPS TO BE | | | 7354
7355 | 020114
020120 | | 002334
007712 | | CLR
JSR | R4LOAD
PC,CLRPSM | ;SETUP TO CLEAR ALL OTHER R.W BITS
;GO PULSE INVD L VIA VDAL2 H | | | | | | | | | | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 150 CVCDCB.P11 01-APR-82 14:12 TEST 32: CHECK EDFET F/F TO BE CLEARED VIA XPI L | 7356
7357
7358 | | | | | | ;SELECT | THE HDAL REGISTER VIA | GDAL BITS 2:0 IN CONTROL | REGISTER O | |--|--|--|--------------------------------------|----------------------------|------|---|--|--|--| | 7359
7360 | 020124 | 004737 | 006754 | | | JSR | PC, SLHDAL | ; SELECT HDAL REGISTER | VIA GDAL BITS 2:0 | | 7361
7362
7363
7364 | | | | | | ;HDAL2;AND CO | READ AND CHECK THE HDAL
H ON A ONE WILL ALLOW T
INTROL SIGNALS. | REGISTER WITH HDAL2 H S
HE PROGRAM TO CONTROL TH | ET TO A ONE.
E T-11 TIMING | | 7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375 | 020130
020136
020142
020144
020146
020150
020152
020154
020154 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL2,R6LOAD
PC,LDRDR6
2\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR | ;SETUP BIT TO BE LOADE
;GO LOAD, READ AND CHE
;IF LOADED OK THEN CON
;HDAL REGISTER NOT EQU | D
CK THE HDAL REG
TINUE
AL EPXECTED | | 7376 | | | | | | SET VD | AL7 H TO A ONE TO CAUSE | THE SIGNAL FETCT H TO B | E ASSERTED HIGH. | | 7378
7379
7380
7381
7382
7383
7384
7385
7386
7387 | 020156
020164
020170
020172
020172
020174
020176
020200
020202
020202 | 012737
004737
001405
104455
000003
002537
005004
104406 | 000200
006640 | 002334 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL7,R4LOAD PC,LDRDR4 3\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | GO LOAD, READ AND CHE | D
CK THE VDAL REG
TINUE
ACHINE ERROR | | 7359
7360
7361
7362
7363
7364
7365
7366
7367
7370
7371
7372
7373
7374
7375
7376
7377
7378
7378
7381
7382
7383
7384
7385
7386
7387
7387
7391
7392
7393
7396
7397
7398
7399 | | | | | | :PAUSE
:THE SI
:ASSERT
:STATE
:ARE AS | MODE FLIP-FLOP, THUS SET
GNAL SOP H WILL BE ASSET
ED HIGH. WHEN SOP H ANI
WORKING FLIP-FLOP WILL E
SERTED HIGH, THE SIGNAL | ETTING AND CLEARING HDAL'S F FETCT H, WHICH IS HIGH IGNAL EDFET H TO THE HIGH STATE OF ADAL4 H, WHICH ITING THE SIGNAL PAUSE L RTED HIGH AS A RESULT OF D EDFET H ARE ASSERTED HIS BE SET TO A ONE. WHEN SO PB H WILL BE ASSERTED HIS O THE PAUSE STATE SYNC FI | IS LOW, INTO THE TO THE HIGH STATE. PAUSE L BEING IGH, THE PAUSE DP H AND EDFET HIGH. THE SIGNAL | | 7400
7401 | 020204 | 004737 | 007272 | | 3\$: | JSR | PC,XRAS | GO PULSE KRAS H VIA HE | DAL12 H | | 7402
7403
7404
7405 | | | | | | CHECK | AL7 H TO A ZERO TO CAUSE
THAT THE PAUSE STATE WOR
OF SOP H AND EDFET H BE | THE SIGNAL FETCT H TO ERKING FLIP-FLOP WAS SET THE ING ASSERTED HIGH. | BE ASSERTED LOW. | | 7406
7407
7408
7409
7410
7411 | 020210
020216
020224
020232
020236
020240 |
042737
013737
052737
004737
001405 | 000200
002334
001000
006646 | 002334
002336
002336 | | BIC
MOV
BIS
JSR
BEQ
ERRDF | #VDAL7,R4LOAD
R4LOAD,R4GOOD
#VDAL9,R4GOOD
PC,LDRD4R
4\$
3,VDALRG,R4EROR | SETUP TO CLEAR FETCT HE COPY DATA LOADED TO DATA LOADED TO DATA SETUP TO EXPECT PSMW HE COPY TO BE COPY TO THE COP | ATA EXPECTED 1 TO BE A ONE CK VDAL REG C THEN CONTINUE | | HARDWARE TESTS MACY11 30A(105) |) 01-APR-82 14:4 | R PAGE 151 | 1 12 | |--|------------------|-----------------|-------------------------| | HARDWARE TESTS MACY11 30A(105)
CVCDCB.P11 01-APR-82 14:12 | TEST 32: | CHECK EDFET F/F | TO BE CLEARED VIA XPI L | | CACDCR" | PII (| 11-APR-82 | 14:12 | TEST 32 | : CHECK | EDFET F/F TO BE CLEARED | VIA XPI L | |--|--|--|------------------|----------|--|---|---| | 7412
7413
7414
7415
7416
7417
7418 | 020240
020242
020244
020246
020250
020250 | 104455
000003
002537
005004
104406 | | | TRAP .WORD .WORD .WORD CKLOOP TRAP | CSERDF
3
VDALRG
R4EROR
CSCLP1 | | | 7419
7420
7421
7422
7423
7424
7425 | | | | | :TOGGLE
:XPI L
:TO THE
:IS THE
:ASSERT | THE SIGNAL XPI L BY SET WILL CLEAR THE EDFET FLIF LOW STATE. WHEN EDFET OF THE FEB LOW. | TING AND CLEARING HDAL15 H. A PULSE ON P-FLOP, THUS SETTING THE SIGNAL EDFET H H IS ASSERTED LOW, THE SIGNAL PB H, WHICH PAUSE STATE SYNC FLIP-FLOP, WILL BE | | 7425
7426 | 020252 | 004737 | 007502 | 45: | JSR | PC,XPI | GO PULSE XPI L VIA HDAL15 H | | 7427
7428
7429
7430
7431
7432 | | | | | OF PB | THE SIGNAL XCAS H BY SE
WILL CLOCK THE PAUSE STA
H BEING ASSERTED LOW. TH
STATE WORKING FLIP-FLOP
FPFN L, AND EP8N L BEIN | TTING AND CLEARING HDAL13 H. THE SIGNAL ATE SYNC FLIP-FLOP TO A TERO AS A RESULT HE SIGNAL XCAS H WILL ALSO CLOCK THE TO A ONE AS A RESULT OF THE SIGNALS NG ASSERTED HIGH. | | 7455 | 020256 | 004737 | 007376 | | JSR | PC,XCAS | GO PULSE XCAS H VIA HDAL13 H | | 7434
7435
7436
7437
7438
7439 | | | | | :READ TO:
:FLOP.
:STATE:
:THE PAGE | HE VDAL REGISTER TO CHECK
IF XPI L HAD FAILED TO C
SYNC FLIP-FLOP WILL BE SE
USE STATE WORKING FLIP-FE | K THAT XPI L HAD CLEARED THE EDFET FLIP-
CLEAR THE EDFET FLIP-FLOP, THEN THE PAUSE
ET TO A ONE. CHECK THAT XCAS H CLOCKED
LOP TO A ONE. | | 7440
7441
7442
7443
7444
7445
7446
7447
7448 | 020262
020266
020270
020270
020272
020274
020276
020300
020300 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | PC,READR4 5\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | GO READ AND CHECK THE VDAL REGISTER
IF NO CHANGE THE CONTINUE
XPI L PROBABLY FAILED TO ZERO EDFET F/F | | 7450 | | | | | ; GO PULS | SE INVD L VIA VDAL2 H TO | CLEAR THE PAUSE STATE WORKING FLIP-FLOP. | | 7449
7450
7451
7452
7453
7454
7455
7456
7457
7458 | 020302
020306 | 005037
004737 | 002334
007712 | 5\$: | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO EXPECT ALL READ ONLY BITS A 0 GO PULSE INVO L VIA VDAL2 H | | 7455 | 020312
020312
020312 | | | 10000\$: | ENDSEG | | | | 7457
7458
7459 | 020312
020314
020314 | 104405 | | L10062: | TRAP
ENDTST | C\$ESEG | | | 7460 | 020314 | 104401 | | 110002: | TRAP | CSETST | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 152 TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA CVCDCB_P11 01-APR-82 14:12 7461 7462 7463 .SBTTL TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA THIS TEST WILL CHECK THE PAUSE STATE MACHINE IN 8 BIT ADDRESS MODE. THE PAUSE STATE WORKING FLIP - FLOP'S, PAUSE STATE WORKING, PAUSE STATE SYNC, 8 BIT INSTRUCTION HB, 8 BIT ADDRESS LB AND 8 BIT ADDRESS HB WILL BE CLOCKED TO CHES AND ZEROES BY PULSING THE SIGNALS XRAS H AND XCAS H AND CHANGING THE LOGIC LEVEL ON THE SIGNAL FETCT H. THE SIGNALS ADAL4 H AND AND ADAL8 H WILL BE SET TO A ZERO DURING THIS TEST. ADAL4 H ON A ZERO WILL PUT THE PAUSE STATE MACHINE IN PAUSE MODE. ADAL8 H ON A ZERO WILL DISABLE THE TIMEOUT BREAK SIGNAL FROM CAUSING A BREAK. ADALO H WILL BE SET AND CLEARED TO CLEAR THE BREAK LOGIC. WITH THE TIMEOUT BREAK DISABLED AND THE BREAK LOGIC CLEARED. THE SIGNAL BRK H WILL BE A ZERO. MR BIT 11 WILL BE SET TO A ONE 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 CLEARED. THE SIGNAL BRK H WILL BE A ZERO. MR BIT 11 WILL BE SET TO A ONE IN THE MODE REGISTER TO ENABLE 8 BIT ADDRESS MODE. THE TEST WILL ALSO CHECK THAT THE 16 BIT INSTRUCTION REGISTER AND THE OLD 7477 7478 7479 7480 7481 FORCE JUMP ADDRESS REGISTER ARE ENABLED TO THE EDDAL BUS IN 8 BIT ADDRESS MODE. THE OLD FORCE JUMP ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA PATTERNS: 125125, 052652, 000377, 177400, 125252, 052525, 177777, AND 000000. THE OLD FORCE JUMP ADDRESS REGISTER GETS ITS DATA FROM THE DIAGNOSTIC ADDRESS : REGISTER WHICH IS ENABLED TO THE ADDRESS BUS DURING THIS TEST. 7483 7484 7485 020316 020316 020316 020322 020326 BGNTST T33:: 7486 7487 7488 7489 7490 7491 7492 7493 7494 004737 005510 JSR PC.INITTE SELECT AND INITIALIZE TARGET EMULATOR 012701 021562 MOV #20$,R1 GET ADDRESS OF OLD FJA DATA TABLE 012702 000010 MOV #8. .R2 NUMBER OF DATA PATTERNS TO BE TESTED 020332 020332 104404 15: BGNSEG C$BSEG TRAP SELECT THE MODE REGISTER BY SETTING GDAL2 TO A ONE AND GDAL1 AND GDALO :TO A ZERO. 7495 7496 7497 7498 020334 004737 007006 JSR PC_SLMODR GO SELECT MODE REG VIA CONTROL REG O ; LOAD, READ AND CHECK MODE REGISTER BITS MR 15:0 WITH 4000. MR BIT 11 7499 ON A ONE WILL ENABLE 8 BIT ADDRESS SELECTION TO THE PAUSE STATE MACHINE 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 020340 020346 020352 012737 005037 004000 002346 002342 #MR11, R6LOAD SETUP TO SET MR BIT 11 R6MASK CLR SETUP TO CHECK ALL 16 BITS 004737 006672 PC.LDRDR6 JSR :LOAD, READ AND CHECK MODE REGISTER 020356 001405 BEQ : IF LOADED OK THEN CONTINUE 020360 020360 020362 020364 020366 ERRDF 4.MODREG, ROGERR :MODE REGISTER NOT EQUAL TO O 104455 TRAP C$ERDF 000004 -WORD 002631 WORD MODREG 005020 WORD R06ERR 020370 CKLOOP 020370 104406 TRAP C$CLP1 SET GDAL1 AND GDALO TO ONES IN THE GDAL REGISTER TO SELECT THE HDAL REGISTER ON A WRITE OR READ COMMAND TO CONTROL REGISTER 6. 020372 004737 006754 2$: JSR PC, SLHDAL SELECT HDAL REGISTER VIA GDAL BITS 2:0 ``` | CVCDCB. | PII (| 11-APK-02 | 14:12 | | 1521 22 | : PAUSE | STATE MACHINE . | - 8 BIL ADD | RESS - PAUSE M | ODE - OLD FJA | | |--|--|--|------------------|--------|---------|---|---|--|---|---|---| | 7517
7518
7519
7520
7521
7522
7523 | | | | | | ;LOAD,
;HDAL9
;REGIST
;BUS.
;TIMING | READ AND CHECK
H SET TO A ONE
ER ONTO THE ADD
HDAL2 H ON A ON
AND CONTROL SI | HDAL REGIS
WILL ENABL
PRESS BUS A
NE WILL ALL
GNALS. | TER WITH HDAL9
E THE OUTPUTS
ND DISABLE THE
OW THE PROGRAM | H AND HDAL2 H
OF THE DIAGNOS
EIDAL BUS FRO
TO GENERATE T | SET TO ONES. STIC ADDRESS OM THE ADDRESS THE T-11 | | 7518
7519
7520
7521
7523
7524
7525
7526
7527
7528
7529
7531
7533
7534
7537
7538
7539
7540
7541
7542
7543
7544
7546
7547
7548
7549
7550 | 020376
020404
020410
020412
020412
020414
020416
020420
020422
020422 | 012737
004737
001405
104455
000004
002605
005020
104406 | 001004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL9!HDAL2,F
PC,LDRDR6
3\$
4,HDALRG,RO6EF
C\$ERDF
4
HDALRG
RO6ERR
C\$CLP1 | | SETUP BITS TO
GO LOAD, READ
IF LOADED OK
HDAL REG NOT | AND CHECK HDA | | | 7535
7536
7537
7538 | | | | | | :SELECT
:ZEROES
:NOSTIC | THE DIAGNOSTIC
ON A WRITE C
ADDRESS REGIST | ADDRESS RICHARD COM
TER WILL BE | EGISTER BY SET
MAND TO CONTRO
SELECTED. | TING GDAL BITS
L REGISTER 6, | THE DIAG- | | 7539 | 020424 | 004737 | 007072 | | 3\$: | JSR | PC, SLDADR | | GO SELECT DIA | G ADDRESS REG | VIA GDAL 2:0 | | 7541
7542
7543
7544 | | | | | | :LOAD,
:FOLLOW
:052525 | READ AND CHECK
ING DATA PATTER
, 177777 AND 00 | THE DIAGNO:
RNS: 125125 | STIC ADDRESS R
, 052652, 0003 | EGISTER WITH 077, 177400, 12 | INE OF THE | | 7551 | 020430
020434
020440
020442
020442
020444
020446 |
011137
004737
001405
104455
000004
002735
005020 | 002342
006672 | | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | (R1),R6LOAD
PC,LDRDR6
4\$
4,ADDRRG,R06ER
C\$ERDF
4
ADDRRG
R06ERR | IR . | GET DATA PATT
GO LOAD, READ
IF LOADED OK
DIAG ADDRESS | ERN FROM TABLE
AND CHECK DIA
THEN CONTINUE
REG NOT EQUAL | G ADDR REG
EXPECTED | | 7552
7553
7554 | 020450
020452
020452 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | | | 7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7567
7568
7569
7570
7571
7572 | | .01100 | | | | ;LOAD,
;TO CLE;
;BREAK
;CAUSE | READ AND CHECK
AR THE BREAK LO
SIGNAL FROM CAU
THE PAUSE STATE
XRAS H IS PULS | IGIC. ADALE
ISING A BREA
MACHINE TO | B H ON A ZERO
AK CONDITION. | WILL DISABLE T | HE TIMEOUT
ZERO WILL | | 7562
7563 | 020454 | 005037
004737 | 002330
007772 | | 4\$: | CLR
JSR | R2LOAD
PC.BRKRES | | SETUP ALL BIT | S TO BE CLEARE | D D D D D D D D D D D D D D D D D D D | | 7564
7565
7566
7567
7568 | 020400 | 004131 | 001112 | | | :SET VD | AL2 H TO A ONE
STATE MACHINE F
S AND THIS CYCL | AND THEN ZE | AND THE FLIP-F | ON A ONE WILL | CLEAR THE | | 7569
7570 | 020464
020470 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC,CLRPSM | | SETUP TO CLEAR | R ALL VDAL BIT | STATE F/F'S | | 7571
7572 | | | | | | :SELECT | THE NEW FORCE | | | | | | | | | | | : DATA | AL BITS 2 AND
VILL BE LOADED
VEW FORCE JUMP | O TO ZEROES
INTO THE NI
ADRESS FLI | FORCE OF THE PORCE | JRITE COM
JUMP ADDR
LL BE SET | MAND TO COL | NTROL REC | |--|--------------------------------------|------------------|--------|------|--|--|--|--|--|--|---| | 020474 | 004737 | 007040 | | | JSR | PC, SLFJAR | | ;SELECT | NEW FJA V | IA GDAL BI | TS 2:0 | | | | | | | GET SE
GET SE
IS WRI
ISTER
ARE SE | A WRITE COMMA INTO THE NEW WPT1 HB H. T T VIA THE SIG TTEN WITH DAT IS ENABLED TO T TO ONES. T EODAL BUS DU | HE TAKE NEW
NAL WPT1 LB
A TO CHECK
THE EODAL (
HE OLD FORC) | FORCE JUI
H. THE I
THAT THE (
BUS WHEN
JUMP ADI | MP ADDRES
NEW FORCE
CORRECT F
THE 8 BIT | S FLIP-FLOI
JUMP ADDRI
ORCE JUMP /
ADDRESS FI | P WILL AL
ESS REGIS
ADDRESS F
LIP-FLOPS | | 020500 | 012777 | 146063 | 161600 | | MOV | #146063, areg | 6 | ;WRITE N | W FJA WI | TH DATA VI | A WPT1 | | | | | | | ;FLIP-F | HE VDAL REGIS
LOP WAS SET T
S THE SIGNAL | O A ONE VIA | WPT1 LB | TAKE NE | W FORCE JUI
LIP-FLOP W | MP ADDRES | | 020506
020514
020520
020522 | 052737
004737
001405 | 100000
006654 | 002336 | | BIS
JSR
BEQ
ERRDF | #VDAL15,R4GO
PC,READR4
5\$
3,VDALRG,R4E | | SETUP TO
GO READ
IF TNFJ | H SET TH | TNFJ H TO E
PAUSE STATEN CONT | BE A 1
TE MACHIN | | 020522
020524
020526
020530
020532 | 104455
000003
002537
005004 | | | | TRAP
.WORD
.WORD | CSERDF
3
VDALRG
R4EROR | NON | , INFS H | RUBABLT | NOT SET | | | 020532 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | | | | | | | 1 | | SET VO | AL7 H TO A ON
AL2 H TO A ON
E TAKE NEW FO | E TO SET THE
E AND THEN T
RCE JUMP ADI | SIGNAL I
ZERO TO CI
DRESS FLI | ETCT H TE | O THE HIGH
PAUSE STATE | STATE (1 | | 020534
020542 | 012737
004737 | 000200
007712 | 002334 | 5\$: | MOV
JSR | #VDAL7,R4LOA
PC,CLRPSM | D | | | FETCT H TO | | | | | | | | ; TO ONE | THE HDAL REG
S. BITS IN T
EST TO CAUSE | HE HDAL REG | STER WILL | BE SET | AND CLEARED | LATER I | | 020546 | 004737 | 006754 | | | JSR | PC, SLHDAL | | :GO SELEC | T HDAL R | EG VIA GDAL | 2:0 | | | | | | | ; THE SI
; HIGH,
; HIGH S
; IS LOW
; TO THE
; SIGNAL
; HIGH,
; WHEN T | THE SIGNAL X GNAL XRAS H W INTO THE EDFE TATE. THE SI INTO THE PA HIGH STATE. PAUSE L IS A THE PAUSE STAT HE PAUSE STAT WILL BE ASSE | ILL CLOCK THE FLIP-FLOP, GNAL XRAS HOUSE MODE FLIP THE SIGNAL SSERTED HIGHTE WORKING HE WORKING FLIP | THUS SET OF THE O | OF THE SIGNING THE STAND THE STAND SETT THE ASSIGN HAND WILL BE SET TO | GNAL FETCT SIGNAL EDF ATE OF ADAL ING THE SIG ERTED HIGH EDFET H AF DIRECT SET A ONE THE | H, WHICH ET H TO L4 H, WHI SNAL PAUS WHEN THE RE ASSERT TO A ONE E SIGNAL | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 155 CVCDCB_P11 TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA 01-APR-82 14:12 7629 7630 SIGNAL PB H WILL BE ASSERTED HIGH. THE SIGNAL PB H IS THE DATA INPUT LEAD TO THE PAUSE STATE SYNC FLIP-FLOP. 7631 7632 7633 7634 7635 7636 7637 THE SIGNAL KRAS H WILL CAUSE THE SIGNAL RASP H TO BE PULSED. WHEN THE SIGNAL RASP H IS PULSED AND THE SIGNAL EDFET H IS ASSERTED HIGH. A PULSE WILL BE ISSUED ON THE SIGNAL DEET H. THE SIGNAL DEET H WILL CLOCK THE ADDRESS BUS INTO THE OLD FORCE JUMP ADDRESS REGISTER. AT THE PRESENT TIME THE DIAGNOSTIC ADDRESS REGISTER IS ENABLED ONTO THE ADDRESS BUS, THEREFORE THE OLD FORCE JUMP ADDRESS REGISTER WILL BE 7638 LOADED WITH THE DATA FROM THE DIAGNOSTIC ADDRESS REGISTER. 7640 7641 7642 7643 7644 7645 002342 001004 MOV #HDAL9!HDAL2,R6LOAD SETUP BITS PREVIOUSLY LOADED 020560 004737 007272 JSR PC.XRAS :GO PULSE XRAS H VIA SIGNAL HDAL12 :CLEAR VDAL7 H IN THE VDAL REGISTER THUS SETTING THE SIGNAL FETCT H TO THE LOW STATE. CHECK THE PAUSE STATE MACHINE TO BE IN THE FOLLOWING STATE AS A RESULT OF FETCT H AND SOP H BEING ASSERTED HIGH. 7646 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 7647 7648 7649 7650 7651 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS IR H - 50008F H - 0 8 BIT ADDRESS LB H - EP8G H - 0 8 BIT ADDRESS HB H - EP8N H - 0 7652 7653 7654 7655 7656 7657 7658 042737 013737 052737 004737 000200 002334 001000 002334 002336 002336 020564 020572 BIC #VDAL7,R4LOAD SETUP TO CLEAR FETCT H MOV R4LOAD, R4GOOD COPY DATA LOADED TO EXPECTED 020600 020606 020612 020614 020614 #VDAL9,R4GOOD BIS EXPECT PSMW H TO BE SET TO A 1 006646 JSR PC,LDRD4R ; GO LOAD, READ AND CHECK VDAL REG 001405 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR ; VDAL OR PAUSE STATE MACHINE ERROR 104455 TRAP CSERDF 7659 7660 7661 7662 7663 020616 020620 020622 020624 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 020624 104406 TRAP C$CLP1 7664 7665 7666 7667 7668 7669 7670 ;SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A CNE. THE ;SIGNAL XCAS H GOING FROM A ZERO TO A ONE WILL CLOCK THE LEVEL OF THE ;SIGNAL "PB H", WHICH IS HIGH, INTO THE PAUSE STATE SYNC FLIP-FLOP, ;THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A ONE. THE SIGNAL :XCAS H WILL ALSO CLOCK THE PREVIOUS STATE OF THE PAUSE STATE SYNC FLIP- :FLOP (0) INTO THE 8 BIT INSTRUCTION HB FLIP-FLOP, THUS CLOCKING THAT 7671 7672 :FLIP-FLOP TO A ZERO. 7673 020626 004737 007410 6$: JSR PC.XCASH SET XCAS H TO HIGH STATE VIA HDAL 13 H 7674 7675 7676 7677 7678 READ VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING SET HIGH. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 0 8 BIT ADDRESS HB - EP8N H - 0 7679 7680 7681 7682 7683 002336 002000 #VDAL10,R4GOOD ; SETUP TO EXPECT PAUSE STATE SYNC - EPSF 020640 004737 006654
PC.READR4 GO READ AND CHECK PAUSE STATE MACHINE ``` | MARDMARE TESTS MACY11 30A(1052) 01-APR-82 14:8 PAGE 156 CYCOLB.P.11 01-APR-82 14:12 7685 020644 001405 7686 020656 104455 7689 020650 000003 7689 020650 000003 7689 020656 104406 7697 7698 020656 104406 7697 7698 020650 000073 7699 020650 104406 7697 7698 020650 000073 7699 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7697 7698 020650 104406 7709 7709 7709 7709 7709 7709 7709 7709 | нарошар | E TECTO | MACVII | 704/1053 | 01-400- | 02 1/ | / 0 DAC | N 12 | | | |--|--|--|--|----------|------------------|---------|---|--|---|---| | 7698 7699 7690 7690 7691 7692 7700 7701 7702 7703 7704 7705 7706 7706 7707 7706 7707 7708 7708 7708 | CVCDCB. | P11 0 | 1-APR-82 | 14:12 | T | EST 33: | PAUSE | STATE MACHINE - 8 BIT | ADDRESS - PAUSE MODE | - OLD FJA | | 7698 7699 7690 7690 7691 7692 7700 7701 7702 7703 7704 7705 7706 7706 7707 7706 7707 7708 7708 7708 | 7685
7686
7687
7688
7689
7690
7691
7692 | 020646
020646
020650
020652
020654
020656 | 001405
104455
000003
002537
005004
104406 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
3
VDALRG
R4EROR | ; IF LOADED OK THE
; EPSF H PROBABLE | N CONTINUE
NOT SET IN VDAL REG | | 7699 020660 004737 007122 7\$: JSR PC,SEODAL ;SELECT EODAL BUS VIA GDAL BITS 2:0 7701 7702 7703 | 7695
7696 | | | | | | :BYTE OF | F THE 16 BIT INSTRUCT.
BUS AT THE SAME TIME. | ION REGISTER SHOULD E
ON A READ COMMAND 1 | BE ASSERTED ON THE
TO CONTROL REGISTER 6, | | 7701 7702 7703 7704 7705 7706 7706 7706 7707 7707 7707 7708 7707 7708 7709 7709 | 7699 | 020660 | 004737 | 007122 | 7: | S: . | JSR | PC, SEODAL | SELECT EODAL BUS | VIA GDAL BITS 2:0 | | 7712 020664 012737 000137 002342 7713 020672 012737 177400 002346 7714 020700 004737 006700 7715 020704 001405 7716 020706 7717 020706 104455 7718 020710 00004 7719 020712 003034 7720 020714 005020 7721 020716 7722 020716 104406 7722 020716 7723 7724 7725 7726 7727 020720 004737 006754 7727 020720 004737 006754 7720 020720 004737 006754 | 7701
7702
7703
7704
7705
7706
7707
7708
7709
7710 | | | | | | WHEN THE FLOP IS THE SIGN THE | HE SIGNAL ACAS H IS AS
S SET TO A ONE, AND MI
GNAL EDRL H WILL BE AS
BIT INSTRUCTION REGIS
BIT INSTRUCTION REGIS
READ COMMAND IS ISSUI
ONES, A PULSE WILL BI | SSERTED HIGH, THE PAU
ODE REGISTER BIT 11 I
SSERTED LOW, THUS ENA
STER ONTO THE EODAL E
STER WILL BE DISABLED
ED TO CONTROL REGISTE
E ISSUED ON THE SIGNA | ISE STATE SYNC FLIP- IS A ONE (8 BIT MODE), IBLING THE LOW BYTE OF IUS. THE HIGH BYTE OF ION THE EODAL BUS. IR 6 WITH GDAL BITS 2:0 IL RPT7 L. THE SIGNAL | | ## Figure 1 Figure 2 Figure 2 Figure 2 Figure 3 | 7712
7713
7714
7715
7716
7717
7718
7719 | 020672
020700
020704
020706
020710
020712
020714
020716 | 004737
001405
104455
000004
003034
005020 | 177400 | 002342
002346 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | PC,READR6
8\$
4,IEODAL,ROGERR
C\$ERDF
4
IEODAL
ROGERR | GO READ LOW BYTE | HIGH BYTE OF INSTR REG ON EODAL THEN CONTINUE | | 7726 7727 7728 7729 7730 7731 7732 7732 7733 7733 7734 7735 7734 7735 7736 7737 7736 7737 7737 7738 7739 7730 7730 7731 7732 7733 7734 7735 7734 7735 7736 7737 7737 7737 7738 7738 7739 7739 7739 | 7724 | | | | | | | | BY SETTING GDAL2 H TO | A ZERO AND GDAL BITS | | ; SET THE SIGNAL XCAS H TO THE LOW STATE BY CLEARING HDAL13 H IN HDAL ; REGISTER. ; REGISTER. 7730 7731 7732 020724 012737 021004 002342 7733 020732 005037 002346 7734 020736 004737 007442 7735 ; SET THE SIGNAL XCAS H TO THE LOW STATE BY CLEARING HDAL13 H IN HDAL ; REGISTER. ; REGISTER. MOV #HDAL13!HDAL9!HDAL2,R6LCAD ; BITS THAT WERE PREVIOUSLY SET CLR R6MASK ; SETUP TO CHECK ALL BITS JSR PC, XCASL ; SET XCAS H TO LOW STATE VIA HDAL13 H | 7726 | 020720 | 004737 | 006754 | 8: | | | | SELECT HDAL REG | VIA GDAL BITS 2:0 | | 7731 020724 012737 021004 002342 MOV #HDAL13!HDAL9!HDAL2,R6LQAD ;BITS THAT WERE PREVIOUSLY SET CLR R6MASK ;SETUP TO CHECK ALL BITS JSR PC,XCASL ;SET XCAS H TO LOW STATE VIA HDAL13 H | 7729
7730 | | | | | | | | E LOW STATE BY CLEARI | NG HDAL13 H IN HDAL | | | 7731
7732
7733
7734 | 020732 | 005037 | 002346 | 002342 | | CLR | R6MASK | SETUP TO CHECK A | LL BITS | | 7736 ;TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING HDAL15 H. THIS IS DONE
7737 ;TO SIMULATE A MACHINE CYCLE | 7736
7737 | | | | | | TOGGLE
TO SIMU | THE SIGNAL XPI H BY | SETTING AND CLEARING | HDAL15 H. THIS IS DONE | | 7738
7739 020742 004737 007502 JSR PC,XPI ;GO PULSE XPI H VIA HDAL15 H
7740 | 7739 | 020742 | 004737 | 007502 | | | JSR | PC,XPI | GO PULSE XPI H V | IA HDAL15 H | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 157 CVCDCB.P11 01-APR-82 14:12 TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA 7741 7742 7743 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H 7744 7745 7746 7747 7748 7749 AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE SIGNAL RASP L WHEN EPFN L. EP8N L. AND PSMW H ARE ALL ASSERTED HIGH. 7750 020746 004737 007272 JSR PC.XRAS :GO PULSE XRAS H BY HDAL12 7751 7752 7753 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS :TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. 7754 7755 7756 7757 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 0 7758 8 BIT ADDRESS HB - EP8N H - 0 7759 020752 020756 7760 004737 006654 JSR PC, READR4 CHECK VDAL AND PAUSE STATE MACHINE 7761 001405 BEQ ; IF OK THEN CONTINUE 7762 7763 020760 ERRDF 3, VDALRG, R4EROR ; VDAL OR PAUSE STATE MACHINE ERROR 020760 104455 TRAP CSERDF 020762 020764 020766 020770 7764 000003 . WORD 7765 7766 7767 7768 7769 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 020770 104406 TRAP C$CLP1 7770 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS
H GOING FROM A O TO A ONE WILL CLOCK THE LEVEL OF THE SIGNAL "PB H", WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS 7771 7772 7773 CLOCKING THE PAUSE STATE SYNC FLIP-FLOP TO A ZERO. THE SIGNAL XCAS H 7774 :WILL CLOCK THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP (1) ; INTO THE 8 BIT INSTRUCTION HB FLIP-FLOP, THUS SETTING THAT FLIP-FLOP ; TO A ONE. THE SIGNAL XCAS H WILL ALSO CLOCK THE PREVIOUS STATE OF THE ; 8 BIT INSTRUCTION HB FLIP-FLOP (0) INTO THE 8 BIT ADDRESS LB FLIP-FLOP, 7775 7776 7777 7778 THUS CLOCKING THAT FLIP-FLOP TO A ZERO. 7779 7780 020772 004737 007410 9$: JSR PC.XCASH :SET XCAS H TO HIGH STATE VIA HDAL 13 H 7781 7782 7783 : READ THE VDAL REGISTER AND AND CHECK THE PAUSE STATE MACHINE FLIP- FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING SET HIGH PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 7784 7785 7786 7787 8 BIT INSTRUCTION HB - EP8F H - 1 8 BIT ADDRESS LB - EP8G H - 0 8 BIT ADDRESS HB - EPFN H - 0 7788 7789 042737 052737 004737 002000 7790 020776 002336 BIC #VDAL10,R4GOOD #VDAL12,R4GOOD CLEAR BIT FOR EPSF H 7791 7792 7793 021004 BIS SET BIT FOR EP8F H 021012 021016 006654 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 001405 BEQ : IF OK THEN CONTINUE 10$ 7794 021020 ERRDF 3, VDALRG, R4EROR EP8F H PROBABLY NOT SET IN VDAL REG 7795 021020 104455 TRAP C$ERDF 021022 000003 . WORD ``` | HARDWAR
CVCDCB. | | MACY11 | 30A(1052
14:12 |) 01-AP | R-82
TEST | 14:48 PA | GE 158
STATE MACHINE - 8 BIT | ADDRESS - PAUSE MODE - | OLD FJA | |--|--|--------------------------------------|----------------------------|---------|--------------|---------------------------------|--|--|---| | 7797
7798 | 021024
021026 | 002537
005004 | | | | . WORD | VDALRG
R4EROR | | | | 7800
7801 | 021030
021030 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 7799
7800
7801
7802
7803
7804
7805
7806 | | | | | | :BYTE | OF THE 16 BIT INSTRUCTI
BUS AT THIS TIME. ON | ING GDAL BITS 2:0 TO ON ON REGISTER SHOULD BE A A READ COMMAND TO CONTR D TO THE LSI-11 BUS VIA | SSERTED ON THE | | 7807
7808 | 021032 | 004737 | 007122 | | 10\$: | JSR | PC,SEODAL | SELECT EODAL BUS VI | A GDAL BITS 2:0 | | 7809
7810
7811
7812
7813
7814
7815
7816
7817
7818 | | | | | | FLIP- | FLOP IS SET TO A ONE, T
THE SIGNAL ACAS H IS AS
FLOP IS SET TO A ONE, T
ENABLING THE HIGH BYTE
THE LOW BYTE OF THE FOD | SERTED HIGH AND THE PAU HE SIGNAL ACAS H WILL B SERTED HIGH AND THE 8 B HE SIGNAL ED8H H WILL B OF THE 16 BIT INSTRUCTION AL BUS. WHEN A READ CO BITS 2:0 SET TO ONES, THE SIGNAL RPT7 L WILL S. | E ASSERTED HIGH. IT INSTRUCTION HB E ASSERTED HIGH, ON REGISTER (000) | | 7819
7820 | 021036
021042
021050 | 005037
012737
004737 | 002342
177400
006700 | 002346 | | CLR
MOV
JSR | R6LOAD
#177400,R6MASK
PC,READR6 | SETUP TO IGNORE HIG
GO READ 8 BIT HIGH | BYTE INSTRUCTION | | 7823
7824 | 021054 021056 | 001405 | | | | BEQ
ERRDF | 11\$
4, IEODAL, ROGERR | ON THE EDDAL BUS AS IF INSTRUCTION EQUAL EDDAL BUS OR 8 BIT | LS O THEN CONT | | 7821
7822
7823
7824
7825
7826
7827
7828
7829 | 021056
021060
021062
021064
021066 | 104455
000004
003034
005020 | | | | TRAP
.WORD
.WORD
.WORD | CSERDF
4
IEODAL
ROGERR | , EUDAL BUS UK 8 BIT | NO INSIN ERROR | | 7830 | 021066 | 104406 | | | | TRAP | C\$CLP1 | | | | 7831
7832
7833
7834
7835 | | | | | | ;RESELI | O TO ONES. | Y SETTING GDAL2 H TO A | ZERO AND GDAL BITS | | 7835
7836 | 021070 | 004737 | 006754 | | 11\$: | JSR | PC, SLHDAL | GO SELECT HDAL REG | VIA GDAL BITS 2:0 | | 7837
7838
7839 | | | | | | :SET THE | HE SIGNAL XCAS H TO A Z | ERO BY CLEARING HDAL13 | H IN THE HDAL | | 7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846 | 021074
021102
021106 | 012737
005037
004737 | 021004
002346
007442 | 002342 | | MOV
CLR
JSR | #HDAL13!HDAL9!HDAL2,RER6MASK PC,XCASL | SET XCAS H TO LOW S | BITS | | 7844
7845
7846 | | | | | | :TOGGLE | THE SIGNAL XPI H BY POPULATE A MACHINE CYCLE. | ULSING THE SIGNAL HDALTS | S H. THIS IS DONE | | 7847 | 021112 | 004737 | 007502 | | | JSR | PC,XPI | GO PULSE XPI H VIA | HDAL15 H | | 7848
7849
7850
7851
7852 | | | | | | :WITH | THE SIGNAL FETCT H SET | D XRAS L BY SETTING AND
LOW AND A PULSE BEING IS
KED TO A ZERO, THUS ASSI
HEN EDFET H IS ASSERTED | SCIED ON YRAS H THE | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 159 CVCDCB_P11 TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA 01-APR-82 14:12 7853 7854 :PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H :AND RASP L WILL BE PULSED. 7855 THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE 7856 SIGNAL RASP L WHEN EPFN L, EP8N L, AND PSMW H ARE ALL ASSERTED HIGH. 7858 021116 004737 007272 JSR PC, XRAS :PULSE XRAS VIA THE SIGNAL HDAL12 7859 7860 7861 7862 7863 7864 7865 : READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. ; NO CHANGES SHOULD OCCUR IN THE PAUSE STATE MACHINE WHEN XRAS H PULSED. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 8 BIT INSTRUCTION HB - EP8F H - 1 8 BIT ADDRESS LB - EP8G H - 0 7866 7867 8 BIT ADDRESS HB - EP8N H - 0 7868 7869 7870 021122 021126 004737 006654 JSR PC, READR4 GO READ VDAL AND PAUSE STATE MACHINE : IF OK THEN CONTINUE ; PAUSE STATE REGISTERS CHANGED 12$ 001405 BEQ 7871 021130 ERRDF 3. VDALRG, R4EROR 7872 7873 021130 104455 TRAP CSERDF 021132 000003 -WORD 021134 021136 7874 002537 . WORD VDALRG 7875 7876 005004 . WORD R4EROR 021140 CKLOOP 7877 021140 104406 TRAP C$CLP1 7878 7879 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS H GOING FROM A O TO A ONE WILL CLOCK THE OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP (0) INTO THE 8 BIT INSTRUCTION HB FLIP- 7880 7881 7882 7883 FLOP, THUS CLEARING THE 8 BIT INSTRUCTION HB FLIP-FLOP. THE PREVIOUS COUTPUT OF THE 8 BIT INSTRUCTION HB FLIP-FLOP (1) WILL BE CLOCKED INTO 7884 THE 8 BIT ADDRESS LB FLIP-FLOP THUS SETTING THE 8 BIT ADDRESS LB F/F. 7885 7886 7887 021142 004737 007410 125: JSR PC.XCASH SET XCAS H TO HIGH STATE VIA HDAL13 H 7888 READ VDAL REGISTER AND CHECK PAUSE STATE MACHINE FLIP-FLOPS TO BE IN 7889 THE FOLLOWING STATE AS A RESULT OF XCAS H BEING SET HIGH. 7890 PAUSE STATE WORKING - PSMW H - 1 7891 PAUSE STATE SYNC - EPSF H - 0 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS '.8 - EP8G H - 1 8 BIT ADDRESS HB - EP8N H - 0 7892 7893 7894 7895 7896 7897 042737 052737 004737 021146 021154 010000 020000 002336 002336 #VDAL12,R4GOOD #VDAL13,R4GOOD :SETUP TO EXPECT EP8F H TO BE O BIS SETUP TO EXPECT EP8G H TO BE 1 021162 006654 7898 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 021166 7899 001405 BEQ 13$: IF OK THEN CONTINUE 7900 021170 ERRDF 3, VDALRG, R4EROR EP8F H PROBABLY NOT O OR EP8G H NOT SET 021170 021172 021174 7901 7902 7903 7904 7905 7906 7907 7908 104455 TRAP C$ERDF 000003 002537 . WORD . WORD VDALRG 021176 005004 . WORD R4EROR 021200 CKLOOP 021200 104406 TRAP C$CLP1 SELECT THE EDDAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE LOW BYTE ``` | | | | | | | . TAUSE | SINIE MACHINE | O DIT ADI | DUESS - LY | NOSE MODE | - OLD FJA | | |--|--|--------------------------------------|----------------------------|------------------|-------|---|---
--|---|---|--|--| | 7909
7910
7911
7912 | | | | | | SRO2 VI | OLD FORCE JUM
THIS TIME. O
LL BE READBACK | IN A READ CO | OMMAND TO | CONTROL R | EGISTER 6 | . THE EODAL | | 7913
7914 | | 004737 | | | | JSR | PC, SEODAL | | :SELECT E | ODAL BUS | VIA GDAL | 31TS 2:0 | | 7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929 | | | | | | WITH T CLOCKI THE OL VIA TH THE EARL H WAS CL THE SI FLIP-F FOLLOW FORCE WILL B | FIRST PULSE OF GH, THE OLD FOR HE DATA PATTER NG SIGNAL DETT D FORCE JUMP A E SIGNAL OEARL GET NEW ADDRESS REARED AT THE B GNAL EARL H IS LOP BEING SET ING SECTION WI JUMP ADDRESS READ BACK VITROL REGISTER | RCE JUMP ALL IN THE DITCH. AT THIS SESS' FLIP HIGH. BEGINNING OF AND THE SIGNATURE AND THE SIGNATURE IS A THE SIGNATURE OF TH | DDRESS REGIAGNOSTIC IS POINT I ISTER WILL SIGNAL IS - FLOP B THE "GE FIHIS TES HIGH AS A GNAL ACAS CHECK TH ENABLED T | ADDRESS R ADDRESS R IN TIME, T BE ENABL ASSERTED T NEW A T WHEN VD RESULT OF H BEING A IAT THE LO | ULD HAVE E
EGISTER VI
HE LOW BYT
ED TO THE
LOW AS A F
ARED AND
DDRESS'' F
AL2 H WAS
THE 8 BIT
SSERTED HI
W BYTE OF
AL BUS. TH | BEEN LOADED IA THE IE OF EODAL BUS RESULT OF THE SIGNAL FLIP - FLOP SET HIGH. I ADDRESS LB IGH. THE THE OLD HE EODAL BUS | | 7931
7932
7933
7934
7935
7936 | | | | | | : THE NE
: BUS IN
: 146063 | LOW BYTE DATA
W FORCE JUMP A
STEAD OF THE O
WAS WRITTEN I
ING OF THE TES | DDRESS REGI
LD FORCE JU
NTO THE NEW | ISTER WAS
JMP ADDRES | PROBABLY
S REGISTE | ENABLED TO | THE EODAL | | 7937
7938 | 021206 | 011137 | 002342 | | | MOV | (R1),R6LOAD | | GET THE | DATA LOAD | ED INTO TH | E DIAG | | 7939
7940
7941
7942
7943 | 021212
021220
021226
021232
021234 | 042737
012737
004737
001405 | 177400
177400
006700 | 002342
002346 | | BIC
MOV
JSR
BEQ
ERRDF | #177400,R6L0A
#177400,R6MAS
PC,READR6
14\$
4,FEODAL,R06E | D
K | :CLEAR UP
:SETUP TO
:READ LB | PER BYTE
IGNORE H
OF OLD FJ
LA OK THE | A ON EODAL N CONTINUE | BUS | | 7944
7945
7946
7947 | 021234
021236
021240
021242
021244
021244 | 104455
000004
003147
005020 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
4
FEODAL
ROGERR | nn | .020 734 | TO EODAL | BUS ERRUR | | | 7949
7950 | 021244 | 104406 | | | | TRAP | C\$CLP1 | | | | | | | 7951
7952
7953 | | | | | | :RESELE | CT THE HDAL REITS 1 AND 0 TO | GISTER BY S | ETTING TH | E SIGNAL | GDAL2 TO A | ZERO AND | | 7954
7955 | 021246 | 004737 | 006754 | | 14\$: | JSR | PC, SLHDAL | | :GO SELEC | T HDAL RE | G VIA GDAL | BITS 2:0 | | 7956
7957 | | | | | | SET XC | AS H TO THE LO | W STATE BY | CLEARING | HDAL13 H | IN HDAL RE | GISTER. | | 7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961 | 021252
021260
021264 | 012737
005037
004737 | 021004
002346
007442 | 002342 | | MOV
CLR
JSR | #HDAL13!HDAL9
R6MASK
PC,XCASL | | SETUP TO | COMPARE | ALL BITS | ADED HDAL13 H | | 7962
7963
7964 | | | | | | ; TOGGLE
; DONE TO | THE SIGNAL XP. | I H BY SETT
ACHINE CYCL | ING AND C | LEARING H | DAL15 H. | THIS IS | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 161 TEST 33: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - OLD FJA CVCDCB_P11 01-APR-82 14:12 021270 004737 007502 JSR PC.XPI :GO PULSE XPI H VIA HDAL15 H 7966 7967 7968 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. :WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE 7969 EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL PB H WILL BE ASSERTED LOW. WHEN XGAS H IS PULSED, THE SIGNALS RASP H 7970 7971 7972 AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE 7973 7974 SIGNAL RASP L WHEN EPFN L. EP8N L. AND PSMW H ARE ALL ASSERTED HIGH. 7975 021274 004737 007272 7976 JSR PC, XRAS GO PULSE XRAS VIA HDAL12 H 7977 7978 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO 7979 BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. 7980 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 7981 7982 7983 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 1 8 BIT ADDRESS HB - EP8N H - 0 7984 7985 7986 7987 7988 021300 021304 021306 004737 PC.READR4 006654 JSR :GO READ VDAL AND PAUSE STATE MACHINE 001405 BEQ ; IF OK THEN CONTINUE 3, VDALRG, R4EROR ERRDF PAUSE STATE MACHINE CHANGED BY XRAS H 7989 021306 104455 TRAP C$ERDF 021310 7990 000003 . WORD 021312 7991 002537 . WORD VDALRG 021314 021316 7992 005004 . WORD R4EROR 7993 CKLOOP 7994 021316 104406 TRAP CSCLP1 7995 7996 7997 ;SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE ;SIGNAL XCAS H GOING FROM A O TO A ONE WILL CLOCK THE OUTPUT OF THE 7998 7999 8000 :8 BIT INSTRUCTION HB FLIP-FLOP (0) INTO THE 8 BIT ADDRESS LB FLIP- FLOP THUS CLEARING THE 8 BIT ADDRESS LOW BYTE FLIP-FLOP. THE PREVIOUS OUTPUT OF THE 8 BIT ADDRESS LB FLIP-FLOP (1) WILL BE 8001 CLOCKED INTO THE 8 BIT ADDRESS HB FLIP-FLOP THUS SETTING THE 8 BIT 8002 :ADDRESS HB FLIP-FLOP TO A ONE. 8003 021320 004737 007410 8004 15$: JSR PC.XCASH SET XCAS H TO HIGH STATE VIA HDAL13 H 8005 8006 8007 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING SET HIGH. 8008 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 8009 8010 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8F H - 0 8 BIT ADDRESS HB - EP8N H - 1 8011 8012 8013 021324 021332 021340 021344 021346 021346 021350 042737 052737 004737 020000 8014 002336 002336 #VDAL13,R4GOOD #VDAL14,R4GOOD SETUP TO EXPECT EP8G H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 1 8015 BIS 8016 JSR BEQ 006654 PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 8017 001405 16$: IF OK THEN CONTINUE 8018 ERRDF 3, VDALRG, R4EROR :EP8G H NOT O OR EP8N H NOT A 1 8019 TRAP C$ERDF 000003 8020 . WORD ``` | HARDWARE
CVCDCB.F | 911 0 | 1-APR-82 | | | TEST | 14:48 PAG
33: PAUSE | E 162
STATE MACHINE - 8 BIT AD | DRESS - PAUSE MODE - OLD FJA | | |--|--|--|------------------|------------------|-------|--|--
---|--------------------------| | 8021
8022 | 021352
021354 | 002537
005004 | | | | .WORD | VDALRG
R4EROR | | | | 8023
8024 | 021356
021356 | 104406 | | | | CKLOOP
TRAP | CSCLP1 | | | | 8023
8024
8025
8026
8027
8028
8029
8030 | | | | | | SELECT
OF THE
BUS AT
BUS WI | OLD FORCE JUMP ADDRESS
THIS TIME. ON A READ C | G GDAL BITS 2:0 TO ONES. THE HIGH BY REGISTER SHOULD BE ENABLED TO THE EOR OMMAND TO CONTROL REGISTER 6, THE EOR OF THE SIGNAL RPT7 L. | DAL | | 8031
8032 | 021360 | 004737 | 007122 | | 16\$: | JSR | PC.SEODAL | ; SELECT EODAL BUS VIA GDAL BITS 2:0 | | | 8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047 | | | | | | ON THE :WAS SE :LOADED :THE CL :OF THE :BUS VI :OF THE :BUS VI :OF THE :FLIP-F :VDAL2 :AS A R :THE SI :READ A :ISTER :THE SI : | T HIGH, THE OLD FORCE JU WITH THE DATA PATTERN I OCKING SIGNAL DEET H. A OLD FORCE JUMP ADDRESS A THE SIGNAL OEA8H L. T E ''GET NEW ADDRESS'' IGNAL EA8H H BEING AS LOP WAS CLEARED AT THE B H BEING SET AND CLEARED. ESULT OF THE 8 BIT ADDRE GNAL ACAS H BEING ASSERT ND CHECK THAT THE HIGH B IS ENABLED TO THE EODAL GNAL RPT7 L WHEN A READ | SERTED HIGH. THE "GET NEW ADDRES EGINNING OF THIS EST BY THE SIGNAL THE SIGNAL EASH H IS ASSERTED HIGH SS HB FLIP-FLOP BEING SET TO A ONE AN ED HIGH. THE FOLLOWING SECTION WILL THE OF THE OLD FORCE JUMP ADDRESS REC BUS. THE EODAL BUS WILL BE READ BY COMMAND IS ISSUED TO CONTROL REG 6. | L
L
T
E
SS'' | | 8049
8050
8051
8052 | | | | | | : ADDRES
: ADDRES
: NEW FO | S REGISTER WAS PROBABLY
S REGISTER. THE DATA PA | BUS EQUALS 314 THEN THE NEW FORCE JUI
READ INSTEAD OF THE OLD FORCE JUMP
ITTERN 146063 WAS WRITTEN INTO THE
R AT THE BEGINNING OF THIS TEST. | 4P | | 8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8069 | 021364
021370
021374
021402
021410
021416
021416
021420
021422
021422
021424
021426 | 011137
000337
042737
012737
004737
001405
104455
000004
003147
005020 | | 002342
002346 | | MOV
SWAB
BIC
MOV
JSR
BEQ
ERRDF
TRAP
. WORD
. WORD
. WORD
CKLOOP
TRAP | (R1),R6LOAD R6LOAD #177400,R6LOAD #177400,R6MASK PC,READR6 17\$ 4,FEODAL,R06ERR C\$ERDF 4 FEODAL R06ERR C\$CLP1 | GET DIAG ADDRESS REG DATA SWAP HIGH BYTE WITH LOW BYTE CLEAR LOW BYTE IN HIGH BYTE POSITION SETUP TO IGNORE HIGH BYTE ON READ READ OLD FJA HB ON EODAL BUS OF OLD FLA OK THEN CONTINUE OLD FLA HB TO EODAL BUS ERROR | DN | | 8068
8069
8070 | | | | | | | CT THE HDAL REGISTER BY | SETTING THE SIGNAL GDAL2 TO A ZERO AN | ND. | | 8071 | 021430 | 004737 | 006754 | | 17\$: | JSR | PC, SLHDAL | GO SELECT HOAL REG VIA GOAL BITS 2: | :0 | | 8072
8073
8074 | | | | | | SET XC | AS H TO THE LOW STATE BY | CLEARING HDAL13 H IN HDAL REGISTER. | | | 8075
8076 | 021434
021442 | 012737
005037 | 021004
002346 | 002342 | | MOV | #HDAL13!HDAL9!HDAL2,R6L
R6MASK | OAD ; SETUP BITS PREVIOUSLY LOADED ; SETUP TO CHECK ALL BITS | | | | 1-APR-82 | 14:12 | | | PAUSE | STATE MACHINE - | | | | | | | |----------------------------|----------------------------|------------------|--------|---------|------------------------|---|--|----------------------------------|----------------------------------|---------------------|-------------------|----------------------------| | | 004737 | 007442 | | | SR | | | | | | | | | 021452 | | | | : | TOGGLE | THE SIGNAL XPI
NULATE A MACHINE | CYCLE. | ING AND | CLEARING | HDAL15 H | . THIS | IS DON | | 021452 | | | | | SR | PC,XPI | | :GO PULS | E XPI H | VIA HDALT | 5 H | | | | | | | | AND RA | THE SIGNALS XRA HE SIGNAL FETCT FLIP-FLOP WILL I H TO THE LOW STA ILL BE ASSERTED ISP L WILL BE PUI USE STATE WORKIN | LOW. WHE | N XKAS H | 12 PULSI | D, THE S | IGNALS R | ASP H | | | | | | | MOSEKI | ED LOW AS A RESI | I ITHE ALL | EK KASP | L. THE S. | IGNAL PSP | M H WILL | BE | | | 004737 | | | | SR | PC, XRAS | | : GO PULS | XRAS H | VIA HDAL | 12 H | | | | | | | | BE IN
PA
PA
8 | HE VDAL REGISTER THE FOLLOWING ST USE STATE WORKIN USE STATE SYNC - BIT INSTRUCTION BIT ADDRESS LB - BIT ADDRESS HB - | TATE AS A
NG - PSMW
- EPSF H -
HB - EP8F
- EP8G H - | RESULT OF
H - 0
H - 0 | JSE STATE
F XRAS H | MACHINE
BEING PU | FLIP-FL | OPS TO | | 021462
021470
021474 | 042737
004737
001405 | 001000
006654 | 002336 | J: | I C
SR
EQ | #VDAL9,R4GOOD
PC,READR4
18\$ | | :IF OK TI | IEN CONTI | NUE | | HINE | | 021476
021476 | 104455 | | | TI | RRDF | 3, VDALRG, R4EROF | • | PSMW H | /F PROBA | BLY NOT | 0 | | | 021500
021502
021504 | 000003
002537
005004 | | | .1 | WORD
WORD
WORD | VDALRG | | | | | | | | 021506
021506 | 104406 | | | CI | KLOOP
RAP | R4EROR
C\$CLP1 | | | | | | | | | | | | | | THE SIGNAL XCAS
WILL CLOCK THE
ESS HB FLIP-FLOR | S H BY SET
OUTPUT OF
P THUS SET | TING AND
8 BIT AL
TING THE | CLEARING
DRESS LE
8 BIT AD | HDAL13
FLIP-FL | H. THE SOP (0) II | SIGNAL
NTO THE
OP TO | | 021510 | 004737 | 007376 | 1 | 18\$: J | SR | PC.XCAS | | GO PULSE | XCAS H | VIA HDAL | 13 H | | | | | | | | HE FOR | HE VDAL REGISTER LLOWING STATES A USE STATE WORKIN USE STATE SYNC - BIT INSTRUCTION BIT ADDRESS LB - BIT ADDRESS HB - | R AND THE LAS A RESULT OF PSMW 1 - EPSF H - HB - EP8F H - EP8F H - EP8F H - EP8N H - | PAUSE STATE OF XCAS | TE MACHI | NE FLIP-
PULSED. | FLOPS TO | BE IN | | 021514 | 042737 | 040000 | 002336 | 81 | C | #VDAL14,R4GOOD | | SETUP TO | EXPECT | EP8N H T | 0 BE A 0 | | | | | | | | | | | | | | | | | | | 9 | |---|---|---| | 1 | 1 | 3 | | - | CACDCB" | P11 0 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82 14
TEST 33 | : 48 PAGE | I 13
E 164
STATE MACHINE - 8 BI | T ADDRESS - PAUSE MODE - OLD FJA | |---|--|--|--|--------------------|-------------------------|---|--|---| | | 8133
8134
8135
8136
8137
8138
8139
8140
8141 | 021522
021526
021530
021530
021532
021534
021536
021540
021540 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | PC.READR4 19\$ 3.VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | GO READ VDAL AND PAUSE STATE MACHINE
FOR THEN CONTINUE
EP8N H PROBABLY NOT CLEARED | | | 8142
8143
8144
8145 | | | | | :TOGGLE | THE SIGNAL XPI H BY DONE TO FINISH THE | SETTING AND CLEARING THE SIGNAL HDAL15 H. MACHINE CYCLE. | | | 8146
8147 | 021542 | 004737 | 007502 | 19\$: | JSR | PC,XPI | GO PULSE XPI VIA HDAL15 H | | | 8148 | 021546
021546
021546
021550
021552
021554
021556 | 104405
005721
005302
001412 | | 10000\$: | TRAP
TST
DEC
BEQ | C\$ESEG
(R1)+
R2 | :UPDATE TABLE POINTER
:CHECK IF ALL PATTERNS DONE
:IF YES THEN EXIT
:DO NEXT PATTERN | | ١ | 8154 | 021556 | 000137 | 020332 | | JMP | 21 s
1 s | DO NEXT PATTERN | | | 8149
8150
8151
8152
8153
8154
8155
8157
8158
8160
8161
8163
8164
8165
8166 | 021562
021564
021566
021570
021572
021574
021576
021600 | 125125
052652
000377
177400
125252
052525
177777
000000 | | 20\$: | .WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD | 125125
052652
000377
177400
125252
052525
177777
000000 | | | | 8165
8166
8167
8168 | 021602
021602
021602 | 104401 | | 21\$:
L10063: | ENDTST
TRAP | C\$ETST | | | CE | ^ | ^ | 4 | | e | |----|---|---|---|---|---| | SE | u | U | | 0 | כ | | HARDWAR | RE TESTS | MACY11 | 30A(1052 | 01-4 | PR-82 14 | 4-48 PA | SE 165 J 13 | | |--|--|--------------------------------------|----------------------------|----------|---|---|---|---| | CVCDCB. | | 01-APR-82 | | ., 01-71 | TEST 3 | : PAUSE | STATE MACHINE - 8 BIT | ADDRESS - PAUSE MODE - NEW FJA | | 8169
8170 | | | | | .SBTTL | TEST 34 | 4: PAUSE STATE MACHINE | - 8 BIT ADDRESS - PAUSE MODE - NEW FJA | |
8171
8172
8173
8174
8175
8176
8177
8178
8180
8181
8182
8183 | | | | | ; PAUSE
; STATE
; BE CL
; CHANG
; AND /
; PUT T
; TIMEG
; CLEAR
; CLEAR | STATE SYNC, & OCKED TO SING THE NDAL8 H N THE PAUSE OUT BREAK THE BRE | MACHINE FLIP - FLOP B BIT INSTRUCTION HB, I D ONES AND ZEROES BY PI LOGIC LEVEL ON THE SI WILL BE SET TO A ZERO E STATE MACHINE IN PAU C SIGNAL FROM CAUSING TO EAK LOGIC. WITH THE T | SE MODE. ADAL8 H ON A ZERO WILL DISABLE THE A BREAK. ADALO H WILL BE SET AND CLEARED TO IMEOUT BREAK DISABLED AND THE BREAK LOGIC A ZERO. MR BIT 11 WILL BE SET TO A ONE | | 8184
8185
8186
8187
8188
8189
8190
8191 | | | | | ; MODE ; PATTE ; THE N | THE NE | DDRESS REGISTER ARE EN
EW FORCE JUMP ADDRESS (
5125, 052652, 000377, | 16 BIT INSTRUCTION REGISTER AND THE NEW ABLED TO THE EODAL BUS IN 8 BIT ADDRESS REGISTER IS TESTED WITH THE FOLLOWING DATA 177400, 125252, 052525, 177777, AND 000000. R IS LOADED WITH THE DATA AT THE BEGINNING | | 8192
8193 | 021604 | | | | T34:: | BGNTST | | | | 8194
8195
8196
8197 | 021604
021610
021614 | 004737
012701
012702 | 005510
023134
000010 | | 134 | JSR
MOV
MOV | PC, INITTE
#22\$,R1
#8.,R2 | SELECT AND INITIALIZE TARGET EMULATOR GET ADDRESS OF OLD FJA DATA TABLE NUMBER OF DATA PATTERNS TO BE TESTED | | 8198
8199 | 021620
021620 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | 8200
8201
8202
8203 | | | | | | SELECT | THE MODE REGISTER BY | SETTING GDAL2 TO A ONE AND GDAL1 AND GDALO | | 8204
8205 | 021622 | 004737 | 007006 | | | JSR | PC,SLMODR | GO SELECT MODE REG VIA CONTROL REG O | | 8206
8207
8208 | | | | | | ;LOAD, | READ AND CHECK MODE REDNE WILL ENABLE 8 BIT | EGISTER BITS MR 15:0 WITH 4000. MR BIT 11 ADDRESS SELECTION TO THE PAUSE STATE MACHINE | | 8209
8210
8211
8212
8213 | 021626
021634
021640
021644
021646
021646 | 012737
005037
004737
001405 | 004000
002346
006672 | 002342 | | MOV
CLR
JSR
BEQ
ERRDF | #MR11,R6LOAD
R6MASK
PC,LDRDR6
2\$
4,MODREG,R06ERR | ;SETUP TO SET MR BIT 11
;SETUP TO CHECK ALL 16 BITS
;LOAD, READ AND CHECK MODE REGISTER
;IF LOADED OK THEN CONTINUE
;MODE REGISTER NOT EQUAL TO 0 | | 8204
8205
8206
8207
8208
8209
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223 | 021646
021650
021652
021654
021656
021656 | 104455
000004
002631
005020 | | | | TRAP .WORD .WORD .WORD CKLOOP TRAP | C\$ERDF
4
MODREG
ROGERR
C\$CLP1 | | | 8220
8221 | | | | | | SET GD | AL1 AND GDALO TO ONES | IN THE GDAL REGISTER TO SELECT THE HDAL | | 8223
8224 | 021660 | 004737 | 006754 | | 2\$: | ; REGIST | ER ON A WRITE OR READ | COMMAND TO CONTROL REGISTER 6. | | 0224 | 0E 1000 | 004131 | 000174 | | 20. | JSR | PC,SLHDAL | SELECT HDAL REGISTER VIA GDAL BITS 2:0 | | | A4 400 03 4/ /A DAGE 4// | K 13 | |---------------------------------|--------------------------|--| | HARDWARE TESTS MACY11 30A(1052) | U1-APR-82 14:48 PAGE 100 | | | CVCDCB.P11 01-APR-82 14:12 | TEST 34 - PAUSE STATE | MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA | | CTCDCO.TTT OT ATA OF 14.16 | ILDI DA. LAGGE DIALE | HACHINE - O DII ADDRESS - FAUSE HODE - NEW 134 | | 8225
8226
8227
8228
8229
8230
8231 | | | | | | ;HDAL9
;REGIST
;BUS. | READ AND CHECK HDAL RE
H SET TO A ONE WILL EN
ER ONTO THE ADDRESS BU
HDAL2 H ON A ONE WILL
AND CONTROL SIGNALS. | GISTER WITH HDAL9 H AND
ABLE THE OUTPUTS OF THE
S AND DISABLE THE EIDAL
ALLOW THE PROGRAM TO GE | HDAL2 H SET TO ONES. DIAGNOSTIC ADDRESS BUS FROM THE ADDRESS NERATE THE T-11 | |--|--|--|------------------|--------|------|---|---|--|--| | 8231
8232
8233
8234
8235
8236
8237
8238
8240
8241
8242
8243
8244
8244
8244
8244 | 021664
021672
021676
021700
021700
021702
021704
021706
021710 | 012737
004737
001405
104435
000004
002605
005020
104406 | 001004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL9!HDAL2,R6LOAD
PC,LDRDR6
3\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR | ;SETUP BITS TO BE LO
;GO LOAD, READ AND C
;IF LOADED OK THEN C
;HDAL REG NOT EQUAL | HECK HDAL REGISTER
ONTINUE | | 8243
8244
8245 | | | | | | :SELECT
:ZEROES
:NOSTIC | THE DIAGNOSTIC ADDRESS. ON A WRITE OR READ ADDRESS REGISTER W.L. | S REGISTER BY SETTING G
COMMAND TO CONTROL REGI
BE SELECTED. | DAL BITS 2:0 TO
STER 6, THE DIAG- | | 8247 | 021712 | 004737 | 007072 | | 3\$: | JSR | FC, SLDADR | GO SELECT DIAG ADDR | ESS REG VIA GDAL 2:0 | | 8248
8249
8250
8251
8252
8253
8254 | | | | | | ;DATA T | O CHECK THAT THE CORRE
EODAL BUS WHEN THE 8 (| GNOSTIC ADDRESS REGISTE
NOSTIC ADDRESS REGISTER
CT FORCE JUMP ADDRESS R
BIT ADDRESS FLIP-FLOPS
SHOULD BE ENABLED TO TH | EGISTER IS ENABLED ARE SET. THE NEW | | 8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265 | 021716
021724
021730
021732
021732
021734
021736
021740
021742
021742 | 012737
004737
001405
104455
000004
002735
005020
104406 | 146063
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #146063,R6LOAD PC,LDRDR6 4\$ 4.ADDRRG,R06ERR C\$ERDF 4 ADDRRG R06ERR C\$CLP1 | ;SETUP DATA PATTERN
;GO LOAD, READ AND C
;IF LOADED OK THEN C
;DIAG ADDRESS REG NO | ONTINUE | | 8261
8262
8263
8264
8265
8266
8267
8268
8270
8271
8272
8273
8274
8275
8276
8277
8278 | | | | | | ;TO CLE
;MACHIN
;BREAK
;CAUSE | AR THE BREAK LOGIC. AI | GISTER. ADALO WILL BE DAL4 ON A ZERO WILL PUT ADAL8 H ON A ZERO WILL BREAK CONDITION. ADAL4 E TO BE ENTERED ON A FE | THE PAUSE STATE | | 8274
8275 | 021744 021750 | 005037
004737 | 002330 | | 4\$: | CLR
JSR | R2LOAD
PC,BRKRES | SETUP TO CLEAR ALL PULSE BRKRES L VIA | ADAL REGISTER BITS | | 8276
8277
8278
8279
8280 | | | | | | ;SET VD | ALZ H TO A ONE AND THE | N ZERO. VDAL2 H ON A OPS AND THE FLIP-FLOPS. | NE WILL CLEAR THE | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14 | 4:48 PAGE | STATE MACHINE | | RESS - PAI | USE MODE - | NEW FJA | | |--|--|--|--------------------------------------|----------------------------|---------|---|---|---|---
--|--|---| | 8281
8282
8283 | 021754
021760 | 005037
004737 | 002334
007712 | | | CLR
JSR | P4LOAD
FC, CLRPSM | | SETUP TO | CLEAR ALL | VDAL REGIS | STER BITS | | 8284
8285
8286
8287 | | | | | | ; SELECT
; AND GI
; DATA I
; TAKE I | THE NEW FORCE OAL BITS 2 AND WILL BE LOADED NEW FORCE JUMP | JUMP ADDRES O TO ZEROES INTO THE NEW ADRESS FLIP | SS REGISTI
. ON A WI
W FORCE JU
-FLOP WILL | ER BY SETTI
RITE COMMAN
UMP ADDRESS
L BE SET | NG GDAL1 H
D TO CONTR
REGISTER | TO A ONE
ROL REG 6,
AND THE | | 8289 | 021764 | 004737 | 007040 | | | JSR | PC, SLFJAR | | SELECT N | EW FJA VIA | GDAL BITS | 2:0 | | 8281
8282
8283
8284
8285
8286
8287
8288
8289
8291
8291
8292
8293
8294
8295
8296
8297
8298 | | | | | | FORCE | A WRITE COMMAIDRE JUMP ADDRESS IN AKE NEW FORCE SIGNAL WPT1 IN JUNG: 125125, (1) | ESS REGISTER.
REGISTER VIA
JUMP ADDRESS
LB H. THE D/ | THE DAT
THE SIGNA
FLIP-FLOA
ATA PATTER | TA WILL BE
ALS WPT1 LB
P WILL ALSO
RNS LOADED | LOADED INT
H AND WPT
BE SET TO
WILL BE ON | O THE I HB H. I A ONE IE OF THE | | 8299 | 021770 | 011177 | 160312 | | | MOV | (R1),aREG6 | | WRITE DA | TA FROM THE | TABLE INT | O NEW FJA | | 8299
8300
8301
8302
8303 | | | | | | ; CHECK | AL7 H TO A ONI
THAT THE SIGNA
LOP TO A ONE. | AL WPT1 LB H | SIGNAL FI | THE TAKE NE | HE HIGH ST
W FORCE JU | ATE (1). | | 8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314 | 021774
022002
022010
022016
022022
022024
022024
022026
022030
022032
022034 | 012737
013737
052737
004737
001405
104455
000003
002537
005004
104406 | 000200
002334
100000
006646 | 002334
002336
002336 | | MOV
MOV
BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL7,R4LOAI R4LOAD,R4GOOI #VDAL15,R4GOO PC,LDRD4R 5\$ 3,VDALRG,R4ER C\$ERDF 3 VDALRG R4EROR C\$CLP1 | DD | COPY DATA
SETUP TO
GO LOAD I
IF LOADE | T TO BE LOAD TO EXPECT TNF. READ AND CHOOK THEN COROBABLY NO | EXPECTED J H TO BE ECK VDAL R DNTINUE | REG | | 8318
8319
8320 | | | | | | :TO ONE | THE HDAL REGION THE ST. BITS IN THE ST. TO CAUSE F | HE HDAL REGIS | STER WILL | BE SET AND | CLEARED L | ATER IN | | 8322 | 022036 | 004737 | 006754 | | 5\$: | JSR | PC,SLHDAL | | GO SELECT | HDAL REG | VIA GDAL 2 | :0 | | 8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8331
8332
8333 | | | | | | THE SI
HIGH,
HIGH,
HIGH S
IS LOW
TO THE
SIGNAL
HIGH, | AL12 H TO A ON AND LOW STATE FOR THE PROGRAM PURISHED FOR THE STATE. THE STATE FOR THE PAUSE STATE PAUSE STATE PAUSE STATE WILL BE ASSERT | RESPECTIVELY. ULSES THE SIG ILL CLOCK THE T FLIP-FLOP, GNAL XRAS H W USE MODE FLIF THE SIGNAL S SSERTED HIGH, TE WORKING FLIF E WORKING FLIF | THEY WISNALS XPI E STATE OF THUS SETI WILL CLOCK P-FLOP, TH SOP H WILL WHEN SO LIP-FLOP IS | THE SIGNAL THE SIGNAL THE STATE HUS SETTING HE ASSERTED HE AND EDITIONS SETTING SETTIN | FETCT H, SNAL EDFET OF ADAL4 THE SIGNA ED HIGH WH FET H ARE ECT SET TO | WHICH IS H TO THE H, WHICH L PAUSE L EN THE ASSERTED A ONE. | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 168 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA CVCDCB.P11 01-APR-82 14:12 REGISTER AS VDAL9 H. WHEN EDFET H AND SOP H ARE ASSERTED HIGH, THE SIGNAL PB H WILL BE ASSERTED HIGH. THE SIGNAL PB H IS THE DATA INPUT LEAD TO THE PAUSE STATE SYNC FLIP-FLOP. 8340 8341 8342 8343 8344 8346 8347 8348 THE SIGNAL XRAS H WILL CAUSE THE SIGNAL RASP H TO BE PULSED. WHEN THE SIGNAL RASP H IS PULSED AND THE SIGNAL EDFET H IS ASSERTED HIGH, A PULSE WILL BE ISSUED ON THE SIGNAL DEET H. THE SIGNAL DEET H WILL CLOCK THE ADDRESS BUS INTO THE OLD FORCE JUMP ADDRESS REGISTER. AT THE PRESENT TIME THE DIAGNOSTIC ADDRESS REGISTER IS ENABLED ONTO THE ADDRESS BUS, THEREFORE THE OLD FORCE JUMP ADDRESS REGISTER WILL BE LOADED WITH THE DATA FROM THE DIAGNOSTIC ADDRESS REGISTER. 022042 001004 002342 012737 #HDAL9!HDAL2,R6LOAD SETUP BITS PREVIOUSLY LOADED 022050 004737 007304 PC, XRASH JSR :SET XRAS H HIGH + XRAS L VIA HDAL12 H 8351 8352 8353 8354 8355 8356 8356 8358 CLEAR VDAL7 H IN THE VDAL REGISTER THUS SETTING THE SIGNAL FETCT H TO THE LOW STATE. CHECK THE PAUSE STATE MACHINE TO BE IN THE FOLLOWING STATE AS A RESULT OF EDFET H AND SOP H BEING ASSERTED HIGH. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB H - EP8G H - 0 8359 8 BIT ADDRESS HB H - EP8N H - 0 8360 8361 TAKE NEW FJ ADDRESS - TNFJ H - 1 GET NEW ADDRESS - OUTNEW H - O 8362 8363 022054 022062 022070 022076 022102 022104 022104 002334 002336 002336 042737 013737 000200 BIC #VDAL7,R4LOAD SETUP TO CLEAR FETCT H 8364 8365 8366 8367 8368 8369 MOV R4LOAD,R4GOOD #VDAL15!VDAL9,R4GOOD COPY DATA LOADED TO EXPECTED 052737 004737 101000 BIS EXPECT PSMW H AND TNFJ H F/F'S 006646 JSR PC,LDRD4R GO LOAD, READ AND CHECK VDAL REG 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 3. VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 104455 C$ERDF TRAP 022106 022110 022112 022114 022114 8370 000003 . WORD 8371 8372 8373 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 8374 8375 104406 TRAP C$CLP1 8376 8377 8378 8379 THE SIGNALS XRAS H AND XRAS L ARE STILL ASSERTED TO THE HIGH AND LOW STATE RESPECTIVELY BY HDAL12 H BEING SET TO A ONE. THEY WILL REMAIN SET TO THESE STATES UNTIL THE SIGNALS XPI H AND XPI L ARE PULSED. 8380 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS H GOING FROM A ZERO TO A ONE WILL CLOCK THE LEVEL OF THE SIGNAL 'PB H'', WHICH IS HIGH, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A ONE. THE SIGNAL XCAS H WILL ALSO CLOCK THE PREVIOUS STATE OF THE PAUSE STATE SYNC FLIP-FLOP (0) INTO THE 8 BIT INSTRUCTION HB FLIP-FLOP, THUS CLOCKING THAT 8381 8382 8386 8387 :FLIP-FLOP TO A ZERO. 022116 004737 007410 6$: JSR PC.XCASH SET XCAS H TO HIGH STATE VIA HDAL13 H 8389 8390 READ VOAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE 8391 : IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING PULSED. 8392 PAUSE STATE WORKING - PSMW H - 1 ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 169 CVCDCB.P11 01-APR-82 14:12 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA ``` ``` 8393 8394 8395 8396 8397 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 0 BIT ADDRESS LB - EP8G H - 0 BIT ADDRESS HB - EP8N H - 0 TAKE NEW FJ ADDRESS - TNFJ H - 1 GET NEW ADDRESS - OUTNEW H - O 8399 022122 022130 022134 022136 022136 022140 022142 022144 022144 8400 8401 052737 004737 002000 002336 BIS #VDAL10_R4GOOD :SETUP TO EXPECT PAUSE STATE SYNC - EPSF 006654 JSR PC.READR4 GO READ AND CHECK PAUSE STATE MACHINE 8402 8403 001405 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 3. VDALRG, R4EROR EPSF H PROBABLE NOT SET IN VDAL REG 8404 104455 TRAP C$ERDF 8405 8406 8407 8408 8409 8410 8411 8412 8413 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 022146 104406 TRAP C$CLP1 SELECT THE EODAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE LOW BYTE OF THE 16 BIT INSTRUCTION REGISTER SHOULD BE ASSERTED ON THE ; EODAL BUS AT THE SAME TIME. ON A READ COMMAND TO CONTROL REGISTER 6, 8414 THE EODAL BUS WILL BE ENABLED TO THE LSI-11 BUS VIA THE SIGNAL RPT7 L. 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 022150 004737 007122 75: JSR PC. SEODAL :SELECT EODAL BUS VIA GDAL BITS 2:0 : WHEN THE SIGNAL XCAS H IS ASSERTED HIGH AND THE PAUSE STATE WORKING FLIP-FLOP IS SET TO A ONE, THE SIGNAL ACAS H WILL BE ASSERTED HIGH. WHEN THE SIGNAL ACAS H IS ASSERTED HIGH, THE PAUSE STATE SYNC
FLIP- FLOP IS SET TO A ONE, AND MODE REGISTER BIT 11 IS A ONE (8 BIT MODE) THE SIGNAL EDRL H WILL BE ASSERTED LOW, THUS ENABLING THE LOW BYTE OF THE 16 BIT INSTRUCTION REGISTER ONTO THE EODAL BUS. THE HIGH BYTE OF THE 16 BIT INSTRUCTION REGISTER WILL BE DISABLED ON THE EODAL BUS. :WHEN A READ COMMAND IS ISSUED TO CONTROL REGISTER 6 WITH GDAL BITS 2:0 ; SET TO ONES, A PULSE WILL BE ISSUED ON THE SIGNAL RPT7 L. THE SIGNAL ; RPT7 L WILL READBACK THE EDDAL BUS ONTO THE LSI-11 BUS. 8427 8428 8429 8430 022154 022162 022170 022174 022176 022176 022200 022202 022204 022206 012737 012737 004737 002342 002346 000137 #137,R6LOAD #177400,R6MASK MOV SETUP EXPECTED LOW BYTE DATA 177400 MOV SETUP TO IGNORE HIGH BYTE 006700 GO READ LOW BYTE OF INSTR REG ON EDDAL IF INSTR = "JMP" THEN CONTINUE JSR PC, READR6 001405 BEQ 8$ ERRDF 4, IEODAL, ROGERR :EODAL BUS ERROR OR 8 BIT LB INSTR ERROR 104455 C$ERDF TRAP 000004 . WORD 003034 . WORD IEODAL 005020 RO6ERR . WORD CKLOOP 022206 104406 TRAP C$CLP1 RESELECT THE HOAL REGISTER BY SETTING GDAL2 H TO A ZERO AND GDAL BITS :1 AND O TO A ONE. 022210 004737 006754 8$: JSR PC, SLHDAL ; SELECT HDAL REG VIA GDAL BITS 2:0 SET THE SIGNAL XCAS H TO A ZERO BY CLEARING HDAL13 H IN HDAL REGISTER. 8448 THE SIGNALS KRAS H AND KRAS L WILL REMAIN ASSERTED TO THE HIGH AND LOW ``` B 14 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 170 CVCDCB.P11 01-APR-82 14:12 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA 8449 8450 8451 8452 8453 8454 8455 8456 STATE RESPECTIVELY BY HDAL12 H BEING SET TO A ONE. THEY WILL NOT BE :DE-ASSERTED UNTIL PULSES HAVE BEEN ISSUED ON THE SIGNALS XPI H AND XPI L. 012737 005037 004737 031004 002346 007442 002342 #HDAL13!HDAL12!HDAL9!HDAL2.R6LOAD :SETUP BITS PREVIOUSLY LOADED SETUP TO CHECK ALL BITS CLR R6MASK JSR PC.XCASL :SET XCAS H TO LOW STATE VIA HDAL13 H :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING HDAL15 H. THIS IS DONE :TO SIMULATE A MACHINE CYCLE. 8458 8459 022232 004737 007502 JSR PC.XPI :GO PULSE XPI H VIA HDAL15 H 8460 8461 8462 8463 8464 8465 8466 :READ THE VDAL REGISTER AGAIN TO CHECK THAT THE "TAKE NEW FORCE JUMP :ADDRESS" FLIP-FLOP IS STILL SET. IT SHOULD NOT CLEAR UNTIL THE NEXT :XCAS H PULSE. THE PAUSE STATE MACHINE FLIP-FLOPS SHOULD REMAIN :UNCHANGED AFTER XPI H AND XPI L ARE PULSED. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 0 8468 8 BIT ADDRESS LB - EP8G H - 0 8 BIT ADDRESS HB - EP8N H - 0 8469 8470 TAKE NEW FJ ADDRESS - TNFJ H - 1 8471 8472 8473 GET NEW ADDRESS - OUTNEW H - 0 022236 022242 022244 022244 022246 022250 022252 004737 006654 JSR PC, READR4 READ VDAL REG AND PAUSE STATE MACHINE 8474 8475 8476 8477 8478 8479 8480 001405 BEQ 95 : IF OK THEN CONTINUE ERRDF 3. VDALRG, R4EROR ; PAUSE STATE MACHINE CHANGED AFTER XPI 104455 TRAP CSERDF 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR 022254 022254 CKLOOP 8481 8482 8483 8484 104406 TRAP C$CLP1 SET THE SIGNALS KRAS H AND KRAS L TO THEIR DE-ASSERTED STATE BY CLEARING ;HDAL12 H IN THE HDAL REGISTER. WHEN XRAS L IS RETURNED TO THE HIGH ;STATE, THE 'GET NEW ADDRESS' FLIP-FLOP WILL BE CLOCKED TO A ONE AS A ;RESULT OF THE 'TAKE NEW FORCE JUMP ADDRESS' FLIP-FLOP BEING SET AND ;THE 'PAUSE STATE SYNC' FLIP-FLOP BEING SET. WHEN THE 'GET NEW ADDRESS' 8485 8486 8487 8488 8489 FLIP-FLOP IS SET, THE SIGNAL OUTNEW H WILL BE ASSERTED HIGH. THE COUTNEW H SIGNAL IS READ IN THE VDAL REGISTER AS VDAL BIT 8. 022256 004737 007336 95: JSR PC. XRASL :SET XRAS H LOW + XRAS L HIGH VIA HDAL12 8492 8493 8494 8495 8496 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATES. THE "GET NEW ADDRESS" FLIP-FLOP SHOULD HAVE BEEN SET TO A ONE BY KRAS L AS A RESULT OF THE "TAKE NEW FORCE JUMP ADDRESS" FLIP-FLOP BEING SET AND THE "PAUSE STATE SYNC FLIP-FLOP 8497 BEING SET TO A ONE. 8498 8499 PAUSE STATE WORKING - PSMW H - 1 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 0 8 BIT ADDRESS HB - EPRN H - 0 PAUSE STATE SYNC - EPSF H - 1 8500 8501 BIT ADDRESS LB - EP8G H - 0 BIT ADDRESS HB - EP8N H - 0 8502 8503 TAKE NEW FJ ADDRESS - TNFJ H - 1 8504 GET NEW ADDRESS - OUTNEW H - 1 ``` ``` 022262 022270 022274 022276 022276 022300 022302 022304 022306 8506 8507 052737 000400 002336 BIS #VDAL8_R4GOOD EXPECT OUTNEW H TO BE SET TO A ONE PC READR4 006654 JSR : READ VDAL AND PAUSE STATE MACHINE 8508 001405 BEQ : IF OK THEN CONTINUE 8509 3. VDALRG, R4EROR ERRDF : VDAL REG NOT EQUAL EXPECTED 8510 104455 000003 002537 TRAP CSERDF 8511 8512 8513 . WORD . WORD VDALRG 005004 -WORD R4EROR 8514 CKLOOP 8515 022306 104406 TRAP C$CLP1 8516 8517 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. :WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE 8518 8519 EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL 8520 8521 8522 8523 8524 PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H :AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE SIGNAL RASP L WHEN EPFN L. EP8N L. AND PSMW H ARE ALL ASSERTED HIGH. 022310 004737 007272 105: JSR PC, XRAS :GO PULSE XRAS H BY HDAL12 8527 8528 8529 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS :TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. 8530 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 8531 8532 8533 8534 8535 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 0 8 BIT ADDRESS HB - EP8N H - C TAKE NEW FJ ADDRESS - TNFJ H - 1 8536 GET NEW ADDRESS - OUTNEW H - 1 8537 022314 022320 022322 022322 022324 022326 022330 022332 8538 004737 006654 JSR PC.READR4 CHECK VDAL AND PAUSE STATE MACHINE 8539 8540 8541 8542 8543 8544 001405 BEQ 11$: IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 104455 TRAP CSERDF 000003 . WORD 002537 005004 . WORD VDALRG . WORD R4EROR CKLOOP 8546 8547 8548 104406 TRAP C$CLP1 ;SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE ;SIGNAL XCAS H GOING FROM A O TO A ONE WILL CLOCK THE LEVEL OF THE ;SIGNAL "PB H", WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS ;CLOCKING THE PAUSE STATE SYNC FLIP-FLOP TO A ZERO. THE SIGNAL XCAS H ;WILL CLOCK THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP (1) 8549 8550 8551 8552 8553 ; INTO THE 8 BIT INSTRUCTION HB FLIP-FLOP, THUS SETTING THAT FLIP-FLOP ; TO A ONE. THE SIGNAL XCAS H WILL ALSO CLOCK THE PREVIOUS STATE OF THE ; 8 BIT INSTRUCTION HB FLIP-FLOP (0) INTO THE 8 BIT ADDRESS LB FLIP-FLOP, 8554 8555 8556 ; THUS CLOCKING THAT FLIP-FLOP TO A ZERO. ; THE SIGNAL XCAS H WILL ALSO CAUSE THE "TAKE NEW FORCE JUMP ADDRESS" ; FLIP-FLOP TO BE CLEARED WHEN THE "GET NEW ADDRESS" FLIP-FLOP IS SET 8557 8558 8559 :TO A ONE. 8560 ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 172 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA CVCDCB.P11 01-APR-82 14:12 8561 8562 8563 022334 004737 007410 115: JSR PC.XCASH :SET XCAS H TO HIGH STATE VIA HDAL 13 H READ THE VDAL REGISTER AND AND CHECK THE PAUSE STATE MACHINE FLIP- 8564 FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING SET HIGH 8565 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 8566 8567 8 BIT INSTRUCTION HB - EP8F H - 1 8568 BIT ADDRESS LB - EP8G H - 0 8569 8 BIT ADDRESS HB - EPFN H - 0 8570 TAKE NEW FJ ADDRESS - TNFJ H - 0 8571 GET NEW ADDRESS - OUTNEW H - 1 8572 8573 022340 022346 022354 022360 022362 022362 022364 042737 052737 004737 102000 002336 BIC #VDAL15!VDAL10,R4GOOD CLEAR BIT FOR EPSF H AND TNFJ H 002336 8574 010000 BIS #VDAL12_R4GOOD SET BIT FOR EP8F H 8575 PC.READR4 006654 JSR GO READ VDAL AND PAUSE STATE MACHINE 8576 001405 BEQ : IF OK THEN CONTINUE 8577 ERRDF 3, VDALRG, R4EROR EP8F H PROBABLY NOT SET IN VDAL REG 8578 104455 TRAP CSERDF 8579 000003 . WORD 022366 022370 022372 002537 8580 . WORD VDALRG 8581 8582 005004 . WORD R4EROR CKLCOP 8583 022372 104406 TRAP C$CLP1 8584 8585 SELECT THE EODAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE HIGH 8586 BYTE OF THE 16 BIT INSTRUCTION REGISTER SHOULD BE ASSERTED ON THE 8587 EDDAL BUS AT THIS TIME. ON A READ COMMAND TO CONTROL REGISTER 6 8588 THE EODAL BUS WILL BE ENABLED TO THE LSI-11 BUS VIA THE SIGNAL RPT7 L. 8589 8590 022374 004737 007122 12$: JSR PC, SEODAL :SELECT EODAL BUS VIA GDAL BITS 2:0 8591 8592 8593 WHEN THE SIGNAL XCAS H IS ASSERTED HIGH AND THE PAUSE STATE WORKING :FLIP-FLOP IS SET TO A ONE, THE SIGNAL ACAS H WILL BE ASSERTED HIGH. 8594 WHEN THE SIGNAL ACAS H IS ASSERTED HIGH AND THE 8 BIT INSTRUCTION HB ;FLIP-FLOP IS SET TO A ONE, THE SIGNAL ED8H H WILL BE ASSERTED HIGH, ;THUS ENABLING THE HIGH BYTE OF THE 16 BIT INSTRUCTION REGISTER (000) ;ONTO THE LOW BYTE OF THE EDDAL BUS. WHEN A READ COMMAND IS ISSUED TO ;CONTROL REGISTER 6 WITH GDAL BITS 2:0 SET TO ONES, A PULSE WILL BE ;ISSUED ON THE SIGNAL RPT7 L. THE SIGNAL RPT7 L WILL READBACK THE ;EODAL BUS ONTO THE LSI-11 BUS. 8595 8596 8597 8598 8599 8600 8601 022400 022404 022412 005037 012737 002342 8602 CLR R6LOAD EXPECT HIGH BYTE TO BE ZERO 8603 002346 #177400 , R6MASK MOV SETUP TO IGNORE HIGH BYTE ON READ 8604 004737 006700 JSR PC, READRO GO READ 8 BIT HIGH BYTE INSTRUCTION 8605 ON THE EODAL BUS AS LOW BYTE 022416 022420 022420 022422 022424 022426 022430 8606 001405 13$; IF INSTRUCTION EQUALS O THEN CONT 8607 4. IEODAL, ROGERR ERRDF :EODAL BUS OR 8 BIT HB INSTR ERROR 8608 104455 TRAP CSERDF 8609 000004 . WORD 003034 8610 . WORD IEODAL 8611 005020 . WORD RO6ERR 8612 8613 CKLOOP 104406 TRAP C$CLP1 8614 8615 RESELECT THE HDAL REGISTER BY SETTING GDAL2 H TO A ZERO AND GDAL BITS 8616 :1 AND O TO ONES. ``` | CVCDCB. | P11 (|)1-APR-82 | 14:12 | | TEST 3 | 34: PAUSE | STATE MACHINE - | 8 BIT ADDRE | SS - PAUS | E MODE - | NEW FJ | IA | | |--
--|--|----------------------------|--------|--------|--|--|---|--|--|---------------------------|--------------------------------|---------------| | 8617
8618
8619 | 022432 | 004737 | 006754 | | 13\$: | JSR | PC,SLHDAL | ;6 | O SELECT | HDAL REG | VIA GD | AL BITS | 2:0 | | 8620 | | | | | | SET TH | E SIGNAL XCAS H | TO LOW STAT | E BY CLEA | RING HDA | L13 H I | N HDAL | REGISTER | | 8620
8621
8622
8623
8624
8625 | 022436
022444
022450 | 012737
005037
004737 | 021004
002346
007442 | 002342 | | MOV
CLR
JSR | #HDAL13!HDAL9!
R6MASK
PC,XCASL | HDAL2,R6LOAD
;S
;S | SETUP BETUP TO CO | ITS PREVI
HECK ALL
TO LOW | IOUSLY
BITS
STATE V | LOADED | 13 н | | 8626
8627
8628 | | | | | | :TOGGLE | THE SIGNAL XPI | H BY PULSIN | G THE SIG | NAL HDAL | 15 H. | THIS IS | DONE | | 8629
8630 | 022454 | 004737 | 007502 | | | JSR | PC,XPI | ;6 | O PULSE X | PI H VIA | HDAL15 | Н | | | 8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638 | | | | | | THE PA | THE SIGNALS XR HE SIGNAL FETCT FLIP-FLOP WILL H TO THE LOW ST ILL BE ASSERTED SP L WILL BE PU USE STATE WORKI RASP L WHEN EP | NG FLIP-FLOP | WILL BE | CLOCKED 1 | O A ON | E BY TH | F | | 8640
8641 | 022460 | 004737 | 007272 | | | JSR | PC,XRAS | ;P | ULSE XRAS | VIA THE | SIGNAL | HDAL12 | | | 8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652 | | | | | | PAI | HE VDAL REGISTE IN THE FOLLOWIN NGES SHOULD OCC USE STATE WORKI USE STATE SYNC BIT INSTRUCTION BIT ADDRESS LB BIT ADDRESS HB KE NEW FJ ADDRE T NEW ADDRESS - | UR IN THE PA
NG - PSMW H
- EPSF H - 0
I HB - EP8F H
- EP8G H - 0
- EP8N H - 0
SS - TNFJ H | - 1
- 1 | STATE MA
F XRAS H
MACHINE | ACHINE
BEING
WHEN X | FLIP-FLI
PULSED.
RAS H P | OPS
ULSED. | | 8653
8654 | 022464 | 004737
001405 | 006654 | | | JSR
BEQ | PC READR4 | : G | O READ VDA | AL AND PA | USE ST | ATE MACI | HINE | | 8655
8656
8657
8658
8659
8660
8661
8662
8663 | 022472
022472
022474
022476
022500
022502
022502 | 104455
000003
002537
005004
104406 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | 3. VDALRG,R4ERO
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | R ;P | AUSE STATE | REGISTE | RS CHA | NGED | | | 8663
8664
8665
8666
8667
8668
8669 | | | | | | ; SIGNAL
; PAUSE
; FLOP, | E SIGNAL XCAS H
XCAS H GOING F
STATE SYNC FLIP
THUS CLEARING T
OF THE 8 BIT I
BIT ADDRESS LB | ROM A O TO A
-flop (O) IN
HE 8 BIT INS | ONE WILL
TO THE 8 E
TRUCTION H
B FLIP-FLO | CLOCK TH
BIT INSTR
B FLIP-F
OP (1) WI | E OUTPORTION | UT OF THE PREV | /IOUS | | 8670
8671 | 022504 | 004737 | 007410 | | 14\$: | JSR | PC.XCASH | ; \$1 | ET XCAS H | TO HIGH | STATE | VIA HDAL | .13 н | | 8672 | | | | | | ;READ VI | DAL REGISTER AN | D CHECK PAUSI | STATE MA | ACHINE FL | IP-FLO | PS TO BE | IN | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 174 ``` CVCDCB_P11 01-APR-82 14:12 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA THE FOLLOWING STATE AS A RESULT OF XCAS H BEING PULSED. 8674 8675 8676 8677 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 1 8 BIT ADDRESS HB - EP8N H - 0 8678 8679 TAKE NEW FJ ADDRESS - TNFJ H - 0 8680 GET NEW ADDRESS - OUTNEW H - 1 8681 022510 022516 022524 022530 022532 022532 022534 022536 022540 022542 042737 052737 004737 001405 8682 002336 002336 010000 BIC #VDAL12,R4GOOD #VDAL13,R4GOOD SETUP TO EXPECT EP8F H TO BE O 8683 020000 BIS SETUP TO EXPECT EP8G H TO BE 1 8684 006654 JSR PC, READR4 GO READ VDAL AND PAUSE STATE MACHINE 8685 8686 8687 8688 BEQ 15$: IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR EP8F H PROBABLY NOT O OR EP8G H NOT SET 104455 TRAP CSERDF 000003 . WORD 8689 002537 . WORD VDALRG 8690 005004 . WORD R4EROR 8691 CKLOOP 8692 8693 022542 104406 TRAP C$CLP1 8694 8695 8696 8697 SELECT THE EODAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE LOW BYTE OF THE NEW FORCE JUMP ADDRESS REGISTER SHOULD BE ENABLED TO THE EDDAL BUS AT THIS TIME. ON A READ COMMAND TO CONTROL REGISTER 6, THE EODAL BUS WILL BE READBACK TO THE LSI-11 BUS VIA THE SIGNAL RPT7 L. 8698 8699 022544 004737 007122 15$: JSR PC, SEODAL :SELECT EODAL BUS VIA GDAL BITS 2:0 8700 ;AT THIS POINT IN TIME, THE LOW BYTE OF THE NEW FORCE JUMP ADDRESS REG- ;ISTER WILL BE ENABLED TO THE EODAL BUS VIA THE SIGNAL NEARL L. THIS ;SIGNAL IS ASSERTED LOW AS A RESULT OF "GET NEW ADDRESS" ;FLIP-FLOP BEING SET AND THE SIGNAL EARL H BEING ASSERTED HIGH. THE ;"GET NEW ADDRESS" FLIP - FLOP WAS SET WHEN THE PAUSE STATE SYNC FLIP- 8701 8702 8703 8704 8705 8706 8707 8708 FLOP WAS A ONE, A PULSE ISSUED ON XRAS L, AND THE TAKE NEW FORCE JUMP ADDRESS FLIP-FLOP WAS SET TO A ONE. THE SIGNAL EARL H IS ASSERTED HIGH AS A RESULT OF THE 8 BIT ADDRESS LOW BYTE FLIP-FLOP BEING SET TO A 8709 ONE AND THE SIGNAL ACAS H BEING ASSERTED HIGH. THE FOLLOWING SECTION WILL READ AND CHECK THAT THE LOW BYTE OF THE NEW FORCE JEMP ADDRESS 8710 8711 REGISTER IS ENABLED TO THE EODAL BUS. THE EODAL BUS WILL BE READBACK VIA THE SIGNAL RPT7 L WHEN A READ COMMAND IS ISSUED TO CONTROL REG 6. 8712 8713 8714 : IF THE LOW BYTE DATA READ FROM THE EDDAL BUS EQUALS 263, THEN THE OLD FORCE JUMP ADDRESS WAS PROBABLY ENABLED TO THE EDDAL BUS INSTEAD OF THE 8715 8716 :NEW FORCE JUMP ADDRESS REGISTER. THE OLD FORCE JUMP ADDRESS REGISTER 8717 WAS LOADED WITH DATA FROM THE DIAGNOSTIC ADDRESS REGISTER VIA THE SIGNAL 8718 :DFET H. THE DIAGNOSTIC ADDRESS REGISTER WAS LOADED WITH A DATA PATTERN 8719 OF 146063 AT THE BEGINNING OF THE TEST. 8720 022550 011137 002342 8721 MOV (R1), R6LOAD GET THE DATA LOADED INTO THE DIAG 8722 8723 8724 8725 8726 8727 8728 :ADDRESS REGISTER 022554 022562 022570 022574 022576 022576 042737 012737 004737 001405 177400 177400 002342 002346 #177400,R6LOAD #177400,R6MASK BIC :CLEAR UPPER BYTE MOV SETUP TO IGNORE HIGH BYTE 006700 JSR PC, READR6 READ LB OF OLD FJA ON EODAL BUS BEQ 16$; IF OLD FLA OK THEN CONTINUE 4.FEODAL, ROGERR ERRDF OLD FJA TO EODAL BUS ERROR 104455 TRAP CSERDF ``` | HARDWARE CVCDCB.P1 | TESTS
1 0 | MACY11 | 30A(1052)
14:12 | 01-APF | TEST | 14:48 PAG
34: PAUSE | E 175
STATE MACHINE - 8 | BIT ADDRESS - | PAUSE MODE | - NEW FJA | | |--|--|--|----------------------------|--------|-------|--|---|--|--|--|-------------------| | 8729 00
8730 00
8731 00
8732 00 | 22600
22602
22604
22606 | 000004
003147
005020
104406 | | | | .WORD
.WORD
.WORD
CKLOOP | FEODAL
ROGERR | | | | | | 8731 02
8732 02
8733 02
8734
8735
8736
8736 | 22006 | 104406 | | | | RESELE | C\$CLP1 CT THE HDAL REGIST ITS 1 AND 0 TO ONE | ER BY SETTING | THE SIGNAL | GDAL2 TO A | ZERO AND | | 0/38 0/ | 22610 | 004737 | 006754 | | 16\$: | JSR |
PC,SLHDAL | | LECT HDAL RE | G VIA GDAL | BITS 2:0 | | 8739
8740
8741 | | | | | | SET TH | E SIGNAL XCAS H TO | LOW STATE BY | CLEARING HD | AL13 H IN | HDAL REGISTER | | 8742 02
8743 02
8744 02 | 22614
22622
22626 | 012737
005037
004737 | 021004
002346
007442 | 002342 | | MOV
CLR
JSR | #HDAL13!HDAL9!HDA
RGMASK
PC,XCASL | AL2,R6LOAD ;SE
;SETUP
;SET X | TUP BITS PRE
TO CHECK AL
CAS H TO LOW | L BITS | | | 8745
8746
8747
8748 | | | | | | : TOGGLE | THE SIGNAL XPI H
O SIMULATE A MACHI | BY SETTING AN | D CLEARING H | DAL15 H. | THIS IS | | 8749 02 | 22632 | 004737 | 007502 | | | JSR | PC,XPI | ;60 PU | LSE XPI H VI | A HDAL15 H | | | 8750
8751
8752
8753
8754
8755
8756
8757
8758
8759 | | | | | | THE PA | THE SIGNALS XRAS HE SIGNAL FETCT H FLIP-FLOP WILL BE H TO THE LOW STATE ILL BE ASSERTED LO SP L WILL BE PULSE USE STATE WORKING RASP L WHEN EPFN | FLIP-FLOP WILL | L BE CLOCKED | TO A ONE | BY THE | | | 22636 | 004737 | 007272 | | | JSR | PC,XRAS | ;GO PU | LSE XRAS VIA | HDAL12 H | | | 8762
8763
8764
8765
8766
8767
8768
8769
8770
8771 | | | | | | BE IN PAI | HE VDAL REGISTER ATHE FOLLOWING STATUSE STATE WORKING USE STATE SYNC - EDIT INSTRUCTION HEBIT ADDRESS LB - EDIT ADDRESS HB | E AS A RESULT
- PSMW H - 1
PSF H - 0
- EP8F H - 0
P8G H - 1
P8N H - 0
- TNFJ H - 0 | OF XRAS H B | MACHINE FL
EING PULSE | IP-FLOPS TO | | 8772 02
8773 02
8774 02
8775 02
8776 02
8777 02
8778 02
8779 02 | 22642
22646
22650
22652
22652
22654
22656
22660 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | PC.READR4
17\$
3.VDALRG.R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | : IF OK
: PAUSE | AD VDAL AND I
THEN CONTINU
STATE MACHI | JE
NE CHANGED | BY XRAS H | | 8782
8783
8784 | | | | | | SET THE | E SIGNAL XCAS H TO
XCAS H GOING FROM
INSTRUCTION HB FLI | A ONE BY SETT
A O TO A ONE
P-FLOP (O) IN | TING HDAL13 I
WILL CLOCK
TO THE 8 BIT | H TO A ONE
THE OUTPUT
ADDRESS LI | OF THE
B FLIP- | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-APR-82
TEST | 14:48 PAGE 176
34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA | |--|--|--------------------------------------|----------------------------|---------------------|--| | 8785
8786
8787
8788
8789 | | | | | FLOP THUS CLEARING THE 8 BIT ADDRESS LOW BYTE FLIP-FLOP. THE PREVIOUS OUTPUT OF THE 8 BIT ADDRESS LB FLIP-FLOP (1) WILL BE CLOCKED INTO THE 8 BIT ADDRESS HB FLIP-FLOP THUS SETTING THE 8 BIT ADDRESS HB FLIP-FLOP TO A ONE. | | 8790 | 022662 | 004737 | 007410 | 17\$: | JSR PC, XCASH ;SET XCAS H TO HIGH STATE VIA HDAL13 H | | 8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801 | | | | | :READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO :BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING PULSED. : PAUSE STATE WORKING - PSMW H - 1 : PAUSE STATE SYNC - EPSF H - 0 : 8 BIT INSTRUCTION HB - EP8F H - 0 : 8 BIT ADDRESS LB - EP8F H - 0 : 8 BIT ADDRESS HB - EP8N H - 1 : TAKE NEW FJ ADDRESS - TNFJ H - 0 : GET NEW ADDRESS - OUTNEW H - 1 | | 8802
8803
8804
8805 | 022666
022674
022702
022706
022710
022710 | 042737
052737
004737
001405 | 020000
040000
006654 | 002336
002336 | BIC #VDAL13,R4GOOD ;SETUP TO EXPECT EP8G H TO BE A O SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 0 SETUP TO EXPECT EP8N H TO BE A 1 SETUP TO EXPE | | 8806
8807
8808
8809
8810
8811
8812
8813 | 022712
022714
022716
022720 | 104455
000003
002537
005004 | | | TRAP CSERDF .WORD 3 .WORD VDALRG .WORD R4EROR CKLOOP | | 8813
8814
8815
8816
8817
8818 | 022720 | 104406 | | | SELECT THE EDDAL BUS BY SETTING GDAL BITS 2:0 TO ONES. THE HIGH BYTE OF THE NEW FORCE JUMP ADDRESS REGISTER SHOULD BE ENABLED TO THE EDDAL BUS AT THIS TIME. ON A READ COMMAND TO CONTROL REGISTER 6, THE EDDAL BUS WILL BE READBACK TO THE LSI-11 VIA THE SIGNAL RPIT L. | | 8819
8820 | 022722 | 004737 | 007122 | 18\$: | JSR PC.SEODAL ;SELECT EODAL BUS VIA GDAL BITS 2:0 | | 8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838 | | | | | AT THIS POINT IN TIME, THE HIGH BYTE OF THE NEW FORCE JUMP ADDRESS REGISTER WILL BE ENABLED TO THE EODAL BUS VIA THE SIGNAL NEASH L. THIS SIGNAL IS ASSERTED LOW AS A RESULT OF "GET NEW ADDRESS" FLIP-FLOP BEING SET AND THE SIGNAL EASH H BEING ASSERTED HIGH. THE "GET NEW ADDRESS" FLIP-FLOP WAS SET WHEN THE PAUSE STATE SYNC FLIP FLOP WAS A ONE, A PULSE ISSUED ON XRAS L. AND THE TAKE NEW FORCE JUMP ADDRESS FLIP-FLOP WAS SET TO A ONE. THE SIGNAL EASH H IS ASSERTED HIGH AS A RESULT OF THE 8 BIT ADDRESS HIGH BYTE FLIP-FLOP BEING SET TO A ONE AND THE SIGNAL ACAS H BEING ASSERTED HIGH. THE FOLLOWING SECTION WILL READ AND CHECK THAT THE HIGH BYTE OF THE NEW FORCE JUMP ADDRESS REGISTER IS ENABLED TO THE EODAL BUS. THE EODAL BUS WILL BE READBACK VIA THE SIGNAL RPT7 L WHEN A READ COMMAND IS ISSUED TO CONTROL REG 6. IF THE HIGH BYTE DATA READ FROM THE ECDAL BUS EQUALS 314, THEN THE OLD FORCE JUMP ADDRESS WAS PROBABLY ENABLED TO THE EODAL BUS INSTEAD OF THE NEW FORCE JUMP ADDRESS REGISTER. THE OLD FORCE JUMP ADDRESS REGISTER WAS LOADED WITH DATA FROM THE DIAGNOSTIC ADDRESS REGISTER VIA THE SIGNAL OFF THE THE DIAGNOSTIC ADDRESS REGISTER WAS LOADED WITH A DATA PATTERN | | 8839
8840 | | | | | OF 146063 AT THE BEGIMMING OF THE TEST. | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 177 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA
CVCDCB.P11 01-APR-82 14:12 022726 022732 022736 022744 022752 022756 022760 002342 002342 177400 011137 MOV (R1) R6LOAD GET DIAG ADDRESS REG DATA 8842 8843 000337 042737 012737 SWAB R6LOAD SWAP HIGH BYTE WITH LOW BYTE 002342 #177400, R6LOAD BIC CLEAR LOW BYTE IN HIGH BYTE POSITION 8844 177400 #177400, R6MASK MOV SETUP TO IGNORE HIGH BYTE ON READ 8845 004737 006700 JSR PC_READR6 : READ OLD FJA HB ON EODAL BUS 8846 001405 BEQ 19$ OF OLD FLA OK THEN CONTINUE 8847 ERRDF 4, FEODAL, ROSERR OLD FLA HB TO EODAL BUS ERROR 022760 022762 022764 022766 022770 022770 8848 104455 TRAP CSERDF 000004 003147 8849 . WORD 8850 8851 8852 8853 . WORD FEODAL 005020 ROSERR . WORD CKLOOP 104406 TRAP C$CLP1 8854 8855 8856 RESELECT THE HDAL REGISTER BY SETTING THE SIGNAL GDAL2 TO A ZERO AND GDAL BITS 1 AND 0 TO ONES 8857 8858 022772 004737 006754 195: JSR PC, SLHDAL :GO SELECT HDAL REG VIA GDAL BITS 2:0 8859 8860 8861 8862 SET XCAS H TO THE LOW STATE BY CLEARING HDAL13 H IN HDAL REGISTER. 022776 023004 012737 021004 002342 MOV #HDAL13!HDAL9!HDAL2, R6LOAD ; SETUP BITS PREVIOUSLY LOADED 8863 005037 002346 R6MASK CLR SETUP TO CHECK ALL BITS 8864 023010 004737 JSR PC.XCASL SET XCAS H TO LOW STATE VIA HDAL13 H 8865 8866 8867 :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING HDAL15 H. THIS IS DONE :TO SIMULATE A MACHINE CYCLE. 8868 8869 023014 004737 007502 JSR PC.XPI GO PULSE XPI H VIA HDAL15 H 8870 8871 8872 8873 :TOGGLE THE SIGNALS XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. ; WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON XRAS H, THE ;EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS SETTING THE SIGNAL ;EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL PB H ;WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H AND 8874 8875 8876 RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ZERO BY RASP L WHEN THE SIGNALS EPFN L AND PSMW H ARE ASSERTED HIGH AND THE THE SIGNAL 8877 8878 8879 EPBN L IS ASSERTED LOW. A SHORT TIME AFTER HASP L. THE SIGNAL PSMW H 8880 WILL BE ASSERTED LOW AS A RESULT OF THE PAUSE STATE WORKING FLIP-FLOP 8881 :BEING CLEARED. 8882 8883 023020 004737 007272 JSR PC, XRAS GGO PULSE XRAS H AND XRAS L VIA HDAL12 2884 2985 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE TO BE IN THE 8886 FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. 8887 PAUSE STATE WORKING - PSMW H - 0 8888 PAUSE STATE SYNC - EPSF H - 0 8 BIT INSTRUCTION HB - EP8F H - 0 8889 BIT ADDRESS HB - EP8G H - O BIT ADDRESS LB - EP8N H - O 8890 8891 8892 8893 TAKE NEW FJ ADDRESS - TNFJ H - 0 GET NEW ADDRESS - OUTNEW H - 1 8894 8895 001000 002336 #VDAL9,R4GOOD EXPECT PSMW H TO BE A ZERO 023032 004737 006654 JSR PC.READR4 READ VOAL AND PAUSE STATE MACHINE ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 178 CVCDCB.P11 01-APR-82 14:12 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA 023036 001405 BEQ 20$ 3, VDALRG, R4EROR : IF OK THEN CONTINUE 023040 023040 023042 023044 023046 023050 8898 ERRDF :PSMW H F/F PROBABLY NOT CLEARED 8899 TRAP 104455 CSERDF 8900 8901 000003 . WORD . WORD VDALRG 8902 8903 005004 . WORD R4EROR CKLOOP 8904 023050 104406 TRAP CSCLP1 8905 8906 8907 :TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. THE SIGNAL XCAS H WILL CLOCK THE OUTPUT OF THE 8 BIT ADDRESS LB FLIP- 8908 FLOP (0) INTO THE 8 BIT ADDRESS HB FLIP-FLOP, THUS SETTING THE 8 RIT 8909 :ADDRESS HB FLIP-FLOP TO A ZERO. 8910 8911 023052 004737 007376 20$: JSR PC.XCAS GO PULSE XCAS H VIA HDAL13 H 8912 8913 :READ THE VDAL REGISTER AND THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN :THE FOLLOWING STATES AS A RESULT OF XCAS H BEING PULSED. : PAUSE STATE WORKING - PSMW H - 0 8914 8915 8916 PAUSE STATE SYNC - EPSF H - 0 8917 8 BIT INSTRUCTION HB - EP8F H - 0 8 BIT ADDRESS LB - EP8G H - 0 8918 8 BIT ADDRESS HB - EP8N H - 0 8919 8920 TAKE NEW FJ ADDRESS - TNFJ H - 0 8921 GET NEW ADDRESS - OUTNEW H - 1 8922 8923 023056 023064 023070 023072 023072 042737 040000 002336 BIC #VDAL14,R4GOOD EXPECT EP8N H TO BE A ZERO 8924 8925 8926 006654 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 21$ 3,VDALRG,R4EROR 001405 BEQ ; IF OK THEN CONTINUE ERRDF EP8N H PROBABLY NOT CLEARED 8927 104455 TRAP C$ERDF 8928 023074 000003 . WORD 8929 023076 002537 . WORD VDALRG 023100 023102 8930 005004 WORD R4EROR 8931 CKLOOP 023102 8932 104406 TRAP CSCLP1 8933 8934 :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING THE SIGNAL HDAL15 H. 8935 :THIS IS DONE TO FINISH THE MACHINE CYCLE. 8937 023104 004737 007502 215: JSR PC.XPI :GO PULSE XPI VIA HDAL15 H 8938 8939 :SET VDAL2 H TO A ONE AND THEN ZERO TO CLEAR THE "GET NEW ADDRESS" FLIP- 8940 8941 8942 8943 8944 8945 8946 :FLOP. 023110 023114 005037 CLR R4LOAD SETUP TO EXPECT ALL BITS CLEARED 004737 JSR PC . CLRPSM :GO CLEAR PAUSE STATE MACHINE F/F'S 023120 023120 023120 ENDSEG 10000$: 104405 TRAP C$ESEG 8948 023122 023124 023126 023130 8949 005721 TST (R1) + SUPPATE TABLE POINTER 005302 001412 8950 R2 23$ 1$ DEC CHECK IF ALL PATTERNS DONE 8951 BEQ IF YES THEN EXIT 000137 021620 JMP :DO NEXT PATTERN ``` J 14 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 179 CVCDCB.P11 01-APR-82 14:12 TEST 34: PAUSE STATE MACHINE - 8 BIT ADDRESS - PAUSE MODE - NEW FJA | 8953
8954
8955
8956
8957
8958
8959
8960
8961
8962 | 023134
023136
023140
023142
023144
023146
023150
023152 | 125125
052652
000377
177400
125252
052525
177777
000000 | 22\$: | . WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD | 125125
052652
000377
177400
125252
052525
177777
000000 | |--|--|--|------------------|--|--| | 8963
8964 | 023154
023154 | | 23\$:
£10064: | ENDTST | | | 8965
8966 | 023154 | 104401 | | TRAP | CSETST | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 180 CVCDCB.P11 01-APR-62 14:12 TEST 35: CLEAR PAUSE STATE MACHINE VIA VDAL2 H - 8 BIT ADDRESS 8967 8968 .SBTTL TEST 35: CLEAR PAUSE STATE MACHINE VIA VDAL2 H - 8 BIT ADDRESS 8969 8970 THIS TEST WILL CHECK THAT THE PAUSE STATE MACHINE FLIP - FLOPS, ; PAUSE STATE WORKING, PAUSE STATE SYNC, 8 BIT INSTRUCTION HB, 8 BIT ; ADDRESS LB, AND 8 BIT ADDRESS HB, CAN BE CLEARED WHEN THE SIGNAL VDAL2 H IS ; ASSERTED HIGH. ALL THE ABOVE FLIP-FLOPS ARE SET TO A ONE BY SETTING THE ; SIGNAL FETCT H TO A ONE, SETTING THE SIGNAL ADAL4 H TO A ZERO, AND PULSING ; THE SIGNALS XRAS H AND XCAS H. ONCE ALL THE FLIP-FLOPS ARE SET TO ONES, THE ; TEST WILL SET THE SIGNAL VDAL2 H AND CHECK THAT ALL THE PAUSE STATE MACHINE 8971 8972 8973 8974 8975 8976 8977 : FLIP-FLOPS CLEARED. 8978 8979 023156 023156 023156 8980 **BGNTST** 8981 T35:: 8982 8983 004737 005510 JSR PC.INITTE :SELECT AND INITIALIZE TARGET EMULATOR 023162 8984 BGNSEG 8985 8986 104404 TRAP C\$BSEG 8987 8988 SELECT THE MODE REGISTER BY SETTING GDAL2 TO A ONE AND GDAL1 AND GDALO :TO A ZERO. 8989 8990 023164 004737 007006 JSR PC, SLMODR :GO SELECT MODE REG VIA CONTROL REG O 8991 8992 :LOAD, READ AND CHECK MODE REGISTER BITS MR 15:0 WITH 4000. MR BIT 11 8993 ON A ONE WILL ENABLE 8 BIT ADDRESS SELECTION TO THE PAUSE STATE MACHINE 8994 023170 023176 012737 8995 002342 004000 MOV #MR11, R6LOAD SETUP TO SET MR BIT 11 8996 006672 **JSR** PC.LDRDR6 :LOAD, READ AND CHECK MODE REGISTER 15 8997 001405 : IF LOADED OK THEN CONTINUE BEQ 023204 023204 023206 023210 023212 023214 8998 ERRDF 4, MODREG, ROSERR MODE REGISTER NOT EQUAL TO 0 8999 104455 TRAP CSERDF 9000 000004 . WORD 002631 9001 . WORD MODREG 9002 9003 005020 . WORD R06ERR CKLOOP 9004 023214 104406 TRAP C\$CLP1 9005 9006 9007 ;LOAD, READ AND CHECK ADAL REGISTER. ADALO WILL BE SET AND CLEARED :TO CLEAR THE BREAK LOGIC. ADAL4 ON A ZERO WILL PUT THE PAUSE STATE 9008 MACHINE IN THE PAUSE MODE. ADALS H ON A ZERO WILL DISABLE THE TIMEOUT 9009 BREAK SIGNAL FROM CAUSING A BREAK CONDITION. ADAL4 H ON A ZERO WILL 9010 CAUSE THE PAUSE STATE MACHINE TO BE ENTERED ON A FETCH CYCLE WHEN THE 9011 :SIGNAL XRAS H IS PULSED. 9012 9013 023216 023222 005037 004737 15: CLR R2LOAD SETUP TO CLEAR ALL ADAL REG BITS PULSE BRKRES L VIA ADALO H 9014 JSR PC.BRKRES 9015 9016 9017 SET VDAL7 AND VDAL2 TO ONES IN THE VDAL REGISTER. VDAL7 ON A ONE WILL SET THE SIGNAL FETCT H TO THE HIGH STATE. VDAL2 ON A ONE WILL CLEAR THE PAUSE STATE MACHINE FLIP-FLOPS. VDAL2 WILL BE RESET TO 0 AFTER BEING SET TO A ONE. 9018 9019 9020 023226 023234 012737 002334 MOV #VDAL7,R4LOAD SETUP BIT TO SET FETCT H JSR PC_CLRPSM SET FETCT H AND PULSE INVD L VIA VDAL2 H HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 181 CVCDCB.P11 01-APR-82 14:12 TEST 35: CLEAR PAUSE STATE MACHINE VIA VDAL2 H - 8 BIT ADDRESS | CVCD.B. | | 1-AFR-02 | 14.12 | | 1531 33 | . CLEAR | PAUSE STATE MA | SCHINE ATM AT | NATE H - 0 BI | I MUUNESS | | |--|--|--|------------------|--------|---------|---|--|--|---
--|---| | 9023
9024
9025
9026
9027 | | | | | | ; TO ONE | S. BITS IN TH | HE HDAL REGIS | STER WILL BE | SET AND CLEAR | DAL1 AND GDALO
ED LATER IN
KCAS H, XCAS L, | | 9028 | 023240 | 004737 | 006754 | | | JSR | PC, SLHDAL | | GO SELECT HD | AL REG VIA GD | AL 2:0 | | 9029
9030
9031
9032
9033
9034 | | | | | | : THE HD | ALL BITS IN THE PROGRESAL BITS ARE CLUSTED STATE WHEN SCO | RAM TO CONTRO
LEARED HERE 1 | OL THE T-11 T
TO INSURE THA | IMING AND CONT | H ON A ONE
TROL SIGNALS.
ARE IN A | | 9035
9036
9037
9038
9039
9040 | 023244
023252
023256
023260
023260
023262 | 012737
004737
001405
104455
000004 | 000004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD | #HDAL2,R6LOAD
PC,LDRDR6
2\$
4,HDALRG,R06E
C\$ERDF | | GO LOAD, REA
IF LOADED OK | BE SET TO A (
D AND CHECK HI
THEN CONTINUE
R NOT EQUAL EX | DAL REGISTER | | 9041
9042
9043
9044
9045 | 023264
023266
023270
023270 | 002605
005020
104406 | | | | .WORD
.WORD
CKLOOP
TRAP | HDALRG
ROGERR
C\$CLP1 | | | | | | 9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059 | | | | | | ;THE SI
;HIGH,
;HIGH S
;IS LOW
;TO THE
;SIGNAL
;HIGH,
;WHEN T
;PSMW H
;REGIST
;SIGNAL | THE SIGNAL XR GNAL XRAS H WI INTO THE EDFET TATE. THE SIGNAL HIGH STATE. PAUSE L IS AS THE PAUSE STATE WILL BE ASSER ER AS VDAL9 H. PB H WILL BE | ILL CLOCK THE I FLIP-FLOP, SNAL XRAS H W USE MODE FLIF THE SIGNAL S SERTED HIGH, IE WORKING FLIF RIED HIGH. IN WHEN EDFEL ASSERTED HIGH. | E STATE OF TH THUS SETTING WILL CLOCK TH P-FLOP, THUS SOP H WILL BE WHEN SOP H LIP-FLOP WILL IP-FLOP IS SE THE SIGNAL PS T H AND SOP H GH. THE SIGN | E SIGNAL FETCH THE SIGNAL EN E STATE OF ADA SETTING THE SI ASSERTED HIGH AND EDFET HA BE DIRECT SET TO A ONE, THE MW H IS READ IN ARE ASSERTED | TH, WHICH IS DEET H TO THE AL4 H, WHICH IGNAL PAUSE L H WHEN THE ARE ASSERTED T TO A ONE. HE SIGNAL IN THE VDAL HIGH, THE | | 9060 | 023272 | 004737 | 007272 | | 2\$: | JSR | PC,XRAS | | PULSE XRAS H | VIA HDAL12 H | | | 9061
9062
9063
9064
9065
9066
9067
9068
9069
9070 | | | | | | ; IN THE
; BE ING
; PA
; PA | DAL REGISTER AS FOLLOWING STATE ASSERTED HIGH. SUSE STATE WORK SUSE STATE SYNC BIT INSTRUCTION BIT ADDRESS LE BIT ADDRESS HE | ING - PSMW H | JLT OF THE SI
1 - 1
0
H - 0 | MACHINE FLIP-
GNALS EDFET H | FLOPS TO BE
AND SOP H | | 9071
9072
9073
9074
9075
9076 | 023276
023304
023310
023312
023312 | 052737
004737
001405 | 001000
006654 | 002336 | | BIS
JSR
BEQ
ERRDF
TRAP | #VDAL9,R4GOOD
PC,READR4
3\$
3,VDALRG,R4ER
C\$ERDF | | EXPECT PSMW
CHECK VDAL A
IF LOADED OK
VDAL OR PAUS | H TO BE SET
ND PAUSE STATE
THEN CONTINUE
E STATE MACHIN | MACHINE
NE ERROR | | 9076
9077
9078 | 023314
023316
023320 | 000003
002537
005004 | | | | .WORD
.WORD
.WORD | VDALRG
R4EROR | | | | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 182 CVCDCB.P11 01-APR-82 14:12 TEST 35: CLEAR PAUSE STATE MACHINE VIA VDAL2 H - 8 BIT ADDRESS ``` | CACDER. | PII U | 11-APR-82 | 14:12 | | 1521 22 | SECLEAR PAUSE STATE MACHINE VIA VDALZ H - 8 BIT ADDRESS | |--|--|--------------------------------------|------------------|--------|---------|---| | 9079
9080
9081 | 023322
023322 | 104406 | | | | CKLOOP
TRAP C\$CLP1 | | 9082
9083
9084
9085
9086
9087
9088
9089 | | | | | | TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13. THE SIGNAL XCAS H WILL CLOCK THE PAUSE STATE SYNC FLIP-FLOP WITH THE LEVEL OF THE SIGNAL 'PB H', WHICH IS HIGH, THUS SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A ONE. THE SIGNAL XCAS H WILL ALSO CLOCK THE 8 BIT INSTRUCTION HB FLIP-FLOP WITH THE OUTPUT OF THE PAUSE STATE SYNC F/F WHICH WAS 0 BEFORE IT WAS SET TO A ONE BY XCAS H. THEREFORE 8 BIT INSTRUCTION HB FLIP-FLOP WILL BE CLOCKED TO A ZERO STATE. | | 9090
9091 | 023324 | 004737 | 007376 | | 3\$: | JSR PC.XCAS ;GO PULSE XCAS H VIA HDAL13 | | 9092
9093
9094
9095
9096
9097
9098
9099 | | | | | | :READ VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE :IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING PULSED. : PAUSE STATE WORKING - PSMW H - 1 : PAUSE STATE SYNC - EPSF H - 1 : 8 BIT INSTRUCTION HB - EP8F H - 0 : 8 BIT ADDRESS LB - EP8G H - 0 : 8 BIT ADDRESS HB - EP8N H - 0 | | 9100
9101
9102 | 023330
023336
023342 | 052737
004737
001405 | 002000
006654 | 002336 | | BIS #VDAL10,R4GOOD ;SETUP TO EXPECT PAUSE STATE SYNC - EPSF JSR PC,READR4 ;GO READ AND CHECK PAUSE STATE MACHINE BEQ 4\$;IF LOADED OK THEN CONTINUE | | 9103
9104
9105
9106
9107
9108 | 023344
023344
023346
023350
023352
023354 | 104455
000003
002537
005004 | | | | ERRDF 3, VDALRG, R4EROR ; EPSF H PROBABLE NOT SET IN VDAL REG TRAP C\$ERDF .WORD 3 .WORD VDALRG .WORD R4EROR | | 9109 | 023354 | 104406 | | | | CKLOOP
TRAP C\$CLP1 | | 9110
9111
9112
9113
9114
9115 | | | | | | ;TOGGLE THE SIGNAL XCAS H AGAIN BY SETTING AND CLEARING HDAL13 H. THE ;SIGNAL XCASH WILL CLOCK THE OUTPUT OF THE PAUSE STATE SYNC FLIP-FLOP (1) ;INTO THE 8 BIT INSTRUCTION HB FLIP-FLOP, THUS SETTING THE 8 BIT INSTRUCTION HB FLIP-FLOP TO A ONE. | | 9116 | 023356 | 004737 | 007376 | | 4\$: | JSR PC, XCAS ;GO PULSE XCAS H VIA HDAL13 H | | 9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9130
9131
9132
9133
9134 | | | | | | READ VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF PULSING THE SIGNAL XCAS H PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 BIT INSTRUCTION HB - EP8F H - 1 BIT ADDRESS LB - EP8G H - 0 BIT ADDRESS HB - EP8N H - 0 | | 9126
9127
9128 | 023362
023370
023374
023376
023376 | 052737
004737
001405 | 010000
006654 | 002336 | | BIS #VDAL12,R4GOOD :SETUP TO EXPECT EP8F H TO BE A 1 JSR PC.READR4 :GO READ VDAL AND PAUSE STATE MACHINE BEO 58 :IF OK THEN CONTINUE | | 9130
9131
9132
9133
9134 | 023376
023376
023400
023402
023404
023406 | 104455
000003
002537
005004 | | | | ERRDF 3.VDALRG,R4EROR ;EP8F H PROBABLY NOT SET TO A 1 TRAP C\$ERDF .WORD 3 .WORD VDALRG .WORD R4EROR CKLOOP | | | | | | | | | | | | - | - | |-------|---|---|---| | ~ . | | ~ | | |
• | | | | | ЭĽ | Q | • | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 183 TEST 35: CLEAR PAUSE STATE MACHINE VIA VDAL2 H - 8 BIT ADDRESS CVCDCB.P11 01-APR-82 14:12 9135 023406 104406 TRAP CSCLP1 9136 9137 :TOGGLE THE SIGNAL XCAS H AGAIN BY SETTING AND CLEARING HDAL13 H. THE 9138 SIGNAL XCAS H WILL CLOCK THE OUTPUT OF THE 8 BIT INSTRUCTION HB FLIP- 9139 FLOP (1) INTO THE 8 BIT ADDRESS LB FLIP-FLOP, THUS SETTING THE 8 BIT 9140 :ADDRESS LB FLIP-FLOP TO A ONE. 9141 9142 023410 004737 007376 5$: JSR PC.XCAS GO PULSE XCAS H VIA HDAL13 H 9144 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO 9145 9146 BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING PULSED. PAUSE STATE WORKING - PSMW H - 1 9147 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 1 9148 9149 8 BIT ADDRESS LB - EP8G H - 1 9150 8 BIT ADDRESS HB - EP8N H - 0 9151 023414 023422 023426 023430 023430 023432 023434 023436 9152 9153 052737 004737 020000 002336 BIS #VDAL13,R4GOOD SETUP TO EXPECT EP8G H TO BE A ONE JSR 006654 PC, READR4 READ VOAL AND PAUSE STATE MACHINE 9154 001405 BEQ : IF OK THEN CONTINUE 9155 3. VDALRG, R4EROR ERRDF :EP8G H PROBABLY NOT SET 9156 9157 104455 TRAP CSERDF 000003 . WORD 9158 002537 -WORD VDALRG 9159 005004 WORD R4EROR 023440 9160 CKLOOP 9161 023440 104406 TRAP C$CLP1 9162 9163 :TOGGLE THE SIGNAL XCAS H AGAIN BY SETTING AND CLEARING HDAL13 H. THE 9164 ;SIGNAL XCAS H WILL CLOCK THE OUTPUT OF THE 8 BIT ADDRESS LB FLIP-FLOP ;(1) INTO THE 8 BIT ADDRESS HB FLIP-FLOP, THUS SETTING THE 8 BIT ADDRESS 9165 9166 :HB FLIP-FLOP TO A ONE 9167 9168 023442 004737 007376 6$: JSR PC.XCAS GO PULSE XCAS H VI HDAL13 H 9169 9170 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO 9171 BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING PULSED. 9172 9173 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 8 BIT INSTRUCTION HB - EP8F H - 1 9174 9175 8 BIT ADDRESS LB - EP8G H - 1 9176 8 BIT ADDRESS HB - EP8N H - 1 9177 023446 023454 023460 052737 9178 040000 002336 #VDAL14,R4GOOD SETUP TO EXPECT EP8N H TO BE A 1 BIS 9179 006654 JSR PC, READR4 GO CHECK VDAL AND PAUSE STATE MACHINE 9180 001405 BE0 : IF OK THEN CONTINUE 023462 023462 9181 ERRDF 3, VDALRG, R4EROR EP8N H PROBABLY NOT SET TO A 1 9182 9183 104455 TRAP CSERDF 023464 023466 023470 023472 023472 000003 . WORD 9184 002537 . WORD VDALRG 9185 005004 . WORD R4EROR 9186 CKLOOP 9187 9188 104406 TRAP CSCLP! 9189 :TOGGLE THE SIGNAL XPI L BY SETTING AND CLEARING HDAL15 H. A PULSE 9190 ON THE SIGNAL XPI
L WILL CLEAR THE EDFET FLIP-FLOP, THUS DISABLING ``` | | | | | | | | 15 | |--|--------------------------------------|--------------------------------------|--------------------|-------------------------|---------------------------------|---|---| | CVCDCB. | P11 0 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82 14
TEST 35 | : 48 PAG | | MACHINE VIA VDAL2 H - 8 BIT ADDRESS | | 9191
9192 | | | | | ;THE DI | RECT SET INPL | UT TO THE PAUSE STATE WORKING FLIP-FLOP. | | 9193
9194 | 023474 | 004737 | 007502 | 7\$: | JSR | PC,XPI | GO PULSE XPI L VIA HDAL15 H | | 9195
9196
9197 | | | | | :READ TO | HE VDAL AND F | PAUSE STATE MACHINE FLIP-FLOPS TO CHECK THAT XPI L OF THE PAUSE STATE MACHINE FLIP-FLOPS. | | 9198 | 023500
023504
023506 | 004737 | 006654 | | JSR
BEQ | PC.READR4 | GO READ VOAL AND PAUSE STATE MACHINE; IF NO CHANGES THEN CONTINUE | | 9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218 | 023506
023510
023512
023514 | 104455
000003
002537
005004 | | | ERRDF
TRAP
.WORD
.WORD | 3.VDALRG,R48
CSERDF
3
VDALRG
R4EROR | EROR ; VDAL OR PAUSE STATE MACHINE ERROR | | 9206 | 023516
023516 | 104406 | | | CKLOOP
TRAP | C\$CLP1 | | | 9208
9209
9210 | | | | | SET THE | E SIGNAL VOAL
TO BE A ZERO. | L2 H TO A ONE AND CHECK THE PAUSE STATE MACHINE FLIP-
VDAL2 H WILL THEN BE CLEARED. | | 9211
9212
9213 | 023520
023524 | 005037
004737 | 002334
007712 | 8\$: | CLR
JSR | R4LOAD
PC,CLRPSM | ; SETUP TO EXPECT PAUSE STATE CLEARED ; PULSE INVO L VIA VDAL2 H | | 9214 | 023530
023530 | | | 10000\$: | ENDSEG | | | | 9216
9217 | 023530
023532 | 104405 | | | TRAP | C\$ESEG | | | 9218
9219
9220 | 023532
023532 | 104401 | | L10065: | | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 185 CVCDCB.P11 01-APR-82 14:12 TEST 36: EOAI REG TO CAI, EIAI, CTL AND TO CTL REG TEST .SBTTL TEST 36: EOAI REG TO CAI, EIAI, CTL AND TO CTL REG TEST : ++ THIS TEST WILL CHECK THAT THE EDAI REGISTER BITS 7:0 CAN BE LOADED AND READ BACK CORRECTLY. THE TEST WILL ALSO CHECK THE DATA PATH TO BE CONNECTED AND FUNCTIONING PROPERLY FROM THE EOAI REGISTER TO THE EOAI BUS, TO THE CAI BUS TO THE EIAI BUS, TO THE CTL BUS AND INTO THE CTL REGISTER. THE TEST WILL CHECK THE DATA PATH FROM THE EOAI REGISTER TO THE EOAI BUS, TO THE CAI BUS, TO THE TAI DIAGNOSTIC LATCH, AND BACK FROM THE TAI DIAGNOSTIC LATCH TO THE CAI BUS, TO THE EIAI BUS, TO THE CTL BUS AND INTO THE CTL REGISTER. THE DATA PATTERN USED DURING THIS TEST WILL BE AN INCREMENTING BINARY COUNT PATTERN. THE DATA READBACK FROM THE CTL REGISTER WILL BE THE ONES COMPLEMENT OF THE DATA : LOADED INTO THE EDAI REGISTER. 023534 023534 023534 023540 **BGNTST** T36:: 004737 005510 PC, INITTE JSR SELECT AND INITIALZE TARGET EMULATOR 005001 START DATA PATTERN AT ZERO 023542 023542 104404 BGNSEG 15: TRAP C\$BSEG SELECT THE MODE REGISTER VIA GDAL BITS 2:0 023544 004737 007006 JSR PC.SLMODR ; SELECT MODE REG VIA GDAL BITS 2:0 :CLEAR ALL BITS IN THE MODE REGISTER AND CHECK THAT ALL BITS ARE CLEARED 023550 023554 023560 023562 023562 005037 002342 CLR R6L OAD SETUP TO CLEAR ALL BITS 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 004737 006672 JSR PC.LDRDR6 GO LOAD, READ AND CHECK MODE REGISTER 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 4.MODREG.ROGERR :MODE REGISTER NOT EQUAL TO O C\$ERDF 104455 TRAP 023564 000004 . WORD 002631 . WORD MODREG 023570 005020 RO6ERR . WORD CKLOOP 023572 104406 TRAP C\$CLP1 SELECT HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 023574 004737 006754 25: **JSR** PC.SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 :SET HDAL2 H TO A ONE IN THE HDAL REGISTER TO ALLOW THE PROGRAM TO : CONTROL THE T-11 TIMING AND CONTROL SIGNALS. 023600 023606 023612 023614 023614 023616 023620 023622 012737 004737 000004 002342 #HDAL2, R6LOAD MOV SETUP BIT TO BE LOADED 006672 ; GO LOAD, READ AND CHECK HDAL REGISTER **JSR** PC.LDRDR6 001405 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 4, HDALRG, ROSERR HDAL REGISTER NOT EQUAL TO EXPECTED 104455 CSERDF. TRAP 000004 . WORD 002605 . WORD HDALRG 005020 RO6ERR WORD 9276 023624 CKLOOP | HARDWAR
CVCDCB. | E TESTS
P11 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AF | R-82
TEST | 14:48 PAG
36: EOAI R | E 15
SE 186
REG TO CAI, EIAI, C | TL AND TO CTL REG TEST | | |--|--|--------------------------------------|----------------------------|---------|--------------|--|---|---|--| | 9277 | 023624 | 104406 | | | | TRAP | C\$CLP1 | | | | 9279
9280
9281
9282 | | | | | | SET AN | ID CLEAR VDAL2 H IN
CAUSE THE PAUSE STA
S INVD L AND INVD | CONTROL REGISTER 4. VDAL2 H
TE MACHINE FLIP-FLOPS TO BE CL
H. | BEING PULSED
EARED VIA THE | | 9283
9284
9285 | 023626
023632 | 005037
004737 | 002334
007712 | | 3\$: | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO CLEAR ALL OTH GO PULSE INVO L VIA VD | ER VDAL R/W BITS | | 9286
9287
9288
9289 | | | | | | ; SET AD
; ATC L
; THE PA
; ADAL 10 | OAL13 H AND ADAL10
WILL BE ASSERTED H
NUSE STATE WORKING
O H ON A ONE WILL E | H TO ONES IN THE ADAL REGISTER
IGH WHEN ADAL13 H IS A ONE, AD
FLIP-FLOP IS A ZERO, AND PPI L
NABLE THE EIAI 7:0 BUS TO THE | . THE SIGNAL
AL11 H IS A ZERO,
IS ASSERTED HIGH.
CTL 7:0 BUS. | | 9291
9292
9293 | 023636
023644
023650 | 012737
004737
001405 | 022000
006614 | 002330 | | MOV
JSR
BEQ | #ADAL13!ADAL10,R2
PC,LDRDR2
4\$ | GO LOAD, READ AND CHEC | INUE | | 9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9301
9302
9303 | 023652
023652
023654
023656
023660 | 104455
000002
002513
004770 | | | | ERRDF
TRAP
.WORD
.WORD | 2,ADALRG,R2EROR
C\$ERDF
2
ADALRG
R2EROR | ADAL REGISTER NOT EQUA | LEXPECTED | | 9300 | 023662
023662 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 9302 | | | | | | ;SELECT | FDAL REGISTER VIA | GDAL BITS 2:0 IN CONTROL REGI | STER 0 | | 9304 | 023664 | 004737 | 007154 | | 45: | JSR | PC, SLFDAL | GO SELECT FDAL REG VIA | GDAL BITS 2:0 | | 9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314 | | | | | | ;EOAI R | REGISTER IS THE HIG | I REGISTER WITH A BINARY COUNT H BYTE OF THE FDAL REGISTER. NTO THE EOAI REGISTER VIA THE ISSUED TO CONTROL REGISTER 6. HE FDAL REGISTER AT THE SAME T ALO H ON A ONE WILL ENABLE THE MAND TO CONTROL REGISTER 6 INS REGISTER IS READBACK VIA THE S | THE DATA | | 9315
9316
9317
9318 | 023670
023674
023700
023704 | 010137
005237
004737
001405 | 002342
002342
006672 | | | MOV
INC
JSR
BEQ
ERRDF | R1,R6LOAD
R6LOAD
PC,LDRDR6
5\$
4,EOAIFD,R06ERR | GET THE BINARY DATA PA
SET FDALO H TO A ONE
LOAD, READ AND CHECK E
IF LOADED OK THEN CONT | DAI AND FDAL REG | | 9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9330
9331
9332 | 023704
023706
023706
023710
023712
023714
023716
023716 | 104455
000004
002676
005020 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
4
EOAIFD
ROGERR | ;EOAI OR FDAL REGISTER | ERRUR | | 9325
9326 | 023716 | 104406 | | | | TRAP | C\$CLP1 | | | | 9327
9328 | | | | | | ;SELECT | HDAL REGISTER VIA | GDAL BITS 2:0 IN CONTROL REGIS | STER O | | 9329
9330 | 023720 | 004737 | 006754 | | 5\$: | JSR | PC,SLHDAL | SELECT HOAL REGISTER V | | | 9331
9332 | | | | | | :SET PP | I L AND XPI L TO THE
BEING SET LOW WILL | HE LOW STATE BY SETTING HDAL15
CAUSE THE SIGNAL ATC L TO BE | H TO A ONE.
ASSERTED LOW. | | HARDWARE TESTS MACY11 30A(1052) | 01-APR-82 14:48 PAGE 187 | | |---|---------------------------|-------------------------------| | HARDWARE TESTS MACY11 30A(1052)
CVCDCB.P11 01-APR-82 14:12 | TEST 36: EOAI REG TO CAI, | EIAI, CTL AND TO CTL REG TEST | | 9333
9334
9335
9336
9337
9338
9338 | | | | | ; CAI B
; EIAI
; THE C | ASSERTED LOW WILL BE ENAB
BUS WILL BE ENA
AI 7:0 BUS WILL
BEING ASSERTED
E SIGNALS CPI L | BLED TO THE EIA
NBLED TO THE CT
. ALSO BE ENABL
) LOW. THE SIG | I 7:0 BUS
L 7:0 BUS
ED TO THE | UNCONDITION VIA ADALION TAI 7:0 BUIS ASSERTI | ONALLY. THE
O H ON A ONI
US BY THE SE
TO LOW AS A | E
E.
IGNAL | |--|--|--|--------------------------------------|--------|--
---|---|--|---|--|------------------| | 9340
9341
9342 | 023724
023732 | 012737
004737 | 000004
007514 | 002342 | MOV
JSR | #HDAL2,R6LOAD | | TUP BIT P | REVIOUSLY I | OADED LOW STATE | | | 9343
9344
9345
9346 | | | | | :INTO | ND CLEAR VDAL2
THE TAI 7:0 DIA
OSTIC LATCH SHO | GNOSTIC LATCH. | THE DAT | A CLOCKED | NTO THE TA | 1 | | 9347 | 023736 | 004737 | 007712 | | JSR | PC, CLRPSM | ;G0 | PULSE VD | AL2 H TO CL | OCK TAI IN | TO LATCH | | 9333
9334
9335
9336
9337
9338
9339
9341
9342
9343
9344
9345
9346
9350
9351
9353
9353 | | | | | :EIAI
:THAT | IS TIME, THE EO. THE CAI BUS I BUS IS ENABLED THE EOAI BUS IS THE CTL BUS DA L. THE SIGNAL | S ENABLED TO T
TO THE CTL BUS
ENABLED TO TH
TA INTO THE CT | HE EIAI B
VIA ADAL
E CTL BUS
L REGISTE | US UNCODITI
10 H ON A (
, THE TEST
R BY PULSIA | ONALLY. THE
DNE. TO CHE
MUST FIRST
IG THE SIGNA | CK | | 9356
9357 | 023742 | 004737 | 007376 | | JSR | PC.XCAS | ;PU | LSE XCAS | L VIA HDAL | REGISTER B | IT 13 | | 9358
9359
9360
9361
9362
9363
9364
9365 | | | | | ; THE E | PI L AND XPI L
OAI BUS WILL BE
WHEN THE SIGNAL | DISABLED FROM | THE CAL | BUS BY ATC | L BEING SET | 15 H. | | 9362 | 023746 | 004737 | 007546 | | JSR | PC,XPIL | ;60 | SET PPI | L AND XPI L | TO HIGH ST | TATE | | 9364 | | | | | :SELEC | T FDAL REGISTER | VIA GDAL BITS | 2:0 IN C | ONTROL REGI | STER 0 | | | 9366
9367 | 023752 | 004737 | 007154 | | JSR | PC, SLFDAL | ;G0 | SELECT F | DAL REG VIA | GDAL BITS | 2:0 | | 9368
9369
9370
9371
9372
9373
9374 | | | | | :READ
:SIGNAL
:TO BE | THE DATA PATTE
THIS IS DONE
COMMAND TO CONT
L FDALO H WILL
READ VIA THE S
OL REGISTER 6. | TO CHECK THAT
ROL REGISTER 6
BE WRITTEN TO | INSTEAD O | EGISTER IS
OF THE EOAI
SELECT THE | READBACK ON
REGISTER.
CTL REGIST | THE | | 9375 | 023756 | 012777 | 146000 | 156322 | MOV | #146000, aREG6 | ;WR | ITE EOAI | AND FDAL RE | GISTER | | | 9376
9377
9378
9379
9380
9381 | | | | | THE S | THE CTL AND FDA
US INTO THE CTL
IGNAL ROT2 L WH
ATA READBACK WI
EN INTO THE EOA | REGISTER. THE
EN A READ COMM
LL BE THE ONES | CTL REGIS AND IS IS COMPLEMEN | STER WILL B
SUED TO CON
NT OF THE D | E READBACK
TROL REGIST
ATA WHICH W | VIA | | 9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388 | 023764
023770
023774
024002
024006
024010 | 010137
005137
042737
004737
001405 | 002342
002342
000377
006700 | 002342 | MOV
COM
BIC
JSR
BEQ
ERRDF | R1,R6LOAD
R6LOAD
#377,R6LOAD
PC,READR6
6\$
4,CTLFDL,R026 | : MA
: CL
: GO
: IF | EAR THE 1'S
EAR THE FO
READ CTL
DATA OK | OADED INTO
COMPLEMEN
OAL REGISTE
AND FDAL R
THEN CONTIN
REGISTER E | T FOR READB
R BITS
EGISTER
UE | ACK | | | | | | | | | | | | | | G 15 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 188 CVCDCB.P11 01-APR-82 14:12 TEST 36: EOAI REG TO CAI, EIAI, CTL AND TO CTL REG TEST 024010 104455 TRAP **CSERDF** 024012 024014 024016 024020 9390 000004 . WORD 9391 . WORD CTLFDL 9392 9393 005034 . WORD RO26ER CKLOOP 9394 9395 024020 104406 TRAP CSCLP1 9396 9397 :LOAD, READ AND CHECK EOAI REGISTER WITH THE 1'S COMPLEMENT OF THE DATA PREVIOUSLY WRITTEN INTO IT. THIS IS DONE TO SETUP TO CHANGE THE DATA IN THE CTL REGISTER. THE CTL REGISTER DATA NEEDS TO BE CHANGED SO THAT THE DATA PATH TO AND FROM THE TAI 7:0 DAIGNOSTIC LATCH CAN BE 9398 9399 9400 9401 CHECKED AT A LATER TIME IN THIS TEST. 9402 9403 024022 024026 024032 002342 010137 65: MOV GET THE DATA PATTERN JUST LOADED MAKE THE 1'S COMPLEMENT OF IT R1.R6LOAD 005137 042737 004737 COM R6LOAD 9404 9405 000376 002342 BIC #376, R6LOAD :CLEAR FDAL BITS 7:1 - FDALO H = 1 024040 006672 **JSR** LOAD, READ AND CHECK EDAI AND FDAL REG PC,LDRDR6 024044 9406 001405 BEQ : IF LOADED OK THEN CONTINUE 9407 4.EOAIFD, ROSERR **ERRDF :EOAI OR FDAL REGISTER ERROR** 9408 024046 104455 TRAP CSERDF 9409 024050 000004 . WORD 002676 005020 9410 024052 . WORD EOAIFD 9411 9412 9413 024054 024056 . WORD R06ERR CKLOOP 024056 104406 TRAP C\$CLP1 9414 9415 :SELECT HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 9416 9417 024060 004737 006754 75: JSR PC.SLHDAL :SELECT HDAL REGISTER VIA GDAL BITS 2:0 9418 9419 9420 9421 9422 9423 SET PPI L AND XPI L TO THE LOW STATE BY SETTING HDAL15 H TO A ONE. :PPI L BEING SET LOW WILL CAUSE THE SIGNAL ATC L TO BE ASSERTED LOW. ATC L WILL ENABLE THE EDAI BUS TO THE CAI BUS. THE CAI BUS WILL BE ENABLED TO THE EIAI BUS UNCODIONALLY. THE EIAI BUS WILL BE ENABLED TO THE CTL BUS VIA ADAL10 H ON A ONE. 9424 9425 9426 9427 9428 9430 9431 9432 9433 9434 9435 9436 024064 012737 024072 004737 000004 002342 #HDAL2, R6LOAD SETUP BIT PREVIOULY LOADED 007514 JSR PC XPIH SET PPI L AND XPI L TO LOW STATE TOGGLE THE SIGNAL XCAS L BY SETTING AND CLEARING THE SIGNAL HDAL13 H. THE SIGNAL XCAS L WILL CLOCK THE CTL BUS DATA, WHICH CONTAINS THE EQAI BUS DATA, INTO THE CTL REGISTER. 024076 004737 007376 JSR PC,XCAS GO PULSE XCAS L VIA HDAL13 H SET THE SIGNALS PPI L AND XPI L TO THE HIGH STATE BY CLEARING HDAL15 H. WHEN PPI L AND XPI L ARE ASSERTED HIGH, THE EOAI BUS WILL BE DISABLED : FROM THE CAI BUS. 024102 004737 007546 JSR PC.XPIL SET PPI L AND XPI L TO HIGH STATE 9439 9440 9441 9442 9443 SELECT FDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 024106 004737 007154 JSR PC.SLFDAL GO SELECT FDAL REG VIA GDAL BITS 2:0 :WRITE THE DATA PATTERN 063 INTO THE EOAI REGISTER VIA THE SIGNAL WPT2 H 15 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 189 TEST 36: EOAI REG TO CAI, EIAI, CTL AND TO CTL REG TEST CVCDCB_P11 01-APR-82 14:12 9445 9446 9447 ; HB H. THIS IS DONE TO CHECK THAT THE CTL REGISTER IS READBACK VIA ; THE SIGNAL ROTZ L INSTEAD OF THE EDAI REGISTER. FDALO H WILL BE WRITTEN TO A ZERO TO SELECT THE CTL REGISTER 024112 012777 031400 156166 #031400, aREG6 :WRITE EOAI AND FDAL REGISTER 9450 9451 9452 9453 9454 READ THE CTL AND FDAL REGISTERS TO CHECK THAT XCAS L CLOCKED THE CTL BUS INTO THE CTL REGISTER. THE DATA PATTERN READBACK WILL BE THE ONES COMPLEMENT OF THAT WHICH WAS WRITTEN INTO THE EDAI REGISTER. 9455 9456 9457 9458 9459 024120 024124 024130 024132 024132 010137 002342 R1.R6LOAD GET THE 1'S COMPLEMENT OF DATA LOADED 004737 006700 JSR PC, READRÓ GO READ CTL AND FDAL REGISTER 001405 BEQ ; IF DATA OK THEN CONTINUE ERRDF 4, CTLFDL, ROZGER CTL OR FDAL REGISTER ERROR 104455 TRAP C\$ERDF 024134 9460 000004 . WORD 9461 9462 9463 024136 003232 . WORD CTLFDL 024140 005034 . WORD RO26ER CKLOOP 9464 024142 104406 TRAP CSCLP1 9465 9466 9467 :SET ADAL13 H TO A ZERO IN THE ADAL REGISTER. ADAL13 H ON A ZERO WILL :ALLOW THE SIGNALS ABT H AND ABT L TO BE ASSERTED HIGH AND LOW RESPEC-9468 TIVELY WHEN THE SIGNAL PPI L IS ASSERTED LOW. THE SIGNALS ABT H AND ABT L WILL ENABLE THE TAI BUS TO THE CAI BUS WHEN ASSERTED. 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 024144 024152 024156 042737 020000 002330 8\$: BIC #ADAL13,R2LOAD SETUP TO ZERO ADAL13 006614 JSR PC.LDRDR2 GO LOAD, READ AND CHECK ADAL REGISTER : IF LOADED OK THEN CONTINUE 001405 9\$ BEQ 024160 ERRDF 2,ADALRG,R2EROR ADAL REGISTER NOT EQUAL EXPECTED 024160 024162 104455 000002 002513 TRAP C\$ERDF . WORD 024164 . WORD ADALRG 024166 004770 R2EROR WORD 024170 CKLOOP 024170 9480 104406 TRAP C\$CLP1 9481 9482 9483 :SELECT MODE REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 9484 024172 004737 007006 9\$: JSR PC, SLMODR :GO SELECT MODE REG VIA GDAL BITS 2:0 9485 9486 9487 9488 9489 SET MODE REGISTER BIT 9 TO A ONE. THIS IS DONE TO SET THE SIGNAL ATT L TO THE HIGH STATE. WHEN THE SIGNAL ATT L IS ASSERTED HIGH, THE CAI BUS WILL BE DISABLED TO THE TAI BUS AND THE TAI DIAGNOSTIC LATCH WILL :BE ALLOWED TO DRIVE THE TAI BUS. 9490 024176 024204 024210 024212 024212 024214 024216 024220 024222 9491 012737 004737 001000 002342 #MR9_R6LOAD MOV SETUP BIT TO BE LOADED 9492 9493 9494 9495 006672 GO LOAD, READ AND CHECK MODE REGISTER IF LOADED OK THEN CONTINUE JSR PC.LDRDR6 001405 10\$ BEQ ERRDF 4, MODREG, ROSERR MODE REGISTER NOT EQUAL EXPECTED 104455 000004 002631 TRAP **CSERDF** 9496 9497 9498 . WORD . WORD MODREG 005020 . WORD RO6ERR 9499 CKLOOP 9500 104406 TRAP C\$CLP1 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 190 CVCDCB.P11 01-APR-82 14:12 TEST 36: EOAI REG TO CAI, EIAI, CTL AND TO CTL REG TEST | | | | | | | | , | ne, cie nito | | 0 | | | |--|--|--|------------------|--------|-------|---|--|--|----------------------|--------------------------------|--|-------------| | 9501
9502
9503
9504
9505 | | | | | | ;SET VD
:7:0 BU
;DATA P | ALO H TO A ON
S. THE TAI D
ATTERN AT THE | E TO ENABLE
IAGNOSTIC LA
BEGINNING (| THE TAI DATCH WAS LO | AIGNOSTIC
DADED WITH
ST. | LATCH ONTO | THE TAI | | 9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517 | 024224
024232
024236
024240
024242
024244
024244
024250
024250 |
052737
004737
001405
104455
000003
002537
005004
104406 | 000001
006640 | 002334 | 10\$: | ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #VDALO,R4LOA
PC,LDRDR4
11\$
3,VDALRG,R4E
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1
THE HDAL REG | ROR | ; VDAL OR | PAUSE STAT | E MACHINE | ERROR | | 9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9530
9531
9532
9533
9534 | 024252 | 004737 | 006754 | | 115: | JSR | PC, SLHDAL | | GO SELEC | T HDAL REG | VIA GDAL | | | 9529
9530
9531
9532
9533
9534 | 024256
024264 | 012737
004737 | 000004
007514 | 002342 | | MOV
JSR
; TO CLOC
; DATA, ;
; BY SET | #HDAL2,R6LOA
PC,XPIH
CK THE CTL BUINTO THE CTL
TING AND CLEA | S DATA, WHIC
REGISTER, TH | CH CONTAINS | S THE TAI | L TO LOW : | | | 9535
9536
9537
9538
9539
9540
9541 | 024270 | 004737 | 007376 | | | JSR
:SET THE
:WHEN PR | PC.XCAS E SIGNALS PPI PI L AND XPI HE CAI BUS. | L AND XPI L | GO PULSE | XCAS L VI | A HDAL13 H
BY CLEARING
S WILL BE | G HDAL15 H. | | 9542
9543 | 024274 | 004737 | 007546 | | | JSR | PC,XPIL | | SET PPI I | AND XPI | L TO HIGH S | STATE | | | HADDUAD | - TECTC | MACVII | 704/1053 | \ 01-AD | 0-02 1/ | ./0 040 | J 15 | | |---|--|--|--|--------------------------------------|---------|--------------------|--|---|--| | - | CVCDCB. | P11 (| MACY11
01-APR-82 | 14:12 |) UI-AP | R-82 14
TEST 36 | EOAI R | REG TO CAI, EIAI, CTL AND | TO CTL REG TEST | | - | 9544
9545
9546 | | | | | | ;SELECT | THE FDAL REGISTER VIA | DAL BITS 2:0 IN CONTROL REGISTER 0 | | | 9547 | 024300 | 004737 | 007154 | | | JSR | PC, SLFDAL | SELECT FDAL REGISTER VIA GDAL BITS 2:0 | | | 9547
9548
9549
9550
9551
9552 | | | | | | READ TO BUS WHE REGIST | THE CTL AND FDAL REGISTER IICH CONTAINED THE TAI DI | TO CHECK THAT XCAS L CLOCKED THE CTL AGNOSTIC LATCH DATA INTO THE CTL | | | 9555 | 024304
024310
024314
024322
024326
024330
024330 | 010137
005137
042737
004737
001404 | 002342
002342
000377
006700 | 002342 | | MOV
COM
BIC
JSR
BEQ | R1,R6LOAD
R6LOAD
#377,R6LOAD
PC,READR6
12\$ | GET THE FIRST EOAI DATA PATTERN SETUP 1'S COMPLEMENT FOR READBACK SETUP FDAL BITS TO BE ZERO GO READ CTL AND FDAL REGISTERS IF DATA OK THEN CONTINUE | | | 9554
9555
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570 | 024330
024332
024334
024336
024340
024340 | 104455
000004
003232
005034 | | | 12\$:
10000\$: | ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | 4,CTLFDL,RO26ER
C\$ERDF
4
CTLFDL
RO26ER | ;TAI LATCH TO CTL REGISTER ERROR | | I | 9565 | 024340 | 104405 | | | 100003: | TRAP | C\$ESEG | | | | 9566
9567
9568
9569
9570
9571 | 024342
024346
024350
024354
024354 | 062701
001402
000137 | 000400
023542 | | 13\$:
L10066: | ADD
BEQ
JMP
ENDTST | #BIT8,R1
13\$
1\$ | :UPDATE THE TEST PATTERN BY ONE
:IF DONE THEN EXIT
:GO DO NEXT TEST PATTERN | | ۱ | 9572 | 024354 | 104401 | | | L10000: | TRAP | CSETST | | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14
TEST 37 | :48 PAG
: MODE R | E 192
EG TO ADD | K 15
RESS BUS VIA EC | DDAL, CDAL AN | D EIDAL BUS | | | |--|----------------------------|----------------------------|----------------------------|---------|--|---|---|--|--|---|---|---| | 9573 | | | | | .SBTTL | TEST 37 | : MODE RE | G TO ADDRESS BU | JS VIA EODAL, | CDAL AND EID | AL BUS | | | 9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590 | | | | | ; TO DO
; EODAL
; DONE
; AND A
; TO HA
; THE H
; FOLLO
; FOR E
; THE T | THIS, TO
BUS, TO
BY SETTION
DAL10 H
VE BEEN
IGH STATION
WING DATA
ACH DATA
HE EODAL | HE TEST W THE CDAL NG XBCLR TO ONES. LOADED WI E FROM TH A PATTERN PATTERN BUS, THE | HE DATA PATH FRILL ENABLE THE BUS, TO THE ELL HE TARGET MODE THE THE TARGET MODE BUS, 146063, 0317 LOADED, THE PROPERTY OF | DATA PATH FRIDAL BUS, AND TO THE HIGH SO THE HIGH SO THE MODE REGIONAL THE MODE REGIONAL THE MODE REGIONAL THE ADDRESS | OM THE MODE R TO THE ADDRE TATE AND BY S EGISTER WILL THE SIGNAL XB STER WILL BE 052525, 17777 ECK THE DATA BUS. THE TE | EGISTER TO
SS BUS. TH
ETTING ADAL
ALSO BE CHE
CLR L IS SE
LOADED WITH
7 AND 00000
TO BE PRESE
ST WILL ALS | THE
IIS IS
12 H
CKED
T TO
I THE
OO.
ENT ON | | 9589
9590 | 024356
024356 | | | | 137:: | BGNTST | | | | | | | | 9591
9592
9593
9594
9595
9596 | 024356
024362
024366 | 004737
012701
012702 | 005510
024670
000006 | | 137 | JSR
MOV
MOV | PC, INITT
#8\$,R1
#6,R2 | | ; SETUP DATA | INITIALIZE T
TABLE POINTE
PATTERN COUN | R | TOR | | 9595
9596 | 024372
024372 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | | | | | 9597
9598
9599
9600 | | | | | | :SET VD | AL2 H TO | A ONE AND THEN
SIGNALS WILL CL | ZERO TO PULS | E THE SIGNALS
E STATE MACHI | INVD L AND
NE FLIP-FLO | PS. | | 9601
9602 | 024374
024400 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC, CLRPS | м | :SETUP TO C | LEAR ALL VDAL | REG BITS | | | 9603
9604
9605 | | | | | | ;SELECT | THE HDAL | REGISTER VIA | DAL BITS 2:0 | IN CONTROL R | EGISTER O | | | 9606
9607 | 024404 | 004737 | 006754 | | | JSR | PC.SLHDA | L | ;SELECT HDA | L REG VIA GDA | L BITS 2:0 | | | 9608
9609
9610
9611
9612
9613 | | | | | | :BITS W.:
:TO MAN.:
:WILL C | ILL BE SE
IPULATE T
AUSE THE
ERO WILL | HDAL7 H TO ONE
T TO ZEROES. H
HE T-11 TIMING
SIGNALS XBCLR H
ENABLE THE EIDA | IDAL2 H ON A
AND CONTROL
I AND PBCLR H | ONE WILL ALLO
SIGNALS. HDA
TO BE ASSERT | W THE PROGR
L7 H ON A O
ED HIGH. HD | AM
INE
IAL9 H | | 9614
9615
9616 | 024410
024416 | 012737
004737 | 000004
007620 | 002342 | | MOV
JSR | #HDAL2,R
PC,XBCLR | 6LOAD
H | SETUP DIAG | NOSTIC CONTRO | L BIT
TO HIGH ST | ATE | | 9617
9618
9619
9620
9621
9622
9623
9624
9625
9626 | | | | | | WILL CONTROL OF TWO SIGNATURES TO A OF | EODAL BU
AUSE THE
GNALS WIL
E ENABLED | D ADAL10 H TO COBCLE H ASSERTED S. ADAL12 H BE SIGNALS COHB L ENABLE THE EST TO THE EIDAL B DAL9 H BEING SE | ING SET HIGH
AND COLB L T
PAL BUS TO T
BUS
UNCONDITI | WITH PBCLR H
O BE ASSERTED
HE CDAL BUS.
ONALLY. ADAL | ASSERTED H
LOW. THES
THE CDAL B
10 H BEING | IGH
E
US
SET | | 9627
9628 | 024422
024430 | 012737
004737 | 012000
006614 | 002330 | | MOV
JSR | #ADAL12!
PC,LDRDR | ADAL10,R2LOAD | ;SETUP BITS
;GO LOAD, R | TO BE LOADED | ADAL REGIS | TER | | l | | | | | | | L 15 | | |-----|--|--|--|--------------------|-------------------|---|--|---| | CV | RDWAR
CDCB. | P11 0 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82
TEST | 14:48 PAG
37: MODE R | EG TO ADDRESS BUS V | IA EODAL, CDAL AND EIDAL BUS | | | 9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639 | 024434
024436
024436
024440
024442
024446
024446 | 001405
104455
000002
002513
004770
104406 | | | BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | 2\$ 2,ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 THE MODE REGISTER | ; IF LOADED OK THEN CONTINUE
; ADAL REGISTER NOT EQUAL EXPECTED | | 1 | 9639 | 024450 | 004737 | 007006 | 2\$: | JSR | PC,SLMODR | | | 1 | 9640
9641
9642
9643 | 024430 | 004131 | 007000 | 24. | | | | | 1 | 9643 | | | | | ;LOAD, | READ AND CHECK MODE | REGISTER WITH DATA PATTERN FROM DATA TABLE. | | | 9644
9645
9646
9647
9648
9649
9550
9651
9652
9653 | 024454
024460
024466
024466
024470
024472
024474
024476 | 011137
004737
001405
104455
000004
002631
005020
104406 | 002342
006672 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | (R1),R6LOAD
PC,LDRDR6
3\$
4,MODREG,R06ERR
C\$ERDF
4
MODREG
R06ERR | GET THE DATA FROM THE DATA TABLE GO LOAD, READ AND CHECK MODE REGISTER IF LOADED OK THEN CONTINUE MODE REGISTER NOT EQUAL EXPECTED | | 1 | 9655
9656 | | | | | ;SELECT | EODAL BUS VIA GDAL | BITS 2:0 IN CONTROL REGISTER 0 | | 1 9 | 9657 | 024500 | 004737 | 007122 | 3\$: | JSR | PC, SEODAL | ; SELECT EODAL BUS VIA GDAL BITS 2:0 | | | 9658
9659
9660
9661
9662 | | | | | ; ASSERT | ED HIGH AND ADAL12 | ED TO THE EODAL BUS WHEN XBCLR H IS IS SET TO A ONE. READ AND CHECK THE EODAL DADED INTO THE MODE REGISTER. | | | 9663
9664
9665
9666
9667
9668
9669
9670
9671
9672 | 024504
024510
024514
024516
024516
024520
024522
024524
024526
024526 | 011137
004737
001405
104455
000004
003102
005034
104406 | 002342
006700 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | (R1),R6LOAD
PC.READR6
4\$
4.MEODAL,R026ER
C\$ERDF
4
MEODAL
R026ER
C\$CLP1 | GET THE MODE REGISTER DATA READ AND CHECK EODAL BUS TO = MODE REG IF DATA = MODE REG THEN CONTINUE MODE REG TO EODAL BUS ERROR | | 1 9 | 9674 | | | | | ;SELECT | THE EIDAL BUS VIA | SDAL BITS 2:0 IN CONTROL REGISTER 0 | | 1 9 | 9675
9676 | 024530 | 004737 | 007240 | 4\$: | JSR | PC,SEIDAL | ;SELECT EIDAL BUS VIA GDAL BITS 2:0 | | | 9677
9678
9679
9680
9681
9682
9683
9684 | | | | | :AT THI
:VIA XB
:VIA TH
:ASSERT
:BEING
:DITION
:DATA. | S POINT IN TIME, THE
CLR H AND ADAL12 H.
E SIGNALS COHB L AND
ED LOW AS A RESULT OF
SET TO A ONE. THE
SET TO A ONE. THE | MODE REGISTER IS ENABLED TO THE EDDAL BUS THE EDDAL BUS IS ENABLED TO THE CDAL BUS COLB L. THE SIGNALS COHB L AND COLB L ARE OF PBCLR H BEING ASSERTED HIGH AND ADAL12 H CDAL BUS IS ENABELED TO THE EIDAL BUS UNCON- CK THE EIDAL BUS TO CONTAIN THE MODE REGISTER | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 194 CVCDCB.P11 01-APR-82 14:12 TEST 37: MODE REG TO ADDRESS BUS VIA EDDAL, CDAL AND EIDAL BU | - | CVCDCB. | P11 0 | 1-APR-82 | 14:12 | | TEST 3 | 7: MODE R | EG TO ADDRESS BUS VI | A EODAL, CDAL | AND EIDAL BUS | | 524 017 | |-----|--|--|--|------------------|--------|--------|--|---|--|--|---|---------| | | 9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698 | 024534
024540
024544
024546
024550
024552
024554
024556
024556 | 011137
004737
001405
104455
000004
003270
005034 | 002342
006700 | | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | (R1),R6LOAD
PC,READR6
5\$
4,MEIDAL,R026ER
C\$ERDF
4
MEIDAL
R026ER | GET THE CHECK EI FLATA MODE REG | MODE REGISTER DAL BUS TO = N = MODE REG DAT TO EIDAL BUS | DATA LOADED
NODE REG DATA
TA THEN CONT
ERROR | | | I | 9696
9697 | | | | | | ;SELECT | THE ADDRESS BUS VIA | THE GDAL BITS | 2:0 IN CONTRO | L REGISTER O | | | ١ | 9698
9699 | 024560 | 004737 | 007072 | | 5\$: | JSR | PC,SLDADR | SELECT A | DDRESS BUS VIA | GDAL BITS 2:0 | | | | 9699
9700
9701
9702
9703 | | | | | | :THE EII
:RESULT
:BUS PRI | DAL BUS WILL BE ENABL
OF HDAL9 H BEING A Z
ESENTLY CONTAINS THE | LED TO THE ADD
ZERO AND ADAL1
MODE REGISTER | RESS BUS AT THO H BEING A ON DATA. | IS TIME AS A
IE. THE EIDAL | | | | 9704
9705
9706
9707
9708
9710
9711
9712
9713
9714
9715 | 024564
024570
024574
024576 | 011137
004737
001405 | 002342
006700 | | | MOV
JSR
BEQ
ERRDF | (R1),R6LOAD
PC,READR6
6\$
4,MADDRS,R026ER | GET THE CHECK AD FIF ADDRE CHECK AD | MODE REGISTER DRESS BUS TO = SS BUS = MODE TO ADDRESS BU | DATA
MODE REG DATA
REG DATA THEN CONT
IS EEROR | | | | 9709
9710
9711
9712
9713 | 024576
024600
024602
024604
024606 | 104455
000004
003377
005034 | | | | .WORD
.WORD
.WORD
CKLOOP | CSERDF
4
MADDRS
R026ER | | | | | | I | 9714
9715 | 024606 | 104406 | | | | TRAP | C\$CLP1 | | | | | | ١ | 9716
9717 | | | | | | :SELECT | THE HDAL REGISTER VI | IA GDAL BITS 2 | :0 IN CONTROL | REGISTER 0 | | | ١ | 9718
9719 | 024610 | 004737 | 006754 | | 6\$: | JSR | PC,SLHDAL | | | IA GDAL BITS 2:0 | | | | 9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730 | | | | | | SET THE | E SIGNAL XBCLR L, WHI
BY CLEARING HDAL? H I
TATE WILL CLOCK THE E
HE TARGET MODE READBA
WILL DISABLE THE MODE | ICH IS PRESENT
IN THE HDAL RE
EIDAL BUS, WHI
ACK REGISTER.
E REGISTER DATA | LY ASSERTED LO
GISTER. SETTI
CH CONTAINS MO
SETTING XBCLR
A FROM THE EOD | NG XBCLR L TO THE DE REGISTER DATA, R H TO THE LOW PAL BUS. | | | | 9726
9727
9728 | 024614
024622 | 012737
004737 | 000204
007652 | 002342 | | MOV
JSR | #HDAL7!HDAL2,R6LOAD
PC,XBCLRL | | TS PREVIOUSLY
R H TO THE LOW | LOADED | | | ١ | 9729
9730 | | | | | | ; SELECT | THE TARGET MODE READ | DBACK REGISTER | VIA GDAL BITS | 2:0 | | | ١ | 9731
9732 | 024626 | 004737 | 007206 | | | | PC, SELTMR | | | DBACK REG VIA GDAL | BITS 2 | | | 9731
9732
9733
9734
9735
9736
9737
9738
9739 | | | | | | ;E!DAL (
;THE HI(
;TIME TI
;TER WII | ND CHECK THE TARGET MEDIS DATA WAS CLOCKED GH STATE. THE EIDAL HE SIGNAL XBCLR L WAS LL BE READBACK TO THE DIS ISSUED TO CONTRO | BUS CONTAINED S SET HIGH. THE E LSI-1: VIA THE | THE SIGNAL XBC
THE MODE REGI | SIER DATA AT THE | | | | 9740 | 024632 | 011137 | 002342 | | | MOV | (R1),R6LOAD | GET THE | MODE REGISTER | DATA | | | 100 | | | | | | | | | | | | | | HARDWAR
CVCDCB. | E TESTS
P11 0 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR | -82 14
TEST 37 | :48 PAG
: MODE R | N 15
E 195
EG TO ADDRESS BUS | S VIA EODAL, CDAL AND EIDAL BUS | | |--|--|--|--------------------|--------|-------------------|--|--|--|----| |
9741
9742
9743
9744
9745
9746
9747
9748
9750
9751
9752
9753 | 024636
024642
024644
024644
024650
024652
024654
024654 | 004737
001404
104455
000004
003335
005034 | 006700 | | 7\$:
10000\$: | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
ENDSEG | PC,READR6 7\$ 4,MTOTMR,RO26ER C\$ERDF 4 MTOTMR RO26ER | CHECK TMR TO = MODE REG DATA
IF DATA = MODE REG THEN CONTINUE
MODE REGISTER TO TARGET MODE REG ERRO | IR | |
9750
9751
9752
9753
9754
9755 | 024654
024656
024660
024662
024664 | 104405
005721
005302
001410
000137 | 024372 | | | TRAP TST DEC BEQ JMP | C\$ESEG
(R1)+
R2
9\$
1\$ | ;UPDATE DATA TABLE POINTER
;DECREMENT DATA TABLE COUNTER
;IF O THEN ALL PATTERNS DONE
;GO DO NEXT PATTERN | | | 9754
9755
9756
9757
9758
9759
9760
9761
9762
9763 | 024670
024672
024674
024676
024700
024702 | 146063
031714
125252
052525
177777
000000 | | | 8\$: | .WORD
.WORD
.WORD
.WORD
.WORD | 146063
031714
125252
052525
177777
000000 | | | | 9764
9765
9766
9767 | 024704
024704
024704 | 104401 | | | 9\$:
L10067: | ENDTST
TRAP | C\$ETST | | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 196 CVCDCB.P1: 01-APR-82 14:12 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, + EIDAL BUSSES 9768 .SBTTL TEST 38: OLD FJA TO ADDRESS BUS VIA EODAL, CDAL, + EIDAL BUSSES 9770 THIS TEST WILL CHECK THE DATA PATH FROM THE DIAGNOSTIC ADDRESS REGISTER TO THE OLD FORCE JUMP ADDRESS REGISTER, TO THE EODAL BUS, TO THE EIDAL BUS, AND TO THE ADDRESS BUS. THIS PART OF THE TEST USES THE PAUSE STATE MACHINE LOGIC TO LOAD THE OLD FORCE JUMP ADDRESS REGISTER AND TO PLACE THE OLD FORCE JUMP ADDRESS REGISTER DATA ONTO THE EODAL BUS. WHEN THE OLD FORCE JUMP ADDRESS REGISTER DATA IS ENABLED TO THE EODAL BUS, THE TEST WILL ENABLE THE DATA TO THE TOAL BUS AND LATCH THE DATA INTO THE TOAL DIAGNOSTIC LATCHES. THE NEXT DADE OF THE TEST WILL CHECK THAT THE TOAL DIAGNOSTIC LATCHES CAN BE ENABLED. 9771 9772 9773 9774 9775 9776 9777 9778 PART OF THE TEST WILL CHECK THAT THE TDAL DIAGNOSTIC LATCHES CAN BE ENABLED 9779 TO THE EIDAL BUS AND THAT THE EIDAL BUS CAN BE ENABLED TO THE EDDAL BUS THROUGH 9780 : THE DATA BUS. 9781 9782 9783 024706 BGNTST 024706 024706 024712 9784 T38:: 004737 012701 9785 005510 JSR PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 9786 9787 026114 #23$,R1 VCM GET ADDRESS OF DATA TABLE 012702 000006 MOV #6.R2 COUNTER FOR NUMBER OF DATA PATTERNS 9788 024722 9789 15: BGNSEG 9790 104404 TRAP C$BSEG 024724 9791 005037 002346 CLR R6MASK :CLEAR MASK FOR REG 6 9792 9793 SELECT THE MODE REG BY SETTING GDAL2 TO A ONE AND GDAL1 AND GDALO TO A ZERO. 9794 9795 024730 004737 007006 JSR PC, SLMODR GO SELECT MODE REG VIA CONTROL REG O 9796 9797 :LOAD, READ AND CHECK MODE REGESTER BITS MR 15:0 WITH ZEROES. MR BIT 11 9798 ON A ZERO WILL ENABLE 16 BIT ADDRESS SELECTION TO THE PAUSE STATE MACHINE 9799 024734 9800 005037 002342 CLR R6L OAD SETUP DATA TO BE ZERU 9801 024740 004737 006672 JSR PC, LDRDR6 ; LOAD, READ AND CHECK MODE REGISTER 9802 024744 001405 : IF LOADED OK THEN CONTINUE BEQ 024746 024746 024750 024752 024754 024756 024756 9803 ERRDF 4.MODREG, ROGERR MODE REGISTER NOT EQUAL TO O 9804 104455 TRAP CSERDF 9805 000004 -WORD 9806 002631 . WORD MODREG 9807 005020 .WORD R06ERR 9808 CKLOOP 9809 9810 104406 TRAP C$CLP1 9811 SET GDAL1 AND GDALO TO ONES IN THE GDAL REGISTER TO SELECT THE HDAL 9812 9813 REGISTER ON A WRITE OR READ COMMAND TO CONTROL REGISTER 5. 9814 024760 004737 006754 2$: JSR PC, SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 9815 9816 9817 ; LOAD, READ AND CHECK HDAL REGISTER WITH HDAL9 H AND HDAL2 H SET TO ONES. ; HDAL9 H SET TO A ONE WILL ENABLE THE OUTPUTS OF THE DIAGNOSTIC ADDRESS ; REGISTER ONTO THE ADDRESS BUS AND DISABLE THE EIDAL BUS FROM THE ADDRESS 9818 9819 BUS. HDALZ H ON A ONE WILL ALLOW THE PROGRAM TO GENERATE THE T-11 9820 :TIMING AND CONTROL SIGNALS. 9821 024764 012737 024772 004737 001004 002342 #HDAL9!HDAL2,R6LOAD SETUP BITS TO BE LOADED 006672 JSR PC.LDRDR6 GO LOAD, READ AND CHECK HOAL REGISTER ``` | P11 (| 1-APR-82 | 30AC1052
2 14:12 | () 01-AF | TEST 3 | 4:48 PAG | IA TO ADDRESS BUS VI | A EODAL, CDAL, + EIDAL BUSSES | SEQ (| |--|--|--|--|--|---|--|--|--| | 024776
025000
025000
025002
025004
025006
025010
025010 | 001405
104455
000004
002605
00>020
104406 | | | | BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | 3\$ 4, HDALRG, ROGERR C\$ERDF 4 HDALRG ROGERR C\$CLP1 | ; IF LOADED OK THEN CONTINUE
; HDAL REGISTER NOT EQUAL EXPEC | TED | | | | | | | : SELECT
: ZEROES
: NOSTIC | THE DIAGNOSTIC ADD
ON A WRITE OR RE
ADDRESS REGISTER W | RESS REGISTER BY SETTING GDAL BITS 2:
AD COMMAND TO CONTROL REGISTER 6, THE
ILL BE SELECTED. | O TO
E DIAG- | | 025012 | 004737 | 007072 | | 3\$: | JSR | PC,SLDADR | ;GO SELECT DIAG. ADDRESS REG VI | IA GDAL 2:0 | | | | | | | ;LOAD,
;FOLLOW | READ AND CHECK THE ING DATA PATTERNS: | DIAGNOSTIC ADDRESS REGISTER WITH ONE 125252, 052525, 177400, 000377, 17777 | OF THE
77, + 000000. | | 025016
025022
025026
025030 | 004737 | 002342
006672 | | | MOV
JSR
BEQ
ERRDF | (R1),R6LOAD
PC,LDRDR6
4\$
4,ADDRRG,R06ERR | | | | 025032
025034
025036
025040 | 000004
002735
005020 | | | | .WORD
.WORD
.WORD
CKLOOP | ADDRRG
ROGERR | | | | 023040 | 104406 | | | | | | D ADALO H TO 1'S AND ALL OTHER ADAL E
THE BREAK LOGIC CLEARED. ADAL4 ON A
E MACHINE TO BE ENTERED ON A FETCH CY
PULSED. ADAL10 H ON A ONE WILL ENAM
BUS WHEN HDAL9 H IS SET TO A O LATER | SITS TO O.
ZERO
CLE
SLE THE
ON IN THE TEST. | |
025042
025050
025054
025056
025066
025062
025064
025066
025066 | 012737
004737
001405
104455
000002
002513
004770
104406 | 022001
006614 | 002330 | 4\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | | LO,R2LOAD :SETUP BITS TO BE LOADE | D | | | | | | | :SET VD | AL2 H TO A ONE AND THE PAUSE STATE MAC | THEN CLEAR VDAL2 H. VDAL2 H ON A ONE HINE FLIP-FLOPS | WILL | | 025070
025074 | 005037
004737 | 002334
007712 | | 5\$: | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO CLEAR ALL BITS IN VDA | L REG | | | | | | | SET VD | ALT H TO A ONE IN THE | HE VDAL REGISTER TO SET THE SIGNAL FE | тст н | | 025100 | 052737 | 000200 | 002334 | | BIS | WVDAL7,R4LOAD | SETUP BIT TO BE LOADED | | | | 025000
025000
025000
025002
025004
025006
025010
025012
025012
025012
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030
025030 | 024776 001405
025000 104455
025002 000004
025004 002605
025006 005020
025010 104406
025012 004737
025022 004737
025023 001405
025030 104455
025030 004737
025034 002735
025034 002735
025034 002735
025034 004737
025040 104406 | 025012 004737 007072 025016 011137 002342 025010 004737 007072 025012 004737 007072 025014 001405 025030 004737 006672 025030 104455 025030 004737 006672 025030 104455 025030 004737 006672 025030 104455 025030 005020 025030 104406 025042 012737 022001 025040 00400 025040 104406 | 025012 004737 007072 025016 011137 002342 025012 004737 007072 025012 004737 007072 025016 011137 002342 005032 004737 006672 005030 004455 025030 005030 025030 005037 002334 005006 005006 104406 | 024776 001405
025000 104455
025000 104455
025002 000004
025004 002605
025006 005020
025010 104406
025012 004737 007072 3\$:
025016 011137 002342
025022 004737 006672
025026 001405
025030 104455
025030 00004
025034 002735
025034 002735
025034 002735
025040 104406
025054 001405
025056 104455
025056 104455
025056 104406
025066 104406 | P11 | D1 | 025070 025000 02 | | - | - | - | 0 | - | - | 4 | |---|---|---|---|---|---|---| | | _ | _ | n | • | a | r | | - | _ | | | | 7 | и | | HADDHADE TESTS MACVII TOACIOSES | 01-ADD-82 14-48 DACE 168 | | |---------------------------------|---|---------------------------------| | CVCDCB.P11 01-APR-82 14:12 | 01-APR-82 14:48 PAGE 198
TEST 38: OLD FJA TO ADDRESS BUS | VIA EODAL, CDAL, + EIDAL BUSSES | | 9880 025106 004737 006640 | JSR PC_LDRDR4 | :GO LOAD, READ AND CHECK | GO LOAD, READ AND CHECK VDAL REGISTER : IF LOADED OK THEN CONTINUE 025112 025114 001405 ERRDF 3. VDALRG, R4EROR VDAL REG NOT EQUAL EXPECTED 9883 025114 104455 TRAP **CSERDF** 025116 025120 025122 025124 9884 000003 -WORD 9885 002537 . WORD VDALRG 9886 005004 . WORD R4EROR 9887 9888 CKLOOP 025124 104406 TRAP C\$CLP1 9889 9890 SELECT THE HDAL REGISTER BY SETTING GDAL2 TO A ZERO AND GDAL1 AND GDALO TO ONES. BITS IN THE HDAL REGISTER WILL BE SET AND CLEARED LATER IN THIS TEST TO CAUSE PULSES ON THE SIGNALS XRAS H, XRAS L, XCAS H, XCAS L 025126 004737 006754 65: JSR PC.SLHDAL GO SELECT HDAL REG VIA GDAL 2:0 :TOGGLE THE SIGNAL XRAS H AND XRAS L BY SETTING AND CLEARING HDAL12 H. THE SIGNAL XRAS H WILL CLOCK THE STATE OF THE SIGNAL FETCT H. WHICH IS HIGH, INTO THE EDFET FLIP-FLOP, THUS SETTING THE SIGNAL EDFET H TO THE :HIGH STATE. THE SIGNAL XRAS H WILL CLOCK THE STATE OF ADAL4 H, WHICH :IS LOW, INTO THE PAUSE MODE FLIP-FLOP, THUS SETTING THE SIGNAL PAUSE L TO THE HIGH STATE. THE SIGNAL SOP H WILL BE ASSERTED HIGH WHEN THE SIGNAL PAUSE L IS ASSERTED HIGH. WHEN SOP H AND EDFET H ARE ASSERTED HIGH, THE PAUSE STATE WORKING FLIP-FLOP WILL BE DIRECT SET TO A ONE. WHEN THE PAUSE STATE WORKING FLIP-FLOP IS SET TO A ONE, THE SIGNAL PSMW H WILL BE ASSERTED HIGH. THE SIGNAL PSMW H IS READ IN THE VDAL REGISTER AS VDAL9 H. WHEN EDFET H AND SOP H ARE ASSERTED HIGH, THE SIGNAL PB H WILL BE ASSERTED HIGH. THE SIGNAL PB H IS THE DATA INPUT LEAD TO THE PAUSE STATE SYNC FLIP-FLOP. THE SIGNAL XRAS H WILL CAUSE THE SIGNAL RASP H TO BE PULSED. WHEN THE SIGNAL RASP H IS PULSED AND THE SIGNAL EDFET H IS ASSERTED HIGH, A PULSE WILL BE ISSUED ON THE SIGNAL DEET H. THE SIGNAL DEET H WILL CLOCK THE ADDRESS BUS INTO THE OLD FORCE JUMP ADDRESS REGISTER. AT THE PRESENT TIME THE DIAGNOSTIC ADDRESS REGISTER IS ENABLED ONTO THE ADDRESS BUS, THEREFORE THE OLD FORCE JUMP ADDRESS REGISTER WILL BE LOADED WITH THE DATA FROM THE DIAGNOSTIC ADDRESS REGISTER. A PULSE ON XRAS H WITH FETCT H SET HIGH WILL CAUSE THE BYFET FLIP-FLOP TO BE SET TO A ONE, THUS SETTING THE SIGNAL BIFET L TO THE LOW STATE. WHEN BIFET L IS ASSERTED LOW AND THE SIGNAL INTER L IS ASSERTED HIGH, THE SIGNAL BIST H WILL BE ASSERTED HIGH. INTER L IS ASSERTED HIGH AS A RESULT OF XSELO L AND XSEL1 L BEING ASSERTED HIGH. BIS1 L WILL BE READ IN THE VDAL REGISTER AS VDAL BIT 5 WHEN ADAL10 H IS SET TO A ONE : WHICH IT IS NOW. **JSR** #HDAL9!HDAL2,R6LOAD PC, XRAS BITS PREVIOUSLY SET IN HDAL REG PULSE XRAS H AND XRAS L VIA HDAL12 H CLEAR VDAL7 H IN THE VDAL REGISTER THUS SETTING THE SIGNAL FETCT H TO THE LOW STATE. CHECK THE PAUSE STATE MACHINE TO BE IN THE FOLLOWING STATE AS A RESULT OF SOP H AND EDFET H BEING ASSERTED HIGH. BEING ASSERTED HIGH AND ADAL 10 H BEING A ONE. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 001004 002342 025140 004737 007272 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 199 CVCDCB.P11 01-APR-82 14:12 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, + EIDAL BUSSES ``` 16 BIT ADDRESS - EPFN H - 0 9937 042737 000200 002334 9938 BIC #VDAL7,R4LOAD SETUP TO CLEAR FETCT H R4LOAD,R4GOOD #VDAL9!VDAL5,R4GOOD 9939 025152 MOV COPY DATA LOADED TO EXPECTED 025160 025166 025172 025174 025174 9940 9941 9942 9943 052737 004737 002336 001040 BIS EXPECT PSMW H AND BTS1 H TO BE SET 006646 JSR PC.LDRD4R GO LOAD, READ AND CHECK VDAL REG 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 3. VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 9944 104455 TRAP CSERDF 025176 025200 025202 025204 9945 . WORD 9946 9947 9948 9949 9950 9951 9952 002537 VDALRG . WORD 005004 . WORD R4EROR CKLOOP 025204 TRAP 104406 CSCLP1 :TOGGLE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. THE SIGNAL XCAS H GOING FROM A ZERO TO A ONE WILL CLOCK THE LEVEL OF THE SIGNAL 'PB H', WHICH IS HIGH, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS 9953 9954 SETTING THE PAUSE STATE SYNC FLIP-FLOP TO A ONE. THE SIGNAL XCAS H 9955 :WILL ALSO CLOCK THE PREVIOUS STATE OF THE PAUSE STATE SYNC FLIP-FLOP (0) 9956 9957 :INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 16 BIT ADDRESS :FLIP-FLOP TO A ZERO. 9958 9959 :WHEN A PULSE IS ISSUED ON XCAS H AND XRAS L IS ASSERTED HIGH, A PULSE ;WILL OCCUR ON THE SIGNAL ASPI L. WHEN A PULSE IS ISSUED ON ASPI L. 9960
9961 9962 THE BIFET FLIP-FLOP WILL BE CLEARED, THUS SETTING THE SIGNAL BIFET L TO THE HIGH STATE. WHEN BIFET L AND INTER L ARE ASSERTED HIGH, THE 9963 :SIGNAL BTS1 H WILL BE ASSERTED LOW. 9964 9965 025206 004737 007376 75: JSR PC.XCAS SET XCAS H TO THE HIGH STATE 9966 9967 9968 9969 9970 READ VOAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF THE SIGNAL XCAS H BEING SET TO 1. ALSO CHECK VDALS H TO BE A ZERO AS A RESULT OF BTS1 H BEING ASSERTED LOW AND ADAL10 H BEING SET TO A ONE. 9971 9972 PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 1 9973 16 BIT ADDRESS - EPFN H - 0 9974 025212 025220 025226 025232 025234 025234 025236 025240 025242 052737 042737 004737 002336 002336 9975 002000 BIS #VDAL10,R4GOOD :SETUP TO EXPECT PAUSE STATE SYNC - EPSF 000040 9976 #VDAL5,R4GOOD BIC EXPECT BTS1 H TO BE A ZERO FROM ASPI L 9977 006654 JSR GO READ AND CHECK PAUSE STATE MACHINE PC.READR4 9978 001405 BEQ : IF LOADED OK THEN CONTINUE 9979 ERRDF 3, VDALRG, R4EROR EPSF H NOT SET/BTS1 H NOT LOW VIA ASPI L 104455 000003 002537 9980 TRAP CSERDF 9981 9982 . WORD . WORD VDALRG 9983 005004 . WORD R4EROR 9984 CKLOOP 9985 025244 104406 TRAP C$CLP1 9986 9987 :TOGGLE THE SIGNAL XPI H BY SETTING AND CLEARING THE SIGNAL HDAL15 H. 9988 THIS IS DONE TO SIMULATE A MACHINE CYCLE. WHEN THE SIGNAL XPI H IS PULSED, THE EDFET H FLIP-FLOP WILL BE SET TO A ZERO. 9989 9990 9991 025246 004737 007502 8$: JSR PC, XPI GO PULSE XPI H VIA HDAL15 H ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 200 CVCDCB.P11 01-APR-82 14:12 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, + EIDAL BUSSES 9993 TOGGLE THE SIGNALS KRAS H AND KRAS L BY SETTING AND CLEARING HDAL12 H. WITH THE SIGNAL FETCT H SET LOW AND A PULSE BEING ISSUED ON KRAS H, THE 9995 EDFET FLIP-FLOP WILL BE CLOCKED TO A ZERO, THUS ASSERTING THE SIGNAL EDFET H TO THE LOW STATE. WHEN EDFET H IS ASSERTED LOW, THE SIGNAL 9996 9997 9998 9999 PB H WILL BE ASSERTED LOW. WHEN XRAS H IS PULSED, THE SIGNALS RASP H : AND RASP L WILL BE PULSED. THE PAUSE STATE WORKING FLIP-FLOP WILL BE CLOCKED TO A ONE BY THE 10000 SIGNAL RASP L WHEN EPFN L, EP8N L, AND PSMW H ARE ALL ASSERTED HIGH. 10001 10002 025252 004737 007272 JSR PC.XRAS :GO PULSE XRAS H BY HDAL12 10003 10004 READ THE VDAL REGISTER AND CHECK THE PAUSE STATE MACHINE FLIP-FLOPS :TO BE IN THE FOLLOWING STATE AS A RESULT OF XRAS H BEING PULSED. 10006 PAUSE STATE WORKING - PSMW H - 1 10007 PAUSE STATE SYNC - EPSF H - 1 10008 16 BIT ADDRESS - EPFN H - 0 10009 025256 025262 025264 025264 025266 025270 10010 004737 006654 JSR PC, READR4 CHECK VDAL AND PAUSE STATE MACHINE 10011 001405 95 BEQ : IF OK THEN CONTINUE 10012 10013 ERRDF 3. VDALRG, R4EROR :PAUSE STATE WORKING F/F PROBABLY NOT SET 104455 TRAP C$ERDF 000003 002537 10014 . WORD 10015 . WORD VDALRG 025272 025274 10016 005004 . WORD R4FROR 10017 CKLOOP 10018 025274 104406 TRAP C$CLP1 10019 10020 SET THE SIGNAL XCAS H TO A ONE BY SETTING HDAL13 H TO A ONE. THE SIGNAL XCAS H GOING FROM A O TO A 1 WILL CLOCK THE LEVEL OF THE 10022 SIGNAL 'PB H'', WHICH IS LOW, INTO THE PAUSE STATE SYNC FLIP-FLOP, THUS CLOCKING THE PAUSE STATE SYNC FLIP-FLOP TO A ZERO. THE SIGNAL 10024 :XCAS H WILL ALSO CLOCK THE PREVIOUS OUTPUT OF THE PAUSE STATE SYNC 10025 :FLIP-FLOP (1) INTO THE 16 BIT ADDRESS FLIP-FLOP, THUS CLOCKING THE 10026 :16 BIT ADDRESS FLIP-FLOP TO A ONE. 10027 10028 025276 004737 007410 95: JSR PC, XCASH SET THE SIGNAL XCAS H TO HIGH STATE 10029 10030 READ THE VDAL REGISTER AND AND CHECK THE PAUSE STATE MACHINE FLIP- 10031 10032 FLOPS TO BE IN THE FOLLOWING STATE AS A RESULT OF XCAS H BEING A 1. PAUSE STATE WORKING - PSMW H - 1 PAUSE STATE SYNC - EPSF H - 0 10033 10034 16 BIT ADDRESS - EPFN H - 1 10035 025302 025310 025316 042737 052737 004737 10036 10037 002000 002336 002336 #VDAL10,R4GOOD #VDAL11,R4GOOD CLEAR BITS FOR EPSF H BIS 10038 006654 JSR PC, READR4 GO READ VOAL AND PAUSE STATE MACHINE 10039 001405 025322 BEQ 10$; IF OK THEN CONTINUE 10040 10041 10042 10043 025324 025324 025326 025330 ERRDF 3, VDALRG, R4EROR EPFN H PROBABLY NOT SET IN VDAL REG 104455 000003 002537 TRAP CSERDF . WORD . WORD VDALRG 10044 005004 - WORD R4EROR 10045 CKLOOP 10046 104406 TRAP C$CLP1 ``` 10047 | - | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-APR-82 | 14:48 P | PAGE 201
FJA TO ADDRESS | | AL, CDAL, + E | IDAL BUSSES | | |---|---|--|--|-------------------|-------------|--|--|--|--|--|---| | | 10048
10049
10050
10051
10052 | | | | | ;SELE
;JUMP
;ON A | CT THE EODAL BOOMERS REGIST READ COMMAND TO THE LSI-11 | US BY SETTING
TER SHOULD BE
TO CONTROL RE | GDAL BITS 2
ENABLED ON
GISTER 6, TH | :0 TO ONES. T
THE EODAL BUS
E EODAL BUS WI | HE OLD FORCE
AT THIS TIME.
LL BE READ | | | 10053 | | | | 109 | | PC, SEODAL | | SELECT EODA | L BUS VIA
GDAL | BITS 2:0 | | | 10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070 | | | | | ON TOTAL THE STATE OF | THE FIRST PULSE FORCE JUMP ADDITION THE DIAGNOSTIC PRESS BUS TO FOR FORCE JUMP ADDITION SIGNALS OEARH PLATE OF THE FROM THE FROM THE SIGNAL | RESS REGISTER ADDRESS REGIS RCE JUMP ADDR RESS REGISTER L AND OEARL L LIP-FLOP 'GE EARL H BEING RED AT THE BE CLEARED. THE F THE 16 BIT BEING ASSERTE MODE. THE F RPT7 L AND C D INTO THE OL | R SHOULD HAVE
TER VIA THE
RESS REGISTER
WILL BE ENA
THESE SIG
T NEW ADDRES
ASSERTED HI
GINNING OF T
SIGNAL EARH
ADDRESS FLIP
D HIGH, AND
OLLOWING SEC
HECK THAT TH
D FORCE JUMP | BEEN LOADED W CLOCKING SIGNA). AT THIS PO BLED TO THE EO NALS ARE ASSER S' BEING CLEA GH. THE 'GET HE TEST WHEN W H AND EARL H -FLOP BEING SE MODE REGISTER TION WILL READ E DIAGNOSTIC A ADDRESS REGIS | ITH THE DATA L DFET H INT IN TIME, DAL BUS VIA TED LOW AS A RED AND THE NEW ADDRESS' DAL REGISTER ARE ASSERTED T TO A ONE, BIT 11 SETUP THE EODAL DDRESS TER AND THAT | | | 10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082 | 025342
025346
025352
025354
025354
025360
025360
025362
025364 | 004737
001405
104455
000004
003147
005020 | 002342
006700 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOO
TRAP | FEODAL
ROGERR | | ; READ FORCE JU | ADED INTO DIAG
JUMP ADDRESS O
MP ADDRESS REG
ADDRESS REG TO | N EODAL BUS | | | 10083
10084 | | | | | ;RESE | LECT THE HDAL | REGISTER VIA | GDAL BITS 2: | O IN CONTROL R | EGISTER 0 | | | 10085 | 025366 | 004737 | 006754 | 115 | | | | | | GDAL BITS 2:0 | | | 10086
10087
10088
10089
10090
10091
10092
10093 | | | | | LEAV
HIGH
THE
LOW.
ONE, | ING THE SIGNAL STATE BY SETT HIGH STATE WILL SET HDAL9 HOLD HIGH IT IS, DIAGNOSTIC ADDITED | XCAS H ASSER ING HDAL15 H L CAUSE THE S TO A ZERO. W THE EIDAL BUS RESS REGISTER | TED HIGH, AS
TO A ONE.
GIGNALS COMB
HEN HDAL9 H
WILL BE ENA
WILL BE DIS | SERT THE SIGNA
SETTING THE SI
L AND COLB L T
IS A ZERO AND
BLED TO THE AD
ABLED FROM THE | L PPI H TO THE GNAL PPI H TO O BE ASSERTED ADAL10 H IS A DRESS BUS AND ADDRESS BUS. | | | 10094
10095 | 025372
025400 | 012737
004737 | 020004
007514 | 002342 | MOV
JSR | #HDAL13!HDA | L2,R6LOAD | SET UP BITS | PREVIOUSLY LOAND PPI H TO HI | DED (XCAS H)
GH STATE | | | 10096
10097
10098 | | | | | ;SELE | CT THE EIDAL B | US VIA GDAL B | ITS 2:0 IN C | ONTROL REGISTE | RO | | | 10099 | 025404 | 004737 | 007240 | | JSR | PC, SEIDAL | | SELECT EIDA | L BUS VIA GDAL | BITS 2:0 | | | 10101
10102
10103 | | | | | ;AT T
;JUMP
;SIGN | HIS POINT IN T
ADDRESS REGIS
IAL COHB L AND | IME, THE EODA
TER DATA, WIL
COLB L. THE | L BUS, WHICH
L BE ENABLED
SIGNALS COHB | CONTAINS THE
TO THE EIDAL
L AND COLB L | OLD FORCE
BUS VIA THE
ARE ASSERTED | | HARDWARE TESTS MA | CY11 30A(1052)
APR-82 14:12 | 01-APR-82 14:48
TEST 38: 0 | PAGE 202
LD FJA TO ADDRESS BUS | VIA EODAL, CDAL, + EIDAL BUSSES | | |---|--|--|---|---|---| | 10104
10105
10106
10107
10108 | | | OW AS A RESULT OF THE I
EGISTER BIT 11 BEING A
ROGRAM WILL READ AND CO
UMP ADDRESS REGISTER DO | PAUSE STATE WORKING FLIP-FLOP BEING ZERO AND PPI H BEING ASSERTED HIGH HECK THE EIDAL BUS TO CONTAIN THE CATA. | SET, MODE
1. THE
OLD FORCE | | 10109 025410 01
10110 025414 00
10111 025420 00
10112 025422
10113 025422 10
10114 025424 00
10115 025426 00
10116 025430 00 | 1137 002342
04737 006700
01405
04455
00004
03446
05034 | TR | R PC,READR6 12\$ RDF 4,FJAEID,RO26ER AP C\$ERDF ORD 4 ORD FJAEID ORD RO26ER LOOP | READ EIDAL BUS FOR OLD FJA | DATA VIA EODAL | | 10120 | | ;5 | ELECT THE ADDRESS BUS | /IA GDAL BITS 2:0 IN CONTROL REGIST | ER O | | 10122 025434 00 | 4737 007072 | 12\$: JS | R PC, SLDADR | ;SELECT ADDRESS BUS VIA GDA | L BITS 2:0 | | 10117 023432
10118 025432 10
10119
10120
10121
10122 025434 00
10123
10124
10125
10126 | | ;A
;B | T THIS POINT IN TIME TO
US BY ADAL10 H BEING A
RESENTLY CONTAINS THE | HE EIDAL BUS SHOULD BE ENABLED TO 1
ONE AND HDAL9 H BEING A ZERO. THE
OLD FORCE JUMP ADDRESS REGISTER DAT | HE ADDRESS
EIDAL BUS | | 10129 025444 00
10130 025450 00
10131 025452
10132 025452 10
10133 025454 00
10134 025456 00 | 1137 002342
04737 006700
01405
04455
00004
03501
05034 | TR. | R PC,READR6 13\$ RDF 4.FJAADR,RO26ER AP C\$ERDF ORD 4 ORD FJAADR ORD RO26ER LOOP AP C\$CLP1 | ;READ AND CHECK ADDRESS BUS
;IF DATA OK THEN CONTINUE
;FORCE JUMP ADDRESS TO ADDR | RESS BUS ERROR | | 10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149 | | ; Ti
; Bi
; Si
; Bi
; Ai
; Si
; Li | HE OLD FORCE JUMP ADDREUS, THE CDAL BUS, THE CDAL BUS, THE ELSO ENABLED TO THE TDALIGNALS DTHB L AND DTLB SELT L, PBCLR L AND CPTEING ASSERTED LOW. TO ILL CLOCK THE TDAL BUS NO CLEARING VDAL2 H. ELTATE MACHINE FLIP-FLOPS ATCHED INTO THE TDAL DISTRICTED LOW. | ESS REGISTER IS PRESENTLY ENABLED TO SIDAL BUS AND THE ADDRESS BUS. THE BUS VIA THE SIGNALS DTHB L AND DT L ARE ASSERTED LOW AS A RESULT OF L BEING ASSERTED HIGH AND THE SIGNECK THE DATA PATH TO THE TDAL BUS INTO THE TDAL DIAGNOSTIC LATCH BY SETTING AND CLEARING VDAL2 H, THE WILL BE CLEARED AND THE TDAL BUS LAGNOSTIC LATCH. | O THE EODAL CDAL BUS IS LB L. THE PSELO L, NAL CCAS H IS, THE TEST SETTING AND IE PAUSE WILL BE | | 10150 025464 00 | 05037 002334
04737 007712 | 13\$: CLI | R R4LOAD | | LEARED
A VDAL2 H | | 10154 | | ;RI | ESELECT THE HDAL REGIST | TER VIA GDAL BITS 2:0 IN CONTROL RE | GISTER O | | 10156 025474 00 | 4737 006754 | JSI | R PC, SLHDAL | SELECT HDAL REGISTER VIA G | DAL BITS 2:0 | | 10158
10159 | | ;51 | ET THE SIGNALS XCAS H | IND PCAS H TO THE LOW STATE BY CLEA | RING HDAL13 H | I 16 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 203 CVCDCB.P11 01-APR-82 14:12 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, + EIDAL BUSSES 025500 012737 120004 025506 004737 007442 10160 002342 MOV #HDAL15!HDAL13!HDAL2, R6LOAD ; SETUP PREVIOUSLY LOADED BITS 10161 JSR PC,XCASL SET XCAS H AND PCAS H TO LOW STATE 10162 10163 :SET THE SIGNALS XPI H AND PPI H TO THE LOW STATE BY CLEARING HDAL15 H. 10164 10165 025512 004737 007546 JSR PC, XPIL 10166 10167 10168 :SET THE SIGNAL PBCLR H TO THE HIGH STATE BY SETTING HDAL7 H TO A ONE. WHEN THE SIGNAL PBCLR H IS ASSERTED HIGH AND ADAL12 H IS A ZERO, THE 10169 :TDAL BUS WILL BE ENABLED TO THE CDAL BUS VIA THE SIGNALS DBHB L AND 10170 :DBLB L. 10171 025516 004737 007620 10172 JSR PC.XBCLRH :SET PBCLR H TO HIGH STATE VIA HDAL7 H 10173 10174 :TO ENABLE THE TDAL DIAGNOSTIC LATCH ONTO THE TDAL BUS THE TEST WILL :SET VDALO H TO A ONE. THE TDAL DIAGNOSTIC LATCH WAS LOADED WITH THE 10175 OLD FORCE JUMP ADDRESS REGISTER DATA EARLIER IN THIS TEST WHEN THE 10176 10177 :SIGNAL VDAL2 H WAS SET AND CLEARED. 10178 052737 025522 025530 10179 000001 002334 BIS WVDALO_R4LOAD SETUP BIT TO ENABLE TDAL LATCH 10180 C06640 PC.LDRDR4 **JSR** ; GO LOAD, READ AND CHECK VDAL REGISTER 025534 10181 001405 :IF LOADED OK THEN CONTINUE BEQ 025536 025536 10182 10183 ERRDF 3, VDALRG, R4EROR : VDAL OR PAUSE STATE MACHINE ERROR 104455 TRAP C\$ERDF 025540 000003 002537 10184 . WORD 10185 025542 -WORD VDAL RG 025544 10186 005004 . WORD R4EROR 10187 025546 CKLOOP 10188 10189 025546 104406 TRAP C\$CLP1 10190 SELECT THE EIDAL BUS VIA GDAL BITS 2:0 IN CONTROL REGISTER O 10191 10192 025550 004737 007240 145: JSR PC, SEIDAL SELECT EIDAL BUS VIA GDAL BITS 2.0 10193 ;AT THIS POINT IN TIME THE TDAL DIAGNOSTIC LATCH, WHICH WAS LOADED ;EARLIER IN THIS TEST VIA VDAL2 H, IS ENABLED TO THE TDAL BUS BY ;VDALO H BEING A ONE. THE TDAL BUS IS ENABLED TO THE CDAL BUS VIA ;THE SIGNALS DBHB L AND DBLB L. THESE SIGNALS ARE ASSERTED LOW AS A ;RESULT OF ADAL12 H BEING A ZERO AND THE SIGNAL PBCLR H BEING ASSERTED 10194 10195 10196 10197 10198 10199 HIGH. READ AND CHECK THE EIDAL BUS TO CONTAIN THE DATA WHICH WAS 10200 :LOADED INTO THE OLD FORCE JUMP ADDRESS REGISTER EARLIER IN THIS TEST. 10201 10202 10203 025554 011137 002342 (R1), R6LOAD GET THE OLD FJA REGISTER DATA 025560 004737 006700 PC READR6 READ EIDAL BUS FOR OLD FJA DATA JSR 10204 10205 10206 10207 025564 025566 025566 025570 001405 BEQ ERRDF 4, FJATDL, ROZGER OLD FJA TO TDAL LATCH TO EIDAL BUS ERROR 104455 TRAP C\$ERDF 000004 003536 . WORD 10208 10209 10210 025572 . WORD FJATDL 025574 025576 005034 RO26ER . WORD CKLOOP 10211 025576 104406 TRAP CSCLP1 10212 10213 SELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 10214 10215 025600 004737 006754 15\$: JSR PC, SLHDAL ; SELECT HDAL REGISTER VIA GDAL BITS 2:0 BFQ : IF DATA OK THEN CONTINUE K 16 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 205 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, +
EIDAL BUSSES CVCDCB.P11 01-APR-82 14:12 025710 025710 025712 025714 025716 025720 025720 10272 10273 10274 10275 ERRDF 4.FJATDL,ROZGER OLD FJA TO TDAL LATCH TO EIDAL BUS ERROR 104455 TRAP C\$ERDF 000004 - WORD 003536 . WORD FJATDL 10276 10277 10278 10279 10280 005034 . WORD RO26ER CKLOOP 104406 TRAP CSCLP1 :SELECT THE EODAL BUS VIA GDAL BITS 2:0 IN CONTROL REGISTER O 10281 10282 10283 10284 10285 025722 004737 007122 185: PC.SEODAL JSR :SELECT EODAL BUS VIA GDAL BITS 2:0 :AT THIS TIME, THE TOAL DIAGNOSTIC LATCH IS ENABLED TO THE TOAL BUS BY VDALO H BEING SET TO A ONE. THE TDAL BUS IS ENABLED TO THE CDAL BUS VIA THE SIGNALS DBHB L AND DBLB L. THE CDAL BUS IS ENABLED TO THE FIDAL BUS UNCONDITIONALLY. THE EIDAL BUS IS ENABLED TO THE DATA BUS BY THE SIGNAL MSDO H. THE SIGNAL MSDO H IS ASSERTED HIGH AS A RESULT OF XSELO L BEING ASSERTED LOW. THE DATA BUS IS ENABLED TO THE EDDAL BUS BY THE SIGNAL MSDI H BEING ASSERTED HIGH. THIS SIGNAL IS ASSERTED BUS BY THE SIGNAL MSDI H BEING ASSERTED HIGH. THIS SIGNAL IS ASSERTED 10286 10287 10288 10289 10290 10291 HIGH AS A RESULT OF HDALO H BEING SET TO A ONE. THE TDAL DIAGNOSTIC 10292 10293 10294 10295 ; LATCH WAS LOADED EARLIER IN THIS TEST WITH THE OLD FORCE JUMP ADDRESS :REGISTER DATA. 025726 025732 002342 011137 (R1), R6LOAD GET OLD FJA REGISTER DATA LOADED 10296 004737 006700 READ EODAL BUS FROM DATA + EIDAL BUSSES JSR PC, READR6 10297 10298 10299 10300 025736 025740 025740 001405 BEQ 19\$ ERRDF 4. TDLEOD, ROZGER EIDAL BUS TO DATA BUS TO EODAL BUS ERROR 104455 TRAP CSERDF 025742 000004 -WORD 10301 10302 003607 025744 . WORD TDLEOD 025746 005034 . WORD R026ER 10303 10304 025750 CKLOOP 025750 104406 TRAP C\$CLP1 10305 10306 :SET ADAL13 H TO A ZERO. ADAL13 H ON A ZERO WILL ENABLE THE SIGNAL 10307 DBLB L TO BE ASSERTED WHEN PSEL1 H IS A ONE. 10308 042737 004737 10309 10310 025752 025760 020000 002330 19\$: BIC #ADAL13,R2LOAD SETUP BIT TO BE CLEARED PC,LDRDR2 20\$ 2.ADALRG.R 006614 JSR GO LOAD, READ AND CHECK ADAL REG 025764 10311 001405 BEQ 10312 025766 ERRDF ADALRG, RZEROR ADAL REGISTER NOT EQUAL EXPECTED 104455 000602 002513 004770 025766 TRAP C\$ERDF 025770 025772 10314 10315 . WORD . WORD ADALRG 10316 10317 025774 . WORD R2EROR 025776 CKLOOP 10318 025776 104406 TRAP C\$CLP1 10319 10320 10321 10322 SELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O. 026000 004737 006754 20\$: JSR PC, SLHDAL SELECT HDAL REGISTER VIA GDAL BITS 2:0 10323 10324 SET THE SIGNAL PSELO H TO THE LOW STATE AND SET THE SIGNAL PSEL1 H 10325 TO THE HIGH STATE BY SETTING HDALS TO ZERO AND HDALE TO ONE IN THE 10326 :HDAL REGISTER. 10327 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 206 CVCDCB.P11 01-APR-82 14:12 TEST 38: OLD FJA TO ADDRESS BUS VIA EDDAL, CDAL, + EIDAL BUSSES | CACDCB. | PII 0 | 1-APR-82 | 14:12 | | TEST 38 | : OLD FJ | A TO ADDRESS BUS VIA EOD | AL, CDAL, + EIDAL BUSSES | | |--|--|--|--------------------------------------|------------------|-------------------|---|--|---|--| | 10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343 | 026004
026012
026020
026024
026026
026030
026032
026032
026034
026036 | 012737
042737
004737
001405
104455
000004
002605
005020
104406 | 000145
000040
006672 | 002342
002342 | | MOV
BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | PC,LDRDR6
21\$ | O,R6LOAD ;SETUP BITS PREVIOUSLY LOADED ;SET THE SIGNAL PSELO H TO LOW STATE ;GO LOAD, READ AND CHECK HDAL REGISTER ;IF LOADED OK THEN CONTINUE ;HDAL REGISTER NOT EQUAL EXPECTED | | | 10340 | | | | | | :SELECT | EIDAL BUS VIA GDAL BITS | 2:0 IN CONTROL REGISTER 0. | | | 10341 | 026040 | 004737 | 007240 | | 21\$: | JSR | PC,SEIDAL | SELECT EIDAL BUS VIA GDAL BITS 2:0 | | | 10344
10345
10346
10347
10348
10349 | | | | | | :AT THI
:BY VDA
:LOW BY
:ASSERT
:ASSERT
:THE TI
:FORCE | S TIME, THE TDAL DIAGNOS
LO H BEING A ONE. THE L
TE OF THE CDAL BUS VIA T
ED LOW AS A RESULT OF TH
ED HIGH. THE CDAL BUS I
DAL DIAGNOSTIC LATCH WAS
JUMP ADDRESS REGISTER DA | TIC LATCH IS ENABLED TO THE TDAL BUS OW BYTE OF TDAL BUS IS ENABLED TO THE HE SIGNAL DBLB L. THIS SIGNAL IS E SIGNALS PSEL1 H AND ADAL13 L BEING S ENABLED TO THE EIDAL BUS UNCONDITIONALLY. LOADED EARLIER IN THIS TEST WITH THE OLD TA. | | | 10350
10351
10352
10353
10354
10355
10356
10357
10358 | 026044
026050
026054
026062
026066
026070 | 005037
111137
012737
004737
001404 | 002342
002342
177400
006700 | 002346 | | CLR
MOVB
MOV
JSR
BEQ
ERRDF | R6LOAD
(R1),R6LOAD
#177400,R6MASK
PC,READR6
22\$
4,FJATDL,R026ER | CLEAR PREVIOUS BITS GET LOW BYTE OF OLD FJA REG DATA LOADED MASK OUT HIGH BYTE READ EIDAL BUS FOR OLD FJA REG DATA IF DATA OK THEN CONTINUE OLD FJA TO TDAL LATCH TO EIDAL BUS ERROR | | | 10360
10361
10362 | 026070
026072
026074
026076
026100
026100 | 104455
000004
003536
005034 | | | 22\$:
10000\$: | TRAP
.WORD
.WORD
.WORD
ENDSEG | CSERDF
4
FJATDL
R026ER | | | | 10364 | 026100 | 104405 | | | | TRAP | C\$ESEG | | | | 10366
10367
10368
10369 | 026102
026104
026106
026110 | 005721
005302
001410
000137 | 024722 | | | TST
DEC
BEQ
JMP | (R1)+
R2
24\$
1\$ | :UPDATE POINTER TO DIAG ADDRESS DATA TABLE
:CHECK IF ALL PATTERNS HAVE BEEN LOADED
:IF YES THEN END OF TEST
:IF NOT THEN LOAD NEXT PATTERN | | | 10363
10364
10365
10366
10367
10368
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379 | 026114
026116
026120
026122
026124
026126 | 125252
052525
177400
000377
177777
000000 | | | 23\$: | .WORD
.WORD
.WORD
.WORD
.WORD | 125252
052525
177400
000377
177777
000000 | | | | 10378
10379
10380 | 026130
026130
026130 | 104401 | | | 24\$:
L10070: | ENDTST
TRAP | CSETST | | | | - | HARDWAR | E TESTS | MACY11 | 30A(1052 |) 01-AP | R-82 14 | :48 PAG | E 207 | | | | | | |---|--|--|--------------------------------------|------------------|---------|--|---|---|---|--|--|--|--| | | CACDCB. | P11 (| 1-APR-82 | 14:12 | | TEST 39 | : FDAL R | REGISTER TO EDDAL BUS | | | | | | | | 10381
10382 | | | | | .SBTTL | TEST 39 | : FDAL REGISTER TO E | ODAL BUS TO EIDAL BUS TEST | | | | | | | 10381
10382
10383
10384
10385
10386
10387
10390
10391
10393
10394
10395
10396
10396
10397
10398
10399
10400 | | | | | BUS V
EIDAL
REGIS
COUNT
DATA | THIS TEST WILL CHECK THAT THE FDAL REGISTER CAN BE ENABLED TO THE EODAL BUS VIA THE SIGNAL INTER L AND THAT THE EODAL BUS CAN BE ENABLED TO THE EIDAL BUS VIA THE SIGNAL COLB L. THE TEST WILL ALSO CHECK THAT THE EOAI REGISTER CAN BE CLEARED WHEN THE SIGNAL INTER L IS ASSERTED LOW. A BINARY COUNT DATA PATTERN WILL BE LOADED INTO THE FDAL REGISTER STARTING WITH A DATA PATTERN OF ONE AND INCREMENTING BY FOUR UNTIL THE DATA PATTERN 375 HAS BEEN LOADED AND CHECKED. | | | | | | | | I | 10393 | 026132
026132
026132 | | | | T39:: | BGNTST | | | | | | | | | 10395
10396
10397 | 026132
026136 | 004737
005001 | 005510 | | 137 | JSR
CLR | PC, INITTE
R1 | SELECT AND INITIALIZE TARGET EMULATOR START BINARY COUNT PATTERN AT ZERO. | | | | | | | 10398
10399
10400 | 026140
026140 | 104404 | | | 1\$: | BGNSEG
TRAP | C\$BSEG | | | | | | | ١ | 10401 | 026142 | 005037 | 002346 | | | CLR | R6MASK | SETUP TO CHECK ALL 16 BITS ON REG 6 READ | | | | | | | 10401
10402
10403
10404
10405 | | | | | | SET VD | AL2 H TO A ONE AND TO | HEN A ZERO TO CLEAR THE PAUSE STATE MACHINE S INVO L AND INVO H. | | | | | | | 10406
10407
10408 | 026146
026152 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC,CLRPSM | ; SETUP TO 0 ALL OTHER BITS
; PULSE INVD L AND INVD H VIA VDAL2 H | | | | | | | 10409
10410
10411
10412 | | | | | | : ENABLE | AL13 H TO A ONE IN TO
THE LOW BYTE OF THE
ED HIGH LATER ON IN | HE ADAL REGISTER. ADAL13 H ON A ONE WILL EDDAL BUS TO THE CDAL BUS WHEN PSEL1
H IS THIS TEST. | | | | | | - | 10413
10414
10415
10416
10417 | 026156
026164
026170
026172
026172
026174
026176 | 012737
004737
001405
104455 | 020000
006614 | 002330 | | MOV
JSR
BEQ
ERRDF
TRAP | #ADAL13,R2LOAD
PC,LDRDR2
2\$
2,ADALRG,R2EROR
C\$ERDF | ;SETUP BIT TO BE SET TO A ONE
;GO LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | | | | | | | 10418
10419
10420
10421
10422
10423
10424
10425 | 026174
026176
026200
026202
026202 | 000002
002513
004770 | | | | .WORD
.WORD
.WORD
CKLOOP | ADALRG
RZEROR | | | | | | | ١ | 10422 | 026202 | 104406 | | | | TRAP | C\$CLP1 | | | | | | | ١ | 10425 | 02/20/ | 00/777 | 00/75/ | | | | | IA GDAL BITS 2:0 IN CONTROL REGISTER 0 | | | | | | ١ | 10427 | 026204 | 004737 | 006754 | | 2\$: | JSR | PC,SLHDAL | ; SELECT HDAL REG VIA GDAL BITS 2:0 | | | | | | | 10429
10430 | | | | | | ; SET HD.
; A ONE
; SIGNAL | WILL ALLOW THE PROGRA
S. | AM TO GENERATE THE T-11 TIMING AND CONTROL | | | | | | | 10426
10427
10428
10429
10430
10431
10432
10433
10434
10435 | 026210
026216
026222
026224
026224 | 012737
004737
001405
104455 | 000004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP | #HDAL2,R6LOAD
PC,LDRDR6
3\$
4,HDALRG,R06ERR
C\$ERDF | ;SETUP BIT TO BE LOADED
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | | | | | 1 | | | | | | | | | | | | | | B 1 | HARDWAR
CVCDCB. | E TESTS
P11 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AF | R-82
TEST | 14:48 PAGE 208
39: FDAL REGISTER TO EODAL BUS TO EIDAL BUS TEST | |---|--|--|----------------------------|---------|--------------|---| | 10437
10438
10439
10440
10441
10442
10443 | 026226
026230
026232
026234
026234 | 000004
002605
005020
104406 | | | | .WORD 4 .WORD HDALRG .WORD ROGERR CKLOOP TRAP C\$CLP1 | | 10443 | | | | | | SELECT FDAL AND EOAI REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O | | 10444 | 026236 | 004737 | 007154 | | 3\$: | JSR PC, SLFDAL ;SELECT FDAL AND EOAI REGISTER VIA GDAL | | 10446
10447
10448
10449
10450 | | | | | | ;LOAD READ AND CHECK FDAL REGISTER BITS 7:0 WITH A BINARY COUNT PATTERN ;FROM 1 TO 377 BY AN INCREMENT OF FOUR. THE EOAI REGISTER WILL BE ;LOADED AND CHECKED WITH A DATA PATTERN OF ALL ONES. | | 10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463 | 026242
026246
026254
026260
026262
026262
026264
026266
026270
026272 | 010137
052737
004737
001405
104455
000004
002676
005020 | 002342
177401
006672 | 002342 | | MOV R1,R6LOAD ;GET THE FDAL BINARY COUNT PATTERN BIS #177401,R6LOAD ;SET ALL EOAI REG BITS TO ONES + FDALO H JSR PC,LDRDR6 ;LOAD, READ AND CHECK FDAL + EOAI REG'S BEQ 4\$;IF LOADED OK THEN CONTINUE ERRDF 4.EOAIFD,R06ERR ;EOAI OR FDAL REGISTER ERROR TRAP C\$ERDF .WORD 4 .WORD R06ERR | | 10460
10461 | 026272
026272 | 104406 | | | | CKLOOP TRAP C\$CLP1 | | 10462
10463 | | | | | | SELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER 0 | | 10465 | 026274 | 004737 | 006754 | | 45: | JSR PC, SLHDAL ;SELECT THE HDAL REG VIA GDAL BITS 2:0 | | 10466
10467
10468
10469
10470
10471
10472
10473 | | | | | | ;SET HDAL6 H TO A ONE TO ASSERT THE SIGNAL XSEL1 L TO THE LOW STATE. ;HDAL5 H ON A ZERO WILL CAUSE THE SIGNAL XSELO L TO BE ASSERTED HIGH. ;WHEN XSELO L IS ASSERTED HIGH AND XSEL1 L IS ASSERTED LOW, THE SIGNALS ;INTER H AND INTER L WILL BE ASSERTED HIGH AND LOW RESPECTIVELY. WHEN ;INTER L IS ASSERTED LOW, THE EOAI REGISTER WILL BE CLEARED AND THE FDAL ;REGISTER WILL BE ENABLED TO THE LOW BYTE OF THE EODAL BUS. | | 10474
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485 | 026300
026306
026312
026314
026314
026316
026320
026322
026324
026324 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000104
006672 | 002342 | | MOV #HDAL6!HDAL2,R6LOAD JSR PC,LDRDR6 ;GO LOAD, READ AND CHECK HDAL REGISTER BEQ 5\$ ERRDF 4,HDALRG,R06ERR TRAP C\$ERDF .WORD 4 .WORD HDALRG .WORD R06ERR CKLOOP TRAP C\$CLP1 | | 10485 | | | | | | SELECT THE EOAI AND FDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REG O | | 10487
10488 | 026326 | 004737 | 007154 | | 5\$: | JSR PC.SLFDAL ;SELECT EDAI AND FDAL REG VIA GDAL 2:0 | | 10489
10490
10491
10492 | | | | | | ; WHEN XSELO L IS ASSERTED HIGH AND XSELT L IS ASSERTED LOW, THE SIGNALS ; INTER H AND INTER L WILL BE ASSERTED HIGH AND LOW RESPECTIVELY. INTER L ; BEING ASSERTED LOW WILL CLEAR THE EOAI REGISTER WHICH WAS LOADED WITH ; ALL ONES PREVIOUSLY. | | HARDWARE TESTS MACY11 304(1052) | 01-APR-82 14:48 PAGE 209 | D 1 | |---|--------------------------|--------------------------------| | HARDWARE TESTS MACY11 30A(1052)
CVCDCB.P11 01-APR-82 14:12 | TEST 39: FDAL REGISTER | TO EODAL BUS TO EIDAL BUS TEST | | 1 | 10493 | | | | | | | | | |---|---|--|--|----------------------------|--------|------|--|---|--| | | 10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512 | 026332
026336
026342
026346
026350
026350
026352
026354
026360
026360 | 010137
005237
004737
001405
104455
000004
002676
005020
104406 | 002342
002342
006700 | | | MOV
INC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | R1,R6LOAD
R6LOAD
PC,READR6
6\$
4,EOAIFD,R06ERR
C\$ERDF
4
EOAIFD
R06ERR | GET THE FDAL REGISTER DATA SETUP TO EXPECT FDALO H TO BE SET ALSO CHECK IF EOAI REG WAS O'ED VIA INTER L IF DATA OK THEN CONTINUE INTER L FAILED TO ZERO EOAI REGISTER | | | 10506 | | | | | | ;SELECT | EODAL BUS VIA GDAL BITS | 2:0 IN CONTROL REGISTER 0 | | | 10507 | 026362 | 004737 | 007122 | | 6\$: | JSR | PC, SEODAL | SELECT EDDAL BUS VIA GDAL BITS 2:0 | | | 10509 | | | | | | | | | | | 10511
10512
10513 | | | | | | :ENABLE | D TO THE LOW BYTE OF THE THE EODAL BUS TO CONTAIN | ERTED LOW, THE FDAL REGISTER WILL BE EODAL BUS. THIS NEXT SECTION WILL FDAL REGISTER DATA. | | | 10514
10515
10516
10517
10518
10519
10520
10521
10522
10523 | 026366
026372
026400
026404
026406
026406 | 010137
012737
004737
001405 | 002342
177400
006700 | 002346 | | MOV
MOV
JSR
BEQ
ERRDF
TRAP | R1,R6LOAD
#177400,R6MASK
PC,READR6
7\$
4,FDALEO,R06ERR
C\$ERDF | GET FDAL REGISTER DATA LOADED SETUP TO IGNORE HIGH BYTE ON READ READ AND CHECK EDDAL BUS FOR FDAL DATA IF DATA OK THEN CONTINUE FDAL REG TO EDDAL BUS ERROR | | | 10520
10521
10522
10523
10524 | 026410
026412
026414
026416
026416 | 000004
003666
005320 | | | | .WORD
.WORD
.WORD
CKLOOP
TRAP | FDALED
ROGERR
C\$CLP1 | | | | 10524
10525
10526 | 020410 | 104400 | | | | | | | | 1 | 10527 | | | | | | SELECT | THE EIDAL BUS VIA GDAL | BITS 2:0 IN CONTROL REGISTER 0 | | | 10528
10529 | 026420 | 004737 | 007240 | | 7\$: | JSR | PC, SEIDAL | :SELECT EIDAL BUS VIA GDAL BITS 2:0 | | | 10530
10531
10532
10533
10534
10535 | | | | | | ;AT THI
;EODAL
;ENABLE
;THE SI
;ONE, P | S TIME, THE FDAL REGISTER BUS VIA THE SIGNAL INTER D TO THE CDAL BUS AND TO GNAL COLB L IS ASSERTED I SEL1 H BEING ASSERTED HIC | R IS ENABLED TO THE LOW BYTE OF THE L. THE LOW BYTE OF THE EODAL BUS IS THE EIDAL BUS VIA THE SIGNAL COLB L. LOW AS A RESULT OF ADAL13 H BEING A GH AND PSELO L BEING ASSERTED HIGH. | | | 10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547 | 026424
026430
026436
026442
026444
026446
026450
026452
026454 | 010137
012737
004737
001405
104455
000004
003722
005034
104406 | 002342
177400
006700 | 002346 | | MOV
MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | R1,R6LOAD
#177400,R6MASK
PC,READR6
8\$
4,FDALEI,R026ER
C\$ERDF
4
FDALEI
R026ER | GET THE FDAL REGISTER DATA LOADED SETUP TO IGNORE THE HIGH BYTE GO READ EIDAL BUS FOR
FDAL REG DATA IF DATA OK THEN CONTINUE FDAL REG TO EODAL TO EIDAL BUS ERROR | | | 10548 | | | | | | SET THE | E SIGNAL ADAL13 H TO A ZE | ERO. DOING THIS WILL CAUSE THE SIGNAL | | HARDWARE TESTS | MACY11 30A(10 | 52) 01-APR-82 1
TEST 3 | 4:48 PAG
9: FDAL R | E 210
EGISTER TO EODAL BUS T | O EIDAL BUS TEST | |--|---|---------------------------|---|---|--| | 10549
10550
10551 | | | ;COLB L | TO BE ASSERTED HIGH, | THUS DISABLING THE EDDAL BUS TO THE COAL | | 10552 026456
10553 026466
10554 026466
10555 026470
10556 026470
10557 026472
10558 026474
10559 026476 | 104455
000002
002513
004770 | 8\$: | CLR JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP | R2LOAD
PC,LDRDR2
9\$
2,ADALRG,R2EROR
C\$ERDF
2
ADALRG
R2EROR | SETUP TO CLEAR ADAL13 H GO LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | | 10561 026500
10562
10563 | 104406 | | TRAP | CSCLP1 | GDAL BITS 2:0 IN CONTROL REGISTER 0 | | 10564
10565 026502 | 004737 006754 | 9\$: | JSR | PC, SLHDAL | SELECT HDAL REGISTER VIA GDAL BITS 2:0 | | 10566
10567
10568 | | | ;RESET | ALL HDAL REGISTER BITS | TO ZERO EXCEPT HDAL REGISTER BIT 2. | | 10564
10565 026502
10566
10567
10568
10569 026506
10570 026514
10571 026520
10572 026522
10573 026522
10574 026524
10575 026524
10576 026530
10577 026532
10578 026532
10579 026532 | 004737 006672
001404
104455
000004
002605 | 002342 | MOV
JSR
BEQ
ERRDF
TRAP
.WORD | #HDAL2,R6LOAD
PC,LDRDR6
10\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG | SETUP TO CLEAR ALL BITS EXCEPT BIT 2 GO LOAD, READ AND CHECK HDAL REGISTER IF LOADED OK THEN CONTINUE HDAL REGISTER NOT EQUAL EXPECTED | | 10576 026530
10577 026532
10578 026532 | 005020 | 10\$:
10000\$ | .WORD
ENDSEG | ROGERR | | | 10579 026532
10580 | 104405 | | TRAP | C\$ESEG | | | 10581 026534 | 062701 000004
105701
001402
000137 026140 | | ADD
TSTB
BEQ
JMP | #FDAL2,R1
R1
13\$
1\$ | CHECK IF PATTERN DONE IF YES THEN EXIT THE TEST IF NOT THEN LOAD NEXT PATTERN | | 10585
10586 026550
10587 026550
10588 026550 | | 13\$:
L10071 | ENDTST | | TO THE COND NEAT THE FAIR | | 10588 026550
10589 | 104401 | | TRAP | CSETST | | | HARDWARE T | ESTS M | APR-82 | 30A(1052
14:12 |) 01-AP | | :48 PAG | F 1
E 211
THE SIGNALS 'READ H'' | AND 'MSDI H'' | | | |--|--|--|-------------------|---------|--------------------------------|---|--|---|--|--| | 10590
10591 | | | | | .SBTTL | TEST 40 | : CHECK THE SIGNALS " | READ H" AND "MS | DI H., | | | 10592
10593
10594
10595
10596
10597
10598
10599 02
10600 02
10601 02
10602 02
10603 02
10604
10605
10606 | | | | | THIS
AND L
ON TH
READ | TEST WIL
OW. THE
E INPUT
H AND MS | L CHECK THAT THE SIGN
SE SIGNALS ARE ASSERT
SIGNALS TO THE GATES
DI H ARE READ IN THE | ALS READ H AND ED HIGH AND LOW WHICH GENERATE VDAL REGISTER A | MSDI H CA N BE ASSE
BY CHANGING THE LO
THE SIGNALS. THE S
S BITS 3 AND 6 RESE | ERTED HIGH
OGIC LEVELS
SIGNALS
PECTIVELY. | | 10599 02 | 6552
6552 | | | | 7/0 | BGNTST | | | | | | 10600 02
10601 02
10602 02
10603 02 | 6552 0
6556 | 04737 | 005510 | | T40:: | JSR
BGNSEG
TRAP | PC, INITTE
C\$BSEG | SELECT AND | INITIALIZE TARGET | EMULATOR | | 10604
10605 | | | | | | :SELECT | MODE REGISTER VIA GD | AL BITS 2:0 IN | CONTROL REGISTER O | | | 10606
10607 02 | 6560 0 | 04737 | 007006 | | | JSR | PC,SLMODR | SELECT MODE | E REG VIA GDAL BITS | 2:0 | | 10607 02
10608
10609
10610
10611 | | | | | | :CLEAR
:ZERO W
:HIGH R | ALL BITS IN THE MODE ILL CAUSE THE SIGNAL ESPECTIVELY. | REGISTER. MODE
MR11 H AND MR11 | REGISTER BIT 11 BE
L TO BE ASSERTED L | ING A
OW AND | | 10615 02
10616 02
10617 02
10618 02
10619 02
10620 02
10621 02
10622 02 | 6570 0
6574 0
6576
6576 1
6600 0
6602 0
6604 0 | 05037
04737
01405
04455
00004
02631
05020 | 002342
006672 | | | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | R6LOAD
PC,LDRDR6
1\$
4.MODREG,RO6ERR
C\$ERDF
4
MODREG
R06ERR | :GO LOAD, RI | LEAR ALL MODE REG E
EAD AND CHECK MODE
OK THEN CONTINUE
TER NOT EQUAL EXPEC | REG | | 10623
10624
10625 | | | | | | :SELECT | THE FDAL AND EOAI RE | GISTER VIA GDAL | BITS 2:0 IN CONTRO | L REG O | | 10626 02 | 6610 0 | 04737 | 007154 | | 15: | JSR | PC, SLFDAL | SELECT FDAL | VIA GDAL BITS 2:0 | | | 10628
10629
10630
10631
10632 | | | | | | SET FDA
A ZERO
ON A RI
FDAL1 I | ALO H TO A ONE AND ALI . FDALO H ON A ONE WI EAD COMMAND TO CONTROI H ON A ZERO WILL ALLOW WHEN THE SIGNAL DMG I | L OTHER FDAL AND ILL ALLOW THE ECL REGISTER 6 INS | DEOAI REGISTER BIT
DAI REGISTER TO BE
STEAD OF THE CTL RE
FLOP TO DEASSERT TH | S TO
READ
GISTER.
JE SIGNAL | | 10635 02
10636 02
10637 02
10638 02
10639 02
10640 02
10641 02
10642 02
10643 02 | 6622 0
6626 0
6630 1
6632 0
6634 0
6636 0 | 12737
04737
01405
04455
00004
02676
05020
04406 | 000001
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #FDALO,R6LOAD PC,LDRDR6 2\$ 4,EOAIFD,R06ERR C\$ERDF 4 EOAIFD R06ERR C\$CLP1 | ; LOAD, READ
; IF OK THEN
; EOAI OR FD/ | TO BE LOADED AND CHECK EDAI AND CONTINUE AL REGISTER ERROR | FDAL REG | | 10645 | | | | | | SELECT | HDAL REGISTER VIA GDA | F B112 5:0 IN (| ONTROL REGISTER O | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 212 CVCDCB.P11 01-APR-82 14:12 TEST 40: CHECK THE SIGNALS "READ H" AND "MSDI H" ``` 10647 10648 10649 10650 026642 004737 006754 2$: JSR PC.SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 SET HDAL REG BIT 2 ON A 1 AND ALL OTHER BITS TO A O. HDAL2 H ON A ONE :WILL ALLOW THE PROGRAM TO GENERATE THE T-11 TIMING AND CONTROL SIGNALS. 10651 10652 10653 10654 012737 026646 002342 000004 #HDAL2, R6LOAD MOV SETUP BIT TO BE LOADED GO LOAD, READ AND CHECK HOAL REGISTER 006672 JSR PC,LDRDR6 026660 001405 BEQ ; IF LOADED OK THEN CONTINUE 026662 026662 026664 026666 026670 10655 ERRDF 4, HDALRG, ROGERR :HDAL REGISTER NOT EQUAL EXPECTED 10656 10657 10658 10659 104455 TRAP C$ERDF 000004 . WORD 002605 . WORD HDALRG 005020 . WORD RO6ERR 10660 026672 CKLOOP 10661 026672 104406 TRAP CSCLP1 10662 10663 10664 SET ADAL REGISTER BITS 10 AND 0 TO ONES AND ALL OTHER ADAL BITS TO :ZEROES. THE SIGNAL PSLO H WILL BE ASSERTED HIGH WHEN ADAL 10 H IS A :ONE AND THE PAUSE STATE WORKING AND DMG FLIP-FLOPS ARE CLEARED. THE 10665 10666 10667 10668 SIGNAL PSLO H WILL ENABLE THE SIGNALS EDEOC H AND REAT H TO THE SYSTEM BUS AND TO THE VDAL REG. ADALO H ON A 1 WILL HOLD THE BREAK LOGIC CLEARE 026674 10669 012737 002001 002330 3$: MOV #ADAL10!ADAL0,R2LOAD SETUP BITS TO BE LOADED 10670 004737 006614 JSR PC,LDRDR2 ; LOAD, READ AND CHECK ADAL REGISTER 026706 10671 001405 BEQ : IF LOADED OK THEN CONTINUE 10672 10673 026710 ERRDF 2.ADALRG,R2EROR ADAL REGISTER NOT EQUAL EXPECTED 026710 026712 026714 104455 TRAP C$ERDF 10674 000002 . WORD 10675 002513 . WORD ADALRG 026716 026720 026720 10676 004770 . WORD R2EROR 10677 10678 CKLOOP 104406 TRAP C$CLP1 10679 10680 SET VDAL2 H TO A ONE AND THEN ZERO. THIS IS DONE TO INITIALIZE THE 10681 PAUSE STATE MACHINE FLIP-FLOPS AND ALL OTHER FLIP-FLOPS TO A KNOWN 10682 STATE. SETTING AND CLEARING VDAL2 H WILL CAUSE THE SIGNALS INVD L 10683 :AND INVD H TO BE PULSED. 10684 10685 10686 005037 026722 45: R4LOAD ; SETUP TO CLEAR ALL OTHER R/W BITS 026726 004737 PC, CLRPSM GO PULSE INVD L VIA VDAL2 H JSR 10687 10688 10689 THE NEXT SECTION WILL SET THE HDAL REGISTER BITS TO THE STATE INDICATED ASSERTS XR/WLB H TO THE HIGH STATE ASSERTS XR/WHB H TO THE HIGH STATE HDAL3 H - 1 10690 HDAL4 H - 1 HDAL12 H - 1 ASSERTS XR/WHB H TO THE HIGH STATE HDAL12 H - 1 ASSERTS XRAS H TO THE HIGH STATE HDAL13 H - 1 ASSERTS XCAS H TO THE HIGH STATE WHEN THE ABOVE SIGNALS ARE SET TO A ONE AND MODE REGISTER BIT 11 IS CLEARED, THE SIGNAL REAT H WILL BE ASSERTED HIGH. THE SIGNAL REAT H WILL BE ENABLED TO THE VDAL REGISTER WHEN THE SIGNAL PSLO H IS ASSERTED HIGH. THE SIGNAL PSLO H IS ASSERTED HIGH AS A RESULT OF THE DMG FLIP- FLOP BEING CLEARED, ADAL10 H ON A ONE, AND THE PAUSE STATE WORKING FLIP- FLOP BEING CLEARED. THE SIGNAL REAT H WILL BE READ IN VDAL REGISTER BIT 3 AS THE SIGNAL READ H. VDAL REGISTER BIT 6. WHICH INDICATES 10691 10692 10693 10694 10695 10696 10697 10698 10699 BIT 3 AS THE SIGNAL READ H. VDAL REGISTER BIT 6, WHICH INDICATES 10700 THE LOGIC LEVEL OF THE SIGNAL MSDI H, WILL ALSO BE SET TO A ONE. MSDI H; IS ASSERTED HIGH AS A
RESULT OF SIGNALS XSELO L, ADAL10 H, PSMW L. 10701 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 214 CVCDCB.P11 01-APR-82 14:12 TEST 40: CHECK THE SIGNALS "READ H" AND "MSDI H" | CVCDCD.F11 01-AFR-02 14.12 | TEST 40. CHECK THE SIGNALS READ H | MIN HOUT H | | | | |--|---|--|--|--|--| | 10758
10759
10760 | SET ADAL10 H TO A 1 TO CAUS | SE THE SIGNALS PSLO H, READ H, + MSDI H TO BE SET HIGH | | | | | 10760
10761 027060 052737 002000 002330
10762 027066 004737 006614
10763 027072 001405
10764 027074
10765 027074 104455
10766 027076 000002
10767 027100 002513
10768 027102 004770
10769 027104
10770 027104 104406 | 8\$: BIS #ADAL10,R2LOAD JSR PC,LDRDR2 BEQ 9\$ ERRDF 2,ADALRG,R2EROR TRAP C\$ERDF | ;SET BIT TO SET ADAL10 H TO A ONE
;GO LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | | | | | 10766 027076 000002
10767 027100 002513
10768 027102 004770
10769 027104 | .WORD 2 .WORD ADALRG .WORD RZEROR CKLOOP | | | | | | 10770 027104 104406 | TRAP CSCLP1 | | | | | | 10771
10772
10773
10774 | RECHECK THE VDAL REGISTER T | RECHECK THE VDAL REGISTER TO CHECK THAT THE SIGNALS MSDI H AND READ H | | | | | 10775 027104 052737 000110 002334 | JSR PC.READR4 BEQ 10\$ | :EXPECT READ H AND MSDI H TO BE ONES
:READ VDAL AND PAUSE STATE MACHINE
:IF OK THEN CONTINUE | | | | | 10776 027114 004737 006654
10777 027120 001405
10778 027122
10779 027122 104455
10780 027124 000003
10781 027126 002537
10782 027130 005004 | ERRD+ 3,VDALRG,R4EROR TRAP C\$ERDF .WORD 3 .WORD VDALRG | :MSDI H AND/OR READ H PROBABLY NOT SET | | | | | 10781 027126 002537
10782 027130 005004
10783 027132 | .WORD R4EROR | | | | | | 1 10/84 02/132 104406 | TRAP CSCLP1 | | | | | | 10785
10786
10787
10788
10789 | ;HDAL REGISTER. WHEN XR/WLB
;MR11 L, XRAS H, AND XCAS H
;BE ASSERTED LOW. WHEN REAT | THE LOW STATE BY CLEARING HDAL3 H IN THE H IS ASSERTED LOW AND THE SIGNALS XR/WHB H, ARE ASSERTED HIGH, THE SIGNAL REAT H WILL H IS ASSERTED LOW, THE SIGNALS READ H LOW AND READ AS ZEROES IN THE VDAL REGISTER | | | | | 10791
10792 027134 042737 000010 002342
10793 027142 004737 006672
10794 027146 001405 | 10\$: BIC #HDAL3,R6LOAD JSR PC,LDRDR6 BEQ 11\$ | ;SETUP TO SET XR/WLB H TO LOW STATE
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | | | | 10795 027150
10796 027150 104455
10797 027152 000064
10798 027154 002605
10799 027156 005020 | ERRDF 4,HDALRG,RO6ERR TRAP CSERDF .WORD 4 .WORD HDALRG | HDAL REGISTER NOT EQUAL EXPECTED | | | | | 10799 027156 005020
10800 027160 | .WORD ROGERR
CKLOOP | | | | | | 10801 027160 104406 | TRAP CSCLP1 | | | | | | 10803
10804
10805 | ; READ THE VDAL REGISTER TO C
; LOW AS A RESULT OF XR/WLB H | HECK THAT READ H AND MSDI H ARE ASSERTED BEING ASSERTED LOW. | | | | | 10800 027160
10801 027160 104406
10802
10803
10804
10805
10806 027162 005037 002336
10807 027166 004737 006654
10808 027172 001405
10809 027174
10810 027174 104455 | 11\$: CLR R4GOOD
JSR PC.READR4
BEQ 12\$ | READ VOAL AND PAUSE STATE MACHINE | | | | | 10809 027174
10810 027174 104455 | ERRDF 3, VDALRG, R4EROR
TRAP C\$ERDF | WR/WLB H PROBABLY NOT ASSERTED LOW | | | | | 10808 027172 001405
10809 027174
10810 027174 104455
10811 027176 000003
10812 027200 002537
10813 027202 005004 | .WORD 3
.WORD VDALRG | | | | | | 10813 027202 005004 | .WORD R4EROR | | | | | | HARDWAR
CVCDCB | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14
TEST 40 | :48 PAG | J 1
GE 215
THE SIGNALS "READ H" | AND 'MSDI H'' | | |--|--|--|----------------------------|------------------|--------------------|---|--|---|--| | 10814
10815
10816 | 027204
027204 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10830
10831
10832
10833
10833
10835
10836
10837
10838 | | | | | | SET THE | HE SIGNAL XR/WLB H BAC
AND SET THE SIGNAL XR
KR/WHB H IS ASSERTED L
CAS H ARE ASSERTED HIC
REAT H IS ASSERTED LOW
TED LOW AND READ AS ZE | CK TO THE HIGH STATE BY SETTING HDAL3 H TO ROW BY THE LOW STATE BY CLEARING HDAL4 H. OW AND THE SIGNALS XR/WLB H, MR11 L, XRAS HEAT, THE SIGNAL REAT H WILL BE ASSERTED LOW. OF THE SIGNALS READ H AND MSDI H WILL BE ROES IN THE VDAL REGISTER. | | | 10824
10825
10826
10827 | 027206
027214
027222
027226 | 042737
052737
004737
001405 | 000020
000010
006672 | 002342
002342 | 12\$: | BIC
BIS
JSR
BEQ | #HDAL4,R6LOAD
#HDAL3,R6LOAD
PC,LDRDR6
13\$ | SETUP TO SET XR/WHB H TO LOW STATE SETUP BIT TO SET XR/WLB H TO HIGH STATE LOAD, READ AND CHECK THE HDAL REGISTER IF LOADED OK THEN CONTINUE | | | 10829
10830
10831
10832 | 027206
027214
027222
027226
027230
027230
027232
027234
027236
027240 | 104455
000004
002605
005020 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | 4, HDALRG, ROGERR
CSERDF
4
HDALRG
ROGERR | HDAL REGISTER NOT EQUAL EXPECTED | | | 10834
10835
10836 | 027240 | 104406 | | | | TRAP ;READ 1 | CSCLP1 THE VDAL REGISTER TO C | HECK THAT READ H AND MSDI H ARE ASSERTED | | | 10837 | | | | | | | S A RESULT OF XR/WHB H | | | | 10839
10840
10841
10842
10843
10844
10845
10846
10847
10848 | 027242
027246
027250
027250
027252
027254
027256
027260
027260 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | 13\$: | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | PC.READR4 14\$ 3.VDALRG.R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | GO READ VDAL AND PAUSE STATE MACHINE IF OK THEN CONTINUE XR/WHB H PROBABLY NOT ASSERTED LOW | | | 10849
10850
10851
10852
10853
10854
10855 | | | | | | SET THE | HE SIGNAL XR/WHB H BAC
, AND SET THE SIGNAL X
(RAS H IS ASSERTED LOW
(AS H ARE ASSERTED HIG
REAT H IS ASSERTED LOW
(ED LOW AND READ AS ZE | TK TO THE HIGH STATE BY SETTING HDAL4 H TO TRAS H TO THE LOW STATE BY CLEARING HDAL12 H. I. AND THE SIGNALS XR/WLB H, XR/WHB H, MR11 L H, THE SIGNAL REAT H WILL BE ASSERTED LOW. I, THE SIGNALS READ H AND MSDI H WILL BE ROES IN THE VDLA REGISTER. | | | 10856
10857 | 027262
027270 | 052737
004737 | 000020
007336 | 002342 | 148: | BIS | #HDAL4,R6LOAD
PC,XRASL | SET XR/WHB H TO HIGH STATE SET XRAS H TO LOW STATE VIA HDAL12 H | | | 10859
10860 | | | | | | READ W | DAL REGISTER TO CHECK | THAT READ H AND MSDI H ARE ASSERTED LOW | | | 10856
10857
10858
10859
10860
10861
10863
10864
10865
10866
10867
10868
10869 | 027274
027300
027302
027302
027304
027306
027310
027312 | 004737
001405
104455
000003
002537
005004 | 006654 | | | JSR
BEQ
ERRDF
TRAP
. WORD
. WORD
. WORD
CKLOOP | PC.READR4
15\$
3.VDALRG.R4EROR
C\$ERDF
3
VDALRG
R4EROR | ; READ VDAL AND PAUSE STATE MACHINE
; IF OK THEN CONTINUE
; THE "AND" OF XRAS H AND XCAS H NOT LOW | | | CVCDCB | P11 (| MACY11 | 30A(1052
14:12 | () 01-AP | R-82
TEST | 14:48 PAG
40: CHECK | THE SIGNALS "READ H" | AND 'MSDI H'' | | |---|--|--------------------------------------|-------------------|----------|--------------|---|---|--|--| | 10870 | | 104406 | | | | TRAP | C\$CLP1 | | | | 10871
10872
10873
10874
10875
10876
10878
10878 | | | | | | SET TH
A ONE
WHEN X
AND XR
WHEN R
ASSERT | E SIGNAL XRAS H BACK
AND SET THE SIGNAL XC
CAS H IS ASSERTED LOW
AS H ARE ASSERTED HIG
EAT H IS ASSERTED LOW
ED LOW AND READ AS ZE | TO THE HIGH STATE BY SETTING HDAL12 AS H TO THE LOW STATE BY CLEARING HI AND THE SIGNALS XR/WLB H, XR/WHB H H, THE SIGNAL REAT H WILL BE ASSERT H, THE SIGNALS READ H AND MSDI H WILL
ROES IN THE VDAL REGISTER. | H TO
DAL13 H.
, MR11 L,
ED LOW.
L BE | | 10880 | 027314
027322 | 052737
004737 | 010000
007442 | 002342 | 15\$: | BIS
JSR | #HDAL12,R6LOAD
PC,XCASL | SET BIT TO SET XRAS H TO HIGH SET XCAS H TO LOW STATE VIA HD | STATE
AL13 H | | 10882
10883 | | | | | | :READ V | DAL REGISTER TO CHECK ESULT OF XCAS L BEING | THAT READ H AND MSDI H ARE ASSERTED LOW. | LOW | | 10885
10886
10887 | 027326
027332
027334 | 004737
001405 | 006654 | | | JSR
BEQ
ERRDF | PC.READR4
16\$
3.VDALRG.R4EROR | :READ VDAL AND PAUSE STATE MACH. :IF OK THEN CONTINUE :THE 'AND' OF XRAS H AND XCAS H | | | 10881
10882
10883
10884
10885
10886
10887
10888
10889
10891
10893
10894
10895 | 027334
027336
027340
027342 | 104455
000003
002537
005004 | 006654 | | | TRAP
.WORD
.WORD
.WORD | CSERDF
3
VDALRG
R4EROR | THE AND OF KRAS H AND KLAS H | NOT LOW | | 10892
10893
10894 | 027344
027344 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 10895
10896
10897
10898
10899
10900 | | | | | | :A ONE.
:HIGH A
:BEING | WHEN XCAS H IS SET I
S A RESULT OF XR/WLB I
ASSERTED HIGH. WHEN | TO THE HIGH STATE BY SETTING HDAL13
HIGH, THE SIGNAL REAT H WILL BE ASSI
H, WR/WHB H, MR11 L, XRAS H AND XCAS
REAT H IS ASSERTED HIGH, THE SIGNALS
HIGH AND READ AS ONES IN THE VDAL | ERTED
S H
S READ H | | 10901 | 027346 | 004737 | 007410 | | 16\$: | JSR | PC,XCASH | SET XCAS H TO HIGH STATE VIA HI | DAL13 H | | 10903
10904
10905 | | | | | | READ V | DAL REGISTER TO CHECK ESULT OF REAT H BEING | THAT READ H AND MSDI H ARE ASSERTED ASSERTED HIGH. | HIGH | | 10906
10907
10908
10909
10910
10911 | 027352
027360
027364
027366 | 052737
004737
001405 | 000110
006654 | 002336 | | BIS
JSR
BEQ
ERRDF | #VDAL6!VDAL3,R4GOOD
PC,READR4
17\$
3,VDALRG,R4EROR | ;EXPECT READ H AND MSDI H TO BE
;READ VDAL AND PAUSE STATE MACH!
;IF OK THEN CONTINEU
;VDAL OR PAUSE STATE MACHINE ERF | NE | | 10912 | 027360
027364
027366
027366
027370
027372
027374
027376 | 104455
000003
002537
005004 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
3
VDALRG
R4EROR | | | | 10914
10915
10916 | 027376 | 104406 | | | | TRAP | C\$CLP1 | | | | 10917 | | | | | | :SELECT | THE MODE REGISTER VI | GDAL BITS 2:0 IN CONTROL REGISTER | 0 | | 16319 | 027400 | 004737 | 007006 | | 17\$: | JSR | PC,SLMODR | SELECT MODE REGISTE VIA GDAL BI | TS 2:0 | | 10920
10921
10922
10923 | | | | | | SET MO | DE REGISTER BIT 11 TO
TATE AND THE SIGNAL M | A ONE TO SET THE SIGNAL MR11 H TO 1 | HE | | 10924 | 027404
027412 | 012737
004737 | 004000
006672 | 002342 | | MOV
JSR | MMR11,R6LOAD
PC,LDRDR6 | ;SETUP BIT TO BE LOADED ;LOAD, READ AND CHECK MODE REGIS | TER | K 1 | HARDWA | .P11 (|)1-APR-82 | 30A(1052
14:12 | 01-AP | R-82
TEST | 14:48 PAGE 217
40: CHECK THE SIGNALS 'READ H' AND 'MSDI H' | |---|--|--|-------------------|--------|--------------|--| | 10926
10927
10928
10930
10931
10932
10933
10934
10935
10936
10937
10948
10941
10942
10943 | 027416
027420
027420
027422
027424
027426
027430
027430 | 001405
104455
000004
002631
005020
104406 | | | | BEQ 18\$ ERRDF 4,MODREG,ROGERR ;MODE REGISTER NOT EQUAL EXPECTED TRAP C\$ERDF .WORD 4 .WORD MODREG .WORD ROGERR CKLOOP TRAP C\$CLP1 | | 10934 | | | | | | RESELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O | | 10937
10938
10938 | 027432
027436 | 004737
012737 | 006754
030034 | 002342 | 18\$: | JSR PC, SLHDAL ;SELECT HDAL REGISTER VIA GDAL BITS 2:0 MOV #HDAL13!HDAL12!HDAL4!HDAL3!HDAL2,R6LOAD ;BITS PREVIOUSLY LOADED | | 10940
10941
10942
10943 | | | | | | ; READ THE VDAL REGISTER TO CHECK THAT READ H AND MSDI H ARE ASSERTED LOW, ; WHEN MR11 L IS ASSERTED LOW AND THE SIGNALS XR/WLB H, XR/WHB H, XRAS H ; AND XCAS H ARE ASSERTED HIGH. | | 10944
10945
10946
10947
10948
10949
10950
10951
10953
10954
10955 | 027444
027450
027454
027456
027456
027460
027462
027464
027466 | 005037
004737
001405
104455
000003
002537
005004
104406 | 002336
006654 | | | CLR R4GOOD JSR PC.READR4 BEQ 19\$ ERRDF 3,VDALRG,R4EROR TRAP C\$ERDF .WORD 3 .WORD VDALRG WORD R4EROR CKLOOP TRAP C\$CLP1 ;EXPECT READ H AND MSDI H TO BE 0 ;READ VDAL AND PAUSE STATE MACHINE ;IF OK THEN CONTINUE ;READ H AND/OR MSDI H ARE SET HIGH ;READ H AND/OR MSDI H ARE SET HIGH CREAD H AND/OR MSDI H TO BE 0 ;READ VDAL AND PAUSE STATE MACHINE ;IF OK THEN CONTINUE ;READ H AND/OR MSDI H ARE SET HIGH CREAD H AND/OR MSDI H ARE SET HIGH CREAD H AND/OR MSDI H TO BE 0 ;READ VDAL AND PAUSE STATE MACHINE ;IF OK THEN CONTINUE ;READ H AND/OR MSDI H ARE SET HIGH CREAD TO BE 0 ; IF OK THEN CONTINUE | | 10954
10955
10956
10957
10958
10959 | | | | | | ;SET THE SIGNAL XR/WHB L TO THE HIGH STATE BY CLEARING HDAL4 H. WHEN ;XR/WHB L, MR11 H, XRAS H AND XCAS H ARE ASSERTED HIGH, THE SIGNAL REAT H ;WILL BE ASSERTED HIGH. WHEN REAT H IS ASSERTED HIGH, THE SIGNALS ;READ H + MSDI H WILL BE ASSERTED HIGH AND READ AS CNES IN THE VDAL REG. | | 10960
10961
10962
10963
10964
10965
10966
10967
10968
10970
10971
10972
10973 | 027470
027476
027502
027504
027504
027506
027510
027512
027514 | 042737
004737
001405
104455
000004
002605
005020
104406 | 000020
006672 | 002342 | 19\$: | BIC #HDAL4,R6LOAD ;SET XR/WHB L TO THE HIGH STATE ;LOAD, READ AND CHECK HDAL REGISTER ;IF OK THEN CONTINUE ;HDAL REGISTER NOT EQUAL EXPECTED ; | | 10970
10971
10972
10973
10974
10975
10976
10977
10978
10980 | 027516
027524
027530
027532
027532
027534
027536 | 052737
004737
001405
104455
000003 | 000110
006654 | 002336 | 20\$: | ;READ THE VDAL REGISTER AND CHECK THAT READ H AND MSDI H ARE SET TO ONES ;AS A RESULT OF MR11 H, XR/WHB L, XRAS H AND XCAS H BEING ASSERTED HIGH. BIS #VDAL6!VDAL3,R4GOOD | | 10980 | 027536
027540 | 002537
005004 | | | | .WORD VDALRG
.WORD R4EROR | | 10982 027542 104406 TRAP CSCLP1 1985 027542 104406 TRAP CSCLP1 1985 10985
10985 10 | - | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82
TEST | 14:48 PAG
40: CHECK | E 218
THE SIGNALS "READ H" ANI | D 'MSDI H'' | | |--|---|---|--|--------------------|-------------------|---------|--------------|-----------------------------|---|---|------| | 11012 11013 027600 052737 000110 002336 00654 0066 | - | 10983 | 027542
027542 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 11012 11013 027600 052737 000110 002336 006654 006 | - | 10985
10986
10987 | | | | | | : CONDIT | ION OF XRAS H AND XCAS I | LOW STATE TO CHECK THAT THE "AND" H WILL CAUSE THE SIGNAL REAT H TO BE | | | 11012 11013 027600 052737 000110 002336 006654 006 | - | 10989 | 027544 | 004737 | 007336 | | 21\$: | JSR | PC,XRASL | SET XRAS H TO LOW STATE | | | 11012 11013 027600 052737 000110 002336 006654 006 | - | 10990
10991
10992
10993 | | | | | | ;SIGNAL | S READ H AND MSDI H TO E | CK THAT XRAS H BEING SET LOW CAUSED THE
BE ASSERTED LOW AS A RESULT OF REAT H BE | EING | | 11012 11013 027600 052737 000110 002336 006654
006654 006 | | 10995
10996
10997
10998
10999 | 027554
027560
027562
027562 | 104455 | | | | JSR
BEQ
ERRDF
TRAP | PC,READR4
22\$
3,VDALRG,R4EROR | ; IF OK THEN CONTINUE | | | 11012 11013 027600 052737 000110 002336 006654 006 | | 11000
11001
11002
11003 | 027566
027570 | 002537 | | | | . WORD | | | | | 11012 11013 027600 052737 000110 002336 006654 006 | 1 | 11004 | 027572 | 104406 | | | | | C\$CLP1 | | | | 11012 11013 027600 052737 000110 002336 006654 006 | | 11006 | | | | | | SET TH | E SIGNAL XRAS H BACK TO | THE HIGH STATE BY SETTING HDAL12 H TO A | A 1 | | 11012 11013 027600 052737 000110 002336 006654 006 | 1 | 11008 | 027574 | 004737 | 007304 | | 22\$: | JSR | PC,XRASH | ASSERT XRAS H TO HIGH STATE VIA HDALT | 12 H | | 11013 | | 11010
11011
11012 | | | | | | ; READ T
; TO ONE | HE VDAL REGISTER AGAIN TO AS A RESULT OF REAT H | O CHECK THAT READ H AND MSDI H ARE SET BEING ASSERTED HIGH. | | | 11018 027616 000003 | | 11013
11014
11015 | 027606
027612 | 004737 | 000110
006654 | 002336 | | JSR
BEQ | PC,READR4 | READ VDAL AND PAUSE STATE MACHINE | | | 11025 11026 11027 11028 11029 11029 11029 11029 11030 1027 1030 1032 1033 1034 1035 1036 1036 1036 1037 1038 1038 1038 1038 1038 1038 1038 1038 | | 11017 | 027614
027616
027620
027622 | 000003
002537 | | | | TRAP
.WORD
.WORD | C\$ERDF
3
VDALRG | THE HEAD IN AND THE HEAD SET TO 1'S | | | 11025 11026 11027 11028 11029 11029 11029 11029 11030 1027 1030 1032 1033 1034 1035 1036 1036 1036 1037 1038 1038 1038 1038 1038 1038 1038 1038 | 1 | 11021 | 027624 | | | | | CKLOOP | | | | | 1 11036 027652 104406 TRAP C\$CLP1 | | 11023
11024
11025
11026 | | | | | | SET TH | E SIGNAL XSELO L TO THE | LOW STATE BY SETTING HDALS H TO A ONE. THE SIGNAL MSDI H WILL BE ASSERTED LOW. | ı | | 1 11036 027652 104406 TRAP C\$CLP1 | - | 11027
11028
11029
11030 | 027626
027634
027640
027642
027642 | 004737 | | 002342 | 23\$: | JSR
BEQ
ERRDF | PC,LDRDR6
24\$
4,HDALRG,RO6ERR | SET BIT TO SET XSELO L TO LOW STATE GO LOAD, READ AND CHECK HDAL REGISTER IF LOADED OK THEN CONTINUE HDAL REGISTER NOT EQUAL EXPECTED | | | 1 11036 027652 104406 TRAP C\$CLP1 | - | 11032
11033
11034 | 027644
027646
027650 | 000004
002605 | | | | . WORD
. WORD
. WORD | 4
HDALRG | | | | | | 11036 | 02/032 | 104406 | | | | CKLOOP | | | | | CVCDCB.P11 | 01-APR-8 | 2 14:12 | ., 01 71 | TEST 4 | CHECK THE SIGNALS | "READ H" AND | 'MSDI H'' | | |
--|--|------------------|----------|--------|---|---|--|--|-----| | 11038
11039
11040 | | | | | READ THE VDAL REG | ISTER TO CHECK | THAT THE SIGNAL P | MSDI H IS ASSERTED | | | 11041 0276
11042 0276
11043 0276
11044 0276
11045 0276
11046 0276
11047 0276
11048 0276
11049 0277 | 32 004737
36 001405
70 104455
72 000003
74 002537
76 005004 | 006654 | 002336 | | PIC #VDAL6,R4G
PC,READR4
PC,READR4
PC,READR4
PC,READR4
PC,SERDF
WORD SERDF
WORD VDALRG
WORD VDALRG
WORD R4EROR
KLOOP
RAP C\$CLP1 | | EXPECT MSDI H TO READ VDAL AND PAULIF OK THEN CONTINUES MSDI H NOT A O BY | BE A ZERO
USE STATE MACHINE
NUE
Y XSELO L BEING SET LO |)W | | 11051
11052
11053
11054
11055
11056
11057
11058 | | | | | SET THE SIGNAL DM WHEN DMG L IS SET THE SIGNAL PSLO H LOW, THE SIGNAL R CAUSING THE SIGNA BE READ AS A ZERO | G L BY SETTING LOW, THE DMG R TO BE ASSERTED EAT H WILL BE D L READ H TO BE IN THE VDAL R | XSELO L AND XSEL1 FLIP-FLOP WILL BE D LOW. WHEN THE SI DISABLED TO THE SI ASSERTED LOW. THE EGISTER. | L TO THE LOW STATE. SET, THUS CAUSING IGNAL PSLO H IS ASSERT IGNAL READ H, THUS E SIGNAL READ H WILL | red | | 11059 0277
11060 0277
11061 0277
11062 0277
11063 0277
11064 0277
11065 0277
11066 0277
11067 0277
11068 0277 | 0 004737
001405
6 104455
0 000004
2 002605
4 005020 | 000100
906672 | 002342 | | IS #HDAL6,R6L
SR PC,LDRDR6
EQ 26\$
RRDF 4,HDALRG,R
RAP C\$ERDF
WORD 4
WORD HDALRG
WORD ROGERR
KLOOP
RAP C\$CLP1 | | SET BIT TO SET XS
LOAD, READ AND CH
IF OK THEN CONTIN
HDAL REGISTER NOT | SEL1 L TO LOW STATE
HECK HDAL REGISTER
NUE
T EQUAL EXPECTED | | | 11070
11071
11072
11073 | | | | | LOW WHEN THE DMG | FLIP-FLOP WAS S | THAT THE SIGNAL P
SET TO A ONE BY DM
ERO WHEN PSLO H IS | SLO H WAS ASSERTED LO
IG L BEING ASSERTED LO
ASSERTED LOW. | w. | | 11074 0277
11075 0277
11076 0277
11077 0277
11078 0277
11079 0277
11080 0277
11081 0277
11082 0277 | 36 004737
001405
4 104455
6 000003
0 002537
0 005004 | 000010
006654 | 002336 | 26\$: | IC #VDAL3,R4G SR PC.READR4 EQ 27\$ RRDF 3,VDALRG,R RAP C\$ERDF WORD 3 WORD VDALRG WORD R4EROR KLOOP RAP C\$CLP1 | | EXPECT READ H TO
READ VDAL AND PAU
IF OK THEN CONTIN
PSLO H NOT LOW WH | BE A ZERO USE STATE MACHINE UE UE UEN DMG F/F SET TO ONE | | | 11084
11085
11086
11087 02775 | 6 004737 | 007154 | | 27\$: | SELECT FDAL AND E | | IA GDAL BITS 2:0 I | N CONTROL REG 0 OAI REG VIA GDAL 2:0 | | | 11088
11089
11090
11091
11092
11093 | | | | | BILD IN SEKRES. | DAL1 H TO ONES
FDALO H ON A ON
L REGISTER INST | AND ALL OTHER FDA
NE WILL ENABLE THE
TEAD OF THE CTL RE | L AND EOAI REGISTER
EOAI REGISTER TO BE
GISTER WHEN A READ | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 220 CVCDCB.P11 01-APR-82 14:12 TEST 40: CHECK THE SIGNALS 'READ H' AND 'MSDI H' | CACDCB | .P11 01- | -APR-82 | 14:12 | | TEST 40 | : CHECK | THE SIGNALS "READ H" AND | MSDI H. | |---|---|--|------------------|--------|---------|---|---|---| | 11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107 | 027770
027774
027776
027776
1
030000
030002
030004
030006 | 012737
004737
001405
104455
000004
002676
005020 | 000003
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #FDAL1!FDALO,R6LOAD
PC,LDRDR6
28\$
4,EOAIFD,R06ERR
C\$ERDF
4
EOAIFD
R06ERR | SETUP BITS TO BE LOADED LOAD, READ AND CHECK FDAL AND EOAI REG'S IF LOADED OK THEN CONTINUE EOAI OR FDAL REGISTER ERROR | | 11105
11106
11107
11108 | | | | | | :SIGNAL | HE VDAL REGISTER TO CHECK
DAL1 H IS A ONE AND THE
REAT H, WHICH IS HIGH,
AD AS A ONE WHEN PSLO H | K THAT THE SIGNAL PSLO H IS ASSERTED HIGH DMG FLIP-FLOP IS SET TO A ONE. THE SHOULD BE ENABLED TO VDAL REGISTER BIT 3 IS ASSERTED HIGH. | | 11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11123
11124
11125
11126 | 030016 | 052737
004737
001405
104455
000003
002537
005004 | 000010
006654 | 002336 | 28\$: | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #VDAL3,R4GOOD PC,READR4 29\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | :EXPECT READ H TO BE A ONE
:READ VDAL AND PAUSE STATE MACHINE
:IF OK THEN CONTINUE
:PSLO H PROBABLY NOT SET HIGH BY FDAL1 H | | 11121 | | | | | | :SET FD | ALT H BACK TO THE LOW ST | ATE BY CLEARING FDALT H IN FDLA REGISTER | | 11123
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132 | 030054 0 | 042737
004737
001405
104455
000004
002676
005020 | 000002
006672 | 002342 | 29\$: | BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #FDAL1,R6LOAD PC,LDRDR6 30\$ 4.EOAIFD,R06ERR C\$ERDF 4 EOAIFD R06ERR C\$CLP1 | SETUP TO CLEAR FDAL1 H GO LOAD, READ AND CHECK FDAL AND EOAI IF OK THEN CONTINUE FOAI OR FDAL REGISTER ERROR | | 11134
11135
11136
11137 | | | | | | :WHEN FI
:SIGNAL
:SIGNAL
:SIGNAL | PALT H IS A ZERO AND THE PSLO H WILL BE ASSERTED READ H WILL BE READ AS A READ H IS READ IN THE VI | DMG FLIP-FLOP IS SET TO A ONE, THE LOW. WHEN PSLO H IS ASSERTED LOW, THE A ZERO IN THE VDAL REGISTER. THE DAL REGISTER AS BIT 3. | | 11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147 | 030070
030074
030076
030076
1
030100
030102
030104
030106 | 005037
004737
001405
104455
000003
002537
005004 | 002336
006654 | | 30\$: | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | R4GOOD
PC.READR4
31\$
3.VDALRG.R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | ;EXPECT READ H TO BE A ZERO
;READ VDAL AND PAUSE STATE MACHINE
;IF OK THEN CONTINUE
;PSLO H PROBABLY NOT SET LOW | C 2 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 221 CVCDCB.P11 01-APR-82 14:12 TEST 40: CHECK THE SIGNALS 'READ H' AND 'MSDI H' 11150 RESELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 11151 11152 11153 030110 004737 006754 31\$: JSR PC.SLHDAL :SELECT HDAL REG VIA GDAL BITS 2:0 11154 :SET XSEL1 L AND XSELO L BACK TO THE HIGH STATE BY CLEARING HDAL6 AND :HDAL5 H. THIS WILL SET THE SIGNAL DMG L TO THE HIGH STATE AND ASSERT 11155 11156 11157 THE SIGNAL MSDI H TO THE HIGH STATE. THE SIGNAL KRAS H WILL BE SET LOW AND THEN BACK TO THE HIGH STATE TO CLOCK THE DMG F/F TO THE CLEARED STATE. 11158 030114 030122 030126 11159 012737 030004 002342 #HDAL13!HDAL12!HDAL2,R6LOAD ; SETUP BITS TO BE CLEARED PC.XRASL ; SET XRAS H TO LOW STATE MOV 11160 004737 007336 JSR PC.XRASL 11161 004737 PC , XRASH SET KRAS H TO HIGH STATE JSR 11162 11163 READ THE VDAL REGISTER TO CHECK THAT READ H AND MSDI H ARE ASSERTED ;HIGH WHEN MR11 H, XR/WHB L, XRAS H, XCAS H, PSLO H, XSELO L, ADAL10 H, ;REAT H, AND ETR L ARE ASSERTED HIGH AND THE PAUSE STATE WORKING FLIP-;FLOP IS CLEARED. 11164 11165 11166 11168 11169 030132 000110 002336 #VDAL6! VDAL3, R4GOOD BIS EXPECT READ H AND MSDI H TO BE SET 030140 004737 006654 PC.READR4 **JSR** : READ VDAL AND PAUSE STATE MACHINE 11170 030144 001405 BEQ : IF OK THEN CONTINUE 11171 030146 ERRDF 3, VDALRG, R4EROR :DMG FLIP-FLOP PROBABLY NOT CLEARED 11172 030146 104455 TRAP C\$ERDF 030150 000003 11173 - WORD 11174 030152 002537 . WORD **VDALRG** 11175 030154 005004 . WORD R4EROR 030156 11176 11177 CKLOOP 030156 104406 TRAP CSCLP1 11178 11179 SET THE SIGNAL DMG L TO THE LOW STATE AGAIN BY SETTING XSELO L AND ;XSEL1 L TO THE LOW STATE. WHEN DMG L IS ASSERTED LOW, THE DMG FLIP-;FLOP WILL BE SET TO A ONE, THUS CAUSING THE SIGNAL PSLO H TO BE ;ASSERTED LOW. WHEN PSLO H IS SET LOW, THE SIGNAL REAT H, WHICH IS HIGH, ;WILL BE DISBALED FROM THE SIGNAL READ H, THUS CAUSING READ H TO BE 11180 11181 11182 11183 11184 READ IN THE VDAL REGISTER AS A ZERO. 11185 11186 11187 052737 004737 030160 000140 002342 32\$: BIS #HDAL6!HDAL5,R6LOAD SETUP BITS TO BE LOADED 030166 030172 006672 PC_LDRDR6 **JSR** ; LOAD, READ AND CHECK HDAL REGISTER 11188 001405 BEQ : IF OK THEN CONTINUE 11189 030174 ERRDF 4, HDALRG, ROSERR HDAL REGISTER NOT EQUAL EXPECTED 11190 030174 104455 TRAP C\$ERDF 11191 030176 000004 . WORD 030200 030202 030204 11192 11193 002605 . WORD HDALRG 005020 . WORD R06ERR 11194 CKLOOP 11195 030204 104406 TRAP C\$CLP1 11196 11197 READ THE VDAL REGISTER TO CHECK THAT PSLO H IS ASSERTED LOW AS A RESULT OF THE
DMG FLIP-FLOP BEING SET TO A ONE AND THAT MSDI H IS 11198 11199 :ASSERTED LOW AS A RESULT OF XSELO L BEING ASSERTED LOW. 11200 030206 030212 030216 030220 11201 11202 11203 005037 004737 33\$: CLR R4GOOD EXPECT READ H AND MSDI H TO BE A O JSR PC.READR4 READ VOAL AND PAUSE STATE MACHINE 001405 : IF OK THEN CONTINUE BEQ 11204 3. VDALRG, R4EROR ERRDF : VDAL OR PAUSE STATE MACHINE ERROR 11205 030220 104455 TRAP **CSERDF** | CVCDCB. | 030222
030222
030224
030226
030230
030230 | 000003
002537
005004 | 30A(1052
14:12 |) 01-AF | R-82
TEST | 14:48 PAGE 222 40: CHECK THE SIGNALS 'READ H' AND 'MSDI H' .WORD 3 .WORD VDALRG .WORD R4EROR CKLOOP | |--|--|--|--------------------------------------|----------------------------|--------------|---| | 11210
11211
11212
11213
11214 | 030230 | 104406 | | | | TRAP C\$CLP1 ;SET DMG L TO THE HIGH STATE AGAIN BY SETTING XSELO L AND XSEL1 L TO ;THE HIGH STATE. WHEN XSELO L IS RETURNED TO THE HIGH STATE, MSDI H ;WILL BE ASSERTED HIGH. | | 11206
11207
11208
11209
11210
11211
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11227
11228
11227
11236
11237
11236
11237
11236
11237 | 030232
030240
030244
030246
030250
030250
030254
030256
030256 | 042737
004737
001405
104455
000004
002605
005020
104406 | 000140
006672 | 002342 | | BIC #HDAL6!HDAL5,R6LOAD ;SETUP TO SET XSELO L AND XSEL1 L HIGH ;GO LOAD, READ AND CHECK HDAL REGISTER ;IF OK THEN CONTINUE ;HDAL REGISTER NOT EQUAL TO EXPECTED C\$ERDF .WORD | | 11227
11228
11229
11230
11231
11232 | | | | | | SET VDAL2 H TO A ONE TO SET THE SIGNAL INVO L TO THE LOW STATE. WHEN VDAL2 H IS ASSERTED LOW, THE DMG FLIP-FLOP WILL BE CLEARED, THUS CAUSING THE SIGNAL PSLO H TO BE ASSERTED HIGH AGAIN. READ THE VDAL REGISTER TO CHECK THAT READ H AND MSDI H ARE ONES AS A RESULT OF REAT H BEING ASSERTED HIGH, PSLO H BEING ASSERTED HIGH AND XSELO L BEING ASSERTED HIGH. | | 11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245 | 030260
030266
030274
030302
030306
030310
030310
030312
030314
030316
030320
030320 | 012737
013737
052737
004737
001405
104455
000003
002537
005004
104406 | 000004
002334
000110
006646 | 002334
002336
002336 | 35\$: | MOV #VDAL2,R4LOAD ;SETUP BIT TO SET INVD L LOW COPY DATA LOADED TO EXPECTED ;SETUP TO EXPECT READ H AND MSDI H AS 1°S LOAD, READ AND CHECK VDAL REGISTER ;IF LOADED OK THEN CONTINUE ;INVD L FAILED TO CLEAR DMG FLIP-FLOP TRAP C\$ERDF .WORD 3 .WORD R4EROR CKLOOP TRAP C\$CLP1 | | 11246
11247
11248
11249 | | | | | | SET THE SIGNAL INVO L BACK TO THE HIGH STATE BY CLEARING VDAL2 H. SET THE SIGNAL FETCT H TO THE HIGH STATE BY SETTING VDAL7 H TO A ONE. THE SIGNALS READ H AND MSDI H SHOULD STILL BE READ AS ONES IN VDAL REG. | | 11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261 | 030322
030330
030336
030344
030350
030352
030352
030354
030360
030362 | 012737
013737
052737
004737
001405
104455
000003
002537
005004 | 000200
002334
000110
006646 | 002334
002336
002336 | 36\$: | MOV #VDAL7.R4LOAD ;SETUP BIT TO LOAD - CLEAR VDAL2 H MOV R4LOAD.R4GOOD ;COPY DATA LOADED TO EXPECTED BIS #VDAL6!VDAL3.R4GOOD ;EXPECT READ H AND MSDI H TO BE ONES JSR PC.LDRD4R ;LOAD. READ AND CHECK VDAL REGISTER BEQ 37\$;IF LOADED THEN CONTINUE IF LOADED THEN CONTINUE VDAL OR PAUSE STATE MACHINE ERROR WORD VDALRG WORD R4EROR CKLOOP | | HARDW
CVCDC | B.P11 0 | MACY11
1-APR-82
104406 | 30A(1052
14:12 |) 01-AP | R-82 14
TEST 40 | :48 PAG
: CHECK | E 2 SE 223 THE SIGNALS 'READ H' AND C\$CLP1 | 'MSDI H'' | |--|--|--------------------------------------|----------------------------|------------------|--------------------|-----------------------------------|---|--| | 1126 | 3 | 104400 | | | | THE PR | OGRAM WILL NOW PULSE XRA | AS H FROM THE HIGH STATE TO THE LOW SH STATE. WHEN XRAS H IS RETURNED STATE WORKING FLIP-FLOP WILL BE DIRECT OP H AND EDFET H BEING ASSERTED HIGH. | | 1126 | 9 030364 | 004737
004737 | 007336
007304 | | 37\$: | JSR
JSR | PC,XRASL
PC,XRASH | SET XRAS H TO LOW STATE | | 1126
1126
1126
1126
1127
1127
1127
1127 | 2 | | | | | : THE SI | THE PAUSE STATE WORKING F
I AND MSDI H WILL BE ASSE
GNAL REAT H WILL BE DISA
IG THE SIGNAL READ H TO B | LIP-FLOP IS SET TO A ONE, THE SIGNALS RTED LOW. WHEN PSLO H IS ASSERTED LOW BLED FROM THE VDAL REGISTER THUS BE READ AS A ZERO. | | 1127
1127
1127
1128 | 7 030374
8 030402
9 030410
0 030414
1 030416 | 052737
042737
004737
001405 | 001000
000110
006654 | 002336
002336 | | BIS
BIC
JSR
BEQ
ERRDF | #VDAL9,R4GOOD
#VDAL6!VDAL3,R4GOOD
PC,READR4
38\$ | :EXPECT PSMW H TO BE SET TO A ONE
:EXPECT READ H AND MSDI H TO BE A O
:READ VDAL AND PAUSE STATE MACHINE
:IF OK THEN CONTINUE | | 1127
1127
1128
1128
1128
1128
1128
1128 | 2 030416
3 030420
4 030422
5 030424
6 030426 | 104455
000003
002537
005004 | | | | TRAP
.WORD
.WORD | 3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR | PSMW L PROBABLY NOT ASSERTED LOW | | 1128 | 7 030426 | 104406 | | | | TRAP | C\$CLP1 | | | 1128 | ő | | | | | ; CLEAR | ALL BITS IN HDAL REGISTE | R EXCEPT HDAL2 H | | 1129
1129
1129
1129 | 1 030430
2 030436
3 030442
4 030444 | 012737
004737
001405 | 000004
006672 | 002342 | 38\$: | MOV
JSR
BEQ
ERRDF | #HDAL2,R6LOAD
PC,LDRDR6
39\$
4,HDALRG,R06ERR | ;SETUP TO CLEAR ALL BITS EXCEPT HDAL2 H ;LOAD, READ ADN CHECK HDAL REGISTER ;IF LOADED OK THEN CONTINUE ;HDAL REGISTER NOT EQUAL EXPECTED | | 1129
1129
1129
1129 | 4 030444
5 030444
6 030446
7 030450
8 030452
9 030454 | 104455
000004
002605
005020 | | | | TRAP
.WORD
.WORD
.WORD | C\$ERDF
4
HDALRG
ROGERR | THE REGISTER HOT ENGLE EXPECTED | | 1129
1130 | 9 030454 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | 1130
1130
1130
1130 | 1
2
3 | | | | | :PULSE | | E STATE MACHINE FLIP-FLOPS AND ANY OTHER THIS TIME. | | 1130 | 5 030456
6 030462 | 005037
004737 | 002334
007712 | | 39\$: | CLR
JSR | R4LOAD
PC,CLRPSM | :EXPECT VDAL REGISTER BITS TO BE ZERO ;PULSE INVD L VIA VDALZ H | | 1130 | 8 030466
9 030466 | | | | ****** | ENDSEG | | | | 1131
1131 | 0 030466
0 030470
1 030470
2 030470 | 104405 | | | 10000\$: | TRAP
ENDTST | CSESEG | | | 1131 | 3 030470 | 104401 | | | L10072: | TRAP | CSETST | | | - | HARDWARE TE
CVCDCB.P11 | STS MACY | 11 30A(1052
-82 14:12 | 2) 01-AF | PR-82 14 | :48 PAG | F 2
E 224
THE SIGNALS "FETCT H" A | ND 'BTS1 H'' | |---|--|---|--------------------------|----------|-------------------------|---|---|---| | | 11314 | | | | .SBTTL | TEST 41 | : CHECK THE SIGNALS "FE | TCT H" AND "BTS1 H" | | | 11316
11317
11318
11319
11320
11321
11322 | | | | THIS AND L SIGNAL LOGIC | TEST WILL
OW. THE
LS TO TH
IS USE
IE SIGNA | L CHECK THAT THE SIGNAL SE TWO SIGNALS ARE ASSE E GATES WHICH GENERATE TO TEST THE SIGNAL FET BTS1 H. THE SIGNAL BT | S FETCT H AND BTS1 H CAN BE ASSERTED HIGH
RTED HIGH AND LOW BY CHANGING THE INPUT
THESE SIGNALS. THE PAUSE STATE MACHINE
CT H. THE SIGNAL FETCT H IS ALSO CHECKED
S1 H IS READ IN THE VDAL REGISTER ON BIT 5. | | 1 | 11324 030
11325 030 | 472 | | | 7/1 | BGNTST | | | | 1 | 11326 030 | 72 0047 | 37 005510 | | 141:: | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | | 11328 030
11329 030 | 476
476 10440 | 04 | | | BGNSEG
TRAP |
C\$BSEG | | | ١ | 11331 | | | | | :SELECT | THE MODE REGISTER VIA | GDAL BITS 2:0 IN CONTROL REGISTER 0 | | ١ | 11333 030 | 500 0047 | 37 007006 | | | JSR | PC,SLMODR | SELECT MODE REGISTER VIA GDAL BITS 2:0 | | ١ | 11335 | | | | | :CLEAR | ALL BITS IN THE MODE RE | GISTER WHICH WILL SET ALL OUTPUTS LOW. | | | 11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
030
11325
030
11327
11328
030
11329
030
11330
11331
11332
11333
11334
11335
11336
11337
030
11340
030
11341
030
11342
030
11342
030
11343
030
11344
030
11345
030
11346
030 | 514 00140
516 10449
520 00000
522 00263
524 00503 | 55
54
51
20 | | | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | R6LOAD
PC,LDRDR6
1\$
4,MODREG,RO6ERR
C\$ERDF
4
MODREG
R06ERR | ;SETUP TO CLEAR ALL BITS ;GO LOAD, READ AND CHECK MODE REGISTER ;IF LOADED OK THEN CONTINUE ;MODE REGISTER NOT EQUAL TO ZERO | | ı | 11347
11348 | | | | | ;SELECT | HDAL REGISTER VIA GDAL | BITS 2:0 IN CONTROL REGISTER 0 | | I | 11350 030 | 30 00473 | 37 006754 | | 15: | JSR | PC, SLHDAL | SELECT HDAL REGISTER VIA GDAL BITS 2:0 | | | 11352
11353
11354 | | | | | :SET HDA
:IS SET
:CONTROL | AL2 H TO A ONE AND ALL O
TO A ONE, THE PROGRAM I
L SIGNALS. | OTHER HDAL BITS TO ZEROES. WHEN HDAL2 H HAS CONTROL OVER THE T-11 TIMING AND | | | 11348
11349
11350 030
11351
11352
11353
11354
11355
11356 030
11357 030
11358 030
11361 030
11361 030
11362 030
11363 030
11364 030
11365 030
11366
11367
11368
11369 | 542 00473
546 00140
550 1044 | 55
54
55
20 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL2,R6LOAD
PC,LDRDR6
2\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR
C\$CLP1 | SETUP BIT TO BE LOADED LOAD, READ AND CHECK HDAL REGISTER IF OK THEN CONTINUE HDAL REGISTER NOT EQUAL TO EXPECTED | | - | 11367
11368
11369 | | | | | :SET ADA | AL10 H TO A ONE AND ALL
NE WILL ENABLE THE SIGNA | OTHER ADAL BITS TO A ZERO. ADAL 10 H
AL BTS1 H TO VDAL REGISTER BIT 5. | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82
TEST | 14:48 PAG
41: CHECK | G 2
THE SIGNALS "FETCT H" | AND 'BTS1 H" | |--|--|--|-------------------|---------|--------------|--|---|--| | 11370
11371
11372
11373
11374
11375
11376
11377
11380
11381
11383
11384
11385
11386
11387
11389
11390
11391
11391
11393
11394
11395
11396
11397
11398
11398 | 030562
030570
030574
030576
030576
030600
030602
030604
030606 | 012737
004737
001405
104455
000002
002513
004770
104406 | 002000
006614 | 002330 | 2\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #ADAL10,R2LOAD PC,LDRDR2 3\$ 2,ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 | SETUP BIT TO BE LOADED LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | | 11381
11382
11383
11384
11385 | | | | | | :PULSE
:THE SI
:FLIP-F
:FLIP-F | THE SIGNAL INVO L BY SIGNAL INVO L, WHEN PULSI
LOPS, AND OTHER FLIP-FI
LOP | ETTING AND CLEARING THE SIGNAL VDAL2 H. ED, WILL CLEAR THE PAUSE STATE MACHINE LOPS ON THE MODULE INCLUDING THE BTFET | | 11386
11387
11388 | 030610
030614 | 005037
004737 | 002334
007712 | | 3\$: | CLR
JSR | R4LOAD
PC,CLRPSM | :SETUP TO CLEAR ALL R/W BITS
:PULSE INVD L VIA VDAL2 H | | 11389
11390
11391
11392
11393 | | | | | | ;SET TH
;LOW ST
;ZERO,
;TO A O | E SIGNAL INTER L TO THE
ATE AND XSELO L TO THE
THE SIGNAL XSELO L WILL
NE, THE SIGNAL XSEL1 L | E LOW STATE BY SETTING XSEL1 L TO THE HIGH STATE. WHEN HDAL5 H IS SET TO A L BE ASSERTED HIGH. WHEN HDAL6 H IS SET WILL BE ASSERTED LOW. | | 11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404 | 030620
030626
030632
030634
030636
030640
030642
030644 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000104
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #HDAL6!HDAL2,R6LOAD
PC,LDRDR6
4\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG
R06ERR | ;SET XSEL1 L TO LOW STATE VIA HDAL6 H
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EPXECTED | | 11/05 | | | | | | ;READ TI
;HIGH W
;IS CLE | HE VDAL REGISTER TO CHI
HEN THE SIGNAL INTER L
ARED. THE BTFET FLIP-I | ECK THAT THE SIGNAL BTS1 H IS ASSERTED IS ASSERTED LOW AND THE BTFET FLIP-FLOP FLOP WAS CLEARED WHEN INVO L WAS PULSED. | | 11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11423 | 030646
030654
030660
030662
030664
030666
030670
030672 | 052737
004737
001405
104455
000003
002537
005004
104406 | 000040
006654 | 002336 | 45: | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP
:SET THE | #VDAL5,R4GOOD PC,READR4 5\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 E SIGNAL XSEL1 L TO THE GNAL XSEL0 L TO THE LOW | ; SETUP TO EXPECT BTS1 H TO EQUAL A ONE ; READ VDAL AND PAUSE STATE MACHINE ; IF OK THEN CONTINUE ; BTS1 H NOT A 1 WHEN INTER L SET LOW HIGH STATE BY CLEARING HDAL6 H AND SET STATE BY SETTING HDAL5 H TO A ONE. WHEN | | 11423
11424
11425 | | | | | | ; WILL B
; LOW AS
; INTER | L IS ASSERTED LOW AND DE ASSERTED HIGH. THERE A RESULT OF THE BIFET L BEING ASSERTED HIGH. | HIGH STATE BY CLEARING HDAL6 H AND SET STATE BY SETTING HDAL5 H TO A ONE. WHEN KSEL1 L IS ASSERTED HIGH, THE SIGNAL INTER LEFORE, THE SIGNAL BTS1 H WILL BE ASSERTED FLIP-FLOP BEING CLEARED AND THE SIGNAL | | HARDWARE TESTS MACVIT TOA(1052) | 01-APP-82 | 14.48 PAGE 226 | 2 | |---|-----------|-----------------------|------------------------| | HARDWARE TESTS MACY11 30A(1052)
CVCDCB.P11 01-APR-82 14:12 | TEST | 41: CHECK THE SIGNALS | "FETCT H" AND "BTS1 H" | | CVCDCB.PII | 11-APK-02 | 14:12 | | 1531 41 | I: CHECK THE SIGNALS FEICH H. AND BIST H. | |--|--|------------------|--------|---------|---| | 11426
11427 030674
11428 030702
11429 030706
11430 030710
11431 030710
11432 030712
11433 030714
11434 030716
11435 030720
11436 030720
11437
11438
11439 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000044
006672 | 002342 | 5\$: | MOV #HDAL5!HDAL2,R6LOAD ;SET XSELO L LOW + XSEL1 L HIGH ;GO LOAD, READ AND CHECK HDAL REGISTER BEQ 6\$;IF LOADED OK THEN CONTINUE ;HDAL REGISTER NOT EQUAL EXPECTED ;HDAL REGISTER NOT EQUAL EXPECTED C\$CLOOP TRAP C\$CLOOP C\$CLP1 | | 11438
11439 | | | | | READ THE VDAL REGISTER TO CHECK THAT THE SIGNAL BIST H IS READ AS A ZERO WHEN INTER L IS ASSERTED HIGH AND THE BIFET FLIP-FLOP IS CLEARED. | | 11440
11441 030722
11442 030726
11443 030732
11444 030734
11445 030736
11446 030736
11447 030740
11448 030742
11449 030744
11450 030744 | 005037
004737
001405
104455
000003
002537
005004
104406 | 002336
006654 | | 6\$: | CLR R4GOOD JSR PC.READR4 BEQ 7\$ ERRDF 3.VDALRG.R4EROR TRAP C\$ERDF .WORD 3 .WORD VDALRG .WORD R4EROR CKLOOP TRAP C\$CLP1 ; SETUP TO EXPECT BTS1 H AS A ZERO ; READ VDAL AND PAUSE STATE MACHINE ; IF OK THEN CONTINUE ; BTS1 H NOT A 0 - INTER L NOT SET HIGH CKLOOP TRAP C\$CLP1 | | 11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465 | | | | | AT THIS POINT IN TIME, THE SIGNAL FETCT H SHOULD BE ASSERTED HIGH AS A RESULT OF MODE REGISTER BITS 10 AND 9 BEING
A ZERO, XSELO L ASSERTED LOW AND XSEL1 L ASSERTED HIGH. THE PROGRAM WILL NOW PULSE THE SIGNAL XRAS H BY SETTING AND CLEARING THE SIGNAL HDAL12 H. THE SIGNAL XRAS H WILL CLOCK THE STATE OF THE SIGNAL FETCT H, WHICH SHOULD BE HIGH, INTO THE EDFET FLIP-FLOP, THUS SETTING THE SIGNAL EDFET H TO THE HIGH STATE. THE SIGNAL XRAS H WILL CLOCK THE STATE OF ADAL4 H, WHICH IS LOW, INTO THE PAUSE MODE FLIP-FLOP, THUS SETTING THE SIGNAL PAUSE L TO THE HIGH STATE. THE SIGNAL SOP H WILL BE ASSERTED HIGH WHEN PAUSE L IS ASSERTED HIGH. WHEN SOP H AND EDFET H ARE ASSERTED HIGH, THE PAUSE STATE WORKING FLIP-FLOP WILL BE DIRECT SET TO A ONE, THUS SETTING THE SIGNAL PSMW H TO THE HIGH STATE. THE SIGNAL PSMW H WILL BE READ IN THE VDAL REGISTER AS VDAL BIT 9. | | 11467
11468
11469
11470
11471
11472
11473 | | | | | ; WHEN FETCT H IS ASSERTED HIGH AND A PULSE IS ISSUED ON XRAS H, THE ; BTFET FLIP-FLOP WILL BE CLOCKED TO A ONE, THUS CAUSING THE SIGNAL ; BTFET L TO BE ASSERTED LOW. WHEN BTFET L IS ASSERTED LOW AND INTER L ; IS ASSERTED HIGH, THE SIGNAL BTS1 H WILL BE ASSERTED HIGH. THE SIGNAL ; BTS1 H WILL BE READ IN THE VDAL REGISTER AS BIT 5 WHEN ADAL10 H IS ; SET TO A ONE. ADAL10 H IS A ONE AT THE PRESENT TIME. | | | 004737 | 007272 | | 7\$: | JSR PC, XRAS ;GO PULSE XRAS H VIA HDAL12 H | | 11476
11477 | | | | | READ THE VDAL REGISTER TO CHECK THAT THE SIGNALS PSMW H AND BTS1 H ; ARE ASSERTED HIGH AND THAT THEY ARE READ AS ONES IN THE VDAL REGISTER. | | 11478
11479 030752
11480 030760
11481 030764 | 052737
004737
001405 | 001040
006654 | 002336 | | BIS #VDAL9!VDAL5,R4GOOD ;EXPECT PSMW H AND BTS1 H TO BE ONES JSR PC.READR4 ;READ VDAL AND PAUSE STATE MACHINE BEQ 8\$;IF OK THEN CONTINUE | TRAP C\$CLP1 031076 11535 11536 11537 104406 :TOGGLE THE SIGNAL XRAS H BY SETTING AND CLEARING THE SIGNAL HDAL12 H. WHEN THE SIGNAL FETCT H IS ASSERTED LOW AND A PULSE IS ISSUED ON THE ;SIGNAL XRAS H, THE EDFET, BTFET AND PAUSE MODE FLIP-FLOPS WILL BE ;CLOCKED TO ZEROES. THE PAUSE STATE WORKING FLIP-FLOP WILL BE | HARDWARE
CVCDCB.P | TESTS 0 | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82
TEST | 14:48 PAGE
41: CHECK T | J
HE SIGNALS | | AND 'BTS1 I | 4" | | | |---|--|--|-------------------|---------|--------------|---|--|--|--|--|--|---| | 11538
11539
11540
11541 | | | | | | ;CLOCKED
;ALREADY
;A PULSE
;SIGNAL | TO A ZERO
BEING CLE
BEING ISS
RASP L WIL | AS A RESULTANT ARED, EPFN IN UED ON THE SEL BE PULSED | T OF THE PA
L ASSERTED
SIGNAL RASA | AUSE STAT
HIGH, EP
P L. WHE | E WORKING F
8N L ASSERT
N XRAS H IS | LIP-FLOP
ED HIGH AND
PULSED THE | | 11543 | 031100 | 004737 | 007272 | | 11\$: | JSR | PC, XRAS | | ; GO PULS | SE XRAS H | VIA HDAL12 | н | | 11545
11546
11547
11548
11549 | | | | | | BEING A | IE VDAL REG
SET WHEN TO
ASSERTED LOU
ULT OF THE O
ASSERTED HI | ISTER TO CHI
HE SIGNAL FI
W. THE SIGN
BTFET FLIP-1
GH. | ECK THAT THE TOTAL BIST HE FLOP BEING | HE PAUSE
ASSERTED
SHOULD A
A ZERO A | STATE WORKI
LOW BY THE
LSO BE ASSE
ND THE SIGN | NG FLIP-FLO
SIGNAL XSEL
RTED LOW AS
AL INTER L | | 11330 | 031104
031110
031112
031112
031114
031116
031120
031122 | 004737
001405
104455
000003
002537
005004
104406 | 006654 | | | JSR BEQ ERRDF TRAP .WORD .WORD CKLOOP TRAP | PC.READR4 12\$ 3.VDALRG.RECSERDF 3 VDALRG R4EROR C\$CLP1 | 4EROR | ; IF OK | THEN CONT | AUSE STATE
INUE
Y NOT LOW B | | | 11561
11562
11563 | | | | | | SET THE | SIGNAL XSI
EL1 L IS RI
RTED HIGH. | EL1 L BACK | THE HIGH ST | STATE B | Y CLEARING
SIGNAL FET | HDAL6 H.
CT H SHOULD | | 11570 | 031124
031132
031136
031140
031140
031142
031144
031146
031150 | 012737
004737
001405
104455
000004
002605
005020
104406 | 000044
006672 | 002342 | 12\$: | JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP | #HDAL5!HDAI
PC,LDRDR6
13\$
4.HDALRG,RG
C\$ERDF
4
HDALRG
ROGERR
C\$CLP1 | L2,R6LOAD
D6ERR | GO LOAD |), READ A
THEN CONT | HIGH STATE
ND CHECK HD
INUE
DT EQUAL EX | AL REGISTER
PECTED | | 11576 | | | | | | ;SELECT | THE MODE RE | GISTER VIA | GDAL BITS | 2:0 IN C | ONTROL REGI | STER 0 | | 1578
11579 | 031152 | 004737 | 007006 | | 13\$: | JSR | PC,SLMODR | | ;SELECT | MODE REG | VIA GDAL B | ITS 2:0 | | 11580
11581 | | | | | | SET MOD | E REGISTER | BIT 10 TO A | ONE AND P | ODE REGI | STER BIT 9 | TO A ZERO. | | 11571
11572
11573
11574
11575
11576
11576
11577
11578
11579
11581
11581
11583
11584
11585
11586
11587
11586
11587
11587
11589
11590
11591 | 031156
031164
031170
031172
031172
031174
031176
031200
031202 | 012737
004737
001405
104455
000004
002631
005020
104406 | 002000
006672 | 002342 | | JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP | #MR10,R6L0/
PC,LDRDR6
14\$
4,MODREG,R0
C\$ERDF
4
MODREG
R06ERR | | ; GO LOAD
; IF LOAD | , READ AI
ED OK TH | T MR10 H TO
ND CHECK MO
EN CONTINUE
OT EQUAL EX | HIGH STATE
DE REGISTER
PECTED | | 11593 | | | | | | ;RESELEC | T THE HDAL | REGISTER VI | A GDAL BIT | S 2:0 IN | CONTROL RE | GISTER O | J 2 | CACDCB. | P11 (| 1-APR-82 | 14:12 | | TEST 41: | CHECK | THE SIGNALS "FETCT H" | AND 'BTS1 H'' | | |--|--|--|------------------|--------|----------|---|---|--|--| | 11594
11595
11596 | 031204 | 004737 | 006754 | | | JSR | | ;SELECT HDAL REG VIA GDAL BITS 2:0 | | | 11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610 | | | | | | :THE S
:RESUL
:SET TO
:HIGH.
:THE PO
:ZERO. | IGNAL FETCT H SHOULD BE
T OF MODE REGISTER BIT
D A ZERO, XSELO L BEING
WHEN FETCT H IS ASSER
AUSE STATE WORKING AND | ASSERTED LOW AS THIS POINT IN TIME AS A 10 BEING SET TO A ONE, MODE REGISTER BIT 9 ASSERTED LOW, AND XSEL1 L BEING ASSERTED RED LOW AND A PULSE IS ISSUED ON XRAS H, BTFET FLIP-FLOPS SHOULD BE CLOCKED 10 A | | | 11604
11605
11606 | 031210
031216 | 012737
004737 | 000044
007272 | 002342 | | MOV
JSR | #HDAL5!HDAL2,R6LOAD
PC,XRAS | :BITS PREVIOUSLY LOADED :GO PULSE XRAS H VIA HDAL12 H | | | 11607
11608
11609 | | | | | | :READ
:FLIP-I
:WAS AS | THE VDAL REGISTER TO CH
FLOPS WERE CLOCKED TO Z
SSERTED LOW BY MODE REG | ECK THAT THE PAUSE STATE WORKING AND BIFET EROES BY XRAS H WHEN THE SIGNAL FETCT H SISTER BIT 10 BEING A ONE. | | | 11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626 | 031222
031226
031230
031230
031232
031234
031236 | 004737
001405
104455
000003
002537
005004 | 006654 | | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD | PC,READR4
15\$
3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR | :READ VDAL AND PAUSE STATE MACHINE
:IF OK THEN CONTINUE
:FETCT H PROBABLY NOT LOW BY MR10 H A 1 | | | 11618
11619
11620 | 031240
031240 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 11621 | | | | | | ;RESELI | ECT THE MODE REGISTER V | IA GDAL BITS 2:0 IN CONTROL REGISTER 0 | | | 11623 | 031242 | 004737 | 007006 | | 15\$: | JSR | PC,SLMODR | SELECT MODE REGISTER VIA GDAL BITS 2:0 | | | 11625 | | | | | | SET MO | DE REGISTER BITS 10 AN | D 9 TO ONES. | | | 11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11640
11641
11642
11643 | 031246
031254
031260
031262
031262
031264
031270
031272
031272 | 012737
004737
001405
104455
000004
002631
005020 | 003000
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #MR10!MR9,R6LOAD PC,LDRDR6 16\$ 4,MODREG,R06ERR C\$ERDF 4 MODREG R06ERR C\$CLP1 | ;SETUP BITS TO SET MR10 + MR9 TO HIGH STATE
;GO LOAD, READ AND CHECK MDOE REIGSTER
;IF LOADED OK THEN CONTINUE
;MODE REGISTER NOT EQUAL EXPECTED | | | 11637
11638 | | | | | | | | IA GDAL BITS 2:0 IN CONTROL REGISTER O | | | 11639 | 031274 | 004737 | 006754 | | | JSR | PC.SLHDAL | SELECT MOAL REGISTER VIA GDAL BITS 2:0 | | | 11641
11642
11643
11644
11645 | | | 000.24 | | | AT THE | | IGNAL FETCT H SHOULD BE ASSERTED HIGH AS A 9 BEING A ONE, XSELO L BEING ASSERTED LOW. | | | 11646
11647
11648
11649 | | | | | | THE
SI
THE SI
THE SI
BE SET | ROGRAM WILL NOW PULSE TO
GNAL HDAL12 H. WHEN FO
GNAL XRAS H, THE PAUSE
TO ONES. | HE SIGNAL XRAS H BY SETTING AND CLEARING
ETCT H IS HIGH AND A PULSE IS ISSUED ON
STATE WORKING AND BIFET FLIP-FLOPS SHOULD | | | | | | | | | | | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 230 CVCDCB.P11 01-APR-82 14:12 TEST 41: CHECK THE SIGNALS "FETCT H" AND "BTS1 H" | 11650
11651
11652
11653 | 031300
031306 | 012737
004737 | 000044
007272 | 002342 | | MOV
JSR | #HDAL5!HDAL2,R6LOAD
PC,XRAS | ;SETUP BITS PREVIOUSLY LOADED
;GO PULSE XRAS H VIA HDAL12 H | |--|--|--|------------------|--------|-------|---|---|--| | 11654
11655
11656 | | | | | | READ THE | THE VDAL REGISTER TO CHEC
HE BTFET FLIP-FLOP ARE SE
TED HIGH AND A PULSE BEIN | K THAT THE PAUSE STATE WORKING FLIP-FLOP
T TO ONES AS A RESULT OF FETCT H BEING
IG ISSUED ON XRAS H. | | 11654
11655
11656
11657
11658
11659
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670 | 031312
031320
031324
031326
031330
031332
031334
031336
031336 | 012737
004737
001405
104455
000003
002537
005004
104406 | 001040
006654 | 002336 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP
; PULSE | #VDAL9!VDAL5,R4GOOD PC.READR4 17\$ 3.VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 INVD L VIA VDAL2 H TO CL | | | 11670
11671
11672 | | | | | | ;FLIP-F | | | | 11673 | 031340
031344 | 005037
004737 | 002334
007712 | | 17\$: | CLR
JSR | R4LOAD
PC,CLRPSM | ; SETUP TO EXPECT ALL ZEROES ON READBACK
; PULSE INVD L VIA VDAL2 H | | 11674
11675
11676 | | | | | | ;RESELE | ECT THE MODE REGISTER VIA | GDAL BITS 2:0 IN CONTROL REGISTER 0 | | 11677 | 031350 | 004737 | 007006 | | | JSR | PC.SLMODR | SELECT MODE REG VIA GDAL BITS 2:0 | | 11678
11679
11680 | | | | | | :CLEAR | MODE REGISTER BIT9 AND L | EAVE MODE REGISTER BIT 10 SET TO A ONE. | | 11681
11682
11683
11684
11685 | 031354
031362
031366
031370
031370
031374
031376
031400 | 012737
004737
001405
104455
000004
002631
005020 | 002000
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLCOP | #MR10,R6LOAD PC,LDRDR6 18\$ 4,MODREG,R06ERR C\$ERDF 4 MODREG R06ERR | ;SETUP BIT TO BE LOADED
;GO LOAD, READ AND CHECK MDOE REGISTER
;IF LOADED OK THEN CONTINUE
;MODE REGISTER NOT EQUAL EXPECTED | | 11690 | 031400 | 104406 | | | | TRAP | C\$CLP1 | | | 11693 | 221/02 | 00/777 | 00/75/ | | | | | GDAL BITS 2:0 IN CONTROL REGISTER 0 | | 11695 | 031402 | 004737 | 006754 | | 18\$: | JSR | PC,SLHDAL | SELECT HDAL REG VIA GDAL BITS 2:0 | | 11697 | 074/0/ | | | | | | SELO L TO THE HIGH STATE | | | 11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705 | 031406
031414
031420
031422
031422
031424
031426 | 012737
004737
001405
104455
000004
002605
005020 | 000004
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD | #HDAL2,R6LOAD
PC,LDRDR6
19\$
4,HDALRG,R06ERR
C\$ERDF
4
HDALRG | ;SETUP TO SET XSELO L TO HIGH STATE
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF OK THEN CONTINUE
;HDAL REGISTER NOT EQUAL EXPECTED | | 11705 | 031430 | 005020 | | | | .WORD | R06ERR | | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AP | R-82 14
TEST 41 | :48 PAG | THE SIGNALS "FETCT H | " AND "BTS1 H" | |--|--|--|-------------------|---------|--------------------|---|--|--| | 11706
11707
11708 | 031432
031432 | 104406 | | | | CKLOOP
TRAP | CSCLP1 | | | 11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720 | | | | | | AT THI
RESULT
A ONE
IS ASS | S POINT IN TIME THE OF MODE REGISTER BI XSELO L ASSERTED HISERTED LOW AS A RESULIG THE CAI BUS. | SIGNAL FETCT H SHOULD BE ASSERTED HIGH AS A T 9 BEING A ZERO, MODE REGISTER BIT 10 BEING GH AND EIAIO L BEING ASSERTED LOW. EIAIO L T OF CAIO H BEING PULLED UP AND NO BUFFERS | | 11715
11716
11717
11718 | | | | | | THE PR
HDAL12
SIGNAL
FLOP W | OGRAM WILL NOW PULSE
H. WHEN FETCT H IS
XRAS H, THE PAUSE S
VILL BE SET TO ONES. | THE SIGNAL XRAS H BY SETTING AND CLEARING ASSERTED HIGH AND A PULSE IS ISSUED ON THE TATE WORKING FLIP-FLOP AND THE BTFET FLIP- | | 11720 | 031434 | 004737 | 007272 | | 19\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 11722
11723
11724 | | | | | | :READ T
:FLIP-F
:AND A | HE VDAL REGISTER TO
LOPS WERE SET TO ONE
PULSE BEING ISSUED O | CHECK THAT THE PAUSE STATE WORKING AND BIFET
S AS A RESULT OF FETCT H BEING ASSERTED HIGH
N XRAS H. | | 11721
11722
11723
11724
11725
11726
11727
11728
11730
11731
11732
11733
11734
11735
11736
11737 | 031440
031446
031452
031454
031454
031460
031462
031464
031464 | 012737
004737
001405
104455
000003
002537
005004
104406 | 001040
006654 | 002336 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL9!VDAL5,R4GOOD
PC.READR4
20\$
3,VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | READ VDAL AND PAUSE STATE MACHINE | | 11737
11738
11739 | | | | | | :PULSE
:FLIP-F | INVDL VIA VDAL2 H TO | CLEAR THE PAUSE STATE WORKING AND BIFET | | 11740 | 031466
031472 | 005037
004737 | 002334
007712 | | 20\$: | CLR
JSR | R4LOAD
PC,CLRPSM | ;SETUP TO EXPECT ALL ZEROES
;GO PULSE INVD L VIA VDAL2 H | | 11743 | 031476 | | | | 100000 | ENDSEG | | | | 11741
11742
11743
11744
11745
11746
11747
11748 | 031476
031476
031500
031500 | 104405 | | | 10000\$: | TRAP | CSESEG | | | 11748
11749 | 031500 | 104401 | | | L10073: | TRAP | CSETST | | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 232 CVCDCB_P11 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL 01-APR-82 14:12 11750 .SBTTL TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL 11751 11752 11753 11754 : THIS TEST WILL CHECK THAT THE SIGNAL EDEOC H CAN BE SET TO THE HIGH STATE AND TO THE LOW STATE. THE SIGNAL EDEOC H IS READ IN THE VDAL REGISTER ON BIT 4 WHEN ADAL REGISTER BIT 10 IS SET TO A ONE. THE PROGRAM WILL CHECK THE SIGNAL 11755 11756 EDEOC H TO SET AND CLEAR BY CHANGING THE LOGIC LEVEL ON THE FOLLOWING SIGNALS: ADAL9 H, PSM L, INTER L, REFR L, XRAS H, XRAS L, XCAS H, XCAS L AND SOP L. THE TEST WILL USE THE SIGNAL EDEOC H TO CHECK THAT THE REFR FLIP-FLOP CAN BE SET AND CLEARED. THE REFR FLIP-FLOP WILL BE CHECKED TO BE CLEARED BY CHANGING 11757 11758 11759 ; THE LOGIC LEVELS ON THE SIGNALS ADAL? H AND XCAS H. THE REFR FLIP-FLOP CAN ; NOT BE CHECKED TO BE CLEARED BY THE SIGNAL INVO L BECAUSE OF THE LOGIC DESIGN. 11760 11761 11762 11763 11764 11765 031502 BGNTST 031502 T42:: 031502 11766 004737 005510 JSR PC, INITTE :SELECT AND INITIALIZE TARGET EMULATOR 031506 11767 BGNSEG 11768 11769 031506 104404 TRAP C$BSEG 11770 SELECT THE HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O 11771 031510 004737 006754 11772 JSR PC, SLHDAL :SELECT HDAL REGISTER VIA GDAL BITS 2:0 11773 11774 :SET HDALZ H TO A ONE IN THE HDAL REGISTER. WHEN HDALZ H IS SET TO A 11775 ONE, THE PROGRAM AS CONTROL OF THE T-11 TIMING AND CONTROL SIGNALS 11776 012737 004737 031514 11777 000004 002342 #HDAL2, R6LOAD MOV :SETUP BIT TO BE LOADED 11778 031522 11779 031526 006672 GO LOAD, READ AND CHECK HDAL REGISTER : IF LOADED OK THEN CONTINUE JSR PC,LDRDR6 001405 BEQ 031530 11780 ERRDF 4, HDALRG, ROSERR HDAL REGISTER NOT EQUAL TO EXPECTED 11781 031530 104455 TRAP CSERDF 11782 031532 000004 . WORD 031534 11783 11784 002605 .WCPD HDALRG 031536 005020 . WORD RO6ERR 11785 031540 CKLOOP 11786 031540 104406 TRAP CSCLP1 11787 11788 SET ADAL REGISTER BIT 10 TO A ONE AND ALL OTHER ADAL REGISTER BITS TO A ZERO. ADAL 10 H ON A ONE WILL ENABLE THE SIGNAL EDEOC H TO VDAL REGISTER BIT 4. ADAL 4 H ON A ZERO WILL CAUSE THE PAUSE MODE FLIP-FLOP 11789 11790 11791 :TO BE CLOCKED TO THE PAUSE MODE WHEN XRAS H IS PULSED. ADAL9 H ON 11792 A ZERO WILL CAUSE THE ENCLK FLIP-FLOP TO BE CLOCKED TO A ZERO WHEN EITHER KRAS L OR KCAS L ARE PULSED 11793 11794 031542 012737 031550 004737 11795 002000 002330 1$: #ADAL10,R2LOAD SETUP BIT TO BE LOADED 11796 006614 PC.LDRDR2 JSR ; LOAD, READ AND CHECK ADAL REGISTER 11797 031554 001405 BEQ ; IF LOADED OK THEN CONTINUE 11798 031556 2, ADALRG, RZEROR ERRDF ADAL
REGISTER NOT EQUAL EXPECTED 031556 11799 104455 TRAP CSERDF 11800 031560 000002 . WORD 11801 031562 002513 . WORD ADALRG 11802 031564 004770 . WORD R2EROR 031566 11803 CKLOOP 11804 031566 104406 TRAP CSCLP1 11805 ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 233 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL ``` 11806 11807 PULSE THE SIGNAL INVO L BY SETTING AND CLEARING VOAL REGISTER BIT 2. WHEN INVO L IS PULSED, THE PAUSE STATE MACHINE FLIP-FLOPS, THE REFR FLIP-FLOP, THE ENCLK AND ENEDC FLIP-FLOPS WILL BE CLEARED. THE PAUSE MODE FLIP-FLOP AND THE SINGLE STEP SYNC FLIP-FLOPS 11808 11809 WILL BE PRESET TO A ONE VIA INVO L THUS SETTING THE SIGNAL PAUSE L 11810 TO THE LOW STATE AND PSM L TO THE HIGH STATE. THE SIGNAL FETCT H WILL BE ASSERTED HIGH BY SETTING VDALT H TO A ONE. WHEN XRAS H IS PULSED 11811 11812 LATER ON IN THIS TEST, THE EDFET FLIP-FLOP WILL BE CLOCKED TO A ONE SAS A RESULT OF FETCT H BEING ASSERTED HIGH. THE SIGNAL EDEOC H SHOULD 11813 11814 11815 BE READ AS A ZERO AS A RESULT OF THE FOLLOWING SIGNALS BEING ASSERTED 11816 :AS LISTED. 11817 INTER L 11818 REFR L HIGH 11819 XRAS H . LOM. 11820 XCAS L HIGH 11821 CYCLE L ADAL9 H HIGH 11822 11823 11824 11825 LOW ENCLK H LOW ENEDC H LOW - PSM L HIGH 11826 11827 11828 SOP L 002334 2$: SETUP BIT TO SET FETCT H HIGH 031570 012737 000200 MOV #VDAL7,R4LOAD 11829 031576 004737 007712 PC.CLRPSM SET FETCT H HIGH AND PULSE INVD L JSR 11830 :TOGGLE THE SIGNAL XCAS L TO CLOCK THE STATE OF ADAL9 H INTO THE ENCLK 11831 ;FLIP-FLOP, TO CLOCK THE STATE OF THE PSMW FLIP-FLOP INTO THE PSM FLIP- 11832 11833 FLOP AND TO CAUSE THE CYCLE ONE SHOT TO BE FIRED WHICH WILL CAUSE THE 11834 STATE OF ENCLK FLIP-FLOP TO BE CLOCKED INTO THE ENEDC FLIP-FLOP. ALL :THESE FLIP-FLOPS SHOULD BE CLOCKED TO A ZERO. 11835 11836 11837 031602 004737 007376 JSR PC.XCAS :PULSE XCAS H AND XCAS L VIA HDAL13 H 11838 11839 READ THE VDAL REGISTER TO CHECK THAT NO CHANGES OCCURED SINCE THE 11840 :LAST CHECK OF THE VDAL REGISTER ABOVE. 11841 11842 11843 004737 JSR 031606 006654 PC_READR4 :READ AND CHECK VDAL REGISTER 031612 001405 BEQ : IF NO CHANGE THEN CONTINUE 11844 ERRDF 031614 3, VDALRG, R4EROR : VDAL REGISTER NOT EQUAL EXPECTED 11845 031614 104455 TRAP CSERDF 11846 11847 11848 11849 000003 002537 031616 . WORD 031620 031622 031624 . WORD VDALRG 005004 R4EROR . WORD CKLOOP 11850 031624 104406 TRAP C$CLP1 11851 11852 SET ADAL REGISTER BIT 9 TO A ONE. WHEN ADAL9 H IS SET TO A ONE AND 11853 A PULSE IS ISSUED ON XRAS L OR XCAS L. THE ENCLK FLIP-FLOP WILL BE 11854 :SET TO A ONE. 11855 031626 031634 031640 031642 031642 031644 052737 004737 11856 11857 SETUP BIT TO BE LOADED 001000 002330 3$: BIS #ADAL9, R2LOAD JSR ; LOAD, READ AND CHECK ADLA REGISTER 006614 PC,LDRDR2 11858 001405 BEQ ; IF LOADED OK THEN CONTINUE 11859 2, ADALRG, RZEROR ERRDF :ADAL REGISTER NOT EQUAL EXPECTED 11860 11861 CSERDF TRAP 000002 . WORD ``` C 3 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 234 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL 11862 11863 11864 11865 002513 031646 031650 . WORD ADALRG R2EROR . WORD 031652 031652 CKLOOP 104406 TRAP C\$CLP1 11866 11867 :TOGGLE THE SIGNALS XCAS H AND XCAS L BY SETTING AND CLEARING HDAL13 H. 11868 A PULSE ON XCAS H WILL CLOCK THE OUTPUT OF THE PSMW FLIP-FLOP INTO THE PSM FLIP-FLOP THUS SETTING THE SIGNAL PSM L TO THE HIGH STATE. A PULSE ON XCAS L WILL CLOCK THE LEVEL OF ADAL9 H INTO THE ENCLK FLIP-FLOP THUS 11869 11870 11871 CLOCKING THAT FLIP-FLOP TO A ONE. A PULSE ON XCAS L WILL CAUSE A PULSE 11872 11873 ON THE SIGNAL CYCLE L WHICH WILL CAUSE THE CYCLE ONE SHOT TO BE FIRED. WHEN THE CYCLE ONE SHOT IS FIRED, THE STATE OF THE ENCLK FLIP-FLOP WILL 11874 BE CLOCKED INTO THE ENEDC FLIP-FLOP THUS SETTING THE SIGNAL ENEDC H 11875 : TO THE HIGH STATE. 11876 11877 031654 004737 007376 45: **JSR** PC.XCAS GO PULSE XCAS H AND XCAS L VIA HDAL13 H 11878 11879 READ THE VDAL REGISTER AND CHECK THAT THE SIGNAL EDEOC H IS SET TO A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING ASSERTED AS LISTED. 11880 11881 INTER L -HIGH 11882 11883 REFR L XRAS H HIGH LOW 11884 XCAS L HIGH 11885 CYCLE L ADAL9 H HIGH 11886 HIGH 11887 ENCLK H HIGH 11888 ENEDC H HIGH 11889 PSM L HIGH 11890 SOP L HIGH 11891 11892 11893 11894 11895 052737 004737 031660 BIS 000020 002336 #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ONE 031666 031672 006654 JSR PC.READR4 :READ AND CHECK VDAL REGISTER 001405 : IF OK THEN CONTINUE BEQ 031674 ERRDF 3, VDALRG, R4EROR :EDEOC H PROBABLY NOT SET 11896 031674 104455 TRAP **CSERDF** 11897 031676 000003 . WORD 11898 031700 002537 . WORD **VDALRG** 11899 031702 005004 . WORD R4EROR 11900 031704 CKLOOP 031704 11901 104406 TRAP CSCLP1 11902 11903 11904 :TOGGLE THE SIGNAL XRAS H BY SETTING AND CLEARING HDAL12 H. A PULSE ON XRAS H WILL CLOCK THE PAUSE MODE FLIP-FLOP TO A ZERO THUS SETTING THE SIGNALS PAUSE L AND SOP H TO THE HIGH STATES. A PULSE ON XRAS HE WILL ALSO CLOCK THE EDFET AND BIFET FLIP-FLOPS TO ONES AS A RESULT OF 11905 11906 11907 FETCT H BEING ASSERTED HIGH. WHEN THE VDAL REGISTER IS READ THE SIGNALS PSMW H AND BTS1 H SHOULD BE READ AS ONES AS A RESULT OF THE 11908 11909 PAUSE STATE WORKING AND BIFET FLIP-FLOPS BEING SET TO ONES. 11910 11911 031706 004737 007272 5\$: JSR PC, XRAS :GO PULSE XRAS H VIA HDAL12 H 11912 11913 READ THE VDAL REGISTER AND CHECK THAT THE SIGNAL EDEOC H WENT TO A ZERO AS A RESULT OF SOP L BEING ASSERTED LOW. THE FOLLOWING SIGNALS 11915 SHOULD BE ASSERTED AS LISTED. WHEN THE VDAL REGISTER IS READ, THE SIGNALS PSMW H AND BTS1 H SHOULD BE READ AS ONES AS A RESULT OF THE 11916 11917 PAUSE STATE WORKING AND BTFET FLIP-FLOPS BEING SET TO ONES. | HARDWARE TESTS MACY11
CVCDCB.P11 01-APR-82 | 30A(1052) 01-APR | -82 14:48 PAG
TEST 42: CHECK | E 235
THE REFR FLIP-FLOP AND 1 | THE EDEOC H SIGNAL | |--|--|--|--|---| | 11918
11919
11920
11921
11922
11923
11924
11925
11926
11927 | | | INTER L - HIGH REFR L - HIGH XRAS H - LOW XCAS L - HIGH CYCLE L - HIGH ADAL9 H - HIGH ENCLK H - HIGH ENEDC H - HIGH PSM L - HIGH SOP L - LOW | | | 11921
11922
11923
11924
11925
11926
11927
11928
11929 031712 052737
11930 031720 042737
11931 031726 004737
11932 031732 001405
11933 031734
11934 031734 104455
11935 031736 000003
11936 031740 002537
11937 031742 005004
11938 031744
11939 031744 104406 | 001040 002336
000020 002336
006654 | BIS
BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL9!VDAL5,R4GOOD #VDAL4,R4GOOD PC,READR4 6\$ 3.VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | EXPECT PSMW H TO BE A ONE
EXPECT EDEOC H TO BE A ZERO
READ AND CHECK VDAL REGISTER
IF OK THEN CONTINUE
SOP L PROBABLY FAILED TO 0 EDEOC H | | 11941
11942
11943
11944
11945 | | ; PAUSE | AL REGISTER BIT 4 TO A C
LIP-FLOP WILL BE CLOCKED
L AND SOP H TO THE LOW S
HIGH STATE. | ONE. WHEN XRAS H IS PULSED, THE PAUSE
TO RUN MODE THUS SETTING THE SIGNALS
STATE. THE SIGNAL SOP L WILL BE ASSERTED | | 11946 031746 052737
11947 031754 004737
11948 031760 001405
11949 031762
11950 031762 104455
11951 031764 000002 | 000020 002330 6
006614 | S: BIS JSR BEQ ERRDF TRAP .WORD .WORD .WORD CKLOOP TRAP | #ADAL4,R2LOAD PC,LDRDR2 7\$ 2,ADALRG,R2EROR C\$ERDF 2 ADALRG R2EROR C\$CLP1 | ;SETUP BIT TO BE LOADED
;LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | | 11957
11958
11959 | | SET THE OCCURED PULSED | D IN THE VDAL REGISTER. | LOW STATE AND CHECK THAT NO CHANGES HAVE NO CHANGES SHOULD OCCUR UNTIL XRAS H IS | | 11952 031766 002513
11953 031770 004770
11954 031772
11955 031772 104406
11956
11957
11968
11960
11961 031774 042737
11962 032002 042737
11963 032010 004737
11964 032014 001405
11965 032016
11966 032016 104455
11967 032020 000003
11968 032022 002537
11969 032024 005004
11970 032026
11971 032026 104406
11972
11973 | 000200 002334 7
000200 002336
006646 | PS: BIC BIC JSR BEQ ERRDF TRAP . WORD . WORD CKLOOP TRAP | #VDAL7,R4LOAD
#VDAL7,R4GOOD
PC,LDRD4R
8\$
3.VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | SETUP BIT TO CLEAR FETCT H EXPECT FETCT H TO BE A O ON A READ LOAD, READ AND CHECK VDAL REGISTER IF OK THEN CONTINUE VDAL REGISTER NOT EQUAL EXPECTED | | 11973 | | ;PULSE | THE SIGNAL XRAS H TO SET | THE SIGNAL PAUSE L TO THE LOW STATE AND | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 236 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL ``` 11974 THE SIGNAL SOP L TO THE HIGH STATE. THE SIGNALS EDFET H AND BTFET H 11975 WILL BE CLOCKED TO A LOW STATE AS A RESULT OF THE SIGNAL FETCT H BEING :ASSERTED LOW AND A PULSE BEING ISSUED ON THE SIGNAL XRAS H. 11976 11977 11978 032030 004737 007272 8$: JSR PC.XRAS :GO PULSE XRAS H VIA HDAL12 H 11979 11980 READ THE VDAL REGISTER AND CHECK THE THE SIGNAL EDEOC H IS SET TO A 11981 ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET TO THE STATES LISTED 11982 INTER L - HIGH 11983 HIGH REFR L 11984 XRAS H LOW 11985 XCAS L HIGH 11986 CYCLE L ADAL9 H HIGH 11987 HIGH
11988 HIGH ENCLK H - 11989 ENEDC H . HIGH 11990 PSM L HIGH 11991 SOP L HIGH 11992 032034 032042 032050 11993 052737 042737 002336 #VDAL4,R4GOOD #VDAL5,R4GOOD 000020 EXPECT EDEOC IN TO BE SET TO A ONE 11994 000040 BIC EXPECT BTS1 H TO BE A ZERO 11995 004737 006654 JSR PC, READR4 : READ AND CHECK VDAL REGISTER 11996 032054 001405 BEQ : IF OK THEN CONTINUE 11997 032056 ERRDF 3. VDALRG, R4EROR EDEOC H PROBABLY NOT SET TO A ONE 11998 032056 104455 TRAP CSERDF 11999 032060 000003 . WORD 12000 002537 032062 . WORD VDALRG 12000 12001 12002 12003 12004 12005 032064 032066 005004 . WORD R4EROR CKLOOP 032066 104406 TRAP CSCLP1 PULSE THE SIGNALS XCAS H AND XCAS L BY SETTING AND CLEARING HDAL13 H. A PULSE ON XCAS K WILL CLOCK THE PSM FLIP-FLOP TO A ZERO AS A RESULT 12006 12007 OF THE PSMW FLIP-FLOP BEING SET TO A ONE. THE ENEDC FLIP-FLOP WILL AGAIN BE CLOCKED TO A ONE AS A RESULT OF XCAS L BEING PULSED AND 12008 12009 :ADAL9 H BEING SET TO A ONE. 12010 12011 12012 12013 12014 12015 032070 004737 007376 95: JSR PC.XCAS GO PULSE XCAS H AND XCAS L VIA HDAL13 H CHECK EDEOC H TO BE A ZERO AS A RESULT OF THE PSM FLIP-FLOP BEING :CLEARED. TEH FOLLOWING SIGNALS SHOULD BE ASSERTED IN THE STATES AS :LISTED BELOW. 12016 12017 12018 12019 12020 INTER L HIGH REFR L HIGH XRAS H LOW XCAS L HIGH CYCLE L HIGH HIGH ENCLK H HIGH ENEDC H HIGH - PSM L LOW SOP L HIGH 12026 12027 12028 12029 032074 042737 002336 000020 BIC #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ZERO 032102 006654 JSR PC.READR4 READ AND CHECK VDAL REGISTER 001405 BEQ : IF OK THEN CONTINUE ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 237 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL | CACDC | D.P11 U | 11-APR-02 | 14:12 | 1631 42 | : CHECK IN | HE KELK LLIP | -FLUP AND IF | HE EDEUL H S | SIGNAL | | | |---|--|--|------------------|---------|---|--|---|---|---|------------------------------------|------------------------------------| | 12030
12033
12033
12033
12036
12036
12036
12040
12040
12040
12040 | 0 032110
0 032110
2 032112
3 032114
4 032116
5 032120
0 032120 | 104455
000003
002537
005004
104406 | | | TRAP C.WORD 3.WORD V.WORD RCKLOOP | 3, VDALRG, R4E
CSERDF
3
VDALRG
R4EROR
CSCLP1 | ROR | ;PSM L PROE | BABLY NOT A | ASSERTED L | OM | | 12038
12039
12040
12040
12040 | | | | | ; THE EDFE | FLIP-FLOPS | D L BE SETTI
VILL CLEAR AL
P, THE ENCLK
WILL BE PRES
STATE AND PS | SET TO A ONE | FLIP-FLOPS THUS SET | ING THE PA | BIT 2.
-FLOPS,
USE
IGNALS | | 12044 | 032122
032126 | 005037
004737 | 002334
007712 | 10\$: | | R4LOAD
PC,CLRPSM | | :SETUP TO C | LEAR ALL F | VDAL2 H | | | 12046
12047
12048
12049
12050 | | | | | :PULSE TH
:MODE FLI
:ASSERTED
:RESULT O | HE SIGNAL XR
IP-FLOP WILL
D HIGH. THE
DF ADAL9 H B | AS H BY SETT
BE SET TO F
ENCLK FLIP-
BEING ASSERTE | TING AND CLE
RUN MODE AS
-FLOP WILL E
ED HIGH. | EARING HDAL
A RESULT O
BE CLOCKED | 12 H. TH
OF ADAL4 H
TO A ONE | E PAUSE
BEING
AS A | | 12052 | 032132 | 004737 | 007272 | | JSR P | PC, XRAS | | ;GO PULSE > | CRAS H VIA | HDAL12 H | | | 12048
12048
12048
12058
12058
12058
12058
12058
12068
12068
12068
12068
12068
12068
12068
12068
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078
12078 | | | | | PULSING | XRAS H, THINTER L - REFR L - REFR L - RCAS H - RCAS L - RCAS L - RCLE R | TO CHECK THA
E FOLLOWING
HIGH
LOW
HIGH
HIGH
HIGH
LOW
HIGH
HIGH
HIGH
HIGH
HIGH | AT EDEOC H 1
SIGNALS SHO | IS STILL A | ZERO AFTE
SERTED AS | RLISTED | | 12067
12068 | 032136
032142
032144 | 004737
001405 | 006654 | | BEQ 1 | PC READR4 | 000 | :READ AND C | CONTINUE | | | | 12070
12071
12073
12073
12074 | 032144
032146
032150
032152
032154
032154 | 104455
000003
002537
005004 | | | TRAP C
.WORD 3
.WORD V
.WORD R
CKLOOP | S, VDALRG,R4E
SERDF
JDALRG
R4EROR
SCLP1 | NUK | ;INVD L PRO | BABLY NUT | O'ED ENED | | | 12076
12077
12078
12079 | | | | | :PULSE TH | E SIGNALS X | CAS H AND XC | 1E PSM FLIP- | FLOP TO A | LEARING HE | DAL13 H.
PULSE ON | | 12080
12081
12082 | 032156 | 004737 | 007376 | 115: | JSR P | PC.XCAS | | :GO PULSE X | CAS H AND | XCAS L VI | A HDAL13 H | | 12083
12084
12085 | | | | | READ THE ONE AS A SHOULD B | VDAL REGIS
RESULT OF
BE ASSERTED | TER TO CHECK
ENEDC FLIP-F
AS LISTED BE | THAT THE S
LOP BEING S
LOW | IGNAL EDEO | C H WAS SI | ET TO A
DLLOWING SIGNALS | ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 238 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL CVCDCB_P11 12086 INTER L HIGH 12087 REFR L HIGH 12088 XRAS H LOW 12089 XCAS L HIGH 12090 CYCLE L HIGH 12091 HIGH 12092 ENCLK H HIGH 12093 12094 ENEDC H HIGH PSM L HIGH 2095 SOP L HIGH 032162 032170 032174 052737 12097 000020 002336 BIS #VDAL4,R4GOOD :EXPECT EDEOC H TO BE ASSERTED 12098 12099 006654 PC READR4 JSR READ AND CHECK VDAL REGISTER IF OK THEN CONTINUE 001405 BEQ 12100 032176 ERRDF 3, VDALRG, R4EROR : VDAL REGISTER NOT EQUAL EXPECTED 12101 032176 104455 C$ERDF TRAP 032200 032202 032204 032206 12102 12103 12104 12105 000003 . WORD 002537 . WORD VDALRG 005004 -WORD R4EROR CKLOOP 12106 032206 104406 TRAP C$CLP1 12107 SET THE SIGNALS XCAS H AND XCAS L TO THE HIGH AND LOW STATE RESPECTIVELY BY SETTING HDAL13 H TO A ONE. XCAS H BEING SET HIGH WILL CLOCK THE SINGLE STEP SYNC FLIP-FLOP TO A ONE THUS SETTING THE SIGNAL PSM L TO 12108 12109 12110 12111 :THE HIGH STATE. 12113 12114 12115 032210 004737 007410 125: JSR PC.XCASH :SET XCAS H HIGH AND XCAS L LOW :READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ZERO AS A RESULT OF 12116 THE SIGNALS BELOW BEING IN THE FOLLOWING STATE. 12117 INTER L - HIGH 12118 REFR L HIGH 12119 XRAS H LOW 12120 12121 LOW XCAS L ENEDC H - HIGH 12122 12123 12124 12125 12126 12127 PSM L HIGH SOP L HIGH 032214 032222 032226 032230 032230 032232 032234 032236 032240 042737 000020 006654 002336 BIC #VDAL4_R4GOOD EXPECT EDEOC H TO BE A ZERO PC READR4 JSR READ VOAL AND PAUSE STATE MACHINE 001405 BEQ ; IF OK THEN CONTINUE 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 ERRDF 3, VDALRG, R4EROR : VDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP C$ERDF 000003 002537 . WORD . WORD VDALRG 005004 . WORD R4EROR CKLOOP 032240 104406 TRAP C$CLP1 SET THE SIGNALS XCAS H AND XCAS L TO THE LOW AND HIGH STATE RESPECTIVELY BY CLEARING HDAL13 H IN THE HDAL REGISTER. 12138 12139 032242 004737 007442 13$: JSR PC.XCASL SET XCAS H LOW AND XCAS L HIGH 12140 12141 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF ``` G 3 ``` TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL CVCDCB_P11 01-APR-82 14:12 12142 12143 12144 THE FOLLOWING SIGNALS BEING SET AS LISTED. INTER L - HIGH REFR L HIGH 12145 XRAS H LOW 12146 XCAS L HIGH 12147 ENEDC H HIGH - 12148 PSM L HIGH 12149 SOP L HIGH 12150 032246 032254 032260 032262 032262 052737 004737 12151 000020 006654 002336
BIS #VDAL4,R4GOOD EXPECT EDEOC H TO BE SET TO A ONE 12152 12153 12154 12155 PC READR4 JSR :READ VDAL AND PAUSE STATE MACHINE 001405 BEQ ; IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR EDEOC H PROBABLY NOT SET HIGH 104455 TRAP CSERDF 032264 032266 032270 032272 12156 000003 . WORD 12157 12158 002537 . WORD VDALRG 005004 . WORD R4EROR 12159 CKLOOP 032272 12160 104406 TRAP CSCLP1 12161 12162 12163 SET THE SIGNAL KRAS H TO THE HIGH STATE BY SETTING HDAL12 H TO A ONE. : WHEN ADAL? H IS A ZERO, THE REFR FLIP-FLOP WILL BE HELD TO THE 12164 CLEARED STATE AND WILL NOT BE CLOCKED TO A ONE BY XRAS L WHEN THE 12165 SIGNAL INTER L IS ASSERTED HIGH. THERFORE THE SIGNAL REFR L WILL 12166 : REMAIN ASSERTED HIGH. 12167 032274 004737 007304 12168 145: JSR PC.XRASH ;SET XRAS H HIGH AND XRAS L LOW 12169 12170 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF 12171 THE FOLLOWING SIGNALS BEING SET AS LISTED. 12172 12173 12174 INTER L - HIGH REFR L HIGH XRAS H HIGH 12175 XCAS L HIGH 12176 ADAL9 H • HIGH 12177 PSM L HIGH 12178 SOP L HIGH 12179 032300 032304 PC.READR4 12180 004737 006654 JSR READ VDAL AND PAUSE STATE MACHINE 12181 001405 BEQ : IF OK THEN CONTINUE 032306 032306 032310 032312 032314 12182 12183 12184 12185 ERRDF 3, VDALRG, R4EROR EDEOC H PROBABLY ASSERTED LOW 104455 TRAP C$ERDF 000003 . WORD 002537 . WORD VDALRG 12186 005004 WORD R4EROR 12187 032316 CKLOOP 032316 12188 104406 TRAP C$CLP1 12189 12190 SET THE SIGNAL INTER L TO THE LOW STATE BY SETTING XSEL1 L TO THE 12191 :LOW STATE. XSEL1 L WILL BE SET LOW BY SETTING HDALG H TO A ONE. 12192 12193 12194 12195 032320 032326 032332 032334 052737 004737 000100 002342 15$: #HDAL6, R6LOAD BIS SET XSEL1 L TO THE LOW STATE 006672 JSR GO LOAD, READ AND CHECK HDAL REGISTER IF LOADED OK THEN CONTINUE PC,LDRDR6 001405 BEQ 16$ 12196 HDAL REGISTER NOT EQUAL EXPECTED ERRDF 4, HDALRG, ROSERR 032334 12197 104455 TRAP C$ERDF ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 240 CVCDCB_P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL 032336 032340 032342 032344 032344 12198 12199 000004 . WORD 002605 HDALRG . WORD 12200 12201 12202 12203 12204 12205 WORD RO6ERR CKLOOP 104406 TRAP CSCLP1 : CHECK THE SIGNAL BTS1 H TO BE SET TO A ONE AS A RESULT OF THE BTFET FLIP-FLOP BEING CLEARED AND THE SIGNAL INTER L BEING ASSERTED LOW. READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ZERO AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED. INTER L - LOW HIGH REFR L XRAS H HIGH XCAS L HIGH ENEDC H HIGH PSM L HIGH SOP L HIGH 12216 12217 12218 12219 032346 032354 032362 032366 052737 042737 004737 002336 002336 000040 #VDAL5,R4GOOD #VDAL4,R4GOOD 165: BIS EXPECT BTS1 H TO BE A ONE VIA INTER L 000020 006654 BIC EXPECT EDEOC H TO BE A ZERO PC READR4 JSR READ VOAL AND PAUSE STATE MACHINE 001405 BEQ : IF OK THEN CONTINUE 12220 12221 12222 12223 12224 12225 12226 032370 ERRDF 3, VDALRG, R4EROR EDEOC H NOT O WHEN INTER L SET LOW 032370 032372 032374 032376 032400 104455 TRAP C$ERDF 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOCP 032400 104406 TRAP C$CLP1 12227 12228 12229 :SET THE SIGNAL XRAS H TO THE LOW STATE BY CLEARING HDAL12 H. 032402 004737 175: 007336 JSR PC, XRASL SET XRAS H TO THE LOW STATE READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED INTER L LOW REFR L HIGH XRAS H LOW XCAS L HIGH ENEDC H HIGH - PSM L HIGH SOP L HIGH 032406 032414 032420 032422 032422 032424 032426 032430 032432 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 052737 004737 002336 000020 BIS #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ONE 006654 JSR PC, READR4 READ VOAL AND PAUSE STATE MACHINE 001405 BEQ 18$: IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR EDEOC H NOT 1 WHEN XRAS H SET LOW 104455 TRAP CSERDF 000003 ``` . WORD . WORD WORD CKLOOP TRAP **VDALRG** R4EROR C\$CLP1 SET THE SIGNAL INTER L BACK TO THE HIGH STATE BY SETTING XSEL1 L HIGH. 002537 005004 104406 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 241 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL ``` :XSEL1 L IS SET HIGH BY CLEARING HDAL6 H IN THE HDAL REGISTER. 032434 032442 032446 032450 032450 032452 032454 032460 12256 12257 12258 12259 042737 000100 002342 18$: #HDAL6, R6LOAD SETUP TO SET XSEL1 L TO HIGH STATE 006672 PC.LDRDR6 JSR GO LOAD, READ AND CHECK HOAL REGISTER 001405 BEQ : IF LOADED OK TEHN CONTINUE ERRDF 4, HDALRG, ROSERR HDAL REGISTER NOT EQUAL EXPECTED 12260 104455 TRAP CSERDF 12261 12262 12263 12264 000004 . WORD 002605 . WORD HDALRG 005020 . WORD RO6ERR CKLOOP 12265 12266 12267 12268 12269 032460 104406 TRAP CSCLP1 CHECK THE SIGNAL BTS1 H TO BE A ZERO AS A RESULT OF THE BTFET FLIP-FLOP BEING CLEARED AND THE SIGNAL INTER L BEING SET TO THE HIGH STATE. READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED BELOW. INTER L - HIGH REFR L XRAS H HIGH LOW XCAS L HIGH ENEDC H - HIGH PSM L HIGH SOP L HIGH 12279 12280 032462 042737 000040 002336 19$: BIC #VDAL5,R4GOOD EXPECT BTS1 H TO BE A O VIA INTER L 032470 032474 032476 032476 032500 12281 12282 12283 12284 12285 004737 006654 JSR READ VOAL AND PAUSE STATE MACHINE PC, READR4 001405 BEQ ; IF OK THEN CONTINUE ERRDF 3, VDALRG, R4EROR EDEOC H NOT A ONE WHEN INTER L HIGH 104455 TRAP CSERDF 000003 . WORD 12286 12287 12288 12289 12290 12291 12292 12293 032502 032504 032506 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 032506 104406 TRAP CSCLP1 ;SET THE SIGNAL ADAL? H TO A ONE. WHEN ADAL? H IS A ONE, THE REFR FLIP- ;FLOP CAN BE CLEARED EITHER BY XCAS H BEING SET HIGH, OR INVO L BEING ;SET LOW, OR BY ADAL? H BEING SET BACK TO A ZERO. THE REFR FLIP-FLOP CAN NOT BE CHECKED TO BE CLEARED BY THE SIGNAL INVO L BECAUSE OF THE :LOGIC DESIGN. 032510 032516 032522 032524 032524 032526 032530 032532 12297 12298 12299 12300 052737 004737 000200 002330 20$: BIS #ADAL7,R2LOAD SETUP BIT TO BE LOADED 006614 PC_LDRDR2 21$ JSR GO LOAD, READ AND CHECK ADAL REGISTER 001405 BEQ : IF OK THEN CONTINUE ERRDF ADALRG, RZEROR :ADAL REGISTER NOT EQUAL EXPECTED 12301 104455 TRAP C$ERDF 12302 12303 12304 12305 000002 002513 004770 . WORD . WORD ADALRG WORD R2EROR CKLOOP 12306 12307 12308 12309 104406 TRAP CSCLP1 SET THE SIGNALS XRAS H AND XRAS L TO THE HIGH AND LOW STATES RESPECTIVELY BY SETTING HDAL12 H TO A ONE. SETTING KRAS L TO THE LOW STATE WILL ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 242 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL ``` 12310 12311 12312 12313 CLOCK THE LEVEL OF INTER L, WHICH IS HIGH, INTO THE REFR FLIP-FLOP, THUS CLOCKING THE FLIP-FLOP TO A ONE. WHEN THE REFR FLIP-FLOP IS SET TO A ONE, THE SIGNAL REFR L WILL BE ASSERTED TO THE LOW STATE. 12314 12315 12316 12317 032536 004737 007304 21$: JSR PC_XRASH SET XRAS H HIGH AND XRAS L LOW READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ZERO AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED BELOW. INTER L - HIGH REFR L LOW XRAS H XCAS L HIGH HIGH ENEDC H HIGH PSM L HIGH SOP L HIGH 032542 042737 000020 002336 BIC #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ZERO PC.READR4 22$ 3.VDALRG,R4EROR 006654 JSR READ VOAL AND PAUSE STATE MACHINE 032554 032556 032556 032560 032562 032564 032564 001405 BEQ : IF OK THEN CONTINUE ERRDF REFR F/F PROBABLY NOT SET TO A ONE 104455 TRAP CSERDF 12331 12332 12333 000003 . WORD 002537 . WORD VDALRG 005004 . WORD R4EROR 12334 12335 12336 12337 12338 12339 12340 CKLOOP 032566 104406 TRAP CSCLP1 PULSE THE SIGNAL XCAS H BY SETTING AND CLEARING HDAL13 H. A PULSE ON XCAS H WHEN ADAL7 H IS SET TO A ONE WILL CLEAR THE REFR FLIP-FLOP. THUS SETTING THE SIGNAL REFR L TO THE HIGH STATE. 12341 12342 12343 12344 12345 032570 004737 007376 225: JSR PULSE XCAS H AND XCAS L VIA HDAL13 H PC.XCAS READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED INTER L - HIGH REFR L HIGH XRAS H HIGH XCAS L HIGH ENEDC H HIGH - PSM L HIGH SOP L HIGH 032574 032602 032606 032610 12353 052737 004737 000020 002336 BIS #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ONE 006654 12354 12355 PC READR4 JSR READ VOAL AND PAUSE STATE MACHINE 001405 BEQ : IF OK THEN CONTINUE 12356 12357 3, VDALRG, R4EROR ERRDF :REFR F/F NOT CLEARED BY XCAS H 032610 104455 TRAP CSERDF 032612 032614 032616 032620 032620 12358 000003 . WORD 12359 12360 12361 12362 12363 12364 12365 002537 . WORD VDALRG 005004 . WORD R4EROR CKLOOP 104406 TRAP CSCLP1 SET XRAS H AND XRAS L TO THE LOW AND HIGH STATES RESPECTIVELY BY CLEARING HDAL12 H. THIS IS DONE SO THAT THE REFR FLIP-FLOP CAN BE ``` ``` HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 243 CVCDCB.P11 01-APR-82 14:12 TEST 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL 12366 12367 12368 :SET TO A ONE AGAIN WHEN XRAS H IS PULSED AGAIN IN THE NEXT SECTION 032622 004737 007336 23$: JSR PC_XRASL :SET XRAS H LOW AND XRAS L HIGH 12369 12370 12371 12372 12373 SET THE SIGNAL XRAS H AND XRAS L TO THE HIGH AND LOW STATE RESPECTIVELY BY SETTING HDAL12 H TO A ONE. SETTING XRAS L TO THE LOW STATE WILL CLOCK THE LEVEL OF INTER L, WHICH IS HIGH, INTO THE REFR FLIP-FLOP, THUS SETTING THE FLIP-FLOP TO A ONE. THE SIGNAL REFR L WILL BE SET TO THE LOW STATE WHEN THE REFR FLIP-FLOP IS SET TO A ONE. 032626 004737 007304 PC, XRASH JSR ;SET XRAS H HIGH AND XRAS L LOW 12377 12378 12379 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ZERO AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED. 12380 HIGH INTER L - 12381 12382 REFR L LOW XRAS H HIGH 12383 12384 12385 XCAS L HIGH ENEDC H - HIGH PSM L HIGH 12386 SOP L HIGH 12387 032632 032640 042737 12388 000020 002336 BIC #VDAL4,R4GOOD EXPECT EDEOC H TO BE A ZERO 12389 12390 PC.READR4 24$ 3.VDALRG,R4EROR 006654 JSR READ VOAL AND PAUSE STATE MACHINE 032644 001405 BEQ ; IF OK THEN CONTINUE 12391 032646 ERRDF :REFR F/F PROBABLY NOT SET TO A ONE 032646 032650 032652 032654 032656 12392 12393 104455 TRAP C$ERDF 000003 . WORD 12394 12395 002537 . WORD VDALRG 005004 . WORD R4EROR 12396 CKLOOP 12397
032656 104406 TRAP C$CLP1 12398 12399 12400 12401 12402 :SET THE SIGNAL ADAL? H TO A ZERO. WHEN ADAL? H IS SET TO A ZERO, THE REFR FLIP-FLOP WILL BE CLEARED, THUS SETTING THE SIGNAL REFR L TO THE :HIGH STATE. 12402 12403 12404 12405 12406 12407 12408 12409 032660 032666 032672 032674 042737 004737 000200 002330 24$: #ADAL7, R2LOAD BIC ;SET ADAL7 H TO A ZERO PC_LDRDR2 25$ 006614 JSR GO LOAD, READ AND CHECK ADAL REGISTER 001405 BEQ ; IF LOADED OK THEN CONTINUE ERRDF 2, ADALRG, RZEROR :ADAL REGISTER NOT EQUAL EXPECTED 032674 104455 TRAP CSERDF 032676 032700 032702 032704 000002 . WORD 002513 004770 . WORD ADALRG 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 . WORD R2EROR CKLOOP 032704 104406 TRAP C$CLP1 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED INTER L - HIGH REFR L HIGH XRAS H HIGH - XCAS L HIGH ENEDC H - HIGH PSM L HIGH ``` | CVCDCB.PTT | UI-APR-82 14:1 | 1521 | 42: CHECK THE REFR FLIP-FLOP AND THE EDEOC H SIGNAL | | |---|--|------------------|---|-----| | 12422 | | | : SOP L - HIGH | | | 12424 03270
12425 03271
12426 03272
12427 03272
12428 03272
12429 03272
12430 03272
12431 03273
12432 03273 | 6 052737 0000
4 004737 0066
0 001405
2 104455
4 000003
6 002537
0 005004
2 104406 | 020 002336 25\$: | BIS #VDAL4,R4GOOD ;EXPECT EDEOC H TO BE A ONE ;READ VDAL AND PAUSE STATE MACHINE ;IF OK THEN CONTINUE ;IF OK THEN CONTINUE ;REFR F/F NOT CLEARED BY ADAL7 H A O CKLOOP TRAP C\$CLP1 | | | 12435
12435
12436 | | | SET ADAL7 H BACK TO A ONE. THIS WILL ALLOW THE REFR FLIP-FLOP TO BE CLEARED. | | | 12438 03273
12439 03274
12440 03274
12441 03275
12442 03275
12443 03275
12444 03275
12445 03275
12446 03276 | 4 052737 0002
2 004737 0066
6 001405
0 104455
2 000003
4 002513
6 004770 | 200 002330 26\$: | BIS #ADAL7,R2LOAD ;SETUP BIT TO BE LOADED JSR PC,LDRDR2 ;LOAD, READ AND CHECK ADAL REGISTER BEQ 27\$;IF LOADED OK THEN CONTINUE ERRDF 3,ADALRG,R2EROR ;ADAL REGISTER NOT EQUAL EXPECTED TRAP C\$ERDF .WORD 3 .WORD ADALRG .WORD R2EROR CKLOOP | | | 12447 03276
12448
12449
12450 | 0 104406 | | TRAP C\$CLP1 ;SET THE SIGNALS XRAS H AND XRAS L TO THE LOW AND HIGH STATE RESPECTIVE: ;BY CLEARING HDAL12 H. | ELY | | 12451
12452 03276 | 2 004737 0073 | 36 27\$: | JSR PC.XRASL ;SET XRAS H LOW AND XRAS L HIGH | | | 12453
12454
12455 | | | SET THE SIGNAL INTER L TO THE LOW STATE BY SETTING XSEL1 L TO THE LOW STATE. XSEL1 L IS SET LOW BY SETTING HDAL6 H TO A ONE | | | 12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12439
12430
12441
12439
12440
12441
12442
12443
12444
12443
12444
12445
12446
12447
12446
12447
12458
12448
12449
12450
12451
12453
12464
12453
12464
12455
12464
12455
12464
12455
12464
12465
12467
12468
12469
12469
12470
12471
12472
12473
12474
12476
12477 | 6 052737 0001
4 004737 0066
0 001405
2 104455
4 000004
6 002605
0 005020
2 104406 | 00 002342 | BIS #HDAL6,R6LOAD ;SETUP BIT TO BE LOADED JSR PC.LDRDR6 ;GO LOAD, READ AND CHECK HDAL REGISTER BEQ 28\$;IF OK THEN CONTINUE TRAP C\$ERDF ;HDAL REGISTER NOT EQUAL EXPECTED .WORD | | | 12468
12469
12470
12471
12472 | | | ;SET THE SIGNAL XRAS H AND XRAS L TO THE HIGH AND LOW STATE RESPECTIVE ;BY SETTING HDAL 12 H TO A ONE. WHEN XRAS L IS SET LOW, THE REFR FLIP ;FLOP WILL BE CLOCKED TO A ZERO AS A RESULT OF INTER L BEING ASSERTED ;LOW. WHEN REFR FLIP-FLOP IS A ZERO, THE SIGNAL REFR L WILL BE ASSERT! ;TO THE HIGH STATE. | - | | 12474 03301
12475 | 4 004737 0073 | 04 28\$: | JSR PC, XRASH ;SET XRAS H AND XRAS L LOW | | | 12476
12477 | | | CHECK THE SIGNAL BIST H TO BE A ONE AS A RESULT OF THE BIFET FLIP-FLOW; BEING CLEARED AND THE SIGNAL INTER L BEING ASSERTED TO THE LOW STATE. | P | ``` 12478 12479 12480 12481 12482 12483 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE SET TO A ZERO AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED INTER L LOW REFR L HIGH XRAS H HIGH 12484 XCAS L HIGH 12485 ENEDC H HIGH 12486 12487 12488 PSM L HIGH SOP L HIGH 12489 12490 12491 12492 12493 12494 052737 042737 004737 033020 000040 002336 BIS #VDAL5,R4GOOD #VDAL4,R4GOOD EXPECT BTS1 H TO BE A 1 VIA INTER L 033026 033034 BIC EXPECT EDEOC H TO BE A ZERO 006654 JSR PC, READR4 READ VOAL AND PAUSE STATE MACHINE 29$ 3,VDALRG,R4EROR 033040 001405 BEQ : IF OK THEN CONTINUE 033042 ERRDF :REFR F/F PROBABLY NOT A ZERO 033042 104455 TRAP C$ERDF 12495 12496 12497 12498 12499 12500 033044 000003 . WORD 002537 033046 -WORD VDALRG 033050 005004 R4EROR . WORD 033052 CKLOOP 033052 104406 TRAP C$CLP1 12501 12502 SET THE SIGNAL INTER L BACK TO THE HIGH STATE BY SETTING XSEL1 L BACK TO THE HIGH STATE BY SETTING HDAL6 H TO A ZERO. 12503 12504 033054 042737 000100 002342 29$: BIC #HDAL6, R6LOAD ;SET XSEL1 L TO THE LOW STATE 12505 033062 004737 006672 JSR GO LOAD, READ AND CHECK HDAL REGISTER PC,LDRDR6 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 033066 001405 30$ BEQ 033070 ERRDF 4, HDALRG, ROBERR :HDAL REGISTER NOT EQUAL EXPECTED 033070 104455 TRAP C$ERDF 033072 000004 . WORD 033074 002605 . WORD HDALRG 033076 005020 . WORD R06ERR 033100 CKLOOP 033100 104406 TRAP C$CLP1 12515 CHECK THE SIGNAL BTS1 H TO BE A ZERO AS A RESULT OF THE BTFET FLIP-FLOP 12516 12517 BEING CLEARED AND THE SIGNAL INTER L BEING SET TO THE HIGH STATE. 12518 12519 12520 12521 12522 12523 12523 12523 READ THE VDAL REGISTER AND CHECK EDEOC H TO BE A ONE AS A RESULT OF THE FOLLOWING SIGNALS BEING SET AS LISTED INTER L - HIGH REFR L HIGH XRAS H HIGH XCAS L HIGH ENEDC H HIGH PSM L HIGH 12526 12526 12527 12528 12529 12530 12531 SOP L HIGH 042737 052737 004737 000040 002336 033102 BIC #VDAL5,R4GOOD #VDAL4,R4GOOD 30$: EXPECT BIST H TO BE A O VIA INTER L 033110 EXPECT EDEOC H TO BE A ONE 033116 033122 033124 006654 JSR PC, READR4 READ VOAL AND PAUSE STATE MACHINE 001405 BEQ 31$: IF OK THEN CONTINUE 3, VDALRG, R4EROR ERRDF EDEOC H NOT SET .U A ONE 033124 104455 TRAP C$ERDF ``` | CEA | 0246 | |-----|------| | 2EA | UZ40 | | Γ | | | | | | | | | | |---
---|--|--|------------------|---------|--------|---|--|---| | | HARDWAR
CVCDCB. | ETESTS | MACY11 | 30A(1052 |) 01-AF | R-82 1 | 4:48 PAG | E 246 | THE PROC !! CTC!!! | | | | 033126
033130
033132
033134
033134 | 000003
002537
005004
104406 | 14:12 | | 1531 4 | .WORD
.WORD
.WORD
CKLOOP
TRAP | THE REFR FLIP-FLOP AND 3 VDALRG R4EROR C\$CLP1 | THE EDEUC H SIGNAL | | | 12539
12540
12541 | | | | | | SET TH | | RAS L TO THE LOW AND HIGH STATE RESPECTIVELY | | l | 12542 | 033136 | 004737 | 007336 | | 31\$: | JSR | PC,XRASL | SET KRAS H LOW AND KRAS L HIGH | | | 12545
12545
12546
12547
12548
12549 | | | | | | ; SET AD
; A ZERO
; CAUSIN
; ALLOW
; A PULS | AL7 H AND ADAL4 H TO ZE
WILL HOLD THE REFR FLI
IG THE SIGNAL REFR L TO
THE PAUSE MODE FLIP-FLO
EE IS ISSUED ON THE SIGN | ROES IN THE ADAL REGISTER. ADAL7 H ON P-FLOP IN THE CLEARED STATE, THUS REMAIN HIGH. ADAL4 H ON A ZERO WILL OP TO BE CLOCKED TO THE PAUSE MODE WHEN WAL XRAS H. | | | 12551
12552
12553
12554 | 033142
033150
033154
033156
033156 | 042737
004737
001405 | 000220
006614 | 002330 | | BIC
JSR
BEQ
ERRDF | #ADAL7!ADAL4,R2LOAD
PC,LDRDR2
32\$
2,ADALRG,R2EROR | SETUP BITS TO BE CLEARED GO LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | | | 12555
12556
12557
12558
12559 | 033156
033160
033162
033164
033166 | 104455
000002
002513
004770 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | CSERDF
2
ADALRG
R2EROR | | | ١ | 12560 | 033166 | 104406 | | | | TRAP | C\$CLP1 | | | | 12562
12563
12564
12565
12566
12567 | | | | | | ;TOGGLE
;XRAS H
;FLOP W
;THE HI
;WILL B
;STATE. | THE SIGNAL XRAS H BY S
IS PULSED AND ADAL4 H
ILL BE CLOCKED TO A ZER
GH STATE. WHEN PAUSE L
E ASSERTED LOW, THUS SE | SETTING AND CLEARING HDAL12 H. WHEN IS SET TO A ZERO, THE PAUSE MODE FLIP- RO, THUS SETTING THE SIGNAL PAUSE L TO IS ASSERTED HIGH, THE SIGNAL SOP L ETTING THE SIGNAL EDEOC H TO THE LOW | | ١ | 12569 | 033170 | 004737 | 007272 | | 32\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | | 12536
12536
12537
12537
12537
12537
12537
12537
12537
12537
12537
12537
12537
12537
12537
12537
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538
12538 | | | | | | READ TO | HE VDAL REGISTER AND CH
FOLLOWING SIGNALS BEIN
INTER L - HIGH
REFR L - HIGH
XRAS H - LOW
XCAS L - HIGH
ENEDC H - HIGH
PSM L - HIGH
SOP L - LOW | IECK EDEOC H TO BE A ZERO AS A RESULT IG SET AS LISTED | | | 12581
12582
12583
12584
12585
12586
12586
12587
12588
12589 | 033174
033202
033206
033210
033210
033212
033214
033216
033220 | 042737
004737
001405
104455
000003
002537
005004 | 000020
006654 | 002336 | | BIC
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | #VDAL4,R4GOOD
PC,READR4
33\$
3.VDALRG,R4EROR
C\$ERDF
3
VDALRG
R4EROR | :EXPECT EDEOC H TO BE A ZERO
:READ VDAL AND PAUSE STATE MACHINE
:IF OK THEN CONTINUE
:EDEOC H NOT O VIA SOP L SET LOW | | 4 | | | | | | | | | | | | _ | | 100 | |---|------|-----|------------| | | EA | 02 | | | • | P [] | 11/ | Ea 1 | | | | VE | ~ , | | | HARDWARI
CVCDCB. | E TESTS | MACY11
)1-APR-82 | 30A(1052)
14:12 | 01-APR-82 14
TEST 42 | :48 PAG | E
247
THE REFR FLIP-FLO | OP AND THE EDEOC H SIGNAL | |---|-------------------------|--------------------------------------|---------------------|--------------------|-------------------------|------------|----------------------------|--| | ١ | 12590 | 033220 | 104406 | | | TRAP | C\$CLP1 | | | | 12591
12592
12593 | | | | | ;RESET | ALL FLIP-FLOPS B | PULSING INVD L VIA VDALZ H | | | 12594
12595
12596 | 033222
033226 | 005037
004737 | 002334
007712 | 33\$: | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO CLEAR ALL BITS
GO PULSE INVO L VIA VDAL2 H | | ١ | 12597
12598 | 033232 | | | 100000 | ENDSEG | | | | | 12599
12600 | 033232
033234
033234
033234 | 104405 | | 10000\$: | TRAP | C\$ESEG | | | | 12601
12602
12603 | 033234 | 104401 | | L10074: | TRAP | CSETST | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 248 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 .SBITL TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST THIS TEST WILL CHECK THE TARGET EMULATOR'S INTERRUPT LOGIC USING THE SIGNALS TOBRK H AND BRK H TO CAUSE INTERRUPT REQUESTS. THE TEST WILL CHECK THAT NO INTERRUPTS OCCUR WHEN THE INTERRUPT ENABLE BIT IS CLEARED AND THE INTERRUPT REQUEST SIGNAL IS ASSERTED HIGH. THE TEST WILL CHECK THAT AN INTERRUPT WILL OCCUR WHEN THE INTERRUPT ENABLE BIT IS SET AND THE SIGNAL TOBRK H IS ASSERTED HIGH. THE TEST WILL CHECK THAT THE BREAK LATCH FLIP-FLOP CAN BE SET, CLEARED, : AND THAT IT CAN CAUSE AN INTERRUPT. 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 033236 033236 033236 **BGNTST** T43:: 004737 005510 JSR PC, INITTE SELECT AND INITIALIZE TARGET EMULATOR 033242 033242 **BGNSEG** 104404 C\$BSEG TRAP RAISE THE CPU PRIORITY LEVEL TO 7 TO DISABLE ANY INTERRUPTS FROM : OCCURING. 12625 12626 12627 12628 12629 12630 12631 033244 SETPRI #PRI07 RAISE THE CPU PRIORITY LEVEL TO 7 #PR107,R0 012700 000340 MOV 033250 104441 TRAP C\$SPRI SELECT HDAL REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER 0 12632 12633 12634 12635 12636 033252 004737 006754 **JSR** PC, SLHDAL :SELECT HDAL REGISTER VIA GDAL BITS 2:0 :SET HDAL REGISTER BIT 2 TO A ONE AND ALL OTHER HDAL REGISTER BITS TO :ZEROES. HDAL2 H ON A ONE WILL ALLOW THE PROGRAM TO GENERATE THE T-11 :TIMING AND CONTROL SIGNALS. 033256 033264 033270 12638 12639 12640 12641 12642 12643 12644 12645 12646 12649 12650 12651 012737 #HDAL2, R6LOAD 002342 000004 MOV :SETUP BITS TO BE LOADED GO LOAD, READ AND CHECK HDAL REGISTER 006672 **JSR** PC_LDRDR6 001405 BEQ ; IF LOADED OK THEN CONTINUE 033272 033272 4. HDALRG, ROGERR ERRDF :HDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP **CSERDF** 033274 000004 . WORD 033276 033300 002605 -WORD HDALRG 005020 RO6ERR . WORD CKLOOP 033302 104406 TRAP C\$CLP1 CLEAR ALL ADAL REGISTER BITS. TOGGLE THE SIGNAL BRKRES L BY SETTING AND CLEARING ADAL REGISTER BIT O. THE SIGNAL BRKRES L WILL CLEAR THE SINGLE STEP BREAK FLIP-FLOP, THE MEMORY SIMULATOR BREAK FLIP-FLOP, AND 12652 12653 12654 12655 12656 12657 : THE BREAK LATCH FLIP-FLOP. 033304 005037 SETUP TO CLEAR ALL ADAL BITS 15: CLR R2LOAD 033310 004737 JSR PC, BRKRES GO PULSE BRKRES L VIA ADAL REG BIT O :TOGGLE THE SIGNAL INVO L BY SETTING AND CLEARING VDAL REGISTER BIT 2. 12658 12659 :ALL OTHER VDAL READ/WRITE BITS WILL BE CLEARED AND THE READ ONLY BITS :WILL BE CHECKED TO BE ZERO. THE SIGNAL INVO L WILL SET ALL THE FLIP- HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 249 CVCDCB_P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST 12660 12661 12662 12663 FLOPS ON THE MODULE, NOT CLEARED BY BRKRES L, TO A KNOWN STATE. SHOT, THUS SETTING ITS OUTPUT TO THE HIGH STATE. 12664 12665 12666 12667 12668 12669 033314 005037 R4LOAD :SETUP TO CLEAR ALL VDAL BITS 033320 004737 JSR PC, CLRPSM :GO PULSE INVD L VIA VDAL2 H SET INTERRUPT VECTOR TO VECTOR SPECIFIED BY USER AT PROGRAM START TIME. THE CPU PRIORITY LEVEL WILL BE RESET TO PRIORITY LEVEL 7 WHEN AN :INTERRUPT OCCURS. 12670 12671 12672 12673 SETVEC TEVECT, #INTSRV, #PRIO7 MOV #PRIO7, -(SP) 012746 012746 013746 000340 006724 002312 033330 033334 MOV #INTSRV,-(SP) 12674 12674 12675 12676 12677 12678 12679 12680 12681 12682 MOV TEVECT .- (SP) 012746 104437 062706 033340 #3,-(SP) 000003 MOV 033344 TRAP C\$SVEC 033346 000010 ADD #10.SP 005002 R2 CLR :CLEAR SOFTWARE INTERRUPT FLAG SET CPU PRIORITY LEVEL TO ZERO. THIS WILL ALLOW AN INTERRUPT TO OCCUR : WHEN THE TARGET EMULATOR INTERRUPT ENABLE BIT IS SET AND A BREAK CONDI-:TION IS GENERATED. 12683 12684 12685 12686 12687 12688 12689 033354 SETPRI #PRIOO :LOWER CPU PRIORITY LEVEL TO ZERO 012700 000000 MOV #PR100_R0 033360 104441 TRAP C\$SPRI :ISSUE A DUMMY INSTRUCTION HERE TO CHECK THAT NO INTERRUPT OCCURED 12690 12691 12692 12693 033362 000240 NOP CHECK THAT NO INTERRUPT OCCURED WHEN THE CPU PRIORITY LEVEL IS AT :ZERO, THE TARGET EMULATOR INTERRUPT ENABLE BIT IS CLEARED, AND NO 12694 :BREAK CONDITION IS BEING GENERATED. 12695 12696 12697 12698 12699 12700 12701 12702 12703 033364 033366 005702 CHECK SOFTWARE INTERRUPT FLAG TST 001406 BEQ 033370 ERRDF UNEXIN, ROEROR :INTERRUPTED WITH INT ENA + BRK H A O 104455 000001 002432 004754 033370 TRAP C\$ERDF 033372 . WORD 033374 033376 . WORD UNEXIN . WORD ROEROR 033400 005002 R2 CLR CLEAR SOFTWARE INTERUPT FLAG 12704 CKLOOP 12705 033402 104406 TRAP C\$CLP1 12706 12707 SET TARGET EMULATOR INTERRUPT ENABLE BIT TO A ONE BY SETTING GDAL 12708 12709 REGISTER BIT 3 TO A ONE. NO INTERRUPT SHOULD OCCUR AT THIS POINT IN :TIME. 12710 12711 12712 12713 12714 033404 033412 033416 033420 033420 052737 004737 000010 006554 002320 #GDAL3, ROLOAD SETUP BIT TO BE LOADED BIS JSR PC.LDRDRO GO LOAD, READ AND CHECK GDAL REGISTER 001405 BEQ : IF LOADED OK THEN CONTINUE ERRDF 1,GDALRG,ROEROR GDAL REGISTER NOT EQUAL EXPECTED 104455 TRAP C\$ERDF | - | HARDWARE TESTS
CVCDCB.P11 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82
TEST | 14:48 PAG
43: TARGET | E 250
EMULATOR INTERRUPT I | LOGIC TEST | |---|--|--|--------------------|-------------------|--|--|--| | | 12716 033422
12717 033424
12718 033426
12719 033430
12720 033430
12721
12722
12723
12724
12725
12726 033434
12728 033436
12729 033436
12730 033440
12731 033442
12732 033444
12733 033446
12734 033450
12735 033450
12736
12737
12738
12739
12740 | 000001
002406
004754
104406 | | | .WORD
.WORD
.WORD
CKLOOP
TRAP | 1
GDALRG
ROEROR
C\$CLP1 | | | - | 12722
12723
12724 | | | | ; CHECK
; ZERO,
; NO BRE | THAT NO INTERRUPT OC
THE TARGET EMULATOR
AK CONDITION IS BEING | CURED WHEN THE CPU PRIORITY LEVEL IS AT INTERRUPT ENABLE BIT IS SET TO A ONE, AND GENERATED BY THE PROGRAM. | | | 12726 033432
12727 033434
12728 033436
12729 033436
12730 033440
12731 033442
12732 033444
12733 033446 | 005702
001406
104455 | | 3\$: | TST
BEQ
ERRDF
TRAP | R2
4\$
1.UNEXIN,ROEROR
CSERDF | CHECK SOFTWARE INTERRUPT FLAG
IF NO INTERRUPT THEN CONTINUE
INTERRUPT WITH INT ENA A 1 + BRK H A 0 | | | 12730 033440
12731 033442
12732 033444
12733 033446
12734 033450 | 000001
062432
004754
005002 | | | .WORD
.WORD
.WORD
CLR
CKLOOP | UNEXIN
ROEROR
R2 | RESET SOFTWARE INTERRUPT FLAG | | | 12735 033450
12736
12737
12738
12739 | 104406 | | | TRAP
:TOGGLE
:DONE T
:TO A Z | CSCLP1 THE SIGNAL XRAS H BY O CHECK THAT THE BREA ERO WHEN THE SIGNAL E | SETTING AND CLEARING HDAL12 H. THIS IS
AK INTERRUPT LATCH FLIP-FLOP IS CLOCKED
BRK H IS ASSERTED LOW. | | | 12740
12741 033452 | 004737 | 007272 | 4\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | | 12741 033452
12742
12743
12744
12745
12746 | | | | : CHECK
: ZERO,
: BREAK
: GENERA | THAT NO INTERRUPT OCC
THE TARGET EMULATOR I
LATCH FLIP-FLOP IS CL
TED BY THE PROGRAM. | CURED WHEN THE CPU PRIORITY LEVEL IS AT INTERRUPT ENABLE BIT IS SET TO A ONE, THE LEARED, AND NO BREAK CONDITION IS BEING | | | 12747
12748 033456
12749 033460
12750 033462
12751 033462 | 005702
001406
104455 | | | TST
BEQ
ERRDF
TRAP | R2
5\$
1.UNEXIN,ROEROR
C\$ERDF | CHECK SOFTWARE INTERRUPT FLAG
IF NO INTERRUPT THEN CONTINUE
CHECK BREAK LATCH FLIP-FLOP TO BE A O | | | 12752 033464
12753 033466
12754 033470
12755 033472
12756 033474
12757 033474 | 005702
001406
104455
000001
002432
004754
005002
104406 | | | .WORD
.WORD
.WORD
CLR
CKLOOP
TRAP | UNEXIN
ROEROR
R2
C\$CLP1 | CLEAR SOFTWARE INTERRUPT FLAG | | | 12758
12759
12760 | | | | :RAISE | THE CPU PRIORITY LEVE | L TO 7 TO DISABLE ANY INTERRUPTS FROM | | | 12761
12762 033476
12763 033476
12764 033502 | 012700
104441 | 000340 | 5\$: | SETPRI
MOV
TRAP | #PRIO7
#PRIO7,RO
C\$SPRI | ;DISABLE INTERRUPTS | | | 12750 033462
12751 033462
12752 033464
12753 033466
12754 033470
12755 033472
12756 033474
12757 033474
12758
12760
12761
12762 033476
12763 033476
12764
033502
12765
12766
12767
12768
12769
12770
12771 | | | | SET AD. OUTPUT BREAK BRK H INTERR LOWERS | AL REGISTER BIT 8 TO TO THE GDAL REGISTER ONE SHOT HAS NOT BEEN SHOULD BE ASSERTED HI UPT WILL BE GENERATED THE CPU PRIORITY LEV | A ONE TO ENABLE THE TIMEOUT BREAK ONE SHOTS AND TO THE SIGNAL BRK H. THE TIMEOUT I FIRED, THEREFORE, THE SIGNALS TOBRK H AND GH TO INDICATE A BREAK CONDITION. AND BY THE SIGNAL TOBRK H AS SOON AS THE PROGRAM FEL TO ZERO. | | 1 | | | | | | | | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 251 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST | 12772
12773 033504
12774 033512
12775 033516
12776 033520
12777 033520
12778 033522
12779 033524
12780 033526
12781 033530
12782 033530 | 052737
004737
001405
104455
000002
002513
004770
104406 | 000400
006614 | 002330 | | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #ADAL8,R2LOAD
PC,LDRDR2
6\$
2,ADALRG,R2EROR
C\$ERDF
2
ADALRG
R2EROR
C\$CLP1 | ;SETUP BIT TO ENABLE TOBRK H OUTPUT
;GO LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | |--|--|------------------|--------|------|---|---|---| | 12784
12785
12786 | | | | | :READ 1
:AS A F | THE GDAL REGISTER T
RESULT OF ADALS H B
EING IN THE FIRED S | O CHECK THAT THE TOBRK H BIT IS SET TO A ONE EING ASSERTED HIGH AND TIMEOUT BREAK ONE SHOT TATE. | | 12773 033504
12774 033512
12775 033516
12776 033520
12777 033520
12778 033522
12779 033524
12780 033526
12781 033530
12782 033530
12783 12784
12785 12786
12787 033540
12790 033546
12791 033546
12792 033546
12793 033550
12794 033552
12795 033554
12796 033556
12797 033556
12797 033556
12798 12800
12801 12802
12803 033564
12804 033562
12804 033564
12806 033564 | 052737
004737
001405
104455
000001
002406
004754
104406 | 000100
006570 | 002322 | 6\$: | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #TOBRK,ROGOOD PC,READRO 7\$ 1,GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR C\$CLP1 | : IF OK THEN CONTINUE | | 12799
12800
12801 | | | | | CHECK
THE TA | THAT NO INTERRUPT
ARGET EMULATOR INTE
TOBRK H IS ASSERT | OCCURED WHEN THE CPU PRIORITY LEVEL IS AT 7, RRUPT ENABLE BIT IS SET TO A ONE, AND THE ED HIGH | | 12807 033566 | 005702
001406
104455
000001
002432 | | | 7\$: | IST
BEQ
ERRDF
TRAP
.WORD
.WORD | R2
8\$
1,UNEXIN,ROEROR
C\$ERDF
1
UNEXIN | CHECK SOFTWARE INTERRUPT FLAG
FIF NO INTERRUPT THEN CONTINUE
FINTERRUPT WITH CPU PRIORITY LEVEL = 7 | | 12808 033570
12809 033572
12810 033574
12811 033576
12812 033576
12813
12814
12815
12816
12817
12818 033600
12819 033600
12820 033604
12821
12822
12823
12824
12825
12826 033606 | 004754
005002
104406 | | | | . WORD
CLR
CKLOOP
TRAP | ROEROR
R2
C\$CLP1 | CLEAR SOFTWARE INTERRUPT FLAG | | 12814
12815
12816 | | | | | :LOWER
:RESULT
:RUPT E | THE CPU PRIORITY L
OF TOBRK H BEING
NABLE BIT BEING SE | EVEL TO ZERO. AN INTERRUPT SHOULD OCCUR AS A ASSERTED HIGH AND THE TARGET EMULATOR INTER-T TO A ONE. | | 12818 033600
12819 033600
12820 033604
12821 | 012700
104441 | 000000 | | 8\$: | SETPRI
MOV
TRAP | #PRIOO
#PRIOO,RO
C\$SPRI | ;ENABLE INTERRUPTS TO OCCUR | | 12822
12823
12824
12825 | | | | | :CHECK
:BEING
:TO A C | THAT AN INTERRUPT
SET TO ZERO, THE TO
ONE, AND THE SIGNAL | OCCURED AS A RESULT OF THE CPU PRIORITY LEVEL ARGET EMULATOR INTERRUPT ENABLE BIT BEING SET TOBRK H BEING ASSERTED HIGH. | | 12826 033606
12827 033610 | 000240
005702 | | | | NOP
TST | R2 | ;DO A DUMMY INSTRUCTION TO ALLOW INTERRUPT ;CHECK SOFTWARE INTERRUPT FLAG | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 252 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST | LVLULB.P | 11 0 | 1-APR-02 | 14:12 | | 1531 43 | IARGET | EMULATOR INTERRUPT LOGI | C 1521 | |--|--|--|------------------|--------|---------|---|--|---| | 12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12846
12851
12851
12852
12853
12854
12855
12856
12857
12858
12858
12858
12860
12861 | 033612
033614
033614
033616
033620
033622
033624
033624 | 001005
104455
000001
002467
004754
104406 | | | | BNE
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | 9\$ 1.NOINT,ROEROR C\$ERDF 1 NOINT ROEROR C\$CLP1 | :IF INTERRUPTED THEN CONTINUE
:FAILED TO INTERRUPT | | 12837
12838
12839 | | | | | | :AT THI
:AN INT
:REGIST | S POINT IN TIME THE CPU (
ERRUPT. CHECK THE PREVIOUS
ER READ IN THE INTERRUPT | PRIORITY LEVEL IS AT 7 AS A REUSLT OF OUS GDAL REGISTER AGAINST THE GDAL SERVICE ROUTINE. | | 12841
12842
12843
12844 | 033626
033630
033636
033640 | 005002
023737
001405 | 002322 | 002326 | 9\$: | CLR
CMP
BEQ
ERRDF | R2
ROGOOD, ROBAD
10\$
1, GDALRG, ROEROR | CLEAR SOFTWARE INTERRUPT FLAG
CHECK EXPECTED AGAINST READ FROM INTERRUPT
IF OK THEN CONTINUE
GDAL CHANGED AFTER AN INTERRUPT OCCURED | | 12845
12846
12847
12848
12849
12850 | 033640
033640
033642
033644
033646
033650 | 104455
000001
002406
004754
104406 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | C\$ERDF
1
GDALRG
ROEROR
C\$CLP1 | TOTAL CHANGES AFTER AN ENTERNOFT OCCURES | | 12851
12852
12853
12854
12855
12856 | | | | | | ;TOGGLE
;XRAS H
;THE SIG
;HIGH A | THE SIGNAL XRAS H BY SE
SHOULD CLOCK THE BREAK I
GNAL BRK H BEING ASSERTED
S A RESULT OF THE SIGNAL | TTING AND CLEARING HDAL12 H. THE SIGNAL LATCH FLIP-FLOP TO A ONE AS A RESULT OF D HIGH. THE SIGNAL BRK H IS ASSERTED TOBRK H BEING ASSERTED HIGH. | | 12857 (
12858 | 033652 | 004737 | 007272 | | 10\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA HDAL12 H | | 12859
12860 | | | | | | :SET TH | E SIGNAL TOBRK H TO THE | LOW STATE BY SETTING ADALS H TO A ZERO. | | 12862 | 033656
033664
033670
033672 | 004737 | 000400
006614 | 002330 | | BIC
JSR
BEQ
ERRDF | #ADAL8,R2LOAD
PC,LDRDR2
11\$
2,ADALRG,R2EROR | ;SETUP TO SET TOBRK H TO LOW STATE
;GO LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE
;ADAL REGISTER NOT EQUAL EXPECTED | | 12865 (
12866 (
12867 (
12868 (
12869 (| 033670
033672
033672
033674
033676
033700
033702 | 104455
000002
002513
004770 | | | | TRAP .WORD .WORD .WORD CKLOOP | CSERDF
2
ADALRG
R2EROR | | | 12870 (
12871 | 033702 | 104406 | | | | TRAP | C\$CLP1 | | | 12872
12873
12874 | | | | | | :READ GI | DAL REGISTER TO CHECK THAT
OF ADALS H BEING SET TO | AT THE SIGNAL TOBRK H IS A ZERO AS A A ZERO. | | 12875 (
12876 (
12877 (| 033704
033712
033716 | 042737
004737
001405 | 000100
006570 | 002322 | 11\$: | BIC
JSR
BEQ | #TOBRK,ROGOOD
PC.READRO
12\$ | ; EXPECT TOBRK H TO BE A ZERO
; READ AND CHECK GDAL REGISTER
; IF OK THEN CONTINUE | | 12002 | 033704
033712
033716
033720
033720
033722
033724
033726
033730 | 104455
000001
002406
004754 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP | 1.GDALRG,ROEROR
C\$ERDF
1
GDALRG
ROEROR | TOBRK H PROBABLY NOT A ZERO | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 253 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST | 128 | 84 033730 | 104406 | | | | TRAP | C\$CLP1 | | | |--|--|--|------------------|--------|-------|--|--
---|---| | 1288
1288
1288
1288
1288
1289
1289
1289 | 15
16
16
17
18
18
19
10
10 | 104400 | | | | ;AT THI
;AND TH
;WILL N
;OCCUR
;INTERR | S POINT IN TIME THE BREADE SIGNALS TOBRK HAND BROWN LOWER THE CPU PRIORITE BECAUSE NEITHER THE REQUEST ENABLE BIT HAS CHANGET FLIP-FLOP. | K LATCH FLIP-FLOP SHEEK H SHOULD BE ASSERT Y LEVEL TO ZERO. NO JEST, ALTHOUGH HIGH, SED STATE TO CLOCK TH | OULD BE SET TO A ONE FED LOW. THE PROGRAM OF INTERRUPT SHOULD OR THE TARGET EMULATOR IE DC003'S INTERRUPT | | 1289
1289
1289 | 033732
04 033732
05 033736 | 012700
104441 | 000000 | | 12\$: | SETPRI
MOV
TRAP | #PRIOO
#PRIOO,RO
C\$SPRI | :LOWER PRIORITY TO | ENABLE INTERRUPTS | | 1289
1289
1289
1290 | 98
99
90
91 | | | | | CHECK
BEING
THE BR
OCCUR
TOGGLE | THAT NO INTERRUPT OCCURE
AT 0. THE TARGET EMULATO
EAK LATCH FLIP-FLOP BEIN
UNTIL EITHER THE REQUEST
D. | D AS A RESULT OF THE
R INTERRUPT ENABLE E
IG SET TO A ONE. NO
OR THE INTERRUPT EN | CPU PRIORITY LEVEL
DIT BEING SET, AND
INTERRUPT SHOULD
IABLE BIT HAS | | 1290
1290
1290
1290
1290
1290 | 033740
04 033742
05 033744
06 033746
07 033746
08 033750 | 000240
005702
001406
104455
000001 | | | | NOP
TST
BEQ
ERRDF
TRAP
.WORD | R2
13\$
1, UNEXIN, ROEROR
CSERDF | ;SHOULD NOT INTERRU
;CHECK SOFTWARE INT
;IF NO INTERRUPT TH
;INTERRUPTED W/O TO | PT HERE
ERRUPT FLAG
IEN CONTINUE
IGGLING I.E. OR ROSTA H | | 1290
1291
1291
1291
1291
1291 | 08 033750
09 033752
0 033754
1 033756
12 033760
3 033760 | 002432
004754
005002
104406 | | | | .WORD
.WORD
CLR
CKLOOP
TRAP | UNEXIN
ROEROR
R2
C\$CLP1 | CLEAR SOFTWARE INT | ERRUPT FLAG | | 1291 | 5 | | | | | ;RAISE | THE CPU PRIORITY LEVEL T | 0 7 TO DISABLE INTER | RUPTS FROM OCCURING. | | 1291
1291
1291
1292 | 7 033762
8 033762
9 033766 | 012700
104441 | 000340 | | 13\$: | SETPRI
MOV
TRAP | #PRIO7
#PRIO7,RO
C\$SPRI | ;DISABLE INTERRUPTS | FROM OCCURING | | 1292
1292
1292 | 2 | | | | | ;TO CHE
;MUST C
;THE IN | CK THAT THE BREAK LATCH
LEAR AND SET THE TARGET
TERRUPT REQUEST INTO THE | FLIP-FLOP IS SET TO EMULATORS INTERRUPT DC003'S INTERRUPT R | A ONE, THE PROGRAM
ENABLE BIT TO CLOCK
EQUEST FLIP-FLOP. | | 1292
1292
1292 | 5 033770
6 033776
7 034002
8 034004
9 034004 | 042737
004737
001405 | 000010
006554 | 002320 | | BIC
JSR
BEQ
ERRDF | #GDAL3,ROLOAD
PC,LDRDRO
14\$
1,GDALRG,ROEROR | SETUP TO CLEAR I.E
GO LOAD, READ AND
IF LOADED OK THEN | . BIT
CHECK GDAL REGISTER
CONTINUE
EQUAL EXPECTED | | 1292
1293
1293
1293 | 9 034004
80 034006
81 034010
82 034012 | 104455
000001
002406
004754 | | | | TRAP
.WORD
.WORD | CSERDF
1
GDALRG
ROEROR | GOAL REGISTER NOT | ENUAL EXPECTED | | 1292
1292
1292
1292
1292
1293
1293
1293 | 034006
11 034010
12 034012
13 034014
14 034014
15 034016
16 034024
17 034030
18 034032 | 104406
052737
004737
001405 | 000010
006554 | 002320 | 14\$: | CKLOOP
TRAP
BIS
JSR
BEQ
ERRDF | C\$CLP1
#GDAL3,ROLOAD
PC,LDRDRO
15\$
1,GDALRG,ROEROR | SETUP TO SET I.E.
GO LOAD, READ AND
IF LOADED OK THEN
GDAL REGISTER NOT | BIT TO A 1
CHECK GDAL REGISTER
CONTINUE
EQUAL EXPECTED | | 1293 | 9 034032 | 104455 | | | | TRAP | CSERDF | | | | ARDWARE TESTS | MACY11
1-APR-82 | 30A(1052
14:12 |) 01-AF | PR-82 1 | 4:48 PA | GE 254
T EMULATOR INTERRUPT | LOGIC TEST | | |--|--------------------------------------|-------------------|---------|---------|---|--|---|--| | 12940 034034
12941 034036
12942 034040
12943 034042
12944 034042 | 000001
002406
004754
104406 | | | | .WORD
.WORD
.WORD
CKLOOP
TRAP | GDALRG
ROEROR
C\$CLP1 | | | | 12941 034036
12943 034042
12943 034042
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954 034044
12955 034044
12956 034050
12961
12961
12962 034056
12963 034060
12964 034060
12965 034060
12966 034060
12967 034062
12968 034064
12969 034064
12970 034070
12971 034070
12972
12973 12974
12975
12976 034070
12977 034070
12977 034070
12977 034070
12978 034104
12989 034104
12981 034104
12981 034104
12982 034114
12983 034114
12984 034114
12985 034114
12986 12990
12991 12992
12993
12994 | | | | | AT THE | IS POINT IN TIME THE NO THE SIGNALS TOBRK 'S INTERRUPT REQUEST TOF THE INTERRUPT EN LATCH FLIP-FLOP BEINT PU PRIORITY LEVEL TO TOF THE BREAK LATCH | BREAK LATCH FLIP-FLOP SHOULD B
H AND BRK H SHOULD BE ASSERTED
FLIP-FLOP SHOULD BE SET TO A O
NABLE BIT BEING CLEARED AND SET
NG SET TO A ONE. THE PROGRAM W
ZERO AND EXPECT AN INTERRUPT T
FLIP-FLOP BEING SET. | E SET TO A LOW. THE NE AS A AND THE ILL NOW LOWER O OCCUR AS A | | 12954 034044
12955 034044
12956 034050 | 012700
104441 | 000000 | | 15\$: | SETPRI
MOV
TRAP | #PRIOO
#PRIOO,RO
C\$SPRI | ;ALLOW INTERURPTS TO OCCU | | | 12958
12959
12960 | | | | | ; CHECK
; BEING
; THE BI | THAT AN INTERRUPT OF
AT ZERO, THE TARGET
REAK LATCH FLIP-FLOP | CCURED AS A RESULT OF THE CPU P
EMULATOR INTERRUPT ENABLE BIT
BEING SET TO A ONE. | RIORITY LEVEL
BEING SET, AND | | 12962 034052
12963 034054
12964 034056
12965 034060
12966 034060 | 000240
005702
001005 | | | | NOP
TST
BNE
ERRDF | R2
16\$
1,NOINT,ROEROR | ;SHOULD INTERRUPT HERE
;CHECK SOFTWARE INTERRUPT
;IF INTERRUPTED THEN CONT
;BREAK F/F FAILED TO SET | FLAG
INUE
OR CAUSE INTERRUPT | | 12966 034060
12967 034062
12968 034064
12969 034066
12970 034070 | 104455
000001
002467
004754 | | | | TRAP
.WORD
.WORD
.WORD
CKLOOP | C\$ERDF
1
NOINT
ROEROR | | | | 12971 034070
12972
12973
12974
12975 | 104406 | | | | ;AT THE | C\$CLP1 IS POINT IN TIME, THE ITERRUPT. CHECK THE REGISTER READ IN THE | E CPU PRIORITY LEVEL IS AT 7 AS PREVIOUS EXPECTED GDAL REGISTE INTERRUPT SERVICE ROUTINE. | A RESULT OF
R AGAINST THE | | 12970
12977 034072
12978 034074
12979 034102
12980 034104
12981 034104 | 005002
023737
001405 | 002322 | 002326 | 16\$: | CLR
CMP
BEQ | R2
ROGOOD, ROBAD
17\$ | CLEAR THE SOFTWARE INTER CHECK EXPECTED AGAINST R IF OK THEN CONTINUE | EAD VIA INTERRUPT | | 12981 034104
12982 034106
12983 034110
12984 034112 | 104455
000001
002406
004754 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 1,GDALRG,ROEROR
C\$ERDF
1
GDALRG
ROEROR | GDAL REGISTER NOT EQUAL | TO EXPECTED | | 12985 034114
12986 034114
12987 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 12988
12989
12990
12991
12992
12993 | | | | | ; PROGRA | VM MUST CLEAR AND SET
OCK THE LEVEL OF THE
COOS'S INTERRUPT REQL | T, THE BREAK LATCH FLIP-FLOP SHOW H. TO TEST THAT THIS HAPPED THE TARGET EMULATORS INTERRUPT INTERRUPT REQUEST, WHICH SHOULD SET FLIP-FLOP, THUS CAUSING THE TO BE CLOCKED TO A ZERO. | OULD HAVE BEEN NED, THE T ENABLE BIT D BE LOW, INTO E DC003'S | | 12995 034116 | 042737 | 000010 | 002320 | 175: | BIC | #GDAL3,ROLOAD | SETUP TO CLEAR INTERRUPT | ENABLE | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 255 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST | 1 | CVCDCB.P11 | 01-APR-82 | 14:12 | | IEST | 45: TARGET | EMULATOR INTERRUPT L | OGIC TEST | |---
--|--|------------------|--------|-------|---|---|---| | | 12996 034126 12997 03413 12998 03413 13000 03413 13001 03413 13002 03414 13003 03414 13004 03414 13005 03416 13007 03416 13009 03416 13010 03416 13010 03416 13011 03416 13012 03416 13013 03416 13014 03417 13015 13016 13017 13018 13019 13020 03417 13018 13019 13020 03417 13021 03417 13021 03417 13022 03417 13028 03420 13030 03420 13031 03420 13031 03420 13032 03420 13031 03420 13031 03420 13032 03420 13031 03420 13031 03420 13031 03420 13032 03420 13033 03420 13036 03420 13037 03420 13038 03420 13039 03420 13030 03420 13031 03420 13031 03420 13032 03420 13031 03420 | 4 004737
0 001405
2 104455
4 000001
6 002406
0 004754 | 006554 | | | JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | PC,LDRDRO 18\$ 1,GDALRG,ROEROR C\$ERDF 1 GDALRG ROEROR | GO LOAD, READ AND CHECK INT ENA
FIF LOADED OK THEN CONTINUE
GOAL REGISTER NOT EQUAL EXPECTED | | | 13003 03414
13004 03414
13005 03414
13006 03415
13007 03415
13008 03416 | 2
104406
4 052737
2 004737
6 001405
0 104455 | 000010
006554 | 002320 | 18\$: | CKLOOP
TRAP
BIS
JSR
BEQ
ERRDF | C\$CLP1
#GDAL3,ROLOAD
PC,LDRDRO
19\$
1,GDALRG,ROEROR | ;SETUP TO SET INTERRUPT ENABLE
;GO LOAD, READ AND CHECK GDAL REGISTER
;IF LOADED OK THEN CONTINUE
;GDAL REGISTER NOT EQUAL TO EXPECTED | | | 13010 03416
13011 03416
13012 03416
13013 03417
13014 03417 | 000001
002406
004754
0 104406 | | | | TRAP .WORD .WORD .WORD CKLOOP TRAP | CSERDF
1
GDALRG
ROEROR
CSCLP1 | | | | 13016
13017
13018 | | | | | ;AS A RE
;BEEN CL
;CPU PR | ESULT OF THE INTERRUPT
LEARED BY THE SIGNAL TO
TORITY LEVEL AND CHECK | T, THE BREAK LATCH FLIP-FLOP SHOULD HAVE VECTOR H. THE TEST WILL NOW LOWER THE K THAT NO INTERRUPT WILL OCCUR. | | | 13020 034177
13021 034177
13022 034170 | 2
2 012700
5 104441 | 000000 | | 19\$: | SETPRI
MOV
TRAP | #PRIOO,RO
C\$SPRI | ; ENABLE INTERRUPTS TO OCCUR | | | 13024
13025
13026 | | | | | CHECK TO THE TAR | THAT NO INTERRUPT OCCURRED EMULATOR INTERRUPT IS ASSERTED LOW AND | URED WHEN THE CPU PRIORITY LEVEL IS AT ZERO, PT ENABLE BIT IS SET TO A ONE, THE SIGNAL THE BREAK LATCH FLIP-FLOP IS CLEARED. | | | 13028 034200
13029 034200
13030 034200
13031 034200
13032 034200
13033 034210
13034 034210
13035 034210
13036 034210
13037 034220 | 0 000240
2 005702
4 001406 | | | | NOP
TST
BEQ
ERRDF | R2
20\$
1,UNEXIN,ROEROR | CHECK SOFTWARE INTERRUPT FLAG
IF NO INTERRUPT THEN CONTINUE
BREAK LATCH F/F FAILED TO 0 VIA VECTOR H | | | 13032 034200
13033 034210
13034 034210
13035 034210 | 6 104455
0 000001
2 002432
6 004754 | | | | TRAP
.WORD
.WORD
.WORD | CSERDF
1
UNEXIN
ROEROR | | | ١ | 13036 034210
13037 034220
13038 034220
13039 | 005002 | | | | CLR
CKLOOP
TRAP | C\$CLP1 | CLEAR SOFTWARE INTERRUPT FLAG | | ı | 13040 | | | | | SET THE | TARGET EMULATOR INTE | ERRUPT ENABLE BIT TO A ZERO. | | | 13042 034223
13043 034233
13044 034234
13045 034234
13046 034234
13047 034244
13049 034244 | 042737
0 004737
0 001405
6 104455 | 000010
006554 | 002320 | 20\$: | BIC
JSR
BEQ
ERRDF
TRAP | #GDAL3,ROLOAD PC,LDRDRO 21\$ 1,GDALRG,ROEROR C\$ERDF | ;SETUP TO CLEAR TE INT ENA BIT
;GO LOAD, READ AND CHECK GDAL REGISTER
;IF LOADED OK THEN CONTINUE
;GDAL REGISTER NOT EQUAL EXPECTED | | | 13047 034240
13048 034240
13049 034240
13050 034240
13051 034240 | 000001
002406
004754 | | | | .WORD
.WORD
.WORD
CKLOOP | 1
GDALRG
ROEROR | | | | 13051 034246 | 104406 | | | | TRAP | C\$CLP1 | | | • | 1-AFK-02 | | | 1201 43 | . IANGE | EMOLATOR INTERROP | | | |--|--|--|--|--|--
--|--|---| | | | | | | SET THE | HE SIGNALS TOBRK HONE. NO INTERRUPT
RUPT ENABLE BIT BEI | AND BRK H TO THE HIGH STATE E
SHOULD OCCUR AS A RESULT OF
NG CLEARED | BY SETTING ADALS H | | 4250
4256
4262
4264
4264
4266
4270
4272
4274 | 052737
004737
001405
104455
000002
002513
004770
104406 | 000400
006614 | 002330 | 21\$: | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | PC,LDRDR2
22\$ | ;ENABLE TOBRK H AND BE
;GO LOAD, READ AND CHE
;IF OK THEN CONTINUE
;ADAL REGISTER NOT EQU | RK H TO HIGH STATE
ECK ADAL REGISTER
NAL TO EXPECTED | | | | | | | CLOCK
INTO T
TO A O | THE LEVEL OF BRK H
THE BREAK LATCH FLI
INE. THE BREAK LAT
IG THE SIGNAL XRAS | , WHICH SHOULD BE ASSERTED HE
P-FLOP, THUS SETTING THE BREA
CH FLIP-FLOP WILL BE CLOCKED
H VIA HDAL12 H. | GH VIA TOBRK H,
NK LATCH FLIP-FLOP
TO A ONE BY | | 4276 | 004737 | 007272 | | 22\$: | JSR | PC,XRAS | GO PULSE XRAS H VIA | IDAL12 H | | | | | | | CHECK
THE TA | THAT NO INTERRUPT
REGET EMULATOR INTE
SIGNAL IS HIGH AND | OCCURED WHEN THE CPU PRIORITY
RRUPT ENABLE BIT IS CLEARED,
THE BREAK LATCH FLIP-FLOP IS | THE TIMEOUT SET TO A ONE. | | 4302
4310
4312
4314
4314 | 052737
005702
001406
104455
000001 | 000100 | 002322 | | BIS
TST
BEQ
ERRDF
TRAP | #TOBRK,ROGOOD
R2
23\$
1,UNEXIN,ROEROR
C\$ERDF | ; IF OK THEN CONTINUE | | | 4320
4322
4324
4326
4326 | 002432
004754
005002
104406 | | | | .WORD
.WORD
CLR
CKLOOP
TRAP | UNEXIN
ROEROR
R2
C\$CLP1 | CLEAR SOFTWARE INTERE | UPT FLAG | | | | | | | :THE SI | GNAL BRKRES L BY S | ETTING AND CLEARING THE SIGNA | L ADALO H. A PULSE | | 4330
4334
4340 | 005037
004737
042737 | 002330
007772
000100 | 002322 | 23\$: | CLR
JSR
BIC | R2LOAD
PC,BRKRES
#TOBRK,ROGOOD | GO PULSE BRKRES L VIA | ADALO H | | | | | | | ;RAISE | THE CPU PRIORITY L | EVEL TO 7 TO DISABLE INTERRUP | TS | | 4346
4346
4352 | 012700
104441 | 000340 | | | SETPRI
MOV
TRAP | #PRIO7
#PRIO7,RO
C\$SPRI | | | | | | | | | SET THE | E TARGET EMULATOR EGISTER BIT 3 TO A | INTERRUPT ENABLE BIT TO A ONE | BY SETTING | | | 4270
4270
4272
4274
4274
4274
4274
4310
4312
4314
4316
4312
4314
4316
4320
4322
4334
4334
4334
4334
4334 | 4276 000002
4270 002513
4272 004770
4274 104406
4274 104406
4276 004737
4310 005702
4312 001406
4314 104455
4316 000001
4320 002432
4322 004754
4324 005002
4326 104406
4330 005037
4330 005037
4346 004737
4346 012700 | 4270 002513
4272 004770
4274 104406
4274 104406
4302 052737 000100
4310 005702
4312 001406
4314 104455
4314 104455
4316 000001
4320 002432
4322 004754
4324 005002
4326 104406
4336 104406 | 4270 002513
4272 004770
4274 104406
4274 104406
4302 052737 000100 002322
4310 005702
4312 001406
4314 104455
4316 000001
4320 002432
4320 004754
4324 005002
4326 104406
4330 005002
4326 104406
4330 004737 007772
4340 042737 000100 002322 | 4276 002513
4277 004770
4274 104406
4276 004737 007272 22\$:
4302 052737 000100 002322
4310 005702
4312 001406
4314 104455
4316 000001
4320 002432
4320 002432
4320 004754
4324 005002
4326 104406
4330 005037 002330 23\$:
4343 004737 007772
4340 042737 000100 002322 | ## Company of the com | STATE STAT | WORD ADALRG WORD ADALRG WORD ADALRG WORD ADALRG WORD ADALRG WORD RZEROR CKLOOP TRAP C\$CLP1 | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 257 CVCDCB.P11 01-APR-82 14:12 TEST 43: TARGET EMULATOR INTERRUPT LOGIC TEST | CACDCB | .PII (| 11-APR-82 | 14:12 | | TEST 43 | : TARGET | EMULATOR INTERRUPT LOGI | CTEST | |--|--|--|------------------|--------|----------|--|---|---| | 13108
13109
13110
13111
13112
13113
13114
13116
13117
13118
131120
13121
13123
13124
13127
13128
13130
13131
13131
13131
13131
13131
13131
13131
13131
13141
13142
13143
13144 | 034354
034362
034366
034370
034372
034374
034376
034400
034400 | 052737
004737
001405
104455
000001
002406
004754
104406 | 000010
006554 | 002320 | | BIS
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #GDAL3, ROLOAD PC, LDRDRO 24\$ 1, GDALRG, ROEROR C\$ERDF 1 GDALRG ROEROR C\$CLP1 | SETUP BIT TO BE LOADED GO LOAD, READ AND CHECK GDAL REGISTER IF LOADED OK THEN CONTINUE GDAL REGISTER NOT EQUAL TO EXPECTED | | 13119
13120
13121
13122 | 034402 | | | | 24\$: | :LOWER
:NO INT
:SHOULD | THE CPU PRIORITY BACK TO
ERRUPTS SHOULD OCCUR BEC
HAVE BEEN CLEARED BY TH
#PRIOO | ZERO TO ALLOW INTERRUPTS TO OCCUR. AUSE THE BREAK LATCH FLIP-FLOP E SIGNAL BRKRES L ABOVE. :LOWER THE CPU PRIORITY LEVEL TO 0 | | 13124
13125
13126 | 034402
034406 | 012700
104441 | 000000 | |
243. | MOV
TRAP | #PRIOD,RO
C\$SPRI | LOWER THE CPO PRIORITY LEVEL TO 0 | | 13127
13128
13129
13130 | | | | | | ; CHECK
; ZERO,
; SIGNAL | THAT NO INTERRUPTS OCCUR THE TARGET EMULATOR INTE TOBRK H IS ASSERTED LOW | ED WHEN THE CPU PRIORITY LEVEL IS AT RRUPT ENABLE BIT IS SET TO A ONE, THE , AND THE BREAK LATCH FLIP-FLOP IS CLEARED | | 13131
13132
13133
13134 | 034410
034412
034414
034416
034416 | 000240
005702
001406 | | | | NOP
TST
BEQ
ERRDF
TRAP | R2
25\$
1,UNEXIN,ROEROR
C\$ERDF | CHECK THE SOFTWARE INTERRUP! FLAG
:IF NO INTERRUPT THEN CONTINUE
:BREAK LATCH F/F NOT CLEARED BY BRKRES L | | 13136
13137
13138
13139
13140
13141 | 034420
034422
034424
034426
034430
034430 | 000001
002432
004754
005002 | | | | .WORD
.WORD
.WORD
CLR
CKLOOP
TRAP | 1
UNEXIN
ROEROR
R2
C\$CLP1 | CLEAR SOFTWARE INTERRUPT FLAG | | 13143 | | | | | | ;RAISE | THE CPU PRIORITY LEVEL T | 0 7 TO DISABLE INTERRUPTS | | 13145
13146
13147
13148
13149
13150
13151
13153
13154
13155
13156
13157
13160
13161
13161 | 034432
034432
034436 | 012700
104441 | 000340 | | 25\$: | SETPRI
MOV
TRAP | #PRIO7
#PRIO7,RO
C\$SPRI | RAISE CPU PRIORITY LEVEL TO 7 | | 13149
13150
13151 | | | | | | ;RETURN
;SUPERV | THE TARGET EMULATOR INT
ISOR VECTOR HANDLER | ERRUPT VECTOR BACK TO THE DIAGNOSTIC | | 13152
13153
13154 | 034440
034440
034444 | 013700
104436 | 002312 | | | CLRVEC
MOV
TRAP | TEVECT, RO
C\$CVEC | | | 13156 | 034446 | | | | | ENDSEG | | | | 13157
13158
13159 | 034446
034446
034450
034450 | 104405 | | | 10000\$: | TRAP
ENDTST | C\$ESEG | | | 13161
13162 | 034450 | 104401 | | | L10075: | TRAP | CSETST | | | | | | | | | | | | | HADDWADE TESTS MACVIT 304(1052) | 01-ADD-82 14-48 PAGE 258 | |---------------------------------|---| | CVCDCB.P11 01-APR-82 14:12 | 01-APR-82 14:48 PAGE 258
TEST 44: INITO L AND INITO H LOGIC TEST | | CACDCB. | P11 0 | 1-APR-82 | 14:12 | | TEST 4 | 44: INIT | D L AND IN | TO H LOGIC | TEST | | | | |--|--|--|------------------|--------|--|---|---|--|---|--|---|----------------------------| | 13163 | | | | | .SBTTL | TEST 4 | 4: INITO L | AND INITO H | LOGIC TEST | | | | | 13163
13164
13165
13166
13167
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13181
13181
13183
13186
13186
13187
13188
13189
13191
13191
13193
13193
13196
13197
13198 | | | | | THIS TO THE PROPERTY OF PR | ROS. | L CHECK THA
LO H, VDAL7
MRO H CAN A
ESE SIGNALS
FLOP AND TH
T INSTRUCTI | AT THE SIGNAT H, VDAL2 H ALL BE SET T S ARE TESTED HE SINGLE ST ION IS ISSUE | ALS ADAL 15:9,
1 - VDALO H, (
10 ONES. THE
10 TO THEN BE 2
1EP BREAK FLIE
ED AND THESE I | ADAL 7:3,
SDAL15 H, G
N A BRESET
ZEROS. THE
P-FLOP ARE
FLIP-FLOPS | ADAL 1:0, HDAL DAL2 H - GDALO INSTRUCTION IS IN THE PAUSE STA SET TO ONES AND ARE TESTED TO | 15:0,
H,
ATE
THEN | | 13176 | 034452
034452 | | | | T44:: | BGNTST | | | | | | | | 13177
13178
13179 | 034452 | 004737 | 005510 | | | JSR | PC, INITTE | | SELECT A | ND INITIALI | ZE TARGET EMULA | TOR | | 13180
13181
13182
13183 | | | | | | :CHECK 1
:FDALO I
:MR15 H
:INSTRU | TO SEE IF A
H, VDAL7 H,
- MRO H CA
CTION. | ADAL15 H - A
VDAL2 H -
AN BE SET TO | DALO H, HDAL'
VDALO H, GDAL
O ONES AND THE | 15 H - HDAL
15 H, GDAL
EN CLEARED | O H, FDAL7 H -
2 H - GDALO H,
BY ISSUING A BF | AND
RESET | | 13185 | 034456 | | | | T44.1: | BGNSUB | | | | | | | | 13187
13188 | 034456
034460 | 104402
005037 | 002346 | | 144.1: | TRAP | C\$BSUB
R6MASK | | :CLEAR REC | 6 6 MASK WO | RD | | | 13190 | | | | | | :LOAD. | READ AND CH | ECK BITS AD | AL 15:9, ADAI | 7:3, AND | ADAL 1:0 WITH | ALL ONES. | | 13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201 | 034464
034472
034476
034500
034500
034504
034506
034510
034510 | 012737
004737
001405
104455
000002
002513
004770
104406 | 177373
006614 | 002330 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #177373,R2
PC,LDRDR2
1\$
2,ADALRG,R
C\$ERDF
2
ADALRG
R2EROR
C\$CLP1 | | ;SETUP DAT
;GO LOAD,
;IF LOADEI
;REG 2 NOT | TA TO BE LO
READ AND C
O OK THEN C
T EQUAL 177 | ADED
HECK REG 2
ONT
777 | | | 13203 | | | | | | SET GDA | ALZ TO A ON | E IN CONTRO | L REGISTER O | TO SELECT | THE MODE REGIST | ER | | 13205 | 034512 | 004737 | 007006 | | 15: | | PC,SLMODR | | | | VIA GDAL BITS 2 | 2:0 | | 13207
13208
13209
13210 | | | | | | ONES (| 177777) BY | HECK MODE RE
ISSUING A W
I CONTROL RE | IRITE AND REAL | 5:0 WITH A | DATA PATTERN CO CONTROL REGIS | F ALL
STER 6 | | 13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218 | 034516
034524
034530
034532
034532
034534
034536 | 012737
004737
001405
104455
000004
002631 | 177777
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | #177777,R6
PC,LDRDR6
2\$
4,MODREG,R
C\$ERDF
4 | | GO LOAD, | OK THEN C | HECK MODE REG | | | HARDWAR
CVCDCB. | E TESTS | MACY11
1-APR-82 | 30A(1052 |) 01-AF | PR-82 14 | 4:48 PAC | GE 259
TO L AND INITO H LOGIC TO | EST | | |--|--|--|----------------------------|------------------|----------|---|--|---|----------------| | 13219 | 034540 | 005020 | | | | .WORD | R06ERR | | | | 13220 | 034540
034542
034542 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | | 13223 | | | | | | ;LOAD. | READ AND CHECK BITS VDAL | 7 H, VDAL2 H - VDALO H WITH ONES. | | | 13219
13220
13221
13222
13223
13224
13226
13226
13227
13238
13231
13232
13233
13233
13233
13233
13233
13236
13237
13238 | 034544
034552
034560
034560
034562
034564
034566
034570
034570 |
012737
004737
001405
104455
000003
002537
005004
104406 | 000207
006640 | 002334 | 2\$: | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #VDAL7!VDAL2!VDAL1!VDALPC,LDRDR4 3\$ 3,VDALRG,R4EROR C\$ERDF 3 VDALRG R4EROR C\$CLP1 | O,R4LOAD ;SET ALL R/W BITS TO ONE ;GO LOAD, READ AND CHECK REG 4 ;IF LOADED OK THEN CONT ;VDAL REGISTER NOT EQUAL EXPECTED | | | 13236
13237 | | | | | | :SET GD
:REGIST | PALT AND GDALO TO ONES IN
TER WHEN A WRITE OR READ | COMMAND IS ISSUED TO CONTROL REGISTE | AL
R 6. | | 13239 | 034572 | 004737 | 006754 | | 3\$: | JSR | PC, SLHDAL | SELECT HDAL REG VIA GDAL BITS 2:0 | | | 13241
13242
13243 | | | | | | ; LOAD,
; ONES (| READ AND CHECK HDAL REGI
(177777) BY ISSUING A WRI
(DAL1 AND GDALO SET IN CO | STER BITS 15:0 WITH A DATA PATTERN OF THE AND READ COMMAND TO CONTROL REGISONTROL REGISTER 0. | F ALL
TER 6 | | 13239
13240
13241
13242
13243
13244
13246
13246
13247
13248
13250
13251
13252
13253
13254 | 034576
034604
034610
034612
034614
034616
034620
034622
034622 | 012737
004737
001405
104455
000004
002605
005020
104406 | 177777
006672 | 002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | #17777,R6LOAD PC.LDRDR6 4\$ 4,HDALRG,R06ERR C\$ERDF 4 HDALRG R06ERR C\$CLP1 | SETUP DATA TO BE LOADED GO LOAD, READ AND CHECK HDAL REGIS IF LOADED OK THEN CONT. HDAL REG NOT EQUAL 177777 | TER | | 13256
13257
13258 | | | | | | SET GD | AL1 IN CONTROL REGISTER OR READ COMMAND IS ISSUE | O TO SELECT THE FDAL REGISTER WHEN A TO CONTROL REGISTER 6. | | | 13259 | 034624 | 004737 | 007154 | | 4\$: | JSR | PC, SLFDAL | GO SELECT FDAL REG VIA GDAL BITS 2 | :0 | | 13261
13262
13263 | | | | | | ; LOAD,
; ONES (| READ AND CHECK FDAL REGI
377) BY ISSUING A WRITE
DAL1 SET TO A ONE IN CON | STER BITS 7:0 WITH A DATA PATTERN OF AND READ COMMAND TO CONTROL REGISTER ITROL REGISTER 0. | ALL
6 | | 13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272 | 034630
034636
034644
034650
034652
034654
034656
034660
034662 | 012737
012737
004737
001405
104455
000004
002653
005020 | 177400
000377
006672 | 002346
002342 | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP | #177400.R6MASK
#377.R6LOAD
PC.LDRDR6
5\$
4.FDALRG.RO6ERR
C\$ERDF
4
FDALRG
R06ERR | ;SETUP TO IGNORE HIGH BYTE
;SETUP DATA TO BE LOADED
;GO LOAD, READ AND CHECK FDAL REG
;IF DATA LOADED OK THEN CONT
;FDAL REG NOT EQUAL TO 377 | | ``` C 5 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 260 01-APR-82 14:12 TEST 44: INITO L AND INITO H LOGIC TEST CVCDCB_P11 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 034662 104406 TRAP C$CLP1 :CHECK THAT GDAL BITS 2:0 AND GDAL BIT 15 CAN BE SET TO ONES 034664 034672 034700 034706 034714 034714 034716 034720 034722 034724 013737 052737 052737 052737 004737 001405 002322 002322 002320 002316 000007 IDTYPE, ROGOOD ;SETUP EX #GDAL2!GDAL1!GDAL0, ROGOOD #GDAL15!GDAL2!GDAL1!GDAL0, ROLOAD SETUP EXPECTED DATA SETUP EXPECTED DATA BIS 100007 SETUP BITS TO BE LOADED BIS ;GO LOAD, READ AND CHECK REG O ;IF LOADED OK THEN CONT ;REG O NOT EQUAL 100007 006562 JSR PC, LDRDOR BEQ ERRDF 1, GDALRG, ROEROR 104455 CSERDF TRAP 000001 . WORD 002406 004754 WORD GDALRG . WORD ROEROR CKLOOP 104406 TRAP CSCLP1 : ISSUE A BRESET INSTRUCTION 034726 034726 034730 034734 034740 034744 034750 034752 034756 034762 13294 13295 13296 13297 13298 13299 13300 6$: BRESET :ASSERT INITO L AND INITO H 104433 TRAP C$RESET #4,#7$,#PRIO7 #PRIO7,-(SP) #7$,-(SP) #4,-(SP) #3,-(SP) SETVEC 012746 012746 012746 012746 104437 062706 013705 000340 035002 MOV MOV 000004 MOV 000003 MOV 13301 13302 13303 13304 13305 C$SVEC TRAP 000010 002300 ADD #10.SP REGO, R5 MOV ; SAVE ADDRESS OF REG O 113765 002311 000001 MOVB IDDEV+1,1(R5) : SAVE ID NUMBER 034770 000240 NOP 034772 034772 034776 13306 13307 CLRVEC :RELEASE DEVCICE TIMEOUT VECTOR 012700 #4.RO 000004 MOV 13308 104436 TRAP C$CVEC 13309 13310 13311 13312 13313 035000 000421 : IF NO DEVICE TIMEOUT THEN CONTINUE BR :A DEVICE TIMEOUT OCCURED WHICH INDICATES THAT THERE IS NO DEVICE #0 :IN THE SYSTEM, THERFORE, THE TARGET EMULATOR HAS TO BE RESELECTED BY ; DOING A 'MOV WORD' OPERATION. A 'MOVB' OPERATION PERFORMED ABOVE DOES 13314 ; A READ/MODIFY WRITE. THERFORE, IF THERE IS NO DEVICE NO IN THE SYSTEM. 13315 :A DEVICE TIMEOUT WILL OCCUR TO ADDRESS 4. 13316 13317 035002 005726 75: TST (SP) + CLEAN UP STACK AFTER DEVICE TIMEOUT 035004 13318 005726 TST (SP)+ 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 035006 CLRVEC RELEASE DEVICE TIMEOUT VECTOR 012700 104436 013737 004737 001424 035006 035012 035014 000004 MOV #4.RO TRAP C$CVEC 002310 006554 002320 MOV IDDEV, ROLOAD GET TAR EMULATORS DEVICE NUMBER 035022 035026 PC,LDRDRO JSR ; LOAD, READ AND CHECK CONTROL REG O BEQ : IF OK THEN CONTINUE 035030 ERRDF 1, GDALRG, ROEROR REGISTER O NOT EQUAL EXPECTED 104455 000001 002406 004754 035030 TRAP CSERDF 035032 . WORD 035034 . WORD GDALRG 035036 . WORD ROEROR 035040 CKLOOP ``` D 5 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 261 CVCDCB.P11 01-APR-82 14:12 TEST 44: INITO L AND INITO H LOGIC TEST 035040 104406 035042 000416 CSCLP1 TRAP 13332 13333 13334 13335 13336 13337 BR :PROCEED IF LOOPING NOT INVOKED READ AND CHECK GDAL BITS 2:0 AND GDAL BIT 15 FOR ALL ZEROS. 035044 035052 013737 013737 004737 002310 002322 IDDEV, ROGOOD MOV GET USER DEFINED DEVICE NUMBER ROGOOD, ROLOAD MOV SETUP EXPECTED DATA 13338 13339 035060 006570 PC READRO **JSR** :READ AND CHECK REG O 035064 001405 BEQ : IF ALL ZEROS THEN CONT. 035066 035066 13340 13341 13342 13343 13344 13346 13347 13348 13349 ERRDF 1.GDALRG.ROEROR REGISTER O NOT EQUAL O 104455 TRAP C\$ERDF 035070 000001 - WORD 002406 004754 035072 . WORD **GDALRG** 035074 035076 035076 . WORD ROEROR CKLOOP 104406 TRAP CSCLP1 :READ AND CHECK BITS ADAL15 H - ADALO H FOR ALL ZEROS. 13350 13351 13352 13353 13354 13356 13357 13358 13359 035100 035104 005037 004737 002330 95: CLR R2LOAD SETUP EXPECTED DATA 006622 JSR PC.READR2 :READ AND CHECK REG 2 035110 001405 BEQ 10\$: IF ALL ZEROS THEN CONT 035112 ERRDF 2,ADALRG,R2EROR REG 2 NOT EQUAL TO 0 104455 000002 002513 004770 035112 TRAP **CSERDF** 035114 . WORD 035116 . WORD ADALRG 035120 035122 R2EROR - WORD CKLOOP 035122 104406 TRAP CSCLP1 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 READ AND CHECK BITS VDAL7 H, VDAL2 H - VDALO H FOR ALL ZEROS. 035124 035130 005037 002336 105: CLR R4GOOD SETUP EXPECTED DATA 004737 006654 JSR PC, READR4 GO READ AND CHECK REG 4 035134 001405 BEQ 115 : IF ALL ZEROS THEN CONT 035136 ERRDF 3, VDALRG, R4EROR : VDAL REGISTER NOT EQUAL EXPECTED 035136 104455 TRAP **CSERDF** 035140 000003 . WORD 002537 035142 . WORD **VDALRG** 13370 13371 035144 005004 . WORD R4EROR 035146 CKLOOP 13372 13373 13374 035146 104406 TRAP CSCLP1 SET GDAL1 AND GDALO TO ONES IN CONTROL REGISTER O TO SELECT THE HDAL 13375 13376 13377 REGISTER WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. 035150 004737 006754 115: **JSR** PC.SLHDAL ; SELECT HDAL REG VIA GDAL BITS 2:0 13378 13379 READ AND CHECK HDAL REGISTER BITS 15:0 FOR A DATA PATTERN OF ALL 13380 13381 13382 ZEROS BY ISSUING A READ COMMAN TO CONTRO REGISTER 6 WITH GDAL1 AND GDALO SET IN CONTROL REGISTER O. 13383 035154 005037 004737 002342 R6LOAD CLR :SETUP EXPECTED DATA 13384 035160 PC_READR6 **JSR** : READ AND CHECK REG 6 13385 13386 001405 035164 BEO : IF ALL ZEROS THEN CONT. 035166 ERRDF 4, HDALRG, ROSERR ; HDAL REGISTER NOT EQUAL O | HADDIADE TECTE MACUS | 1 701/10531 01 1 | | E 5 | |--|------------------------------------|------------------|---| | CVCDCB.P11 01-APR- | 82 14:12 | TEST | 44: INITO L AND INITO H LOGIC TEST | | 13387 035166 10445
13388 035170 00000
13389 035172 00260
13390 035174 00502
13391 035176
13392 035176 10440 | 5 | | TRAP CSERDF .WORD 4 .WORD HDALRG .WORD ROGERR CKLOOP TRAP CSCLP1 | | 13394
13395
13396 | | | :SET GDAL2 TO A ONE IN CONTROL REGISTER O TO SELECT THE MODE REGISTER :WHEN A WRITE OR READ COMMAND IS ISSUED TO CONTROL REGISTER 6. | | 13397 035200 00473 | 7 007006 | 12\$: | JSR PC.SLMODR ;GO SELECT MODE REG VIA GDAL BITS 2:0 | | 13399
13400
13401
13402 | | | READ AND CHECK MODE REGISTER BITS 15:0 FOR A DATA PATTERN OF ALL ZEROS BY ISSUING A WRITE AND READ COMMAND TO CONTROL REGISTER 6 WITH GDAL2 SET IN CONTROL REGISTER 0. | | 13387 035166 10445 13388 035170 00000 13389 035172 00260 13390 035174 00502 13391 035176 13392 035176 10440 13393 13394 13395 13396 13397 035200 00473 13403 035204 00503 13404 035210 00473 13405 035214 00140 13406 035216 10445 13407 035216 10445 13408 035220 00000 13409 035222 00263 13410 035224 00502 13411 035226 13412 035226 10440 13413 13414 13415 13416 | 5
4
1
0 | | CLR R6LOAD JSR PC.READR6 BEQ 13\$:IF LOADED OK THEN CONT. ERRDF 4.MODREG.RO6ERR ;MODE REG NOT EQUAL O TRAP C\$ERDF .WORD 4 .WORD MODREG .WORD R06ERR CKLOOP TRAP C\$CLP1 | | 13413
13414
13415
13416 | | | ;SET GDAL1 IN CONTROL REGISTER O TO SELECT THE FDAL REGISTER WHEN A ;WRITE OR READ
COMMAND IS ISSUED TO CONTROL REGISTER 6. | | 13417 035230 00473
13418 | 7 007154 | 13\$: | JSR PC, SLFDAL ;GO SELECT FDAL REG VIA GDAL BITS 2:0 | | 13419 | | | READ AND CHECK FDAL REGISTER BITS 7:0 FOR A DATA PATIERN OF ALL ZEROS BY ISSUING A WRITE AND READ COMMAND TO CONTROL REGISTER 6 WITH GDAL1 SET TO A ONE IN CONTROL REGISTER 0. | | 13420
13421
13422
13423 035234 01273
13424 035242 00503
13425 035246 00473
13426 035252 00140
13427 035254
13428 035254 10445
13429 035256 00000
13430 035260 00265
13431 035262 00502
13432 035264
13433 035264
13434 035264
13435
13436
13437
13438
13439
13440 035266 | 7 002342
7 006700
4 5
4 3 | 14\$:
L10077: | MOV #177400,R6MASK ;SETUP TO IGNORE HIGH BYTE CLR R6LOAD ;SETUP EXPECTED DATA JSR PC,READR6 ;READ AND CHECK REG 6 BEQ 14\$;IF DATA LOADED OK THEN CONT ERRDF 4,FDALRG,ROGERR ;FDAL REGISTER NOT EQUAL TO 0 TRAP C\$ERDF .WORD 4 .WORD FDALRG .WORD ROGERR ENDSUB | | 13434 035264 10440 | 3 | 210077. | TRAP CSESUB | | 13436
13437
13438
13439 | | | CHECK TO SEE IF PAUSE STATE WORKING FLIP-FLOP CAN BE SET TO ONE AND THEN CLEARED BY INITO H. ALSO CHECK TO SEE IF SINGLE STEP BREAK FLIP-FLOP CAN BE SET TO ONE AND THEN CLEARED BY INITO L. | | 13440 035266
13441 035266
13442 035266 10440 | 2 | 144.2: | BGNSUB TRAP C\$BSUB | | 3444
3445
3446 | | | | | | ; SET VE
; THE PA
; FLIP-F | DAL2 H TO A ONE A
AUSE STATE MACHIN
FLOP. | ND THEN A
E FLIP-FLO | ZERO. VI | DAL2 H O
PRESET T | N A ONE W.
HE SINGLE | ILL CLEAR
STEP SYNC | |--|--|--------------------------------------|----------------------------|--------|------|--|--|---|--|---|--|--| | 3448
3449
3450 | 035270
035274 | 005037
004737 | 002334
007712 | | | CLR
JSR | R4LOAD
PC,CLRPSM | | SETUP TO | CLEAR A | LL VDAL B | ITS | | 451 | | | | | | SET VE | DAL7 H TO A ONE T | O SET THE | SIGNAL F | ETCT H T | O THE HIGH | H STATE (1). | | 453
3454
3455
3456 | 035300
035306
035312
035314 | 012737
004737
001405 | 000200
006640 | 002334 | | MOV
JSR
BEQ
ERRDF | #VDAL7,R4LOAD
PC,LDRDR4
1\$
3,VDALRG,R4EROR | | GO LOAD, | T TO SET
READ AND OK THE | FETCT H
D CHECK RI
N CONT
T EQUAL EX | TO HIGH STATE | | 457
458
459
460
461
462 | 035300
035306
035312
035314
035316
035320
035322
035322
035324 | 104455
000003
002537
005004 | | | | TRAP .WORD .WORD .WORD CKLOOP TRAP | C\$ERDF
3
VDALRG
R4EROR
C\$CLP1 | | , VUAL REG. | ISTER NO | T ENONE E | | | 44456789012345678901234567890 | | | | | | :LOAD,
:TIMEOU
:WILL (
:THE SI
:CLOCKE
:ADALO | READ AND CHECK AND THE BREAK SIGNAL FROM SIGNAL STATE PAUSE SIGNAL STATE SINGLE FOR THE SINGLE HOUSE BE SET AND THE TH | DAL REGIST
ROM CAUSIN
TATE MACHI
ULSED. AL
E STEP BRE
D CLEARED | TER. ADAI
NG A BREAK
INE TO BE
DALS H ON
EAK FLIP-K
TO CLEAR | L8 H ON C CONDIT ENTERED A ONE WELOP WHE THE BRE | A ZERO WII
ION. ADAI
ON A FETO
ILL ENABLI
N XRAS H :
AK LOGIC. | LL DISABLE THE
L4 H ON A ZERO
CH CYCLE WHEN
E A ONE TO BE
IS PULSED. | | 471 | 035326
035334 | 012737
004737 | 000040
007772 | 002330 | 1\$: | MOV
JSR |
#ADAL5,R2LOAD
PC,BRKRES | | | | | BREAK LOGIC | | 472
473
474
475
476 | | | | | | SELECT | THE HDAL REGIST | ER BY SETT | ING GDAL | 2 TO A Z | ERO AND GI | DAL1 AND GDALO | | 477 | 035340 | 004737 | 006754 | | | JSR | PC, SLHDAL | | GO SELECT | HDAL R | EG VIA GDA | AL 2:0 | | 3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489 | | | | | | ;XRAS H
;THE ED
;THE SI
;FLOP,
;AND FE
;WHEN S
;THE SI
;THE SI
;FLIP-F | THE SIGNAL XRAS WILL CLOCK THE S OFET FLIP-FLOP, TO IGNAL XRAS H WILL WHICH IS HIGH, IN ETCT H ARE ONES, SSBRK H IS SET HIG IGNALS BRK H AND IN IGNALS BRK H AND IN IGNALS SOP IG | STATE OF THUS SETTING CLOCK THE STORM THE STORM AND COMMENTAL OF THUS SETTING | THE SIGNAL IG THE SIGNAL INGLE STEP ING | FETCT SNAL EDF THE SI PEREAK GNAL SSI WILL A THIGH SOP H TO | H, WHICH I
ET H TO TH
NGLE STEP
FLIP-FLOP
BRK H TO T
LSO BE SET
THE PAUSE
THE HIGH
THE PAUSE | IS HIGH, INTO HE HIGH STATE. SYNC FLIP- WHEN ADALS H HE HIGH STATE. I HIGH. WHEN STATE MACHINE STATE. WHEN STATE WORKING | | 492
493
494
495
496 | 035344
035350
035354 | 005037
005037
004737 | 002346
002342
007272 | | | CLR
CLR
JSR | R6MASK
R6LOAD
PC,XRAS | : | SETUP TO
CLEAR OUT
GO PULSE | OLD DA | BITS
TA
VIA SIGNAL | . HDAL12 | | 496 | | | | | | READ T | HE VDAL REGISTER | AND CHECK | THAT THE | PAUSE S | STATE WORK | ING FLIP- | | HARDWARE TESTS | MACY11 30A(105)
1-APR-82 14:12 | 2) 01-APR-82 1
TES1 | 4:48 PAGE 26
44: INITO L | AND INITO H LOGIC TES | ST | |---|--|------------------------|---|--|---| | 13499 035360
13500 035366
13501 035372
13502 035374
13503 035374
13504 035376
13505 035400
13506 035402
13507 035404
13508 035404 | 052737
004737
001405
104455
000003
002537
005004
104406 | 002336 | JSR PC. BEQ 2\$ ERRDF 3.V TRAP C\$E .WORD 3 .WORD VDA | AL9!VDAL7,R4GOOD
READR4
/DALRG,R4EROR
RDF
ALRG
ROR | SETUP BITS TO BE READ GO READ VDAL REG IF OK THEN CONT PSMW H PROBABLY NOT SET IN VDAL REG | | 13510
13511
13512
13513 035406
13514 035414
13515 035420
13516 035422
13517 035422
13518 035424
13519 035426
13520 035430
13521 035432
13522 035432 | 052737 000200
004737 006570
001405
104455
000001
002406
004754
104406 | 002322 2\$: | #GD | A ONE. AL7, ROGOOD READRO DALRG, ROEROR RDF LRG ROR | SETUP EXPECTED BITS GO READ GDAL REG IF OK THEN CONT. GDAL REGISTER NOT EQUAL EXPECTED | | 13499 035360 13500 035374 13501 035374 13502 035374 13503 035374 13504 035376 13505 035400 13506 035402 13507 035404 13508 035404 13509 13510 13511 13512 13513 035406 13514 035414 13515 035422 13517 035422 13518 035424 13519 035422 13518 035432 13521 035432 13522 035432 13523 035436 13529 035436 13529 035436 13530 035442 13531 035460 13532 035436 13533 035460 13534 035460 13535 035464 13536 035470 13537 035464 13538 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 13539 035500 | 104433
012746 000340
012746 035510
012746 000004
012746 000003
104437
062706 000010
013705 002300
113765 002311
000240
012700 000004
104436
000420 | | BRESET TRAP C\$R SETVEC #4, MOV #PR MOV #4\$, MOV #4, MOV #3, TRAP C\$S ADD #10 MOV REG | RO
VEC | :SAVE ADDRESS OF REG O
:SAVE ID NUMBER
:RELEASE DEVICE TIMEOUT VECTOR
:NO TIMEOUT OCCURED - CONTINUE | | 13542
13543
13544
13545
13546
13547
13548
13549 035510
13550 035512
13551 035514
13552 035514
13553 035520
13554 035522 | 005726
005726
012700 000004
104436
013737 002310 | 4\$: 002320 | TST (SP. TST (SP. CLRVEC #4 MOV #4.1 TRAP C\$C | IMEOUT OCCURED WHICH ITEM, THERFORE, THE TA IDV WORD" OPERATION. A IFY WRITE. THERFORE, IMEOUT WILL OCCUR TO)+)+ RO VEC | INDICATES THAT THERE IS DEVICE #0 RGET EMULATOR HAS TO BE RESELECTED BY 'MOVB' OPERATION PERFORMED ABOVE DOES IF THERE IS NO DEVICE #0 IN THE SYSTEM, ADDRESS 4. :CLEAN UP STACK AFTER DEVICE TIMEOUT :RELEASE DEVICE TIMEOUT VECTOR :GET THE DEVICE NUMBER | H 5 HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 265 CVCDCB.P11 01-APR-82 14:12 TEST 44: INITO L AND INITO H LOGIC TEST 035530 035534 PC,LDRDRO GO LOAD, READ AND CHECK REGISTER OF IF LOADED OK THEN CONTINUE GOAL REGISTER NOT EQUAL EXPECTED 004737 006554 JSR 13556 13557 001405 BEQ 035536 ERRDF ,GDALRG, ROEROR 104455 13558 035536 TRAP CSERDF 13559 035540 . WORD 035542 035544 002406 004754 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 . WORD GDALRG ROEROR . WORD 035546 CKLOOP 035546 104406 TRAP CSCLP1 : READ THE VDAL REGISTER AND CHECK THAT THE PAUSE STATE WORKING :FLIP-FLOP IS NOW SET TO A ZERO. 005037 004737 035550 002336 5\$: R4GOOD CLR ; SETUP BITS TO BE READ 035554 006654 JSR PC, READR4 :GO READ VDAL REG 035560 035562 035562 035564 001405 BEQ : IF OK THEN CONT. 3, VDALRG, R4EROR ERRDF : VDAL REG NOT EQUAL EXPECTED 104455 TRAP **CSERDF** 000003 . WORD 13574 002537 035566 . WORD **VDALRG** 13575 035570 005004 . WORD R4EROR 13576 035572 CKLOOP 035572 104406 TRAP C\$CLP1 13578 13579 READ THE GDAL REGISTER AND CHECK THAT THE SINGLE STEP BREAK FLIP-FLOP 13580 :IS NOW SET TO A ZERO. 13581 13582 13583 035574 002322 006570 105037 6\$: ROGOOD CLRB :SETUP EXPECTED BITS 035600 004737 PC READRO **JSR** GO READ GDAL REG 13584 035604 001404 BEQ : IF OK THEN CONT. 13585 035606 ERRDF 1, GDALRG, ROEROR GDAL REGISTER NOT EQUAL EXPECTED 13586 13587 035606 104455 TRAP C\$ERDF 035610 000001 . WORD 002406 004754 13588 035612 . WORD **GDALRG** 13589 035614 . WORD ROEROR 035616 035616 13590 7\$: L10100: **ENDSUB** 13591 13592 035616 104403 TRAP C\$ESUB 13593 035620 035620 035620 13594 **ENDTST** 13595 L10076: C\$ETST TRAP 13596 104401 | DWARE
DCB. | TESTS
P11 0 | MACY11
1-APR-82 | 30A(1052)
14:12 | 01-APR-82 14
TEST 45 | :48 PAG | E 266
STARTING ADDRESS TES | T IN DIFFERENT MODES | | |---|--|--|--------------------|-------------------------|--|--
--|-------| | 597
598 | | | | .SBTTL | TEST 45 | : T-11 STARTING ADD | RESS TEST IN DIFFERENT MODES | | | 598
599
500
500
500
500
500
500
500
500
500 | | | | ; ADDRE | SSES AND
THE PAUSE
ING ADDR
WING T-1
STATIC,
TED, THE
TARTING
TOR MODU
THAT TH | THAT IT CAN RUN WISTATE MACHINE TO CORESS SELECTED BY THE MODES; 16 BIT STATE ABOUT 4K/16 PROGRAM WILL CHECK ADDRESSES. THE PROBLE TO PROVIDE THE TOPICE JUMP ADDRESSES ADDRESSE | 11 CAN BE POWERED UP TO ALL ITS STARTING TH DIFFERENT MODES SELECTED. THE PROGRAM WILL HECK THAT THE T-11 POWERED UP TO THE MODE REGISTER. THE PROGRAM WILL SELECT THE TIC, 16 BIT DYNAMIC 4K/16K, 16 BIT DYNAMIC 64K AND 8 BIT DYNAMIC 64K. FOR EACH MODE THAT THE T-11 CAN BE POWERED UP AT EACH OF GRAM WILL SELECT THE CLOCK ON THE TARGET IMING TO THE T-11 CHIP. THE TEST WILL ALSO DRESS REGISTER CAN BE LOADED AND THAT ITS OLD FORCE JUMP ADDRESS REGISTER. | | | 13 | 035622
035622 | | | T45:: | BGNTST | | | | | | 035622 | 004737 | 005510 | | JSR | PC, INITTE | SELECT AND INITIALIZE TARGET EMULATOR | | | | 035626
035632
035634 | 012701
005002
012703 | 036266
036304 | | MOV
CLR
MOV | #14\$,R1
R2
#15\$,R3 | :ADDRESS OF T-11 MODE REGISTER TABLE
:T-11 STARTING ADDRESS MODE PARAMTER
:ADDRESS OF EXPECTED STARTING ADDRESS TO | ADI E | | 2 | 035640
035640 | 104404 | 030304 | 15: | BGNSEG
TRAP | C\$BSEG | ADDRESS OF EXPECTED STARTING ADDRESS TO | ADLE | | 5 | | | | | ;LOAD A | | LL ZEROES TO TURN OFF THE T-11 CHIP AND FROM OTHER BUSSES | | | 3 | 035642
035646
035652
035654
035654
035656
035660
035662 | 005037
004737
001405
104455
000002 | 002330
006614 | | CLR
JSR
BEQ
ERRDF
TRAP
.WORD | R2LOAD
PC,LDRDR2
2\$
2,ADALRG,R2EROR
C\$ERDF | SETUP TO CLEAR ALL BITS GO LOAD, READ AND CHECK ADAL REGISTER IF LOADED OK THEN CONTINUE ADAL REGISTER NOT EQUAL EXPECTED | | | | 035660
035662
035664 | 002513 | | | .WORD
.WORD
CKLOOP | ADALRG
R2EROR | | | | 901234567890123 | 035664 | 104406 | | | ;PULSE
;THE SI
;STEP B | C\$CLP1 THE SIGNAL BRKRES L GNAL BRKRES L WILL (REAK FLIP-FLOP AND 1 | BY SETTING AND CLEARING ADAL REGISTER BIT O.
CLEAR THE BREAK LATCH FLIP-FLOP, THE SINGLE
THE MEMORY SIMULATOR BREAK FLIP-FLOP. | | | 2 | 035666 | 004737 | 007772 | 2\$: | JSR | PC ,BRKRES | GO PULSE BRKRES L VIA ADALO H | | | - | | | | | ; PULSE
; A PULS
; THE MO
; BRKRES | THE SIGNAL INVO L BY
E ON THE SIGNAL INVO
DULE TO A KNWON STATE
L ABOVE. | SETTING AND CLEARING VDAL REGISTER BIT 4. D. L. WILL INITIALIZE ALL OTHER FLIP-FLOPS ON TE EXCEPT FOR THOSE CLEARED BY THE SIGNAL | | | 345678901 | 035672
035676 | 005037
004737 | 002334
007712 | | CLR
JSR | R4LOAD
PC,CLRPSM | SETUP TO CLEAR ALL VDAL R/W BITS | | | HARDWAR | E TESTS | MACY11
01-APR-82 | 30A(1052 |) 01-AP | R-82 1 | 4:48 PAG
5: T-11 S | J 5
E 267
STARTING ADDRESS TEST | IN DIFFERENT MODES | |---|--|--------------------------------------|------------------|---------|--------|--|--|--| | 13653 | | | | | | :SELECT | THE HDAL REGISTER VI | A GDAL BITS 2:0 IN CONTROL REGISTER 0 | | 13655 | 035702 | 004737 | 006754 | | | JSR | PC, SLHDAL | SELECT HOAL REGISTER VIA GOAL BITS 2:0 | | 13657
13658
13658 | | | | | | CLEAR | ALL BITS IN THE HDAL HIP TO GENERATE ALL T | REGISTER. HDAL2 H ON A ZERO WILL ALLOW THE T-11 TIMING AND CONTROL SIGNALS. | | 13660
13661
13662 | 035706
035712
035716 | 005037
004737
001405 | 002342
006672 | | | CLR
JSR
BEQ | R6LOAD
PC,LDRDR6
3\$ | ;SETUP TO CLEAR ALL HDAL BITS
;GO LOAD, READ AND CHECK HDAL REGISTER
;IF LOADED OK THEN CONTINUE | | 13653
13654
13655
13656
13657
13658
13659
13660
13661
13663
13664
13665
13666
13667
13668
13670
13671 | 035720
035720
035722
035724
035726 | 104455
000004
002605
005020 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 4.HDALRG,ROGERR
CSERDF
4
HDALRG
ROGERR | HDAL REGISTER NOT EQUAL EXPECTED | | 13669 | 035730
035730 | 104406 | | | | CKLOOP
TRAP | C\$CLP1 | | | 13670 | | | | | | :SELECT | THE FDAL AND EOAI RE | GISTER VIA GDAL BITS 2:0 IN CONTROL REG O | | 13673 | 035732 | 004737 | 007154 | | 3\$: | JSR | PC,SLFDAL | ;SELECT FDAL AND EOAI REG VIA GDAL 2:0 | | 13674
13675
13676
13677
13678 | | | | | | ; THAT T | L BITS IN THE EOAI RE
HE EOAI REGISTER CAN
ER 6 INSTEAD OF THE C | GISTER TO ZERO. SET FDALO H TO A ONE SO BE READBACK ON A READ COMMAND TO CONTROL TL REGISTER. | | 13679 | 035736 | 012737 | 000001 | 002342 | | MOV | MEDALO PALOAD | SETUD DITE TO DE LOADEN | | 3679
3680
3681
3682
3683
3684
3685
3686
3687
3688 | 035736
035744
035750
035752
035752
035754
035766
035760
035762 | 012737
004737
001405
104455
000004
002676
005020
104406 | 000001
006672 | 002342 | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
CKLOOP
TRAP | #FDALO,R6LOAD PC,LDRDR6 4\$ 4,EOAIFD,R06ERR C\$ERDF 4 EOAIFD R06ERR C\$CLP1 | ;SETUP BITS TO BE LOADED
;LOAD, READ AND CHECK FDAL AND EOAI REG
;IF LOADED OK THEN CONTINUE
;EOAI OR FDAL REGISTER ERROR | | |--|--|--|------------------|--------|--|---|--|--| | 3689 | | | | | | | | | 45: **JSR** CKLOOP TRAP 13690 13691 13701 13702 13703 13704 13705 13706 13707 13708 035770 035774 036000 036004 036006 036006 036010 036012 036014 036016 036016 035764 004737 007006 050237 004737 001405 104455 000004 002631 005020 104406 006672 SELECT MODE REGISTER VIA GDAL BITS 2:0 IN CONTROL REGISTER O :SELECT MODE REGISTER VIA GDAL BITS 2:0 :LOAD THE T-11 MODE SELECT PARAMETERS FROM THE MODE TABLE INTO THE MODE REGISTER. THESE PARAMETERS WILL BE USED BY THE T-11 CHIP ON :ITS POWER-UP SEQUENCE. (R1), R6LOAD BIS R2, R6LOAD PC,LDRDR6 **JSR** BEQ ERRDF 4.MODREG.ROSERR TRAP CSERDF . WURD . WORD MODREG . WORD RO6ERR C\$CLP1 PC.SLMODR GET T-11 MODE SELECT PARAMETER ADD STARTING ADDRESS MODE PARAMETER GO LOAD, READ AND CHECK MODE REGISTER IF LOADED OK THEN CONTINUE MODE REGISTER NOT EQUAL EXPECTED | 13709
13710
13711
13712
13713
13714
13715
13716
13717
13720
13721
13722
13723
13724
13725
13726
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737 | | | | | | REGIS
REGIS
AND T
ENABL
BUS.
LOW.
UP SE
TARGE
MACHI | TER BITS TO ZEROES. | ADALTZ H ON A ONE WILL P WHEN THE SIGNAL PBCLE DWER-UP SEQUENCE. ADAL HE CTL BUS AND THE EIDE ILL CAUSE THE SIGNAL CR ERTED LOW, THE T-11 CHE A ONE WILL SELECT THE ADAL4 H ON A ZERO WILL DDE ON THE FIRST PULSE LLOW THE T-11 TO EXAMIN | ONES AND ALL OTHER ADAL L ENABLE THE MODE R H IS ASSERTED HIGH 10 H ON A ONE WILL AL BUS TO THE ADDRESS PUP L TO BE ASSERTED IP WILL START ITS POWER- 5.068 MHZ CLOCK ON THE CAUSE THE PAUSE STATE OF XRAS H. HE THE AI LINES DURING | |--|--|--------------------------------------|------------------|--------|------|---|---|---|--| | 13723
13724
13725 | 036020
035026
036032 | 012737
004737
001405 | 032006
006614 | 002330 | 5\$: | MOV
JSR
BEQ | PC,LDRDR2 | GO LOAD, READ A | SETUP BITS TO BE LOADED WID CHECK ADAL REGISTER HEN CONTINUE | | 13726
13727
13728
13729
13730 | 036034
036034
036036
036040
036042 | 104455
000002
002513
004770 | | | | ERRDF
TRAP
.WORD
.WORD
.WORD | 2.ADALRG,R2EROR
CSERDF
2
ADALRG
R2EROR | ;ADAL REGISTER | OT EQUAL EXPECTED | | 13731 | 036044
036044 | 104406 | | | | CKLOCE | | | | | 13734
13735
13736
13737
13738 | | | | | |
SETUP
ENTER
T-11
GENER | TIMEOUT COUNTERS TO
ED. THE PAUSE STATE
CAUSES THE SIGNAL FE
ATES A PULSE ON THE | D WAIT FOR THE PAUSE ST
E WORKING FLIP-FLOP SHO
ETCT H TO BE ASSERTED F
SIGNAL XRAS H. | TATE MACHINE TO BE
OULD BE SET WHEN THE
HIGH AND THE T-11 | | 13739
13740
13741 | 036046
036052 | 012705
005004
032777 | 000002 | 1//222 | 6\$: | MOV | #2.R5
R4 | SETUP DOUBLE PR | RECISSION COUNTER | | 13742
13743 | 036054
036062
036064 | 001011
005304 | 001000 | 144222 | 78: | BIT
BNE
DEC | #VDAL9, areg4
8\$
R4 | ; CHECK PAUSE STA
; IF SET THEN PAU
; DECREMNET FIRST | ISE STATE ENTERED | | 13744
13745
13746
13747 | 036066
036070
036072 | 001372
005305
001370 | | | | BNE
DE C
BNE | R4
7\$
R5
7\$ | :DECREMENT DOUBL | HECK PAUSE STATE AGAIN
E PRECISSION COUNTER
HECK PAUSE STATE AGAIN | | 13747
13748
13749 | 036074
036074
036076 | 104455 | | | | ERRDF | 5.NOPSM,ROZGER
CSERDF | PAUSE STATE NOT | ENTERED WHEN T-11 IS ON | | 13750
13751 | 036100
036102 | 003773
005034 | | | | .WORD
.WORD
.WORD | NOPSM
ROZGER | | | | 13753
13754 | 036104
036104 | 104406 | | | | TRAP | C\$CLP1 | | | | 13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13760
13761
13762
13763
13764 | | | | | | SELEC
THE F | ORRECT STARTING ADDR | ESS REGISTER TO CHECK TRESS ONTO THE ADDRESS BUSISTER. THE ADDRESS BUSISDBACK REGISTER WHEN TO SE IS ISSUED ON THE SIDES CALLED DEET H. | ILS FOR THE MODE | | 13762
13763 | 036106 | 004737 | 007040 | | 8\$: | JSR | PC,SLFJAR | | VIA GDAL BITS 2:0 | | 15764 | | | | | | ;READ | THE FORCE JUMP ADDRE | SS READBACK REGISTER B | ACK TO THE LSI-11 | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 269 CVCDCB.P11 01-APR-82 14:12 TEST 45: T-11 STARTING ADDRESS TEST IN DIFFERENT MODES | | | | | | | | The state of s | | |--|--|--|------------------|------------------|-------|---|--|--| | 13765
13766
13767
13768
13770
13771
13772
13773
13774 | 036112
036126
036124
036124
036126
036130
036132
036134 | 011337
004737
001405
104455
000005
004060
005034
104406 | 002342
006700 | | | MOV
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | (R3),R6LOAD
PC,READR6
9\$
5,FJSTAD,R026ER
C\$ERDF
5
FJSTAD
R026ER
C\$CLP1 | GET EXPECTED ADDRESS FROM THE TABLE READ FJA READBACK REGISTER AND CHECK IT IF STARTING ADDRESS = EXPECTED - CONT FJA NOT EQUAL EXPECTED T-11 STARTING ADDRESS | | 13766
13767
13768
13769
13770
13771
13773
13774
13775
13776
13776
13776
13781
13781
13782
13783
13785
13785
13786
13787 | | | | | | ADDRE | SS DIFFERENT FROM THE NEW ADDRESS STARTING | = 010000 THEN NEW ADDRESS = 031463
= 000000 THEN NEW ADDRESS = 177777
= 173000 THEN NEW ADDRESS = 004777 | | 13789 | 036136 | 016377 | 000020 | 144142 | 9\$: | MOV | 20(R3), aREG6 | WRITE NEW FORCE JUMP ADDRESS REGISTER | | 13792 | | | | | | :READ
:FORCE | THE FORCE JUMP ADD | DRESS READBACK REGISTER TO CHECK THAT THE NEW LOADED INTO THE OLD FORCE JUMP ADDRESS REGISTER | | 13789
13790
13791
13792
13793
13794
13796
13797
13798 | 036144
036152 | 016337
012704 | 000020
000004 | 002342 | | MOV
MOV | 20(R3),R6LOAD
#4,R4 | GET ADDRESS LOADED INTO NEW FJA REG | | 13798
13799
13800
13801
13803
13803
13804
13805
13806
13807
13810
13811
13812
13813
13814
13816
13816
13817
13818 | 036164
036172 | 017737
023737
001407
005304
001367
104455
000005
002766
005034
104406 | 144124
002342 | 002344
002344 | 10\$: | MOV
CMP
BEQ
DEC
BNE
ERRDF
TRAP
.WORD
.WORD
.WORD
CKLOOP
TRAP | areg6, R6READ
R6LOAD, R6READ
11\$
R4
10\$
5, FJADRG, R026ER
C\$ERDF
5
FJADRG
R026ER
C\$CLP1 | CHECK DATA LOADED AGAINST DATA READ
IF LOADED OK THEN CONTINUE
CHECK IF ALOTTED READS OCCURED
IF NOT THEN READ FJA READBACK REG AGAIN | | 13811
13812
13813
13814
13815
13816
13817
13818
13819
13820 | 036212
036216
036222
036224
036224
036226
036230
036232 | 005037
004737
001404
104455
000002
002513
004770 | 002330
006614 | | 11\$: | CLR
JSR
BEQ
ERRDF
TRAP
.WORD
.WORD | ALL ADAL REGISTER R2LOAD PC_LDRDR2 12\$ 2.ADALRG_R2EROR C\$ERDF 2 ADALRG R2EROR | ;SETUP TO CLEAR ALL ADAL REGISTER BITS
;GO LOAD, READ AND CHECK ADAL REGISTER
;IF LOADED OK THEN CONTINUE | HARDWARE TESTS MACY11 30A(1052) 01-APR-82 14:48 PAGE 270 CVCDCB.P11 01-APR-82 14:12 TEST 45: T-11 STARTIJ TEST 45: T-11 STARTING ADDRESS TEST IN DIFFERENT MODES 036234 036234 036234 13821 13822 13823 ENDSEG 10000\$: 104405 TRAP C\$ESEG 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 036236 036242 036244 036246 062702 001403 005723 000137 020000 ADD :UPDATE T-11 STARTING ADDRESS PARAMETER :IF DONE THEN CONTINUE #BIT13,R2 BEQ 13\$ (R3) +TST UPDATE STARTING ADDRESS TABLE POINTER 035640 JMP 15 GO LOAD AND CHECK NEXT ADDRESS IN THIS MODE 036252 036256 036260 036262 012703 005721 001431 #15\$,R3 036304 13\$: RESET STARTING ADDRESS TABLE POINTER TST (R1) +SUPDATE TABLE MODE PARAMETER POINTER BEQ 16\$: IF O THEN EXIT THE TEST 000137 035640 JMP 15 GO LOAD NEXT PARAMETER 13834 13835 13836 :T-11 MODE SELECT PARAMTER TABLE WITHOUT STARTING ADDRESS PARAMTER 036266 036270 036272 036274 036276 036300 13837 13838 011003 145: . WORD 011003 :16 BIT STATIC MODE 012003 010003 . WORD 012003 :16 BIT DYNAMIC MODE 4/16 K 13839 13840 13841 13842 13843 . WORD 010003 :16 BIT DYNAMIC MODE 64K :8 BIT STATIC MODE :8 BIT DYNAMIC MODE 4/16K :8 BIT BYNAMIC MODE 64K 015003 . WORD 015003 016003 . WORD 016003 014003 . WORD 014003 036302 000000 . WORD : TABLE TERMINATOR 13844 13845 13846 :EXPECTED T-11 STARTING ADDRESS TABLE 13847 13848 036304 140000 15\$: . WORD 140000 036306 036310 036312 036314 036316 100000 . WORD 100000 13849 13850 13851 13852 13853 040000 020000 040000 . WORD . WORD 010000 . WORD 010000 000000 . WORD 000000 036320 173000 173000 . WORD 13854 036322 172000 . WORD 172000 13855 13856 13857 :ADDRESSES TO BE LOADED INTO NEW FORCE JUMP ADDRESS REGISTER 036324 036326 036330 036332 036334 036336 3858 037777 037777 052525 125252 . WORD 13859 13860 13861 13862 13863 052525 125252 146314 031463 . WORD . WORD - WORD 146314 . WORD 031463 177777 . WORD 177777 036340 036342 3864 004777 005777 . WORD 004777 13865 13866 13867 005777 . WORD 036344 16\$: **ENDTST** 3868 L10101: 13869 13870 13871 036344 104401 TRAP C\$ETST 036346 **ENDMOD** 13872 ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 271 PARAMETER CODING 01-APR-82 14:12 TEST 45: T-11 STARTING ADDRESS TEST IN DIFFERENT MODES 13873 13874 13875 .TITLE PARAMETER CODING .SBTTL HARDWARE PARAMETER CODING SECTION 13876 13877 13878 13879 036346 BGNMOD THE HARDWARE PARAMETER CODING SECTION CONTAINS MACROS 13880 13881 THAT ARE USED BY THE SUPERVISOR TO BUILD P-TABLES. THE MACROS ARE NOT EXECUTED AS MACHINE INSTRUCTIONS BUT ARE 13882 13883 13884 : INTERPRETED BY THE SUPERVISOR AS DATA STRUCTURES. THE MACROS ALLOW THE SUPERVISOR TO ESTABLISH COMMUNICATIONS 13885 : WITH
THE OPERATOR. 13886 13887 13888 036346 036346 036350 BGNHRD 13889 000015 .WORD L10102-L$HARD/2 13890 L$HARD:: 13891 13892 13893 HARDWARE P-TABLE QUESTIONS 13894 13895 ASK FOR CDS TARGET EMULATOR CSR ADDRESS ASK FOR CDS TARGET EMULATOR VECTOR ADDRESS 13896 13897 ASK FOR CDS TARGET EMULATOR DEVICE NUMBER 13898 13899 13900 13901 036350 036350 GPRMA MSG1,0,0,160000,177770,YES . WORD 000031 T$CODE 036352 036354 036356 13902 036402 . WORD MSG1 13903 160000 . WORD T$LOL IM 13904 T$HILIM MSG2,2,0,000370,000000370,YES T$CODE 177770 . WORD 13905 036360 GPRMA 13906 036360 001031 . WORD 036416 000370 000370 13907 036362 WORD MSG2 036364 036366 13908 . WORD T$LOLIM 13909 T$HILIM . WORD 036370 MSG3.4,0,177777,0,000017,YES T$CODE 13910 GPRMD 002032 036435 177777 13911 036370 . WORD 13912 13913 036372 . WORD MSG3 177777 036374 . WORD 13914 036376 000000 . WORD T$LOLIM 13915 036400 000017 . WORD T$HILIM 13916 13917 13918 13919 13920 036402 ENDHRD .EVEN 13921 036402 L10102: ``` ``` MACY11 30A(1052) 01-APR-82 14:48 PAGE 272 PARAMETER CODING CVCDCB.P11 01- HARDWARE PARAMETER CODING SECTION 01-APR-82 14:12 13922 13923 13924 13925 13926 13927 13930 13931 13933 13933 13935 13937 13938 :HARDWARE P-TABLE MESSAGES 036402 036410 036416 036424 036432 036435 036442 051503 051104 042526 040440 051523 104 020105 051105 036454 042101 000123 051117 020122 051505 MSG1: .ASCIZ /CSR ADDRESS/ 052103 042104 MSG2: .ASCIZ /VECTOR ADDRESS/ 042522 000 053105 052516 041511 MSG3: .ASCIZ /DEVICE NUMBER/ 000 .EVEN .SBTTL SOFTWARE PARAMETER CODING SECTION 3939 13940 13941 13942 13943 THE SOFTWARE PARAMETER CODING SECTION CONTAINS MACROS THAT ARE USED BY THE SUPERVISOR TO BUILD P-TABLES. THE MACROS ARE NOT EXECUTED AS MACHINE INSTRUCTIONS BUT ARE INTERPRETED BY THE SUPERVISOR AS DATA STRUCTURES. THE : MACROS ALLOW THE SUPERVISOR TO ESTABLISH COMMUNICATIONS : WITH THE OPERATOR. 13944 13945 13946 13947 13948 13949 13950 13951 13952 036454 036454 036456 BGNSFT 000000 .WORD L10103-L$SOFT/2 L$SOFT:: .EVEN 13954 13955 13956 13957 13958 13959 036456 ENDSFT .EVEN 036456 L10103: 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 036456 036456 SPATCH:: 000030 .BLKW 30 036536 LASTAD .EVEN 036536 036540 036542 036542 036554 .WORD TSFREE .WORD T$SIZE L$LAST:: ENDMOD 3971 13972 13973 036542 036542 036542 036544 13974 13975 13976 BGNSETUP 1. BGNPTAB 000000 . WORD 000003 L10106-./2-1 . WORD ``` ``` PARAMETER CODING MACY11 30A(1052) 01-APR-82 14:48 PAGE 273 CVCDCB.P11 01-APR-82 14:12 SOFTWARE PARAMETER CODING SECTION 13978 036546 163010 .WORD 163010 .WORD 370 .WORD 370 .WORD 2 ENDPTAB L10106: ENDSETUP 13985 036554 .END ``` | CVCDCB. | ER CODING
P11 01-APR-82 | 14:12 | 30A(105 | | PR-82 14
REFERENCE | | USER | SYMBOLS | | | | | | SEQ | |---|--|--|--|--|--|--|--------------------------------------|--|---|--------------------------------|--------------------------------|-----------------------|-----------------------|-----------------------| | DALRG | 002513 G | 1906#
5824
9865
12444
1705#
1693#
1693#
1690#
1687#
1703#
1700#
1696#
1695#
1695#
1694#
1941# | 2582
6345
10315
12557
2574
13723
9291 | 2605
6373
10419
12779
3143 | 3149
6497
10558
12867
3153 | 3159
6567
10675
13063
5342 | 3588
6680
10739
13198 | 3605
6721
10767
13356
9859 | 3638
6752
11376
13634
10669 | 3656
6891
11801
13729 | 3686
7258
11862
13819 | 3718
9297
11952 | 4900
9477
12303 | 5348
9633
12409 | | DALO = | 000001 G | 1705# | 2574 | 3143 | 3153 | 5342 | 5818 | 9859 | 10669 | | | | | | | DAL11= | 000002 G
002000 G
004000 G | 1693#
1692# | | 9627 | 9859 | 10669 | 10733 | 10761 | 11370 | 11795 | 13723 | | | | |)AL12=
)AL13=
)AL14= | 010000 G
020000 G
040000 G | 1691#
1690#
1688# | 4894
9291 | 9627
9471 | 13723
9859 | 10309 | 10413 | 13723 | | | | | | | | AL15= | 000004 G | 1703# | 13723 | | | | | | | | | | | | | AL3 =
AL4 =
AL5 =
AL6 = | 000020 G
000040 G | 1700#
1698#
1697# | 6339
6885 | 6885
7252 | 11946
13471 | 12551 | | | | | | | | | | AL7 = AL8 = | 000200 G
000400 G | 1696#
1695# | 12297
3692 | 12403
3723 | 12438
6367 | 12551
6491 | 6561 | 6674 | 6715 | 6746 | 12773 | 12861 | 13057 | | | AL9 = | 001000 G
002735 G | 1694# | 11856
4531 | 4555 | 4634 | 4658 | 4741 | 4826 | 5056 | 5141 | 5332 | 5808 | 7551 | 8262 | | DR11=
DR12=
DR13=
DR14=
DR15=
DR2 =
DR3 = | 002000 G
004000 G
010000 G
020000 G
040000 G
100000 G
000004 G
000010 G
000020 G
000040 G | 9848
1809#
1808#
1799#
1796#
1796#
1795#
1806#
1806#
1803#
1803#
1801#
1800# | 4831 | | | | | | | | | | | | | T00 = T01 = T02 = | 000020 G
000010
000001 G
000001 G
000002 G
000004 G
000010 G
000020 G | 1804#
1803#
1803#
1800#
1800#
1637#
1599#
1599#
1596#
1596#
1593#
1590#
1589#
1588#
1586# | 1676
1610
1609
1608
1607
1606 | 1705 | 1726 | 1752 | 1774 | 1787 | 1809 | | | | | | | T07 =
T08 =
T09 =
T1 =
T10 = | 000200 G
000400 G
001000 G
000002 G
002000 G | 1593#
1592#
1591#
1590#
1609#
1589# | 1609
1608
1607
1606
1605
1604
1603
1602
1601
1665
1664
1662
1661 | 1704
1693
1692
1691
1690 | 1725
1716
1715
1714
1713 | 1751
1737
1736
1735
1734 | 1773
1764
1762
1761
1760 | 1786
1799
1798
1797
1796 | 1808 | | | | | | | IT11 =
IT12 =
IT13 = | 010000 6 | 1587# | 1663 | 1601 | 1717 | 1730 | 1762 | 1798 | | | | | | | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | | O1-AP | R-82 14 | TABLE - | E 276
- USER | SYMBOLS | | | | | | SEQ 0275 | |---|---|--|---|---|--|---|--|---|---|--|--|--|--| | BIT14 = 040000 G
BIT15 = 100000 G
BIT2 = 000004 G
BIT3 = 000010 G
BIT4 = 000020 G
BIT5 = 000100 G
BIT6 = 000100 G
BIT7 = 000200 G
BIT8 = 000400 G | 1585#
1584#
1608#
1606#
1605#
1604#
1603#
1601# | 1660
1654
1674
1673
1672
1671
1670
1669
1667 | 1688
1687
1703
1702
1700
1698
1697
1696
1695 | 1712
1711
1724
1723
1722
1721
1720
1719
1718
1717 | 1733
1732
1748
1747
1746
1745
1744
1743
1742 | 1759
1758
1772
1771
1770
1769
1768
1767 | 1795
1794
1785
1784
1783
1782
1781
1780
1801 |
1807
1806
1805
1804
1803
1802
4456 | 2983
9567 | | | | | | BIT9 = 001000 G
BOE = 000400 G
BRKRES 007772 G
CLRPSM 007712 G
CTLFDL 003232 G
CSAU = 000052
CSAUTO= 000061 | 3141#
3110#
7355
10407
1976# | 1666
6829
5066
7453
10686
9391
3376
3304 | 7033
5224
7570
11306
9461 | 7145
5357
7610
11387
9561 | 7195
5400
8282
11673 | 1766
1765
7348
5833
8943
11741 | 7563
6249
9022
11829 | 8275
6358
9212
12045 | 9014
6790
9284
12595 | 12655
6874
9347
12665 | 13096
7103
9602
13449 | 13472
7146
9874
13651 | 13643
7198
10151 | | \$BRK = 000022
\$BSEG= 000004
\$SBSUB= 000002
\$CEFG= 000045 | 1368#
1368#
1368#
2862
3463
3861
4340
6292
12621
1368#
1368# | 2397
2882
3495
3887
4381
6823
13623
13187 | 2441
2911
3513
3930
4428
7325 | 2460
2931
3548
3978
4487
7491 | 2523
2962
3578
4023
4538
8199 | 2556
2982
3595
4048
4590
8985 | 2628
3011
3627
4089
4641
9242 | 2740
3030
3645
4114
4696
9596 | 2760
3059
3680
4156
4781
9790 | 2782
3078
3712
4204
4856
10399 | 2802
3111
3748
4248
5006
10603 | 2822
3142
3797
4274
5272
11329 | 2842
3446
3821
4314
5746
11768 | | SCLCK= 000062
SCLEA= 000012
SCLOS= 000035
SCLP1= 000006 | 1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
4612
5194
56724
7280
7768
8265
8780
9259
9695
10137
10504
11022
11245
11515
11850
12202
12499
12835
13066 | 3332
2422
4718
5219
5693
6163
6500
6741
7047
7342
7800
8316
8812
9277
9714
10188
10524
10801
11036
11262
11865
12226
12513
12850
13089 | 2471
4803
5292
5766
6212
6514
6755
7060
7374
7830
8374
8853
9300
9809
10211
10546
10815
11050
11287
11559
11901
12251
12538
12870
13117 | 2502
4888
5314
5788
6237
6528
6783
7083
7387
7877
8409
8904
9325
9831
10561
10561
10561
11068
11300
11574
11939
12265
12560
12884
13141 | 2534
4903
5335
5811
6310
6554
6848
7095
7417
7906
8439
89394
9851
10622
10847
11083
11346
11591
11955
12590
12913
13201 | 2585
4926
5351
5827
6329
6570
6866
7123
7448
7949
8481
9004
9413
9868
10278
10643
10870
11103
11365
11619
11971
12306
12647
12934
13221 | 2595
4949
5393
5867
6348
6585
6894
7138
7511
7994
8515
9464
9888
10304
10661
10893
11119
11379
11636
12003
12705
12944
13234 | 2608
5032
5451
5925
6376
6608
7159
7533
8024
8546
9080
9480
9480
9480
9480
10318
10678
11132
11403
11667
12036
12720
12971
13254 | 2654
5059
5478
5958
6391
6632
6943
7187
7554
8066
8583
9109
9500
9985
10338
10713
11148
11690
12075
12397
12735
12986
13275 | 2665
5103
5508
5988
6405
6647
6958
7212
7603
8115
8613
9135
9515
10018
10422
10726
10953
11177
11436
11707
12106
12412
12757
13004
13290 | 3121
5126
5550
6027
6434
6669
6981
7232
7663
8141
9161
9636
10441
10742
10969
11195
11450
11735
12134
12782
13014
13331 | 3152
5144
5578
6060
6449
6683
6994
7246
7692
8219
8692
9187
9653
10081
10461
10757
10983
11210
11488
11786
12160
12447
12797
13038
13346 | 4509
5158
5623
6089
6471
6710
7016
7261
7722
8241
8733
9206
9672
10118
10483
10770
11004
11225
11505
11804
12188
12466
12812
13051
13359 | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | CROSS | PR-82 14
REFERENCE | 4:48 PA | GE 277
USER | SYMBOLS | | | | | | SEQ 0276 | |--|---|---|--|--|---|---|--|--|--|---|--
---|---| | C\$CVEC= 000036
C\$DCLN= 000044
C\$DODU= 000051
C\$DRPT= 000024 | 13372
13753
1368#
1368#
1368# | 13392
13775
2433 | 13412
13809
2513 | 13462
2598 | 13508
2668 | 13522
13154 | 13563
13308 | 13577
13321 | 13637
13540 | 13669
13553 | 13688 | 13708 | 13732 | | C\$DU = 000053
C\$EDIT= 000003
C\$ERDF= 000055 | 1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368# | 3353
1430
2417
2660
2988
3552
4504
4944
5346
5822
6565
61718
7412
7901
8434
9389
9804
10519
10779
11017
11240
11510
11845
12197
12494
13367
13703 | 2427
2673
3016
3586
4038
4529
4966
5388
5862
6389
7143
7944
8476
8999
9408
9826
10235
10541
110796
11031
11257
11860
1221
12508
12845
13083
13387
13727 | 2447
2745
3036
3603
4058
4058
4058
4058
4058
4058
4058
6903
7154
7506
7989
9459
9459
9459
9459
10256
11896
11896
12533
12865
13112
13407
13748 | 2466
2765
3064
3636
4104
4607
5054
5953
6386
6627
6938
7182
8019
9075
9863
10273
10829
11063
11260
12555
12879
13135
13428
13770 | 2497
2787
3084
3654
4124
4632
5098
5501
5981
6400
6642
6953
7207
7549
8061
8578
9104
9495
9883
10299
10617
10842
11078
11341
11586
112907
13196
1345?
13467 | 2507
2807
3116
3684
4170
4656
5121
5542
6629
6664
6976
7227
7598
8110
8608
9130
9510
9944
10313
10638
11865
11966
12301
12642
12929
13216
13503
13817 | 2529
2827
3126
3716
4218
4713
5139
5573
6055
6444
6678
678
67241
7658
8136
9759
9980
10333
10656
10888
11114
11374
11631
11998
12330
12639
12939
13229
13517 | 2547
2847
3147
3758
4264
4739
5153
5618
6084
6466
6705
7011
7256
7687
8214
8687
9631
10013
10258
10673
10910
11127
11398
11662
12031
12357
12715
12966
13258 | 2580
2867
3157
3812
4284
4798
5189
5665
6118
6480
6719
7023
7275
7717
8236
8728
9201
9648
10041
10708
11143
11685
12070
12392
12729
12981
13572 | 2590
2887
3454
3831
4330
4824
5212
5688
6158
6495
6736
7743
8260
8775
9254
9667
10076
10436
10721
10948
11172
11431
11702
12101
12407
12751
1299
13285
13586 | 2603
2916
3471
3877
4350
4883
5287
5761
6207
6509
6750
7055
7337
7795
8311
8807
9690
10113
10456
10737
10964
11190
11445
11730
12129
12428
12777
13009
13326
13632 | 2619
2937
3504
3898
4394
4898
5309
5783
6232
6523
6778
7078
7078
7369
7825
8369
8848
9295
9709
10132
10478
10752
10978
11205
11483
11781
12155
12442
12792
13032
13341
13664 | | C\$ERHR= 000056
C\$ERRO= 000060
C\$ERSF= 000054
C\$ERSO= 000057
C\$ESCA= 000010
C\$ESEG= 000005 | 12183
12461
12806
13046
13046
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
4003
4988 | | | | | | | 2751
3042 | 2771
3070 | | 2813
3132 | | | | | 3477
3883
4356
6794
13158 | 2436
2893
3510
3904
4400
7296
13823
13434
3431
4068
5243 | 2453
2922
3528
3950
4454
7457 | 2516
2943
3558
3998
4535
8150 | 2553
2973
3592
4044
4559
8947 | 2625
2994
3609
4064
4638
9216 | 2679
3022
3642
4110
4662
9565 | 2751
3042
3660
4130
4745
9750 | 2771
3070
3690
4176
4830
10364 | 2793
3090
3722
4224
4972
10579 | 2813
3132
3764
4270
5227
11310 | 2833
3163
3818
4290
5701
11745 | 2853
3460
3837
4336
6253
12599 | | C\$ESUB= 000003
C\$ETST= 000001 | 1368#
1368#
4003
4988 | 13434
3431
4068
5243 | 13592
3480
4134
5717 | 3531
4182
6269 | 3564
4229
6797 | 3612
4294
7299 | 3663
4360
7460 | 3696
4405
8167 | 3727
4460
8965 | 3777
4562
9219 | 3840
4665
9572 | 3908
4750
9766 | 3956
4835
10380 | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | O1-
CROSS | APR-82 14
REFERENCE | :48 PA | GE 278
USER | SYMBOLS | | | | | | SEQ 0277 | |---|--|--|------------------------|------------------------|---------------|----------------|---------|-------|-------|-------|-------|-------|----------| | C\$EXIT= 000032
C\$GETB= 000026
C\$GETW= 000027 | 10588
1368#
1368#
1368# | 11313
3280 | 11748
3324 | 12602 | 13161 | 13596 | 13869 | | | | | | | | C\$GMAN= 000043
C\$GPHR= 000042
C\$GPLO= 000030 | 1368#
1368#
1368# | 3257 | | | | | | | | | | | | | C\$GPRI= 000040
C\$INIT= 000011
C\$INLP= 000020
C\$MANI= 000050 | 1368#
1368#
1368#
1368# | 3288 | | | | | | | | | | | | | C\$MEM = 000031
C\$MSG = 000023 | 1368#
1368#
1368# | 2150 | 2159 | 2168 | 2177 | 2186 | 2198 | 2210 | 2222 | 2234 | | | | | C\$OPEN= 000034
C\$PNTB= 000014
C\$PNTF= 000017
C\$PNTS= 000016 | 1368# | 2194 | 2206 | 2218 | 2230 | 2242 | | | | | | | | | C\$PNTX= 000015
C\$QIO = 000377
C\$RDBU= 000007 | 1368#
1368#
1368#
1368# | 2265 | 2274 | 2284 | 2292 | 2302 | 2311 | 2321 | 2329 | | | | | | C\$REFG= 000047
C\$RESE= 000033
C\$REVI= 000003 |
1368#
1368#
1368#
1368# | 3221
3235
1429 | 3226
13295 | 3231
13527 | 3245 | 3251 | | | | | | | | | C\$RFLA= 000021
C\$RPT = 000025 | 1368#
1368#
1368#
1368# | 3192 | | | | | | | | | | | | | C\$SEFG= 000046
C\$SPRI= 000041 | 1368# | 3276 | 3317 | 12628 | 12686 | 12764 | 12820 | 12895 | 12919 | 12956 | 13022 | 13103 | 13125 | | C\$SVEC= 000037
C\$TPRI= 000013
DFPTBL 002260 G
DIAGMC= 000000 | 13147
1368#
1368#
1539#
1368 | 2403 | 2487 | 2572 | 2640 | 3241 | 12676 | 13301 | 13533 | | | | | | EDBRK = 000020 G EF.CON= 000036 G EF.NEW= 000035 G EF.PWR= 000034 G EF.RES= 000037 G EF.STA= 000040 G EMSGRO 004156 G EMSGR2 004206 G EMSGR4 004236 G EMSGR6 004266 G EMSGR6 002276 G ERRBLK 002276 G ERRBLK 002276 G ERRBLK 002276 G ERRHSG 002274 G ERRHSG 002274 G ERRTYP 002270 G EVL = 000004 G ESEND = 002100 ESLOAD= 00035 FDALEI 003722 G | 1681#
1617#
1618#
1619#
1616#
2064#
2072#
2076#
1935#
1822#
1823#
1823#
1823#
1823#
1823#
1823#
1785#
1786#
1786#
1786#
1786#
1786# | 3250
3244
3230
3225
3220
2146
2155
2164
2173
4450 | 2182
9322 | 9410 | 10458 | 10501 | 10640 | 11100 | 11129 | 13685 | | | | | ERRTYP 002270 G EVL = 000004 G ESEND = 002100 ESLOAD= 000035 FDALEI 003722 G FDALEO 003666 G FDALRG 002653 G FDALO = 000001 G FDAL1 = 000002 G FDAL2 = 000004 G | 1821#
1635#
1368#
2031#
2026#
1931#
1787#
1786#
1785# | 1453
10543
10521
4266
4425
11094
10581 | 4286
10634
11123 | 4332
11094 | 4352
13679 | 4396 | 13272 | 13430 | | | | | | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(105 | 2) 01-A
CROSS | PR-82 14
REFERENCE | :48 PA | GE 279
USER | SYMBOLS | | | | | | SEQ | |---|---|---|--|---|---|--|--|--|--|--|--|---|---| | FDAL3 = 000010 G FDAL4 = 000020 G FDAL5 = 000040 G FDAL6 = 000100 G FDAL7 = 000200 G FEODAL 003147 G FJAADR 003501 G FJADRG 002766 G FJATDL 003536 G FJATDL 003536 G FJATDL 004366 G FMTRO 004366 G | 1784#
1783#
1782#
1781#
1780#
1967#
2006#
1946#
2001# | 5620
10134
5123
10115 | 6160
5214
10275 | 7946
13806 | 8063 | 8730 | 8850 | 10078 | | | | | | | F\$AU = 000015
F\$AUTO= 000020
F\$BGN = 000040 | 2006#
1946#
2001#
2011#
2047#
2088#
1368#
1368#
1368#
2397
2862
3173
3548
3706
3907
4114
4586
5000
6823
9218
10600
13186
13975
1368# | 10208
13772
2271
2289
3364
3299
1375
2441
2882
3180
3385
3712
3924
4133
4340
4590
5006
7298
9237
10603
13433
13976 | 2308
2326
3375
3303
1568
2460
2911
3186
3423
3574
3726
3930
4150
4359 | 10360
1573
2523
2931
3202
3430
3578
3742
3955
4156
4375
4664
5266
7325
9571
11325
13591
13985 | 2144
2556
2962
3218
3442
3595
3748
3972
4181
4691
5272
7459
9590
11329
13595 | 2153
2628
2982
3280
3446
3611
3776
3978
4198
4404
4696
5716
7485
9596
11747
13614 | 2162
2725
3011
3299
3463
3623
3793
4002
4204
4423
4749
5740
7491
9765
11765
13623 | 2171
2740
3030
3314
3479
3627
3797
4019
4228
4428
4776
5746
8166
9784
11768
13868 | 2180
2760
3059
3324
3491
3645
3821
4023
4244
4459
4781
6268
8193
9790
12601
13872 | 2189
2782
3078
3341
3495
3662
3839
4048
4248
4248
4248
4248
10379
10379
12617
13878 | 2201
2802
3111
3347
3513
3674
3857
4067
4274
4487
4850
6292
8964
10394
12621
13889 | 2213
2822
3142
3364
3530
3680
3861
4085
4293
4538
4856
6796
8981
10399
13160
13949 | 2225
2842
3168
3370
3542
3695
3887
4089
4310
4561
4987
6820
8985
10587
13176
13971 | | F\$CLEA= 000007
F\$DU = 000016
F\$END = 000041 | 1368#
1368#
1368#
2437
2874
3173
3385
3532
3662
3778
3955
4131
4291
4455
4691
5228
6796
8168
9590
11311
13160
13868#
1368#
1368# | 13976
3314
33341
1375
2454
2894
3184
35422
3664
3793
4293
44746
5242
6798
8193
13162
13162
13870
13889
1537 | 4641
5242
7321
9242
11312
13441
13983
1568
2517
2923
31568
2517
2923
3430
3559
3674
4295
4461
4749
6820
8948
9765
113176
13872
13920
1547 | 1573
2554
2944
3280
3432
3563
3691
3838
3999
4150
4483
4751
5266
7297
8964
9767
11325
13186
13878 | 2151
2626
2974
3289
3442
3565
3839
4002
4177
4337
4536
4776
5702
7298
8966
9784
11746
13433
13922 | 2160
2680
2995
3305
3461
3574
3697
3641
4004
4181
4357
4560
4831
5716
7300
8981
10365
11747
13435
13958 | 2169
2733
3023
3324
3478
3593
3706
3857
4019
4183
4359
4561
4834
5718
7321
9217
10379
11749
13441
13971 | 2178
2752
3043
3333
3479
3610
3723
3884
4045
4198
4361
4563
4836
5740
7458
9218
10381
11765
13591
13975 | 2187
2772
3071
3345
3481
3611
3726
3905
4065
4225
4375
4586
4850
6254
7459
9220
10394
12600
13593
13976 | 2199
2794
3091
3354
3491
3613
3728
3907
4067
4228
4401
4639
4973
6268
7461
9237
10580
12601
13595
13983 | 2211
2814
3133
3368
3511
3623
3742
3909
4069
4230
4404
4663
4987
6270
7485
9566
10587
12603
13597
13985 | 2223
2834
3164
3377
3529
3643
3765
3924
4085
4244
4406
4664
4989
6288
8151
9571
10589
12617
13614 | 2235
2854
3168
3379
3530
3661
3776
3951
4111
4271
4423
4666
5000
6795
8166
9573
10600
13159
13824 | | F\$HARD= 000004
F\$HW = 000013 | 13868
1368#
1368# | 13870
13889
1537 | 13872
13920
1547 | 13878 | 13922 | 13958 | 13971 | 13975 | 13976 | 13983 | 13985 | 15614 | 13824 | | PARAMETER CODING
CVCDCB.P11 01-APR-8 | MACY11
2 14:12 | 30A(1052 | CROSS | PR-82 14
REFERENCE | 4:48 PA | GE 280
USER | SYMBOLS | | | | | | SEQ 0279 | |--|--|--|--|---|---|---|---|---
---|---|---|---|---| | F\$INIT= 000006
F\$JMP = 000050
F\$MOD = 000000
F\$MSG = 000011 | 1368#
1368#
1368#
1368#
2201
1368# | 3218
3184
1375
2144
2209
3202 | 3287
3280
1568
2149
2213
3209 | 3324
1573
2153
2221 | 3345
3168
2158
2225 | 3368
3173
2162
2233 | 3379
2167 | 3385
2171 | 13872
2176 | 13878
2180 | 13971
2185 | 2189 | 2197 | | F\$PWR = 000017
F\$RPT = 000012
F\$SEG = 000003 | 2201
1368#
1368#
1368#
1368#
2740
2872
3030
3476
3645
3882
4114
4355
4696
6793
9596
13157 | 3180
2397
2750
2882
3041
3495
3659
3887
4129
4381
4744
6823
9749 | 3191
2435
2760
2892
3059
3509
3680
3903
4156
4399
4781
7295
9790 | 2441
2770
2911
3069
3513
3689
3930
4175
4428
4829
7325
10363 | 2452
2782
2921
3078
3527
3712
3949
4204
4453
4856
7456
10399 | 2460
2792
2931
3089
3548
3721
3978
4223
4487
4971
7491
10578 | 2515
2802
2942
3111
3557
3748
3997
4248
4534
5006
8149
10603 | 2523
2812
2962
3131
3578
3763
4023
4269
4538
5226
8199
11309 | 2552
2822
2972
3142
3591
3797
4043
4274
4558
5272
8946
11329 | 2556
2832
2982
3162
3595
3817
4048
4289
4590
5700
8985
11744 | 2624
2842
2993
3446
3608
3821
4063
4314
4637
5746
9215
11768 | 2628
2852
3011
3459
3627
3836
4089
4335
4641
6252
9242
12598 | 2678
2862
3021
3463
3641
3861
4109
4340
4661
6292
9564
12621 | | F\$SOFT= 000005
F\$SRV = 000010
F\$SUB = 000002
F\$SW = 000014 | 1368#
1368# | 13623
13949
2725
13187
1559 | 13822
13956
2729
13433
1565 | 13442 | 13591 | | | | | | | | | | STEST= 000001 GDALRG 002406 G | 1368#
1368#
3675
4002
4376
4987
7486
10587
1890#
2889
6991
12881 | 3424
3695
4020
4404
5001
8166
10601
2419
3456
7013
12931 | 1565
3430
3707
4067
4424
5242
8194
11312
2449
3473
7044
12941 | 3443
3726
4086
4459
5267
8964
11326
2468
3506
7080
12983 | 3479
3743
4133
4484
5716
8982
11747
2531
3524
7120
13001 | 3492
3776
4151
4561
5741
9218
11766
2621
3554
7156
13011 | 3530
3794
4181
4587
6268
9238
12601
2747
6388
7184
13048 | 3543
3839
4199
4664
6289
9571
12618
2767
6431
7209
13114 | 3563
3858
4228
4692
6796
9591
13160
2789
6468
7229
13287 | 3575
3907
4245
4749
6821
9765
13177
2809
6511
7277
13328 | 3611
3925
4293
4777
7298
9785
13595
2829
6582
12717
13343 | 3624
3955
4311
4834
7322
10379
13615
2849
6629
12794
13519 | 3662
3973
4359
4851
7459
10395
13868
2869
6940
12847
13560 | | GDAL0 = 000001 G
GDAL1 = 000002 G
GDAL10= 002000 G
GDAL11= 004000 G
GDAL12= 010000 G
GDAL13= 020000 G | 2889
6991
12881
13588
1676#
1665#
1665#
1664#
1664#
1674#
1674#
1672#
1671#
1670#
1669#
1667# | 2462
2462 | 2741
2741 | 2783
2823 | 2823
2843 | 2863
2883 | 13280
13280 | 13281
13281 | | | | | | | GDAL14= 040000 G GDAL15= 100000 G GDAL2 = 000004 G GDAL3 = 000010 G GDAL4 = 000020 G GDAL5 = 000040 G | 1660#
1654#
1674#
1673#
1672#
1671# | 2442
2525
12711
1681
1680 | 3273
2761
12925 | 13281
2823
12935 | 2863
12995 | 2883
13005 | 13280
13042 | 13281
13108 | | | | | | | GDAL6 = 000100 G
GDAL7 = 000200 G
GDAL8 = 000400 G
GDAL9 = 001000 G
GSCNTO= 000200
GSDELM= 000372
GSDISP= 000003 | 1670#
1669#
1667#
1666#
1368#
1368# | 1680
1679
1678 | 13513 | | | | | | | | | | | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | O1-A | PR-82 14
REFERENCE | 4:48 PAGE TABLE | SE 281
USER S | SYMBOLS | | | | | | SEQ | |--|---|--|--|---|---|--|---|---|---|---|--|--|--| | G\$EXCP= 000400
G\$HILI= 000002
G\$LOLI= 000001
G\$NO = 000000
G\$OFFS= 000400
G\$OFSI= 000376
G\$PRMA= 000001
G\$PRMD= 000002
G\$PRML= 000000
G\$RADA= 000140
G\$RADB= 000000 |
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369#
1369# | 13901
13901
13901
13911 | 13906
13906
13906 | 13911
13911 | | | | | | | | | | | G\$RADD= 000040
G\$RADL= 000120
G\$RADO= 000020 | 1368# | 13901 | 13906 | 13911 | | | | | | | | | | | G\$XFER= 000004
G\$YES = 000010
HDALRG 002605 G | 1368#
1923#
3900
7371
10798
11704
1752# | 13901
2499
3946
7530
10831
11783
10231 | 13906
2918
3994
8238
10966
12199
10328 | 13911
2939
4506
9041
11033
12262 | 2969
4609
9274
11065
12463 | 2990
4715
9828
11192
12510 | 3018
4800
10237
11222
12644 | 3038
4946
10335
11297
13251 | 3066
5029
10438
11362
13389 | 3086
5311
10480
11400
13666 | 3814
5785
10575
11433 | 3833
6326
10658
11529 | 3879
6863
10710
11571 | | HDAL1 = 000002 G
HDAL10= 002000 G
HDAL11= 004000 G
HDAL12= 010000 G
HDAL13= 020000 G | 1752#
1751#
1737#
1736#
1735#
1734#
8742
1733#
1732#
1748#
5430
7840 | 2912
2963
8862 | 2933
2984
10094 | 6001
5517
10160 | 8452
5633
10704 | 10704
6001
10938 | 10879
6173
11159 | 10938
7732 | 11159
7840 | 7958 | 8075 | 8452 | 8622 | | HDAL14= 040000 G
HDAL15= 100000 G
HDAL2 = 000004 G | 1733#
1732#
1748#
5430
7840
9529
10704 | 3012
2489
5517
7958 | 3032
2912
5633
8075
9726
i1159 | 10160
2932
5779
8232
9822
11291 | 2963
5900
8349
9926
11356 | 3012
6001
8452
10094
11394 | 3031
6173
8622
10160
11427 | 3060
6320
8742
10219
11523 | 3079
6857
8862
10328
11565 | 5023
7365
9035
10432
11604 | 5082
7524
9268
10474
11651 | 5180
7640
9340
10569
11698 | 5305
7732
9425
10652
11777 | | HDAL3 = 000010 G
HDAL4 = 000020 G
HDAL5 = 000040 G
HDAL6 = 000100 G
HDAL7 = 000200 G
HDAL8 = 000400 G | 9529
10704
12638
1747#
1746#
1745#
1744#
1743#
1742#
1738#
5900
8742
1366#
2134
3182
3420
1648#
1838#
1638#
1953#
1646# | 10704
10704
10231
10231
3060
3952
4500
6001
8862
1368
2152
3187
3421 | 10792
10824
10328
10328
3080
3999
4603
6173
9822
1383
2343
3210
3426 | 10825
10856
10329
10474
9726 | 10938
10938
11027
11059
10219 | 10960
11186
11186 | 1216 | 11427
11394 | 11523
11523 | 11565
12193 | 11604
12256 | 11651
12457 | 12504 | | HDAL8 = 000400 G
HDAL9 = 001000 G | 1738#
5900 | 4500
6001 | 4603
6173 | 4709
7524
9926
1471 | 7640 | 5023
7732 | 5082
7840 | 5180
7958 | 5305
8075 | 5430
8232 | 5517
8349 | 5633
8452 | 5779
8622 | | HELP = 000000 | 1366#
2134
3182
3420 | 1368
2152
3187
3421 | 1383
2343
3210
3426 | 9926
1471
2349
3278
3427 | 1527
2352
3283
13871 | 1545
2362
3301
13874# | 1563
2365
3322
13917 | 1568#
2373
3327
13937 | 1571
2382
3343
13952 | 1579
2386
3348
13960 | 1818
2394
3366
13964 | 1872
2395
3371
13973 | 2060
3169#
3381# | | HOE = 100000 G
IBE = 010000 G
IDDEV 002310 G
IDTYPE 002316 G | 1648#
1645#
1835#
1838# | 2409
2443 | 2461
3273* | 2524
13279 | 3271* | 3272* | 3318 | 13304 | 13322 | 13336 | 13536 | 13554 | | | IDU = 000040 G
IEODAL 003034 G
IER = 020000 G | 1638#
1953#
1646# | 5503 | 5983 | 7719 | 7827 | 8436 | 8610 | | | | | | | | VCDCB.F | R CODING
P11 01-APR-82 | MACY11
2 14:12 | 30A(1052 | CROSS | R-82 14
REFERENCE | TABLE - | - USER S | YMBOLS | | | | | | SEQ 02 | |-------------------------|--|--|---|--|--|---|--|--|---|---|--|--|---|---| | NTSRV | 005510 G
006724 G | 2396#
3973
4851
10395
2725#
1639# | 3424
4020
5001
10601
12673 | 3443
4086
5267
11326 | 3492
4151
5741
11766 | 3543
4199
6289
12618 | 3575
4245
6821
13178 | 3624
4311
7322
13616 | 3675
4376
7486 | 3707
4424
8194 | 3743
4484
8982 | 3794
4587
9238 | 3858
4692
9591 | 3925
4777
9785 | | E = SAU = SCLN = SDU = | 000100 G
004000 G
000041
000041
000041
000041 | 1639#
1644#
1368#
1368#
1368#
13889# | 3364#
3299#
3314#
3341#
13922#
3218#
1375# | 3377#
3305#
3324
3354# | 3333# | | | | | | | | | | | SINIT= | 000041
000041 | 1368#
1368#
1368#
2201# | 2144# | 3280
1568#
2151#
2213# | 3289#
1573#
2153#
2223# | 3168#
2160#
2225# | 3173#
2162#
2235# | 3379#
2169# | 3385#
2171# | 13872#
2178# | 13878#
2180# | 13971#
2187# | 2189# | 2199# | | PTAB= | 000041 | 1368#
1368#
1368# | 2211#
3202#
13976# | 13983# | ELLIN | 22234 | EEJJW | | | | | | | | | SRPT =
SSEG = | 000041 | 1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
140#
2740#
2874#
3905#
4089#
4274#
4483
4776 |
3180m
2397m
2752m
2882m
3043m
3463m
3595m
3742 | 3193#
2437#
2760#
2894#
3059#
3478#
3610#
3748#
3930#
4114# | 2441#
2772#
2911#
3071#
3491
3623
3765#
3951#
4131# | 2454#
2782#
2923#
3078#
3495#
3627#
3793 | 2460#
2794#
2931#
3091#
3511#
3643#
3797# | 2517#
2802#
2944#
3111#
3513#
3645#
3819#
4177#
4357#
4590# | 2523#
2814#
2962#
3133#
3529#
3661#
3821# | 2554#
2822#
2974#
3142#
3542
3674
3838#
4023#
4204#
4381# | 2556#
2834#
2982#
3164#
3548#
3680#
3857 | 2626#
2842#
2995#
3423
3559#
3691#
3861# | 2628#
2854#
3011#
3442
3574
3706
3884#
4065#
4248#
4428# | 2680#
2862#
3023#
3446#
3578#
3712#
3887# | | SSETU= | 000041 | | 3924
4111#
4291#
4487#
4781#
6254#
8193
9790#
12600#
13975#
13958#
2725#
3423
4019 | 4114#
4310
4536#
4831#
6288
8199#
10365#
12617
13976 | 3951#
4131#
4314#
4538#
4850
6292#
8948#
10394
12621#
13985# | 3972
4150
4337#
4560#
4856#
6795#
8981
10399#
13159# | 3978#
4156#
4340#
4586
4973#
6820
8985#
10580#
13176 | 3999#
4177#
4357#
4590#
5000
6823#
9217#
10600
13186 | 4019
4198
4375
4639#
5006#
7297#
9237
10603#
13441 | 4023#
4204#
4381#
4641#
5228#
7321
9242#
11311#
13614 | 4045#
4225#
4401#
4663#
5266
7325#
9566#
11325
13623# | 4048#
4244
4423
4691
5272#
7458#
9590
11329#
13824# | 4065#
4248#
4428#
4696#
5702#
7485
9596#
11746# | 3887#
4085
4271#
4455#
4746#
5740
7491#
9751#
11765 | | SFT =
SRV =
SUB = | 000041
000041
000041
000041 | 13949#
1368#
1368#
3972 | 13958#
2725#
3423
4019 | | | 3542
4198 | 3574
4244 | 3623
4310 | 3674
4375 | 3706
4423 | 3742
4483 | 3793
4584 | 3857 | 3924
4776 | | STST = | 000041 | 5746#
8151#
9784
11768#
1368#
1368#
1368#
3972
4850
10394
1368#
3776#
4004#
4244#
4561#
4989#
6820#
9218#
10589#
13176#
1368#
2463 | 5000
10600
3423#
3611#
3778#
4019#
4293#
4563#
5000#
7298#
9220#
10600#
13186
3184
2526 | 2733#
3442
4085
5266
11325
3430#
3613#
3793#
4067#
4295#
4295#
4586#
5242#
7300#
9237#
11312# | 3491
4150
5740
11765
3432#
3623#
4069#
4310#
4664#
5244#
7321#
9571#
11314#
13595#
3368
2689# | 3542
4198
6288
12617
3442#
3662#
3841#
4085#
4359#
4666#
7459#
9573#
11325#
13597# | 3574
4244
6820
13176
3479#
3664#
3857#
4133#
4361#
4361#
9590#
11747# | 3623
4310
7321
13186#
3481#
3674#
3907#
4135#
4375#
4749#
5718#
9765#
11749# | 7485
13433#
3491#
3695#
3909#
4150#
4404#
4751#
5740#
8166#
9767# | 3706
4423
8193
13435#
3530#
3697#
3924#
4181#
4406#
4776#
6268#
8168#
9784#
12601# | 3742
4483
8981
13441#
3532#
3706#
3955#
4183#
4423#
4834#
6270#
8193# | 3793
4586
9237
13591#
3542#
3726#
3957#
4198#
4459#
4836#
6288#
8964# | 3857
4691
9590
13593#
3563#
3728#
3972#
4228#
4461#
4850#
6796# | 9784
13614
3565#
3742#
4002#
4230#
4483#
4987#
6798#
8981#
10587#
13162# | | | | 9218#
10589#
13176# | 9220#
10600#
13186 | 9237#
11312#
13441 | 9571#
11314#
13595# | 9573#
11325#
13597# | 9590#
11747#
13614# | 9765#
11749#
13868# | 9767#
11765#
13870# | 9784#
12601# | 10379# | 10381# | 8966#
10394#
13160# | 10587#
13162# | | SJMP =
ORDRO | 000167
006554 G | 2463 | 2526 | 13441
3345
2616 | 3368
2689# | 2742 | 2762 | 2784 | 2804 | 2824 | 2844 | 2864 | 2884 | 3451 | | CVCDCB. | P11 | NG
01-APR-82 | | | | R-82 14
REFERENCE | | | | | | | | | SEQ | | |--|--|-----------------|---|---|---|--|--|--|--|--|---|---|---|---|---|--| | LDRDR2 | 006614 | G | 3468
2600
6340
10310
12552 | 3501
2699#
6368
10414
12774
2707#
11497
2716#
3941 | 3519
3144
6492
10553
12862
3113 | 3549
3154
6562
10670 | 12712
3583
6675
10734
13193
3755
13454 | 12926
3600
6716
10762
13629
6520 | 12936
3633
6747
11371
13724
6546 | 12996
3651
6886
11796
13814 | 13006
3681
7253
11857 | 13043
3713
9292
11947 | 13109
4895
9472
12298 | 13323
5343
9628
12404 | 13555
5819
9860
12439 | | | DRDR4 | 006640 | G | 2670 | 2707# | 3113 | 3123 | 3755 | 6520 | 6546 | 6900 | 7238 | 7287 | 7379 | 9507 | 9880 | | | LDRDR6 | 006672 | G | 10310
12552
2670
10180
2544
3895
4391
4941
6858
9317
10614
11217 | 2716#
3941
4445
5024
7334
9405
10635
11292
12257
2690#
5150 | 11507
2913
3989
4501
5051
7366
9492
10653
11338
12458
13282
5443 | 3549
3154
6562
10670
13058
3123
13226
2934
4035
4526
5136
7503
9645
10705
11357
12505 | 7525
9801
10793
11395
12639 | 2985
4101
4604
5306
7546
9823
10826
11428 | 3013
4121
4629
5327
8211
9843
10925
11524 | 3033
4167
4653
5758
8233
10232
10961 | 3061
4215
4710
5780
8257
10330
11028
11583 | 3081
4261
4736
5803
8996
10433
11060
11628 | 3809
4281
4795
6302
9036
10453
11095
11682 | 3828
4327
4821
6321
9251
10475
11124
11699 | 3874
4347
4880
6840
9269
10570
11187
11778 | | | LDRDOR | 006562 | G | 12194 | 12257 | 12458 | 12505 | 12639 | 13213 | 13246 | 11566
13267 | 13661 | 13680 | 13700 | 11077 | 11770 | | | DRD4R | 006646 | G | 2708#
11963 | 5150 | 5443 | 5859 | 5917 | 6733 | 7409 | 7655 | 8308 | 8366 | 9941 | 11237 | 11254 | | | OE = SACP SAPT SAU SAUT SAUTO SCCP SCLEA | 040000
000010
002110
002036
010336
002070
010276
010300
002032
002011 | 6666666 | 1647#
1636#
1460#
1418#
3364#
1444#
1461
1458#
1459
1414# | 3299#
3314# | | | | | | | | | | | | | | SDEPO
SDESC | 002011
002360
002076 | G | 1396#
1451 | 1876# | | | | | | | | | | | | | | SDESP
SDEVP
SDISP
SDLY
SDTP | 002060
002124
002116 | 6 | 1450#
1436#
1421
1466# | 1480# | | | | | | | | | | | | | | SDTYP
SDU
SDUT | 002060
002124
002116
002040
002034
010330
002072
002350
002044
002270
002102
002066
036350
002120
002016
002026
002026
002026
002026
002026
002026 | 6666666666 | 1466#
1420#
1416#
3341#
1446#
1437
1431#
1424#
1820#
1454#
1440#
1442# | 1867# | | | | | | | | | | | | | | SEF
SENVI
SERRT
SETP
SEXP1
SEXP4
SEXP5
SHARD
SHIME
SHPCP
SHPTP | 002064
002066
036350
002120
002016 | 9999 | 1440#
1442#
1403
1468#
1402#
1406#
1407
1456#
1457 | 13889 | 13890# | | | | | | | | | | | | | SHPTP
SHW | 002022 | 6 | 1406# | 1537 | 1538# | | | | | | | | | | | | | SICP
SINIT | 010066 | G | 1457 | 3218# | | | | | | | | | | | | | | SLADP
SLAST | 036542 | G | 1411 | 13969# | 13985 | | | | | | | | | | | | | PARAMI | ETER CODING
B.P11 01-APR-82 | MACY11
14:12 | 30A(1052) 01-APR-82 14:48 PAGE 284
CROSS REFERENCE TABLE USER SYMBOLS | |--|--|---|--| | L\$LOAI
L\$LUN
L\$MREY
L\$NAMI
L\$PRIC
L\$PRI
L\$PRI
L\$PRI | 002074 G
V 002050 G
E 002000 G
O 002042 G
F 010060 G
002112 G |
1452#
1448#
1428#
1385#
1422#
1463
1463
1463#
1394# | 3202# | | L\$REV
L\$RPT
L\$SOFT
L\$SPC | 002010 G
010052 G
036456 G
002056 G | 13949
1434#
1404# | 13950# | | LSSPTI
LSSTA
LSSW
LSTEST
LSTIMI | . 002014 G | 1408#
1412#
1559
1464#
1400# | 1560# | | L10000
L10000
L10000
L10000
L10000
L10000
L10000
L10010
L10010 | 0 002266
0 002270
2 004766
3 005002
6 005016
5 005032
6 005046
7 005070
0 005112
1 005134 | 1398#
1537
1559
2149#
2158#
2167#
2185#
2197#
2209#
2221#
2233#
2729# | 1547#
1565# | | L10013
L10014
L10016
L10017 | 010056 | 5185 | 3191#
3287# | | L10020
L10020
L10020
L10020
L10020
L10020
L10030
L10030
L10030
L10030
L10030
L10030
L10030
L10040
L10040
L10040
L10040 | 0 010326
0 010334
0 010342
0 010350
0 010434
0 010522
0 010572
0 010656
0 010744
0 011014
0 011060
0 011156
0 011246
0 011340
0 011414
0 011646 | 3281
3303#
3325
3346
3349
3430#
3563#
3662#
3695#
3769#
3769#
3907#
4002#
4002#
4133#
4181#
4293#
4293#
4359# | 33314 33524 33754 | | PARAMET
CVCDCB. | ER CODING
P11 01-APR-82 | MACY11
14:12 | 30A(1052 | | PR-82 14
REFERENCE | :48 PAG | E 286
- USER : | SYMBOLS | | | | | | SEQ O | |---|--|---|--|---|--|---|---|---|--|--|--|--|--|--| | MSGTM2 MSGTM4 MSGTM6 MSG1 MSG2 MSG3 MTOTMR NOINT NOPSM ONEFIL= | 004547 G
004623 G
004677 G
036402
036416
036435
0033335 G
002467 G
003773 G | 2108#
2116#
2124#
13902
13907
13912
1988#
1899#
2038# | 2203
2215
2227
13927#
13929#
13932#
9746
12832
13750
1364 | 12968
1366# | 1369 | 1568# | 1570 | 3169# | 3171 | 3380 | 3381# | 3383 | 13873 | 13874# | | OSAPTS= OSAU = OSBGNR= OSBGNS= OSDU = OSERRT= OSGNSW= OSPOIN= OSSETU= PNT = | 000000
000000
000000
000000
000000
00000 | 1368#
1368#
1368#
1368#
1368#
1368#
1368#
1368#
1630#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629#
1629# | 1412
1444
1438
1404
1446
1454
1408
1382#
1382# | 1470
1398 | 13967 | | | | | | | | | | | PRIOT =
PRIO2 =
PRIO3 =
PRIO4 =
PRIO5 =
PRIO6 = | 002000 G
000000 G
000040 G
000100 G
000140 G
000200 G
000240 G
000300 G | 1643#
1631#
1630#
1629#
1628#
1626#
1625# | 12685 | 12819 | 12894 | 12955 | 13021 | 13124 | | | | | | | | PRIO7 = PRNTBS PRNTRO PRNTR2 PRNTR4 PRNTR6 PRO26R PRO6R READRO | 000340 G
005160 G
005230 G
005306 G
005360 G
005436 G
005212 G
005212
G
005200 G
006570 G | 1423
13102
2145
2147
2156
2165
2249
2183
2174 | 13146
2154
2248
2255
2298#
2256
2254#
2248# | 2399
13297
2163
2254
2280#
2317# | 2483
13529
2172
2261# | 2568
2181 | 2636
2238# | 2731 | 3275 | 3316 | 12627 | 12672 | 12763 | 12918 | | | | 2691#
7151 | 6383 | 6426
7204 | 6463
7224 | 6506
7272 | 6577
12789 | 6624
12876 | 6935
13338 | 6986
13514 | 7008
13583 | 7039 | 7075 | 7115 | | READR2
READR4 | 006622 G
006654 G | 2709#
6115
7020
8107
9072
10807
11169
11995 | 1624#
13146
2154
2248
2255
2298#
2256
2254#
2248#
6383
7179
13351
5095
6204
7052
8133
9101
10839
11202
12028
12491
4918 | 5186
6229
7087
8401
9127
10862
11279
12067
12530
4963
8725
10270
2412 | 5385
6397
7130
8473
9153
10885
11410
12098
12582
5118 | 5470
6441
7440
8507
9179
10907
11442
12126
13364
5209
9386
10355
2691 | 5542
6477
7595
8538
9198
10945
11480
12152
13500
5498
9456
10496
2726 | 5570
6600
7684
8575
9977
10975
11551
12180
13569
5615
9556
10516 | 5662
6639
7760
8653
10010
10996
11611
12218 | 5685
6661
7792
8684
10038
11014
11659
12243 | 5950
6702
7869
8772
10247
11042
11727
12281 | 6019
6775
7898
8804
10718
11075
11842
12327 | 6052
6950
7986
8896
10749
11111
11893
12354 | 6081
6973
8016
8924
10776
11140
11931
12389 | | READR6 | 006700 G | 8431
10129 | 8604
10203 | 8725
10270 | 8845
10296
2690* | 9386
10355 | 5498
9456
10496 | 5615
9556
10516 | 5978
9664
10538
3318* | 6155
9687
13384
6616 | 7714
9706
13404 | 7821
9741
13425
13535 | 7941
10073
13767 | 8058
10110 | | REGO
REGOEQ
REG2 | 002300 G
004316 G
002302 G | 1830#
2080#
1831# | 8604
10203
2411*
2262
2575* | 2412 | 2690*
2699* | 2691 | 2726
3320* | 3261 | 3318* | 6616 | 13404
13303 | 13535 | 13101 | | | | PARAMET
CVCDCB. | ER CODING | MACY11
R-82 14:12 | 30A(1052) | 01-AF | PR-82 14 | :48 PAG | GE 287
USER S | SYMBOLS | | | | | | SEQ | |---|---------------------------|----------------------------------|---|---|--|--|---|---|--|--|--|--|--|---|--| | | REGZEQ
REG4 | 004330 G
002304 G | 2082#
1832# | 2281
2644* | 2645 | 2708* | 2709 | 13741 | | | | | | | | | | REG4EQ
REG6 | 004342 G
002306 G | 2084#
1833# | 2491* | 2492 | 2716* | 2717 | 5378* | 5850* | 7588* | 8299* | 9375* | 9449* | 13789* | 13798 | | | REGGEQ
ROBAD
ROEROR | 004354 G
002326 G
004754 G | 2086#
1843#
2144#
2890
6992
12754
13035 | 2281
2644*
2299
2491*
2318
2268
2420
3457
7014
12795
13049 | 2412*
2450
3474
7045
12809
13086 | 2413*
2469
3507
7081
12833
13115 | 2414
2532
3525
7121
12848
13138 | 2691*
2622
3555
7157
12882
13288 | 2692*
2748
6389
7185
12910
13329 | 2693
2768
6432
7210
12932
13344 | 2726*
2790
6469
7230
12942
13520 | 12842
2810
6512
7278
12969
13561 | 12978
2830
6583
12702
12984
13589 | 2850
6630
12718
13002 | 2870
6941
12732
13012 | | | ROGOOD | 002322 G | 1841#
7150*
13513* | 2269
7178* | 2410*
7203* | 2414
12788* | 2443* | 2689*
12875* | 2693
12978 | 6382* | 6505* | 6623* | 6934* | 7038*
13336* | 7114* | | 1 | ROLOAD | 002320 G | 1840#
2741*
3559* | 13582*
2270
2761*
3560 | 2409*
2783*
12711* | 2410
2803*
12925* | 2411
2823*
12935* | 2442*
2843*
12995* | 2461*
2863*
13005* | 2462*
2883*
13042* | 2524*
3450*
13108* | 2525*
3467*
13281* | 2615*
3500*
13322* | 2689
3518*
13337* | 2690
3545*
13554* | | | ROMASK | 002324 G
005050 G | 1842#
2189#
2180# | 2408*
2430 | 2413 | 2614* | 2681* | 2692 | | | | | | | | | 1 | RO26ER
RO6ERR | 005034 G | 10276 | 4924
10302
2500 | 10361 | 9392
10544 | 13751 | 9562
13773 | 9670
13807 | 9693 | 9712 | 9747 | 10116 | 10135 | 10209 | | | | 005020 G | 2171#
3880
4353
4886
5786
7720
9257
10459
11034
11589
13390 | 3901
4397
4947
5809
7828
9275
10481
11066
11634
13410 | 2550
3947
4451
5030
5984
7947
9323
10502
11101
11688
13431 | 2919
3995
4507
5057
6161
8064
9411
10522
11130
11705
13667 | 2940
4041
4532
5124
6308
8217
9498
10576
11193
11784
13686 | 2970
4061
4556
5142
6327
8239
9651
10620
11223
12200
13706 | 2991
4107
4610
5215
6846
8263
9807
10641
11298
12263 | 3019
4127
4635
5290
6864
8437
9829
10659
11344
12464 | 3039
4173
4659
5312
7340
8611
9849
10711
11363
12511 | 3067
4221
4716
5333
7372
8731
10079
10799
11401
12645 | 3087
4267
4742
5504
7509
8851
10238
10832
11434
13219 | 3815
4287
4801
5621
7531
9002
10336
10931
11530
13252 | 3834
4333
4827
5764
7552
9042
10439
10967
11572
13273 | | | R2EROR | 004770 G | 2153#
5825
9866
12445 | 2583
6346
10316
12558 | 2606
6374
10420
12780
2574*
3691* | 3150
6498
10559
12868 | 3160
6568
10676
13064 | 3589
6681
10740
13199 | 3606
6722
10768
13357 | 3639
6753
11377
13635 | 3657
6892
11802
13730
3143*
5818* | 3687
7259
11863
13820
3153* | 3719
9298
11953 | 4901
9478
12304 | 5349
9634
12410 | | | R2LOAD
R2READ
R2TM | 002330 G
002332 G
005072 G | 1845#
3650*
6674*
9859*
12438*
1846# | 2288
3677*
6715*
10309*
12551*
2287 | 2574*
3691*
6746*
10413*
12654*
2576* | 6498
10559
12868
2575
3692
6828*
10552*
12773*
2577 | 3160
6568
10676
13064
2577
3709*
6885*
10669*
12861*
2700* | 6681
10740
13199
2599*
3723*
7252*
10733*
13057*
2701 | 3606
6722
10768
13357
2699
4894*
7347*
10761*
13095* | 2701
5342*
7562*
11370*
13192* | 3143*
5818*
8274*
11795*
13350* | 3153*
6339*
9013*
11856*
13471* | 3582*
6367*
9291*
11946*
13628* | 3599*
6491*
9471*
12297*
13723* | 3632*
6561*
9627*
12403*
13813* | | | R4BAD
R4EROR | 002340 G
005004 G | 5825
9866
12445
1845#
3650*
6674*
9859*
12438*
1846#
2201#
1850#
2162#
5576
6447
77026
7798
8581
9513
10868
11243
11899
12333
1849# | 6346
10316
12558
2288
3677*
6715*
10309*
12551*
2287
2305
2462
5668
6483
7058
7875
8659
9886
10891
11937
12360
2306 | 2645*
2676
5691
6526
7093
7904
8690
9947
10913
11285
11969
12395
2643* | 2646
3119
5865
6552
7136
7992
8778
9983
10951
11416
12001
12431
2646 | 2707*
3129
5923
6606
7244
8022
8810
10016
10981
11448
12034
12497
2707* | 2710
3761
5956
6645
7293
8113
8902
10044
11002
11486
12073
12536
2710 | 5101
6025
6667
7385
8139
8930
10186
11020
11503
12104
12588
5094* | 5156
6058
6708
7415
8314
9078
10253
11048
11513
12132
13232
5149* | 5192
6087
6739
7446
8372
9107
10724
11081
11557
12158
13370
5384* | 5391
6121
6781
7601
8407
9133
10755
11117
11617
12186
13460
5441* | 5449
6210
6906
7661
8479
9159
10782
11146
11665
12224
13506
5442* | 5476
6235
6956
7690
8513
9185
10813
11175
11733
12249
13575 | 5548
6403
6979
7766
8544
9204
10845
11208
11848
12287 | | | R4GOOD | 002336 G | 1849# | 2306 | 2643* | 2646 | 2707* | 2710 | 5094* | 5149* | 5384* | 5441* | 5442* | 5469* | 5568* | | PARAMET
CVCDCB | ER CODI |
NG
01-APR-82 | MACY11
14:12 | 30A(1052 | | PR-82 14 | :48 PAG | | SYMBOLS | | | | | | SEQ (| |------------------------------------|--------------------------------------|-----------------|---|--|---|--|---|--|--|---|---|---|--|---|---| | R4LOAD | 002334 | | 5569* 6638* 7653* 8364* 9100* 10775* 11235* 11930* 12353* 1848# 3773* 6248* 7406* 9021* 11234* 12594* | 5661* 6660* 7654* 8365* 9126* 10806* 11236* 11962* 12388* 2307 5065* 6357* 7407 9211* 11235 12664* | 5684*
6700*
7683*
8400*
9152*
10906*
11252*
11993*
12424*
2642*
5148*
6519*
7452*
9283*
11251*
13225* | 5857* 6701* 7790* 8506* 9178* 10944* 11253* 11994* 12489* 2643 5223* 6545* 7569* 9506* 11252 | 5858* 6732* 7791* 8573* 9939* 10974* 11277* 12027* 12490* 2644 5356* 6731* 7609* 9601* 11305* 13453* | 5915* 6773* 7896* 8574* 9940* 10995* 11278* 12097* 12528* 2669* 5399* 6789* 7652* 9873* 11386* 13650* | 5916* 6774* 7897* 8682* 9975* 11013* 11409* 12125* 12529* 2707 5440* 6873* 7653 9879* 11496* | 5949* 6949* 8014* 8683* 9976* 11041* 12151* 12581* 2708 5441 6899* 8281* 9938* 11506* | 6051* 6972* 8015* 8802* 10036* 11074* 11479* 12216* 13363* 3112* 5832* 7197* 8305* 9939 11672* | 6113*
7129*
8106*
8803*
10037*
11110*
11658*
12217*
13499*
3122*
5856*
7237*
8306
10150*
11740* | 6114*
7407*
8132*
8895*
10246*
11139*
11726*
12242*
13568*
3744*
5857
7286*
8363*
10179*
11828* | 6203* 7408* 8306* 8923* 10717* 11168* 11892* 12280* 3768* 5914* 7354* 8364 10406* 11961* | 6228* 7594* 8307* 9071* 10748* 11201* 11929* 12326* 3770 5915 7378* 8942* 10685* 12044* | | R4TM | 005114
002342 | G | 2213#
1852#
2984*
3952
4280*
4709*
5135*
5802*
7524*
8075*
8842*
9686*
10202*
10494*
10879*
11356*
12256*
13698* | 2663
2325
3012*
3975*
4326*
4735*
5180*
5900*
7545*
8209*
8843*
9705*
10219*
10495*
11394*
12457*
13699* | 2489*
3031*
3999*
4346*
4794*
5207*
7640*
8232*
8862*
9404*
9726*
10231*
10514*
10938*
11427*
12504*
13766* | 2491
3032*
4034*
4377*
4820*
5283*
6001*
7712*
8256*
8995*
9740*
10269*
10536*
10960*
11523*
12638*
13795* | 2494
3060*
4054*
4401*
4867*
5305*
6154*
7732*
8349*
9455*
9800*
10295*
11565*
13212*
13799 | 2543*
3079*
4100*
4425*
4879*
5326*
6173*
7819*
8429*
9250*
9491*
9822*
10328*
11059*
11582*
13245* | 2716
3080*
4120*
4456*
4917*
5430*
6301*
7840*
8452*
9268*
9529*
10329*
10634*
11604*
13266* | 2719
3808*
4153*
4500*
4940*
5497*
6320*
7937*
8602*
9315*
9553*
9926*
10652*
11123*
11627*
13383* | 2912* 3827* 4177* 4525* 4962* 5517* 6839* 7939* 8622* 9316* 9554* 10072* 10353* 10704* 11159* 11651* 13403* | 2932* 3873* 4178 4549* 5023* 5614* 6857* 7958* 8721* 9340* 10432* 10792* 11186* 11681* 13424* | 2933*
3894*
4201*
4603*
5050*
5633*
7333*
8054*
8723*
9615*
10109*
10451*
10824*
11216*
11698*
13493* | 2963*
3927*
4225*
4628*
5082*
5757*
7365*
8055*
8742*
9384*
9644*
10128*
10452*
11291*
11777*
13660* | 2983*
3951*
4260*
4652*
5117*
5779*
7501*
8056*
8841*
9385*
9663*
10160*
10474*
10856*
11337*
12193*
13679* | | R6MASK
R6READ | 002346 | G | 1854#
7940* | 7959*
10354* | 2493
8057*
10401*
2492* | 2682*
8076*
10515*
2493* | 2718
8210*
10537*
2494 | 4259*
8430*
13188*
2717* | 4325*
8453*
13265*
2718* | 4378*
8603*
13423*
2719 | 7502*
8623*
13492*
13798* | 7713*
8724*
13799 | 7733*
8743* | 7820*
8844* | 7841*
8863* | | R6TM
SEIDAL
SELTMR
SEODAL | 005136
007240
007206
007122 | G
G | 9791* 1853# 2225# 2881# 2861# 2821# 8699 1561# 2801# 10122 2841# 13259 2781# 2739# 5163 7616 | 2324
2510
9676
9731
4910
8819 | 10099
4953
9657 | 10192
5485
10053 | 10259
5585
10282 | 10342
5965
10508 | 10528
6130 | 7699 | 7807 | 7913 | 8031 | 8416 | 8590 | | SFPTBL
SLDADR | 002270
007072 | G | 1561# | 4514 | 4617 | 4724 | 4809 | 5038 | 5130 | 5320 | 5794 | 7539 | 8247 | 9699 | 9837 | | SLFDAL | 007154 | G | 2841# | 4253
13417 | 4319
13673 | 4386 | 4433 | 9304 | 9366 | 9442 | 9547 | 10445 | 10487 | 10626 | 11087 | | SLFJAR
SLHDAL | 007040
006754 | G | 13259
2781#
2739#
5163
7616
9329
10565
13655 | 13417
5110
3802
5297
7727
9417
10647 | 13673
5200
3866
5406
7835
9519
10937 | 5365
3935
5513
7954
9606
11152 | 5841
3983
5628
8071
9718
11350 | 7577
4492
5771
8224
9814
11595 | 8289
4595
5873
8322
9894
11640 | 13762
4701
5993
8444
10085
11694 | 4786
6168
8618
10156
11772 | 4860
6314
8738
10215
12632 | 4930
6852
8858
10322
13239 | 5012
7359
9028
10426
13377 | 5071
7516
9263
10465
13477 | | PARAMET
CVCDCB. | ER CODING
P11 01-APR-82 | MACY11
14:12 | 30A(1052 | O1-AF | R-82 14
EFERENCE | :48 PA | GE 289 | SYMBOLS | | | | | | SEQ 0288 | |--------------------|----------------------------|---|---|---|--|--|--|--|--|--|--|--|---|--| | SLMODR | 007006 G | 2759#
8990
13692 | 4028
9246 | 4094
9484 | 4161
9640 | 4209
9795 | 4874
10607 | 5277
10919 | 5751
11333 | 6296
11578 | 6834
11623 | 7329
11677 | 7496
13206 | 8204
13397 | | SSBRK =
SVCGBL= | 000200 G | 13678#
1368#
1404
1417
1431
1445
1458
1481
2144
2202
3299
13970 | 2408
1385
1405
1418
1432
1446
1459
1538
2145
2213
3300 | 6934
1386
1406
1419
1434
1447
1460
1539
2153
2214
3314 |
7038
1394
1407
1420
1435
1448
1461
1540
2154
2225
3315 | 7114
1395
1408
1421
1436
1449
1462
1560
2162
2226
3341 | 7150
1396
1409
1422
1437
1450
1463
1561
2163
2725
3342 | 7178
1397
1410
1423
1438
1451
1464
1562
2171
2726
3364 | 7203
1398
1411
1424
1439
1452
1465
1820
2172
3180
3365 | 1399
1412
1425
1440
1453
1466
1821
2180
3181
13890 | 1400
1413
1426
1441
1454
1467
1867
2181
3202
13891 | 1401
1414
1427
1442
1455
1468
1868
2189
3203
13950 | 1402
1415
1428
1443
1456
1469
1876
2190
3218
13951 | 1403
1416
1429
1444
1457
1480
1877
2201
3219
13969# | | SVC INS= | 000000 | 13970
1368#
1398
1414
1427
1427
1437
14437
1450
1489
14910
14897
1522
1489
1489
1489
1489
1489
1489
1489
1489 | 1386
1399
14125
1425
1438
14438
1451
1465
1498
15150
22236
23313
2436
223313
2436
2436
2537
2638
2638
2638
2638
2638
2638
2638
2638 | 1387
1400
1413
1426
1439
1439
1455
1489
1525
1489
1525
1489
1525
1525
1489
1525
1525
1530
1530
1530
1530
1530
1530
1530
153 | 1388
1401
1414
1427
1443
1443
1456
1456
1456
1456
1456
1456
1450
1450
1450
1450
1450
1450
1450
1450 | 1389
1405
1418
14428
14428
1445
1457
1457
1457
1457
1457
1457
1457 | 1390
1416
1416
1419
1416
1419
1419
1419
1419 | 1391
1447
1443
1443
1456
1456
1456
1456
1456
1456
1456
1456 | 1392
1405
1418
1418
1431
1457
1457
1450
1450
1450
1450
1450
1450
1450
1450 | 1393
1409
1432
1445
1445
1458
1495
1495
1508
1495
1508
1495
1508
1495
1508
1495
1508
1495
1495
1495
1495
1495
1495
1495
1495 | 1394
1407
1420
1433
1446
1459
1493
1506
1519
1870
22244
22308
2430
2430
2430
2430
2430
2430
2430
2430 | 1395
1408
1421
1434
1447
1460
1481
1507
1520
1871
2228
22309
24431
2453
2531
2531
2531
2531
2531
2531
2531
25 | 1396
1409
1422
1435
1448
1461
1495
1508
1521
1877
2208
2276
2276
2276
2276
2276
2276
2276
227 | 1397
1410
1423
1436
1449
1462
1483
1496
1509
1522
1881
2192
2210
2230
2264
2281
2294
2311
2433
2460
2487
2510
2533
2460
2636
2636
2636
2636
2636
2636
2636
26 | | PARAMETER CODING
CVCDCB.P11 01-APR-8 | MACY11
2 14:12 | 30A(1052) 01-APR-82 14:48
CROSS REFERENCE TABL | PAGE
E | F 7
290
USER | SYMBOLS | |---|-------------------|---|-----------|--------------------|---------| |---|-------------------|---|-----------|--------------------|---------| | 3078
3078
3078
3078
3078
3078
3078
3078 | 3079
3079
3079
3079
3079
3079
3079
3079 | 30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828
30828 | 308195
308195
308195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
318195
31 |
30820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820
50820 | 3067
3087
3087
3151
3151
3151
3151
3151
3151
3151
315 | 3064
3068
3153
3153
3153
3153
3153
3153
3153
315 | 309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
30928
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
30928
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
309283
30928
30928
309283
309283
309283
309283
309283
309283
309283 | 3066
30127
3157
3157
3157
3157
3157
3157
3157
315 | 3067
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
31130
3 |
3068
31132
31132
31132
31323
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
3133
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31333
31 | 3070
31133
3133
31430
3133
31430
3133
31430
3133
31430
3133
31430
3133
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
31430
3 | 3071
3117
3117
3117
3117
3117
3117
3117 | |--|--|---
--|---|---|---|--|--
---|---|--|--| | 5139 | 5140 | 5141 | 5142 | 5143 | 5144 | 5145 | 5153 | 5154 | 5155 | 5156 | 5157 | 5158 | | 5159 | 5189 | 5190 | 5191 | 5192 | 5193 | 5194 | 5195 | 5212 | 5213 | 5214 | 5215 | 5216 | | 5219 | 5220 | 5227 | 5228 | 5243 | 5244 | 5272 | 5273 | 5287 | 5288 | 5289 | 5290 | 5291 | | 5292 | 5293 | 5309 | 5310 | 5311 | 5312 | 5313 | 5314 | 5315 | 5330 | 5331 | 5332 | 5333 | | 5334 | 5335 | 5336 | 5346 | 5347 | 5348 | 5349 | 5350 | 5351 | 5352 | 5388 | 5389 | 5390 | | 5391 | 5392 | 5393 | 5394 | 5446 | 5447 | 5448 | 5449 | 5450 | 5451 | 5452 | 5473 | 5474 | | 5475 | 5476 | 5477 | 5478 | 5479 | 5501 | 5502 | 5503 | 5504 | 5505 | 5508 | 5509 | 5545 | | 5546 | 5547 | 5548 | 5549 | 5550 | 5551 | 5573 | 5574 | 5575 |
5576 | 5577 | 5578 | 5579 | | 5618 | 5619 | 5620 | 5621 | 5622 | 5623 | 5624 | 5665 | 5666 | 5667 | 5668 | 5669 | 5670 | | 5671 | 5688 | 5689 | 5690 | 5691 | 5692 | 5693 | 5694 | 5701 | 5702 | 5717 | 5718 | 5746 | | PARAMETER CODING MACY
CVCDCB.P11 01-APR-82 14:1 | 11 30A(1052) 01-
2 CROS | -APR-82 14:48 PARES REFERENCE TABLE | AGE 292
USER SYMBOLS | | | | SEQ O | |---|--|---|--|---|--|---|--| | 861
869
877
885
892
900
907
913
916
929
939
946
946
970
975
988
988
988
988
1004
1011
1018
1023
1027
1030
1033 | 8656 865
8693 872
8780 878
8852 885
8930 893
9002 900
9077 907
9131 913
9182 918
9207 9210
9260 927
9300 930
9393 939
9462 946
9497 9496
9497 9496
9560 956
9634 963
9497 9496
9710 971
9766 9766
9710 971
9766 9766
9710 971
10186 1018
1017 10186
1017 10186
10187 10237
10237 10238
10339 10358
10418 10418 | 8658 8659
8729 8730
8807 8808
8854 8899
8932 8933
9004 9005
9079 9080
9133 9134
9184 9185
9217 9219
9273 9274
9320 9321
9395 9408
9464 9465
9499 9500
9562 9563
9636 9637
9671 9672
9712 9713
9790 9791
9830 9831
9866 9867
9946 10015
10076 10077
10119 10132
10188 10189
10239 10240
10276 10277
10315 10316
10359 10360
10420 10421
10458 10459 | 8660 8661
8731 8732
8809 8810
8900 8901
8947 8948
9039 9040
9081 9104
9135 9136
9186 9187
9220 9242
9275 9276
9322 9323
9409 9410
9475 9476
9501 9510
9565 9566
9648 9649
9673 9690
9714 9715
9804 9805
9832 9846
9868 9869
9948 9949
10016 10017
10078 10079
10133 10134
10206 10207
10241 10250
10278 10279
10317 10318 | 8662 8687
8733 8734
8811 8812
8902 8903
8965 8966
9041 9042
9105 9106
9156 9157
9188 9201
9243 9254
9277 9278
9324 9325
9411 9412
9477 9478
9511 9512
9572 9573
9650 9651
9691 9692
9744 9745
9806 9807
9847 9848
9950 9980
10018 10019
10080 10081
10135 10136
10208 10209
10251 10252
10299 10300
10319 10333
10364 10365
10436 10437
10462 10478
10505 10546
10576 10577
10622 10623
10660 10661
10711 10712
10739 10740
10766 10767 | 8688 8689
8775 8776
8813 8848
8904 8905
8985 8986
9043 9044
9107 9108
9158 9159
9202 9203
9255 9256
9295 9296
9326 9389
9413 9414
9479 9480
9513 9514
9596 9597
9652 9653
9693 9694
9746 9747
9808 9809
9849 9850
9885 9886
9981 10042
10082 10113
10137 10138
10210 10211
10253 10254
10301 10302
10334 10335
10380 10381
10438 10439
10479 10580
10547 10556
10579 10580
10547 10556
10579 10580
10547 10556
10579 10580
10547 10556
10579 10580
10547 10560
10547 10560
10547 10560
10547 10560
10547 10560
10591 10520
10547 10520
10591 10520
10531 10531
10541 10551
10591 10520
10591 10591 10591
10591 10520
10591 10591 10591
10591 10591 10591
10591 10591 10591
105 | 9160
9204
9257
9297
9390
9459
9481
9651
9654
9695
9748
9810
9851
9887
9983
10043 1
10114 1
10183 1
10212 1
10255 1
10303 1
10399 1 | 8691
8778
8850
8928
9000
9075
9110
9161
9205
9258
9391
9460
9495
9516
9632
9667
9696
9750
9826
9888
9984
0044
0115
0184
0235
0256
0304
0337
0400 | | 1044
1048
1052
1055
1060
1064
1067
1075
1077
1080
1083
1086
1091
1095
1097
1101
1103
11103
11113
1117 | 10456 10456
10484 10495
10524 10525
10560 10561
10604 10617
10643 10646
10677 10678
10724 10725
10754 10755
10780 10781
10810 10811
10835 10842
10870 10871
10914 10915
10951 10952
10980 10981
11045 11046
111045 11046
111045 11046 | 10500 10501
10541 10542
10562 10573
10618 10619
10656 10657
10679 10708
10726 10727
10782 10783
10812 10813
10843 10844
10888 10889
10916 10928
10953 10954
10953 10954
10963 10954
11047 11048
11079 11080
11114 11115
11133 11143
11177 11178 | 10361 10362
10422 10423
10460 10461
10502 10503
10543 10544
10574 10575
10620 10621
10658 10659
10709 10710
10737 10738
10758 10765
10784 10785
10845 10846
10890 10891
10929 10930
10964 10965
10984 10999
11022 11023
11049 11050
11081 11082
11116 11117
11144 11145
11190 11191 | 10364 10365 10436 10437 10462 10478 10504 10505 10545 10546 10576 10577 10622 10623 10660 10661 10711 10712 10739 10740 10766 10767 10796 10797 10816 10829 10847 10848 10892 10893 10931 10932 10966 10967 11000 11001 11031 11032 11051 11063 11083 11084 11118 11119 11146 11147 11192 11193 11221 11222 11257 11258 | 10798 10799 10830 10831 10865 10866 10894 10910
10933 10934 10968 10969 11002 11003 11033 11034 11064 11065 11098 11099 11120 11127 11148 11149 11194 11195 | 10800 10
10832 10
10867 10
10911 10
10948 10
10970 10
11004 11
11066 11
11100 11
11128 11
11172 11 | 0441
0482
0522
0558
0589
0641
0675
0722
0771
0801
0833
0868
0912
0949
0978
1005
1036
1067
1101
1129
1173
1205
1226
1262 | | 1124 | 11207 11208 | 11209 11210 | 11211 11220 | 11221 11222 | 11223 11224 | 11225 1 | 1262 | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052) | 01-A | PR-82
REFEREN | 14:48
ICE TAB | PAGE
LE | 293
USER | SYMBOLS | |--|-----------------|-----------|------|------------------|------------------|------------|-------------|---------| | | | | | | | | | | | thosa her entitle those - osen stributs | | |--|--| | 11263 11282 11283 11284 11285 11286 11287 11288 11295 11296 11297 11300 11301 11310 11311 11313 11314 11364 11365 11366 11367 11367 11360 11361 11363 11364 11365 11366 11374 11375 11378 11379 11380 11398 11399 11400 11401 11402 11403 11404 11413 11414 11419 11431 11432 11433 11434 11455 11466 11471 11414 11419 11431 11432 11433 11434 11453 11434 11437 11447 11448 11449 11450 11451 11468 11485 11486 11487 11481 11501 11502 11503 11504 11505 11506 11510 11511 11512 11513 11514 11512 11512 11513 11514 11512 11513 11514 11512 11513 11514 11512 11513 11514 11512 1151 | 11376 11377
11414 11415
11445 11446
11489 11500
11515 11516
11558 11559
11589 11590
11633 11634 | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
2 14:12 | 30A(1052 | O1-AF | PR-82 14
REFERENCE | :48 PAC | J 7
SE 294
- USER S | YMBOLS | | | | | | SEQ 0293 | |--|--|---|--|--|--|--|--|--|---|---|---|---|---| | SVCSUB= 000000 | 13429
13462
13521
13540
13573
13596
13666
13704
13748
13776
13823
13908
13956 | 13430
13463
13522
13541
13574
13597
13667
13705
13749
13824
13909
13957
13186 | 13431
13503
13523
13552
13575
13668
13706
13750
13869
13910
13966
13187 | 13432
13504
13527
13553
13576
13624
13669
13707
13751
13806
13870
13911
13967
13441 | 13434
13505
13528
13554
13577
13632
13670
13708
13752
13807
13889
13912
13968
13442 | 13435
13506
13529
13558
13578
13633
13633
13709
13753
13808
13890
13913
13969 | 13442
13507
13530
13559
13586
13634
13684
13727
13754
13809
13901
13914
13976 | 13443
13508
13531
13560
13587
13635
13635
13728
13770
13810
13902
13915
13977 | 13457
13509
13532
13561
13588
13636
13729
13771
13817
13903
13916
13978 | 13458
13517
13533
13562
13589
13637
13637
13730
13772
13818
13904
13920 | 13459
13518
13534
13563
13590
13638
13731
13773
13819
13905
13921 | 13460
13519
13535
13564
13592
13664
13689
13732
13774
13820
13906
13949 | 13461
13520
13539
13572
13593
13665
13703
13775
13821
13907
13950 | | SVCTAG= 000000 | 1368#
1368#
2185
2453
2770
2893
3069
3304
3479
3592
3695
3837
4130
4289
4405
4405
4661
4972
6268
7460
9564
10579
12601 | 1547
2186
2515
2771
2921
3070
33331
3480
3608
3696
3839
3998
4133
4290
4453
4662
4987 | 1548
2197
2516
2792
3089
3332
3509
3609
3721
3840
4134
4293
4454
4664
4988 | 1565
2198
2552
2793
2942
3090
3352
3510
3611
3722
3882
4003
4175
4294
4459
4665
5226
6794 | 1566
2209
2553
2812
2943
3131
3353
3527
3612
3726
3883
4176
4335
4460
4744
5227
6796 | 2149
2210
2624
2813
2972
3132
3375
3528
3641
3727
3903
4044
4181
4534
4745
5242
6797
8946
9750
11312
13161 | 2150
2221
2625
2832
2973
3162
3376
3530
3642
3763
4063
4182
4355
4749
5243
7295
8947
9765
11313
13433 |
2158
2222
2678
2833
2993
3163
3430
3531
3659
3764
3907
4064
4223
4356
4558
4750
5700
7296
8964
9766
11744
13434 | 2159
2233
2679
2852
2994
3191
3431
3557
3660
3776
3908
4067
4224
4359
4829
5701
7298
8965
10363
11745
13591 | 2167
2234
2729
2853
3021
3192
3459
3558
3662
3777
3949
4068
4228
4360
4561
4830
5716
7299
9215
10364
11747
13592 | 2168
2435
2730
2872
3022
3287
3460
3563
3817
3950
4109
4229
4399
4562
4834
5717
7456
10379
11748
13595 | 2176
2436
2750
2873
3041
3288
3476
3564
3689
3818
3955
4110
4269
4400
4637
4835
6252
7457
9218
10380
12598
13596 | 2177
2452
2751
2892
3042
3303
3477
3591
3690
3836
3956
4129
4270
4404
4638
4971
6253
7459
9219
10578
12599
13822 | | SVCTST= 000000 | 13623
1368#
3674
3973
4375
4851
7485 | 3423
3675
4019
4376
5000
7486 | 3424
3706
4020
4423
5001
8193 | 13921
3442
3707
4085
4424
5266
8194 | 13922
3443
3742
4086
4483
5267
8981 | 13957
3491
3743
4150
4484
5740
8982 | 13958
3492
3793
4151
4586
5741
9237 | 13978
3542
3794
4198
4587
6288
9238 | 13979
3543
3857
4199
4691
6289
9590 | 13983
3574
3858
4244
4692
6820
9591 | 13984
3575
3924
4245
4776
6821
9784 | | | | S\$LSYM= 010000 | 6268
7460
9564
10579
12601
13823
1368#
3674
3973
4375
4851
7485
10395
1368#
2441#
2882#
3304#
3578#
4114#
4405#
4856#
7460#
10399#
13623# | 6269
8149
9565
10587
12602
13868
3423
3675
4019
4376
5000
7486
10600
1548#
2460#
2911#
3332#
3595#
3840#
4134#
4988#
7491#
10588#
13869# | 6793
8150
9571
10588
13157
13869
3424
3706
4020
4423
5001
8193
10601
1566#
2523#
2931#
3861#
4156#
4460#
5006#
8167#
10603#
13922# | 8166
9572
11309
13158
13921
3442
3707
4085
4424
5266
8194
11325
2150#
2962#
3376#
3887#
4182#
4487#
5243#
8199#
11313#
13958# | 8167
9749
11310
13160
13922
3443
3742
4086
4483
5267
8981
11326
2159#
2628#
2982#
3431#
3645#
3908#
4204#
4538#
5272#
8965#
11329# | 8946
9750
11312
13161
13957
3491
3743
4150
4484
5740
8982
11765
2168#
2730#
3011#
3663#
3930#
4562#
5717#
8985#
11748# | 8947
9765
11313
13433
13958
3492
3793
4151
4586
5741
9237
11766
2177#
2740#
3680#
3680#
4248#
4590#
5746#
9219#
11768# | 7296
8964
9766
11744
13434
13978
3542
3794
4198
4587
6288
9238
12617
2760#
3059#
3696#
3978#
4274#
4641#
6269#
9242#
12602# | 8965
10363
11745
13591
13591
13979
3543
3857
4199
4691
6289
9590
12618
2782#
3712#
4003#
4294#
4665#
6292#
9572#
12621# | 9215
10364
11747
13592
13983
3574
3858
4244
4692
6820
9591
13176
2802#
3513#
3727#
4023#
4314#
4696#
6797#
9596#
13161# | 9216
10379
11748
13595
13984
3575
3924
4245
4776
6821
9784
13177
2822#
3142#
3531#
4048#
4340#
4750#
6823#
9766#
13434# | 3623
3925
4310
4777
7321
9785
13614
2234#
2842#
3192#
3548#
3777#
4068#
4360#
4781#
7299#
9790#
13592# | 3624
3972
4311
4850
7322
10394
13615
2397#
2862#
3288#
3564#
3797#
4089#
4381#
4835#
7325#
10380#
13596# | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | O1-AF | PR-82 14
REFERENCE | :48 PAG | E 295
- USER S | YMBOLS | | | | | | SEQ (| |--|--
--|--|---|---|--|--|---|---|--|--|---|--| | TDLEOD 003607 G TEVECT 002312 G TOBRK = 000100 G T\$ARGC= 000003 | 2018#
1836#
1679# | 10301
3270*
2408 | 12674
6382
1388#
2243
2318#
13911# | 13153
6505
1389#
2262#
2322 | 6617
1390#
2266
2324# | 6623
1391#
2268#
2330 | 12788
2191#
2275 | 12875
2195
2281# | 13079
2203#
2285 | 13097
2207
2287# | 2215#
2293 | 2219
2299# | 2227#
2303 | | T\$EXCP= 000000
T\$FLAG= 000050
T\$FREE= 036554
T\$GMAN= 000000 | 1386#
2231
2305#
13901#
1368#
2650#
2968#
3945#
4922#
5837#
6306#
6550#
6844#
7091#
7383#
7873#
8405#
9745#
10766#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501#
11501# |
10301
3270*
2408
1387#
2239#
2312
13906#
2418#
2661#
2989#
4505#
4505#
4505#
4505#
4505#
4505#
4505#
4505#
10207#
10207#
10207#
10207#
10207#
11018#
11241#
11241#
11241#
11241#
11241#
112494#
12306#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706#
13706# | 2428#
2674#
3017#
3587#
4039#
4530#
4530#
4530#
5863#
6581#
6890#
7134#
7945#
10236#
10542#
10797#
11032#
11861#
12222#
12509#
12846#
13728#
13728#
13728#
13728#
13728#
13728#
13906#
3280# | 2448#
2746#
3037#
3604#
4059#
4554#
5028#
5921#
6372#
6604#
7155#
7507#
7990#
8511#
10557#
10811#
11283#
11283#
11283#
112847#
12344#
13749#
13749#
13749#
13749#
13749#
13749# | 2467#
2766#
3065#
3637#
4105#
4608#
5055#
5474#
5954#
6939#
7183#
7529#
8020#
8542#
9076#
9476#
10574#
10574#
11935#
1296#
11935#
1296#
13771#
13911#
3345# | 2498#
2788#
3085#
4125#
4633#
5099#
5502#
5502#
6401#
6954#
7208#
7208#
7208#
10618#
10618#
11079#
11342#
11951#
12285#
12586#
13908#
13805#
13805#
13916
3347 | 2508#
2808#
3117#
3685#
4171#
4657#
5122#
5546#
6023#
6430#
6665#
6977#
7228#
7599#
8111#
9945#
10639#
11361#
11967#
12302#
12643#
12930#
13504#
13818# | 2530#
2828#
3127#
3717#
4219#
4714#
5140#
5574#
6056#
6445#
6679#
6990#
7659#
8137#
9157#
9157#
9157#
9157#
10334#
10657#
1115#
11375#
11632#
11999#
12331#
12700#
12940#
13230#
13518# | 2548#
2848#
3148#
3759#
4265#
4740#
5154#
5619#
6085#
6706#
7012#
7257#
7688#
9183#
9632#
10359#
11663#
11399#
11663#
12716#
12967#
13559# | 2581#
2868#
3158#
4285#
4799#
5190#
5666#
6119#
6720#
7024#
7276#
7276#
7276#
10418#
10418#
1144#
11686#
12071#
12393#
12730#
12982#
13573# | 2591#
2888#
3455#
3832#
4331#
4825#
5689#
6159#
6159#
6737#
7764#
8261#
8776#
9255#
10722#
10722#
11733#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703#
11703# | 2604#
2917#
3472#
3878#
4351#
4884#
5762#
6208#
6510#
6751#
7056#
7796#
8312#
8808#
9273#
10457#
10457#
11731#
11731#
12429#
12429#
13327#
13633# | 2620#
2938#
3505#
3899#
4395#
4899#
5310#
5784#
6233#
6524#
6779#
7079#
7370#
7826#
9396#
9710#
10133#
10479#
11206#
11484#
11782#
12156#
12443#
13342#
13665# | | T\$HILI= 000017
T\$LAST= 000001
T\$LOLI= 000000
T\$LSYM= 010000 | 1368#
13901#
1368#
3192
3727
4460
8965
13869 | 13904
13967#
13903
1548
3288
3777
4562
9219
13922 | 13906#
13975
13906#
1566
3304
3840
4665
9572
13958 | 13909
13908
2150
3332
3908
4750
9766 | 13911#
13911#
2159
3353
3956
4835
10380 | 13915
13914
2168
3376
4003
4988
10588 | 2177
3431
4068
5243
11313 | 2186
3480
4134
5717
11748 | 2198
3531
4182
6269
12602 | 2210
3564
4229
6797
13161 | 2222
3612
4294
7299
13434 | 2234
3663
4360
7460
13592 | 2730
3696
4405
8167
13596 | | T\$LTNO= 000055
T\$NEST= 177777 | 1368#
2167#
2397# | 1375#
2171#
2435# | 1537#
2176#
2441# | 1547#
2180#
2452# | 1559#
2185#
2460# | 1565#
2189#
2515# | 1568#
2197#
2523# | 1573#
2201#
2552# | 2144#
2209#
2556# | 2149#
2213#
2624# | 2153#
2221#
2628# | 2158#
2225#
2678# | 2162#
2233#
2725# | | | | | | | | L 7 | | | | | | | | |--|---|---|---|--|--|---|---|---|---|---|---|--|---| | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | CROSS R | R-82 14
REFERENCE | TABLE - | E 296
USER S | YMBOLS | | | | | | SE | | | 2729#
2862#
3021#
3180#
3375#
3509#
3611#
3721#
3861#
4020#
4156#
4311#
4459#
4692#
5006#
6793#
8166#
9591#
10603#
13157#
13878#
1537#
2185
2460#
2770
2911# |
2740#
2872#
3030#
3191#
3379#
3513#
3624#
3726#
3882#
4023#
4175#
4314#
4484#
4696#
5226#
6796#
8194#
9596#
11309#
13160#
13889#
1568
1547
2189# | 2750#
2882#
3041#
3202#
3385#
3527#
3627#
3743#
4043#
4181#
4335#
4487#
4744#
5242#
6821#
8199#
9749#
11312#
13177#
13920#
1573#
1553# | 2760#
2892#
3059#
3209#
3424#
3530#
3641#
3748#
4199#
4340#
4534#
4749#
5267#
6823#
8946#
9765#
11326#
13187#
13949# | 2770#
2911#
3069#
3218#
3430#
3543#
3645#
4063#
4204#
4355#
4538#
4777#
5272#
7295#
8964#
9785#
11329#
13433#
13956# | 2782#
2921#
3078#
3287#
3443#
3548#
3548#
3776#
4359#
4359#
4359#
4558#
4781#
5700#
7298#
8982#
9790#
11744#
13442#
13971# | 2792#
2931#
3089#
3299#
3446#
3557#
3662#
3794#
3930#
4086#
4228#
4376#
4561#
4829#
5716#
7322#
8985#
10363#
11747#
13591# | 2802#
2942#
3111#
3303#
3459#
3563#
3675#
3797#
4089#
4245#
4381#
4587#
4587#
10379#
11766#
13595# | 2812#
2962#
3131#
3314#
3463#
3575#
3680#
3817#
3955#
4109#
4248#
4399#
4590#
4851#
5746#
7456#
9218#
10395#
11768#
13615# | 2822#
2972#
3142#
3331#
3476#
3578#
3689#
3821#
3973#
4114#
4269#
4404#
4637#
4856#
6252#
7459#
9238#
10399#
13623# | 2832#
2982#
3162#
3341#
3479#
3591#
3695#
3836#
3978#
4129#
4274#
4424#
4641#
4971#
6268#
7486#
9242#
10578#
12601#
13822# | 2842#
2993#
3168#
3352#
3492#
3595#
3707#
3839#
4133#
4289#
4428#
4661#
4987#
6289#
7491#
9564#
10587#
12618#
13868# | 2852
3011
3173
3364
3495
3608
3712
3858
4002
4151
4293
4453
4664
5001
6292
8149
9571
10601
12621
13872 | | T\$NS0 = 000000
T\$NS1 = 000005 | 3069
3299#
3530
3794#
4181
4587#
6268
9238# | 2515
2782#
2921
3078#
3303
3543#
3839
4199#
4664 | 1573#
1573#
1559#
2197
2523#
2792
2931#
3089
3314#
3563
3858#
4228
4692#
6796
9591#
13160
3463# | 3168
1565
2201#
2552
2802#
2942
3111#
3331
3575#
3907
4245# | 2144#
2209
2556#
2812
2962#
3131
3341#
3611
3925#
4293
4777# | 3379
2149
2213#
2624
2822#
2972
3142#
3352
3624#
3955
4311#
4834 | 3385#
2153#
2221
2628#
2832
2982#
3162
3364#
3662
3973#
4359
4851#
7459 | 13872
2158
2225#
2678
2842#
2993
3180#
3375
3675#
4002
4376#
4987
7486#
10587 | 13878#
2162#
2233
2725#
2852
3011#
3191
3424#
3695
4020#
4404
5001#
8166
10601# | 13971
2167
2397#
2729
2862#
3021
3202#
3430
3707#
4067
4424#
5242
8194#
11312 | 2171#
2435
2740#
2872
3030#
3209
3443#
3726
4086#
4459
5267#
8964
11326# | 2176
2441#
2750
2882#
3041
3218#
3479
3743#
4133
4484#
5716
8982#
11747 | 2180
2452
2760
2892
3059
3287
3492
3776
4151
4561
57416
9218
11766 | | T\$NS2 = 000003 | 12601
3446#
3608
3821#
4063
4314#
4637
5746#
13975#
13976#
1368#
1368#
2556#
2792# | 6289#
9571
12618#
3459
3627#
3836
4089#
4335
4641#
6252
9242#
12598
13976#
13979
13985#
13979# | 3463#
3641
3861#
4109
4340#
4661
6292#
9564
12621# | 6821#
9765
13177#
3476
3645#
3882
4114#
4355
4696#
6793
9596#
13157 | 7298
9785#
13595
3495#
3659
3887#
4129
4381#
4744
6823#
9749
13187# | 7322#
10379
13615#
3509
3680#
3903
4156#
4399
4781#
7295
9790#
13433 | 4851#
7459
10395#
13868
3513#
3689
3930#
4175
4428#
4829
7325#
10363
13442# | 7486#
10587
13889#
3527
3712#
3949
4204#
4453
4856#
7456
10399#
13591 | 8166
10601#
13920
3548#
3721
3978#
4223
4487#
4971
7491#
10578
13623# | 11312
13949#
3557
3748#
3997
4248#
4534
5006#
8149
10603#
13822 | 5267#
8964
11326#
13956
3578#
3763
4023#
4269
4538#
5226
8199#
11309 | 3591
3797#
4043
4274#
4558
5272#
8946
11329# | 3595
3817
4048
4289
4590
5700
8985
11744 | | T\$PCNT= 000000
T\$PTAB= 010105
T\$PTHV= 000001
T\$PTNU= 000001
T\$SAVL= 177777
T\$SEGL= 177777 | 13975#
13976#
1399
1368# | 13976#
13979
13985#
13979# | 13985 | 13.3. | .3.07# | . 3433 | 13476# | 13371 | 13023# | 13022 | | | | | \$SEGL= 177777 | 1368#
1368#
2556#
2792#
2874
2982#
3089# | 2397#
2624#
2794
2882#
2993#
3091 | 2435#
2626
2802#
2892#
2995
3111# | 2437
2628#
2812#
2894
3011#
3131# | 2441#
2678#
2814
2911#
3021#
3133 | 2452#
2680
2822#
2921#
3023
3142# | 2454
2740#
2832#
2923
3030#
3162# | 2460#
2750#
2834
2931#
3041#
3164 | 2515#
2752
2842#
2942#
3043
3446# | 2517
2760#
2852#
2944
3059#
3459# | 2523#
2770#
2854
2962#
3069#
3461 | 2552#
2772
2862#
2972#
3071
3463# | 2554
2782
2872
2974
3078
3476 | | PARAMETER CODING
CVCDCB.P11 01-APR- | MACY11
82 14:12 | 30A(1052 | O1-AF | R-82 14 | :48 PAG | | YMBOLS | | | | | | SEQ 0 | |--|---|---|--|--|--|---|---|---|---|--|--|---|--| | | 3478
3595#
3721#
3884
4048#
4223#
4357
4590#
4971#
6795
8985#
10578#
13159
2397#
2750
2882# | 3495#
3608#
3723
3887#
4063#
4225
4381#
4637#
4973
6823#
9215#
10580 | 3509#
3610
3748#
3903#
4065
4248#
4399#
4639
5006#
7295#
9217
10603# | 3511
3627#
3763#
3905
4089#
4269#
4401
4641#
5226#
7297
9242#
11309#
13824 | 3513#
3641#
3765
3930#
4109#
4271
4428#
4661#
5228
7325#
9564#
11311 | 3527#
3643
3797#
3949#
4111
4274#
4453#
4663
5272#
7456#
9566
11329# | 3529
3645#
3817#
3951
4114#
4289#
4455
4696#
5700#
7458
9596#
11744# | 3548#
3659#
3819
3978#
4129#
4291
4487#
4744#
5702
7491#
9749#
11746 | 3557#
3661
3821#
3997#
4131
4314#
4534#
4746
5746#
8149#
9751
11768# | 3559
3680#
3836#
3999
4156#
4335#
4536
4781#
6252#
8151
9790#
12598# | 3578#
3689#
3838
4023#
4175#
4337
4538#
4829#
6254
8199#
10363#
12600 | 3591#
3691
3861#
4043#
4177
4340#
4558#
4831
6292#
8946#
10365
12621# | 3593
3712#
3882#
4045
4204#
4355#
4560
4856#
6793#
8948
10399#
13157# | | T\$SEK0= 010000 | 13137#
2750
2882#
3041
3495#
3659
3887#
4129
4381#
4744
6823#
9749
13623#
1368#
3972#
4850#
10394# | 10580
13623#
2435
2760#
2892
3059#
3509
3680#
3903
4156#
4399
4781#
7295
9790#
13822 | 10603#
13822#
2441#
2770
2911#
3069
3513#
3689
3930#
4175
4428#
4829
7325#
10363 | 2452
2782#
2921
3078#
3527
3712#
3949
4204#
4453
4856#
7456
10399# | 2460#
2792
2931#
3089
3548#
3721
3978#
4223
4487#
4971
7491#
10578 |
2515
2802#
2942
3111#
3557
3748#
3997
4248#
4534
5006#
8149
10603# | 2523#
2812
2962#
3131
3578#
3763
4023#
4269
4538#
5226
8199#
11309 | 2552
2822#
2972
3142#
3591
3797#
4043
4274#
4558
5272#
8946
11329# | 2556#
2832
2982#
3162
3595#
3817
4048#
4289
4590#
5700
8985#
11744 | 2624
2842#
2993
3446#
3608
3821#
4063
4314#
4637
5746#
9215
11768# | 2628#
2852
3011#
3459
3627#
3836
4089#
4335
4641#
6252
9242#
12598 | 2678
2862#
3021
3463#
3641
3861#
4109
4340#
4661
6292#
9564
12621# | 2740#
2872
3030#
3476
3645#
3882
4114#
4355
4696#
6793
9596#
13157 | | T\$SIZE= 000005
T\$SUBN= 000000 | 13968
1368#
3972#
4850#
10394# | 13822
13985#
3423#
4019#
5000#
10600# | 3442#
4085#
5266#
11325# | 3491#
4150#
5740#
11765# | 3542#
4198#
6288#
12617# | 3574#
4244#
6820#
13176# | 3623#
4310#
7321#
13186# | 3674#
4375#
7485#
13441# | 3706#
4423#
8193#
13614# | 3742#
4483#
8981# | 3793#
4586#
9237# | 3857#
4691#
9590# | 3924#
4776#
9784# | | T\$TAGL= 177777
T\$TAGN= 010107 | 1368#
1368#
3180#
3675#
4376#
7486# | 1537#
3202#
3707#
4424#
8194# | 1559#
3218#
3743#
4484#
8982#
13889#
1483# | 2144#
3299#
3794#
4587#
9238#
13949# | 2153#
3314#
3858#
4692#
9591#
13975# | 2162#
3341#
3925#
4777#
9785# | 2171#
3364#
3973#
4851#
10395#
13977# | 2180#
3424#
4020#
5001#
10601# | 2189#
3443#
4086#
5267#
11326# | 2201#
3492#
4151#
5741#
11766# | 2213#
3543#
4199#
6289#
12618# | 2225#
3575#
4245#
6821#
13177# | 2725#
3624#
4311#
7322#
13187# | | T\$TEMP= 000000 | 3180#
3675#
4376#
7486#
13442#
1494#
1507#
1507#
2750#
2750#
3041#
3303#
3476#
3689#
4637#
6252#
9218#
12598#
13920#
1368# | 3202#
3707#
4424#
8194#
13615#
1482#
1495#
1508#
1521#
2185#
2770#
3069#
3324#
3479#
3695#
4289#
4661#
6268#
9564#
12601#
13956#
3423# | 1483#
1496#
1509#
1522#
2197#
2792#
3089#
3325
3509#
4002#
4293#
4664#
6793#
9571#
13157#
13971#
3442# | 1484#
1497#
1510#
1523#
2209#
2812#
3131#
3331#
3527#
3726#
4043#
4744#
6796#
9749#
13160# | 1485#
1498#
1511#
1524#
2832#
3162#
3345#
3763#
4063#
4749#
7295#
9765#
13433# | 9785#
13976#
1486#
1499#
1512#
1525#
2852#
3168#
3346
3557#
4067#
4359#
7298#
10363#
13591# | 1487#
1500#
1513#
1526#
2435#
2872#
3184#
3352#
3817#
4109#
4399#
4834#
7456#
10379#
13595# | 1488#
1501#
1514#
1547#
2452#
2892#
3185
3368#
3591#
3836#
4129#
4404#
4971#
7459#
10578#
13822# | 1489#
1502#
1502#
1565#
2515#
2921#
3191#
3369
3608#
3839#
4133#
4453#
4987#
8149#
10587#
13868# | 1490#
1503#
1516#
1568#
2552#
2942#
3209#
3375#
3611#
3882#
4175#
4459#
5226#
8166#
11309#
13872# | 1491#
1504#
1517#
2149#
2624#
2972#
3280#
3379#
3641#
3903#
4181#
4534#
5242#
8946#
11312#
13901# | 1492#
1505#
1518#
2158#
2678#
2993#
3281
3430#
3659#
3907#
4223#
4558#
5700#
8964#
11744#
13906# | 1493#
1506#
1519#
2167#
2729#
3021#
3287#
3459#
4228#
4561#
5716#
9215#
11747#
13911# | | T\$TEST= 000055 | 1368# | 3423# | 3442# | 3491# | 3542# | 3574# | 3623# | 3674# | 3706# | 3742# | 3793# | 3857# | 3924# | | CROSS REFERENCE TABLE USER SYMBO | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052) | 01-A | APR-82
REFERE | 14:4
NCE 1 | ABLE | AGE | N 7
298
USER | SYMBO | |----------------------------------|--|-----------------|-----------|------|------------------|---------------|------|-----|--------------------|-------| |----------------------------------|--|-----------------|-----------|------|------------------|---------------|------|-----|--------------------|-------| | CVCDCB.P11 | UI-APR-02 | 14:12 | | CK022 | KEPEKENLI | INDLE | UZEK | STMBULS | | | | | | | | |----------------|-----------|---|--|--|--|---|---|---|---|--|--|---
--|---|--| | | | 3972#
4850#
10394# | 4019#
5000#
10600# | 4085#
5266#
11325# | 4150#
5740#
11765# | 4198#
6288#
12617# | 4244#
6820#
13176# | 4310#
7321#
13186 | 4375#
7485#
13441 | 4423#
8193#
13614# | 4483#
8981#
13970 | 4586#
9237# | 4691#
9590# | 4776#
9784# | | | T\$TSTM= 17777 | 7 | 1368#
2322
2507
2673
2673
2673
2673
2673
2673
2673
277
2673
277
277
277
277
277
277
277
277
277
2 | 2150
2150
2150
2150
2150
2150
2150
2150 | 2159
2159
2159
2263
2363
2363
2363
2363
2363
2363
236 | 2168
22768
22736
22736
22733
2605
27833
27833
27833
27833
27833
2783
2783 | 22441
22441
22441
2251
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151
226151 | 22447
22447
22447
25324
2660
2760
2843
3059
31580
3773
4048
4176
44781
44781
4781
4781
4781
4781
4781
47 | 2194
2302
2453
25458
22628
2853
2853
2853
2853
2853
2853
2853
28 | 2198
2198
2198
22310
22540
22647
22647
22647
22647
227
237
237
237
237
237
237
237
237
23 | 2206
2321
2466
2556
2649
2782
2867
2973
3177
3495
33197
3495
3684
3948
4068
4218
4340
4504 | 2210
2329
2471
2572
2654
2787
2873
2982
3084
3221
33595
3690
3821
3950
4089
4224
4350 | 2218
2397
2487
2580
2660
2793
2882
2988
3090
33232
3510
3696
3831
3956
4104
4229
4529
4662
5189
55788
5788
5788
60237
6391
6509 | 2222
2403
2497
2585
2887
2994
3111
3353
3513
3513
3513
3609
3712
3837
3978
4110
4248
4535
4665
4665
4665
5027
5194
5806
6027 | 2230
2417
2502
2668
2807
2893
3011
3116
3235
3512
3612
3612
3716
3840
3992
4114
4264
4381
4538
4696
4883
5032
5212
5388
5623
5811
6055 | | | | | 6292
6429
6528
6528
6664
6783
7055
7187
7299
7460
7692
7944
8167
8409
8656
8904
9109
9259
9475
9826
10018
10235
10364 | 6305
6434
6549
6669
6794
6953
7060
7207
7325
7491
7717
7949
8199
8434
8661
8927
9130
9272
9480
9667
9831
10240
10380 | 6310
6444
6554
6678
6797
6958
7078
7212
7337
7506
7722
7989
8214
8439
8687
8932
9135
9277
9495
9672
9846
10250
10399 | 6324
6449
6565
6823
6976
7083
7227
7342
7511
7763
7994
8219
8476
8692
8947
9156
9295
9500
9690
9851
10255
10417 | 5920
6123
6329
6466
6570
6843
6981
7090
7232
7369
7528
7768
8019
8236
8728
8965
9161
9300
9510
9695
10081
10273
10422 | 5925
6158
6343
6471
6580
6710
6848
7095
7241
7533
7795
80241
8513
8737
9515
9515
9709
10113
10278
10278 | 5953
6163
6348
6480
6585
6719
6861
6994
7118
7246
7382
7800
8061
8260
8515
8775
9187
9325
9187
9325
9183
10118
10299
10441 | 6371
6485
6603
6724
6866
7011
7123
7256
7387
7554
7825
8066
8265
8780
9201
9389
9565
9744
9888
10132
10304
10456 |
4641
4822
5153
55566
5766
5766
6495
6636
6636
6636
6736
7133
7261
77598
7830
8311
8546
9236
9394
9572
9750
9750
9750
9750
9750
9750
9750
9750 | 4509
4656
4830
4988
5155
5788
5236
6527
68943
71275
7607
7872
7872
7872
7872
7872
8316
8578
8578
8578
8578
9216
9216
9216
9216
9216
9216
9216
9216 | 6391
6509
6632
6750
6903
7028
7154
7280
7443
7658
7877
8136
8369
8583
8848
9075
9219
9413
9631
9790
10188
10333
10483 | 3609
3712
3837
3978
4110
4248
4535
4856
5194
5618
5618
5618
5618
5618
6755
6755
6759
7290
7463
7663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77663
77 | 5212
5388
5623
5811
6055
6269
6405
6523
6647
6778
6938
7047
7182
7296
7457
7687
7906
8150
8404
8613
8899
9104
9254
9464
9648
9809
10211
10358
10504 | | | PARAMETER CODING
CVCDCB.P11 01-APR-82 | MACY11
14:12 | 30A(1052 | 01-AF | PR-82 14:
REFERENCE | 48 PAG | E 299
- USER S | SYMBOLS | | | | | | SEQ 0298 | |--|--|---
---|--|---|---|--|--|---|---|--|---|---| | T\$TSTS= 000001 |
10519
10643
10765
10870
10870
11999
11103
1120
11341
11586
11735
11901
12251
12407
12538
12699
12806
12913
13699
13117
13699
1317
13699
1317
13699
1317
13699
1317
13699
13799
13799
13799
13799
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
138999
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
138999
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
13899
1389
138 | 10524
10656
10770
10888
11004
11114
11225
11346
11483
11591
11745
11934
12106
12412
12555
12705
12812
12919
13014
13125
13234
13341
13457
13727
3424#
4020#
5001# | 10541
10661
10779
10893
11017
11119
11240
11360
11488
11614
11748
11939
12265
12715
12820
12929
13022
13135
13249
13346
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732
13732 | 10546
10673
10784
10910
11022
11127
11245
11365
11500
11619
11768
11950
12134
12284
12433
12585
12720
12830
12934
13032
13141
13254
13503
13592
13748
3492#
4554 | 10556
10678
10796
10796
11031
11132
11257
11374
11505
11631
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781
11781 | 10561
10708
10801
10928
11036
11143
11262
11379
11510
11636
11786
11966
12160
12301
12447
12599
12735
12845
13154
13154
13154
13154
13157
13517
13623
13770
3575#
4245#
6821# | 10573
10713
10810
10933
11045
11148
11282
11398
11515
11662
11799
11971
12183
12306
12461
12602
12751
12850
12956
13051
13158
13285
13372
13522
13632
13775
3624#
4311# |
10579
10721
10815
10948
11050
11172
11287
11403
11527
11667
11804
11998
12188
12330
12466
12621
12757
12865
12966
13161
13161
13161
13161
13167
13637
13637
13637
13637 | 10588
10726
10829
10953
11063
11177
11295
11413
11532
11685
12003
12197
12335
12494
12628
12764
12870
12971
13066
13187
13295
13533
13664
13809
3707#
4424#
8194# | 10603
10737
10834
10964
11068
11190
11300
11418
11554
11690
11850
1202
12357
12499
12642
12777
12879
12642
12777
12879
13196
13301
13407
13540
13669
13817
3743#
4484# | 10617
10742
10842
10969
11078
11195
11310
11431
11559
11702
11860
12036
12221
12508
12647
12782
12884
12986
13089
13201
13308
13412
13553
13683
13683
13683 | 10622
10752
10847
10978
11083
11205
11313
11436
11569
11707
11865
12070
12226
12513
12676
12792
12895
12676
12792
12895
13103
13216
13321
13428
13558
13688
13869
3858#
4692# | 10638
10757
10865
10983
11098
11210
11329
11445
11574
11730
11896
12075
12246
12397
12533
12686
12797
12907
13004
13112
13221
13326
13434
13563
13703 | | T\$\$INI= 010016
T\$\$MSG= 010012 | 3218# | 10601#
3368
3303
3324
13983
3345
13921
1547
3280
2149
2213#
13985 | 11326#
3375
3331
3352
3287
2153#
2221 | 5741#
11766#
2158
2225# | 2162# 2233 | 13177# | 7322# 13615# | 7486# | 2180# | 8982#
2185 | 9238# | 9591# | 2201# | | T\$\$PTA= 010105
T\$\$RPT= 010014
T\$\$SEG= 010000 | 2209
13975#
3202#
13975#
3180#
2397#
2750#
2882#
3041#
3495#
3659#
4129#
4381#
4744#
6823#
9749# | 13978
3184
2435#
2760#
2892#
3059#
3509#
3680#
3903#
4156#
4399#
4781#
7295#
9790# | 13979#
3191
2441#
2770#
2911#
3069#
3513#
3689#
3930#
4175#
4428#
4829#
7325#
10363# | 2452#
2782#
2921#
3078#
3527#
3712#
3949#
4204#
4453#
4856#
7456#
10399# | 2460#
2792#
2931#
3089#
3548#
3721#
3978#
4223#
4487#
4971#
7491#
10578# | 2515#
2802#
2942#
3111#
3557#
3748#
4248#
4534#
5006#
8149#
10603# | 2523#
2812#
2962#
3131#
3578#
3763#
4023#
4269#
4538#
5226#
8199#
11309# | 2552#
2822#
2972#
3142#
3591#
3797#
4043#
4274#
4558#
5272#
8946#
11329# | 2556#
2832#
2982#
3162#
3595#
3817#
4048#
4289#
4590#
5700#
8985#
11744# | 2624#
2842#
2993#
3446#
3608#
3821#
4063#
4314#
4637#
5746#
9215#
11768# | 2628#
2852#
3011#
3459#
3627#
3836#
4089#
4335#
4641#
6252#
9242#
12598# | 2678#
2862#
3021#
3463#
3641#
3861#
4109#
4340#
4661#
6292#
9564#
12621# | 2740#
2872#
3030#
3476#
3645#
3882#
4114#
4355#
4696#
6793#
9596#
13157# | 3675# 4002 4376# 4987 7486# 10587 3662 3973# 4359 4851# 7459 10395# 13868 | | ER CODING
P11 01-APR-82
010103 | | 13822#
13957 | | PR-82 14
REFERENCE | | - USER S | | | | | | |--|---|--|---|---|--|---|---|---|---|---|---|--| | T\$\$\$0F=
T\$\$\$RV=
T\$\$\$UB=
T\$\$\$W =
T\$\$TES= | 010013
010100
010001 | 2725#
13187#
1559# | 13822#
13957
2729
13433
1565
3430
3707# | 13442# | 13591 | | | | | | | | | | | 13623#
13949#
2725#
13187#
1559#
3424#
3695
4020#
4404
5001#
8166
10601# | 4424# | 3443#
3726
4086#
4459
5267#
8964 | 3479
3743#
4133
4484#
5716
8982#
11747 | 3492#
3776
4151#
4561
5741#
9218
11766# | 3530
3794#
4181
4587#
6268
9238# | 3543#
3839
4199#
4664
6289#
9571 | 3563
3858#
4228
4692#
6796
9591# | 3575#
3907
4245#
4749
6821#
9765
13177# | 3611
3925#
4293
4777#
7298
9785# | 3624
3955
4311
4834
7322
10379
13615 | | T1
T10 | 010344 G
011160 G
011250 G
011342 G
011416 G
011466 G
011556 G
011650 G
011774 G
01272 G
01272 G
01272 G
012320 G
01246 G
012566 G
012666 G
012770 G | 1481
1490 | 5242
8194#
11312
3423#
3793#
3857#
3972#
4019#
4085#
4150#
4198#
4244#
4375#
4483#
4483#
4586#
4691# | 11326# | 11747 | 11766# | 12601 | 12618# | 13160 | 13177# | 13595 | 13615 | | 112
113
114 | 011342 G
011416 G
011466 G | 1491
1492
1493
1494
1495
1496
1497
1498
1499
1482
1500
1501
1502 | 3924#
3972#
4019# | | | | | | | | | | | 116
117
118 | 011556 G
011650 G
011724 G
011774 G | 1495
1496
1497
1498 | 4085#
4150#
4198#
4244# | | | | | | | | | | | 19
12
120 | 012072 G
010352 G
012172 G | 1499
1482
1500 | 4310#
3442#
4375# | | | | | | | | | | | 121
122
123 | 012246 G
012320 G
012442 G
012566 G | 1501
1502
1503
1504 | 4423#
4483#
4586#
4691# | | | | | | | | | | | 114
115
116
117
118
119
120
121
1223
1224
1227
1237
1237
1337
1338
1337
1338
1337
1338
1340 | 012666 G
012770 G
013236 G | 1505 | 4776# | | | | | | | | | | | 128
129
13 | 012770 G 013236 G 013662 G 014570 G 010436 G 010562 G 020316 G 020316 G 021604 G 023156 G 024706 G 024706 G 024706 G 026552 G 030472 G 031502 | 1506
1507
1508
1509
1483
1510
1511
1512
1513
1514
1515
1516
1517
1518
1518
1521
1522
1523
1524
13441#
1525
1486 | 4850#
5000#
5266#
5740#
3491#
6288#
6820#
7321#
7485#
8193#
8981#
9590#
9784#
10394#
10394#
11325#
11765#
12617#
13176# | | | | | | | | | | | 131
132
133 | 016752 G
020046 G
020316 G | 1511
1512
1513 | 6820#
7321#
7485# | | | | | | | | | | | 135
136
137 | 023156 G
023534 G
024356 G | 1515
1516
1517 | 8981#
9237#
9590# | | | | | | | | | | | 38
39
14 | 024706 G
026132 G
010524 G | 1518
1519
1484 | 9784#
10394#
3542# | | | | | | | | | | | 141
142
143 | 026552 G
030472 G
031502 G | 1520
1521
1522
1523 | 10600#
11325#
11765#
12617# | | | | | | | | | | | 44.1 | 034452 G
034456
035266 | 1524
13186#
13441# | | | | | | | | | | | | 144.1
144.2
145
15 | 035622 G
010574 G
010660 C | 1525
1485
1486 | 13614#
3574#
3623# | | | | | | | | | | | PARAMET
CVCDCB. | ER CODING | MACY11
B2 14:12 | 30A(1052 | O1-A | PR-82 14
REFERENCE | :48 PA | GE 301
USER | SYMBOLS | | | | | | SEQ | |-------------------------------|--|---|---|--|---|--|--|---|---|---|---|---|---|--| | T7
T8
T9
UAM = | 010746 G
011016 G
011062 G
000200 G | 1487
1488
1489 |
3674#
3706#
3742# | | | | | | | | | | | | | UNEXIN | 002200 G
002432 G
002314 G | 1640#
1894#
1837# | 12701 | 12731 | 12753
3256
3118 | 12808 | 12909 | 13034 | 13085 | 13137 | | | | | | VDALRG | 002537 G | 1894#
1837#
1913#
5575
6446
7025
7797
8580
9512
10867
11242
11898
12332
1726#
1716# | 12701
3248*
2651
5667
6482
7057
7874
8658
9885
10890
11259
11936
12359
3744
5469
9975
5569
7791
7897
8015
5384
2642
10717
11892
12490
9940 | 12731
3254*
2675
5690
6525
7092
7903
8689
9946
10912
11284
11968
12394
3773 | 3118
5864
6551
7135
7991
8777
9982
10950
11415
12000
12430
9506
13225
5949 | 3128
5922
6605
7243
8021
8809
10015
10980
11447
12033
12496
10179 | 3760
5955
6644
7292
8112
8901
10043
11001
11485
12072
12535
13225 | 5100
6024
6666
7384
8138
8929
10185
11019
11502
12103
12587 | 5155
6057
6707
7414
8313
9077
10252
11047
11512
12131
13231 | 5191
6086
6738
7445
8371
9106
10723
11080
11556
12157
13369 | 5390
6120
6780
7600
8406
9132
10754
11116
11616
12185
13459 | 5448
6209
6905
7660
8478
9158
10781
11145
11664
12223
13505 | 5475
6234
6955
7689
8512
9184
10812
11174
11732
12248
13574 | 5547
6402
6978
7765
8543
9203
10844
11207
11847
12286 | | | 000001 G
000002 G
002000 G | 1725#
1725# | 3744
3744
5469 | 3773
5568 | 13225 | 6113 | 6660 | 6700 | 6774 | 6972 | 7683 | 7790 | 8400 | 8573 | | VDAL11= | 004000 G | 9100
1715# | 9975
5569 | 10036 | | | | 6773 | 10037 | 0772 | 7003 | 7770 | 0400 | 6373 | | VDAL14=
VDAL15=
VDAL2 = | 010000 G
020000 G
040000 G
100000 G | 9100
1715#
1714#
1713#
1711#
1724#
1723#
1722#
1722#
1721# | 7791
7897
8015
5384
2642 | 10036
5684
7896
8014
8132
5858
3112 | 6114
8574
8683
8803
5916
3122
10906
11993 | 6228
8682
8802
8923
6113
3744 | 6701
9126
9152
9178
7594
3773 | 8307
11234 | 8365
11496 | 8573
13225 | | | | | | VDAL3 = VDAL4 = | 000010 G
000020 G | 1723#
1722# | 10717 | 10775
11930
12529
9976 | 10906
11993 | 10974 | 11013
12097 | 11074
12125 | 11110 | 11168
12217 | 11236
12242 | 11253
12326 | 11278
12353 | 12388 | | VDAL5 =
VDAL6 =
VDAL7 = | 000040 G
000100 G
000200 G | 1721#
1720#
1719#
7237
11962
1718#
1717#
8365
3050#
3050
3051
2952# | 12490
19940
10246
3744
7378
13225
6051
5094
8895 | 9976
10717
5065
7406
13453 | 12581
11409
10775
5148
7609
13499 | 11479
10906
5399
7652 | 11658
10974
5440
8305 | 11726
11013
5856
8363 | 11929
11041
5914
9021 | 11994
11168
6519
9879 | 12216
11236
6545
9938 | 12280
11253
6731
11251 | 12489
11278
6732
11828 | 12528
6899
11961 | | VDAL8 = VDAL9 = | 000400 G
001000 G | 1718#
1717# | 6051
5094 | 8506
5149
9071 | 5442
9940 | 5661
11277 | 5916
11479 | 6203
11658 | 6638 | 6949
11929 | 7129 | 7408 | 7654 | 8106 | | KBCLRH | 007606 G | 3050#
3050# | 3058# | | | 10172 | 11479 | 11038 | 11726 | 11929 | 13499 | 13741 | | | | XBCLRL | 007606 G
007620 G
007652 G
007376 G | 3051
2952# | 3077# | 4868
9727
6218
9142 | 10220 | | 6655 | 6693 | 6766 | 6967 | 7167 | 7433 | 8122 | 8911 | | KCASH | 007410 G | 9090
2952 | 9116
2961# | 5461 | 9168
5560 | 6594
9356
5939 | 6655
9432
6103 | 6693
9536
7673 | 6766
9965
7780 | 6967
11837
7886 | 11877
8004 | 12011
8388 | 12081
8561 | 12341
8670 | | KCASL | 007442 G | 8790
2953 | 10028
2981# | 10901
5518 | 12113
5634 | 6002 | 6174 | 7734 | 7842 | 7960 | 8077 | 8454 | 8624 | 8744 | | (PI | 007502 G | 3002#
8459 | 5523
8629 | 10880
5639
8749 | 12139
5698 | 6007 | 6179
9193 | 6242
9991 | 7425 | 7739 | 7847 | 7965 | 8082 | 8146 | | KPIH
KPIL
KRAS | 007514 G
007546 G
007272 G | 9090
2952
8790
2953
8864
3002#
8459
3002
3003
2901#
7110
8883
12741 | 3058#
3077#
5676
9116
2961#
10028
2981#
10161
5523
8629
3010#
3029#
5083
7173
9060 | 10901
5518
10880
5639
8749
9341
9362
5181
7218
9927
13073
5901 | 9616
10220
6457
9168
5560
12113
5634
12139
5698
8869
9426
9438
5431
7267
10002
13494 | 6007
8937
9530
9542
5534
7400
11474 | 10095
10165
5653
7641
11543 | 6071
7750
11605 | 6193
7858
11652 | 6419
7976
11720 | 6538
8096
11911 | 6928
8526
11978 | 7003
8640
12052 | 7069
8760
12569 | | XRASH | 007304 G | 12741
2901 | 9060
12857
2910# | 13073
5901 | 13494
8350 | 11008 | 11161 | 11270 | 12168 | 12314 | 12376 | 12474 | | | | | | | | | | | | | | | | | | | PARAMETER CODING MACY11 30A(1052) 01-APR-82 14:48 PAGE 302 CVCDCB.P11 01-APR-82 14:12 CROSS REFERENCE TABLE -- USER SYMBOLS SEQ 0301 XRASL 007336 G X\$ALWA= 000000 X\$FALS= 000040 X\$OFFS= 000400 X\$TRUE= 000020 \$PATCH 036456 G = 036554 2902 1368# 1368# 1368# 1368# 2930# 8491 10857 10989 1.160 6037 11269 12230 12368 12452 12543 13961# 1870# 2058# 2132# 3185 3281 3325 3346 3369 13935# 13962# 13977 13985 000 . ABS. 036554 ERRORS DETECTED: 0 CVCDCB.OBJ,CVCDCB./CRF:SYM/SOL/NL:TOC=SVC/ML,CVCDCB.P11 RUN-TIME: 63 73 4 SECONDS RUN-TIME RATIO: 552/140=3.9 CORE USED: 17K (33 PAGES)