
INTRODUCTION
TO

MUMPS-11 LANGUAGE

Order No. DEC-11 -MMLTA-C-D

INTRODUCTION
TO

MUMPS-11 LANGUAGE

Order No. DEC-11-MMLTA-C-D

digital equipment corporation • maynard. massachusetts

First Printing, June 1973
Revised: May 1974

July 1974
January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1973, 1974, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

4/78-15

ACKNOWLEDGMENT

MUMPS-11 is an integrated system comprised of an interactive programming language, a data
management facility and a multiuser time sharing executive, developed by Digital Equipment
Corporation for the PDP-11. Meditech Corporation contributed to the original development of
MUMPS-11 and Interpretive Data Systems Inc., assisted in the Version 4 developments to
MUMPS-11.

The language is a dialect of MUMPS {Massachusetts General Hospital Utility Multi-Programming
~stem) which was developed at the Laboratory of Computer Science atMassachusetts General
Hosptial and is supported by Grant HS00240 from the National Center for Health Services
Research and Development.

iii

CONTENTS

Page

PREFACE vii

CHAPTER l SAY SOMETHING IN MUMPS l -1

CHAPTER 2 COMPUTER POWER 2-1

CHAPTER 3 MAKING DECISIONS 3-1

CHAPTER 4 CONSERVATION OF ENERGY 4-1

CHAPTER 5 GETTING IT TOGETHER 5-1

CHAPTER 6 FORM FOLLOWS FUNCTION 6-1

CHAPTER 7 INSIDE GLOBALS 7-1

v

PREFACE

Introduction to MUMPS-11 Language is a tutorial manual that introduces you to the basic

elements and concepts of the MUMPS-11 language. Its intent is to familiarize you with

MUMPS-11, rather than to provide comprehensive reference data.

We have organized the manual in a serial fashion -- each succeeding section and chapter

building on previously presented information. Chapter 1 tel Is you how to begin using

MUMPS-11 at a terminal. The remaining chapters present the language in the context of a

hypothetical census data gathering application. New ideas are introduced to you as required

to develop the application programs.

If you're a novice programmer, try to use this manual in conjunction with a MUMPS-11

terminal so that you can do the many examples we've provided.

If you're an experienced programmer, you'll probably be more interested in the reference

documentation listed below. However, you may want to skim the first five chapters to get

the "sense" of MUMPS-11. The remaining chapters (6 and 7) deal extensively with MUMPS-11

data structure; you should read them carefully.

In the back of the manual is a glossary of terms peculiar to MUMPS-11. You should find

this helpful.

When you've finished with this manual, you'll want to read the reference documentation

listed below for comprehensive information about MUMPS-11 language, programming and

operating procedures. All of the manuals also contain a common set of appendices covering:

Glossary of Terms, Character Set, Error Messages, Symbol Usage, and Conversion Tables.

Differences between this manual and the previous revision are indicated by a heavy

sol id I ine a jacent to the affected area in the outer margin of the page.

vii

o MUMPS-11 Language Referenae Manual - DEC-11-MMLMA-C-D

Elements of the language: the character set,
programming modes, program structure, data
modes, numbers, strings, literals, constants,
and variables.

Expressions: how to form thern and how they are
evaluated.

MUMPS-11 Commands: meaning, syntax, arguments,
and examples of use.

MUMPS-11 Functions: meaning, syntax arguments,
and examples of use.

o MUMPS-11 PrograTT071er's Guide - DEC-11-MMPGA-C-D

This manual provides all information required to create, execute, and
save MUMPS-11 programs.

System Overview: MUMPS-11 hardware/software
environment and functional description of the
operating system.

Terminal Usage: Log-in/log-out procedures,
terminal types, special keyboard control
characters.

Programming Techniques: creating programs, loading
programs, storing programs, program size considera
tions, using system variables, conserving space, •••
and more.

Using 1/0 Devices: general concepts of input/output,
specific device characteristics.

Library Utility Programs: functional characteristics,
how to run them •

o MUMPS-11 Operator's Guide - DEC-11-MMOPA-D-D

This manual contains information for system operators and system
managers. Subjects covered include: Operator Controls, Building
the System, System Generation, System Operator Functions, Error
Detection and Recovery.

o MUMPS-11 PrograTT071er 's Referenae Card - DEC-11-MMPCA-C-C

Pocket reference card containing: command and function summaries,
messages, symbology, character set, etc.

viii

GETTING STARTED

How do we communicate with MUMPS?

CHAPTER 1

SAV SOMETHING IN MUMPS

With a terminal, of course. Three of the most common MUMPS terminals are:

the VT05 Terminal,

the Teletype,1

and the LA30 Teleprinter.

1Teletype is a registered trademark of the Teletype Corporation.

1-1

The terminal is connected to the MUMPS computer in one of two ways:

• Hardwired, by means of a cable that directly connects it to the computer.

• Indirectly, using the telephone system as the link. In this case, the
terminal is remote from the MUMPS computer ••• it can be in any place
that has telephone service.

We use the terminal to send messages to MUMPS. In turn, MUMPS sends messages to your

terminal for you to read.

The messages we send are in a language called MUMPS. This book is designed to help you

learn to converse with a computer which uses the MUMPS language.

Let's begin. Here is a diagram of a Teletype keyboard. Look at it closely. If you have

a different type terminal you'll notice there are some differences. Don't worry about them •••

they're not important now.

CDCD®CDCDCDQCDCDQGO®
G Q Q CT)®® QQ ®CD®@@

8 Q GJGJ CV C:V Q Q CD CB 0@8 8
SQQ Q Q Q CD© o O CDS

Locate the keys with these characters:

Letters:

Digits:

Symbols:

ABCDErGHIJKLMNOPQRSTUVWXYZ

123 45 67~9~

1"1$7.&'C>*=~@C\+tJ<>?:·;,./

To type a letter or a digit, simply press the appropriate key.

1-2

11-1801

To type symbols like :;!.,-

press the appropriate key.

To type one of these symbols !"#$7.&'()*=~@[\+t]<>?

hold down the SHIFT key
and press the key with the
desired character.

SMALL TALK

NOTE

Some Teletype keyboa:rds may have different
characters on some of the keys.

- The ALT MODE key may be labelled ESC.
- The up-arrow (t) may be represented as

a circumflex (A).
- The back-a:rrow (+) may be represented

as an unde~score ().
- The RUBOUT key may be label led DELETE.

Begin! Type something on the terminal. Press the

Nothing happened, did it?

(RE:\
~ key when you are done.

You have to introduce yourself before beginning a conversation with MUMPS. MUMPS

won't talk to strangers. If you type your name, MUMPS won't recognize it. MUMPS knows

people by special codes that your System Manager must give you. There are two codes that

you need: a User Class Identifier Code and the Programmer Access Code.

1-3

Everyone calls these

by the abbreviations

and PAC.

Let's assume your initials are JMW. Your System Manager could use them as your UCI. Further,

let's assume the PAC is CTRL X CTRL X CTRL X.

Before you can introduce yourself to MUMPS with your UC I and PAC, you've got to get its

attention. Hold down the CTRL key and press the C key.

You've just typed CTRL C.

This is the way to get MUMPS'

attention.

When MUMPS receives the CTRL C signal, it identifies itself at your terminal by pri.1ting

a message similar to the fol lowing:

MUMPS-1 l
UCI:

the number

terminal.

and then waits for you to answer. MUMPS has a short attention span. So if you don't

answer within 20 seconds it types EXIT and forgets about you until you type another CTRL C.

Right after MUMPS' UCI request, type your UCI code, followed by a colon (:). Then type

the PAC. CTRL X is typed b~·h I ding down the CTRL key and pressing the X key. Do this
RE-

three times. Then press TUR •

1-4

Convention

When you use a MUMPS-11 terminal, each line
that you type must end with the Carriage RETURN
I ine terminator. Since no character is printed
when you type RETURN, the examples in the
first few chapters use this symbol to help you.

~
~

What you typed would look like this (underlined):

MUMPS-11 V0:S 16
~It :LIL&-~
>

Notiae that the X's weren't printed.

Any letter that's typed when the CTRL

key is pressed won't be printed. This

prevents unauthorized persons from

obtaining the PAC.

If you didn't make any typing errors, MUMPS will indicate its readiness to converse with you

by typing a right caret:

>

and waiting for you to type some command.

If you made an ePPOP, MUMPS

types EXIT or some other

message, and you'll have to

start over again with CTRL C. ----

1-5

This procedure of introducing yourself to MUMPS is called logging-in.

Now that you have logge~in to MUMPS, type something ••• anything. Then press the

@ key.

MUMPS will probably type:

SYNTX>0 @

>

or perhaps:

CMMND>0 @
>

or maybe some other error message:

SPNER>0 @

>

So try this ••• you press the keys ••• you do the typing.

Finish eaah line by
pressing @ RE-

JUR

Do it! You type:

>ERASE

:1.10~0,

~

THIS IS MUMPS-11°'

l-6

The point is •••

MUMPS did not

understand you.

Then type:

and MUMPS will type

HELLO, THIS IS MUMPS· 11
>

Niae thought, but it wasn't an

original MUMPS idea. MUMPS

simply printed what you told it to

print.

Let's review what happened. First you typed:

>ERASE

and P'"""d the @ key. Th;, told MUMPS ro ERASE any aid pmg'°m ;n you•

program area in memory (your partition). Like erasing a blackboard before writing on it.

Next, you typed a short program, consisting of one line wi.th one statement on it.

>1.10 TYPE"HELLO, THIS IS MUMPS•ll"

Each line of a MUMPS program begins with a decimal

fraction (e.g., 1.1, 1.05, l.34)followedbyone

space. Note that numbers I ike l .1, 5.7, and 2 .3

are equivalent to 1.10, 5.70, and 2.30, respectively.

1-7

As you typed the program, MUMPS stored it in its memory. When you finished the line by

typ;ng @ , MUMPS anovmed w;th H• dght camt pmmpHng 'Y"'bol (>)when Hwa•

ready for you to type more. After entering the program, you then typed:

>DO l
HELLO, THIS IS MUMPS-II MUMPS ran the program and

> typed.

Then it stopped.

The command: TYPE "HELLO, THIS IS MUM?S-11"

' " ,, __ _
tells MUMPS to type this:) message.

Since there were no more command lines higher

than l .1, MUMPS stopped.

Every line in a MUMPS program must begin with a number. These

numbers are called step numbers. A step number is a positive decimal

number between 0.01 and 327 .67. Never use numbers with a zero

decimal fraction. Numbers like 1.00, 6.00, etc., are illegal.

When you typed:

>DO l

This told MUMPS to DO any steps that have a l in the integer part of the step number, like:

l • 99 and l .01 and l .11 , etc.

Yau can ERASE th;, p<ogmm by typfog ERASE followed by @ , of cou"e.

ERASE deletes all program steps.

1-8

Sti 11 your turn. Try th is one ••• type:

>ERASE

>1 .10 TYPE .. 7+5"
>l.20 TYPE"ISN'T MUMPS GREAT?"

>DO 1
7+5ISN'T MU~PS GREAT?
>

Next ••• let's replace step l • l with a new step l. l.

>1 .10 TYPE 7+5

ERASE the old program.

Enter the new program .
Here's an additional step.

No quotation marks.

To replace the contents of a step, simply retype the step, putting in

the desired commands.

Now tell MUMPS to WRITE out the current program, then DO it.

>WR! TE
1 .10 TYPE 7+5
l.20 TYPE"ISN'T MUMPS GREAT?"

>DO l
12 ISN'T MU'IPS GR EAT?
>

Here's the new step 1.1
and the old step 1.2.

DO it.
This time MUMPS does the
arithmetia,but it's not ve:r>y
readable.

Let's make our output more readable. Change step l .2 by adding some spaces at the

beginning of the message.

>l .20 TYPE " ISN'T MUMPS GREAT?"

WRITE out the program again to check the change, then try it!

>WR! TE
l ,10 TYPE 7+5
1 ,20 TYPE " ISN'T MUMPS GREAT?"

>DO l
12 ISN'T MUMPS GREAT?
>

1-9

Old step 1.1
New step 1.2

DO it

The command

TYPE 7+5

tells MUMPS to evaluate the arithmetia expression 7+5 (that is, do the arithmetic)

and type the results.

The command

TYPE "7+5"

tells MUMPS to type the string of characters enclosed in quotation marks exaatiy as it

appears. No arithmetic is performed.

Strings? Arithmetic expressions?

TYPE "ISN'T MUMPS GREAT?"

Th;, ;, a ,,,.,C, enc lo•ed ;n quo lat fon ""'"' I

TYPE "fil'

Th'' I~ 1s 1s a so a string.

Your tum again. Try this.

>ERASE

>l .1 TYPE "7+5 :", 7+5
>DO l
7+5:12
>

Replace step 1 .1 as follows:

>1 .1 TYPE .. 7+5:"," "t 7+5

1-10

TYPE 7+5

This is not a stri~ .:_ it's an
arithmetic expression.

Note the aormna between the "7+5=11

and the 7+5,

We added another string for the
TYPE to work on. It's a string
of three spaaes. Notiae the
additional aormna!

Now WRITE out the modified program and DO itl

>W

>l .l TYPE "7+5:","
>DO l
7+5: 12
>

"' 7+5

If a TYPE command has more than one element (argument), whether string

or numeric, each element must be separated by commas.

Try this:

>ERASE

>l .l TYPE 7+5,7-5,7*5,715
>DO l
122351 .40
>

Did MUMPS make a mistake? Look closely •••all the answers are there. But they are bunched

up. To fix that, we'll put strings of three spaces between the expressions.

Replace 1 .1 , then DO it again I

>1 .l TYPE 7+5,"
>DO I
12 2 35
>

"' 7/5

To tell MUMPS to add, use +

To tell MUMPS to subtract, use

To tell MUMPS to multiply, use *

To tell MUMPS to divide, use /

1-11

MUMPS SHORTHAND

Up ti 11 now, the MUMPS commands you've been using were complete words like WRITE,

TYPE, DO and ERASE. When you begin to write longer programs, spelling out each of the

commands becomes a tedious chore. Fortunately, MUMPS recognizes all its commands by

their first letters. It knows that W means WRITE, E means ERASE, T means TYPE, and D

means DO. Let's try this shorthand with some of the examples that you've done on the

previous pages.

How about

>E

>1 .1 T "7+5:", 7+5
>W
1 .10 T "7+5 :" , 7+5

>D l
7+5:12

ERASE

TYPE
WRITE

DO

Now you try some of the previous examples using MUMPS shorthand. Get used to thinking about

MUMPS commands by their abbreviations. It's good programming practice to use abbreviated

commands ••• serious MUMPS programmers always do.

Abbreviating MUMPS commands lets you write programs faster and,

more importantly, they take less space in your core memory area

(partition). This means you can run larger programs.

Back to more examples.

1-12

Mixed operations? Try this one!

>l .10 T 2*3+4," ",2*3+4*5," ",2*814-2
>D l
10 50 2
>

Were these the answers you expected? Probably not. MUMPS simply performed the

operations you specified in left-to-right order, just as it found them. This is the way MUMPS

evaluates exp:r>essions.

Use parentheses to group terms:

>1 0 1 T 2* C3+4> , ..

>D 1

" , C2+3 >* C 4+5 > , " ",<2*8)/(4-2>

14 45 8
>

MUMPS evaluates al I expressions in strict left-to-right sequence.

Parentheses must be used to establish any other precedence of

operation.

Try some large numbers.

>E
>1 0 10 T 4387654313.14

>D 1

MXNUM>l .llll @

>

MXNUM>l .10

MUMPS > d~tep
found a 1.1
numbe:r>
that was
too la:r>ge

f youro step was pa:r>t of a named
p:r>og:r>am, the p:r>og:r>am name would
appea:r> he:r>e. We'll tell you mo:r>e
about this in a late:r> ahapte:r>.

l-13

Your program didn't work. MUMPS typed the error message MXNUM to tell you that you used

a number that was too big.

Try some small numbers:

>l .1 T 1 .02 3* l 0 0

>D l

MINIM>l .10@
>

In MUMPS, numbers are signed,

fixed-point quantities in the

range ±21474836.47

This program didn't work either. MINIM means that you tried to use a number that had more

than two decimal places.

>D l
0 .20
> Did you expect the answer 0.25?

This program worked, but you lost part of the answer because your program created an

intermediate result that was greater than two decimal places (.05 * .5 = 0.025)

MUMPS truncates the results of all expressions to two

decimal places.

1-14

How about string arithmetic operations?

>1 .1 T "112" /" 12"

>
Don't be sUPprised at this. Beaa:use division

is an arithmetia operation, MUMPS sirrrply aon

verted the nwneria strings to nwnbers and

performed the division operation.

Try this one:

1 • 1 T " 1 12 I NC H [S" r 12" , " FE ET"

>D 1
9 .33 FEET
> MUMPS aonverted the nwneria portions

of the strings to nwnbers and ignored

the non-nwneria aharaaters.

When used where numeric values are expected, all leading numeric characters

in a string, including+, -, and decimal point (.), are changed to the corre

sponding numeric value within the range of MUMPS numbers (±2147 4836 .47).

That is, "112"/"12" is equivalent to 112/12. The first character in 'the

string that does not conform to the format of a MUMPS number terminates the

conversion process and the accumulated total is taken as the result. Strings

that do not contain leading numeric characters produce a numeric O.

MISTAKES

Do you occasionally make mistakes? We do ••• watch.

>1 .1 T "7+5=" 7+5

>D l
SYNTX>l .UJ @
>

We left out the aomma between
the two argwnents.

1-15

If we had noticed the error~ @ was typed, it could have been corrected without

having to retype the whole line. There are two ways to correct typing errors when the line

isn't terminated by ~ •
The ® key lets you delete single characters beginning with the last

character that you typed. Each time you press @ , MUMPS prints a

backslash (\) so you can tell how many characters have been deleted.

>l .l T "7+5:"7+5\\\,7+5

>W
l • l 0 T " 7+ 5 :" , 7+ 5
>.

We type three RUBOUTs to delete
the aharaaters up to where we
want to insert the aomma.
Now Write out the step to verify it.

The CTRL U feature lets you delete the entire line. Simply hold down the

CTRL key and press the U key. MUMPS prints an tU so you'll knowwhat

happened. Try this!

ERASE
>E
>l .l T "ISN'T BUMPS GREAT?" tU CTRL U wiped out the whole line.

Cheak for yourself. >W
> See - it's gone.

Remember! RUBOUT and, CTRL U work only

when you haven't typed a~ for the
'Z!!!!!)

line in question.

1-16

If we had noticed the error after ~ was pressed, we could either retype the step or

ERASE it. If we use ERASE, however, ~the steps in our program, both good and bad, will

be ERASED, unless we tell MUMPS which steps to ERASE. Like this:

>E 1 .1

~
Erases step I. I only.

>E 1.3,1.8 Erases steps l .3 and l .8

~
THE GENERAL FORM OF THE ERASE COMMAND IS:

ERASE nl I n2' nn

where n1 ,n2 ,nn are MUMPS step numbers.

Can I do this? Can I do that? What happens if I ••••••••••••••••• ?

(You complete the question.)

Obviously, we can't answer cill your questions in this book.

and MUMPS can answer most of them.

EXPERIMENT! ••• GAMBLE! ••• GUESS •••

THEN TRY IT

When you're ready to end your session at the terminal, use the HALT command.

Type:

>H
EXIT

MUMPS types this message to teZZ you that

you've been LOGGED-OUT.

To use the terminal again, just log-in the way we told you at the beginning of this chapter.

1-17

CHAPTER 2

COMPUTER POWER

Now that you've learned how to converse with MUMPS, let's do something a little more

challenging than simple arithmetic. Two important characteristics of MUMPS are that

(1) it can perform lots of simple tasks much much faster than people and (2) MUMPS can

store tremendous amounts of data.

THE CENSUS TAKER

With these ideas in mind, let's use MUMPS to help us gather and store the census data of a

town. The first thing we have to consider is how to store the data. With MUMPS there are

a number of places to store information -- memory, disk, magnetic ta}:>e, paper tape. Since

memory is the most basic kind of storage medium, we' II talk about it first -- we' 11 discuss disk

storage in later chapters.

If you weren't using MUMPS with your computer, you could only store your data in memory

if you knew the addresses of the actual memory locations to be used. This can be a complicated

task. When MUMPS is being used, you don't have to worry about the actual location of

your data in memory. You can invent your own names for the memory storage location to be

used. You can create symbolic names like AGE, SEX, NAM, P, or A3 to define memory

storage areas.

A storage area can contain either a number or a string of characters at any given time -

either one or the other -- not both. Since programs often change the data stored in these

symbolic memory locations, they are called variables. Remember, in the examples in

Chapter 1 you stored data directly in the programs, either as numbers (constants) or as

strings enclosed in quotation marks (literals).

Remember?

I .t T

and also

I .2

2-1

Each time you wanted to change the data, the program had to be rewritten.

Now we can write programs like:

Do it -- type it in.

Now DO it.

>D 1

U!'fD EF'>l • I 0 Ii
>

Too bad - a:n error message! MUMPS is teZZing us
that a:n UNDEFINED variahZe was referenaed.

In fact, both variable A and variable Bare undefined. Before a variable can be

interrogated, it must first be SET to some numeric value -- even zero -- or to some string

value -- even space.

Type this:

>1 .I S A :7+5
>l .2 T "ANSWER:" ,A
>D l
ANSWER :12
>

SET A to the result of 7+5
TYPE the aontents of A
DO it

The SET command:

• creates a variable u~ing the name you chose

• puts your data into it.

2-2

The example you just tried is simply a modification of the example from Chapter 1 (1 .1 T 7+5,

remember?). Let's analyze what happened.

• Step 1 .1, the SET (S) command told MUMPS to evaluate the

expression '7+5' and create a variable called A to store the

result.

• Step 1 .2 told MUMPS to type out the contents of variable A.

Of course, we could have used some name other than A if we wanted to -- like Z71 or G9A

or ABC or BC or any combination, as long as the first letter is always alphabetic and no more

than three characters are used, Another point: if A already had something in it (i.e. it was

previously SET), our program would have wiped out the original data and replaced it with 12.

Let's add more to the program.

>I .3 S A:" 7+5"
>I .4 T "A:" ,A

Write it out and examine it.

>W
l .10
I .20
I .30
I .40

S A:7+5
T "ANSWER:" ,A
S A:"7+5"
T "A:" ,A

>D I
ANSWER:l2A:7+5
>

Here's the oZd program.

Change the contents of A.
TYPE new contents of A.

DO it.

} What we
just added

Notice that the vaZue of A was changed from a numeric

variabZe to a string variabZe.

AZso the '=' sign when used with SET means 'assign

vaZue of' rather than arithmetic equaZity.

2-3

Now change 1 .4 to improve the format of the output. Add some spaces to the beginning of

the literal "A=".

Add some spaaes. See w'hat happens now!

>D I
ANSWER:l2
>

spaaes you added.

Try this one:

First erase the old program.

>E
>1 .10

>I .2 0 T "A:" ,A , " ",C ,A+B

DO IT.

>D l
A:5 8:7 A+B:12 ,.

How much can I put in a variable? How do I form a variable name?

SOME FACTS
ABOUT VARIABLES

A variable can contain either a number in the range of

~2147 4836 .47 or a string of up to 132 characters.

A variable's name can be from one to three characters. The first

character must be alphabetic; the remaining two can be either

alphabetic or numeric.

2-4

Now that you know how to store data, let's begin our census program. Here's a program

to store someone's name.

>1.10 S NAM:"MILLARD FILMORE"
>I .2 0 T " NA ME: " , NAM

>D I
NA ME: MILLAR 0 FILMORE

But this isn't much of a census with just one name and no other information. Let's store

more information:

>1.10 S NAM:."MILLARD FILMORE",AGE:173,SEX:"M'',1.0CC:"U.S PRESIDENT"
>1 .20 T "NA"IE:" ,NAM," AGE:" ,AGE," SEX:" ,S!!.X," OCCUPATION:" .occ

>D I
NA \'llEt Ml LLAR D FILMORE AGE: 1 73 SEX: M OCCUPATION: u.s PRESIDENT

In this example we've defined the variables AGE, SEX, and OCC to contain the additional

census data. However, each time new data is entered, we must modify the program:

>l .10 s NAlll:"HERMANN MENSCH" ,AGE:l5,SEX=" fir' ,occ:"STUDENT"

>D 1
NA ME: HER !'11A NN MENSCH AGE: 15 SEX: M OCCUPATION: STUDENT

This isn't very practical -MUMPS should do more work. Let's make an automatic census

taker. You can write a program so that everyone can enter his own census data from the

MUMPS terminal. The READ command lets us do this. READ performs the opposite task

of TYPE -- its primary job is to input characters from the terminal.

2-5

Try this:

>E
>I .10
>1 .20

>D l

~ae)
R NAM
T " ~ME:" , NAM

Did anything happen? Can you tell?

ERASE the o Z.d program.
READ in a name.
TYPE out the name •

DO it.

Type something, then press @ . How about:

you• name ~

What happened? Did it look like this?

~OU ty;;d)
your nameNAME: your name <;r;r MlJ.-'MP,-'S-ty_p_~

When MUMPS ran the program, the first thing it did was to READ from your terminal. (But

you couldn't tell this from looking at the terminal.) It simply waited quietly for you to

type-in something before doing the rest of the program.

It would be easier to know when a program wanted to READ if some kind of message could

be typed.

You could write a program like this:

>l .10 T .. WHAT IS YOUR NAME?"
>1 .20 R NAM
>I • .30 T " NAME:", NAM

>D I
WHAT IS YOUR NA~E?Al.BERT EINSTEI~ NAMEtALBERT EINSTEIN
> I

Great! Now we know when MUMPS is going to read from the terminal. The first TYPE

command isn't really necessary, though. READ can do both jobs.

2-6

>E
>l .u R "WHAT IS YOUR NAME?", NAM
>l .20 T " YOUR NAME ISt", NAM

>D I
WHAT IS YOUR NA!'IE?JOHN DOE YOUR NAME IS:JOHN DOE
>

Like TYPE, READ can type-out character strings that are enclosed in quotation marks.

So, let's do this. Add an additional argument to step l. l to make our program more

interactive.

>1 .t 0 R "WHAT IS YOUR NAME?", NAM, I

DO it.

>D l
WHAT IS YOUR NAME?
YO lR NA ~E IS t_-===--
>

Notiae -- what was the first thing MUMPS did after you

typed in your name? Right! It started printing at the

left margin of the line below. This is aalled a

aarriage RETURN/LINE FEED operation or CR/LF for short.

When MUMPS sees an exclamation point character as an argument to

a READ or TYPE, it outputs a carriage RETURN/LINE FEED operation.

Commas are not needed between adjacent exclamation points (, ! ! ! ,) •

2-7

Try this one:

"'1 .10 R "TYPE YOUR
>l .20 T "YOUR NAME

>D 1
TYPE YOl.R NAME!
ELMER FUDD
YO tR NA !VIE IS:
ELMER FUDD
>

Let's analyze line I .I to see what happened. First, MUMPS output TYPE YOUR NAME! •

Since the ! following NAME was within the quotation marks, MUMPS printed an

exclamation point(!). When MUMPS found the ! enclosed in commas it output a carriage

RETURN/LINE FEED. Then it read the name you entered and stored it in variable NAM.

Next it found another ! and MUMPS output another carriage RETURN/LINE FEED.

You figure out the aation in step 1.2.

The READ command can: input data from the terminal to one or more

specified variables; output quoted text strings, and output the

carriage RETURN/LINE FEED with the ! Form Control Charaater.

Each argument is separated from other arguments by commas.

Let's revise our program to include more census data.

>l.10 R !! "NAME?" NAM t "AGE?" AGE,t,"SEX?",SEX,l,"OCCUPATION?",OCC,!
>l .20 t 1,.tNAME:",NAM,i:"AGE:",AGE,l,"SEX:",SEX,l,"OCCUPATION:",OCC,!

>D l

NAME?

NOW your program can automatically store and display census data. But you've only told

MUMPS to store one person's census data -- what about the rest of the people in town? A

census needs data about a lot of people. How can we store it in memory? The program

could be rewritten and run over and over again, each time with different names for the

2-8

variables which hold the data. But this could take lots of time and would be a very

inefficient use of a computer.

Until now, we have used only simple variables with names like:

A B c NAM

Now we want to introduce a new type of variable, called a sUbscripted variable.

Subscripted variables look like:

AGE(3) NAM(l 0) A(2) Zl 5(3)

Like simple variables, .subscripted variables are also used to store numeric or string data in

memory.

Ten subscripted variables

NAM(.01)

NAM(.02)

NAM(.03)

NAM(.04)

NAM(.05)

NAM(.06)

NAM(.07)

NAM(.08)

NAM(.09)

NAM(JO)

data

data

data

data

data

data

data

data

data

data

We can also use a variable as a subscript

AGE(N) NAM(X)

2-9

Ten subscripted variables

AGE(.01)

AGE(.02)

AGE(.03)

AGE(.04)

AGE(.05)

AGE(.06)

AGE(.07)

AGE(.08)

AGE(.09)

AGE(.10)

Zl 5(P)

data

data

data

data

data

data

data

data

data

data

Subscripted variables can be used to create tables of data in memory, called ar:roays. Arrays

are useful for storing data in categories.

A subscript can be:

• a constant

• a variable

• an expression

as long as MUMPS can interpret it as a

positive number between 0 and 20, 975.51.

Here are some of the forms subscripts can take:

Back to our census!

AGE((N+l)/4)

NAM(l .01)

SEX(Y)

The following table contains census information that we would like to have MUMPS store

for us. We can use subscripted variables to contain the data in. each column.

2-10

NAM(N) AGE(N) SEX(N) OCC(N)

HENRY ADAMS 46 M CARPENTER
BI LL SMITH 15 M STUDENT
ALTHEA BROWN 31/J F CHEMIST
PAUL JOHNSON 22 M PROGRAMMER
JUDY ZWINK 86 F GR A ND MOTHER
CRPHA N ANNIE 30 F COMIC STRIP CHARACTER
DADDY \\t\RB UCKS 76 M WARMONGER
SANDY 15 M DOG
ZEUS 41/Jl!Jl!J M mEEK GOD
IAN MCKENZIE 30 M IMMU NO LO GI ST
BARBARA THOMSON 26 F SOFTWARE ~I TER
MELISSA MERCOURI 12 F SHOW GIRL
BENJAMIN DOVER 38 M PR OCTOLOG IS T
SYLVIA SAWYER 36 F FARMER
EPHRIAM PRETZELBENDER 30 M PRETZEL BENDER
KEN GERBER 20 M NATURALIST
LEROY ABRA!VLS 30 M AIRCRAFT MECHANIC
XERXES POLYPHON 30 M OUD PLAYER
HELEN TRENT 44 F BACK STAGE WIFE
MOLLY MALONE 15 F COCKLE A ND MUSSEL VENDOR
CYNTHIA SMECK 27 F LUMBERJACK
ALICE JOHNSON 34 F ARTIST
MARK ALTMAN 21/J M TREASURER
NATE LISKOV 34 M MATHEMATIC IAN
NANCY PENN 20 F RADICAL
JOHN FAVOR 88 M SAW MILL OPERATOR
MI N NIE PEAS LEE 42 F TOWN CLERK
KEN MASER 27 M MINING ENGINEER
EVELYN JORDAN 30 F PHOTOGRAPHER
HIRAM WALKER 60 M WHISKEY TASTER

Here is a program that stores the census data (above) in memory. Type it in.

>E
>l .10 S N:.01
>l .20 R I," M\MEt",NAMCN>,l,"AGEt",AGECN>,l,"SEX:",SEXCN),I
>I .2 5 R " CX:C UPA TI 0 Nt" , OCC C N> , I
>l .30 T !,NAMCN>," ",AGECN>," ",SEXCN>," ",OCCCN>,!
>l .40 S N:N+ .01

Before running the program, let's analyze it. In step 1 .1 we define simple variable 'N' and

give it an initial value of .01. Since we will be storing census data on many people, we'll

use 'N' as a counter.

Step 1 .2 types out messages requesting data (name, age, etc.) and reads the data into

subscripted variables (NAM(N), AGE(N), etc.), using the current value of 'N'. Step 1.3

2-11

echoes the data just input to al low verification. Step 1 .4 increases the counter 'N' by one,.

in preparation for input of the next data record.

OK, run the program. Type:

>D 1

NA ME: HENRY ADAMS
AGE: 46
SEX: M
OCCUPATION: CARPENTER

HE~Y A DA 1'lS 46 M CARPENTER

>

Type-in a name from the table.
and age
and sex
and occupation

Here's what's stored in memory.

Good, you've entered and stored the census data for one person. But what about the other

people. The program, like others in previous examples, stopped when it ran out of steps.

If we start it manually by typing D 1, that won't help either. The data we put in the

first time around will be wiped out because the counter 'N' will be reinitialized to a .01.

Certainly there are other manual solutions to this problem, but the point is to make MUMPS

do the work -- automate the job.

Here's how. Add a new step at the end of the program:

>1 .5 G 1 .2

Step 1.5 says "GOTO step 1 .2 and continue from there"; 'G' is the GOTO command.

Every time MUMPS finds a GOTO in a program, it 'goes to' the specified step and continues.

GOTO unconditionally transfers program control to the specified

step number. Needless to say, the step numbers must be legal and

part of the program.

2-12

Now, write out the program.

>W
1.10· S N:.P.Jl " " SEXCN> I 1.2~ R 1,"NAME:",NAMCN>,l,"AGE:",AGECN>,I, SEX: t ,

l 25 R "~CUPATION:" ,OCCCN>,I
1:30 T l,~AMCN>," •,AGECN>," ",SEXCN>," ",OCCCN>,!
I .40 S N:N+ .et
1 .50 G 1 .2

Examine the program. Follow it step-by-step. Think it through. OKI Before running the

program, let's make one final change. We're going to change step 1.3 so it will type out

the value of N for each data item. This wil I help us to know where the data is stored in

the array.

Here's the revised step·:

>1.30 TI ,tt," ",NAM<N>," ",AGE<N>," ",SEXCN>," ",OCCCN>,l

Type it in.

~ Here'• ";he ehang•J

Good! Run the program.

Type:

>D

NA ME: HE~Y ADAMS
AGE: 46
SEX: M
OCCUPATION: CARPENTER

0 .01 HE~Y ADAM 46 M CARPENTER

NA ME:
AG Et
SEXt
OCC UPA TI 0 N:
•
•
•

}

2-13

Here we go. You enter
the data. Use the aensus
information in the table
on page 2-11.

You put it in.

Once you've entered census data for five or six people, stop the program. Let's go on to

something else. What? You don't know how to stop? That's right I Our other programs

always stopped because they ran out of steps. But in this program we asked you to put a

GOTO in step 1 .5. Now the program never runs out of steps. Our program is looping

endlessly through steps 1 .2 to l.5, t,hen back to 1 .2. Programmers often cal I this an

"infinite loop".

S N: .01
R I , " NA l'IEt" , • ••-
R "<J::CUPATIONt" ,eJC
T I ,NAMCN> •••
S N:N+.IU
G 1 .2

There's the loop.

Here's how you stop a program that's running this way. Remember in Chapter 1 we told

you to use CTRL C to tell MUMPS that you want to use a terminal? Well, the same thing

applies here. This time, you need to tell MUMPS that you want to take control of the

terminal and stop the program -- so type CTRL C.

Here's our program waiting
for something to be typed.

INRPT>l .2 @

~.-......:____Step MUMPS was working on when you typed CTRL C.

> ~MUMPS reaognizes your CTRL C and stops the program.

"-MUMPS waits for your aommand.

CTRL C can be used any time you want

to stop a program.

2-14

CHAPTER 3

MAKING DECISIONS

Up till now, the programs you've written could input and store data (READ and SET),

perform arithmetic operations (+ - * /) on it, and type it out (TYPE). One thing

your programs couldn't do was make decisions.

Decisions like:

• Is A greater than B?

• Did someone type-in the wrong number or string?

• Are there too many characters in a name?

• What is the relationship of one arithmetic expression to another?

• Is it time to stop a program?

Almost all programs need to make decisions like these.

The IF command is one way that MUMPS lets you make decisions in your programs.

Try this:

>E
>l.U.IR"A:",A," 8:",8,1
>I .2111 I A:8 T "EQUAL" ,I G I .1
>I .30 T "UNEQUAL", I
>1 .4111 G 1 .1

>D 1
A :5 8:4
UNEQUAL
A:DOG 8:DOG
EQUAL
A:

FiPst ERASE any old pPogPams.

HePe's the IF aommand.

Have you had enough? OK. Then stop the program.

3-1

Step 1 .2

I .20 I A :B T "EQUAL", I G I .l

tells MUMPS:

IF THE VALUE OF A IS EQUAL TO THE VALUE OF B, THEN TYPE

"EQUAL", DO A CR, AND GO TO STEP 1.1.

If the value of A is not equal to the value of B, MUMPS

ignores the remainder of the IF line and skips to the

next step.

Look at the line again.

l .20 I A:B T "EQUAL",! G I .1

that's new. Three r::ommands in

Actually, you can put as many commands in a step as you wish

up to 132 characters. Just separate each command from the

next with a single space.

3-2

Now, let's change the program:

>l • .311J I A >8 T A -8, I G 1 .1
>1.40 T "A LESS THAN B", I

WRITE it out.

>'W
l • t Ill R "A:" ,A , " 8 :" ,8 , !
t .20 I A:B T "EQUAL",! G l .l
1 .3 0 I A >B T A -B , ! G 1 .1
l .40 T "A LESS THAN B" ,I

>D
A: Fill in the answers yourself. Can you figure

out what answers will make the program stop?

If A is equal to B, the message "EQUAL" is typed and new values are requested. If A is

greater than B, the difference (A - B) is typed out and new values are again requested.

Otherwise, A must be less than B. Since there are no more steps left after l .4, the program

stops when A is I ess than B.

To say it another way:
---.

1.10 R "A:",A," B:" ,B ,I

+
l~~'B T "EQUAL",! G 1 .1-@

1.3~ >B
T A-8 ,I G 1 .1----·r

I .40 T "A LESS THAN B", I

~-----·~~c. This is a relational expressio?2:)

"""' 1 .2 Ill I A :8 T "EQ • • •----llr•Follow this path if relation is TRUE.

t
Follow this path
if relation is
FALSE.

is a relational operator.

3-3

Another view of the IF command.

General Form: IF PRUE re"lation do next command on the
line, otherwise do next step.

Example: I ANS== "YES" T NAM(N)

If variable ANS contains the string "YES", the

contents of NAM(N) will be typed.

Relational expressions are simply expressions which contain re"lational operators. The

relational expression used with IF can be an arithmetic relation between two arithmetic

expressions. Here are the arithmetic operators that can be used with IF.

Relation

Equal to

Less than

Greater than

Less than or equa I to

Greater than or equal to

Not equal to

Here's another example:

>E
>1.l0R"A:",A," 8:",8,1
>l.20 I A<l011J,B>0 T A•8,I G 1.1
>l .3 0 T " OUT OF RA NG E" , I
>l .40 G l • l

>D l
A:75 8:1
75
A:54 8:-12
OUT OF RANGE
A:

3-4

Symbol

<

>

<.= or =<

>=or =>

<>or ><

Erase the old program.

IF A is less than 100 and B is
greater than~, TYPE A*B. Notice
that IF can include more than one
relation. Just separate each
e:x:pression !JJith a corrona.

In this example, IF has two arguments:

A< 100

and

B> 0

If both arguments are TRUE, the TYPE command is executed and MUMPS skips to l .1 •

If either argument is FALSE, the TYPE command is ignored and MUMPS skips to l .3, performs it,

then goes to l .1 as commanded in line l .4. Try the example again with other values.

Now write some examples of your own, using IF. Try using variables, constants, literals,

and arithmetic operators in various combinations.

In Chapter 2 we showed you a program to collect and store census data. The program ran

very well except that you had to type CTRL C to stop it. The problem with using CTRL C

to stop a program is that it may not stop it at a logical point -- the program might have

stored a name, but not age, sex, or occupation. That cou Id corrupt our data.

Here's the old census input program:

l.10 S N:.01
l .20 R I," NAME1", NAfltC N>, I, "AGE:" ,AGEC N>, I, "SEX:" ,SE~C N>, I
1.25 R "OCCUPATION:",OCCCN>,I
1.30 T l,N," ",NAMCN>," ",AGECN>," ",SEXCN>," ",OCCCN>,I
l .40 S N:N+.01
1 .50 G 1 .2

Let's change it so that it can be told when to stop. We'll use the IF command. Replace

step l .5:

>1.50 R !,"MORE DATA CY CR N>?",ANS,I I ANS:"Y" G l.2

3-5

This step tells MUMPS to ask if more data is to come. {You should answer with a Y for yes

or N for no.) If your answer is a Y, MUMPS starts the program over at step 1 .2. Any other

answer causes the program to stop since there are no more steps after step 1 .5.

Run the program.

>D I

NA\'l!Et __
AGEt __
SEX: _
OCC UPA TI 0 NI

•
} You provide the

data this time.

MORE DA TA CY CR N>?
Do you want to stop, or go on?
It's up to you!

Now we can tell the program to stop itself rather than asking MUMPS to do it for us.

Let1s think a little about what the census input program is doing for us.

• It reads in data.

• It stores the data.

• It types out the data so we• II know
what1s been stored.

• It stops on command.

What good does the stored data do? How is it useful? It's not useful by itself, just

sitting there in the computer memory. The purpose of a census is to gather lots of up-to-date

information about lots of people so we can tell what the characteristics of a population are.

3-6

• How many carpenters between ages 32 and 39
are women?

• What is the most common occupation?

• What is the average age?

The reason should be obvious now. Since MUMPS can do things faster and more accurately

than people can, it is natural to have it update, retrieve, and report our census informa

tion. The Input program is just one of the programs needed to handle our census operation -

it stores the data that other programs will use.

Remember what our data base looks like?

If you've forgotten, look back in Chapter 2. Try to imagine how a program to count the

number of people in the census might work. All that is required is to count the number of

names in the data base • How? Simply start at the beginning, look at each entry, and

if there's a name there, count it. If there's no name or something which doesn't resemble

a name, don't count it -- this is the end. And that's our problem -- how to know where

the end of the data file is.

If the program that did the counting looked like this:

>l .10 S N:.01
>I .20 I NAM< N>:"*" G I .4
>l .30 S N:N+ .01 G l .2
>I .40 T "TOTAL:" ,N,I

it would find the end of the data if the last entry were an asterisk, for example. The idea

is to make the last entry a "dummy data record" with something in it which is not normally

considered data -• like an asterisk.

Here's our version of the data input program. It not only stops on command, but also

writes a "dummy record" as well. Read it through carefully.

3-7

I

1.10 T !,"CENSUS DATA INPUT PROG",11,"TO STOP, TYPE A,_CR"
1 .15 T "IN RESPONSE TO •NAMES• REQUEST", I
1.16SN:.01
1.20 R 1,"~ME1",NAMCN>,I

1.25 I
I .28 R
1.30 T
1.40 s

.. --====;::;;;~_:Th:,:i.:' s:_:is~t=h=e~Q:U~I:T~c:o:rrnn::an:,J>
NAM C N> :"" S NAM C N) :"*" Q-"' :J
"AGE1",AGECN>,l,"SEX1",SEXCN>,!,"OCCUPATIONt",OCCCN>,I
N," ",NAMCN>," ",AGECN>," ",SEXCN>," ",OCCCN>,!
N:N+.01 G 1 .2

Type it in, but ERASE first.

>E
>1 .1 T ! , "CENSUS •••
•
•
•

Now run it.

>D 1

CENSUS DATA INPUT PROG

TO STOP, TYPE A CR IN RESPONSE TO • NAMEt • REQUEST

MME:

Now go back to the table of census data in

Chapter 2 and enter au the data. When you're

finished, stop the program. Just type a CR

onZy in response to the 'NAME' request.

3-8

Step l .25 does a lot of work.

l ,2 5 I NA MC N> :"" S NOH N> :"*" Q

Let's analyze it. First, remember that the way we stopped in earlier versions of this program

was to look for a 11 Y11 or 11 N 11 response. 11Y 11 and 11 N 11 are character strings. What if the

program looks for a string of no characters -- this kind of string 11 11 This 11 11 is a

null string. There aren't any characters in it. When MUMPS does a READ and you type

a CR only, o null string is input. Step 1. 25 tells MUMPS if a nuU string is read

into NAM(N}, that's the signal to stop. But before stopping, put an asterisk

into NAM(N}; then QUIT.

QUIT is a new command.

When MUMPS sees a QUIT, it stops the program and gives terminal

control bock to you.

Our data base looks like this now:

HENRY ADAMS
BI LL SMITH
ALTHEA BROWN
PAUL JOHNSON

KEN MASER
EVELYN JORDAN
HIRAM WALKER

*

~
Last data en

46
15

311J
22

27
311J
611J

3-9

M
M
F
M

M
F
M

CARPENTER
STUDENT
CHEMIST
PROGRAMMER

MI NI NG ENG I NE ER
PHOTOGRAPHER
WHISKEY TASTER

CHAPTER 4

CONSERVATION OF ENERGY

TIRED HANDS

Up till now you've been doing a lot of typing and retyping of programs. Some of them have

long lines which aren't very different from one another. That's a tiring and often boring job.

A lot of this drudgery can be avoided.

MUMPS gives you a program storage area in memory all for yourself. Each time you type-in

a program step or create a new variable, more _of your storage area gets used up. Since

MUMPS is a time-sharing system, you have a I imited amount of memory. There are other

users like yourself, so memory is divided into partitions -- one partition for each of

you. When you DO a program, MUMPS looks for it in your partition. It th inks that al I

the steps in there are part of the same program. So, when you write a new program, if you

don't want the old program to be a part of it, you have to ERASE. Then if you want to

use the old program again, it must be retyped. Also, when you sign-off (log-out) at a

MUMPS terminal, any program in your partition is wiped out.

"What's all this leading up to?" you ask. Just this:

Memory is for temporary storage of programs. So that

you don't have to continually type-in the programs

that you want to run, MUMPS lets you save them

permanently in disk storage.

In Chapter 1 we told you about logging-in (sign-on) and we also told you what a UCI is.

Well, MUMPS gives everyone who has a UCI a storage area on the disk. You can store

an almost unlimited number of programs there. Give your tired hands a rest.

The Fl LE command stores programs on the disk. The

LOAD command brings them back.

4-1

Is the Census Data Input program still in memory? Try to WRITE it out.

Type:

1.10 T !,"CENSUS DATA INPUT PROGRAM",ll,"TO STOP, TYPE A CR"
I .15 T "1 N RESPONSE TO •NAME:• REQUEST", I
I .I 6 S N: .01
1.20 R l,"NAME:",NAMCN>,I
1 .2 5 I NA MC N) :"" S NAM C N> :"*" Q
l .2 8 R "AG Es" ,AGE C N> , I , "S EXs" ,s EX C N) , I , " OCC UPA TI 0 NI" , OCC C N> , I
t.30 TN," ",NAMCN>," ",AGE<N>," ",SEXCN>," ",OCCCN>,I
I .40 S N:N+.01 G I .2

>

If it's not there, type it now.

Before we can FILE a program, we must pick a name for it. Program names follow the same

rules as variable names (except for subscripts, of course). How about calling the program

INP?

Type:
Don't forget

(RE\
~

Now the Census Data Input program is in your storage area on the disk under the name INP.

The original copy is still here too -- in your partition. WRITE it out and see.

>W
1.10 T I ,"CENSUS DATA INPUT PR•••
•
•
•

4-2

You don't need this one -- ERASE it.

Is it gone? Try to WRITE it and see for yourself.

>W
No program:

>
It Is ERASEd.

Now, let's try to get the program back from disk storage. Let's LOAD it.

>L !NP

>W
1.10 T !,"CENSUS DATA INPUT PR •••
•
•
•

OK. ERASE again.

>

Here's a new twist. Try this.

LOAD it again.

>L I NP

>

4-3

It's still ·there.

doesn't affect FILEd

programs.

Then type:

>F I Nl

>

Do you know what you did? Right! You just FILEd the INP program under another name, INl.

Now there are two copies of the same program with different names. You can make as many

copies as you want.

Like this:

>F IN2,IN3,IN4,ZZZ

>

Now there are six copies of the original INP program. Try LOADing them and WRITing them

out if you wish.

We don't need all these copies. Let's ERASE one. How about ZZZ? First empty your

partition.

Type:

>E

>

then type:

>F ZZZ

>

It's ERASEdl If you don't believe it, try to LOAD zzz.

4-4

>L ZZZ
NOPGM>0 @
>

ERASE the rest except for INP.

>F I~,IN3,IN4

>

>LI~
NOPGM>0 @

>L I N3
NOPGM>0 @

>L I N4
NOPGM>0 @

>

CHANGING TIMES

AU ERASEd.

Cheak for yourself.

To erase a FILEd program:

l • ERASE your partition.

2. Do a FILE using the name of the
program.

People are always changing - people change jobs, people are born, people change names,

people get older. All these changes keep census takers busy updating their data.

What do we mean by update?

• Adding new data ,

• Modifying or correcting existing data

Now that we've got a program that creates our initial census data base, how can the

data be kept up to date? We have to be able to: add new data andmodifYexisting data.

4-5

First, we need a program to add new census data to the existing census data that MUMPS

stored for us.

Th ink about what a program has to do to keep the census up to date.

Here's what we think:

It must:

• Search through the data file until the end is found (remember we

made a 'dummy record' in the last NAM(N) entry'?).

• Delete the 'dummy record'.

• Read in the new name, age, sex, and occupation .

• See if there is another entry to be added. If there is, add it.

• If there isn't, write a new dummy record and stop.

Here's a diagram of what our program does:

Begin

Examine

first entry

Yes

4-6

Examine
next entry

11-1977

You write your own version of the program -- we'll write ours below:

>2 .UJ S N: .01
>2 .20 I NAMCN>:"*" G 2 .4
>2 .30 S N:N+ .01 G 2 .2
>2.40 R !,"NAME1",NAMCN> I NAMCN>:"" S NAMCN):"*" Q
>2 .50 R ! ,"AGE:t" ,AGECN>,! ,"SEX1" ,SEXCN>,I ,"OCCUPATION:" ,OCCCN> ,I
>2 .60 S N:N+ .01 G 2 .4

>

How does yours compare? Run your program. Does it work? Can you fix it if it doesn't?

Try our program now, but first FILE yours so you can work on it later. Pick a name for your

program. Type F Now ERASE and type in our program.

Now run our program.

Type:

>D 2 DO all the steps beginning with 2.

~ME:

Did it run?

If you got an

UNDEF>2 .20 @

>

error, chances are that your data base was destroyed, most I ikely because you signed-off

your terminal by typing HALT (H). Programs and variables in your partition are

destroyed when you log-out.

4-7

We'll tell you about permanent data storage in the next chapter. But for now you'll have to

1. FILE theADD program

Type:

>F' A DD

2. LOAD the IN P program.

Run it and enter at least one person's data.

3. After stopping INP, LOAD ADD.

Now we're ready to continue.

If the program ran 0 K, so much the better. But do you know if the census data you

added is really there?

First, stop the program. Type a null string (CR only) when the program types the NAME:

request.

Now, let's look and see if the program did its job.

Type:

>T N
0 .31
>

Look at N- .01 •

Type:

>T NA MC N- .01>
HIRAM \16\LKER
>

This is the subsaript value of the last
entry -- the dummy reaord. The last data
entry is N-. 01. --

Is this the last name you entered? Good. The program works. If it isn't, make sure there

isn't an undetected typing error in the program. WRITE it out and see.

4-8

Look at the remaining data elements in the entry:

>T AGECN•.01>,l,SEXCN·.01>,l,OCCCN·.rlll>
60 Age
~ Sex
WHISKEY TASTER Oacupation
>

Is the data OK? Does the ADD program work?

Good! Let's go on. The remaining requirement for a data update task is to modify an existing

entry. Th is lets you keep current census data up to date. Draw a flow diagram of the way you

think this program should work -- we'll do ours below.

8EGIN

READ-IN THE NAME OF
PERSON WHOSE RECORD 14-------------.
IS TO Be CHANGED

TYPEOUT All
DATA ELEMENTS

READ-IN CHANGES
(A@) MEANS
NO CHANGE)

QUIT

4-9

Write the program the way you diagrammed it. Use step numbers beginning with 3 .1. Then

FILE it. You pick the name, but don't use 'MOD' - we're going to use that.

Type:

>F

Here's the way we wrote the program.

Type it in, but first ERASE.

>E
>3.10 S N:.01 R 11!,"UPDATE DATA FOR:",t,"NAME1",NAM
>3 .20 I NAM:"" Q
>3.22 I NAMCN):NAM G3.4
>3 .30 I NAMC N> :"*" T ! , .. NOT FOUND", G 3 .l
>3 .32 S N:N+ .01 G 3 .22
>3.40 TI ~AMCN>" "AGECN>" "SEXCN>" "OCCCN> I
>3.50 R 1:"CHANGts ro'BE MADt",1,'NAME:":NAM f NAM="' G 3.6
>3 .52 S NAMC N> :NAM
>3 .60 R I ,"AGE:" ,AGE I AGE:"" G 3 .7
>3 .62 S AGEC N> :AGE
>3.70 R !,"SEXt",SEX I SEX:"" G 3.8
>3. 72. S SEXOO;SEX
>3 .80 R I," OCCUPATIONt" ,OCC I OCC:"" G 3 .I
>3 .82 s rec (N> :QCC G 3 .1
>

Now FILE it as MOD for MODify.

>F MOD

>

4-10

Here's how MOD works:

Step 3.1 reads-in the name of the person whose census data is to be changed.

St.ep 3.2 stops the program if a null string is entered.

Step 3.22 compares the name read-in from the terminal with an entry in the

data base. If the names are the same, processing continues at step 3 .4.

Step 3.2 IF the names aren't the same, this step checks to see if the dummy

record at the end of the data was reached. If it was, the message

"NOT FOUND" is typed and the program begins again.

Step 3.32 If the end of the data was not reached, increment the counter (N) by

.01 and examine the next data base entry.

Step 3.4 Once a match is found, the entire census data for that person is

output so you can verify the data.

Steps 3 .5 through 3 .82 read-in the replacement data. If you enter a nu 11 string

in response to the messages "NAME:", "AGE:", etc., the old data

entry is retained. When all responses have been made, the program

begins again.

Now run the program. Try yours first.

Type:

>L
>D 3

Change several entries in the data base. Then stop the program and use TYPE to examine the

changed data as we did when we ran the ADD program. Does your program work OK? If not,

try to fix it. Then run it again, check it out, and FILE it again so you'll have saved the

latest copy.

4-11

Our tum • Run our program.

>L MOD

>D 3

UPDATE DATA F'OR1
Pl' MEt A NOR E1' JACKS 0 N
NOT FOUND

UPDATE DATA FORt
Pl' MEt CYNTHIA SMECK
CYNTHIA SMECK 2 7 F LUMBERJACK

A NEW lWIST

If you've been observant, you may have noticed something about the step numbers used in

the INP, ADD, and MOD programs. The integer pa1'ts of the step numbers changed from 1 to

2 to 3. That is, INP used numbers like 1 .1, 1 .2, etc., while ADD used numbers like 2.1,

2 .2, etc., and MOD used numbers like 3 .1, 3 .2, etc. The significance of these differences

is that MUMPS treats program steps that have a common integer base as a unit, All MUMPS

programs can be divided up into pa1'ts using this numbering scheme.

Numbers like 1 .2 1 .37 1 .90 etc.

are in part 1, while part 5 contains .numbers like 5 .01, 5 ,53, etc.

4-12

You may also have noticed that when we told you to DO the I NP, ADD, and MOD programs

you typed:

D 1

~
~

or A
~

or D 3

~
0:iY

When we run a program that has more than one part, the program wi 11 stop when it reaches

the end of the first part. MUMPS doesn't do the other parts unless we tel I it to DO them or

to GOTO them.

DO is one way you can tel I MUMPS to exeaute the steps in another program part. When

al I the steps are DOne, MUMPS returns to the command immediately fol lowing the DO. A DO

can also be used to DO a specific step.

>D 1.37

2.1 D 4,l ,3.5

>D 6.3,8,2.1

DO step 1.37

DO part 4, part 1, and step 3.5

DO step 6.3, part B, and step 2.1

A QUIT can prematurely terminate execution of the steps in the range of a DO, causing MUMPS

to return to the command immediately fol lowing the DO.

l.l D 2,5 T "DONE",!

2.l I A:2.5 Q

DO parts 2 and 5, then type "DONE"
and RETURN.

IF A=2.5 QUIT - don't DO the rest of
part 2 - go baak and do the rest of
step 1.1.

GOTO is also used when you want to execute steps in another part. Unlike DO, control

does not automatically return to the command following the GOTO.

Back to our census programs.

Let's be sophisticated and combine the ADD and MOD programs into one program. Since

each uses different part numbers, there' 11 be no conflicts.

4-13

So, LOAD the ADD program and WRITE it out.

>LADD W

8
Now load the MOD program.

>L MOD

>

Now let's merge the two programs. Just type in the steps contained in ADD. When you've

finished, FILE this new program as UPD.

Type:

F UPD

>

To do a census update, simply LOAD UPD and DO eithe.r part 2, if the data base is to

receive additions, or part 3, if modifications are desired.

There's one more thing that can be done to make the UPD program more automatic. Let's

create a part l in the program to decide which part (2 or 3) to DO. Mal<e sure that

UPD is LOADed, then type:

>l .10 T !,"CENSUS DATA UPDATE PROGRAM",!
>I .20 T "OPTIONSt A=ADD DATA M:MODIFY DATA", I Ir ~
>l .30 R "OPTION*", ANS I ANS="A'' D 2 ~ part2
>1.40 I ANS="M" D 3 ~ -
>I ,59 I ANS:"" T I ,"GOOD BYE" ,I Q ~
>l .60 G 1.2 ~~o part }J
>

4-14

Write out the entire program. Read it through -- make sure there aren't any errors.

>W
1.10 T l,"CEMSUS DATA UPDATE PROGRAM",I
1 .20 T .. OPTIONSt A :ADD DATA M:MODIFY DATA", 11
1.30 R "OPTIOl'f*",ANS I ANS:"A" D 2
1 .40 IF A NS:" ttr D 3
l .50 I ANS:"" T I ,"GOOD BYE" ,I Q
l .60 G l .2

2.10 S N:.01
2.~0 I NAMCN>="*" G2.4
2.30 S N:N+.01 G 2 .2
2.40 R ! ,"~MEI" ,NAMCN> I NAMCN>:"" S NAMCN>:"*" Q
2 .50 R I," AGE:" ,AGE< N> 'I ,"SEX:" ,SEX< N>, I," OCCUPATION:"' ace (N), I
2.60 S N:N+.01 G 2 .4

3.10 S N:.01 R 111,"UPDATE DATA FOR:",t,"NAME:",NAM
3 .~ 0 I NAM:"" Q

3 .22 I NAMC N> :NAM G 3 .4
3 .3 0 I NA MC N> :"*" T ! , " NOT FOUND", G 3 • l
3.32 S N:N+.01 G 3.22
3.40 T t,NAMCN>," ",AGECN>," ",SEXCN>," ",OCCCN>,!
3.50 R !,"CHANGES TO BE MADE",!,"NAME:",NAM I NAM:"", G 3.6
3.52 S NAMCN):NAM

~ :~ ~ ~G~~~~;~G~GE I AGE:"" G 3. 7

3.70 R !,"SEX:",SEX I SEX:"" G 3.8
3.72 S SEXCN>:SEX
3.80 R t,"OCCUPATION:",OCC I OCC:"" G 3.1
3 .~ S OCC C N> :OCC G 3 .1

>

Now FILE it; then run it. Experiment!

>F UPD D 1

CE~l.6 DATA UPDATE PROGRAM
OPTIO~: A:ADD DATA M:MODIFY DATA

OPTlO~A
NA ME:

}
~elect ~ption~

AGE:
SEX: You fill in the blanks.
OCC UPA TI 0 N:

Type a null string.

l'-J\ME:
OPTIONS: A:ADD DATA M:MODIFY DATA

OPTION*

4-15

It went back to the command fol lowing the DO (in part 1). Since there was another step

following that DO, MUMPS didn't stop the program -- it did the step, instead.

Remember what we told you about DO a few pages back?

If you're still confused, the diagram below may help. It shows the lines of control created

by the DO and QUIT commands in the three parts of the program.

Part l

l .10 T I ,"CENSUS DATA UPDATE" •••
l .20 T "OPTIONS: A:ADD • •.

l .30 R "OPTIONt" ,A NS I ANS:"A" Dl 2

-•t.40 I ANS:"~ Dl3
I 1 • .50 I A NS:"" T I'" EXIT" t f Q

I
I I I .60 G I .2
11 _______ -- --
1_ ___ ~r~2- _____

1

___ ___, 2 .10 • • • I
2 .40 • •. I ~AM:"" S NAMC N> :"*" Q

Part 3

.____ __ ., 3 .. 1 0 •••
3.20 I NAM:"" Q --- - --

To atop the program, you now must enter

a nuU string after the OPTION* message.

4-16

Thie QUIT stops
the program.

Thie QUIT stops
part 2.

Thie QUIT stops
part 3.

CHAPTER 5

GETTING IT TOGETHER

Let's evaluate our two census application programs. Here's what they do:

They

• create the data base

• update the data base by allowing addition of new data and
modification of existing data

That's fine. Both these programs satisfy specific functional requirements of our census

application. Now, let's look at them from another point of view. How well do they do

their jobs? WRITE them out. Flowchart them! Examine them closely. Compare them,

instruction for instruction. Are there similarities, redundancies, duplications? These can

waste valuable space in main memory and make the programs run longer.

So what? You say, "The computer will still do the work." Yes, but remember this will

ultimately cause the people who use your programs to waste their time waiting for your slow

programs to do their jobs. When this happens, your computer is less valuable to its

application.

Do you see ways to improve the programs? Can you make them run faster? Can you eliminate

wasted space? We can I There are some very interesting similarities between the INP

program and the ADD suhroutine of the UPD program.

• They both request the same kind of data.

• They both put the data into the same data base.

• They can even be stopped the same way.

The only significant difference between them is that INP creates the data base when none

exists, while ADD simply enlarges an existing data base. In truth, they both add to the

data base. It's simply a matter of where they begin. INP assumes the data base begins

5-1

at subscript .01 (i.e., NAM(0.01), AG E(0.01), etc.). ADD assumes the data base begins

at the dummy record (i.e., the asterisk (*), remember?). We think that the function

performed by INP is just a special case of the function performed by ADD. If we always knew

where the end of our data base was, INP could be eliminated. If we knew how large the

data base was, in terms of its highest subscript, the dummy record containing the asterisk

could also be eliminated. This would speed up the operation of ADD, since it wouldn't

have to search each entry in the data base to find the * at the end whenever someone wanted

to add a new data entry.

What we need is a program that determines (a) whether a data base exists at all, and

(b) if it does exist, where it ends. Why not write a program that determines the highest

subscript in the data base and stores this value in some variable? The fact that no data

base exists could be signified by storing some nonsubscript value like -0.01 in the variable.

Then the UPD program and any others we might want to write ,could simply examine this

variable rather than scan the whole data base.

Could you write this data base initialization progriom using your knowledge of MUMPS?

Think about it! What are the steps to be done? Let's flowchart the program first - like

this:

We'll use a variiable aalled LS to

storie the value of the last subsariipt.

Begin

Count up all
entries and put
total in LS

Yes
QUIT

DATA BASE IS
ALREADY INITIALIZED

Put -,01 in
LS and QUIT

NO DATA BASE- START
AT BEGINNING

QUIT DATA BASE INITIALIZED

'\· 1979

5-2

Here's how we think the program should work {you follow on the flowchart).

First, we'll say that LS normally contains the value of the last (highest) subscript in the

data base. If there is no data base, LS will contain a -.01. Now, in either case, as

long as LS exists, our programs wil I know the status of the data base and can act accord

ingly.

Here's how the program operates:

• If LS is defined, we'll assume it contains the correct data -- so QUIT.

• Otherwise, we' 11 check to see if there is any data base. If there
isn't, put -.01 in LS and QUIT.

• Otherwise, count up all entries in the data base, put the total
(highest subscript) in LS, then QUIT.

Can you figure out what commands to use to write the program? Unless you know more

than we've told you about MUMPS, you probably can't.

We're going to have to tell you more about MUMPS. But first, are there any commands you

do know that could be used here? If you said IF --you're right. We'll probably need

IF in several places to make those decisions shown in the ;flowchart. Let's take the first

one. 11 Is LS there? 11

Remember what the general form of IF is?

IF TRUE condition do next command;

otherwise, do the next step.

The TRUE condition in this case is: LS is there.

MUMPS has a special function that can tell us about the existence of LS, or any other

variable, for that matter.

5-3

Type this:

>S LS:fiJ Create LS.

>T
l
>

If LS is DEFINEd, type a 1; if not,
type a P.

Let's analyze what happened:

First, we defined (or created) LS by setting it to a value -- 0 in this case.

Then we told MUMPS to TYPE the result of the expression $D(LS).

This expression:

$DCLS>

will produce a result between l and 7 if LS is defin~d,

or

it will produce a 0 result if LS is not defined. Right now it's not important for you to
know what the signifiaanae of the numbers 1 to 7 is. The important aonaept is that
a TRUE resuU is nonzero. In this case, MUMPS typed a l, which means that LS is

defined.

A funation is a set of procedures buiU into MUMPS to perform a

specific task. Uni ike commands, functions operate on expressions and

expression elements (variables), and functions can themselves be elements

of other expressions.

5-4

What if LS is not defined? Let's eliminate LS. Delete it! Destroy it! KILL it!

The KILL command is used to delete MUMPS' variables.

General form: K v1, v2 , v3, etc.

v = name of variable to be KI Lled

WARNING

IF YOU DON'T SPECIFY ANY VARIABLE NAME(S),

~ YOUR VARIABLES WILL BE KILLED.

Now, KILL LS, then use $D to see if it was Killed.

Type:

>K LS
>T $DC1..S>
0
>

C It's not
<

Another point:

MUMPS, by convention, always interprets a nonzero number as

a logically TRUE result and a zero number as a logically FALSE

result.

Try using $Don the data base. See what you can find out about it.

>T $DCAGEC .01 »
>T $DCSEXC.03»

Don't worry about the actual value returned by $D when it's nonzero -- we'll tell you more

about this later.

5-5

Back to the problem at hand.

Yes
OUIT

T
11-1981

Now we can determine the existence of LS. Here's the first step of our data base

initialization program.

I $DCL.S> Q If LS is defined (i.e., TRUE), QUIT -
otherwise, continue.

To say it another way:

• We know that when LS is defined, $D(LS) returns a nonzero number.

• We also know that MUMPS interprets any nonzero number as being

a TRUE value.

So, when $D(LS) returns a l (for example), MUMPS reads the above command I ine as if it

was

I I Q- If 1, QUIT,

and, of course, MUMPS QUITs because l is a TRUE value.

If LS is not defined, MUMPS reads the line as

I 0 Q IF I, QUIT.

and the QUIT is not done since% is a FALSE value,

5-6

HIGHER AND HIGHER

Now, before we return to the initialization program, there's one other function you should know

about. The $HIGH function. $HIGH tel Is MUMPS to search an array and return the next

higher subscript than the one specified. Try this:

Let's create an array called XX for
you to practice on.

>S XXC0) :1 ,XXC2 .9) :0 .5,XXC13l):100,xxc132) =-5

>T $H CXXUl))
2 .90
>T $HCXXC2 .9))
l :s l
>T $HCXXCl:Sl))
132
>T $H CXXCl:S2))

-0 .01
>

To find out if subscript% exists, type:

>T $HCXXC-.0l))
0
>

this can be any
negative nwnber

Begin.
Here's the next higher subscript,

and the next,

and the next.
That's all - there aren't any higher
subscripts.

The $HIGH function is used to find the next numerically greater (higher)

element in an array. $H returns the actual value of the next higher

subscript. A negative subscript value is used to determine the existence

of subscript%. If no higher subscript exists, $H returns a -.%1 •

Your turn. Try using $Hon our census data base. Try finding the lowest and highest

subscripts in the NAM array. Then, see if you can write a program to find and store the

highest subscript in the AGE array.

HINT - you'll need to use two variables -- one to use

with $H and one

is found.

5-7

Here's the way we did it.

20 .20 S X:- .01
20.30 S LS:X,X:$HCAGECX)) I X<0 Q
20.40 G 20.3

Type it in! But first don't forget to FI LE your version, if you write one. Then ERASE so that

the steps of your program don't get mixed up with the steps in ours. Remember, even though

you FILEd your program, a copy of it still remains in your program area.

Now DO our program. Type:

> When MUMPS types its

rogrOJT1 is finished.

Did it run ok? Any errors? Let's look at the variable LS to see if the program found

the last subscript.

Type:

>
Is this the 'last
subscript?

Run your version now. But first, FILE ours, using the name INI (for initialize). Now

ERASE your program area, LOAD your program, and DO it. When it's done, check the

answer you got for the highest subscript. Does it match our answer? If it doesn't, check

the programs for errors -- particularly typing errors. You shouldn't need any help from us.

Let's analyze how INI works.

Step 20.2 initializes temporary variable X to -.01. This value is

used so that $H(AGE()) will start at subscript 0 (if it exists).

5-8

Step 20.3

a. stores the contents of X in LS. This has to be done because X will
eventually be set to -0 .01 when $H gets to the end of the array.

b. stores the current subscript values produced by $H in X.

c. checks to see if X is a -0.01. When it is -0.01 we've reached the
end of the array. Notice also that this could mean that there is
no subscript greater than zero. In other words, there's no array.

Now back to the original problem: how to write the data base initialization routine. Look back

at our flowchart. We think you have enough information to do it now. So begin -- write the

program yourself. For now, have it examine the test array XX so there' 11 be no risk of harming

our census data. When you finish, FILE it, then DO it to see if it works OK. Try these tests.

1. First, KILL both XX and LS.

Type:

>K XX ,LS
>

Then run the program. Examine the

contents of variable LS. It should

contain a - .01 ,

KILL can be used to delete an
entire array -- but be careful!
If you simply type K with no
names specified, ALL variables
are wiped out -- including your
data base.

2. Next, define a series of entries for array XX. For example:

>S XX(I) =I ,XX< 4 .3) =4 .3 ,XXC 55) =55

Then run your program and examine LS again. It should contain the highest

subscript of XX that you created.

Our turn.

Here's our version of the program.

20 .10 I $D<LS> Q
20.20 s x:-.01
20 .:S0 S LS:X ,X:$HCXXCX> > I X<0 Q
20.40 G 20.3

5-9

How does your program compare? Is it longer? -- shorter? Actually, all we did was add

step 20, 1 to the previous example that showed you about $H. Step 20.1 is taken from the

example demonstrating $D.

Type the program in. DO it. Test it the same way you tested your program, Does it work?

Good. Change XX to AGE and FILE it, using the name INI (for INitialize, of course), Now

our census programs wi 11 always know where the end of the data base is without having to

search for it each time.

Here's how INI works:

Step 20.1 checks to see if LS is defined, If it is defined, QUIT. We don't

need to go further. If it is not defined, we'll go on.

Step 20.2 initializes X. Since this step isn't executed unless LS is not

defined, we' II define it by assigning X an initial value of - .01 •

As a convention, we' II use - .01 to tel I our census programs

that there is no data in the array, We' II assume further that

since there is no data in the AGE array, none exists in the

other arrays (SEX, NAM, OCC).

Step 20.3 defines LS by SETting it to the value of X. Next, Xis given

the value of the next higher subscript. If Xis less than 0 ($H

returned -.01 because there were no higher subscripts), we

can QUIT -- LS now contains the value of the highest subscript,

Otherwise, we' II go on counting.

Step 20.4 completes the loop. Since X was not less than zero (X contains

a subscript) GOTO 20.3 to assign the new value to LS and check

for a higher subscript,

Now, our next task is to revise the existing census programs so that they use the data con

tained in variable LS.

5-10

Let's start with UPD. First FILE INI, then ERASE, LOAD UPD, and WRITE it out.

NOTICE

When a command has no arguments, two
spaces must be used to separate it from
the next command on the line. Remember,
step and part numbers can be arguments to
the ERASE command.

Examine it! Study it! Remember how UPD works? Here are the changes to be made:

• Eliminate commands which deal with the old * dummy record.

• Use LS to keep track of the end of the data base.

• Update LS when additions are made ..

You should be able to make al I the changes yourself. Go ahead; flowchart it if you need

to. When you've finished, give it a new name and FILE it.

Here's the way we did it. Type it in!

Notice steps 0.10, 2.01, 3.01, and 20.01.

We've added comment lines to make the

program more readable.

5-11

>E
>0.10 ;PART ONE DECIDES WHAT THE PROGRAM IS GOING TO DO

>1 .10 T ! ,"CENSUS DATA UPDATE PROGRAM",!
>I .20 T I," OPTIONS: A:ADD DATA M:MODIF'Y DATA",! I
>l .21 D 2 0
>I .30 R "OPTION*" ,ANS I ANS:"A" D 2
>1.40 IF' ANS:"M" D 3
>1.50 I ANS:"" T !,"GOOD BYE",! Q
>I .60 G 1 .2

>2 .01 ;PART TWO IS F'OR ADDING DATA
>2 .10 R ! ,"NAME:", NAM I NAM:"" Q
>2 .20 S l..S:LS+.01,NAM<LS>:NAM
>2.30 R r,"AGE:",AGE<LS>,r,"SEX:",SEX<LS>,t,"OCCUPATION:",OCCCLS>,r
>2 .40 G 2 .1

>3 .01 ;PART THREE IS F'OR MODIF'YING DATA
>3 .0s I 1.$<0 T r .. NO DATA BASE" ,r Q
>3.10 S N:LS R dr,"UPDATE DATA F'OR:",1,"NAME:",NAM
>3 .20 I NAM:"" Q
>3 .22 I NA MC N>: NAM G 3 .4
>3 .30 s N:N-.01 I N<0 T r ,"NOT F'OUND" 'r G 3 .l
>3 .35 G 3 .22
>3 .40 T ! , NA MC N> , " " ,AGE (N> , " " ,SEX C N> , " " , OCC C N) .t !
>3.50 R !,"CHANGES TO BE MADE",!,"NAME:",NAM I NAM:" G 3.6
>3 .52 S NAMOH:NAM
>3 .60 R I ,"AGE:" ,AGE I AGE:"" G 3. 7
>3 .62 S AGE< N> :AGE
>3 .70 R I ,"SEX:" ,SEX I SEX:"" G 3 .8
>3 • 72 S SEX< N> :S EX
>3.80 R l,"OCCUPATION:",OCC I OCC:"" G 3.1
>.3 .82 S OCC C N> :OCC G .3 .1

>2 0 • II.JI ; PAR T TWE NT.Y -~I .:.:.N I:.T:..:l:.;,;A~L.:.I:.Z E;S:....;T~H~E~DA;;T::A:::::::B::A::S ::E ===.;::
>20 .10 I $DCLS> Q-
'2 0 .2 0 s x =-. 01
>2 0 • .3 0 S LS :X ,X :$H CAGE< X» I X <0 Q ----======-.:.....__.....--
>20 .40 G 20 .3
>

A semicolon (;) is used to begin a
comment I ine. MUMPS ignores al I
characters that fol low the semicolon.
This lets you insert comments anywhere
in a program to describe its various
parts.

5-12

A QUIT in the range of steps specified by a DO terminates execution

of any steps that remain. Control passes to the command immediately

following the DO. QUIT outside the range of a DO stops the program.

Control is returned to the terminal {MUMPS types a'>'}.

OK! Let's FILE the program. Use the name UDl. Then run it.

>F UDI D 1

CENSLS DATA UPDATE PROGRAM Here we go·.

OPTI ONSt A :A DD DATA

OPTION*

M:MODIF'Y DATA

Select your option.

Add some data using the 'A' option, then examine it
using the 'M' option. Change it. Remember what
happens when you use a null string with the Modify
option?

When you're satisfied with the way the program works, stop it. Remember how? It's built

right into the program. Remember what a nul I string is?

Now run your version of the program. Test it out. Does it do the job? If not, fix it;

then FILE it. If it works OK, let's go on.

Our remaining task is to change the INP program, Remember what its function was? Right!

It creates a new data base. But wait! We can do this job with the ADD option of our

update program, UDl. Since we added the initialization routine that creates the LS

variable, our program always knows where the end of the data base is -- even if the end

and the beginning are the same place. Look back at step 2 .2 of UDl • If the data base

didn't exist, the initialization program would set LS. to -.01. Our ADD program would

simply add .01 to LS, which results in a zero value. This then becomes the value of the

first subscript in the new data base.

So the INP program is obsolete! Delete it! It's no longer useful.

Type:

>£ F' I NP
Away it goes.

>

5-13

TIME FOR A CHAN GE

Remember when you needed a permanent place to store your programs? We told you about

the FILE and LOAD commands so you could store them in the disk memory. By now, we're

sure you've discovered another need for permanent storage -- permanent data sto~age, of

course. When you sign-off at your terminal by typing a HALT, the entire contents of your

terminal's memory partition are wiped out. This includes not only any program that might

have been there, but also all those local variables that contained our valuable census data.

Local variables should be used only for temporary storage when our programs are running.

Disk memory is the place to permanent I y store both programs and data.

The variables we've told you about up till now are classified as "local VaX"idbles. This

means they are local to your partition -- they reside there. There's another kind of variable

called a global VaX'idble , or simply global • These variables reside permanently on

the disk memory. They can be used in MUMPS programs just like local variables. They also

possess other qualities that we'll tell you about later on. The important thing for now is to know

that globals can be used to permanently store our data base and any other data that we want to

preserve.

Global variables are used just like any other variables. The· rules are the same.

• Globals can be used in expressions.

• A global can contain up to 132 characters or a number as big ·as

MUMPS allows.

• Globals can be TYPEd, SET, and Killed -- BUT1THEY CANNOT

BE USED WITH READ.

• Global variables can be subscripted.

• Global names are just like any other variable names -- they

follow the same rules.

THE DIFFERENCE IS THAT GLOBAL VARIABLE NAMES ARE ALWAYS

PRECEDED BY AN UP-ARROW (t).

5-14

Here ore some global names:

tNAM

tA

tX32

Try this; type:

>S tA :"THE QUICK BROWN FOX JUMPED ••• "

>T tA
THE QUICK BROWN FOX JUMPED •••
>

Log-out! Type:

>H

EXIT

Now log-in again. See if tA is still there.

MUMPS -1 l V02 fl 6
~I:
>T tA
THE QUICK BROWN FOX JUMPED •••
>

Get rid of A. Type:

>K tA

~~D~~>0 @ --============~= ~~~;?)
OK! Now it's time to get our census data storage on a better footing. We' 11 store our

data base in global variable a;prays. Al I you hove to do is odd on up-arrow (t)

5-15

in front of every variable name that is to contain permanent data. In other words, change al I

occurrences of: to:

LS tLS

NAM(N) tNAM(N)

AGE(N) tAGE(N)

SEX(N) t SEX (N)

OCC(N) tOCC(N)

in the UDl program,

The other variables, like N, TMP, and X, should remain as local variables since they hold

transient or intermediate information.

"Not again!", you say. No, we're not going to make you retype any more programs. You

can use the MODIFY command to edit the steps of the MUMPS program that's in your

partition, MODIFY lets you alter any number of characters in d program step.

Here's the general form of MODIFY:

where: step nwriber is the number of the step to be changed.

(colon) delimits the step number from the remaining arguments.

x deHmits the string to be replaeed from the r>eplaeement

string. x must be a character not in either string. Often
symbols I ike * ? or / are used.

MODIFY tells MUMPS to search the specified step for the first occurrence of the string

to be replaeed and substitute the replaeement string. Once this is done, MUMPS

types out the corrected step. If you don't specify a string to be replaeed,

5-16

MUMPS puts the replacement string at the beginning of the step (i.e., right after the

step number), If you don't specify a replacement string, the first occurrence of the

string to be replaced will be deleted.

Here's UDl again -- we've circled all the variables to be changed. Notice that we've also

added a new step (2 .35) to the program that uses local variables AGE, SEX, and OCC.

This is necessary, since, if you'll remember, we can't READ directly into globals. So we've

used some local variables instead, then put the data from there into the globals,

0.10 ;PART ONE DECIDES WHAT THE PROGRAM IS GOING TO DO

1 .10 T I ,"CENSUS DATA UPDATE PROGRAM" ,I
I .20 T I," OPTIONSt A:ADD DATA M:MODIFY DATA", 11
1.21 D20
1.30 R "OPTIONitc",ANS I ANS:"A" D2
I .40 I F A NS:" twr D 3
1.50 I ANS:"" T !,"GOOD BYE",! Q
I .60 G 1 .2

3 .01 f•IPTHREE IS F'OR MODIFYING DATA
3.05 0 T l,"NO DATA BASE",! Q
3.10 S R 111,"UPDATE DATA FOR:",!,"NAMEt",NAM
3 .20 I :"" Q
3 .22 I NAM N>: NAM G 3 .4
3.30 S : -.01 I N<0 T !,"NOT FOUND",! G 3.1

3.40 T !, A N>," "~N>," "'5£\CN>," "~N>,! 3.35 G3~ ~

3 .50 R ~ A NG ES TO B"f'""'MADE", I , ~Et", NAM .I NAM:"" G 3. 6
3 .52 S ~N> :NAM
3 .60 R I "AGE:" ,AGE I AGE:"" G 3. 7
3 .E2 S~N> :AGE
3. 70 R ~SEX:" ,s EX I SEX:"" G 3 .8
3 • 72 S ~ N> :S EX
3 .80 R ~CUPA TIONt" ,OCC I OCC:"" G 3 .I
3 .82 S ~ N> :OCC G 3 • I

20.1 I $0@ Q

20 .20 s4f.- .01 ~
20.30 S X,X:$H~CX>> I X<0 Q
20.40 G 2 .3

5-17

The first step to change is 2 .2. LS appears three times. It has to be changed to t LS.

Since slash(/) is not a character in the line, we'll use it as the delimiter.

Type:

>M 2 .2: /LS/ tLS

>W 2 .2 WRITE out the step.
2 .2 0 S fLS: LS+ • 01 , NAM< LS> : NAM

>

This time we want to change the second occurrence of LS. If we use the same MODIFY

command as before, MUMPS will simply add a second t to the first LS -- like this:

2 .2 S f fLS •••

That's not what we want. So think! What makes the second LS unique? The equal sign

to its left, naturally. Now change it.

>M 2 .2: /:LS/: fLS

>W 2 .2
2.?.0 S tLS:tLS+.01,NAM<LS>:NAM

>

The last LS? Same story. What makes it unique? The left parenthesis, of course.

>!II 2 .2 s I< LS I C tLS

>W 2 .2
2 .20 S fLS: fLS+ .01, NAMC flS> :NAM

>

5-18

We must also change NAM --but just the first occurrence of it (i.e., NAM(LS). We want

the subscripted variable NAM(+LS) to be a global variable. The simple variable NAM

must remain in a local variable. This is also true of AGE, SEX, and OCC.

You're on your own. You change all the other variables we have circled. If you make a

mistake, use MODIFY to correct it. When you're finished, FILE the program as UD2. That

way you' 11 have UDl as a backup copy of the program.

The only task that remains is to transfer the census data now in the local variable arrays

to global arrays. You could write a very short program to do that, particularly if our

LS variable (Last Subscript, remember?) is defined. See if it's there.

Type:

>T LS

>

If you get an error message, LS isn't there. LOAD UDl and DO it so the initialization

routine can create LS and calculate the correct value for it.

OK. Now you can write the data transfer program, but don't forget to ERASE first. See

how concisely you can write the program.

Did you write it like this?

>I .I S I :0
>I .2 S tNAMCI> :NA MCI>, tAGECI >:AGE CI>, tSEXCI> :SEXCI >, tOCC CI> :OCC CI>
>I .3 I I :LS S tLS:LS Q
>I .4 S I :I+ .01 G I .2
>

Good. This will work OK, but we found a shorter way. Here it is.

This is the
FOR command.

1.10 F' l:0t .011 LS D 2
2 .10 S tNAMCI> :NA MCI>, tAGE<I >:AGE CI>, tSEXCI> :S EX<I >, tOCCC I> :OCCC I>
2 .20 S tLS:LS

5-19

See how many lines we eliminated. Of course, we had to cheat a little -- we used a new

command back at Step l .1 •

l .10 F I :0: .rll l : IS D 2

It says:

"FOR I equal to an initial value of zero and subsequently

incremented by .01 until a Zimit value, contained in

LS, is reached, DO all the steps in part 2."

In other words, if LS contained the value .10, then FOR would cause I to have eleven

different values -- from 0 through .1 O. FOR each value of I, part 2 would be DOne.

The FOR command makes it easy to create program loops. Up ti 11 now, you've been

using SET, IF, DO and GOTO to iterate (i.e., loop). Look back at the first form

of the transfer program.

• Step l. l SETS I to an initial value.

• Step 1.4 checks to see IF I has reached the Zimit value (LS).

• Step 1 • 5 increases I by an amount equa I to the increment value.

FOR does all this in one command. This means your program:

• contains fewer steps and commands

• takes less space in memory and therefore runs faster

To be more precise, the general form of FOR is:

B y sign

FOR Zocal varicible=initial value:~ncrement:limit value value

one
space

corrmand(s)

--~~~~~ ,,.-~~~~~~~,~~-'V'--~~-1

Initial value, increment
value, and limit value
can be any number, variable
or expression that yields a
legal MUMPS number
(i.e., ±21474836.47):

5-20

This is the command
or commands that are
to be done as part
of the loop.

Try this:

Type:

>F I:l:l:ll/JrtJ T "TEST NUl'BER ",I,t
TE:S T NU!IS ER I
TE:S T NU!'IB ER 2
TEST NU!'IB ER 3
TEST NUMB ER 4
TE:ST NUM • • •
•
•
•
TF.:ST NUMBER 100
>

Let's transfer the census data to disk memory. Enter and FI LE the program you want to use.

Ours or yours -- or both if you wish. Then run it.

Sti 11 your turn.

You've got census data stored on the disk now, and our update program, UD2, can maintain

the data base. Run UD2 for a while. Add some new data of your own -- change some

existing data. Exercise the program -- test it out. Log-out!

• Log-in again.

• Start up UD2 again.

• Modify some data. It's all there. Right?

A PARTING THOUGHT

Here's something for you to think about while you catch your breath before starting the

next chapter,

5-21

Why are we gathering all this data? Of what use is it? To get census information.

Information that supplies answers to questions like:

• What's the average age?

• What's the female to male ratio?

• How many people between ages 30 and 32 are women?

Why don't you try to write a program that will tell us how many people in our data base

are 30 years old?

5-22

CHAPTER 6

FORM FOLLOWS FUNCTION

Did you get the information you wanted? How many 30-year-old people were there in the

data base?

Did your retrieval, program work? The program to compute the number of 30-yeor-olds,

that is.

Here's the way we wrote it:

1.10 R I ,"AGEt" ,X,I I X:"" T I ,"GOOD BYE" ,I Q
1 .20 I X?D,X>0,X<l00 G 2
1.30 T ! ," OOT VALID NUl"BER",f G 1.1

2.10 D 3 T l,"'DfERE ARE ",TOT," PEOPLE AGE ",X,I GI.I

3.10 S TOT:0,I:-.01
3.20 S I:$HCtAGECI» I I:>0,tAGECI>:X S TOT:TOT+l
3 .3 0 I I : >0 G 3 .2

Though your version of this program may not look like ours, it should do essentiol ly the same

thing. We wrote our version so that it would work with any age between l and 99.

Here's a brief analysis. The program is divided into three functional ports.

• Port l inputs and verifies the age for which the search is to be done.

Any age other than a number between l and 99 or a nul I string is

ignored and the message NOT VALID is typed.

• Port 2 obtains and outputs the results.

• Port 3 searches and counts each entry of the specified age in the tAGE

array. When I S..0, control returns to 2.1.

Look at step I .2 closely. Do you see something you don't understand?

X?D illustrates the use of a special feature of MUMPS called pattern verification. This

lets your program examine strings for specific character patterns.

6-1

I

/
IF (it is

r
x

?

J
contains NUMERIC perf oPm the next corrmand

TRUE that): characters

Pattern verification is used in logical expressions, that is, expressions that produce a TRUE

or FALSE result.

- Pattern Verification -

The string variable preceding the ? is examined for the occurrence of the

character patterns specified by Pattern Specification Code (psc) to the

right of the ? • If a matching condition exists, the result is TRUE;

otherwise the result is FALSE. Codes can be grouped in any combination.

Each code con be preceded by a number (O - 9) to specify the number of

occurrences of a particular character type. If zero is specified, the

associated character type is ignored. If no number is specified, an

indefinite number of characters of the specified type is accepted.

Here is a list of the basic Pattern Specification Codes:

A Verify capital letters.

D Verify digits.

P Verify punctuation (i.e., anything other than letters

or numbers).

W Verify any character.

Back to our program.

You should be able to understand how the program works now, so type it in and DO it.

REMEMBER TO ERASE FIRST.

6-2

>E
>1 • I 8 R I , " AG Et " , X , I I X : • • • •
>1 .28 I X?D ,X •• ••
•
•
•
•
>D

AGEt31H

NOT VA LI 0 NUIWB ER

AG Et AB

NOT VALID NUIWB ER

AGEt31

THERE ARE 8 PEOPLE AGE 38

AGE:

Try age 30.

Your turn .

Had enough? OK, stop the program! Type a null string when it asks for a new age.

AGE:

GOOD BYE

>

Now FILE the program -- we'll be using it later. Call it Al.

>F' A 1
>

WHAT IF •••

How well did our program work? Did you have to wait long for the results? Chances are

that you didn't wait too long for the answer. Your data base is probably small. Most

likely it contains less than 100 entries, Not very many. How big will the data base

ultimately be? How many people wil I we have census information on?

6-3

One thousand?

Ten thousand?

One hundred thousand?

Millions?

Pick a smal I town, say a town between one thousand and ten thousand people. Our data

base cou Id be a lot bigger than it is now. What if our data base had 100 times more entries

than it currently has? How long would it take for our Al program to do its work?

Let's run some tests to find out. First, we'll measure the time it takes to run Al. To

time the event, we' 11 need a timer. MUMPS has a timer cal led the $T System Variable.

This is a special variable that's built into MUMPS itself. It contains a number between

0 and 86, 399. This number is the total number of seconds elapsed since midnight.

$T is incremented automatically by MUMPS each second.

$T can be examined by using TYPE or by SETting another variable equal to $T. Since $T is

a System Variable, MUMPS can't let you or your program change (SET) it.

Try this:

>S $T:2t/J0

SYNTX»0 @
>T $T
47552 ,.

Do it again.

Syntaz error.
aan't set $T.

>T ST
47574 ,. ----~l:!oo~ Here's the~

~ :urrent vaZ.ue. ~

6-4

Now to our test. Since part 3 of the Al program is the part that's retrieving the global data,

we need only measure the time..!.!_ takes to run. What we must do is write a program that:

• Remembers the value of $T when part 3 begins running •

• Remembers the value of $T when part 3 is through •

• Calculates the time required to do part 3 •

Let's begin.

Make sure Al is there, in your partition. Try WRITing it out! If it's not there, LOAD it.

>L A I
>

Here's the new part that does the timing. Type it right in!

>99.1115 K TOT,B,T,LPT,N
>99 .10 R I," NUIWSER OF ITERATIONS:", N,I
>99 .2111 S T:$T F B:lt l t N D 99 .6
>99 .3111 S LPT:ST•T
>99.40 S T:ST F B:ltltN D 3
>99 .50 T $T·T-LPT/N," SECONDS'", I
>99 .60 Q

>

Save start time.

DO part 3.
Save finish time and type
out eLapsed time.

This program is somewhat more complex than that we outlined earlier. Since $Tis only

accurate to .5 seconds, we must time part 3 a number of times to get a reasonably accurate

answer. This answer represents the average time required to do part 3. We must also·

eliminate time consumed in activities not related to part 3. Here's how it works:

Step 99.05 Kills all local· variables that are created (SET) during

the operation of part 3 or part 99.

Step 99.l Requests the number of iterations of part 3 (variable N)

Steps 99 .2 and 99 .3 Measure the time required to do the FOR and

DO commands for the specified number of iterations

(variable LPT).

6-5

Step 99 .4 DOes part 3 for the specified number of iterations.

Step 99.5 Calculates the time required to do part 3 and types out the

value.

Now, since we want to time only part 3, we won't need to run the entire program.-- just

part 3 and the new part 99.

We're almost ready to start. Just one more thing. Since we're not running part l, the

variable X won't get defined and we'll get an UNDEF error when part 3 runs. So SET X

to some age, say 30.

>

Ready to begin. Let's start timing. Type:

>D 99

NUIWB ER OF IT ERA TI 0NS:10
SECONDS

>

This is how long it took to do part 3
using the existing data base. ,_.. __

Let's FILE this version of Al with the new part 99 built in. We'll need it later.

>F' A I
>

It's reasonable to expect that if our data base increases in size, the time required to

search it will also increase. As an exercise, you may wish to use a larger data base to see

how much longer our access time will be. Rather than typing in new data, simply write

a program to replicate the existing age array (since that's the only global part 3 is

concerned with). All it takes is a FOR loop. Also, make sure tLS is updated by

your program when it's done. If you try to replicate our current data base (30 entries)

more than three or four times, you' 11 have a long wait during both the replication and the

timing.

6-6

Observe how part 3 of our program works. It must examine each entry in the tAGE array.

When there are more entries it takes longer to search. We want our census data to be

retrieved as quickly as possible -- that's one of the reasons we're using a computer.

Notice how the four arrays in the data base are arranged.

SUBSCRIPT •AGE •SEX tNAM tocc

.oo 46 M HENRY ADAMS CARPENTER

.01 15 M BILL SMITH STUDENT

.02 30 F ALTHEA BROWN CHEMIST

.03 22 M PAUL JOHNSON PROGRAMMER

.04 86 F JUDY ZWINK GRANDMOTHER

.-.. -[.nn [I
11-2003

Is there any particular order to it? Yes! The data exists in four parallel arrays --

in the order in which it was first input. It was not arranged according to any particular

characteristics of the data itself. This organization doesn't seem to be particularly useful

in obtaining census data based on age. Our program must examine each tAGE entry

to find the right ones. If the age data were ordered in some more significant way -- say

sequentially by age -- our program could work faster. It could simply go to the place

where, for example, the age 30 entries were stored, and count them. The result could be

obtained in much less time.

6-7

Effectively, our program must select all the entries of the same age in order to count fhem

up. Each time we run the program for the same age group, more time is wasted because

the group is sorted over again. How can we avoid thfs time-wasting duplication of

effo~t? One way would be to simply sort the census data into age groups when it is first

input to the data base. We would put al I age l's together, age 2's together, ••• , age 99's

together. How con the data base be arranged to accomplish this? How many ways can you

think of?

We can think of at least three ways.

ONE WAY

Rearrange tAGE so that oil ages ore grouped in a predetermined range

of subscripts. Like this:

tAGE

0100.00~

0199.99~

1000.00 1-------1

AGE !O's

1099.99 1---------1

1500.00 1-------t

AGE 15's

1599.99

11-2004

Each age group would have a predefined area determined by its subscripts. All age l's

would be assigned subscripts in the range 100.00 to 199.99; age 15's: 1500.00 through

1599.99; age 99's: 9900.00 through 9999.99. Since we can tell age from the two

most significant (leftmost) digits of any subscript in +AGE, we con easily count up oil

entries in a particular group. The remaining digits could be the subscript values used

in the associated +occ, tNAM, and tSEX arrays.

6-8

Thus, an t AGE subscript would be interpreted as:

3000.21 - subscript of associated
tNAM, tOCC, and tSEX data.

Further, age no longer needs to be stored in the variable itself, since the subscript itself is

the age value. Now, other data could be stored there -- like SEX, for example. We could

then eliminate the t SEX array and save disk memory space.

A subscript such as 2701 .20 would locate data in this kind of data base as fol lows:

+AGE +NAM

=

/1- J F== ----=-c
2700.21 lF =
-c:::y:::' ~--· _·_· -···

!== . .::... ·- ··~
F=c-------~
I==: . ::::::I I=- .

= --'== -.......j

~~----==

--==----========

A program to search an array like this might be:

+ occ

I==---
1::::::

==:J

=--=
--

15 .10 S P=Z* 1'!10, TOT=0 Z contains the first subscript in the age group to
be searched, To search for age lO's, P = 1000.00;
age 35 1s, P=3500.00, eta.

15.20 S P:$HCtAGECP-.01)) I P<0 Q
15.25 I P>CZ*l00+99.99) Q
15.30 S TOT:TOT+l G 15.2

6-9

11-2013

- RemembeI' -

$HIGH I'eturns a -.Ol when theI'e aI'e no higheI'

subsaripts. If P WeI'e eveI' less than zeI'o, that

would mean that there were !:!£. entI'ies with age

oveI' Z, and maybe none with age Z.

There are, however, some disadvantages to this particular data arrangement.

o If the census data is to increase with population growth, all available

subscripts will eventually be used up. When that happens, the data

base will have to be reorganized to incorporate longer subscripts.

o Eventually the legal subscript limits could be exceeded.

o It's possible to have subscripts in tAGE like: 2700:20, 1300.20, 4500.20,

etc. This replication of the lower four digits would doubtless be

disastrous for you. However, it's unlikely that this would happen in a

normal situation, since these lower four digits are derived directly

from the subscripts in t NAM and t OCC.

ANOTHER WAY

Create a separate global array for each age group.

AGE l's

t Al

. 1------~

. 1------~
.32 I------~
.03 I------~

• I------~

.07

.55

AGE lO's

tAlO

- -

•

,91

•

AGE 30's

tA30

L..-.
~

6-10

1.23

,09

AGE99's

tA99

-~
11-2005

Entries in each array could contain the SEX data as before, and the subscripts would still

key into t NAM and tOCC arrays.

+A20 +NAM + occ

M

,.,
I/ 00.161 KEN GERBER J v

-:c=

..

+ A30
F -- ,.,

I/ oo.29fEvELYN JORDAN l 00.29 PHOTO .. •

.. . F
=1

..

i==
···=

I---· =1
~ ~

This approach can be a very useful way of storing census data to facilitate data searches

based on age. To do this, however, requires some relatively sophisticated programming

techniques to keep track of all the names of the age globals. We're not ready to tell you

about them yet!

But there is a way that we are ready to tel I you about.

6-11

11-2012

THE WAY

We' 11 use some of the ideas shown in the last example, but rather than

having separate globals for each age group like tA27 and tA30, (below),

AGE 27°S

h27

SEX DATA
CODES

AGE 30'S

t A30

we' 11 combine them into one big global, like this:

We added a new level
here to join the
separate AGE
globals into one
large global.

tAGl

6-12

.26

11-1988

This can be done very simply. All you need to know is that global var>iables can have

more than one subscript. In fact 1 though it's not generally useful 1 you may use as many

subscripts as can fit on one line, Subscripts are used to describe a hierarchy of logical

levels. The logical significance of each level of a tree is established by you -- the

programmer.

In our diagram we used two levels of subscripting: one level for the age group and one

level for all entries within that age group. We simply added a new, higher level to the

separate age groups, which by themselves had only one level. At the first level we' 11

have 99 nodes, one for each age group.

Thus:

tAGICI>

tAGIC30)

tAGl (99)

11Node 11 is simply another term for a global variable

that more gra:phiaally portrays the variable's

diagrammatia representation.

These multilevel global arrays are

sahematiaally as upside down trees

refers to the age 1 group

refers to the age 30 group

refers to the age 99 group

At the second level, the subscripts are the same ones used to locate the associated data

in the t NAM and tOCC arrays. Each node at this level contains the data currently

in the old +SEX arr~ •

Thus

tAGl (30, .15) refers to a node in the age 30 group that contains the

(\:
'-< s~x code "M". (Check back with

'-seaond subsaript level diagram of tAGl.

omma
first subsaript level

6-13

Similarly

tAGl <15, .08) refers to a node in the age 15 group that contains the

sex code "M" •

Global array nodes are created simply by defining them with the SET command. When more

than one level of subscripting is used, MUMPS automatically defines all intermediate

levels necessary to reach the desired level. Therefore, if we want to create a new entry

in our global for a new age group, say age 14, with .85 as the second level subscript and

SEX code M

S '!'AG 1 C I 4, • 85 > :" M"

would do it.

MUMPS adds a new "branch" to our global "tree" like this:

t AGl

MUMPS CREATES THIS
NODE AUTOMATICALLY

11-1989

Like other variables, global nodes can be deleted using the KILL command. For example,

if part of our age global looked like this:

t AGl

11-1990

6-14

we could:

• Delete the .37 entry in the age 30 group t AGl

K .,.AG l C30, .3 7>

11-1991

• Delete the .05 and .37 entries in the age 30 group
t AGl

K fAGl C30, .05), tAGl C38, .37)

11-1992

• Delete al I entries in the age 31 group tAGl

K fAGl C31>

IH993

• Delete the entire global array

K fAGI

6-15

So! Now that you know something about the nature of global arrays, let's convert the old

tAGE and tSEX arrays into one 2-level global called tAGl. Use age data for the first

subscript and the old array subscript for the second, as we described earlier. If you think

you can write the program yourself, go ahead.

Here.'s our way. Just two commands on one line!

Try it:

>F 1:0:.01:tLS S tAGlCtAGECI>,I>:tSEXCI>

>

Here's how it works. First we create a FOR loop that generates all subscripts that exist

in our data base (tLS contains the upper limit). Then, FOR each subscript value,

we create a new array variable. The first subscript of the variable is the age value con

tained in tAGE(I); the second subscript is the value of I itself. This new variable

contains the sex code (Mor F) of the associated tSEX(I) array entry.

Now the data base is arranged in a way that should significantly reduce the time required

to retrieve data by age group.

How much faster?

Let's see how much less time is required to find out how many age 30 are in the census

data now. Load Al, the retrieval program that we showed you in the beginning of this

chapter. Remember?

>L A 1

>

Now, since Al was written to access the old tAGE array, we' II have to change it so that

it wi 11 work with the new t AG l array. Simply replace part 3 with this new part 3.

3.10 S TOT:0,I:-.0l
3.20 S 1:$HCtAG1CX,l)) I 1:>0 S TOT:TOT+l G 3.2

>

6-16

Write out the whole program.

>W

Examine it. Make sure there aren't any errors. Do you understand how this new part 3

works?

Give up?

To begin with, this part assumes that X has already been set (in part l) to the age value for

which the search is to be performed.

Step 3 .1 SETS the counter TOT to 0 and I to - .01 so that the $H in

the next step will begin at subscript zero.

Step 3 ,2 SETS I to the value of the next higher subscript. As long

as I is greater than or equal to zero, then $H has told

us that there is a higher subscript. Therefore, count it

and loop back to the beginning of the step. When $H

returns a -.01, there are no higher subscripts, therefore

no more entries in this age group. The loop is broken

and, since there are no higher steps in this part, the

operation is complete,

Part 3 stops only when $H causes I to become negative. Occasions when this happens are:

1) when there is no node for any age group;

2) when there is no node for a given age group;

3) when a 11 nodes have been counted.

OK! Run the program for a while. See if it works. Test it out. When you're satisfied

that it's working properly, FILE it as A2.

6-17

>D I

AGEt30

AGE:

>F A2 Fiie it.

"
HOW LONG?

Now that the scene is set -- back to our timing test. Do you still have the results you got

from the last time you ran Al? If not, run Al again.

NU!IB ER OF ITERATIONS: 10
_SECONDS

"

Now for the new data base.

>L A2 D 99

NUl"BER OF ITERATIONS:l8
- SECONDS

"
ThePe's the new time. Quite a notiaeable
diffePenae.

The point of this whole chapter is, in large part, to start you thinking about how the size

and shape of a data base can affect its usefulness. You•((be learning more about this in

the next chapter.

6-18

Can you think of other census data retrieval applications that would work well with the

current data base organization?

• How about changing A2 so it will tell us how many men or women

are in a particular age group.

• Or you could try to find an even faster way for A2 to obtain the

age totals. (Hint - eliminate calculation from A2 and add a new

piece of data to our present structure.)

But remember, when you're planning a program, keep in mind the data base organization you're

going to use and how your program can best work with it.

6-19

CHAPTER 7

INSIDE GLOBALS

In case we didn't tell you before, MUMPS is a timesharing system. MUMPS shares its

time among a number of users and their programs. Although it appears that MUMPS is

giving all its attention to you and your programs, it's really doing the same for others like

yourself.

Because MUMPS is a timesharing system, the disk memory that stores programs and global

data is al5o being shared. Everyone's programs and globals reside there.

Each time a program makes reference to a global variable,

S 1'AGE:X

T $H «tS EX C I))

I SOC 1'NA MC I , Y»

MUMPS must interrogate the disk memory. When it's doing this for your program, it can't

be doing it for other programs. Therefore, other users' programs must wait. When another

user's program is using the disk, your program may hove to wait. How long? It depends

on how many programs are queued-up waiting for the disk, how many interrogations

(accesses) each program makes, and the way each program accesses the disk. Which brings

us to the point of our discussion. The way a program uses the disk (i.e., the way it makes

global references) con affect not only the amount of time required to access a global, but

also the time spent by other programs waiting to use the disk.

Up till now, you've been making global references in your programs using what is called

a fuU gZ.obaZ. Z'efel'ence. Full global simply means that a globol reference contains

oil the information necessary to completely describe the global node. Like this:

Up-aZ'Z'OW tells
MUMPS that this
is a global --~
reference.

7-1

Subscripts
(if any)

Whenever you use a full global reference, MUMPS looks up aU the data required:

to find the node you've specified, even though your program may have just accessed this

global or even the same node many times before, Believe it or not, a lot of time can be

consumed in this non-productive activity.

"Can we avoid this waste?" you ask. Yes, indeed! We'll give MUMPS only the information

it rea I ly needs to do the job.

Once we've told MUMPS the name of the global that we're going to use, we don't have to tell

it again as long as we continue to access nodes at the same or a lower subscript level (i.e.,

nodes with the same or greater number of subscripts). MUMPS "remembers" the last global

access that you or your program made ••• all you need do is tell it the next subscript to be

accessed, either at the same or a lower level.

The type of global access we're talking about is cal led the naked g"loba"l !'efe!'enae or

simply naked Pefe!'enae. This is done by using an abbreviated form of the full global

reference. Here's what it looks like:

Naked Reference:

HX)

In the naked !'ef e!'enae the
g"loba"l name is omitted.

Here's the full reference again:

'tAGECX>

Here's the way it works:

When you use naked reference, MUMPS assumes the name of the global you wish to access is

the one given in the last full reference.

It further assumes that you wish to access nodes that are either at the some subscripting level

reached by the last global reference or at a lower level.

7-2

To gain access to a global via naked reference,

at least one full global reference must be

made first.

MUMPS replaces the last subscript of the last reference (naked or full) with the first

subscript of the naked reference. For example, if our last global reference was:

>S X:tAGEC .29>

we could access tAGE(.20) like this:

:.s x : t (.2 0)

If tAGE·(.02) is the next node to be accessed, we could write:

:.S X:tC.02>

and so on.

Naked referenee tells MUMPS to:
you were and go on from there 11 •

On the other hand, if we tried to do a naked reference without a prior ful I global

reference:

UNDEF>C/J @
>

an UNDEF error message results. Try for yourself - let's use the naked reference to TYPE

out some names from the t NAM global,

7-3

>T tC.04>
22
>

>T tNAM< .04)
PAUL JOHNSON
>

>T H.10)
IAN MCKENZIE
>

>T H.02)
BI LL SMITH
>

>T tC .28)
KEN MAS ER
>

Oops! We forgot to tell MUMPS the global 's
name. Since we did make a full global
reference to tAGE (on the previous page),
MUMPS assumed that we wanted to access that
array.

THE GOLDEN RULE OF NAKED REFERENCE

Naked reference is logical only when you

know where you are in the g loba I data base.

If you wanted to access another global, you'd have

to make a full global reference before continuing

with naked accesses, so MUMPS will know the new

global name.

Now let's see what the naked reference can do for us. Let's find out how much faster our

programs can run. First, we'll try it with the Al program that searched the linear (i.e., single

subscripted) global tAGE. So LOAD and WRITE out part 3 of Al (this is the only part that

accesses global data).

>L Al W 3
3.10 S TOT:0,I:-.0l
3.20 S I:$HCtAGE<I» I I:>0,tAGECI>:X S TOT:TOT+l
3.30 I I:>0 G 3.2

7-4

How can Al be changed to do naked accesses? The most obvious change is to step 3 .2.

MODIFY 3.2 so that the two global references are naked references rather than full global

references. It should look like this:

3.20 S I:SHCt<I» I I:>llJ,tCI>:X S TOT:TOT+l G 3.2

Now we have to add a full global reference to allow the naked references to work. The best

way to do this is to change 3 .1 so that it does one complete data access before entering the

loop formed by steps 3.2 and 3.3. Here's the new step 3.1:

3 .10 S TOT:llJ ,I :SH C fAGE <- .01 » I I <0 Q

Then add this new step:

3 • 1 5 I f CI) =X S TO T = l

Here's how this new part 3 works:

Step 3.1 first initializes the counter TOT; then the subscript of the first

node in the array is obtained using $H with a full global reference;

last the value returned by $H is examined to see whether there was

a H IGHer subscript.

Step 3 .15 uses a naked reference to verify that the contents of the first node

accessed matches the requested age (variable X). If there is a

match, the counter TOT is set to one.

Step 3.2 and step 3.3 are essentially identical to our original version of the

program (Chapter 6) except that all global references are naked.

After the first access and verification sequence {steps 3.1 and

3.15), all subsequent global accesses are performed in the

loop created by these steps. When all nodes in the array have

been accessed, $H sets I to a negative value and the IF test

in step 3.3 fails, thus terminating program execution of this

part.

7-5

Now, let's run the program. Does part 3 take less time to execute than before? Once again,

we' 11 use the time routine we put in part 99, so manually set X to the 30-year age value,

and start up the program.

"6 X:.30 D 99

NUl"BER OF ITERATIONS:10
SECONDS

>

Next, change the A2 program, the one that uses the 2-subscript-level global AG l, so that

it uses naked global references.

Don't forget to FILE our modified version of Al

Use the name A3.

Load A2 and WRITE out its part 3 now.

>L A2 W .:S
3.10 S TOT:0,I:-.0l
.:S.20 S 1:$HCtAGlCX,I» I 1:>0 S TOT:TOT+l G .:S.2

>

Now let's modify it to use naked references. Like this:

.:S.10 S TOT:0,1:$HCtAGICX,-.01)) I 1<0 Q

.:S.15 S TOT:I
3.20 S 1:$HCtCI» I 1:>0 S TOT:TOT+l G .:S.2

This part 3 works in a manner very similar to that of the previous one.

Step 3.1 initializes the counter TOT and gets the subscript of the first

node. If $H returns a -.01, the node is not there and we QUIT.

Step 3.15 Since we didn't QUIT, we'll count this first node.

Step 3.2 searches for and counts all succeeding nodes looping on itself

until $H returns the -.01.

7-6

The interesting difference between this part 3 and the part 3 in A3 is that we're now dealing

with a 2-level global. Notice how naked global reference works here.

In step 3.1, using a full global reference, we obtain the subscript of the first node at the

second level. Now, the naked reference in step 3 .2 will obtain the next higher node

($H) at the second level and will continue to do so for each iteration of the loop.

thereafter oaaur at

Now run this program. See if naked accesses make retrieval faster when there's a 2-level

global.

Make sure X is stiZZ set to 30.

If it's not, set it. Also file th is version of our program as A4 • Then it's ready to run.

>S. X:3fll F A4 D 99

NUi-6 ER OF ITER A Tl 0 NS: 10
SECONDS

Read on: You'ZZ find out why in this partiauZar

aase naked aaaess with our

7-7

LOGICAL-TO-PHYSICAL

Up till now, we've told you how to incorporate naked references in your programs and how

naked references appea:r> to work.

Naked references allow MUMPS to obtain global data more

rapidly by eliminating unnecessary disk memory accesses.

We say "appear" because the way naked accesses physically operate is different from the

way they logically appear to operate. In order to use the naked reference correctly and

effectively, it is important for you to understand:

o the physical organization of global data

o the physical operation of both full and naked references

The disk memory that MUMPS uses is divided into physical storage areas called blocks. Data

stored in the disk memory resides in these blocks. Each block has a unique identification

number cal led the block address. When MUMPS stores or retrieves data on the disk, it is

writing or reading specifically addressed blocks. Communication between MUMPS and the

disk is performed one block at a time.

BLOCK ADDRESS

•
E

A BLOCK

BLOCK ADDRESS

•

ANOTHER BLOCK

11-2006

Since a block is a physical unit, the amount of data it can hold is limited. A block can

hold a large number of short data items or a small number of long data items. Global nodes

(or variables) are the data items stored in blocks. A node residing in a block is usual !y

called a block entry or simply an entry. The amount of space that an entry occupies in a

block varies directly with the amount of data being stored.

7-8

Nodes that contain numbers between 0 and ±327 .67 require less

space than those that contain numbers between ±327 .68 and

±2147 4836 .47. Nodes that contain character strings can vary

greatly in size since a string can consist of O to 132 char

acters. A node with a I -character string is about the same size

as the node that contains a number between -327 .67 and

+327 .67. However, a node with a string of six characters

wou Id require twice as much space •

The total number of entries that a block can hold also varies as a result of this.

Some blocks may have
many small entries.

E

11-2007

Other blocks may have
a few large entries.

When an entry is too large to fit into the space remaining in a block, MUMPS puts it in an

empty block. This block is called a continuation block. It's called continuation block

because it is used to continue the logical sequence of data that began in the previous block.

MUMPS logically connects these blocks by linking them together. The address of a

continuation block is inserted into the last entry space of the preceding block. This entry

is often cal led the eontinuation bloek pointer since it points to the continuation

block. MUMPS provides as many continuation blocks as are necessary to contain the entries.

7-9

~ ~r r
"' "' f-
z
0
Q._

\

FIRST (HEADER) BLOCK CONTINUATION BLOCK

/

ri----
L. fl

I

I I
I I
I I

I I
~---··--

11-2008

This header block/continuation block relationship is the fundamental structure used in global

data storage. Blocks linked in this way ore often referred to as a chain. Each logical

section of an array resides in a chain.

For example, our t OCC array has one subscripting level.

r----
1

I
I

t occ

BLOCK CHAIN -----,
.o5 I

I ••• I
I I L------ ___________ _J

\\-1983

All nodes in this array reside in the same chain. However, in an array like t AGl, the

nodes reside in various chains, depending on the subscript level.

7-10

FIRST!- -

LEVEL I

I
I
L-

t AGI

Notice that nodes having a common first subscript

reside in the same chain.

BLOCK CHAIN ------,
I
I
I

___ _J

11-1984

In addition to the numeric or string data, a node also contains a subscript so that it can be

located within its block. This is the same subscript that your program uses when referencing

the node.

Let's take a close-up look at the entries in some global data blocks. We' II take one from

the t AGE array and one from the t NAM qrray.

First the t NAM array.

SUBSCRIPT DATA
• •

i_-01] HENRY ADAMS J
r--f.02 1 BILL SMITH J

r-{.03 l ALTHEA BROWN J
r-{_.o4] PAUL JOHNSON J

j

~ IT TT

I
II

II

~ I II II

I

II

II

7-11

p OINTER TO
ONTINUATION
LOCK r~

0::

~v z
i5
Cl.

,,---
/~LI

/
/ I CONTINUATION / I BLOCK(IF

NECESSARY)

I
I

1 i-1999

Then the t AGE array.

EJ

SUBSCRIPT DATA
1 .DO j 46 J

r---1. .01 J 15 J
r-{ .02] 30 J p OINTER TO

ONTINUATION
LOCK _e .Q3 J 22 J 1~

llillllllllllllllllllllllll~

11
I

tr

~v

I
z

11 0

~
0..

lL IL

/

r-,---
-"' /LI

/ I CONTINUATION
/ BLOCK (IF I NECESSARY)

I

L- - - --
11-2000

Notice that in both arrays the entries are in ascending subscript order. Why is th is? MUMPS

simply created these globals the way you asked it to. It stored the global data in the disk blocks

in chronological order, regardless of subscript value. Our input programs assigned the lowest

subscript to the first name and age to be input -- that's why the data is in subscript order.

It's important to understand that the physical and logical arrangement of global data need

not coincide.

It's not uncommon for the global entries in a block or chain of blocks to be completely out of

subscript order. A node is simply placed in the next available space in the block. We make

this distinction in our diagrams by showing logical global structures (nodes) as a series of

circles interconnected by straight lines. Here, the nodes are always shown in left-to-right

ascending subscript order.

7-12

FIRST LEVEL

SECONDr -
LEVEL I

t AGl

BLOCK CHAIN --,
.29 I

I I
I I L ___________ _J

11-1985

We show the physical. structure of a global by using segmented boxes to represent the global

data blocks on the disk. Here, global data is shown in the order in which it actually resides

in a block.

SUBSCRIPTS - ·29 15 06 03 18 17 • • ••

E

F M F F M M v

r-,-
/~-i

// I
/ I

I
I
L ___ _

11-1998

You and your programs must decide how the data is to be arranged and accessed. There are two

functions to let you do this: $HIGH, which you already know, and $QUERY, which you do not

know. $Q is similar to $H except that it deals with global variables at the physical. level,

7-13

Node~ can be accessed in logical (ascending subscript)

order using the $HIGH function. MUMPS searches the

block chain for the next higher subscript from that specified.

Nodes can be accessed in physical order using the

$QUERY function (covered in the MUMPS-11 ~anguage

Manual). MUMPS simply obtains the next physically

higher entry in the block chain.

When you create a global that has more than one level (i.e., subscript), MUMPS places an

additional piece of information in certain nodes. These are called intermediate nodes,

that is, nodes that provide a path or that point to other nodes at a lower level.

INTERMEDIATE -- -
NODES

LOWER LEVEL
NODES

fAGl

Since there are no lower
level nodes, this node
has no pointer -- it is
not an int~rmediate node.

The information MUMPS puts into an intermediate node is called a. downward pointer. Like

the pointer that locates a continuation block, a downward pointer is a block address -- the

address of the header (i.e., first) block of a chain that contains the nodes at the next lower

subscript level.

7-14

Here's the physical arrangement of the portion of t AG 1 shown above.

FIRST LEVEL
INTER MEDIATE
NODES

12

SECOND LEVEL
NODES

adr

DOWNWARD
POINTER

15

\
_1

\

\

\

\

\

\

\
I

l

--15:

II

[.02 1 Fil y,17 \
\ [.05 1 F 1-- L____f .14
1
E

u

IM-µ 4.19 [.01 I F

L..{.01 IM

4...-.11-]~F

7-15

53

1M1
] M J

a:
w
1-z
0
n.

IT
/~ -1

/ I
/ I

0

I
I
L_

ASSUME OUR PROGRAM SET
THIS NODE TO 0 TO INDICATE
THERE WAS NO DATA AT
LOWER LEVEL -- --- ----

a:
w v I-
z
0
n.

a:
w v I-z
0
n.

~-,

/ L.. -;

/ I

I
I
L ____ _

L ___ _

11-2001

Now you know all the data elements that can reside in a node. In addition to its subscript,

a node can contain:

• Either numeric or string data

• A pointer to the next lower subscripting level

A node can also contain both numeric data and a pointer or , string data and a pointer.

We didn't show you an example above because a node of this type is not part of our data base.

But, we could have structured our data base so that the nodes at the first level did contain

data, for example, the number of current second level entries (thereby eliminating the need

for counting each time a total is required). Here's what it might look I ike:

First, the logical layout.

~AGT

• • •

SECOND LEVEL

7-16

Now, the physical layout.

adr

30 adr2 3

/
/

_FIRS~ ----\--- __ --/..:::.._

"""" """ \ L
b

\

\ ~ ~ 4 .01 l M J

\
y_ .06 J F J

\
L-.{ .03 1 F J

\

l
b

l .02 1 M ~ 4 .08 l M J

"' w
z
5 a..

______ ..c _ _,r ___ --- ---
1
I
I
I
L __ -------

_L__ ---- -- --

\ ~__.c-=;---- -----
\....- ..--- I ___., I

\ : \ L ______ _

"' w v z
2

i
~

"' w
~ t----5
a..

[.14 I F ~

"' w
z r---~

5
a..

7-17

ONE MORE THING

There's just one more thing you must know to complete your understanding of global data

structures -- how MUMPS knows where the disk blocks that make up your globals begin. We've

already shown you that each logical subscripting level has a physical counterpart as one or

more blocks. There's one additional level which is higher than any subscript level -- it's

called the directory level.

SECOND LEVEL

11-1994

Al I the globals you may create originate in a special block or chain of blocks cal led the

global directory. The global directory is similar to other global block chains, It con-

ta ins a number of entries -- one for each global you create. If there are more entries than

can fit in one block, a continuation block is added to form a chain, Each global entry is

placed in the directory in the order in which it was created.

Each directory entry is identical in form to the entries in other global blocks. The "subscript"

in this case is the global's name. This lets MUMPS locate any global that you or your programs

may wish to access. The directory entry can also contain a downward pointer which is the

address of the header block of the first subscript level. Like other nodes, a directory entry

can also contain string or numeric data.

7-18

Here's what your global directory looks like:

[NAM]

EJ

1 j

adr1 J J

OTHER GLOBALS YOU
MAY HAVE CREATED

1
-{ AGlJ adr5 l

"' v w
I-z
5

r-·------
~ I / L-1

// I
/ I

I
I
I
I
I
I L ______ _

[AGE T adr2 l--
.........::::::

~LS nnnnnj

[sExT adr3 ~

• T
f occ adr4 J

POINTERS TO FIRST
LEVEL GLOBAL BLOCKS

• r_,

NOTICE

MUMPS doesn't store the up arrow (t) that precedes the

global name, since its only function is to tell MUMPS

which of your program's variables are local and which

are global,

Now you know the whole story! How MUMPS really stores global data, Let's put all the

pieces together -- look at the structure of our AG 1 global, We haven't space to diagram

all the blocks your data may have used so we'll show just a few of the header blocks so you'll

get the idea.

7-19

~

l AGl J adr1~
/

/

--/---
SECOND LEVEL

.02 M

.08 M

.20

"' w
z
2

"' w z
2

"' w z
2

,-,---- -- ---
/ ,.t__I

// I
I
I
I L ________ _

30

UNUSED

_l

I

,f~r-------

, I

I l _____ _
I

I
.26 M

1
~

"' v w z
0
A.

T 1 1 .18 IM J

7-20

"' w ... z
2

,-,---
/1----1

/ I
I
I
I L ___ _

Let's summarize some of the important points about global data structure:

• A global consists of one or more disk blocks. When a global consists of

more than one block, pointers are used to link the blocks together.

Pointers are block addresses -- they tell MUMPS which disk blocks

belong to your global (s). There are two types of pointers, continua

tion block pointers and downward pointers. Downward pointers point

to a block that contains nodes at the next lower subscript level.

• All globals originate in your global directory. Each directory entry

consists of a global name as well as a block pointer and/or data

(either string or numeric).

• Every global has at least one level -- the directory level. Other

lower levels are created by the use of one or more subscripts. Each

additional subscript creates an additional lower level.

HOW MUMPS REALLY ACCESSES GLOBALS

Back in the beginning of the chapter, we toldyou how both the full and naked global references

appear to work. Now we can tell you how they really work, since you now know the

physical structure of global data. If you'll remember, we told you that whenever MUMPS

obtains or places global data on the disk, it reads or writes a block. It reads this block into

main memory so it can find the global information your program requested. If you have

a program that makes lots of global references, chances are MUMPS is going to be reading and/or

writing lots of disk blocks. That can take a lot of time, particularly if you don't use naked

references whenever possible. Time is the enemy of the MUMPS programmer. Whenever he

writes programs that waste time, it's not only his time -- it's everyone's time. It's the time

that the user of his program wastes. It's the time wasted by other users and their programs while

waiting for their turn to use the disk. Remember, MUMPS is a timesharing system.

MUMPS accesses global data in one of two ways, depending on the type of global reference

used: ful I reference or naked reference.

7-21

Let's begin with the full global reference. Every logical level in a global, including the

directory, occupies at least one block, even if there is only one entry in each block.

Additional continuation blocks are added as space is required.

When MUMPS encounters full global reference, it must always read at least one block from the

disk for each logical level. When levels have continuation blocks, as many of those blocks

must also be read in as are required to locate the specified node entry.

For example, when we used the Al program to search the tAGE global, MUMPS had to read

at least two blocks each time a global reference was made, one block for the directory and

one block for the data at the first level.

Here's what tAGE looked like.

ONE OR MORE BLOCKS
DIRECTORY r---- - - - - - - I
LEVEL I tAGE I

ONE OR MORE
BLOCKS

FIRST r--

I I
I I •••
I
L--

SUBSCRIPT I
~vu I I

I I
L-------- __________ J

11-1995

And here's step 3.2 -- the step that contained all the global references.

3.20 S I:$HCtAGECI» I 1:>0,tAGECI>=X S TOT:TOT+l

So, each time step 3.2 is executed, at least four blocks must be read into memory from the

disk. If there are continuation blocks at either the directory level or the first level, more

blocks might have to be read in.

7-22

• If you have a large number of globals, the global's name could be

located in the third continuation block of the directory. Then, each

time a full reference is made, four blocks would have to be

read simply to find the name.

• If you have more than a small amount of data, some of it would

have to be read-in from continuation blocks at the first level.

Let's say AGE contains only 30 entries -- they'd probably all fit in one block. Let's also

assume there are only five age 30 entries and that your directory is only one block long. How

many blocks (in other words - disk accesses) would be required to search all the entries for

people age 30? That's right -- 122 accesses!

For eaah full global referenae, the direatory bloak is read
into memory 30 times then the first level bloak is read into
memory 30 times. This is done for eaah entry. This makes a
total of 160 disk aaaesses. The wo additional aaaesses
oaaur when the searah fails to find any higher nodes. The
time required for suah a simple operation is signifiaant.

Let's try another example. This time we' 11 see how many blocks are used when the A2

program accesses the AGl global.

AGl looked something like this, remember?

FIRST
LEVEL

SECOND r-
LEVEL I

I
I I
L_ ___ _J

DIRECTORY
LEVEL

1 BLOCK ,-------,
I I
I 4AG1 I

7-23

I
I
I
I

1 BLOCK -,
I
I
I
I

In AG 1, at least three blocks must be read to access a node at the lowest level.

• At least one block for the directory

• One block for first-level nodes (representing ages 1 through 99)

• At least one block for each node at the second level

Here's the step in A2 that performed the global access:

3.20 S l:SHCtAGlCX,1)) I 1:>0 S TOT:TOT+l G 3.2

At least three blocks must be accessed.
Continuation blocks might be required at
either the directory level or second
level or both.

The way this global is designed, all similar age entries reside at the second level in the same

block or a continuation block. This time every node does not have to be examined, as with

t AGE, to find all members of a particular group.

Now to our test! Again, we'll assume that there are only 30 entries in the global, 5 of which

are in the age 30 group. How many blocks wil I now be accessed to obtain the total number of

age 30 entries? Right! 18 blocks -- a lot less than the 122 blocks in the previous example.

This is better, but not the best we can do. There's another way •••

THE OTHER WAY

The other way MUMPS accesses globals is through use of the naked reference. As we told you

earlier, MUMPS "remembers" some information about each global access it's requested to

perform. Each time an access is completed, this information is updated. When a full global

reference is requested, MUMPS doesn't use this information -- it makes the access via the

global directory each time and down the tree to the specified node. But, when a naked reference

is requested, MUMPS uses the information it "remembered" _about the last access. It uses this

information by al lowing the current naked reference to begin at the level reached by

the previous global reference. This reduces the nu·mber of blocks that need to be accessed

to. find the requested node each time.

7-24

For example, if the last reference was at the first subscript level, then a subsequent single

subscript naked reference would also be at the first level.

REMEMBER

We told you tha,t the LAST subscript of the previous
global reference is replaced by the FIRST subscript
of the naked reference.

A two-subscript naked reference would also start at the second level, but when the node specified

by the first subscript was found, the access path would continue down to the third level node

specified by the second subscript.

For example:

• • •

SECOND LEVEL

Full Reference:----<

>T tAGl C 15>
2

Naked Reference (single subscript):

>T tC30>
3

Naked Reference (2 subscripts): -------'

>T t<30,.Hn
M
>

7-25

.

The information that MUMPS uses to perform a naked reference is:

• the address of the first block of the level reached by the previous

global reference (called GHEAD)

• the address of the block that was currently in memory at the

time of the previous global reference (cal led GBLOCK)

Since this is the only information MUMPS uses, a naked reference can't be used to access

a level that is higher than established by the previous access. Because with naked access

MUMPS knows only the address of first block of the last level reached and the address of

the last block accessed at that level. It doesn't know the name of your global or how it

reached the current level. MUMPS' globals are linked together with the downward pointers

and continuation pointers; there are no upward pointers.

When MUMPS performs a naked reference, it does the following:

• First it checks to see that the user's GBLOCK is in memory •1

• If GBLOCK isn't in memory, it reads ·in the GHEAD block {at that level),

then continues accessing as many blocks as required to reach the node

at the specified subscripting level.

• If G BLOCK is in memory, MUMPS then checks to see whether the first

subscript specified in the naked reference is in this block. If it

isn't, GH EAD block is read in, and the search is made again. If it is

not found, continuation blocks are read ·in, if they exist. When

the node is found, as many other blocks are accessed as are necessary

to reach the node at the level of the last subscript.

• If the first subscript is in GBLOCK, MUMPS accesses the node.

If there aren't any additional subscripts in the naked reference, the

access is complete. Otherwise, as many blocks as are required

are accessed to reach the node at the specified subscript level.

1 Since MUMPS is a timesharing system, other users may have used the disk. Your GBLOCK
may not be in memory when MUMPS gives you your time slice.

7-26

In terms of number of blocks accessed:

Best case - no blocks are accessed:

• Your GBLOCK was in memory

and

• The first subscript in your naked reference was in GBLOCK

and

• There weren't any additional subscripts and therefore no other

lower level blocks to access.

Worst case - At least one block for each subscript level in naked reference is accessed.

• Your GBLOCK wasn't in memory (GHEAD block had to be read -in)

• The first subscript of your naked reference wasn't in GHEAD block

(a continuation block had to be read· in)

• Your naked reference specified more than one subscript level, thus

at least one block for each additional subscript level had to be read in

to locate the specified node.

With what we've told you so far, the following flowchart of how MUMPS accesses global data

should clarify any questions you may have.

7-27

START

NAKED

FULL

rSeE OOE-;- ---,
1

I
I

READ DIRECTORY HEADER
BLOCK INTO MEMORY AND
SEARCH BLOCK CHAIN FOR
GLOBAL .NAME ENTRY

L __

YES

I
I
I

_J

YES

NO

ISEe INSET
----,

I
I
I

READ NEXT BLOCK INTO
MEMORY AND SEARCH
BLOCK CHAIN FOR NODE
WITH THAT SUBSCRIPT
VALUE

I
I
I

L __ __ _J

DONE

UNDEFINED

7-28

SET UP TO READ
IN "HEADER
BLOCK" OF
CURRENT CHAIN

l;s~-- - -- -- ----,

UPDATE "HEADER BLOCK
ADDRESS" WITH
ADDRESS OF BLOCK TO
BE READ-IN

READ-IN
BLOCK

UPDATE "CURRENT BLOCK
ADDRESS" WITH
ADDRESSED BLOCK
JUST READ-IN

SEARCH FOR NAME OR
SUBSCRIPT ENTRY (AS
APPLICABLE

DONE

UNDEFINED

L ________ _J

OK, let's go back to the t AGE and t AGl globals. This time, we'll see how many blocks

have to be read· in when naked references are used.

We'll begin with t AGE. Here's part 3 that contains the naked references in the A3 program.

3.10 S TOT:0,I:$HCtAGEC-.01» I I<0 Q
3.15 I tCI>:X S TOT:TOT+l
3.20 S l:$HCt<I» I 1:>0,tCI>:X S TOT:TOT+l G 3.2
3 .3 0 I I : >0 G 3 .2

As mentioned earlier, we' 11 assume the directory is contained in one block and the 30 age

entries are in one block.

How many blocks do you think will be accessed now? Two? Right -- for the best case! The full

global reference provides the starting point for the naked reference that follows. The two blocks

are accessed here -- one for the directory and one for the first subscript level. Al I other global

references are naked and occur at the same subscript level.

NOTE

If other MUMPS users are also waiting to use the disk,

additional blocks may have to be accessed since your
GBLOCK might not be in core when MUMPS returns to you
after servicing another user.

Now let's see how many blocks of the t AG 1 global are accessed when the A4 program runs.

Here's part 3 of A4:

3.10 S TOT:0,I:$HCtAGl<X,-.01)) I I<0 Q
3.15 S TOT:l
3.2121 S l:$HCtCI» I 1:>21 S TOT:TOT+l G 3.2

As we discovered earlier, a full global reference to the second level of tAGl requires that

at least three blocks be accessed. No additional blocks need be accessed thereafter because

our five age 30 entries reside in the same block. That block is already in memory as a result

of the ful I global reference.

7-29

At this point you may be thinking that there is no advantage to using the t AGl global once

naked references are incorporated into our programs. In this particular inst_ance, you're right!

Under the test conditions we've specified, naked reference used with the tAGE global works

faster. Only two (or possibly three) blocks need be accessed. However, if these globals

contained a census data base of realistic size, this would not be true.

For example, to get a more reasonable view of the situation, suppose that the census data

occupied 100 blocks in the tAGE global, and that 7% of the population was age 30.

BLOCK 100 --..,
I
I
I

___ _J

100 BLOCKS

11-1996

Now how many blocks must be accessed to get the total number of age 30 entries? 101 blocks!

• One block for the directory (our original assumption)

• The first block in the chain (GH EAD)

• Ninty-nine continuation blocks.

Try the same test with tAGl. Here's what tAGl might look like (we'll show only the

age 30 nodes to save space):

7-30

SECOND
LEVEL r----

1
I

FIRST r-
LEVEL I

I
I
L---=-=~~

I I I
L ___ ...l.. ___ _J

7 BLOCKS

How many blocks are accessed now?

for the directory

for the first I eve I

for the second level

6 continuation blocks 6

9 blocks

BLOCKS IS A

101 BLOCKS!

7-31

11-1997

BECOMING FLUENT

No more chapters left! This is the end of our story. Now that you know a little about

MUMPS-11 , where do you go from here? As we told you in the Preface, this is only an

introduction to MUMPS-11. We've just tried to point you in the right direction. Bearup!

Help is on the way. It's time to read the MUMPS-11 reference manuals described in the

preface. You can get them from your trustworthy computer supplier, Digital Equipment

Corporation. When ordering, be sure to use the order number as wel I as the name of the

manual. Begin with the MUMPS-11 Language Reference Manual ; then progress to

the Programmer's Guide and the Operator's Guide.

Continue reading and studying.

IT'S YOUR TURN NOW!

7-32

Array

Binary Operator

Boolean Valued Expression

Command

Concatenation

Constant

Data Base

Direct Mode

Directory

GLOSSARY OF TERMS

An array is a groupof subscripted variables that have
a common identifier. An array can consist of either
local or global variables.

A binary operator is an operator that requires two
operands (expression elements).

A Boolean Valued Expression (bve) is an expression,
which, when evaluated, produces either a True
(-0.01) or False (0) result.

A command is the principal algorithmic component
of the MUMPS Language. MUMPS commands con
sist of a set of keywords that characterize actions.
(e.g., GOTO, SETHALT, RUN, etc.)

Concatenation is the process of linking together two
or more string data elements to form a single string.
Concatenation is a string expression operation that
is designated by the commercial 'at' sign (@).

A constant is a quantity within the range of legal
MUMPS numbers (±2147 4836 .47) explicitly stated
in an argument to a command or as an operand in
an expression.

Data base is that body of disk-stored information
residing in global arrays.

Direct Mode is the mode of _system operation that
enables the programmer to:

a. enter commands for immediate execution
b. create or modify a program.

A directory is a disk-resident table that contains the
names and disk starting address of either programs or
global files. Each User Class Identifier in a
MUMPS-11 system has two directories associated
with it: a program directory, and a global directory.

GLOSSARY-1

Expression

Expression Element

Function

Global

Global Variable

Identifier

Indirect Mode

Indirect Reference

An expression is any legal combination of operands
(elements) and operators. Legal expression elements
include: literals, constants, variables, subexpres
sions, and function references. An expression may
consist of a single element, an element/operator
combination or a series of element/operator combina
tions.

An expression element is the operand component of a
MUMPS expression.

An expression element may be: a constant, a simple
variable, a literal, a local subscripted variable, a
global variable, a function reference or a subexpres
sion.

A function is a MUMPS expression component that
invokes an algorithm the result of which is an
expression element (operand). Each MUMPS func
tion is assigned a unique mnemonic, the first charac
ter of which is the dollar sign ($)symbol.

A global is a tree-structured data file stored in the
common data base on the disk. Globals comprise an
external system of symbolically referenced arrays.

A global variable is a subscripted variable that
forms an element (or node) of a global array.

An identifier is a name consisting of one to three
alphanumeric characters. The first character mu st
be either an alphabetic character or the percent (%)
symbol. Identifiers are used as names for variables,
programs, and globals. The percent symbol must be
used as the first character of a Library Program or
Global name.

Indirect Mode is that mode of system operation in
which the steps of a stored program are executed.
In th is mode of operation, commands cannot be
entered from the terminal and programs cannot be
created or modified .

An indirect reference is a feature of the language
that permits a string variable to represent a command's

·argument or argument list. In operation, the string
value of the variable is taken as the argument or
argument list. The indirection symbol, back arrow
(+) or underscore (), must precede the variable
reference. -

GLOSSARY-2

Literal

Local Variable

Naked Reference

Node

Numbers

Numeric Valued Expression

Operator

Part Number

Partition

A literal is the explicit representation of character
strings in expressions and in command and function
arguments by delimiting them with quotation marks
(" "), Literals may not contain:

quotation marks
Carriage RETURN
FORM Feed
LINE FEED

CTRL C
CTRL 0
CTRL U
NUL

ALT MODE
Vertical Tab
RUBOUT (DEL)

A local variable is a variable that resides in the
partition of the program that created it (as opposed
to a global variable).

The naked reference is a feature that provides an
abbreviated method for accessing global variables
to reduce disk access time. This permits subsequent
references to a global to be made simply by specify
ing an up-arrow (t) fol lowed by one or more sub
scripts, The variable name is assumed from the last
global reference in which a name was explicitly
stated. The first subscript in the naked reference
replaces last subscript in the previous reference
(either naked or complete). Using the naked refer
ence reduces disk access time since the search for
the specified node begins at the subscripting level
attained by the lost global reference rather than at
the global directory level,

A node is a global array element addressed by a
subscript.

Numbers in MUMPS are signed fixed-point quanti
ties in the range±21474836.47. Decimal fractions
greater than two places are truncated to two places.

A numeric valued expression (nve) is an expression
which, when evaluated, produces a numeric result.

An operator is a component of a MUMPS expression
that invokes an algorithm to perform either arithmetic,
string, or Boolean man ipu lat ions. (See binary opera
tor and unary operator.)

A part number is the integer portion of a step number
and is used to refer collectively to all steps having a
common integer base.

A partition is the memory area within which a job
resides. A partition is al located to a job either at
terminal log-in time or upon execution of the START
command. A partition contains both program and
local variable storage areas as well as program state
information necessary for timesharing operation.

GLOSSARY -3

Pattern Verification

Program Name

Programmer Access Code

Step Number

String

String Concatenation

String Valued Expression

Subexpression

Subscripts

Subscripted Variable

System Variable

Unary Operator

Pattern verification is a feature that permits evalua
tion of text strings for the occurrence of desired
combinations of alphabetic, numeric and punctua
tion characters. Pattern verification is specified
by the "?" operator followed by Pattern Specifica
tion Codes {psc).

A program name is an identifier that is associated
with a particular program. System Library program
names must use the percent symbol {%)as the first
character.

The Programmer Access Code (PAC) is a three
character code created at System Generation time
that al lows the terminal user to enter Direct Mode,

A step number is a number used to identify each line
of a MUMPS program. A step number must be in the
range 0.01 - 327.6 and excludes all numbers in this
range that are integers.

Any contiguous group of up to 1 32 ASCII characters.

See Concatenation.

A string valued expression (sve) is an expression that
produces a string result upon evaluation.

A subexpression is an expression element that con
sists of any legitimate expression enclosed in paren
theses.

A subscript is a numeric valued expression or ex
pression element appended to a local or global
variable name to uniquely identify specific elements
of an array. Subscripts are enclosed in parentheses.
Multiple subscripts must be separated by commas and
can be used in global references only.

A subscripted variable is a variable to which a
subscript is affixed {see subscript and variable).
Both global and local variables are forms of sub
scripted variables.

A System Variable is a variable that is permanently
defined within the operating system. These varia
bles provide system and control information to al I
programs. The first character of a System Variable
is always a dollar sign ($). System Variables are
maintained and modified by the operating system
and/or system manager only.

A unary operator is an operator that requires a
single operand (expression element).

GLOSSARY-4

User Class Identifier (UCI)

Variable

A UCI is a three-character code used at terminal
log-in time to permit access to the group of programs
and global files with which it is associated. When
used with the Programmer Access Code, the UC I
allows these programs to be modified and new programs
to be created.

A variable is the symbolic representation of a logical
storage location. Specific types include: local,
global, simple and subscripted variables. Variables
are symbolically referenced by means of identifiers.

GLOSSARY-5

Introduction to MUMPS-11 Language
DEC-11-MMLTA-C-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where shouid it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

City _______________ State _______ zip Code _______ _
or

Country

If you require a written reply, please check here. []

·--Fold llere--

·--· Do Not Tear - Fold llere and Staple -------------------------------:----------------

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. o. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U .S.A.

