
DECLIT may qot be renewed. If you
need this for ~ longer than one
month, please make a copy and send
the library copy back

DATATRIEVE-11
Call Interface Manual
Order Number: AA-U050C-TC

July 1989

This manual explains how to use the DATATRIEVE-11 Call Interface to call
DATATRIEVE from within programs written in high-level languages. It also explains
how to use the DATATRIEVE-11 Remote Terminal Interface.

Operating Systems:

Software Version:

digital equipment corporation
maynard, massachusetts

RSX-11 M/M-PLUS
RSTS/E
Micro/RSX
Micro/RSTS
VMS with VAX-11 RSX

DATATRIEVE-11 Version 3.3

First Printing, September 1983
Revised, November 1987
Revised, July 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1983, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DATATRIEVE
DATATRIEVE-11
DEC
DECnet
DECUS
Micro/RSTS
Micro/RSX
MicroVAX
MicroVMS
PDP
PDP-11

RdbNMS
ReGIS
RSTS
RSTS/E
RSX
RSX-11M
RSX-11 M-PLUS
UNIBUS
VAX
VAX CDD
VAX DATATRIEVE

VAX Information Architecture
VAX Rdb/ELN
VAXcluster
VAXinfo
VAX/VMS
VAX-11 RSX
VMS
VT

ZK5066

Contents-

Preface '. vii

Chapter 1

1.1

1.2

1.3

1.4

1.5

Chapter 2

2.1

2.2

Chapter 3

3.1

3.2

Remote DATATRIEVE-11: Call Interface and Terminal Interface

Interactive DATATRIEVE-11

The DATATRIEVE Distributed Server

The DATATRIEVE Local Server

The DATATRIEVE Remote Terminal Interface

The DATATRIEVE-11 Call Interface

Using the DATATRIEVE-11 Remote Terminal Interface

Testing DATATRIEVE

Copying Domains

Running Programs That Call DATATRIEVE

Compiling Your Program.

Task Building .. .
3.2.1 The DATATRIEVE Call Interface Object Module Library
3.2.2 Logical Unit Numbers and Event Flag Numbers

1-2

1-3

1-3

1-3

1-5

2-2

2-3

3-2

3--4
3-8
3-9

iii

3.3

Chapter 4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Chapter 5

5.1

5.2

5.3

5.4

5.5

5.6

iv

Overlays

Writing Programs that Call DATATRIEVE-11

Overview of the Call Interface .

DATATRIEVE States

Declaring the DATATRIEVE Access Block (DAB)

DATATRIEVE-11 Routines
4.4.1 Initializing the DATATRIEVE Interfaces
4.4.2 Passing Commands to DATATRIEVE (DTCMD)

Transferring Data .
4.5.1 Retrieving Print Lines (DTLlNE)
4.5.2 Retrieving Messages (DTMSG)
4.5.3 Passing Values to DATATRIEVE (DTPVAL)

Transferring Records .
4.6.1 Defi.ning Ports
4.6.2 Retrieving Records from DATATRIEVE (DTGETP)
4.6.3 Passing Records to DATATRIEVE (DTPUTP, DTPEOF)

Stopping the Execution of Commands

Closing the Call Interface

Sample FORTRAN Programs

Creating an End-User Interface .

The Main Program: MENU

The ESTABLISH Subroutine

The DISPLAY Subroutine

The SORT Subroutine

The MODIFY Subroutine

3-12

4-1

4-7

4-8

4-10
4-11
4-13

4-15
4-15
4-16
4-20

4-22
4-23
4-24
4-26

4-30

4-31

5-1

5-3

5-5

5-8

5-8

5-10

5.7

5.8

5.9

5.10

5.11

Chapter 6

6.1

6.2

Chapter 7

7.1

7.2

Chapter 8

8.1

8.2

The REPORT Subroutine

The STORE Subroutine

The CHOOSE Subroutine

The PROMPT Subroutine

The CLSCRN Subroutine

Sample COBOL Programs

Creating an End-User Interface .

A Sample Payroll Application

Sample BASIC Programs

Formatting a Report

Calculating a Linear Regression Equation

Reference Section

DATATRIEVE Access Block
8.1.1 DATATRIEVE-11 States
8.1.2
8.1.3
8.1.4

Error Codes and Error Severity
Flags
The String Buffer

DATATRIEVE-11 Routines
DTCMD .. .
DTCONT '" '"

5-13

5-16

5-17

5-18

5-18

6-1

6-5

7-1

7-5

8-1
8-3
8-4
8-5
8-6

8-7
8-9

8-12
DTFINI. 8-14
DTGETP .. 8-15
DTINIT. 8-17
DTLINE . 8-21
DTMSG . 8-22
DTPEOF .. 8-24
DTPUTP. 8-26

v

DTPVAL . 8-28
DTUNWD . 8-30

Appendix A Definitions of the DATATRIEVE Access Block

A.1

A.2

A.3

Index

Figures

Tables

vi

1-1

1-2

3-1

3-2

4-1

8-1

4-1

4-2
8-1

8-2

8-3

8-4

8-5
8-6

FORTRAN-77 .. .

COBOL-81 .. .

BASIC-PLUS-2

The DATATRIEVE-11 Remote Terminal Interface

The DATATRIEVE-11 Call Interface

Allocating Logical Unit Numbers

Default Logical Unit Numbers

The DATATRIEVE Port

Argument List for DATATRIEVE-11 Routines

The DATATRIEVE Access Block

DATATRIEVE-11 Routines

The DATATRIEVE Access Block

The DATATRIEVE States

The DATATRIEVE Error Severity Codes

The Flags Field of the DATATRIEVE Access Block

Contents of the DAB$V _STRING Field

DTIN IT Options

A-1

A-2

A-3

1-4

1-6

3-11

3-12

4-22
8-8

4-8

4-11

8-1

8-3

8-5
8-5
8-6

8-19

Preface

This manual explains how to call DATATRIEVE from within programs writ­
ten in high-level languages such as FORTRAN, BASIC, and COBOL. It also
explains how to use the Remote Terminal Interface to run DATATRIEVE on
another node as an interactive process.

Intended Audience

This book addresses experienced users of at least one programming lan­
guage. A knowledge of DATATRIEVE commands and statements is also
required.

Structure

This book contains eight chapters and one appendix:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Provides an introduction to the components of DATATRIEVE-ll:
Interactive DATATRIEVE-ll, the DATATRIEVE-ll Distributed
Server, the DATATRIEVE-ll Call Interface, and the
DATATRIEVE-ll Remote Terminal Interface.

Describes the Remote Terminal Interface and how to use it.

Explains how to compile, task build, and run programs that use
the DATATRIEVE-ll Call Interface.

Describes the Call Interface and how to use it to call DATATRIEVE
from within programs written in languages such as FORTRAN,
COBOL, and BASIC.

Contains sample FORTRAN programs.

vii

Chapter 6

Chapter 7

Chapter 8

Appendix A

Contains sample COBOL programs.

Contains sample BASIC programs.

Is a reference section, describing each element of the DATATRIEVE
Access Block and the DATATRIEVE Call Interface separately.

Lists example definitions of the DATATRIEVE Access Block in
FORTRAN, COBOL, and BASIC.

Related Manuals

viii

For more information about the subjects discussed in this book, consult the
following manuals:

DATATRIEVE-l1 User's Guide

DATATRIEVE-l1 Reference Manual

DATATRIEVE-l1 Installation Guide

The language reference manuals for FORTRAN-77, COBOL-8!, and
BASIC-PLUS-2 are also recommended for reference purposes.

Conventions

Programming examples and examples of the DATATRIEVE Remote Terminal
Interface are printed in a dot matrix typeface. The DATATRIEVE or pro­
gram output lines displayed on your terminal are printed in black. The
commands and statements you enter from your terminal are printed in color.

Symbols and conventions used in syntax formats:

Convention

UPPERCASE WORDS

lowercase words

~

~
Color
{ }

[]

<>

Meaning

Uppercase words are DATATRIEVE keywords.

Lowercase words indicate entries you must provide.

This symbol indicates the RETURN key.

This symbol indicates the TAB key.

Color in examples shows user input.

Braces mean you must choose one, but no more than
one, of the enclosed entries.

Brackets mean you have the option of choosing one,
but no more than one, of the enclosed entries.

A horizontal ellipsis means you have the option
of repeating the preceding element of the syntax
format.

A vertical ellipsis in an example means that repeti­
tious or irrelevant output has been omitted.

Angle brackets mean the argument is an ASCII
character string. These arguments can be passed by
descriptor or as an address and length, depending
upon the program language.

ix

Chapter 1

Remote DATATRIEVE-11: Call Interface and
Terminal Interface

This manual describes how to use:

• The DATATRIEVE-II Remote Terminal Interface

• The DATATRIEVE-II Call Interface

The Remote Terminal Interface enables you to run DATATRIEVE as an
interactive process on another DECnet node. Thus, if you are logged on to a
PDP-II system, you can run DATATRIEVE on another node by typing RUN
$REMDTR.

The Call Interface allows you to call DATATRIEVE from a program written
in a high-level language. There is a Remote Call Interface and a Local Call
Interface.

Using the Remote Call Interface, your program uses DECnet to call
DATATRIEVE-II running on your own PDP-II system, or it can call
DATATRIEVE running on another PDP-II or VAX system linked to yours
on the network.

The Local Call Interface calls DATATRIEVE-II on your PDP-II node by
intertask communication, without using DECnet.

To understand the remote interface, you must understand the structure of
DATATRIEVE as a whole.

DATATRIEVE-II consists of the following components on your PDP-II
system:

• Interactive DATATRIEVE-II

The DTR.TSK task image allows you to access DATATRIEVE at your
terminal.

Remote DATATRIEVE-11: Call Interface and Terminal Interface 1-1

• The DATATRIEVE-II Distributed Server

DDMF.TSK allows users on other DECnet nodes to use DATATRIEVE
for accessing data files and data dictionaries on your node. That is,
DDlvlF substitutes an interface to DECnet for the interface to the
terminal in interactive DATATRIEVE.

• The DATATRIEVE-II Local Server

LCDDMF.TSK allows users to access data files and data dictionaries on
the same PDP-II node without interfacing with DECnet.

• The DATATRIEVE-II Remote Terminal Interface

REMDTR.TSK is an interactive program that uses the Remote Call
Interface to communicate with the distributed server (on the local node
or on a remote node). When you run REMDTR as a program, it looks as
though you are running interactive DATATRIEVE on a remote node.

• The DATATRIEVE-II Call Interface

The DTCLIB.OLB object module library contains DATATRIEVE-II
subroutines that send commands to and receive information from
the distributed or local server~ Application programs can call these
subroutines to access data files and data dictionaries on remote nodes.

The sections that follow describe these components in detail.

1.1 Interactive DATATRIEVE-11

When you type RUN $DTR on a PDP-II system, you are running DTR.TSK,
the interactive DATATRIEVE-II task image. This program accepts
DATATRIEVE-II commands from the terminal and uses the terminal as
the default output device. With DTR.TSK, you can use DATATRIEVE-II
commands and statements to access data stored in disk files as well as
definitions stored in one of the data dictionaries on your system. The
other books in this documentation set describe how to use interactive
DATATRIEVE-I1. You must understand how to use DATATRIEVE
commands and statements before you can write programs that use the
DATATRIEVE-II Call Interface.

1-2 Remote DATATRIEVE-11: Call Interface and Terminal Interface

1.2 The DATATRIEVE Distributed Server

The Distributed Data Manipulation Facility (DDMF) is also called the
DATATRIEVE Distributed Server. It is a "slave" program; another
DATATRIEVE component sends it commands to execute and it passes the
results back to that component. DDMF can perform all the DATATRIEVE
functions that DTR.TSK can perform, with the exception of ADT, Help, and
Guide Mode.

Both DATATRIEVE-II and VAX DATATRIEVE have distributed servers.

The Remote Call Interface uses DECnet software to access the user's
own PDP-II or another node on the DECnet network. It then uses the
DATATRIEVE Distributed Server (DDMF.TSK on PDP-II systems or
DDMF.EXE on VAX systems) to access data files and the Common Data
Dictionary (CDD).

1.3 The DATATRIEVE Local Server

The Local DATATRIEVE Data Manipulation Facility (LCDDMF) is also
called the DATATRIEVE Local Server. It is similar to the DATATR1EVE
Distributed Server described previously, except that it is used pnly to
communicate between programs and DATATRIEVE components on the same
PDP-II node. Using LCDDMF offers performance advantages; in addition,
it makes DATATRIEVE data available on systems that do not have DECnet
installed.

1.4 The DATATRIEVE Remote Terminal Interface

When you run REMDTR.TSK, it prompts you for a node name. You enter
the node you wish to access and the user name or number and password of
the account you want to use. The Terminal Interface uses the Remote Call
Interface to establish a DECnet link to DDMF.TSK (on a PDP-II system) or
to DDMF.EXE (on a VAX system). When the link is established, REMDTR
displays the banner identifying the version of DATATRIEVE being run and
a special prompt: remDTR>. From this point on, you can type commands
and statements, as though you were running interactive DATATRIEVE on
the remote node.

NOTE

You must have the DECnet software installed on your system
before you can use REMDTR.

Remote DATATRIEVE-11: Call Interface and Terminal Interface 1-3

Figure 1-1 illustrates the use of the Remote Terminal Interface to access
DATATRIEVE on a PDP-II or VAX. network node.

Figure 1-1: ihe DAiAiRiEVE-ll Remote ierminai interiace

Enter node name:
RSTS "160.32 PASWRO"

OATATRIEVE
Distributed

Server
OOMF.TSK

DECnet

link

Oata

MYNOOE

OATATRIEVE
Remote
Terminal
Interface

DATATRIEVE
Remote

Call
Interface

OECnet

link

Enter node name:
VAX11 "MYNAME PASWRO"

OATATRIEVE
Distributed

Server
OOMF.EXE

ZK 6110 He

Using the Terminal Interface gives you some advantages over using the SET
HOST command to access another DECnet node:

• You can copy record and domain definitions from one node into a com­
mand file on another node, so that you can quickly set up identical
domains on different nodes.

• You can copy data files or parts of data files from the remote node to the
host node without leaving DATATRIEVE.

• You can use the Remote Terminal Interface to test statements and
commands before including them in an application program that uses
the Call Interface to access data across the network. For example, to see

. the default characteristics of DATATRIEVE on a particular node, you
can run the ·Terminal Interface and type a SHOW command. Then you
can use that information when writing the program.

Chapter 2 explains how to run REMDTR and perform these operations.

1-4 Remote DATATRIEVE-11: Call Interface and Terminal Interface

1.5 The DATATRIEVE-11 Call Interface

The DATATRIEVE-11 Call Interface consists of a set of routines contained
in a library called DTCLIB.OLB. The Call Interface allows you to write
high-level language programs that call DATATRIEVE, either on your own
system or on another DECnet node.

To use the Call Interface, you include calls in your program to the external
DATATRIEVE subroutines contained in the DTCLIB library. When
you build the task image, you link the program to DTCLIB.OLB. The
subroutines pass information between the calling programs and a local or
remote DATATRIEVE Distributed Server. When you are running such a
program, there are actually two task images active:

• Your program linked to DTCLIB.OLB

• DDMF (the DATATRIEVE Distributed Server) or LCDDMF (the
DATATRIEVE Local Server) that has been activated to serve your
program

There is a Local Call Interface and a Remote Call Interface. The Local Call
Interface supports access to DATATRIEVE-11 on the same node (th~ough
LCDDMF and without using DECnet). The Remote Call Interface uses
DECnet to access DATATRIEVE on any node in the network, including the
node on which the task runs, through DDMF.

NOTE

You must have the DECnet software installed on your system
before you can use the Remote Call Interface.

MicrolRSTS does not support the Remote Call Interface.

Figure 1-2 illustrates how your calling program interacts with components
of DATATRIEVE.

Remote DATATRIEVE-11: Call Interface and Terminal Interface 1-5

Figure 1-2: The DATATRIEVE-11 Call Interface

Task-to-Task
Communication

PDP-11 Node

Calling
Program

DATATRIEVE
Local
Call

Interface

PDP-11 Node

DATATRIEVE
Remote
Terminal
Interface

I
RUN $REMDTR

DATATRIEVE
Remote

Call
Interface

PDP-11 Node
PDP-11

Node VAX Node

Data
Files

DATATRIEVE
Local

Server

Data
Dictionaries

Data
Files

DATATRIEVE
Distributed

Server

Data
Dictionaries

DATATRIEVE
Distributed

Server

Common Data
Dictionary

Data
Files

ZK-6305-HC

U sing the Call Interface extends the capabilities of DATATRIEVE in several
ways:

• You can write programs to perform tasks that interactive DATATRIEVE
cannot do for you. For example, your program can use DATATRIEVE
to retrieve data and then have the program perform complex statistical

1-6 Remote DATATRIEVE-11: Call Interface and Terminal Interface

calculations, produce complicated reports, and customize the format of
the terminal screen.

• Your program can customize the appearance of DATATRIEVE. For
instance, you can build a menu that allows users to use DATATRIEVE
without knowing its syntax. Some examples of menu-driven DATATRIEVE
appear in the examples in Chapters 5, 6, and 7 of this book.

• Your program can access data through DATATRIEVE-11 on your own
PDP-11 node, using either:

The Local Call Interface task~to-task communication without
DECnet

The Remote Call Interface with DECnet

• Your program can access data through DATATRIEVE on other DECnet
nodes (using the Remote Call Interface).

The Call Interface also extends the capabilities of programming languages.
For example, you can input commands and record selection expressions for
DATATRIEVE while your program is running. This means that records
can be selected when the program runs, rather than when you write it.
DATATRIEVE knows how the data file is organized and automatically
searches for the-records in the most efficient way.

The Call Interface also allows your program to use DATATRIEVE tables and
procedures. For example, several programs can use a single table stored
in the data dictionary. You can also use DATATRIEVE to validate data on
input.

Chapters 3 through 8 in this manual tell you how to write application
programs that use the Call Interface.

Remote DATATRIEVE-11: Call Interface and Terminal Interface 1-7

Chapter 2

Using the DATATRIEVE-11 Remote Terminal
Interface

The command for running the Terminal Interface is the same on
RSX-I1M!M-PLUS or RSTS/E systems. Simply type RUN $REMDTR. If
you get an error message, check with the system manager to make sure the
program is installed.

You will be asked to choose a DECnet node by typing a node specification.
At this point, you can simply type a node name or you can type a complete
specification, with user name or account number and password:

Enter node name: MYVAX"MYNAME PASWRD"

Enter node name: MYRSTS"130,34 PASWRD"

When you use the complete form of the command, DECnet logs you in to the
account named. If you simply use the node name, you are logged in to the
default DECnet account. You may not be able to access the correct data files
or dictionaries from this account.

After REMDTR logs in successfully, you can use DATATRIEVE on the target
node just as you would interactively use DATATRIEVE on that node.

Here is an sample session:

>RUN $REMDTR ~
Enter node name: BADGER"USER PASWRD" ~

VAX Datatrieve V4.0
DEC Query and Report System
Type HELP for help
remDTR> READY YACHTS ~

Statement completed sucCeSSf~Y.
remDTR> PRINT FIRST 1 YACHTS RET

Using the DATATRIEVE-11 Remote Terminal Interface 2-1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37

Statement completed successfully.
remDTR>

20,000 12 $36,951

The default directory is now [USER] on node BADGER. For example, if
you type PRINT YACHTS ON BOATS.DAT, DATATRIEVE creates a file
BOATS.DAT on BADGER, the remote system, in [USER], the default
directory.

When you type EXIT or CTRLJZ to end the Terminal Interface session,
remote DATATRIEVE prompts again for a node name. You can then choose
another system or press CTRUZ again to exit.

remDTR> I CTRUZ I
Enter node name: ICTRuzl

2.1 Testing DATATRIEVE

When you are writing a program that uses the DATATRIEVE-II Call
Interface, you often need to find out the characteristics of a version 9f
DATATRIEVE running on a remote node beforehand. The Terminal
Interface can be useful in running this kind of test.

For example, assume that you are going to write a program that activates
the DATATRIEVE-II Distributed Server on a PDP-II node named
ELEVEN, using the account of a user named LITELLA. The program will
do a store operation into the PERSONNEL domain. You want to test the
interface to determine several things:

• Can my program initialize DATATRIEVE-II using the user name and
password on hand?

• What is the default data dictionary for LITELLA on ELEVEN?

• Is the data file in the correct directory on ELEVEN?

• Does LITELLA have sufficient privileges to store data in PERSONNEL?

You could use the Terminal Interface to answer these questions by following
a sequence like the following:

2-2 Using the DATATRIEVE-11 Remote Terminal Interface

>RUN $REMDTR[@]
Enter node name: ELEVEN"LITELLA FZZBAL"[@]

DATATRIEVE-11, DEC Query and Report System
Version: V03.03, 19-MAY-89
Type HELP for help
remDTR> SHOW DICTIONARY[@]
The current dictionary is DBO: [100,120]QUERY.DIC;3

remDTR> SHOW DOMAINS~
Domains:

OWNERS PERSONNEL
UPDATES WORKSPACE
YEAR_TO_DATE COST

remDTR> SHOWP PERSONNEL [@]

3,UIC, [*, *], "R"

remDTR> READY PERSONNEL WRITE ~

remDTR> PRINT FIRST 4 PERSONNEL ~

FIRST LAST
ID STATUS NAME NAME

00012 EXPERIENCED CHARLOTTE SPIVA
00891 EXPERIENCED FRED HOWL
02943 EXPERIENCED CASS TERRY
12643 TRAINEE JEFF TASHKENT

remDTR> EXIT~
Enter node name: I CTRUZ I
>

PHONES
YACHTOWNERS

START
DEPT DATE

TOP 12-Sep-72
Fll 9-Apr-76
D98 2-Jan-80
C82 4-Apr-81

SYNONYMS
YACHTS

SALARY

$7,500
$59,594
$29,908
$32,918

SUP
ID

00012
00012
39485
87465

On a RSTSIE system you must specify the account number rather than
name in your node specification.

2.2 Copying Domains

This section shows you how to copy a domain definition, record definition,
and data file from a VAX system to a PDP-II system using the Remote
Terminal Interface.

The alternative is to use the DECnet network file copy utility. However,
VAX DATATRIEVE uses the major-minor allocation rule by default, while
DATATRIEVE-II uses the left-right allocation rule. Therefore, if you use
COPY, the fields of your records may not be aligned correctly on the PDP-II
node. Using the Remote Terminal Interface avoids this problem, because it
allows DATATRIEVE to handle the allocation. See the DATATRIEVE-ll
Reference Manual (the ALLOCATION clause) for more information on
allocation.

Using the DATATRIEVE-11 Remote Terminal Interface 2-3

The process involves the following steps:

1. From a PDP-II system, use REMDTR to log into a VAX. system. Use
the EXTRACT command to puli the definitions from the Common Data
Dictionary (CDD) and put them in a command file on the PDP-II
system. For example, using the Remote Terminal Interface from the
node ELEVEN, your EXTRACT command would look something like the
following:

EXTRACT YACHTS, YACHT ON ELEVEN"lOO,120 FZZBAL"::DB1:YACHT.CMD

2. End the remote session by typing EXIT or CTRUZ. The Terminal
Interface prompts you for a new node name. Type the name of the host
(PDP-II) node.

3. At this point you may need to edit the command file to remove
features in the record definition specific to VAX. DATATRIEVE, so that
DATATRIEVE-II will accept it. You may also want to change the name
of the data file in the domain definition.

4. You are now connected to the DATATRIEVE-II data dictionary, so you
can execute the command file to load the definitions.

5. After the definitions are in place, define the data file.

6. Go back to the VAX. DATATRIEVE server on the VAX. node to store
the records. Since VAX. DATATRIEVE can ready domains across the
network, use the restructuring mechanism to copy the records from
the VAX. system to the PDP-II. If you want to copy only a subset of
records, use a DATATRIEVE record selection expression to restructure
the domain.

Here is a sample session. Assume that you want to copy the YACHTS
domain from a VAX. node named VACKS to ELEVEN, a PDP-II system
running RSX-IIM-PLUS. You are logged in to ELEVEN:

>RUN $REMDTR~
Enter node name: VACKS"LITELLA BZZWRD" ~

VAX Datatrieve V4.0
DEC Query and Report System
Type HELP for help
remDTR> EXTRACT YACHT, YACHTS ON ELEVEN"LITELLA FZZBAL":: DBI: YACHT. CMD ~

Statement ~leted successfully.
remDTR> ! ~
remDTR> ! Exit the remote session with CTRL/Z. The Remote~
remDTR> ! Terminal Interface prompts you for a new node name.~
remDTR> ! Enter the PDP--II node: ~
remDTR> ! ~
remDTR> I CTRUZ I
Enter node name: ELEVEN"LITELLA FZZBAL"~

2-4 Using the DATATRIEVE-11 Remote Terminal Interface

DATATRIEVE-ll, DEC Query and Report System
Version: V03.03, 19-MAY-89
Type HELP for help
remDTR> ! ~
remDTR> Now that you are on ELEVEN, you can execute the~
remDTR> command file to load the definitions and define the~
remDTR> data file. Note that you may need to edit the VAX~
remDTR> DATATRIEVE record definition to remove syntax (such as~
remDTR> MISSING VALUE) that is not part of DATATRIEVE-ll. ~
remDTR> ~
remDTR> @YACHTS. CMD ~
DELETE YACHT;
DEFINE RECORD YACHT USING
01 BOAT.

03 TYPE.
06 MANUFACTURER PIC X(10)

QUERY_NAME IS BUILDER.
06 MODEL PIC X(10).

03 SPECIFICATIONS
QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG EQ "SLOOP","KETCH","MS","YAWL".
06 LENGTH OVER ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99.
06 PRICE PIC 99999

VALID IF PRICE>DISP*I.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

DELETE YACHTS;
DEFINE DOMAIN YACHTS USING YACHT ON YACHT.DAT;

remDTR> DEFINE FILE FOR YACHTS KEY = TYPE (NO DUP), ~
DFN> KEY = MODEL (DUP, NO CHANGE), ~
DFN> ALLOCATION 30, SUPERSEDE ~

remDTR>
remDTR>
remDTR>

Now go back to VACKS to store the records.

remDTR> I CTRUZ I
Enter node name: VACKS"LITELLA BZZWRD" ~

VAX Datatrieve V4.0
DEC Query and Report System
Type HELP for help
remDTR> ! ~
remDTR> First ready the domains using the distributed capability of~
remDTR> ! VAX DATATRIEVE. ~
remDTR> ! ~
remDTR> READY YACHTS AS OLD_YACHTS~

Statement completed successfully.
remDTR> READY YACHTS AT ELEVEN"LITELLA FZZBLL" AS NEW YACHTS WRITE ~

Using the DATATRIEVE-11 Remote Terminal Interface 2-5

Statement completed successfully.
remDTR> ~
remDTR> Now use the restructuring mechanism to move the records. ~

remDTR> This version uses a record selection expression to move only~
remDTR> a subset of the records.~
remDTR> ~
remDTR> NEW YACHTS = OLD YACHTS WITH PRICE NOT MISSING~

Statement completed successfully.
remDTR> ! ~
remDTR> FINISH~

Statement completed successfully.
remDTR> I CTRUZ I
Enter node name: ELEVEN"LITELLA FZZBLL"~

DATATRIEVE-ll, DEC Query and Report System
Version: V03.03, 19-MAY-89
Type HELP for help
remDTR> READY YACHTS~

remDTR> PRINT COUNT OF YACHTS~
50

remDTR> I CTRUZ I
Enter node name: I CTRUZ I

>

2-6 Using the DATATRIEVE-11 Remote Terminal Interface

Chapter 3

Running Programs That Call DATATRIEVE

This chapter and those that follow tell you how to write programs that call
DATATRIEVE through the DATATRIEVE-ll Remote Call Interface. The
examples in these chapters are written in the following languages:

• BASIC-PLUS-2-Version 2.4

• FORTRAN-77-Version 5.2

• COBOL-81-Version 2.4

You can use the Call Interface with previous versions of these languages, or
with other languages developed by Digital. However, the examples in this
book may use features that these other versions do not support. If you wish
to copy the examples and use them with other languages, conversion may be
necessary.

Running a program that calls DATATRIEVE requires the same steps as
running any program:

• Create the source file

• Com pile the program

• Build the executable task image

• Run the program

This chapter describes how to compile and task build programs using the
DATATRIEVE-ll Remote Call Interface.

Running Programs That Call DATATRIEVE 3-1

3.1 Compiling Your Program

Compile your program as you would any high-level language source file. The
exact syntax for compiling depends on several factors:

• Your operating system (RSTSIE, RSX-llM, RSX-llM-PLUS)

• Your command language (MCR, DCL, CCR)

• Your high-level language (BASIC-PLUS-2, COBOL-81, FORTRAN-77,
or some other PDP-II language)

For example, if you are compiling a COBOL-81 program on an
RSX-I1M-PLUS system, using the MCR Command Language Interpreter,
the command line for compilation would look like the following:

>C8l~
C8l>CSTORE.OBJ,CSTORE.LST=CSTORE.C8l~
C8l> I CTRUZ I
>

In the previous example:

CSTORE.OBJ

CSTORE.LST

CSTORE.C81

Is the object file that the compiler creates.

Is the source listing that the compiler creates.

Is the input source file.

If you are using the DCL command language on a RSTSIE system, a typical
compilation line would look like the following:

$ COBOL/C8l CSTORE.C8l~
$

The sequence for compiling a FORTRAN-77 program is similar. The default
command for invoking the FORTRAN-77 compiler is F77, although the
system manager has the option of choosing a different 3-letter command.
In the following example, the use of the compiler switch, I-SP, prevents the
source listing from being spooled to the printer.

For example, if the FORTRAN-77 compiler has been installed on an
RSX-I1M or RSX-IIM-PLUS system, using MCR, you might compile the
program FSTORE.FTN as follows:

>F77~
F77>FSTORE, FSTORE/-SP=FSTORE ~
F77> I CTRUZ I
>

3-2 Running Programs That Call DATATRIEVE

On RSX-IIM and RSX-IIM-PLUS, you can also use the F77 command at
MCR command level:

>F77 FSTORE,FSTORE/-SP=FSTORE~
>

If the system manager has not installed the FORTRAN-77 compiler, it will
not be resident in memory. This ·means that you must run the compiler
like any other task. To do this, precede the compiler name with the RUN
command and a dollar sign. The dollar sign tells RSX to look for the
compiler in the system account. The compilation sequence might look like
the following:

>F77 ~
MCR - Task not in system
>RUN $F77~
F77>FSTORE, FSTORE/-SP=FSTORE ~
F77> ICTRLJzl
>

To use the BASIC-PLUS-2 compiler, you must enter the BASIC environment.
In most cases, the command for doing this is:

> BP2~

PDP-II BASIC-PLUS-2 V2.4-0

BASIC2

However, any 3-character name can be chosen for the compiler during
installation. See your system manager for the name of the BASIC-PLUS-2
compiler on your system.

Once inside the BASIC environment, you must bring a copy of the source
program into memory and issue the COMPILE command:

BASIC2

OLD SOURCE.B2S~

BASIC2

COMPILE~

BASIC2

For more information on how to invoke the compiler and compile your
program, and for complete lists of compiler options, see the user's guide for
your language and operating system.

Running Programs That Call DATATRIEVE 3-3

3.2 Task Building

The Task Builder (TKB) is a system program that lip..ks object modules to
form an executable task image. You invoke the Task Builder by entering the
TKB command. Because you must link your object module or modules with
several libraries and specify options to the Task Builder, it is easiest to place
the list of input files and options in a Task Builder command file. Thus, the
command to run the Task Builder for program PROG is:

TKB @PROG.CMD

A job can contain two types of calls: remote and local. The Remote Call
Interface uses the DATATRIEVE Distributed Server across DECnet and can
access DATATRIEVE databases on either VAX or PDP-II nodes (including
the host PDP-II node). The Local Call Interface uses only task-to-task
communication within the host PDP-II node.

Note that a job can have any number of remote calls but only one local call.
In addition, there are other restrictions specific to certain operating system
environments that will be described later in this chapter.

The Task Builder command file must indicate whether the task uses the
Remote Call Interface, the Local Call Interface, or both. For this reason, you
may have to modify Task Builder command files in current use when you
use this version of DATATRIEVE-II.

When you are building the task image for a program that uses the.
DATATRIEVE-II Call Interface, your Task Builder command file looks
like one of the following. The numbered comments explain its elements.
Examples 1, 2, and 3 show tasks containing remote calls only for FORTRAN,
BASIC-PLUS-2, and COBOL--81. Example 4 shows a task containing a local
call only (using FORTRAN; BASIC and COBOL tasks are similar). Example
5 shows a task containing both remote and local calls.

1. GROUPE.CMD, a command file for the FORTRAN program GROUPE
and a subroutine MESAGE that were compiled on a RSTSIE system.

GROUPE,GROUPE/-SP=GROUPE,MESAGE, tt
LB:F4POTS/LB, ~
LB:RMSLIB/LB, ~

LB:DTCLIB/LB:CIFOR:NCRSTS:NOLC, t)

LB:DTCLIB/LB

I
UNITS = 6
II

3-4 Running Programs That Call DATATRIEVE

CD
6l

I

o The user's input and output files. These include the executable task
image file (.TSK) that the Task Builder creates, an optional map file,
and two input object modules, the main program and the subroutine .

• The FORTRAN-77 object-time system (OTS) library. Sometimes the
FORTRAN OTS is contained in the system object module library,
SYSLIB.OLB. If so, this line is not necessary; the Task Builder will
search SYSLIB and find the FORTRAN modules automatically. Your
system manager can tell you whether F4POTS.OLB is installed
separately or included in SYSLIB.OLB.

6) The Record Management Services (RMS) object module library. This
library is necessary if your FORTRAN program accesses a file or
uses the WRITE or READ statements for terminal I/O.

e The FORTRAN-77 and RSTSIE modules from DTCLIB, the
DATATRIEVE-11 Call Interface object module library. This line
specifies three modules (not two as in previous versions). CIFOR
is the FORTRAN-77 module; NCRSTS is the RSTSIE module for
the Remote Call Interface; the NOLC module is needed because
the task does not use the Local Call Interface. If the Local Call
Interface were being used, the entry would specify the LCRSTS
module instead of NOLC. For more information, see Section 3.2.1 on
the DATATRIEVE-ll Call Interface object module library.

• The rest of DTCLIB.OLB. For more information, see Section 3.2.l.

6) The single slash marks the beginning of a set of Task Builder
options. Your run-time system may require that you specify some
Task Builder options, but on RSTS systems the DATATRIEVE-11
Call Interface floes not.

e Here, the command file specifies the number of logical unit numbers
the program uses. Again, your program may require this entry in
the command file; DATATRIEVE does not.

o The double slashes mark the end of the set of Task Builder options.

2. PROG.CMD, the Task Builder command file generated by the BUILD
command in the BASIC-PLUS-2 environment on an RSX-IIM-PLUS
system. The command file has been edited to add references to the
libraries. In addition, the IMP qualifier has been removed on the
input object module to eliminate the search of the Overlay Description
Language (ODL) file.

Running Programs That Call DATATRIEVE 3-5

SY:PROG/cP=SY:PROG,MESAGE,PROMPT,CLSCRN, tt
LB: [1,I]BP20TS/LB, ~

LB: [1,I]DTCLIB/LB:CIBAS:NCIIM:NOLC, ~

LB: [1,1] DTCLIB/LB e
I
UNITS = 15 0
ASG = TI:13:15
ASG = SY:5:6:7:8:9:10:11:12
GBLPAT=PROG:LUNMAP:OOI700:OOOooo ~
EXTTSK= 512
II

o The user's input and output files. MESAGE.OBJ, PROMPT.OBJ,
and CLSCRN.OBJ are external subroutines that PROG calls.

~ The BASIC-PLUS-2 object-time system library.

~ The BASIC and RSX-IIM1M-PLUS modules from DTCLIB.OLB,
the DATATRIEVE-ll Call Interface object module library. This
line specifies NCIIM, the Remote Call Interface module for BASIC
running on RSX-IIM-PLUS. If the Local Call Interface were also
being used, the line would specify the LCIIM module; instead it
specifies NOLC to indicate no local calls. For more information, see
Section 3.2.1.

e The rest of the modules from DTCLIB.OLB.

o A Task Builder option, the number of logical units the program
will use. BASIC automatically allocates these logical unit numbers
(LUNs) and assigns them to the terminal and to the system, as the
next two lines indicate.

~ Another Task Builder option. This option specifies which LUNs the
Call Interface can use. It is important that BASIC-PLUS-2 and
DATATRIEVE-ll do not try to access the same LUNs. In some
cases, therefore, you must determine which LUNs to allocate to the
Call Interface and fill in the LUNMAP value. See Section 3.2.2 for
more information on logical unit numbers.

3. PAYROL.CMD, the Task Builder command file for a COBOL program to
be run on an RSX-IIM-PLUS system.

PAYROL,PAYROL=PAYROL,ERSPGE tt
LB: [1, I]C81LIB/LB, ~
LB: [1,I]RMSLIB/LB, ~

LB: [1,I]DTCLIB/LB:CICOB:NCIIM:NOLC, e

3-6 Running Programs That Call DATATRIEVE

LB: [l,l]DTCLIB/LB
I
UNITS=lO
GBLPAT=PAYROL:LUNMAP:177700:177777
II

• The user's input and output files. ERSPGE is a subroutine.

• The COBOL-81 object module library.

6) RMSLIB is the object module library for RMS-ll, the Record
Management System. PAYROL.CBL opens files for reading and
writing, so you must specify the RMS library in the command file.

e The COBOL and RSX-IIM/M-PLUS modules from DTCLIB.OLB,
the DATATRIEVE-ll Call Interface object module library. This
line specifies the Remote Call Interface module but not the Local
Call Interface, similar to the two previous examples. For more
information, see Section 3.2.1.

o The rest of the modules from DTCLIB.OLB.

• The Task Builder options specify the number of logical units the
program can use and which of those the Call Interface can use. See
Section 3.2.2 for more information on logical unit numbers.

4. BUNCH.CMD, a command file for the FORTRAN program BUNCH and
a subroutine MESAGE that were compiled on a RSTSIE system. This
task uses the Local Call Interface but not the Remote Call Interface.

BUNCH, BUNCH/-SP, BUNCH=BUNCH,MESAGE, •
LB:DTCLIB/LB:CIFOR:LCRSTS:NONC, •
LB:F77RMS/LB, 6)

. LB:RMSLIB/LB, e
LB:DTCLIB/LB, 0
I
UNITS=lO
GBLDEF=TF.CCO:O,TF.RNE:O
GBLPAT=BUNCH:LUNMAP:177700:177777
II

• The user's input and output files.

• The FORTRAN-77 and RSTSIE modules are called from DTCLIB.
This task uses only the Local Call Interface. In addition to the
CIFOR module, it specifies LCRSTS to indicate the use of local calls,
and NONC to indicate that no remote calls are used.

• The FORTRAN-77 object-time system library.

e The RMS object module library. This library is necessary if your
FORTRAN program accesses a file or uses the WRITE or READ
statements for terminal I/O.

o The rest of DTCLIB.OLB. For more information, see Section 3.2.1.

Running Programs That Call DATATRIEVE 3-7

5. BUNCH2.CMD, a command file for the FORTRAN program BUNCH2
and a subroutine MESAGE that were compiled on a RSTSJE system.
This example is the same as Example 4 except for the second line; the
difference occurs because this task includes both local and remote calls.

BUNCH2,BUNCH2/-SP,BUNCH2=BUNCH2,MESAGE,
LB:DTCLIB/LB:CIFOR:LCllM:NCllM,
LB:F77RMS/LB,
LB:RMSLIB/LB,
LB:DTCLIB/LB,
I
UNITS=10
GBLDEF=TF.CCO:O,TF.RNE:O
GBLPAT=BUNCH2:LUNMAP:177700:177777
II

3.2.1 The DATATRIEVE Call Interface Object Module Library

Every Task Builder command file must specify the object module li­
brary, DTCLIB.OLB. DTCLIB.OLB contains the modules necessary for
the DATATRIEVE-ll Call Interface.

You must include in the command file a reference to DTCLIB.OLB as a
whole. When you do, the Task Builder automatically searches for and uses
the modules that your program calls for.

In each case, you must name three DTCLIB modules explicitly:

1. The call interface module for the programming language you are using.
You specify one of the following:

• CIBAS if using BASIC

• CICOB if using COBOL

• CIFOR if using FORTRAN

2. The appropriate module for the Local Call Interface. The selection of
module depends on what operating system you are using and on whether
the task uses the Local Call Interface. Specify one of the following:

• LCRSTS if using the Local Call Interface on a RSTSIE or
MicrolRSTS system

• LCI1M if using the Local Call Interface on an RSX-I1M,
RSX-IIM-PLUS, or MicrolRSX system

• NOLC if not using the Local Call Interface in the task

3-8 Running Programs That Call DATATRIEVE

3. The appropriate module for the Remote Call Interface. The selection of
module depends on what operating system you are using and on whether
the task uses the Remote Call Interface. Specify one of the following:

• NCRSTS if using the Remote Call Interface on a RSTS system

• NCIIM if using the Remote Call Interface on an RSX-IIM,
RSX-IIM-PLUS, or MicrolRSX system

• NONC if not using the Remote Call Interface in the task

MicrolRSTS is a special case; it supports only the Local Call Interface, not
the Remote Call Interface. Therefore, only the following module specifica­
tions are valid on MicrolRSTS if the Local Call Interface is used:

•
•
•

LB:DTCLIB/LB:CIBAS:LCRSTS:NONC,

LB:DTCLIB/LB:CICOB:LCRSTS:NONC,

LB:DTCLIB/LB:CIFOR:LCRSTS:NONC,

The order in which you specify the modules is not critical. For example, the
following three lines are equivalent:

•
•
•

LB:DTCLIB/LB:CIBAS:LCIIM:NCIIM,

LB:DTCLIB/LB:CIBAS:NCIIM:LCIIM,

LB:DTCLIB/LB:NCIIM:CIBAS:LCIIM,

Each specifies the BASIC call interface module, along with the Local and
Remote Interface modules for the RSX-IIM operating system.

If you are not using either the Local or Remote Call Interface, you do not
need modules from DTCLIB. A module selection command such as the
following is legal but does nothing useful:

LB:DTCLIB/LB:CIFOR:NOLC:NONC,

3.2.2 Logical Unit Numbers and Event Flag Numbers

When you are using RSX-IIM1M-PLUS, your Task Builder command file
must specify the number of logical unit numbers (LUN s) your task image
will use. This may also be true on a RSTS/E system, depending on the
run-time system.

In addition, on RSX-IIM1M-PLUS systems, the Call Interface uses LUNs
to perform DECnet services. For this reason, if you are running an RSX
operating system, you must specify in the Task Builder command file which
LUNs the Call Interface can use. Otherwise, the Call Interface and the
language processor may try to use the same LUN s. This section describes

Running Programs That Call DATATRIEVE 3-9

how to determine which LUNs are available, and how to assign them to the
DATATRIEVE-11 Call Interface.

In the Call Interface, there is a 2-word global storage area called LUNMAP,
which is used to specify exactly which LUNs DATATRIEVE can use. The
same area is used to determine which event flag numbers are reserved for
DATATRIEVE. When you have decided which LUN s are available, you use
the Task Builder qualifier GBLPAT to map their numbers to LUNMAP.
DATATRIEVE will also use the event flags associated with those numbers.

Following is an example of a command file that specifies LUN s:

PROG,PROG/-SP=PROG,MESAGE,
LB: [1,1]F4POTS/LB,
DTCLIB/LB:CIFOR:NCIIM:LCIIM,
DTCLIB/LB
I
UNITS=lO
GBLPAT=PROG:LUNMAP:001700:OOOooo
II

The UNITS = 10 qualifier specifies that a total of 10 logical unit numbers
are allocated for this program. Assume that LUN s numbered 1 to 6 are
reserved for the FORTRAN program. The Call Interface, therefore, can
use LUNs 7 to 10. The GBLPAT option specifies the numbers of the LUNs
that the Call Interface uses by mapping that value to the global symbol
LUNMAP, as shown in Figure 3-1.

3-10 Running Programs That Call DATATRIEVE

Figure 3-1: Allocating Logical Unit Numbers

If this bit
one. _

DATATRIEVE
can use the
corresponding
LUN

If this bit
- one. ...­
DATATRIEVE
can use the
corresponding
LUN

o

0

1
6

o

0

3
2

o

000 o 0 1

1 1 1 1 1 1
543 210

o o

000 000

332 222
109 876

7 o

1 1 1 000

987 654

o o

000 000

222 222
543 210

o

000

321

o

000

1 1 1
987

Contents of
LUNMAP:

first word

Contents of
LUNMAP:

second word

ZK-6112-HC

That is, only bits 7, 8, 9, and 10 are set in LUNMAP. Thus LUNs numbered
7,8,9, and 10 are reserVed for use by the DATATRIEVE-11 Call Interface,
and LUNs 1 to 6 can be used by FORTRAN. Similarly, the Call Interface
will use event flag numbers 7 to 10.

To determine how many L UN s the Call Interface requires beyond those
needed for the language processor, perform the following calculation. First,
determine how many logical links your program will activate at once. That
is, how many calls to the initialization routine DTINIT does your program
make? Take this number and add 1. Thus, if your program contains only
one call to DTINIT, you need two LUNs for the Call Interface, in addition to
those required by your language.

If you do not specify the usage ofLUNs, LUNMAP is set to 177757:177777
as Figure 3-2 shows.

Running Programs That Call DATATRIEVE 3-11

Figure 3-2: Default Logical Unit Numbers

If this bit
= one, --...
DATATRIEVE
can use the
corresponding
LUN

If this bit
= one, --...
DATATRIEVE
can use the
corresponding
LUN

1

1
6

1

3
2

7

1 1 1

1 1 1
543

7

1 1 1

332
1 0 9

7 7 5

~
1 1 1 1 1 1 1 0 1

1 1 1
2 1 0 987 654

7 7 7

~ ~
1 1 1 1 1 1 1 1 1

222 222 222
876 543 210

7

~
1 1 1 Contents

of LUNMAP:

first word
321

7

~
1 1 1 Contents

of LUNMAP:

1 1 1
987

second word

ZK-6113-HC

In this setting, only bit number 5 is clear, so all the LUNs and event flags
except number 5 are available, up to the default limit set by the UNITS =
qualifier for DATATRIEVE.

3.3 Overlays

You should overlay subroutines in a program that calls DATATRIEVE only if
the subroutines do not contain calls to DATATRIEVE routines. For example,
if you have a program that calls DATATRIEVE to obtain data and then calls
a subroutine to perform calculations on that data, the subroutine could be
overlaid without interfering with the DATATRIEVE Call Interface. For more
information on the concepts underlying overlays, see your language user's
guide or the Task Builder manual for your operating system.

3-12 Running Programs That Call DATATRIEVE

Chapter 4

Writing Programs that Call DATATRIEVE-11

A program interacts with DATATRIEVE in much the same way as a user
does. The program passes command strings, values, and structured records
to DATATRIEVE, and DATATRIEVE passes messages, print lines, and
structured records to the program.

This chapter describes the components of the DATATRIEVE-ll Call
Interface and explains how to use the Call Interface in programs written in
high-level languages such as BASIC, FORTRAN, and COBOL.

4.1 Overview of the Call Interface

Three components make up the DATATRIEVE-ll Call Interface:

• The 'DATATRIEVE Access Block (DAB)

DATATRJEVE and your program use the DAB to communicate with
each other. You set up storage for the DAB in your program, and
DATATRIEVE uses it to return several pieces of information to your
program, including:

The current DATATRIEVE state

A set of flags that DATATRIEVE uses to pass information to your
program

Strings such as DATATRIEVE prompts and port names, and their
length

A status code, which is either the success condition code or an error
number if the routine did not complete successfully

Writing Programs that Call DATATRIEVE-11 4-1

• DATATRIEVE states

After DATATRIEVE executes a command or statement, it enters
a particular state and returns control to your program. A state is
indicated by a value that DATATRIEVE stores in the DAB. Your
program can test this value to see what routine DATATRIEVE expects
you to call next.

• DATATRIEVE routines

Your program passes control to DATATRIEVE by calling external
routines. These routines allow you to execute DATATRIEVE commands
and statements, pass and retrieve information, and handle error
conditions.

Calling DATATRIEVE from a program involves the following steps:

1. Declare a DATATRIEVE Access Block (DAB).

2. Initialize the DATATRIEVE interface.

3. Check the DATATRIEVE state to see which routine DATATRIEVE
expects you to call next.

4. Call DATATRIEVE routines to:

a. Pass commands and statements

b. Pass values and records

c. Retrieve records

d. Retrieve print lines and messages

5. Handle errors and display messages.

6. Close the interface.

This chapter includes simple examples to illustrate all the functions
that the Call Interface performs. Chapters 5 through 7 contain more
complete examples. To get you started, several simple programs follow,
showing how the components of the Call Interface fit together in a program.
BASIC, FORTRAN, and COBOL versions are included. Each program calls
DATATRIEVE routines to: (1) initialize the interface on a local or remote
node, (2) choose a dictionary, (3) ready a domain, and (4) print the domain.

4-2 Writing Programs that Call DATATRIEVE-11

FORTRAN-77

This FORTRAN example uses a subroutine (MESAGE) to print message and
print lines. The subroutine appears in Section 4.5.2.

C
C Include definition of the DAB and declare variables.
C

C

INCLUDE 'DAB11.FTN'
CHARACTER*20 DOMAIN, DICT
CHARACTER*31 NODE
INTEGER*4
INTEGER*4

SEV
LENGTH

C Prompt for a node name and initialize the interface.
C

WRITE (5,100)
100 FORMAT (' Enter node: ' ,$)

READ (5,1000) LENGTH, NODE
1000 FORMAT (Q,A)

C

CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, LENGTH, NOSEMI)
CALL MESAGE (SEV)

C Choose a dictionary.
C

WRITE (5,200)
200 FORMAT (' What dictionary would you like to use? ' ,$)

READ (5,1000) LENGTH, DICT

C

CALL DTCMD (DAB, 'SET DICTIONARY !CMD;', 20, DICT, LENGTH)
CALL MESAGE (SEV)

C Ready the domain.
C

WRITE (5,300)
300 FORMAT (' What domain would you like to use? ',$)

READ (5,1000) LENGTH, DOMAIN

C
C Print
C

C
C Close
C

CALL DTCMD (DAB, 'READY !CMD;', 11, DOMAIN, LENGTH)
CALL ME SAGE (SEV)

the domain.

CALL DTCMD (DAB, 'PRINT !CMD;', II, DOMAIN, LENGTH)
CALL ME SAGE (SEV)

the interface.

CALL DTFINI (DAB)
END

Writing Programs that Call DATATRIEVE-11 4-3

COBOL-81-

In this COBOL-81 example, the gOO-PRINT-MESSAGES paragraph per­
forms the same function as the MESAGE subroutine in the FORTRAN
example.

IDENTIFICATION DIVISION.
PROGRAM-ID. PRINT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.

**
* Copy in the DATATRIEVE Access Block. *
**

COPY "DAB11.CBL".

01 MSGBUF PIC X(80) .
01 MSGLEN PIC 9(4) COMPo
01 NODE PIC X(30) .
01 COMMAND PIC X(80) .
01 DICT PIC X(30) .
01 DOMAIN PIC X(30) .

PROCEDURE DIVISION.
010-INITIALIZE-INTERFACE.

DISPLAY "Enter node: " WITH NO ADVANCING.
ACCEPT NODE.
CALL "DTINIT" USING DAB STRLEN BUFLEN

BY DESCRIPTOR NODE
BY REFERENCE NOSEMI.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

020-CHOOSE-DICTIONARY.
DISPLAY "What dictionary would you like to use? " WITH NO ADVANCING.
ACCEPT DICT.
MOVE "SET DICTIONARY !CMDi" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND
DICT.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

030-READY-DOMAIN.
DISPLAY "What domain would you like to use? " WITH NO ADVANCING.
ACCEPT DOMAIN.
MOVE "READY !CMDi" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND
DOMAIN.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

4-4 Writing Programs that Call DATATRIEVE-11

040-PRINT-DOMAIN.
MOVE "PRINT !CMD;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND
DOMAIN.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

PERFORM 999-EOJ.

900-PRINT-MESSAGES.

999-EOJ.

IF DAB-W-STATE = DTR-K-STATE-MSG
CALL "DTMSG" USING DAB

DISPLAY MSGBUF.

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN.

IF DAB-W-ERR-SEV = SEV-K-SEVERE GO TO 999-EOJ.
IF DAB-W-STATE = DTR-K-STATE-LINE

CALL "DTLINE" USING DAB

DISPLAY MSGBUF.
CALL "DTCONT" USING DAB.

CALL "DTFINI" USING DAB.
STOP RUN.

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN.

BASIC-PLUS-2

The BASIC example uses the subroutine TEST_STATUS to check for errors
and display messages and print lines.

100 %INCLUDE "DABll.B2S" ! DTR definitions file

! Declarations:

DECLARE WORD LENGTH
COMMON (Buf) STRING MSGBUF = 80%,

COMAND = 80%,
NODE = 30%,
DICT = 30%,
DOMAIN = 30%

Prompt for the node name and initialize the DATATRIEVE
Distributed Server on that node.

Initialize Interface:
LINPUT "What node would you like to use"; NODE
CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, NOSEMI)
GOSUB Test status

Writing Programs that Call DATATRIEVE-11 4-5

Prompt for a dictionary or CDD directory and use that value
as a parameter to pass a command to DATATRIEVE.

Choose Dictionary:
LINPUT "What dictionary would you like to use"; DICT
COMAND = "SET DICTIONARY !CMDi"
CALL DTCMD (DAB, COMAND, DICT)
GOSUB Test_status

Pass a SHOW command to show the domains. Ask the user to
choose one and ready it, using DTCMD to pass the command to
DATATRIEVE.

Ready_Domain:
LINPUT "What domain do you want to use"; DOMAIN
CALL DTCMD (DAB, "READY !CMD;", DOMAIN)
GOSUB Test status

Pass a PRINT statement, using the domain name as a
parameter. The subroutine Test_status handles the printing
of the DATATRIEVE display.

Print Domain:
CALL DTCMD (DAB, "PRINT !CMDi", DOMAIN)
GOSUB Test status

! Skip the subroutine.

GOTO Quit

! This subroutine prints messages, using DTMSG, and lines,
! using DTLINE.

Test_status:

Quit:

WHILE (DAB$W STATE
(DAB$W-STATE

SELECT DAB$W-STATE
CASE DTR$K_STATE_MSG

DTR$K STATE MSG) OR &
DTR$K=STATE=LINE)

CALL DTMSG (DAB, MSGBUF, LENGTH)
PRINT MSGBUF
GOTO Quit IF DAB$W ERR SEV = SEV$K SEVERE

CASE DTR$K_STATE_LINE - - -
CALL DTLINE (DAB, MSGBUF, LENGTH)
PRINT MSGBUF

END SELECT
CALL DTCONT(DAB)
NEXT
RETURN

This call closes the interface.

CALL DTFINI (DAB)
END

4-6 Writing Programs that Call DATATRIEVE-11

4.2 DATATRIEVE States

After your program calls a DATATRIEVE-11 routine and the routine
executes, DATATRIEVE enters a state, also called a stallpoint. That is,
the routine places a value in the DAB$W _STATE field of the DAB and
returns control to your program. At this point, DATATRIEVE is "stalling,"
waiting for another call from your program. The value of DAB$W _STATE
determines what routine DATATRIEVE expects you to call next. If you call
a routine that is not compatible with the current state, an error results.

For example, DATATRIEVE may be executing a statement, such as STORE,
that normally prompts the user for input. It expects the user to pass
a value. To indicate that it is waiting for a value, DATATRIEVE goes
into the state DTR$K_STATE_PVAL; the routine places the value for
DTR$K_STATE_PVAL (= 1) in the state field of the DAB. In this state,
DATATRIEVE expects a call to the DTPVAL routine, which passes a
value to DATATRIEVE. Similarly, when you pass a PRINT command to
DATATRIEVE, DATATRIEVE goes into the state DTR$K_STATE_LINE,
indicating that it expects a call to DTLINE next, to retrieve the print lines.

The following list briefly describes the states. Table 8-2 in Section 8.1
describes them in more detail.

The Call Interface has not been successfully initial­
ized, or a call to DTFINI has closed the interface.

DATATRIEVE is waiting for a command or the con­
tinuation of a partial command. To continue, call
DTCMD.

DATATRIEVE has a message ready to retrieve. To
place the text of the message in the buffer you have
specified, call DTMSG. To continue execution after
retrieving the message, call DTCONT.

DATATRIEVE has executed a PRINT statement,. but
no device or file has been specified. To retrieve the
print line and store it in a buffer, call DTLINE. 1b
continue execution after displaying the line, call
DTCONT. If a device or file has been specified,
DATATRIEVE stores or displays the print lines there.

DATATRIEVE has encountered a prompt and is
waiting for the user to enter a value. To pass a value
to DATATRIEVE, call DTPVAL.

Writing Programs that Call DATATRIEVE-11 4-7

DATATRIEVE has a record for the program to re­
trieve. To place the record in the buffer you have
declared for it, call DTGETP. To continue execution
after retrieving the record, call DTCONT.

DATATRIEVE is waiting for your program to pass
it a record. To pass a record to DATATRIEVE, call
DTPUTP. To signal the end of a stream of records, call
DTPEOF.

4.3 Declaring the DATATRIEVE Access Block (DAB)

The present DATATRIEVE state is not the only information DATATRIEVE
stores in the DAB. DATATRIEVE also puts error severity codes and prompt
strings in the DAB.

DATATRIEVE places the information in the DATATRIEVE Access Block for
your program to read. You should think of the DAB as "read only." Your
program should not modify the DAB. Table 4-1 shows the fields of the DAB
in detail. For more information on each field of the DAB, see Section 8.1.

Table 4-1: The DATATRIEVE Access Block

Field Length

1 word

1 word

1 word

1 word

4-8 Writing Programs that Call DATATRIEVE-11

Description

Internal identifier. You do not need to
access this value.

The state of the DATATRIEVE-ll
interface. When DATATRIEVE returns
from a routine call, this field contains
a value specifying the new state.
Table 8-2 provides more information on
DATATRIEVE states.

A 2-byte value associated with a
DATATRIEVE message.

A value (0 to 4) representing the
severity of the error listed in DAB$W_
ERR_CODE.

(continued on next page)

Table 4-1 (Cont.): The DATATRIEVE Access Block

Field Length

1 word

1 word

20 bytes

n1 bytes

n2 bytes

Description

Information passed from the
DATATRIEVE routine to the calling
program.

The length of a string passed by
DATATRIEVE to the calling program.
This is the length of the string in
DAB$V _STRING.

Not used. This area is reserved for
future use.

A string returned by a DATATRIEVE
routine. This field contains a prompt
string, port name, or other string. The
length of this buffer is passed as the
second parameter in the DTINIT call.
DAB$W _STR_LEN contains the actual
length of the string stored in DAB$V_
STRING. In the sample DAB inclusion
files, the length of this field is 30 bytes.

For internal use only. You should
not access this field. The length of this
field is passed as the third parameter to
DTINIT. In the sample DAB inclusion
files the length of this field is 150 bytes.

Writing Programs that Call DATATRIEVE-11 4-9

Your program must declare the fields of the DAB. However, you do not need
to declare them explicitly for each program. Instead, you can create files
containing the DAB definitions and include the file into each program with a
single statement.

These files also declare other variables and constants that are often used
in programs, such as error severity codes and initialization options. For
example, you do not need to remember the required values for the str-Ien
and buff-len parameters. These variables are declared and values assigned
to them in the inclusion file. Simply use STRLEN and BUFLEN as the
parameters to DTINIT.

There is one inclusion file for each of the supported high-level languages
(COBOL, FORTRAN, and BASIC). An example of an inclusion file for each
language appears in Appendix A. Simply include the appropriate file, using
the INCLUDE command or its equivalent in your language.

To include the DAB in a FORTRAN program, use the following command:

INCLUDE 'DABll.FTN'

In COBOL, the COpy command works the same way:

COPY "DABll.CBL"

In BASIC-PLUS-2, use the INCLUDE directive:

%INCLUDE "DABll.B2S"

If you are writing in a different language, you can create your own
inclusion file to handle the DAB declarations. Model your file on the ones in
Appendix A.

4.4 DATATRIEVE-11 Routines

Your program interacts with DATATRIEVE by calling external routines.
There are 11 DATATRIEVE routines; each performs a different function.
Table 4-2 briefly describes the function of each routine and the following
sections describe how to use them in your programs.

4-10 Writing Programs that Call DATATRIEVE-11

Table 4-2: DATATRIEVE-11 Routines

DATATRIEVE
Routine

DTINIT

DTCMD

DTLINE

DTMSG

DTCONT

DTPVAL

DTPUTP

DTEOF

DTGETP

DTUNWD

DTFINI

Function

Initializes the DATATRIEVE interface.

Sends statements and commands for DATATRIEVE to execute.

After a DATATRIEVE statement (such as PRINT) that displays
information executes, DTLINE retrieves the print line and
stores it in a buffer. Call DTLINE for each line of text.

When DATATRIEVE has a message, DTMSG retrieves the
message text and stores it in a buffer. Messages can have
different severities, from success to severe error. See Chapter 8
for more information on severity codes.

After a call to DTLINE or DTMSG, DTCONT tells DATATRIEVE
the message or print line has been received and the program is
ready to continue to the next state.

Sends a value to DATATRIEVE. Call DTPVAL in response to a
DATATRIEVE prompt for a value. For example, after a STORE
statement executes.

Sends an entire record to DATATRIEVE. The record is passed
to DATATRIEVE by way of a port. See Section 4.6 for more
information on ports.

Sends an end-of-file mark to DATATRIEVE. When passing a
record stream to DATATRIEVE with the DTPUTP routine,
DTEOF indicates the end of the record stream.

Retrieves an entire record from DATATRIEVE. The record is
passed to the program by way of a port. See Section 4.6 for
more information on ports.

Cancels a DATATRIEVE command. DTUNWD can be called
from any DATATRIEVE state. It returns the interface to the
state DTR$W _STATE_CMD.

Closes the DATATRIEVE interface.

4.4.1 Initializing the DATATRIEVE Interfaces

Setting up your program to use the DATATRIEVE-ll Call Interface involves
two steps:

1. Declare the DATATRIEVE Access Block.

2. Initialize the iriterface.

Writing Programs that Call DATATRIEVE-11 4-11

Mer you include the DAB in your program, you initialize the DATATRIEvE
Call Interface by calling the routine DTINIT. The syntax for DTINIT is as
follows:

CALL DTINIT (dab, str-Ien, buff-Ien,<node>, options)

DTINIT sets up the DATATRIEVE Access Block, opens a path to the DECnet
node on which DATATRIEVE will run, and specifies a set of DATATRIEVE
options. See Chapter 8 for complete descriptions of the arguments.

The DAB inclusion file declares the DAB variable. It also declares the
constants str-Ien and buff-len (using the names STRLEN and BUFLEN)
and assigns values to them. If, for any reason, you need to change these
constants, assign new values in the inclusion file.

The node parameter specifies the DECnet node name of the PDP-II or VAX
system on which the data is located. Specify this parameter on calls that
use only the Remote Call Interface. The parameter must be blank if the call
uses the Local Call Interface.

NOTE

Angle brackets surrounding node in the format mean that node
is a string. In FORTRAN-77 programs, you need to specify two
parameters for node: the string and its length. This is because
FORTRAN passes parameters by address and length, rather than
by descriptor, as in BASIC and COBOL.

Following is a typical FORTRAN call:

CALL DTINIT (DAB, STRLEN, BUFLEN, 'VACKS', 5, NOSEMI)

In BASIC, the same call is as follows:

CALL DTINIT (DAB, STRLEN, BUFLEN, "VACKS" , NOSEMI)

In COBOL, declare variables and load them with values, either by including
them in the program or by prompting the user for them:

01 NODE PIC X(6) .

DISPLAY "Enter node specification: "WITH NO ADVANCING.
ACCEPT NODE.
CALL "DTINIT" DAB STRLEN BUFLEN

BY DESCRIPTOR NODE
BY REFERENCE NOSEMI.

4-12 Writing Programs that Call DATATRIEVE-11

4.4.2 Passing Commands to DATATRIEVE (DTCMD)

Once you have successfully initialized the interface with DTINIT,
DATATRIEVE is at DTR$K_STATE_CMD. When DATATRIEVE is in this
state, you can use DTCMD to pass an entire command, part of a command,
or several commands to DATATRIEVE.

The format for DTCMD is as follows:

CALL DTCMD {dab, <command-str> [, <arg-str> ...]}

See Chapter 8 for details.

In FORTRAN and BASIC, you can pass DATATRIEVE a literal command
string as the command-str parameter. A typical FORTRAN call is as follows:

100 CALL DTCMD (DAB, 'READY YACHTS;' 13)

Notice that FORTRAN requires two parameters, the command and its
length.

A BASIC call is as follows:

100 CALL DTCMD (DAB, 'READY YACHTS;')

Because BASIC and COBOL build a descriptor for a character string
variable, you do not need the length parameter. However, in COBOL you
must move the command to a string variable and pass the variable:

01 COMMAND PIC X(30) VALUE "READY YACHTS;".

Or:

CALL "DTCMD" USING DAB
BY DESCRIPTOR COMMAND.

MOVE "PRINT YACHTS;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

You can have your program prompt for a DATATRIEVE command and read
the value for the command-str parameter from the terminal. For example,
in BASIC-PLUS-2:

LINPUT "Enter a command to form a collection";COMMAND_LINE
CALL DTCMD (DAB, COMMAND_LINE)

You can also use the substitution directive !CMD with DTCMD. When
you use !CMD as part of a DATATRIEVE command passed to DTCMD,
DATATRIEVE replaces the directive with the string your program specifies.

Writing Programs that Call DATATRIEVE-11 4-13

For each substitution directive in the command string, you must in­
clude a parameter after the command string. The parameter must be a
string descriptor (COBOL or BASIC) or the address and length of a string
(FORTRAN). If your program uses substitution directives, you can change
the values of parameters while the program is running. For example, in
COBOL:

DISPLAY "Enter the domain to ready: "WITH NO ADVANCING.
ACCEPT DOMAIN.
MOVE "READY !CMD;" TO COMMAND.
CALL "DTCMD" DAB BY DESCRIPTOR COMMAND DOMAIN.

The following FORTRAN code shows how to use DTCMD to pass a command
line with a substitution directive to DATATRIEVE:

C
C Prompt for a domain.
C
100 WRITE (5,1000)
1000 FORMAT (' Enter the domain you wish to modify: $)
C
C Read the user's input and its length.
C

READ (5,2000)
2000 FORMAT (Q,A) LENGTH, COMAND
C
C Pass those values as parameters to DTCMD.
C

CALL DTCMD (DAB, 'READY !CMD WRITE;', 17, COMAND, LENGTH)

You can also use DTCMD to construct long DATATRIEVE commands
and statements. If you pass DATATRIEVE a fragment of a command or
statement, the Call Interface is still at DTR$K_STATE_ CMD after the
routine executes. Then you can pass the continuation of the statement.
DATATRIEVE does not execute the statement and change the state until it
has received the entire statement.

CALL DTCMD (DAB, "STORE PT2 USING BEGIN;")
CALL DTCMD (DAB, "PART-A = TOTAL !CMD", FIELDl)
CALL DTCMD (DAB, "PART-B = TOTAL !CMD; END;", FIELD2)
!
! Call subroutine to check status.

GOSUB Test status

For a more complete example, see the simple programs at the beginning this
chapter. All the examples in this book contain calls to DTCMD.

4-14 Writing Programs that Call DATATRIEVE-11

4.5 Transferring Data

This section describes how your program and DATATRIEVE pass data back
and forth. There are four types of data transfer through the Call Interface:

• Getting print lines from DATATRIEVE

Interactive DATATRIEVE displays formatted text on the terminal or
writes it to a file. Using DTLINE, your program can retrieve and display
this text one line at a time.

• Getting messages from DATATRIEVE

DATATRIEVE displays error messages and informational messages on
the screen. Using DTMSG, your program can retrieve and display these
messages.

• Passing values to DATATRIEVE

Wherever interactive DATATRIEVE prompts for values, the Call
Interface waits for user input. Your program uses DTPVAL to supply the
input value in response to a prompt.

• Passing records to and retrieving records from DATATRIEVE

To pass records between your program and DATATRIEVE, you use a
port, which relates a structured record buffer declared in your program
to a record defined in DATATRIEVE. To pass records to DATATRIEVE,
your program calls DTPUTP; to retrieve records from DATATRIEVE,
your program calls DTGETP. Section 4.6 explains how to use these
routines in your program.

4.5.1 Retrieving Print Lines (DTLINE)

In interactive DATATRIEVE, a PRINT or Report Writer statement that does
not specify a device or file causes the information to be displayed on the
terminal. When you are calling DATATRIEVE from your program, you can
retrieve the lines of a PRINT display using DTLINE.

The format for DTLINE is as follows:

CALL DTLlNE (dab, <line-bub, line-len)

Retrieving the lines of a DATATRIEVE display involves the following steps:

1. Declare a buffer to contain the print line. You can declare a single buffer
in your program to contain print lines, error messages, and other text
strings.

Writing Programs that Call DATATRIEVE-11 4-15

2. Declare a second variable to contain the length of the print line.
DATATRIEVE stores in this variable the length of the print line that it
places in your buffer.

3. Pass a PRINT statement using DTCMD. Mter the call to DTCMD,
the DATATRIEVE state is DTR$K_STATE_LINE, indicating that
DATATRIEVE has a print line to display.

4. Include a loop that calls DTLINE. The loop should do the following:

a. Call DTLINE, passing as parameters the print line buffer and the
length variable. DTLINE retrieves the line and places it in the
buffer.

b. Include a statement (such as WRITE, PRINT, or DISPLAY) to
display the line, if you want to see it, or an assignment statement to
store it.

c. Call DTCONT to enter the next state.

The program should loop until the state is no longer DTR$K_STATE_
LINE, which indicates either that an error has occurred or that
DATATRIEVE has finished printing lines.

5. Test the status code for success or error and take the required action.

An example of DTLINE appears in the following section as part of the
general subroutine for handling messages and print lines.

4.5.2 Retrieving Messages (DTMSG)

When DATATRIEVE finishes executing a command or statement, it usually
generates a message. This can be a success message (Statement completed
successfully) or an error message (Element II BENEFITS" not found in
dictionary). The procedure for displaying this message is similar to the
procedure for displaying print lines. First, declare a message buffer in your
program to contain this message. When you want to retrieve a message, call
DTMSG using the buffer's address and length as parameters. DATATRIEVE
places the message in the buffer. Your program can then display the
message.

Mer a call to any DATATRIEVE routine, it is a good idea to test for
errors and display any messages. You can use a subroutine to perform this
function. An example of such a subroutine in each language appears at the
end of this section.

The format for DTMSG is as follows:

CALL DTMSG (dab, <msg-buff>, msg-Ien)

4-16 Writing Programs that Call DATATRIEVE-11

For example, assume this COBOL call to DTMSG:

CALL DTMSG USING DAB
BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN.

After the call to DTMSG, MSGBUF contains the message text and MSGLEN
contains the length of the message. The program can then print the message
and test its length.

At the same time, when DATATRIEVE enters the DTR$K_STATE_MSG
state, it places a status code in one of the DAB fields. This field is named
DAB$W_ERR_CODE in the BASIC DAB, DABERR in FORTRAN, and
DAB-W-ERR-CODE in COBOL. The status is a binary number that identi­
fies the specific error, if an error has occurred.

Finally, in the DTR$K_STATE_MSG state, DATATRIEVE places a severity
code in another field of the DAB: DAB$W _ERR_SEV in BASIC, DABSEV in
FORTRAN, and DAB-W-ERR-SEV in COBOL. Your progra~ can test this
value to determine whether a DATATRIEVE routine executed successfully
and, if not, how severe the error was.

The steps for retrieving a message are similar to those for retrieving a print
line:

1. Declare a buffer to contain the message. You can declare one buffer to
contain both messages and print lines.

2. Declare a second variable to contain the length of the message.
DATATRIEVE stores in this variable the length of the message line
that it places in the message buffer.

3. Pass a command to DATATRIEVE using DTCMD. The execution of the
command normally results in a message.

4. Include a loop that performs the following operations:

a. Calls DTMSG, passing as parameters the message buffer and a
variable to contain the message length

b. Reads the error code and writes contents of the message buffer until
all the messages have been displayed and the status code indicates
success

c. Calls DTCONT to continue to the next appropriate state

The following FORTRAN subroutine tests for and displays messages after a
call to a DATATRIEVE routine. It also handles print lines. After most calls
to DATATRIEVE routines, programs should call a subroutine that performs
these functions. In this case, it displays both messages and print lines. The
sample programs in this book all use a version of this subroutine to handle
messages and print lines.

Writing Programs that Call DATATRIEVE-11 4-17

C

C This subroutine prints messages and print lines from DATATRIEVE.
C If the error is severe, it exits. Otherwise, it returns the
C severity of the error to the main program.
C

SUBROUTINE ME SAGE (SEV)
INCLUDE 'DAB11.FTN'
CHARACTER*80 MSGBUF
INTEGER*2 MSGLEN
INTEGER*4 SEV

1000 FORMAT (lX, A)

10

20

30

SEV = SUCCES
IF (DABSTA .NE. DBSMSG) GO TO 20
SEV = DABSEV
CALL DTMSG (DAB, MSGBUF, 80, MSGLEN)
WRITE (5,1000) MSGBUF
IF (SEV .EQ. SEVERE) GO TO 30
CALL DTCONT (DAB)
GO TO 10

IF (DABSTA .NE. DBSLIN) RETURN
CALL DTLINE (DAB, MSGBUF, 80, MSGLEN)
WRITE (5,1000) MSGBUF)
CALL DTCONT (DAB)
GO TO 10

CALL DTFINI (DAB)
STOP 'SEVERE ERROR -- PROGRAM STOPPED'
END

I
I • • • (;)

CD •
•

• SEV is a variable to contain the severity of the current error. The
severity field in the DAB is defined only if the state is DBSMSG. Thus,
if a call does not result in the state DBSMSG, the call was successful
and the current contents of DABSEV do not apply to the call. Therefore,
SEV must be initialized to the success value.

• If the current state is not "message," go on and see if it is "line."

• If the current state is "message," set the severity buffer to the severity of
the current error.

e Call the routine to retrieve the message and place it in MSGBUF.

• Display the message.

• Exit if the error is severe.

• Continue to the next state.

(;) Go back and, start again. There may be more messages.

CD If the state is not "line," then there is neither a message nor a print line
to display. Return to the program.

• If the state is "line," proceed as before: retrieve the line, print it, and
continue.

4-18 Writing Programs that Call DATATRIEVE-11

• Control reaches this line only if a severe error has been detected. The
link to DATATRIEVE is disconnected and the program stops.

Following is a similar subroutine in BASIC:

Test status:

SEV = SEV$K_SUCCESS

WHILE (DAB$W STATE
(DAB$W=:STATE

DTR$K STATE MSG) OR &
DTR$K=:STATE=:LINE)

SELECT DAB$W_STATE

! If the state = MESSAGE, print message and check error.

CASE DTR$K_STATE_MSG
SEV = DAB$W_ERR_SEV
CALL DTMSG (DAB, MSGBUF, LENGTH)
PRINT MSGBUF
! Quit if error is SEVERE
GO TO 8000 IF DAB$W_ERR_SEV = SEV$K_SEVERE

If the state = LINE, print the line.

CASE DTR$K_STATE_LINE
CALL DTLINE (DAB, MSGBUF, LENGTH)
PRINT MSGBUF

END SELECT
! Continue to next state.
CALL DTCONT(DAB)

! Do this until all the lines and messages have been printed.

NEXT
RETURN

The following COBOL paragraph performs the same functions:

900-PRINT-MESSAGES.
IF DAB-W-STATE = DTR-K-STATE-MSG

CALL "DTMSG" USING DAB
BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

DISPLAY MSGBUF
IF DAB-W-ERR-SEV = SEV-K-SEVERE GO TO 999-EOJ.

IF DAB-W-STATE = DTR-K-STATE-LINE
CALL "DTLINE" USING DAB

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

DISPLAY MSGBUF.
CALL "DTCONT" USING DAB.

Execute this paragraph with the following statement:

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

Writing Programs that Call DATATRIEVE-11 4-19

In this way, COBOL tests for the correct state before each execution of the
paragraph.

4.5.3 Passing Values to DATATRIEVE (DTPVAL)

When DATATRIEVE executes a statement, such as STORE, that displays
a prompt and waits for the user's input, the Call Interface enters the state
DTR$K_STATE_PVAL. At this point, your program must supply data in
response to the prompt, either by passing a value itself or by reading a value
from the terminal and passing it to DATATRIEVE. The program passes the
value by calling DTPVAL.

When DATATRIEVE enters the state DTR$K_STATE_PVAL, it places the
associated prompt in the DAB$V _STRING field of the DAB. You can retrieve
this field and display it on the terminal to prompt for interactive input. In
FORTRAN, there is one extra step. Because the DAB definition file declares
the DAB$V _STRING field as a 30-byte array of the LOGICAL*l data type,
you must convert the field to a character string to display it on one line.
To do this, declare an ASCII character string and use an EQUIVALENCE
statement to map the LOGICAL*l data to the CHARACTER data. See the
example at the end of this section.

The format for DTPVAL is as follows:

CALL OTPVAL (dab, <value»

The value parameter is the value that the user or the program has supplied
in response to the prompt. The value passed to DATATRIEVE must be
an ASCII character string. If the value is a real number or an integer,
your program must convert it to a character string before passing it with
DTPVAL.

To use this routine, do the following:

1. Pass the DATATRIEVE command or statement that issues the prompt.

2. If you want interactive input, retrieve the prompt from DAB$V _STRING
and display the prompt. Then, include a language statement to read
input from the terminal.

If you want the program to define the data, include a language statement
to place a value in the value parameter.

3. Call DTPVAL to send the value to DATATRIEVE.

4-20 Writing Programs that Call DATATRIEVE-11

The following FORTRAN program code illustrates how to modify values in a
DATATRIEVE domain using DTPVAL:

CHARACTER*30 PROMPT
EQUIVALENCE (DABSTR, PROMPT)

C Show the fields

100 CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL MESAGE (SEV)

C Prompt for a field value.
C

WRITE (5,1000)
1000 FORMAT (' Which field do you wish to modify: ' ,$)

READ (5,5000) LENGTH, FIELD
2000 FORMAT (Q,A)

C Call DTCMD with a modify command. If the routine is successful,
C DATATRIEVE enters the DTR$K_STATE_PVAL state.
C

CALL DTCMD (DAB, 'MODIFY !CMD;', 12, FIELD, LENGTH)
CALL MESAGE (SEV)

C If not successful, go back and try again or stop.
C

IF (DABSTA .NE. DBSPMT) THEN
CALL MESAGE (SEV)

END IF

WRITE (5,*) 'Try again or press CTRL/C to quit.'
GOTO 100

C If state is DTR$K STATE PVAL, retrieve the prompt from the string
C in the DAB, convert it to a string, and display it. DAB LEN is
C stored in the DAB. It is the length of the prompt string. This
C FORMAT statement displays only the prompt string, without trailing
C blanks.
C
200 WRITE (5,3000) PROMPT
3000 FORMAT (lX,A<DABLEN>,$)

READ (5,2000) LENGTH, VALUE

C Call DTPVAL to pass the value to DATAT~IEVE.

CALL DTPVAL (DAB, VALUE, LENGTH)

CALL MESAGE (SEV)
300 RETURN

END

Writing Programs that Call DATATRIEVE-11 4-21

4.6 Transferring Records

It is often convenient to pass information between your program and
DATATRIEVE in the form of records, rather than single values. This
technique allows you greater flexibility in structuring your information. For
example, when you use a STORE statement and DTPVAL to prompt for
data and store it in a domain, the user must enter the values in the order
they appear in the record definition. However, if you want your program to
prompt for the values in a different order, you can prompt for input, place
the input in the fields of a buffer you have declared, and pass the buffer as a
record to DATATRIEVE.

You use ports to transfer records. A port is a kind of domain. It allows you
to connect a DATATRIEVE domain, with its accompanying record structure,
to a record buffer whose record structure you define in your program.

Ports also allow you to pass data types other than ASCII strings. The value
parameter in DTPVAL must be a character string. With ports, however, you
can build a record containing binary integers and floating point numbers as
well, and pas's the entire record to DATATRIEVE. Similarly, ports allow you
to pass data of any data type from DATATRIEVE to your program.

Figure 4-1: The DATATRIEVE Port

Record
Buffer

COMMON (BOAT)

PRICE_FIELD
MODEL_FIELD
RIG_FIELD

4-22 Writing Programs that Call DATATRIEVE-11

Port

YACHT_PORT

PRICE
MODEL
RIG

DATATRIEVE
Record

definition

YACHT

BUILDER
MODEL
RIG
LOA
DISP
BEAM
PRICE

ZK-6114-HC

4.6.1 Defining Ports

A port works like a domain. It is simply a name that ties together a record
buffer declared in your program and a DATATRIEVE record definition.

To use a port, you must first declare a record structure for it in your
program. In COBOL, for example, you might define a record buffer for
YACHTS as follows:

01 BOAT.
06 BUILDR PIC X(lO) .
06 MODEL PIC X(lO).
06 RI G PIC X (6) .
06 LOA PIC 9(3).
06 DISP PIC 9(5).
06 BEAM PIC 9(2).
06 PRICE PIC 9(5).

You define a port using a DEFINE PORT command or DECLARE PORT
statement.

The DEFINE PORT command creates a port definition and places it in the
DATATRIEVE data dictionary. You can issue the DEFINE PORT command
either in interactive DATATRIEVE or with a DTCMD call from a program.
Before using the port you must ready it. A port you create with DEFINE is
still in effect after your program is finished. Thus, if the port is to be used
for record transfer by more than one program, you might use DEFINE and
make the port a permanent feature of the database.

The DECLARE PORT statement sets up a temporary port and readies it for
write access. You must pass the DECLARE PORT statement with a DTCMD
call. Using DECLARE has one major advantage. When you use DECLARE,
the structure of the port is built into the program and always matches the
record buffer declared there. If you define the port instead, someone else
may change the definition and make it invalid for your program.

The following example defines a port using DEFINE, where YPORT is the
name of the port and YACHT is the record definition from the YACHTS
domain (defining the structure ofYPORT):

. DEFINE PORT YPORT USING YACHT;

The following COBOL example defines a port by passing a DECLARE
command to DATATRIEVE. Notice that the fields are all declared as
character data type. This is because the user will enter the data from the
terminal.

Writing Programs that Call DATATRIEVE-11 4-23

MOVE "DECLARE PORT YPORT USING" TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE "01 YACHT." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 BUILDER X(10)." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 MODEL X(lO)." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 RIG X(6)." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 LOA XXX." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 DISP X(S)." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 0 6 BEAM XX." TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.
MOVE" 06 PRICE XeS) .;" TO COMMAND.
CALL "DTCMD" USING DAB BY DESCRIPTOR COMMAND.

4.6.2 Retrieving Records from DATATRIEVE (DTGETP)

To transfer records from a DATATRIEVE domain to the record buffer you
have declared in your program, you store the records in a DATATRIEVE
port and call DTGETP to retrieve each record.

Use the STORE statement to store records into a port:

FOR YACHTS WITH LOA GT 30 STORE YPORT USING BEAM = BEAM

In the previous example:

YACHTS WITH LOA GT 30

YPORT

USING BEAM = BEAM

Is a Record Selection Element (RSE) specify­
ing the record stream.

Is the name of a port where the records are
stored.

Specifies a field from the records. In this
case, only one field from the record is stored
in the port. This name could also be a group
field name, which would store multiple fields.
If the USING clause contains the top-level
record name (for instance, BOAT = BOAT),
DATATRIEVE stores the entire record.

No records have been transferred at this point. The STORE statement sim­
ply associates the fields of the records in the data file with the appropriate
fields in the record buffer that you have declared in your program. This tells
DATATRIEVE what records you want it to store in the record buffer. Now
the DATATRIEVE state is DTR$K_STATE_GETP. DATATRIEVE is waiting
for a call to DTGETP to copy the fields of the data files into the fields of your
record buffer.

4-24 Writing Programs that Call DATATRIEVE-11

Your program now calls DTGETP to get the record. The format for DTGETP
is as follows:

CALL DTGETP (dab, <record-buf>, record-len)

In this call, record-buf is the record buffer you have declared in your
program. DTGETP retrieves the record that was stored into the port and
places it in record-buf. It also places the length of the record it has passed
in record-len.

After DTGETP has executed, the state is still DTR$K_STATE_GETP. Call
DTCONT to move to the next state. Next, you should test the state:

• If the state is DTR$K_STATE_GETP, there are still records in the record
stream specified by the RSE in the STORE statement. Call DTGETP
again to retrieve the next record.

• If the state is DTR$K_STATE_MSG, your program should test for
success, display the contents of the message buffer, and continue.

The following BASIC program code shows how to retrieve a value from
DATATRIEVE using DTGETP. In this case, the program has already created
a port, PTl, containing the field N. In the following example, the program
uses the field N to retrieve the count of the records in the current collection.

Find collection:

PRINT "Please enter a command to form a collection"
LINPUT COMAND
CALL DTCMD (DAB, COMAND)
GOSUB Message

COMAND = "STORE PTI USING N = COUNT;"
CALL DTCMD (DAB, COMAND)
GOSUB Message)

CALL DTGETP (DAB, COUNTERBUF, RECLEN)
CALL DTCONT (DAB)
GOSUB Message

GOTO Find collection IF COUNTERBUF = 0%

In the previous example:

• The STORE statement associates the value expression COUNT (the
number of records in the current collection) with N, the first-level field
name in the port PTI.

• DTGETP retrieves the value of N and places it in the vari-
able COUNTERBUF. In the program LINEAR (see Section 7.2),
COUNTERBUF is mapped to an integer variable, so that the count
of records can be used in numeric calculations. After DTGETP executes,
RECLEN, the length of the string in the buffer, is two.

Writing Programs that Call DATATRIEVE-11 4-25

• DTCONT returns control to the program and moves the Call Interface
to the appropriate state. In this case, because there is only one value in
the record stream, the state is probably DTR$K_STATE_MSG, indicating
the success or failure of the routine.

4.6.3 Passing Records t6 DATATRIEVE (DTPUTP, DTPEOF)

You also use ports to pass records from your program to DATATRIEVE. Once
you have declared the record buffer in your program and declared the port
in DATATRIEVE, the transfer of a record is a 2-step process:

1. Use DTCMD to pass a statement that forms a record stream using the
port. When DATATRIEVE detects a reference to the port, it enters the
state DTR$K_STATE_PUTP.

2. Call DTPUTP to move the fields of the record from the record buffer to
the port. DATATRIEVE maps the declared structure of the port to the
record and executes the command passed in the previous step.

The format for DTPUTP is as follows:

CALL DTPUTP (dab, <record-but»

The record-buf parameter is the record buffer you have declared in your
program.

When the last record has been passed, call DTPEOF:

CALL DTPEOF (dab)

This routine sends an end-of-file marker to DATATRIEVE.

The following FORTRAN example shows how to call DTPUTP and DTPEOF:

INCLUDE 'DAB11.FTN'
CHARACTER*80 MSGBUF
CHARACTER*10 FIELD

CALL DTINIT (DAB, STRLEN, BUFLEN, 'YRNODE', 6, 1)
CALL MESAGE (SEY)
CALL DTCMD (DAB, 'SET DICTIONARY CDD$TOP.DTR$LIB.DEMOi', 36)
CALL MESAGE (SEY)

C Declare a port with one field of 10 characters.

CALL DTCMD (DAB, 'DECLARE PORT TEST PORT USING 01 TEST.', 37)
CALL DTCMD (DAB,' 03 FIELD1 PIC X(10) .i', 24)
CALL MESAGE (SEY)

C Pass a command to print the value in the port.

CALL DTCMD (DAB, 'FOR TEST_PORT PRINTi', 20)
CALL MESAGE (SEY)

4-26 Writing Programs that Call DATATRIEVE-11

C There is no value in the port, so prompt for one.

150 WRITE (5,*) 'Enter a field. Type CTRL/Z to quit.'
WRITE (5,1700»

1700 FORMAT (' Field: ',$)
READ (5, .1000, END = 200) FLDLEN, FIELD)

1000 FORMAT (Q,A)

C Now pass the value to DATATRIEVE. At this point, the PRINT
C statement can be completed. Loop back and prompt again.

CALL DTPUTP (DAB, FIELD, 41)
CALL MESAGE (SEV)
GO TO 150

C When the user types CTRL/Z (end-of-file), pass an end-of-file marker
C to DATATRIEVE. This closes the record stream.

200 CALL DTPEOF (DAB)
CALL MESAGE (SEV)
CALL DTFINI (DAB)
WRITE (5, *) ,
END

*****PROGRAM COMPLETED*****'

This program does the following:

1. Sends a DECLARE PORT command to DATATRIEVE to set up a port.
This port has only one lO-character field.

2. Passes a PRINT command that sets up a record stream whose source is
the port. There are no values in the port yet, so DATATRIEVE enters
DTR$K_STATE_PUTP, waiting for a value from the program.

3. Prompts the user to enter the value and set up CTRUZ as the end-of-file
marker.

4. Calls DTPUTP to pass that value to DATATRIEVE.

5. Executes the PRINT statement. The first time PRINT executes,
DATATRIEVE adds the field name FIELDl as a heading to the user's
input.

6. Continues to prompt for and print the field value until the user types
CTRUZ. At this point, the program calls DTPEOF and exits.

The following FORTRAN program prompts the user for values for the
YACHTS domain. These values are mapped to a record buffer using
EQUIVALENCE statements. When the record is complete, the program calls
DTPUTP to send the record to DATATRIEVE.

Writing Programs that Call DATATRIEVE-11 4-27

C
C Include the DAB definitions.
C Declare variables for the fields of the record.
C

C

INCLUDE 'DAB11.FTN'
INTEGER*4 SEV
CHARACTER*l ANSWER
CHARACTER*20 DOMAIN
CHARACTER*31 NODE, DICT
CHARACTER*80 COMAND
CHARACTER*41 YACHT
CHARACTER*10 BILDER
CHARACTER*10 MODEL
CHARACTER*6 RIG
CHARACTER*l SPACE
CHARACTER*2 LOA
CHARACTER*5 DISP
CHARACTER*2 BEAM
CHARACTER*5
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
INTEGER*4

SPACE = , ,

PRICE
(YACHT(1:10),
(YACHT (11: 20),
(YACHT(21:26) ,
(YACHT(27:27),
(YACHT (28: 29),
(YACHT(30:34),
(YACHT(35:36),
(YACHT(37:41),

FLDLEN

BILDER)
MODEL)
RIG)
SPACE)
LOA)
DISP)
BEAM)
PRICE)

C Initialize the interface.
C

WRITE (5,*) 'This program prompts for field values to be stored'
WRITE (5,*) 'in the YACHTS domain. It then puts the values'
WRITE (5,*) 'into record form and passes them to DATATRIEVE.'
WRITE (5,*)

WRITE (5,200)
200 FORMAT (' Node: ' ,$)

READ (5,1000) LEN, NODE)
1000 FORMAT (Q,A)

CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, LEN, NOSEMI)
CALL MESAGE (SEV)

WRITE (5,1100)
1100 FORMAT (' What dictionary do you want to use? ' ,$)

READ (5,1000) LEN, DICT
CALL DTCMD (DAB, 'SET DICTIONARY !CMD;', 20, DICT, LEN)
CALL MESAGE (SEV)

4-28 Writing Programs that Call DATATRIEVE-11

C
C READY DOMAIN
C
100 WRITE (5,1200) 'Now we will ready the YACHTS domain.'

CALL DTCMD (DAB, 'READY YACHTS WRITEi', 19)
CALL MESAGE (SEV)
IF (SEV .EQ. ERROR) THEN

WRITE (5,*) 'READY failed. Try again'
WRITE (5,*) 'or press CTRL/C to quit.'
GO TO 100

C

END IF

CALL DTCMD (DAB, 'SHOW READY;', 11)
CALL MESAGE (SEV)

C Set up a port to pass records to DATATRIEVE.
C

CALL DTCMD (DAB, 'DECLARE PORT BOAT PORT
CALL MESAGE (SEV)
CALL DTCMD (DAB, '03 BOAT.' , 8)
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 BUILDER PIC X(10) . ,
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 MODEL PIC X(10).',
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 RIG PIC X(6).' , 16)
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 LOA PIC X(3) . , , 16)
CALL ME SAGE (SEV)

USING 01 YACHT.',

, 21)

19)

CALL DTCMD (DAB, '06 DISP PIC X(5) . , , 17)
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 BEAM PIC XX.' , 15)
CALL ME SAGE (SEV)
CALL DTCMD (DAB, '06 PRICE PIC X(5) .i' , 19)
CALL ME SAGE (SEV)

150 WRITE (5,*) , Enter the fields in order.
WRITE (5,*) , Enter Control Z when through.'

WRITE (5,1500)
1500 FORMAT (' Builder: ',$)

READ (5, 1000, END = 999) FLDLEN, BILDER

WRITE (5,1600)
1600 FORMAT (' Model: ',$)

READ (5, 1000, END = 999) FLDLEN, MODEL

WRITE (5,1700)
1700 FORMAT (' Rig: ',$)

READ (5, 1000, END = 999) FLDLEN, RIG

WRITE (5,1800)
1800 FORMAT (' Length: ',$)

READ (5, 1000, END = 999) FLDLEN, LOA

WRITE (5,1900)
1900 FORMAT (' Beam: ',$)

READ (5, 1000, END = 999) FLDLEN, BEAM

38)

Writing Programs that Call DATATRIEVE-11 4-29

WRITE (5,2000)
2000 FORMAT (' Weight: ' ,$)

READ (5, 1000, END = 999) FLDLEN, DISP

WRITE (5,2100)
2100 FORMAT (' Price: ' ,$)

C

READ (5, 1000, END = 999) FLDLEN, PRICE

IF (DABSTA .EQ. DBSCMD) CALL DTCMD (DAB,
1 'FOR BOAT_PORT STORE YACHTS USING BOAT = BOAT;', 45)
CALL MESAGE (SEV)

C Pass the complete record.
C

C

CALL DTPUTP (DAB, YACHT, 41)
CALL MESAGE (SEV)

C Make the user type "Y" to continue.
C

WRITE (5,2200)
2200 FORMAT (' Do you wish to continue? [Y or N] $)

READ(5,3000) ANSWER
3000 FORMAT (A)

IF «ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y'» THEN
GO TO 150

END IF

C
C Clean up and end the interface.
C

999 IF (DABSTA .EQ. DBSPPU) CALL DTPEOF (DAB)
CALL MESAGE (SEV)
CALL DTFINI (DAB)

WRITE (5, *) ,
END

*****PROGRAM COMPLETED*****'

4.7 Stopping the Execution of Commands

There are situations when you may want to stop DATATRIEVE from
processing a command, discard the rest of the command, and return control
to your program. For example, if the user presses CTRUC while your
program is prompting for a value for the DTPVAL routine, you do not want
the program to exit. You want to cancel the STORE command that prompted
for the value.

In such cases, you can use an error handler to trap CTRUC and call the
DTUNWD routine. This routine discards the remainder of the current
command and returns DATATRIEVE to the state DTR$K_STATE_CMD.

4-30 Writing Programs that Call DATATRIEVE-11

The format for DTUNWD is as follows:

CALL DTUNWD (dab)

The sample BASIC program in Section 7.1 illustrates the use of DTUNWD
in an error handling routine.

4.8 Closing the Call Interface

When your program is finished using the DATATRIEVE-11 Call Interface, it
should call DTFINI. This routine acts like the EXIT command in interactive
DATATRIEVE. It does cleanup operations such as releasing collections and
variables, finishing domains, and closing files. It also breaks the link to the
remote server on the node specified in DTINIT.

The format for DTFINI is as follows:

CALL DTFINI (dab)

The sample BASIC program in Section 7.1 illustrates the use ofDTFINI.

Writing Programs that Call DATATRIEVE-11 4-31

Chapter 5

Sample FORTRAN Programs

This chapter contains several sample FORTRAN programs that call
DATATRIEVE. These programs show how you can call DATATRIEVE to
perform calculations on data, store and retrieve data, and create data
management applications for end users.

5.1 Creating an End-User Interface

The program MENU shows you how to give users access to DATATRIEVE's
data management capabilities. The program enables users unfamiliar
with DATATRIEVE to display, store, modify, and report data managed by
DATATRIEVE. The modules of the program also illustrate how to use the
Call Interface to perform all the DATATRIEVE operations.

The main program MENU:

1. Initializes the interface

2. Chooses the DATATRIEVE dictionary

3. Opens a port PTI to return the number of records in a collection

4. Calls the subroutine CHOOSE, which in tum:

a. Displays the domains

b. Readies the domain the user picks

c. Returns

5. Displays a menu

Sample FORTRAN Programs 5-1

Depending on the user's choice from the menu, MENU then calls one of
seven subroutines:

ESTABLISH

DISPLAY

SORT

MODIFY

REPORT

STORE

CHOOSE

Establishes a CURRENT collection.

Displays the CURRENT collection.

Sorts the CURRENT collection.

Lets the user modify one record in the CURRENT collection, or
one field for all the records in the CURRENT collection.

Displays a report, based on the CURRENT collection, at the
terminal.

Lets the user store new records in the readied domain.

Lets the user ready a new domain.

In addition, some or all of these subroutines also call three other subrou­
tines:

CLSCRN

ME SAGE

PROMPT

Clears the terminal screen.

Tests for errors, messages, or print lines, and displays message
and print lines. This subroutine appears in Section 4.5.2.

Prompts for a value and passes that value to DATATRIEVE.

For example, on an RSX-IIM-PLUS system, the program uses a Task
Builder command file such as the following:

MENU,MENU/-SP=MENU,MESAGE,CLSCRN,ESTABLISH,DISPLAY,
SORT, STORE, MODIFY, REPORT, CHOOSE, PROMPT,
LB: [1,l]F4POTS/LB,
LB: [l,l]RMSLIB/LB,
LB: [l,l]DTCLIB/LB:CIFOR:NCIIM:NOLC,
LB: [l,l]DTCLIB/LB,
I
UNITS=lO
GBLPAT=MENU:LUNMAP:177700:177777
II

Note that this task uses only the Remote Call Interface.

5-2 Sample FORTRAN Programs

5.2 The Main Program: MENU

C Program: MENU.FTN
C
C Include the DATATRIEVE Access Block.
C

INCLUDE 'DAB11.FTN'

C Declare variables.

CHARACTER*31 DOMAIN,NODE,DICT
INTEGER*4 SEV
INTEGER*4
INTEGER*4
INTEGER*2

LENGTH
DOMLEN
CHOICE

C Initialize the interface with DATATRIEVE.

5 WRITE (5,1000)
1000 FORMAT (' What node would you like to use? ' ,$)

READ (5,2000) LENGTH, NODE
2000 FORMAT (Q,A)

C

CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, LENGTH, NOSEMI)
CALL MESAGE (SEV)

C Check for initialization error. If initialization failed, go back
C and try again or quit.
C

IF (DABSTA .EQ. DBSINI) THEN
WRITE (5,*) 'Sorry, initialization failed on node', NODE
WRITE (5,1500)

1500 FORMAT (' Would you like to try another node? [Y or N] , ,$)
READ (5,3000) ANSWER

3000 FORMAT (A)
IF «ANSWER . EQ. ' Y') . OR. (ANSWER . EQ. ' y'» THEN

CALL DTFINI (DAB)
CALL ME SAGE (SEV)
GO TO 5

ELSE
GO TO 999

END IF
END IF

C Clear the screen

10 CALL CLSCRN

C Choose a dictionary:

WRITE (5,3500)
3500 FORMAT (' What dictionary would you like to use? ' ,$)

READ (5,2000) LENGTH, DICT
CALL DTCMD (DAB, 'SET DICTIONARY !CMDi', 20, DICT, LENGTH)
CALL MESAGE (SEV)

Sample FORTRAN Programs 5-3

IF (SEV .EQ. ERROR) THEN
WRITE (5, *)
WRITE (5, *) , Sorry, try again.'
WRITE (5, *) , ,
GO TO 10

END IF

C Declare a port to contain the number of records in the domain to
C be established.

C

CALL DTCMD (DAB, 'DECLARE PORT PTl USING', 23)
CALL DTCMD (DAB, '01 NUM PIC 9(4) USAGE IS COMP.;', 31)
CALL MESAGE (SEV)

IF (SEV .EQ. ERROR) THEN

END IF

WRITE (5,*) 'Ports not declared.'
WRITE (5,*) 'Program stopped.'
GO TO 999

C Call a subroutine to choose a domain.
C

20 CALL CHOOSE (DOMAIN, DOMLEN)

C
C The program displays a menu and prompts for a selection.
C

50 CHOICE = 0

WRITE (5,60)
60 FORMAT (//23X,'MENU'/23X' '/

l/lOX,'l. Establish a collection of records.'
2/l0X,'2. Display the current collection.'
3/l0X,'3. Sort the current collection.'
4/l0X,'4. Ypdate the current collection.'
S/10X,'5. Report the current collection.'
6/l0X,'6. Store records in the current domain.'
7/l0X,'7. Choose another domain.'
8/10X,'8. End this session.'/////
l/lOX' Enter the number of the operation '
2/10X' you wish to perform: ',$)

READ (5,70)CHOICE
70 FORMAT (12)

C Call the appropriate subroutine to handle the choice entered.

IF «CHOICE .LT. 1) .OR. (CHOICE .GT. 8)) THEN
WRITE (5,*) 'Please enter a number from 1 to 8.'
GO TO 50

END IF
IF (CHOICE .EQ. 1) CALL ESTABL (DOMAIN, DOMLEN)
IF (CHOICE .EQ. 2) CALL DISPLA
IF (CHOICE .EQ. 3) CALL SORT (DOMAIN, DOMLEN)
IF (CHOICE .EQ. 4) CALL MODIFY (DOMAIN, DOMLEN)
IF (CHOICE .EQ. 5) CALL REPORT (DOMAIN, DOMLEN)
IF (CHOICE .EQ. 6) CALL STORE (DOMAIN, DOMLEN)

5-4 Sample FORTRAN Programs

C First finish current domain, then erase the screen and call the
C subroutine to choose a domain.

IF (CHOICE .EQ. 7) THEN

END IF

CALL DTCMD (DAB, 'FINISH !CMDi', 12, DOMAIN, DOMLEN)
CALL MESAGE (SEV)
CALL CLSCRN
GO TO 20

C Finish the session with DATATRIEVE and stop the program.

IF (CHOICE .EQ. 8) GO TO 999

C Return to the menu.

GO TO 50

999 CALL DTFINI (DAB)
END

5.3 The ESTABLISH Subroutine

C*** *****************
C SUBROUTINE ESTABLISH
C The program searches the current domain for records that fit the
C description given to DATATRIEVE and forms a collection.

*
*
*

C*** *****************

SUBROUTINE ESTABL (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER*l ANSWER
CHARACTER*31 ATTR
CHARACTER*31 BOOL
CHARACTER*31 DOMAIN
CHARACTER*31 VALUE
CHARACTER*31 PORLEN
INTEGER*2 NUMREC
INTEGER*4 DOMLEN
INTEGER*4 SEV
INTEGER*4 LEN
DIMENSION LEN(5)

C Call a subroutine to clear the screen.

CALL CLSCRN

C Ask if the user wishes to use all the records in the domain.
C If the response is yes, issue the FIND command for the whole domain.

100
1000

WRITE (5,1000)
FORMAT (' Do you wish to use all the records
1 in the domain? [Y or N] , ,$)
READ (5,2000) ANSWER

Sample FORTRAN Programs 5-5

2000 FORMAT (A)
IF (ANSWER .EQ. 'Y' .OR. ANSWER .EQ. 'y') THEN

ELSE

END IF

CALL DTCMD (DAB, 'FIND !CMD;', 10, DOMAIN, DOMLEN)
.CALL ME SAGE (SEV)
RETURN

IF (ANSWER .NE. 'N' .AND. ANSWER .NE. 'n') THEN
WRITE (5,*) 'Please enter YES or NO.'
GO TO 100

END IF

C Show the user the fields available for a record selection
C expression.

105 CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL MESAGE (SEV)

C Prompt the user for the different parts of a record selection
C expression, a field name, a relational operator, and a value.

WRITE (5,3000)
3000 FORMAT (/10X, ' The collection will be formed on the basis of'

1 /10X, ' identifying characteristics you choose. '
2 /10X, ' Specify these characteristics by entering'
3 /10X, ' a FIELD, a RELATION, and a VALUE. For'
4 /10X, ' example, if your domain is EMPLOYEES, you can form'
5 /10X, ' a collection of:'
6 //15X, ' EMPLOYEES whose SALARY (FIELD) is'
7 /15X, ' GT (RELATION) $25,000 (VALUE).'
8 //' Enter the FIELD (SALARY, PRICE, DEPARTMENT):
READ (5,3500) LEN(2), ATTR

3500 FORMAT (Q,A)

WRITE (5,4000)
4000 FORMAT (' Enter the RELATION (EQ, GT, GE, LT, CONTAINING): ',$)

READ (5,3500) LEN(3), BOOL

WRITE (5,5000)
5000 FORMAT (' Enter the VALUE (non-numeric values should be in quotes) :

1 ',.$)
READ (5,3500) LEN(4), VALUE

C Instruct DATATRIEVE to find the desired records.

CALL DTCMD
1 (DAB, 'FIND CURRENT WITH !CMD !CMD !CMD;', 33, ATTR, LEN(2),
2 BOOL, LEN(3), VALUE, LEN(4»

CALL MESAGE (SEV)

C Verify that the FIND was completed successfully.

IF (SEV .EQ. ERROR) THEN

END IF

WRITE (5,*) 'Sorry, collection not established.'
WRITE (5,*) 'Please try again.'
GO TO 105

5-6 Sample FORTRAN Programs

C Verify that there were records found.
C If no records were found, the user must either use all
C records in the collection or establish a new collection.

CALL DTCMD (DAB, 'STORE PT1 USING NUM = COUNT;', 28)
CALL MESAGE (SEV)

C If state is DTR$K STATE GETP then issue call to DTGETP
C to retrieve the number of records found.

IF (DABSTA .EQ. DBSPGE) THEN

END IF

CALL DTGETP (DAB, NUMREC, 2, PORLEN)
CALL DTCGNT (DAB)
CALL MESAGE (SEV)

C If no records were found, notify the user and find all the
C records in the domain. This prevents a collection with no
C records. Prompt the user to continue or return to the main menu.

IF (NUMREC .EQ. 0) THEN

END IF

CALL DTCMD (DAB, 'FIND !CMD;', 10, DOMAIN, DOMLEN)
CALL MESAGE (SEV)
WRITE (5,*) , There are no records that fit.'
GO TO 100

CALL MESAGE (SEV)

C Ask if the user wishes to make a subcollection. If not, return.

160 WRITE (5,7000)
7000 FORMAT (' Would you like to establish a sub-collection'

1/' from the current collection? [Y or N] ',$)
READ (5,2000) ANSWER
IF (ANSWER .EQ. 'Y' .OR. ANSWER .EQ. 'y') THEN

GO TO 105
END IF

RETURN
END

Sample FORTRAN Programs 5-7

5.4 The DISPLAY Subroutine

C***
C DISPLAY *
C This subroutine displays the current collection of records. *
C***

C

SUBROUTINE DISPLA
INCLUDE 'DAB11.FTN'
INTEGER*4 SEV
CHARACTER*l CR

CALL CLSCRN

C Have DATATRIEVE print the current collection.
C

C

CALL DTCMD (DAB, 'PRINT CURRENT;', 14)
CALL MESAGE (SEV)

C Put a message .at the bottom of the page.
C

1000

C

WRITE (5,1000)
FORMAT (' Press RETURN to continue> ' ,$)

C When the user types a character, return.
C

READ (5,1) CR
1 FORMAT (A)

RETURN
END

5.5 The SORT Subroutine

C***
C SORT *
C This subroutine sorts the current file in ascending or descending *
Corder. *
C***

SUBROUTINE SORT (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER*l CR
CHARACTER*l ORD
CHARACTER*27 TEXT
CHARACTER*31 FIELDS
INTEGER*4 FLEN, SEV
LOGICAL UNSORT, NOORD

UNSORT = • TRUE.
NOORD = • TRUE.

C Set up FORMAT statements.

5-8 Sample FORTRAN Programs

1000 FORMAT (' Press RETURN to continue >' ,$)
2000 FORMAT (Q,A)
3000 FORMAT (A)

C Display the available fields.

300 CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL MESAGE (SEV)
WRITE (5,4000)

4000 FORMAT (' Enter the FIELD by which you wish to sort: ' ,$)
READ (5,2000) FLEN, FIELDS

C Continue in loop until a correct sorting order has been entered.

320 WRITE (5,5000)
5000 FORMAT (' Sort in ascending or descending order (A or D)? ' ,$)

C Prompt for sort order, then issue a DATATRIEVE command to sort
C the current collection by the field chosen and in the order chosen.

READ (5,3000) ORD
IF «ORD .EQ. ' A') .OR.
1 (ORD .EQ. 'a')) THEN

C Sort by the ascending field given by the user.

NOORD = .FALSE.
CALL DTCMD (DAB, 'SORT CURRENT BY ASCENDING !CMD;',

1 31, FIELDS, FLEN)
ELSE

IF «ORD .EQ. 'D') .OR.
1 (ORD .EQ. ' d')) THEN

C Sort by the descending field given by the user.

NOORD = .FALSE.

1
CALL DTCMD (DAB, 'SORT CURRENT BY DESCENDING !CMD;',

32, FIELDS, FLEN)
ELSE

WRITE (5,6000)
6000 FORMAT (' Re-enter sorting order')

END IF
END IF

IF (NOORD) GO TO 320

NOORD = .TRUE.
CALL MESAGE (SEV)

IF (SEV .EQ. ERROR) THEN
WRITE (5,1000)
READ (5,3000) CR

ELSE
UN SORT = .FALSE.

END IF

IF (UNSORT) THEN
CALL CLSCRN
GO TO 300

END IF

UNSORT = .TRUE.

C Inform user that sort is complete.

Sample FORTRAN Programs 5-9

370 WRITE (5,7000)
7000 FORMAT (/////26X,'Sort successfully completed.')

WRITE (5,1000)
READ (5,3000) CR
RETURN
END

5.6 The MODIFY Subroutine

C***
C MODIFY *
C This subroutine sets up a second menu and modifies records. *
C***

SUBROUTINE MODIFY (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER * 1 CR
CHARACTER*l ANSWER
CHARACTER*31 DOMAIN, FIELD, VALUE
CHARACTER*80 CHLINE, MSGBUF
INTEGER*4 NUMBER, LENGTH, DOMLEN, SEV
INTEGER*2 CHOICE, NUM

CHOICE = 1

C Erase the screen.

400 CALL CLSCRN

C Display the MODIFY submenu.

1250 FORMAT (' Press RETURN to continue >, ,$)

WRITE (5,1500)
1500 FORMAT (////' 1. One or more fields for one record.'/'

1 2. One field for all records in the current collection.'/'
2 3. Return to main menu'///' Enter your choice: ',$)
READ (5,2000) CHOICE

2000 FORMAT (II)

C Issue a command to DATATRIEVE to start with the first record in the
C current collection.

2500

3000

CALL DTCMD (DAB, 'SELECT I:', 9)
CALL MESAGE (SEV)
GO TO (410, 430, 499), CHOICE
WRITE (5,2500)
FORMAT (' Invalid operation ... try again.')
WRITE (5,1250)
READ (5,3000) CR
FORMAT (A)
GO TO 400

C Select records one at a time. Prompt for the record(s) the user
C wishes to modify.

409 CALL DTCMD (DAB, 'SELECT NEXT;', 12)
CALL ME SAGE (SEV)

410 CALL CLSCRN

5-10 Sample FORTRAN Programs

C Display the selected record.

411 CALL DTCMD (DAB, 'PRINTi', 6)
CALL MESAGE (SEV)

C Inquire if this record needs modification.

WRITE (5,3500)
3500 FORMAT (II' Is this the record you wish to update?'11

l' Enter YES, NO, or EXIT: ',$)
READ (5,3000) ANSWER
IF (ANSWER .EQ. 'E' .OR. ANSWER .EQ. 'e') GO TO 400
IF (ANSWER .NE. 'Y' .AND. ANSWER .NE. 'y') THEN

END IF

NUMBER = NUMBER + 1
GO TO 409

CALL CLSCRN

C Show the fields.

413 CALL DTCMD (DAB, 'SHOW FIELDSi', 12)
CALL MESAGE (SEV)
WRITE (5,4500)

4500 FORMAT (' Which field do you wish to modify: ',$)
READ (5,1000) LENGTH, FIELD

1000 FORMAT (Q,A)

C Modify and check for errors.

5500

CALL DTCMD (DAB, 'MODIFY !CMDi', 12, FIELD, LENGTH)
CALL MESAGE (SEV)

IF (DABSTA .NE. DBSPMT) THEN
WRITE (5,5500)

FORMAT(' Do you want to try again? ',$)
READ (5,3000) ANSWER

END IF

IF «ANSWER .EQ. 'N') .OR. (ANSWER .EQ. 'n'» THEN
GO TO 400

ELSE
GO TO 411

END IF

CALL PROMPT

IF (SEV .EQ. ERROR) THEN

END IF

WRITE (5,*) 'Try again.'
GO TO 411

CALL CLSCRN

C Print the modified record.

CALL DTCMD (DAB, 'PRINTi', 6)
CALL MESAGE (SEV)

427 WRITE (5,6000)
6000 FORMAT (I' Do you wish to modify any more fields in this record? ',$)

READ (5,3000) ANSWER
IF (ANSWER .EQ. 'Y' .OR. ANSWER .EQ. 'y') GO TO 413
WRITE(5,6500)

Sample FORTRAN Programs 5-11

6500 FORMAT (/' Do you wish to continue updating records? ' ,$)
READ (5,3000) ANSWER
IF (ANSWER .EQ. 'Y' .OR. ANSWER .EQ. 'y') THEN

NUMBER = NUMBER +1
GO TO 409

END IF
GO TO 400

C Modify one field for all the records in the current collection.

430 CALL CLSCRN
432 WRITE (5,7000)
7000 FORMAT (/////' Do you want to:'//'

1 1. Update all records using one value.'/'
2 2. Update all records with an equation 'I'
3 (for example, price = price + 400)'/'
4 3. Return to the previous menu. 'I'
5 Enter 1, 2 or 3: '$)
READ (5,2000) NUM
GO TO (460,445,400), NUM

C Prompt for an equation.

445 CALL CLSCRN

C Show the fields.

CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL MESAGE (SEV)
WRITE (5,7500)

7500 FORMAT (' Enter the equation you wish to use: ' ,$)
READ (5,1000) LENGTH, CHLINE
CALL DTCMD (DAB, 'MODIFY ALL USING !CMD;', 22, CHLINE, LENGTH)
CALL MESAGE (SEV)

C If not successful, show the fields and start again.

IF (SEV .EQ. ERROR) THEN
GO TO 430

END IF

CALL CLSCRN
WRITE (5,8000)

8000 FORMAT (' All records updated.')

C Print the updated collection.

CALL DTCMD (DAB, 'PRINT CURRENT;', 14)
CALL MESAGE (SEV)
WRITE (5,1250)
READ (5,3000) CR
GO TO 400

C Modify one field for all records.

460 CALL CLSCRN
CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL MESAGE (SEV)
WRITE (5,8500)

8500 FORMAT (' Which field do you wish to update? ',$)
READ (5,1000) LENGTH, FIELD

C Issue the modify command to DATATRIEVE.

5-12 Sample FORTRAN Programs

CALL DTCMD (DAB, 'MODIFY ALL !CMD OF CURRENTi', 27, FIELD, LENGTH)
CALL MESAGE (SEV)

C Check to see if it was successful.

IF (SEV .EQ. ERROR) THEN

END IF

WRITE (5,*) 'Try again.'
GO TO 430

C Prompt for a value.

CALL PROMPT

IF (SEV .EQ. ERROR) THEN
WRITE (5,9500)

9500 FORMAT (' Invalid, try again '//)
GO TO 430

END IF

CALL CLSCRN

C Print the modified collection.

CALL DTCMD (DAB, 'PRINT CURRENTi', 14)
CALL MESAGE (SEV)
WRITE (5,1250)
READ (5,3000) CR

IF (CHOICE .NE. 3) GO TO 400

499 RETURN
END

5.7 The REPORT Subroutine

C***
C REPORT *
C The subroutine invokes the DATATRIEVE Report Writer and prompts *
C for the information necessary to write the report. The user can report *
C the whole file or a specific collection. *
C***

SUBROUTINE REPORT (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER*l ANSWER,CR
CHARACTER*80 RPTHDR, CHLINE, MSGBUF
CHARACTER*75 SHOBUF (l00)
CHARACTER*31 DOMAIN
INTEGER*4 LENGTH, DOMLEN, SEV

C Store the output from a "SHOW FIELDS" command in an array to be
C displayed later, when the user must choose field names.

Sample FORTRAN Programs 5-13

I = 0
CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
SEV = SUCCES

500 IF (DABSTA .EQ. DBSMSG) THEN

END IF

SEV = DABSEV
IF (SEV .EQ. SEVERE) CALL MESAGE (SEV)
IF (SEV .EQ. ERROR) GO TO 550
CALL DTMSG (DAB, MSGBUF, 80, LEN)
WRITE (5 y *) MSGBUF
SHOBUF(I) = MSGBUF
I = I + 1
CALL DTCONT (DAB)
GO TO 500

C Ask if the user wants to use the whole domain or a collection.

505 CALL CLSCRN
WRITE (5,1000)

1000 FORMAT (//' Do you wish to limit the types of records in
1 the report? '/' (For example, records with PRICE GT 20000'/
2' or records with DEPARTMENT EQ "SERVICE" SORTED BY EMPLOYEE NUMBER)
4 /' Enter YES or NO: ',$) -
READ (5,2000) ANSWER

2000 FORMAT (A)

C Ask the user if he or she wants a record selection expression on
C the report.

IF «ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) THEN
CALL DTCMD (DAB, 'SHOW FIELDS;', 12)
CALL ME SAGE (SEV)

C Prompt for the RSE and pass it to DATATRIEVE.

WRITE (5,3000)
3000 FORMAT (//, Enter an expression such as PRICE GT 2000 or' /

1 ' DATE EMPLOYED AFTER "01-JULY-1980")'//'Expression: ',$)
READ (5,4000) LENGTH, CHLINE

4000 FORMAT (Q,A)
CALL DTCMD (DAB, 'REPORT CURRENT WITH !CMD;', 25,

1 CHLINE, LENGTH)
ELSE

C Invoke the report writer for the whole file.

CALL DTCMD (DAB, 'REPORT CURRENT;', 15)
END IF

C Check for errors.

CALL MESAGE (SEV)
IF (SEV .EQ. ERROR) GO TO 550

C Prompt for a report title.

525 WRITE (5,5000)
5000 FORMAT (//' Enter the report title enclosed in quotation marks'

1/' Separate lines with a slash (/)'/
2' For example, enter:' /, "RATES SCHEDULE"/"DOMESTIC", /
3" to produce the title: RATES SCHEDULE'/
4' DOMESTIC')
READ (5,4000) LENGTH, RPTHDR

5-14 Sample FORTRAN Programs

C Set the report title.

IF (LENGTH .EQ. 0) THEN
CALL DTCMD (DAB, 'SET REPORT NAME

ELSE
CALL DTCMD (DAB, 'SET REPORT NAME

END IF

CALL MESAGE (SEV)
IF (SEV .EQ. ERROR) GO TO 550

C Set more characteristics of the report.

"";', 21)

!CMD;', 23, RPTHDR, LENGTH)

CALL DTCMD (DAB, 'SET LINES PAGE
CALL MESAGE (SEV)

22;',20)

C Show the user the previously stored fields.

DO 538 J = 1, I
WRITE (5,6000) SHOBUF(J)

6000 FORMAT (lX,A75)
538 CONTINUE

C Prompt the user for field names.

WRITE (5,7000)
7000 FORMAT (' Enter the fields you wish to have in the report.

1 Separate them by commas. " $)
READ (5,4000) LENGTH, CHLINE

C Pass the field names to DATATRIEVE.

CALL DTCMD (DAB, 'PRINT !CMD;', 11, CHLINE, LENGTH)
CALL DTCMD (DAB, 'END_REPORT;', 11)
CALL ME SAGE (SEV)

WRITE (5,7500)
7500 FORMAT (' Press RETURN to continue> ' ,$)

READ (5,7600) CR
7600 FORMAT (A)

CALL CLSCRN

C If not successful, prompt the user to start over.

IF (SEV .NE. ERROR) RETURN

550 WRITE (5,8000)
8000 FORMAT (' An error was found by the Report Writer,'/'

1 »»>00 you want to try again? ',$)
READ (5,2000) ANSWER
IF ((ANSWER .EQ. 'Y') .OR. (ANSWER .EQ. 'y')) GO TO 505

RETURN
END

Sample FORTRAN Programs 5-15

5.8 The STORE Subroutine

C**
C STORE *
C The subroutine allows the user to store records in the current *
C domain. *
C**

SUBROUTINE STORE (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER*10 NUMBER
CHARACTER*31 DOMAIN
INTEGER*4
INTEGER*4
INTEGER*4

CALL CLSCRN

LENGTH
DOMLEN
SEV

C Prompt the user for the number of records to be stored. This way,
C only one DTCMD call has to be made to store multiple records.

100
1000

2000

WRITE (5,1000)
FORMAT (' Enter the number of records you wish to store: ',$)
READ (5,2000) LENGTH, NUMBER
FORMAT (Q,A)

CALL CLSCRN

CALL DTCMD (DAB,'REPEAT !CMD STORE !CMD;', 23,
1 NUMBER, LENGTH, DOMAIN, DOMLEN)
CALL MESAGE (SEV)

CALL PROMPT

IF (S~V .EQ. ERROR) THEN

END IF

WRITE (5,*) 'Last record not stored. Try again.'
GO TO 100

C Issue a command to find all of the records, so the newly stored
C records are in the current collection.

2QO CALL DTCMD (DAB, 'FIND !CMD;', 10, DOMAIN, DOMLEN)
CALL MESAGE (SEV)
RETURN
END

5-16 Sample FORTRAN Programs

5.9 The CHOOSE Subroutine

C***************************~***

C CHOOSE *
C The subroutine shows the domains available in the current dictionary *
C and prompts the user to ready a domain before entering the program. *
C If the domain name is invalid or the domain cannot be readied, the *
C program reprompts for a domain name. *
C***

SUBROUTINE CHOOSE (DOMAIN, DOMLEN)
INCLUDE 'DAB11.FTN'
CHARACTER*31 DOMAIN
INTEGER*4
INTEGER*4
LOGICAL

DOMLEN
SEV
NOD OM

NODOM = . TRUE.

10 CALL DTCMD (DAB, 'SHOW DOMAINS;', 13)
CALL MESAGE (SEV)

C Ask the user for the domain and ready it.

2000

1000

WRITE (5,2000)
FORMAT (' Enter the name of the domain you want to use: ' ,$)
READ (5,1000) DOMLEN, DOMAIN
FORMAT (Q,A)
CALL DTCMD (DAB, 'READY !CMD WRITE;', 17, DOMAIN, DOMLEN)

C Check for an error in readying the domain. Prompt again if an error
C occurred. Then form a collection of all records in the domain and
C check for errors.

3000

CALL MESAGE (SEV)

IF (SEV .EQ. ERROR) THEN
WRITE (5,3000)

FORMAT (' Try again ')
ELSE

NODOM = .FALSE.
CALL DTCMD (DAB, 'FIND !CMD;', 10, DOMAIN, DOMLEN)
CALL ME SAGE (SEV)

END IF

IF (SEV .EQ. ERROR) THEN
WRITE (5,3000)
NODOM = .TRUE.

END IF

IF (NODOM) GO TO 10
NODOM = .TRUE.
RETURN
END

Sample FORTRAN Programs 5-17

5.10 The PROMPT Subroutine

5.11

C ***
C * PROMPT
C * This subroutine displays a DATATRIEVE prompt, and sends a
C * value to the DTPVAL routine.

*
*
*

C *************************************k**************** *********

100

1000

2000

INCLUDE 'DAB11.FTN'
CHARACTER*20 VALUE
INTEGER*4 LENGTH, SEV
CHARACTER*30 PR
EQUIVALENCE (PR, DABSTR)

IF (DABSTA .EQ. DBSPMT) THEN
WRITE (5,1000) PR
FORMAT (X,A<DABLEN>,$)

END IF

READ (5,2000) LENGTH, VALUE
FORMAT (Q,A)
CALL DTPVAL (DAB, VALUE, LENGTH)
CALL ME SAGE (SEV)
IF (SEV .EQ. ERROR) GO TO 200
GO TO 100

200 RETURN
END

The CLSCRN Subroutine

C **
C * CLSCRN
C * This subroutine clears the screen and moves the cursor to
C * home by issuing the appropriate VT-100 escape sequences.

*
*
*

C **

BYTE ESC
ESC = 155

WRITE (5,10) ESC
10 FORMAT (X,lA1,' [2J')

WRITE (5,20) ESC
20 FORMAT (X, 1A1,' [H')

END

5-18 Sample FORTRAN Programs

Chapter 6

Sample COBOL Programs

This chapter contains two sample COBOL programs that call DATATRIEVE.
These programs show how you can call DATATRIEVE to perform
calculations on data, to store and retrieve data, and to help end users
perform information management tasks.

6.1 Creating an End-User Interface

The program ENTRY accepts data entered by a user from the terminal
and stores the data in the DATATRIEVE domain YACHTS. The program
uses a port called BOAT_PORT to pass records to DATATRIEVE, using the
following steps:

1. Declares the port BOAT_PORT

2. Passes a STORE statement to DATATRIEVE, using the port

3. Prompts the user to input each field of the port

4. Calls DTEOF to end the STORE statement, when the user is finished
entering records

Because data is entered from the terminal in ASCII format, all fields in the
port are declared as character data types. Following is the DATATRIEVE
command to declare the port BOAT_PORT:

Sample COBOL Programs 6-1

DECLARE PORT BOAT PORT USING
01 BOAT. -

06 BUILDER PIC X(10).
06 MODEL PIC X(10) .
06 RIG PIC X (6) .
06 LOA PIC XXX.
06 DISP PIC XXXXX.
06 BEAM PIC XX.
06 PRICE PIC XXXXX.

The following Task Builder command file creates the task image for this
program on RSTS/E systems:

ENTRY,ENTRY/-SP=ENTRY,
LB:C81LIB/LB,
LB:DTCLIB/LB:CICOB:NCRSTS:NOLC,
LB:DTCLIB/LB
/
UNITS=6
//

Following is the program ENTRY:

IDENTIFICATION DIVISION.
PROGRAM-ID. ENTRY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 YACHT.
06 BUILDER PIC X(10) .
06 MODEL PIC X(lO) .
06 RIG PIC X(6) .
06 LOA PIC XXX.
06 DISP PIC 99999.
06 BEAM PIC 99.
06 PRICE PIC 99999.

01 BUILD-TXT PIC X(9) VALUE "BUILDER:
01 MODEL-TXT PIC X(7) VALUE "MODEL: "
01 RIG-TXT PIC X(5) VALUE "RIG: "
01 LOA-TXT PIC X(8) VALUE "LENGTH:
01 BEAM-TXT PIC X(6) VALUE "BEAM: "
01 DISP-TXT PIC X(8) VALUE "WEIGHT:
01 PRICE-TXT PIC X(7) VALUE "PRICE: "
01 SPACE-TXT PIC X VALUE " "

* Copy the DATATRIEVE Access Block *

COPY "DAB11.CBL".

6-2 Sample COBOL Programs

"

"

"

01 NODE PIC X (30) .
01 MSGBUF PIC X (80).
01 MSGLEN PIC 9(4) COMPo
01 OPTIONS PIC 9 (4) COMPo
01 SHOWIT PIC X (4).

01 CONT PIC X.
01 COMMAND PIC X (80) .
01 DICT PIC X (30).

PROCEDURE DIVISION.
010-INITIALIZE-INTERFACE.

MOVE NOSEMI TO OPTIONS.
DISPLAY "What node do you want to use? "WITH NO ADVANCING.
ACCEPT NODE.
CALL "DTINIT" USING DAB STRLEN BUFLEN

BY DESCRIPTOR NODE
BY REFERENCE OPTIONS.

DISPLAY "What dictionary would you like to use? "
WITH NO ADVANCING.

ACCEPT DICT.
MOVE "SET DICTIONARY !CMD;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND
DICT.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE "READY YACHTS WRITE;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE "DECLARE PORT BOAT PORT USING 01 BOAT." TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

MOVE" 06 BUILDER PIC X(10)." TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

MOVE" 06 MODEL PIC X(lO)." TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

MOVE" 06 RIG PIC X(6)." TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

MOVE" 06
CALL "DTCMD"

LOA PIC XXX." TO
USING DAB

BY DESCRIPTOR

COMMAND.

COMMAND.

MOVE" 06
CALL "DTCMD"

DISP PIC XXXXX." TO COMMAND.

MOVE" 06
CALL "DTCMD"

USING DAB
BY DESCRIPTOR

BEAM PIC XX." TO
USING DAB

BY DESCRIPTOR

COMMAND.

COMMAND.

COMMAND.

Sample COBOL Programs· 6-3

MOVE" 06 PRICE PIC XXXXX.;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE SPACES TO COMMAND.
MOVE "FOR BOAT_PORT STORE YACHTS USING BOAT

TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

200-BEGINNING-OF-LOOP.
PERFORM 600-GET-RECORD.
CALL "DTPUTP" USING DAB BY DESCRIPTOR YACHT.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

BOAT ;"

IF DAB-W-STATE = DTR-K-STATE-PUTP THEN GO TO 200-BEGINNING-OF-LOOP.
DISPLAY "RECORD WAS NOT STORED.".
DISPLAY "PRESS RETURN TO CONTINUE.".
ACCEPT CONT.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
GO TO 200-BEGINNING-OF-LOOP.

600-GET-RECORD.

DISPLAY "Enter a carriage return after each field value.".
DISPLAY "Enter ALL DONE to stop storing records.".

DISPLAY BUILD-TXT WITH NO ADVANCING.
ACCEPT BUILDER.
IF BUILDER = "ALL DONE" GO TO 950-EOF.

DISPLAY MODEL-TXT WITH NO ADVANCING.
ACCEPT MODEL.
IF MODEL = "ALL DONE" GO TO 950-EOF.

DISPLAY RIG-TXT WITH NO ADVANCING.
ACCEPT RIG.
IF RIG = "ALL DONE" GO TO 950-EOF.

DISPLAY LOA-TXT WITH NO ADVANCING.
ACCEPT LOA.
IF LOA = "ALL DONE" GO TO 950-EOF.

DISPLAY BEAM-TXT WITH NO ADVANCING.
ACCEPT BEAM.
IF BEAM = "ALL DONE" GO TO 950-EOF.

DISPLAY DISP-TXT WITH NO ADVANCING.
ACCEPT DISP.
IF DISP = "ALL DONE" GO TO 950-EOF.

DISPLAY PRICE-TXT WITH NO ADVANCING.
ACCEPT PRICE.
IF PRICE = "ALL DONE" GO TO 950-EOF.

6-4 Sample COBOL Programs

900-PRINT-MESSAGES.

950-EOF.

999-EOJ.

IF DAB-W-STATE = DTR-K-STATE-MSG
CALL "DTMSG" USING DAB

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

DISPLAY MSGBUF
IF DAB-W-ERR-SEV = SEV-K-SEVERE GO TO 999-EOJ.

IF DAB-W-STATE = DTR-K-STATE-LINE
CALL "DTLINE" USING DAB

DISPLAY MSGBUF.
CALL "DTCONT" USING DAB.

CALL "DTPEOF" USING DAB.
GO TO 999-EOJ.

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

CALL "DTFINI" USING DAB.
DISPLAY "END OF PROGRAM".
STOP RUN.

6.2 A Sample Payroll Application

The program PAYROLL reads data from a file and creates two other files.
The program calls DATATRIEVE to get employee information stored in a
DATATRIEVE domain, HOURLY_LABOR.

The domain and record definitions for HOURLY_LABOR are as follows:

DOMAIN HOURLY_LABOR USING HOURLY_LABOR_REC ON LABOR. DATi

RECORD HOURLY LABOR REC USING
01 PERSON. - -

05 ID
05 EMPLOYEE NAME

10 FIRST NAME

10 LAST NAME

05 DEPT
05 HOURLY RATE

PIC IS 9(5).
QUERY NAME IS NAME.

PIC IS x (10)
QUERY_NAME IS F NAME.
PIC IS X (10)
QUERY_NAME IS L_NAME.

PIC IS xxx.
PIC IS 99.99

EDIT_STRING IS $$$.99.

The program uses a port to read in records from DATATRIEVE. The
definition of the port is as follows:

Sample COBOL Programs 6-5

The PAYROLL program does the following:

• Reads data from the file TIMECARD.DAT

• Uses H_LABOR_PORT to pass records from the HOURLY_LABOR
domain to a record buffer

• Writes production data from TIMECARD.DAT to the file
FINISHED.DAT

• Uses data from the DATATRIEVE record and TIMECARD.DAT to
calculate the weekly employee salary

• Writes salary and other employee data to the file PAYROLL.LOG and
displays that information at the terminal

The following Task Builder command file creates the task image on an
RSX-IIM-PLUS system:

PAYROLL,PAYROLL/-SP=PAYROLL,
LB: [1,l]C81LIB/LB,
LB: [l,l]DTCLIB/LB:CICOB:NCIIM:NOLC,
LB: [l,l]DTCLIB/LB
/
UNITS=lO
GBLPAT=PAYROLL:LUNMAP:177700:177777
1/

Following is the program PAYROLL:

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROLL.

**
* In this example, the program reads data
* from a sequential file and uses information
* from a DATATRIEVE domain to create log files.

*
*
*

**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.

PDP--ll.
PDP--ll.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT FINISHED-GOODS ASSIGN TO "FINISHED.DAT"

FILE STATUS IS FNSH-GDS-STATUS.

SELECT TIME-CARD-FILE ASSIGN TO "TIMECARD.DAT"
FILE STATUS IS TIME-STATUS.

SELECT PAYROLL-LOG-FILE ASSIGN TO "PAYROLL. LOG"
FILE STATUS IS PAYROLL-STATUS.

DATA DIVISION.
FILE SECTION.

6-6 Sample COBOL Programs

FD
01

FD
01

FD

FINISHED-GOODS.
FINISHED-REC.
03 F-PRODUCT-NUMBER
03 FILLER
03 F-JOB-HRS
03 FILLER
03 F-JOB-COST

PAYROLL-LOG-FILE.
PAY-REC.
03 P-EMPLOYEE-NUMB~R

03 FILLER
03 P-EMPLOYEE-NAME
03 FILLER
03 P"':DEPT
03 FILLER
03 P-GROSS-PAY

TIME-CARD-FILE

PIC X(9) .
PIC XX.
PIC 999V9.
PIC XX.
PIC 9(4)V99.

PIC 9 (6) .
PIC XXX.
PIC X(20) .
PIC XXX.
PIC XXX.
PIC XXX.
PIC Z999V99.

RECORD VARYING FROM 18 TO 117 CHARACTERS
DEPENDING ON RECORD-LENGTH.

01 TIME-REC.
03 T-EMPLOYEE-NUMBER PIC 9 (5) .
03 T-JOB-COUNT PIC 99.
03 T-JOB-INFO OCCURS 10 TIMES.

05 T-PRODUCT-NUMBER PIC X(9) .
05 T-PRODUCT-HRS PIC 99.

WORKING-STORAGE SECTION.
01 NUMBER-STRING PIC X(5) VALUE SPACES.
01 TIME-STATUS PIC XX VALUE SPACES.
01 FNSH-GDS-STATUS PIC XX VALUE SPACES.
01 PAYROLL-STATUS PIC XX VALUE SPACES.
01 MSG-LEN PIC 9 (9) .
01 ERROR-CODE PIC 9 (9) .
01 RECORD-LENGTH PIC 999.
01 SUB1 PIC 999 COMP VALUE ZEROES.
01 TOTAL-HOURS PIC 99.
01 OVERTIME-PAY PIC 9999V99.
01 GROSS-PAY PIC 9999V99.
01 COUNTER PIC 99.

01 LINENO PIC 9.
01 COLNO PIC 9.

01 PERSON.
05 ID PIC IS 9 (5) .
05 EMPLOYEE-NAME.

10 FIRST-NAME PIC IS X(10) .
10 LAST-NAME PIC IS X(10) .

05 DEPT PIC IS XXX.
05 HOURLY-RATE PIC IS 99V99.
05 SUP-ID PIC IS 9 (5) .

* Copy the DATATRIEVE Access Block. *

COpy "DAB11.CBL".

Sample COBOL Programs 6-7

* Declare the variables. *

01 MSGBUF PIC X(80).
01 MSGLEN PIC 9(4) COMPo

01 NODE PIC X(31).
01 OPTIONS PIC 9(4) COMPo.

01 COMMAND PIC X(80) VALUE "SET DICTIONARY !CMD;".
01 JOB-RATE PIC 99V99.
01 DICTNY PIC X(80).

PROCEDURE DIVISION.
OOO-OPEN-FILES.

OPEN INPUT TIME-CARD-FILE.
OPEN OUTPUT PAYROLL-LOG-FILE.
OPEN OUTPUT FINISHED-GOODS.

010-INITIALIZE-INTERFACE.

*
*

Initialize the interface with DTINIT. Use DTCMD
to ready domains and ports.

*
*

MOVE NOSEMI TO OPTIONS.
DISPLAY "What node would you like to use? "

WITH NO ADVANCING.
ACCEPT NODE.
CALL "DTINIT" USING DAB STRLEN BUFLEN BY DESCRIPTOR NODE

BY REFERENCE OPTIONS.
DISPLAY "What dictionary would you like to use? "

WITH NO ADVANCING.
ACCEPT DICTNY.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND DICTNY.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE "READY HOURLY_LABOR; " TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE "READY H_LABOR_PORT WRITE;" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
PERFORM 900-PRINT-MESSAGES UNTIL

6-8 Sample COBOL Programs

DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

020-READ-TIME-CARD-FILE.
READ TIME-CAP,D-FILE AT END

GO TO 999-EOJ.
GO TO 030-GET-EMPLOYEE-RECORD.

021-CONT.
MOVE T-JOB-COUNT TO SUB1.
MOVE ZEROES TO TOTAL-HOURS.
PERFORM 040-STORE-FINISHED-GOODS UNTIL SUBl
PERFORM 050-WRITE-PAYROLL-LOG.
GO TO 020-READ-TlME-CARD-FILE.

030-GET-EMPLOYEE-RECORD.

ZEROES.

*
*
*

Pass a DATATRIEVE command that will find all employees
with a given employee number. Use a substitution
directive to pass the value in T-EMPLOYEE-NUMBER.

*
*
*

MOVE T-EMPLOYEE-NUMBER TO NUMBER-STRING.
MOVE "FOR HOURLY LABOR WITH ID EQ !CMD" TO COMMAND.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND
NUMBER-STRING.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

MOVE "STORE H_LABOR_PORT USING PERSON = PERSON;"
TO COMMAND.

CALL "DTCMD" USING DAB
BY DESCRIPTOR COMMAND.

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

IF DAB-W-STATE NOT = DTR-K-STATE-GETP GO TO lOO-NO-EMPLOYEE.
CALL "DTGETP" USING DAB

BY DESCRIPTOR PERSON
BY REFERENCE RECORD-LENGTH.

CALL "DTCONT" USING DAB.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

GO TO 021-CONT.

040-STORE-FINISHED-GOODS.

*
*

Move the job-class, product-number, and the number of
hours worked into FINISHED-REC. Write it out to the file.

*
*

MOVE T-PRODUCT-NUMBER (SUB1) TO F-PRODUCT-NUMBER.
MOVE T-PRODUCT-HRS (SUB1) TO F-JOB-HRS.
MULTIPLY T-PRODUCT-HRS (SUB1) BY HOURLY-RATE GIVING

F-JOB-COST.
WRITE FINISHED-REC.
ADD T-PRODUCT-HRS (SUB1) TO TOTAL-HOURS.
SUBTRACT 1 FROM SUB1.

Sample COBOL Programs 6-9

050-WRITE-PAYROLL-LOG.

*
*
*

If hours are greater than 40 for hourly worker, add on the
overtime pay. Move data into PAY-REC and write it
to the J:og file.

*
*
*

MULTIPLY TOTAL~HOURS BY HOURLY-RATE GIVING GROSS-PAY.
IF TOTAL-HOURS> 40 PERFORM 060-ADD-OVERTIME-PAY.
MOVE T-EMPLOYEE-NUMBER TO P-EMPLOYEE-NUMBER.
MOVE EMPLOYEE-NAME TO P-EMPLOYEE-NAME.
MOVE DEPT TO P-DEPT.
MOVE GROSS-PAY TO P-GROSS-PAY.
WRITE PAY-REC.
DISPLAY "Pay Record for Employee: It, P-EMPLOYEE-NUMBER.
DISPLAY" Name: It, P-EMPLOYEE-NAME.
DISPLAY "
DISPLAY "
DISPLAY "

Department: It, P-DEPT.
Gross Pay: It, P-GROSS-PAY.

060-ADD-OVERTIME-PAY.
SUBTRACT 40 FROM TOTAL-HOURS.
DIVIDE 2 INTO HOURLY-RATE.
MULTIPLY TOTAL-HOURS BY HOURLY-RATE GIVING OVERTIME-PAY.
ADD OVERTIME-PAY TO GROSS-PAY.

lOO-NO-EMPLOYEE.

* Alert operator if employee number is invalid. *

PERFORM 900-PRINT-MESSAGES UNTIL
DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

DISPLAY "NO EMPLOYEE WITH THIS NUMBER, CHECK IT".
DISPLAY T-EMPLOYEE-NUMBER.
GO TO 020-READ-TIME-CARD-FILE.

900-PRINT-MESSAGES.
IF DAB-W-STATE = DTR-K-STATE-MSG

CALL "DTMSG" USING DAB

DISPLAY MSGBUF

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

IF DAB-W-ERR-SEV = SEV-K-SEVERE GO TO 999-EOJ.

IF DAB-W-STATE = DTR-K-STATE-LINE
CALL "DTLINE" USING DAB

DISPLAY MSGBUF.
CALL "DTCONT" USING DAB.

6-10 Sample COBOL Programs

BY DESCRIPTOR MSGBUF
BY REFERENCE MSGLEN

999-EOJ.

* Shutdown interface, close files, and stop. *

CALL "DTFINI" USING DAB.
CLOSE FINISHED-GOODS.
CLOSE TIME-CARD-FILE.
CLOSE PAYROLL-LOG-FILE.
DISPLAY "
DISPLAY "END OF PAYROLL UPDATE PR9GRAM".
STOP RUN.

Sample COBOL Programs 6-11

Chapter 7

Sample BASIC Programs

This chapter contains several sample BASIC programs that call
DATATRIEVE. These programs show how you can call DATATRIEVE
to perform information management tasks.

7.1 Formatting a Report

The program COLUMNS creates a 2-column report of data in a
DATATRIEVE domain. The program performs the following steps:

1. Prompts for the name of the domain, a record selection expression, and
the names of the fields that you want in the report

2. Writes the record stream into a buffer (BIGBUF) in 2-column format

3. Displays the report on the screen

The program also contains an error handler to trap a CTRIlC entered at the
terminal.

You may want to edit the program and change parameters, such as the
number and width of columns and the number of lines per page. You can
also modify the program to write the output to a file: include an OPEN
statement and add PRINT #1% statements wherever PRINT statements
occur in this program.

The following Task Builder command file creates the task image on an
RSX-11M-PLUS system:

Sample BASIC Programs 7-1

SY:COLUMNS/CP=SY:COLUMNS,
LB: [1,I]BP20TS/LB,
LB: [1,I]DTCLIB/LB:CIBAS:NCI1M:NOLC,
LB: [1,1]DTCLIB/LB
I
UNITS = 15
ASG = TI:13:15
ASG = SY:5:6:7:8:9:10:11:12
GBLPAT=COLUMNS:LUNMAP:001700:000000
EXTTSK= 512
II

Following is the program COLUMNS:

100 %INCLUDE 'DAB11.B2S'

DECLARE WORD COUNTER, LENGTH, I, J, K, SEV

COMMON (Buf) STRING MSGBUF = 80%,
COMAND = 80%,
RSE = 80%,
LST = 80%,
NODE = 30%,
DICT = 30%,
DOMAIN = 30%,
BIGBUF (2%, 35%)
HEADERS (5%) = 35%

! Set up error handler to trap CTRL/C.
! The error handling is done at line 8000

VARIABLE X = CTRLC
ON ERROR GOTO 8000

PRINT "PRESS CTRL/C AT ANY TIME TO QUIT."
PRINT

! Choose DECnet node.

&

&

&

&

&

&

&

35%,

500 LINPUT "What node would you like to use"; NODE
CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, NOSEMI)
GOSUB Message

IF DAB$W_STATE = DAB$K_STATE_INIT
THEN

&

PRINT "Try another node or press CTRL/C to quit."
CALL DTFINI (DAB)
GOTO 500

END IF

! Choose dictionary directory.

550 LINPUT "What dictionary would you like to use"; DICT
COMAND = "SET DICTIONARY !CMD;"
CALL DTCMD (DAB, COMAND, DICT)
GOSUB Message

IF SEV = SEV$K_ERROR
THEN

END IF

7-2 Sample BASIC Programs

PRINT "Error in dictionary name. Try again."
GOTO 550

! Choose domain.

600 CALL DTCMD (DAB BY REF, "SHOW DOMAINS;")

GOSUB Message
LINPUT "What domain would you like to use"; DOMAIN
CALL DTCMD (DAB, "READY !cMD;", DOMAIN)
GOSUB Message

! Check for error in user response.

IF SEV = SEV$K_ERROR
THEN

END IF

PRINT "Domain not ready. Try another domain."
GOTO 600

! Prompt for an RSE and field names.

700 CALL DTCMD (DAB, "SHOW FIELDS !CMD;", DOMAIN)
GOSUB Message

PRINT "Add a record selection expression to this FIND command."
LINPUT "FIND :"; RSE
LINPUT "Now enter a list of field names"; LST

! Instruct DATATRIEVE to print the chosen fields.
! Use the Message subroutine to print the record stream.

CALL DTCMD (DAB, "FOR !CMD PRINT !CMD;", RSE, LST)
750 IF DAB$W_STATE = DAB$K_STATE_MSG

THEN

800

END IF

SEV = DAB$W_ERR_SEV
CALL DTMSG (DAB, MSGBUF, LENGTH)
PRINT MSGBUF
GOTO 8000 IF SEV = SEV$K SEVERE
GOTO 700 IF SEV = SEV$K_ERROR
CALL DTCONT (DAB)
GOTO 750

! Check for errors.
IF DAB$W_STATE = DAB$K_STATE CMD
THEN

END IF

PRINT "Try again."
GOTO 700

CALL DTCONT (DAB) ! Skip first blank line.

! Set the counter of header lines to O.

COUNTER = 0%

! Move the header lines into the header buffer.

WHILE LENGTH <> 0
CALL DTLINE (DAB, MSGBUF, LENGTH)
HEADERS (COUNTER) = MSGBUF
CALL DTCONT (DAB)

NEXT
CALL DTCONT (DAB)

Sample BASIC Programs 7-3

2000
2100

FOR I l%OTO 2%
FOR J 1% TO 35%

IF DAB$W_STATE = DTR$K_STATE_LINE
THEN

CALL DTLINE (DAB, MSGBUF, LENGTH)
BIGBUF(I,J) = MSGBUF
CALL DTCONT (DAB)

ELSE BIGBUF(I,J) = "

2200 NEXT J

2300 NEXT I

2600 FOR K = 1% TO COUNTER

2800 NEXT K
2875 PRINT"

IF BIGBUF(2%,1%)
THEN

PRINT HEADERS(K)
ELSE

PRINT HEADERS(K) +" "+ HEADERS(K)

2900 FOR J = 1% TO 35%

2950 NEXT J

IF BIGBUF(l%,J)
THEN

GOTO 2950
ELSE

PRINT BIGBUF(l%,J) +" ,,+ BIGBUF(2%,J)

3200 GOSUB Message IF DAB$W_STATE = DTR$K_STATE MSG

3300 ! Use the predefined BASIC constant FF (Form Feed)
! to move to the next page of output.

IF DAB$W_STATE = DTR$K_STATE_LINE
THEN

PRINT FF
GOTO 2000

END IF
GOTO 8000

Message:
SEV = SEV$K_SUCCESS

WHILE (DAB$W STATE
(DAB$W:=STATE

DTR$K STATE MSG) OR &
DTR$K:=STATE:=LINE)

SELECT DAB$W_STATE
CASE DTR$K STATE MSG

SEV = DAB$W_ERR_SEV
CALL DTMSG (DAB, MSGBUF, LENGTH)
PRINT MSGBUF
GOTO 8000 IF DAB$W ERR SEV = SEV$K SEVERE

CASE DTR$K_STATE_LINE - - -

END SELECT

CALL DTCONT(DAB)
NEXT
RETURN

7-4 Sample BASIC Programs

CALL DTLINE (DAB, MSGBUF, LENGTH)
PRINT MSGBUF

7000 ! The error handler.

IF ERR = 28
THEN PRINT "»> A CTRL/C was typed."
ELSE PRINT "»> An error has occurred."

END IF

PRINT "»> Program ending."
CALL DTUNWD (DAB)
RESUME 8000

8000 CALL DTFINI (DAB)
8100 END

7.2 Calculating a Linear Regression Equation

The program LINEAR performs a linear regression on data from a
DATATRIEVE domain. You can use this program to check whether two
fields have a linear relationship, that is, whether there are numbers A and
B such that FIELDI = B * FIELD2 + A. The program performs the following
steps:

1. Prompts the user for the names of a domain and two fields

2. Prompts for a DATATRIEVE FIND command

3. Determines which records are used in the regression, using the FIND
command

4. Determines the regression coeffiCients and displays them at the terminal

5. Enables the user to see how close the relationship is to being linear, by
displaying the actual and estimated field values

Note the use of COUNTERBUF in this program. The routine DTGETP must
use an ASCII string parameter to retrieve values in a port. However, the
counter in the program must be an integer. Therefore, the program retrieves
a string, COUNTERBUF, from the port and maps it to a word integer,
COUNTER, which the program uses.

The following Task Builder command file creates the task image on an
RSX-IIM7""PLUS system:

Sample BASIC Programs 7-5

SY:LINEAR/CP=SY:LINEAR,
LB: [1,1]BP20TS/LB,
LB: [1,1]DTCLIB/LB:CIBAS:NC11M:NOLC,
LB: [l,l]DTCLIB/LB
I
UNITS = 15
ASG = TI:13:15.
ASG = SY:5:6:7:8:9:10:11:12
GBLPAT=LINEAR:LUNMAP:001700:000000
EXTTSK= 512
II

Following is the program LINEAR:

100 ! DTR Definitions file goes here

%INCLUDE "DABll.B2S"

DECLARE WORD RECLEN, LENGTH, SEV
MAP (CT) STRING COUNTERBUF = 2%
MAP (CT) WORD COUNTER
MAP (AREA) REAL VALUE1, VALUE2
MAP (AREA) STRING VALUES = 8%
DECLARE SINGLE AVERAGES (2) , &

SUMXY, &
SUMX2, &

TOP, &

BOTTOM, &
A, &

B

DECLARE INTEGER ANSWER

COMMON (Buf) STRING MSGBUF = 80%,
COMAND = 80%,
PORT 80%,
NODE = 30%,
DICT = 30%,
DOMAIN 30%,
FIELD1 = 30%,
FIELD2 = 30%

&

&

&

&

&

&

&

LINPUT "What node would you like to use"; NODE
CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, NOSEMI)
GOSUB Message

CO~~ND = 'DECLARE PORT PT1 01 N PIC 9(5) COMP.;'
CALL DTCMD (DAB, COMAND)
GOSUB Message

COMAND = "DECLARE PORT PT2 01 WHOLE."
CALL DTCMD (DAB, COMAND)
COMAND = "02 PART-A REAL. 02 PART-B REAL.;"
CALL DTCMD (DAB, COMAND)
GOSUB Message

LINPUT "What dictionary would you like to use"; DICT
COMAND = "SET DICTIONARY !CMD;"
CALL DTCMD (DAB, COMAND, DICT)
GOSUB Message

7-6 Sample BASIC Programs

Ready:
COMAND = "SHOW DOMAINS;"
CALL DTCMD (DAB, COMAND)
GOSUB Message
LINPUT "What domain do you want to use"; DOMAIN
COMAND = "READY !CMD;"
CALL DTCMD (DAB, COMAND, DOMAIN)
GOSUB Message

IF SEV = SEV$K_ERROR
THEN

PRINT "READY failed. Please try another domain."
GOTO Ready

END IF

Find collection:
PRINT "Please enter a command to form a collection"
LINPUT COMAND
CALL DTCMD (DAB, COMAND)
GOSUB Message

COMAND = "STORE PTl USING N
CALL DTCMD (DAB, COMAND)
GOSUB Message

COUNT;"

CALL DTGETP (DAB, COUNTERBUF, RECLEN)
CALL DTCONT (DAB)
GOSUB Message

GO TO Find collection IF COUNTER = 0%

!**&
FORMULAS USED TO FIND THE LINEAR EQUATION

LINEAR EQUATION: Y = B*X + A

&

&

&

&

Equation to arrive at value for B: &
(note: E summation &

n = number of data elements used) &

B E(X*Y) - n(average(X) * average(Y»

E(X**2) - n (average (x) **2)

Equation to arrive at value for A:

A = average(Y) - (B * average(X»

&

&

&

&

&

&

&

&

&

!***

Select_fields:
COMAND = "SHOW FIELDS FOR !CMDi"
CALL DTCMD (DAB, COMAND, DOMAIN)
GOSUB Message

LINPUT "What is the name of the independent field"; FIELDl
LINPUT "What is the name of the dependent field"; E'IELD2

Sample BASIC Programs 7-7

COMAND = "STORE PT2 USING BEGIN"
CALL DTCMD (DAB, COMAND)
COMAND = "PART-A = TOTAL !CMD"
CALL DTCMD (DAB, COMAND, FIELD1)
COMAND = "PART-B = TOTAL !CMDi ENDi"
CALL DTCMD (DAB, COMAND, FIELD2)
GOSUB Message
CALL DTGETP (DAB, VALUES, RECLEN)
CALL DTCONT (DAB)
GOSUB Message

SUMXY = 0.0
SUMX2 = 0.0

AVERAGES (1)
AVERAGES (2)

VALUE1 / COUNTER
VALUE2 / COUNTER

COMAND = "FOR CURRENT STORE PT2 USING BEGIN"
CALL DTCMD (DAB, COMAND)
COMAND = "PART-A = !CMDi PART-B = !CMD; END;"
CALL DTCMD (DAB, COMAND, FIELD1, FIELD2)
GOSUB Message

Getyort:
CALL DTGETP (DAB, VALUES, RECLEN)
CALL DTCONT (DAB)
SUMXY = SUMXY + (VALUE1 * VALUE2)
SUMX2 = SUMX2 + (VALUE1 **2)
GOTO Getyort IF DAB$W_STATE = DTR$K_STATE GETP
GOSUB Message

TOP = (SUMXY - (COUNTER * AVERAGES(1) * AVERAGES(2)))
BOTTOM = (SUMX2 - (COUNTER * AVERAGES(1)**2))

B = TOP/BOTTOM
A = AVERAGES (2) - (B * AVERAGES(1))

PRINT "Best estimate for linear relation is ... "
PRINT FIELD2i " = "i Ai" + "iB ;" * "iFIELD1

INPUT "Enter 1 if you want to see relationship"; ANSWER
GOSUB Show IF ANSWER = 1%

Select_option:
PRINT "Enter 1 to exit program"
PRINT "Enter 2 to start over with new domain"
PRINT "Enter 3 to start over with new collection"
PRINT "Enter 4 to use same collection,

INPUT D
ON D GOTO Quit, &

Ready, &
Find collection, &
Select fields &

OTHERWISE Invalid_entry

Invalid_entry:
PRINT "Invalid entry, try again"
GOTO Select_option

7-8 Sample BASIC Programs

different fields"

Show:
COMAND = 'FOR CURRENT PRINT !CMD, !CMD,'
CALL DTCMD (DAB, COMAND, FIELDl, FIELD2)
COMAND = '!CMD + !CMD * !CMD ("ESTIMATE");'
CALL DTCMD (DAB, COMAND, STR$(A) , STR$(B), FIELDl)

GOSUB Message
RETURN

! Message-handling subroutine:

Message:

Quit:

SEV = SEV$K_SUCCESS

WHILE (DAB$W STATE
(DAB$W:=STATE

SELECT DAB$W STATE

DTR$K STATE MSG) OR &
DTR$K:=STATE:=LINE)

CASE-DTR$K STATE MSG
SEV = DAB$W_ERR_SEV
CALL DTMSG (DAB, MSGBUF, LENGTH)
PRINT MSGBUF
GOTO Quit IF SEV = SEV$K_SEVERE

CASE DTR$K_STATE_LINE

END SELECT

CALL DTCONT(DAB)
NEXT
RETURN

CALL DTLINE (DAB, MSGBUF, LENGTH)
PRINT MSGBUF

CALL DTFINI (DAB)
END

Sample BASIC Programs 7-9

Chapter 8

Reference Section

This chapter is a reference section describing each component of the
DATATRIEVE-11 Call Interface. The previous chapters of this book tell
you how these components work together and how to develop programs
that use them. Use this section when you need specific information about a
particular routine.

8.1 DATATRIEVE Access Block

Your program specifies a DATATRIEVE Access Block (DAB) to contain
information that DATATRIEVE-11 must pass to the calling program.
Table 8-1 shows the fields of the DAB.

Table 8-1: The DATATRIEVE Access Block

Field Length

1 word

1 word

Description

Internal identifier. You do not need
to access this value.

The state of the DATATRIEVE-ll
interface. When DATATRIEVE
returns from a routine call, this
field contains a value specifying
the new state. Table 8-2 provides
more information on DATATRIEVE
states.

(continued on next page)

Reference Section 8-1

Table 8-1 (Cont.): The DATATRIEVE Access Block

Field Length

1 word

1 word

1 word

1 word

20 bytes

n1 bytes

n2 bytes

Description

A 2-byte value associated with a
DATATRIEVE message.

A value (0 to 4) representing
the severity of the error listed
in DAB$W _ERR_CODE.

Information passed from the
DATATRIEVE routine to the calling
program.

The length of a string passed
by DATATRIEVE to the calling
program. This is the length of the
string in DAB$V _STRING.

Not used. This area is reserved for
future use.

A string returned by a DATATRIEVE
routine. This field contains a
prompt string, port name, or other
string. The length of this buffer is
passed as the second parameter in
the DTINIT call. DAB$W _STR_
LEN contains the actual length
of the string stored in DAB$V_
STRING. In the sample DAB inclu­
sion files, the length of this field is
30 bytes.

For internal use only. You should
not access this field. The length
of this field is passed as the third
parameter to DTINIT. In the sample
DAB inclusion files, the length of
this field is 150 bytes.

The following sections explain some of these fields in more detail.

8-2 Reference Section

8.1.1 DATATRIEVE-11 States

This section and Section 8.2 describe the DATATRIEVE-ll states and
routines. Section 8.2 describes the concept of the state and shows how states
are used in your program. Note that states and routines are closely related.
The current state determines the set of permissible or required routine calls,
and the action of the current routine determines the state when the routine
finishes executing. Therefore, the descriptions of the states include a list
of the routines associated with them. Similarly, each routine description
specifies the states associated with the routine. Table 8-2 describes the
DATATRIEVE states.

Table 8-2: The DATATRIEVE States

DATATRIEVE enters
this state when:

A DTINIT call fails.

DTFINI has executed
successfully.

Waiting for the next
command line.

Waiting for the program
to enter a value in
response to a prompt.

There is a print line
ready for the program to
display.

DATATRIEVE expects
one of the following
actions:

Call DTINIT again to
initialize the interface.

Call DTFINL

Call DTCMD to pass
DATATRIEVE a command
line.

Call DTPVAL to supply
the value in response to
the prompt.

Call DTLINE to obtain
the text of the print line.

Call DTCONT to continue
execution at the next
state. This action is
required.

(continued on next page)

Reference Section 8-3

Table 8-2 (Cont.): The DATATRIEVE States

All states

DATATRIEVE enters
this state when:

DATATRIEVE has a
message which the
program can retrieve.
The message number
and its severity have
been placed in the DAB.

DATATRIEVE has a
record for the program
to retrieve.

Waiting for your pro­
gram to pass a record to
DATATRIEVE.

8.1.2 Error Codes and Error Severity

DATATRIEVE expects
one of the following
actions:

Call DTMSG to retrieve
the message and place it
in the program's buffer.

Call DTCONT to continue
execution to the next
state. This action is
required.

Call DTGETP to place a
DATATRIEVE record in
the record buffer.

Call DTCONT to continue
execution at the next
state. This action is
required.

Call DTPUTP to pass a
record to DATATRIEVE.

Call DTPEOF to pass
an end-of-file marker to
DATATRIEVE.

Call DTUNWD to unwind
to DTR$K_STATE_CMD.

Call DTFINI to end the
DATATRIEVE session.

After entering the message state, DATATRIEVE places a 2-byte binary
value in the DAB$W_ERR_CODE field of the DAB. You can test this
value to detect specific errors. DATATRIEVE also places a severity code
in the DAB$W _ERR_SEV field. Note that the even numbers signify error
conditions and the odd numbers signify success conditions.

8-4 Reference Section

Table 8-3: The DATATRIEVE Error Severity Codes

o
1

2

3

4

Severity is:

WARNING

SUCCESS

ERROR

INFORMATION

SEVERE ERROR

Your program can test for the severity of each error. A severity of ERROR
usually means that the DATATRIEVE command or statement did not
execute properly. Often, your program can recover from this kind of error by
trying another DATATRIEVE command or statement. A severity of SEVERE
ERROR sometimes means that an error occurred in the Call Interface. It
also can occur if DATATRIEVE cannot continue because of an error in a
subroutine call, such as the wrong number of arguments. It is a good idea to
stop program execution in this case.

8.1.3 Flags

The bits in the field DAB$W _FLAGS contain information about the Call
Interface. These flags allow your program to access that information.
Table 8-4 shows the meaning of each flag bit.

Table 8-4: The Flags Field of the DATATRIEVE Access Block

Flag name Value

1

2

This flag is set if:

The DAB is initialized and the
link. to the DATATRIEVE server
is established. Testing this flag
serves much the same function
as testing for a state of DTR$K_
STATE_INIT.

The interface is connected to a
DATATRIEVE-ll server, not a
VAX DATATRIEVE server.

(continued on next page)

Reference Section 8-5

Table 8-4 (Cont.): The Flags Field of the DATATRIEVE Access Block

Flag name Value

4

8

16

8.1.4 The String Buffer

This flag is set if:

The state is DTR$K_STATE_
PMPT and the prompt in the
string buffer is a prompt for a
password. You can test for this
flag in order to suppress the
echoing of the password when it is
typed.

The DAB string buffer, DAB$V_
STRING, has overflowed.

The user's buffer has overflowed
after a call to DTMSG, DTLINE,
or DTGETP. That is, the message,
print line, or record was too large
to fit in the buffer the program
declared for it.

The DAB$V _STRING field (called the string buffer) of the DAB contains a
prompt string or port name. The length of the string buffer is established by
a parameter passed to DTINIT. When DATATRIEVE is waiting for a value
or record to be passed, it places the appropriate prompt in this buffer. Your
program ~an then display the contents of the buffer to prompt for the value.
Table 8-5 shows these states and the contents of the string buffer for each.

Table 8-5: Contents of the DAB$V_STRING Field

State

DTR$K_STATE_CMD

DTR$K_STATE_PVAL

DTR$K_STATE_GETP

DTR$K_STATE_PUTP

Contents of DAB String Buffer

Command prompt string

Value prompt string

Port name string

Port name string

Some useful points in using the DAB$V _STRING field of the DAB are as
follows:

• If a DATATRIEVE command causes a string to overflow the string
buffer, the DAB$M_STR_OVERFLOW flag in DAB$W _FLAGS is set.

8-6 Reference Section

• The port name (for DTR$K_STATE_GETP and DTR$K_STATE_PUTP)
is always truncated to 8 characters. If the length of the string buffer is
less than 8 bytes, then the port name is truncated and the overflow flag
is set.

• When DATATRIEVE places a string in the buffer, it places the string's
length in the DAB$W _STR_LEN. If the string is shorter than the buffer,
the buffer is filled on the right with blanks.

8.2 DATATRIEVE-11 Routines

This section describes the callable DATATRIEVE routines. Each routine
description includes a summary of the routine's function, the calling
sequence (format), list of parameters, associated states, possible error
messages, and a brief example. For an explanation of how to use the routine
in a program, see Chapter 4. For complete examples in specific languages,
see Chapters 5 through 7.

The Argument List

The argument list passed to a DATATRIEVE routine consists of a series of
word addresses pointing to a set of parameters. The DATATRIEVE routines
accept only two types of parameters: word integers and ASCII character
strings. In the following routine descriptions, string parameters are enclosed
in angle brackets. In languages that support string descriptors, such as
COBOL and BASIC, the argument list entry for a string parameter is an
address pointing to the descriptor for the string that you are passing to
the routine. In languages that pass strings by specifying an address and
a length, such as FORTRAN, you must include both values in the call to
refer to the parameter. Thus, each parameter listed here in angle brackets
is represented by two values in a FORTRAN program.

Figure 8-1 shows the structure of a FORTRAN argument list. Each line
represents a 16-bit word.

Reference Section 8-7

Figure 8-1: Argument List for DATATRIEVE-11 Routines

16 a

n : Number of arguments
1---------1

parameter 1 : Address of parameter 1

parameter 2 : Address of parameter 2

parameter n : Address of parameter n

ZK-0969A-HC

If you are writing programs in a high-level language not discussed in
this book or in MACRO-II assembly language, design your interface to
DATATRIEVE so that the argument list follows the FORTRAN conventions.

8-8 Reference Section

OTCMO

DTCMD

Format

DTCMD passes a command line to DATATRIEVE. It is the main mechanism
for executing a DATATRIEVE command or statement from your program.
The command-str parameter can be a partial command or statement, a
complete command or statement, or a series of commands and statements
separated by semicolons.

After DTCMD executes, the string buffer in the DAB (DAB$V _STRING)
contains the command prompt generated by the DATATRIEVE command
or statement. For example, if DATATRIEVE executes a SET DICTIONARY
command, it places the prompt remDTR> in the string buffer. If you have
passed a partial command, DAB$V _STRING contains the CON> prompt.

CALL OrCMO (dab, <command-str> [, <arg-str> ...])

Parameters

dab
The DATATRIEVE Access Block for this call.

command-str
A DATATRIEVE command string. Passed by descriptor (COBOL and
BASIC) or by an address and length (FORTRAN).

arg-str
A substitution string. When command-str contains the !CMD sequence,
DATATRIEVE inserts the arg-str parameters in place of !CMD in the
order that they appear in the parameter list. That is, the first arg-str is
substituted for the first occurrence of !CMD and so on. This parameter
is passed by descriptor (COBOL and BASIC) or by an address and length
(FORTRAN). You cannot use more than five substitution strings in one call
to DTCMD.

Reference Section 8--9

DTCMD

Associated States

Examples

• Call DTCMD when the state is DTR$K_STATE_CMD.

• The DATATRIEVE command that you pass to DTCMD determines the
state after successful execution.

FORTRAN:

CHARACTER*30 DOMAIN
INTEGER*4 DOMLEN

WRITE (5,1000)
1000 FORMAT (' Enter the domain you want to use: ' ,$)

READ (5,2000) DOMLEN, DOMAIN
2000 FORMAT (Q,A)
100 CALL DTCMD (DAB, 'READY !CMD WRITE;', 17, DOMAIN, DOMLEN)

COBOL:

Data division:

01 WS-COMMAND-LINE PIC X(80) VALUE "SET DICTIONARY !CMD;".
01 DICTNY PIC X(30).

Procedure division:

DISPLAY "What dictionary would you like to use?
WITH NO ADVANCING.

ACCEPT DICTNY.
CALL "DTCMD" USING DAB

BY DESCRIPTOR WS-COMMAND-LINE
BY DESCRIPTOR DICTNY.

8-10 Reference Section

BASIC:

130 COMMON (Buf) STRING COMAND 80%

200 COMAND = "DECLARE PORT PT2 01 WHOLE."
CALL DTCMD (DAB, COMAND)
COMAND = "02 PART-A REAL. 02 PART-B REAL.;"
CALL DTCMD (DAB, COMAND)

DTCMD

Reference Section 8-11

DTCONT

DTCONT

Format

Parameter

If you call a DATATRIEVE routine that passes information to your pro­
gram (DTLINE, DTMSG, DTGETP), the routine does not change the
DATATRIEVE state. In these cases, you call DTCONT to continue.
DTCONT simply causes DATATRIEVE to continue execution until it enters
the next appropriate state.

For example, assume you pass a PRINT command to DATATRIEVE using
DTCMD. Now you wish to retrieve the resulting print lines and display
them. You must write a loop that includes the following:

1. A test for the state. Initially, the state is DTR$K_STATE_LINE.

2. A call to DTLINE. This call retrieves the next line from the print line
buffer. After it executes, the state is still DTR$K_STATE_LINE.

3. A language statement to print the line, such as PRINT BUF.

4. A call to DTCONT. This call returns DATATRIEVE to the appropriate
state.

If the state is still DTR$K_STATE_LINE, there are more lines to
display, and looping continues.

If it is DTR$K_STATE_MSG, DATATRIEVE has placed a message
in your program's buffer. You should check for success and exit from
the loop.

CALL DTCONT (dab)

dab
The DATATRIEVE Access Block for this call.

8-12 Reference Section

DTCONT

Associated States

Example

• You can call DTCONT when the state is one of the following:

DTR$K_STATE_MSG

DTR$K_STATE_LINE

DTR$K_STATE_GETP

• After DTCONT executes successfully, DATATRIEVE returns to a state
determined by previous commands.

This FORTRAN example shows a loop that calls DTLINE to retrieve a print
line and place it in the buffer LINBUF. Then the program displays the line
on the screen and calls DTCONT to proceed. This loop continues execution
until DATATRIEVE reaches a different state. If there is no call to DTCONT,
DATATRIEVE remains at the state DTR$K_STATE_LINE and puts the
same line of text into LINBUF for each call to DTLINE.

20 IF (DABSTA .EQ. DBSLIN) THEN

END IF

CALL DTLINE (DAB, LINBUF, 80, LEN)
WRITE (5,*) LINBUF
CALL DTCONT (DAB)
GO TO 20

Reference Section 8-13

DTFINI

DTFINI

Format

Parameter

Your program calls DTFINI to end the DATATRIEVE session. The rou­
tine works like the DATATRIEVE EXIT command. DTFINI finishes all
domains, releases all collections, tables, and variables, and shuts down the
DATATRIEVE Call Interface.

CALL DTFINI (dab)

dab
The DATATRIEVE Access Block for this call.

Associated States

Example

• You can call DTFINI when DATATRIEVE is in any state.

• Mter DTFINl executes successfully, your program is no longer connected
to DATATRIEVE.

1000 CALL DTFINI (DAB)
END

8-14 Reference Section

DTGETP

DTGETP

Format

You transfer records between your calling program and DATATRIEVE using
ports. You define a port as a record buffer in your program. You also define
the port in DATATRIEVE using the DEFINE PORT or DECLARE PORT
command. Your program and DATATRIEVE can then access the port to
send and receive records. Your program retrieves a record from a port using
DTGETP. Note the following:

• If the record passed is shorter than the length of record-buf,
DATATRIEVE does not use fill characters to fill the buffer.

• If the record is longer than the buffer, DATATRIEVE fills the buffer,
truncates the record, and sets the flag DAB$M_BUF _OVERFLOW.

Mer DTGETP executes, the DAB$V _STRING buffer contains the name of
the associated port.

CALL DTGETP (dab, <record-but>, record-len)

Parameters

dab
The DATATRIEVE Access Block for this call.

record-buf
The buffer to contain the port record. Passed by descriptor (COBOL and
BASIC) or by an address and a length (FORTRAN).

record-len
DATATRIEVE places the length of the record passed to record-buf into this
parameter.

Reference Section ·8-15

DTGETP

Associated States

Example

• You can call DTGETP when the state is DTR$K_STATE_GETP.

• After DTGETP executes successfully, the state is still DTR$K_STATE_GET
Your program must call DTCONT to return to the next state.

This COBOL example assumes that you have declared a port called
EMP-PORT in DATATRIEVE and a corresponding record buffer called
EMPLOYEE in your program. When the STORE statement has been exe­
cuted successfully, DATATRIEVE enters the state DTR$K_STATE_GETP.
Then the program calls DTGETP to retrieve the record and place it in the
buffer. Finally, a call to DTCONT brings DATATRIEVE to the next state.

MOVE "FOR EMPLOYEES WITH EMP-NUM EQ !CMD" TO WS-COMMAND-LINE.
CALL "DTCMD" USING DAB

BY DESCRIPTOR WS-COMMAND-LINE
BY DESCRIPTOR T-EMPLOYEE-NUMBER.

MOVE "STORE EMP-PORT USING EMPLOYEE = EMPLOYEE;"
TO WS-COMMAND-LINE.

CALL "DTCMD" USING DAB
BY DESCRIPTOR WS-COMMAND-LINE.

IF DAB-W-STATE NOT = DTR-K-STATE-PGET GO TO lOO-NOCALL "DTGETP" USING DAB
BY DESCRIPTOR EMPLOYEE
BY REFERENCE RECORD-LENGTH.

CALL "DTCONT" USING DAB.
PERFORM 900-PRINT-MESSAGES UNTIL DAB-W-STATE

NOT = DTR-K-STATE-MSG.

8-16 Reference Section

DTINIT

Format

DTINIT

DTINIT initializes the DATATRIEVE Call Interface. It sets up the
DATATRIEVE Access Block, establishes the DECnet node on which
DATATRIEVE will run, and specifies a set of DATATRIEVE options.

There are two options available. If options is 1, then no semicolon is re­
quired at the end of a command or statement. If options is 2, then the stan­
dard DATATRIEVE banner is displayed on the terminal when DATATRIEVE
is initialized at the remote or local node. A value of 0 disables both options,
and a value of 3 enables both.

To activate the DATATRIEVE Remote Server on more than one DECnet
node at once, declare a separate DAB and call DTINIT once for each node.

CALL OTINIT (dab, str-Ien, buff-len, <node-specification>,
options)

Parameters
dab
The DATATRIEVE Access Block for this call.

str-Ien
The length of the string buffer used internally by DATATRIEVE. This is
the value in the DAB$W _STR_LEN field of the DAB. This value is set to 30
bytes in the DAB inclusion file. You may change it, but it should be set to at
least 20 bytes.

buff-len
The length of the internal buffer DAB$V _BUFFER in bytes. This value is
set to 150 bytes in the DAB inclusion file. You may change it, but it must be
set to at least 132 bytes. The value you use for this parameter depends on
the size of the records that your program handles:

Reference Section 8-17

DTINIT

• If you will be reading or writing records using DTGETP or DTPUTP, and
those records are longer than 100 bytes, add 1 byte to buff-len for each
byte in the record beyond 100.

• If you will be printing a line greater than 100 bytes, do the same as for
records. Add 1 byte to buff-len for each byte beyond 100 in the longest
print line.

That is, buff-len should be the largest of the following values:

• 132
• 32 + maximum record size

• 32 + maximum print line length

If buff-len is less than 132, DTINIT will generate an error message. If
the buffer length is 132 or more, but the buffer is still not large enough to
accommodate the record or print line, DATATRIEVE does not generate the
error until it tries to place the record or print line in the buffer.

node-specification
The DECnet node specification that your program will use, if applicable
(that is, if using the Remote Call Interface). This positional parameter must
be blank if you intend to use the Local Call Interface. Only one Local Call
Interface call is allowed in a program.

The node that you specify must have a DATATRIEVE server installed. The
node specification is passed by descriptor (COBOL and BASIC) or by an
address and a length (FORTRAN).

The syntax for a node specification is as follows:

node["account passwordtl
][::]

node

account

password

options

Is either the name of a DECnet node or blank.

Is the user name or account number.

Is the user's password.

A value representing a set of options that you can specify when initializing
DATATRIEVE from your program. The following table lists the possible
values of this parameter and the meaning of each.

8-18 Reference Section

DTINIT

Table 8-6: DTINIT Options

Option Meaning

o - Semicolons required.
- DATATRIEVE banner is not displayed.

1 - Semicolons not required.
- DATATRIEVE banner is not displayed.

2 - Semicolons required.
- DATATRIEVE banner is displayed.

3 - Semicolons not required.
- DATATRIEVE banner is displayed.

Associated States

Examples

• Call DTINIT before calling any other DATATRIEVE routine. Before you
call DTINIT, DTR$W_STATE is 0 (unknown state).

• After DTINIT executes successfully, the state is normally
DTR$K_STATE_CMD.

The variables NOSEMI and BANNER are defined as having the values 1
and 2, respectively, in the DAB definition file for each language. Appendix A
lists the complete DAB definition files.

BASIC:

DECLARE WORD OPTIONS
COMMON (Buf) STRING MSGBUF = 80%,

NODE = 30%,
DICT = 30%,
DOMAIN = 30%,

OPTIONS = NOSEMI + BANNER

&

&

&

&

INPUT "What node would you like to use"; NODE
CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, OPTIONS)

Reference Section 8-19

DTINIT

COBOL variable declarations:

01 NODE PIC X(6) VALUE IS "BIGVAX".
01 OPTIONS PIC 9(9) USAGE IS COMPo

COBOL initialization call:

MOVE BANNER TO OPTIONS.
CALL "DTINIT" USING

DAB STRLEN BUFLEN
BY DESCRIPTOR NODE
BY REFERENCE OPTIONS.

FORTRAN:

CHARACTER*30 NODE
INTEGER*4 NOD LEN

WRITE (5,1000)
1000 FORMAT (' Enter node specification: $)

READ (5,2000) NODLEN, NODE
2000 FORMAT (Q,A)

CALL DTINIT (DAB, STRLEN, BUFLEN, NODE, NODLEN, NOSEMI)

8-20 Reference Section

DTLINE

DTLINE

Format

When DATATRIEVE prints a line, your program can obtain the text of the
line by calling DTLINE. DATATRIEVE places the print line text in the
buffer you specify.

CALL DTLINE (dab, <pline-buf>, p/ine-/en)

Parameters

dab
The DATATRIEVE Access Block for this call.

pline-buf
A buffer to contain the print line text. The text is padded on the right with
blanks. Passed by descriptor (COBOL and BASIC) or by an address and
length (FORTRAN). If the line is too long for the buffer, DATATRIEVE sets
the DAB$M_BUF _OVERFLOW bit in the flags field of the DAB.

pline-Ien
The length of the print line text, before padding.

Associated States

Example

• You can call DTLINE when the state is DTR$K_STATE_LINE.

• Mer DTLINE executes successfully, DTR$K_STATE_LINE is
still the state. Your program must call DTCONT to return to
DTR$K_STATE_CMD.

Section 4.5.2 contains an example for each language.

Reference Section 8-21

DTMSG

DTMSG

Format

Your program must call DTMSG to obtain the text of a message generated
by DATATRIEVE. When DATATRIEVE has an error message or an informa­
tional message to pass to your program, it places a binary error code and a
severity code in the DAB$W_ERR_CODE and DAB$W_ERR_SEV fields of
the DAB. Your program can check these fields for specific errors or for the
severity of the current error and take appropriate action.

At this point, DATATRIEVE enters the state DTR$K_STATE_MSG. This
state indicates that there is a message ready for the program to retrieve.
These messages include error messages, informational messages (such
as "Statement completed successfully."), and text resulting from SHOW
commands.

Your program should call DTMSG to obtain the message text and place it
in a buffer. After handling the message, your program can call DTCONT to
continue.

NOTE

DAB$W_ERR_CODE and DAB$W_ERR_SEV are defined only if
the current state is DTR$K_STATE_MSG. Therefore, if your pro­
gram tests these fields of the DAB during any other DATATRIEVE
state, the tests will be incorrect.

CALL DTMSG (dab, <msg-buff>, msg-Ien)

Parameters

dab
The DATATRIEVE Access Block for this call.

msg-buf
A message buffer. When your program calls DTMSG, DATATRIEVE places
the error message text in this buffer. This buffer is padded on the right with
blanks. Passed by descriptor (COBOL and BASIC) or by an address and a
length (FORTRAN).

8-22 Reference Section

DTMSG

msg-Ien
The true length of the error message text, before it is padded with
blanks. If the message is too long for msg-buf, DATATRIEVE sets the
DAB$M_BUF _OVERFLOW bit in the flags field of the DAB.

Associated States

Example

• You call DTMSG when the state is DTR$K_STATE_MSG.

• After DTMSG executes, the state is still DTR$K_STATE_MSG. Your
program must call DTCONT to return to the appropriate state.

For a complete example of a message-handling subroutine in each language,
see Section 4.5.2.

Reference Section 8-23

DTPEOF

DTPEOF

Format

Parameter

When DATATRIEVE is receiving records by means of a declared port, your
program calls DTPEOF to send an end-of-file marker to DATATRIEVE.
When DTPEOF executes successfully, DATATRIEVE finishes executing the
statement that is using the port and enters the state DTR$K_STATE_CMD.

CALL DTPEOF (dab)

dab
The DATATRIEVE Access Block for this call.

Associated States

Example

• You can call DTPEOF when the state is DTR$K_STATE_PUTP to send
an end-of-file marker to DATATRIEVE.

• Mer DTPEOF executes successfully, the state is DTR$K_STATE_CMD.

This FORTRAN example assumes that the record buffer YACHT contains
a complete record to pass to DATATRIEVE. If the user does not want to
continue storing records and the state is DTR$K_STATE_PUTP, the program
calls DTPEOF to pass the end-of-file marker to DATATRIEVE.

8-24 Reference Section

2200

3000

CALL DTPUTP (DAB, YACHT, 41)
CALL ME SAGE (SEV)

WRITE (5,2200)
FORMAT (' Do you wish
READ (5,3000) ANSWER
FORMAT (A)
IF «ANSWER .EQ. ' Y')

GO TO 150
END IF

to continue? [Y or NJ $)

.OR. (ANSWER .EQ. 'y')) THEN

200 IF (DABSTA .EQ. DBSPPU) CALL DTPEOF (DAB)
CALL MESAGE (SEV)
CALL DTFINI (DAB)

WRI TE (5, *) ,
END

*****PROGRAM COMPLETED*****'

DTPEOF

Reference Section 8-25

DTPUTP

DTPUTP

Format

When you declare or define a port, you associate the name of the port with a
record buffer declared in your program. Passing records to DATATRIEVE is
then a 2-step process:

1. Call DTCMD, passing a DATATRIEVE statement that establishes a
record stream using the port.

2. Call DTPUTP to pass a record from the program's record buffer through
the port to DATATRIEVE. DATATRIEVE uses the port to associate a
DATATRIEVE record structure with the contents of the record buffer.

CALL DTPUTP (dab, <record-but»

Parameters

dab
The DATATRIEVE Access Block for this call.

record-but
The record buffer in which your program stores the record to be passed to
DATATRIEVE. Passed by descriptor (COBOL and BASIC) or by an address
and a length (FORTRAN).

Associated States

• You can call DTPUTP when the state is DTR$K_STATE_PUTP.

• After DTPUTP executes successfully, DTR$K_STATE_PUTP is still the
state. You must call DTPEOF to end the record stream or call DTPUTP
to pass another record.

8-26 Reference Section

Example

DTPUTP

In this COBOL program, the paragraph 600-GET-RECORD prompts the
user for the fields of a record. These are placed in a record buffer called
YACHT. The program then calls DTPUTP to pass YACHT to DATATRIEVE.
Afterwards, it checks for messages and continues prompting for records. The
complete program appears in Chapter 6.

200-BEGINNING-OF-LOOP.
PERFORM 600-GET-RECORD.
CALL "DTPUTP" USING DAB BY DESCRIPTOR YACHT.
PERFORM 900-PRINT-MESSAGES UNTIL

DAB-W-STATE NOT = DTR-K-STATE-MSG AND
DAB-W-STATE NOT = DTR-K-STATE-LINE.

IF DAB-W-STATE = DTR-K-STATE-PUTP THEN
GO TO 200-BEGINNING-OF-LOOP.

DISPLAY "RECORD WAS NOT STORED.".
DISPLAY "PRESS RETURN TO CONTINUE.".
ACCEPT CONT.
CALL "DTCMD" USING DAB

BY DESCRIPTOR COMMAND.
GO TO 200-BEGINNING-OF-LOOP.

Reference Section 8-27

DTPVAL

DTPVAL

Format

When DATATRIEVE executes a statement that contains a prompting ex­
pression, it enters DTR$K_STATE_PVAL. This state requires that you pass
DATATRIEVE a value in response to the prompt. To do this, your program
calls DTPVAL, using the value as the parameter. The value must be an
ASCII string.

When DATATRIEVE is in the state DTR$K_STATE_PVAL, the prompt is
placed in the DAB$V _STRING field of the DAB. If the prompt string is too
large to fit in this field, the DAB$M_STR_ OVERFLOW bit is set in the flags
field.

CALL DTPVAL (dab, <value»

Parameters

dab
The DATATRIEVE Access Block for this call.

value
An ASCII string specifying the value to be passed in response to the
DATATRIEVE prompt. Passed by descriptor (COBOL and BASIC) or by an
address and length (FORTRAN).

Associated States

• Call DTPVAL when the state is DTR$K_STATE_PVAL.

• After DTPVAL executes successfully, it enters a state determined by
previous calls to DATATRIEVE.

8-28 Reference Section

Example

DTPVAL

The following BASIC code creates a collection and passes a MODIFY
statement to DATATRIEVE. To provide a value for the field that the
MODIFY statement specifies, the program displays the prompt string and
calls DTPVAL.

CALL DTCMD (DAB, "FIND YACHTS;")
CALL DTCMD (DAB, "MODIFY ALL RIG OF CURRENT;")

IF DTR$W_STATE = DTR$K_STATE_PVAL
THEN

PRINT DAB$V_STRING
LINPUT FIELD VALUE
CALL DTPVAL (DAB, FIELD_VALUE)

END IF

Reference Section 8-29

DTUNWD

DTUNWD

Format

Parameter

DTUNWD allows your program to abort commands. It discards the remain­
der of a command and returns DATATRIEVE to DTR$K_STATE_CMD. This
routine allows you to stop executing a command at a prompt, as interactive
DATATRIEVE does with CTRUZ. It can also be used to allow the user to
stop DATATRIEVE from printing records.

CALL DTUNWD (dab)

dab
The DATATRIEVE Access Block for this call.

Associated States

Example

• You can call DTUNWD when DATATRIEVE is in any state.

• After DTUNWND executes successfully, the state is DTR$K_STATE_CMD.

The following BASIC example illustrates how DTUNWD can be used to
cancel a STORE command.

8-30 Reference Section

CALL DTCMD (DAB, "STORE YACHTSi")
WHILE DTR$W STATE = DTR$K STATE PVAL

PRINT DAB$V_STRING - -

DTUNWD

PRINT "Enter a value or press RETURN to stop";FIELD_VALUE
IF FIELD VALUE = ""

THEN CALL DTUNWD (DAB)
ELSE CALL DTPVAL (DAB, FIELD_VALUE)

END IF
NEXT

Reference Section 8-31

Appendix A

Definitions of the DATATRIEVE Access Block

This appendix contains the definitions of the DATATRIEVE Access Block in
FORTRAN-77, COBOL-81, and BASIC-PLUS-2.

A.1 FORTRAN-77

C
C DATATRIEVE Access Block definitions -- FORTRAN-77
C

C

C DAB fields:
C

C

INTEGER*2 DAB, DABSTA, DABERR, DABSEV, DABFLA, DABLEN
LOGICAL*1 DABRES(20), DABSTR(30), DABBUF(150)
COMMON /DAB/ DAB, DABSTA, DABERR, DABSEV,
1 DABFLA, DAB LEN , DABRES, DABSTR, DABBUF

C Assign values to the DTINIT parameters:
C

C

INTEGER*4 STRLEN
PARAMETER (STRLEN = 30)

INTEGER*4 BUFLEN
PARAMETER (BUFLEN = 150)

C Assign values to the DATATRIEVE states:
C

INTEGER
1
2
3
4
5
6

DBSINI,
DBSCMD,
DBSPMT,
DBSLIN,
DBSMSG,
DBSPGE,
DBSPPU

Definitions of the DATATRIEVE Access Block A-1

PARAMETER (DBSINI 0,
1 DBSCMD 1,
2 DBSPMT 2,
3 DBSLIN 3,
4 DBSMSG 4,
5 DBSPGE 5,
6 DBSPPU 6)

C
C Assign values to the severity of errors:
C

INTEGER WARN,
1 SUCCES,
2 ERROR,
3 INFOR,
4 SEVERE

PARAMETER (WARN 0,
1 SUCCES 1,
2 ERROR 2,
3 INFOR 3,
4 SEVERE 4)

A.2 COBOL-81

* *
* DATATRIEVE Access Block Definitions -- COBOL-81 *
* *

01 DAB.
03 DAB-W-IDI PIC 9 (4) COMPo
03 DAB-W-STATE PIC 9(4) CaMP.
03 DAB-W-ERR-CODE PIC 9(4) CaMP.
03 DAB-W-ERR-SEV PIC 9(4) CaMP.
03 DAB-W-FLAGS PIC 9(4) CaMP.
03 DAB-W-STR-LEN PIC 9 (4) CaMP.
03 DAB-V-RESERVE PIC X(20) .
03 DAB-V-STRING PIC X(30) .
03 DAB-V-BUFFER PIC X (150).

* Parameters for the DTINIT call. *

01 STRLEN PIC 9(4) CaMP VALUE IS 30.
01 BUFLEN PIC 9(4) CaMP VALUE IS 150.
01 NOSEMI PIC 9(4) CaMP VALUE IS l.
01 BANNER PIC 9 (4) COMP VALUE IS 2.

* States. *

A-2 Definitions of the DATATRIEVE Access Block

A.3

01 DTR-K-STATE-INIT PIC 9 (4) COMP VALUE IS o.
01 DTR-K-STATE-CMD PIC 9 (4) COMP VALUE IS 1.
01 DTR-K-STATE-PVAL PIC 9(4) COMP VALUE IS 2.
01 DTR-K-STATE-LINE PIC 9(4) COMP VALUE IS 3.
01 DTR-K-STATE-MSG PIC 9(4) COMP VALUE IS 4.
01 DTR-K-STATE-GETP PIC 9(4) COMP VALUE IS 5.
01 DTR-K-STATE-PUTP PIC 9(4) COMP VALUE IS 6.

* Severity -- values for DAB-W-ERR-SEV *

01 SEV-K-WARNING PIC 9 (4) COMP VALUE IS o.
01 SEV-K-SUCCESS PIC 9(4) COMP VALUE IS 1.
01 SEV-K-ERROR PIC 9 (4) COMP VALUE IS 2.
01 SEV-K-INFO PIC 9 (4) COMP VALUE IS 3.
01 SEV-K-SEVERE PIC 9 (4) COMP VALUE IS 4.

BASIC-PLUS-2

NOTE

The BASIC DAB definition declares the DATATRIEVE routines
as external subroutines. This allows the compiler to check the
number and data type of your arguments. The exception is
DTCMD. Because DTCMD allows a variable length argument list,
it is not declared in the DAB file. This way, you do not have to
include null arguments for the five substitution strings.

Definitions of the DATATRIEVE Access Block A-3

The DATATRIEVE Access Block

String-length and buffer-length parameters for DTINIT:

DECLARE WORD CONSTANT RESERV 20%
DECLARE WORD CONSTANT STRLEN 30%
DECLARE WORD CONSTANT BUFLEN 150%
MAP (Acsblk) WORD DAB, &

DAB$W STATE, &
DAB$W-ERR CODE, &
DAB$W - ERR - SEV, &

DAB $W-F LAGS , &
DAB $W=S TR_LEN , &

STRING DAB$V RESERV = RESERV, &
DAB$V STRING STRLEN, &
DAB$V=BUFFER = BUFLEN

Options parameter for DTINIT:

DECLARE WORD CONSTANT NOSEMI 1%
DECLARE WORD CONSTANT BANNER 2%

DATATRIEVE states:

DECLARE WORD CONSTANT DTR$K STATE INIT 0%
DECLARE WORD CONSTANT DTR$K-STATE-CMD 1%
DECLARE WORD CONSTANT DTR$K-STATE-PVAL 2%
DECLARE WORD CONSTANT DTR$K-STATE-LINE 3%
DECLARE WORD CONSTANT DTR$K-STATE-MSG 4%
DECLARE WORD CONSTANT DTR$K-STATE-GETP 5%
DECLARE WORD CONSTANT DTR$K=STATE=PUTP 6%

! Error severity field:

DECLARE WORD CONSTANT SEV$K WARNING 0%
DECLARE WORD CONSTANT SEV$K-SUCCESS 1%
DECLARE WORD CONSTANT SEV$K-ERROR 2%
DECLARE WORD CONSTANT SEV$K=INFO 3%
DECLARE WORD CONSTANT SEV$K_SEVERE 4%

! DATATRIEVE routines:

EXTERNAL SUB DTCONT (WORD)
EXTERNAL SUB DTGETP (WORD, STRING, WORD)
EXTERNAL SUB DTINIT (WORD, WORD, WORD, STRING,
EXTERNAL SUB DTLINE (WORD, STRING, WORD)
EXTERNAL SUB DTMSG (WORD, STRING, WORD)
EXTERNAL SUB DTPEOF (WORD)
EXTERNAL SUB DTPUTP (WORD, STRING)
EXTERNAL SUB DTPVAL (WORD, STRING)
EXTERNAL SUB DTUNWD (WORD)

A--4 Definitions of the DATATRIEVE Access Block

WORD)

A
Aborting commands, DTUNWD, 4-31, 8-30
Access Block, DATATRIEVE

See DATATRIEVE Access Block
Accounts

default DECnet, 2-1
specifying to the Remote Terminal Interface, 2-1

Allocating LUNs, 3-9
Argument list, 8-7f

B
BASIC sample programs, 7-1 to 7-9
BUFLEN, parameter to DTINIT, 4-10

c
Call Interface, 1-5, 1-5f

closing, 4-31
creating menus, 1-7
initializing, 4-11, 4-12, 8-17
overview, 4-1
procedures used with, 1-7
tables used with, 1-7
writing programs that use, 4-1 to 4-31

Calls to DATATRIEVE
DTCMD, 4-13,8-9
DTCONT, 4-25,8-12
DTFINI, 4-31,8-14
DTGETP, 4-24,8-15
DTINIT, 4-12,8-17
DTLlNE, 4-15, 8-21
DTMSG, 4-16, 8-22
DTPEOF, 4-26,8-24
DTPUTP, 4-26, 8-26

Index

Calls to DATATRIEVE (cont'd.)
DTPVAL, 4-20, 8-28
DTUNWD, 4-31, 8-30

Closing the Call Interface, 4-31
!CMD, substitution directive, 4-13
COBOL sample programs, 6-1 to 6-11
Commands, passing, using DTCMD, 4-13,8-9
Compiling programs that call DATATRIEVE, 3-2
Components of DATATRIEVE-11, 1-1 to 1-2
Continuing, DTCONT, 4-25, 8-12
Copying domains, 2-3 to 2-4

o
DAB

See DATATRIEVE Access Block
DAB$M_BUF _OVERFLOW flag, 8-21
DAB$M_STR_OVERFLOW flag, 8-6
DAB$V_BUFFER, 8-17
DAB$V _STRING, 8-6t, 8-9
DAB$W_ERR_CODE, 4-17,8-4
DAB$W_ERR_SEV, 4-17,8-4,8-22
DAB$W_FLAGS, 8-5t
DAB$W_STR_LEN, 8-7,8-17
DAB fields, 8-5t

DAB$V_BUFFER, 8-17
DAB$V _STRING, 8-6t, 8-9
DAB$W_ERR_CODE, 4-17, 8-4, 8-22
DAB$W_ERR_SEV, 4-17,8-4,8-22
DAB$W_STR_LEN, 8-7,8-17

DATATRIEVE-11, components of, 1-1 to 1-2
DATATRIEVE Access Block (DAB), 4-1, 4-8t, 8-1,

8-11
declaring, 4-8

DATATRIEVE states, 4-1,4-7 to 4-8,8-3t
list of, 4-7

Index-1

DDMF
See Distributed Server

DDMF.TSK, 1-2
DECLARE PORT statement, 4-23
DECnet

default accounts, 2-1
node specification, 2-1,8-18
using the Remote Call Interface, 1-5
using the Remote Terminal Interface 1-3

DEFINE PORT command, 4-23 '
Distributed Server, 1-2, 1-3, 1-5f

using with the Remote Call Interface, 1-5
Domains

copying, 2-3 to 2-4
DTCLlB.OLB, DATATRIEVE object module library,

3-9
DTCLlB.OLB library, 1-2, 1-5
DTCMD routine, 8-9

format, 4-13
substituting variables with, 4-13

DTCONT routine, 4-25,8-12
DTFINI routine, 4-31,8-14
DTGETP routine, 4-24, 8-15
DTINIT routine, 4-10,4-12,8-17

options, 8-18t
DTLlNE routine, 4-15,8-21
DTMSG routine, 4-16, 8-22
DTPEOF routine, 4-26, 8-24
DTPUTP routine, 4-26,8-26
DTPVAL routine, 8-28
DTR.TSK, 1-2
DTUNWD routine, 4-31, 8-30

E
Ending the DATATRIEVE session, DTFINI, 4-31,

8-14
End-of-file marker, passing, DTPEOF, 4-26, 8-24
Error messages, retrieving, DTMSG, 4-16,8-22
Error severity codes, DAB$W_ERR_SEV, 4-17,8-4
Error status codes, DAB$W_ERR_CODE, 4-17,8-4
Event Flag Numbers, 3-9
EXIT command, 2-2
EXTRACT command, 2-4

F
FORTRAN sample programs, 5-1 to 5-18

Index-2

Inclusion files, DAB, 4-10
Initializing the Call Interface, 4-11, 4-12, 8-17
Interactive DATATRIEVE, 1-2

L
LCDDMF.TSK, 1-2
LEFT_RIGHT allocation, 2-3
Local Call Interface, 1-1,8-18
Local Server, 1-2
Logical Unit Numbers

allocating, 3-9
LUNMAP, area for LUN specification, 3-1 °
LUNs

See Logical Unit Numbers

M
MACRO-11 assembly language, 8-8
MAJOR __ MINOR allocation, 2-3
Menu interface, example, 5-1
Menus

creating with the Call Interface, 1-7
Messages, obtaining, DTMSG, 4-16, 8-22

N
Node specification, 2-1, 8-18

o
Object module libraries, 3-9
Obtaining messages, DTMSG, 4-16, 8-22
Obtaining print lines, DTLlNE, 4-15, 8-21
Obtaining records from DATATRIEVE, DTGETP,

4-24,8-15
Options, for DTINIT, 8-17,8-18t
Overlays, 3-12

p
Passing command lines to DATATRIEVE, DTCMD,

4-13,8-9
Passing end-of-file marker, DTPEOF, 4-26, 8-24
Passing records from DATATRIEVE, DTGETP, 8-15
Passing records to DATATRIEVE, DTPUTP, 4-26,

8-26
Passing values to DATATRIEVE, DTPVAL, 4-20,

8-28

Passwords
specifying to the Remote Terminal Interface, 2-1

Ports, 8-15
definition of, 4-22

Print lines, obtaining, DTLlNE, 4-15,8-21
Procedures

using with the Call Interface, 1-7
Prompting expressions, 4-20

R
Records

passing to DATATRIEVE, DTPUTP, 4-26,8-26
retrieving from DATATRIEVE, DTGETP, 4-24,

8-15
transferring, 4-22 to 4-30

REMDTR, 1-2, 1-3
Remote Call Interface

See Call Interface
Remote Terminal Interface, 1-1, 1-2

advantages of, 1-4
copying domains, 2-3 to 2-4
example, 2-2, 2-4
exiting, 2-2
invoking, 2-1
specifying an account, 2-1
specifying a node, 2-1
testing DATATRIEVE, 2-2 to 2-3
using REMDTR, 1-3

Retrieving messages, DTMSG, 4-16,8-22
Retrieving print lines, DTLlNE, 4-15,8-21
Retrieving records from DATATRIEVE, DTGETP,

4-24, 8-15
Routines, 8-7 to 8-30

DTCMD, 4-13, 8-9
DTCONT, 4-25,8-12
DTFINI, 4-31,8-14
DTGETP, 4-24,8-15
DTINIT, 4-12,8-17
DTLlNE, 4-15,8-21
DTMSG, 4-16, 8-22
DTPEOF, 4-26, 8-24
DTPUTP, 4-26,8-26
DTPVAL, 4-20,8-28
DTUNWD, 4-31, 8-30

Running programs that call DATATRIEVE, 3-1 to
3-12

s
Severity codes, DAB$W_ERR_SEV, 4-17, 8-4
Stallpoints, 4-1
Status code, DAB$W_ERR_CODE, 4-17, 8-4
Stopping command execution, DTUNWD, 4-31, 8-30
STORE statement

using, to store into a port, 4-24
STRLEN, parameter to DTINIT, 4-10
Substitution directive (!CMD), 4-13, 8-9

T
Tables

using with the Call Interface, 1-7
Task Builder

using, with Callable DATATRIEVE, 3-4 to 3-8
Task Builder command file

example of, on RSTS, 3-4
example of, on RSX-11 M-PLUS, 3-5

Terminal Interface
See Remote Terminal Interface

Transferring data, 4-15
Transferring records, 4-22 to 4-30

u
UNITS Task Builder qualifier, 3-10
Unwinding, DTUNWD, 4-31, 8-30

Index-3

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internall

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMOlE15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

lFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DATATRIEVE-11
Call Interface Manual

AA-U050C-TC

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

o
o
o
o
o
o
o
o

Ad<;litional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
NamelTitle Dept.

Company

Mailing Address

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111.11 •• 11.1111 •• 11" 111.11,111 1,1 •• 1,.1.1.111.11111

No Postage
Necessary
if Mailed

in the
United States

Reader's Comments DATATRIEVE-11
Call Interface Manual

AA-U050C-TC

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

o
o
o
o
o
o
o
o

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
NamelTitle Dept.

Company

Mailing Address

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

I
I
I
I
I

o Not Tear - Fold Here and Tape ---------------------------------------1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111,1111.11,11 .1111 111.11.111 1.1111111.1 ••• 1.11 •• 1

No Postage
Necessary
if Mailed

in the
United States

)0 Not Tear - Fold Here --

I
I
I
I
I
I
I
I
I
I

SHREWSBURY UBRARY
DIGITAL EQUIPMENT CORPORATION

SHR1-3/G18
DTN 237-3400

Printed in U.S.A.

~DmDDmD
1111111 111111111111111 11111 1111111111 11111111

0190070

