
MicroPower /Pascal-RSX/VMS
System User's Guide
Order No. AA-AKl 3C-TK

June 1987

MicroPower /Pascal-RSX/VMS
System User's Guide
Order No. AA-AKl 3C-TK

This manual contains information you will need for using MicroPower /Pascal application
development tools on either an RSX host system or a VAX/VMS host system. This manual
includes directions for using MicroPower /Pascal utility programs, the MicroPower /Pascal
compiler, and the MPBUILD automated build procedure.

This manual supersedes the MicroPower/Pascal-RSX/VMS System User's Guide, AA­
AKl 3B-TK.

Operating System and Version: Micro/RSX Version 3.0
RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0
VAX/VMS Version 4.0

Software Version: MicroPower/Pascal-Micro/RSX Version 2.4
MicroPower/Pascal-RSX Version 2.4
MicroPower/Pascal-VMS Version 2.4

Digital Equipment Corporation Maynard, Massachusetts

First Printing, February 1984
Revised, June 1985
Updated, April 1986
Updated, October 1986
Revised, June 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1984, 1985, 1986, 1987 by Digital Equipment Corporation

All Righ_ts Reserved.

The READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASS BUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-IO Micro/RSX VT
DECSYSTEM-20 PDP ~a~an~u
DECUS PDT liii.I k::.J la~
DECwriter RSTS
DIBOL RSX

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by Ti:)<. the typesetting system developed by Donald E. Knuth at Stanford University. Ti:)< is a trademark of the
American Mathematical Society.

Contents

Preface xi

Chapter 1 Introduction

1.1 Overview of MicroPower/Pascal Components 1-2
1.1.1 Application Development Tools 1-2
1.1.2 Run-Time System Software 1-4

1.2 Overview of the Development Process . 1-5
1.2.1 The Build Cycle 1-5
1.2.2 Relationship of MPBUILD to the Build Cycle 1-7
1.2.3 Loading and Debugging 1-7

1.3 Logical Devices for MicroPower /Pascal Files . 1-8
1.3.1 Logical Device MP: for MicroPower/Pascal-RSX 1-8
1.3.2 Logical Device MICROPOWER$LIB for MicroPower/Pascal-VMS 1-8

1.4 User Set-Up Procedure for RSX and VAX/VMS 1-9

Chapter 2 MPBUILD Application-Building Procedure

2.1 Capabilities and Limitations of MPBUILD 2-1
2.2 The MPBUILD Dialog 2-3

2.2.1 Dialog Structure .. 2-3
2.2.2 Options, Usage Rules, and Defaults 2-4
2.2.3 Dialog Description .. 2-5

2.2.3.1 Kernel and Global-Information Section 2-5
2.2.3.2
2.2.3.3
2.2.3.4
2.2.3.5
2.2.3.6

System-Process Section 2-9
Beginning of User-Process Build Phase 2-10
User-Process Section . 2-10
Bootstrap Section . 2-11
End of Dialog . 2-11

2.3 Error Messages ... 2-12

iii

Chapter 3 Building the Kernel

3.1 Creating the Configuration File 3-2
3.2 Assembling the Configuration File 3-3
3.3 Merge Configuration Object File with Kernel Library 3-4

3.3.1 Merging the Kernel for a Mapped Target 3-4
3.3.2 Merging the Kernel for an Unmapped Target 3-5
3.3.3 Merging the Kernel for Debugging · 3-5

3.4 Relocate Kernel Module and Create Kernel Symbol Table 3-5
3.4.1 Relocating a Mapped Kernel 3-5
3.4.2 Relocating an Unmapped Kernel 3-6
3.4.3 Relocating the Kernel for Debugging 3-7

3.5 Create Memory Image (.MIM) File 3-7
3.5.1 Creating a Memory Image for Debugging or Down-Line Loading 3-8
3.5.2 Creating a Memory Image for Booting 3-9
3.5.3 Creating a Memory Image for a ROM/RAM Environment 3-10

3.6 Optimizing the Kernel ... 3-11

Chapter 4 Building System Processes

4.1 Edit System Prefix Module ... 4-2
4.2 Assembling System Prefix Modules . 4-4
4.3 Merging System Prefix Modules with the System Process Library 4-5
4.4 Relocating and Installing System Processes 4-5

4.4.1 Relocating a Mapped System Process 4-6
4.4.2 Relocating an Unmapped System Process 4-6
4.4.3 Installing System Processes in Memory Image 4-7

4.5 Repeating the System Process Build 4-7

Chapter 5 Building User Processes

5.1 Compiling or Assembling Static-Process Source Files 5-3
5.1.1 Compiling .. 5-3
5.1.2 Assembling ... 5-3

5.2 Merging Static Processes .. 5-4
5.3 Relocating and Installing Static Processes ~ 5-5

5.3.1 The RELOC Command Line 5-6
5.3.2 The MIB Command Line 5-7

5.4 Repeating the User Process Build 5-8
5.5 Debugging and Rebuilding the Application 5-8

iv

Chapter 6 Separation of Instruction and Data Space, and Shared
Library Files

6.1 Separation of Instruction and Data Space 6-2
6.1.1 Restrictions on l/D Separation 6-2
6.1.2 Building a Process with l/D Separation . 6-3

6.2 Shared Libraries .. 6-3
6.2.1 Types of Shared Libraries 6-4
6.2.2 Restrictions on Shared Libraries 6-5
6.2.3 Building Shared Libraries 6-6
6.2.4 Building a Supervisor-Mode Shared Library 6-6
6.2.5 Building a User-Mode Shared Library 6-7

6.2.6
6.2.7
6.2.8

6.2.5.1 Unmapped User-Mode Shared Libraries 6-7
6.2.5.2 Mapped User-Mode Shared Libraries 6-8
6.2.5.3 Multiple User-Mode Libraries in an Application 6-12
6.2.5.4 Building a Process to Reference a Shared Library 6-13

Building a Process to Reference a Supervisor-Mode Library 6-13
Building a Process to Reference One or More User-Mode Libraries 6-14
Debugging New Processes in Applications Having Shared Libraries 6-14

Chapter 7 Methods of Application Loading

7.1 Down-Line Loading the Application 7-1
7.2 Bootstrapping the Application from a Storage Device 7-3
7.3 Placing Your Application in PROM 7-5

Chapter 8 Using the MicroPower/Pascal Compiler

8.1 File Space Requirements .. 8-2
8.2 Compiler Invocation and Command Line Format 8-2

8.2.1 RSX Development System 8-2
8.2.2 VAX Development System 8-4
8.2.3 Command Line Usage Rules 8-7

8.3 Compilation Options . 8-7
8.3.1 Compilation Options in Source Program . 8-8
8.3.2 Command Line Options 8-9

8.3.2.1 Run-Time Checking Code (/CHeck:xxx) 8-9
8.3.2.2 Debug Symbol Information (/TJEbug) 8-9
8.3.2.3 Extended Statistics (/EXtra) 8-10
8.3.2.4 Filter Unused Declaration (/Fllter-decls) 8-10
8.3.2.5 Instruction Set (/INstr:xxx)•. 8-11
8.3.2.6 Compilation Listing (/[NO]List=file-spec) ;18-12

v

8.3.2.7 MACR0-11 Output Code (/MAcro) 8-12
8.3.2.8 No Real-Time Predefinitions (/NOpred) · 8-12
8.3.2.9 Output Object File (/[NO]Object=file-spec) 8-12
8.3.2.10 Listing Page Size (/PAge_size=page-size) 8-12
8.3.2.11 Generate Warning and Informational Errors (/[NO]WArnings) 8-12
8.3.2.12 Standard Pascal Only (/STandard) 8-13

8.4 Compilation Listing .. 8-13
8.5 Compiling Large Programs .. 8-16
8.6 P-sect Generation .. 8-19

Chapter 9 The Merge Utility Program

9 .1 Functions of MERGE 9-3
9.1.1 Resolving Intermodule Global References 9-3
9 .1.2 Updating Relocation Records . 9-4
9 .1.3 Resolving Object Library References . 9-4

9.1.3.1 Ordering of Multiple Object Libraries 9-5
9.1.3.2 Ordering of All MERGE Input Files 9-5

9.2 Role of MERGE in the Build Cycle 9-6
9.2.1 Merging the System Configuration File (Kernel) 9-6
9.2.2 Merging Each Static Process 9-7
9.2.3 Merging a Shared Library 9-7

9.3 Invocation and Use of MERGE 9-7
9.4 Section Map ... 9-10
9 .5 Merge Options . 9-12

9.5.1 Debug Symbols (/DE) 9-13
9.5.2 Include Module from Any Library (/IN) 9-14
9.5.3 Library File Identification (/LB) 9-15
9.5.4 Extract Modules from Specific Library (/LB:module: ...) 9-15
9.5.5 Module Name (/NM) 9-15
9.5.6 Supervisor-Mode Shared Library .STB File (/SL) 9-16
9.5.7 User-Mode Shared Library .STB File (/UL) 9-16
9.5.8 Version Number (/VR) 9-16

vi

Chapter l 0 The RELOC Utility Program

10.1 Functions of RELOC .. 10-2
10.2 Role of RELOC in the Build Cycle 10-3
10.3 Invocation and Use of RELOC 10-4
10.4 Relocation Map ... 10-7
10 .5 RELOC Options . 10-9

10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8
10.5.9
10.5.10
10.5.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18
10.5.19
10.5.20

Alphabetical Symbol Listing(/ AB) 10-12
Align First RW Section at 4K-Word Boundary(/ AL) 10-12
Debug Symbols (/DE) . 10-14
Starting Address of Read-Only Data Space (/DR:n) 10-14
Disable Section Sort (/DS) 10-14
Starting Address of Read/Write Data Space (/DW:n) 10-17
Extend Section to Specified Size (/EX) . 10-17
Separate Instruction and Data (I/D) Space (/ID) 10-17
Define User Library Base Address (/LS:name:addr) 10-18
Program/Process Name (/NM) 10-18
Base Address for Specified Program Section (/QB) 10-18
First RO Section at Specified Address (/RO) . 10-19
First RW Section at Specified Address (/RW) 10-19
Short Map (/SH) . 10-19
Supervisor-Mode Shared Library (/SL) . 10-20
Build User-Mode Shared Library (/UL[:addr]) . 10-20
Round Up Section Size (/UP) 10-20
Program Version Number (/VR:xxx) 10-20
Wide Map (/WI) . 10-20
Value of Undefined Locations (/ZR:nnn) 10-21

Chapter 11 The MIB Utility Program

11.1 Functions of MIB .. 11-2
11.1.1 Creating a Memory Image File 11-2
11.1.2 P ASDBG Load Format . 11-3
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9
11.1.10
11.1.11

Bootstrap Load Format . 11-3
PROM Programmer Format . 11-4
Installing Static Processes . 11-5
Installing Shared Libraries . 11-6
Installing a Bootstrap . 11-6
Removing a Bootstrap . 11-6
Creating a Map File . 11-6
Initializing the Debug Symbol File . 11-6
Installing Debug Symbols for a Static Process or Shared Library 11-7

vii

11.2 Role of MIB in the Build Cycle . 11-7
11.3 Invocation and Use of MIB . 11-8
11.4 MIB Options .. 11-11

11.4.1 Install Bootstrap (/BS) . 11-11
11.4.2 Exception Group Code (/GC) 11-12
11.4.3 Kernel Installation (/Kl) 11-12
11.4.4 Process Priority (/PR) 11-13
11.4.5 Align Specified Program Section (/QB) . 11-13
11.4.6 Remove Bootstrap (/RB) 11-14
11.4.7 Small Output Memory Image (/SM) 11-14

11.5 MIB Memory Map .. 11-14

Chapter 12 Making a Volume Bootable on the Target

12.1 Functions of COPYB .. 12-1
12.2 Invoking COPYB .. 12-2
12.3 The Copy-Boot Program (COPBOT) - 12-4

Chapter 13 DECNET. Down-Line Loading (RSX or VMS Only)

13.1 DECNET/Ethernet Down-Line Loading 13-2
13.2 DECNET /DDCMP Down-Line Loading 13-4

Appendix A Interaction of RELOC and MIB

A.1 Relocating Mapped Static Processes . A-1
A.2 Relocating Unmapped Static Processes A-5

Appendix B Extended Disk (XD) and DRV 11 (YA) Drivers

B.1 Extended Disk (XD) Driver . B-1
B.2 DRVl 1 (YA) Driver .. B-2

Appendix C .MIM File Format

Index

viii

Figures
1-1 Kernel Build Phase . 1-5
1-2 System-Process Build Phase 1-6
1-3 User-Process Build Phase 1-6
1-4 Application Image Loading . 1-8
3-1 Kernel Build Phase . 3-1
3-2 Build the Kernel ... 3-2
4-1 System-Process Build Phase 4-2
4-2 Build DIGITAL-Supplied System Processes : ... 4-4
5-1 User-Process Build Phase 5-2
5-2 Build User-Written Pascal Static Processes 5-2
6-1 Mapped Application, Relocatable User-Mode Shared Library 6-10
6-2 Mapped Application, Absolute User-Mode Shared Library 6-11
7-1 P ASDBG or Bootstrap Load Format .MIM File . 7-3
7-2 PROM Programmer Format .MIM File 7-5
8-1 Compilation Listing: Program with Errors, No /DE Option 8-14
8-2 Compilation Listing: Errors Removed, /DE Option Used to Show Statement

Numbers .. 8-15
8-3 Pascal Code and Heap Usage 8-17
9-1 MERGE Utility Input and Output Files 9-2
9-2 MERGE's Part in the Build Cycle 9-6
9-3 Sample MERGE Section Map with No Referenced Shared Libraries 9-11
9-4 Sample MERGE with a Referenced Shared Library 9-12
10-1 RELOC Utility Input and Output . 10-1
10-2 RELOC's Part in the Build Cycle 10-3
10-3 Sample RELOC Map of a Process Without I/D Separation or Shared Libraries . 10-8
10-4 Sample RELOC Map of a Process with I/D Separation 10-11
10-5 Sample RELOC Map of a Shared Library 10-13
10-6 Sample RELOC Map of a Process That References a Shared Library 10-16
11-1 MIB Utility Input and Output . 11-1
11-2 P ASDBG or Bootstrap Load Format .MIM File . 11-4
11-3 PROM Programmer Format .MIM File . 11-5
11-4 MIB' s Part in the Build Cycle . 11-8
11-5 Sample Unmapped MIB Memory Map with No I/D Separation or Shared

Libraries .. 11-15
11-6 Sample Mapped MIB Memory Map with No I/D Separation or Shared Librariesll-16
11-7 Sample MIB Memory Map with I/D Separation 11-17
11-8 Sample MIB Memory Map with a Shared Library 11-18
13-1 Application Image Loading 13-1
C-1 .MIM File Format . C-2

ix

Tables

4-1 Processes and Prefix Modules for All Targets . 4-3
8-1 Compilation Options for RSX-11 Host . 8-3
8-2 Compilation Options for VAX Host -. 8-5
9-1 MERGE Options ... 9-12
10-1 RELOC Options . 10-9
11-1 MIB Options .. 11-11

x

Preface
Structure of This Document

This manual describes the MicroPower /Pascal-RSX and MicroPower /Pascal-VMS software
packages and tells you how to use the MicroPower/Pascal tools for application development.
Where required, this manual describes differences in operating procedures for the two host
systems, RSX (Micro/RSX and RSX-llM/M-PLUS) and VAX/VMS.

Chapter 1 provides an overview of the Micro Power /Pascal development tools and runtime
software and of the MicroPower/Pascal development process.

Chapter 2 describes the operation of MPBUILD, a question-and-answer procedure that greatly
simplifies the task of building MicroPower/Pascal applications. You can use MPBUILD for most
applications.

Chapter 3 explains how to use the individual utility programs to build a MicroPower /Pascal
kernel image and briefly discusses how to optimize the kernel image so that it is as small as
possible for a given application.

Chapter 4 explains how to use the individual utility programs to build system processes (typically
device drivers).

Chapter 5 explains how to use the individual utility programs to build user processes.

Chapter 6 discusses the use of supervisor-mode and user-mode shared libraries and explains
how to build applications with instruction- and data-space separation.

Chapter 7 describes methods of loading application images.

Chapter 8 describes the MicroPower/Pascal compiler and its options.

Chapters 9, 10, and 11 contain detailed descriptions of the MERGE, RELOC, and MIB utility
programs and provide reference information on all build utility options. You may need some
of· these options, not covered in earlier chapters, when building applications for unusual target
configurations that cannot be handled by the MPBUILD automated build procedure.

Chapter 12 describes the COPYB utility and COPBOT's use.

Chapter 13 discusses DECNET /Ethernet and DECNET /DDCMP down-line loading, for RSX or
VMS only, as alternatives to the methods of application loading described in Chapter 7.

xi

Appendix A contains many examples of RELOC and MIB command lines, showing the proper
commands to use for several classes of application builds. You may want to refer to these
examples if you cannot use MPBUILD.

Appendix B briefly discusses the DRVl 1 (YA) device driver.

Appendix C illustrates and discusses the .MIM file format.

Conventions Used in This Document
The following conventions are used in this manual:

• In interactive examples, your input appears in boldface type to differentiate it from system
output.

• You terminate all your input, other than control characters, by pressing the RETURN key
(carriage return). The symbol used in this manual to represent a carriage return is <RET> .

• To produce certain needed control characters, you use a combination of the CTRL key and
an alphabetic key simultaneously. For example, holding down the CTRL key and typing Z
produces the CTRL/Z character. Such key combinations are represented in command lines
in the format <CTRL/x> -for example, <CTRL/Z> or <CTRL/C>.

• In descriptions of command syntax, uppercase letters represent fixed elements, such as
command names and options, which you must type as shown. Lowercase letters represent
a variable, such as a file specification, for which you must supply a value. Brackets ([])
enclose optional elements of a command; you can include an item in brackets or omit it as
appropriate. The ellipsis (...) represents repetition; you can repeat the item that precedes
the ellipsis.

• The capital letter 0 and the number 0 are so represented.

• Numeric values other than addresses are expressed in decimal, unless otherwise indicated.

• Address values are specified in octal, in conformance with standard PDP-11 practice.

xii

Chapter l
Introduction

The MicroPower/Pascal layered product is a set of software tools for developing real-time
applications for low-end, 16-bit target systems. The target system can be any PDP-11 Q­
bus microcomputer. MicroPower/Pascal-RSX software provides the development tools on
Micro/RSX and RSX-1 lM/M-PLUS; MicroPower/Pascal-VMS software, on VAX/VMS. The
MicroPower/Pascal-RSX and MicroPower/Pascal-VMS products have common or equivalent
components (Section 1.1) and are closely related to MicroPower/Pascal-RT, which provides
functionally equivalent capabilities on a single-user PDP-11 host system. This manual primarily
describes the development tools-compiler and build utilities-used in building an application
memory image for a target system.

MicroPower/Pascal is aimed at dedicated microprocessor or microcomputer applications in
such areas as process control, instrumentation, control logic, intelligent subsystems, and
robotics. You use a high-level language to develop the application code as a set of
cooperating concurrent processes that employ semaphore-based constructs for synchronization
and interprocess communication. The MicroPower /Pascal language is a superset of ISO Pascal,
with extensions for both real-time programming and modular implementation techniques. You
can also use the MACR0-11 assembly language for coding part or all of an application.

A MicroPower /Pascal application does not require a conventional operating system for its target
run-time environment. Instead, user-coded processes are combined, in the target memory image,
with the MicroPower /Pascal kernel-a set of executive modules capable of being· tailored and
ROMed-and with selected system processes such as device drivers. Thus, the application
does not incur the overhead costs associated with execution under a generalized operating
system. Using MicroPower/Pascal, you can achieve smaller and higher-performance solutions
for dedicated real-time applications than would be possible with conventional implementation
methods. In addition, applications developed with MicroPower/Pascal tools are ROMable. ·

Significant features described in other MicroPower/Pascal manuals are the following:

•
•

•

Extended Pascal as the primary implementation language

Optimizing Pascal compiler that generates efficient, ROMable code and supports modular
compilation

Compact and modular run-time executive (kernel)

Introduction 1-1

• Modern semaphore-based architecture for concurrent processing, permitting efficient multi­
tasking and fast real-time response

• DIGITAL-supplied system processes for device handling, clock service, and file system
support

• Flexible set of utilities for building and loading the application memory image

• High-level symbolic debugging of target system from the host system

• Optional target file system capability, compatible with RT-11

1.1 Overview of MicroPower/Pascal Components
MicroPower/Pascal software components comprise both host development tools and run-time
system software. The development tools are programs and command procedures that execute
on the host system and enable you to compile or assemble your target application programs,
build a target memory image, and load and debug your applications in the target system. Most
of the development tools used to build the memory image are RSX programs common to both
MicroPower/Pascal-RSX and MicroPower/Pascal-VMS.

The run-time software is the collection of DIGITAL-supplied system modules and processes
that form part of an application image and execute on the 16-bit target system. This software
provides the run-time executive support and device handling needed by user-written processes.
MicroPower/Pascal run-time support is included in the target memory image, as needed by a
given application, during the application build cycle.

The run-time system software is specific to the target system and is identical across all host
versions of the product. The commonality of run-time software, together with compatible host
development tools, means that an application image developed from a given set of sources will
execute the same whether developed in an RSX, VMS, or RT-11 host environment.

1. 1. 1 Application Development Tools
The major MicroPower/Pascal development tools are the following:

• The MicroPower/Pascal Extended Pascal compiler, which is either a PDP-11 program
running under RSX on a PDP-11 host or a VAX program running under VMS on a VAX
host. The Pascal source language supported on an RSX or VAX host is the same as that
supported by a MicroPower/Pascal-RT host system, and the object code generated by the
compiler on one host system is compatible with the code generated by the compiler on any
other host system.

The extended Pascal source language is described in the MicroPower /Pascal Language Guide.
The compiler command interface is described in Chapter 8 of this manual.

• The P ASDBG symbolic debugger, which is implemented in the mode native to the
host system on which it executes. PASDBG allows you to down-line load and debug
an application over a host-to-target serial line, using Pascal-like interactive debugging
commands. P ASDBG recognizes processes, Pascal data types, user-defined data types,
kernel structures, and target system states. It permits debugging source identifiers and
statements and displays data in its proper type. P ASDBG also permits you to down-line
load a memory image for independent execution with no host/target interaction.

1-2 Introduction

The command structure and use of P ASDBG are described in the MicroPower /Pascal Debugger
User's Guide. Minor differences in host/target line-setup requirements for each host system
are described in Chapter 1 of the installation guide for your host system.

• The MicroPower/Pascal application-build utilities MERGE, RELOC, and MIB, which together
allow you to build an application memory image for the target system. The build utility
programs transform object modules produced by either the MicroPower /Pascal compiler or
the PDP-11 MACR0-11 assembler into a loadable memory image and optionally provide
symbol information for high-level debugging.

Each execution of the three build utilities constitutes one step of the multistep, multiphase
application-building process referred to as the build cycle (Section 1.2.1). (Preceding steps
are editing and compiling/assembling.) In each phase, one component of the application
memory image-the kernel, a system process, or a user process-is merged, relocated as
required for the target environment, and installed in the memory image file. Each utility
provides options that permit combinations of the following target system characteristics:

Mapped or unmapped
RAM only or ROM/RAM memory
Debugging, down-line loading, or stand-alone configuration, relative to the host system

Depending on the options used in the build cycle, the application can be down-line loaded
from the host to the target for debugging or for independent execution, bootstrapped from
a target storage device, or blasted into PROM for permanent installation in the target.
(Software support for PROM blasting is not a component of the MicroPower /Pascal product
but is available separately for VMS.)

The direct use of the build utilities is described in Chapters 9, 10, and 11. As a convenient
(and likely) alternative to direct use, the build utilities can be run indirectly by means of
the MPBUILD command procedure.

• The MPBUILD command procedure, which integrates the use of the compiler, assembler,
and build utilities, automating the entire application-building process. MPBUILD conducts a
question-and-answer dialog and generates a customized build-command file based on your
responses. The generated command file executes the compiler or assembler and the three
build utilities as needed for each component of an application image.

The MPBUILD command procedure is described in detail in Chapter 2.

• The COPYB utility, which produces a bootable storage volume to be used for loading an
application from a target system device. This utility is described in Chapter 12.

Introduction 1-3

1. 1. 2 Run-Time System Software

MicroPower/Pascal run-time software is supplied primarily as object library modules that are
selectively included in the target memory image as needed for a particular application. This
software falls into three main categories: the kernel, system processes, and file system support
routines that are merged into user processes. The major run-time system components are the
following:

• The kernel, the processor-specific, executive portion of the MicroPower/Pascal run-time
system, manages the processor state, handles interrupts and traps, and schedules process
execution. On request from individual processes, the kernel provides the interprocess
synchronization and communication services, called primitives, which allow processes to
interact in a real-time environment. The kernel also manages the memory area in which
dynamic system data structures such as semaphores and ring buffers are created on behalf
of requesting processes.

The kernel is modular and can be tailored to the requirements of a specific application.
The kernel is supplied as a library of object modules. The two kernel object libraries are
PAXU.OLB for unmapped target systems and PAXM.OLB for mapped targets. You build
a kernel by first assembling a user-prepared configuration source file, containing a set of
configuration macro calls, together with one of the two MicroPower /Pascal system macro
libraries-CO MU .MLB for unmapped applications or COMM.MLB for mapped applications.
You then merge the system configuration file with the appropriate kernel library. The result
of the merge is a configured kernel object module, which you then relocate and install as
the first element of a memory image file. Successive phases of the build cycle add system
and user processes to the same memory image.

Chapter 3 describes the steps involved in building a kernel. The Micro Power /Pascal Run­
Time Services Manual provides a functional description of the kernel and configuration
files.

• MicroPower/Pascal device drivers are system processes that provide hardware-level support
for target 1/0 devices and device interfaces. The driver processes are supplied in object form
in two driver object libraries-DRVU.OLB for unmapped target systems and DRVM.OLB
for mapped targets.

You include in the target memory image only those drivers required for the application.
A driver process is built by merging a DIGITAL-supplied prefix module file-DLPFX.MAC
for the DL driver, for example-with the appropriate driver library. The prefix module
pulls the corresponding driver object module(s) from the library and configures it with
application-dependent hardware parameters such as vector and CSR addresses, and number
of units and controllers. The driver prefix modules contain user-modifiable default values
for those parameters. After the merged driver module is relocated, the process image is
installed in the memory image file.

Chapter 4 describes the steps involved in building a driver process. The MicroPower /Pascal
1/0 Services Manual provides a functional description of the device drivers and prefix files.

1-4 Introduction

1.2 Overview of the Development Process
Figures 1-1 through 1-4 illustrate the MicroPower /Pascal development process. The shaded
path in each figure represents a major phase of the process and indicates the principal
development tools involved. The development process is by nature highly iterative, since each
time an application memory image is built and a problem is discovered through debugging,
some or all phases of the process must be repeated to correct the problem and retest the
modified image.

1. 2. 1 The Build Cycle
Taken together, Figures 1-1 through 1-3 represent the application build cycle, the sequence
of steps and phases required to build or rebuild an application memory image. The kernel
build phase, shown in Figure 1-1, builds and installs a kernel in a new memory image file.
This phase is performed only once in any total build cycle, since just one component of the
memory image is involved. This phase can be bypassed in subsequent partial rebuild cycles
in which the kernel configuration need not be changed for the rebuilt image. Any time the
kernel is modified in any way, however-to reflect a target hardware configuration change, for
example-the application image file must be totally rebuilt, beginning with the kernel.

Figure 1-1 : Kernel Build Phase

System
process
prefix file

User
process OR

source code

source code

COMPILE

Pascal
source code

CODE/SYNTAX CHECK

process

M/R/M

User
static

process

HOST

BUILD
(MERGE!RELOCiMIB)

PASDBG

OR

COPYB
boot

OR I

Burn
PROMS

LOAD/DEBUG

I
I

I

I
I

TARGET

ML0-510A-87

The system-process build phase, shown in Figure 1-2, builds and installs DIGITAL-supplied
static processes in a memory image file initially containing only the kernel. This phase is
iterative; it is performed once for a system process in any total build cycle or any partial build
cycle starting with this phase. For example, if the application requires two system processes­
two standard 1/0 device drivers-the system-process build phase consists of a 2-component
"loop." The system-process build phase can be bypassed in subsequent partial rebuild cycles
in which neither the kernel configuration nor the system processes need be modified for the
rebuilt image-a rebuild in which only a user process bug is being fixed, for example.

Introduction 1-5

Figure 1-2: System-Process Build Phase

Configuration
file

EDIT

User
process

source code

Configuration
file

ASSEMBLE

Pascal
source code

CODE/SYNTAX CHECK

Mt RIM

Kernel

MtRtM

User
static

process

HOST

BUILD
(MERGE1RELOC'MIB)

PASDBG

OR

COPYB
boot

OR

Burn
PROMs

LOAD/DEBUG

I
I

I
I

I
I

TARGET

ML0-5108-87

The user-process build phase, shown in Figure 1-3, builds and installs the user-written static
processes in a memory image file initially containing the kernel and all required system processes.
This phase is iterative; it is performed once for a user process in any total or partial build cycle.
If the application requires five user processes, for example, the user-process build phase consists
of a 5-component ''loop."

Omission of a logically prior build phase implies that certain files have been preserved at an
intermediate point in a previous build cycle.

Figure 1-3: User-Process Build Phase

1-6 Introduction

Configuration
file

EDIT

System
process

prefix file

Configuration
file

ASSEMBLE

CODE/SYNTAX CHECK

M/R/M

Kernel

MtRtM

HOST

BUILD
(MERGEtRELOCiMIB)

PASDBG

OR

COPYB
boot

OR I

Burn
PROMs

LOAD/DEBUG

I
I

I

I
I

TARGET

ML0-510C-87

1.2 .. 2 Relationship of MPBUILD to the Build Cycle
As shown in Figures 1-1 through 1-3, each phase of the build cycle entails execution of the
MERGE, RELOC, and MIB utilities in that order, possibly preceded by a compilation or an
assembly. In combination, the three build utilities are similar to a linker or a task builder used
in developing a program for execution in an operating system environment. Although you
should understand the function of the individual build utilities, described in Chapters 9 through
11, ordinarily you will not need to run them directly. Instead, you can use the MPBUILD
command procedure to automate most of the application-building process.

The MPBUILD procedure conducts an interactive question/ answer dialog. Based on your
answers to the questions during the dialog, MPBUILD creates an intermediate command file
that, when executed, runs the compiler, assembler, and MicroPower /Pascal utility programs, as
required, to perform the many operations necessary for a full or a partial build. The generated
build-command files not only simplify the development process and eliminate the considerable
clerical burden otherwise involved but also serve a useful tutorial purpose as examples of
application building.

During the MPBUILD dialog, you specify the input to the various phases of the cycle; appropriate
system software libraries are supplied automatically. User input for a full build cycle consists
of the following:

• A system configuration file for the kernel build phase

• One or more device driver process prefix modules for the system-process build phase

• User program modules implementing user static processes, for the user-process build phase

The configuration, prefix, and program module files can be in either source or object form;
MPBUILD includes or omits the corresponding compilation or assembly step for any given
input module.

The several DIGITAL-supplied libraries required for building any given component of the image
are automatically included in the command lines generated by MPBUILD. You do not need to
specify any standard system input in the MPBUILD dialog.

MPBUILD is versatile enough to be used for building most applications, with very few exceptions.
Chapter 2 provides a detailed description of MPBUILD.

1.2.3 Loading and Debugging

Figure 1-4 shows the several ways that an application can be loaded into a target system, as
appropriate to its stage of development. Starting with a complete memory image file built with
symbolic debugging support, you can use P ASDBG to load the target system over a host/target
serial line and perform high-level debugging from a host terminal. Alternatively, you can use
PASDBG for down-line loading only-that is, to load from a memory image file built without
debug support and initiate target execution, with no subsequent host/target interaction.

Also, starting with a complete memory image file built without debug support, you can use
the MicroPower /Pascal COPYB utility to prepare a bootable storage volume on a suitable host
system 1/0 device. You can then move the volume to an identical or compatible device attached
to the target system and boot the application from there. Optionally, you can use the console
ODT capabilities of the target system, where available, for limited stand-alone debugging.

Introduction 1-7

Finally, for an application in a late stage of development and built for a final ROM/RAM
target environment, you can "burn" the read-only portion of the memory image into PROM
or EPROM chips, which are then installed in the target system. (The hardware and software
required for PROM programming are not parts of the MicroPower/Pascal product but are
available separately for VMS only.) Since only very limited possibilities exist for debugging an
application executing in a ROM/RAM environment, this form of application loading is generally
preceded by a considerable amount of development done on a comparable RAM-only target
system.

Figure 1-4: Application Image Loading

Configuration
file

Configuration
file

EDIT ASSEMBLE

System
process

prefix file
Prefix file

M/R/M

Kernel

M/R/M

DEC-supplied
static

MACR0-11 process

User
process OR

source code

source code

COMPILE

Pascal
source code

CODE/SYNTAX CHECK

M/R/M

User
static

process

HOST

BUILD
(MERGE/RELOC!MIB)

LOAD/DEBUG

1.3 Logical Devices for MicroPower/Pascal Files
1.3. 1 Logical Device MP: for MicroPower/Pascal-RSX

TARGET I

ML0-5100-87

On a Micro/RSX or RSX-llM/M-PLUS host system, the logical device name MP: is defined to
identify the default disk storage device on which all MicroPower/Pascal-RSX files are installed.
By installation default, all user-relevant files, such as the configuration and prefix source files
and macro and object libraries, reside in MP:[2,10]. (The system manager can override the
standard [2,10] UFD at software installation time, however.)

Several files that are accessed automatically by MPP ASCAL or P ASDBG, including PREDFL.P AS
and the TD bootstraps, reside in MPl:[l,l]. The MicroPower/Pascal-specific .TSK files are
normally installed in MPl:[l,54]. By installation default, MP: and MPl: point to the same
physical device.

1.3.2 Logical Device MICROPOWER$LIB for MicroPower/Pascal-VMS

On a VAX/VMS host system, the system logical device name MICROPOWER$LIB identifies the
physical device and directory on which all MicroPower/Pascal-VMS files reside. By installation
default, MICROPOWER$LIB is defined as a top-level directory on the system disk.

1-8 Introduction

1.4 User Set-Up Procedure for RSX and VAX/VMS
Before using any of the MicroPower/Pascal facilities under RSX or VAX/VMS, you should exe­
cute the command file LB:[l,2]MPSTART.CMD (if RSX) or MICROPOWER$LIB:MPSETUP.COM
(if VMS). The MPSETUP command procedure establishes logical command definitions such as
MPPASCAL, MPBUILD, and MPMERGE, described in later chapters, and for PASDBG. These
definitions allow you to invoke, in a convenient, shorthand fashion, the MicroPower/Pascal­
VMS executable components that reside in MICROPOWER$LIB. In addition, the compiler DCL
commands are installed.

Since you must execute MPSETUP once each terminal session in order to use the symbols
defined by it, you should place the following command line in your LOGIN.COM file:

$ CMICROPOWER$LIB:MPSETUP

Introduction 1-9

Chapter 2

MPBUILD Application-Building Procedure

MPBUILD is a comprehensive, flexible command procedure that you can use to build typical
MicroPower /Pascal application images with a minimum of effort. Before using MPBUILD, you
should read Chapter 1 for a general understanding of the application build cycle. ·

2. l Capabilities and Limitations of MPBUILD
MPBUILD allows you to perform either an entire application build cycle or selected portions of
a build cycle by responding to a series of questions. You do not specify any language-processor
or utility-program commands when using MPBUILD; the procedure synthesizes all required
build commands for you from your responses. MPBUILD produces as its output an indirect
command file that contains all the commands necessary to perform the requested build cycle.
MPBUILD allows for the following possibilities:

• A total build cycle to construct a complete application image starting with the kernel­
building phase and proceeding through the system-process and user-process build phases.
MPBUILD separates a total build cycle into two partial build cycles-one that produces,
primarily, a kernel image file containing the kernel and selected system processes, and one
that produces an application image file consisting of the contents of the kernel image file
plus user processes. Secondary output of both cycles consists of the corresponding symbol
table and debug files, as applicable.

• A partial build cycle, which builds just the kernel and, optionally, some device driver
system processes. The primary output is a kernel image file that can be used as input to a
subsequent partial build cycle.

• A partial build or rebuild cycle, which builds only the user processes using an existing
kernel image file as input. Optionally, you can add system processes to the output image
file at the same time. The primary output is an application image file. You can also add
one or more user processes to an existing application image. You use a previously built
application image file as input, as if it were a kernel image file. The primary output is a
new application image file. Section 2.2.3.1 gives directions for performing this form of build
operation, which involves special interpretation of certain MPBUILD questions.

MPBUILD Application-Building Procedure 2-1

Note
You should be aware that during the MPBUILD process, MPBUILD deletes
intermediate files and purges .MIM, .STB, and .DBG utility-program files.

The MPBUILD command procedure leads you through a question-and-answer dialog and then
generates a command file based on information gained both directly and by inference from your
responses. When executed, the generated command file initiates the required sequence of build
operations without further interaction on your part. The generated command file repetitively
invokes the compiler and/ or assembler and the MERGE, RELOC, and MIB utilities, as needed,
to accomplish all steps and phases implied by the MPBUILD dialog. Any error or warning
messages issued by those programs are displayed at your terminal.

MPBUILD automatically provides the most widely needed optional capabilities of the build
utility programs, allowing you to build most applications using MPBUILD alone. For some
applications, however, you may need to use the individual MERGE, RELOC, and MIB utilities,
either independently or in conjunction with MPBUILD. MERGE, RELOC, and MIB can be used
to add a static process to a memory image file already produced by MPBUILD-for example, to
add a specially relocated process. MERGE, RELOC, and MIB are described in Chapters 9, 10,
and 11. Alternatively, you may be able to edit certain commands in the command file generated
by MPBUILD to overcome a specific limitation.

The significant limitations of MPBUILD are the following:

• You cannot specify a user-supplied macro library for a MACR0-11 assembly step. You can,
however, use the MACR0-11 assembler to assemble the process in question prior to using
MPBUILD. The MPBUILD procedure automatically includes the DIGITAL-supplied system
macro libraries needed to assemble any user process.

• You cannot build a process that needs special, user-controlled address relocation.

• You cannot explicitly request any MACRO, MERGE, RELOC, or MIB options. MPBUILD
automatically generates all commonly required options as needed, however.

• For unmapped target systems with interspersed ROM and RAM memory, you cannot split
the RO or RW segment so that part of it is in one portion of memory and part in another.

• You cannot build multiple user-mode shared libraries.

• You cannot build a shared library without Pascal OTS included in it.

These limitations are not likely to prove troublesome. in common practice.

Note
For Version 4.0 or later of VMS, the file name field of a file specification
must not exceed nine characters, and the file type field must not exceed three
characters. For Version 4.0 or later of VMS, underscores (-) are not valid in file
specifications.

For all versions of VMS, dollar signs ($)are not valid in file specifications.

Also for VMS, any file names specified in response to any of the questions from
MPBUILD should not match any logical names defined in the process, group,
or system logical name tables. If such a match exists, VMS interprets the file
name as the logical. For example, VMS interprets a file name of "TT" as the
terminal. To resolve the conflict, include the file type with the file name. For
example, specify "TT .MAC" rather than "TT".

2-2 MPBUILD Application-Building Procedure

2.2 The MPBUILD Dialog
On an RSX development system, you invoke the MPBUILD.CMD command procedure as
follows:

>Gdev:[dir]MPBUILD

In this command format, dev:[dir] is normally MP:[2,10] by installation default. Your CLI mode
must be MCR when you execute MPBUILD.CMD and also when you execute the generated
command file.

On a VAX development system, you invoke MPBUILD.COM by entering its name at system
level, as follows:

$ MPBUILD

Use of the logical command symbol MPBUILD assumes that you have executed the
MPSETUP.COM symbol-definition file, as described in Section 1.4.

For both development systems, MPBUILD issues an identifying message and then begins its
question-and-answer dialog. The formats of the dialog produced by the two versions of
MPBUILD differ in minor respects; such incidental, system-dependent format differences are
mostly ignored in the following description.

2.2. 1 Dialog Structure
The MPBUILD dialog consists of a variable sequence of questions. Many of the questions are
conditional, either asked or bypassed depending on your responses to previous questions. The
dialog is divisible into five logical sections:

1. Kernel and global information

2. System processes

3. Shared library

4. User processes

5. Optional bootstrap

The questions in the first section have implications for the entire MPBUILD procedure and
affect the remainder of the dialog. The questions in that section elicit the following kinds of
information:

• The type of build to be generated-kernel/driver image only, application image only, or
both-and whether any system processes are to be added to an existing kernel image file

• File specifications for the kernel image file, system configuration file, application image file,
and output command file, as applicable

• General information about the target system and the application that has a global effect on
the command procedure to be generated, such as mapped or unmapped target, ROM/RAM
or RAM-only target, optimized kernel, hardware instruction options, and inclusion of
debugging support

Sections 2 through 5 of the dialog are conditional on the responses to certain questions asked
in the first section.

MPBUILD Application-Building Procedure 2-3

The system-process section determines the device drivers that are to be built and installed in
the kernel image file.

The shared library section requests any module or library you may wish to be added to the
shared library.

The user-process section requests file specifications for the Pascal PROGRAM and MODULE
files, and MACR0-11 processes, if any, representing user processes to be built and installed in
the application image. The files may be in either source or object form.

The bootstrap section of the MPBUILD dialog determines whether a device bootstrap is to be
installed in the application image and, if so, for which device. The bootstrap section is entered
only for an all-RAM application that does not include PASDBG support.

2.2.2 Options, Usage Rules, and Defaults
Many MPBUILD questions require a file specification as a response. The options /LIB, /LIST,
/OBJ, /MAP, /MAC, and /IDS can be appended to many user-input file specifications, as
appropriate to the context. The detailed dialog description in Section 2.2.3 indicates where the
options are applicable.

The meanings and effects of the options are as follows:

• The /LIB option indicates that a given input file is a user-supplied object library to be used
in a process merge step. If /LIB is specified, the file type default is .OLB instead of .PAS.
Alternatively, you can include the .OLB file type in the file specification.

•

•

•

•

•

The /LIST option requests, for a user-process source (.PAS or .MAC) file only, that a listing
file be produced in the corresponding compilation or assembly step of the build cycle. The
listing file is generated in the user's default directory. The /LIST and /OBJ options are
mutually exclusive. The /LIST option name can be abbreviated to /LIS.

The /MAC option indicates that the specified file is a MACRO source module. The module
will be assembled to produce an object module before used in the merge step. If /MAC is
specified, the file type default is .MAC instead of .PAS. Alternatively, you can include the
.MAC file type in the file specification.

The /OBJ option indicates that the specified file is an object file rather than a source (.PAS
or .MAC) file, in contexts where a source file specification is expected in the dialog. This
option bypasses the implied compilation or assembly step for the file in the generated build
cycle. If /OBJ is used, the file type default is .OBJ instead of .PAS. The /OBJ option can be
used to suppress the implied compilation or assembly, regardless of file type specification.
Alternatively, you can include the .OBJ file type in the file specification.

The /MAP option causes the RELOC utility to produce a relocation map. RELOC maps can
be generated for the kernel and for user processes, depending on where the /MAP option
is used. The .MAP file is generated in the user's default directory. RELOC maps are of use
primarily when when you debug a process implemented in MACR0-11.

The /IDS option can be used for user static processes with Jl 1-based targets to obtain
instruction- and data-space separation.

2-4 MPBUILD Application-Building Procedure

General MPBUILD usage rules are as follows:

•

•
•
•

•

In response to any question, you may request an explanation of the question by entering a
question mark (?).

Y or N is sufficient for an affirmative or a negative response, respectively .

In descriptions of user responses, a RETURN-only response is indicated by <RET> .

You can give your responses in either lowercase or uppercase; case is not significant. Literal
responses are indicated in the dialog description in uppercase, however, for clarity.

The MPBUILD command procedure does not verify the existence of any input file. Therefore,
to preclude any nonexistent-file errors during the build cycle, ensure that all input files exist
as specified in the dialog before executing the indirect command file produced by MPBUILD.
You can verify all file specifications by inspecting the generated command file.

Many MPBUILD questions have default responses, which are indicated as such by appearing
within brackets following the text of those questions. The format varies slightly, depending on
your host system. For example:

Do you wish to build a kernel? [yes]: (VMS dialog)
or

Do you wish to build a kernel?'. [S D:"yes"]: (RSX dialog)

The default response to this question is indicated as yes. To accept the default response for any
question, press the RETURN key.

A few questions accept only a limited set of alternative responses. In such cases, the alternatives
are indicated within braces, with the default, if any, following within square brackets. For
example:

Instruction set hardware? {NHD,FPP,EIS,FIS} [EIS]:
or

Instruction set hardware? {NHD,FPP,EIS,FIS} [S D"EIS"]:

The possible responses to this question are indicated as NHD, FPP, EIS, and FIS, with EIS as
the default.

2.2.3 Dialog Descriptio·n

2.2.3. 1 Kernel and Global-Information Section

The following questions make up the kernel/ global portion of the MPBUILD dialog.

Type "?" for help at any question.

Question 1: Do you want the long form of dialog? [no]:

Answer yes to get an explanation displayed before each question in the dialog. Alternatively,
you can get explanations of selected questions by responding with ? to a given question.

Response: Y, N, or <RET>

MPBUILD Application-Building Procedure 2-5

Question 2: Do you wish to build a kernel? [yes]:

Indicate whether you want to create a new kernel image file (yes) or want to begin the build
cycle with an existing, previously created input memory image (no). A no response implies that
a new application image will be built based on an existing kernel or application image file. (If
the existing input file contains an application image, you can add to existing processes.)

Response: Y, N, or <RET>

The answer to Question 2 determines whether Question 3 or 4 is asked.

Question 3: Kernel memory image file name? :

Specify a file name for the new kernel .MIM file. Your response names the new kernel/driver
image, symbol (.STB), and debug (.DBG) files to be created in the build cycle. Do not specify
a file type; directory or device information is optional. (You will be asked for the name of the
application .MIM file in a later question.)

Response: File specification with no file type or version. (No file options are applicable.)

Question 4: Input memory image file name? :

Specify a file name for the existing kernel or application .MIM file. Your response names the
existing input image, symbol (.STB) and debug (.DBG) files to be used in building the new
application image. Do not specify a .file type; directory or device information is optional. (You
will be asked for the name of the output application .MIM file in a later question.)

Response: File specification with no file type or version.

Question 5: System config file spec? [default]:

Specify the system configuration file you will use to build the kernel image-for example,
MP:CFDMAP.MAC (if RSX) or MICROPOWER$LIB:CFDMAP.MAC (if VMS). The default file
type is MAC; that is, source input is expected. (If the file is a source file, you get a chance to
edit it during the dialog.) Use the /OBJ option (or .OBJ extension), if appropriate, to indicate
that the input is an object file. Use the /MAP option to produce a relocation map of the kernel
(useful for MACRO process debugging).

Response: File specification; .MAC default. (/MAP and /OBJ are valid.)

Question 6: Do you wish to modify <file specified in 5 > ? [no]:

You may want to edit the system configuration file if it is a source file. If the response is yes,
you will enter EDT, with the specified file as input. (If the source of the fil~ is other than your
default directory, the new version of the file-the result of the edit-is written to your default
directory and is accessed from there in the build cycle.) If the response is no, the file specified
in (5) is used as is.

Response: Y, N, or <RET>

Question 7: Satisfied with edit? [yes]:

At this point, upon exit from the editor, you can either proceed to the next question (yes) or
repeat the editing session (no). If the response is no, you are returned to EDT, with the edited
file as input. (This question is asked each time you leave the editor.)

Response: Y, N, or <RET>

2-6 MPBUILD Application-Building Procedure

Question 8: Do you wish to build only the kernel/drivers? [no]:

Indicate whether you want to create the kernel image file only or want to create the application
image file also (complete build cycle). If an application image is being built, the kernel/driver
image will be copied from the kernel .MIM file to the application .MIM file before the user
processes and shared library, if any, are installed.

Response: Y, N, or <RET>

Question 9: Application memory image file name? :

Specify a file name for the application .MIM output file. (The name applies to the application
.DBG file, if any, as well.) Do not specify a file type; directory or device information is optional.
On completion of the build cycle, the application .MIM file will contain a copy of the kernel or
input application .MIM file contents plus the processes and shared library, if any, installed or
added in the user-process build phase.

Response: File specification with no file type or version. (No file options are applicable.)

Question 10: Output command file spec? [default]:

Supply a specification for the command procedure (.CMD if RSX, .COM if VMS) file that
MPBUILD will generate to invoke and control the actual build cycle. Following the MPBUILD
dialog, you can execute the generated command file to initiate the build cycle.

Response: File specification; .CMD (if RSX) or .COM (if VMS) default. (No file options are
applicable.)

Question 11: Mapped image? [no]:

Indicate whether the kernel and/or application images are to be built in mapped or unmapped
form. A yes response implies that the target system configuration includes memory-management
(mapping) hardware-for example, the KT-11 option on an LSI-11 /23 processor. The response
must match the specification for the MMU=YES /NO parameter of the PROCESSOR macro in
the system configuration file.

Response: Y, N, or <RET>

Question 12: Debug support required? [yes]:

Indicate whether the kernel and/ or application is to be built with P ASDBG symbolic debugging
support. If your response is no, no debug symbol (.DBG) files are created or used in the build
cycle. Your response must match the specification for the DEBUG=YES/NO parameter in the
SYSTEM configuration macro, which determines whether the debugger service module (DSM)
is included in the kernel.

Response: Y, N, or <RET>

Question 13: Optimize the kernel? [no]:

Indicate whether the kernel should be automatically optimized to include only the primitives
used by the application. If optimize is selected, the CONFIGURATION file SYSTEM macro
should specify OPTIMIZE= YES, and the PRIMITIVES macro should not be used.

Response: Y, N, or <RET>

MPBUILD Application-Building Procedure 2-7

Question 14: Does this system contain any ROM? [no]:

Indicate whether the kernel and/ or application is to be built for a ROM target environment
or for a RAM-only target. Your response must agree with the target memory configuration
described in the MEMORY macros of the configuration file used to build the kernel. The
response is used to determine certain build-utility command options.

Response: Y, N, or <RET>

Question 15: What is the base of ROM (octal address)? [O]

Specify the base address of the first (low-order) ROM segment in the target memory
configuration. This value will be used to relocate the kernel's initial read-only code section at
the proper physical address. Zero is the proper value for most target configurations (exception:
CMR21).

Response: Positive octal integer

Question 16: What is the base of RAM (octal address)? :

Specify the base address of the first (low-order) RAM segment in the target memory
configuration. This value will be used to relocate the kernel's initial read/write data section at
the proper physical address.

Response: Positive octal integer

Question 17: Instruction set hardware? {NHD,FPP,EIS,FIS} [NHD]:

Specify the instruction-set option to be used for compiling any Pascal user program. Your
response determines the type of OTS library used to merge a Pascal process, in addition to
supplying the compilation option.

Response: NHD, FPP, EIS, FIS, or <RET>

Question 18: LSI-11/2 mode on compilations? [no]:

Indicate whether the /IN:LS2 option is to be used for Pascal compilations. Answer yes only if
the target is an LSI-11 or LSI-11/2 and your response to the previous question was EIS or FIS.

Response: Y, N, or <RET>

Question 19: Build a shared library? [no]:

Indicate whether a shared library containing the required Pascal OTS modules and optionally
any user-specified modules should be included in the application build.

Response: Y, N, or <RET>

Question 20: Supervisor-Mode Library? [no]:

Indicate whether the shared library should execute in supervisor mode or user mode. Supervisor
mode is available only on Jl 1-based processors.

Response: Y, N, or <RET>

2-8 MPBUILD Application-Building Procedure

2.2.3.2 System-Process Section

This section consists of questions about device drivers and the system process. The three
questions specific to drivers are asked repeatedly in a loop. Providing a null response to the
first question terminates the section.

The dialog is as follows:

Beginning system-process section.

Question 21: Driver prefix file spec? :

Specify a prefix file for a DIGITAL-supplied system process (for example, a device driver) to be
built and installed in the kernel .MIM file or added to the output application .MIM file. The
prefix files, supplied in MP (RSX) or MICROPOWER$LIB (VMS), include:
ACPPFX.MAC Ancillary control process

DDPFX.MAC

DLPFX.MAC

DUPFX.MAC

DYPFX.MAC

KKPFX.MAC

KXPFX.MAC

NSPPFX.MAC

QNPFX.MAC

TTPFX.MAC

YFPFX.MAC

TU58

RL01/RL02

MSCP-class disk

RX02

Interface to Q-bus arbiter

KXTl 1-CA and KXJl 1-CA slave interface

Network services process

DEQNA Ethernet driver

Terminal driver (debug)

FALCON PIO port

A source file (MAC) is assumed unless you use the /OBJ option or .OBJ extension. A null
response- <RET> only-signifies "no more drivers" and terminates the prefix-file question
loop.

Response: File specification with a .MAC default or <RET> . (/OBJ is valid. If it is used, the
type default becomes .OBJ.)

Question 22: Do you wish to modify <file specified in 21> ? [no]:

Indicate whether you want to edit the prefix file. If you answer yes, you will automatically enter
EDIT /EDT, with a copy of the file as input. (When you exit, the output of the editing session
is placed in your current default directory, regardless of the location of the original file, which
might be MICROPOWER$LIB, for example.) If you answer no, the prefix file is assembled as is.

Response: Y, N, or <RET>

Question 23: Satisfied with edit? [yes]:

You now have the option of repeating the editing session (primarily in case you terminated the
previous editing with the QUIT command). If you answer yes, the dialog continues. If you
answer no, you will return to EDT, with the modified prefix file as input.

Response: Y, N, or <RET>

MPBUILD Application-Building Procedure 2-9

2.2.3.3 Beginning of User-Process Build Phase

The user-process build phase comprises the user-process sections of the dialog. This phase is
bypassed if an application image is not being built. At this transition point in the generated
build cycle, the kernel .MIM, .STB, and .DBG files are copied to the corresponding application
files preparatory to installing the user processes.

User Process Build Phase.

Beginning shared library section.

Question 24: Additional module or library?:

Specify a module or library to be added to the shared library; a Pascal source module is assumed
(PAS default). The following must be appended: /MAC for a MACRO source module, /OBJ
for an object module, /LIB for an object library file, and /LIST and /MAP are valid where
applicable.

Response: File specification; .PAS default. (/MAC, /OBJ, /LIB, and /LIST and /MAP may be
specified.)

2.2.3.4 User-Process Section

This section consists of four questions, which are asked repeatedly in two loops. The section is
bypassed if only a kernel/ driver image is being built.

The dialog is as follows:

Beginning user-process section.

Question 25: User process file spec? [default, if any]:

Supply a specification for a user-written static process file (Pascal program or MACRO module
containing the DFSPC$ macro). The default file type is .PAS unless the /MAC or /OBJ option is
used. The /IDS option may be used with Jl l-based targets to obtain instruction- and data-space
separation in the static process. The /LIST and /MAP options are applicable; /LIST produces
a compilation or assembly listing (.LST) file, and /MAP produces a relocation map (.MAP) file
for the process. A null response- <RET> only-signifies "no more processes," terminating
the user-process question loop.

Response: File specification; .PAS default. (/LIST, /MAC, or /OBJ, and /MAP are valid. If
/MAC or /OBJ is used, the default type is .MAC or .OBJ, respectively.)

Question 26: Additional module or library? :

Here you may specify an additional source, object, or library module to be merged with the
static-process file. The default file type is .PAS unless the /MAC, /OBJ, or /LIB option is used.
The /LIST option may be used on a source file to produce a compilation or assembly listing
file (.LIS type if VMS; .LST if RSX). A null response signifies "no more input," terminating the
single-question loop.

Response: File specification; .PAS default. (/LIST, /LIB, /MAC, or /OBJ may be specified.)

2-10 MPBUILD Application-Building Procedure

Question 27: Is this process a device driver? [no]:

Indicate whether the process needs to be built with driver mapping. Driver mapping is necessary
for any process that establishes an interrupt service routine (CONNECLJNTERRUPT or CINT$
primitive) in a mapped environment. A yes response implies that the DRIVER attribute was
specified in the PROGRAM heading or that PT$DRV was specified in the DFSPC$ macro.

Response: Y, N, or <RET>

Question 28: Build this process with the shared library? [yes]:

Indicate whether this user process is to be built with the shared library.

Response: Y, N, or <RET>

2.2.3.5 Bootstrap Section

This section consists of two questions about installation of a device bootstrap in the application
image file. The section is bypassed if debug support is included, the target system includes
ROM, or you are not creating an application image file. The dialog is as follows:

Question. 29: Include bootstrap? [yes]:

You may want a bootstrap installed in the application .MIM file in order to permit booting of
the application from a target system device. The COPYB utility must subsequently be used
to prepare the storage volume from which the application will be loaded. Do not include
a bootstrap if you intend to use P ASDBG to down-line "load and go" with the LOAD /EXIT
command.

Response: Y, N, or <RET>

Question 30: Bootstrap device? {DY,DD,DL,DU}:

Here you supply the bootstrap device name-DY for an RX02 device, DD for a TU58 device,
DL for an RL02 device, or DU for an RXSO or RDxx device.

Response: DY, DD, DL, or DU

2.2.3.6 End of Dialog

When you answer the last question in the dialog, MPBUILD constructs the required command
procedure to build your application and issues the following informational message:

MPBUILD-S-Command procedure generated - <command-file-spec>

Control returns to system level. You can then inspect the generated procedure or execute it
with the usual "@file-name" command.

Successful execution of the generated command procedure leaves you with the application .MIM,
.STB, and optional .DBG files, if any, in the location specified by your response to question
9. All intermediate files created during the build cycle are deleted except for the kernel/driver
image .MIM and associated .STB and .DBG files. Their location is determined by your response
to question 3.

Any errors encountered during the build cycle result in an error message from the appropriate
utility, followed by an exit from the generated command procedure, which also issues an error
message. An error in the build cycle sometimes causes some intermediate files that otherwise
would be deleted to be left in your directory.

MPBUILD Application-Building Procedure 2-11

2.3 Error Messages
The MPBUILD error messages are listed below in alphabetical order. Fatal errors are indicated
by the letter Fin the message heading; warnings, by the letter W.

Messages issued by MPBUILD-RSX are prefixed by the character "?"; messages issued by
MPBUILD-VMS are prefixed by the character "%". The prefix character is shown in the
following listing only for messages that are not common to both versions of MPBUILD.

°loMPBUILD-F-Build dialog aborted

Explanation: The MPBUILD procedure terminated because of an unrecoverable error
condition encountered during the build dialog.

MPBUILD-W-Conflicting options

Explanation: You specified two mutually exclusive options: /LIS and /OBJ, or /LIB and any
other option. Enter your response again.

%MPBUILD-W-lllegal flle specification

Explanation: Your response was not a syntactically valid file specification. You may have
inadvertently used a predefined logical name, for example. Enter your response again.

MPBUILD-W-lnvalid boot device; Enter DD, DY, DL or DU

Explanation: Self-explanatory; enter your response again.

?MPBUILD-W-lnvalid character in < fllespec>

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

?MPBUILD-W-lnvalid device spec

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

?MPBUILD-W-lnvalid flle name

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

?MPBUILD-W-lnvalid flle type

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

MPBUILD-W-lnvalid reply; Please enter NHD, FPP, EIS, or FIS

Explanation: Self-explanatory; enter your response again.

MPBUILD-W-lnvalid reply; Please respond Yes or No

Explanation: Self-explanatory; enter your response again (RETURN only for default).

2-12 MPBUILD Application-Building Procedure

MPBUILD-W-lnvalld or ambiguous option

Explanation: You used either an undefined option-something other than /LIB, /LIS, /OBJ,
or /MAP-or an option that is invalid for the context. Enter your response again.

?MPBUILD-W-lnvalld UFO

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

?MPBUILD-W-lnvalid version number

Explanation: Your response was not a syntactically valid file specification. Enter your
response again.

%MPBUILD-W-Merge command line may need editing

Explanation: Because of the number of additional modules or libraries specified for a given
process build, the length of the MERGE command line for that process may exceed the limit
set by MERGE (255 characters). You may be able to edit the line in the generated command
file to reduce its length, by deleting unneeded logical symbols, for example. Alternatively,
before running MPBUILD, you could use the MERGE utility to "premerge" several object
modules into one in order to reduce the number of individual modules input to MPBUILD
for the process in question.

%MPBUILD-W-Must specify positive octal value

Explanation: The value for the base of RAM must be a valid nonzero octal address; enter
your response again.

%MPBUILD-W-No application memory image file specified

Explanation: You responded with either RETURN only or nonprinting characters to the
request for a required file specification. Enter your response again.

%MPBUILD-W-No kernel memory image file specified

Explanation: You responded with either RETURN only or nonprinting characters to the
request for a required file specification. Enter your response again.

?MPBUILD-W-Options not allowed on file spec

Explanation: You specified an option on a file for which no options are valid.

MPBUILD Application-Building Procedure 2-13

Chapter 3
Building the Kernel

To build a kernel, you must perform the following steps:

1. Create or edit a system configuration file.

2. Assemble the configuration file.

3. Build the memory image file:

a. Merge the configuration file with the kernel library.

b. Relocate the kernel and create the kernel symbol table.

c. Construct, using MIB, a memory image file (.MIM) with the kernel installed.

These steps are shown in Figure 3-1.

Figure 3-1 : Kernel Build Phase

System
process

prefix file

User
process OR

source code

Prefix file

MACR0-11
source code

COMPILE

Pascal
source code

CODE/SYNTAX CHECK

process

User
static

process

HOST

BUILD
(MERGE 1RELOC1MIB)

PASDBG

OR

COPYB
boot

I
I

OR I

Burn
PROMs

LOAD/DEBUG

I
I

I

TARGET

ML0-510A-87

Building the Kernel 3-1

The steps involved in building the kernel image are described in detall below. You can use
MPBUILD to create a command procedure containing the proper sequence of commands to
build the kernel of your choice. Alternatively, you can run the editor, assembler, and MERGE,
RELOC, and MIB utilities yourself and type in the required commands.

Using MPBUILD is certainly the more convenient method. If your application requires special
features of MERGE, RELOC, or MIB that MPBUILD cannot handle, however, you may need to
edit the command file created by MPBUILD before running it, create your own command file,
or perform the entire operation manually.

Figure 3-2 illustrates the primary input and output files involved in each step. The user-specified
file names in the figure are arbitrary, matching the sample file names used in the descriptions
below.

Figure 3-2: Build the Kernel

CONFG1.MAC

EDIT +ASSEMBLE

KERNL1.MOB

KERNL1.STB 5 REf OC

for later KERNL1.PIM

merges --~ tB
<:
'

KERNL1.MIM
original

3. l Creating the Configuration File

' ' " KERNL 1.DBG
original

ML0-511-87

A system configuration file consists of a series of macro calls written in MACR0-11 assembly
language. The macros specify kernel software requirements such as free-memory resources,
primitive modules, and trap processors and describe the target hardware configuration. Chapter
4 of the MicroPower /Pascal Run-Time Services Manual describes the system configuration macros.
The configuration file determines the contents of the kernel object module (.MOB) file produced

3-2 Building the Kernel

in the MERGE step and supplies the kernel, and indirectly the MIB utility, with information
about the target hardware.

In particular, the DEBUG argument of the SYSTEM configuration macro specifies whether the
debugger service module (DSM) is to be included in the kernel. You must specify DEBUG=YES
when building an application with debug support and DEBUG=NO when rebuilding the
application for testing or use without debug support.

You can create a configuration file for your application by modifying one of the sample
· configuration files included in the distribution kit. These files are:
CFDCMR.MAC CMR21, with debug support

CFDFAL.MAC

CFDFPL.MAC

CFDKJU.MAC

CFDKTC.MAC

CFDMAP.MAC

CFDUNM.MAC

FALCON target, with debug support

FALCON-PLUS target, with debug support

KXJl 1-CA target, with debug support

KXTl 1-CA target, with debug support

Mapped LSI-11 target, with debug support

Unmapped LSI-11 target, with debug support

You can use KED, EDT, or another editor on your host system to create a configuration file
from scratch, but you will probably find it easier to modify one of the sample configuration
files, listed above and supplied as part of the MicroPower/Pascal distribution kit, to reflect your
target system's particular configuration. Choose the sample configuration file that is closest to
your target system, and use an editor to make any changes that your application requires.

3.2 Assembling the Configuration File
After you have tailored a configuration file to reflect your target hardware, assemble the
configuration source file together with one of the two MicroPower /Pascal system macro libraries:
COMU.MLB for unmapped applications or COMM.MLB for mapped applications.

If you do not use MPBUILD, assemble the configuration file with the following form of
MACR0-11 command:

>[MCR] MAC
MAC>CONFG1=mpp-lib:COMx.MLB/ML,user-dir:CONFG1

In the command line above, xis U for an unmapped application or M for a mapped application.
The MACR0-11 assembler uses the specified macro library, COMM.MLB or COMU.MLB, to
satisfy the macro references in CONFG l.MAC. The /ML option tells MACR0-11 that that file
COMx is a macro library file. The example assumes that your edited configuration file is named
CONFGl.MAC and that it resides in your default directory. In this example, the output of
assembling the configuration file is an object file called CONFGl.OBJ.

Note
This example and subsequent examples include in the command form the
symbol "mpp-lib:", which stands for a device/directory specification for a
MicroPower/Pascal library or other. DIGITAL-supplied file. In your own com­
mand lines, substitute a specification that is appropriate for your development
system. For a PDP-11/RSX development system, the appropriate substitution

Building the Kernel 3-3

for mpp-lib: would likely be "MP:[2,10]". For a VAX/VMS development system,
the standard substitution for mpp-lib: would be "MICROPOWER$LIB:". Those
locations reflect the standard installation defaults. Check with your system man­
ager if the MicroPower/Pascal development-software files-primarily libraries
and prefix modules-are not installed in those locations on your system.

In addition, the symbol "user-dir:" stands for an explicit user device/directory
specification where one is required because of the "stickiness" of device/ directory
specifications on input files.

3.3 Merge Configuration Object File with Kernel Library
You must merge the configuration object file with the version of the kernel module library that
matches your target system. The two versions of the kernel object library are PAXU.OLB for
unmapped targets and PAXM.OLB for mapped targets.

If you do not use MPBUILD, run MERGE as described below to merge the configuration object
file with either PAXM.OLB or PAXU.OLB. By merging the configuration object module with the
kernel library, you extract and configure the kernel library modules needed for your application.
The output of the merge is a customized kernel object module. Chapter 9 describes the MERGE
utility in greater detail.

General Command Format

or
>[MCR] NRG (RSX)

$ MPMERGE (VMS)

MRG>[mobfile][,mapfile][,auxfile]•infile[,infile~ •...]

Note
Throughout this chapter, command formats and examples assume that all
MicroPower /Pascal utility programs have been installed as RSX multiuser tasks
with the standard task names determined by installation procedure defaults. The
VAX/VMS program invocation names, such as MPMERGE, also assume that
you have executed the MPSETUP.COM procedure (Section 1.4). See Chapters
9 through 11 for further details about running the MicroPower /Pascal utility
programs.

3.3. 1 Merging the Kernel for a Mapped Target
Use the kernel object library P AXM.OLB for building a mapped kernel. The following command
example for building a mapped kernel assumes that your edited and assembled configuration
file is named CONFGl.OBJ and that the merged kernel object file is to be named KERNLl.MOB.
The inclusion of the /LB option with P AXM identifies it as a library file. The CTRL/Z response
to the second utility prompt shown in this example causes an exit from the utility. (The second
prompt will be omitted from subsequent utility command examples.)

>[MCR] MRG
MRG>KERNL1=CONFG1,mpp-lib:PAXM/LB
MRG><CTRL/Z>

3-4 Building the Kernel

3.3.2 Merging the Kernel for an Unmapped Target
Use the kernel object library P AXU.OLB for building an unmapped kernel. The following
command example assumes that your edited and assembled configuration file is named
CONFGl.OBJ and that the merged kernel object file is to be named KERNLl.MOB. The
name of the kernel object library is the only difference from the mapped example shown in
Section 3.3.1. The /LB option identifies PAXU.OLB as a library file.

>[MCR] MRG
MRG>KERNL1=CONFG1,mpp-lib:PAXU/LB

3.3.3 Merging the Kernel for Debugging
You must include the /DE option in the command line if you will be debugging the application
with the P ASDBG symbolic debugger. The debugger needs special kernel symbol information
that the /DE option of MERGE includes in the output object module.

>[MCR] MRG
MRG>KERNL1=CONFG1/DE,mpp-lib:PAXx/LB/DE

In the command line above, x is M for a mapped application or U for an unmapped application.

If you are planning to use P ASDBG with your application, remember that P ASDBG can be
used only with a RAM-only target. This restriction does not affect the way that you merge the
kernel, but you must keep the restriction in mind as you go on to use RELOC and MIB.

3.4 Relocate Kernel Module and Create Kernel Symbol Table
RELOC must subsequently process the kernel merged object (.MOB) file to create the kernel
image (.PIM) file and the kernel symbol table (.STB) file.

Use the RELOC utility to relocate the kernel object module and to produce a kernel image
(.PIM) file and kernel symbol table (.STB) file. You will need the .STB file for all subsequent
process MERGE steps and, if you are debugging, for producing the debug symbol (.DBG) file
in the following MIB step.

General Command Format

>[MCR] RLC (RSX)
or

$ MPRELOC (VMS)

RLC>[pimfile][,mapfile][,atbfile]-aobfile[,mimfile][/optiona]

3.4. 1 Relocating a Mapped Kernel

In a mapped application, the kernel's read/write memory (data) segment must be mapped
by page address registers (PARs) 4, 5, and 6. In the command line example shown below,
the relocation option /RW:lOOOOO ensures correct mapping of the kernel's data space. This
option forces the kernel's first read/write program section-the beginning of the read/write
segment-to start at virtual address 100000(octal), which corresponds to the base of PAR 4.
Memory segmentation and mapping conventions are described in Sections 2.1.6 and 2.1.7 of
the MicroPower /Pascal Run-Time Services Manual.

>[MCR] RLC
RLC>KERNL1,,KERNL1=KERNL1/RW:100000

Building the Kernel 3-5

The first KERNLl in the command line names the output image file, KERNLl.PIM; the second
names the output symbol table file, KERNLl .STB. The third KERNLl, to the right of the equal
sign, specifies the input object file, KERNLl.MOB.

RELOC physically combines and reorders program sections so that all read-only sections precede
all read/write sections prior to their relocation.

When you relocate a mapped application, no distinction needs to be made between a RAM-only
target and a ROM/RAM target. MIB will map the read-only and read/write sections to the
appropriate physical addresses.

3.4.2 Relocating an Unmapped Kernel
When you relocate an unmapped kernel, the approach you need for a RAM-only target system
differs slightly from the one you need for a ROM/RAM target system. The sections below
illustrate the differences.

Unmapped RAM-Only Target System

>[MCR] RLC
RLC>KERNL1, ,KERNL1=KERNL1

The first KERNLl in the command line names the output image file, KERNLl.PIM; the second
names the output symbol table file, KERNLl.STB. The third KERNLl, to the right of the equal
sign, specifies the input object file, KERNLl.MOB. No RELOC options are required, since all
memory is RAM-only, and unmapped applications have no special addressing requirements.
The RW segment of the kernel can immediately follow the RO segment-both in RAM memory.

Unmapped ROM/RAM Target System

For an unmapped ROM/RAM application, you must provide a physical RAM address at
which RELOC is to begin the kernel's read/write data segment. In the unmapped ROM/RAM
command line example shown below, the relocation option /RW:ram-base supplies that address;
ram-base represents an octal address value. This option forces the kernel's first read/write
program section to begin at the specified RAM address. Ordinarily, you would specify the
lowest RAM address in your target memory. The only constraint on the address, however, is
that it must be the base of a contiguous RAM storage area large enough to contain the entire
kernel data segment.

>[MCR] RLC
RLC>KERNl.1,,KERNL1=KERNL1/RW:ram-base

The first KERNLl in the command line names the output image file, KERNLl.PIM; the second
names the output symbol table file, KERNLl.STB. The third KERNLl, to the right of the equal
sign, specifies the input object file, KERNLl.MOB.

3-6 Building the Kernel

3.4.3 Relocating the Kernel for Debugging
The /DE option of RELOC processes the debug symbol information, called internal symbol
directory (ISO) records, contained in the .MOB file and includes that information in the .STB
file along with the kernel's global-symbol definitions. If you plan to use PASDBG, be sure to
include the /DE option in the RELOC command line.

>[MCR] RLC
RLC>KERNL1,,KERNL1=KERNL1/DE

The /DE option is not appropriate for a ROM/RAM target, since PASDBG can be used only
with an application image built for a RAM-only target.

3.5 Create Memory Image (.MIM) File
MIB must subsequently process the relocated kernel (.PIM) file and the kernel symbol table
(.STB) file to create a memory image (.MIM) file. MIB can create a memory image (.MIM) file
in one of three formats:

•

•

•

PASDBG load format: RAM-only memory image, no bootstrap in .MIM file, debugger
service module (DSM) included in the kernel for "load and debug" or not included for "load
and go" (LOAD /EXIT)

Bootstrap load format: RAM-only memory image, appropriate bootstrap in the .MIM file,
no DSM in the kernel

PROM programmer format: ROM/RAM memory image, no bootstrap in .MIM file, no DSM
in the kernel

The parameters specified in the MEMORY and SYSTEM macros of the configuration file used
to build the kernel define the type of memory image finally constructed.

You need a memory image file in PASDBG load format if you intend to use PASDBG either
to load and debug your application or to load it for independent execution. In either event,
you do not install a bootstrap in the memory image file. A bootstrap is unnecessary because
P ASDBG uses the host-resident TD bootstrap to down-line load the image.

You need a memory image file in bootstrap load format if you intend to boot and load the
application image from a target system disk or TU58 DECtape II.

You need a memory image file in PROM programmer format if you intend to place the
application in PROM chips.

Use the MIB utility program and specify the /KI option to create and initialize a memory image
file containing the kernel image. If you intend to debug the application with P ASDBG, you
must also specify a .STB file as input and a debug symbol (.DBG) file as output.

The /SM (SMall image) option is generally recommended. It limits the size of the .MIM file
created in this step to the minimum needed for installing the kernel image. Then, in subsequent
MIB steps, you use the "small" .MIM file as input, and MIB creates a new, larger copy as output.
At any time, the .MIM file is only as large as it needs to be to contain the information in it. If
you do not specify /SM, MIB creates a .MIM file that corresponds in size to the total amount
of target memory specified in the configuration file.

Building the Kernel 3-7

The /SM option allows you to conserve file space while retaining interim versions of the
memory image in a compact form, either for backup or for use in a later partial-rebuild cycle.
In addition, there is no point in ending up with a final .MIM file that is larger than the file
space required by the installed program components.

If you have limited disk space, however, creating an initial full-size .MIM file into which you
install components may be more efficient. By creating the full-size file, you do not need space
for both an input and an output .MIM file when running MIB; although /SM may produce a
smaller file, the disk space savings may be more than offset by the need to have both an input
and an output file during the .MIM file creation process.

General Command Format

>[MCR] MIB (RSX)
or

$ MPMIB (VMS)

MIB> [outmim] C. map:file] C. dbg:f ile] • [pim:file] C. inmim] C. atb:file] [/options]

3.5. 1 Creating a Memory Image for Debugging or Down-Line Loading
Debugging

If you specify a .DBG output file when you create the .MIM file containing the kernel, MIB
creates and initializes the debug symbol file and places the kernel symbols in it.

The debug symbol (.DBG) file is an image-mode file in a special tree-structured format. The
symbolic debugger, P ASDBG, uses the information in this file to find and interpret the
locations and structures you specify symbolically during debugging operations. When you
invoke P ASDBG to down-line load and debug a memory image from the host development
system, the debugger loads all or part of the debug file into host memory as needed.

If you want .DBG file output from MIB, you must include a kernel symbol table file (.STB) as
input in the kernel build phase. The kernel .STB file must contain debug symbol information
(ISD records) as well as the normal global symbol definitions (GSD records) for the kernel.
RELOC produces the kernel .STB file, from which MIB produces the initial portion of the .DBG
file. The /DE option must be used in both the MERGE and RELOC steps for the kernel.

The following example shows the basic form of a MIB command line used to create a memory
image file for loading and symbolic debugging on a RAM-only target. Presumably, the debugger
service module (DSM) has been included in the kernel image; this action is controlled by the
configuration file (Section 3.1). The example is applicable to either a mapped or an unmapped
application.

>[MCR] MIB
MIB>KERNL1,,KERNL1=KERNL1,,KERNL1/KI/SM

In this example, the first KERNLl names the output memory image file, KERNLl.MIM; the
second KERNLl names the output debug symbol file, KERNLl.DBG. The third KERNLl in the
command line specifies the input kernel image file, KERNLl.PIM; the fourth specifies the input
symbol table file, KERNLl.STB. The .STB file must be included as input in order to produce the
output .DBG file. In this step, you must use the /KI (kernel installation) option; it indicates to
MIB that the .PIM file contains a kernel image rather than a process image. MIB will create and
initialize a new .MIM file and .DBG file instead of looking for existing files with the specified
name(s).

3-8 Building the Kernel

In this step, MIB copies the kernel debug records from the .STB file to the new debug file, in
a special tree-structured format. In subsequent MIB steps, debug records for successive user
processes are added to the existing debug file; that is, the same file is used for output throughout
the build cycle and is updated in place.

Down-Line Loading

To create a memory image file for down-line loading only, using PASDBG's "load and go"
capability (LOAD /EXIT command), you must have configured the kernel without the DSM
when editing the configuration file. (If the kernel included the DSM, the application would
load into the target but would not execute.) Also, you can omit the .DBG and .STB files in the
current MIB operation and in all subsequent MIB steps, since a debug symbol file would be of
no use. In this case, the MIB command line would be:

>[MCR] MIB
MIB>KERNL1=KERNL1/KI/SM

3.5.2 Creating a Memory Image for Booting
The following example shows the basic form of a MIB command line used to create a memory
image file with a bootstrap installed. You can use this type of .MIM file for booting the
application from a target TU58, RL01/RL02, RXSO, RDxx, or RX02 device, after processing the
completed· file with the COPYB utility. See Chapter 7 for information on methods of loading
the application.

>[MCR] MIB
MIB>KERNL1=KERNL1/KI/SM/BS: 11 bootstrap-filespec 11

The quote signs enclosing the bootstrap file specification in the /BS (bootstrap) option are
, required if the file specification contains device/directory information-implying an embedded

colon (:) or comma (,)-as, for example, in the specification MP:[2,10]DYBOTU.BOT or
MICROPOWER$LIB:DYBOTU.BOT.

The DIGITAL-supplied bootstrap files are as follows:
DDBOTU Unmapped TU58 bootstrap

DLBOTU Unmapped RLOl /RL02 bootstrap

DYBOTU

DUBOTU

DDBOTM

DLBOTM

DYBOTM

DUBOTM

Unmapped RX02 bootstrap

Unmapped MSCP-class disk bootstrap (RXSO, RDxx)

Mapped TU58 bootstrap

Mapped RLOl /RL02 bootstrap

Mapped RX02 bootstrap

Mapped MSCP-class disk bootstrap (RXSO, RDxx)

These files have the file type .BOT, which is the default for the /BS option.

In this example, the first KERNLl names the output memory image file, KERNLl.MIM; the
second KERNLl specifies the input kernel image file, KERNLl.PIM. The /KI option must be
used in this step, as explained in the preceding section. The /BS option of MIB installs the
bootstrap contained in the specified file at the beginning of the .MIM file before installing the
kernel. DDBOTx is the TU58 (radialjserial protocol) bootstrap, used for booting from a DECtape

Building the Kernel 3-9

II cartridge. DYBOTx is the RX02 bootstrap, used for booting from a diskette, DLBOTx is the
RL01/RL02 bootstrap, and DUBOTx is the MSCP-class disk bootstrap (RX50, RDxx).

Note
P ASDBG uses the host-resident TD bootstrap for down-line loading an
application image. You must not install any bootstrap in the .MIM file if
you intend to use it with P ASDBG for either debugging or load and go.

This example assumes that the configuration file used in the kernel MERGE step describes the
target memory as RAM-only and specifies DEBUG=NO in the SYSTEM macro, so that the kernel
image does not contain the debug~er service module (DSM).

A bootstrap can be added to a memory image at any point in the development process; the
addition does not have to be made in the kernel installation step. (See sections on the /BS
option in Chapter 11.)

If you install a bootstrap in your application, you must be sure that certain memory requirements
are met. First, an unmapped target system must have at least 3584 (7000 octal) contiguous
bytes of memory, starting at location 0. A mapped target system must have at least 4096
(10000 octal) contiguous bytes, starting at location 0. Normally, that requirement should never
be a problem. Second, the highest contiguous 512 (1000 octal) bytes of memory on the target
system must not be initially loaded by your application. Unless you deliberately place part of
your program at the very top of memory or you use almost all the memory on the target, that
requirement should never be a problem in normal use either. You should nonetheless be aware
of these restrictions.

3.5.3 Creating a Memory Image for a ROM/RAM Environment
The following example shows the basic form of MIB command line for creating a memory image
file to be used for ''programming" PROM chips.

>[MCR] MIB
MIB>KERNL1=KERNL1/KI/SM

In this example, the first KERNLl names the output memory image file, KERNLl.MIM, and the
second KERNLl specifies the input kernel image file, KERNLl.PIM. MIB creates the .MIM file
and installs the kernel image in it. The /KI option must be used in this step, as explained in
Section 3 .5 .1.

This example assumes that the configuration file used in the kernel macro step describes the
target memory as a mixture of ROM and RAM-with at least enough zero-based ROM to
accommodate the kernel code and pure-data (read-only) segment. The example also assumes
that the kernel image does not contain the debugger service module (DSM).

3-10 Building the Kernel

3.6 Optimizing the Kernel
The most convenient method for optimizing the kernel is to use MPBUILD and respond
to the "Optimize the kernel?" question by typing YES. By this means, the execution of
MPBUILD's resulting command file will automatically optimize the kernel by including only the
primitives used by the application. The CONFIGURATION file SYSTEM macro should specify
OPTIMIZE=YES, and the PRIMITIVES macro should not be used. Should you choose not to
use the automatic method of optimizing the kernel, please read the remainder of this chapter
for alternative means.

You can use MERGE's optional auxiliary output file to build a kernel that includes only the
primitive service routines that your application uses, thus minimizing the size of the kernel.
Using the MERGE auxiliary file method to optimize the kernel primitives is an alternative to
using the PRIMITIVES macro in the system configuration file.

Developing an application generally involves several build/ debug/rebuild cycles, in which you
must repeatedly debug and rebuild various static processes, possibly add or delete processes, and
modify certain kernel configuration parameters such as PACKETS and STRUCTURES. During the
early development phases, you might accept the kernel configuration default of "all" primitive
routines, or you might achieve an approximate optimization by means of the PRIMITIVES
macro. After the application is complete and largely debugged, you may want to rebuild the
image to exclude from the kernel all primitives unused by any process in the application. This
involves a special use of MERGE to' produce object files that contain only unsatisfied process
references to kernel entry-point symbols. The MERGE auxiliary output capability allows you to
produce such a file.

The general procedure is as follows:

1. Perform a merge operation for each static process in the application, but do not merge.
the kernel .STB file with the processes. In each of those merges, request only an auxiliary
output (.AUX) file, which will contain the unresolved global references that would otherwise
have been satisfied by the kernel .STB file. (You do not need to generate any output .MOB
files.) Together, the auxiliary files for all static processes will contain references to all the
primitive service modules needed in your application's kernel.

2. Next, merge a specially modified configuration file together with all of the auxiliary files
and the kernel library to create the optimized kernel .MOB file, relocate the .MOB file to
obtain an optimized kernel .PIM and .STB file, and install the optimized kernel image with
MIB.

3. Finally, rebuild and install all the static processes, using the optimized kernel symbol table
(.STB) file in the MERGE step for each process.

In more detail, the steps involved in building an optimized kernel by this method are as follows:

1. Repeat the merge operation for each static process in the application, but do not merge
the kernel .STB file with the processes, and omit the output .MOB file. Instead, request an
auxiliary output (.AUX) file as shown in the following sample command lines:

MRG>,,xxDRV=xxDRV,mpp-lib:DRVx/LB
MRG>,,APASX=APASX,mpp-lib:FILSYS/LB,LIBxxx/LB
MRG>,,BPASX=BPASX,mpp-lib:FILSYS/LB,LIBxxx/LB
MRG>,,CPASX=CPASX,mpp-lib:FILSYS/LB,LIBxxx/LB
MRG> ...

The auxiliary output files will contain all references to kernel routines in the application.

Building the Kernel 3-11

2. Edit your system configuration file, if necessary, as follows:

a. Change the arguments in the SYSTEM macro to OPTIMIZE=YES and DEBUG=NO.

b. Include the RESOURCES macro and optionally the TRAPS macro.

c. Delete the PRIMITIVES macros, if any.

Specifying DEBUG=NO excludes the debugger service module from the kernel, although
you can still optimize even with DEBUG=YES. Specifying OPTIMIZE=YES causes kernel
optimization by means of the RESOURCES, TRAPS, and PRIMITIVES macros, but omission
of the PRIMITIVES macros results in no primitive modules being referenced by the
configuration file. (See Section 4.1 of the MicroPower /Pascal Run-Time Services Manual
for more information on editing the configuration file.) Assemble the configuration file.
Merge the configuration file with the auxiliary files and the kernel module library (P AXU
or P AXM) to create the optimized kernel .MOB file, as in the following example command
line:

MRG>OPTKRN=OPTCFG,xxDRV.AUX,APASX.AUX,BPASX.AUX,CPASX.AUX, ... PAXx/LB

In the kernel merge, the primitive references in the .AUX files will cause only those
primitive modules called on by your application's processes to be included from PAXU.OLB
or PAXM.OLB.

3. Complete the build cycle, starting with the kernel relocation step (Section 3.4), using
OPTKRN.MOB.

3-12 Building the Kernel

Chapter 4
Building System Processes

After building the kernel, you are ready to build the DIGITAL-supplied system processes your
application needs. To build a DIGITAL-supplied system process, you must perform the following
steps:

1. Edit the prefix file for the required driver or system process.

2. Assemble the edited prefix file with COMU /ML.

3. Build the memory image file.

a. Merge the prefix file with the correct driver library and with the kernel symbol table
generated when you built the kernel (see Chapter 3).

b. Relocate the system process.

c. Install, using MIB, the system process in the memory image (.MIM) file containing your
configured kernel.

d. Repeat for each additional system process required.

The steps involved for each system process are described below. Normally, debug support
is not included, since the system processes are already debugged. Figure 4-1 illustrates the
system-process build phase.

Building System Processes 4-1

Figure 4-1 : System-Process Build Phase

Configuration
file

EDIT

Configuration
file

ASSEMBLE

source code

CODE/SYNTAX CHECK

M!RIM

Kernel

HOST

BUILD
(MERGE RELOC MIB)

4. l Edit System Prefix Module

PASDBG

OR

COPYB
boot

OR I

Burn
PROMs

LOAD/DEBUG

I
I

I

I
I

TARGET

ML0-5108-87

The DIGITAL-supplied system I/O device driver processes are listed in Table 4-1. These
processes are supplied in object form in two object module libraries:

DRVM.OLB for mapped targets

DRVU.OLB for unmapped targets

As shown in Table 4-1, each system process has a corresponding prefix module file in MACR0-
11 (.MAC) source form. The prefix module has two functions in a system-process MERGE
step-to select the required object module from the DRVx.OLB driver library and to supply that
module with device-specific parameters, such as CSR/vector addresses.

For each system process to be included in your application, you must inspect and possibly
modify the matching prefix module and then assemble it. For example, to build the RX02 (DY)
device driver into your application, edit the DY prefix module DYPFX.MAC as needed to reflect
your target hardware, and assemble the module. The MicroPower /Pascal I/O Services Manual
describes each prefix module in detail and explains the default parameters that you may need
to modify.

Table 4-1 shows the DIGITAL-supplied system processes for mapped and unmapped PDP-11
targets and the prefix modules that should be merged with them. Figure 4-2 shows the build
phase for DIGITAL-supplied system processes.

4-2 Building System Processes

Table 4-1: Processes and Prefix Modules for All Targets

Process Device Name Prefix Module

ADVll or AXVll A-to-D converter AD ADPFX.MAC

Asynchronous DDCMP cs CSPFX.MAC

TU58 DECtape II DD DDPFX.MAC

RL02 disk DL DLPFX.MAC

MSCP disk DU DUPFX.MAC

RX02 diskette DY DYPFX.MAC

KXTll-CA and KXJll-CA arbiter/slave protocol KK KKPFX.MAC

KWVl 1 real-time clock KW KWPFX.MAC

KXTll-CA and KXJll-CA arbiter/slave protocol KX KXPFX.MAC

TMSCP tape MU MUPFX.MAC

KXTl 1-CA and KXJll-CA DMA transfer controller QD QDPFX.MAC

DEQNA Ethernet interface QN QNPFX.MAC

DZ and DHV-11 serial line interface TT TTPFX.MAC

Virtual memory VM VMPFX.MAC

DRVll-J (four ports) parallel line interface XA XAPFX.MAC

IEQl 1-A instrument bus interface XE XEPFX.MAC

DPVl 1 synchronous serial line XP XPPFX.MAC

KXTll-CA/KXJll-CA synchronous serial line inter- XS XSPFX.MAC
face

DRVl 1-B DMA interface YB YBDRV.MAC

SBC-11/21 parallel line interface YF YFPFX.MAC

KXTl 1-CA and KXJl 1-CA parallel port timer/ counter YK YKPFX.MAC

See Appendix B for information on building the Pascal extended disk (XD) driver and the Pascal
DRVll (YA) driver.

Building System Processes 4-3

Figure 4-2: Build DIGITAL-Supplied System Processes

xxPFX.PAS
or

xxPFX.MAC COM~.MLB (if assembling)

t /
EDIT+ ASSEMBLE

or COMPILE

u •
DRVM.OLB> xxPFX.OBJ:;

. c ME:RGE ~
I'(

xxHANID.MOB ,,,,,/'

RE}oc I

xxHAND.PIM

MIB

KERNL1.MIM
new copy

KERNL 1.STB
from 1st
RELOC

KERNL1.MIM

(unmapped only)

KERNL1.MIM
(for new copy)

ML0-512-87

4.2 Assembling System Prefix Modules
A prefix module written in MACR0-11 must be assembled with either the COMU.MLB or the
COMM.MLB system macro library.

You can use the following form of MACR0-11 command to assemble the DYPFX.MAC file, for
example:

>[MCR] MAC
MAC>DYPFX=mpp-lib:COMx.MLB/ML,user-dir:DYPFX

In the command line above, x is U for an unmapped application or M for a mapped application.
As explained previously, the symbols mpp-lib: and user-dir: denote appropriate device/directory
specifications as required for the input files. The example assumes that the output file,
DYPFX.OBJ, is to be created in your default directory.

4-4 Building System Processes

4.3 Merging System Prefix Modules with the System Process
Library

After editing and assembling or compiling a system prefix module for a driver, merge the prefix
object module with the kernel symbol table that you created during the kernel merge step (see
Chapter 3) and with the appropriate device driver object library. You must include the kernel
symbol table file to resolve references to primitive services in the kernel. The DRVx library
supplies the required driver object module(s). The two device driver object libraries are as
follows:

• DRVU.OLB for an unmapped LSI, FALCON, KXTll-CA, or KXJll-CA target system

• DRVM.OLB for any mapped target system

General Command Format

>[MCR] MRG (RSX)
or

$ MPMERGE (VMS)

MRG>[mobfile][.mapfile][.auxfile]•infile[.infile2 •.. .]

The examples below merge the DY (RX02) driver prefix object module, DYPFX.OBJ, with the
DRVU or DRVM library and a kernel symbol table, KERNL1.STB, created when you relocated the
kernel (see Chapter 3). The output is the merged device driver object module DYHAND.MOB.

Mapped System

> [MCR] MRG ·
MRG>DYHAND=DYPFX,KERNL1.STB,mpp-lib:DRVM/LB

Unmapped System

>[MCR] MRG
MRG>DYHAND=DYPFX,KERNL1.STB,mpp-lib:DRVU/LB

System process symbols are not ordinarily used in user-level debugging, so you typically do not
specify the /DE option when mer~ng system processes.

4.4 Relocating and Installing System Processes
After merging the system-process prefix file with the appropriate library files and kernel symbol
table file, use RELOC to relocate the resulting merged object module (.MOB) file. This operation
produces a device driver process image (.PIM) file to install in the application memory image
(.MIM) file that contains your configured kernel.

RELOC and MIB each play a role in assigning addresses to a static process. The two utilities
have a certain amount of interaction, and it is helpful to see the combinations of RELOC and
MIB commands that you use to build various types of target applications.

For a mapped application, RELOC assigns only virtual addresses. By default, the RO segment
has a zero origin, and the RW segment addressing is contiguous with the RO segment. For
mapped drivers, special RELOC options must be used to satisfy the addressing requirements
of driver mapped processes. MIB assigns actual physical addresses when you install the static
process in the memory image.

Building System Processes 4-5

If the application is unmapped, however, RELOC needs physical start addresses to which it
can relocate ~ead-only (RO) and read/write (RW) segments. Unlike RELOC for a mapped
application, RELOC for an unmapped application assigns actual physical addresses; MIB merely
installs the static-process image in the .MIM file.

After you have used the /KI option of MIB to create a memory image file, you use MIB to install
any system processes that your application requires, one at a time, in that memory image.

For an unmapped memory image, the placement of the new process in the image is
predetermined by the physical addresses already assigned by RELOC. For a mapped memory
image, however, MIB determines the placement of the new process, based on first available
space in the image, and sets up the process's virtual-to-physical memory mapping (PAR values)
accordingly. .

General Command Format

>[MCR] RLC (RSX)
or

$ MPRELOC (VMS)

RLC>[pimfile][.mapfile][.atbfile]-aobfile[.mimfile][/optiona]

In both examples given in the following sections, the first DYHAND names the output
process image (.PIM) file DYHAND.PIM; the second specifies the input merged object file
DYHAND.MOB created in the previous merge step.

4.4. 1 Relocating a Mapped System Process
>[MCR] RLC
RLC>DYHAND=DYHAND/R0:40000/RW:60000

The special relocation options /R0:40000/RW:60000 are needed to ensure correct mapping of
the driver's code and data segments according to the requirements for driver mapped processes.
These two options force the driver's code (read-only) segment to be mapped by PAR 2 and its
data (read/write) segment to be mapped by PAR 3. The /R0:40000 option forces the driver's
first read-only program section-the beginning of the code segment-to start at virtual address
40000, corresponding to PAR 2. The /RW:60000 option forces the driver's first read/write
program section to start at virtual address 60000, corresponding to PAR 3.

The size of a device driver's code segment is limited to 4K words, the address range of a single
PAR. The same is true for the data segment. See Chapter 2 of the MicroPower /Pascal Run-Time
Services Manual for information about driver/ISR mapping.

4.4.2 Relocating an Unmapped System Process
>[MCR] RLC
RLC>DYHAND=DYHAND,KERNL1

In this example, KERNLl specifies the memory image file created in the previous merge phase,
KERNLl .MIM, as input. Specification of this file allows RELOC to obtain the physical starting
address(es) it needs for relocating the unmapped process. RELOC searches the existing .MIM
file-the one to be used in the subsequent MIB step-to find the next available memory locations
in which the process can be installed. That is the normal, "automatic" method of using RELOC
when you are building an unmapped process; it works for both RAM-only and ROM/RAM
targets.

4-6 Building System Processes

4.4.3 Installing System Processes in Memory Image
After merging and relocating the system process, use MIB to add the process to the memory image
(.MIM) file containing your configured kernel and any previously installed system processes.

General Command Format

>[MCR] NIB (RSX)
or

$ MPMIB (VMS)

MIB>[outmiml[.mapfile][,dbgfile]•[pimfile][,inmim][,atbfile][/optiona]

In the following example, the DY driver process image is installed in a new copy of the .MIM file
created in the initial MIB step. The example is applicable to either a mapped or an unmapped
application.

>[MCR] MIB
MIB>KERNL1=DYHAND,KERNL1/SM

The first KERNLl in the command line names the output .MIM file; the second specifies the
existing KERNLl.MIM file as input. Because an input .MIM file is specified, MIB creates a
new output file, copies the contents of the existing .MIM file into it, and then installs the
DYHAND.PIM process image.

4.5 Repeating the System Process Build
Your output .MIM file now contains a configured kernel and one system process. Repeat the
steps outlined in this chapter to install as many additional system processes in the .MIM file as
your application requires. You can save a copy of the .MIM file at any point to use in other
build cycles. For example, you may want to build two applications that are the same except
for one or two processes. Build a .MIM file containing all the processes that are the same for
both applications; then you can use that .MIM file as a base for adding the processes that are
different in the two applications.

If you give the output .MIM file the same name as the input .MIM file, MIB creates a new
higher-numbered version. Unless you want to keep the input .MIM file for input to another
partial-rebuild cycle starting at the build point reflected in that .MIM file, using the same name
is probably the most straightforward approach. If you do want to save the input .MIM file for
use in other builds, however, you will probably want to give the output file a different name,
such as APPLC2.

Building System Processes 4-7

Chapter 5
Building User Processes

After building the kernel and system processes, you are ready to build the user-written processes
your application needs. Building user-written processes is much the same as building system
processes, described in Chapter 4. To build a user-written process, perform the following steps:

1. Create your own static-process source file(s).

2. Compile or assemble the source file(s).

3. Build the memory image file:

a. Merge the resulting .OBJ file(s) with the correct OTS library, if necessary, and with the
kernel symbol table you created while building the kernel (see Chapter 3).

b. Relocate the user static process.

c. Install, using MIB, the user static process in the memory image file containing your
configured kernel and other system and user processes.

4. Repeat for each additional user process.

These steps are shown in Figure 5-1.

The steps involved for each user process are described below. Figure 5-2 illustrates the build
phase of user-written Pascal static processes.

Building User Processes 5-1

Figure 5-1 : User-Process Bulld Phase

Configuration
file

EDIT

System
process

prefix file

Configuration
file

ASSEMBLE

CODE/SYNTAX CHECK

M/R/M

Kernel

MtRtM

HOST

BUILD
(MERGEtRELOCtMIB)

PASDBG

OR

COPYB
boot

OR I

Burn
PROMS

LOAD/DEBUG

I
I

I

Figure 5-2: Build User-Written Pascal Static Processes

USERP1.PAS

KERNL 1.STB ~ FILSYS.OLB

from 1st USERP1.0BJ LIBxxx.OLB

RELOC

APPLC1.MIM
(unmapped USERP1.MOB

.........

'~~
only)

APPLC1.MIM
USERP1.PIM USERP1.STB

/
/

" '\.
APPLC1.MIM ' APPLC1.DBG

new copy updated

ML0-513-87

5-2 Building User Processes

I
I

TARGET

ML0-510C-87

5. l Compiling or Assembling Static-Process Source Files
5. 1. 1 Compiling

Use the MicroPower/Pascal compiler to compile a user process written in Pascal. Chapter 8
provides a complete description of compiler operation.

General Command Format

>[MCR] MPP (RSX)
or

$ MPPASCAL (VMS)

MPP>[objfile][.liatfile]•aourcefile[/optiona] (RSX)
or

MPP>MPPASCAL/OBJECT-B/LIST•C A (VMS)

In the following example, the source file USERPl .PAS is compiled for a target system with
Extended Instruction Set (EIS) hardware, and debug symbol information is included in the object
file for eventual use by the P ASDBG symbolic debugger. The example is applicable to either a
mapped or an unmapped application.

or

> [MCR] MPP
MPP>USERP1•USERP1/DE/IN:EIS (RSX)

MPP>MPPASCAL/OBJECT•USERP1/DEBUG/INSTRUCTIONS•(EIS) USERP1 (VMS)

The compiler /DE option includes debug symbol information for both local and global source
symbols in the object file. The /I:EIS option specifies the target system instruction set; other
values for /IN: include NHD (default}, FIS, and FPP. No list file is requested in the example.

5. 1.2 Assembling
Use MACR0-11 to assemble a user process written in MACR0-11 assembly language. Unlike
the MicroPower /Pascal compiler, the MACR0-11 assembler does not generate the type of
debug symbol information needed by PASDBG. The /EN:DBG option of MACR0-11 produces
a different type of debug symbol records and should not be used.

User processes must be assembled with the standard MicroPower/Pascal COMU.MLB or
COMM.MLB macro library. In the following example, the source file USERP2.MAC is assembled,
producing the object file USERP2.0BJ.

>[MCR] MAC
MAC>USERP2=mpp-lib:COMx.MLB/ML,user-dir:USERP2

In the command line above, COMx is COMM for a mapped application or COMU for an
unmapped application.

Building User Processes 5-3

5.2 Merging Static Processes
Each static-process .OBJ file must be merged with the kernel symbol table created by RELOC
in the kernel build phase. Static processes written in Pascal must also be merged with a Pascal
object-time system (OTS) library. The seven MicroPower/Pascal OTS libraries supplied with
your MicroPower/Pascal kit consist of the following:

• LIBFPP.OLB, FP-11 floating-point hardware

• LIBFIS.OLB, FIS floating-point hardware

• LIBEIS.OLB, EIS hardware

• LIBNHD.OLB, no special hardware

• SUPEIS.OLB, EIS supervisor mode

• SUPFPP.OLB, FPP supervisor mode

• FILSYS.OLB, file system interface

Use the OTS library that matches your target hardware instruction set. In addition, you must
specify the file system library FILSYS.OLB just before the OTS library in the MERGE command
line.

General Command Format

or
>[MCR] MRG (RSX)

$ MPMERGE (VMS)

MRG>[mobfile] [,mapfile][,auxfile]•infile[,infile~][/optiona]

In the following example, the USERPl .OBJ module, compiled from Pascal source code in Section
5.1.1, is merged with the files needed to satisfy its external references:

>[MCR] MRG
MRG>USERP1=USERP1/DE,KERNL1.STB,mpp-lib:FILSYS/LB,LIBEIS/LB

The KERNLl.STB file satisfies references to kernel primitive service entry points. FILSYS.OLB
contains the appropriate file IJO routines. The LIBEIS.OLB library file satisfies references to OTS
modules; MERGE includes the corresponding OTS routines in the output file. (The USERPl
source file was compiled with the /IN:EIS option in the previous step.) The /DE option is
used only on the USERPl.OBJ module. Ordinarily, you would not want debug symbols for the
globals of the OTS routines contained in LIBxxx.OLB or FILSYS.OLB. You should not use the
/DE option on an .STB file in any event, since those symbols are normally already in the .DBG
file.

The following example shows the analogous command line for merging the USERP2.0BJ
module, which was assembled from MACR0-11 source code in Section 5.1.2:

>[MCR] MRG
MRG>USERP2=USERP2/DE,KERNL1.STB

If MERGE finds no valid debug records in an input module, as it will not with a MACR0-11
module, MERGE generates them for the global symbols of that module. The only difference
between this example and the preceding, Pascal-oriented, one is that no object-time or file
system library is required for user processes written in assembly language.

5-4 Building User Processes

You can also merge your own user object library with the other required object files, as in the
following example:

>[MCR] MRG
MRG>USERP3=USERP3/DE,KERN.STB,USERLIB/LB/DE,mpp-lib:FILSYS/LB,LIBxxx/LB

If you use the /DE option on an object library, as in this example, MERGE includes DBG
records from the object library on a module-by-module basis, as required by the application.

5.3 Relocating and Installing Static Processes
RELOC and MIB each play a role in assigning addresses to a static process. The two utilities
have a certain amount of interaction, and it is helpful to see the combinations of RELOC and
MIB commands that you use to build various types of target applications.

For a mapped application, RELOC assigns only virtual addresses. By default, the RO segment
has a zero origin, and the RW segment addressing is contiguous with the RO segment. MIB
assigns actual physical addresses when you install the static process in the memory image.

If the application is unmapped, however, RELOC needs physical start addresses to which it
can relocate read-only (RO) and read/write (RW) segments. Unlike RELOC for a mapped
application, RELOC for an unmapped application assigns actual physical addresses; MIB merely
installs the static-process image in the .MIM file.

After you have used the /KI option of MIB to create a memory image file containing a kernel
(Chapter 3) and used MIB to install any system processes that your application requires (Chapter
4), use MIB to install static-process images, one at a time, in that memory image. MIB links the
static processes into the kernel's static-process list, updates the memory allocation table, and
removes the memory used by the process from the kernel's free-memory list.

For an unmapped memory image, the placement of the new process in the image is
predetermined by the physical addresses already assigned by RELOC. For a mapped memory
image, however, MIB determines the placement of the new process, based on first available
space in the image, and sets up the process's virtual-to-physical memory mapping (PAR values)
accordingly.

MIB can also install, in the optional debug symbol (.DBG) file, debug symbol information for
a given process. MIB processes the optional .STB file generated by RELOC for each relocated
process to format the debug symbol information specific to that process and add it to the .DBG
file. Here again, use the /DE option in the MERGE and RELOC steps for the process in question
and also in the compilation step in the case of a Pascal process.

The following sections summarize the RELOC and MIB command lines, then give a series
of command examples for most build situations that you are likely to encounter. If you use
MPBUILD, of course, the proper commands for RELOC and MIB are generated automatically.

Building User Processes 5-5

5.3. 1 The RELOC Command Line
Use RELOC to relocate each static process before you install it in the memory image file.

General Command Format

>[MCR] RLC (RSX)
or

$ MPRELOC (VMS)

RLC>[pimfile][.aapfile][.atbfile]-mobfile[.•imfile][/optiona]

If the application is unmapped, RELOC needs physical starting addresses to which it can
relocate read-only (RO) and read/write (RW) segments. (Normally, the RO and RW segments
can be placed contiguously in memory except in the ROM/RAM case.) RELOC can obtain
the needed address information by inspecting the existing .MIM file in order to find the next
available memory location(s) in the current memory image. To allow RELOC to do this for an
unmapped process, you must include the name of the existing memory image file-USERPl,
for example-as an input in the command line.

For a mapped application, RELOC assigns only virtual addresses. By default, the RO segment
has a zero origin, and the RW segment addressing is contiguous with the RO segment. (The
/RO and/or /RW options can be used to override the default virtual addressing if needed, as
for a driver mapped process.) If the mapped process is to be used in a mixed ROM/RAM
configuration, however, the RELOC command requires the /AL option, which starts the RW
(RAM) segment on a 4K-word virtual address boundary. The examples below relocate the
USERPl.MOB file for differing environments. The mapped examples assume a process with
general, privileged, or device-access mapping. (Section 4.4.1 shows how to relocate a driver
mapped process.)

Mapped - RAM-only

RLC>USERP1 •• USERP1•USERP1/DE

Mapped - ROM/RAM

RLC>USERP1•USERP1/AL

Umnapped - RAM-only

RLC>USERP1•USERP1.USERP1/DE

Umnapped - ROM/RAM

RLC>USERP1•USERP1.USERP1

The command line in the two RAM-only examples requests a symbol table output file,
USERPl.STB, as well as the process-image output file, USERPl.PIM. You need to specify
a symbol table file as output if you want debug symbol information for the static process. MIB
requires the symbol table input in the following step in order to update the debug symbol file.
You must also specify the /DE option to cause RELOC to place the debug information in the
symbol table file. You omit both the .STB file and /DE in the ROM/RAM cases, since they are
not needed; PASDBG cannot be used with an application in ROM, of course.

The effect of the/ AL option in the mapped ROM/RAM case is to begin the read/write segment
of the process at the first available 4K-word address boundary following the last virtual address
assigned to the read-only segment. (The read-only segment is automatically origined at virtual
address 0 by default.) This ensures that the end of the process's RO segment and the beginning
of its RW segment are mapped by different page address registers, which allows MIB to allocate

5-6 Building User Processes

the segments in ROM and RAM, respectively. For example, if PAR 3 is the highest-numbered
PAR used for the process's code and pure data, the /AL option forces the mapping of the
process's impure data to begin with PAR 4.

(The RELOC command line for a process written in MACR0-11 is the same as for one written
in Pascal.)

5.3.2 The MIB Command Line
Use MIB to install static processes in the memory image after relocating them with RELOC.

General Command Format

>[MCR] MIB (RSX)
or

$ MPMIB (VMS)

MIB>[outmim] [,mapfile][,dbgfile]•[pimfile][,inmim][,atbfile][/optiona]

MIB adds the current process to the memory image. You can specify the debug file as output
in the MIB command line to add this static process's symbols to the debug file you created
when you built the kernel. You can use P ASDBG to symbolically debug only those processes
for which you include debug information in the application debug file.

The example below creates a new copy of the existing memory image file APPLCl.MIM,
containing the "old" memory image with the new static process USERPl added. The example
does not produce a map file but does include debug information for the current process in the
debug symbol file (APPLIC.DBG). The result is an updated application memory image in which
the input static process is installed along with the kernel and the previously installed processes.
(The example is applicable to either a mapped or an unmapped application.)

>[MCR] MIB
MIB>APPLC1,,APPLC1=USERP1,APPLC1,USERP1/SM

On the left-hand, or output, side of the equal sign, the first APPLCl names the output .MIM
file; the second APPLCl specifies the existing APPLCl.DBG file, which will be updated in place
with additional debug symbols. On the right-hand side of the equal sign, the first USERPl
specifies the input USERPl.PIM file, APPLCl specifies the existing APPLCl.MIM file, and the
second USERPl specifies the USERPl.STB symbol table file created in the preceding RELOC
step. (You must specify an input .STB file if you specify an output .DBG file.) You can omit
both the .DBG and the .STB files when building an application without debug support, as for a
ROM/RAM target system.

For an unmapped memory image, the placement of the new process in the image is
predetermined by the physical addresses already assigned by RELOC. For a mapped memory
image, however, MIB determines the placement of the new process, based on first available
space in the image, and sets up the process's virtual-to-physical memory mapping (PAR values)
accordingly. MIB creates a new output .MIM file, copies the contents of the existing .MIM file
into it, and then installs the USERPl.PIM process image.

Since the output .MIM file was given the same name as the input .MIM file in the example, MIB
creates a new higher-numbered version. If you want to save the original .MIM file, you must
either specify a different name for the output .MIM file or copy the original .MIM file before
issuing the MIB command line. In addition, because a .DBG file is specified as output, MIB
processes the debug records contained in the USERPl.STB file and adds the modified records

Building User Processes 5-7

to those already in the existing KERNLl.DBG file. If you want to save the original .DBG file,
you must copy it before issuing the MIB command line. This is necessary because the .DBG file
is updated in place.

If you are continuing the build discussed in Chapters 3 and 4 and this is the first user
process, this example assumes that you have already copied the kernel/system-process .MIM
file, KERNLl .MIM, to APPLCl.MIM and the .DBG file, KERNLl.DBG, to APPLCl.DBG.

5.4 Repeating the User Process Build
Your output .MIM file now contains a configured kernel, the required system processes, and
one user static process. Repeat the steps outlined in this chapter to install as many additional
user static processes in the .MIM file as your application requires.

5.5 Debugging and Rebuilding the Application
You must specify certain options when building your application if you plan to use P ASDBG to
debug it. Regardless of the method used to build the application, you must specify DEBUG=YES
in the kernel configuration file when building an application for debugging. You can then use
MPBUILD to build the application, or you can run MERGE, RELOC, and MIB yourself. Be sure
to build the .MIM file in PASDBG load format.

The debug phase of application development generally involves iterative debugging and
rebuilding operations. You will probably find that you have to debug and rebuild various
static processes several times-some processes more times than others. Each time you modify
a static process to fix a bug and then rebuild the application, you will no doubt want to use
the debugger again to retest the modified application image. Therefore, you would rebuild
"from scratch," without P ASDBG support, only when the application is fully debugged in its
host-dependent form and you are ready to down-line load and test a stand-alone version.

When you replace one or more user processes with modified versions, you do not need to
perform a complete image rebuild. You can use the previously built kernel/driver .MIM, .DBG,
and .STB files, assuming that they were saved, and start the rebuild at the user process phase.
You then rebuild only the user processes and add them to a copy of the original kernel/driver
image. The MPBUILD procedure facilitates that by subdividing the entire build cycle into two
partial build cycles, one for building a kernel/ driver image and one for building a complete
application image. These partial cycles can be performed separately or together.

At some point in the development of an application, you may need to modify the original kernel
software configuration. For example, your application may require a larger kernel common­
memory pool than was originally estimated. You may also choose to optimize the kernel's
primitive service modules in order to reduce the size of the kernel. Any change to the kernel
implies the need to rebuild all system and user processes as well-that is, to perform an entire
build cycle.

If you modify the target hardware in any way, you will also need to do a complete rebuild. For
example, if you add to target memory, change from an unmapped to a mapped system or vice
versa, change the number of devices supported, or change interrupt vector locations, you need
to change the configuration file-and possibly some system-process prefix files-and rebuild the
kernel and all processes.

5-8 Building User Processes

When you build the final kernel and will no longer be debugging with P ASDBG, you must
specify DEBUG=NO in the SYSTEM macro of the configuration file. This action excludes the
DSM from the kernel. All processes will again have to be rebuilt. At this point, you would
probably want to recompile all Pascal-implemented processes without the /DE option to allow
the compiler to perform full optimization. This action can reduce the size of some processes
significantly, as well as increase their execution speed. If you use the individual build utilities
rather than MPBUILD, you no longer ne~d to specify the MERGE and RELOC /DE options in
any phase. A debug symbol table is not required, so no .STB files need be input to MIB, and
no .DBG file need be specified as output. The only .STB file needed at this point is the one
RELOC creates for the kernel in the final kernel build phase. This file is needed for all process
MERGE steps to resolve the process-to-kernel references with the latest kernel address values.

When you perform the final rebuild, you may install a bootstrap in the application .MIM file,
for subsequent processing by the COPYB utility, if the stand-alone version of the application is
to be loaded from a target system boot device. You will not install a bootstrap if the image is to
be down-line loaded using the P ASDBG LOAD /EXIT command, for initial stand-alone testing.

Building User Processes 5-9

Chapter 6

Separation of Instruction and Data Space, and
Shared Library Files

You can build your Micro Power /Pascal applications with several space-saving and virtual­
space-expanding options. These include user-mode shared libraries, a supervisor-mode shared
library running in supervisor mode on Jl 1-based processors, and use of hardware separation of
instruction (I) and data (D) space on Jl 1-based processors.

This chapter discusses these techniques and their limitations and interaction. For purposes of
focusing on the topics of I/D separation and shared libraries, the examples in this chapter do
not show debug support. The method of specifying debug support in these examples, however,
parallels the method in the Chapter 5 examples.

A shared library is a single copy of a group of subroutines in memory, capable of being shared
by a number of processes. Shared libraries were added to MicroPower/Pascal primarily to
permit the sharing of OTS routines among Pascal-implemented processes; in the most general
case, however, a shared library can include other subroutines that you may wish to share among
processes as well, subject to certain restrictions outlined later in this chapter.

Special considerations are involved in configuring your kernel for a J11-based processor if you
want to use I/D separation or supervisor-mode shared libraries. You must properly define
the "type" and "mmu" parameters in the PROCESSOR configuration macro to enable support
for these features. In addition, you must understand certain terminology. In particular, you
must be careful to distinguish between "running on a Jll processor" and "configured for a J11
processor." The latter phrase means that you have specified parameters in the configuration
file to enable support for I/D separation and supervisor-mode libraries and implies that the
resulting application must run on a Jl 1 or equivalent processor. The former phrase, on the
other hand, does not necessarily mean that the application has separation of instruction and
data space or a supervisor-mode library; nor does it imply that the application is mapped, only
that the application is running on a Jl 1 processor.

PROCESSOR macro arguments have four relevant combinations, as follows:

• type=Jl1, mmu=yes-Enables full J11-based processor features, including supervisor mode
and I/D separation. Use this combination when you want I/D separation and supervisor

Separation of Instruction and Data Space, and Shared Library Files 6-1

•

•

•

mode. The terms "configured for a Jll processor" and "Jll mapping" refer to this choice of
parameters.

type=L1123, mmu=yes-Treats a Jll-based processor as though it were a mapped LSI-
11/23, without supervisor mode or I/D separation. Use this combination when you want
to run on a Jl 1 and do not want I/D separation or supervisor mode, but you do want
memory mapping.

type=Jll, mmu=no-Treats a Jll-based processor as though it were an unmapped LSI-11/2
or LSI-11/23 without supervisor mode or I/D separation. Use this combination when you
want to run on a Jl 1 processor but do not want mapping, J/D separation; or supervisor
mode.

type=Ll 123 or Ll 12, mmu=no-Equivalent to type=Jl l, mmu=no .

Chapter 4 of the MicroPower /Pascal Run-Time Services Manual describes the PROCESSOR macro
in detail.

6. 1 Separation of Instruction and Data Space
If your target processor supports hardware separation of instruction and data space, you can
use this hardware feature by specifying the Jl l processor type and memory mapping in your
configuration file and requesting the separation when you build a particular user process.
Separation of I/D space gives each general mapped user static process in your application a
32K-word virtual address space for instructions and a separate 32K-word virtual address space
for data, thereby doubling the potential size of most processes. (The virtual space available for
processes of other mapping types is increased proportionately.)

I/D separation incurs a small amount of overhead in both space and time. The process-context
save area must be somewhat larger, and the time required to do a context option between
processes is slightly longer. Except as a way to increase the virtual address space available
to a program, J/D separation offers no advantages unless the program (static process) is built
with a supervisor-mode shared library. Use I/D separation when you are faced with addressing
limitations that I/D separation can solve for you; otherwise, ordinary mapped format is just as
good.

You can mix processes with and without I/D separation in the same application.

6. 1. 1 Restrictions on l/D Separation

A process built with I/D separation can run only with a kernel configured for a mapped Jl 1-type
processor in the configuration file PROCESSOR macro. You can, however, include processes
built without I/D separation as part of an application containing processes that do have I/D
separation. The kernel itself is always built without J/D separation.

You cannot build a user-mode shared library for a target configured for I/D separation; you can
only build a supervisor-mode shared library.

Building a driver with I/D separation is not recommended.

6-2 Separation of Instruction and Data Space, and Shared Library Files

6. 1.2 Building a Process with l/D Separation
Assuming that your target system hardware supports I/D separation, two requirements must be
met for building a process having I/D separation:

• Specify Jl 1 as the processor type and mmu=yes in the PROCESSOR macro of the system
configuration file.

• Use the /ID option of RELOC to build the static process with I/D separation; if you use
MPBUILD and include /IDS when you specify the user-process file name, MPBUILD will
generate the proper options for RELOC automatically.

For example, a typical RELOC command line might be:

>[MCR] RLC
RLC>PROC1.PIM=PROC1/ID

That will build the specified static process with I/D separation. The first RO program section of
instruction space will begin at virtual address 0 of I-space mapping, and the first RO program
section of data space will begin at virtual address 0 of D-space mapping; their RW segments
will immediately follow their RO segments in memory.

You can use other options together with the /ID option to achieve other results. If you have
a ROM/RAM environment, you will want to use the /AL option to start the RW instruction
segment and the RW data segment on the next available 4K-word boundaries following their
RO segments.

In addition, if you have special addressing requirements, you can use the /DR, /OW, /RO,
and /RW RELOC options, singly or in combination, to specify particular base addresses for RO
and RW data space and for RO and RW instruction space. You can also use the /QB option to
achieve the same results.

6.2 Shared Libraries
When you build a MicroPower /Pascal application, each static process is normally a self­
sufficient unit. That is, all generated code, Pascal OTS routines, and other support that the
process requires, with the exception of kernel primitives, are part of the process itself. For
example, if two separate processes require the same routines from a Pascal OTS library (LIBxxx),
the processes will contain separate copies of the modules. If you have written subroutines that
are used by several of your static processes, they too will be built into each process that uses
them.

Obviously, if this duplication is extensive, a large amount of physical memory could be saved
if a single copy of each OTS routine were shared among all the processes. that use it. The
situation is less critical in a mapped application, since each process has its own 32K-word virtual
address space, but even a mapped application may encounter space constraints. In an unmapped
application, the 28K- or 30K-word memory limit for all processes is even more constraining.

As noted above, processes do share the kernel primitives; a single copy of the configured kernel
is used by all processes in the application. References by processes to kernel primitives are
resolved when each process is built, by merging each process with the kernel symbol table
(.STB) file created at kernel build time.

Separation of Instruction and Data Space, and Shared Library Files 6-3

Shared libraries work in a similar manner. A single copy of the subroutines in a library is
shared by any number of processes. When you build a shared library, a library .STB file is
produced that reflects the contents of that shared library. Then, when you build a process that
references routines in the shared library, you merge the process with the library .STB file; the
.STB file resolves the references to the routines in the shared library.

6.2. 1 Types of Shared Libraries
MicroPower /Pascal supports two types of shared libraries: supervisor mode and user mode.
A supervisor-mode library requires supervisor-mode memory mapping support on the target
system, as found on Jl 1-based processors, whereas user-mode libraries are applicable to any
unmapped target system and any mapped system without Jll mapping.

Note
Be careful not to assume that a "user-mode" library necessarily contains any
user-written routines. A user-mode shared library may well contain the same
routines that a supervisor-mode library contains. "User mode" refers to the
processor mode used by the library, not to the contents of the library. Both
types of shared library typically contain only the Pascal OTS routines, although
either type of shared library can contain user-written routines as well.

A supervisor-mode library uses the supervisor-mode mapping registers and resides almost
entirely outside a process's address space. A supervisor-mode library thereby saves both
physical and virtual address space for a process. Physical space is saved because processes can
share routines in the library, and each process does not need to have its own copy of a routine;
virtual space is saved because the supervisor-mode library resides in a virtual address space that
is separate from that occupied by the process itself.

The referencing process can have I/D separation or not. The data-space active page registers
(APRs) for the supervisor-mode library, which are not used to map data within the library, map
back to the referencing process. This gives the library access to data within the referencing
process. See the MicroPower /Pascal Run-Time Services Manual for more information on mapping
in supervisor-mode libraries.

User-mode libraries save on physical address space by sharing routines among processes, but
the entire library is mapped in the virtual address space of each referencing process. User-mode
libraries do not save on virtual address space for mapped processes, therefore, since they use the
same virtual address space as the processes themselves. (For an unmapped application, a shared
library offers a clear advantage for the application as a whole, since there is no physical/virtual
space distinction.)

See Section 2.1.7 of the MicroPower/Pascal Run-Time Services Manual for a description of process
mappings and supervisor-mode library mapping.

6-4 Separation of Instruction and Data Space, and Shared Library Files

6.2.2 Restrictions on Shared Libraries

You can build your application with either a single supervisor-mode library or one or more
user-mode libraries, but not both.

Interlibrary references are not allowed; that is, the routines in one library cannot reference
routines in another library. If such references are required, you must build a new, combined
library containing all the needed modules. The routines within a library, however, can reference
each other without restriction.

Routines in a shared library cannot call routines in a process that references the library.
Therefore, if you put any Pascal routines in a shared library, all Pascal OTS routines required
to support them must also be in that library. Moreover, you cannot put the following kinds of
Pascal routines in a shared library:

• Any routine that does exception handling

• Any initialization or termination routine

All user-written routines in a shared library must be reentrant. All code and data must be in
read-only program sections. If you have any read/write sections of nonzero length, you will
get the RELOC error message "Libraries must be reentrant-read/write section not allowed." A
routine in a shared library can save values only in the registers, on the stack, or in a parameter
block in the main calling program, through a pointer passed to the library routine in a register
or on the stack.

A supervisor-mode shared library can have, at most, 4K words of data.

A supervisor-mode library must always contain CTS support for any process that references it.
It cannot contain just user-coded MACRO or Pascal modules. A supervisor-mode library can
contain user-coded MACRO or Pascal modules in addition to the OTS support. Moreover, a
process written in MACR0-11 cannot reference a supervisor-mode library.

An interrupt service routine (ISR) cannot reference a shared library. In general, therefore, device
drivers cannot reference shared libraries.

When you are building a user-mode shared library for a mapped application, you can choose
to build it relocatable or absolute. If you build a relocatable shared library-that is, if you do
not fix the library routines at particular addresses with the /UL:addr option-the code must
be position independent (PIC). If you build an absolute library, on the other hand, by using
the /UL:addr option when you build the library, the PIC requirement does not apply. (The
compiler output is not position-independent code.) Any mapped user-mode library with Pascal
code in it must be built absolute.

All instructions and data in a user-mode shared library must be contiguous; you cannot use the
/QB option of RELOC to break it into segments. Similarly, all instructions in a supervisor-mode
shared library must be in a contiguous segment, and all data must be in another contiguous
segment (the normal result when you create a process with I/D separation). Note that an
application can have only one supervisor-mode shared library.

For user-mode, having more thart one shared library is normally not useful. In a few complex
cases for mapped applications, the size of a single library and the varying needs of the
processes that reference it dictate splitting the library into two smaller libraries to overcome
virtual-addressing limitations.

Separation of Instruction and Data Space, and Shared Library Files 6-5

6.2.3 Building Shared Libraries
The basic procedure for building a shared library is as follows:

1. Create a merged object module with the routines in the shared library.

2. Use RELOC to produce a .PIM file and a .STB file.

3. Use MIB to install the library.

Always build and install the library before building any process that references the library. If
you have included debug support for a shared library and a referencing process, you can access
the library with the debugger through the process.

6.2.4 Building a Supervisor-Mode Shared Library
If your target processor implements supervisor mode, you can use a supervisor-mode shared
library when building your application. Supervisor mode is implemented on a Jl 1 or equivalent
processor.

If you are including the Pascal OTS in the shared library, you can use only two Pascal OTS object
libraries when you build a supervisor-mode shared library-SUPEIS.OLB and SUPFPP.OLB,
which assume EIS or FPP, respectively. Choose the object library that is appropriate for your
application and target system. Do not attempt to use any of the LIBxxx object libraries when
building a supervisor-mode shared library; they will not execute correctly.

To build a supervisor-mode library with the Pascal OTS in it, first compile the Pascal processes
that will make up your finished application. Then use MERGE to create a .AUX file for each
process. That file is an object module containing a list of all the global references that remain
unresolved after the merge.

Include a .AUX file output file name in the MERGE command line and include your kernel .STB
file as input, but do not specify any Pascal OTS object library file name or the FILSYS object
library. In a later step, MERGE uses the .AUX files you create to extract the required Pascal
OTS routines (which you would not know otherwise) from the proper supervisor-mode OTS
library and from the FILSYS library for inclusion in the supervisor-mode shared library. If you
have compiled the two Pascal processes PROCl and PROC2, the MERGE commands to create
the .AUX files for them would be as follows:

MRG>,,PROC1.AUX=PROC1.0BJ,KERNEL.STB
MRG>,,PROC2.AUX=PROC2.0BJ,KERNEL.STB

After creating .AUX files for all processes that will reference the shared library, run MERGE
again. This time, specify the .AUX files, the FILSYS, and a Pascal OTS library as input and a
name for the shared library .MOB file as output.

The following example uses the two .AUX files created in the previous step to extract the
necessary support routines from the libraries FILSYS.OLB and SUPEIS.OLB for inclusion in the
supervisor-mode shared library .MOB file SUPLIB:

MRG>SUPLIB.MOB=PROC1.AUX,PROC2.AUX,mpp-lib:FILSYS/LB,mpplib:SUPEIS/LB

Next, use RELOC to create shared library .PIM and .STB files from the .MOB file:

>RLC
RLC>SUPLIB.PIM •• SUPLIB.STB•SUPLIB.MOB/SL

6-6 Separation of Instruction and Data Space, and Shared Library Files

During creation of the supervisor-mode library, RELOC looks up the file MPl:[l,l]LIBSUP.OBJ
on an RSX host or MICROPOWER$LIB:LIBSUP .OBJ on a VMS host to read in the library list
element. Be sure that file is available.

Finally, use MIB to create the final .MIM file:

>MIB
MIB>lPPLIC.MIM•SUPLIB.PIM.APPLIC.MIM/SM

If you want to include MACRO and/ or Pascal modules in the supervisor-mode library in addition
to the OTS, merge the modules along with the .AUX files when creating the shared-library
merged object (.MOD) file. For example, if you want to include a Pascal module PASMOD.PAS
and a MACRO module MACMOD.MAC in the example above, first compile PASMOD and
assemble MACMOD.

As mentioned above, compile the Pascal processes that will make up your finished application.
Then use MERGE to create a .AUX file for each process.

After creating the .AUX files for all processes that reference the shared library, run MERGE
again. This time, specify the .AUX files and the additional modules:

*SUPLIB.MOB•PROC1.AUX.PROC2.AUX.PASMOD.OBJ.MACMOD.OBJ.KERNEL.STB.MPPLIB:FILSYS.OLB.SUPEIS.OLB

Any additional OTS support necessary for P ASMOD will be placed in the .MOB file, besides
the support necessary for PROCl and PROC2.

6.2.5 Building a User-Mode Shared Library

If your target processor does not support supervisor mode and 1/D separation or if you do not
want to use supervisor mode or l/D separation, you can build a user-mode shared library.

You can build three kinds of user-mode shared libraries:

• Unmapped

• Mapped relocatable

• Mapped absolute

Regardless of which kind of user-mode shared library you build, you use one of the following
OTS object libraries, if needed: LIBNHD, LIBFIS, LIBEIS, or LIBFPP.

6.2.5. 1 Unmapped User-Mode Shared Libraries

During the RELOC step, either specify /UL and let RELOC look up the starting address in the
input .MIM file, or use /UL:addr to specify a starting address.

To build an unmapped user-mode library with the Pascal OTS in it, compile the Pascal processes
that will make up your completed application. Then, use MERGE to create a .AUX file for each
process. Include a .AUX file output file name in the MERGE command line and include your
kernel .STB file as input, but do not specify any Pascal OTS object library file name or FILSYS
object library. In a later step, MERGE will use the .AUX files you create to select the required
Pascal OTS routines from the proper user-mode OTS library for inclusion in the user-mode
shared library. If you have compiled the two Pascal processes PROCl and PROC2, the MERGE
commands to create the .AUX files for them would be as follows:

Separation of Instruction and Data Space, and Shared Library Files 6-7

MRG> •• PROC1.AUI•PROC1.0BJ.KERNEL.STB
MRG> •• PROC2.AUI•PROC2.0BJ.KERNEL.STB

After creating .AUX files for all processes that will reference the shared library, run MERGE
again. This time, specify the .AUX files, the FILSYS library, and a Pascal OTS library (LIBxxx)
as input and a name for the shared library .MOB file as output.

The following example uses the two .AUX files created in the previous step to extract the
necessary support routines from FILSYS and LIBEIS for inclusion in the user-mode shared
library USRLIB:

MRG>USRLIB.MOB•PROC1.AUI.PROC2.AUI.KERNEL.STB.mpp-lib:FILSYS/LB.mpplib:LIBEIS/LB

Next, use RELOC to create .PIM and .STB files from the .MOB file:

>RLC
RLC>USRLIB.PIM •• USRLIB.STB•USRLIB.MOB.APPLIC.MIM/UL

If you want, you can include a base address as part of the /UL:addr option of RELOC.
Alternatively, if you omit the addr argument, as shown in the example above, RELOC assigns
a base address by looking for the first free space in the input .MIM file that you specify.

During creation of the user-mode library, RELOC looks up the file MPl:[l,l]LIBUSR.OBJ on an
RSX host or MICROPOWER$LIB:LIBUSR.OBJ on a VMS host to read in the library list element.
Be sure that file is available.

Finally, use MIB to create the final .MIM file:

>MIB
MIB>APPLIC.MIM•USRLIB.PIM.APPLIC.MIM/SM

6.2.5.2 Mapped User-Mode Shared Libraries

You can build a mapped user-mode shared library either relocatable or absolute. If you build it
relocatable, the library can be mapped anywhere in a given referencing process's virtual address
space.

If you build the shared library absolute, you select the virtual addresses for it when you build
it. Thus, the library is fixed in the virtual address space of all processes that reference it.

Figure 6-1 shows an example of a relocatable shared library. Three processes reference the
relocatable shared region RELSHR: process A, process B, and process C. The shared region is
6K words long and therefore requires that much space in the virtual address space of the three
processes. Process A is 16K words long and uses APRs 0 to 3 to map its code and data. Two
APRs are needed to map the library, so any consecutive pair starting with APR 4 could be used
to map the library. Here, APRs 6 and 7 are used.

Process B is BK words long and uses APRs 0 and 1 to map its code and data. Process B uses
the first available APRs after that-APRs 2 and 3-to map the library.

Process C is 21K words long and uses APRs 0 to 5 to map its code and data. Process C uses
the only available APRs-APRs 6 and 7-to map the library.

If you do not specify which address-and which corresponding APR-is to be used to start
mapping a relocatable shared library, RELOC selects the first available set in the referencing
process's virtual address space. In Figure 6-1, for example, RELOC would have selected
lOOOOO(octal), or APR 4, to start mapping the library RELSHR. Both process B and process C

6-8 Separation of Instruction and Data Space, and Shared Library Files

use the first available set of APRs. You can override this default selection by using the /LS
RELOC option.

Figure 6-2 shows an example of an absolute shared library. Only two of the three processes can
reference the absolute shared library ABSSHR: process D and process E. The absolute shared
library ABSSHR is 6K words long and is built to occupy virtual addresses 120000(octal) to
150000(octal). These addresses correspond to APRs 5 and 6. Processes D and E can reference
the library because APRs 5 and 6 are not used for process code and data. However, process F
is 24K words long; even though it has BK words of virtual address space available to map the
shared library, APR 5, which corresponds to virtual address 120000(octal), has been allocated
to the code and data of the process. If the shared library ABSSHR were built relocatable, task
F could reference it.

In general, you should build a shared library relocatable whenever possible. However, the code
in the library must be position independent (PIC) in order to do this. That is, the code must
execute correctly regardless of its location in the address space of the referencing process. In
addition, all data in the library must be address independent. The Pascal compiler does not
produce PIC code. Therefore, you must build any shared library that contains Pascal modules
absolute.

Separation of Instruction and Data Space, and Shared Library Files 6-9

Figure 6-1: Mapped Appllcatlon, Relocatable User-Mode Shared Library

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

160000 APR7

140000 APR6

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

VIRTUAL
MEMORY
PROCESS A

PROCESS
(16K WORDS)

PROCESS
(SK WORDS)

PROCESS
(21K WORDS)

I
I

I

I
I

I
I

I

PHYSICAL
MEMORY

PROCESS C

PROCESS B

PROCESS A

RELSHR
(RELOCATABLE LIBRARY)

SYSTEM
PROCESSES

KERNEL

ML0-514-87

6-10 Separation of Instruction and Data Space, and Shared Library Files

Figure 6-2: Mapped Application, Absolute User-Mode Shared Library

VIRTUAL PHYSICAL
MEMORY MEMORY
PROCESS D

160000 APR?

140000 APR6

120000 APRS

100000 APR4

60000 APR3

40000 APR2 PROCESS
(16K WORDS)

20000 APR1

0 APRO

~

' 160000 APR? \

140000 APR6 \
x

120000 APRS / \ PROCESS E

100000 APR4

60000 APR3

40000 APR2 PROCESS D

20000 APR1

0 APRO ABSSHR
(ABSOLUTE LIBRARY)

PROCESS F
CAN'T

160000 APR?
~ REFERENCE SYSTEM

140000 APR6 ABSSHR
PROCESSES

120000 APRS I-

100000 APR4 -------I- PROCESS
60000 APR3 I- (24K WORDS)
40000 APR2

~
KERNEL

20000 APR1 t-

0 APRO 0

ML0-515-87

To build a mapped user-mode library with the Pascal OTS in it, compile the Pascal processes
that will make up your completed application. Then, use MERGE to create a .AUX file for each
process. Include a .AUX file output file name in the MERGE command line and include your
kernel .STB file as input, but do not specify any Pascal OTS or FILSYS object library file name.
In a later step, MERGE will use the .AUX files you create to select the required Pascal OTS
routines from the proper user-mode OTS library for inclusion in the user-mode shared library.
If you have compiled the two Pascal processes PROCl and PROC2, the MERGE commands to
create the .AUX files for them would be as follows:

MRG> •• PROC1.AUX•PROC1.0BJ.KERNEL.STB
MRG> •. PROC2.AUX•PROC2.0BJ.KERNEL.STB

Separation of Instruction and Data Space, and Shared Library Files 6-11

After creating .AUX files for all processes that will reference the shared library, run MERGE
again. This time, specify the .AUX files, the FILSYS object library, and a Pascal OTS object
library as input and a name for the shared library .MOB file as output.

The following example uses the two .AUX files created in the previous step to extract the
necessary support routines from FILSYS and LIBEIS for inclusion in the user-mode shared
library USRLIB:

MRG>USRLIB.MOB•PROC1.AUX,PROC~.AUX,KERNEL.STB,mpp-lib:FILSYS/LB,mpp-lib:LIBEIS/LB

Next, use RELOC to create .PIM and .STB files from the .MOB file:

>RLC
RLC>USRLIB.PIM,,USRLIB.STB•USRLIB.MOB/UL

This will build a relocatable user-mode shared library. If you want to build an absolute library,
include a base virtual address as part of the /UL:addr option of RELOC. The address must be
on a 4K-word virtual address boundary.

During creation of the user-mode library, RELOC looks up the file MPl:[l,l]LIBUSR.OBJ on an
RSX host or MICROPOWER$LIB:LIBUSR.OBJ on a VMS host to read in the library list element.
Be sure that file is available.

Finally, use MIB to create the final .MIM file:

>MIB
MIB>APPLIC.MIM•USRLIB.PIM,APPLIC.MIM/SM

If you are including your own Pascal or MACR0-11 routines in the library, in addition to the
Pascal OTS, modify the procedure above as follows:

1. Compile or assemble the source modules to produce object modules.

2. Add these object modules to the MERGE command with the .AUX files, the kernel .STB
file, and the FILSYS and LIBxxx object libraries.

3. If you are including any Pascal routines in the library, you must build the library absolute
by specifying a starting virtual address with the /UL option.

6.2.5.3 Multiple User-Mode Libraries in an Application

In most cases, you need not use more than one user-mode shared library. If you have multiple
user-mode libraries in an application, each library name must be unique. The default name
taken from the .TITLE statement of the shared library object file is $USRLB for a user-mode
library. For subsequent user-mode libraries, use the /NM option of RELOC to override the
name $USRLB. If you do not do that, the error "Library with the same name, $USRLB, is already
installed in-filespec" will be reported by MIB when you try to install the second library.

One possible use for having multiple shared libraries would be to have the Pascal OTS in
one library and one or more user MACRO modules in another library. The following steps
show how to build a user-mode shared library with user MACRO modules (and no Pascal OTS
support):

1. Assemble the modules.

6-12 Separation of Instruction and Data Space, and Shared Library Files

2. Merge to produce a shared library .MOB file.

MRG>MACLIB=MOD1,MOD2,MOD3,KERNEL.STB

No OTS (FILSYS or LIBxxx) is needed, since everything is in MACRO. After this, the build is
the same as for any other shared library.

6.2.5.4 Building a Process to Reference a Shared Library

The basic procedure for building a process that references a shared library is as follows:

1. Build and install the shared library. Get a shared library .STB file during the RELOC step.

2. Use MERGE to merge the process's object modules with the kernel .STB file and the shared
library .STB file. If the shared iibrary contains Pascal OTS support for the process, omit the
OTS object libraries (FILSYS, LIBxxx, and SUPxxx) from the command line.

3. Use RELOC to relocate the process normally, except for relocatable mapped libraries in
which you wish to specify a starting virtual address for mapping the library, rather than
having RELOC use the first available addresses.

4. Use MIB to install the process.

If you want to perform an iterative form of merge, you must specify any shared library .STB
files as the last step. MERGE checks to see if /UL or /SL is specified in a file containing
program sections from shared libraries and further checks that all program sections in that file
are shared library program sections. The partial .MOB file may contain some library program
sections and some nonlibrary program sections.

If you have included debug support for a shared library and a referencing process, you can
access the library with the debugger through the process.

6.2.6 Building a Process to Reference a Supervisor-Mode Library
Except for including the /UL option, you follow the same steps that you do when you build a
process to reference the kernel. You must include the library's .STB file in the MERGE command
line. The following MERGE command line builds a .MOB file for a process that references a
supervisor-mode library with Pascal OTS support in it:

>MRG
MRG>PROC1.MOB•PROC1.0BJ 1 KERNEL.STB 1 SUPLIB.STB/SL

The /SL option indicates that the .STB file is for a supervisor-mode shared library.

RELOC must in turn process the .MOB file. If you include the /ID option (separate instruction
and data space) in the RELOC command line, RELOC will take one of two actions, depending
on the content of the supervisor-mode library. If the supervisor-mode library has no RO data
sections-recall that all supervisor-mode libraries are built with l/D separation-RELOC assigns
a base virtual address of 0 to the process's data area. On the other hand, if the supervisor­
mode library has a data area, the first 4K words of virtual data space are allocated to the
supervisor-mode library's data area, and the default base address for the process's data area is
20000. Thus, APR 0 maps the supervisor-mode library's data area, and APR 1 through 7 map
the user process's data area. You can override this default address assignment by including
the /DR:addr option in the RELOC command line. Keep in mind that if the supervisor-mode
library has data and you start the process's data at 0, the process's data mapped by APR 0 will
not be accessible from the supervisor-mode library.

Separation of Instruction and Data Space, and Shared Library Files 6-13

If you do not include the /ID option to separate instruction and data space in the process, similar
conditions apply. If there is no supervisor-mode data area, the base virtual address for user RO
program sections defaults to 0. If there is supervisor-mode data, RELOC begins the user process
RO program sections at 20000. In this case, you can override the default address assignments
by including the /RO:addr option in the RELOC command line. If the supervisor-mode library
has data and you start the RO program section at 0, the process's instructions and data mapped
by APR 0 are accessible from the supervisor-mode library.

You can also specify other starting addresses if necessary, whether or not you separate instruction
and data space, by including the /RO, /RW, or /QB options. In addition, if you do separate
instruction and data space, you can use the /DR and /DW options as well.

6.2.7 Building a Process to Reference One or More User-Mode Libraries
In general, you follow the same steps that you do when you build a process to reference the
kernel. You must include the library's .STB file in the MERGE command line, just as you
include the kernel .STB file. The following MERGE command line builds a .MOB file for a
process that references the kernel and two user-mode libraries, assuming, for example, that
ULIB 1 is the Pascal OTS library:

>MRG
MRG>PROC1.MOB•PROC1.0BJ.KERN.STB,ULIB1.STB/UL,ULIB2.STB/UL

RELOC must in turn process the .MOB file. RELOC requires no special options to process
referenced libraries. For a mapped application, RELOC by default allocates virtual address space
first to the processes, then to absolute libraries, then to libraries with specified virtual base
addresses, and finally to any relocatable libraries, assigning starting addresses for the relocatable
libraries at the first available 4K-word virtual address boundary. In the unmapped case, RELOC
allocates memory as requested and issues an error message if the specified pieces do not fit.

In either the mapped or the unmapped case, the process and all of its referenced user-mode
libraries can access no more than eight noncontiguous memory segments. MIB reports an error
if you exceed this limit. RELOC reports an error for an address between the process code and
any referenced library.

You can override the default allocation algorithm determining starting addresses for relocatable
mapped shared libraries, if necessary, using the /LS:name:addr option, where name is the
user-mode library module name, and addr is the desired base virtual address; the address must
be on a 4K-word address boundary. For example:

>RLC
RLC>PROC1.PIM•PROC1.MOB/LS:LIB1:100000:LIB2:140000

6.2.8 Debugging New Processes in Applications Having Shared Libraries
As an alternative to having a shared library, you can build all OTS modules into the process.
Use this technique if you have an application with a shared library and one or more debugged
processes and you want to add a new process and debug it. Use this technique to avoid
having to rebuild the library and all of the debugged processes. In such an instance, omit
the shared library .STB file and include LIBxxx (not SUPxxx) even for an application having
a supervisor-mode library. Only LIBxxx routines work outside of a supervisor-mode library.
Later, when the new process is debugged, rebuild the shared library and all the referencing
processes.

6-14 Separation of Instruction and Data Space, and Shared Library Files

Chapter 7
Methods of Application Loading

To execute the finished (debugged, then rebuilt without debug support) MicroPower/Pascal
target application developed on the host development system, you must load the application
into target memory. You do that in one of three ways. For a RAM-only target environment,
you can either down-line load from the host system or bootstrap the application from a storage
volume on a target system device (TU58 DECtape II; RL01/RL02, RD51, or RD52 disk; or RX02
or RXSO diskette). For a ROM/RAM target environment, you can-if you have suitable PROM­
programmer hardware and control software-place the application in programmable read-only
memory chips (PROM) and install the PROM in the target system.

7. 1 Down-Line Loading the Application
The LOAD/EXIT form of the PASDBG LOAD command permits you to down-line load an
application for independent execution-that is, for execution without further target/ debugger
interaction. LOAD /EXIT causes P ASDBG to load a specified .MIM file into the target system,
requirements for down-line loading of) start the application, and then EXIT, returning you to
system level. To be loaded in this manner!: the memory image must have been built without
debugger support; specifically, the debugger service module (DSM) must not be included in the
kernel image. (The SYSTEM configuration macro of the configuration file used to build the
application must specify DEBUG=NO.) Otherwise, the application will load but will not execute.

For loading by means of LOAD/EXIT, the target must have the same hardware configuration
as required for debugging. In particular, the host/target terminal line must be connected to the
target's console terminal port as for debugging. In addition, the host-side line speed and other
characteristics must be set, and the logical device TD: assigned, as described for debugging.
(See Appendix A of the MicroPower /Pascal Debugger User's Guide.)

Bootstrap Load Format

A .MIM file in bootstrap load format is identical to P ASDBG load format, except that it contains
a bootstrap at the beginning of the file. (See Figure 7-1 and Appendix C.) DIGITAL supplies
bootstraps for all disk or disk-like devices supported on a target system. .You specify the
appropriate bootstrap file for your system with the MIB /BS option (Section 11.4.1), and MIB
installs the bootstrap at the front of the .MIM file.

Methods of Application Loading 7-1

After you have built a complete memory· image, you copy the .MIM file onto a suitable storage
volume-one matching the type of bootstrap installed-using the RSX FLX utility or the VMS
V4 EXCHANGE utility; then use the MicroPower/Pascal COPYB utility to make the volume
bootable from a device on your target system. See Chapter 12 for further details.

You can install a bootstrap either when you create the .MIM file in the kernel build step or
at the end of a build cycle. The latter strategy is convenient if you think you might want the
same memory image to be bootable from several devices. If you build a complete .MIM file
with no bootstrap installed, you can then create copies of it with different bootstraps, prefixing
the bootstrap appropriate for the desired boot device.

Alternatively, you can use the /RB option to remove an installed bootstrap from the .MIM file
so that you can install a different bootstrap in its place.

7-2 Methods of Application Loading

Figure 7-1: PASDBG or Bootstrap Load Format .MIM File

Optional Bootstrap

Memory Allocation Table Header

Load Address

Size

Load Address

Size

. .
•

Load Address 2 blocks

Size

-1

0

0

·•
•
•

0

Compressed Memory Image

. . .
ML0-516-87

7 .2 Bootstrapping the Application from a Storage Device
If the host- and target-system hardware configurations include mass-storage devices of the same
type-for example, DECtape II or RX02 diskettes-you can prepare a bootable volume on the
host system and bootstrap the application directly from the volume on the target.

Methods of Application Loading 7-3

The following steps are necessary to load the application in this way:

1. Build the application memory image without debug support-no DSM in the kernel-and
install the appropriate bootstrap in the .MIM file. The bootstrap can be installed either
when the application image is built, by means of MPBUILD, or as a separate MIB operation
through use of the /BS option of the MIB utility program. (See Section 2.2.3.5, Chapter 3,
or Chapter 11.)

2. Copy the memory image file to the storage volume that you will later transport to the
target system. The volume must have, or be initialized to, the RT-11 file format and thus
must be mounted as a foreign volume on the host system's device drive. You use the FLX
file-transfer utility or the V4 VMS EXCHANGE utility to initialize the volume, if necessary,
and to perform the copy operation. '

3. Invoke the MicroPower/Pascal COPYB utility to make the volume bootable. COPYB
modifies and moves the bootstrap contained in the memory image file to the bootblack of
the volume. Chapter 12 describes the COPYB utility program.

4. Mount the bootable volume in the target system's device drive, and power up the target
processor.

A suitable boot ROM must be included in the target hardware configuration. When you initiate
the bootstrap procedure by powering up the target processor, the hardware bootstrap reads
block 0 of the bootable volume into memory. Block 0 contains the primary software bootstrap,
which initiates loading of the application image.

PROM Programmer Format

The PROM programmer (ROM/RAM image) .MIM file format differs from the PASDBG and
bootstrap load format files in that the PROM file's memory image contains only ROM (read­
only memory) segments. No space is allocated in the file for read/write segment text. The
memory allocation table has entries only for the read-only segments. The file must not contain a
bootstrap. The memory allocation table provides the information needed by the utility program
that will subsequently be used to control the "PROM blasting" process (VAX DECprom on a
VAX/VMS host system, for example,

Figure 7-2 shows a PROM programmer format memory image file.

7-4 Methods of Application Loading

Figure 7-2: PROM Programmer Format .MIM File

Memory Allocation Table Header

Load Address

Size

Load Address

Size

• .
•

Load Address 2 blocks

Size

-1

0

0

•
•
•

0

Compressed Memory Image

. . .
ML0-517-87

7 .3 Placing Your Application in PROM
If you have access to a suitable PROM programmer device-such as one of the DATA I/O family
of PROM programmers-and to programmer-control software, available from DIGITAL, that
recognizes MicroPower/Pascal .MIM file format, you can place an application in programmable
read-only memory (PROM) chips or erasable PROM (EPROM) chips. Both the VAX DECprom
utility program, which executes under VAX/VMS, and the PROM/RT-11 utility program, which
executes under the RT-11 operating system, support MicroPower /Pascal .MIM files as PROM
programmer input. These programs are optional software, not part of the MicroPower /Pascal

Methods of Application Loading 7-5

product. Refer to the documentation describing those programs for further information on
"burning" PROM/EPROM chips.

Ordinarily, you will build the first versions of an application for a RAM-only target system even
though the application is intended eventually for a ROM/RAM environment. You would do
so in order to take advantage of the convenient facilities for initial development and debugging
that exist for a RAM-only environment. Before you attempt to place the application in PROM
or EPROM, the application memory image must be completely rebuilt in ROM/RAM form, as
described in Chapter 3. In particular, the MEMORY macros of the configuration file used to
build the kernel must accurately describe the configuration of ROM and RAM to be used in the
target system. Any debug support built into earlier versions must be excluded. The hardware
must be configured to enter the initialization procedure by"'means of the power/fail vector at
location 24(octal).

7-6 Methods of Application Loading

Chapter 8

Using the MicroPower /Pascal Compiler

The MicroPower/Pascal compiler, MPP, generates 16-bit object code for the PDP-11 family of
microcomputers supported as targets by MicroPower/Pascal software. The generated code is
ROMable, that is, suitable for ROM/RAM target memory environments. The extended Pascal
language implemented by MPP is described in the MicroPower /Pascal Language Guide.

The language provides special extensions designed to support development of efficient real­
time control applications using concurrent programming techniques. The majority of these
extensions facilitate the creation of parallel, interacting processes, synchronization of processes
through a variety of semaphore operations, and communication of data between processes. (The
PROCESS construct is central to MicroPower/Pascal programming.) Other extensions permit
a high degree of control over the allocation of storage for variables, in terms of both specific
storage locations/boundaries and data packing. MicroPower/Pascal also supports separate
compilation of source code units, primarily through the MODULE compilation unit and the
EXTERNAL/GLOBAL declaration attributes.

Standard MicroPower/Pascal object-time support is provided by the OTS libraries LIBNHD.OLB,
LIBEIS.OLB, LIBFIS.OLB, and LIBFPP.OLB. The OTS libraries SUPEIS.OLB and SUPFPP.OLB
provide object-time support when you build a supervisor-mode shared library. Each of these
libraries corresponds to one of the instruction set options described in Table 8-1 or Table 8-2.
All Pascal object modules must be merged with one of these libraries. In addition, FILSYS.OLB
must be used for file system support.

In the VMS compiler, diagnostic messages are divided into three classes:

• Informational-Messages that flag the use of a nonstandard feature of MicroPower/Pascal or
provide information about the source program. The generated object module is executable.

• Warning-Messages that flag an error that may cause unexpected results, but which do not
prevent the object module from being linked and executed.

• Fatal-Messages that flag an error that prevents generation of the object code.

Using the MicroPower /Pascal Compiler 8-1

Object code generation is suppressed only if the compiler detects a fatal error. If the compiler
generates at least one diagnostic message, and no internal compiler errors exist, compilation
terminates with the following message:

%PASCAL-I-Informational errors diagnosed - [number]
Warning errors diagnosed - [number]
Fatal errors diagnosed - [number]

If any of the numbers is zero, the compiler suppresses the whole line.

8.1 File Space Requirements
During a compilation, the compiler opens temporary files for use as intermediate working space
(four files for VAX/VMS, five for RSX). These temporary files are created in the user's default
file directory. Therefore, sufficient free space must exist on the user's default storage device-or
in the VAX/VMS user's file space quota-to accommodate these files in addition to the output
object and/ or listing files. The minimum amount of free space required depends to some extent
on the size of the program to be compiled. As a rule of thumb, 300 blocks of free space should
be adequate for compiling most programs, with a maximum requirement of 500 blocks for a
very large program. The usual approximation includes the space needed for both an object and
a listing file, but an unusually large listing might impose an additional requirement.

8.2 Compiler Invocation and Command Une Format
If you have an RSX host development system, see Section 8.2.1. If you have a VMS host
development system, see Section 8.2.2.

8.2. 1 RSX Development System

Assuming that MPP ASCAL has been installed according to installation procedure defaults, you
reference it by the task name MPP, as follows:

>MPP
MPP>

or
$ MCR MPP

Precede "MPP" with "MCR" only if your CU mode is DCL.

Command Line Format

In response to the compiler's command line prompt, MPP> , enter a command line specifying
the input and output files and any needed options, or specify a command file that contains the
required command line(s). (See Section 8.2.3.) The command line requested by the MPP>
prompt has the following syntax:

[object-file] [,listing-file] = source-file [option-list]

object-file

A file specification for the object code output file. The object file is optional, but you must
specify at least one output file (object or listing). Except as noted in Section 8.2.3, the compiler
accepts a standard RSX file specification. The compiler supplies standard defaults for device,
directory, and version number. The file type default is .OBJ unless the /MA option is used, in
which case the default is .MAC.

8-2 Using the MicroPower /Pascal Compiler

listing-file

A file specification for the listing output file. The listing file is optional, but you must specify
at least one output file (object or listing). Except as noted in Section 8.2.3, the compiler accepts
a standard RSX file specification. The compiler supplies standard defaults for device, directory,
and version number. If you specify a device or a directory for the object file, however, the
compiler applies the same value as a default for the corresponding field of the listing file
specification. The listing file type default is .LST.

source-file

A file specification for the input source file. Except as noted in Section 8.2.3, the compiler
accepts a standard RSX or VMS file specification. The compiler supplies standard defaults for
device, directory, and version number. The file type default is .PAS.

option-list

One or more compilation options, specified in the following form:

/option-name[:option-value[: ...]] [/ ...]

You can also c;hoose to enter the command line on a single line immediately following MPP as
follows:

> MPP A,A•A
or

$ MCR MPP A,A•A

Table 8-1 summarizes the command line option names and values and lists the corresponding
source code option, if any. Section 8.3 describes each option in detail. Only the first two
characters of an option name are significant in a command line. Option values are always three
characters. Several examples of option specifications follow:

/DE
/IN:EIS
/CH:IND
/DE/IN:EIS/CH:IND
/CH:IND:RAN:STA

Minimum form of /DEBUG
Minimum form of /INSTRUCTIONS:EIS
Minimum form of /CHECK:INDexes
All of the above
/CH:IND + /CH:RANge + /CH:STAck

Table 8-1: Compilation Options for RSX-11 Host

Option
Name

/CHeck:
IND
MAT
POI
RAN
STA

/DEbug

/EXtra-stats

Corresponding
Source Option

INDEX CHECK
MATH CHECK
POINTER CHECK
RANGE CHECK
STACK CHECK

(none)

(none)

Purpose

Generate run-time checks for:
o Array index values
o Division by 0
o Null pointer value
o Variable value range
o Stack overflow

Include symbol information for P ASDBG de­
bugger

List extended compilation statistics

Using the Micro Power /Pascal Compiler 8-3

Table 8-1 (Cont.): Compilation Options for RSX-11 Host

Option
Name

/Fllter-dcls

/INstructions:
EIS
FIS
FPP
LS2
NHD

(none)

/MAcro

/NOpredfl

/P Age_size=page-size

/STandard

Corresponding
Source Option

(none)

(none)

NOLIST
LIST

(none)

(none)

(none)

STANDARD

Purpose

Filter out (discard) unused source declarations

Generate instructions for:
o EIS hardware option
o FIS hardware option
o FPP hardware option
o LSI-11/2 with ROM and EIS
o No special hardware

Selectively disable source listing
Selectively enable source listing

Generate MACR0-11 output code

Disable real-time definition file PREDFL.P AS

Specify number of lines per page for source
listing; page-size must be an integer value in
the range 40 to 128; default is 66

Flag nonstandard features

The significant characters of an option name are shown in uppercase. Any additional characters
are optional and are ignored by the compiler.

Syntax Examples

1. MPP> B , C = A
Compile source file A.PAS, producing object file B.OBJ and listing file C.LST.

2. MPP> B = A
Compile source file A.PAS and produce object file B.OBJ only.

3. MPP> ,C.LST = A
Compile source file A.PAS and produce listing file C.LST only.

4. MPP> FOOB,FOOB=FOOB/IN:FPP/CH:POI/DE
Compile FOOS.PAS and produce FOOS.OBJ and FOOB.LST, under control of the options
IN:FPP, CH:POI, and DE. (See Table 8-1.)

8.2.2 VAX Development System
The MicroPower/Pascal compiler on a VAX development system uses a DCL interface. Section
1.4 describes the MPSETUP command procedure used to define the MPP ASCAL DCL command.
After executing the MPSETUP.COM procedure, you invoke the compiler on a VAX host by
using the logical symbol MPP ASCAL, as follows:

$ MPPASCAL[option-liat] aource-file[option-liat]

8-4 Using the MicroPower /Pascal Compiler

source-file

The input source file specification. Except as noted in Section 8.2.3, the compiler accepts a
standard VMS file specification. The compiler supplies standard defaults for device, directory,
and version number. The default file type is .PAS.

option-list

One or more compilation options, specified in the following form:

/option-name[=(option-value[, ...])] [/ ...]

You can specify options either after the logical symbol MPP ASCAL or after the source file
name. You can specify as part of the option list one or more of the options listed in Table
8-2. Section 8.3 describes each option in detail. Only the first character of the option name is
significant in a VMS command line; option values, however, are always three characters long.
Several examples of valid VMS option specifications are given below:

/D Minimum form of /DEBUG
/!=(EIS) Minimum form of /INSTRUCTIONS=(EIS)
/C=(IND) Minimum form of /CHECK=(INDexes)
/D/I=(EIS)/C=(IND) All of the above
/C=(IND,RAN,STA) /CHECK=(INDexes) + /CHECK=(RANge) + /CHECK=(STAck)

Table 8-2: Compilation Options for VAX Host

Option
Name

/[NO]CHECK=
(IND)
(RAN)
(POI)
(STA)
(MAT)

/[NO]DEBUG

/[NO]EXTRA_STATS

/[NO]FILTERDEC

/INSTRUCTIONS=
(NHD)
(EIS)
(FIS)
(FPP)
(LS2)

Corresponding
Source Option

INDEX CHECK
RANGE CHECK
POINTER CHECK
STACK CHECK
MATH CHECK

(none)

(none)

(none)

(none)

Purpose

[Do not] generate run-time checks for:
o Array index values
o Variable value range
o Null pointer value
o Stack overflow
o Division by 0
Default is NOCHECK.

[Do not] include symbol information for PASDBG
debugger; default is NODEBUG.

[Do not] list extended compilation statistics;
default is is NOEXTRASTATS.

[Do not] filter out (discard) unused source dec­
larations; default is NOFILTERDEC.

Generate instructions for:
o No special hardware
o EIS instruction set
o FIS instruction set
o FPP instruction set
o LSI-11/2 with ROM and EIS
o Default is NHD.

Using the MicroPower /Pascal Compiler 8-5

Table 8-2 (Cont.): Compilation Options for VAX Host

Option
Name

/[NO]MACRO[=file-spec]

/P Age_size=page-size

/[NO]PREDFL

/[NO]STANDARD

/[NO]LIS T[=file-spec]

/[NO]OBJECT[=file-spec]

[NO]WARNINGS

/[NO]VERSION

Corresponding
Source Option

(none)

(none)

(none)

STANDARD

(none)

LIST /NOLIST

NOVERSION

Purpose

[Do not] generate MACR0-11 output code, write
output to file-spec; default is NOMACRO.

Specify number of lines per page for source
listing; page-size must be an integer value in
the range 40 to 128; default is 66.

[Do not] use real-time definition file PREDFL.PAS;
default is PREDFL.

[Do not] flag nonstandard features; default is
STANDARD.

[Do not] generate listing file, write output to
file-spec; default is NOLIST.

Selectively enable/disable listing of sections of
source program.

[Do not] generate object file, write output to
file-spec; default is OBJECT.

[Do not] generate warning and informational
errors.

[Do not] display the compiler version number;
default is NOVERSION.

The source, object, list, and macro file types default to .PAS, .OBJ, .LIS, and .MAC, respectively.
The object, list, and macro file names default to the source file name with the appropriate
extension. The object, list, and macro file specifications default to the device and directory of
the current process rather than to those of the source file specification.

The specification of both /OBJECT and /MACRO is not allowed. As a convenience, the explicit
specification of only the /MACRO qualifier is acceptable-you need not explicitly specify
/NOOBJ with /MACRO.

If you specify no output files at all, the compiler just reports any diagnostics at your terminal.

Syntax Examples

1. $ MPPASCAL/OBJECT=B/LIST=C A
Compile source file A.PAS, producing object file B.OBJ and listing file C.LIS.

2. $ MPPASCAL/OBJECT=B A
Compile source file A.PAS and produce object file B.OBJ only.

3. $ MPPASCAL/OBJECT=FOOB/LIST=FOOB/INSTRUCTIONS=-
(FPP)/CHECK=(POl)/DEBUG FOOB

Compile FOOB.PAS and produce FOOB.OBJ and FOOB.LST, under control of the options
INSTRUCTIONS=(FPP), CHECK=(POI), and DEBUG. (See Table 8-2.)

8-6 Using the MicroPower /Pascal Compiler

8.2.3 Command Line Usage Rules
The following general rules and restrictions apply to the compilation command line:

1. Spaces around delimiters are optional.

2. A node name (node::) is not valid in a file specification. All other fields of a file specification
are recognized, including subdirectory names.

3. No wildcard characters are recognized in a file specification.

4. Any explicit device or directory information specified for the object file is "sticky" for the
listing file if both files are specified. (RSX only)

5. One source file is accepted for each compilation; the file must contain one complete
compilation unit, that is, one PROGRAM or MODULE.

6. If the /MA option is specified, the "object" output file contains MACR0-11 assembly code
instead of binary object code, and the file type defaults to .MAC. (RSX only)

7. If the /FI option is specified, either an object or a listing file is valid as output but not both.

8. Continuation lines are accepted; command continuation is indicated by a hyphen (-) as the
last character of an input line. That is, if a hyphen immediately precedes the carriage return
terminating an input line, the compiler prompts for an additional line of input. The trailing
hyphen can appear anywhere in the command string.

9. An indirect command file can be specified (@file-spec) in response to the prompt in place
of a direct command line.

The default file type for an indirect command file is .COM for VMS and .CMD for RSX.
(Alternatively, the compilation command line can be contained, together with the compiler
invocation command, in a command file specified at system level.)

10. The compiler returns control to system level after processing one complete compilation
command; that is, the compiler performs only one compilation for each invocation.

11. A comment line is accepted in response to an MPP> prompt. A comment line is indicated
by a leading exclamation point (!) for VMS and a leading semicolon (;) for RSX. The
compiler ignores the entire line and prompts for more input. Comment lines are useful for
documenting a command file.

8.3 Compilation Options
Section 8.3.1 describes in detail the source code compilation options. These options are
applicable to either an RSX host or a VAX host system.

Section 8.3.2 describes in detail the command line compilation options. Although you must
specify some command line options slightly differently according to whether you are using an
RSX host or a VMS host, the effect of an option is the same for both host systems. Table 8-1
summarizes the compilation options for an RSX host system, and Table 8-2 summarizes the
compilation options for a VAX host system.

Using the MicroPower /Pascal Compiler 8-7

8.3. 1 Compilation Options in Source Program
Source program options have both a positive and a negative form. Thus, you can selectively
enable and disable an optional compilation feature at various points in the compilation unit.
For example, you might want the compiler to generate a given type of run-time checking code
only for selected procedures. The source program option names are as follows:

Positive Form Negative Form

INDEX CHECK NOINDEXCHECK

MATH CHECK NO MATH CHECK

POINTER CHECK NOPOINTERCHECK

RANGE CHECK NORANGECHECK

STACK CHECK NOSTACKCHECK

STANDARD NOSTANDARD

LIST NO LIST

Source program options are specified within a special form of the Pascal comment. The syntax
of an option specification is as follows:

(*$option-name[, ...] *)

The alternative form, using {}instead of(* *)comment delimiters, is as follows:

{$option-name[, ...] }

No spaces are allowed in the option specification except after the last or only option name; any
text following a space or other nonprinting character is treated as normal commentary. Valid
examples are the following:

(*$POINTERCHECK*)
{$NOPOINTERCHECK}
(*$LIST *)
(*$RANGECHECK,MATHCHECK*)
(*$rangecheck,mathcheck*)
{$NOLIST the rest is just commentary}

Invalid examples are the following:

{ $INDEXCHECK}
(*$ NOSTANDARD*)
(*$LIST, STANDARD*)
(*$LIST,$STANDARD*)

$INDEXCHECK is ignored
NOSTANDARD is ignored
STANDARD is ignored
STANDARD is ignored

Note
The source program options do not act as "on/off switches"; instead, they
increment (positive form) or decrement (negative form) a counter associated with
an option. That is, the compiler keeps track of how many times each option
is enabled and disabled in the source program. For example, if MATHCHECK
appears twice without an intervening NOMATHCHECK, NOMATHCHECK
must appear twice in order to disable the option.

8-8 Using the MicroPower /Pascal Compiler

8.3.2 Command Line Options
Options specified in the command line affect the entire compilation unit. Options specified
in the source program affect only the portion of the compilation unit in which the option is
enabled.

Note
For clarity, the following sections illustrate only RSX option syntax, although
the descriptions apply equally to VAX options. For example, Section 8.3.2.1
talks about the /CHeck:xxx option; if you have a VAX host, mentally substitute
the VMS option form-/Check=(xxx)-when reading the option descriptions.

8.3.2.1 Run-Time Checking Code (/CHeck:xxx)

The /CH:xxx options (source code xxxxCHECK) include code in the output object module to
check for invalid values and other error conditions that can occur during program execution.
The checks report an appropriate exception condition if the specified error is detected. You can
request the following specific checks:
/CH:IND Check all array indexes for out-of-range values. Verifies that computed

array subscripts remain within the bounds specified in their type
declarations. (Source code option INDEXCHECK.)

/CH:MAT

/CH:RAN

/CH: POI

/CH: STA

Check for integer or unsigned division by 0. Tests all divisors for a zero
value before use. (Source code option MATHCHECK.)

Check all assignment expressions for out-of-range values. Verifies that
computed values are within the range declared for the target variable.
Use of this option does not cause a check for an INTEGER variable greater
than 32767 or less than -32768. (Source code option RANGECHECK.)

Check for the NIL, or undefined, pointer value. Detects any attempted
use of a pointer with a NIL value in an address reference. This check
does not preclude the use of NIL as a list-terminating pointer value.
(Source code option POINTERCHECK.)

Check for stack overflow on entrance to a procedure or a function. (Source
code option STACKCHECK.)

The run-time checks are useful for program debugging. Use of any checking option makes the
generated code larger than it would otherwise be. The checking options are disabled by default.

8.3.2.2 Debug Symbol Information (/DEbug)

The /DE option includes symbol-definition information in the object file for debugging purposes.
The debug option allows symbolic debugging of the compiled ·program by means of the P ASDBG
symbolic debugger. (The build utilities place the symbol information in the debugger's symbol
table file.) The debug option limits the degree of optimization performed by the compiler to
the statement level and also provides statement numbers-in addition to line numbers-in the
source listing for debugging purposes. Use of the debug option usually results in an increase
in the size of the generated code because of the limited optimization performed. The debug
option is disabled by default.

Using the MicroPower /Pascal Compiler 8-9

8.3.2.3 Extended Statistics (/EXtra)

The /EX option provides information about the generated object code in the source listing. The
extended information consists of the amount of stack space used for each procedure, function,
and process and the name and size of each program section (p-sect) in the generated object
module. Both an object file and a listing ·file must be generated to allow the stack-space
information and valid p-sect sizes to be reported; the compilation must be free of errors. The
extended-statistics option is disabled by default.

8.3.2.4 Filter Unused Declaration (/Fllter-decls)

The /FI option filters out, or discards, all unused type, variable, constant, and subprogram
declarations found in the source code during the input-scan phase. (Multipurpose INCLUDE files
and the implicitly included PREI?FL.P AS file may well contain many such unused declarations,
which place an ·unnecessary burden on compiler resources, especially dynamically allocated
memory.) Appendix H of the MicroPower /Pascal Language Guide describes the compiler's limits
on the number of subprograms, unique identifiers, and types that can be processed in a
compilation unit. If a program fails to compile because it exceeds any of those limits, use of
the /FI option may permit the program to compile successfully.

The compiler uses the following rules in determining whether a given declaration is "used" or
"unused":

• An identifier is considered used if it appears in a statement at the main program level or in
a statement of a subprogram that is used.

• An identifier is considered used if it appears in the formal parameter list of a subprogram
that is used.

• A subprogram is considered used if there is a possible program path from the main level or
from a used subprogram to that subprogram.

• A type identifier is considered used if it is subordinate to a used constant, variable, or
subprogram identifier.

• A type identifier is considered used if it is a scalar type and if one or more of its enumerated
elements is used.

• A variable or a subprogram declared with the GLOBAL, INITIALIZE, or TERMINATE
attribute is considered used.

• All outer-level variable declarations of the compilation unit are considered used if the
compilation unit has the OVERLAID attribute.

• All constant, type, variable, and subprogram declarations that are not determined to be used
according to the foregoing rules are considered to be unused.

The filtering mechanism is conservative in applying these r:ules and may sometimes treat an
identifier as used when it is not, as in the case of duplicate identifiers appearing in nested
scopes.

If you use the /FI option, you can specify either a code or a listing file as output but not both.
That is, you cannot get both generated code and a listing from the same compilation under
the filter option. If you specify an output code file (object-file) and if the program compiles
correctly, the compiler generates object code-or macro code if /MA was also specified. The

8-10 Using the MicroPower /Pascal Compiler

compiler will have ignored all unused declarations in the source code as if you had physically
removed them from the input(s).

If you specify /FI and a listing file, the compiler produces either of two kinds of listing, depending
on the results of the compilation. If any lexical errors are encountered, the compiler produces
an error listing identifying the error(s) detected. If no lexical errors occur, the compiler produces
a listing in which all unused identifiers are indicated by the annotation "••• IDENTIFIER(S)
NOT REFERENCED" in combination with circumflex characters ("). Be aware that other errors
that are syntactic or semantic are not detected when you specify the combination of /FI and
listing file.

Any unused declarations supplied by PREDFL.P AS (Section 8.3.2.8) are filtered but are not
reported in the summary of unreferenced declarations, since declarations from PREDFL.P AS
never appear in a listing.

8.3.2.5 Instruction Set (/INstr:xxx)

The /IN:xxx option indicates the class of optional instructions, if any, that the compiler can use
in the generated code. Indirectly, the option identifies the kind of target processor(s) on which
the code will be executed, in terms of minimum hardware capabilities. You can specify the
following instruction set options:
/IN:EIS Extended Instruction Set; optional on LSI-11 and LSI-11/2 processors,

standard on LSI-11 /23 processors.

/IN :FIS Floating Instruction Set, applicable to LSI-11 and LSI-11 /2 processors
only. This option implies the EIS option; EIS capability is a subset of the
FIS capability.

/IN:FPP

/IN:LS2

/IN:NHD

Floating Point Processor (FP-11) instruction set, applicable to LSI-11/23
processors only. (This option corresponds to either the KEF-11 or
the FPFl 1 hardware option.) This option implies the EIS option; EIS
capability is standard on the LSI-11/23 processor.

Used in combination with the EIS or the FIS option for LSI-11 or LSI-
11/2 processors only. This option indicates that the target system has
ROM storage. The effect of this option is to inhibit generation of the
immediate-operand form of EIS instruction, which is not ROMmable in
an LSI-11 or LSI-11/2 environment. (The combination of the EIS or FIS
option and the LS2 option can be specified compactly as /IN:EIS:LS2 or
/IN:FIS:LS2.)

Basic PDP-11 instruction set only; no special instructions. This option
must be used for an SBC-11/21 (FALCON) or a KXTll-CA or KXJll-CA
processor or for an LSI-11 or LSI-11/2 without the EIS or FIS hardware
option. This option can be used to generate "common" code that will
execute on any supported target configuration.

The NHD option is enabled by default.

Using the MicroPower /Pascal Compiler 8-11

8.3.2.6 Compilation Listing (/[NO]List=file-spec)

The /L option is available only on VAX host systems. The /[NO]List=file-spec option lets you
specify an output listing file name.

The /[NO]List=file-spec option is disabled by default.

8.3.2. 7 MACR0-11 Output Code (/MAcro)

The /MA option instructs the compiler to produce MACR0-11 assembly code as output instead
of binary object code. This form of compilation output is suitable for input to the MACR0-11
assembler.

If you have a VMS host, the option format is /[NO]MACRO=file-spec, which allows you to
specify a file name for the .MAC output file.

The /MA option is disabled by default.

8.3.2.8 No Real-Time Predefinitions (/NOpred)

The /NO option suppresses the otherwise implicit and automatic inclusion of the PREDFL.P AS
file into the compilation unit. The PREDFL.P AS file supplies the predefined procedures,
functions, and data types needed for use of the real-time programming requests described
in Part Two of the MicroPower /Pascal Language Guide. You can use this option to save a
considerable amount of compilation time and space when compiling a program or module that
does not use any real-time features.

If you have a VMS host, the option format is /[NO]PRedfl. The /NO option is disabled by
default.

8.3.2. 9 Output Object File (/[NO]Objecf=file-spec)

The /0 option is available only on VAX host systems. The /[NO]Object option lets you specify
the name of an output object file name. If the file name is omitted, the compiler uses the name
of the input source file and the .OBJ file type.

The /[NO]Object option is enabled by default.

8.3.2. 1 O Listing Page Size (/PAge_size=page-size)

The /PA option allows you to specify the number of source code lines on a listing page. The
page-size value comprises the page heading, code lines, error messages, and top and bottom
margins-usually corresponding to the size of the paper on which the listing is to be printed.
You must replace the symbol "page-size" with an integer in the range 40 to 128.

8.3.2. 11 Generare Warning and Informational Errors (/[NO]WArnings)

The /WA option is available only on VAX host systems. The /[NO]WArnings option lets you
specify whether or not the compiler should report any warning or informational class errors.

The /[NO]WArnings option is enabled by default.

8-12 Using the MicroPower /Pascal Compiler

8.3.2. 12 Standard Pascal Only (/STandard)

The /ST option (source code STANDARD) issues an error message for any nonstandard Pascal
language feature encountered in the compilation unit. (As used here, "standard Pascal" refers to
only those language features described by the International Standards Organization specification
for the Pascal language.) When this option is used, no object code is generated if any
nonstandard feature is detected.

The /ST option is disabled by default.

8.4 Compilation Listing
The compiler produces an annotated source program listing if you include a listing file
specification in the command line. If you use the /EX option in the command line and
specify both an object and a listing file, the listing includes additional information about the
compiled code-maximum stack depths for the main program and each subprogram and the
names and sizes of the generated program sections. (If you include the /EX option but omit
the listing file specification, the compiler displays the lines-per-minute compilation statistic at
your terminal.)

Also, use of the /FI (filter declarations) option with a listing file specification affects the form
of listing file produced, as described in Section 8.3.2.4.

Figures 8-1 and 8-2 show two standard listings illustrating the common characteristics of an
MPP ASCAL listing file. Figure 8-1 shows the listing of a program containing syntax errors
that was compiled without the /DE (debug) option. Figure 8-2 shows a listing of the same
program but without errors and compiled with the /DE option. The effect of /DE on the listing
is to produce statement numbers as well as source line numbers; the statement numbers can
be utilized in various P ASDBG debugging commands. Circled numbers in the figures point out
the following information:

1. Title of object module, from PROGRAM or MODULE name

2. Time and date of compilation

3. Name and version number of compiler

4. Name of source file

5. Line numbers

6. Include-file listing levels

7. Comment flag

8. Procedure level

9. Statement level

10. Statement numbers, if any (DEBUG compilations only)

11. Error diagnostics, if any, and summaries

12. Elapsed time of compilation and average speed

13. List of options selected

Using the MicroPower /Pascal Compiler 8-13

Figure 8-1: Compllatlon Listing: Program with Errors, No /DE Option

(j]) Line
Line

ERROR SUMMARY

27 - Fatal - Undefined identifier
32 - Fatal - Undefined identifier

(i)SUGEXAMP @1S:S2:27 14-Aug-B7 Friday @PASCAL V02.04
@)File: DISKOl:[EXAMPLES)SUGEXl.PAS

Page 1-1

LINE-IC-PL-SL-SOURCE
® ® ®

0001 0 0 [SYSTEM(MICROPOWER), DATA SPACE(2000),
0002 0 0 STACK SIZE(200), PRIORITY (2S)) PROGRAM SUGEXAMP;
0003 0 0 -
0004 0 0 VAR
ooos 0 0 Play, Esc : CHAR;
0006 0 0 I, J : INTEGER;
0007 0 0
OOOB@(f) 0 0 %INCLUDE 'change.pas'
0001 2 0 0
0002 2C 0 0 (* Include file with definition of Procedure Changecharacteristics

PROCEDURE Changecharacteristics;
BEGIN

WRITE (Esc, , <, ,

END;

BEGIN

Esc, CHR (91), '?Bl',
Esc, CHR (91), '?21');

Esc := CHR (lSS);
Changecharacteristics;
Play := 'y';

(* Enter ANSI mode *)
(* Turn off auto-repeat *)
(* Enter VTS2 mode *)

*)
0003 2
0004 2
ooos 2
0006 2
0007 2
OOOB 2
0009 2
0009
0010
0011
0012
0013
0014
OOlS
0016
0017
OOlB

0 0
1 0
1 1
1 1
1 1
1 1
0 0
0 0
0 1
0 1
0 1
0 1
0 1
0 2
0 2
0 2
0 2

WHILE (Play= 'Y') OR (Play= 'y') DO
BEGIN

WRITE (Esc, 'H', Esc, 'J');
WRITE ('Enter a character, please:

*** BS: Fatal

0019 0 2
0020 0 2
0021 0 3
0022 0 3
0023 0 3

*** BS: Fatal

0024 0 3
002S 0 2
0026 0 2
0027 0 2
002B 0 1
0029 0 0

(j]) There were

READLN (Let);
ABS

- Undefined identifier

WRITE (Esc, 'H');
FOR J := 1 TO 19 DO

BEGIN
FOR I := 1 TO 79 DO

WRITE (Let);
ABS

- Undefined identifier

WRITELN;
END;

WRITE ('Go again ? Y/N
READLN (Play);

END;
END.

lines with errors diagnosed.

@>compilation required 6 seconds.

,);

Average compilation speed was 3BO lines/min.

@>options Selected

No Special Instructions
PREDFL.PAS Not Used

8-14 Using the MicroPower/Pascal Compiler

,) ;

ML0-1018-87

Figure 8-2: Compilation Listing: Errors Removed, /DE Option Used to Show Statement
Numbers

fi)SUGEXAMP ®6:16:58 14-Aug-87 Friday @PASCAL V02.04
@)File: DISK0l:[EXAMPLES]SUGEX2.PAS

LINE-STMT-IC-PL-SL-SOURCE
® ® ®

0001 0 0 [SYSTEM(MICROPOWER), DATA SPACE(2000),
0002 0 0 STACK_SIZE(200), PRIORITY (25)] PROGRAM SUGEXAMP;
0003 0 0
0004 0 0 VAR
0005 0 0 Play, Esc, Let : CHAR;
0006 0 0 I, J : INTEGER;
0007 0 0
0008 ®0 0 0 %INCLUDE 'change. pas'
0001 2 0 0
0002 2C 0 0 (* Include file with definition of Procedure Changecharacteri

2
2

®2
1 2

2
2

2 2

0
0 PROCEDURE Changecharacteristics;
1 BEGIN
1 WRITE (Esc, '<',
1 Esc, CHR (91), '?81',
1 Esc, CHR (91), '?21');

END;

BEGIN
Esc := CHR (155);
Changecharacteristics;
Play := 'y';

(* Enter ANSI mode *)
(*Turn off auto-repeat*)
(* Enter VT52 mode *)

sties *)
0003
0004
0005
0006
0007
0008
0009
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

1
2
3
4

0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
2
2
2
1
0

WHILE (Play = 'Y') OR (Play= 'y') DO
BEGIN

5
6
7
8
9

10
11
12

13
14

WRITE (Esc, 'H', Esc, 'J');
WRITE ('Enter a character, please:
READLN (Let);
WRITE (Esc, 'H');
FOR J := 1 TO 19 DO

BEGIN
FOR I := l TO 79 DO

WRITE (Let);
WRITELN;

END;
WRITE ('Go again
READLN (Play);

Y/N ');

15
END;

END.

GJ)There were no lines with errors diagnosed.

©lcompilation required 12 seconds.
Average compilation speed was 190 lines/min.

@loptions Selected

Debugging
No Special Instructions
PREDFL.PAS Not Used

,);

ML0-1019-87

Using the MicroPower /Pascal Compiler 8-15

8.5 Compiling Large Programs
The MicroPower/Pascal compiler cannot compile some large programs, because of compiler
capacity overflow. Usually, code size alone is not the problem. Appendix H of the
MicroPower /Pascal Language Guide, Micro Power /Pascal Compiler Limitations, discusses compiler
capacity. The information given here is intended as a supplement; you should already be familiar
with the appendix material.

In most cases when programs exceed compiler capacity, the compiler's "heap" (free-memory
pool) has no more room to place new "type" entries. The prevalence of type definitions in the
program is the single characteristic of source code that is most likely to cause a compilation
to fail because of compiler heap capacity limitations. Type definitions appearing in the Pascal
TYPE declaration section and the implicit type definitions used in the VAR and CONST sections
both contribute to the problem.

Programs that use the modular features of the language and that limit declarations to the
modules and procedure scopes where they are needed are less likely to run into heap space
problems. Large applications, however, may have many declarations at the program level.
This condition may occur if many modules share data declarations by means of one or more
generalized "include" files. Such applications are more subject to capacity overflow.

If a program exceeds compiler capacity, first try compiling the program with the /FI option
to filter out unused declarations. If the program uses the standard PREDFL declarations or if
the program uses any large "include" files, /FI may permit compilation by filtering out unused
declarations.

If /FI does not solve the problem, consider restructuring the program. The section of Appendix
H on the "TYPE TABLE" refers to anything that goes on the heap. Following the suggestions
in Appendix H, try putting declarations in disjoint scopes.

If you cannot put declarations in disjoint scopes or if that does not solve the capacity problem,
try rewriting the declarations. Different sorts of declarations impact the compiler heap space
differently. You may be able to replace some declarations with equivalent code that uses the
compiler heap more efficiently. The examples below illustrate how different constructs use the
heap.

Figure 8-3 shows Pascal code and heap usage. Circumflexes (") under a section of Pascal code
indicate that a heap entry is made during compilation for that construct. The comments explain
why the heap entry is made and what possible alternative coding styles might reduce heap use.
Heap entries may result from VAR, TYPE, and CONST declarations. Declarations of structures
may result in more than one heap entry. Character strings result in heap use no matter where
they appear in the source code (declarations or statements). Recall from Appendix H that as a
program or module is processed, type entries and implicit type entries occupy the heap for the
duration of the Pascal scope in which they appear.

8-16 Using the MicroPower/Pascal Compiler

Figure 8-3: Pascal Code and Heap Usage

SOURCE CODE

VAR

i integer;

COMMENTS

"integer" is a predefined type, so no
heap entry is made.

ARRAY [1 .. 2] OF integer Every "ARRAY" causes one heap entry, as
does every"·." (subrange) construct.

TYPE
colors (red, white, blue)

rect RECORD

wall, floor,
ceiling : colors;

Generally, every user defined type.
in this case the simple enumerated
scalar "colors", results in at least one
heap entry.

Every "RECORD" symbol results in a heap
entry. If you define a type, then use

CASE paint : colors OF
it again, no more heap entries
result. Each case variant label
gets a heap entry. red: (glossy:boolean);

white.blue: (spray:boolean)·

END;

ptr = Ainteger;

alpha = SET OF char;

file1t = FILE OF 0 .. 255;

byterng = 0 .. 255;

file2t = FILE OF byterng;

byteptr = Abyterng;

Every "A" (pointer), "SET" and "FILE"
results in a heap entry. Notice that
there is a heap entry for "0 .. 255". If
you repeat a subrange value in other
declarations you should probably give it
a type id.

Use of a type id for a subrange reduces
heap use in subsequent occurrences of
that subrange.

arrayrange = 1 .. 10; That rule applies to any frequently-used
variable or type component.

arrayt1 ARRAY[arrayrange,arrayrange,arrayrange] OF byterng;

VAR
a1,a2,a3 arrayt1; To reduce heap use, collapse commonly

used structure components into single
type definitions that are reused.
Compare this simple declaration with
the equivalent:

a1 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

a2 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

a3 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

Using the Micro Power /Pascal Compiler 8-17

CONST
one = 1;

ch= 'a';

s1 = 'abc';

TYPE

As with VAR or TYPE declarations, if the
type of a CONST value is a standard type
(in this case "integer"). the compiler
makes no heap entry.

Standard type "char".

If a character string appears anyplace
in a program, either in a declaration or

statement, it will consume two heap
entries. In this case, declare 'abc' as
a constant id if it is used more than
once in statement code.

tablet = ARRAY[arrayrange] OF PACKED ARRAY[! .. 5] OF char;

CONST
commands = tablet ('start' , 'stop ' , 'left ' , 'right' , 'help '

VAR
command : tablet;

{ statement code }
BEGIN

'revre' ,'fast ','slow', 'signl', 'beep ');

Note that generous use of strings causes
extensive use of the heap.

The same problem occurs when strings
appear in statement code.

command:= tablet('start' ,'stop ','left '.'right', 'beep '

'revrs', 'fast ','slow' ,'signl', 'help ');

IF command [1] 'beep ' THEN { ... } ;

END;

If a single procedure contains many strings, it is best to divide the procedure into two procedures.
The disjoint scopes of the procedures will reduce the number of string heap entries active at any
one time. If code containing strings is localized and appears at the top level of the program, such
as when tables of strings are initialized, this code should be moved into a separate procedure.
If the capacity problem persists, the procedure may optionally be placed in a separate module
with an abbreviated declaration section and called externally.

The capacity problem of the compiler, which limits the number of type definitions in a
compilation unit, should never force you to avoid the beneficial features of the language or to
otherwise sacrifice good software design for the sake of implementation. If logically distinct
segments of applications are partitioned into modules and if programs are prepared in accordance
with the suggestions in Appendix Hand those given above, you should avoid encountering the
capacity problem.

8-18 Using the MicroPower/Pascal Compiler

8.6 P-sect Generation
The compiler generates the following p-sects:

.PSECT .alst. i,ro,con,gbl,rel Contains the static process list element .

. PSECT .cdat. d,rw,con,gbl,rel Contains program level data when OVERLAID is
not used .

. PSECT .code. i,ro,con,lcl,rel Contains the generated code .

. PSECT .idat. d,ro,con,gbl,rel Contains initialization data for the OTS .

. PSECT .ini1. d,ro,con,gbl,rel Contains the addresses of INITIALIZE
procedures .

. PSECT .iniO. d,ro,con,gbl,rel Contains the label $binit:

.PSECT .ini2. d,ro,con,gbl,rel Contains the label $einit:
Used with .iniO. to determine the size of
the .ini1. psect .

. PSECT .odat. d,rw,ovr,gbl,rel Contains the file variables INPUT and OUTPUT
If OVERLAID is used, contains all program
level data.

. PSECT .pbit . d,ro,ovr,gbl,rel Contains bit masks.

.PSECT . peon . d,ro,con,lcl,rel Contains constants .

. PSECT .peis. i,ro,ovr,gbl,rel Contains a table of ASL and ASR instructions
used to shift values in NHD mode.

. PSECT .sdat . d,rw,con,gbl,rel Contains the heap and stack space. The size
is determined by DATA_SPACE.

Using the MicroPower /Pascal Compiler 8-19

Chapter 9

The Merge Utility Program

The MERGE utility program combines input object modules and modules from object libraries
into a single merged object module. In so doing, MERGE resolves address references between
input modules and satisfies references to library routines. The input modules are segments of
code and data that you have compiled or assembled into binary object code. These modules
generally need to be merged with one or more DIGITAL-supplied object libraries. You can
either run MERGE yourself or, for most applications, use the automated build procedure,
MPBUILD.CMD (for RSX) or MPBUILD.COM (for VMS), described in Chapter 2. The indirect
command file generated by MPBUILD will contain all the MERGE commands necessary to build
your application.

The contents of an object module are organized into formatted binary data blocks. MERGE
performs operations on four types of data block records: global symbol directory (GSD), internal
symbol directory (ISD), relocation symbol directory (RLD), and text (TXT).

Global symbols are labels and identifiers that are declared in one object module and can be
referenced from another object module. GSD records hold information needed to resolve those
intermodule references.

ISD records contain information on all symbols, including global and local (Pascal only), used in
the object module. P ASDBG uses this information when debugging to determine the structure
of a program and to find kernel data structures and user-defined variables. ISDs are present
only in those input modules compiled with the debug compiler option (/DE).

MERGE can generate ISD records (for global symbols only) for input modules that do not already
contain ISDs. These modules are normally created by the MACR0-11 assembler. MERGE can
also generate ISD records for Pascal programs compiled without the /DE option, but these ISD
records will not be as complete as the ISD records produced with the /DE compiler option.

Note
The MACR0-11 assembler supports an option (/EN:DBG) to create ISD records.
Their format is not the same as MicroPower/Pascal's ISD records, however, and
they are incompatible with PASDBG. Do not use /EN:DBG when assembling
modules; allow MERGE to create ISD records for modules written in MACRO.
If you happen to use a module containing ISD records created by MACRO-ll's

The Merge Utility Program 9-1

/EN:DBG option, MERGE will process the module correctly, but MERGE will
issue a warning message and then create ISD records of the proper format.

RLDs store information on how the addresses in each TXT record must be modified to place
them correctly in the application. RLD records are also used, together with GSD records, for
resolving symbol references and linking the code so that it executes correctly after relocation.

TXT records contain the binary code and data of the module.

This chapter discusses the following topics:

• MERGE's functions

• MERGE's role in the build cycle

• The invocation and use of MERGE

• The section map that MERGE optionally produces

• The options that you use with MERGE

Figure 9-1 shows the MERGE utility's input and output files.

Figure 9-1: MERGE Utility Input and Output Files

Source code modules LIBxxx

1.0BJ I I ·OBJ 11.0BJ I OBJ OBJ OBJ

OBJ OBJ OBJ

---?

------- ?
~?

--------- ?

----------- ?

1.MOB I

.AUX .MAP

9-2 The Merge Utility Program

DRVU
M

PAXU
M

OBJ OBJ OBJ OBJ OBJ OBJ OBJ OBJ

OBJ OBJ OBJ OBJ OBJ OBJ OBJ OBJ

OBJ OBJ OBJ OBJ OBJ OBJ OBJ

MERGE combines one or more object
modules as well as referenced
modules from runtime system, OTS,
and user libraries. Output is a merged
object module plus optional auxiliary
file containing unresolved references
and optional map file.

ML0-518-87

9. 1 Functions of MERGE
The MERGE utility resolves intermodule references, using GSD records to match each global
reference in the input modules with a global definition. MERGE also combines program section
(p-sect) contributions having the same name and updates GSD, ISO, RLD, and TXT records to
reflect the new relative positions of p-sect contributions in the merged object module.

A special form of intermodule reference resolution involves object libraries. MERGE satisfies
any reference to a global symbol defined in an object library module by including that module
in the merged object module.

Use MERGE also with a kernel .STB file to resolve references to kernel primitive service entry
points and with a shared-library .STB file to resolve references to shared-library routine entry
points.

The output of a merge operation can be input to a further merge operation (iterative merging)
or can be input to the RELOC utility. All modules making up a static process must be merged
into one module before they are input to RELOC.

MERGE can optionally provide a section map. The section map supplies information about
program section names, lengths, and attributes, as well as any unresolved global references and
the names of the files included in the merge.

MERGE can also optimize the kernel primitive service routines. You can use MERGE's optional
auxiliary output file capability to build a kernel that includes only the primitives that the
application uses or to build an optimized shared library with the OTS or other common code.
(See Section 3.6, Optimizing the Kernel.)

9. l . l Resolving Intermodule Global References
MERGE scans the input modules you specify to resolve intermodule global references. Global
symbols are communication links between object modules. You create global symbols when
you use the GLOBAL attribute in Pascal or the :: label terminator, == operator, or .GLOBL
directive in MACR0-11. MERGE looks through the input object modules to find and flag, in
its symbol table, all global-symbol definitions and external references. MERGE tries to find a
global definition to satisfy each external reference. When MERGE matches a global reference
with a global definition, MERGE deletes the reference but retains the definition.

The MicroPower/Pascal compiler divides a module into program sections, or collections of
instructions, data, or both, that can be relocated as a unit. MERGE consolidates global-symbol
definitions belonging to a given program section. When MERGE finds several contributions to
a program section in different object modules, it creates a single program section name entry in
the merged object module. MERGE places all global-symbol definitions for that program section
after the section name entry. If MERGE finds conflicting program section attributes, it issues
a warning message and uses the first section's attributes. The MicroPower /Pascal-RSX/VMS
Messages Manual lists and explains all MERGE error messages.

The Merge Utility Program 9-3

9.1.2 Updating Relocation Records
Each program section in an input module contains instructions and data that assume that
the section starts at location 0. Relocation directory records describe how to modify those
instructions and data when the starting location of the program section contribution changes.
When MERGE combines program section portions, thereby changing the starting locations of
the various pieces, it updates the RLD records to reflect the amount of text already included in
the section from other modules.

9. 1.3 Resolving Object Library References
One of MERGE's most important functions is to resolve references to object library modules.
Object libraries are specially formatted files that contain more than one object module-usually
many. If any references remain unresolved after MERGE processes the input object module(s),
MERGE searches any object library files specified in the MERGE command line. During the
search phase, when MERGE finds a global definition that matches an unresolved reference, it
extracts the library object module that contains the matching definition and merges that module
with the input object module(s). MERGE thereby resolves references to library routines and
data structures and includes any referenced routines from libraries in the output .MOB file.

For building Pascal processes that do not reference any shared libraries and for building user­
mode shared libraries containing the OTS, the MicroPower/Pascal software package supplies
four versions of the Pascal object-time system (OTS) library, each supporting a different type
of math hardware:

• LIBNHD.OLB, No special hardware

• LIBEIS.OLB, EIS instruction set

• LIBFIS.OLB, FIS instruction set

• LIBFPP.OLB, FPP instruction set

For supervisor-mode shared libraries containing the OTS, the MicroPower/Pascal software
package supplies two versions of the Pascal OTS library, each supporting a different type of
math hardware:

• SUPEIS.OLB

• SUPFPP.OLB

When merging object modules created by the MicroPower /Pascal compiler, you include the
appropriate OTS library for your target system-conventionally referred to in the MERGE
command line as LIBxxx.OLB, or SUPxxx.OLB for a supervisor-mode library (EIS and FPP only).
In addition, you must include the file system library FILSYS.OLB.

If MERGE cannot resolve all symbol references within the input object modules it is merging,
it searches FILSYS.OLB, LIBxxx.OLB, and any other object libraries you might specify to find
matching global definitions. If any unresolved references remain after MERGE scans the libraries,
MERGE issues the warning message "Undefined globals:" followed by a list of the unresolved
symbols.

9-4 The Merge Utility Program·

MERGE searches object libraries in the order in which they appear in the MERGE command
and satisfies references on a "first found" basis. In addition, some object library modules
contain references to other libraries, as discussed below. The order in which multiple libraries
are specified is therefore often important. In general, always specify the common Pascal OTS
library (LIBxxx) last when performing a MERGE operation.

The MicroPower /Pascal software package also includes a number of more specialized object
libraries:

• PAXM.OLB and PAXU.OLB-mapped and unmapped versions of the kernel module library,
used for merging a system configuration file to build a kernel

• DRVM.OLB and DRVU.OLB-mapped and unmapped versions of the device driver library,
used for merging a driver prefix module to build a device driver process

• FILSYS.OLB-the Pascal file system support library, used for merging a Pascal-implemented
user process

Chapters 3 and 4 discuss and give examples of using the P AXx and DRVx libraries.

9. 1.3. 1 Ordering of Multiple Object Libraries

MERGE attempts to resolve any unsatisfied references found within a module that it extracts
from an object library; one module may refer to another in the same library or in a different
library. MERGE attempts such resolution by further iterative searching of the current library
and, if necessary, by searching any additional libraries that you specify. MERGE does not
return, however, to a previously searched library in an attempt to resolve a reference. Thus,
the symbol-resolution process can be affected by the order in which you specify input files­
especially libraries.

9.1.3.2 Ordering of All MERGE Input Files

In general, the recommended safe ordering of input files in the MERGE command line is as
follows:

1. Specify all object modules (.OBJs).

2. Specify the kernel .STB file, if any is used.

3. Specify any shared library .STB files.

4. Specify any mutually unrelated object libraries.

5. Specify FILSYS.OLB, if used, just before LIBxxx.

6. Specify LIBxxx.OLB, if used, last.

In addition, if there are multiple input object modules, the module containing the static process
definition-the Pascal PROGRAM heading or the MACR0-11 DFSPC$ macro call-should be
the first input specified in the MERGE command. This positioning is mandatory when you are
building for debugging.

Consider, for example, a modularly implemented Pascal user process that consists, at source
level, of three compilation units: the PROGRAM unit, PROCSX, and two modules, MODULXl
and MODULX2. PROCSX.OBJ should be the first input object file specified in the MERGE
command for that process.

The Merge Utility Program 9-5

9.2 Role of MERGE in the Build Cycle
You use MERGE at several stages in the application build cycle (see Figure 9-2):

1. You merge the assembled system configuration file with the kernel library (P AXU or P AXM)
to create the kernel object module (Chapter 3).

2. You then merge the DIGITAL-supplied system processes required by your target hardware
devices-primarily device drivers (Chapter 4).

3. You then use MERGE to create a complete merged object module for each user static process
to be included in the application image (Chapter 5).

4. If you are using a shared library, you merge it before you merge any process that references
it (Chapter 6).

5. Optionally, you can use MERGE to optimize the kernel primitive modules after a complete
application has been developed and tested (Chapter 3).

See Chapter 1 for an overview of the application build cycle.

Figure 9-2: MERGE's Part In the Build Cycle

0
CON FIG.MAC xxPFX.MAC

KERN.STB
for later
merges

KERN.PIM xxHAND.STB ~-~-~ xxHAND.PIM

' '
,, APPL.DBG

original

APPLO.MIM updated
original

........
.........

new copy

APPLx.MIM
,,. (unmapped ,

,,." only)

APPL.DBG
updated

9.2. l Merging the System Configuration File (Kernel)

USERl.PAS

USERl.PIM USERl.STB

'\
'\

' APPL.DBG
updated

ML0-519A-87

By merging the configuration object module with the kernel object library, you extract and
configure the kernel library modules needed for your application. The output of the merge is a
customized kernel object module. Chapter 4 of the MicroPower /Pascal Run-Time Services Manual
describes the system configuration macros and explains how to create or modify a configuration
source file for assembly.

RELOC must subsequently process the kernel merged object (.MOB) file to create the kernel
image (.PIM) file and the kernel symbol table (.STB) file. You input the kernel image file to
MIB to create the initial memory image file with only the kernel installed in it.

9-6 The Merge Utility Program

9.2.2 Merging Each Static Process
You use MERGE to create a complete object module for each static process in the application,
merging the input module(s) for a given process with the kernel symbol table and any needed
object libraries. The kernel symbol table is one of the output files produced when you relocate
the kernel merged object file. That symbol table file contains global symbol definitions for the
kernel, giving the relocated address (or other) value of all global symbols defined in the kernel.
MERGE uses the kernel symbol table to resolve run-time references within a static process to
kernel primitive service routines. The referenced routines from the specified object libraries are
merged into the output .MOB file.

As an alternative to merging the object modules into each static process, a group of routines­
typically, the Pascal OTS-can be placed in a shared library in the application. In such an
instance, the shared library is built first, along with a library symbol table file. The symbol
table file is specified as an input file to MERGE instead of the corresponding object modules or
object library (or libraries). MERGE uses the library symbol table file to resolve static-process
references to the routines in the shared library. The routines themselves are not placed in the
output .MOB file.

9.2.3 Merging a Shared Library
You can use MERGE to create a complete object module for each shared library in the application.
The Pascal OTS is typically placed in a shared library. Use MERGE to merge the modules
needed in the library with the kernel symbol table. The library modules can be the needed
modules from the appropriate OTS object library, your own object modules, or both.

9.3 Invocation and Use of MERGE
For an RSX Development System:

Assuming that MERGE has been installed according to installation procedure defaults, you
invoke it by the task name MRG, as follows:

> [MCR] MRG

(Precede MRG with MCR only if your CU mode is DCL.) The following three standard RSX
forms of direct invocation can be used:

>[MCR] MRG command-line
>[MCR] MRG Ocommand-file

In this command line, the specified .CMD file contains one or more MERGE command lines.

>[MCR] MRG
MRG>command-line or Ocommand-file
MRG>

The format of the MERGE command line is described below. Only the first two forms of
MERGE invocation can be used within a command file. The first form limits the line to 80
characters and precludes the use of continuation lines. The second and third forms can be used
to issue several MERGE command lines within one invocation or to avoid the SO-character limit.
Type CTRL/Z in response to the MRG> prompt to exit.

The Merge Utility Program 9-7

For a VAX Development System:

If you have executed the MPSETUP.COM procedure (Section 1.4), you can invoke MERGE by
the logical symbol MPMERGE, as follows:

$ MPMERGE
MRG>comm.and-line or Gcomm.and-file
MRG>

The format of the MERGE command line is described below. The default type for an indirect
command file is .COM; the file may contain one or more MERGE command lines. Type CTRL/Z
in response to the MRG > prompt to exit.

Command Line Format

MERGE accepts a command line in the form shown below. All file specifications are in standard
RSX format with respect to device· and directory (UFD) information if you are using an RSX host
system. The standard location for DIGITAL-supplied MicroPower/Pascal files, such as libraries
and prefix modules, is MP:(2,10] for an RSX system.

If you are using a VAX/VMS host, however, all file specifications are in standard VMS format
with respect to device and directory information. The logical symbol MICROPOWER$LIB
defines the VMS device/directory for DIGITAL-supplied MicroPower/Pascal files.

Output files appear on the left side of the equal sign (=), and input files appear on the right.
Brackets ([]) indicate optional fields of the command. When you omit an optional output file
specification, indicate the null field with consecutive commas to hold its place, except in the
case of trailing fields. Trailing commas can be omitted. You must specify at least one input file.
If no output file is specified, MERGE performs an error check only.

Note
For Version 4.0 or later of VMS, the file name field of a file specification must not
exceed nine characters, and the file type field must not exceed three characters.

For Version 4.0 or later of VMS, underscores (-) are not valid in file
specifications.

For all versions of VMS, dollar signs ($) are not valid in file specifications.

[mobfile], [mapfile] [,auxfile]=infile1[,infile2, ...] [/options]

mobfile

The file specification for the output merged object module. The default file type is .MOB. If
this field is omitted, no output object module is produced. The debug option, /DE, can be
appended to the output file specification; if /DE is used on the output side of the command
line, the effect is the same as if /DE were specified for each input file. Use of the /DE option
on individual input files, however, is recommended practice.

mapfile

The file specification for the program section map. The default file type is .MAP. If this field is
omitted, no section map is generated.

9-8 The Merge Utility Program

auxfile

The file specification for the auxiliary output file, which will contain a copy of any global
references that remain unresolved after the merge. The default file type is .AUX. If you
specify an auxiliary file-typically, in building an optimized kernel or a shared library-MERGE
assumes that unsatisfied global references are expected, and no warning message is issued if
any occur. If this field is omitted, no auxiliary file is produced, and a warning message is issued
for any unsatisfied references. The unresolved references will be listed in the section map if
one is specified. An auxiliary output file may be thought of as a limited form of object module
file, containing only GSDs for undefined symbols.

infile-i

A file specification for an input file, which may be an object module file (.OBJ or .MOB),
a symbol table file (.STB), or an object library file (.OLB). The library option, /LB, must be
appended to a library file specification. The default file type is .OBJ unless the /LB option is
specified; the type default for a library file is .OLB. The debug option, /DE, can be appended to
any input file specification. The /DE option is normally used on object module files and may
be specified for an object library. In general, you should not specify the /DE option for a .STB
file.

/options

Any of the position-independent options summarized in Table 9-1. Multiple options can be
specified in a list of the following form:

/option 1 / option2 / ...

The /DE, /LB, /LB:xxx, /UL, and /SL options are position dependent; they are associated with
the file specification that they follow. The meaning of /DE also depends on which side of the
equal sign (=) it appears.

You can extend a single MERGE command line to multiple input lines by using the standard
command-continuation symbol, "-", immediately preceding a carriage return anywhere in a
partially completed command. The maximum length of a MERGE command line is 355
characters.

The following examples illustrate basic MERGE command line syntax.

Example 1

>[MCR] MRG or $ MPMERGE
MRG>MYPROG.MOB.MYPROG.MAP•MOD1.0BJ.MOD2.0BJ.MODS.OBJ
MRG><CTRL/Z>

This command merges three object modules-MODI, MOD2, and MOD3-and produces the
merged object file MYPROG.MOB and the section map file MYPROG.MAP. No auxiliary output
file is produced, and no debug symbol information is propagated from or generated for the input
modules. The CTRL/Z response to the second MRG> prompt causes an exit from MERGE.
Since only standard file types are used, you could omit the file types and let MERGE assume
the defaults, as shown below:

MRG>MYPROG.MYPROG•MOD1.MOD2.MODS

Example 2

MRG>.MYPROG•MOD1.MOD2.MOD3.KERNL6.STB

The Merge Utility Program 9-9

This command merges the three object files MODl, MOD2, and MOD3 and the symbol table
file KERNLS.STB but produces only the section map file MYPROG.MAP as output.

Example 3

MRG>PROCS1•PROCS1/DE,KRNDBG.STB,mpp-lib:FILSYS/LB,LIBFIS/LB

This command merges the object module PROCSl, compiled from Pascal source code using
the /DE and /IN:FIS compilation options with the kernel symbol table, KRNDBG.STB, the
file system object library, FILSYS.OLB, and the OTS object library, LIBFIS.OLB. KRNDBG.STB
resolves references to kernel primitive entry points. FILSYS.OLB resolves references to the file
system for doing 1/0. LIBFIS.OLB resolves references to OTS modules, and MERGE includes
the required file system and ors modules from the library in the merged object module
PROCSl.MOB. The /DE option propagates all debug symbol information (ISO records) that
MERGE finds in PROCSl.OBJ to the merged object module.

If MERGE did not find any valid ISO records in the input module, as would be the case if
PROCSl.PAS were compiled without /DE, MERGE would generate such records for all global
symbol definitions in the module.

Example 4

MRG>PROCS1•PROCS1/DE,KRNDBG.STB,SB1U.IB.STB/UL

9 .4 Section Map
If you specify a map file in the command line, MERGE creates a section map that includes the
following information:

1. MERGE version identification

2. Date and time of merge

3. Program section information for each referenced shared library-section name, section
length, and section attributes

4. Unresolved global references, if any

5. List of files included in the merge

Figures 9-3 and 9-4 show sample MERGE section maps.

9-10 The Merge Utility Program

Figure 9-3: Sample MERGE Section Map with No Referenced Shared Libraries

G)MICROPOWER MERGE V02.00 VMS Load Map

Title:EXAMPLident:062153

@)section Size Attributes

. ABS.

.SDAT.

.CODE.

.ODAT.

.CDAT.

.PBIT.

.PEIS.

.PCON.

.ALST.

. INIO.

.INI2.

. IDAT.

.DEBG.

. INI 1.

. SNDF.

.HDDF.

. STDF.

. HDRA.

.BSEM.

.CSEM.

. QSEM.

. RBUF.

.SREG.

.LGNM.

.LNAT.

.SQUE.

. SCDF.

.SMDF.

. SEDF.

.SDDF.

. EXTB.

.CHND.

.AIMP.

.ors.

.EMSK.

.EMSC.

.ESUB.

. AQIO.

. AIFN.

.AIFM.

.AICS.

. AIDK.

.AITP.

.AICM.

.AICD.

. AITT.

.AILP.

. AIRT.

. AIPR.

. AIYK.

.AISS.

.FDB.

.FSTO.

. F'ST1.

. F'SYS.

.F'DAT.

000000 (RW,I,GBL,ABS,OVR)
002424 (RW,D,GBL,REL,CON)
006020 (RO,I,LCL,REL,CON)
000022 (RW,D,GBL,REL,OVR)
000074 (RW,D,GBL,REL,CON)
000050 (RO,D,GBL,REL,OVR)
000200 (RO,I,GBL,REL,OVR)
001516 (RO,D,LCL,REL,CON)
000076 (RO,I,GBL,REL,CON)
000000 (RO,D,GBL,REL,CON)
000000 (RO,D,GBL,REL,CON)
000022 (RO,D,GBL,REL,CON)
000032 (RO,I,LCL,REL,OVR)
000002 (RO,D,GBL,REL,CON)
177766 (RO,I,LCL,ABS,OVR)
177776 (RO,I,LCL,ABS,OVR)
000012 (RO,I,LCL,ABS,OVR)
000400 (RO,I,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000012 (RO,I,LCL,ABS,OVR)
000036 (RO,I,LCL,ABS,OVR)
000010 (RO,I,LCL,ABS,OVR)
000004 (RO,I,LCL,ABS,OVR)
000400 (RO,I,LCL,ABS,OVR)
000010 (RO,I,LCL,ABS,OVR)
000010 (RO,I,LCL,ABS,OVR)
000400 (RO,I,LCL,ABS,OVR)
000052 (RO,I,LCL,ABS,OVR)
000016 (RO,I,LCL,ABS,OVR)
000042 (RO,I,LCL,ABS,OVR)
000022 (RO,I,LCL,ABS,OVR)
000070 (RO,I,LCL,ABS,OVR)
004764 (RO,I,GBL,REL,CON)
100000 (RO,I,LCL,ABS,OVR)
000022 (RO,I,LCL,ABS,OVR)
100002 (RO,T,LCL,ABS,OVR)
000052 (RO,I,LCL,ABS,OVR)
000000 (RO,T,LCL,ABS,OVR)
100000 (RO,I,LCL,ABS,OVR)
000012 (RO,T,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000000 (RO,I,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000000 (RO,I,LCL,ABS,OVR)
000010 (RO,I,LCL,ABS,OVR)
000000 (RO,I,LCL,ABS,OVR)
000014 (RO,I,LCL,ABS,OVR)
000002 (RO,I,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000006 (RO,I,LCL,ABS,OVR)
000112 (RO,I,LCL,ABS,OVR)
100000 (RO,I,LCL,ABS,OVR)
100000 (RO,I,LCL,ABS,OVR)
002410 (RO,I,GBL,REL,CON)
000224 (RO,D,GBL,REL,CON)

@)files included:

EXAMPD.OBJ
TE001.STB;
FILSYS.OLB
LIBNHD. OLB

@Fri 15-Mar-85 10:13:11

The Merge Utility Program 9-11

Figure 9-4: Sample MERGE with a Referenced Shared Library

G)MICROPOWER MERGE V02.00 VMS Load Map

Title:EXAMPLident:062153

Section Size Attributes

000000 (RW,I,GBL,ABS,OVR)
002424 (RW,D,GBL,REL,CON)
006102 (RO,I,LCL,REL,CON)
000022 (RW,D,GBL,REL,OVR)
000074 (RW,D,GBL,REL,CON)
000050 (RO,D,GBL,REL,OVR)
001516 (RO,D,LCL,REL,CON)
000076 (RO,I,GBL,REL,CON)
000000 (RO,D,GBL,REL,CON)
000000 (RO,D,GBL,REL,CON)
000022 (RO,D,GBL,REL,CON)
000032 (RO,I,LCL,REL,OVR)
000002 (RO,D,GBL,REL,CON)

~Fri 15-Mar-85 10:16:44

. ABS.

.SDAT.

.CODE.

.ODAT.

.CDAT.

.PBIT.

.PCON.

.ALST.

.INIO.

.INI2.

.IDAT.

.DEBG.

. INI 1.
$USRLB 007342 (RO,I,LCL,ABS,CON) -- Referenced user-mode library

@)Files included:

EXAMED.OBJ;4
TE101.STB;2
TE701.STB; 1

9.5 Merge Options
Sections 9.5.1 through 9.5.8 describe the MERGE options that are summarized in Table 9-1.

Table 9-1: MERGE Options

Option Meaning

/DE Includes debug symbol information (ISD records) in the output object
file. Kernel and user-process symbol information must be propagated
throughout the MERGE, RELOC, and MIB steps to permit the use of
P ASDBG for symbolic debugging of an application.

/IN :symbol 1 [:symbol2: ...]

/LB

/LB:modl[:mod2 : ...]

/NM:name

Specifies global symbols to be treated as references to any library
named in the MERGE command~ During its library search, MERGE
includes the library modules that satisfy those symbols on a first­
found basis.

Identifies a file as an object library to include in the general library
search.

Identifies a file as an object library and specifies one or more modules
to be extracted from that library. The option arguments modl, mod2,
... , modn must be object module names, not global symbol references.
A file so identified does not take part in the general library search
unless it is also separately specified with the /LB option having no
arguments.

Specifies the name to assign to the object module created during the
MERGE operation. This option overrides the effect of a MACR0-11
. TITLE statement, if any, or a Pascal PROGRAM or MODULE name.

9-12 The Merge Utility Program

Table 9-1 (Cont.): MERGE Options

Option Meaning

/SL

/UL

Identifies a file as a supervisor-mode shared library .STB file for
resolving references to the library entry points.

Identifies a file as a user-mode shared library .STB file for resolving
references to the library entry points.

/VR:xxx Specifies a program version number or other "ident" value for the
output object module. This option overrides the effect of a MACR0-
11 .IDENT statement, if any, or the time and date of compilation
supplied as an "ident" value by the Pascal compiler.

9 .5. 1 Debug Symbols (/DE)

The /DE option propagates, or passes along, information about source program symbols for
eventual use in symbolic debugging with PASDBG. The debug symbol information is represented
by a special form of object file record called an internal symbol directory (ISD) record, formatted
for the specific needs of the PASDBG symbolic debugger. Both the MicroPower/Pascal compiler
and the MERGE utility can produce the MicroPower/Pascal-specific form of ISD record.

The compiler creates ISD records for all identifiers declared in a program, both global and local,
when the /DE option is used.

MERGE creates ISDs when necessary, but only for modules, program sections, and global
program symbols. If you do not specify the debug option for the compiler but specify /DE
for MERGE, MERGE creates ISD records from any GSD symbol definition records in the .OBJ
module produced by the compiler. The resulting ISD records, however, are far less complete
than those produced by the compiler's debug option.

Ordinarily, you would use the /DE option of MERGE to create rather than propagate ISDs
only for input modules generated by the MACR0-11 assembler. The /EN:DBG option of the
MACR0-11 assembler produces ISD records, but those ISDs are not in the format expected by
MicroPower/Pascal. For MACR0-11 modules, do not use the /EN:DBG option of MACR0-11;
allow the /DE option of MERGE to create ISD records for the module instead. If MERGE
encounters an ISD record created by /EN:DBG in an input module, MERGE processes the
module correctly, but MERGE issues a warning message and then produces ISD records in the
format expected by PASDBG.

In summary, if MERGE finds any valid ISDs in an input module or an extracted library module,
MERGE includes them in the output .MOB file. If MERGE finds no ISDs or finds foreign ISDs,
it creates ISD records for all global symbols defined by the module in question and includes
them in the output .MOB file. Thus, the /DE option includes debug symbol information in
the output object module in either case, regardless of whether that information was generated
initially by the Pascal compiler or in the merge step.

If you specify /DE on the output .MOB file, MERGE propagates or creates ISD records as
described above for all input files. The effect is exactly as if /DE had been appended to each
input file specification. Normally, you will not want to use /DE on- the output side of the
command line, because MERGE will probably generate many ISDs you will have no use for
and may duplicate symbols already in the debug file.

The Merge Utility Program 9-13

Use of /DE on the output side of the command line is not recommended as a general practice.
You might do so for convenience, however, where you would otherwise intentionally specify
/DE on all of the input files, as in the following example of merging several user object modules
into one .OBJ file, perhaps for convenience in later using that single file as input in several
other command lines.

In example 1, MERGE includes ISD records in the output module for each of the input modules­
PRGXYZ, MODXl, MODX2, and MODX3. In example 2, MERGE includes ISD records only for
PRGXYZ.OBJ.

Example 1

MRG>PRGXYZ.OBJ/DE•PRGXYZ.MODX1.MODX~.MODX3

Example 2

MRG>PRGXYZ•PRGXYZ/DE.KRNDBG.STB,mpp-lib:FILSYS/LB,LIBNHD/LB

When you build an application for debugging, the module containing the PROGRAM compilation
unit in Pascal must be the first input file to merge. If it is not and you do not use the /NM option,
the SET PROGRAM command in PASDBG will fail. In example 1, for instance, PRGXYZ.OBJ
must be the first input module specified in the command line, assuming that PRGXYZ represents
a Pascal PROGRAM unit. See the /NM option description for further information.

When building the kernel for an application with debugging support, you must specify /DE
on the kernel library file (P AXU or P AXM), since P ASDBG needs kernel global symbols for
the debugging of any process in the application. When building a user process for debugging,
specify /DE on the object library file(s) only if you specifically want global symbols from object
library modules for debugging.

Generally, you should not specify the /DE option for an .STB file. Doing so in the standard
case of the kernel .STB file results only in unneeded replication of kernel symbol information
and consequent wasted space in the resulting .DBG file. Worse, if the .STB file already contains
ISD records, as it frequently does, you get the error message "Bad ISD in-filespec." Similarly,
do not use /DE on the output side of a command line that specifies an .STB file as input.

9.5.2 Include Module from Any Library (/IN)
The format of the /IN option is as follows:

/IN:symbol1[:symbol2: ...]

In this format, each "symbol-i" is a name to be treated by MERGE as an undefined global symbol
(presumably an object library reference). The /IN option of MERGE extracts and includes in
the output module any object library modules MERGE finds that resolve those symbols, during
its general search of the libraries named in the MERGE command. This option permits you to
force inclusion of a module from a library, even if the module is not needed to satisfy a direct
reference in one of the other input object modules, or before the module is needed to satisfy
a reference in a subsequent library module. The /IN option may be useful in solving certain
forms of interlibrary reference conflict that cannot be solved solely by the order in which the
several libraries are specified.

9-14 The Merge Utility Program

9 .5.3 Library File Identification (/LB)
The /LB option with no arguments indicates that the file to which it is appended is an object
library that is to take part in the general library search for resolution of undefined global symbols.
This option has a distinctly different meaning if specified with arguments, as described in Section
9.5.4.

9.5.4 Extract Modules from Specific Library (/LB:module: ...)
The /LB option with module-name arguments indicates that a file is an object library from
which only the specified modules are to be extracted. MERGE extracts and processes the named
modules as if they were input from individual object files. The format of this form of the /LB
option is as follows:

/LB:mod1[:mod2 ... :modn]

The arguments modl, mod2, ... , modn are module names, not global-symbol references. A
library file so identified does not take part in the general library search for global-symbol
definitions unless it is also separately specified with the /LB option (no arguments). For
example, consider the following command:

MRG>OUTMOD•INPUT1,MYLIB/LB:MODULX,MYLIB/LB,GENLIB/LB

The first specification of MYLIB extracts the library module MODULX from the library
MYLIB.OLB and merges MODULX with INPUTl.OBJ. The second specification of MYLIB allows
MERGE to search MYLIB, prior to GENLIB, if required to satisfy any remaining references. If
the second MYLIB/LB, without arguments, did not appear in the command, MERGE would use
onJy GENLIB in its general library search.

9.5.5 Module Name (/NM)
The /NM:name option allows you to specify the name of the merged object module to be
created during the merge. The name argument can consist of up to six RADSO characters. The
name you specify supersedes the output module name that MERGE would otherwise choose
during its processing of input modules. Module and file names are separate and distinct; the
module name is defined in a special form of GSD entry found at the beginning of every object
module.

Normally, MERGE uses the module name of the first object module that it encounters in the
input stream as the output module name. The module name GSD comes from the . TITLE
directive, if any, in a MACR0-11 source module or from the PROGRAM or MODULE name
declared in a Pascal compilation unit. The Pascal program name implicitly establishes, therefore,
both the run-time process-id and the module name for a static process. If a MACR0-11 source
module does not contain a . TITLE directive, the assembler generates the conventional default
module name .MAIN.

Ordinarily, you would use the /NM option only in the case of a static process implemented in
MACR0-11 to remedy the lack of a . TITLE directive in the first or only input object module,
for example, or to override the effect of an incorrect . TITLE directive in the first or only input
object module. In addition, as noted above, you would use it to override a default library name.

The Merge Utility Program 9-15

During debugging, however, the output module name must match the run-time name defined
for the static process. represented by a merged object module. For a static process implemented
in Pascal, the module and static-process name correspondence necessary for debugging
is automatically established by the compiler and MERGE, provided that the PROGRAM
compilation unit is the first or only object module input to a merge.

After debug-support processing by MERGE, RELOC, and MIB, the module name contained in
the .MOB file and "passed through" the related .PIM and .STB files becomes a program node
name in the resulting .DBG file, where it identifies the set of debug symbols associated with a
given static process, or "program." In response to a SET PROGRAM xxx command, P ASDBG
looks for a matching node name in the .DBG file in order to locate the debug symbols for the
specified static process.

RELOC provides a corresponding option affecting its output .STB file, which allows you in turn
to override the module name determined in the MERGE step.

9.5.6 Supervisor-Mode Shared Library .STB File (/SL)

The /SL option identifies the input file as a supervisor-mode library .STB file. This option is
needed to resolve references to the library entry points when you are building a process that
references a supervisor-mode shared library. The /SL option is position dependent. MERGE
checks the file to ensure that only library records are in it. If verification is not successful, the
error message "Incompatible use of /UL or /SL on file-filespec" is displayed. If /SL is omitted
on a supervisor-mode shared library .STB file, MERGE issues the error message "/UL or /SL
missing on referenced library .STB file-filespec."

9 .5. 7 User-Mode Shared Library .STB File (/UL)

The /UL option identifies the input file as a user-mode library .STB file. This option is needed
to resolve references to the library entry points when you are building a process that references
a user-mode shared library. The /UL option is position dependent. MERGE checks the file
to ensure that only library records are in it. If verification is not successful, the error message
"Incompatible use of /UL or /SL on file-filespec" is displayed. If /UL is omitted on a
user-mode shared library .STB file, MERGE issues the error message "/UL or /SL missing on
referenced library .STB file-filespec."

9.5.8 Version Number (/VR)

The /VR:xxx option allows you to specify a program version number or other identifier value
for the output object module. The option argument can consist of up to six RADSO characters.
This option overrides the effect of a MACR0-11 .IDENT statement, if any, or the time and date
of compilation supplied as an "ident" value by the Pascal compiler. The identifier appears in
the maps produced by MERGE, RELOC, and MIB.

If you do not specify the /VR option, MERGE uses the first nonblank version number-program
identification GSD record-it encounters in the input modules as the version number of the
output module. A program identification GSD record comes from the .IDENT statement, if any,
in a MACR0-11 module or from the date and time of compilation for a Pascal module.

9-16 The Merge Utility Program

Chapter 10
The RELOC Utility Program

The RELOC utility program allocates memory for each program section (p-sect), assigns base
virtual addresses to the p-sects, sorts p-sects by read-only or read/write attribute alphabetically
within each category, relocates the p-sects, and produces as output a process image (.PIM) file.
RELOC also produces symbol table (.STB) files. See Figure 10-1.

Figure 10-1: RELOC Utility Input and Output

RELOC assigns absolute, virtual
addresses to entities within a merged
object module. Output is a process
image file plus optional map file and
symbol file containing addresses of
symbols in the static process.

.ii
.
@~~~~
@:~

@:~~

@:~

.MAP .STB

1xxKB
r------11

I
I
I

I I ~
~o
(unmapped ·only)

RELOC
COMMAND

LINE

(mapped or
unmapped)

ML0-520-87

The RELOC Utility Program 10-1

This chapter discusses the following topics:

• RELOC' s functions

• RELOC' s role in the build cycle

• The invocation and use of RELOC

• The optional RELOC memory map

• The options you use with RELOC

You can run RELOC yourself, as described herein, but for most applications, you can use
MPBUILD.CMD (for RSX) or MPBUILD.COM (for VMS), automated procedures described in
Chapter 2.

10. 1 Functions of RELOC
After MERGE combines program sections (p-sects), RELOC allocates memory for them and
adjusts symbol reference addresses in all p-sects. Prior to relocation, the addresses of all symbols
in each p-sect are offsets from a base address of 0, as recorded in the relocation directory (RLD)
records of each p-sect. RELOC assigns physical memory addresses for unmapped applications
and virtual addresses for mapped applications, allocating all p-sects contiguously by default.
RELOC changes the 0-base offset value of each symbol reference so that it becomes the actual
address reference required, based on the symbol's position within the relocated program image
(.PIM) file. RELOC then adjusts all text records, using relocation directory (RLD) information
to assign new addresses.

RELOC normally sorts all p-sects by the read-only (RO), read/write (RW) attributes, collecting
all p-sect contributions having the same name, before it relocates them and puts them in the
output module. The sorting of p-sects by RO /RW attribute separates code and pure data,
which can be loaded in read-only memory (ROM), from impure data, which must be loaded in
read/write memory (RAM). In addition, RELOC sorts the p-sects alphabetically by p-sect name
within the read-only and read/write segments. You can disable the RELOC sorting of p-sects,
but you would not ordinarily do so for MicroPower /Pascal applications.

RELOC also offers some optional capabilities:

• RELOC can begin ROM or RAM segments at specific addresses.

• RELOC can begin RAM segments on the next available 4K-word virtual address boundary.

• You can specify the starting location of a given p-sect in memory; you supply either a
physical or virtual address, as required by the application image.

• RELOC can extend a p-sect to a specific size.

• RELOC can begin a p-sect at an address that is a multiple of a specified power of 2.

• You can request a symbol table (.STB) output file, which contains relocated global symbol
information. In addition, RELOC can include ISD records in the .STB file. The ISDs are
necessary if you want to use P ASDBG with the application.

• RELOC can separate instruction and data program segments to take advantage of I/D space
hardware on a Jl 1 target.

10-2 The RELOC Utility Program

• RELOC can build user-mode shared libraries and, for target systems having supervisor-mode
hardware support, supervisor-mode shared libraries.

• RELOC can provide a relocation map that contains p-sect names, sizes, starting addresses,
and global symbols. RELOC can alphabetize the map symbols and create a shortened map.

Table 10-1, in Section 10.5, summarizes the RELOC options.

10.2 Role of RELOC in the Build Cycle
You use RELOC at several stages in the build cycle (see Figure 10-2). After you merge the
configuration file and the kernel library, you use RELOC to produce the kernel symbol table
(.STB) file and the kernel image (.PIM) file. Later in the build cycle, you merge and relocate
each static process and each shared library, producing for each its own .PIM file and optionally
its own .STB file for debugging. The .STB file for a shared library is needed as input when you
merge a static process that references the library. Then you use the MIB utility to insert each
process in the memory image file. See Section 4.4 for a general discussion of how RELOC and
MIB interact in determining the placement of a process in the memory image, particularly in
the case of an unmapped image.

The primary output of RELOC is a process image file that contains relocated p-sects-p-sects
that have been allocated physical or virtual addresses. See Chapter 1 for an overview of the
application build cycle.

Figure 10-2: RELOC's Part in the Build Cycle

CON FIG.MAC : EDIT + ASSEMBLE

COMu.SML xxPFX.MAC /M'>,;

'
,, APPL.DBG

original

KERN.STB

APPL.DBG
" "

LIBxxx.OBJ

' APPL.DBG
APPLO.MIM updated new copy updated new copy updated

original

ML0-5198-87

The RELOC Utility Program 10-3

10.3 Invocation and Use of RELOC
For an RSX Development System:

Assuming that RELOC has been installed according to installation procedure defaults, you
invoke it by the task name RLC, as follows:

>[MCR] RLC

(Precede "> RLC" with "MCR" only if your CLI mode is DCL.) The following three standard
RSX forms of direct invocation may be used:

• > [MCR] RLC command-line

• > [MCR] RLC @command-file

In both instances, the specified .CMD file contains one or more RELOC command lines.

• > [MCR] RLC RLC> command-line or @command-file RLC>

The format of the RELOC command line is described below. Only the first two forms of RELOC
invocation can be used within a command file. The first form limits the line to 80 characters
and precludes the use of continuation lines. You can use the second and third forms to issue
several RELOC command lines within one invocation or to avoid the 80-character limit. Type
CTRL/Z in response to the RLC> prompt to exit.

For a VAX Development System:

If you have executed the MPSETUP.COM procedure (Section 1.4), you can invoke RELOC by
the logical symbol MPRELOC, as follows:

$ MPRELOC
RLC>command-line or Ocommand-file
RLC>

The format of the RELOC command line is described below. The default type for an indirect
command file is .COM; the file can contain one or more RELOC command lines. To exit, type
CTRL/Z in response to the RLC> prompt.

Command Line Format

RELOC accepts a command line in the form shown below. In the command line, all file
specifications are in the standard RSX format with respect to device and directory (UFD)
information if you are using an RSX host system. If you are using a VAX/VMS host, how~ver,
all file specifications are in standard VMS format with respect to device and directory information.

Output files appear on the left side of the equal sign (=); input files, on the right. Brackets
([]) in the sample command lines indicate optional fields of the command. When you omit an
optional output file specification, indicate the null field with consecutive commas to "hold its
place," except in the case of trailing fields. Trailing commas can be omitted. You must specify
at least one input file.

10-4 The RELOC Utility Program

Note
For Version 4.0 or later of VMS, the file name field of a file specification must not
exceed nine characters, and the file type field must not exceed three characters.

For Version 4.0 or later of VMS, underscores (-) are not valid in file
specifications.

For all versions of VMS, dollar signs ($) are not valid in file specifications.

RLC>[pimfile].[mapfile][.atbfile]-mobfile[.mimfile][/optiona]

pimfile

The file specification for the output image file containing the relocated, executable program text
that RELOC produces. The default file type is .PIM (for "process image"). If no output file is
specified, RELOC performs an error check only, and no image file is produced.

map file

The file specification for the RELOC map file. The default file type is .MAP. If this field is
omitted, no relocation map is generated.

stbfile

The file specification for the symbol table file. The default file type is .STB. The symbol table
consists of a global symbol name GSD entry, under the p-sect name . ABS., for each global
symbol defined in the input .MOB file. The entries contain absolute, relocated addresses for the
symbols, reflecting either physical or virtual addresses in the application memory image. These
entries are needed for a kernel .STB file for subsequent merging with processes.

For a shared library, the GSDs for all symbols from the . ABS. p-sect are under the . ABS.
p-sect. The GSDs for all symbols from other program sections are under a p-sect having the
same name as the library. These entries are needed for subsequent merging with any processes
that reference the library.

In addition, if the /DE option is specified, the .STB file also contains all the ISD records found
in the input .MOB file, following their relocation. Thus, the ISDs also contain absolute symbol
values, reflecting physical or virtual addresses in the memory image, depending on the type of
target system. You need the ISD records when building either a kernel or a user process for
debugging, since the .STB file is the link for passing debug symbol information between the
RELOC and MIB steps for inclusion in MIB's .DBG file. A process .STB file, unlike the kernel or
shared library .STB file, is generally of no further use following the MIB step for that process.
If this field is omitted, no symbol table file is produced.

mobfile

The file specification of the merged object module to be relocated. The default file type is .MOB.
You must specify an input mobfile.

The RELOC Utility Program 10-5

mimfile

The memory image (.MIM) file in which the process image will be installed in the succeeding
MIB step (unmapped applications only). The default file type is .MIM.

•

•

•

Always specify an input .MIM file if you are relocating a static process or shared library for
an unmapped memory image.

Never specify an input .MIM file when you are building the kernel for an unmapped
application.

Never specify an input .MIM file for a mapped application .

If you do not specify any special addressing for the process, RELOC reads the memory image
file to obtain the next available physical starting address(es) in the image for use as relocation
base values and to verify that the .MIM ·file is built unmapped. RELOC does not look up start
addresses in the .MIM file if you use any of the following options; RELOC checks only to
ensure that the file is an unmapped application:

/RO
/RW
/QB

/options

/EX
/UP
/AL

/UL:addr
/DS

Any of the options summarized in Table 10-1. All RELOC options are position independent.
Multiple options can be specified in a list of the following form:

/option 1 / o.ption2 / ...

The following examples illustrate basic RELOC command line syntax.

Example 1

>[MCR] RLC or $ MPRELOC
RLC>PROCXZ.PIM.PROCXZ.MAP.PROCXZ.STB•PROCXZ.MOB/DE
RLC><CTRL/Z>

This command relocates the merged object module PROCXZ.MOB for a mapped application
and produces the process image file (PROCXZ.PIM), the map file (PROCXZ.MAP), and the
symbol table file (PROCXZ.STB). The /DE option includes in the .STB file any debug symbol
information (ISDs) contained in the .MOB file. Since only the standard file types are used, you
could omit the file types and let RELOC assume the defaults, as follows:

RLC>PROCXZ.PROCXZ.PROCXZ•PROCXZ/DE

Example 2

RLC>PRCABC.PRCABC•PRCABC.APPLUM

This command relocates the merged object file PRCABC.MOB based on physical starting
addresses obtained by inspection of the unmapped APPLUM.MIM memory image file. The
output specified on the left side of the equal sign consists of the process image file PRCABC.PIM
and the map file PRCABC.MAP. The command does not request a symbol table file; therefore,
no /DE option is applicable. This form of RELOC command, specifying an input memory image
file, is valid only for unmapped applications. Since no special addressing options are specified,
RELOC will look in the .MIM file for the next available physical starting address.

10-6 The RELOC Utility Program

Example 3

RLC>,PRCABC•PRCABC,APPLUM

This command relocates the merged object file as described in Example 2 but produces only a
relocation map file.

10.4 Relocation Map
If you specify a map file in the command line, RELOC creates a "load" map that contains the
following information:

1. RELOC version identification

2. Date and time of relocation

3. The .PIM file specification and input module name (Title) and version (Ident)

4. Information about each p-sect processed by RELOC during the relocation, including p-sect
name, p-sect attributes, p-sect base address, p-sect length, and global symbol names and
values

5. Nominal transfer address; not significant, see the MIB memory map

6. Total ROM (RO segment) size

7. Total RAM (RW segment) size

For an I/D process or a supervisor-mode shared library, separate information is listed about
instruction space and data space and separate I-RO, I-RW, D-RO, and D-RW information. For
a process that references a supervisor-mode shared library or one or more user-mode shared
libraries, separate information on each shared library is given. All symbols are listed under a
single p-sect, with the name of the library for a user-mode library or a supervisor-mode shared
library with no data. Two p-sects are listed, having the same name (one instruction space, the
other data space) for a supervisor-mode shared library with data. The map also reports any
undefined global symbols encountered during relocation.

By default, the map is three columns wide for convenient display on a video terminal. You can,
however, use the /WI option to produce a 6-column map listing. Figure 10-3 shows a sample
3-column RELOC map, with circled numbers keyed to the items listed above. An extensive
midsection of the map has been deleted from the sample reproduction, as indicated by the
vertical line of dots.

The RELOC Utility Program 10-7

Figure 10-3: Sample RELOC Map of a Process Without l/D Separation or Shared
Libraries

G)MICROPOWER RELOC V02.00 VMS Load Map (])Fri 15-Mar-85 10:20:07
@)TE003.PIM Title: EXAMPL Ident: 062130

@)section Address Size Global Value Global Value Global Value

. ABS. 000000 000000 (RW,I,GBL,ABS,OVR)

HA$CMR 000000 HA$FIS 000000 HA$ROM 000000
HA$FPP 000000 HA$T11 000000 HA$J11 000000
HA$IOP 000000 HA$Q22 000000 SA$RIR 000000

.OTS. 011030 004760 (RO,I,G8L,REL,CON)

$875 011030 $SAV6 011030 $877 011054
$RES6 011054 $RDC 011072 $80 011072
$82 011072 $820 011130 $822 011130
$WRC 011130 $832 011244 $834 011244
$WRS 011244 $836 011424 $838 011424
$WRL 011424 $CRPCI 011522 $8200 011522
$CR8SI 012322 $SGNLI 012420 $WAITI 012456
$STPCI 012514 $DLSTI 012552 $PTERM 012610
$STERM 012610 $863 012610 $START 013114
$CLRTN 013440 $824 013440 $826 013440
$WRI 013440 $WRIR 013450 $IMOD 013674
$882 013674 $8GCHK 013774 $SV05 014012
$SV03 014052 $SV02 014102 $NEWC 014126
$NEW 014130 $870 014130 $DSPC 014414
$872 014416 $DSP 014416 $KRPTR 014664
$RPTER 014674 $SAV5 015016 $RES5 015040
$DIVU 015054 $GETCH 015104 $STSAV 015134
$STCLR 015164 $POP8 015200 $POP12 015214
$COM1 015230 $COM2 015354 $COM3 015474
$PSTRT 015572 $LDFPP 015604 $8120 015606
$UMOD 015606 $UDIV 015644 $8118 015644
$SAV4 015740 $RES4 015760 $COP3 015772

.PBIT. 016010 000050 (RO,D,GBL,REL,OVR)

.PCON. 016060 001516 (RO,D,LCL,REL,CON)

.PEIS. 017576 000200 (RO,I,G8L,REL,OVR)

.QSEM. 000000 000000 (RO,I,LCL,ABS,OVR)

.RBUF. 000000 000000 (RO,I,LCL,ABS,OVR)

.SCDF. 000000 000000 (RO,I,LCL,A8S,OVR)

.SDDF. 000000 000000 (RO,I,LCL,A8S,OVR)

.SEDF. 000000 000000 (RO,I,LCL,ABS,OVR)

10-8 The RELOC Utility Program

Figure l 0-3 (Cont.): Sample RELOC Map of a Process Without l/D Separation or
Shared Libraries

. SMDF. 000000 000000 (RO,I,LCL,ABS,OVR)

.SNDF. 000000 000000 (RO,I,LCL,ABS,OVR)

.SQUE. 000000 000000 (RO,I,LCL,ABS,OVR)

.SREG. 000000 000000 (RO,I,LCL,ABS,OVR)

. STDF. 000000 000000 (RO,I,LCL,ABS,OVR)

.CDAT. 017776 000074 (RW,D,GBL,REL,CON)

.ODAT. 020072 000022 (RW,D,GBL,REL,OVR)

.SDAT. 020114 002424 (RW,D,GBL,REL,CON)

([)Transfer address = 000001

@)Total ROM size = 017776

(f)Total RAM size = 002542

10.5 RELOC Options
This section describes the RELOC options summarized in Table 10-1.

Note
Any numeric value specified in a RELOC option is assumed to be expressed in
octal unless the number is terminated by a decimal point. Thus, the expressions
100 and 64. represent the same value, and 108 is an invalid expression.

Table l 0-1: RELOC Options

Option

/AB

/AL

/DE

/DR:n

/DS

Meaning

Lists symbol names alphabetically within p-sects in the load map.

Aligns the first read/write p-sect on the next available 4K-word address
boundary; intended specifically for mapped ROM/RAM build operations.

Includes debug symbol information (ISD records) as well as global symbol
directory records (GSDs) in the symbol table file. If you specify a symbol table
file in the RELOC command but do not specify /DE, RELOC puts only GSDs
in the .STB file.

Specifies starting address n of read-only D-space section. Use with /ID option
for separate instruction and data (1/D) space on Jl 1 target.

Leaves p-sects in the order of their occurrence in the input module, disabling
RELOC' s normal sorting of p-sects first by read-only and read/write attribute
and then by alphabetical order of p-sect names within the read-only and
read/write segments. (This option is used only in a few special cases.)

The RELOC Utility Program 10-9

Table 10-1 (Cont.): RELOC Options

Option

/DW:n

/EX:name:size

/ID

/LS:name:addr

/NM:name

/QB:name:addr[: ...]

/RO:addr

/RW:addr

/SH

/SL

/UL[:addr]

/UP:name:n

/VR:xxx

/WI·

/ZR:n

Meaning

Specifies starting address n of read/write D-space section. Use with /ID option
for separate instruction and data (I/D) space on Jl 1 target.

Extends a p-sect to a specified size, in bytes.

Builds application for target with separate instruction and data (I/D) spaces.
This option is applicable only to a mapped Jll target system with IjD hardware
support.

Overrides the default memory allocation algorithm for relocatable libraries in
a mapped system.

Specifies, for the output .STB file, the name of the module to be relocated;
overrides actual input module name from the .MOB file. Overrides the
PASDBG "program name" in only the .STB file and later the debug file for
Pascal processes. For shared libraries, this name overrides the library name
(written in the library list element in the .PIM file and in the .STB file and
later in the debug file).

Sets the base address for the named p-sect; multiple pairs of p-sect names and
base addresses can be specified.

Starts the first read-only p-sect at the specified physical or /RO:addr virtual
address. If used with /DS, the base of the program is unconditionally set
to addr. If used with /ID, the /RO option specifies the starting address of
read-only I-space.

Starts the first read/write p-sect at the specified physical or virtual address.
If used with /ID, the /RW option specifies the starting address of read/write
I-space.

Produces a shortened load map; symbols defined in the . ABS. p-sect are
omitted (kernel symbols from the kernel .STB file).

Builds a supervisor-mode shared library.

Builds a user-mode shared library. If the option includes an address, RELOC
builds an absolute rather than a relocatable library; addr specifies the base
virtual address for the absolute library.

Rounds up the length of the named p-sect so that the next free address is a
whole-number multiple of n; n must be a power of 2.

Specifies a program version number or other "ident" to appear in the load map
for the module to be relocated.

Produces a map listing six columns wide rather than the usual three; useful
for line printer listings.

Sets the value of unaccessed locations in the image to n; the default value is
0.

Figure 10-4 shows a sample RELOC map for a process with I/D separation.

10-10 The RELOC Utility Program

Figure 10-4: Sample RELOC Map of a Process with l/D Separation

CDMICROPOWER RELOC V02.00 VMS
@)TE403.PIM Title: EXAMPL

Load Map @)Fri 15-Mar-85 10:24:17
!dent: 062135

@)INSTRUCTION SPACE ALLOCATION

Section Address Size Global Value Global Value Global Value

. ABS. 000000 000000 (RW,I,GBL,ABS,OVR)

HA$CMR 000000 HA$FIS 000000 HA$ROM 000000
HA$FPP 000000 HA$T11 000000 HA$F11 000000
HA$IOP 000000 HA$Q22 000000 SA$RIR 000000

.OTS. 010702 004424 (RO,I,GBL,REL,CON)

.STDF. 000000 000000

@)DATA SPACE ALLOCATION

Section Address Size

.FDAT. 000000 000224

.!DAT. 000224 000022

.INIO. 000246 000000

.INI1. 000246 000002

.INI2. 000250 000000

.PBIT. 000250 000050

.PCON. 000320 001516

.CDAT. 002036 000074

.ODAT. 002132 000022

.SDAT. 002154 002424

@)Transfer address = 000001

$B75
$RES6
$B2

010702 $SAV6
010726 $RDC
010744 $B20

(RO,I,LCL,ABS,OVR)

Global Value Global

(RO,D,GBL,REL,CON)

(RO,D,GBL,REL,CON)

(RO,D,GBL,REL,CON)

(RO,D,GBL,REL,CON)

(RO,D,GBL,REL,CON)

(RO,D,GBL,REL,OVR)

(RO,D,LCL,REL,CON)

(RW,D,GBL,REL,CON)

(RW,D,GBL,REL,OVR)

(RW,D,GBL,REL,CON)

@Total INSTRUCTION SPACE ROM size 015326

0Total INSTRUCTION SPACE RAM size 000000

@Total DATA SPACE ROM size 002036

0Total DATA SPACE RAM size 002542

010702 $B77
010744 $BO
011002 $B22

010726
010744
011002

Value Global Value

The RELOC Utility Program 10-11

10.5. 1 Alphabetical Symbol Listing (/AB)
The /AB option lists symbol names in the load map alphabetically within a given p-sect. RELOC
normally lists symbols in order of their value, which reflects the order of the corresponding
locations in the image in the case of address symbols.

10.5.2 Align First RW Section at 4K-Word Boundary (/AL)
The /AL option starts the first read/write (RW) p-sect found in the input module (after the
RELOC p-sect sort) on the next available 4K-word address boundary, presumably virtual. This
option is intended specifically for mapped build operations. You ordinarily use it when relocating
a process for a mapped ROM/RAM application, since each page address register (PAR) must
start on a 4K-word boundary, and the RW (or RAM) segment of the static process is, in general,
not contiguous with the RO (or ROM) segment. This option conveniently provides the virtual
address adjustment required for the first RW p-sect that is not contiguous with the last RO
p-sect. For IjD processes, /AL starts the first RW I-space section at the next available 4K-word
virtual address boundary in instruction space and the first RW D-space section at the next
available 4K-word virtual address boundary in data space.

For a RAM-only target environment, MIB treats the RW, or high-order, segment of a process
as contiguous with the RO segment unless special relocation is specified in RELOC. That is, in
the RAM-only case, MIB treats all p-sects as if they were read/write p:-sects when positioning
the p-sects in physical memory. Special relocation in a mapped RAM-only environment is
ordinarily needed only for driver mapped device driver processes. (You use /RO and /RW in
relocating driver-mapped processes for any mapped image.)

If you are building an unmapped application and use /AL-not common practice-RELOC
does not look up start addresses in the input .MIM file. In addition, the /AL option and the
/RW, /DW, or /DS option are mutually exclusive.

The /AL option is intended for mixed ROM/RAM applications, but you can use the option
in other cases as well to get particular effects. If a mapped process is to be used in a mixed
ROM/RAM configuration, you must use the /AL option of RELOC, which starts the RW
(RAM) segment on a 4K-word virtual address boundary. The mapping hardware requires this
separation, but the result is that up to 4K-1 words of virtual address space may be wasted
between the RO and the RW sections; if the RO section is one word larger than a 4K boundary,
all the addresses up to the next 4K boundary will be unused.

An application for a mapped RAM-only target does not require the/ AL option, since all memory
is the same and there is no need to start the RW section at any particular boundary. Since
there is no gap between the RO and RW sections, no virtual address space is wasted. If you do
not use /AL, however, RELOC includes both the RO. and RW sections of the application in the
output .MIM file, producing a larger disk image. Although there can be a loss of virtual address
space, use of the /AL option reduces the size of the output .MIM file, thereby saving disk
space. When you use the /AL option, RELOC places only the RO portion of the application
in the output .MIM file. The RW portion, which is always initialized at run time, is left out of
the .MIM file, making its disk image smaller. If you want, you can use /AL when building a
RAM-only application; that will have the effect of possibly wasting almost 4K-words of virtual
address space, but it will save on disk space.

Figure 10-5 shows a sample RELOC map of a shared library.

10-12 The RELOC Utility Program

Figure 10-5: Sample RELOC Map of a Shared Library

CDMICROPOWER RELOC V02.00 VMS Load Map @)sun 03-Mar-85 13:25:36
@TE601 .PIM Title: $USRLB !dent: 062130

USER-MODE LIBRARY

Section Address Size Global Value Global Value Global Value

.AICD.

.AICM.

.OTS.

.PTDF.

.QSEM.

.RBUF.

.SCDF.

.SDDF.

.SEDF.

.SMDF.

.SNDF.

.SPMP.

.SQUE.

.SREG.

.STDF.

@Total ROM

(f)Total RAM

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

002716 004760 (RO,I,GBL,REL,CON)

$875 002716
$RES6 002742
$82 002760
$WRC 003016
$WRS 003132
$WRL 003312
$CRBSI 004210
$STPCI 004402
$STERM 004476
$CLRTN 005326
$WR! 005326
$882 005562
$SV03 005740
$NEW 006016
$872 006304
$RPTER 006562
$DIVU 006742
$STCLR 007052
$COM1 007116
$PSTRT 007460
$UMOD 007474
$SAV4 007626

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,A8S,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

000000 000000 (RO,I,LCL,ABS,OVR)

size 007676

size 000000

$SAV6 002716 $877 002742
$RDC 002760 $80 002760
'$820 003016 $822 003016
$832 003132 $834 003132
$836 003312 $838 003312
$CRPCI 003410 $8200 003410
$SGNLI 004306 $WAIT! 004344
$DLSTI 004440 $PTERM 004476
$863 004476 $START 005002
$824 005326 $826 005326
$WRIR 005336 $IMOD 005562
$BGCHK 005662 $SV05 005700
$SV02 005770 $NEWC 006014
$870 006016 $DSPC 006302
$DSP 006304 $KRPTR 006552
$SAV5 006704 $RES5 006726
$GETCH 006772 $STSAV 007022
$POP8 007066 $POP12 007102
$COM2 007242 $COM3 007362
$LDFPP 007472 $8120 007474
$UDIV 007532 $8118 007532
$RES4 007646 $COP3 007660

The RELOC Utility Program 10-13

10.5.3 Debug Symbols (/DE)

The /DE option relocates and includes in the output symbol table (.STB) file all internal symbol
directory (ISO) records found in the input module. The ISDs contain symbol information that is
subsequently installed in the .DBG file by MIB and used by P ASDBG. The /DE option has no
effect on the output .PIM file. You must specify /DE when relocating a kernel for an application
to be built with debug support and when relocating any process or shared library that you will
want to debug with PASDBG.

10.5.4 Starting Address of Read-Only Data Space (/DR:n)

The /DR:n option allows you to specify the starting address of the read-only D-space portion
in an application built with I/D separation by means of the /ID option.

10.5.5 Disable Section Sort (/OS)

The /OS option prevents RELOC from performing its standard p-sect sort and instead relocates
all p-sects in the process image according to the order of their occurrence in the input module file.
Otherwise, RELOC first segregates the p-sects into two groups, or segments, by RO /RW attribute,
with the RO segment preceding the RW segment, and then sorts the p-sects alphabetically by
p-sect name within each segment.

If you use the /ID option with the /OS option, RELOC separates instruction and data space
but does not sort the sections within those spaces.

Many intrinsic build-time and run-time MicroPower/Pascal mechanisms depend on RELOC's
grouping and alphabetic sorting of p-sects for their proper functioning. In addition, the
segregation of RO and RW p-sects is crucial for the physical memory segmentation required
by an actual or simulated ROM/RAM target environment. The specific requirements for the
.ALST. p-sect are described below. The /OS option, therefore, is not intended for general use.
If you do use it, do so with great care in putting the p-sects in proper order.

You cannot use the /RW, /OW, or /AL options if you use the /OS option. Do not specify
/OS for a kernel build. If you specify /OS for a process in an unmapped application, RELOC
does not look up start addresses in the .MIM file. You must therefore specify start addresses
as needed by using the /RO, /RW, or /QB option. In addition, if you use /OS, the load map
produced by RELOC does not show the ROM (RO segment) and RAM (RW segment) total sizes.

Relocating the .ALST. P-sect

A static process for any kind of target system environment must meet one general requirement.
The first relocatable p-sect for any static process must contain the static process list element in
order for that element to be correctly positioned in the process image, allowing the kernel to
"find" the process at initialization time. That is achieved through standard MicroPower/Pascal
conventions and the normal RELOC sort by ensuring that the p-sect containing the list element,
named .ALST., is the alphabetically "lowest" read-only p-sect in any static process .MOB file.
Consequently, the text of that p-sect is placed properly at the beginning of the process.

In a MACR0-11 source program, the Define Static Process (DFSPC$) macro call establishes
the .ALST. p-sect, which contains the static process list element generated by DFSPC$. The
MACRO programmer, therefore, must not define any p-sect that will precede that section but
should use only the standard MicroPower/Pascal macros PURE$, POAT$, and IMPUR$ for
program sectioning in a MACR0-11 process implementation.

10-14 The RELOC Utility Program

The MicroPower/Pascal compiler automatically generates the .ALST. p-sect for a PROGRAM
compilation unit.

Zero-length p-sects such as . ABS. are not a consideration in determining p-sect ordering.

Figure 10-6 shows a sample RELOC for a process that references a shared library.

The RELOC Utility Program 10-15

Figure l 0-6: Sample RELOC Map of a Process That References a Shared Library

CDMICROPOWER RELOC V02.00 VMS Load Map @)sun 03-Mar-85 13:26:26
@TE602.PIM Title: EXAMPL Ident: 062130

@)section Address Size Global Value Global Value Global Value

.ALST. 000000 000076 (RO,I,GBL,REL,CON)

.CODE. 000076 006020 (RO,I,LCL,REL,CON)

$BEGIN 001736

.DEBG. 006116 000032 (RO,I,LCL,REL,OVR)

.IDAT. 006150 000022 (RO,D,GBL,REL,CON)

.INIO. 006172 000000 (RO,D,GBL,REL,CON)

.INI1. 006172 000002 (RO,D,GBL,REL,CON)

.INI2. 006174 000000 (RO,D,GBL,REL,CON)

.PBIT. 006174 000050 (RO,D,GBL,REL,OVR)

.PCON. 006244 001516 (RO,D,LCL,REL,CON)

.PEIS. 007762 000200 (RO,I,GBL,REL,OVR)

.CDAT. 010162 000074 (RW,D,GBL,REL,CON)

.ODAT. 010256 000022 (RW,D,GBL,REL,OVR)

.SDAT. 010300 002424 (RW,D,GBL,REL,CON)

@)REFERENCED USER-MODE LIBRARIES

Section Address Size Global Value Global Value Global Value

$USRL8 020000 007676 (RO,I,LCL,REL,CON)

$8208 020306 $B205 020312 $B62 020320
$WRFV 020412 $B57 020412 $B59 020432
$RDFV 020432 $LOCKF 020452 $UNLKF 020472
$8206 020500 $IGET 020522 $B61 020522
$ILZY 020524 $860 021302 $PUTCH 021304
$BRAKF 021504 $BRAKA 021514 $BRAK8 021520
$WTWRT 022000 $IOBEG 022062 $IOEND 022336
$FSWT 022340 $QIO 022356 $B75 022716
$SAV6 022716 $B77 022742 $RES6 022742
$RDC 022760 $80 022760 $B2 022760
$820 023016 $822 023016 $WRC 023016
$832 023132 $B34 023132 $WRS 023132
$836 023312 $838 023312 $WRL 023312
$CRPCI 023410 $8200 023410 $CR8SI 024210
$SGNLI 024306 $WAITI 024344 $STPCI 024402
$DLSTI 024440 $PTERM 024476 $STERM 024476
$863 024476 $START 025002 $CLRTN 025326
$824 025326 $826 025326 $WRI 025326
$WRIR 025336 $!MOD 025562 $882 025562
$8GCHK 025662 $SV05 025700 $SV03 025740
$SV02 025770 $NEWC 026014 $NEW 026016
$870 026016 $DSPC 026302 $872 026304
$DSP 026304 $KRPTR 026552 $RPTER 026562
$SAV5 026704 $RES5 026726 $DIVU 026742
$GETCH 026772 $STSAV 027022 $STCLR 027052
$POP8 027066 $POP12 027102 $COM1 027116
$COM2 027242 $COM3 027362 $PSTRT 027460
$LDFPP 027472 $8120 027474 $UMOD 027474
$UDIV 027532 $8118 027532 $SAV4 027626
$RES4 027646 $COP3 027660

~Transfer address 000001

@Total ROM size 010162

CZ) rot al RAM size 002542

10-16 The RELOC Utility Program

10.5.6 Starting Address of Read/Write Data Space (/DW:n)
The /DW:n option allows you to specify the starting address of the read/write D-space portion
in an application built with I/D separation using the /ID option.

10.5. 7 Extend Section to Specified Size (/EX)
The /EX:name:size option lets you extend a named p-sect to a specified size. The name
argument to the option is a p-sect name, and the size argument is the total number of bytes,
expressed in octal, you want allocated to the p-sect. The size value must be an even number
greater than the actual p-sect size; if the value is less, RELOC ignores the option value and uses
the actual p-sect size. In any case, RELOC starts the following p-sect at the next contiguous
location.

You can use this option, for example, to extend a p-sect to increase the size of a stack or to
allocate patch space at the end of the p-sect.

If you are building an unmapped application and use /EX, RELOC does not look up start
addresses in the memory image (.MIM) file. (You should still specify the .MIM file, though.)
That is, you must use the /RO option, and possibly /RW also, in addition to /EX in the
unmapped case.

You can extend only one p-sect in a given static process.

10.5.8 Separate Instruction and Data (l/D) Space (/ID)

The /ID option builds a process with separate instruction and data space. This option is
applicable only to applications being built for a Jl 1 target system with memory mapping and
I/D hardware support.

If you do not specify this option, RELOC allocates memory first to all RO program sections,
sorted alphabetically by p-sect name, then to all RW program sections, sorted alphabetically,
with no separation of instructions and data. If you specify /ID, RELOC separates instruction
segments from data segments before allocating memory. Then, RELOC allocates memory
separately in instruction space for instruction segments and in data space for data segments. In
each address space, RO and RW sections are separated and sorted alphabetically.

Note
Except as a way to increase the virtual address space available to a program,
I/D separation offers no advantages unless the program (static process) is built
with a supervisor-mode shared library. Use l/D separation when you are faced
with addressing limitations that l/D separation can solve for you; otherwise,
ordinary mapped format is just as good.

The RELOC Utility Program 10-17

10.5.9 Define User Library Base Address (/LS:name:addr)
The /LS option allows you to specify base virtual addresses for user-mode libraries in a mapped
application instead of using RELOC's default memory allocation algorithm. Specify this option
only on libraries that were built relocatable for which you want to change the default base
address. You determine the default base address by first allocating memory for the process and
then looking for the first segment beginning on a 4K-word virtual address boundary that is large
enough to map the library. When you are using this option, the user-mode library module is
name, and the desired virtual base address is addr, which must be a 4K-word boundary. You
can specify multiple libraries by using multiple arguments. For example, a RELOC command
might be:

>RLC
RLC>PROC1.PIM•PROC1.MOB/LS:LIB1:100000:LIB2:140000

You can use this option only for libraries that were built as relocatable. If you attempt to use
the option on an absolute library, you will get an error message.

10.5. 1 O Program/Process Name (/NM)
The /NM:name option lets you specify a program (static-process) name for debugging, overriding
the module name GSD /ISD entries contained in the input merged object module.

This option is provided as an alternative to the MERGE /NM option for Pascal processes. (See
the description of /NM for the MERGE utility.) The name argument can consist of up to six
RADSO characters. The option affects only the output .STB file and, consequently, the .DBG
file updated in the subsequent MIB step.

For shared libraries, using /NM lets you change the name of the library in the library list
element of the application and in the .STB file and, consequently, in the debug file updated
in the subsequent MIB step. If your application has multiple user-mode libraries, this option
must be used to ensure that the names of the libraries are unique. If you do not use the
/NM option, RELOC uses the name in the module name GSD in the shared-library object
module (LIBS UP .OBJ for a supervisor-mode shared library or LIBUSR.OBJ for a user-mode
shared library). The module name GSD comes from the . TITLE directive in the MACR0-11
source module.

10.5. 11 Base Address for Specified Program Section (/QB)

The /QB option lets you specify a base address for any named p-sect in the input module. In
the absence of any special relocation options, RELOC starts each p-sect at the next available
physical or virtual memory address. If that memory location must be used for another purpose
or is nonexistent, the /QB option allows you to override the normal "next contiguous address"
relocation of any given p-sect to meet special application requirements or to satisfy special
target-memory constraints. The format of the /QB option is:

/QB:name1:addr[:name2:addr ...]

In this format, each "name-i" is a p-sect name, and· addr is the starting address for that p-sect.
You can specify up to eight p-sect names and addresses. For unmapped applications, /QB
specifies a physical address; for mapped applications, /QB specifies a virtual address. If you
are building an unmapped application and use /QB, RELOC does not look up start addresses
in the memory image (.MIM) file.

10-18 The RELOC Utility Program

Note
In a mapped target system, any p-sect noncontiguous with other p-sects must
start on a 4K-word virtual address boundary to satisfy mapping hardware
requirements. In addition, for mapped applications, the .ALST. program section
containing the static process or library list element must start on a 4K-word
virtual address boundary.

10.5. 12 First RO Section at Specified Address (/RO)
The /RO:addr option starts the first read-only (RO) p-sect found in the input module (after
the RELOC p-sect sort) at the specified address. For unmapped applications, /RO specifies a
physical address; for mapped applications, /RO specifies a virtual address. If you use /RO with
the /DS option, the starting address of the first p-sect of the program is set to addr regardless
of its access attribute. Note that /DS is not recommended for general use.

If you are building an unmapped application and use /RO, RELOC does not look up start
addresses in the memory image (.MIM) file. If your target system is ROM/RAM, you must use
the /RW or /QB option in addition to /RO.

Note
In a mapped target system, any p-sect noncontiguous with other p-sects must
start on a 4K-word virtual address boundary to satisfy mapping hardware
requirements. In addition, for mapped applications, the .ALST. program section
containing the static process or library list element must start on a 4K-word
virtual address boundary-normally the first read-only p-sect unless you use
the /DS option.

10.5. 13 First RW Section at Specified Address (/RW)

The /RW:addr option starts the first read/write (RW) p-sect found in the input module-after
the RELOC p-sect sort-at the specified address. For unmapped applications, /RW specifies a
physical address; for mapped applications, /RW specifies a virtual address.

If you are building an unmapped application and use /RW, RELOC does not look up starting
addresses in the input memory image (.MIM) file. In addition, the /RW option and the/ AL or
/DS options are mutually exclusive.

Note
In a mapped target system, any p-sect noncontiguous with other p-sects must
start on a 4K-word virtual address boundary to satisfy mapping hardware
requirements. If /ID is specified, /RW refers to instruction space.

10.5. 14 Short Map (/SH)

The /SH option produces a "short" load map by excluding the kernel symbol definitions
contained in the . ABS. p-sect from the map listing. By default, the map file includes the kernel
symbol definitions. The numerous kernel symbols (roughly 700) are ordinarily of no direct use
for debugging. If you omit the map file specification, the /SH option is ignored.

The RELOC Utility Program 10-19

10.5. 15 Supervisor-Mode Shared Library (/SL)

The /SL option builds the output file as a supervisor-mode shared library. Your target system
must have supervisor mode, I/D space hardware support, and a kernel built with Jl 1 mapping
to use a supervisor-mode shared library. When you use /SL, RELOC separates I- and D-space
program sections, includes the library list element and supervisor-mode dispatcher in the output
file, checks for read/write program sections, and creates a special .STB file if a .STB file is
specified. RELOC reads in the library list element and the supervisor-mode dispatcher from
LIBSUP.OBJ. (See Section 6.2.4 for the file specification.)

If you specify the /DE option with the /SL option, RELOC includes ISO records in the output
.STB file so that P ASDBG will recognize it as a supervisor-mode shared library.

You cannot use /DR, /OW, /QB, /RO, or /RW with the /SL option.

10.5. 16 Build User-Mode Shared Library (/UL[:addr])

The /UL[:addr] option builds a user-mode shared library. If the option includes a value for
addr, RELOC builds an absolute rather than a relocatable library; addr specifies the base virtual
address for the absolute library. When you use /UL, RELOC includes the library list element
in the output file, checks for read/write program sections, and creates a special .STB file if one
is specified. RELOC reads in the library list element from LIBUSR.OBJ. (See Section 6.2.5 for
the file specification.)

10.5. 17 Round Up Section Size (/UP)

The /UP:name:n option rounds up the length of the named p-sect so that the next free address
in the process image is a whole-number multiple of n. The following p-sect will normally start
at that address boundary. The specified boundary value must be a power of 2, and you can
round only one p-sect for each process. The /UP option is useful if you want to include patch
space in the application or align a following program or data section on a 32(decimal)-word or
other power-of-2 boundary.

If you are building an unmapped application and use /UP, RELOC does not look up starting
addresses in the input memory image (.MIM) file.

10.5. 18 Program Version Number (/VR:xxx)

The /VR:xxx option lets you override the program version number or other program identification
value for the module being relocated. This option argument can consist of up to six RADSO
characters. The specified value appears in the load map.

If you do not use the /VR option, RELOC uses the version number found in the program
identification GSD record of the input module.

10.5.19 Wide Map (/WI)

The /WI option produces a memory map with six columns rather than the default three columns
of global symbol names and values. The default 3-column format is intended for video terminal
display of the map file. The 6-column map may be more convenient for line printer listings. If
you omit the map file specification, the /WI option is ignored.

10-20 The RELOC Utility Program

10.5.20 Value of Undefined Locations (/ZR:nnn)
The /ZR:nnn option lets you set the value of undefined locations in the process image. The n
argument specifies the octal value that you want each undefined location to have. RELOC sets
the value of undefined locations to 0 by default. Use /ZR if you want to set those locations to
some other value.

Note
The /ZR option sets only the values of undefined locations and does not
modify locations defined by .WORD or .BYTE directives. Locations in the image
reserved by .BLKW or .BLKB directives, however, and locations implied by use
of the /EX or /UP option are affected by /ZR.

The RELOC Utility Program 10-21

Chapter 11
The MIB Utility Program

The MIB utility program constructs a file that contains a memory image of a MicroPower/Pascal
application. MIB can create and initialize an entirely new memory image file, or it can modify an
existing memory image file. MIB can also create a new debug symbol file or modify an existing
debug symbol file. You need the debug symbol file when you use the PASDBG symbolic
debugger. See Figure 11-1.

Figure 11-1 : MIB Utility Input and Output

. DBG

@:~

@:~

@:~

@:~

@:~

@:~

@:~

@:~

@:~

.STB

@:~

@:~

@:~

@I:~

.MAP

.MIM

(to produce a new copy)

MIB creates new memory image file
or inserts process image into an
existing memory image file or new
copy; optionally inserts symbol table
information into debugger symbol
table file, and creates a map file .

.MIM

'----~---'----/

R/W
,----'---~----i R/O

ML0-521-87

The MIB Utility Program 11-1

This chapter discusses the following topics:

• MIB' s functions

• MIB's role in the build cycle

• The invocation and use of MIB

• The interaction between RELOC and MIB

• The listing file that MIB optionally produces

You can run MIB yourself, but you will probably be able to use the automated build procedure
MPBUILD instead (described in Chapter 2).

1 1 . 1 Functions of MIB
The MIB utility program creates the memory image file, installs and removes bootstraps, installs
static processes and shared libraries, creates the debug symbol file and installs debug symbols,
and creates map files. MIB can also perform some operations that let you avoid rebuilding
the application. For example, you can use MIB when you need to change a process's start-up
priority or change a process's exception group code.

11. 1. 1 Creating a Memory Image File
When you use the /KI option, the MIB utility creates and initializes a new memory image
(.MIM) file and installs a kernel executable image. MIB constructs the memory image file in one
of the following three formats:

• PASDBG load format: RAM-only memory image, no bootstrap in .MIM file, debugger
service module (DSM) included in the kernel for "load and debug" or not included for "load
and go" (LOAD /EXIT)

• Bootstrap load format: RAM-only memory image, appropriate bootstrap in the .MIM file,
no DSM in the kernel

• PROM programmer format: ROM/RAM memory image, no bootstrap in .MIM file, no DSM
in the kernel

The parameters specified in the MEMORY and SYSTEM macros of the configuration file used
to build the kernel define the type of memory image finally constructed.

You need a memory image file in PASDBG load format if you intend to use PASDBG either
to load and debug your application or to load your application for independent execution. In
either case, do not install a bootstrap in the memory image file. A bootstrap is unnecessary
because P ASDBG uses the host-resident TD bootstrap to down-line load the image.

You need a memory image file in bootstrap load format if you intend to boot and load the
application image from a target system disk or a TU58 device.

You need a memory image file in PROM programmer format if you intend to place the
application in PROM chips.

11-2 The MIB Utility Program

11.1.2 PASDBG Load Format

A .MIM file in P ASDBG load format (RAM-only) contains a memory allocation table and
a compressed memory image. For all installed components, the image usually contains all
read-only segments but, for mapped applications only, can contain some read/write segments.
The file must not contain a bootstrap. The memory allocation table provides information that
PASDBG uses to load program segments into target memory. The table is two blocks long;
the used portion of the table ends with a -1, and the remainder is zero-filled. A bit in the
attributes byte in the memory allocation table header indicates whether the memory image is for
a mapped or an unmapped target; in addition, another bit indicates that the image is RAM-only
(always so for P ASDBG). The memory allocation table header also contains the address of the
kernel/MIB communication area, a portion of the kernel containing information needed by both
MIB and the kernel. Figure 11-2 illustrates both the PASDBG and bootstrap load formats.

1 1 . 1 . 3 Bootstrap Load Format

A .MIM file in bootstrap load format (RAM-only) is identical to PASDBG load format except
that it contains a bootstrap at the beginning of the file. (See Figure 11-2.) DIGITAL supplies
bootstraps for all disk or disk-like devices supported on a target system. When you specify
the appropriate bootstrap file for your system with the MIB /BS option (Section 11.4.1), MIB
installs the bootstrap at the front of the .MIM file.

After you have built a complete memory image, you copy the .MIM file onto a suitable storage
volume-one matching the type of bootstrap installed-using the FLX or EXCHANGE utility
program, and then use the MicroPower/Pascal COPYB utility to make the volume bootable
from a device on your target system. See Chapter 12 for further details.

You can install a bootstrap either when you create the .MIM file in the kernel-build step or
at the end of a build cycle. The latter strategy is convenient if you think you might want the
same memory image to be bootable from several devices. If you build a complete .MIM file
with no bootstrap installed, you can then create copies of it with different bootstraps, prefixing
the bootstrap appropriate for the desired boot device.

Alternatively, you can delete an existing bootstrap from a .MIM file and install another bootstrap
in its place. You can remove a bootstrap by means of the /RB option.

The MIB Utility Program 11-3

Figure 11-2: PASDBG or Bootstrap Load Format .MIM Fiie

Optional Bootstrap

Memory Allocation Table Header

Load Address

Size

Load Address

Size

•
•
•

Load Address 2 blocks

Size

-1

0

0

•
•
•
0

Compressed Memory Image

•
•
•

ML0-516-87

11. 1.4 PROM Programmer Format
The PROM programmer .MIM file format (ROM/RAM) differs from the P ASDBG and bootstrap
load format files in that the PROM file's memory image contains only ROM (read-only) memory
segments. (See Figure 11-3.) No space is allocated in the file for read/write segment text.
A bit in the attributes byte in the memory allocation table header indicates that the image is
ROM/RAM. The memory allocation table has entries only for the read-only segments. The file
must not contain a bootstrap. The memory allocation table provides the information needed by

11-4 The MIB Utility Program

the utility program that will subsequently be used to control the "PROM blasting" process, such
as VAX DECprom on a VAX/VMS host system.

Figure 11-3 shows a PROM programmer format memory image file.

Figure 11..:..3: PROM Programmer Format .MIM Fiie

Memory Allocation Table Header

Load Address

Size

Load Address

Size

•
• .

Load Address 2 blocks

Size

-1

0

0

•
•
•

0

Compressed Memory Image

•
• .

ML0-517-87

11. 1.5 Installing Static Processes

After you use the /KI option to create a memory image file containing a kernel, you use MIB to
install static-process images, one at a time, in that memory image. Ordinarily, you will probably
want to use the /SM option and specify both an input and an output .MIM file in the successive
MIB steps, as explained in the description of the /SM (small image) option in Sections 11.2 and

The MIB Utility Program 11-5

11.4.7. MIB links the static processes into the kernel's static-process list, updates the memory
allocation table, and removes the memory used by the process from the kernel's free-memory
list. If the process references any shared libraries, MIB ensures that the shared libraries are
already installed in the image and links the process to the shared libraries. MIB can also install
debug symbol information for a given process in the optional debug symbol file.

l l. 1.6 Installing Shared Libraries

If you use shared libraries in your application, you use MIB to install them, one at a time,
in the memory image. You must install the shared library before you install any process that
references the shared library. MIB links the shared library into the kernel's library list, updates
the memory allocation table, and removes the memory used by the library from the kernel's
free-memory list. MIB can also install debug information for a given shared library in the
optional debug file.

11. 1. 7 Installing a Bootstrap
The MIB utility can install an appropriate bootstrap in the memory image file. You specify the
desired bootstrap file with the /BS option. You must specify both an input and an output .MIM
file unless you install the bootstrap in the kernel installation step using both the /KI and /BS
options.

11. 1. 8 Removing a Bootstrap

Use the /RB option to remove a bootstrap from a .MIM file. You must specify both an input
and an output .MIM file.

11. 1. 9 Creating a Map File

MIB can create a map file that shows the location and extent of the kernel, the installed process
images and their attributes, and the layout of remaining available memory. The map also
reports the type and extent(s) of target memory as it is described in the system configuration
file. A memory map can be created as a separate MIB operation, if desired, or can be created
in combination with another operation. Section 11.5 describes the MIB map.

11. 1. l O Initializing the Debug Symbol File
If you specify a .DBG output file when you create the .MIM file containing the kernel, MIB
creates and initializes the debug symbol file and places the kernel symbols in it.

The debug symbol (.DBG) file is an image-mode file in a special tree-structured format. The
symbolic debugger, P ASDBG, uses the information in this file to find and interpret the
locations and structures you specify symbolically during debugging operations. When you
invoke P ASDBG to down-line load and debug a memory image from the host development
system, the debugger loads all or part of the debug file into host memory as needed.

If you do want .DBG file output from MIB, you must include a kernel symbol table file (.STB)
as input in the kernel build step. The kernel .STB file must contain debug symbol information
(ISD records) as well as the normal global-symbol definitions (GSD records) for the kernel.
RELOC produces the kernel .STB file, from which MIB produces the initial portion of the .DBG
file.

The /DE option must be used in both the MERGE and RELOC steps for the kernel.

11-6 The MIB Utility Program

11. 1. 11 Installing Debug Symbols for a Static Process or Shared Library
MIB processes the optional .STB file generated by RELOC for each relocated process or share'd
library to format the debug symbol information specific to that process and add it to the .DBG
file.

Here again, the /DE option must be used in the MERGE and RELOC steps for the process in
question and also in the compilation step in the case of a Pascal process. In addition, a .STB
file must be generated in the RELOC step.

11.2 Role of MIB in the Build Cycle
You use MIB repeatedly to install each component needed in your target memory image (see
Figure 11-4). After merging the configuration file with PAXU.OLB or PAXM.OLB and relocating
the kernel object file, you use MIB to initialize a memory image file and to install the kernel in
it. Prior to these operations, you will have specified the hardware and software characteristics
of the application in the source configuration file. Therefore, the kernel will contain the kernel
primitives and other features appropriate for your application, and the size and type of memory
recorded in the kernel's hardware configuration tables will be as described for your target
system.

You use MIB again each time you add a system or user static process to your memory image
file. In this case, the input to MIB is the process image (.PIM) file RELOC produces from the
merged static-process object module, plus an input .MIM file if the /SM option was used in .
the previous MIB step. MIB installs the static process in the output .MIM file in the format
necessary for the type of image being constructed-mapped or unmapped, and RAM-only or
ROM/RAM. You also use MIB each time you add a shared library to your memory image file.
A referenced library must be installed before you build any process that references that library.

You can begin the MIB sequence by using the small-image option (/SM) together with the
/KI option to create a .MIM file that is only as large as needed to contain the kernel image.
Alternatively, you can omit /SM and create a full-size .MIM file at the very beginning, in which
case the size of the initial .MIM file reflects the full extent of target memory specified in the
kernel's configuration tables. This allows you to modify the file in place-specifying only an
output .MIM file-as you add the processes your application requires. In some instances, this
strategy can be wasteful of file space, and you do not have the security of back-up versions of
the .MIM file; MIB does not create a new generation of the .MIM file if you specify only an
output .MIM file for updating in place.

If you choose to create a full-size .MIM file, omitting the /SM option, specify only the existing
.MIM file as output in your subsequent commands to MIB. Each time you add a process, it will
go into the existing file in space already available for it.

If you use /SM, however, MIB creates a new output .MIM file only as large as necessary to
hold the kernel and any installed processes, thereby saving space on your development volume
in the case of a large target memory. Each time you add a process and use /SM, you must
specify both an input and an output .MIM file in your MIB command line. MIB copies the
existing .MIM file contents to the new output file and extends the output file to accommodate
the process being installed.

The MIB Utility Program 11-7

To avoid confusion, you should be consistent in using /SM-either use it all the time or omit
it completely. Whether you use /SM or not, if you specify an input and an output .MIM file
with identical file names, the system will generate a new version of the file. You can delete
the older versions of the file as desired. The optional .DBG file, however, is always updated
in place-the existing file is extended-and a new version is never created. That is, you can
specify_ only an output .DBG file, which must be created in a kernel installation step. You may
want to make a copy of the .DBG file yourself at an intermediate point in the cycle, for possible
use in subsequent rebuilds. At any point in the build cycle, the .DBG file is only as large as
required to hold the installed debug symbols.

Often it is desirable to save the .MIM file, .STB file, and . DBG file, which contain just the kernel
and the system processes. In such a case, make a copy of those files before adding any user
processes. That way, you can rebuild just from that point while debugging, instead of from the
beginning.

Chapter 1 provides an overview of the entire build cycle.

Figure 11-4: MIB's Part in the Build Cycle

0
CONFIG MAC COMU.SML xxPFX.MAC USER1.PAS

U : . EDl<.:SSEM:LE ~ ; KERN.STB C+E

PAXM.OBJ ~NFIG.OBJ DRV~.OBJ~ xxPF

1
X.OBJ / ~~~0~t ~USERi1.0BJ/ LIBxxx.OBJ

: MERGE • I

ML0-519C-87

l 1 . 3 Invocation and Use of MIB
For an RSX Development System:

Assuming that MIB has been installed according to installation procedure defaults, you invoke
it by the task name MIB, as follows:

>[MCR] MIB

(Precede "MIB" with "MCR" only if your CLI mode is DCL.) The following three standard RSX
forms of direct invocation may be used:

• > [MCR] MIB command-line

• > [MCR] MIB @command-file

11-8 The MIB Utility Program

The specified .CMD file contains one or more MIB command lines.

• > [MCR] MIB

MIB> command-line or @command-file
MIB>

The format of the MIB command line is described below. Only the first two forms of MIB
invocation can be used within a command file. The first form limits the line to 80 characters
and precludes the use of continuation lines. The second and third forms can be used to issue
several MIB command lines within one invocation or to avoid the SO-character limit. Type
CTRL/Z in response to the MIB> prompt to exit.

For a VAX Development System:

If you have executed the MPSETUP.COM procedure (Section 1.4), you can invoke MIB by the
logical symbol MPMIB, as follows:

$ MPMIB
MIB>command-line or Gcommand-file
MIB>

The format of the MIB command line is described below. The default type for an indirect
command file is .CMD; the file may contain one or more MIB command lines. Type CTRL/Z
in response to the MIB > prompt to exit.

Command Line Format

MIB accepts a command line in the form shown below. In the command line, all file specifications
are in standard RSX format with respect to device and directory (UFD) information if you are
using an RSX host system. If you are using a VAX/VMS host, however, all file specifications
are in standard VMS format with respect to device and directory information.

Output files appear on the left side of the equal sign (=), and input files appear on the right.
Brackets ([]) indicate optional fields of the command. When you omit an optional output file
specification, indicate the null field with consecutive commas to "hold its place," except in the
case of trailing fields. Trailing commas can be omitted. You must specify at least one output
file for any given MIB operation.

Note
For Version 4.0 or later of VMS, the file name field of a file specification must not
exceed nine characters, and the file type field must not exceed three characters.

For Version 4.0 or later of VMS, underscores (-) are not valid in file
specifications.

For all versions of VMS, dollar signs ($) are not valid in file specifications.

[outmim], [mapfile] [,dbgfile]=[pimfile], [inputmim] [,stbfile] [/options]

outmim

The file specification for the output memory image file to be created, extended, or modified by
the MIB operation. The default file type is .MIM (memory image). If an input memory image
file is also specified in the command line, MIB opens a new .MIM file for output. If neither an
input memory image file nor the /KI option is specified, MIB attempts to open an existing file
identified as "outmim" for updating. If you include the /SM option but not the /KI option, both

The MIB Utility Program 11-9

input and output .MIM files are required. The presence or absence of an outmim specification,
along with option specifications, determines in part the type of MIB operation to be performed.

mapfile

The file specification of the optional memory image map file, whtch describes each installed
component in the current memory image-the kernel and any processes-and describes the
target memory layou~. The default file type is .MAP. You can ask for a map file whenever you
also specify an output or an input .MIM file.

dbgfile

The file specification for the optional debug symbol file, which contains the symbol tree that MIB
links together from ISO-record input from individual .STB files. The default file type is .DBG.
Specify this field whenever you want an operation performed on a .DBG file: file initialization
or addition or deletion of symbols for a process. (Those operations can be performed either
separately or in combination with the corresponding operations on the .MIM file.) If you do
specify dbgfile and are either initializing the file or adding symbols to it, you must also specify
the appropriate symbol table file (.STB) created by RELOC as input. MIB creates and initializes
a new debug symbol file when it encounters both the dbgfile specification and the /KI (kernel
installation) option; otherwise, it opens the existing dbgfile for updating-either addition or
deletion of symbols as determined by other elements of the command line.

pimfile

The file specification for the .PIM file containing the kernel or process image to be installed
in the memory image. The default file type is .PIM. If you specify a .PIM file, indicating a
kernel/process installation, you must also specify at least one output .MIM file. The presence
or absence of a pimfile specification, along with option specifications, determines in part the
type of MIB operation to be performed.

This field is invalid if you also specify the /EX option.

inputmim

The file specification for the input memory image file. The default file type is .MIM. This
field is required for a process installation if the current memory image file contains a "short
imagen -was constructed with the /SM option in the previous MIB step-or if you specify
the /SM option for the current operation. Otherwise, this field is optional; see description of
outmim field.

stbfile

The file specification for the symbol table file, which contains symbol information for the
debugger-ISO records-if generated with the /DE option in the corresponding MERGE and
RELOC steps. The default file type is $TB. Specify this field only if you are installing symbols
in an output .DBG file; the dbgfile field must also be specified.

/options

Any of the options summarized in Table 11-1. All MIB options are position independent.
Multiple options can be specified in a list of the following form:

/option1/option2/ ...

11-10 The MIB Utility Program

11.4 MIB Options
This section describes the MIB options that are summarized in Table 11-1.

Table 11-1: MIB Options

Option Meaning

/BS:"file-spec" Installs a bootstrap at the beginning of the memory image file; the bootstrap
is copied from the specified file. Input and output .MIM files are required.

/GC:name:code Changes the exception group code of a static process installed in the memory
image.

/KI Identifies the input .PIM file as a kernel image and signals MIB to create and
initialize the output memory image file and, optionally, the output .DBG file.
You cannot use this option together with /QB.

/PR:name:value Changes the start-up priority of a static process installed in the memory image.

/QB:name:block[: ...] Aligns named p-sects at specified physical locations in the memory image
during a process installation step; valid for mapped applications only. You
cannot use this option together with /KI.

/RB Removes the bootstrap from a .MIM file. Input and output .MIM files are
required.

/SM Limits the output memory image file to the exact size of the kernel, the installed
static processes, and the bootstrap, if any.

11.4. 1 Install Bootstrap (/BS)

The /BS:"file-spec" option installs a bootstrap at the beginning of the memory image file. The
argument file-spec identifies the bootstrap file from which the bootstrap is to be copied. The
file specification must be enclosed in double quotes if it contains either a colon (:) or a comma
(,). The default type for the bootstrap file is .BOT.

The DIGITAL-supplied bootstrap files, normally residing in the RSX directory MP:[2,10] or the
VMS directory defined by MICROPOWER$LIB, include the following:

File Name

DDBOTM.BOT
DDBOTU.BOT

DLBOTM.BOT
DLBOTU.BOT

DUBOTM.BOT
DUBOTU.BOT

DYBOTM.BOT
DUBOTU.BOT

Boot Medium/Target Type

TU58 DECtape II, mapped target
TU58 DECtape II, unmapped target

RL01/RL02 disk, mapped target
RL01/RL02 disk, unmapped target

MSCP-class disk, mapped target
MSCP-class disk, unmapped target

RX01/RX02 diskette, mapped target
RX01/RX02 diskette, unmapped target

The MIB Utility Program 11-11

(MSCP-class disks include the RX50 and RDxx devices.) The COPYB utility must process a
.MIM file containing a bootstrap to make the volume bootable, as described in Chapter 12. See
Chapter 7 for further discussion of bootable memory images.

You must specify both an input and an output .MIM file when you install a bootstrap unless
you install it when you create the file in the kernel installation step.

If you install a bootstrap in your application image, you must be sure that certain target memory
requirements are met. First, an unmapped target system must have at least 3584 (7000 octal)
contiguous bytes of memory starting at location 0. A mapped target system must have at least
4096 (10000 octal) contiguous bytes starting at location 0. Normally, this requirement should
never be a problem. Second, the highest 512 (1000 octal) contiguous bytes of memory on the
target system must not be loaded by your application. Unless you deliberately place part of
your application code or pure data at the very top of memory or you use almost all the memory
on the target, this requirement should never be a problem either. You should, however, be
aware of these bootstrap requirements.

11.4.2 Exception Group Code (/GC)

The /GC:name:nnn option changes the exception group code of a specified static process
installed in the memory image. Every process has an exception group code that identifies the
exception-handling group to which it belongs. The exception group establishes which exception
handler-another process-should handle that process's exceptions. The /GC option allows
you to change from one exception handler to another for a static process without rebuilding the
application.

The value of n specifies the value to which the code should be changed. This value must be
within the range 1 to 255 (1 to 377 octal). The specifed value is assumed by default to be
expressed in octal. Terminate the number with a decimal point-for example, 40.-to indicate
a decimal value.

The name can be up to six RAD50 characters. The name argument identifies the static process
·to be modified, which can be the process being installed by the operation or another, previously
installed process.

The exception group of a dynamic process cannot be modified by this option.

11.4.3 Kernel Installation (/Kl)
The /KI option indicates that the input .PIM file contains a kernel image rather than a process
image. The /KI option signals MIB to create and initialize the output memory image (.MIM)
file and, if requested, the debug symbol (.DBG) file also. An input .MIM file is invalid for a
/KI operation, and a new output .MIM and an optional .DBG file are created whether or not a
file by the same name already exists. Only the /SM and /BS options are valid or meaningful
in combination with /KI. In particular, you cannot use this option together with /QB.

11-12 The MIB Utility Program

11.4.4 Process Priority (/PR)

The /PR:name:n option changes the start-up priority of a static process installed in the memory
image to the value n. This option allows you to change process start-up priority without
rebuilding the application. The /PR option affects only the INITIALIZE procedure of a static
process implemented in Pascal; you must modify the source code to change the running priority
of the main program.

The value of n must be within the range 1 to 255 (1 to 377 octal); priorities 248 through 255
are reserved for start-up of processes containing global initialization code. The specifed value is
assumed by default to be expressed in octal. Terminate the number with a decimal point-for
example, 150.-to indicate a decimal value.

The name argument identifies the static process to be modified, which can be the process being
installed by the operation or another, previously installed process.

Note
If you change a Pascal process's start-up priority to less than 248 and the
process contains an initialization procedure, that procedure may not execute
in concert with other. processes' initialization code at system start-up time.
The INITIALIZE procedure attribute implies a start-up priority of 255 for that
automatically called procedure, regardless of the running priority assigned to
the main program (static process) by the PRIORITY attribute.

If the program does not contain an initialization procedure, the process starts
up at its specified running priority, which is not affected by the /PR option.

11.4.5 Align Specified Program Section (/QB)

The /QB option aligns one or more named program sections at specified physical locations
in the memory image for a mapped application. You cannot use the MIB /QB option for an
unmapped image; the RELOC /QB option is its equivalent in the unmapped case. In addition,
you cannot use this option together with /KI.

The format of the /QB option is as follows:

/QB:name1:block[:name2:block ...]

In this format, "name-i" is a p-sect name, and block is the physical starting location for that
section in terms of 32-word-lOO(octal)-byte-increments from address 0.

You can specify up to eight section names and block offsets. Each section specified in the MIB
/QB option must have been assigned a 4K-word virtual base address by RELOC. Thus, each
specified section implies the beginning of a noncontiguous memory segment and the use of a
new PAR. The starting address for the section must be a multiple of 100(octal) bytes. The block
value in the option, effectively a "memory block" number, specifies this multiple. For example,
to indicate the octal starting address 63000, you specify 630 as the block value (63000/100).
The value is assumed to be expressed in octal unless terminated by a decimal point.

To load an entire static process starting at a desired physical address, specify a start location for
the program section .ALST.; that section contains the static-process list element and is usually
the first read-only section in the process. Thus, .ALST. indicates the beginning of the first or
only RO segment of the process. To load the read/write portion of a Pascal static process at
a desired physical address, specify a start location for .CDAT., the first read/write section for

The MIB Utility Program 11-13

static processes written in Pascal. Thus, .COAT. indicates the beginning of the first or only RW
segment of a Pascal-implemented process.

In a RAM-only memory image, the RO and RW segments of a process are not normally
separated from each other, as they must be in a ROM/RAM image. That is, by default the end
of the code and pure-data portion and the beginning of the impure-data portion of a process are
physically contiguous and are mapped by the same PAR whenever possible in the RAM-only
case.

11.4.6 Remove Bootstrap (/RB)
The /RB option removes the bootstrap from a .MIM file. Input and output .MIM files are
required.

11.4.7 Small Output Memory Image (/SM)
The /SM option limits the output memory image file 'to the exact size of the kernel and the
installed static processes. If you do not specify /SM, MIB constructs or updates a memory
image file that is as large as the total amount of physical memory you specified for the target
system in the configuration file used to build the kernel. (Information about the memory size
and type is retained in a kernel/MIB communication area that is part of the kernel; therefore,
this information is always available to MIB.) If you specify /SM for a process installation step
(/KI not specified), you must specify an input .MIM file-either "small" or full size-as well as
an output .MIM file. The /SM option creates an output .MIM file that is just big enough for the
existing memory image from the input .MIM file plus the process image from the input .PIM
file. If you use /SM in combination with /KI, MIB creates an output .MIM file just big enough
to accommodate the kernel.

A full-size .MIM file can be updated in place for process installations. An existing "small" .MIM
file cannot be so modified.

11.5 MIB Memory Map
If you specify mapfile in the command line, MIB creates a memory image map showing the
following:

0. MIB version number

9. Date and time of operation

0. Target memory type

0. Boot device, if any

0. Memory layout-physical memory present (base, size, and type) and available ROM and/or
RAM in image (base and size)

0. Kernel information-physical starting address and kernel segments (base and size)

0. Shared-library information-library name and type, segment starting addresses and sizes

CD. Static-process information-process name and priority, process type and group, physical
starting and termination addresses, stack address, segment starting addresses and sizes, and
information about any referenced libraries

11-14 The MIB Utility Program

For unmapped applications, starting addresses are direct byte values in octal. For mapped
applications, virtual and physical starting addresses are given. For both mapped and unmapped
applications, sizes are given in decimal as well as in octal.

Figures 11-5 through 11-8 show various types of MIB memory maps.

Figure .11-5: Sample Unmapped MIB Memory Map with No l/D Separation or Shared
Libraries

CDMICROPOWER MIB V02.00 VMS
~MIM Filename -- TE103.MIM;2

Application Map ~Fri 17-May-85 15:41:29
Unmapped Ram-Only System @)Boot Device: DY

([)Physical Memory Segments

Start Size Type
000000 100000 Ram

Available Ram

Start Size
064732 013046

@)Kernel Segments

Segment Physical Start: 000000 Size: 026156
Segment Physical Start: 026156 Size: 006222
Kernel Start Address: 020754

@)static Process Information

Name Priority Type Cntxsw Group Term Add. Stack Start

$TTDRV 250 Orv-Access l 035666 042670 034476
Segment Physical Start: 034400 Size: 005376
Segment Physical Start: 041776 Size: 000674

EXAMPL 248 General MCX l 050352 062614 044372
Context Switch Location: 062706 Initial Value: 062616
Segment Physical Start: 042672 Size: 017276
Segment Physical Start: 062170 Size: 002542

The MIB Utility Program 11-15

Figure 11-6: Sample Mapped MIB Memory Map with No l/D Separation or Shared
Libraries

CDMICROPOWER MIB V02.00 VMS
Q)MIM Filename -- TE003.MIM;l

~Physical Memory Segments

Application Map @)sun 03-Mar-85 13:24:28
Mapped Ram-Only System

Start Size Type
000000 002000 Ram

Available Ram

Start Size
000770 001010

@)Kernel Segments

Segment Virtual Start: 000000 Physical Start: 000000 Size: 000200
Segment Virtual Start: 000200 Physical Start: 000200 Size: 000143
Segment Virtual Start: 001000 Physical Start: 000343 Size: 000110
Kernel Start Address: 026434

@)static Process Information

Name Priority Type Cntxsw Group Term Add. Stack Start

$TTDRV 250 Orv-Access 1 041266 060604 040076
Segment Virtual Start: 000400 Physical Start: 000453 Size: 000060
Segment Virtual Start: 000600 Physical Start: 000533 Size: 000007

EXAMPL 248 General MCX 1 006104 020422 001736
Context Switch Location: 020514 In tial Value: 020424
Segment Virtual Start: 000000 Phys cal Start: 000542 Size: 000200
Segment Virtual Start: 000200 Phys cal Start: 000742 Size: 000026

11-16 The MIB Utility Program

Figure 11-7: Sample MIB Memory Map with l/D Separation

G)MICROPOWER MIB V02.00 VMS
lvMIM Filename -- TE403.MIM;2

(!VPhysical Memory Segments

Start Size Type
000000 002000 Ram

Available Ram

Start Size
000773 001005

(~Kernel Segments

Application Map (~sun 03-Mar-85 14:16:39
Mapped Ram-Only System
Jll Mapping

Segment Virtual Start: 000000 Physical Start: 000000 S ze: 000200
Segment Virtual Start: 000200 Physical Start: 000200 S ze: 000152
Segment Virtual Start: 001000 Physical Start: 000352 S ze: 000110
Kernel Start Address: 027330

~Static Process Information

Name Priority Type Cntxsw Group Term Add. Stack Start

$TTDRV 250 Orv-Access l 041266 060604 040076
Segment Virtual Start: 000400 Physical Start: 000462 Size: 000060
Segment Virtual Star.t: 000600 Physical Start: 000542 Size: 000007

EXAMPL 248 General MCX l 006226 002462 001776
Context Switch Location: 002554 Initial Value: 002464
ID process

I-Space
Segment Virtual Start: 000000 Physical Start: 000551 Size: 000154

D-Space
Segment Virtual Start: 000000 Physical Start: 000725 Size: 000046

The MIB Utility Program 11-17

Figure 11-8: Sample MIB Memory Map with a Shared Library

CDMICROPOWER MIB V02.00 VMS
@)MIM Filename -- TE602.MIM;l

@)Physical Memory Segments

Start Size Type
000000 002000 Ram

Available Ram

Start Size
000771 001007

@)Kernel Segments

Application Map (g)sun 03-Mar-85 13:26:34
Mapped Ram-Only System

Segment Virtual Start: 000000 Physical Start: 000000 Size: 000200
Segment Virtual Start: 000200 Physical Start: 000200 Size: 000143
Segment Virtual Start: 001000 Physical Start: 000343 Size: 000110
Kernel Start Address: 026434

(?)Library Information

Name Type

$USRLB User-mode
Segment Virtual Start: 000000 Physical Start: 000542 Size: 000077

@static Process Information

Name Priority Type Cntxsw Group Term Add. Stack Start

$TTDRV 250 Orv-Access 1 041266 060604 040076
Segment Virtual Start: 000400 Physical Start: 000453 Size: 000060
Segment Virtual Start: 000600 Physical Start: 000533 Size: 000007

EXAMPL 248 General MCX 1 006104 010606 001736
Context Switch Location: ·010700 Initial Value: 010610
Segment Virtual Start: 000000 Physical Start: 000641 Size: 000130

References user-mode library $USRLB
Segment Virtual Start: 000200 Physical Start: 000542 Size: 000077

11-18 The MIB Utility Program

Chapter 12
Making a Volume Bootable on the Target

The COPYB utility program prepares an RT-11-format storage volume containing a
MicroPower/Pascal application .MIM file with bootstrap for use on a target system boot device.

This chapter discusses:

• COPYB's functions

• Invoking and using COPYB

• COPBOT's use

12. 1 Functions of COPYB
After you have developed and debugged a MicroPower/Pascal application, you can boot the
application image into a target system from one of several types of mass-storage devices. The
host system configuration must include the type of device intended to be used as the boot
device on the target system. If both the host and target hardware configurations include a TU58
device, for example, the application can be bootstrapped from a DECtape II cartridge. Similarly,
if they both include RX02 or RXSO diskette devices or RL01/RL02 disks, the application can be
bootstrapped from a diskette or hard disk.

The boot-device volume is prepared on the host system by means of the COPYB utility. The
volume must be in RT-11 file system format, which involves use of the RSXFLX utility or the
VMS V 4 EXCHANGE utility, as well as COPYB.

If you intend to use this method to load the application, you have to perform the following
steps:

1. Build the application memory image (.MIM) file without debug support and with an
appropriate bootstrap installed in the file, using either MPBUILD or the /BS option of
the MIB utility program.

2. Copy the memory image file to the mass-storage volume that you want to be bootable.
(Under Micro/RSX, RSX-11M-PLUS, or VAX/VMS, the volume is mounted as a foreign
volume on the host system's device drive; under RSX-11M, the volume is "unmounted.")
Use the FLX utility program or the VMS V 4 EXCHANGE utility to initialize the volume in

Making a Volume Bootable on the Target 12-1

RT-11 format, if necessary, and to perform the .MIM file copy operation in image mode. If
the volume is already in RT-11 format and contains other files, it need not be. reinitialized.

3. Invoke COPYB to process the bootstrap, making the volume bootable.

4. Mount the bootable volume in the target system's device drive and power up the target
processor.

During its bootstrap processing, COPYB performs the following operations:

•

•

•

Reads the first block of the bootstrap-called the primary software bootstrap-contained in
the .MIM file

Modifies a word in the primary software bootstrap to reflect the location of the second block
of the .MIM file on the volume

Writes the modified primary software bootstrap into logical block 0 (the boot block) of the
volume

When you power up the target processor, the primary hardware bootstrap, located in ROM
on the target processor, reads block 0 of the volume into memory. The bootstrap in block 0
initiates loading of the application memory image from the volume into the target memory.

12.2 Invoking COPYB
For an RSX Development System: Assuming that COPYB has been installed according to
installation procedure defaults, you invoke it by the task name CPB, as follows:

>[MCR] CPB
CPB>

Precede "CPB" with "MCR" only if your CLI mode is DCL.

For a VMS Development System: If you have executed the MPSETUP.COM procedure (Section
1.4), you can invoke COPYB by the logical symbol MPCOPYB, as follows:

$ MPCOPYB
CPB>

(Use CTRL/Z to exit from COPYB.)

In response to its prompt for input, COPYB accepts a command line of the following form:

CPB>dev:filename[.t71>][/CS::mmnnn]

dev:

A device specification identifying the drive unit in which the RT-11-format volume is loaded.
(The volume must be mounted as FOREIGN under Micro/RSX, RSX-llM-PLUS, or VAX/VMS
or must be unmounted under RSX-1 lM.)

filename[. typ]

The name of the memory image file that was previously copied onto the volume and, optionally,
the file type. The default file type is .MIM. The file name is limited to six characters.

12-2 Making a Volume Bootable on the Target

/CS:nnnnnn

Optionally, the address of the boot-device CSR (control and status register) on the target system,
if the CSR is not at the standard address for an LSI-11 processor. (This option may be needed
for a FALCON or FALCON-PLUS target system, for example.)

When you use COPYB, the memory image file must already reside on the volume that is to be
made bootable. This implies prior use of the FLX utility or the VMS V 4 EXCHANGE utility to
perform the necessary .MIM file transfer and format conversion.

The bootstrap contained in the .MIM file assumes that the CSR for the boot device on the
target system is configured at the standard LSI-11 bus address. You can use the /CS option,
if necessary, to cause COPYB to change that address in the modified primary bootstrap block
before it is placed in block 0 of the volume.

The following examples illustrate use of the FLX or EXCHANGE utility to copy the .MIM file to
an already initialized RT volume. The volume must be mounted as FOREIGN under Micro/RSX,
RSX-llM-PLUS, or VAX/VMS or must be unmounted under RSX-llM.

Example 1: VMS V 4

$EXCHANGE
EXCHANGE>COPY APPLC6.MIM DYO:/TRANSFERMODE:BLOCK
EXCHANGE> EXIT

Example 2: VMS prior to V 4

$MCR FLX
FLX>DYO:/RT/IM•APPLC6.MIM
FLX><CTRL/Z>

Example 3: RSX MCR

>FLX
FLX>DYO:/RT/IM•APPLC6.MIM
FLX><CTRL/Z>

Example 4: RSX DCL

>MCR FLX
FLX>DYO:/RT/IM•APPLC6.MIM
FLX><CTRL/Z>

The FLX command line transfers the Files-11 APPLS.MIM file in your default device/directory
to the RX02 diskette mounted in DY drive unit 0. The /RT option requests conversion of output
to RT-11 file format. (The command assumes that the output volume is already in RT-11
format.) The /IM option requests an image-mode copy operation; that is, the file content is to
be copied with no internal format modification.

The name of the .MIM file as copied to the volume by the FLX utility is restricted to six
characters, the RT-11 limit for file names. Therefore, you may want to rename the host system
copy of the .MIM file prior to the FLX operation. FLX truncates a longer file name to six
characters without indicating that it has done so; COPYB also truncates a longer name but
issues a warning message.

Making a Volume Bootable on the Target 12-3

If you want to initialize the disk first, use one of the following commands before copying the
file over:

EXCHANGE>INITIALIZE DYO:
(default volume format is RT11)
FLX>DYO:/RT/ZE

>[MCR] CPB or $ MPCOPYB
CPB>DYO:APPL6.MIM

The COPYB command line causes COPYB to look for file APPLS.MIM on the DYO: device.
COPYB reads and modifies the primary software bootstrap from that file· and writes it to block
0 of the diskette. (The standard target CSR address that the bootstrap uses for an RX02 device
remains at 177170.)

>[MCR] CPB or $ MPCOPYB
CPB>DD1:APPL6/CS:176640

This command line causes COPYB to look for file APPL6.MIM on the DECtape II cartridge
mounted in DD drive unit 1 and to copy the primary software bootstrap from that file to block
0 of the cartridge. The /CS option causes the target CSR address in the TU58 device bootstrap
to be changed to 176540, which is correct for a FALCON or FALCON-PLUS SLU2 port; the
LSI-11 default CSR address is 176500.

12.3 The Copy-Boot Program (COPBOT)
The source file, COPBOT.PAS, which is included in the kit, can be used for copying a .MIM file
and performing the COPYB function directly on a target system. This technique is necessary for
making a nonremovable target medium, such as an RDS 1 or RD52 Winchester disk, bootable.
See the source file for a list of required components.

12-4 Making a Volume Bootable on the Target

Chapter 13

DECNET Down-Line Loading (RSX or VMS Only)

Under MicroPower/Pascal-RSX or -VMS, an application image can be booted into a target
system through use of the Ethernet or DDCMP, as an alternative to the methods of application
loading described in Chapter 7. Figure 13-1 shows the several ways that an application can be
loaded into a target system.

Figure 13-1: Application Image Loading

Configuration Configuration
file file

EDIT ASSEMBLE

System
process Prefix file

prefix file
MACR0-11
source code

User COMPILE
process OR

source code Pascal
source code

CODE/SYNTAX CHECK

M/R/M

Kernel

M/R/M

DEC-supplied
static

process

M/R/M

User
static

process

HOST

BUILD
(MERGE RELOCMIB)

TARGET

LOAD/DEBUG

ML0-522-87

DECNET Down-Line Loading (RSX or VMS Only) 13-1

1 3. 1 DECNET /Ethernet Down-Line Loading
The Ethernet down-line loading method pertains only to the final production image of the
application. Loading for debugging is done with PASDBG.

DECnet/Ethernet down-line loading uses DECnet network facilities on the host system (RSX
or VMS) and a down-line bootstrap loader residing on the target machine. Part of this loader
resides in the firmware ROM on the target processor board and another part within the ROM
of the DEQNA module.

Note
Refer to your target processor documentation on how to initiate the Ethernet
down-line load procedure.

Together those software components use the Ethernet to copy a MicroPower/Pascal image file
from the host system to the main memory of the target machine. Once the MicroPower /Pascal
software is in the target memory, it gains control of the processor and begins executing. The
MicroPower/Pascal image need not contain the Ethernet (QN) driver or the network service
process (NSP) to be down-line loaded. You should, however, include those processes if the
application requires network communication support at run time.

For the host operating system to provide the down-line load facility, it must be able to recognize
a boot request message from the target system. Also, the MicroPower/Pascal target machine
must be described in the host system's network node database. ·

The principal tool used to control the network for VMS or RSX is the Network Control Program
(NCP). We recommend that you become familiar with the NCP utility. Please refer to the
network manager's guide for your host system for information on NCP, including the way to
invoke the utility and the privileges required.

Note
The Ethernet circuit is the name of the host system's hardware device controller,
which is connected to the same Ethernet as the target machine. Depending on
your configuration, the correct specification might be UNA-0 or QNA-0. Check
your configuration to determine the proper circuit specification.

To enable the host to recognize a boot request from the Ethernet, the circuit must have service
enabled:

NCP> SET CIRCUIT UNA-0 SERVICE ENABLED

To enter a MicroPower/Pascal target machine into the host system's network node database,
you issue NCP commands to store the target machine's node name and address, Ethernet
hardware address, and host circuit for loading. For example, for the node "UPOWER::":

NCP> SET NODE UPOWER ADDRESS 5.410
NCP> SET NODE UPOWER SERVICE CIRCUIT UNA-0
NCP> SET NODE UPOWER HARDWARE ADDRESS xx-xx-xx-xx-xx-xx
NCP> SET NODE UPOWER LOAD FILE file-specification <- described below

NCP> SET NODE UPOWER SECONDARY LOADER MICROPOWER$LIB:SECQNA.SYS <- VMS
NCP> SET NODE UPOWER TERTIARY LOADER MICROPOWER$LIB:TERQNA.SYS

or
NCP> SET NODE UPOWER SECONDARY LOADER dev: [5,54]SECQNA.SYS
NCP> SET NODE UPOWER TERTIARY LOADER dev: [5,54]TERQNA.SYS

13-2 DECNET Down-Line Loading (RSX or VMS Only)

<- RSX

The node name and address may have already been specified when your network was installed.
Make sure that each node in your network has a unique address and name.

The hardware address is required for down-line loading over the Ethernet. The hardware
address is the physical address of the DEQNA on the target machine and is normally printed
on the controller board. If the address is not printed on the board, you can determine the
address with the following ODT sequence-assuming the DEQNA CSR is at location 774440,
the factory configuration:

0774440/177662
0774442/177400
0774444/177403
0774446/177401
0774460/177432
0774462/177706

(low 8 bits = 262 octal = AA hex)
(000 00)
(003 03)
(001 01)
(032 1A)
(306 C6)

Here, the appropriate NCP SET NODE HARDWARE ADDRESS command would be:

NCP> SET NODE UPOWER HARDWARE ADDRESS AA-00-03-01-1A-C6

The NCP commands place the information about node UPOWER in the host system's volatile
database. However, information in the volatile database must be reentered after each host
system reload. To make that information part of the permanent database, use the DEFINE
command rather than SET on VMS or use the CFE program rather than the NCP program on
RSX.

The MicroPower/Pascal image (.MIM) file does not have an appropriate format for Ethernet
down-line loading and must be converted to a format that the bootstrap loader will accept. You
perform that conversion by running the MKBOOT (VMS) or MKB (RSX) program provided on
the MicroPower /Pascal distribution kit. MKBOOT /MKB prompts for an input file name, and
you respond with the .MIM file name. MKBOOT then prompts for an output file name, and
you respond with the name of the loader format file, which has the .SYS file type. MKBOOT
then converts the .MIM file into a formatted .SYS file.

After the image format conversion, you use the following command to specify the .SYS file as
the image to be loaded into the target system's main memory:

NCP> SET NODE UPOWER LOAD FILE file-specification

After the down-line load is complete, the MicroPower/Pascal network services, if present in
the target application, can take advantage of the information that the host system provided.
In particular, the host system has informed the target system of the proper node number.
If your application image is mapped, the NSP will use the host-supplied node number, so
you need not specify the address information in the NSP prefix file, thus allowing the same
MicroPower /Pascal application image to be run on multiple machines in a network. You
enable those capabilities by specifying NETBOOT=YES to the SYSTEM macro in your kernel
configuration file.

Once a MicroPower/Pascal application is initialized and is running, the Ethernet (QN) driver
can respond to a host system request to reinitiate the Ethernet down-line load sequence. You
enable that capability by specifying NETTRIGGER=YES to the SYSTEM macro in your kernel
configuration file. You can then issue the following NCP command:

NCP> TRIGGER NODE UPOWER <- VMS
or

NCP> TRIGGER NODE UPOWER PHYSICAL ADDRESS xx-xx-xx-xx-xx-xx <- RSX

DECNET Down-Line Loading (RSX or VMS Only) 13-3

That command causes a "reboot" message to be sent to the target machine, which causes the
MicroPower /Pascal QN driver to load the firmware from the DEQNA ROM and begin the
loading sequence. You can use. that command to reload the same image or, with an NCP SET
NODE UPOWER LOAD FILE command (which must precede the TRIGGER), to load a new
image.

Note
If multiple host systems contain enough information to service a down-line
load request from the target system, the first to respond will perform the load,
independent of which host executed the TRIGGER request. The other systems
may report a load timeout error. If the system that performed the load was
not the system that executed the TRIGGER, the wrong image is loaded into the
target. You can avoid such problems . by issuing the NCP command CLEAR
NODE UPOWER HARDWARE ADDRESS on host systems that should not
respond to the down-line load request.

13.2 DECNET/DDCMP Down-Line Loading
The DDCMP down-line loading method pertains only to the final production image of the
application. Loading for debugging is done with PASDBG.

DECnet/DDCMP down-line loading uses DECnet network facilities on the host system (RSX or
VMS) and a down-line bootstrap loader residing on the target machine. This loader resides in
the firmware ROM on the target processor board.

Note
See your target processor documentation on how to initiate the DDCMP down­
line load procedure.

Together those software components use DDCMP to copy a MicroPower/Pascal image file from
the host system to the main memory of the target machine. Once the MicroPower /Pascal
software is in the target memory, it gains control of the processor and begins executing. The
MicroPower/Pascal image need not contain the DDCMP driver (CS) or the network service
process (NSP) to be down-line loaded. You should, however, include those processes if the
application requires network communication support at run time.

For the host operating system to provide the down-line load facility, it must be able to recognize
a boot request message from the target system. Also, the MicroPower/Pascal target machine
must be described in the host system's network node database.

The principal tool used to control the network for VMS or RSX is the Network Control Program
(NCP). We recommend that you become familiar with the NCP utility. Please refer to the
network manager's guide for your host system for information on NCP, including how to
invoke it and the privileges required.

Note
The DDCMP circuit is the name of the host system's hardware device controller,
which is connected to the same asynchronous serial line as the target machine.
Depending on your configuration, the correct specification might be DLV-0.
Check your configuration to determine the proper circuit specification.

13-4 DECNET Down-Line Loading (RSX or VMS Only)

To enable the host to recognize a boot request from DDCMP, the circuit must have service
enabled:

NCP> SET CIRCUIT DLV-0 SERVICE ENABLED

To enter a MicroPower/Pascal target machine into the host system's network node database,
you issue NCP commands to store the target machine's node name and address and host circuit
for loading. For example, for the node "UPOWER::":

or

NCP> SET NODE UPOWER ADDRESS 5.410
NCP> SET NODE UPOWER SERVICE CIRCUIT DLV-0
NCP> SET NODE UPOWER LOAD FILE file-specification <- described below

NCP> SET NODE UPOWER SECONDARY LOADER MICROPOWER$LIB:SECDLV.SYS <- VMS
NCP> SET NODE UPOWER TERTIARY LOADER MICROPOWER$LIB:TERDLV.SYS

NCP> SET NODE UPOWER SECONDARY LOADER dev: [5,54]SECDLV.SYS
NCP> SET NODE UPOWER TERTIARY LOADER dev: [5,54]TERDLV.SYS

<- RSX

The node name and address may have already been specified when your network was installed.
Make sure that each node in your network has a unique address and name.

The NCP commands place the information about node UPOWER in the host system's volatile
database. However, information in the volatile database must be reentered after each host
system reload. To make that information part of the permanent database, use the DEFINE
command rather than SET on VMS or use the CFE program rather than the NCP program on
RSX.

The MicroPower/Pascal image (.MIM) file does not have an appropriate format for DDCMP
down-line loading and must be converted to a format that the bootstrap loader will accept. You
perform that conversion by running the MKBOOT (VMS) or MKB (RSX) program provided on
the MicroPower /Pascal distribution kit. MKBOOT /MKB prompts for an input file name, and
you respond with the .MIM file name. MKBOOT then prompts for an output file name, and
you respond with the name of the loader format file, which has the .SYS file type. MKBOOT
then converts the .MIM file into a formatted .SYS file.

After the image format conversion, you use the following command to specify the .SYS file as
the image to be loaded into the target system's main memory:

NCP> SET NODE UPOWER LOAD FILE file-specification

After the down-line load is complete, the MicroPower/Pascal network services, if present in
the target application, can take advantage of the information that the host system provided.
In particular, the host system has informed the target system of the proper node number.
If your application image is mapped, the NSP will use the host-supplied node number, so
you need not specify the address information in the NSP prefix file, thus allowing the same
MicroPower /Pascal application image to be run on multiple machines in a network. You
enable those capabilities by specifying NETBOOT=YES to the SYSTEM macro in your kernel
configuration file.

Once a MicroPower/Pascal application is initialized and is running, the DDCMP driver (CS)
can respond to a host system request to reinitiate the DDCMP down-line load sequence. You
enable that capability by specifying NETTRIGGER=YES to the SYSTEM macro in your kernel
configuration file. You can then issue the following NCP command:

NCP> TRIGGER NODE UPOWER <- VMS or RSX

DECNET Down-Line Loading (RSX or VMS Only) 13-5

That command causes a ureboot" message to be sent to the target machine1 which causes the
MicroPower /Pascal CS driver to load the firmware from the Processor ROM and begin the
loading sequence. You can use that command to reload the same image or1 with an NCP SET
NODE UPOWER LOAD FILE command (which must precede the TRIGGER)1 to load a new
image.

Note
When you are using the trigger command in this way1 you should be aware that
the CS driver initiates the boot sequence of the processor bootROMs. You must
configure the processor bootROM to boot from the DL device. If the processor
is configured to boot from another device1 results are unpredictable.

13-6 DECNET Down-Line Loading (RSX or VMS Only)

Appendix A

Interaction of RELOC and MIB

This appendix shows many examples of RELOC and MIB command lines to perform various
application builds.

A. l Relocating Mapped Static Processes
You can use the /RO, /RW, or /QB options of RELOC to override the default virtual addressing
if needed, as for a driver mapped process.

If a mapped process is to be used in a mixed ROM/RAM configuration, you must use the /AL
option of RELOC, which starts the RW (RAM) segment on a 4K-word virtual address boundary.
In addition, you can use the option in other situations to get particular effects, as described in
Chapter 10.

Case 1: Use First Available Memory in Image

MAPPED-RAM-only

• RELOC command line:

RLC>pimf ileamobfile

RELOC assigns virtual addresses to the read-only segment starting at 0 and to the read/write
segment at the first available address following the read-only segment-that is, with
no virtual-address separation between the two segments. RELOC produces the virtually
relocated .PIM file.

• MIB command line:

MIB>outmim-pimfile.inputmim/SM

MIB installs the read-only and read/write segments contiguously in the first available
memory and sets up the process's memory-management register (PAR) values accordingly.

Interaction of RELOC and MIB A-1

MAPPED-ROM/RAM

• RELOC command line:

RLC>pimfile-mobfile/AL

RELOC assigns virtual addresses to the read-only segment starting at 0 and to the read/write
segment starting at the next available 4K-word boundary, because of the/ AL option. RELOC
produces the virtually relocated .PIM file.

• MIB command line:

MIB>outmimapimfile.inputmim/SM

MIB starts the read-only segment and the read/write segment in the first available ROM
and RAM areas, respectively, and sets up the process's memory-management register (PAR)
values accordingly. Thus, the two segments are always separated and are mapped by
different P ARs.

Case 2: You Supply Start Addresses for RO and RW Segments

MAPPED-RAM-only

• RELOC command line:

RLC>pimfile-mobfile/RO:virtual-addr[/RW:virtual-addr]

RELOC assigns virtual addresses to the read-only and read/write segments, using the starting
address(es) you have specified. The addresses must reflect 4K-word address boundaries,
corresponding to the virtual base of a given PAR. Expressed as an octal byte address, each
value must be a multiple of 20000, where the multiplier can be 0 through 7. If you do not
specify the /RW option, the read/write segment is allocated addresses contiguous with the
read-only segment-no PAR separation between the two segments.

You would use this form of RELOC command line for a device driver (driver mapped)
process, since the read-only and read/write segments of such a process have to be mapped
by, as well as fit within, P ARs 2 and 3 respectively. For example, the following command
relocates the DL driver:

RLC>DLHANDLR•DLBANDLR/R0:40000/RW:60000

This use of /RO and /RW forces the special PAR 2 and PAR 3 mapping required for a
driver's code and impure-data segments.

• MIB command line:

MIB>outmim-pimfile.inputmim/SM

MIB places the process image in the first available physical memory, treating the read­
only and read/write segments as separately allocatable units if the read/write segment is
not virtually contiguous with the read-only segment. If the two segments are virtually
separated-/RW was used-the two segments will probably still be contiguous in physical
memory but not necessarily if the available memory in the image is fragmented or
discontinuous.

In any case, MIB sets up the process's PAR values to reflect the process's placement.in the
memory image.

A-2 Interaction of RELOC and MIB

MAPPED-ROM/RAM

• RELOC command line:

RLC>pimfile-mobfile[/RO:virtual-addr]/RW:virtual-addr

RELOC assigns virtual addresses to the read-only and read/write segments, using the
starting address(es) you have specified. The addresses must reflect 4K-word virtual address
boundaries, as described above for a mapped RAM-only image. If you do not specify the
/RO option, the read-only segment is origined at 0 by default. You must specify the /RW
option (or /AL) for mapped ROM/RAM to ensure the necessary PAR separation between
the two segments.

As described for mapped RAM-only, you would use this form of RELOC command line for
a device driver (driver mapped) process, specifying /R0:40000 and /RW:60000 to achieve
the required PAR 2 and PAR 3 mapping.

• MIB command line:

MIB>outmim-pimfile.inputmim/SM

MIB starts the read-only segment and the read/write segment in the first available ROM
and RAM areas, respectively, and sets up the process's memory-management register (PAR)
values accordingly. Thus, the two segments are always separated and are mapped by
different P ARs.

Case 3: You Supply Addresses for Specific, Named Program Sections

Positioning of process segments in memory by specification of individual p-sect names and
addresses involves use of the RELOC /QB option, and, for a mapped image, possibly use of
the MIB /QB option also. See Chapters 10 and 11 for a detailed description of the RELOC and
MIB /QB options respectively.

Ordinary cases do not require the /QB option. You need to use /QB only if your process has
special internal location or mapping dependencies that cannot be satisfied through use of the
/RO and /RW or/ AL options, which cover all commonly encountered relocation requirements
by implicit reference to the first RO section and the first RW section of a program. Those
options are, in effect, convenient specialized forms of the /QB option. Consider the following
equivalences between the "implicit" /RO, /RW, and/ AL options and the RELOC /QB option:

•

•

•

/RO:mmmmm is equivalent to specifying /QB:lst-RO-section:mmmmm-that is, /QB:­
.ALST.:mmmmm in any normal MicroPower/Pascal ·program. (The .ALST. p-sect is
generated for the Pascal PROGRAM heading and by the DFSPC$ macro call in MACR0-11;
see Chapter 10.)

/RW:nnnnn is equivalent to specifying /QB:lst-RW-section:nnnnn-that is, /QB:.CDAT.:­
nnnnn for a Pascal implementation or /QB:.MDAT.:nnnnn for a MACRO implementation in
which the PURE$, POAT$, and IMPUR$ macros are used exclusively for program sectioning.

/AL is equivalent to specifying /QB:lst-RW-section:xxxxx, where "lst-RW-section" is again
.COAT. or .MOAT., and xxxxx is the next 4K-word boundary address following the RO
section addresses. (/AL is intended specifically for mapped usage.)

Thus, you need use the /QB option only for specifying p-sects other than the first within the
read-only or read/write segments.

Interaction of RELOC and MIB A-3

MAPPED-RAM-only or ROM/RAM; locate named p-sects at specific virtual addresses

• RELOC command line:

RLC>pimfile-mobfile[/RO:mmm]/QB:paect-xxx:nnn:paect-yyy:ppp

or, equivalently:

RLC>pimfile-mobfile/QB[:.ALST.:mmm]:paect-xxx:nnn:paect-yyy:ppp

The /QB option can specify up to eight section names and addresses. Assuming that
p-sect .ALST. precedes "psect-xxx" and ''psect-xxx" precedes "psect-yyy" in the sorted input
module, RELOC does the following:

• Starts the process image at virtual page address mmm if /RO or p-sect .ALST. is
specified or at virtual address 0 if the first RO section is not specified

• Assigns contiguous addresses to any unspecified p-sects falling between .ALST. and
psect-xxx

• Starts psect-xxx at virtual page address nnn, if possible, and assigns contiguous addresses
to any unspecified p-sects falling between psect-xxx and psect-yyy

• Starts psect-yyy at virtual page address ppp, if possible, and assigns contiguous addresses
to any unspecified p-sects following psect-yyy

The specified address values must be on 4K-word boundaries and, for other than the first RO
section, must be high enough to allow for the allocation of all preceding program sections.
If not, RELOC issues a warning message-" Specified section start too low, ignored­
psectname" -ignores the invalid start address specification, and starts the corresponding
specified section at the next available address above the last-allocated section.

If the memory image is ROM/RAM, one of the sections specified in the /QB option must
be the first RW section, to start that section at a 4K-word virtual address boundary so that
MIB can map the read/write segment separately in RAM.

• MIB command line:

MIB>outmim-pimfile,inputmim/SM

MIB places the process image in the first available physical memory on a first-fit basis,
treating each discontinuous virtual segment as a separately allocatable unit. In a RAM-only
image, all the segments will probably be contiguous in physical memory-ignoring the 32-
word physical boundary breaks needed between noncontinuous pages-but not necessarily
if the available memory in the image is fragmented or noncontinuous. In a ROM/RAM
memory image, all read/write segments are physically separate from the read-only segments,
of course, but the segments within each group are physically contiguous if available ROM
and RAM areas permit.

In any case, MIB sets up the process's PAR values to reflect the process's placement in the
memory image.

A-4 Interaction of RELOC and MIB

MAPPED-RAM-only or ROM/RAM; locate one or more named p-sects at specific physical
addresses

• RELOC command line:

RLC>piafile-m.obfile[/RO:JDllll\]/QB:paect-xxx:nnn:paect-111:ppp

or, equivalently:

RLC>piafile-m.obfile/QB[:.ALST.:mmm]:paect-xxx:nnn:paect-111:ppp

Again, the /QB option can specify up to eight section names and addresses. RELOC
performs virtual relocation of the process image exactly as explained in the preceding
example. The difference in this example is in the MIB step.

• MIB command line:

MIB>outmim-piafile.inputmim/QB:paect-name:ph1a-bllt-num:paect-name ... /SM

In this command line, "psect-name" can be the name of any program section that was
relocated to start on a virtual page (4K-word) boundary, and nnn is a "memory block" offset
value as described in Section 11.4.5. As a more specific example, the following command
line fixes the physical start address for the read/write program section .COAT. at-for
simplification-octal location 100000 (1000•100):

MIB>outmim-piafile.inputmim/QB:.CDAT.:1000/SM

This command line assumes that the .COAT. program section has been relocated at some
virtual page boundary-whether by the RELOC /RW, /AL, or /QB option makes no
difference.

MIB places the virtual program segment(s) that precede the segment beginning with section
.COAT. in first available physical memory. MIB then starts the segment beginning with
section .COAT. at physical location 100000. Any additional noncontiguous segments are
allocated memory following the segment located by the /QB option, on a next-available
basis. (In this example, if MIB finds location 100000 already used when it attempts to
allocate the .COAT. section, it issues the fatal error message "Specified memory for /QB
section unavailable or nonexistent.")

MIB sets up the process's PAR values to reflect the placement of the process segments in
the memory image.

A. 2 Relocating Unmapped Static Processes
For a RAM-only target, the RO and RW segments can be placed contiguously in memory. For a
ROM/RAM target, however, they must be separated, and starting addresses must be provided.
Normally, RELOC determines those addresses for you by looking them up in the input .MIM
file; alternatively, you can use the /RO, /RW, or /QB options.

RELOC can obtain the needed address information by inspecting the existing .MIM file in order
to find the next available memory location(s) in the current memory image. You must always
include the name of the existing memory image (.MIM) file as an input in the RELOC command
line when you build an unmapped process.

Interaction of RELOC and MIB A-5

Case 1: Use First Available Memory in Image

UNMAPPED-RAM-only or ROM/RAM

• RELOC command line:

RLC>pimfile-mobfile.mimfile

RELOC inspects the existing .MIM file to determine the next available physical starting
addresses for the process's read-only and read/write segments and relocates the process
accordingly. In the RAM-only case, the process segments are relocated contiguously,
assuming that sufficient continuous memory is available in the image. In the ROM/RAM
case, the RO and RW segments are relocated disjointly in the first available ROM and RAM,
respectively. ·

• Then, invoke MIB with the same input .MIM file that you specified for RELOC:

MIB>outmim-pimfile.inputmim/SM

MIB installs the static process in the memory image at the physical starting address(es) fixed
by RELOC.

Case 2: You Supply Start Addresses for RO and RW Segments

UNMAPPED-RAM-only or ROM/RAM

• RELOC command line:

RLC>pimfile-mobfile/RO:phya-addr[/RW:phya-addr].mimfile

RELOC assigns physical addresses to the read-only and read/write segments, using the
starting address(es) you have specified. (Presumably, you have inspected a RELOC map
of the process being built to determine segment sizes and a MIB map of the existing
image to determine available start locations.) If you do not specify the /RW option for a
RAM-only image, RELOC allocates the read/write segment contiguously with the read-only
segment. You must specify the /RW option for a ROM/RAM image to origin the read/write
segment at some location in RAM. RELOC produces the physically relocated .PIM output
file. Although RELOC does not use the input .MIM file to determine starting addresses in
this case, RELOC does check the .MIM file to be sure that it is unmapped.

• MIB command line:

MIB>outmim-pimfile.inputmim/SM

MIB installs the static process in the memory image at the physical starting address(es) fixed
by RELOC.

Case 3: You Supply Addresses for Specific, Named Program Sections

Positioning of process segments in memory by specification of individual p-sect names and
addresses involves use of the RELOC /QB option for an unmapped image. See Chapters 10
and 11 for a detailed description of the RELOC /QB option.

The /QB option is not ordinarily required. You need to use /QB only if your process has special
"internal" location or mapping dependencies that cannot be satisfied through use of the /RO
and /RW options, which cover all commonly encountered relocation requirements by implicit
reference to the first RO section and the first RW section of a program. These options are

A-6 Interaction of RELOC and MIB

convenient, specialized forms of the /QB option. Consider the following equivalences between
the "implicit" /RO and /RW options and the RELOC /QB option:

• /RO:mmmmm is equivalent to specifying /QB:lst-RO-section:mmmmm-that is, /QB:­
.ALST.:mmmmm in any normal MicroPower/Pascal program. (The .ALST. p-sect is
generated for the Pascal PROGRAM heading and by the DFSPC$ macro call in MACR0-11;
see Chapter 10.

• /RW:nnnnn is equivalent to specifying /QB:lst-RW-section:nnnnn-that is, /QB:.CDAT.:­
nnnnn for a Pascal implementation or /QB:.MDAT.:nnnnn for a MACRO implementation in
which the PURE$, l"'DAT$, and IMPUR$ macros are used exclusively for program sectioning.

Thus, you need use the /QB option only for specifying p-sects other than the first within the
read-only or read/write segments.

\

UNMAPPED-RAM-only or ROM/RAM

• RELOC command line:

RLC>pimfileamobfile/RO:mmm/QB:paect-xxx:nnn:paect-yyy:ppp,mimfile

or, equivalently:

RLC>pimfileamobfile/QB:.ALST.:mmm:paect-xxx:nnn:paect-yyy:ppp,mimfile

(The /QB option can specify up to eight section names and addresses.) Assuming that
p-sect .ALST. precedes "psect-xxx" and "psect-xxx" precedes "psect-yyy" in the sorted input
module, RELOC does the following:

• Starts p-sect .ALST. at physical address mmm and assigns contiguous addresses to any
unspecified p-sects falling between .ALST. and psect-xxx

• Starts psect-xxx at physical address nnn, if possible, and assigns· contiguous addresses
to any unspecified p-sects falling between psect-xxx and psect-yyy

• Starts psect-yyy at physical address ppp, if possible, and assigns contiguous addresses
to any unspecified p-sects following psect-yyy

The specified address values nnn and ppp must be high enough to allow for the allocation
of all preceding program sections. If not, RELOC issues a warning message, ignores the
invalid start address specification, and starts the corresponding specified section at the next
available address above the last-allocated section.

If the memory image is ROM/RAM, one of the sections specified in the /QB option must
be the first RW section in order to start that section at some point in RAM.

• MIB command line:

MIB>outmim-pimfile,inputmim/SM

MIB installs the several discontinuous segments of the static process in the memory image
at the physical addresses fixed by RELOC.

Interaction of RELOC and MIB A-7

Appendix B

Extended Disk (XD) and ORV 11 (YA) Drivers

This appendix gives the build instructions for the XD and YA drivers. Those drivers differ from
other MicroPower /Pascal drivers in build requirements and in other respects. (The XD and YA
drivers are also the only two MicroPower/Pascal drivers to be coded in Pascal.)

B. 1 Extended Disk (XD) Driver
The XD driver permits MicroPower/Pascal applications to perform Pascal file-structured 1/0 to
disk devices with greater than 65536 blocks by partitioning the physical disk unit into multiple
partitions. Each physical disk unit is treated as a single controller with one or more logical
units. The XD driver conceptually resides "between" the ACP and the physical disk driver. In
response to I/O requests issued by the ACP, the XD driver performs the intermediate processing
necessary to complete the operation.

Note
Using the XD driver entails the participation of file system OTS routines, the
ACP, and a physical disk driver (normally the DU driver). Alternatively, you
can perform non-file-structured IfO to disk devices with greater than 65,536
blocks by issuing send/receive requests to a physical disk driver.

Unlike other MicroPower /Pascal drivers, the extended disk (XD) driver is not included in the
driver object libraries. Instead, it is distributed as a source file, XDDRV.PAS, on the kit. To use
the XD driver, you must edit XDDRV.P AS as appropriate for your application, compile it with
its include files (EXC.PAS, IOPKTS.PAS, and GSINC.PAS), and build it into your application as
a static user process. (In response to the MPBUILD question "Is this process a device driver?",
you should respond "NO".)

During the application build, you must merge the XD driver with the module GETSET .PAS.

Your application image must also include the ACP and physical disk driver system processes.

No prefix file exists for the XD driver. User changes are made to the driver source. See Chapter
5 for a more detailed description of the building of user processes. For more information on
disk drivers, see Chapter 4 of the MicroPower /Pascal I/O Services Manual.

Extended Disk (XD) and DRV11 (YA) Drivers B-1

B.2 ORV 11 (YA) Driver
Unlike other MicroPower/Pascal drivers, the DRVl 1 (YA) driver is not included in the driver
object libraries. Instead, it is distributed as two source modules-the driver proper (YADRV.P AS)
and the driver prefix file (YAPFX.P AS). The DRVl 1 (YA) driver is available for applications that
require it, or as a base for editing, or as an example of a device driver coded in Pascal.

You must compile both YAPFX.PAS and YADRV.PAS and merge the output object modules to
build the DRVl l driver process. In the following examples of command lines, the unmapped
case is arbitrarily chosen for illustration.

To compile both the prefix module and the driver module, you can use the appropriate form of
Pascal command line given below:

or

or

> [MCR] MPP
MPP> YAPFX•YAPFX/IN:NHD (RSX)

$MPPASCAL YAPFX/IN•(NHD) (VMS)

> [MCR] MPP
MPP> YADRV•YADRV/IN:NHD (RSX)

$MPPASCAL YADRV/IN•(NHD) (VMS)

You must use the NHD option when compiling the Pascal modules for an unmapped system,
regardless of your target hardware instruction set. You must merge the unmapped driver with
DRVU.OLB, FILSYS.OLB, and LIBNHD.OLB. For a mapped system, compile the prefix file,
substituting the EIS option for the NHD option, regardless of your target hardware instruction
set. Then merge the mapped driver, substituting DRVM for DRVU and LIBEIS for LIBNHD.

The following example merges the DRVl 1 driver process for an unmapped application:

>[MCR] MRG (for RSX) or $MPMERGE (for VMS)
MRG>YAPFX•YAPFX.YADRV.KERNL1.STB.mpp-lib:DRVU/LB.FILSYS/LB.LIBNHD/LB

The OTS object library files, FILSYS and LIBNHD, satisfy references to OTS routines found in
the unmapped YA driver object module. The driver object library file, DRVU, satisfies references
to common driver routines. To merge a mapped YA driver, substitute DRVM for DRVU and
substitute the LIBEIS library for the LIBNHD library.

The RELOC and MIB steps are the same as for a driver written in MACRO.

See Chapter 4 for a more detailed description of the building of DIGITAL-supplied system
processes. For more information on parallel line drivers, see Chapter 6 of the MicroPower /Pascal
1/0 Services Manual.

B-2 Extended Disk (XD) and DRV11 (YA) Drivers

Appendix C
.MIM File Format

The following diagram shows the format of the .MIM file for MicroPower /Pascal V2. If the
file does not contain a bootstrap, the file starts at block 0 for RT, block 1 for RSX and VMS.
The block numbers are different because RT numbers its virtual blocks for files starting from 0,
and RSX and VMS number theirs starting from 1. If the file contains a bootstrap, the .MIM file
header starts at the block following the bootstrap. MicroPower bootstraps are two blocks long
for unmapped applications and three blocks long for mapped applications. For RT, therefore, the
file header starts at block 2 for unmapped applications and at block 3 for mapped applications.
For RSX and VMS, it is block 3 for unmapped applications and block 4 for mapped applications.

If you dump a .MIM file, keep in mind that the RT and RSX dumpers display from left to right
on each line (offset 0 on the left) but that the VMS dumpers display from left to right for octal
dumps (offset 0 is on the right).

The load addresses in the diagram are memory addresses that are used when the .MIM file is
loaded (not addresses of the text in the .MIM file). For unmapped applications, all addresses
and sizes are actual 16-bit octal values (number of bytes). For mapped applicatons, all addresses
and sizes are 16-bit values representing units of lOO(octal)-byte memory blocks. The offset field
value is an actual 16-bit value (number of bytes). To obtain full byte addresses and sizes for
mapped applications, multiply the value by 100(octal) (equivalent to adding two zeros to the
octal value). For example, the value 6734(octal) represents the actual value 673400(octal).

The offset field, used only for mapped applications, is always 0 for unmapped applications.
It gives the offset from the memory block address in the MIBCOM address field to the
start of the MIBCOM area. For example, if the value in the MIBCOM address field is
235(octal) and the offset is 12(octal), the actual memory address of the MIBCOM area is
23500(octal)+12(octal)=23512(octal).

Attributes byte bit definitions are as follows:

bit 0 - 1, mapped application; 0, unmapped
bit 1 - 1, ROM/RAM application; 0, RAM-only
bit 2 - 1, J11 mapping (support for separation of I-space and

D-space and for supervisor-mode shared libraries); 0, no
J11 mapping

bit 3 - 1, CMR21 processor; 0, a processor other than CMR21

.MIM File Format C-1

Figure C-1: .MIM File Format

2
Blocks

C-2 .MIM File Format

Octal
Offset

0

2

4

6

10

12

14

16

20

1776

2000

i,,-

1

Data

"MIM" in RAD50 = 51265(8)

offset attributes

Address of Ml BCOM area

RESERVED

RESERVED

load address

size

load addre;;s

size

.

.

.
load address

size

-1 = 177777(8)

0

0

0

text

text

i_.,

text J
ML0-523-87

To convert octal offsets within the file to block number and offset within a block, split the
offset into two parts. The last three octal digits represent the octal offset within the block,
and the rest of the octal digits represent the octal block number on RT systems (one less
than the octal block number on RSX and VMS systems). For example, offset 56342(octal) is
block 56(octal)=46(decimal) on RT systems and offset 342(octal) within the block. It is block
56(octal)+1=57(octal)=47(decimal) on VMS and RSX systems and the same offset within the
block (342 octal).

The text in the .MIM file for each load segment immediately follows the text for the previous
segment. To locate the start of the text in the .MIM file for a segment, therefore, add the sizes
of all previous segments to find the offset from the start of text in the file. Then add the octal
offset of the start of text (varies depending on the operating system and the type, if any, of
bootstrap: mapped or unmapped). Finally, convert the octal offset within the file to a block
number and offset within the file.

.MIM File Format C-3

Index

A
Active Page Register (APR), 6-4
Address space, saving, 6-4
Application

building, 1-3, 1-7, 2-6, 2-7
development

debug phase, 5-8
rebuild phase, 5-8

MIM file, 2-7
Assembling user processes, 5-3

B
Bootstrap

file
installing, 11-6
MPBUILD dialog, 2-11
removing, 11-6

load format
MIM file, 11-3

Build cycle, 1-3, 2-1
automated, 2-1
MERGE utility, 9-6
MIB utility, 11-7
partial, 2-6
transition point, 2-10
user input, 1-7
XD driver, B-1
YA driver, B-2

Build utilities
overview, 1-3

c
Command files

generated
MPBUILD, 1-7, 2-7 2-11

intermediate, 2-7 '

Command format
MERGE, 3-4, 4-5, 5-4
MIB, 3-8, 4-7, 5-7
Pascal, 5-3
RELOC, 3-5, 4-6, S-6

Compiler
options, 8-3

command line, 8-9
MPBUILD, 2-8
source program, 8-8

Compiling
user processes, 5-3

Configuration file, 1-4, 2-6
assembling, 3-3
creating, 3-2

COPBOT.PAS
See also COPYB utility
copy bootstrap program, 12-4

COPYB utility, 1-3
See also COPBOT .PAS
command line examples, 12-2
functions, 12-1

CS driver

D

down-line loading, 13-6
run-time support, 13-4

DBG files
initializing, 11-6
MPBUILD, 2-7

DDCMP method
down-line loading, 13-4

Debugger Service Module (DSM},
2-7, 3-3, 7-1

Debugging
processes with shared libraries,

6-14

Index-1

Debugging support
build cycle, 2-7

/DEBUG option
Pascal, 8-9

DEBUG parameter
SYSTEM configuration macro,

7-1
Debug symbol information

MPBUILD I 2-7
Pascal programs, 8-9

DECnet
down-line loading, 13-2

DEQNA address
down-line loading, 13-3

Device driver, 4-2
object libraries, 1-4
overview, 1-4
prefix modules, 1-4, 2-9
user supplied, 2-11

Down-line loading
DDCMP method, 13-4
DECnet, 13-2
Ethernet, 13-2
hardware address, 13-3
PASDBG, 7-1

DRVM.OLB, DRVU.OLB, 1-4

E
Ethernet

down-line loading, 13-2

F
File options

/LIB, /LIST, /OBJ, /MAP,
/MAC, /PAS, 2-4

FILSYS.OLB, 8-1

G
Global references

MERGE utility, 9-3

H
Host system, 1-1, 1-2

I&D-space
restrictions, 6-2
separation, 6-2

build cycle, 6-3
kernel configuration, 6-1

lndex-2

/IDS option
MPBUILD dialog, 2-4

INCLUDE files, Pascal
PREDFL.PAS, 8-12

Installing
bootstrap file, 11-6
debug symbols

shared library, 11-7
static process, 11-7

shared libraries, 11-6
static processes, 5-5, 11-5
system processes, 4-5

memory image, 4-7
Interrupt Service Routines (ISR)

shared libraries, 6-5

J
Jl 1 processor, 6-1

K
Kernel

L

build cycle, 2-6, 2-7
MIB utility, 3-7

functions, 1-4
mapped

relocating, 3-5
merging

debugging, 3-5
mapped target, 3-4
unmapped target, 3-5

MIM file, 2-6, 3-7
object libraries, 1-4
optimization, 3-11
phase

MERGE utility, 3-4
relocating

debugging, 3-7
unmapped RAM-only

target, 3-6
unmapped ROM/RAM

target, 3-6
symbol table

creating, 3-5
unmapped

relocating, 3-6

LIBNHD.OLB, LIBEIS.OLB,
LIBFIS.OLB, LIBFPP.OLB,
8-1

/LIB option
MPBUILD dialog, 2-4

Libraries
DRVM.OLB, DRVU.OLB, 1-4
LIBNHD.OLB, LIBEIS.OLB,

LIBFIS.OLB, LIBFPP.OLB,
8-1

macro, 3-3
restriction, 2-2

PAXM.OLB, PAXU.OLB, 1-4
/LIST option

MPBUILD dialog, 2-4
Load format

bootstrap, 11-3
P ASDBG, 11-3

Loading

M

down-line with DDCMP, 13-4
down-line with DECnet, 13-2
down-line with Ethernet, 13-2
down-line with PASDBG, 7-1

/MAC option
MPBUILD dialog, 2-4

Macro libraries, 3-3
MPBUILD restriction, 2-2

Map file
creating, 11-6

/MAP option
MPBUILD dialog, 2-4

Mapped
applications, 4-5, 6-3
memory image, 5-7
static processes

relocating, A-1
MERGE utility, 1-3, 2-2

build cycle, 9-6
command line examples, 9-7,

9-8
command line format, 3-4, 4-5,

5-4
functions, 9-3
global references, 9-3
input file order, 9-5
kernel phase, 3-4

debugging, 3-5
mapped target, 3-4
unmapped target, 3-5

object library order, 9-5
options, 9-12

debug symbols (/DE), 9-13

MERGE utility
options (cont'd.)

extract module
(/LB:module: ...),
9-15

include module (/IN), 9-14
library file identification

(/LB), 9-15
module name (/NM), 9-15
supervisor-mode shared

library (/SL), 9-16
user-mode shared library

(/UL), 9-16
version numb,er (/VR),

9-16
reference resolution, 9-4
section maps, 9-10
shared libraries, 9-7
static process, 9-7

Merging
static processes, 5-4
system configuration file, 9-6

MIB utility, 1-3, 2-2, 4-5
build cycle, 11-7
command format, 3-8
command line examples, 11-8,

11-9
command line format, 4-7, 5-7
functions, 11-2
kernel building, 3-7
memory map, 11-14
options, 11-11

align p-sect (/QB), 11-13
exception group code

(/GC), 11-12
install bootstrap (/BS),

11-11
kernel installation (/Kl),

11-12
process priority (/PR),

11-13
remove bootstrap (/RB),

11-14
small memory image

(/SM), 11-14
static process, 5-5
system processes, 4-7

MIM files
conversion

MKBOOT program, 13-3,
13-5

MKB program, 13-3, 13-5

lndex-3

MIM files (cont'd.)
creating, 11-2

booting, 3-9
debugging, 3-8
down-line loading, 3-9
ROM/RAM environment,

3-10
down-line loading, 7-1
installing system processes, 4-7
kernel, 3-7
names, 4-7

MKBOOT program
MIM file conversion, 13-3, 13-5

MKB program
MIM file conversion, 13-3, 13-5

MPBUILD procedure, 1-3, 2-1
dialog, 2-5
errors, 2-11, 2-12
limitations, 2-2
macro library restriction, 2-2
system processes, 2-4, 2-9
user processes, 2-4, 2-10

MPBUILD utility, 5-8
MPP ASCAL compiler

command syntax, 8-2
compilation options, 8-3, 8-9
OTS libraries, 8-1
overview, 8-1
PREDFL.PAS file, 8-12
source-program options, 8-8

MPSETUP.COM file, 1-9
MPxxxx symbol definitions, 1-9

N
NETBOOT option

SYSTEM macro, 13-3, 13-5
NETTRIGGER option

SYSTEM macro, 13-3, 13-5
Network Control Program (NCP),

13-2
network node database, 13-2,

13-4
Network node database

Network Control Program
(NCP), 13-2, 13-4

Network Service Process (NSP)
run-time support, 13-2, 13-4

0
Object libraries

DRVM and DRVU, 1-4

Index-4

Object libraries (cont'd.)
LIBNHD, LIBEIS, LIBFIS,

LIBFPP, 8-1
PAXM and PAXU, 1-4
SUPEIS, SUPFPP, 8-1

/OBJ option
MPBUILD dialog, 2-4

Optimizing the kernel, 3-11
Options

MIB utility, 11-11
RELOC utility, 10-9

OTS

p

libraries, Pascal, 8-1
object libraries, 6-6
routines, 6-1, 6-3

Pascal
command format, 5-3
compiler, 1-2
INCLUDE files

PREDFL.PAS, 8-12
OTS libraries, 8-1

PASDBG, 1-2
build cycle, 2-7
LOAD /EXIT command, 7-1
load format, 11-3

/PAS option
MPBUILD dialog, 2-4

PAXM.OLB, PAXU.OLB, 1-4
Position Independent Code (PIC)

shared library, 6-5
PREDFL.PAS, 8-12
Prefix modules

assembling, 4-4
device driver, 1-4, 2-9
editing, 4-2
merging

device driver object library,
4-5

kernel symbol table, 4-5
PROCESSOR macro, 6-1
Programmer format

PROM, 11-4
PROM

programmer format, 11-4

Q

QN driver
run-time support, 13-2

R
Relocating

kernel for debugging, 3-7
static processes, 5-5

mapped, A-1
unmapped, A-5

system processes, 4-5
mapped, 4-6
unmapped, 4-6

Relocation map, 10-7
Relocation Symbol Directory

(RLD)
record updating, 9-4

RELOC utility, 1-3, 2-2, 4-5
build cycle, 10-3
command line examples, 10-4
command line format, 3-5, 4-6,

5-6
functions, 10-2
kernel phase, 3-5
options, 10-9

align first RW section
(/AL), 10-12

alphabetical symbol listing
(/AB), 10-12

debug symbols (/DE),
10-14

disable section sort (/DS),
10-14

extend section size (/EX),
10-17

first RO p-sect (/RO),
10-19

first RW p-sect (/RW),
10-19

I&D-space separation (/ID),
10-17

p-sect base address (/QB),
10-18

RO D-space starting
address (/DR:n),
10-14

round up section size
(/UP), 10-20

RW D-space starting
address (/DW:n),
10-17

short map (/SH), 10-19
static process name (/NM),

10-18

RELOC utility
options (cont'd.)

supervisor-mode shared
library (/SL), 10-20

user library base address
(/LS:name:addr),
10-18

user-mode shared library
(/UL[:addr]), 10-20

value of undefined
locations (/ZR), 10-21

version number (/VR:xxx),
10-20

wide map (/WI), 10-20
Removing

bootstrap file, 11-6
Run-time software

device drivers, 1-4
kernel, 1-4
overview, 1-2, 1-4

s
Shared library, 6-1, 6-3

debugging processes, 6-14
installing, 11-6

debug symbols, 11-7
MERGE utility, 9-7
restrictions, 6-5
supervisor-mode, 6-4

building, 6-6
kernel configuration, 6-1
referencing, 6-13

user-mode, 6-4
absolute, 6-5, 6-9
building multiple, 6-12
mapped, 6-8
referencing, 6-14
relocatable, 6-5, 6-8
unmapped, 6-7

Static process
installing, 5-5, 11-5

debug symbols, 11-7
merging, 5-4
relocating

mapped, A-1
unmapped, A-5

RELOC utility, 5-5
SUPEIS.OLB, SUPFPP.OLB, 8-1
Supervisor-mode

shared library, 6-4
kernel configuration, 6-1

Index-5

Supervisor-mode
shared library (cont'd.)

referencing, 6-13
Symbol definition file,

MPSETUP.COM, 1-9
SYS file

MKBOOT program, 13-3, 13-5
System configuration file, 1-4, 2-6
SYSTEM macro

configuration file, 13-3
NETBOOT option, 13-3, 13-5
NETTRIGGER option, 13-3,

13-5
System processes

T

MPBUILD dialog, 2-4, 2-9
overview, 1-4
relocating

mapped, 4-6
unmapped, 4-6

Target system, 1-1, 1-2

u
Unmapped

applications, 4-6, 6-3
memory image, 5-7
static processes

relocating, A-5
User-mode

shared library, 6-4
absolute, 6-5, 6-9
referencing, 6-14
relocatable, 6-5, 6-8

User processes
assembling, 5-3
compiling, 5-3
MPBUILD dialog, 2-4, 2-10

Utility programs
MERGE, 2-2
MIB, 2-2
overview, 1-3
RELOC, 2-2

x
XD driver

build cycle, B-1

y
YA driver

build cycle, B-2

Index-6

HOW TO ORDER

ADDITIONAL DOCUMENTATION

From Call

Alaska, Hawaii, 603-884-6660
or New Hampshire

Rest of U.S.A. 800-258-1710
and Puerto Rico*

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

* Prepaid orders from Puerto Rico must be placed with DIGITAL's local subsidiary (809-754-
7575)

Canada

In tern al orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

617-234-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SDC)
Digital Equipment Corporation
Westminster, MA 01473

Publishing & Circulation Serv. (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro, MA 01532

MicroPower /Pascal-RSX/VMS
System User's Guide

AA-AK 13C-TK

READER'S
COMMENTS

Note: This form is for document comments only. DIGIT AL will use comments
submitted on this form at the company's discretion. If you require a written
reply and are eligible to receive one under Software Performance Report (SPR)
service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

Name

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

City

Date

State Zip Code
or Country

Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
ML05-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

- - - - _,
I

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

