
COBOL-81
Language Reference Manual

Order No. AA-J434B-TC

COBOL-81
Language Reference Manual

Order No. AA-J434B-TC

May 1983

This document describes the COBOL-81 language.

OPERATING SYSTEM AND VERSION: RSX-11M V4

RSX-11M-PLUS V2

RST~E V8

SOFTWARE VERSION: COBOL-81 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright© 1983 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER'S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~n~nomo TM
DECwriter RSTS
DIBOL RSX

DEC MASS BUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DEC US Rainbow Work Processor

Chapter 1

Chapter 2

Chapter 3

Chapter 4

General Program Concepts
COBOL Language Elements
COBOL-81 General Format Notation
Source Program Reference Formats
Program Structure
Sample Format Entry Page

Identification Division
Format Entry Pages

Environment Division
Format Entry Pages

Data Division
Data Division Concepts

Format Entry Pages

Chapter 5 Procedure Division
Procedure Division Concepts

Format Entry Pages

Chapter 6 The COPY Statement
Format Entry Pages

Appendixes

Glossary

Master Index

COBOL-81 VAX-11 COBOL Reserved Words
Character Sets
File Status Key Values
Ensuring COBOL-81 Compatibility with VAX-11 COBOL

Book Map

Contents

To the Reader.

Intended Audience
Structure of This Document .
Associated Documents
Conventions Used in This Document .
Summary of Technical Changes
Incompatibilities with VAX-11 COBOL

Acknowledgment

Chapter 1 General Program Concepts

1.1 COBOL Language Elements

1.1.1 The COBOL-81 Character Set
1.1.2 COBOLWords

1.1.2.1 User-Defined Words.
1.1.2.2 System-Names
1.1.2.3 Reserved Words

1.1.2.3.1

1.1.2.3.2
1.1.2.3.3

1.1.2.3.4

Required Words (Key Words and Special
Characters)
Optional Words
Special-Purpose Words (Registers and
Constants)
Literals (Numeric and Non numeric)

1.1.3 Pl CTU RE Character-Strings
1.1.4 Separators

1.2 COBOL-81 General Format Notation (Meta-Language)

1.2.1 Uppercase and Special-Character Words
1.2.2 Lowercase Words ..
1.2.3 Brackets and Braces
1.2.4 Choice Indicators ..
1.2.5 The Ellipsis
1.2.6 The Separator Period .

Page
. . xi

. xi

. XI

. xi
xii
XII

. xiii

. xv

. 1-1

. 1-2

. 1-3

. 1-3

. 1-4

. 1-4

. 1-6

. 1-6

. 1-7

. 1-9

1-11
1-11

1-12

1-12
1-13
1-13
1-14
1-14
1-15

iii

1.3 Source Program Reference Formats ..

1.3.1 Terminal Format

1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.1.5

Source Line Structure
Line Continuation
Blank Lines
Comment Lines .. .
Short Lines and Tab Characters

1.3.2 ANSI Format

1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5

Source Line Structure
Line Continuation
Blank Lines
Comment Lines .. .
Short Lines and Tab Characters

1.4 Program Structure

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5

Division Header
Section Header .
Paragraph, Paragraph Header, Paragraph-Name
Data Division Entries
Declaratives

1.5 Sample Format Entry Page.

Chapter 2 Identification Division

2.1 PROGRAM-ID Paragraph
2.2 AUTHOR Paragraph .

Chapter 3 Environment Division

3.1 Configuration Section.

3.1.1 SOURCE-COMPUTER Paragraph.
3.1.2 OBJECT-COMPUTER Paragraph
3.1.3 SPECIAL-NAMES Paragraph

3.2 Input-Output Section

3.2.1 FILE-CONTROL Paragraph .. .

3.2.1.1 ACCESS MODE Clause.
3.2.1.2 ALTERNATE RECORD KEY Clause
3.2.1.3 ASSIGN Clause
3.2.1.4 FILE STATUS Clause .. .
3.2.1.5 ORGANIZATION Clause.
3.2.1.6 RECORD KEY Clause.
3.2.1.7 RESERVE Clause

3.2.2 1-0-CONTROL Paragraph ...

iv

1-15

1-16

1-16
1-17
1-17
1-17
1-18

1-19

1-19
1-20
1-21
1-21
1-21

1-22

1-23
1-23
1-24
1-25
1-25

1-26

. 2-2

. 2-3

. 3-2

. 3-2

. 3-3

. 3-5

3-10

3-10

3-13
3-15
3-16
3-17
3-18
3-19
3-20

3-21

Chapter 4 Data Division

4.1 Data Division Concepts .

4.1.1 Logical Concepts

4.1.2

4.1.1.1 Record Description
4.1.1.2 Level-Numbers ...
4.1.1.3 Multiple Record Definitions .

Physical Concepts

4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5

Categories and Classes of Data
Standard Alignment Rules .
Record Allocation ...
Location Equivalence .
Boundary Equivalence .

4.2 Data Division General Format and Rules .

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17

FD (File Description)- Complete Entry Skeleton.
SD (Sort-Merge File Description) - Complete Entry Skeleton
Data Description - Complete Entry Skeleton .
BLANK WHEN ZERO Clause
BLOCK CONTAINS Clause.
CODE-SET Clause ...
Data-Name Clause .
DATA RECORDS Clause
JUSTIFIED Clause
LABEL RECORDS Clause
Level-Number .
LINAGE Clause .
OCCURS Clause
PICTURE Clause
RECORD Clause
REDEFINES Clause
RENAMES Clause .

4.2.18 SIGN Clause ...
4.2.19 SYNCHRONIZED Clause .
4.2.20 USAGE Clause ...
4.2.21 VALUE IS Clause ..
4.2.22 VALUE OF ID Clause

Chapter 5 Procedure Division

5.1 Verbs, Statements, and Sentences

5.1.1
5.1.2
5.1.3
5.1.4

Compiler-Directing Statements and Sentences
Imperative Statements and Sentences.
Conditional Statements
Scope of Statements

5.2 Transfer of Program Flow

5.2.1 Explicit Changes
5.2.2 Implicit Changes

. 4-1

. 4-1

. 4-2

. 4-2

. 4-4

. 4-4

. 4-5

. 4-6

. 4-7

. 4-8
4-10

4-15

4-18
4-21
4-22
4-25
4-26
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-38
4-43
4-53
4-56
4-60
4-62
4-64
4-66
4-71
4-74

. 5-1

. 5-3

. 5-3

. 5-4

. 5-4

. 5-5

. 5-5

. 5-5

v

VI

5.3 Uniqueness of Reference

5.3.1 Qualification
5.3.2 Subscripts and Indexes.

5.3.2.1
5.3.2.2

Subscripting
Indexing ...

5.3.3 Identifiers
5.3.4 Ensuring Unique Condition-Names

5.4 Arithmetic Expressions

5.4.1 Arithmetic Operators
5.4.2 Formation and Evaluation of Arithmetic Expressions

5.5 Conditional Expressions ..

5.5.1 Relation Conditions

5.5.1.1 Comparison of Numeric Operands
5.5.1.2 Comparison of Nonnumeric Operands .
5.5.1.3 Comparisons of Index-Names or Index Data Items.

5.5.2 Class Condition
5.5.3 Condition-Name Condition
5.5.4 Switch-Status Condition
5.5.5 Sign Condition
5.5.6 Complex Conditions ..

5.5.6.1 Negated Simple Conditions
5.5.6.2 Combined and Negated Combined Conditions

5.5.7 Abbreviated Combined Relation Conditions
5.5.8 Condition Evaluation Rules

5.6 Common Rules and Options for Data Handling .. .

5.6.1 Arithmetic Operations
5.6.2 Multiple Receiving Fields in Arithmetic Statements .
5.6.3 The ROUNDED Option ..
5.6.4 The ON SIZE ERROR Option
5.6.5 CORRESPONDING Option
5.6.6 Overlapping Operands and Incompatible Data .

5.7 1-0 Status

5.7.1 The INVALID KEY Phrase
5.7.2 TheATENDPhrase
5.7.3 The FROM Option
5.7.4 The INTO Option.

5.8 Segmentation

5.8.1 Organization .. .
5.8.2 Using the Segmentation Facility

5.9 Procedure Division General Format and Rules .

5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6

ACCEPT Statement
ADD Statement . .
CALL Statement. .
CLOSE Statement.
COMPUTE Statement.
DELETE Statement ..

. 5-6

. 5-6

. 5-8

. 5-8
5-10

5-11
5-11

5-12

5-12
5-12

5-14

5-14

5-15
5-15
5-16

5-16
5-17
5-18
5-18
5-18

5-19
5-19

5-20
5-21

5-22

5-22
5-22
5-22
5-23
5-23
5-24

5-24

5-27
5-28
5-28
5-29

5-29

5-29
5-30

5-31

5-34
5-46
5-48
5-51
5-55
5-57

5.9.7 DISPLAY Statement. 5-59
5.9.8 DIVIDE Statement 5-66
5.9.9 EXIT Statement . . . 5-69
5.9.10 EXIT PROGRAM Statement. 5-70
5.9.11 GO TO Statement 5-71
5.9.12 IF Statement 5-73
5.9.13 INSPECT Statement. 5-76
5.9.14 MERGE Statement 5-82
5.9.15 MOVE Statement . 5-87
5.9.16 MULTIPLY Statement. 5-91
5.9.17 OPEN Statement ... 5-93
5.9.18 PERFORM Statement . 5-98
5.9.19 READ Statement .. . 5-107
5.9.20 RELEASE Statement . . 5-111
5.9.21 RETURN Statement . . 5-112
5.9.22 REWRITE Statement. . 5-114
5.9.23 SEARCH Statement . . 5-117
5.9.24 SET Statement 5-124
5.9.25 SORT Statement . 5-126
5.9.26 ST ART Statement . . 5-131
5.9.27 STOP Statement . 5-134
5.9.28 STRING Statement . 5-135
5.9.29 SUBTRACT Statement . 5-140
5.9.30 UNSTRING Statement . 5-143
5.9.31 USE Statement .. . 5-149
5.9.32 WRITE Statement . . 5-151

Chapter 6 The COPY Statement

Appendix A COBOL-81 IV AX-11 COBOL Reserved Words

Appendix B Computer Character Set

Appendix C FILE STATUS Key Values

Appendix D Ensuring COBOL-81 Compatibility with VAX-11 COBOL

D.1 Size of INDEX Data Items D-1
D.2 Alignment of COMP Data Items . . D-1
D.3 Detection of Invalid Decimal Data . D-7
D.4 Size of Special Registers (RMS-STS, RMS-STV, and LINAGE-COUNTER) . D-7
D.5 RMS-STS and RMS-STV Values D-7
D.6 Not Allowing Duplicate Keys in Indexed Files . D-9
D.7 Value for ESCape Character (RSTS/E Only) . D-9
D.8 Program-Names D-9

VII

Examples

Figures

Tables

viii

1-1 Size and Value of Numeric Literals . . . 1-10
1-2 Size and Value of Nonnumeric Literals 1-10
1-3 Line Continuation of Numeric and Nonnumeric Literals (Terminal Format) 1-17
1-4 Compiler Interpretation of Shortened Source Lines (Terminal Format) . 1-18
1-5 Line Continuation of Numeric and Nonnumeric Literals (ANSI Format). 1-20
1-6 Compiler Interpretation of Shortened Source Lines (ANSI Format) . 1-21
1-7 Incorrect Use ofTAB 1-22
4-1 Multiple Record Definition Structure. . . . 4-4
D-1 Changing a Simple Record to Ensure COMP Item Compatibility . D-2
D-2 Changing a Table to Ensure COMP Item Compatibility . D-4
D-3 Changing a Complex Record to Ensure COMP Item Compatibility . D-5
D-4 Including an RMS-STS Value Using the COPY Statement . D-8

1-1 COBOL Language Elements.
1-2 Sample General Format .
1-3 Terminal Program Reference Format .
1-4 ANSI Program Reference Format
1-5 Structure of a COBOL Program .
4-1 Hierarchical Record Structure
4-2 Level-Number Record Structure
4-3 Record Alignment Boundaries
4-4 Data Alignment Requirements Without and With Location Equivalence
4-5 Record Allocation Without and With Location Equivalence .
4-6 Effect of Boundary and Location Equivalence Rules on Sample Record
4-7 Storage Allocation for Sample Record ..
4-8 Record Allocation Without and With Boundary Equivalence
4-9 Logical Page Areas Resulting from a LINAGE Clause
4-10 Storage Format of COMP-3 Data Items .
5-1 PERFORM ... VARYING with One Condition .
5-2 PERFORM ... VARYING with Two Conditions
5-3 Valid and Invalid Nested PERFORM Statements
5-4 Format 1 SEARCH Statement with Two WHEN Phrases .

1-1 The COBOL-81 Character Set ..
1-2 COBOL-81 User-Defined Words
1-3 COBOL-81 System-Names
4-1 Classes and Categories of Data Items.
4-2 Data Items Requiring Alignment
4-3 Summary of PICTURE Clause Rules .
4-4 Using Sign Control Symbols in Fixed Insertion Editing.
4-5 Using Sign Control Symbols in Floating Insertion Editing
4-6 PICTURE Symbol Precedence Rules
4-7 Positive and Negative Signs for All Numeric Digits . . .

. 1-2

. 1-6
1-16
1-19
1-22
. 4-3
. 4-3
. 4-7
. 4-9
. 4-9
4-10
4-11
4-11
4-37
4-68

. 5-102

. 5-103

. 5-104

. 5-120

. 1-3

. 1-5

. 1-6

. 4-6

. 4-8
4-44
4-49
4-50
4-52
4-63

4-8
4-9
4-10
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

COMP and COMP SYNC Alignment Differences
Unscaled Data Items and Corresponding Storage Data Types.
Scaled Data Items and Corresponding Storage Data Types
Types and Categories of COBOL Statements
Contents of COBOL Sentences
Combinations of Symbols in Arithmetic Expressions .
Relational Operators and Corresponding True Conditions
How Logical Operators Affect Evaluation of Conditions .
Combinations of Conditions, Logical Operators, and Parentheses
Possible Combinations of Status Keys 1 and 2
Effects of CLOSE Statement Formats on Files by Category ..
Valid MOVE Statements.

5-10 Opening Available and Unavailable Sequential, Relative and Indexed Files
5-11 Allowable Input-Output Statements for Sequential, Relative, and Indexed

Files · ·
5-12 Validity of Operand Combinations in Format 1 SET Statements
B-1 ASCII Character Set

4-65
4-69
4-70
. 5-2
. 5-3
5-13
5-15
5-19
5-20
5-25
5-52
5-89
5-95

5-96
. 5-125
. . B-1

ix

To the Reader

Objectives

This manual describes the COBOL-81 language. It presents some general COBOL concepts and
explains the use of each COBOL-81 language element.

Intended Audience

This manual is for the experienced COBOL programmer. It does not attempt to teach the
COBOL language or operating system concepts and procedures. If you are a new COBOL user,
you should read introductory COBOL textbooks and take DIGITAL COBOL courses - either
self-paced or classroom.

Structure of This Document

The information in this manual is organized into six chapters. Supplementary information is
also provided in the appendixes and glossary.

The document map, which follows the title page, lists the content areas of each chapter and
appendix.

The master index at the end of this manual guides you to all the topics discussed in the
COBOL-81 documentation set.

Associated Documents

Within the COBOL-81 documentation set:

• The COBOL-81 RSTS/E User's Guide, Order No. AA-J435C-TC, or the COBOL-81
RSX-11MIM-PLUS User's Guide, Order No. AA-M179B-TC, describes how to compile,
debug, link, and run COBOL-81 programs. Your user's guide also discusses a variety of
topics of interest to COBOL programmers.

• The COBOL-81 Pocket guide, Order No. AV-H630C-TC, summarizes key information
from both this manual and the user's guide. The pocket guide lists all COBOL-81 lan­
guage formats, commands, reserved words, and character sets.

• The COBOL-81 RSTS/E Installation Guide/Release Notes, Order No. AA-L028D-TC, or the
COBOL-81 RSX-11M/M-PLUS Installation Guide/Release Notes, Order No. AA-M181C-TC,
describes the installation and certification procedures for the COBOL-81 compiler. Your
installation guide also contains release information that explains changes made to the
compiler.

• The PDP-11 COBOL to COBOL-81 Translator Utility, Order No. AA-N339A-TC, contains
information needed by users who have purchased the Translator Utility.

xi

Outside the COBOL-81 documentation set:

The system directory lists and describes all manuals in your operating system's documentation
set. One of the following directories can help you find the system information you need:

• RSTSIE Documentation Directory

• RSX-11M/RSX-115 Information Directory and Index

• RSX-11M-PLUS Information Directory and Index

Conventions Used in This Document

The following conventions apply to this manual:

Convention

$ COBOL 00

$File:

$

PAYROLL 00

PROCEDURE DIVISION,

BEGIN-PROC.

END- PROC.

Meaning

A symbol with a one- to three-character abbreviation
indicates that you must press a key on the terminal; for
example, RET and TAB indicate that you press the
RETURN key and the TAB key on your keyboard.

The symbol (crnuxJ indicates that you must press a key
labeled CTRL while you simultaneously press another
key; for example, (CTRL/C), (CTRL/O).

Black ink indicates all output lines or prompting charac­
ters that the system prints or displays. Red ink indicates
all user-entered commands.

A vertical series of periods, or ellipses, means that not all
the data a user would enter is shown.

Summary of Technical Changes

This section lists, by chapter and appendix, the major technical changes documented in the
COBOL-81 Language Reference Manual. These changes reflect additions and changes to the
COBOL-81 programming language.

Chapter 1:

1. Special registers LINAGE-COUNTER, RMS-STS, and RMS-STV

2. System-name additions (mnemonics for devices)

xii

Chapter 3:

3. Modification of SELECT clause to include relative files

4. Device-name and SWITCH clauses (SPECIAL-NAMES paragraph)

5. WINDOW option of the APPLY clause (1-0-CONTROL paragraph)

6. REEL/UNIT option of the RERUN clause (1-0-CONTROL paragraph)

7. Sort (or merge) files in SAME clause (1-0-CONTROL paragraph)

Chapter 4:

8. Sort/merge file description entry

9. New file description entry to include relative files

10. Minimum to maximum record size option of RECORD CONTAINS clause

11. LINAGE clause of file description entry

12. DEPENDING ON phrase of OCCURS clause

13. RENAMES clause of data description entry (level 66 items)

14. Condition-names in data description entry (level 88 items)

Chapter 5:

15. Qualification

16. Abbreviated combined relation conditions

17. Condition-name conditions

18. Extensions to the ACCEPT and DISPLAY statements to facilitate video forms design

19. CORRESPONDING phrase of the ADD, SUBTRACT, and MOVE statements

20. Separate formats and rules for EXIT and EXIT PROGRAM statements

21. Multiple receiving fields for arithmetic statements

22. VARYING phrase of the PERFORM statement

23. SORT, MERGE, RELEASE, and RETURN statements

Chapter 6:

24. REPLACING phrase of the COPY statement

Appendix A:

25. Modified reserved word list

Some formats that are not included in this list have minor rule modifications because of the new
features for this release.

Incompatibilities with VAX-11 COBOL

COBOL-81 is a subset of VAX-11 COBOL, but the two products have some incompatibilities
because of differences between the PDP-11 and the VAX-11 computer systems. Appendix D,
Ensuring COBOL-81 Compatibility with VAX-11 COBOL, lists and. describes all known
incompatibilities.

xiii

Acknowledgment

COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL
Committee as to the accuracy and functioning of the programming system and language. More­
over, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used herein are: FLOW-MATIC
(trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and 11, Data Auto­
mation Systems, copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Transla­
tor Form No. F28-8013, copyrighted 1959 by IBM; FACT, OSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL speci­
fications in programming manuals or similar publications.

xv

Chapter 1
General Program Concepts

This chapter contains general information about the language and structure of COBOL source
programs. It describes COBOL language elements, source program reference formats, notation
used in general formats, and program organization.

1.1 COBOL Language Elements

The character is the basic, indivisible unit of your COBOL program. To the COBOL-81 compiler,
a COBOL program is a stream of contiguous characters that is syntactically correct according to
the rules of the COBOL language. The compiler breaks down this continuous series of charac­
ters into character-strings and separators.

A character-string is any elementary unit of the COBOL language that provides information to
the compiler. There are various types of character-strings. Each type is carefully defined in the
COBOL language so that the compiler can only interpret it and use it in certain ways. For
instance, PROGRAM-ID, "Enter employee number: ",and 9(10)V99 each represent a different
type of character-string that appears in your source programs. Each of these character-strings
provides the compiler with a different type of information.

Separators are the space characters and "punctuation" characters that mark the boundaries of
character-strings. One of these separators, the period, also tells the compiler that it has reached
the end of a header, sentence, or statement in a COBOL source program.

Some parts of your source program provide no information to the compiler. The compiler
ignores comment lines and entries that make your program easier to understand and to main­
tain, but that do not add anything to program logic, data specifications, or device assignments.
In short, the compiler does not consider "documentation only" sections as part of your source
program.

Figure 1-1 illustrates how the compiler breaks down your source program into COBOL language
elements. The sections following Figure 1-1 first discuss the COBOL character set, and then
each COBOL language element in detail.

1-1

Figure 1-1: COBOL Language Elements

source program

character-strings@ separators @

r~~---..
COBOL words© literals@ PICTURE character-strings @

user-defined words ® ·~ -
system-names @ reserved words C8) numeric literals CD nonnumeric literals Q)

~.... ~
.._ I

.... , I

' I

required words ® optional words (0 special purpose words @\ /

~/ .------------\
key words @ special character words @ special registers® figurative constants@

Examples:

® comment-entry

1. AUTHOR.
I I
LEN TRASTMART.(fil]

u

®
® ® ® ® ® C0 CD

2.
11 II r--1 11 r--1
Ol@@TA:<-RATE~PIC 91.19(3) l,IALUE IS 1.253.(fil]

L...J L--.J LJ u u LJ

® ® ® ®® ®

® ®@@ ®
3. @@f1F' 1D-FLAdr:1 1zrnos11oISPLA) "Int.ialid data.".(fil]

L.J u u u [_.J L.J

® ®®® ® ®

® ® @CD ® ® ® ®
4.

n n D I I r--1 r-1
G'@IF LINAGE-COUNTER= so, WRITE HEADER-REC AFTER PAGE.ru

u uu L.J u LJ LJ u

® ®®® ® ® ® ®

1.1.1 The COBOL-81 Character Set

The COBOL-81 character set, shown in Table 1-1, is used to form character-strings and
separators.

The only components of a COBOL-81 program that can contain characters outside this set are
nonnumeric literals, comment-entries, and comment lines. Appendix B specifies the more
inclusive computer character sets these components can use.

1-2 General Program Concepts

Table 1-1: The COBOL-81 Character Set

Character Meaning

0, 1, ... , 9 digit
A, B, ... , Z letter
a, b, ... , z lowercase letter (equivalent to letter)
+ plus sign

- minus sign (hyphen)
* asterisk
I slash (stroke, virgule)
= equal sign
$ currency sign
> greater than symbol
< less than symbol

colon
- underline (underscore)

space
CT@ horizontal tab (equivalent to space)
(left parenthesis
) right parenthesis

'
comma (decimal point)

; semicolon
period (decimal point, full stop)

" quotation mark

Except in nonnumeric literals, the compiler treats lowercase letters as if they were uppercase.
Therefore a program can contain COBOL words without regard to case. For example, the com­
piler recognizes the COBOL words in each of the following pairs as identical:

WORKING-STORAGE Working-Storage
Input input
file-a FILE-A
INSPECT lnSpect

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms one of the
following:

• A user-defined word

• A system-name

• A reserved word

A system-name or user-defined word cannot be ·a reserved word. However, a program can use
the same COBOL word as both a user-defined word and a system-name. The compiler deter­
mines the word's class from its context.

1.1.2.1 User-Defined Words - A user-defined word is a COBOL word that you must supply to
satisfy the format of a clause or statement. This word consists of characters selected from the
set A through Z, 0 through 9, and hyphen (-). The hyphen can neither begin nor end a user-de­
fined word.

General Program Concepts 1-3

COBOL-81 recognizes 13 types of user-defined words. Those that define program resources are
grouped into sets. The letters preceding the word types show the set structure:

(A) alphabet-name

(B) condition-name

(B) data-name

(C) file-name

(D) index-name

level-number

(E) mnemonic-name

(F) paragraph-name

(G) program-name

(B) record-name

(H) section-name

segment-number

(I) text-name

All user-defined words in a program, except segment-numbers and level-numbers, can belong
to one and only one of these sets. User-defined words in each set must be unique, or defined
according to the rules for uniqueness of reference. (See Section 5.3, Uniqueness of Reference.)
However, any segment-number or level-number can be the same as any other segment-number
or level-number.

Except for section-names, paragraph-names, segment-numbers, and level-numbers, all
user-defined words must contain at least one alphabetic character.

Table 1-2 describes the COBOL-81 user-defined words.

1.1.2.2 System-Names - A system-name is a COBOL word that has been defined by DIGITAL to
refer to the program's operating environment. It is similar to a reserved word, except that its
use is "reserved" only in particular places in the program. Anywhere else in the program, it can
be used as a user-defined word. The compiler determines whether the word is a system-name
or a user-defined word from its context in the program.

Table 1-3 lists the 16 COBOL-81 system-names, and specifies their locations in the source
program.

1.1.2.3 Reserved Words - A reserved word can be used only as specified in the general formats.
It cannot be a user-defined word. See Appendix A, COBOL-81/VAX-11 COBOL Reserved
Words.)

There are three types of reserved words:

1. Required words

2. Optional words

3. Special-purpose words

1-4 General Program Concepts

Table 1-2: COBOL-81 User-Defined Words

User-Defined Word

Alphabet-Name

Condition-Name

Data-Name

File-Name

Index-Name

Level-Number

Mnemonic-Name

Paragraph-Name

Program-Name

Record-Name

Section-Name

Segment-Number

Text-Name

Purpose

Assigns a name to a character set and/or collating sequence. Alphabet-names
must be defined in the SPECIAL-NAMES paragraph. (See Section 3.1.3, SPECIAL­
NAMES Paragraph.)

Assigns a name to a value, set of values, or range of values in the complete set of
values that a data item can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names assigned in the SPECIAL­
NAMES paragraph to the "on" or "off" status of switches are also condition­
names.

Names a data item described in a data description entry. When specified in a gen­
eral format, data-name cannot be subscripted, indexed, or qualified unless speci­
fically allowed by the rules for that format.

Names a file connector. A file connector is the link between:

• A file-name and a physical file

• A file-name and its associated storage area

File description and sort-merge file description entries describe file connectors.

Names an index associated with a specific table.

Is a one- or two-digit number that describes a data item's special properties or its
position in the structure of a record. (See Section 4.1.1.1, Record Description, and
Section 4.1.1.2, Level-Numbers.)

Associates a name with a system-name, such as CONSOLE, or SWITCH. (See
Section 3.1.3, SPECIAL-NAMES Paragraph.)

Names a Procedure Division paragraph. (See Section 1.4.3.) Paragraph-names are
equivalent only if they are identical, that is, when they are composed of the same
sequence and number of digits and/or characters.

For example:

START-UP START-UP Equivalent
START-UP STARTUP Different
Start-up START-UP Equivalent
001-START-UP 01-START-UP Different
017 017 Equivalent
017 17 Different

Identifies a COBOL source program. Only the first six characters of program­
name are significant. (See Section 2.1, PROGRAM-ID Paragraph.)

Names a data item described with level-number 01or77.

Names a Procedure Division section. Section-names are equivalent only if they
are identical: when they are composed of the same sequence and number of dig­
its and/or characters. (See Section 1.4.3.)

Is a one- or two-digit number that classifies a Procedure Division section for seg­
mentation. In COBOL-81 programs, segment-numbers specify overlayable and
nonoverlayable segments. (See Section 5.8, Segmentation.)

Identifies library text in a COBOL library. (See Chapter 6, COPY Statement.)

General Program Concepts 1-5

Table 1-3: COBOL-81 System-Names

System-Name Location

CARD-READER SPECIAL-NAMES paragraph

CONSOLE SPECIAL-NAMES paragraph

CONTIGUOUS APPLY clause of the 1-0-CONTROL paragraph

DEFERRED-WRITE APPLY clause of the 1-0-CONTROL paragraph

EXTENSION APPLY clause of the 1-0-CONTROL paragraph

FILL-SIZE APPLY clause of the 1-0-CONTROL paragraph

ID VALUE OF ID clause of the file description entry

LINE-PRINTER SPECIAL-NAMES paragraph

MASS-INSERT APPLY clause of the 1-0-CONTROL paragraph

PAPER-TAPE-PUNCH SPECIAL-NAMES paragraph

PAPER-TAPE-READER SPECIAL-NAMES paragraph

PDP-11 SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs

PREALLOCATION APPLY clause of the 1-0-CONTROL paragraph

PRINT-CONTROL APPLY clause of the 1-0-CONTROL paragraph

SWITCH SPECIAL-NAMES paragraph

WINDOW APPLY clause of the 1-0-CONTROL paragraph

1.1.2.3.1 Required Words (Key Words and Special Characters) - A required word must be used
whenever the statement or clause containing it is used in a program.

There are two types of required words: key words and special character words.

1. Keywords

In general formats, key words are in uppercase and underlined.

In Figure 1-2, the keywords are COMPUTE, ROUNDED, SIZE, and ERROR.

Figure 1-2: Sample General Format

COMPUTE { rsult [ROUNDED] } ... = arithmetic-expression [ON SIZE ERROR stment]

2. Special Character Words

The arithmetic operators and relation characters are special character words. They are
not underlined in general formats.

In Figure 1-2, the equal sign (=)is a special character word.

1.1.2.3.2 Optional Words - In general formats, uppercase words that are not underlined are
optional. They can make a program more readable, but have no semantic effect. In Figure 1-2,
ON is an optional word.

1-6 General Program Concepts

1.1.2.3.3 Special-Purpose Words (Registers and Constants) - There are two types of special­
purpose words: (1) special registers, which name and refer to special storage areas (special reg­
isters) that the compiler provides, and (2) figurative constants, which name and refer to specific
constant values.

1. Special Registers

The COBOL special registers appear only in Procedure Division statements. They store
information related to or produced by specific COBOL features. The special registers
are as follows:

• For Linage Files

LINAGE-COUNTER - The reserved word LINAGE-COUNTER names a line counter
that the compiler provides when a file description entry contains a LINAGE clause. Its
value is the number of the current record within the page body. (See Section 4.2.12,
LINAGE Clause.) The implicit size of LINAGE-COUNTER is four decimal digits repre­
sented by PIC S9(4) COMP. You can qualify it with a file-name. Procedure Division
statements can access the value of LINAGE-COUNTER but cannot change the value.

• For PDP-11 Record Management Services (RMS-11)

RMS-STS - The reserved word RMS-STS names a Record Management Services
exception condition register. It contains the primary RMS status value of an 1-0
operation (RMS-STV is the secondary value). RMS-STS provides additional informa­
tion on COBOL File Status values resulting from 1-0 operations. It is a four digit
COMP item represented by PIC S9(4) USAGE IS COMP. You can qualify RMS-STS
with a file-name. Before the program opens the file for the first time, the value of
RMS-STS is undefined. After your program executes an OPEN or CLOSE statement,
RMS-STS is set to the value of the STS field in the associated File Access Block. After
execution of a READ, WRITE, REWRITE, DELETE, or START statement, RMS-STS is set
to the value of the STS field in the associated Record Access Block. For an explanation
and a listing of these values, refer to the RMS-11 Macro Programmer's Guide.
Procedure Division statements can read the value in RMS-STS; however, only RMS-11
can change the value. For an example of its use, refer to the chapter on 1-0 excep­
tions conditions handling in Part IV of the COBOL-81 User's Guide for your system.

RMS-STV - The reserved word RMS-STV names a Record Management Services
exception condition register. It contains the secondary (RMS-STS is primary) RMS sta­
tus value of an 1-0 operation. The interpretation of this value is dependent on the
value in RMS-STS. It is a four digit COMP item represented by PIC S9(4) USAGE IS
COMP. You can qualify RMS-STV with a file-name. The value in RMS-STV is unde­
fined prior to the initial OPEN of the file. After your program executes an OPEN or
CLOSE statement, RMS-STV is set to the value of the STV field in the associated File
Access Block. After execution of a READ, WRITE, REWRITE, DELETE, or START state­
ment, RMS-STV is set to the value of the STV field in the associated Record Access
Block. For an explanation and a listing of these values, refer to the RMS-11 Macro
Programmer's Guide. Procedure Division statements can read the value in RMS-STV;
however, only RMS-11 can change the value. For an example of its use, refer to the
chapter on 1-0 exceptions conditions handling in Part IV of the COBOL-81 User's
Guide for your system.

General Program Concepts 1-7

2. Figurative Constants

Figurative constants name and refer to specific constant values generated by the com­
piler. The singular and plural forms of figurative constants are equivalent and
interchangeable.

The figurative constants are:

ZERO, ZEROS, ZEROES

Represent the value zero, or one or more occurrences of the character 0 from the
computer character set, depending on context. In the following example, the first
use of the word ZERO represents a zero value; the second use represents six 0
characters:

03 ABC PIC 915) VALUE ZERO,
03 DEF PIC XIGl VALUE ZERO.

SPACE, SPACES

Represent one or more space characters from the computer character set.

HIGH-VALUE, HIGH-VALUES

Represent one or more occurrences of the character with the highest ordinal posi­
tion in the program collating sequence. The value of HIGH-VALUE depends on the
collating sequence specified by clauses in the OBJECT-COMPUTER and SPECIAL­
NAMES paragraphs. (See Section 3.1.2, OBJECT-COMPUTER Paragraph and Section
3.1.3, SPECIAL-NAMES Paragraph.) For example, HIGH-VALUE for the NATIVE col­
lating sequence is octal 377, but HIGH-VALUE for the STANDARD-1 collating
sequence is octal 177.

LOW-VALUE, LOW-VALUES

Represent one or more occurrences of the character with the lowest ordinal posi­
tion in the program collating sequence. The value of LOW-VALUE is octal 00,
regardless of what collating sequence is specified. (See Section 3.1.2, OBJECT­
COMPUTER Paragraph, and Section 3.1.3, SPECIAL-NAMES Paragraph.)

QUOTE, QUOTES

Represent one or more occurrences of the quotation-mark character("). QUOTE or
QUOTES cannot be used in place of a quotation mark to delimit a nonnumeric lit­
eral. The following examples are not equivalent:

QUOTE abed QUOTE
11 abcd 11

ALL Literal

Represents one or more occurrences of the string of characters comprising the lit­
eral. The literal must be either nonnumeric, or a figurative constant other than ALL
literal. When it precedes a figurative constant (for example, ALL ZEROES), the word
ALL is redundant and serves only to enhance readability.

1-8 General Program Concepts

When a figurative constant represents a string of one or more characters, the string's
length depends on its context:

1. The string's length can vary for a figurative constant in a VALUE IS clause, or for one
associated with another data item (for example, when the figurative constant is
moved to or compared with another data item). Proceeding from left to right, the
compiler repeats the string of characters that represents the figurative constant. It
repeats them, character by character, until the size of the resultant string equals
that of the associated data item. This is done before and independent of the appli­
cation of any JUSTIFIED clause specified for the data item.

2. When a figurative constant is not associated with another data item (for example,
when it is in a DISPLAY, STRING, STOP, or UNSTRING statement), the length of the
string is one occurrence of the ALL literal or one character in all other cases.

A figurative constant is valid wherever the word "literal" (or its abbreviation, "lit")
appears in a General Format, or its associated rules. However, ZERO (ZEROS, ZEROES)
is the only valid figurative constant for literals restricted to numeric characters.

The actual characters associated with HIGH-VALUE(S) depend on the program collating
sequence. (See Section 3.1.2, OBJECT-COMPUTER Paragraph, and Section 3.1.3,
SPECIAL-NAMES Paragraph.)

1.1.2.3.4 Literals (Numeric and Nonnumeric) - A literal is a character-string whose value is speci­
fied by: (1) the ordered set of characters it contains, or (2) a reserved word that is a figurative
constant.

There are two types of literals: numeric and nonnumeric.

Numeric Literals

A numeric literal is a character string of 1 to 20 characters selected from the digits 0 through 9,
the plus sign (+),the minus sign(-), and the decimal point(.).

The value of a numeric literal is the algebraic quantity represented by the characters in the lit­
eral. Its size equals the number of digits in the character-string.

The syntax rules for numeric literals are as follows:

1. A numeric literal must contain at least one digit and not more than 18 digits.

2. A numeric literal can contain only one sign character, which must be the leftmost char­
acter. If the literal is unsigned, its value is positive.

3. A numeric literal can contain only one decimal point. The decimal point is treated as an
assumed decimal point. It can be used anywhere in the literal except as the rightmost
character.

If a numeric literal contains no decimal point, it is an integer.

4. The compiler treats a numeric literal enclosed in quotation marks as a nonnumeric
literal.

General Program Concepts 1-9

Example 1-1: Size and Value of Numeric Literals

Size
Literal Value in Digits

12 12 2
-123456789012345678 -123456789012345678 18
000000003 3 9
-34.455445555 -34.455445555 11
0 0 1
+ 0. 000000000001 + 0.000000000001 13
+ 0000000000001 +1 13

Nonnumeric Literals

A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited on both ends by a
quotation mark(").

The value of a nonnumeric literal is the value of the characters in the character-string. It does
not include the quotation marks that delimit the character-string. All other punctuation charac­
ters in the nonnumeric literal are part of its value.

The compiler truncates non numeric literals to a maximum of 256 characters.

The syntax rules for nonnumeric literals are as follows:

1. A space or left parenthesis must immediately precede the opening quotation mark.

2. The closing quotation mark must be immediately followed by one of the following:

• Space
•Comma
• Semicolon
• Period
• Right parenthesis

3. Because quotation marks are used as delimiters, two consecutive quotation marks
must be used within the literal to represent the value of one quotation mark.

Example 1-2: Size and Value of Nonnumeric Literals

In the following examples, s represents a space character.

Size in
Literal Value Characters

"ABC" ABC 3
II 0111 01 2
"501" s01 3
110 II llEll llF II D "E"F 5
II a+ b II a. b 3
11 1111 II " 1
II J II II II II K II J" "K 4
II 0 II ll p 1111Q11 0" p "Q 5
11R11111111S1111n11T11 Ru 11 8 11 ur 7

1-10 General Program Concepts

1.1.3 PICTURE Character-Strings

A PICTURE character-string defines the size and category of an elementary data item. It can con­
sist of the currency symbol and certain combinations of characters in the COBOL character set.
(See Section 4.2.14, PICTURE Clause.)

A punctuation character that is part of a PICTURE character-string is not considered to be a
punctuation character. Instead, the compiler treats it as a symbol within the PICTURE character­
string.

1.1.4 Separators

A separator delimits character-strings. It can be one character or two contiguous characters
formed according to the following rules:

Space The space can be a separator or part of a separator.

Comma and Semicolon

Period

Parentheses

1. Where a space is used as a separator or part of a separator, more
than one space can be used.

2. A space can immediately precede any separator except:

a. As specified by the rules for reference formats (See Section
1.3)

b. The closing quotation mark of a nonnumeric literal; the space
is then considered part of the non numeric literal rather than a
separator

3. A space can immediately follow any separator except the opening
quotation mark of a nonnumeric literal. After an opening quota­
tion mark, the space is considered part of the nonnumeric literal
rather than a separator.

The comma and semicolon are separators when they immediately
precede a space. In this case, the comma and semicolon are inter­
changeable with each other and with the separator space. They can
be used anywhere in a source program that a separator space can be
used.

The period is a separator when it immediately precedes a space or a
return character. It can be used only where allowed by:

1. Statement and sentence structure definitions (Section 5.1, Verbs,
Statements, and Sentences)

2. Reference format rules (Section 1.3, Source Program Reference
Formats)

Parentheses can be used only in balanced pairs of left and right par­
entheses to delimit:

• Subscripts
• Indexes
• Arithmetic expressions
• Conditions

General Program Concepts 1-11

Quotation Marks

Horizontal Tab

An opening quotation mark (") must be immediately preceded by a
separator space or a left parenthesis. A closing quotation mark (")
must be immediately followed by one of the separators: space,
comma, semicolon, period, or right parenthesis.

The horizontal tab aligns statements or clauses on successive col­
umns of the source program listing. It is interchangeable with the
separator space. When the compiler detects a tab character (other
than in a nonnumeric literal), it generates one or more space charac­
ters consistent with the tab character position in the source line. (See
Section 1.3, Source Program Reference Format.)

1.2 COBOL-81 General Format Notation (Meta-Language)

Throughout this manual, general formats are shown for all COBOL-81 clauses and statements.
General formats show the specific arrangement of the parts of an entry, paragraph, clause, or
statement. When you can use more than one arrangement of its parts, the general format is sep­
arated into separate formats (Format 1, Format 2, and so forth). Unless the general format's
rules state otherwise, you must write clauses in the sequence shown.

The notation used in the general formats is called the COBOL meta-language. Because it illus­
trates the rules to follow when writing a source program, COBOL meta-language helps you to
write your own statements or clauses. However, some of the elements of COBOL meta­
language would not actually appear in any source program.

The following meta-language elements are combined into general formats. Those elements that
do not actually appear in a source program are followed by an asterisk(*):

• Uppercase and special-character words

• Lowercase words

• Brackets*

• Braces*

• Choice indicators *

• Ellipsis *

• Separator period

1.2.1 Uppercase and Special-Character Words

All uppercase and special-character words are COBOL reserved words; that is, they cannot
appear in your program as words you define or as system-names.

Underlined uppercase words are key words. A key word is required and must be spelled cor­
rectly when it is included in the source program. The following special-character words are not
underlined in general formats but are required where they appear: +, -, <, >,comma(,),
and=.

1-12 General Program Concepts

In the general format for the SIGN clause, the key words are SIGN, LEADING, TRAILING, and
SEPARATE:

{
LEADING }

[SIGN IS] [SEPARATE CHARACTER]
TRAILING

Uppercase words not underlined are optional. They serve only to improve the source pro­
gram's readability. In the preceding general format, the optional words are IS and CHARACTER.

1.2.2 Lowercase Words

Lowercase words are generic terms. They indicate entries the programmer must provide.
Lowercase words can represent COBOL words, literals, PICTURE character-strings, comment­
entries, or complete syntactical entries.

1.2.3 Brackets and Braces

Brackets ([]) enclose an optional part of a general format. When they enclose vertically stacked
entries, brackets indicate that you can select one (but no more than one) of the enclosed
entries.

Braces ({ }) indicate that you must select one (but no more than one) of the enclosed entries. If
one of the entries contains only reserved words that are not key words, that entry is the default
option when no other entry is selected.

In the general format for the SYNCHRONIZED clause:

• The entire clause is optional

• If the clause is used, it must contain either SYNCHRONIZED or SYNC

• The clause can contain either LEFT or RIGHT (or neither)

[{ SYNCHRONIZED}
SYNC [LEFT J]

RIGHT

The following SYNCHRONIZED clause entries are valid:

SYNCHRONIZED
SYNCHRONIZED LEFT
SYNCHRONIZED RIGHT
SYNC
SYNC LEFT
SYNC RIGHT

General Program Concepts 1-13

1.2.4 Choice Indicators

If choice indicators, {I I}, enclose part of a general format, you must select one or more of the
enclosed entries (in any order). However, no entry can be used more than once.

In the general format for the ACCEPT statement (format 4), one or more of the vertically stacked
entries must be selected:

ACCEPT CONTROL KEY IN key-dest-item

FROM LINE NUMBER

FROM COLUMN NUMBER

ERASE [TO END OF]

WITH BELL

[ON EXCEPTION stment]

line-num

line-id [PLUS [plus-num] J
PLUS [plus-num]

column-num

column-id [PLUS [plus-num]]

PLUS [plus-num]

f SCREEN}

l LINE

Some valid ACCEPT statement entries are:

ACCEPT KEY IN A-KEY LINE 10 COLUMN 20,
ACCEPT CONTROL KEY IN A-KEY ERASE LINE WITH BELL,
ACCEPT CONTROL KEY A-KEY COLUMN 15,

1.2.5 The Ellipsis

In general formats, the ellipsis(...) allows repetition of a part of the format.

To determine which part of the format can be repeated:

1. Find the ellipsis.

2. Scanning to the left, find the first right delimiter, either] or }.

3. Continuing to the left, find its logically matching left delimiter, either [or {.

The ellipsis applies to the part of the format between the matched pair of delimiters.

1-14 General Program Concepts

In the general format for the STRING statement, the ellipsis allows repetition of the shaded
part:

STRING I { src-string)... DELIMITED BY
j delim}

l SIZE

INTO dest-string [WITH POINTER pointr] [ON OVERFLOW stment]

Some valid STRING statement entries are:

STRING A B DELIMITED BY SIZE INTO C,
STRING A DELIMITED BY B1 C DELIMITED BYD INTO E,
STRING AB DELIMITED BY SIZE, C DELIMITED BY 0 INTO E,

1.2.6 The Separator Period

The separator period (.) is the period used to "punctuate" the source program. Separator
periods are required where shown in a general format. For example, there are eight separator
periods in the general format for the Identification Division:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[DATE-COMPILED. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

The separator periods following the words, DIVISION, PROGRAM-ID, and program-name must
appear in every source program. The separator periods following the words AUTHOR,
INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY must appear in a source
program that includes these optional paragraphs.

1.3 Source Program Reference Formats

The COBOL-81 compiler recognizes two source program formats: terminal and ANSI.

• Terminal format is a compact DIGITAL-specified format.

• ANSI format conforms to the American National Standard COBOL reference format.

Terminal format is the default program reference format (unless this was changed by your sys­
tem manager at installation time). In other words, the compiler expects terminal format source
lines if the compiler command line either: (1) includes the qualifier /NOANSLFORMAT, or (2)
has no source format qualifier. The compiler expects ANSI format only when the command line
includes the /ANSLFORMAT qualifier.

The program reference format spacing rules take precedence over all other spacing rules.

General Program Concepts 1-15

1.3.1 Terminal Format

COBOL-81 terminal format shortens program preparation time and reduces storage space for
source programs. If you have used only ANSI format in the past, note that terminal format:

• Combines the indicator area with Area A

• Eliminates the sequence number and identification areas

• Permits up to 200 characters in a source program line

Figure 1-3 illustrates how Areas A and Bare mapped to character positions in the source code
line. The value n can be less than or equal to 200.

Figure 1-3: Terminal Program Reference Format

Area A
I

Without Indicator Character

AreaB

I 1 I 2 I 31 41 5 I 61 71 a I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 1s I 17 I ··· I n I
M 0 V E N E T P A Y R ...

With Indicator Character

Area A AreaB

L T y L E V E L •••

The following five sections discuss the definitions and rules that apply to terminal format.

1.3.1.1 Source Line Structure

Indicator An indicator occupies the first character position. In terminal format, the com­
piler recognizes the following valid indicator characters in the first character
position:

Character

hyphen(-)

asterisk (*)

slash (/)

Source Line Interpretation

Continuation line. The compiler processes the line as a con­
tinuation of the previous source line.

Comment line. The compiler ignores the contents of the line.
However, the source line appears on the program listing.

New listing page. The compiler treats the line as a comment
line. However, it advances the program listing to the top of
the next page before printing the line.

1-16 General Program Concepts

AreaA When no indicator is present, Area A occupies character positions 1 through 4.
When an indicator is present, Area A occupies character positions 1 through 5.

Area A contains division headers, section headers, paragraph headers,
paragraph-names, level indicators, and certain level-numbers.

Area B Area B begins with the character position immediately following Area A. It ends
when the compiler detects a carriage return.

Area B contains all other COBOL text.

1.3.1.2 Line Continuation - Sentences, entries, phrases, and clauses that continue in Area B of
subsequent lines are called continuation lines. The line being continued is called the continued
line.

A hyphen in a line's indicator area causes its first nonblank character in Area B to be the imme­
diate successor of the last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

However, if the continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in Area B of the continuation line must be a quotation mark. The
continuation starts with the character immediately after the quotation mark. Area A of the con­
tinuation line must be blank.

If the indicator area is blank:

1. The compiler treats the first nonblank character on the line as if it followed a space.

2. The compiler treats the last nonblank character on the preceding line as if it preceded a
space.

Example 1-3 illustrates the use of line continuation in terminal format. The example shows con­
tinuation of a numeric literal, a nonnumeric literal, and a sentence (in that order).

Example 1-3: Line Continuation of Numeric and Nonnumeric Literals (Terminal Format)

01 NUMERIC-CONTINUATION,
03 NUMERIC-LITERAL PIC

4567890123456,
01 NONNUMERIC-CONTINUATION,

03 NONNUMERIC-LITERAL PIC
"CD EFG H I J KL MN 0PQRSTU1.J W){ Y Z ab c def g h i .j f~ 111in " ,

PROCEDURE DIVISION,
SENTENCE-CONTINUATION,

IF NUMERIC-LITERAL NOT = SPACES
DI SPLAY "NUMERIC-LITERAL NOT SPACES"

ELSE
DISPLAY NUMERIC-LITERAL,

9 (16) 1.JALUE IS 123

)-((40) 1.JALUE IS "AB

1.3.1.3 Blank Lines - A blank line contains no characters. The compiler recognizes a blank line
by the presence of the carriage return.

1.3.1.4 Comment Lines - A comment line is any source line with an asterisk(*) or slash(/) in its
indicator area. Area A and Area B can contain any character(s) from the computer character set.
Comment lines can be anywhere in a source program or library text.

General Program Concepts 1-17

1.3.1.5 Short Lines and Tab Characters - Because terminal format does not have a fixed 80-
character line length, you can press RETURN to delimit lines that are shorter than that. The
RETURN key inserts a return character into the source program file, and the compiler recog­
nizes the return character as the end of the line.

The TAB key inserts a tab character into the source program file. Tab characters, other than
those in nonnumeric literals, cause the compiler to generate enough space characters to posi­
tion the next character you enter at the next tab stop.

In terminal format, the compiler's tab stops are: (1) on the first character position of Area Band
(2) every eight character positions to the right, until the end of the line.

Using TAB makes it easy for you to move directly into Area B without counting spaces. Using
TAB also makes it easier to obtain consistent vertical alignment within Area B to improve pro­
gram readability.

Note

Although the lines in a source program can be as long as 200 characters, you
must remember that the maximum length of the source line includes all
spaces represented by a tab character.

Also, only 125 characters of the source program line appear on the program
listing. The compiler processes the complete source line but displays only
the first 125 characters on the listing.

Example 1-4 shows how the compiler interprets carriage return and tab characters:

Example 1-4: Compiler Interpretation of Shortened Source Lines (Terminal Format)

Source Lines Entered from Terminal

*The follo1.o.iin9' record descriPtion sho1.1s the source line for1T1at(fill)
01(t@RECORO-A.(fill)
(@03 GROUP-A+(fill)
(@(@05 ITEM-A(t@PIC)-((10l +(fill)
*(@The tab character in the nonnur11eric literal(fill)
*CT@on the next line is stored as one character(fill)
(@(@05 ITEM-B(t@PIC)-(!)ALLIE IS "(@"+(fill)
(@03 ITEM- CCT@CT@P IC)-(< 10 l • (fill)

Compiler Interpretation

*The followin9' record descriPtion shows the source line forMat
01 RECORD-A+

03 GROUP-A.
05 ITEM-A PIC Xl10l+

* The tab character in the nonnuMeric literal
* on the next line is stored as one character

05 ITEM-B PIC){ VALUE IS "(@".
03 ITEM-C PIC XllOl+

1-18 General Program Concepts

1.3.2 ANSI Format

ANSI program reference format describes COBOL programs so that they can be stored on
punched card media. For compatibility with card format, a source program line must be limited
to 80 characters. Also, each area of the input line is defined as a set sequence of character posi­
tions. "Margins" between the areas are fixed to define the columns of the punched card. Figure
1-4 illustrates how ANSI format areas are mapped to character positions in the input source line.

Figure 1-4: ANSI Program Reference Format

Margin
L

Margin
c
t

Margin
A

Margin
B

Margin
R

t t t t
2345678910 13 14 ... 7 4 75 76 77 78 79 80

Sequence Number T Area A
Area

Area B Identification Area

Indicator
Area

The following five sections discuss the definitions and rules that apply to ANSI format.

1.3.2.1 Source Line Structure

Margin L

Margin C

Margin A

Margin B

Margin R

Sequence Number Area

Indicator Area

Immediately to the left of the leftmost character position.

Between character positions 6 and 7.

Between character positions 7 and 8.

Between character positions 11 and 12.

Between character positions 72 and 73.

The six character positions between Margin Land Margin C. The
contents can be any character(s) from the computer character set.

The compiler does not check the contents of this area for either
uniqueness, or ascending sequence.

The seventh character position. The character in this position
directs the compiler to interpret the source line in one of the fol­
lowing ways:

Character

space ()

hyphen(-)

asterisk(*)

slash (!)

Source Line Interpretation

Default. The compiler processes the line as normal COBOL
text.

Continuation line. The compiler processes the line as a con­
tinuation of the previous source line.

Comment line. The compiler ignores the contents of the
line.

New listing page. The compiler treats the line as a comment
line. However, it advances the program listing to the top of
the next page before printing the line.

(continued on next page)

General Program Concepts 1-19

AreaA

Area B

Identification Area

The four character positions between Margin A and Margin B. Area
A contains division headers, section headers, paragraph headers,
paragraph-names, level indicators, and certain level-numbers.

The 61 character positions between Margin Band Margin R. Area B
contains all other COBOL text.

The eight character positions immediately following Margin R. The
compiler ignores the contents of the identification area.

1.3.2.2 Line Continuation - Sentences, entries, phrases, and clauses that continue in Area B of
subsequent lines are called continuation lines. The line being continued is called the continued
line.

A hyphen in a line's indicator area causes its first nonblank character in Area B to be the imme­
diate successor of the last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

However, if the continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in Area B of the continuation line must be a quotation mark. The
continuation starts with the character immediately after the quotation mark. The compiler con­
siders all 61 character positions in Area B of the continued line as part of the literal. Pressing
RETURN will not suppress spaces following text entry on the continued line. Area A of the con­
tinuation line must be blank.

If the indicator area is blank:

1. The compiler treats the first nonblank character on the line as if it followed a space.

2. The compiler treats the last nonblank character on the preceding line as if it preceded a
space.

Example 1-5 illustrates use of line continuation in ANSI format.

Example 1-5: Line Continuation of Numeric and Nonnumeric Literals (ANSI Format)

001010 01 NUMERIC-CONTINUATION.
001020 03 NUMERIC-LITERAL PIC 9(18) VALUE IS 123
001030- 4587890123458.
001040 01 NONNUMERIC-CONTINUATION.
001050 03 NONNUMERIC-LITERAL PIC)-((40) l.JALUE IS "AB
0 0 108 0 - "CD EFG HI J KL MN 0 P QR STU t,J W >< Y Z ab c def 9 h i J f~ 1 rim " ,
001070 PROCEDURE DIVISION.
001080 SENTENCE-CONTINUATION,
001090 IF NUMERIC-LITERAL NOT = SPACES
001100 DISPLAY "NUMERIC-LITERAL NOT SPACES"
001110 ELSE
001120 DISPLAY NUMERIC-LITERAL,

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050 and 001060 con­
tinue a non numeric literal. A sentence that spans four lines begins on line 001090.

1-20 General Program Concepts

1.3.2.3 Blank Lines - A blank line contains no characters other than spaces between Margin C
and Margin R. Blank lines can be anywhere in a source program or in library text that you intend
to include in a source program with the COPY statement.

1.3.2.4 Comment Lines - A comment line is any source line with an asterisk or slash in its indi­
cator area. Area A and Area B can contain any character(s) from the computer character set.
Comment lines can be anywhere in a source program or library text.

1.3.2.5 Short Lines and Tab Characters - If the source program input medium is not punched
cards, using the TAB and RETURN keys can shorten source program lines. A tab character is
inserted into the source program by the TAB key; a return character is inserted by the RETURN
key.

The compiler recognizes the end of the input line as Margin R. Tab characters, other than those
in non numeric literals, cause the compiler to generate enough space characters to position the
next character at the next tab stop. The compiler's tab stops are at character positions 8 (first
character postion in Area A), 12 (first character position in Area B), 20, 28, 36, 44, 52, 60, 68, and
76.

Example 1-6 shows how the compiler interprets carriage return and horizontal tab characters in
ANSI format.

Example 1-6: Compiler Interpretation of Shortened Source Lines (ANSI Format)

Shortened ANSI format source line

000100*The follo1,1ins record descriPtion sho1,1s the source line forrr1at(5ITJ
000110 011I@RECORD-A.(5ITI
0001201I@II@03 GROUP-A.@
0001301I@II@II@05 ITEM-AC@PIC >< (10) •00
0001l!O*C@The tab character in the nonnurrieric literallBITJ
000150*1I@on the next line is stored as one characterru
000160('@('@('@05 ITEM-BC@PIC ;.; l,JALUE IS "II@"•OO
000170('@('@03 ITEM-CII@C@PIC)-((10l.(5ITI

Source line as interpreted by compiler

000100*The followins record description shows the source line format
000110 01 RECORD-A.
000120 03 GROUP-A.
000130 05 ITEM-A PIC X(10),
000140* The tab character in the nonnumeric literal
000150* on the next line is stored as one character
000160 05 ITEM-5 PIC){ l,JALUE IS "('@".
000170 03 ITEM-C PIC X(10).

Do not use the TAB key more than necessary. You will get compiler error diagnostics if you
insert tab characters beyond the permissible character position(s) for a COBOL statement or
entry. Example 1-7 shows how the compiler treats a source program line with tab characters
inserted incorrectly. The problem is in line 000004: it contains one too many tab characters. This
places the paragraph-name PO out of Area A.

General Program Concepts 1-21

Example 1-7: Incorrect Use of TAB

Shortened ANSI Format Source Line

000001@IDIDENTIFICATION DIVISION.
000002@IDPROGRAM-ID. ANSI-TEST,
000003@IDPROCEDURE DI ~1 IS I ON,
000004@ID@IDPO,
000005@ID@IDSTOP RUN,

Source Line as Interpreted by Compiler

2
3
4

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
000004 PO.

*** F 450 Undefined reference.
*** F 590 A section header or Pa ra9 raPh-n ar11e
*** F 519 Inl!alid statement S)'ntax.

5 000005 STOP RUN,

*** 501 *Cor11Pilation resumed at this Point.

1.4 Program Structure

is re9uired.

Figure 1-5 shows the basic program structure of a COBOL program. It illustrates the organiza­
tion of a program into divisions, sections, paragraphs, sentences, and entries.

Figure 1-5: Structure of a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. main-program.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
1-0-CONTROL.

DATA DIVISION.
FILE SECTION.
file and record description entries
sort-merge file and record description entries
WORKING-STORAGE SECTION.
record description entries
LINKAGE SECTION.
record description entries

1-22 General Program Concepts

(continued on next page)

PROCEDURE DIVISION
DECLARATIVES.
sections
paragraphs
sentences
END DECLARATIVES.
sections
paragraphs
sentences

1.4.1 Division Header

A division header identifies and marks the beginning of a division. It is a specific combination of
reserved words followed by a separator period. Division headers start in Area A.

Except for the COPY statement (See Chapter 6, The COPY Statement.), the statements, entries,
paragraphs and sections of a COBOL source program are grouped into four divisions in this
order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

The end of a COBOL source program is indicated by the end of that program's Procedure
Division.

Note

The Procedure Division header can contain a USING phrase. (See Section
5.9, Procedure Division General Format and Rules.)

Only these items can immediately follow a division header:

• Another division header

• A section header

• A paragraph header or paragraph-name

• A comment line

• A blank line

• DECLARATIVES (after the Procedure Division header only)

• PROGRAM-ID (after the Identification Division header only)

1.4.2 Section Header

A section header identifies and marks the beginning of a section in the Environment, Data, and
Procedure Divisions. In the Environment and Data Divisions, a section header is a specific com­
bination of reserved words followed by a separator period. In the Procedure Division, a section
header is a user-defined word followed by the word SECTION (and an optional segment­
number). A separator period always follows a section header. Section headers start in Area A.

General Program Concepts 1-23

The valid section headers follow for each division.

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division:

user-name SECTION [segment-number].

Only these items can immediately follow a section header:

• A division header

• Another section header

• A paragraph header or paragraph-name

• A comment line

• A USE statement (in the Declaratives part of the Procedure Division only)

• A blank line

• A Data Division entry (in the Data Division)

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

A paragraph consists of a paragraph header or paragraph-name (depending on the division) fol­
lowed by zero, one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period. Paragraph headers iden­
tify paragraphs in the Identification and Environment Divisions.

The paragraph headers are:

Identification
Division

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DA TE-WRITTEN.
DATE-COMP! LED.
SECURITY.

Environment
Division

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
Fl LE-CONTROL.
1-0-CONTROL.

A paragraph-name is a user-defined word followed by a separator period. Paragraph-names
identify Procedure Division paragraphs.

Paragraph headers and paragraph-names start in Area A of any line after the first line of a divi­
sion or section.

The first entry or sentence of a paragraph begins in either:

• On the same line as the paragraph header or paragraph-name

• In Area B of the next nonblank line that is not a comment line

1-24 General Program Concepts

Successive sentences or entries begin in Area B of either:

• The same line as the preceding entry or sentence

• The next nonblank line that is not a comment line

1.4.4 Data Division Entries

A Data Division entry begins with a level indicator or level-number and is followed, in order,
by:

1. A space

2. The name of a data item or file connector

3. A sequence of independent descriptive clauses

4. A separator period

The level indicators are:

• FD (for file description entries)

• SD (for sort-merge file description entries)

Level indicators start in Area A.

Entries that begin with level-numbers are called data description entries. The level-number val­
ues are 01 through 49, 66, 77, and 88. Level-numbers 01 through 09 can be one- or two-digit
numbers.

Level 01 and 77 data description entries begin in Area A. All other data description entries can
begin on the first character position of Area B. Further indentation has no effect on level­
number magnitude; it merely enhances readability.

1.4.5 Declaratives

Declaratives specify procedures to be executed only when certain conditions occur. You must
write declarative procedures at the beginning of the Procedure Division in consecutive sec­
tions. The key word DECLARATIVES begins the declaratives part of the Procedure Division; the
pair of key words END DECLARATIVES ends it. Each of these reserved word phrases must: (1) be
on a line by itself, starting in Area A; and (2) be followed by a separator period.

For example:

PROCEDURE DIVISION,
DECLARAT I t,IES,
IOERROR SECT ION,

USE AFTER STANDARD ERROR PROCEDURE ,,, ,
PAR-1.

END DECLARATIVES,
FIRST-ONE SECTION,
PARAG-1,

When you use declarative procedures, you must divide the remainder of the Procedure
Division into sections.

General Program Concepts 1-25

1.5 Sample Format Entry Page

Most entries in this manual adhere to the format on the following sample page. Each COBOL
division or major topic begins a new chapter and each entry begins on a new page.

Entry-Name

Entry-Name

Function

The function paragraph describes the function or the effect of the entry.

General Format

A general format shows the specific arrangement of elements in the entry. If there is more
than one arrangement, the formats are numbered. All clauses (mandatory and optional)
must be used in the sequence shown in the format. However, the syntax rules sometimes
allow exceptions.

generic-term
Following the general format are definitions of its generic terms. These terms are sup­
plied by the programmer and appear in the rules in italics. Restrictions applied to
generic terms are equivalent to syntax rules.

Syntax Rules

Syntax rules define or clarify the arrangement of words or elements. They can also impose
or relax restrictions implied by the general format. Syntax rule violations are detected at
compile time.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an element or
set of elements. They also define the semantics of an entry, describing its effects on pro­
gram compilation or execution. General rule violations are detected at run time.

Technical Notes

Technical notes describe an entry's effects in system-specific terms. They define relation­
ships between the COBOL program and the operating system, RMS-11, the hardware, and
other components in the PDP-11 system.

Additional References

Additional references point to other relevant information in this manual, the COBOL-81
User's Guide for your system, and manuals in the operating system documentation set.

Examples

Examples show the use of a statement, clause, or other entry. The COBOL-81 User's Guide
for your system contains examples in application contexts.

1-26 General Program Concepts

Chapter 2
Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also identifies a pro­
gram and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]
* [INSTALLATION. [comment-entry] ...]

* [DATE-WRITIEN. [comment-entry] ...]

* [DATE-COMPILED. [comment-entry] ...]

* [SECURITY. [comment-entry] ...]

* These paragraphs are not described in individual entries; they follow the same format as
the AUTHOR paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the Identification Division header. The
header consists of the reserved words IDENTIFICATION DIVISION followed by a sepa­
rator period.

3. The PROGRAM-ID paragraph must immediately follow the Identification Division
header.

2-1

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph identifies a program.

General Format

PROGRAM-ID. program-name.

Syntax Rules

1. The PROGRAM-ID paragraph must be present in every program.

2. Program-name must contain 1 to 30 characters. Only the first six characters of program­
name are significant to to the compiler.

General Rules

1. Program-name is a user-defined word that identifies a COBOL program and its source
listing. The first six characters of program-name appears as the first word in the first line
of every page in the compiler source listing.

2. Program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program, the first
six characters of the program-name for each separately compiled program must be
unique.

Additional References

Chapter 6

Examples

COPY Statement

PROGRAM-ID. PROGA.

PROGRAM-ID, JOBGa.

PROGRAM- ID,
WRITEMASTERREPORT.

2-2 Identification Division

AUTHOR

2.2 AUTHOR Paragraph

Function

The AUTHOR paragraph is for documentation only.

General Format

AUTHOR. [comment-entry] ...

Syntax Rules

1. Comment-entry can consist of any combination of characters from the computer char­
acter set.

2. Comment-entries can span several lines in Area B. However, they cannot be continued
by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

Examples

AUTHOR+ STAN GUSSO,

AUTHOR+ This Pro~raM was written br Phil Goodrich

AUTHOR+

122 Tho111Pson Ln+
Grover Corners 1 MN

Identification Division 2-3

Chapter 3
Environment Division

Function

The Environment Division describes the program's physical environment. It also specifies
input-output control and describes special control techniques and hardware characteristics.

General Format

{ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry.] J
[OBJECT-COMPUTER. [object-computer-entry. J]
[sPECIAL-NAMES. [special-names-entry.] J]
[INPUT-OUTPUT SECTION.

FILE-CONTROL. { file-control-entry. } ...]

~-0-CONTROL. [input-output-control-entry.] J]

Syntax Rules

1. The Environment Division follows the Identification Division.

2. The general format defines the order of appearance of Environment Division entries.

3-1

CONFIGURATION SECTION
SOURCE-COMPUTER

3.1 Configuration Section

The Configuration Section can contain three paragraphs: SOURCE-COMPUTER, OBJECT­
COMPUTER, and SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph specifies the computer on which the source program is to
be compiled.

General Format

SOURCE-COMPUTER. . [{
PDP-11 }]

computer-type

computer-type
is a user-defined word that names the computer.

Syntax Rule

The word PDP-11 is a system-name. It is not a reserved word.

General Rule

This paragraph is for documentation only.

3-2 Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph describes the computer on which the program is to
execute.

General Format

OBJECT-COMPUTER. [{ PDP-11 }
computer-type

[{
WORDS }]

MEMORY SIZE integer CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name]

[SEGMENT-LIMIT IS 'egment-oumbec] -]

computer-type
is a user-defined word that names the computer.

alphabet-name
the name of a collating sequence defined in the ALPHABET clause of the SPECIAL-NAMES
paragraph.

segment-number
is an integer from 1 through 49.

integer
is an integer from 1 through 65,535.

Syntax Rules

1. The word PDP-11 is a system-name. It is not a reserved word and is for documentation
only.

2. either PDP-11 or computer-type must be specified if any other OBJECT-COMPUTER
clauses appear.

General Rules

1. The MEMORY SIZE clause is for documentation only.

2. The PROGRAM COLLATING SEQUENCE clause causes the program to use the collating
sequence of alphabet-name to determine the truth value of nonnumeric comparisons
in:

• Relation conditions

• Condition-name conditions

Environment Division 3-3

OBJECT-COMPUTER
Continued

3. The PROGRAM COLLATING SEQUENCE clause also applies to nonnumeric merge and
sort keys. However, the COLLATING SEQUENCE phrase in a MERGE or SORT statement
takes precedence over the PROGRAM COLLATING SEQUENCE clause.

4. If there is no PROGRAM COLLATING SEQUENCE clause, the program uses the NATIVE
collating sequence.

5. The SEGMENT-LIMIT clause determines how a program is overlaid in memory.
When the SEGMENT-LIMIT clause is specified, segments with numbers from
segment-number through 49 are overlaid; that is, they are swapped in and out of a
given memory area as needed. Those segments with numbers less than segment­
number comprise the program "root."

When the executable image contains only one program, segments in the root always
remain in memory.

When the executable image contains two or more programs (and if at least two pro­
grams contain the SEGMENT-LIMIT clause), there is more than one root. In this case,
one root is always in memory_, but the various roots are overlaid.

Additional References

Section 3.1.3
Section 4.2.2
Section 5.5.1
Section 5.5.3
Section 5.8

Part IV of the COBOL-81 User's
Guide for your system

Examples

1. Computer name only:

OBJECT-COMPUTER. PDP-11.

SPECIAL-NAMES Paragraph
Sort-Merge File Description
Relation Condition
Condition-Name Condition
Segmentation

Refer to the chapter on
Sorting Records and Merging Files

2. No computer name (if the computer is not specified, then no other clause can appear):

OBJECT-COMPUTER.

3. With PROGRAM COLLATING SEQUENCE clause:

The SPECIAL-NAMES paragraph must define ALPH-A.

OBJECT-COMPUTER. PDP-11
PROGRAM COLLATING SEQUENCE IS ALPH-A.

3-4 Environment Division

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph: (1) associates operating system device names with user-de­
fined mnemonic-names, (2) specifies the currency sign, (3) selects the decimal point, and (4)
relates alphabet-names to character sets or collating sequences.

General Format

SPECIAL-NAMES. [

CARD-READER
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER
PAPER-TAPE-PUNCH

IS device-name

IS switch-name [ON STATUS IS cond-name] [OFF STATUS IS cond-name]

IS switch-name [OFF STATUS IS cond-name] [ON STATUS IS cond-name]
SWITCH switch-num

ON STATUS IS cond-name [OFF STATUS IS cond-name]

OFF STATUS IS cond-name [ON STATUS IS cond-name]

[ALPHABET alphobet-orune IS {

STANDARD-1

NATIVE

[CURRENCY SIGN IS char]

DECIMAL-POINT IS COMMA] .]

device-name

}]

is a mnemonic-name for a device. Only the ACCEPT and DISPLAY statements can refer to
it.

switch-num
is the number of a program switch. Its value can range from 1through16.

Environment Division 3-5

SPECIAL-NAMES
Continued

switch-name
is a mnemonic-name for the program switch.

cond-name
is a condition-name for the "on" or "off" status of the switch. Its truth value is "true" when
the STATUS phrase matches the status of the switch, "false" when it does not.

alphabet-name
is the user-defined word for a character set and/or collating sequence.

char
is a one-character nonnumeric literal that specifies the currency symbol.

General Rules

device-name Clause

1. The device-name clause associates an operating system device name with a user-de­
fined mnemonic-name (device-name). The COBOL-81 system-names PAPER-TAPE­
READER, CARD-READER, CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH act as
"connectors" between the device-names specified in the program and system
devices. Therefore, an ACCEPT or DISPLAY statement that refers to a program specific
device-name can transfer data from (or to) the device associated with the COBOL-81
system-name.

The system-names and their default device equivalents are:

System-Name

CARD-READER
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER
PAPER-TAPE-PUNCH

Device

CR:
PR:
Tl:
LP:
PP:

Note

By default, CONSOLE is associated with the interactive terminal (Tl:) that
begins program execution, rather than with the computer console.

SWITCH Clause

2. The ON STATUS (or OFF STATUS) phrase of the SWITCH clause associates the status
of switch-name with a corresponding cond-name. The program uses a switch-status
condition in the Procedure Division to test the switch.

ALPHABET Clause

3. The ALPHABET clause relates a name to a character code set, collating sequence, or
both.

3-6 Environment Division

The ALPHABET clause specifies:

SPECIAL-NAMES
Continued

• A character code set, when alphabet-name is in a CODE-SET clause in the file
description entry.

• A collating sequence, when alphabet-name is in: (1) the PROGRAM COLLATING
SEQUENCE clause in the OBJECT-COMPUTER paragraph or (2) the COLLATING
SEQUENCE phrase of a SORT or MERGE statement

4. STANDARD-1 refers to the ASCII character set. The ASCII character set is defined in
American National Standard XJ.4-1968, "Code for Information Interchange."

5. NATIVE refers to the native character set. It consists of 256 characters. The lowest­
valued 128 characters are the ASCII character set. The highest-valued 128 characters
are reserved for later standardization and definition by DIGITAL.

6. The character with the highest ordinal position in the program collating sequence
equals the figurative constant HIGH-VALUE.

7. The character with the lowest ordinal position in the program collating sequence
equals the figurative constant LOW-VALUE.

CURRENCY SIGN Clause

8. In the CURRENCY SIGN clause, char specifies the PICTURE clause currency symbol. It
can be any printable character from the computer character set except:

• 0 through 9

• A, B, C, D, P, R, S, V, X, Z, or the space

• Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.), semicolon (;),
comma(,), quotation mark("), equal sign(=), or slash(/)

9. The CURRENCY SIGN clause can contain lowercase counterparts of the valid upper­
case alphabetic characters. However, lowercase and uppercase alphabetic characters
are equivalent in PICTURE character-strings. Therefore, lowercase letters in the
CURRENCY SIGN clause cannot match any PICTURE character-string entry.

10. If there is no CURRENCY SIGN clause, the PICTURE clause uses the currency sign ($)
as the default.

DECIMAL-POINT IS COMMA Clause

11. The DECIMAL-POINT IS COMMA clause exchanges the functions of the comma and
period in: (1) the PICTURE clause character-string and (2) numeric literals.

Additional References

Section 3.1.2
Section 4.2.6
Section 5.5.4
Section 5.9.1
Section 5.9.7
Appendix B

OBJECT-COMPUTER Paragraph
CODE-SET Clause
Switch-Status Condition
ACCEPT Statement
DISPLAY Statement
Computer Character Set

Environment Division 3-7

SPECIAL-NAMES
Continued

Examples

1. Device-name clause:

This example allows ACCEPT and DISPLAY statements to use THE-CARDS to refer to the
device CR: and LOCAL-USER to refer to the device Tl:.

CARD-READER IS THE-CARDS
CONSOLE IS LOCAL-USER

2. SWITCH clause:

(Procedure Division statements can use the condition-names defined in the SWITCH
clause. At run time, COBOL-81 prompts you to enter the numbers for the switch(es)
you want on during program execution.)

SWITCH 1 IS FIRST-SWITCH ON IS ONE-ON OFF IS ONE OFF
SWITCH 4 ON FOUR-ON

The following results assume that switch 1 is on and switch 4 is off.

Truth
Condition Value

IF FOUR-ON false
IF ONE-ON true
IF NOT ONE-OFF true
IF ONE-ON AND NOT FOUR-ON true

3. ALPHABET clause:

ALPHABET MY-SET IS STANDARD-1,

This clause defines the alphabet named MY-SET to be the ASCII character set.

In the results of the following examples, the characters represents a space. The exam­
ples assume these data description entries:

01 ITEM A PIC){ (5) •

01 ITEMB PIC ;.: (5) •

01 ITEMC PIC GG1GG9.99.
01 ITEMD PIC ZZZ+ZZ8t99+
01 ITEME PIC zzz '+

3-8 Environment Division

4. CURRENCY SIGN clause:

CURRENCY SIGN "G"

SPECIAL-NAMES
Continued

The following MOVE statements show the effect of the CURRENCY SIGN clause:

Statement

MOVE 12,34 TO ITEMC
MOVE 100 TO ITEMC
MOVE 1000 TO ITEMC

ITEMC
Value

sssG12.34
ssG100.00
G1,000.00

5. DECIMAL-POINT IS COMMA clause:

Statement

MOt.JE 1 TO I TEMD
MOVE 1000 TO ITEMD
MOt,JE 1 , 1 TO I TEMD
MOVE 12 TO ITEME

Result

ITEMD = ssssss1 ,00
ITEMD = ss1 .000,00
ITEMD = ssssss1,10
ITEME = s12,

Environment Division 3-9

INPUT-OUTPUT SECTION
FILE-CONTROL

3.2 INPUT-OUTPUT SECTION

The INPUT-OUTPUT Section can contain two paragraphs: FILE-CONTROL and 1-0~CONTROL.

3.2.1 FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph contains file-related specifications.

General Format

FILE-CONTROL.

Format 1 - Sequential File

SELECT [OPTIONAL) file-name

ASSIGN TO file-spec

[
RESERVE reserve-num [AREA]]

AREAS

[[ORGANIZATION IS] SEQUENTIAL]

ACCESS MODE IS SEQUENTIAL

[FILE STATUS IS file-stat]

Format 2 - Relative File

SELECT file-name

ASSIGN TO file-spec

[RESERVE ceserve-num [
AREA]]

AREAS

[ORGANIZATION IS] RELATIVE

SEQUENTIAL [RELATIVE KEY IS rel-key)

{
RANDOM }

RELATIVE KEY IS rel-key
DYNAMIC

ACCESS MODE IS

[FILE STATUS IS file-stat) .

3-10 Environment Division

(continued on next page)

Format 3 - Indexed File

SELECT file-name

ASSIGN TO file-spec

[RESERVE ce,.ove-n"m [
AREA]]

AREAS

ORGANIZATION IS] INDEXED

[
ACCESS MODE IS { ~;~~~~TIAL }]

DYNAMIC

[RECORD KEY IS rec-key]

[ALTERNATE RECORD KEY IS alt-key [WITH DUPLICATES l J
FILE STATUS IS file-stat] .

Format 4 - Sort or Merge File

SELECT file-name ASSIGN TO file-spec .

file-name

INPUT-OUTPUT
Continued

names a file within your COBOL program. Each file-name must have a file description (or
sort-merge file description) entry in the Data Division. The same file-name cannot appear
more than once in the FILE-CONTROL paragraph.

Syntax Rules

All Formats

1. The FILE-CONTROL paragraph must have at least one SELECT clause.

2. SELECT must be the first clause in the FILE-CONTROL paragraph. The other clauses can
follow it in any order.

3. Each file described in the Data Division must be specified only once in the FILE­
CONTROL paragraph.

Format 1

4. You can specify the OPTIONAL phrase only for input files.

Environment Division 3-11

INPUT-OUTPUT
Continued

General Rules

Format 1

1. You must specify an OPTIONAL phrase for input files that need not be present when
the program runs.

Formats 2 and 3

2. The rules for the OPEN statement describe the effects of the OPTIONAL phrase.

Additional Reference

Section 5.9.17

Examples

OPEN Statement

The following examples assume that the VALUE OF ID clause is not in any associated file
description entry.

1. Sequential file:

(This SELECT clause refers to two files with sequential organization.)

SELECT FILE-A
ASSIGN TO "REPORT",

SELECT FILE-B
ASSIGN TO "UPDATE",

2. Indexed file:

SELECT FILE-A
ASSIGN TO "Dl\1:ALUMNI,DAT"
ORGANIZATION INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS STUDENT-NUM,

3. Sort or merge file:

SELECT INPUT-FILE
ASSIGN TO "Dl\1:MAILST.DAT",

3-12 Environment Division

3.2.1.1 ACCESS MODE Clause

Function

The ACCESS MODE clause specifies the order of access for a file's records.

General Format

Format 1 - Sequential File

[ACCESS MODE IS J SEQUENTIAL

Format 2 - Relative File

SEQUENTIAL [RELATIVE KEY IS rel-key]

[ACCESS MODE IS]
{

RANDOM}

DYNAMIC
RELATIVE KEY IS rel-key

Format 3 - Indexed File

{
SEQUENTIAL }

[ACCESS MODE IS] RANDOM
DYNAMIC

rel-key
is the file's relative key data item.

Syntax Rules

ACCESS MODE

1. Rel-key must be the data-name of an unsigned integer data item whose description
does not contain a PICTURE symbol "P". Ref-key can be qualified.

2. If the USING or GIVING phrase of a SORT or MERGE statement contains the name of
the file, the ACCESS MODE RANDOM clause cannot be used for the file.

3. If a START statement references a relative file, the program must specify the RELATIVE
KEY phrase for that file.

Environment Division 3-13

ACCESS MODE
Continued

General Rules

All Formats

1. If there is no ACCESS MODE clause, the access mode is sequential.

2. For sequential access, record access sequence depends on file organization:

• Sequential files - The sequence is the same as that established by the execution of
WRITE statements that created or extended the file.

• Relative files - The sequence is the order of ascending relative record numbers of the
file's existing records.

• Indexed files - The sequence is the order of ascending record key values within a
given key of reference according to the collating sequence of the file.

Formats 2 and 3

3. For random access, the value of rel-key (for relative files) or a record key data item (for
indexed files) indicates the record to be accessed.

4. For dynamic access, the program can access records sequentially and randomly.

Format 2

5. Relative record numbers uniquely identify records in relative files. A record's relative
record number identifies its ordinal position in the file. The first record in the file has a
relative record number of 1. Subsequent records have progressively higher relative
record numbers. However, if the file is created with random access, the numbers need
not be consecutive (for example, "1,2,4,7,8,9,11 ").

6. The relative key data item associated with the execution of an input/output statement is
rel-key in the SELECT clause of the file associated with the statement.

3-14 Environment Division

3.2.1.2 ALTERNATE RECORD KEY Clause

Function

ALTERNATE RECORD KEV

The ALTERNATE RECORD KEY clause specifies an alternate access path to indexed file records.

General Format

ALTERNATE RECORD KEY IS alt-key [WITH DUPLICATES]

alt-key
is the alternate record key for the file. It is the data-name of a data item in the file's record
description entry. The data item must be described as: (1) alphanumeric or alphabetic or (2)
a group item.

Syntax Rules

1. Alt-key can be qualified; however, it cannot be subscripted or indexed.

2. Alt-key cannot be a group item that contains a variable-occurrence data item.

3. Alt-key cannot have the same leftmost character position as that of the prime record
key data item or any other alt-key for the same file.

General Rules

1. When a program creates an indexed file with one or more ALTERNATE RECORD KEY
clauses, each subsequent program referencing this indexed file must:

• Use the same data description for alt-key

• Define the same relative location in the record as alt-key

• Specify the same number of ALTERNATE RECORD KEY clauses

• Maintain the same order of ALTERNATE RECORD KEY clauses

2. The DUPLICATES phrase specifies that two or more records in the file can have dupli­
cate values in the same alt-key data item. If there is no DUPLICATES phrase, two
records cannot have the same value in corresponding alternate record keys.

3. If the file has more than one record description entry, you need to describe alt-key in
only one of those entries. The character positions referenced by alt-key in any one
record description entry are implicitly referenced as an alternate key for all other
record description entries of that file.

4. A file can have up to 254 alternate record keys.

Environment Division 3-15

ASSIGN

3.2.1.3 ASSIGN Clause

Function

The ASSIGN clause associates a file with a partial or a complete file specification.

General Format

ASSIGN TO file-spec

file-spec
is a non numeric literal that provides a partial or a complete file specification.

General Rules

1. If there is no VALUE OF ID clause in the file description entry, or that clause contains
no file specification, file-spec is the file specification.

2. If there is a full or a partial file specification in an associated VALUE OF ID clause, those
file specification components will override file-spec.

3. File-spec can contain a logical name.

Technical Note

When an OPEN statement executes, PDP-11 Record Management Services (RMS-11):

• Removes leading and trailing spaces and tab characters from the file specification

• Translates lowercase letters in the file specification to uppercase

• Performs logical name translation

Additional Reference

Section 4.2.22 VALUE OF ID Clause

3-16 Environment Division

3.2.1.4 FILE STATUS Clause

Function

FILE STATUS

The FILE STATUS clause names a data item that contains the status of an input-output operation.

General Format

FILE STATUS IS file-stat

file-stat
Working-Storage Section or Linkage Section. File-stat is the file's FILE STATUS data item.

Syntax Rule

File-stat can be qualified.

General Rule

After execution of every 1-0 statement that refers to the file, a value is moved to file-stat. That
value indicates the statement's execution status.

Additional References

Section 5.7
Appendix C

1-0 Status
File Status Values

Environment Division 3-17

ORGANIZATION

3.2.1.5 ORGANIZATION Clause

Function

The ORGANIZATION clause specifies a file's logical structure.

General Format

{
SEQUENTIAL }

[ORGANIZATION IS J RELATIVE
INDEXED

General Rules

1. File organization is fixed when the file is created. It cannot be subsequently changed.

2. If there is no ORGANIZATION clause, the default is sequential.

3-18 Environment Division

3.2.1.6 RECORD KEY Clause

Function

RECORD KEY

The RECORD KEY clause specifies the primary access path to indexed file records.

General Format

RECORD KEY IS rec-key

rec-key
is the data-name of a data item in a record description entry for the file. The data item must
be described as: (1) alphanumeric or alphabetic or (2) a group item.

Syntax Rules

1. Rec-key can be qualified.

2. Rec-key cannot be a group item that contains a variable-occurrence data item.

General Rules

1. The RECORD KEY clause specifies the prime record key for a file.

2. The values of the prime record key cannot be duplicated in the file's records.

3. The data description of rec-key, and its relative location in the record, must be the
same as those used when the file was created.

4. If the file has more than one record description entry, you need to describe rec-key in
only one of those entries. The character positions referenced by rec-key in any one
record description entry are implicitly referenced as the prime record key for all other
record description entries of that file.

Additional Reference

Section 3.2.1.2 AL TERNA TE RECORD KEY Clause

Environment Division 3-19

RESERVE

3.2.1.7 RESERVE Clause

Function

The RESERVE clause specifies the number of input-output buffers for a file.

General Format

RESERVE reserve-num [AREA]

AREAS

reserve-num
is an integer literal from 1 through 127. It specifies the number of input-output areas for the
file.

General Rule

If there is no RESERVE clause, the number of input-output areas defaults to:

• One, for sequential files

• One, for relative files

• Two, for indexed files

Additional References

Section 3.2.2 APPLY Clause

3-20 Environment Division

1-0-CONTROL

3.2.2 1-0-CONTROL Paragraph

Function

The 1-0-CONTROL paragraph specifies the input-output techniques to be used for a file.

General Format

1-0-CONTROL. [

APPLY

DEFERRED-WRITE
EXTENSION extend-amt
FILL-SIZE
MASS-INSERT

[CONTIGUOUS) PREALLOCATION preall-amt
PRINT-CONTROL
WINDOW window-ptrs

ON { file-name } ...

RERUN [ON file-name] EVERY

[END OF) { REEL }

UNIT OF file-name

[[
RECORD l

SAME SORT
SORT-MERGE

extend-amt

integer RECORDS

integer CLOCK-UNITS

AREA FOR I "'me-a<ea·filo) I •omo-a"a-filo } ···]

is an integer from 0 through 65535. It specifies the number of blocks in each extension of a
disk file.

pre all-amt
is an integer from 0 through 2,147,483,647. It specifies the number of blocks to allocate
when the program creates a disk file.

window-ptrs
is an integer whose permissible values are dependent on your operating system. See
Technical Note 7.

file-name
names a file described in a Data Division file description entry.

same-area-file
names a file described in a Data Division file description entry to share storage areas with
every other same-area-file.

Environment Division 3-21

1-0-CONTROL
Continued

Syntax Rules

1. The 1-0-CONTROL clauses can appear in any order.

2. Each phrase of the APPLY clause can refer only to some file types:

Phrase

DEFERRED-WRITE
EXTENSION
FILL-SIZE
MASS-INSERT
PREALLOCATION
PRINT-CONTROL
WINDOW

File Type

Relative or indexed organization
Disk file
Indexed organization
Indexed organization
Disk file
Sequential organization
Disk file

3. More than one APPLY clause can refer to the same file-name.

4. The phrases of the APPLY clause can appear in any order. However, each phrase can be
used only once for each file-name.

5. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

6. If same-area-file refers to a sort or merge file, you must use the SORT, SORT-MERGE, or
RECORD phrase.

7. A program can contain more than one SAME clause. However, the following conditions
apply:

• A same-area-file cannot be in more than one SAME AREA clause.

• A same-area-file cannot be in more than one SAME RECORD AREA clause.

• A same-area-file that refers to a sort or merge file cannot be in more than one SAME
SORT AREA or SAME SORT-MERGE AREA clause.

• If any file in a SAME AREA clause appears in a SAME RECORD AREA clause, all files in
the SAME AREA clause must appear in the SAME RECORD AREA clause. In addition,
other files that are not in that SAME AREA clause can appear in the SAME RECORD
AREA clause.

The rule that only one file in a SAME AREA clause can be open at a time takes prece­
dence over the rule that more than one file in a SAME RECORD AREA clause can be
open at once.

• If a file that is not a sort or merge file appears in a SAME AREA clause and also in one
or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all files in the SAME
AREA clause must appear in the SAME SORT AREA or SAME SORT-MERGE AREA
clauses.

General Rules

APPLY Clause

1. The DEFERRED-WRITE phrase causes a physical write operation to occur only when
the input-output buffer for file-name is full. If there is no DEFERRED-WRITE phrase, a
physical write occurs each time an output statement executes for file-name. The
DEFERRED-WRITE phrase applies only to relative and indexed files.

3-22 Environment Division

1-0-CONTROL
Continued

2. The EXTENSION phrase specifies the number of disk blocks to be added each time a
file is extended. RMS-11 extends a file when it needs more file space to add a record.

If extend-amt equals zero, RMS-11 extends the file by its default value.

3. The FILL-SIZE phrase causes RMS-11 to use the fill size specified when the file was cre­
ated to fill the file's buckets. If there is no FILL-SIZE phrase, RMS-11 fills buckets com­
pletely. The FILL-SIZE phrase applies only to indexed files.

4. The MASS-INSERT phrase optimizes the addition of records to an indexed file.
However, optimization occurs only if the records are in ascending order by prime
record key.

5. The PREALLOCATION phrase causes RMS-11 to allocate prea/1-amt disk blocks when it
creates the file.

The CONTIGUOUS phrase specifies that the preallocated disk blocks must be contig­
uous.

If RMS-11 cannot find prea/1-amt (or contiguous prea/1-amt) disk blocks, the open fails.

6. The PRINT-CONTROL phrase specifies that the file has print file format and it applies
only to sequentially organized files.

The PRINT-CONTROL phrase is redundant if: (1) the file description entry contains a
LINAGE clause, or (2) the program contains a WRITE statement with the ADVANCING
phrase for the file. However, the PRINT CONTROL phrase is required for print files on
magnetic tape.

7. The WINDOW phrase specifies the technique RMS-11 uses to map your file. See
Technical Note 7 for a discussion of its effect and the permissible values it can contain.

SAME AREA Clause

8. The SAME AREA clause causes two or more files named by same-area-file to use the
same input-output buffer.

9. If you specify the SAME AREA clause, only one same-area-file can be open at one time.

SAME RECORD AREA Clause

10. The SAME RECORD AREA clause causes two or more files named by same-area-file to
share the same memory area for the current logical records.

11. If you specify the SAME RECORD AREA clause, more than one same-area-file (or all of
them) can be open at the same time.

12. Any record in the shared area becomes the current logical record of:

• Each same-area-file of the SAME RECORD AREA clause open in OUTPUT mode

• The most recently read same-area-file of the SAME RECORD AREA clause open in
INPUT mode

The logical records start with the same leftmost character position. Thus, the SAME
RECORD AREA clause is equivalent to an implicit redefinition of the shared area.

Environment Division 3-23

1-0-CONTROL
Continued

SAME SORT (SORT-MERGE) AREA Clause

In the following rules, the terms SORT, sort, and sort file also imply SORT-MERGE, merge, and
merge file.

13. At least one same-area-file in the SAME SORT AREA clause must be a sort file.

14. The SAME SORT AREA clause causes two or more sort files named by same-area-file to
use the same memory area.

15. Files other than sort files do not share the same storage area unless their names are in
a SAME AREA or SAME RECORD AREA clause.

16. No other same-area-file can be open during the execution of a SORT statement that
refers to any same-area-file.

RERUN Clause

17. The RERUN clause is for documentation only. It has no effect on program execution.

Technical Notes

The following notes describe the effects of APPLY clause phrases on parameters in the File
Access Block (FAB) and Record Access Block (RAB) associated with file-name. Descriptions of
FAB and RAB fields are in the RMS-11 Macro Programmer's Guide.

1. The DEFERRED-WRITE phrase sets the DFW bit in the FOP field of the FAB.

2. The EXTENSION phrase stores extend-amt in the DEQ field of the FAB.

3. The FILL-SIZE phrase sets the LOA bit in the ROP field of the RAB.

4. The MASS-INSERT phrase sets the MAS bit in the ROP field of the RAB.

5. The PREALLOCATION phrase stores prea/1-amt in the ALQ field of the FAB.

The CONTIGUOUS phrase sets the CTG bit in the FOP field of the FAB.

6. The PRINT-CONTROL phrase has no effect on FAB parameters. (For print control files,
COBOL-81 uses variable length records with embedded print control characters, rather
than a specific record format.)

7. The WINDOW phrase stores window-ptrs in the RTV field of the FAB. The effect of the
WINDOW phrase varies according to your operating system.

On an RSX-11M/M-PLUS system, window-ptrs overrides the default window size. The
value of window-ptrs must fall in the range 0 to 127 inclusive, or be equal to 255.

On a RSTS/E system, window-ptrs overrides the default clustersize. Its value can be 0, a
power of two, or 255.

3-24 Environment Division

Additional References

Section 3.2.1.7 RESERVE Clause
Section 5.9.17 OPEN Statement
Section 5.9.19 READ Statement
Section 5.9.22 REWRITE Statement
Section 5.9.26 START Statement
Section 5.9.32 WRITE Statement

Part IV of the COBOL-81 User's Refer to the chapter on

1-0-CONTROL
Continued

Guide for your system file optimization techniques

Environment Division 3-25

Chapter 4
Data Division

This chapter first discusses the logical and physical concepts that apply to the Data Division. It
then presents the general formats for all Data Division entries and clauses, describes their basic
elements, and lists applicable rules of use.

4.1 Data Division Concepts

The Data Division defines the data processed by your COBOL program in both physical and
logical terms. It also specifies whether the data is contained in files or is developed only for
local use in your program.

The File Section of your program defines data contained in files. A file description or a sort­
merge file description entry creates a logical reference to a file. It also can contain clauses that
define physical file characteristics. A file description or sort-merge file description entry must
be associated with at least one record description entry, which logically defines a set of related
data within the file. A record description entry is a set of one or more data description entries,
organized in a hierarchical structure. The data description entries themselves specify all the
data used in your program. You logically define the record hierarchy by the level numbers you
use for the data description entries (or entry). Your logical link to a record or to a field in a
record is the data-name you assign in a corresponding data description entry. The clauses in a
data description entry also specify physical data attributes, such as storage format and initial
values.

The Working-Storage and Linkage Sections also contain data description entries, which
describe characteristics of data developed for use in your program.

The following sections explain in more detail how a COBOL program specifies physical and
logical characteristics. It shows how record descriptions impose logical structures on data, and
how the physical attributes of data affect the way it is stored and manipulated.

4.1.1 Logical Concepts

Because a record description is a logical, rather than a physical structure, a program can define
more than one record description for the same file. However, this redefinition does not mean
that the physical data changes in any way. Multiple record descriptions for a file all apply to one
physical data unit on the file medium.

When you refer to a data-name in a COBOL source statement, you are referring to a logical unit,
either a logical record or a logical subset of that record. When your COBOL source statements
execute, the logical units to which they refer are mapped to physical units on media. The logical
units are then manipulated according to their physical attributes.

4-1

The correspondence between a logical record and a physical record is not necessarily a one-to­
one correspondence. The term physical record applies to a data unit that is media dependent
and defined by PDP-11 Record Management Services (RMS-11). A logical record can correspond
to one physical record, either alone or grouped with other logical records. Or, at least on disk,
a logical record could need more than one physical record to contain it.

Several COBOL clauses (in the Environment and Data Divisions) describe the relationships
between logical records and physical records. Programs can then access data as logical entities
with little regard to the physical data definitions that RMS-11 requires.

4.1.1.1 Record Description - Logical records do not have to be subdivided; however, they
often are. Subdivision can continue for each of the record's parts, allowing progressively more
detailed data definition.

The basic subdivision of a record is the elementary data item (or elementary item), which you
define by specifying a PICTURE clause. As the term implies, elementary items are never subdi­
vided. A logical record consists of one or more sets of elementary items, or is itself an elemen­
tary item.

A group data item (or group item) is a data set within a record that contains other subordinate
data items. The lowest-level group item is always a named sequence of one or more elementary
items. Group items can combine to form more inclusive group items. Therefore, an elementary
item can be subordinate to more than one group item in the record.

Figure 4-1 represents a personnel record that illustrates how elementary and group items can be
related in a record hierarchy. The record contains three group items directly subordinate to the
top level: Identification Data, History, and Payroll Data. The first group item, Identification
Data, directly contains two elementary items, Name and Job Title, and two other group items,
Employee Number and Address. The group item, Employee Number, contains two eleme11tary
items: Department Code and Badge Number. The group item, Address, contains four elemen­
tary items: Street, City, State, and ZIP Code. The elementary item, City, belongs to three group
items. It is subordinate to Address, Identification Data, and Personnel Record. The second
group item, History, directly contains three elementary items: Hire Date, Last Promotion, and
Termination Date. The third group item, Payroll Data, also directly contains two elementary
items: Current Salary and Previous Salary.

4.1.1.2 Level-Numbers - Record description entries use a system of level-numbers to specify
the hierarchical organization of elementary and group items. Level-numbers that specify hierar­
chical structure can range from 01 through 49.

The record is the most inclusive data item; that is, there is no hierarchical relationship between
one record description entry and any other. However, there is a hierarchical relationship
between a group item and its subordinate group or elementary items. The level-number for
records is 01. Less inclusive data items have greater (although not necessarily consecutive)
level-numbers.

All items subordinate to a group item must have level-numbers greater than the group's level­
number. In a record description, a group item is delimited by the next subsequent level num­
ber that is less than or equal to that group's level number.

4-2 Data Division

Figure 4-1: Hierarchical Record Structure

Personnel Record
Identification Data

History

Employee Number
Department Code
Badge Number

Name
Address

Street
City
State
ZIP Code

Job Title

Hire Date
Last Promotion Date
Termination Date

Payroll Data
Current Salary
Previous Salary

(record level group item)
(group item)

(group item)
(elementary item)
(elementary item)

(elementary item)
(group item)

(elementary item)
(elementary item)
(elementary item)
(elementary item)

(elementary item)
(group item)

(elementary item)
(elementary item)
(elementary item)

(group item)
(elementary item)
(elementary item)

Figure 4-2 shows how level-numbers specify hierarchical structure and how the presence of the
PICTURE clause defines an elementary item. Although line indentation can make record
descriptions easier to read, it does not affect record structure; only the level-number values
specify the hierarchy. The ellipsis (...) indicates that parts of the program line have been
omitted.

Figure 4-2: Level-Number Record Structure

0 1 PERSONNEL-RECORD. (record)
03 IDENTIFICATION-DATA, (group item)

05 EMPLOYEE-NUMBER. (group item)
07 DEPARTMENT-CODE PIC (elementary item)
07 BADGE-NUMBER PIC (elementary item)

05 NAME PIC (elementary item)
05 ADDRESS. (group item)

07 STREET PIC (elementary item)
07 CITY PIC (elementary item)
07 STATE PIC (elementary item)
07 ZIP-CODE PIC (elementary item)

05 JOB-TITLE PIC (elementary item)
03 HISTORY+ (group item)

04 HIRE-DATE PIC (elementary item)
04 LAST-PROMOTION-DATE PIC (elementary item)
04 TERM I NAT ION-DATE PIC (elementary item)

03 PAYROLL-DATA. (group item)
05 CURRENT-SALARY PIC (elementary item)
05 PREtJ IOUS-SALARY PIC (elementary item)

Three special level-numbers -66, 77, and 88- neither specify hierarchical structure nor actually
indicate level. Rather, they define special types of data entries:

• Level-number 66 identifies RENAMES items, which regroup other data items. (See
Section 4.2.17.)

Data Division 4-3

• Level-number 77 specifies noncontiguous (elementary) items in the Working-Storage
and Linkage Sections. These data items are not subdivisions of other items and cannot
themselves be subdivided. For all other purposes, they are identical to level 01 elemen­
tary entries.

• Level-number 88 associates condition-names with values of a corresponding data item
(the conditional variable). (See Section 1.1.2.1, Condition-Name.)

4.1.1.3 Multiple Record Definitions - Example 4-1 shows a sample file description entry (FD) that
contains three record description entries. It defines three logical templates the program can
impose on a record to access data from it.

Example 4-1: Multiple Record Definition Structure

FD MASTER-FILE.
01 T 1,

02 Tl-ACCOUNT-NO PIC 8 (G).
02 Tl-TRAN-CODE PIC 88.
02 Tl-NAME PIC)-((13) •
02 Tl-BALANCE PIC 8(5)!)88.
02 REC-TYPE PIC)-(){ +

01 T2.
02 T2-ACCOUNT-NO PIC 8 (G).
02 T2-ADDRESS.

03 T2-STREET PIC)-((15) •
03 T2-CITY PIC }((7) '

02 REC-TYPE PIC)-(}(t

01 RECORD-TYPE.
02 PIC >{ (28) t

02 REC-TYPE PIC }-(}{ +

T1, T2, and RECORD-TYPE each define a record of 30 characters. Once the program reads a
record, it can use the last two characters (REC-TYPE) to determine which record description to
use. (Example 4-1 defines a fixed length record. However, if the example had defined a variable
length record, REC-TYPE would have been the first field in the record- not the last.)

4.1.2 Physical Concepts

COBOL programs describe files and data in physical terms for storage on input-output media.
The physical description of data includes:

• The mapping and grouping of logical records within the structure of the file medium

• The unit used to transfer records to and from your program

• The size and storage format of an elementary data item

The size and recording mode of a physical record depend on the hardware device involved in
an input or output operation. For example, tape and disk media store physical records differ­
ently. On tape, a physical record is written between interrecord gaps. On disk, a physical
record is written in multiples of 512-byte units.

4-4 Data Division

On DIGITAL systems, the term used for a physical record differs according to file organization.
A physical record in a sequential file is called a block. A physical record in a relative or indexed
file is called a bucket. A block (or bucket) corresponds to the unit used by RMS-11 (Record
Management Services) to transfer records from a file to your program (and vice versa). The
number of records (in logical terms) actually transferred by an input-output operation depends
upon:

• The block size specified by the BLOCK CONTAINS clause

• The number of logical records contained in a physical record

When your COBOL program executes a READ or WRITE statement, it can affect more than one
record. Whether it does or not depends upon file media defaults and how your program uses
the BLOCK CONTAINS clause. For this reason, it is important to keep in mind the correspon­
dence between logical and physical records when balancing input-output optimization against
file sharing needs. Refer to Part IV of the COBOL-81 User's Guide for your system for more
information on file and record processing.

The size and storage format of an elementary data item depends upon what class and category
of data it represents and how that data can be used. A data item's PICTURE clause determines its
class and category. The item's PICTURE clause and USAGE clause, in combination, specify its
size and storage format. (See Section 4.2.14 and Section 4.2.20.)

When an arithmetic or data-movement statement transfers data into an elementary item, the
category of the item affects the way the data is positioned in storage. The COBOL Standard
Alignment Rules specify the relationship between category and positioning.

The following sections discuss categories and classes of data, the Standard Alignment Rules,
and record storage format in greater detail.

4.1.2.1 Categories and Classes of Data - Depending on the symbols that its PICTURE clause con­
tains, a data item belongs to one of the following five categories:

• Alphabetic

• Alphanumeric

• Alphanumeric edited

• Numeric

• Numeric edited

These categories are grouped into three classes:

• Alphabetic

• Alphanumeric

• Numeric

Every elementary item, except an index data item or an index-name, belongs to one of these
classes and categories. (Index data items and index-names are the only elementary items for
which you do not specify a PICTURE clause. They therefore cannot belong to a category).

Data Division 4-5

The class of a group item is treated as alphanumeric regardless of the class of elementary items
subordinate to it. Therefore, the statements in your program should not specify a group item
when a numeric item is expected or required.

Table 4-1 shows the relationship of classes and categories of data items.

Table 4-1: Classes and Categories of Data Items

Level Class Category

Alphabetic Alphabetic

Elementary Numeric Numeric

Numeric Edited
Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic
Numeric

Group Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

4.1.2.2 Standard Alignment Rules - The Standard Alignment Rules specify how characters are
positioned in an elementary item. Positioning depends on the item's category:

1. For a numeric receiving data item:

• The data is aligned by decimal point. It is moved to the receiving character positions
with zero fill or truncation, if necessary.

• When an assumed decimal point is not explicitly specified, the data item is treated as
if it had an assumed decimal point immediately after its rightmost character. It is
aligned as in the preceding paragraph.

2. For a numeric edited receiving data item, the data is aligned by decimal point with zero
fill or truncation, if necessary. Editing requirements can replace leading zeros with
some other symbol.

3. For receiving data items that are alphabetic, alphanumeric edited, or alphanumeric
(without editing), the data is aligned at the leftmost character position in the data item,
with space fill or truncation to the right, if necessary.

If the JUSTIFIED clause applies to the data item, the rules for the JUSTIFIED clause override
rule 3. (See Section 4.2.9.)

As stated earlier, the Standard Alignment Rules specify data positioning only within elementary
items. DIGITAL defines other alignment rules that affect the positioning of: (1) records on the
file media, (2) group items within the record, and (3) elementary items within a group item. The
following section discusses these additional alignment rules.

4-6 Data Division

4.1.2.3 Record Allocation - The byte is the smallest addressable storage unit in PDP-11 memory,
and each byte can have an even or an odd address. When referring to data alignment, the even
address is often called the even byte, word, or 2-byte boundary. The following discussion will
use the term "2-byte boundary" to refer to even addresses.

As the COBOL-81 compiler allocates storage for data, it tries to locate each data item at the next
unassigned byte (either odd or even address) for greatest storage efficiency. This method of
storage allocation is sometimes called the left-to-right technique. However, the compiler must
also apply alignment rules that require certain data items to align on 2-byte boundaries or, in a
few cases, to align on larger byte offsets from a record boundary. The compiler may then have
to "skip" one or more bytes before assigning a location to one of these data items. The skipped
bytes, called fill bytes, are spaces that precede data items in a file. Fill bytes can precede data
items described in your program as:

1. A record description entry for a file at level 01 (Relative locations of records in the
Working-Storage and Linkage Sections are neither defined nor predictable.)

2. A binary data item (An elementary item whose description contains a COMP or INDEX
usage clause.)

3. A group item containing any elementary items that have special alignment
requirements

4. A data item that does not require special alignment itself, but that has been redefined
by another item with special alignment requirements

Unless you write the SYNCHRONIZED clause for COMP data items, the compiler inserts no
more than one fill byte between data items. However, more than one fill byte might precede
COMP SYNC items in your program.

Note

The SYNCHRONIZED clause ensures that COMP items in data files can be
read by a VAX-11 COBOL program. For more information, refer to Appendix
D, Ensuring Compatibility between COBOL-81 and VAX-11 COBOL.

Figure 4-3 shows alignment boundaries for a record. The boundary is the leftmost location of
the one-, two-, four-, or eight-byte area. All boundaries for items within a record are relative to
the record's beginning. Therefore, alignment of the record as a unit has no effect on data
access.

Figure 4-3: Record Alignment Boundaries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
! ! ! ! ! ! ! ! ! ! ! ! ! ! . ! ! ! ! ! ! ! ! ! !

Bl B Bl B Bl B Bl B Bl B Bl B sls Bl B Bl B sls Bl B Bl B
2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte

4-byte 4-byte 4-byte 4-byte 4-byte 4-byte

8-byte 8-byte 8-byte

Data Division 4-7

Table 4-2 shows the required boundaries for data items needing special alignment. The
asterisk(*) indicates items you use to automatically ensure compatibility with VAX-11 COBOL.

Table 4-2: Data Items Requiring Alignment

Data Type Required
Boundary

INDEX 2-byte

PIC 9 to 9(4) COMP 2-byte

* PIC 9 to 9(4) COMP SYNC 2-byte

PIC 9(5) to 9(9) COMP 2-byte

* PIC 9(5) to 9(9) COMP SYNC 4-byte

PIC 9(10) to 9(18) COMP 2-byte

* PIC 9(10) to 9(18) COMP SYNC 8-byte

Because fill bytes precede a data item in storage, they have no effect on the size of elementary
data items being aligned. However, they can increase the size of group items containing the
specially aligned data items.

The presence of fill bytes makes a group item's storage structure different from what you might
expect, based on a simple count of characters. If the group item contains many subordinate
items requiring alignment, its size can increase significantly. If you are unaware of fill bytes and
try to move a group item containing them into an elementary data item, right-end truncation
will occur. You do not have this problem, however, if you move the group item into another
identically described group item. This is because the compiler applies additional alignment
rules to ensure that identically described group items have the same storage structure.
Therefore, group moves always produce predictable results.

The compiler allocates storage for group items using the Major-Minor Equivalence Technique.
This technique is based on two alignment rules:

1. Location Equivalence - the leftmost location of a group item must be the same as the
leftmost location of its first subordinate item.

2. Boundary Equivalence - a group item must align on the same type of boundary as the
most restrictive boundary required by its subordinate items or items that redefine the
group.

4.1.2.4 Location Equivalence - Location equivalence forces a group (major) item to the same
storage location as its first subordinate (minor) item. Consider this example:

01 ITEM-A,
03 ITEM-6.

05 ITEM-C PIC 9 (lj) COMP.
03 ITEM-D PIC x.
03 ITEM-E,

05 ITEM-F PIC 9(4) COMP.
03 ITEM-G PIC x.

Figure 4-4 compares data item alignment using location equivalence with alignment using a left­
to-right technique. The left-to-right technique assigns locations to allocation a group item
before assigning locations to the group's subsidiary items. However, location equivalence first

4-8 Data Division

assigns locations to the subsidiary items. Note that the location equivalence rule adds a fill byte
before ITEM-E. This forces ITEM-E to align on the same boundary as ITEM-F, which is implicitly
aligned because it is a COMP data item.

Figure 4-4: Data Alignment Requirements Without and With Location Equivalence

Without Location With Location
Data Item Equivalence Equivalence

ITEM-A 00 00
ITEM-B 00 00

ITEM-C 00 00
ITEM-D 02 02
ITEM-E 03 04

ITEM-F 04 04
ITEM-G 06 06

Figure 4-5 shows the storage allocation for the record ITEM-A using both techniques. The sym­
bol "-" indicates the fill byte caused by the alignment requirement for COMP items. The sym­
bol "+" represents the fill byte resulting from location equivalence. Any even offset number
indicates a 2-byte boundary. Level 01 data items provide reference points for boundary calcula­
tions and are therefore aligned on "O".

Figure 4-5: Record Allocation Without and With Location Equivalence

Without Location Equivalence

Byte Offset

Level 01

Level 03

Level05

0
!
A

B

c

A

B

c

2
!
A

D

4
!

A A

E E

-lF

A

E

F

6
!
A

G

With Location Equivalence

Byte Offset

Level 01

Level 03

Level 05

0
!
A

B

c

A

B

c

2
!
A

D

A

+

-

4
!
A

E

F

A

E

F

6
!
A

G

Regardless of the record allocation technique, an elementary move such as:

MOVE ITEM-C TO ITEM-F

always produces the expected result. However, a group move could cause different results.
Using the previous example, consider the statement:

MOVE ITEM-B TO ITEM-E,

Without location equivalence, the structures of ITEM-B and ITEM-E are not the same because
the alignment of their subordinate items is different. The leftmost location of ITEM-E (03) is one
byte to the left of its subordinate item, ITEM-F. Therefore, the contents of ITEM-C do not align
properly with ITEM-F. The first byte of ITEM-C moves to the fill byte before ITEM-F, and the con­
tents of ITEM-C and ITEM-Fare not the same.

With location equivalence, the group move produces the expected result because the struc­
tures of ITEM-Band ITEM-E are identical.

Data Division 4-9

When referring to Figure 4-5, note that the fill byte inserted by alignment requirements only
increases the size of the group item, ITEM-A (01). The fill byte does not increase the size of the
group item, ITEM-E (03), because ITEM-F (05) is its first subordinate item.

4.1.2.5 Boundary Equivalence - Boundary equivalence forces a group item to align on the same
type of boundary as the most restrictive boundary required by any item in its scope. Its scope
includes any items that:

• Are subordinate to the group

• Redefine the group

• Are subordinate to a data item that redefines the group

Figure 4-6 shows how the compiler determines the boundary where each item begins.

Figure 4-6: Effect of Boundary and Location Equivalence Rules on Sample Record

Boundary Reason

01 ITEM-A. Level 01 is reference
point

03 ITEM-5, 8-byte Contains ITEM-J

05 ITEM-C PIC){ + byte Default alignment

05 ITEM-D, 4-byte Contains ITEM-F

07 ITEM-E PIC 9 (4) COMP SYNC. 2-byte Explicit SYNC clause

07 ITEM-F. 4-byte Contains ITEM-I

09 ITEM-G PIC)-{ + byte Default alignment

0 9 ITEM-H PIC 9 (4)' byte Default alignment

09 ITEM-I PIC 9(8) COMP SYNC. 4-byte Explicit SYNC clause

05 ITEM-J, 8-byte Redefined by
ITEM-M which con-
tains ITEM-N

07 ITEM-K PIC 9 (1) COMP SYNC. 2-byte Explicit SYNC clause

07 ITEM-L PIC){ (7) • byte Default alignment

05 ITEM-M REDEFINES ITEM-J, 8-byte Contains ITEM-N

07 ITEM-N PIC 9 (15) COMP SYNC. 8-byte Explicit SYNC clause

07 ITEM-0 PIC)-{ + byte Default alignment

05 ITEM-P. 8-byte Redefined by
ITEM-S

07 ITEM-Q PIC 9 (5) COMP, 2-byte Binary data item

07 ITEM-R PIC 9(7) COMP, 2-byte Binary data item

05 ITEM-S REDEFINES ITEM-P 8-byte Explicit SYNC clause

PIC 9 (15) COMP SYNC,

4-10 Data Division

Figure 4-7 graphically represents the preceding example. It shows the result of location and
boundary equivalence applied to the description of record ITEM-A. The symbol"-" indicates fill
bytes.

Figure 4-7: Storage Allocation for Sample Record

Byte Offset O
l

4
l

8
l

12
l

16
!

20
l

24
!

A

B

cj- - -Jo D D D D D D D D D D D J J J J J J J J J

1 E EI- -IF F F F F F F F K KIL L L L L L L

1G1H Hj-J1 I I I M M M M M M M M M

N N N N N N N NlO

28
!

32
!

36
!

39
j

A A A A A A A A A A A A A A A

B B B B B B B B B B B B B B B

- - - - - - - p p p p p p p p

Q Q Q oJR R R R

s s s s s s s s

Note the location of ITEM-D. Location equivalence requires only that ITEM-D have the same
location as ITEM-E, its first subordinate item. ITEM-E requires only two-byte boundary align­
ment. However, another of ITEM-D's subordinate items, ITEM-F, contains ITEM-I, which must
be aligned on a four-byte boundary. Therefore, boundary equivalence forces ITEM-D to a four­
byte boundary as well, causing two fill bytes between ITEM-E and ITEM-F.

This example shows how boundary equivalence helps make group moves predictable:

01 ITEM-A,
03 ITEM-B,

05 ITEM-C PIC " /\ .
05 ITEM-D PIC 9(8) COMP SYNC,

03 ITEM-E PIC v
I\ •

03 ITEM-F.
05 ITEM-G PIC v

I\ •

05 ITEM-H PIC 9(8) COMP SYNC.
03 ITEM- I PIC \J v

I\ I\ f

The descriptions of ITEM-Band ITEM-Fare equivalent. Therefore, you would not expect the fol­
lowing sentence to change the values of ITEM-C and ITEM-D:

MOVE ITEM-B TO ITEM-F
MOVE ITEM-F TO ITEM-B.

Figure 4-8 shows how storage for the record would be allocated without and with boundary
equivalence. The symbol "-" indicates fill bytes caused by the SYNCHRONIZED clause. The
symbol"+" represents fill bytes resulting from boundary equivalence.

Figure 4-8: Record Allocation Without and With Boundary Equivalence

Byte Offset 0
j

Without Boundary Equivalence

4
J

8
J

12
j

16 17
J J

A A A A A A A A A A A A A A A A A A

B B B B B B B B E F F F F F F F I I

c - D D D D G - - H H H H

0
j

4
j

With Boundary Equivalence

8
j

12
!

16
j

20 21
j j

A

B B B B B B B B E + + + F F F F F F F F I I

c D D D D G H H H H

Data Division 4-11

Without boundary equivalence, ITEM-B occupies eight bytes, and ITEM-F occupies seven bytes.
Moving the contents of ITEM-B to ITEM-F truncates the last byte of ITEM-D. Moving the con­
tents of ITEM-F to ITEM-B pads the last byte of ITEM-D with a space character.

In contrast, boundary equivalence eliminates this unforeseen result. The elementary items
occupy the same relative positions in each group. Therefore, the structures of ITEM-B and
ITEM-Fare the same, and the results of both group and elementary moves are predictable.

Examples

This series of examples shows major-minor storage allocation. The notes after each example
indicate its significant features. The symbol"-" represents fill bytes.

Example 1

WORKING-STORAGE SECTION.
01 ITEM-A.

03 ITEM-5 PIC ><.
03 ITEM-C.

05 ITEM-D.
07 ITEM-E PIC 888 COMP SYNC.
07 ITEM-F PIC i{(10).

05 ITEM-G REDEFINES ITEM-D.
07 ITEM-H PIC 8114) COMP SYNC.

01
03

03

07
ITEM-J.

ITEM-K.

ITEM-I PIC XXXX.

05 ITEM-L PIC 888 COMP SYNC.
05 ITEM-M PIC XllOJ,

ITEM-N REDEFINES ITEM-K.
05 ITEM-0 PIC 8(141 COMP SYNC.
05

Byte Offset

Note:

ITEM-P PIC XXXX,

0
l

A A A

sJ- -
A

4
l

A A

- - -

A A

- -

8
l

A

c
D

E

G

H

A A

c c
D D

ElF

G G

H H

A

c
D

F

G

H

12
l

A

c
D

F

G

H

A A

c c
D D

F F

G G

H H

A

c
D

F

16
l

A

c
D

F

G G

HI I

A A

c c
D D

F F

G G

I I

19
l

A

c
D

F

G

I

0
l

J

K

L

N

0

J J

K K

LIM

N N

0 0

J

K

M

N

0

4
l

J

K

M

N

0

J

K

M

N

0

J

K

M

N

0

J

K

M

8
l

J

K

M

N N

oIP

The structures of ITEM-J (a record) and ITEM-C (a group item within a record) are identical
because of location and boundary equivalence rules.

4-12 Data Division

J J '

K K f

M M ~

N N t

p p f

Example2

WORKING-STORAGE SECTION.
01 ITEM-A.

03 ITEM-B
03 ITEM-C.

05 ITEM-D OCCURS
07 ITEM-E
07 ITEM-F
07 ITEM-G

03 ITEM-H

Byte Offset 0
!
A A

BI-

A A

c c
D D

4
!
A

c
D

A

c
D

A

c
D

EI-IF FIG

Notes:

A

c
-

PIC ><.

3 TIMES.
PI C }{.
PIC 9999 COMP SYNC.
PIC){.
PI C }{.

8
!
A

c
D

A

c
D

A A

c c
D D

12
!

A

c
D

A

c
-

A A

c c
D D

16
!

A

c
D

A A

c c
D D

EI-IF FIG El-lF FlG

A

c
-

20
!

A

H

1. ITEM-D naturally falls on an odd byte boundary. Therefore, a fill byte precedes all but
the first occurrence of ITEM-D to maintain 2-byte boundary alignment of the item.

2. ITEM-Dis five bytes long. The fill byte preceding ITEM-Dis not included in its length.

3. ITEM-C is 18 bytes long. Its length includes the three fill bytes associated with ITEM-D,
as well as the three fi II bytes associated with ITEM-F.

4. The record ITEM-A is 21 bytes long. Its length includes the fill bytes associated with
ITEM-C, ITEM-D, and ITEM-F.

Example3

WORKING-STORAGE SECTION,
01 ITEM-A.

03 ITEM-B PIC }{ +

03 ITEM-C.
05 ITEM-D OCCURS 3 TIMES.

07 ITEM-E PIC }{ +

07 ITEM-F PIC 9999 COMP SYNC,
03 ITEM-H PIC }{ t

Byte Offset 0 4 8 12 14
! ! ! ! !
A A A A A A A A A A A A A A A

B - c c c c c c c c c c c c H

D D D D D D D D D D D D

E - F F E - F F E - F F

Data Division 4-13

Notes:

1. This example is the same as Example 2 except that it omits ITEM-G.

2. ITEM-D is four bytes long. No fill bytes precede it, since its next occurrence is already
aligned on a two-byte boundary.

3. ITEM-C is 12 bytes long. It includes only the three fill bytes associated with ITEM-F.

4. The record ITEM-A is 15 bytes long. It includes four fill bytes - the one fill byte associ­
ated with ITEM-C and the three fill bytes associated with ITEM-F.

4-14 Data Division

Data Division
Format Entry Pages

DATA DIVISION General Format and Rules

4.2 DATA DIVISION General Format and Rules

Function

The DATA DIVISION describes data the program creates, receives as input, manipulates, and
produces as output.

General Format

[DATA DIVISION.

[FILE SECTION.

[file-description-entry { record-description-entry } ...] ...

[sort-merge-file-description-entry { record-description-entry } ...] ... J
[WORKING-STORAGE SECTION.

[record-description-entry] .. . J
[LINKAGE SECTION. l

[record-description-entry] ... J

Syntax Rules

1. The Data Division follows the Environment Division.

2. The reserved words DATA DIVISION, followed by a separator period, identify and
begin the Data Division.

General Rules

1. The Data Division has three sections. These sections must be in this order:

File Section

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

2. The File Section defines the structure of data files. It begins with the File Section
header: the reserved words FILE SECTION, followed by a separator period.

3. File description entries and sort-merge file description entries follow the File Section
header. They can be in any order.

4. The file description entry consists of a level indicator (FD), a file-name, and a series of
independent clauses.

Data Division 4-15

DATA DIVISION General Format and Rules
Continued

5. FD clauses specify: (1) how the file records data; (2) the sizes of logical and physical
records, and (3) the names of data records.

6. An FD entry, followed by one or more record description entries, defines a sequen­
tial, relative, or indexed file. Record description entries must immediately follow the
associated FD entry.

7. The sort-merge file description entry consists of a level indicator (SD), a file-name,
and a series of independent clauses.

8. SD clauses specify: (1) how the file records data, (2) the sizes of logical and physical
records, and (3) the names of data records.

9. An SD entry specifies the sizes and names of data records for a sort-merge file referred
to by SORT and MERGE statements.

10. An SD entry, followed by one or more record description entries, defines a file.
Record description entries must immediately follow the associated SD entry.

Working-Storage Section

11. The Working-Storage Section describes records and subordinate data items. These
records are not parts of files; rather, the program develops and processes them
internally.

12. The Working-Storage Section also describes data items assigned values by the source
program.

13. The Working-Storage Section consists of a section header, followed by record
description entries.

14. The section header consists of the reserved words WORKING-STORAGE SECTION,
followed by a separator period.

15. A record description entry groups data items that bear a hierarchical relationship to
each other. Unrelated data items in the Working-Storage Section can be described as
records that are individual elementary items.

16. Record description clauses can be used in the File Section, the Working"Storage
Section, or the Linkage Section.

17. The VALUE IS clause can specify the initial value of any item in the Working-Storage
Section except index data items (described by the USAGE IS INDEX clause) and index­
names (described by the INDEXED BY phrase of the OCCURS clause).

18. If the VALUE IS clause does not specify an initial value, the default initial value for an
item is undefined. However, index-names are preset to occurrence number one.

4-16 Data Division

Linkage Section

DAT A DIVISION General Format and Rules
Continued

19. The Linkage Section is only in a called program.

20. The Linkage Section describes data available through the calling program; both the
calling and called programs can access this data.

21. To access calling program data items through the Linkage Section, the called program
must have a Procedure Division header USING phrase.

22. The structure of the Linkage Section is the same as that of the Working-Storage
Section. It consists of a section header followed by record description entries. The
section header consists of the reserved words LINKAGE SECTION followed by a sepa­
rator period.

23. The VALUE IS clause cannot appear in the Linkage Section except in condition-name
entries (level 88). The initial value of Linkage Section items is defined by the calling
program in each call.

Additional References

Section 1.1.2.1 User-defined Words
Section 4.2.21 VALUE IS Clause
Section 5.3.3 CALL Statement

Data Division 4-17

FD {File Description Entry for Sequential, Relative, and Indexed Files)

4.2.1 FD (File Description) Complete Entry Skeleton

Function

A file description entry describes the physical structure, identification, and record names for
sequential, relative, and indexed files.

General Formats

Format 1 - Sequential File

FD file-name

[BLOCK CONTAINS [smallest-block TO] blocksize {
RECORDS } J
CHARACTERS

CONTAINS [shortest-rec TO] longest-rec CHARACTERS
RECORD

IS VARYING IN SIZE [FROM shortest-rec] [TO longest-rec] CHARACTERS

[LABEL {
RECORDS ARE} , STANDARD } l
RECORD IS l OMITIED

[VALUE OF ID IS file-spec]

[DATA
, RECORDS ARE } { rec-name } ...]

l RECORD IS

[DEPENDING ON depending-item]

[LINAGE IS { page-size } LINES [WITH FOOTING AT footing-line }

[LINES AT TOP top-lines] [LINES AT BOTTOM bottom-lines] l
[CODE-SET IS alphabet-name] .

(continued on next page)

4-18 Data Division

FD
Continued

Format 2 - Relative File

FD file-name

[BLOCK CONTAINS [smallest-block TO J blocksi<e {
RECORDS } l
CHARACTERS

[RECORD

CONTAINS [shortest-rec TO] longest-rec CHARACTERS

IS VARYING IN SIZE [FROM shortest-rec] [TO longest-rec] CHARACTERS

[DEPENDING ON depending-item]

[
LABEL { RECORDS ARE l { STANDARD } l

RECORD IS) OMITTED

[VALUE OF ID IS file-spec]

[{
RECORDS ARE }

DATA
RECORD IS

{ 'ec-name } .. ·]

Format 3 - Indexed File

FD file-name

[BLOCK CONTAINS [smallest-block TO I blocksize {
RECORDS } l
CHARACTERS

[RECORD

CONTAINS [shortest-rec TO] longest-rec CHARACTERS

IS VARYING IN SIZE [FROM shortest-rec] [TO longest-rec] CHARACTERS

[DEPENDING ON depending-item]

[LABEL {
RECORDS ARE } { STANDARD } l
RECORD IS OMITIED

[VALUE OF ID IS file-spec]

[DATA {
RECORDS ARE }

RECORD IS
{ 'ec-name } . . .] .

]

]

Data Division 4-19

FD
Continued

Syntax Rules

Formats 1 , 2, and 3

1. The level indicator FD identifies the start of a file description entry. It must precede
file-name.

2. The clauses following file-name can appear in any order.

3. A separator period must terminate a file description entry.

Format 1

4. File-name can refer only to a sequential file.

5. One or more record description entries must follow the file description entry.

Format 2

6. File-name can refer only to a relative file.

7. If a START statement refers to file-name, the file description must include the RELATIVE
KEY phrase within the ACCESS MODE clause.

8. One or more record description entries must follow the file description entry.

Format 3

9. File-name can refer only to an indexed file.

10. One or more record description entries must follow the file description entry.

General Rule

A file description entry associates file-name with a file connector.

Examples

Part IV of the COBOL-81 User's Guide for your system contains examples of each file descrip­
tion entry format.

4-20 Data Division

SD (Sort-Merge File Description)

4.2.2 SD (Sort-Merge File Description) Complete Entry Skeleton

Function

A sort-merge file description entry describes a sort or merge file's physical structure, identi­
fication, and record names.

General Format

SD file-name

[RECORD
[DEPENDING ON depending-item]] IS VARYING IN SIZE [FROM shortest-rec] [TO longest-rec] CHARACTERS

CONTAINS [shortest-rec TO] longest-rec CHARACTERS

[DATA { ::::::SISARE} { rec .. name } .. .] .

Syntax Rules

1. The level indicator SD identifies the start of a sort-merge file description. It must pre-
cede file-name.

2. The clauses following file-name can appear in any order.

3. A separator period must terminate a sort-merge file description entry.

4. One or more record description entries must follow the sort-merge file description
entry.

General Rule

No input-output statements can refer to a file-name in a sort-merge file description.

Examples

The COBOL-81 User's Guide for your system (Part IV, Processing Files and Records) contains
examples of the sort-merge file description entry.

Data Division 4-21

DATA DESCRIPTION

4.2.3 Data Description - Complete Entry Skeleton

Function

A data description entry specifies the characteristics of a data item.

General Formats

Format 1

level-number [data-name]

FILLER

[REDEFINES other-data-item

[{ :TURE} IS character-string]

[USAGE IS]

COMPUTATIONAL
COMP
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX

{
LEADING }

TRAILING
[SEPARATE CHARACTER I]

OCCURS table-size TIMES

[' ASCENDING } KEY IS { key-name } ...] ... l DESCENDING

[INDEXED BY { ind-name } ...]

OCCURS min-times TO max-times TIMES DEPENDING ON depending-item

[j ASCENDING } KEY IS { key-name } ...] ...

) DESCENDING

[INDEXED BY { ind-name } ...]

4-22 Data Division

(continued on next page)

[{ SYNCHRONIZED} [LEFT J]
SYNC RIGHT -- ---

[t~::IFIED} RIGHT]
BLANK WHEN ZERO

VALUE IS lit] .

Format 2

66 new-name RENAMES rename-start [{ THRU } rename-end]
THROUGH

Format 3

DATA DESCRIPTION
Continued

{
VALUE IS }

88 condition-name
VALUES ARE

low-val [J THRU } high-val] l THROUGH

Syntax Rules

1. Level-number in Format 1 can be any number from 01 through 49, or 77.

2. Data description clauses can appear in any order, with two exceptions:

• The optional data-name or FILLER clause must immediately follow level-number.

• The optional REDEFINES clause must immediately follow the optional data-name or
FILLER clause.

3. There must be a PICTURE clause for all elementary items except: (1) an index data item
and (2) the subject of a RENAMES clause. (In these cases, there must be no PICTURE
clause.)

4. The words THRU and THROUGH are equivalent.

5. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses can
appear only in data description entries for elementary items.

Data Division 4-23

DATA DESCRIPTION
Continued

General Rules

1. Each condition-name requires a separate Format 3 entry. The level 88 entry associates
one or more values, or ranges of values, with condition-name.

All condition-name entries for an associated data item (the conditional variable) must
immediately follow that item's data description entry.

A condition-name can be associated with a data item at any level except:

• Another condition-name

• A level 66 item

• A group that contains items with JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY) clauses

• An index data item

2. Multiple level 01 data description entries subordinate to an FD or SD entry implicitly
redefine the same area.

4-24 Data Division

BLANK WHEN ZERO

4.2.4 BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause replaces zeros with spaces when a data item's value is zero.

General Format

BLANK WHEN ZERO

Syntax Rules

1. The BLANK WHEN ZERO clause can be used only for a numeric or numeric edited ele­
mentary item.

2. A BLANK WHEN ZERO data item must be implicitly or explicitly described with DISPLAY
usage.

3. The BLANK WHEN ZERO clause cannot be used for a data item that has an asterisk(*) in
its PICTURE string.

General Rules

1. The BLANK WHEN ZERO clause causes an item to contain spaces when its value is zero.

2. When the data item has a numeric PICTURE string, the BLANK WHEN ZERO clause
makes the item's category numeric edited.

Data Division 4-25

BLOCK CONTAINS

4.2.5 BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

{
RECORDS }

BLOCK CONTAINS [smallest-block TO] blocksize
CHARACTERS

smallest-block
is an integer literal. It specifies the minimum physical record size and must be less than
blocksize.

blocksize
is an integer literal. It specifies the exact or maximum physical record size.

General Rules

1. The BLOCK CONTAINS clause specifies the physical record size.

2. At run time, COBOL-81 ignores smallest-block.

3. The RECORDS phrase specifies the physical record size in terms of logical records.

• For a magnetic tape file with fixed length records, each physical record except the
last contains blocksize records.

• For a magnetic tape file with variable length records, the compiler computes the
physical record size. It equals the size of the largest logical record, plus any overhead
bytes, multiplied by blocksize.

• For a disk file with sequential organization, there are no unused bytes in any physical
record. Logical records can span physical record boundaries.

• For a disk file with relative or indexed organization, the compiler uses blocksize to
compute the size of the physical record. Because of the overhead bytes required by
Record Management Services (RMS-11), the size can differ from record size multi­
plied by b/ocksize.

4. The CHARACTERS phrase specifies physical record size in terms of characters.

• For files assigned to magnetic tape, the physical record size is the larger of:
(1) b/ocksize bytes, or (2) the size of the largest logical record; plus any overhead
bytes for variable length records. Blocksize must be a multiple of four.

• For sequential disk files, there are no unused bytes in any physical record. Logical
records can span physical record boundaries.

• For relative and indexed files, the physical record size is b/ocksize bytes. Blocksize
must be at least as large as the largest logical record, plus any overhead bytes. It
should be a multiple of 512.

4-26 Data Division

BLOCK CONTAINS
Continued

5. If there is no BLOCK CONTAINS clause, the physical record size assumes a default
value.

• For a magnetic tape file, the physical record size is the size of the largest logical
record plus any overhead bytes.

• For a sequential disk file, there are no unused bytes in any physical record. Logical
records can span physical record boundaries.

• For a relative or indexed file, the physical record size is the smallest number of 512-
byte units that can contain at least one logical record (including any overhead bytes).

6. For files assigned to magnetic tape, the size of physical records (in characters) must be
a multiple of four. Otherwise, RMS-11 rounds up the physical record size to the next
multiple of four.

Data Division 4-27

CODE-SET

4.2.6 CODE-SET Clause

Function

The CODE-SET clause specifies the representation of data on external media.

General Format

CODE-SET IS alphabet-name

alphabet-name
is the name of a character set defined in the ALPHABET clause of the SPECIAL-NAMES
paragraph.

Syntax Rule

The CODE-SET clause applies only to files with sequential organization.

General Rule

COBOL-81 ignores the CODE-SET clause during input-output operations. Because both NATIVE
and STANDARD-1 (in the ALPHABET clause) describe the ASCII character set, no character con­
version can occur.

Additional Reference

Section 3.1.3 SPECIAL-NAMES Paragraph

4-28 Data Division

DATA-NAME

4.2. 7 Data-Name Clause

Function

Data-name specifies a data item that your program can explicitly reference. FILLER specifies an
item that cannot be explicitly referenced.

General Format

[data-name J
FILLER

Syntax Rule

In the File, Working-Storage, and Linkage Sections, data-name or the key word Fl LLER (if pre­
sent) must be the first word after the level-number in each data description entry.

General Rules

1. If there is no data-name or FILLER clause, the compiler treats the data item as a FILLER
item.

2. The key word FILLER can name a data item. However, a program cannot explicitly refer
to FILLER items.

3. The key word FILLER can name a conditional variable. A program cannot refer to the
conditional variable. However, it can refer to the value of the conditional variable by
referring to its associated condition-names.

Examples

1. Elementary Fl LLER items:

In this example, the program can refer only to the group item, ITEMA.

01 ITEMA.
03 FILLER PIC Xl101 VALUE SPACES,
03 PIC)-((21 l.JALUE "AB",
03 PIC 8 VALUE G,

2. Group FILLER items:

In this example, the program can refer to any elementary item. However, it cannot
refer to the record or to the group item that contains ITEMC and ITEMD.

01 FILLER.
03 ITEMA PIC){ (ll) •
03 ITEMB PIC 8 (7).
0 3 FILLER.

05 ITEMC PIC }{ +

05 ITEMD PIC 8 (8) l,J88 +

0 3 ITEME PIC }(+

Data Division 4-29

DATA RECORDS

4.2.8 DATA RECORDS Clause

Function

The DATA RECORDS clause documents the names of a file's record description entries.

General Format

{
RECORD IS }

DATA
RECORDS ARE

{ rec-name } ...

rec-name
is the name of a data record. It must be defined by a level 01 data description entry subor­
dinate to the file description entry.

Syntax Rule

The order of appearance of multiple rec-name entries is not significant.

General Rule

The DATA RECORDS clause is for documentation only.

4-30 Data Division

JUSTIFIED

4.2.9 JUSTIFIED Clause

Function

The JUSTIFIED clause specifies nonstandard data positioning in an alphanumeric receiving
item.

General Format

{
JUSTIFIED }

RIGHT
JUST

Syntax Rules

1. The JUSTIFIED clause can be used only for elementary items.

2. The JUSTIFIED clause cannot be used for: (1) index data items; (2) numeric data items;
or (3) edited data items. It can be used only for alphanumeric data items.

3. JUST is an abbreviation for JUSTIFIED.

General Rules

1. If a COBOL statement transfers data to a receiving item whose data description con­
tains the JUSTIFIED clause, the COBOL-81 Object Time System:

• Truncates the excess leftmost characters if the sending item is larger than the receiv­
ing item

• Aligns the data at the rightmost character position of the receiving item if the sending
item is smaller than the receiving item (Spaces fill the excess leftmost character
positions.)

2. If there is no JUSTIFIED clause, data movement follows the rules for aligning data in
elementary items (Standard Alignment Rules).

Additional References

Section 4.1.2.2
Section 5.9.15

Examples

Standard Alignment Rules
MOVE Statement

The Procedure Division entry for the MOVE statement contains examples using this clause.

Data Division 4-31

LABEL RECORDS

4.2.10 LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

LABEL f RECORDS ARE l j STANDARD l
l RECORD IS j l OMITIED j

General Rule

The LABEL RECORDS clause is for documentation only.

4-32 Data Division

LEVEL-NUMBER

4.2.11 Level-Number

Function

The level-number shows the position of a data item within the hierarchical structure of a logical
record. It also identifies entries for condition-names and the RENAMES clause.

General Format

level-number

Syntax Rules

1. The level-number must be the first element in a data description entry.

2. Data description entries that are subordinate to a file description (FD) entry have level­
numbers 01through49, 66, or 88.

3. Data description entries in the Working-Storage and Linkage Sections have level­
numbers 01through49, 66, 77, or 88.

General Rules

1. The level-number 01 identifies the first entry in a record description.

2. Multiple level 01 entries subordinate to a file description entry represent implicit redef­
initions of the same area.

3. Level-number 66 identifies a RENAMES entry. It can be used only in a Format 2 data
description entry.

4. Level-number 77 identifies a noncontiguous data item entry in the Working-Storage
and Linkage Sections. The level 77 entry can have no subordinate data description
entries except level 88 items.

5. Level-number 88 defines a condition-name associated with a conditional variable. It can
be used only in a Format 3 data description entry.

6. Level-numbers 66, 77, and 88 do not imply hierarchical position.

Additional References

Section 1.1.2.1
Section 4.1.1.1
Section 4.2.3
Section 4.2.17

User-Defined Words - Condition-Name
Record Description
Data Description
RENAMES Clause

Data Division 4-33

LINAGE

4.2.12 LINAGE Clause

Function

The LINAGE clause specifies the number of lines on a logical page. It can also specify the size of
the logical page's top and bottom margins and the line where the footing area begins in the
page body.

General Format

LINAGE IS { page-lines } LINES [WITH FOOTING AT footing-line]

[LINES AT TOP top-lines] [LINES AT BOTTOM bottom-lines]

page-lines
is a positive integer or the data-name of an elementary unsigned integer numeric data
item. Its value must be greater than zero. It specifies the number of lines that can be writ­
ten or spaced on the logical page. If page-lines is a data-name, it can be qualified.

footing-line
is a positive integer or the data-name of an elementary unsigned integer numeric data
item. Its value must be greater than zero, but cannot be greater than page-lines. Footing­
line specifies the line number where the footing area begins in the page body. If footing­
line is a data-name, it can be qualified.

top-lines
is an integer or the data-name of an elementary unsigned integer numeric data item. Its
value can be zero. Top-fines specifies the number of lines in the top margin of the logical
page. If top-lines is a data-name, it can be qualified.

bottom-lines
is an integer or the data-name of an elementary unsigned integer numeric data item. Its
value can be zero. Bottom-lines specifies the number of lines in the bottom margin of the
logical page. If bottom-lines is a data-name, it can be qualified.

General Rules

1. The LINAGE clause specifies the number of lines on a logical page.

2. Logical page size is the sum of the values specified in all phrases except FOOTING. If
there is no LINES AT TOP or LINES AT BOTIOM phrase, the default value of top-lines
or bottom-lines is zero. If there is no FOOTING phrase, the default value of
footing-line equals the value of page-lines.

3. Logical and physical page sizes are not necessarily the same.

4. The page body is the logical page area in which the program can write or space lines.
Its size equals the value of page-lines.

5. The footing area comprises the area of the logical page between footing-line and
page-lines, inclusive.

4-34 Data Division

LINAGE
Continued

6. When the program opens the file by executing an OPEN statement with the OUTPUT
phrase, it uses the values of page-lines, top-lines, and bottom-lines to define the logi­
cal page sections. When these values are integers, they apply to all logical pages the
program writes to the file during its execution.

7. When page-lines, top-lines, and bottom-lines are data-names, their values affect
OPEN and WRITE statement execution as follows:

• When the program executes an OPEN statement with the OUTPUT phrase for the
file, the values specify the number of lines in each of the associated sections of the
first logical page.

• When the program executes a WRITE statement with the ADVANCING PAGE
phrase, or when a page overflow condition occurs, the values specify the number of
lines in each of the associated sections of the next logical page.

8. The value of footing-line defines the footing area for the first logical page when the
program executes an OPEN statement with the OUTPUT phrase for the file. The value
defines the footing area for the next logical page when: (a) the program executes a
WRITE statement with the ADVANCING PAGE phrase or, (b) a page overflow condi­
tion occurs.

9. For each file with a LINAGE clause, the program has a corresponding special register
called LINAGE-COUNTER. At any time, the value in LINAGE-COUNTER is the line
number in the current page body at which the device is positioned.

10. LINAGE-COUNTER is a special register whose implicit size is four decimal digits
(represented by PIC 59(4) COMP). Procedure Division statements can refer to
LINAGE-COUNTER but cannot change its value.

11. If the program has more than one LINAGE-COUNTER, all Procedure Division refer­
ences to it must be qualified by file-name.

12. Execution of a WRITE statement for a file with the LINAGE clause changes the value of
the associated LINAGE-COUNTER:

• If the WRITE statement has the ADVANCING PAGE phrase, its execution resets
LINAGE-COUNTER to one. (The resetting operation implicitly increments the value
of LINAGE-COUNTER to exceed the value of page-lines).

• If the WRITE statement has the ADVANCING LINES phrase, its execution increments
LINAGE-COUNTER by the value in the ADVANCING phrase.

• If the WRITE statement does not have the ADVANCING phrase, it increments
LINAGE-COUNTER by one.

13. Execution of an OPEN statement for the file sets its LINAGE-COUNTER to one.

14. Each logical page follows the preceding logical page with no spacing between them.

15. Execution of a CLOSE statement for the file causes the remainder of the current page
to be written to the file.

Data Division 4-35

LINAGE
Continued

Technical Note

The LINAGE clause causes a file to be in print-file format. When a WRITE statement positions
the file to the top of the next logical page, device positioning occurs by line spacing rather than
by page ejection or form feed.

The default operating system PRINT command causes the insertion of a form-feed character
when a form nears the end of a page. Therefore, when the default PRINT command refers to a
LINAGE file, unexpected page spacing can result.

To print linage-files correctly on a RSTS/E system, use the /NOFEED file qualifier of the PRINT
command to suppress the insertion of form-feed characters. For example:

$ PRINT OUTPUT-REPORT/NOFEED

To print linage-files correctly on an RSX-11M/M-PLUS system, use the /LENGTH=O qualifier of
the PRINT command to suppress the insertion of form-feed characters. For example:

> PRINT/LENGTH=O OUTPUT-REPORT

Additional References

Section 5.9.32 WRITE Statement

Example

This example specifies a logical page whose size is 26 lines. The first line to which the page can
be positioned is the fifth line. The end-of-page condition occurs when a WRITE statement
causes the LINAGE-COUNTER value to be in the range 13 through 16. The page overflow condi­
tion occurs when a WRITE statement causes the LINAGE-COUNTER value to exceed 16.

FD PRINT-FILE
VALUE OF IO IS "REPORT1.LIS"
LINAGE IS 16 LINES WITH FOOTING AT 13

LINES AT TOP 4 LINES AT BOTTOM G,

Figure 4-9 shows the logical page areas resulting from the example.

4-36 Data Division

Figure 4-9: Logical Page Areas Resulting from a LINAGE Clause

Logical Page Page Body

T1
T2
T3
T4

Top
Margin

1 ------

2
3
4
5
6
7
8
9

10
11

12 ------
13
14
15

Footing
Area

16 -----­
B1
B2
B3
B4
B5

Bottom
Margin

B6 _____ _

LINAGE
Continued

Data Division 4-37

OCCURS

4.2.13 OCCURS Clause

Function

The OCCURS clause defines tables and provides the basis for subscripting and indexing. It
eliminates the need for separate entries for repeated data items.

General Format

Format 1

OCCURS table-size TIMES

[j ASCENDING l KEY IS { key-name } ...]

l DESCENDING j

INDEXED BY { ind-name } ...]

Format 2

OCCURS min-times TO max-times TIMES DEPENDING ON depending-item

[{ ASCENDING l KEY IS { key-name } ...] ...

DESCENDING f
INDEXED BY { ind-name } ...]

table-size
is an integer that specifies the exact number of occurrences of a table element.

min-times
is an integer that specifies the minimum number of occurrences of a table element. Its
value must be greater than or equal to one.

max-times
is an integer that specifies the maximum number of occurrences of a table element. Its
value must be greater than min-times.

key-name
is the data-name of an entry that contains the OCCURS clause or an entry subordinate to it.
Key-name can be qualified. Each key-name after the first must name an entry subordinate
to the entry that contains the OCCURS clause. The values in each key-name are the basis of
the ascending or descending arrangement of the table's repeated data.

4-38 Data Division

ind-name

OCCURS
Continued

is an index-name. It associates an index with the table and allows indexing in table element
references.

depending-item
is the data-name of an elementary unsigned integer data item. Its value specifies the cur­
rent number of occurrences. Depending-item can be qualified.

Syntax Rules

1. The subject of the entry is the data-name that contains the OCCURS clause.

2. A key-name cannot contain an OCCURS clause. However, this rule does not apply to
the first key-name if it is the subject of the entry.

3. There can be no OCCURS clauses between the data description entries for key-names
and the subject of the entry.

4. In the OCCURS clause of the data description entry, key-name cannot be subscripted
or indexed.

5. There must be an INDEXED BY phrase if any Procedure Division statements contain
indexed references to the subject of the entry or to any of its subordinates.

6. The INDEXED BY phrase implicitly defines ind-name. The program cannot define
ind-name elsewhere.

7. A Format 2 OCCURS clause can be used in a record description entry for a file with
variable length records. If it is, depending-item must be in the same record.

8. The subject of a Format 2 OCCURS clause can be followed, in the same record
description, only by data description entries subordinate to it.

9. The OCCURS clause cannot be used in a data description entry that has:

• A level-number of 01, 66, 77, or 88

• A subordinate variable occurrence data item (Format 2 OCCURS clause)

10. The data item defined by depending-item cannot occupy any character position in the
range delimited by the following:

• The character position defined by the subject of the OCCURS clause

• The last character position defined by the record description entry containing the
OCCURS clause

11. Each ind-name must be a unique word in the program.

General Rules

1. The OCCURS clause defines tables and provides the basis for subscripting and
indexing.

2. Except for the OCCURS clause itself, all data description clauses associated with the
subject of the OCCURS clause apply to each occurrence of the item.

Data Division 4-39

OCCURS
Continued

3. Format 1 specifies that the subject of the entry has a fixed number of occurrences.

4. Format 2 specifies that the subject of the entry has a variable number of occurrences.
Min-times and max-times specify the minimum and maximum number of occurrences.
Only the number of the subject's occurrences is variable; its size is fixed.

The value of depending-item must fall in the range min-times through max-times.

The contents of data items with occurrence numbers exceeding the current value of
depending-item are unpredictable.

5. If a group item with a subordinate entry that has a Format 2 OCCURS clause is a send­
ing item, the operation uses only the part of the table area specified by depending-item
at the start of the operation.

If the group is a receiving item, the operation uses the maximum length of the group.
The operation ignores depending-item and does not change its value unless it is in the
group.

6. The KEY IS phrase indicates that the repeated data is arranged in ascending or descend­
ing order according to the values in the data items named by key-name. The rules for
operand comparison determine the ascending or descending order. The position of
each key-name in the list determines its significance. The first is the most significant,
and the last is least significant.

7. If a Format 2 OCCURS clause is in a record description entry and the associated file
description entry has the VARYING phrase of the RECORD clause, the records are vari­
able length.

If the RECORD clause does not have the DEPENDING ON phrase, the program must set
the OCCURS clause depending-item to the number of occurrences before executing a
RELEASE, REWRITE, or WRITE statement. The depending-item value determines the
length of the record to be written.

Technical Note

A table can sometimes contain fill bytes that increase its size. Fill bytes are caused by alignment
requirements that apply either to the subject of the OCCURS clause or to its subordinates.
Unless the table contains a COMP SYNC data item, the compiler will insert no more than one
fill byte between items when assigning storage. However, if the table contains COMP SYNC
items larger than 4 digits, the size of the table could increase significantly.

The compiler issues an informational diagnostic when an item will contain fill bytes. If you com­
pile your program using the /SHOW: MAP qualifier, the listing also indicates where the fill bytes
appear in the table. Refer to Part I of the COBOL-81 User's Guide for your system for instruc­
tions on using the COBOL command with this qualifier. The chapter on table handling in Part Ill
of the User's Guide contains additional information on this subject.

Additional References

Section 4.1.2.3
Section 5.5.1.1
Section 5.5.1.2
Section 5.9.23

4-40 Data Division

Record Allocation
Comparison of Numeric Operands
Comparison of Non numeric Operands
SEARCH Statement

Examples

OCCURS
Continued

Additional examples of the OCCURS clause are in Section 4.1.2.3 and Section 5.9.23, SEARCH
Statement.

1. One-dimensional table:

This record description entry describes a 20-character record. The record contains ten
occurrences of ITEMB, a 2-character data item.

01 ITEMA,
03 ITEMB OCCURS 10 TIMES PIC XX,

2. Two-dimensional table:

This record description entry describes a 320-character record. The record contains
eight occurrences of ITEMB, a 40-character data item. ITEMB contains ten occurrences
of ITEMC, a 4-character data item. Each ITEMC contains two data items: ITEMD and
ITEME.

01 ITEMA+
03 ITEMB OCCURS 8 TIMES.

05 iTEMC OCCURS 10 TIMES.
07 ITEMD PIC i<.
07 ITEME PIC XXX,

ITEMB (1) refers to a 40-character data item, the first ten occurrences of ITEMC.
Similarly, ITEMB (5) refers to the fifth group of ten occurrences of ITEMC.

ITEME (3,4) refers to ITEME in the fourth occurrence of ITEMC in the third occurrence
of ITEMB:

ITEMB (1)
ITEMB (2)
ITEMB (3)
ITEMB (4)
ITEMB (5)
ITEMB (6)
ITEMB (7)
ITEMB (8)

DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE

3. Variable occurrence data item:

When ITEMA is a receiving item, its size is 2128 characters. When it is a sending item, its
size can vary from 70 to 2128 characters, depending on the value in ITEMC.

Each ITEME is 42 characters long. Its size cannot change. The only effect of the value of
ITEMC is to determine the number of ITEME occurrences.

Data Division 4-41

OCCURS
Continued

There are ten occurrences of ITEMH and ITEMI in each occurrence of ITEME.

01 ITEMA+
03
03
03
03

ITEMB PIC x (6) +

ITEMC PIC 99+
ITEMD PIC }{ (20).
ITEME OCCURS 1 TO 50 TIMES
05 ITEMF PIC XX.
05 ITEMG OCCURS 10 TIMES,

07 ITEMH PIC X.
07 ITEMI PIC XXX.

4-42 Data Division

DEPENDING ON IT EMC,

PICTURE

4.2.14 PICTURE Clause

Function

The PICTURE clause specifies the general characteristics and editing requirements of an ele­
mentary item.

General Format

j PICTURE } IS character-string

l PIG

Syntax Rules

1. You can use the PICTURE clause only for an elementary item.

2. Character-string contains allowable combinations of characters in the COBOL character
set. These characters are called the "symbols" of the PICTURE character-string.

3. Character-string can contain no more than 30 symbols.

When the symbols define nonnumeric data, they can represent an item that is more
than 30 characters in length.

When they define numeric data, the symbols can represent an item with no more than
18 digit positions.

4. The PICTURE clause is required for every elementary item except: (a) an item specified
by the USAGE IS INDEX clause and (b) the subject of a RENAMES clause. Data descrip­
tion entries for these items cannot contain a PICTURE clause.

5. PIC is an abbreviation for PICTURE.

6. The asterisk(*), when used as a zero suppression symbol, and the BLANK WHEN ZERO
clause cannot be used in the same entry.

General Rules

1. The PICTURE clause defines a data item to belong to a particular category, and
determines what the item can contain. Table 4-3 shows the valid contents of both
character-string and the data item itself for each category. General rules 2 through 5 fol­
lowing Table 4-3 supplement the information it contains.

Data Division 4-43

PICTURE
Continued

Table 4-3: Summary of PICTURE Clause Rules

Category of
Receiving

Item PICTURE of Receiving Item

Alphabetic Must contain one or more As.

Numeric Must contain at least one 9.
Can contain one Sand one V.
Can contain Ps. Must des-
cribe 1 to 18 digit positions,
which can be represented by
9s or Ps.

Alphanumeric Can contain combinations of
As, Xs and 9s. Can be all
Xs. Cannot be all As or
all 9s.

Alphanumeric Must contain at least one A or
Edited X. Must also contain at least

one B, 0, or/. Can contain
one or more 9s.

Numeric Must contain at least one 0,
Edited B, /, Z, *, +,(comma),.,-,

CR, DB, or cs. Can contain
Ps, 9s, and one V. Must des-
cribe 1 to 18 digit positions,
which can be represented by
9s, zero suppression symbols
(Z, *),and floating insertion
symbols (+,-,cs).

Valid Contents of
Sending Item Examples

One or more alpha- AA
betic characters. A(9)

One or more numeric S9(4)V99
characters. 9PPP

SPP9

One or more charac- XX99XX
ters in computer AAXA(4)
character set. X(32)

One or more charac- XXBXXB9(4)
ters in computer XX/99/00
character set. 9(6)/X

One or more numeric * *** ** I •

characters. ZZ,ZZZ.9(4)
$$,$$$DB
$9,999CR

ZZZCR
** * *

2. In an alphanumeric item definition, each character position is treated as if it were
represented by an X, even though A or 9 may be specified.

3. Some PICTURE symbols represent character positions and some do not. A data item's
size is determined by adding up all the symbols that represent a character position. For
example, a numeric data item with a PICTURE of 999V99 has a size of five characters. V
does not count toward the item's size.

4. Character-string can contain a repeat count to represent consecutive occurrences of
the following symbols: A, the comma (,), X, 9, P, Z, *, B, /, 0, +, -, and the currency
symbol (represented by cs). The repeat count must be an unsigned, nonzero integer
enclosed in parentheses. For example, S9(6)V9(4) is equivalent to S999999V9999.
However, character-string can contain no more than one of the following symbols: S,
V, the period(.), CR, and DB.

5. The PICTURE clause symbols and their functions are as follows:

A Represents a character position that can contain only an alphabetic character.
(An alphabetic character belongs to the set of characters: A through Z, a
through z, and the space.)

4-44 Data Division

Can occur more than once.

Counts toward data item size.

B Represents a character position into which a space is inserted.

Can occur more than once.

Counts toward data item size.

PICTURE
Continued

P Specifies an assumed decimal scaling position, defining the location of the
decimal point when one is not specified in character-string.

Can occur more than once, but only as a contiguous string of Ps at either the
leftmost or rightmost end (not both) of character-string. The assumed decimal
point character (V) is redundant when specified. However, when it is speci­
fied, V can appear to the left of the leftmost Porto the right of the rightmost
P.

Does not count toward data item size. However, each P counts toward the
maximum number of digit positions (18) in a numeric or numeric edited item.

Cannot be used if an explicit decimal point(.) appears in character-string.

In certain operations that refer to a data item with P characters in
character-string, the compiler treats each P position as if it contained the
value zero. For example, a data item with PICTURE 99PPP can have 100 unique
values that range from 0 to 99,000 (0, 1000, 2000, ... , 99,000). A data item with
PICTURE PP9 can have ten unique values (0, .001, .002, 009). These oper­
ations are any of the following:

• Any operation requiring a numeric sending operand

• A MOVE statement where the sending operand is a numeric or numeric
edited data item and character-string contains the symbol P

• A comparison operation where both operands are numeric

In all other operations, the compiler ignores the digit positions specified with
the symbol P and does not count them toward the size of the operand.

S Indicates the presence of an operational sign, but does not specify the sign
representation or position.

Can occur only once, as the leftmost character in character-string.

Does not count toward data item size unless the data description entry con­
tains a SIGN IS SEPARATE clause. If the SIGN clause does not appear in the
item's data description, Sis equivalent to SIGN IS TRAILING.

V Specifies the location of the assumed decimal point.

Can occur only once.

Does not count toward data item size.

Cannot be used if an explicit decimal point(.) appears in the PICTURE.

Data Division 4"45

PICTURE
Continued

X Represents a character position that can contain any character from the com­
puter character set.

Can occur more than once.

Counts toward data item size.

Z Represents a leading digit position that is replaced by a space when its value
and the value of the digits to its left are zero.

Can occur more than once.

Counts toward data item size.

Use of Z excludes the use of the asterisk (*) for zero suppression and
replacement.

9 Represents a digit position that can contain only the digits 0 through 9.

Can occur more than once.

Counts toward data item size.

0 Represents a character position into which 0 is inserted.

Can occur more than once.

Counts toward data item size.

I Represents a character position into which a slash(!) is inserted.

Can occur more than once.

Counts toward data item size.

Represents a character position into which a comma(,) is inserted.

Can occur more than once.

Counts toward data item size.

Represents a character position into which a decimal point (.) is inserted. It
also represents the decimal point for alignment purposes.

Can occur only once.

Counts toward data item size.

Cannot be used if V or P appear in character-string.

4-46 Data Division

Note

When a program contains the DECIMAL POINT IS
COMMA clause, the functions and rules for the period (.)
and comma (,) are exchanged. In other words, the rules
that apply to the period apply to the comma, and vice
versa.

PICTURE
Continued

+ - Represent the editing sign control symbols, plus (+)and minus(-).

Each can occur more than once.

Each counts as one character toward data item size.

Character-string can contain occurrences of + or-, but not both. Also, the
use of either character excludes the use of both CR and DB.

CR DB Represent the editing sign control symbols, credit (CR) and debit (DB).

*

Each can occur only once, as the two rightmost character positions.

Each counts as two characters toward data item size.

Character-string can contain either CR or DB, but not both. Also, the use of
either excludes the use of both + and - as fixed insertion characters.

Represents a leading digit position that is replaced by * when its value and
the values of all digit positions to its left are zero.

Can occur more than once.

Counts toward data item size.

Use of * excludes the use of Z for zero suppression and replacement.

cs Represents a character position into which the currency symbol is inserted.
This symbol is either the currency sign ($) or the character specified in the
CURRENCY SIGN clause of the SPECIAL-NAMES paragraph.

Can occur more than once.

Counts as one character toward data item size.

Editing Rules

1. There are two PICTURE clause editing methods: (a) insertion editing and (b) suppres­
sion and replacement editing. Each method has the following variations:

Insertion Editing

Simple insertion
Special insertion
Fixed insertion
Floating insertion

Suppression and Replacement Editing

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

2. The types of editing a program can perform on a data item depends on the item's
category:

Valid Editing
Category Types of Editing Characters

Alphabetic None None
Numeric None None
Alphanumeric None None
Alphanumeric Edited Simple insertion 0, B, and I
Numeric Edited All All, subject to Editing

Rule 3

Data Division 4-47

PICTURE
Continued

3. Floating insertion editing and editing by zero suppression and replacement are mutu­
ally exclusive. That is, a PICTURE clause can use one type of editing or the other, but
not both.

Furthermore, a PICTURE clause can use only one type of replacement symbol for zero
suppression. The Z (space) and * (asterisk) symbols cannot appear in the same
PICTURE clause.

4. Simple Insertion Editing

The , (comma), B (space), 0 (zero), and I (slash) are the symbols used in simple
insertion editing. They indicate a data item position to contain the character they repre­
sent. These symbols count toward data item size.

If the comma is the last symbol in character-string, the PICTURE clause must be the last
clause of the data description entry. In this case,",." are the last two characters of the
data description entry. However, if the DECIMAL-POINT IS COMMA clause is in the
SPECIAL-NAMES paragraph, the data description entry ends with two consecutive
periods.

5. Special Insertion Editing

The period (.) is the only symbol used in special insertion editing. It represents the data
item position to contain the actual decimal point. However, it also represents the deci­
mal point for alignment purposes. Therefore, the assumed decimal point (V) and the
actual decimal point(.) cannot be used in the same character-string. The period counts
toward data item size.

If the period is the last symbol in character-string, the PICTURE clause must be the last
clause of the data description entry. In this case, the data description entry ends with
two periods. However, if the DECIMAL-POINT IS COMMA clause is in the SPECIAL­
NAMES paragraph,",." are the last two characters of the data description entry.

6. Fixed Insertion Editing

The currency symbol and the editing sign control symbols +, -, CR, and DB are the
symbols used in fixed insertion editing. Character-string can contain only one currency
symbol and only one of the editing sign control symbols as fixed insertion characters.

CR and DB each represent two character positions, which must be the two rightmost
positions.

The symbols + and - must be either the leftmost or rightmost character position that
counts toward the size of the item.

The currency symbol must be the leftmost character position that counts toward the
size of the item. However, a + or - symbol can precede it.

Fixed insertion editing causes the insertion symbol to occupy the same position in the
edited data item as in character-string. Table 4-4 shows that the results of using editing
sign control symbols depend on the data item's value.

4-48 Data Division

Table 4-4: Using Sign Control Symbols in Fixed Insertion Editing

Result

Editing Symbol in Data Item Data Item
PICTURE Character-String Positive or Zero Negative

+ + -

- space -
CR 2 spaces CR
DB 2 spaces DB

7. Floating Insertion Editing

PICTURE
Continued

The currency symbol and editing sign control symbols + and - are the symbols used
in floating insertion editing. They are mutually exclusive in character-string. That is, if
any floating insertion symbol appears in character-string, no other floating insertion
symbol can appear.

To indicate floating insertion editing, you must use a string of at least two floating inser­
tion symbols. You can include simple insertion symbols either within the floating string
or immediately to the right of the floating string. These simple insertion symbols are
treated as part of the floating string. (That is, they only appear in results when the value
of the data item is large enough to include the position occupied by the simple inser­
tion symbol.) You can append the fixed insertion symbols CR or DB immediately to the
right of a floating string.

The leftmost symbol of the floating insertion string represents the leftmost position in
which a floating insertion character can appear. This character position cannot be filled
by a digit.

The second floating symbol from the left represents the leftmost limit of the numeric
data the data item can store. Nonzero numeric characters can replace all symbols at or
to the right of this limit.

You can use the floating insertion symbol in only two ways. It can represent:

a. Any or all leading numeric character positions to the left of the decimal point

In this case, run-time results show a single insertion character in the position
immediately preceding either: (a) the first nonzero digit in the data item or (b) the
decimal point, whichever appears leftmost in the data. For example, a data item
whose PICTURE is $$$.99 and whose value is zero would appear as $.00.

b. All numeric character positions in the PICTURE character-string

In this case, you must specify at least one insertion symbol to the left of the decimal
point. When the data item has a nonzero value, run-time results are the same as
when a// the insertion symbols are to the left of the decimal point. However, when
the data item has a zero value, run-time results show neither a floating insertion
character nor the decimal point. For example, a data item whose PICTURE is$$$.$$
and whose value is zero would appear as spaces.

If the floating insertion symbol is + or-, the actual character inserted depends on the
value of the data item. Table 4-5 shows the possible results of using editing sign control
symbols in floating insertion editing.

Data Division 4-49

PICTURE
Continued

Table 4-5: Using Sign Control Symbols in Floating Insertion Editing

Result

Editing Symbol in Data Item Data Item
PICTURE Character-String Positive or Zero Negative

+ + -

- space -

To avoid truncation, the minimum size of character-string must be the sum of:

• The number of characters in the sending item

• The number of simple, special, or fixed insertion characters edited into the receiving
item

• One, for the floating insertion character

8. Zero Suppression and Replacement Editing

One or more occurrences of Z or * define a floating suppression string, which can
suppress leading zeros in numeric character positions. Z causes spaces to replace the
zeros; * causes asterisks to replace them.

The suppression symbols are mutually exclusive. That is, character-string can contain
either Z or *,but not both.

Each suppression symbol counts toward data item size.

You can include simple insertion symbols either within the floating string or immedi­
ately to its right. These simple insertion symbols are treated as part of the floating
string. (That is, they only appear in results when the value of the data item is large
enough to include a position occupied by a simple insertion symbol.)

You can use zero suppression symbols to represent either:

• Any or all leading numeric character positions to the left of the decimal point

• All numeric character positions on both sides of the decimal point

For example, both ZZZ9.99 and ZZ.ZZ are valid character-strings, but ZZZ.Z9 is not.

The following actions occur if the suppression symbols represent any or all leading
numeric character positions to the left of the decimal point:

• The replacement character replaces any leading zero in the data that corresponds to
a suppression symbol in the string.

• Suppression ends at either: (1) the first nonzero digit in the data represented by the
suppression string or (2) the decimal point, whichever appears first in the data.

The following events occur if the suppression symbols represent all numeric positions
in character-string:

• If the value of the data is not zero, the result is the same as if all suppression symbols
were to the left of the decimal point. That is, zeros to the right of the decimal point
are not suppressed.

4-50 Data Division

PICTURE
Continued

• If the value is zero and the suppression symbol is Z, all character positions in the
edited data item (including any editing characters) contain spaces.

• If the value is zero and the suppression symbol is *, all character positions in the
edited data item (including any insertion editing characters other than the decimal
point) contain asterisks. The decimal point appears in the data item.

9. The symbols +, -, *, Z, and the currency symbol are mutually exclusive when they are
used as floating replacement characters. That is, if any one of these symbols appears as
a floating replacement character, none of the other symbols can appear as a floating
replacement character in the same PICTURE clause.

PICTURE Symbol Precedence Rules

1. Character-string must contain either:

• At least one of the symbols A, X, Z, 9, or *

• At least two of the symbols +,-,or cs

2. Table 4-6 summarizes the rules for combining symbols to form character-strings more
complex than the basic possibilities listed in rule 1. The table shows that the use of one
symbol in a character-string excludes the use of certain others before or after it.

The table uses the following conventions:

a. A Y at an intersection means the symbol(s) at the top of the column (First Symbol)
can precede the symbol(s) at the left of the row (Second Symbol).

b. Braces { } enclose symbols that are mutually exclusive.

c. The currency symbol appears as cs.

d. Symbols appear twice in a column or row when their rules of use depend upon
their location in a character-string. These double entry symbols are:

• Fixed insertion symbols + and -

• Floating symbols Z, *, +,-,and cs

• p

The uppermost entry in a column (or the leftmost entry in a row) represents symbol
use left of the actual or implied decimal point position. The second entry repre­
sents symbol use to the right of the decimal point.

Data Division 4-51

PICTURE
Continued

Table 4-6: PICTURE Symbol Precedence Rules

First Simple, Special, and
Symbol Fixed Insertion Symbols

Second

l :1 1: l 1::1 Symbol B 0 I
'

B y y y y y y

Simple, 0 y y y y y y

Special, I y y y y y y

and
'

y y y y y y

Fixed y y y y y

Insertion {+ -}

Symbols {+ -} y y y y y

{CR OB} y y y y y

cs y

Floating {Z •} y y y y y

Insertion {Z •} y y y y y y

and { + -} y y y y

Suppression { + -} y y y y y

Symbols cs y y y y y

cs y y y y y y

9 y y y y y y

AX y y y

Other s
Symbols v y y y y y

p y y y y y

p y

Additional References

Section 4.2.18
Section 5.9.15

Examples

SIGN Clause
MOVE Statement

Floating Insertion and Other
Suppression Symbols Symbols

1:11:11: I l: I
A

cs cs cs 9 s v p p
x

y y y y y y y y y y y

y y y y y y y y y y y

y y y y y y y y y y y

y y y y y y y y y y

y y y y y

y y y y y y y y y

y y y y y y y y y

y y

y y y y y

y y

y y y y y

y

y y y y

y y y y y y y y y

y y

y y y y y y y

y y y y y y y

y y y y

The Procedure Division entry for the MOVE statement contains examples that illustrate this
clause.

4-52 Data Division

RECORD

4.2.15 RECORD Clause

Function

The RECORD clause specifies: (1) the number of character positions in a fixed length record, (2)
variable length record format, or (3) the minimum and maximum number of character positions
in a variable length record.

General Format

Format 1

RECORD CONTAINS [shortest-rec TO] longest-rec CHARACTERS

Format 2

RECORD IS VARYING IN SIZE [FROM shortest-rec] [TO longest-rec] CHARACTERS

[DEPENDING ON depending-item]

shortest-rec
is an integer that specifies the minimum number of character positions in a variable length
record.

longest-rec
is an integer greater than shortest-rec. It specifies the maximum number of character posi­
tions in a variable length record or the size of a fixed length record.

depending-item
is the data-name of an elementary unsigned integer data item in the Working-Storage or
Linkage Section. It specifies the number of character positions for an output operation,
and it contains the number of character positions after a successful input operation.

Syntax Rules

1. No record description entry for a file can specify:

• Fewer character positions than shortest-rec

• More character positions than longest-rec

2. In a sort-merge file description entry, the first shortest-rec character positions of the
record must be large enough to include all keys specified in any SORT or MERGE state­
ment for the sort or merge file.

3. For an indexed file, the first shortest-rec character positions of the record must be large
enough to include all record keys.

Data Division 4-53

RECORD
Continued

General Rules

Both Formats

1. The absence of a RECORD clause is the same as a Format 1 RECORD clause with: (1)
no shortest-rec phrase, and (2) longest-rec equal to the greatest number of character
positions described for any of the file's records.

2. The number of characters described by a record description entry is the sum of both:

Format 1

• The number of character positions in all elementary items excluding redefinitions
and renamings

• The number of fill bytes added because of alignment requirements

If the record description entry contains a table definition, the sum includes the num­
ber of character positions in the maximum number of table elements.

3. If there is no shortest-rec phrase, Format 1 specifies fixed length records. Longest-rec
then specifies the number of character positions in each record of the file.

4. If there is a shortest-rec phrase, Format 1 specifies variable length records, the same as
Format 2 without the DEPENDING phrase.

5. For variable length records:

Format 2

• The maximum record size for a READ or RETURN operation is the number of charac­
ter positions described in the largest record description entry for the file.

• During execution of a RELEASE, REWRITE, or WRITE statement, the number of char­
acter positions in a record equals the number of character positions in the record
description entry referred to by the statement.

• If all record description entries for the file describe records of the same size,
RELEASE, REWRITE, and WRITE statements for the file transfer fixed length records
in variable length format.

6. Format 2 specifies variable length records.

7. If the clause does not contain shortest-rec, the minimum number of character posi­
tions in any of the file's records is the least number of character positions described
by a record description entry for the file.

8. If the clause does not contain longest-rec, the maximum number of character posi­
tions in any of the file's records is the greatest number of character positions
described by a record description entry for the file.

9. If there is a DEPENDING phrase, the program must set depending-item to the number
of character positions in the record before executing a RELEASE, REWRITE, or WRITE
statement for the file.

4-54 Data Division

RECORD
Continued

10. After successful execution of a READ or RETURN statement for the file, the value of
depending-item indicates the number of character positions in the accessed record.

11. The depending-item value is not changed by executions of:

• DELETE and START statements

• Unsuccessful READ and RETURN statements

12. For RELEASE, REWRITE, and WRITE statement execution, determining the number of
character positions in the record depends partly upon whether or not the record con­
tains a variable occurrence data item (an item described by the OCCURS clause or that
is subordinate to another item so described). During execution of these statements,
three rules determine the number of character positions in the record:

• If there is a depending-item, its value specifies the number of character positions.

• If there is no depending-item and the record does not contain a variable occurrence
data item, the number of character positions described by the record description
entry specifies the number of character positions.

• If there is no depending-item and the record contains a variable occurrence data
item, the number of character positions is the sum of the character positions in:
(1) the fixed part of the record, and (2) the table elements specified by the OCCURS
clause depending-item when the output statement executes.

Additional References

Section 4.2.19
Section 4.2.20

Part I of the COBOL-81 User's
Guide for your system

SYNCHRONIZED Clause
USAGE Clause

Refer to the chapter on program compilation
(!CHECK qualifier)

Data Division 4-55

REDEFINES

4.2.16 REDEFINES Clause

Function

The REDEFINES clause allows different data description entries to describe the same storage
area.

General Format

level-number [data-name] REDEFINES other-data-item
FILLER

other-data-item
is a data-name. It identifies the data description entry that first defines the storage area.

Note

Level-number, data-name, and FILLER are not actually part of the REDEFINES
clause. They are included in the general format only to clarify the relative
position of the clauses.

Syntax Rules

1. The subject of the REDEFINES clause is the data-name or FILLER in a Format 1 data
description entry.

2. The REDEFINES clause must immediately follow its subject.

3. The level-numbers of the subject of the REDEFINES clause and other-data-item must
be the same. However, they cannot be either 66 or 88.

4. The REDEFINES clause cannot be used in a level 01 entry in the File Section.

5. The data description entry for other-data-item cannot contain an OCCURS clause.
However, other-data-item can be subordinate to an item whose data description entry
contains an OCCURS clause. In that case, the reference to other-data-item in the
REDEFINES clause cannot be subscripted or indexed.

6. Neither the original definition nor the redefinition can contain a variable occurrence
data item.

7. If other-data-item is other than a level 01 entry, the number of character positions it
contains must be greater than or equal to the number in the subject of the REDEFINES
clause. If other-data-item is a level 01 entry, its description need not follow this rule;
that is, other-data-item can contain fewer character positions than the subject of the
REDEFINES clause.

8. Other-data-item cannot be qualified even if it is not unique. The reference to
other-data-item is unique without qualification because of the placement of the
REDEFINES clause.

4-56 Data Division

REDEFINES
Continued

9. A program can have multiple redefinitions of the same character positions. However,
they must all refer to other-data-item, the data-name that originally defined the area.

10. The redefining entries cannot contain VALUE clauses except in condition-name entries.

11. No entry with a level-number lower than that of other-data-item can occur between the
data description entry for other-data-item and the redefinition.

12. The entries redefining the storage area must immediately follow those that originally de­
fined it. There can be no intervening entries that define additional storage areas.

General Rules

1. Storage allocation starts at the location of other-data-item. Storage allocation continues
until it defines the number of character positions in the data item referred to by the
subject of the REDEFINES clause.

2. If more than one data description entry defines the same character position, the pro­
gram can refer to the character postion using the data-name associated with any of
those data description entries.

Additional References

Section 4.1.2.3 Record Allocation
Section 4.2.3 ' Data Description - Format 1

Data Division 4-57

REDEFINES
Continued

Example

This example shows:

• A sample program containing multiple redefinitions of the same area

• The results of the sample program statements

• The allowable subscripts and the contents for each data item in the program

IDENTIFICATION DIVISION.
2 PROGRAM-ID. REDEFINES-TEST.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION,
5 01 ITEMA,
6 03 FILLER PIC ><<26) t,JALUE "ABCDEFGHIJKLMNOPQRSTUt,JW><YZ",
7 03 FILLER PIC ><<10) t,JALUE "0123456789",
8 01 REDEFINES ITEMA,
9 03 ITEMB OCCURS 36 TIMES PIC X,

10 01 REDEFINES ITEMA.
11 03 ITEMC,
12 05 ITEMD OCCURS 26 TIMES PIC X,
13 03 REDEFINES ITEMC,
14 05 ITEME OCCURS 13 TIMES.
15 07 ITEMF PIC XX.
16 07 REDEFINES ITEMF,
17 09 ITEMG PIC X.
18 09 ITEMH PIC X,
19 03 ITEMI.
20 05 ITEMJ OCCURS 5 TIMES PIC XX.
21 PROCEDURE DIVISION.
'7 '7 '- ,:_

\/\/\/
/\/\/\. Results

23 DISPLAY ITEM A, ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
24 DISPLAY ITEMB(1), A
25 DISPLAY ITEMB(26), z
26 DISPLAY ITEMB<27), 0
27 DISPLAY ITEMB<36), 9
28 DISPLAY IT EMC, ABCDEFGHIJKLMNOPQRSTUVWXYZ
29 DISPLAY ITEMD< 1), A
30 DISPLAY ITEMD<26), z
31 DISPLAY ITEME(1), AB
32 DISPLAY ITEME<13), YZ
33 DISPLAY ITEMF< 1), AB
34 DISPLAY ITEMF<13), \I...,

Ii...

35 DISPLAY ITEMG(1), A
36 DISPLAY ITEMG(13), y
37 DISPLAY ITEMH< 1), B
38 DISPLAY ITEMH< 13), z
39 DISPLAY ITEM I, 0123456789
40 DISPLAY ITEMJ(1), 01
41 DISPLAY ITEMJ(5), 89
42 STOP RUN.

4-58 Data Division

REDEFINES
Continued

Valid Subscripts for Data-Name
!

Data-Name Item Contents (by Subscript When Applicable)

Subscript not applicable

rrEMA IA s c D E F G H 1 J K L M N o P Q R s T u v w x v z o 1 2 3 4 5 6 1 a 9 I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
!!!!!!!!!!ttttttttt!ttttttttttttttt

ITEMS A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

Subscript not applicable

ITEMC I A s c D E F G H 1 J K L M N o P Q R s T u v w x v z I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
ttt!tt1t1t1tt!tt!ttttttt!!

ITEMD I A I s I c I D I E I F I G I H I 1 I J I K I L I M I N I o I P I Q I R I s I T I u I v I w I x I v I z I

ITEME

ITEMF

2 3 4 5
! . t t !

AB CD EF GH IJ

1
1

AB

2
1

CD

3
1

EF

4
t

GH

5
1
IJ

6 7 8 9 10 11 12 13
t t t t ! ! ! t

KL MN OP QR ST I UV I wx I YZ I

6
1

KL

7
t

MN

8 9 10 11 12 13
t t ! 1 1 t

OP I QR I ST I UV I wx I YZ I

2 3 4 5 6 7 8 9 10 11 12 13
ttttttttt!!tt

ITEMG I A I c I E I G I 1 I K I M I o I Q I s I u I w I v I

1 2 3 4 5 6 7 8 9 10 11 12 13
ttttttttttttt

ITEMH I B I D I F I H I J I L I N I p I R I T I v I x I z I

Subscript
not applicable

ITEMI lo 1 2 3 4 5 6 7 8 91

2 3 4 5
t t 1 t

ITEMJ 01 23 45 67 89

Data Division 4-59

RENAMES

4.2.17 RENAMES Clause

Function

The RENAMES clause groups elementary items in alternative or overlapping ways.

General Format

66 new-name RENAMES rename-start [j THAU } rename-end] l THROUGH

new-name
is the data-name of the item being described. It identifies an alternate grouping of one or
more items in a record.

rename-start
is the data-name of the leftmost data item in the area. It can be qualified.

rename-end
is the data-name of the rightmost data item in the area. It can be qualified.

Note

Level-number 66 and new-name are not actually part of the RENAMES
clause. They are in the general format only to clarify the relationships
between the clauses.

Syntax Rules

1. A logical record can have any number of RENAMES entries.

2. All RENAMES entries referring to data items in a logical record must immediately fol­
low the last data description entry of the record description entry.

3. The program cannot qualify data-names with new-name.

4. The program can qualify new-name only by the names of the associated level 01, FD,
or SD entries.

5. The data description entries for rename-start and rename-end:

• Cannot have an OCCURS clause

• Cannot be subordinate to an item whose data description entry has an OCCURS
clause

6. Rename-start and rename-end must be the names of elementary items or groups of
elementary items in the same logical record. They cannot be the same data-name.

7. A level 66 entry cannot rename another level 66 entry. Nor can it rename a level 88,
level 01, or level 77 entry.

4-60 Data Division

RENAMES
Continued

8. None of the items in the range, including rename-start and rename-end, can be vari­
able occurrence data items.

9. The words THRU and THROUGH are equivalent.

10. Rename-end cannot be subordinate to rename-start. The beginning of rename-end
cannot be to the left of the beginning of rename-start. The end of rename-end must be
to the right of the end of rename-start.

General Rules

1. If rename-end is used, new-name includes all elementary items:

• Starting with: (a) rename-start, if rename-start is an elementary item, or (b) the first
elementary item in rename-start, if rename-start is a group item

• Ending with: (a) rename-end, if rename-end is an elementary item, or (b) the last ele­
mentary item in rename-end, if rename-end is a group item

2. If rename-end is not used, all data attributes for rename-start become data attributes for
new-name. In this case, you are renaming a single data item. If that item is a group
item, new-name is also treated as a group item. If that item is an elementary item, new­
name is also treated as an elementary item.

Additional Reference

Section 4.2.3

Example

Data Description

WORKING-STORAGE SECTION,
01 AA.

02 BB p !>(\I\/
1\ 1\ t)ALUE 11$$11 t

02 F PIC){ t)ALUE II: II .
GG B-CODE RENAMES BB.

01 A,
02 B PIC >{)-{ t)ALUE 113_ II+

02 c PIC \I \I
t\ f\ l.JALUE II '7 II

,;_- t

02 D PIC X>(l.JALUE II 1 _II +

02 E PIC)-((9) t.JALUE "Blast Off",
GG F RENAMES B THROUGH E.

PROCEDURE Dil.JISION. Results
000-BEGIN.

DISPLAY BB. $$

DISPLAY B-CODE. $$

DISPLAY B • 3-
DISPLAY c. ,..,

L-

DISPLAY D • 1-
DISPLAY E. Blast Off
DISPLAY F OF A. 3-2-1-Blast
STOP RUN.

0 ff

Data Division 4-61

SIGN

4.2.18 SIGN Clause

Function

The SIGN clause specifies the operational sign's position and type of representation.

General Format

t LEADING }
[SIGN IS] [SEPARATE CHARACTER]

TRAILING

Syntax Rules

1. The SIGN clause can be used only in a numeric data description entry whose PICTURE
contains the S symbol. It can also be used for a group item containing such entries.

2. The data items to which the SIGN clause applies must have display usage.

3. If a file description entry has a CODE-SET clause, all signed numeric data description
entries associated with the file must contain the SIGN IS SEPARATE clause.

General Rules

1. The SIGN clause specifies the operational sign's position and type of representation. It
applies to a numeric data description entry or to each numeric data description entry
subordinate to a group.

2. The SIGN clause applies only to numeric data description entries whose PICTURE
clause contains the S symbol. S indicates the presence of an operational sign.
However, S does not specify the sign's representation or, necessarily, its position.

3. If you specify the SIGN clause for both a group item and a group item subordinate to it,
the SIGN clause for the subordinate group overrides the group item SIGN clause.

4. If you specify the SIGN clause for both a group item and an elementary numeric item
subordinate to it, the SIGN clause for the elementary item overrides the group item
SIGN clause.

5. A numeric data description entry to which no optional SIGN clause applies, but whose
PICTURE contains an S symbol, has an operational sign. The entry is equivalent to an
entry that contains the SIGN IS TRAILING clause without the SEPARATE CHARACTER
phrase.

6. If you specify the SEPARATE CHARACTER phrase:

• The operational sign is the leading (or trailing) character position of the elementary
numeric data item. The sign does not share this position with a digit.

• The S symbol in the PICTURE counts toward data item size. That is, it represents a
character position.

• The operational signs for positive and negative are the characters + and -

4-62 Data Division

7. If you do not specify the SEPARATE CHARACTER phrase:

SIGN
Continued

• The operational sign is associated with the leading (or trailing) digit position of the
elementary numeric item. The sign shares this character position with a digit.

• The S symbol in the PICTURE does not count toward data item size. That is, it does
not represent a character position.

• The character in the operational sign position represents both a numeric digit and
the item's algebraic sign. Table 4-7 shows the characters representing positive and
negative signs for all numeric digits. Where more than one character appears, the
first is the character generated as the result of machine operations.

Table 4-7: Positive and Negative Signs for All Numeric Digits

Sign

Digit Values Positive Negative

0 {, I, ? , or 0 },], : , or !

1 A or 1 J

2 B or 2 K

3 C or 3 L

4 D or 4 M

5 E or 5 N

6 F or 6 0

7 G or 7 p

8 H or 8 Q

9 I or 9 R

8. Every numeric data item whose PICTURE contains the S symbol is a signed numeric data
item. If you specify the SIGN clause for such an item, necessary conversions for com­
putations or comparisons occur automatically.

Data Division 4-63

SYNCHRONIZED

4.2.19 SYNCHRONIZED Clause

Function

The SYNCHRONIZED clause specifies elementary item alignment on word boundary offsets rel­
ative to a record's beginning. These offsets are related to the size and usage of the item being
stored.

General Format

{ SYNCHRONIZED }
SYNC

Syntax Rules

[LEFT J
RIGHT

1. SYNC is an abbreviation for SYNCHRONIZED.

2. The SYNCHRONIZED clause can be used only for an elementary item.

General Rules

1. The SYNCHRONIZED clause aligns a data item in a record so that no other data item
occupies any character positions between the required boundaries to the left and right
of the data item.

2. The SYNCHRONIZED clause does not change the size or operational sign position of
the data item it specifies.

3. If the number of character positions needed to store the data item is less than the num­
ber of positions between the required boundaries, no other data items occupy the
unused positions.

However, the unused character positions are included in the size of those group
item(s):

• To which the elementary item belongs

• In which the elementary item is not the first subordinate item

In other words, the SYNCHRONIZED clause can increase the size of a group item only
when the specified data item is both subordinate to the group item and is other than
the first elementary data item in the group. (The first elementary item in a group item
always aligns on the same boundary as the group item. In this case, any unused charac­
ter positions do not affect the size of that group item.)

4. The LEFT and RIGHT phrases have the same effect; they are equivalent to: (a) each
other and (b) the SYNCHRONIZED clause with neither the LEFT nor RIGHT phrases.

5. Each occurrence of the data item is SYNCHRONIZED if the clause applies to: (a) a data
item whose data description entry also has an OCCURS clause, or (b) a data item subor­
dinate to another data item whose data description entry has an OCCURS clause.

4-64 Data Division

Technical Notes

SYNCHRONIZED
Continued

1. The SYNCHRONIZED clause affects alignment only of COMP data items.

2. Specify the SYNCHRONIZED clause for COMP data items to ensure COBOL-81 com­
patibility with VAX-11 COBOL.

3. All records are aligned on 2-byte (word) boundaries. A COMP SYNC data item must
align on the same boundary as the record containing it, or align on a boundary that is in
2-, 4-, or 8-byte increments from the record boundary.

4. Table 4-8 illustrates the effect of the SYNCHRONIZED clause on data item alignment.

Table 4-8: COMP and COMP SYNC Alignment Differences

Data Type Required
Boundary

PIC 9 to 9(4) COMP 2-byte

PIC 9 to 9(4) COMP SYNC 2-byte

PIC 9(5) to 9(9) COMP 2-byte

PIC 9(5) to 9(9) COMP SYNC 4-byte

PIC 9(10) to 9(18) COMP 2-byte

PIC 9(10) to 9(18) COMP SYNC 8-b_Be

Additional References

Section 4.1.2.3 Record Allocation

Appendix D Ensuring COBOL-81 Compatibility with VAX-11 COBOL

Data Division 4-65

USAGE

4.2.20 USAGE Clause

Function

The USAGE clause specifies the internal format of a data item.

General Format

[USAGE IS]

Syntax Rules

COMPUTATIONAL
COMP
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX

1. COMP is an abbreviation for COMPUTATIONAL.

2. COMP-3 is an abbreviation for COMPUTATIONAL-3.

3. You can use the USAGE clause in any data description entry with a level-number other
than 66 or 88.

4. If the USAGE clause is in the data description for a group item, it can also be in data
description entries for subordinate elementary and group items. However, the usage
of a subordinate item must be the same as that in the group item data description entry.

5. The PICTURE character-string of a COMP or COMP-3 item can contain only the symbols
9, S, V, and P.

6. An index data item reference can appear in only:

• A SEARCH or SET statement

• A relation condition

• The USING phrase of the Procedure Division header

• The USING phrase of the CALL statement

7. The data description entry for a USAGE IS INDEX data item cannot contain any of the
following clauses:

• BLANK WHEN ZERO

• JUSTIFIED

•PICTURE

•VALUE IS

8. An elementary item with the USAGE IS INDEX clause cannot be a conditional variable;
that is, the elementary item's value cannot be specified by level 88 items.

4-66 Data Division

General Rules

USAGE
Continued

1. You can specify the USAGE clause in the data description entry for a group item. In this
case, it applies to each elementary item in the group. However, you cannot reference
the group item in any operations that do not permit alphanumeric operands. (See rules
4 and 8.)

2. The USAGE clause specifies the representation of an elementary data item in storage. It
does not affect the way that the program uses the item. However, the rules for some
Procedure Division statements restrict the USAGE clause of statement operands.

3. A COMP, or COMP-3 item can represent a value used in computations. The PICTURE
clauses for COMP and COMP-3 items must be numeric.

4. If the data description entry for a group item specifies COMP or COMP-3 usage, the
usage applies to elementary items in the group. It does not apply to the group itself;
and the program cannot use the group item in computations.

5. The USAGE IS DISPLAY clause specifies that the data item is in Standard Data Format.

6. If no USAGE clause applies to an elementary item, its usage is DISPLAY.

7. If the USAGE IS INDEX clause applies to an elementary item, the elementary item is
called an index data item. It contains a value that must correspond to an occurrence
number of a table element.

8. If the data description entry for a group item specifies USAGE IS INDEX, all elementary
items in the group are index data items. However, the group itself is not an index data
item.

9. When a MOVE or input-output statement refers to a group that contains an index data
item, the index data item is not converted to another format during the operation.

Technical Notes

1. COMP is the standard binary format. A COMP item is a binary value with an assumed
decimal scaling position. Depending on its size, it occupies two, four, or eight bytes in
storage. (Refer to Tables 4-9 and 4-10 to determine storage allocation, as related to data
item size.)

Note

COMP and COMP SYNC data items have the same storage require­
ments. The SYNCHRONIZED (SYNC) clause affects the alignment of
the computational data item, but not its size. However, a record
containing COMP SYNC data items can, under certain circum­
stances, occupy more bytes in storage than a record containing
COMP data items. Refer to Section 4.1.2.3 and Section 4.2.19 for
more information.

Data Division 4-67

USAGE
Continued

2. COMP-3 specifies the packed-decimal format. COMP-3 items are stored two decimal
digits per byte with an assumed decimal scaling position. The sign occupies the right­
most (least significant) four bits of the rightmost byte.

If the PICTURE for a COMP-3 item specifies an even number of decimal digits, the value
zero occupies the leftmost (most significant) four bits of the leftmost byte.

Signs resulting from operations in which the receiving item usage is COMP-3 are:

Positive sign: binary 1100, hexadecimal C
Negative sign: binary 1101, hexadecimal D
Unsigned: binary 1111, hexadecimal F

The following signs are also valid. However, they do not result from program oper­
ations. COBOL-81 recognizes them as possible sign representations used by non­
DIGITAL systems.

Positive signs: binary 1010, hexadecimal A
binary 1110, hexadecimal E

Negative signs:binary 1011, hexadecimal B

Figure 4-10 represents the storage format of COMP-3 items with one, two, and three
digits.

Figure 4-10: Storage Format of COMP-3 Data Items

1st 1st 2nd 1st 2nd
byte byte byte byte byte

B I 0 312 - I 12 617 + I
PIC S9 PIC S9(2) PIC S9(3)

value: +5 value: -32 value: +267

3. An index data item is stored as a one-word COMP item.

4. The way a data item is represented in the Data Division of a COBOL program deter­
mines whether it will be stored as an integer, packed decimal, display numeric, or char­
acter string (text) data type. The following tables:

a. Match COBOL data description entries with their corresponding storage data types

b. Show the allocated storage in bytes for the entry.

Table 4-9 gives the corresponding data types for unscaled data items, and Table 4-10
gives the data types for scaled data items.

For example, a data item described as PIC S9(4) USAGE IS DISPLAY SIGN IS TRAILING
would occupy four bytes of storage as a right overpunch value.

Note

The default USAGE for a data item is DISPLAY. Therefore, you do not need to
specify the USAGE clause for display numeric, alphabetic, and alphanumeric
data items.

4-68 Data Division

Table 4-9: Unscaled Data Items and Corresponding Storage Data Types

Unscaled Data Item

Storage
PICTURE Clause USAGE Clause Allocated

in Bytes

PIC S9(n) USAGE IS DISPLAY n
[n<=18]

PIC S9(n) USAGE IS DISPLAY n
[n <= 18] SIGN IS TRAILING

PIC S9(n) USAGE IS DISPLAY n
[n <= 18] SIGN IS LEADING

PIC S9(n) USAGE IS DISPLAY n+1
[n < = 18] SIGN IS TRAILING

SEPARATE

PIC S9(n) USAGE IS DISPLAY n +1
[n <= 18] SIGN IS LEADING

SEPARATE

PIC9(n) USAGE IS DISPLAY n
[n < = 18]

PIC9(n) USAGE IS COMP 2
[n <= 4]

PIC9(n) USAGE IS COMP 4
[5 <= n <= 9]

PIC9(n) USAGE IS COMP 8
[10 < = n < = 18]

PIC S9(n) USAGE IS COMP 2
[n<= 4]

PIC S9(n) USAGE IS COMP 4
[5 <= n <= 9]

PIC S9(n) USAGE IS COMP 8
[10<=n<=18]

NIA USAGE IS INDEX 2

PIC S9(n) USAGE IS COMP-3 (n+1)/2
[n <= 18] rounded up

PIC9(n) USAGE IS COMP-3 (n+1)/2
[n <= 18] rounded up

PICX(n) USAGE IS DISPLAY n
[n < = 65,535]

PICA(n) USAGE IS DISPLAY n
[n < = 65,535]

Legend:

Storage
Data Type

USAGE
Continued

Right overpunch

Right overpunch

Left overpunch

Right separate

Left separate

Unsigned numeric

Word integer*

Two word integer*

Four word integer*

Word integer

Two word integer

Four word integer

One word integer

Packed decimal

Packed decimal*

ASCII Text

ASCII Text

* The generated code treats this data type as a signed operand in all contexts except
when it is a receiving-field operand. In this case, the compiler stores the absolute
value of the data type.

NIA Not Applicable

Data Division 4-69

USAGE
Continued

Table 4-10: Scaled Data Items and Corresponding Storage Data Types

Scaled Data Item

Storage
PICTURE Clause USAGE Clause Allocated

in Bytes

PIC S9(n)V9(s) USAGE IS DISPLAY n+s
[(n+s)<=18]

PIC S9(n)V9(s) USAGE IS DISPLAY n+s
[(n+s)<=18] SIGN IS TRAILING

PIC S9(n)V9(s) USAGE IS DISPLAY n+s
[(n + s) < = 18] SIGN IS LEADING

PIC S9(n)V9(s) USAGE IS DISPLAY n + s+1
[(n + s) < = 18] SIGN IS TRAILING

SEPARATE

PIC S9(n)V9(s) USAGE IS DISPLAY n +s+1
[(n + s) < = 18] SIGN IS LEADING

SEPARATE

PIC 9(n)V9(s) USAGE IS DISPLAY n+s
[(n+s) <= 18]

PIC 9(n)V9(s) USAGE IS COMP 2
[(n+s) <= 4]

PIC 9(n)V9(s) USAGE IS COMP 4
[S < = (n + s) < = 9]

PIC 9(n)V9(s) USAGE IS COMP 8
[10<= (n+s)<= 18]

PIC S9(n)V9(s) USAGE IS COMP 2
[(n+s) <= 4]

PIC S9(n)V9(s) USAGE IS COMP 4
[S < = (n + s) < = 9]

PIC S9(n)V9(s) USAGE IS COMP 8
[10<= (n+s) <= 18]

PIC 9(n)V9(s) USAGE IS COMP-3 (n +s +1)/2
[(n + s) < = 18] rounded up

PIC S9(n)V9(s) USAGE IS COMP-3 (n+s+1)/2
[(n+s) <= 18] rounded up

Legend:

Storage
Data Type

Right (trailing)
overpunch

Right (trailing)
overpunch

Left (leading)
overpunch

Right (trailing)
separate

Left (leading)
separate

Unsigned numeric

Word integer*

Two word integer*

Four word integer*

Word integer

Two word integer

Four word integer

Packed decimal*

Packed decimal

* The generated code treats this data type as a signed operand in all contexts except
when it is a receiving-field operand. In this case, the compiler stores the absolute
value of the data type.

NIA Not Applicable

Additional References

Section 4.2.14 PICTURE Clause

4-70 Data Division

VALUE IS

4.2.21 VALUE IS Clause

Function

The VALUE IS clause defines the values associated with condition-names and the initial values
of Working-Storage Section data items.

General Format

Format 1

VALUE IS lit

Format 2

{
VALUE IS }

VALUES ARE
low-val [{ THRU } high-val]

THROUGH

lit
is a numeric or non numeric literal.

low-val
is a numeric or non numeric literal. It is the lowest value in a range of values associated with
a condition-name in a level 88 data description entry.

high-val
is a numeric or nonnumeric literal. It is the highest value in a range of values associated
with a condition-name in a level 88 data description entry.

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. You can associate a signed numeric literal only with a data item that has a signed
numeric PICTURE character-string.

3. If you specify a numeric literal value:

a. It must fall in the range of values defined by the data item's PICTURE clause.

b. It must not require truncation of nonzero digits; that is, it cannot have nonzero dig­
its in positions represented by Ps in the item's PICTURE clause.

4. If you specify a nonnumeric literal value, it must not exceed the size defined by the
data item's PICTURE clause.

General Rules

1. The VALUE IS clause must be consistent with other clauses in the data description of
both the item and all subordinate items. The following rules apply:

• If the category of the item is numeric, all literals in the VALUE IS clause must be
numeric. Lit is aligned in the data item according to Standard Alignment Rule 1.

Data Division 4-71

VALUE IS
Continued

• If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or
numeric edited, all VALUE IS clause literals must be nonnumeric. Lit is aligned in the
data item as if the data item were defined as alphanumeric. Editing characters in the
PICTURE clause count toward data item size but have no effect on initialization.
Therefore, if lit applies to an edited item, it must be in an edited form; Standard
Alignment Rule 3 applies.

• The BLANK WHEN ZERO and JUSTIFIED clauses do not affect initialization.

2. In the File and Linkage Sections, the VALUE IS clause can apply only to condition­
name entries. That is, you can use the clause only for level 88 data items.

3. Format 2 applies only to condition-name entries.

Condition-Name Rules for Format 2

4. The VALUE IS clause is required in a condition-name entry. The condition-name entry
can contain only the condition-name itself and the VALUE IS clause.

5. The characteristics of a condition-name are implicitly the same as those of its condi­
tional variable.

6. When you use the THRU phrase, each low-val must be less than the corresponding
high-val.

Rules for Other Data Description Entries

7. A Working-Storage Section VALUE IS clause takes effect only when the program
enters its initial state.

8. The VALUE IS clause initializes the data item to the value of lit.

9. If a data item's data description entry does not have a VALUE IS clause, the initial con­
tents of the data item are undefined. However, index-names (items defined by the
INDEXED BY phrase of the OCCURS clause) are preset to occurrence number 1.

10. The VALUE IS clause cannot be used in a data description entry that: (a) has an
OCCURS or REDEFINES clause or (b) is subordinate to a data description entry with an
OCCURS or REDEFINES clause.

11. The VALUE IS clause can be in a data description entry for a group item. In this case:

• Lit must be a figurative constant or nonnumeric literal.

The group area is initialized as if the group were an elementary alphanumeric data
item.

• Initialization of group items is not affected by the characteristics of the group's sub­
ordinate group or elementary items.

The VALUE IS clause cannot be used in data description entries for the group's sub­
ordinate group or elementary items.

4-72 Data Division

VALUE IS
Continued

12. The VALUE IS clause cannot be used in the data description entry for a group that con­
tains subordinate items with any of these clauses:

• JUSTIFIED

• SYNCHRONIZED

• USAGE (other than USAGE IS DISPLAY)

Additional References

Section 1.1.2.1
Section 2.1
Section 4.1.2.2
Section 4.2.14
Section 4.2.20

Examples

User-Defined Words (condition-name)
PROGRAM-ID Paragraph
Standard Alignment Rules
PICTURE Clause
USAGE Clause

1. Initializing alphanumeric data items:

01 ITEMA PIC Xl201 VALUE IS "12345878801234587880",
01 ITEMB PIC XX VALUE IS "NH",

2. Initializing numeric data items:

01 ITEMX PIC S8888 VALUE IS -38,
01 ITEMZ PIC 8 VALUE ZERO,

3. Assigning condition-name values:

01 ITEMC PIC 88.
88 t,JAL 1 t,JALUE IS 4,
88 t,JAL2 l,JALUE IS 22.
88 t,JAL2 t,JALUE IS 5 THRU 8 12.
88 t,JAL3 VALUES ARE 10 14 THRU 23 27 28 30.
88 t,JAL4 t,JALUES ARE 0 THRU 48' 51 THRU 88.
88 t,JAL5 VALUES ARE 0 10 20 30 40 50.

Data Division 4-73

VALUE OF ID

4.2.22 VALUE OF ID Clause

Function

The VALUE OF ID clause specifies, replaces, or completes a file specification.

General Format

VALUE OF ID IS file-spec

file-spec
is a nonnumeric literal or the data-name of an alphanumeric Working-Storage Section data
item. It contains the full or partial file specification. File-spec can be qualified.

General Rules

1. Each file specification field in file-spec augments the specification in the SELECT clause
ASSIGN phrase.

2. A file specification field in file-spec overrides the corresponding field in the SELECT
clause. If a file specification field is either in the SELECT clause or in file-spec (but not in
both), it becomes part of the file specification.

Technical Notes

1. File-spec is a complete or partial file specification in PDP-11 Record Management
Services (RMS-11) format.

2. If the program opens a file in the input, 1-0, or extend mode, RMS-11 uses file-spec to
locate the existing file.

3. If the program opens a file in the output mode or opens a nonexistent file in the extend
or 1-0 mode, RMS-11 uses file-spec to name the new file.

4. If the VALUE OF ID phrase is present, it supplies the contents for the RMS-11 FNA field
in the FAB (File Access Block), and the file's ASSIGN clause supplies the contents of the
RMS-11 DNA field of the RAB (Record Access Block).

5. If there is no VALUE OF ID phrase, the file's ASSIGN clause supplies the contents of the
RMS-11 FNA field in the RAB.

Additional Reference

Part IV of the COBOL-81 User's
Guide for your system

Processing Files and Records

Examples

Value of literal
Value of filename or data-name Resulting file
in SELECT clause in VALUE OF ID clause specification

MM1 :FILEA.DAT OFFICE.DAT MM1 :OFFICE.DAT

FILEB MMO:FILEB.316 MMO:FILEB.316

FILEC.LIB DKO: DKO: FILEC.LIB

4-74 Data Division

Chapter 5
Procedure Division

This chapter includes the general formats for all Procedure Division statements, describes their
basic elements, and explains how to use them.

5.1 Verbs, Statements, and Sentences

A COBOL verb is a reserved word that expresses an action to be taken by the compiler or the
object program. A verb and its operands make up a COBOL statement. One or more statements
that are terminated by a separator period form a COBOL sentence.

At the statement level, actions can be further differentiated: actions taken by the object pro­
gram can be conditional or unconditional. In some cases, the verb in the statement defines
whether the action is conditional or unconditional. One verb, IF, always defines a conditional
action. Other verbs, such as READ, always define conditional action because you must use
phrases with them that make the action conditional. PERFORM and MOVE are examples of
verbs that always define unconditional action. Most often, however, whether an action is condi­
tional or unconditional depends on not only which verb, but also which phrase(s) you use in
the statement.

There are three types of COBOL statements:

• Compiler-directing statements specify an action taken by the compiler during
compilation.

• Imperative statements specify an unconditional action taken by the object program at
run time.

• Conditional statements specify a conditional action taken by the object program at run
time; the action depends upon a truth value that is generated by the program. (A truth
value is either a "yes" or "no" answer to the question, "Is the condition true?")

Table 5-1 shows the three types of COBOL statements. It also shows that the imperative state­
ments are further subdivided into nine categories and specifies the verbs that each category
includes. When associated phrases are not specified, the verb alone defines the category. For
compiler-directing and conditional statements, type and category are synonymous.

5-1

Table 5-1: Types and Categories of COBOL Statements

Type Category Verb

Compiler-Directing Compiler-Directing COPY
USE

Conditional Conditional ACCEPT (ON EXCEPTION)
ADD (SIZE ERROR)
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
IF
MULTIPLY (SIZE ERROR)
READ (AT END or

INVALID KEY)
RETURN
REWRITE (INVALID KEY)
SEARCH
START (INVALID KEY)
STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)
UNSTRING (OVERFLOW)
WRITE (INVALID KEY or

END-OF-PAGE)

Imperative Arithmetic ADD(1)
COMPUTE (1)
DIVIDE (1)
INSPECT (TALLYING)
MULTIPLY(1)
SUBTRACT (1)

Data-Movement ACCEPT (DATE, DAY,
or TIME)

INSPECT (REPLACING)
MOVE
STRING (4)
UNSTRING (4)

Ending STOP

Input-Output ACCEPT (identifier)
CLOSE
DELETE (2)
DISPLAY
OPEN
REWRITE (2)
START (2)
STOP (literal)
WRITE (5)

I nterprogram- CALL
Communication

Procedure-Branching CALL
EXIT
GOTO
PERFORM

Table-Handling SEARCH
SET (TO, UP BY, or

DOWN BY)

Record-Ordering MERGE
RELEASE
RETURN
SORT

5-2 Procedure Division

Legend:

(1) Without the optional SIZE ERROR phrase
(2) Without the optional INVALID KEY phrase
(3) Without the optional AT END or INVALID KEY phrase
(4) Without the optional OVERFLOW phrase
(5) Without the optional INVALID KEY or END-OF-PAGE phrase
(6) Without the optional ON EXCEPTION phrase

Like statements, COBOL sentences also can be compiler-directing, imperative, or conditional.
Sentence type depends upon the type(s) of statement the sentence contains. Table 5-2 summa­
rizes the contents of the three types of COBOL sentences. The remaining text in this section
discusses each type of statement and sentence in greater detail.

Table 5-2: Contents of COBOL Sentences

Type Contents of Sentence

Imperative One or more consecutive
imperative statements ending
with a period

Conditional One or more statements end-
ing with a period; at least one
conditional statement

Compiler- Only one compiler-directing
Directing statement ending with a

period

5.1.1 Compiler-Directing Statements and Sentences

A compiler-directing statement causes the compiler to take an action during compilation. The
verbs COPY or USE define a compiler-directing statement. When it is part of a sentence that
contains more than one statement, the COPY or USE statement must be the last statement in
the sentence.

A compiler-directing sentence is one COPY or USE statement that ends with a period.

5.1.2 Imperative Statements and Sentences

An imperative statement specifies an unconditional action for the program. It must contain a
verb and the verb's operands, and cannot contain any conditional phrases. For example, the
following statements are imperative:

OPEN INPUT FILE-A

COMPUTE C = A + B

However, the following statement is not imperative because it contains the phrase, ON SIZE
ERROR, which makes the program's action conditional:

COMPUTE C = A + B ON SIZE ERROR PERFORM NUM-TOO-BIG,

Procedure Division 5-3

In the Procedure Division rules, "imperative statement" can be a sequence of consecutive
imperative statements. The sequence must end with: (1) a separator period or (2) any phrase
associated with a statement that contains the imperative statement. For example, the following
sentence contains a sequence of two imperative statements following the AT END phrase.

READ FILE-A AT END PERFORM NO-MORE-RECS
DISPLAY "No 111ore records.".

An imperative sentence contains only imperative statements and ends with a separator period.

5.1.3 Conditional Statements

A conditional statement determines a condition's truth value. The statement uses the truth
value to determine subsequent program action.

Conditional statements are:

• An IF, RETURN, or SEARCH statement

• A READ statement with the AT END or INVALID KEY phrase

• A WRITE statement with the INVALID KEY or END-OF-PAGE phrase

•A DELETE, REWRITE, or START statement with the INVALID KEY phrase

•An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) with the
SIZE ERROR phrase

•A STRING or UNSTRING statement with the OVERFLOW phrase

A conditional sentence must contain one conditional statement and end with a separator
period. It can include an imperative statement. For example, the following sentence is condi­
tional even though it contains the imperative statement, GO TO PROC-A:

READ FILEA AT END GO TO PROC-A.

The program interprets this sentence to mean "If not at the end of the file, read the next
record; otherwise, go to PROC-A."

5.1.4 Scope of Statements

A statement can be delimited by a period or by the start of the next statement that follows it in a
series. For example, consider:

MOVE ITEMC TO ITEMB READ FILEA.

The statement "READ FILEA" is terminated by the period, while the statement "MOVE ITEMC
TO ITEMB" is terminated by the word "READ".

When statements are contained (or nested) in other statements, the period that terminates the
sentence terminates all nested statements as well.

5-4 Procedure Division

In the following example, the period terminates the IF, READ, and PERFORM statements. The
MOVE statement is terminated by the word "PERFORM".

IF I TEMA = ITEMB
READ FILEA

AT END MOVE ITEMC TO ITEMB
PERFORM PROCA.

When one statement, B, is contained in another statement, A, the first phrase of A that follows
B terminates B. This rule is illustrated by the following IF statement:

IF ITEM A = ITEMB
READ FILEA AT END

MOVE ITEMC TO ITEMB
ELSE

PERFORM PROCA,

The READ and MOVE statements are terminated by the ELSE phrase of the IF statement.

5.2 Transfer of Program Flow

As a program executes, control transfers implicitly from one executable statement to the next in
the order the statements appear in the source program. Except for the following explicit and
implicit changes, the transfer occurs in this sequence until there is no next executable
statement.

There is no next executable statement when:

• The last statement in a declarative is not executing under the control of another COBOL
statement. This situation occurs if that declarative was reached by a GO TO from another
declarative. If this occurs in a called program, an implicit EXIT PROGRAM statement
executes; otherwise, an implicit STOP RUN statement executes.

• The last statement in a program is not executing under the control of another COBOL
statement. If this occurs in a called program, an implicit EXIT PROGRAM statement
executes; otherwise, an implicit STOP RUN statement executes.

• The program executes an explicit EXIT PROGRAM or STOP RUN statement.

5.2.1 Explicit Changes

An explicit control transfer can change the sequence just described. Procedure-branching
statements and conditional statements cause explicit transfers. (Note that the procedure­
branching statement EXIT must have the PROGRAM phrase to cause an explicit transfer.)

5.2.2 Implicit Changes

Three situations cause implicit changes to the transfer sequence described in the previous
section.

1. If the Procedure Division has declaratives, the first statement to execute in the
Procedure Division is the first statement after the declaratives.

Procedure Division 5-5

2. When a PERFORM statement executes, program flow transfers to the first section or
paragraph in the PERFORM range. At the end of the range, flow transfers back to the
PERFORM statement. This procedure occurs as many times as the PERFORM specifies,
or until the condition specified by the UNTIL or VARYING phrase is satisfied. (If no
phrase is specified, the default is TIMES = 1.) When either the TIMES option has been
fulfilled, or the UNTIL or VARYING condition has been satisfied, flow transfers to the
next statement after PERFORM.

3. When a Procedure Division statement causes an error condition for which there is a
USE procedure, program flow transfers to that corresponding declarative. Once the
declarative has executed, flow transfers back to the statement following the one that
caused the error.

5.3 Uniqueness of Reference

When Procedure Division statements refer to a word defined in your program, they must refer
to a unique data item, condition, or set of procedures. (See Section 1.1.2.1, User-Defined
Words.) Qualification and subscripting or indexing are methods you use in these references to
avoid ambiguity that would otherwise be present. For example, more than one data item, con­
dition, or set of procedures in your program can have the same name; a statement can qualify
that name so that it is unambiguous. Also, tables contain more than one occurrence of a data
item; subscripting and indexing specify a unique occurrence of that item.

5.3.1 Qualification

A reference to a user-defined word is unique if: (1) no .other name has the same spelling,
including hyphenation or (2) it is part of a REDEFINES clause. (The reference following the word
REDEFINES is unique because of clause placement.)

A name in a hierarchy of names can occur in more than one place in your program. Unless you
are redefining it, you must refer to this non unique name using one or more higher level names
in the hierarchy. These higher-level names are called qualifiers. Using them to achieve unique­
ness of reference is called qualification.

To make your reference unique, you need not specify all available qualifiers for a name, only
the one(s) necessary to avoid ambiguity.

Consider the following two record descriptions:

01 REC1.

01

05 I TEMA
05 ITEMB

REC2,
05 GROUP1.

10 ITEMA
10 ITEMB

05 GROUP2.
10 ITEMC
1 o· ITEMD

PIC >D<.
PIC)·((20),

PIC 9 (5).
PIC x (3).

PIC >((4) •
PIC)((8) +

5-6 Procedure Division

ITEMA and ITEMB appear in both record descriptions. Therefore, you must use qualifiers when
you refer to these items in Procedure Division statements. For example, all of the following
references to ITEMA are unique: ITEMA OF GROUP1, ITEMA OF REC1, ITEMA IN GROUP1 OF
REC2.

The general formats for qualification are as follows::

Format 1

{
data-name-1 }

condition-name

{ OINF} data-name-2

{ O
INF} file-name

Format 2

paragraph-name { :F} section-name

Format 3

LINAGE-COUNTER { :F} file-name

Format 4

{
RMS-STS l { IN l file-name

RMS-STV j OF l

The following syntax rules apply to qualification:

[{ :F} file-name]

1. Each reference to a nonunique, user-defined name must use a sequence of qualifiers
that eliminates ambiguity from the reference.

2. A name can be qualified even if it does not need qualification. If there is more than one
set of qualifiers that ensures uniqueness, any set can be used.

3. IN and OF are equivalent.

4. In Format 1, each qualifier must be: (a) the name associated with a level indicator or
(b) the name of a group to which the item being qualified is subordinate. Qualifiers
must be ordered from least to most inclusive levels in the hierarchy.

5. In Format 1, data-name-2 can be a record-name.

6. If the program contains explicit references to a paragraph-name, the paragraph-name
cannot appear more than once in the same section. When a section-name qualifies a
paragraph-name, the word SECTION cannot appear. A paragraph-name need not be
qualified in a reference from within the same section.

Procedure Division 5-7

7. If the program has more than one file description entry with a LINAGE clause, every ref­
erence to LINAGE-COUNTER must be qualified.

8. If the program has more than one file description entry, every reference to RMS-STS, or
RMS-STV, must be qualified.

5.3.2 Subscripts and Indexes

Occurrences of a table are not individually named. You refer to them by using a subscript or
index to specify their location relative to the table's beginning. Subscripting is a general proce­
dure; indexing is a special form of subscripting.

5.3.2.1 Subscripting - Subscripts can appear only in references to individual elements in a list,
or table, of like elements that do not have individual data-names. (See Section 4.2.13, OCCURS
Clause.)

The general format for subscripting is:

j data-name-1 }

l condition-name (

data-name-2 [{ : } lltecal-2 l
. ..)

literal-1

Note

Data-name-1 is the name of an item whose data description includes an
OCCURS clause; it is not actually part of the subscript.

The rules that apply to subscripting are:

1. A subscript can be either a numeric literal or a data-name (data-name-2) with an
optional increment (+)or decrement(-).

If data-name-2 is the subscript, its value must be an integer. Data-name-2 cannot be
subscripted.

2. The lowest valid subscript value is 1. This value points to the first element of the table.
Subscript values 2, 3, and so on point to the next consecutive table elements.

3. The highest valid subscript value is the maximum number of occurrences specified in
the OCCURS clause of data-name-1.

4. The subscript, or set of subscripts, that identifies the table element is delimited by a
balanced pair of left and right parentheses.

5. Each reference to data-name-1 must use subscripting unless it is:

a. The subject of a SEARCH statement

b. In a REDEFINES clause

c. In the KEY IS phrase of an OCCURS clause

5-8 Procedure Division

6. The subscript, or set of subscripts, follows data-name-1. Data-name-1 is then called a
subscripted data-name or an identifier.

7. The number of subscripts following data-name-1 must equal the number of dimensions
in the table; that is, there must be a subscript for each OCCURS clause in the hierarchy
that contains data-name-1 and also one for data-name-1 itself.

8. Data-name-1 can have up to three subscripts.

9. When data-name-1 requires more than one subscript, its subscripts must appear in the
order of successively less inclusive dimensrons of the table.

Note

By default, COBOL-81 performs subscript range checking at run time. For
more information, refer to the discussion of the /CHECK qualifier to the
COBOL command in Part I of the COBOL-81 User's Guide for your system.

The following example defines a two dimensional table and provides sample references to ele­
ments in the table. ITEMD is the first dimension of the table; therefore, any reference to ITEMD
requires one subscript. ITEME is the second dimension of the table; therefore, any reference to
ITEME requires two subscripts (the first to specify the occurrence of ITEMD and the second to
specify the occurrence of ITEME within that occurrence of ITEMD).

Example

WORKING-STORAGE SECTION.
01 ITEMA PIC 8 COMP VALUE IS 2.
01 ITEMB PIC 8 COMP VALUE IS 3,
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX",

03 ITEMD OCCURS 4 TIMES.
05 ITEME OCCURS G TIMES PIC X,

ITEMC ABCDE FGH I J KLMNOPQRSTUVWX

ITEMD 1 2 3 4

ITEME 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

ITEMD (1)
ITEMD (0)

Identifier

ITEMD (ITEMB)
ITEMD (6)

ITEME (3, 6)
ITEME (1, ITEMA)
ITEME (ITEMB, ITEMA)
ITEME (1, 7)

Value

ABC DEF
(invalid reference;
zero subscript)
MNOPQR
(invalid reference;
outside OCCURS range)
R
B
N
(invalid reference;
outside OCCURS range)

Procedure Division 5-9

5.3.2.2 Indexing - Indexing is a special subscripting procedure. In indexing, you use the
INDEXED BY phrase of the OCCURS clause to assign an index-name to each table level. You
then refer to a table element using the index-name as a subscript.

In some table-handling procedures, you might want to store the value of an index-name for
later reference. However, the size and storage format of index-name items varies according to
computer architecture. You can always store the value of an index-name item in an index data
item (an item described with the USAGE IS INDEX clause) and be sure the size and format
match. Furthermore, if you always define index data items in the Working-Storage Section, they
are compatible with index data items on other computer systems.

The general format for indexing is:

{
data-name }

condition-name (

[{ +_} index-name
.. .)

literal-1

All the restrictions in the rules for subscripting apply to indexing. (See Section 5.3.2.1,
Subscripting.) The following rules apply to indexing alone:

1. You must give index-names an initial value before using them. You can do this in:

1. A SET statement

2. A SEARCH statement with the ALL phrase

3. A PERFORM statement with the VARYING phrase

Furthermore, only the above statements can change the values of index-names.

2. Indexing can be either direct or relative. Direct indexing means that the value of index­
name or litera/-1 is the occurrence number. Relative indexing means that the occur­
rence number is the value of index-name plus or minus litera/-2. Litera/-2 must be an
unsigned integer.

Note

By default, COBOL-81 performs index range checking at run time. For more
information, refer to the discussion of the /CHECK qualifier to the COBOL
command in Part I of the COBOL-81 User's Guide for your system.

The following example is very similar to the one that illustrates subscripting. However, this
example shows: (1) use of index-names in references to the table, (2) initializing indexes with
the SET statement, and (3) storing index-name values in index data items.

5-10 Procedure Division

Example

WORKING-STORAGE SECTION.
01 ITEMA USAGE IS INDEX.
01 ITEMB USAGE IS INDEX+
01 ITEMC t)ALUE IS "ABCDEFGHIJKLMNOPQRSTLJt,JW>:".

03 ITEMD OCCURS 4 TIMES
INDD(ED BY 0){.
05 ITEME OCCURS G TIMES

INDEXED BY EX PIC X.

PROCEDURE DIVISION.
PARA.

SET D){ TO 4.
SET E>(TO 1,
DISPLAY ITEMD IDXI,
DISPLAY ITEME IDX1 EXI.
DISPLAY ITEME IDX - 3, EXI
SET I TEMA TO D>:.
SET I TEMB TO E>:,

5.3.3 Identifiers

Results

STUt,lW>:
s
A

In Procedure Division rules, the term identifier means a data item. The term refers to all words
required to make your reference to the item unique.

The general formats for identifiers are:

Format 1

data-name [qualification] [subscripting]

Format 2

data-name [qualification] [indexing]

The following sections provide more information on the methods you use to uniquely specify
data items: Section 5.3.1, Qualification; Section 5.3.2.1, Subscripting; and Section 5.3.2.2,
Indexing.

5.3.4 Ensuring Unique Condition-Names

If the name you use as a condition-name appears in more than one place in your program, it can
be made unique through qualification, indexing, or subscripting.

The first qualifier for a condition-name can be the name of the item with which it is associated
(the conditional variable). When qualifying condition-names, you must use the name of the
conditional variable itself or the names of items that contain it.

References to a condition-name must have the same combination of subscripting or indexing
that you use for the conditional variable.

The formats you use to ensure unique condition-names are the same as those for identifier,
except that condition-name replaces data-name.

In Procedure Division rules the term condition-name refers to a condition-name along with any
qualification and subscripting or indexing needed to avoid ambiguity.

Procedure Division 5-11

5.4 Arithmetic Expressions

Whenever the term arithmetic expression appears in Procedure Division rules, it refers to one
of the following:

• An identifier of a numeric elementary item

• A numeric literal

• Two or more of the above choices separated by arithmetic operators

• Two or more arithmetic expressions separated by an arithmetic operator

• An arithmetic expression enclosed in parentheses

A unary operator (a sign) can precede any arithmetic expression.

The identifiers and literals in an arithmetic expression must represent either: (1) numeric ele­
mentary items, or (2) numeric literals on which arithmetic can be performed.

5.4.1 Arithmetic Operators

Arithmetic expressions can use five binary and two unary arithmetic operators. A space must
precede and follow each binary operator. A space must precede, but not follow a unary opera­
tor. The operators are:

Binary Arithmetic Operator Meaning

+ Addition

- Subtraction

* Multiplication

I Division

** Exponentiation

Unary Arithmetic Operator Meaning

+ The effect of multiplication by + 1

- The effect of multiplication by-1

5.4.2 Formation and Evaluation of Arithmetic Expressions

When you use them, parentheses determine the order in which elements in an arithmetic
expression are evaluated. Expressions within parentheses are evaluated first. If you nest sets of
parentheses, evaluation starts with the innermost set of parentheses and proceeds to the outer­
most set.

If the arithmetic expression contains no parentheses, your program evaluates arithmetic opera­
tors in the following hierarchical order:

First
Second
Third
Fourth

5-12

Unary plus and minus
Exponentiation
Multiplication and division
Addition and subtraction

Procedure Division

This order also applies when all sets of parentheses to be evaluated are at the same level.

If two or more operators are at the same hierarchical level, and parentheses do not specify the
sequence of operations, evaluation proceeds from left to right.

Parentheses can: (1) eliminate ambiguities in logic when there are consecutive operations at the
same hierarchical level, or (2) change the normal hierarchical sequence of execution.

Consider the following expression:

(3 * ITEMA - 2) I ((4 + ITEMB) * -ITEMA - ITEMC ** 2)

The order of execution is:

1. 4 + ITEMB

2. - ITEM A

3. 3 * ITEMA

4. (The results of Step 3) - 2

5. ITEMC ** 2

6. (The resu Its of Step 1) * (the results of Step 2)

7. (The results of Step 6) - (the results of Step 5)

8. (The results of Step 4) ; (the results of Step 7)

Table 5-3 shows the valid combinations of operators, variables, and parentheses in arithmetic
expressions. In the table, Yes indicates a valid pair of symbols; No means an invalid pair; and
variable means an identifier or literal.

Table 5-3: Combinations of Symbols in Arithmetic Expressions

Second
Symbol

First * I ** Unary
Symbol Variable +- +or- ()

Variable No Yes No No Yes

*I** + - Yes No Yes Yes No

Unary + or - Yes No No Yes No

(Yes No Yes Yes No

) No Yes No No Yes

An arithmetic expression can begin only with the symbols(, +,-,an identifier, or a literal. It
can end only with the symbol), an identifier, or a literal.

Each left parenthesis in an arithmetic expression must have a matching right parenthesis, and
each right parenthesis must have a matching left parenthesis.

If the first operator is unary, a (must precede it when the arithmetic expression immediately
follows an identifier or another arithmetic expression.

Procedure Division 5-13

The following rules apply to the evaluation of exponentiation:

1. An exponent can be a numeric literal, a numeric data item, or an arithmetic expres­
sion. However, the value of an exponent cannot be fractional; it must be an integer.
(Zero and signed values are valid).

2. Zero raised to a negative or zero power is an undefined value. Therefore, if the value
of an expression to be raised to a power is zero, the exponent value must be a positive
number. Otherwise, the size error condition exists. (See Section 5.6.4, SIZE ERROR
Condition.)

If the evaluation of the arithmetic expression results in an attempted division by zero, the size
error condition exists.

When a statement with an arithmetic expression does not refer to a resultant identifier, the
compiler stores the results of the arithmetic expression in an intermediate data item. (See
Section 5.6.1, Arithmetic Operations.)

5.5 Conditional Expressions

A conditional expression specifies a condition the program must evaluate to determine the
path of program flow. If the condition is true, the program takes one path; if it is false, the pro­
gram takes another path. The IF, PERFORM UNTIL, PERFORM VARYING, and SEARCH state­
ments must contain conditional expressions.

A conditional expression can be either a simple or a complex condition. The types of simple
conditions are the relation, class, condition-name, switch-status, and sign conditions.
Complex conditions are formed by using logical operators (AND, OR, NOT) with simple con­
ditions. You can enclose conditions within any number of paired parentheses. However,
embedding conditions this way has no effect on whether they are considered simple or com­
plex.

5.5.1 Relation Conditions

A relation condition states a relation between two operands. The program compares the oper­
ands to determine whether the stated relation is true or false. The first operand is called the
condition's subject. The second operand is called its object. Either operand can be: (1) an
identifier, (2) a literal, or (3) the value of an arithmetic expression. The set of words that speci­
fies the type of comparison is called the relational operator.

The format for a relation condition is:

{
identifier-1 }
literal-1
arithmetic-expression-1

Subject

IS [NOT] GREATER THAN
IS [NOT]>
IS [NOT] LESS THAN
IS [NOT]<
IS [NOT] EQUAL TO
IS [NOT] =

Relational Operator

5-14 Procedure Division

{
identifier-2 }
literal-2
arithmetic-expression-2

Object

You can compare two numeric operands regardless of their USAGE. However, if one or both
of the operands are not numeric, they must have the same USAGE. If either operand is a group
item, then the comparison is treated as nonnumeric, since group items are always considered
alphanumeric.

You must refer to at least one variable in a relation condition; you cannot refer only to literals.

A space must precede and follow each word in the relational operator. However, NOT and the
key word or relation character that follows NOT are treated as a unit. For example, NOT
EQUAL specifies an "unequal" relation condition rather than a complex condition.

Table 5-4 specifies valid "true" condition(s) that correspond to each relational operator.

Table 5-4: Relational Operators and Corresponding True Conditions

Relational Operator "True" Condition

IS GREATER THAN Subject is greater than object
IS >THAN

IS NOT GREATER THAN Subject is either less than or
IS NOT>THAN equal to object

IS LESS THAN Subject is less than object
IS <THAN

IS NOT LESS THAN Subject is either greater than
IS NOT<THAN or equal to object

IS EQUAL TO Subject is equal to object
IS= TO

IS NOT EQUAL TO Subject is either greater than
IS= TO or less than object

The following two sections specify the rules that apply to numeric and nonnumeric compari­
sons in relation conditions.

5.5.1.1 Comparison of Numeric Operands - When both operands are numeric, their algebraic
values are compared. The program performs the necessary conversion if the data descriptions
of the operands specify different USAGE. When you use operands that are literals or arithmetic
expressions, their length (in terms of the number of digits represented) is not significant.

Unsigned numeric operands are assumed to be positive for comparison. A zero value is always
treated the same way, whether or not the operand contains a sign.

5.5.1.2 Comparison of Nonnumeric Operands - When one (or both) of the operands is nonnu­
meric, each operand is considered a string of alphanumeric characters. Therefore, the oper­
ands are compared according to the program's collating sequence. (See Section 3.1.2, OBJECT­
COMPUTER Paragraph.)

If one of the operands is numeric, it must be either an integer or a data item described as an
integer. The data item must be implicitly or explicitly described with USAGE DISPLAY. When a
numeric operand contains a sign, its sign is part of the string only if the other operand is a group
item. Otherwise, the sign is removed and is not part of the comparison.

Procedure Division 5-15

The two operands are compared character by character, beginning at the left end of each string.
When the operation finds an unequal character pair, it uses that pair to evaluate the compari­
son. The greater operand is the qne that contains the character with the higher collating
sequence position. If the operands' are of unequal size, the shorter operand is treated as if it
were extended on the right with spaces to make it the same size as the other. Therefore,
"ABCD" is greater than "ABC".

5.5.1.3 Comparisons of Index-Names or Index Data Items - A program can compare:

• Two index-names

• One index-name and one literal or data item (other than an index data item)

• One index-name and one index data item

• Two index data items

5.5.2 Class Condition

The class condition tests whether the contents of an operand are numeric or alphabetic.

The general format is:

i NUMERIC }
identifier IS [NOT)

ALPHABETIC

The USAGE of the operand being tested must be DISPLAY. The following rules apply to the
NUMERIC test:

1. The test is true when the operand contains only the characters 0 to 9 and the oper­
ational sign (subject to the next rule); otherwise, it is false.

2. The operand must contain an operational sign if its PICTURE clause specifies a sign. If
the PICTURE clause does not specify a sign, the operand must not contain one. If the
operand contains a sign that is not specified, or if a sign is specified and the operand
does not contain one, the NUMERIC test is false.

3. You cannot use the test for an operand described as alphabetic or a group item con­
taining signed elementary items.

The following rules apply to the ALPHABETIC test:

1. The test is true when the operand contains only the characters A through Z, a through
z, and the space; otherwise, it is false.

2. You cannot use the ALPHABETIC test for an operand described as numeric.

NOT and the key word following it are treated as a unit. For example, NOT NUMERIC is a test
for determining that the operand is non numeric. Using NOT in a class condition does not make
the condition complex.

5-16 Procedure Division

5.5.3 Condition-Name Condition

The condition-name condition determines if a data item contains a value assigned to one of that
item's condition-names. The term conditional variable refers to the data item. Condition-name
refers to a level 88 entry associated with that item.

The general format for this condition is:

condition-name

The condition is true if one of the values corresponding to condition-name equals the value of
the associated conditional variable. The data description for a variable can associate condition­
name with one or more ranges of values. In this case, the condition tests to determine if the
value of the variable falls in the specified range (end values included).

The following example illustrates testing condition-names associated with both one value and a
range of values.

WORKING-STORAGE SECT ION.
01 STUDENT-REC.

05 YEAR-ID
88 FRESHMAN
88 SOPHOMORE
88 JUNIOR
88 SENIOR
88 GRADUATE

PROCEDURE DIVISION.

IF FRESHMAN • ••
IF SOPHOMORE •••
IF JUNIOR •••
IF SENIOR •••
IF GRADUATE •••

Condition-Name

FRESHMAN
SOPHOMORE
JUNIOR
SENIOR
GRADUATE

PIC 99.
t.JALUE IS 1 •
l.JALUE IS 2 t

t.JALUE IS 3.
t.JALUE IS LI •
l.JALUE IS 5 THRU

Test is "true" when
value of YEAR-ID equals:

2
3
4

5, 6, 7, 8, 9, or 10

10.

When your program evaluates a conditional variable and its condition-name, the procedure is
the same as the one used with the relation condition. (See Section 5.5.1.1, Comparison of
Numeric Operands, and Section 5.5.1.2, Comparison of Non numeric Operands.)

Procedure Division 5-17

5.5.4 Switch-Status Condition

The switch-status condition tests the "on" or "off" setting of an external program switch. Its
general format is:

condition-name

You use the SWITCH clause of the SPECIAL-NAMES paragraph to associate condition-name with
a switch setting. (See Section 3.1.3, SPECIAL-NAMES Paragraph.) The condition is true if the
switch setting in effect during program execution is the same one assigned to condition-name.

Technical Note

At run time, COBOL-81 prompts the operator to enter the numbers of
switches to be set "ON" for that program execution.

5.5.5 Sign Condition

The sign condition determines if the algebraic value of an arithmetic expression is less than,
greater than, or equal to zero.

Its general format is:

arithmetic-expression IS [NOT] NEGATIVE {
POSITIVE }

ZERO

An operand is:

• POSITIVE, if its value is greater than zero

• NEGATIVE, if its value is less than zero

• ZERO, if its value equals zero

Arithmetic-expression must contain at least one reference to a variable.

NOT and the key word following it are treated as a unit. For example, NOT ZERO tests for a non­
zero condition; the word NOT does not indicate a complex condition.

5.5.6 Complex Conditions

You form complex conditions by combining or negating other conditions. The conditions being
combined or negated can be either simple or complex.

The logical operators AND and OR combine conditions. The logical operator NOT negates con­
ditions. A space must precede and follow each logical operator in your program.

The truth value of a complex condition depends upon (1) the truth value of each condition it
contains and (2) the effect of the logical operator(s). Table 5-5 shows the effect of each logical
operator in complex conditions.

5-18 Procedure Division

Table 5-5: How logical Operators Affect Evaluation of Conditions

Logical Operator Effect

AND The complex condition is true if both connected conditions are true. It is false if
one or both connected conditions are false.

OR The complex condition is true if one or both connected conditions are true. It is
false if both conditions are false.

NOT The complex condition is true if the original condition is false. It is false if the
original condition is true.

5.5.6.1 Negated Simple Conditions - The logical operator NOT negates a simple condition. The
truth value of a negated simple condition is the opposite of the simple condition's truth value.
Thus, the truth value of a negated simple condition is true only if the simple condition's truth
value is false. It is false only if the simple condition's truth value is true.

The format for a negated simple condition is:

NOT simple-condition

5.5.6.2 Combined and Negated Combined Conditions - A combined condition results from con­
necting conditions with one of the logical operators AND or OR.

The general format is:

condition j
0
ANRD} l condition

In the general format, condition can be:

• A simple condition

• A negated simple condition

• A combined condition

• A negated combined condition; that is, NOT followed by a combined condition
enclosed in parentheses

• Valid combinations of the preceding conditions (see Table 5-6)

You can use matched pairs of parentheses in a combined condition. You do not need to write
parentheses if the condition combines two or more conditions with the same logical operator
(either AND or OR). In this case, the parentheses have no effect on the condition's evaluation.
However, you might have to use parentheses if you use a mixture of AND, OR, and NOT logical
operators. In this case, the parentheses can affect the condition's evaluation.

Table 5-6 shows the permissible combinations of conditions, logical operators, and
parentheses.

Procedure Division 5-19

Table 5-6: Combinations of Conditions, Logical Operators, and Parentheses

In a conditional expression In a left-to-right element sequence

Can Can Element, when not Element, when not
element element first, can last, can

Element be first? be last? immediately follow: immediately precede:

simple- Yes Yes OR, NOT, AND, (OR, AND,)
condition

OR or AND No No simple-condition,) simple-condition, NOT, (

NOT Yes No OR, AND,(simple-condition, (

(Yes No OR, NOT, AND, (simple-condition, NOT, (

) No Yes simple-condition,) OR, AND,)

For example, Table 5-6 shows whether or not the following element pairs can occur in your
program:

Element
Pair Permitted?

OR NOT Yes
NOT OR No
NOT (Yes
NOT NOT No

5.5.7 Abbreviated Combined Relation Conditions

When you combine simple or negated simple conditions in a consecutive sequence, you can
abbreviate any of the relation conditions except the first. You do this by either:

• Omitting the subject of the relation condition

• Omitting both the subject and the relational operator of the condition

You can omit the subject or relational operator only when it is the same as that in the first rela­
tion condition of the sequence.

The general format for combined abbreviated relation conditions is:

relation-condition { AONRD} [NOT) [relational-operator] object

The evaluation of a sequence of combined relation conditions proceeds as if: (1) the last pre­
ceding subject appears in place of the omitted subject, and (2) the last preceding relational
operator appears in place of the omitted relational operator. The result of these substitutions
must form a valid condition.

5-20 Procedure Division

When the word NOT appears in a sequence of abbreviated conditions, its treatment depends
upon the word that follows it. NOT is considered part of the relational operator when immedi­
ately followed by: GREATER,>, LESS,<, EQUAL, or =.Otherwise, NOT is considered a logical
operator that negates the relation condition.

The following examples show abbreviated combined (and negated combined) relation condi­
tions and their expanded equivalents:

Abbreviated Combined
Relation Condition

a > b AND NOT < c OR d

a NOT

NOT a

b OR c

b OR c

NOT (a GREATER b OR < cl

a I b NOT = c AND NOT d

NOT (a NOT > b AND c AND NOT dl

5.5.8 Condition Evaluation Rules

Expanded Equivalent

((a > bl AND (a NOT < cl l OR (a NOT < d l

(a NOT = bl OR (a NOT = cl

(NOT (a= bll OR (a cl

(NOT ((a GREATER bl OR (a< clll

((a I bl NOT= cl AND !NOT (la I bl NOT

NOT ((((a NOT >bl AND (a NOT> ell
AND <NOT (a NOT> dllll

Parentheses can specify the evaluation order in complex conditions. Conditions in parentheses
are evaluated first. In nested parentheses, evaluation starts with the innermost set of parenthe­
ses. It proceeds to the outermost set.

Conditions are evaluated in a hierarchical order when there are no parentheses in a complex
condition. This same order applies when all sets of parentheses are at the same level (none are
nested). The hierarchy is shown in the following list:

1. Values for arithmetic expressions

2. Truth values for simple conditions, in this order:

• Relation

• Class

• Condition-name

• Switch-status

•Sign

3. Truth values for negated simple conditions

4. Truth values for combined conditions, in this order:

AND logical operators
OR logical operators

5. Truth values for negated combined conditions

In the absence of parentheses, the order of evaluation of consecutive operations at the same
hierarchical level is from left to right.

Procedure Division 5-21

d) l

5.6 Common Rules and Options for Data Handling

This section describes the rules and options that apply when statements handle data.

5.6.1 Arithmetic Operations

The arithmetic statements begin with the verbs ADD, DIVIDE, COMPUTE, MULTIPLY, and
SUBTRACT. When an operand in these statements is a data item, its PICTURE must be numeric
and specify no more than 18 digit positions. However, operands do not have to be the same
size, nor must they have the same USAGE. Conversion and decimal point alignment occur
throughout the calculation.

When you write an arithmetic statement, you specify one or more data items to store the results
of the operation. These data items are called resultant identifiers. However, the evaluation of
each arithmetic statement also uses an intermediate data item. An intermediate data item is a
compiler-supplied data item that the program cannot access. It stores the results of intermedi­
ate steps in the arithmetic operation before the final value is moved to the resultant identi­
fier(s).

An intermediate data item is 18 digits long. It contains the 18 most significant digits of the inter­
mediate result. During execution of the operation, the magnitude of this result is maintained.
All truncated low-order digits are treated as zeros for the rest of the operation.

When the final value of an arithmetic operation is moved to the resultant identifier(s), it is trans­
ferred according to MOVE statement rules. Rounding and size error condition checking occur
just before this final move. (See Section 5.6.3, ROUNDED Option; Section 5.6.4, ON SIZE
ERROR Option; and Section 5.9.15, MOVE Statement.)

5.6.2 Multiple Receiving Fields in Arithmetic Statements

An arithmetic statement can move its final result to more than one data item. In this case, the
statement is said to have multiple receiving fields (or multiple results). The statement operates
as if it had been written as a series of statements. The following example illustrates these steps.
The first statement in the example is equivalent to the four that follow it. (Temp is an intermedi­
ate data item.)

ADD a' b ' c TO c ' d (c) ' e

ADD a' b ' c GilJING t efllP
ADD t e frl P TO c
ADD t e frl P TO d (c)
ADD t e frl P TO e

5.6.3 The ROUNDED Option

The ROUNDED option allows you to specify rounding at the end of an arithmetic operation.
The rounding operation adds 1 to the absolute value of the low-order digit of the resultant
identifier if the absolute value of the next least significant (lower-valued) digit of the intermedi­
ate data item is greater than or equal to 5.

5-22 Procedure Division

When the PICTURE string of the resultant identifier represents the low-order digit positions
with the P character, rounding or truncation is relative to the rightmost integer position for
which the compiler allocates storage. Therefore, when PIC 999PPP describes the item, the value
346711 is rounded to 347000.

If you do not use the ROUNDED phrase, any excess digits in the arithmetic result are truncated
when the result is moved to the resultant identifier(s).

5.6.4 The ON SIZE ERROR Option

The ON SIZE ERROR phrase allows you to specify an action for your program to take when a size
error condition exists.

A size error condition exists when the absolute value of an operation's result exceeds the larg­
est value the resultant identifier(s) can contain. The size error condition affects the contents of
only those data items storing the results of the operation that caused the size error; it does not
affect the contents of all operands in the statement.

Size error checking occurs after decimal point alignment. If the statement has a ROUNDED
phrase, rounding occurs before size error checking. If not, truncation of rightmost digits occurs
before size error checking.

Division by zero or invalid exponentiation at any step in the arithmetic operation also causes
the size error condition.

When a size error condition occurs and the statement does not contain a SIZE ERROR phrase,
the value in all resultant identifiers is undefined. Also, when the size error condition results
from division by zero or invalid exponentiation, the program terminates abnormally. However,
when the statement does contain a SIZE ERROR phrase: (1) the values of all resultant identifiers
are the same as before the operation began, and (2) the imperative statement in the SIZE ERROR
phrase executes.

For the ADD and SUBTRACT statements with the CORRESPONDING phrase, any individual
operation can cause a size error condition. However, the SIZE ERROR phrase imperative state­
ment executes only after all individual additions or subtractions end.

5.6.5 CORRESPONDING Option

The CORRESPONDING option allows you to specify group items as operands in order to use
their corresponding subordinate items in an operation. See also Section 5.9.2, ADD Statement;
Section 5.9.29, SUBTRACT Statement; and Section 5.9.15, MOVE Statement.

The following rules apply to the identifiers of operands in a statement containing the
CORRESPONDING phrase.

1. All identifiers must refer to group items.

2. The data description entries of these identifiers can contain a REDEFINES or OCCURS
clause.

3. Identifiers can be subordinate to a data description entry that has a REDEFINES or
OCCURS clause.

4. You cannot specify identifiers with level-number 66 or the USAGE IS INDEX clause.

Procedure Division 5-23

The following rules describe the requirements for correspondence between data items subor­
dinate to the identifiers. In these rules, identifier-1 refers to the sending group item and identi­
fier-2 refers to the group(s) in which results of the operation are stored.

1. Data items subordinate to both identifer-1 and identifier-2 must have the same data­
name.

2. All possible qualifiers for a data item contained in identifier-1 (up to but not including
identifier-1), must be identical to all possible qualifiers for the matching item in
identifer-2 (up to but not including identifier-2).

3. In an ADD or SUBTRACT statement, the CORRESPONDING phrase affects only ele­
mentary numeric data items. Other data items do not take part in the operation.

4. In a MOVE statement, either the sending or receiving subordinate item can be a group
item, but both cannot be. The classes of the data items in any corresponding pair can
be different.

5. The CORRESPONDING phrase ignores data items with:

• Level-number 66

• Level-number 88

• A data description entry containing a REDEFINES, OCCURS, or USAGE IS INDEX
clause

A data item subordinate to one that is not eligible for correspondence is also ignored.

6. FILLER data items and their subordinates are ignored.

5.6.6 Overlapping Operands and Incompatible Data

When statements refer to data items, two conditions can occur that can make program results
unpredictable.

Undefined results occur when a sending and receiving item in an arithmetic statement or an
INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of their storage areas.

Procedure Division references to a data item are undefined when a data item's contents are
incompatible with the class of data defined by the item's PICTURE clause. Conditional state­
ments containing the class condition allow you to (1) determine whether or not an item con­
tains numeric or alphabetic data and (2) specify corrective action when it does not. (See Section
5.5.2, Class Condition.)

5. 7 1-0 Status

If a file description entry has a FILE STATUS clause, a value is placed in the two-character FILE
STATUS data item during execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START, or
WRITE statement. Two "keys" combine to form this value. Status Key 1 occupies the leftmost
character position in the item and Status Key 2 occupies the rightmost position. In combination,
the keys indicate the status of the input-output operation.

Appendix C lists all the possible values that can appear in the FILE STATUS data item, along with
the 1-0 status condition corresponding to each value.

Any applicable USE AFTER EXCEPTION procedure executes after the FILE STATUS value is set.

5-24 Procedure Division

Table 5-7 shows the possible combinations of Status Keys 1 and 2. In the table, "X" indicates a
valid combination of keys.

Table 5-7: Possible Combinations of Status Keys 1 and 2

Status No Further Sequence Duplicate No Record Boundary File Not No Valid File Not Close

Keyt'(
Information Error Key Found Violation Present Next Record Found Error

(0) (1) (2) (3) (4) (5) (6) (7) (8)

Successful
Completion x x x
(0)

At End
(1) x x x
Invalid
Key x x x x
(2)

Permanent
Error x x
(3)

DIGITAL-
Defined x x x x x x x x x
(9)

Status Key 1

Status Key 1 indicates one of the following conditions when an input-output operation ends:

0 Successful Completion. The input-output statement executed successfully.

1 At End. A sequential READ statement unsuccessfully executed because:

• The file has no next logical record.

• An optional file was not present.

• The program did not establish a valid next record.

2 Invalid Key. The input-output statement executed unsuccessfully because of one of
the following conditions:

• Sequence Error

• Duplicate Key

• No Record Found

• Boundary Violation

• Optional File Not Present

3 Permanent Error. The input-output statement executed unsuccessfully because of a
boundary error for a sequential file. This value can also indicate an input-output error,
such as data check, parity error, or transmission error.

9 DIGITAL-defined. The input-output statement executed unsuccessfully because of a
condition defined by DIGITAL.

Procedure Division 5-25

Status Key2

Status Key 2 further describes the result of the input-output operation:

• If no further information about the input-output operation is available, Status Key 2
contains 0 .

• When Status Key 1 contains 0 (indicating successful completion), Status Key 2 can
containa 2 ora 5 :

2 applies to a REWRITE or WRITE statement. It means that the record just written cre­
ated a duplicate key value for at least one alternate record key for which duplicates
are allowed.

5 applies to OPEN statement. It means that the optional file was not present when the
OPEN statement executed.

• When Status Key 1 contains 1 (indicating an at end condition), Status Key 2 describes
the condition's cause:

3 indicates that the file has no next logical record.

5 indicates that a file you specified as optional is not present.

6 indicates that the program did not establish a valid next record.

The values 13 and 16 can occur for the same READ operation when a program is in
an infinite loop. In this case, the FILE STATUS data item contains the following
sequence of values:

00, 00, ••• I 00, 13, 16, 16, ••• I 16

•When Status Key 1 contains 2 (indicating an invalid key condition), Status Key 2
describes the condition's cause:

1 indicates a sequence error for a sequential access indexed file. This means that the
program changed the prime record key value between a successfully executed
READ statement and the next REWRITE statement for the file. This value can also
indicate that the program violated ascending sequence requirements for successive
record key values. (See Section 5.9.32, WRITE Statement.)

2 indicates a duplicate key value. The program tried to write or rewrite a record that
would have created a duplicate key in an indexed file. This value can also mean that
the program tried to write a record that would have created a duplicate in a relative
file.

3 means that the program could not find a record. The program tried to access a
record identified by a key, but the record does not exist in the file.

4 indicates a boundary violation. The program tried to write beyond the boundaries
defined for the file by Record Management Services (RMS-11).

• When Status Key 1 contains 3 (indicating a permanent error condition), Status Key 2
can contain a 4 to indicate a boundary violation. This means that the program tried to
write beyond the boundaries defined for the file by Record Management Services
(RMS-11)

Status Key 2 can also contain a 0 . This value results from any input-output error that
cannot be described by any other combination of values in Status Keys 1 and 2.

5-26 Procedure Division

• When Status Key 1 contains 9 (indicating a DIGITAL-defined condition), Status Key 2
further describes the condition:

0 means that the record your program is reading is also being read by another pro­
gram. This condition occurs when two programs share the same record area.
Because the record is available in the record area, the input operation is successful.

1 indicates that a file is locked. The program tried to open a file that had been locked
by another program.

2 means that a record is locked. The program tried to access a record that had been
locked by another program.

In this case, the record is not available in the record area, so the input operation is
unsuccessful.

3 means that the program tried to execute a DELETE or REWRITE statement without
first successfully executing a READ statement.

4 indicates that:

• The program tried to open a file that is: (a) already open, or (b) closed with lock.

• The program tried to close a file that: (a) is already closed, or (b) has not been
opened during the program's execution.

• The program tried to perform an input-output operation for a file that: (a) has not
been opened, or (b) is open in a mode incompatible with the operation.

5 means that the program tried to open a file when there was too little file space on
the device.

6 means that the program tried to open a file when another SAME AREA file was open.

7 indicates that the program tried to open a file that could not be found.

8 indicates that an unspecified error occurred when the program attempted to close a
file.

Part IV of the COBOL-81 User's Guide for your system contains information on using FILE
STATUS key values. Refer to the chapter that discusses file 1-0 exception conditions handling.

5.7.1 The INVALID KEY Phrase

The INVALID KEY phrase specifies the action your program takes when an invalid key condi­
tion is detected for the file being processed.

The format is:

INVALID KEY stment

Stment is an imperative statement.

The invalid key condition occurs when PDP-11 Record Management Services (RMS-11) cannot
complete a COBOL DELETE, READ, REWRITE, START, or WRITE statement. When the condition
occurs, execution of the statement that produced it is unsuccessful, and the file is not

Procedure Division 5-27

affected. (See Section 5.9.6, DELETE Statement; Section 5.9.19, READ Statement; Section
5.9.22, REWRITE Statement; Section 5.9.26, START Statement; and Section 5.9.32, WRITE
Statement.)

When the invalid key condition is recognized, these actions occur in the following order:

1. A value that indicates the invalid key condition is placed in the FILE STATUS data item
for the file.

2. If the statement causing the condition has the INVALID KEY phrase, control transfers
to stment. Any USE AFTER EXCEPTION procedure for the file does not execute.

3. If there is no INVALID KEY phrase, control transfers to the applicable USE AFTER
EXCEPTION procedure for the file.

Part IV of the COBOL-81 User's Guide for your system also contains information on using the
INVALID KEY phrase. Refer to the chapter that discusses file 1-0 exception conditions
handling.

5.7.2 The AT END Phrase

The AT END phrase specifies the action your program takes when it detects the end of an input
file.

Its format is:

AT END stment

Stment is an imperative statement.

When a program detects the end of a file, the condition is called the at end condition. The at
end condition may occur as a result of READ, RETURN, or SEARCH statement execution. (See
Section 5.9.19, READ Statement; Section 5.9.21, RETURN Statement; and Section 5.9.23,
SEARCH Statement.)

The following rules apply to the the AT END phrase:

1. If the at end condition occurs and the AT END phrase is present, stment executes.

2. If the at end condition occurs during the execution of a READ statement and there is
no AT Ef'JD phrase, but there is an applicable USE AFTER EXCEPTIO~~ procedure, the
USE AFTER EXCEPTION procedure executes.

3. A USE procedure statement has no effect when the at end condition occurs during
execution of RETURN and SEARCH statements.

5.7.3 The FROM Option

The FROM phrase implicitly moves a record from one storage area to another prior to execu­
tion of an input-output or record-ordering statement.

The format is:

record-name FROM identifier

5-28 Procedure Division

Record-name and identifier must not refer to the same storage area.

The result of executing a RELEASE, REWRITE,or WRITE statement with the FROM phrase is
equivalent to: (1) executing the statement "MOVE identifier TO record-name" according to
the rules of the MOVE statement without the CORRESPONDING phrase, followed by
(2) executing the same RELEASE, REWRITE, or WRITE statement without the FROM phrase.

After statement execution ends, the data in the area referenced by identifier is available to the
program. The data is not available in the area referenced by record-name, unless there is an
applicable SAME clause. (See Section 3.2.2, 1-0-CONTROL Paragraph; Section 5.9.20, RELEASE
Statement; Section 5.9.22, REWRITE Statement; and Section 5.9.32, WRITE Statement.)

5.7.4 The INTO Option

The INTO phrase implicitly moves a current record from the record storage area into an
identifier.

The format is:

file-name INTO identifier

A READ or RETURN statement can have the INTO phrase if either of the following conditions is
true:

1. Only one record description is subordinate to the file description entry

2. All record-names associated with file-name and the data item associated with identifier
describe a group item or an elementary alphanumeric item

Executing a READ or RETURN statement with the INTO phrase is equivalent to: (1) executing
the same statement without the INTO phrase then (2) moving the current record from the
record area to the area specified by identifier. The move occurs according to the rules of the
MOVE statement without the CORRESPONDING phrase. The move does not occur for an
unsuccessful execution of the READ or RETURN statement.

Subscript or index evaluation occurs after the input operation and immediately before the
move.

The record is available to the program in both the record area and the area associated with
identifier.

5.8 Segmentation

The COBOL-81 segmentation facility allows you to communicate object program overlay
requirements to the compiler. COBOL segmentation deals only with the segmentation of pro­
cedures. Therefore, only the Procedure Division is considered in determining segmentation
requirements.

5.8.1 Organization

When segmentation is used, the Procedure Division must be written as a consecutive group of
sections. Each section is composed of a series of closely related operations designed to collec­
tively perform a particular function.

Procedure Division 5-29

Each section must be specified as belonging to the nonoverlayable or overlayable portion of
the program.

Using segmentation affects only the physical management of the object program during
execution. It neither imposes any syntactic restrictions nor implies any semantic differences
over the same program written without segmentation. The logical sequence of the program is
the same as the physical sequence except for specific transfers of control. Transfer of control
from a nonoverlayable segment to an overlayable segment, or from an overlayable segment to
another overlayable segment, is accomplished by the system.

5.8.2 Using the Segmentation Facility

The COBOL-81 segmentation facility requires that you specify the SEGMENT-LIMIT clause in
the OBJECT-COMPUTER paragraph (see Section 3.1.2) of the Environment Division, and that
you assign segment numbers to each section of the Procedure Division.

The value specified by a segment number is used by the compiler to determine whether a seg­
ment is overlayable. That is, the value you specify in the SEGMENT-LIMIT clause is compared
to the segment number you assign to each section in the Procedure Division. Sections having
segment numbers less than the segment limit are not overlaid. Those having segment num­
bers greater than or equal to the segment limit are overlayable.

Part II of the COBOL-81 User's Guide for your system also discusses segmentation. Refer to
the chapter on reducing task size.

5-30 Procedure Division

Procedure Division
Format Entry Pages

PROCEDURE DIVISION

5.9 Procedure Division General Format and Rules

Function

The Procedure Division contains the routines that process the files and data described in the
Environment and Data Divisions.

General Format

Format 1

[PROCEDURE DIVISION I USING (data-name) ... I .

[DECLARATIVES.

{ section-name SECTION [segment-number] . declarative-sentence

[paragraph-name. [sentence] . .. J . .. } ...
END DECLARATIVES.]

{ section-name SECTION [segment-number] .

(pacagraph-oame. [seotence] ..] . . . I . . .]
Format 2

[PROCEDURE DIVISION [USING (data-name } ---] .

[paragraph-name. I sentence] ...] ...]

Syntax Rules

1. The Procedure Division follows the Data Division.

2. The Procedure Division must begin with the Procedure Division header.

3. A procedure consists of either:

• One or more (successive) sections

• One or more (successive) paragraphs

Procedure Division 5-31

PROCEDURE DIVISION
Continued

4. If one paragraph is in a section, all paragraphs must be in sections.

5. A procedure-name refers to a paragraph or section in the source program. It is either
paragraph-name (which can be qualified) or section-name.

6. A section consists of a section header followed by zero or more successive para­
graphs. A section ends immediately before the next section or at the end of the
Procedure Division. In the declaratives part of the Procedure Division, a section can
also end at the key words END DECLARATIVES.

7. A paragraph consists of paragraph-name followed by a separator period, and by zero
or more successive sentences. A paragraph ends immediately before the next
paragraph-name or section-name or at the end of the Procedure Division. In the de­
claratives part of the Procedure Division, a paragraph can also end at the key words
END DECLARATIVES.

8. Sentence contains one or more statements terminated by a separator period.

9. A statement is a syntactically valid combination of words.and symbols that begins with
a COBOL verb.

Procedure Division Header

10. The Procedure Division header identifies and begins the Procedure Division. It con­
sists of the reserved words PROCEDURE DIVISION and optional USING phrase fol­
lowed by a separator period.

11. The USING phrase is required only if the program is invoked by a CALL statement with
a USING phrase.

12. The Procedure Division header USING phrase identifies the names used in the pro­
gram to refer to arguments from the calling program. In the calling program, the
USING phrase of the CALL statement identifies the arguments. The data items in the
two USING phrase lists correspond positionally.

13. Each data-name in the USING phrase must be defined in the Linkage Section with a
level-01 or level-77 entry.

14. Each data=nal'ne cannot appear more than once in the USING phrase.

Procedure Division Body

15. The Procedure Division body consists of all Procedure Division text following the
Procedure Division header.

16. Segment-number must be an integer from 0 through 49. If it is omitted, 00 is assumed.

General Rules

1. References to USING phrase data-names operate according to data descriptions in the
called program's Linkage Section, regardless of the descriptions in the calling
program.

5-32 Procedure Division

PROCEDURE DIVISION
Continued

2. The called program can refer, in its Procedure Division, to a Linkage Section data item
only if the data item satisfies one of these conditions:

• It is in the Procedure Division header USING phrase.

• It is subordinate to a data-name that is in the Procedure Division header USING
phrase.

• Its definition includes a REDEFINES or RENAMES clause, the object of which is in the
Procedure Division header USING phrase.

• It is subordinate to an item that satisfies the previous condition.

• It is a condition-name or index-name associated with a data item that satisfies any of
the previous conditions.

3. All sections having the same segment-number, when segment-number is greater than
or equal to the value specified in the SEGMENT-LIMIT clause, constitute a single pro­
gram overlay. Sections with the same segment-numbers need not be physically con­
tiguous in the source program.

4. Segments with segment-numbers less than the value specified in the SEGMENT-LIMIT
clause of the OBJECT-COMPUTER paragraph belong to the nonoverlayable portion of
the program.

However, when there is more than one program in the executable image, the non­
overlayable portions of each program containing the SEGMENT-LIMIT clause share
the same memory area.

5. Segments with segment-numbers equal to or greater than the value specified in the
SEGMENT-LIMIT clause belong to the overlayable portion of the program.

Additional References

Section 5.3.3
Section 5.9.31
Section 5.8

Examples

CALL Statement
USE Statement
Segmentation

1. The Procedure Division header without the USING phrase:

(This header can appear in: (a) a calling (main) program or (b) a called program that
receives no arguments.)

PROCEDURE DIVISION,

2. Procedure Division header of a called program:

LINK AGE SECT I ON,
01 ARG1,

03 ARG2 PIC XCG),
03 ARG3 PIC S8C6) COMP,

01 ARG4 PIC XC4),
PROCEDURE DIVISION USING ARG1 ARG4,

Procedure Division 5-33

ACCEPT

5.9.1 ACCEPT Statement

Function

The ACCEPT statement makes low-volume data available to the program. The DIGITAL exten­
sions to the ACCEPT statement (formats 3 and 4) are COBOL language additions that facilitate
video forms design and data handling.

General Format

Format 1

ACCEPT dest-item [FROM input-source)

Format 2

ACCEPT dest-item FROM j g~~E l l TIME j
Format 3

ACCEPT dest-item

FROM LINE NUMBER

FROM COLUMN NUMBER

ERASE [TO END OF]

WITH BELL

UNDERLINED

BOLD

WITH BLINKING

line-num

line-id [PLUS [plus-num] J
PLUS [plus-num]

column-num

column-id [PLUS [plus-num 1]
PLUS [plus-num]

{
SCREEN l
LINE f

PROTECTED [SIZE protect-length]

WITH CONVERSION

REVERSED

WITH NO ECHO

t def-src-lit }
DEFAULT IS

def-src-item

CONTROL KEY IN key-dest-item

[ON EXCEPTION stment]

5-34 Procedure Division

Format 4

ACCEPT CONTROL KEY IN key-dest-item

FROM LINE NUMBER

FROM COLUMN NUMBER

ERASE [TO END OF]

WITH BELL

[ON EXCEPTION stment]

dest-item

line-num

line-id [PLUS [plus-num] J
PLUS [plus-num]

column-num

column-id [PLUS [plus-num] J
PLUS [plus-num]

f SCREEN}

l LINE

ACCEPT
Continued

is the identifier of a data item into which data is accepted.

input-source
is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the Environment
Division.

key-dest-item
is the identifier of a data item that defines a control key. Key-dest-item must specify an
alphanumeric data item at least four characters in length.

line-num
is a numeric literal that specifies a line position on the terminal screen. Line-num must be a
positive integer. It cannot be zero or a negative integer.

line-id
is the identifier of a data item that provides a line position on the terminal screen.

column-num
is a numeric literal that specifies a column position on the terminal screen. Column-num
must be a positive integer. It cannot be zero or a negative integer.

column-id
is the identifier of a data item that provides a column position on the terminal screen.

plus-num
is a numeric literal that increments the current value for line or column position, or that
increments the value of line-id or column-id. Plus-num can be zero or a positive integer. It
cannot be a negative integer.

Procedure Division 5-35

ACCEPT
Continued

protect-length
is a numeric literal that specifies the maximum length of the video screen field into which
data can be typed. Protect-length must be a positive integer. It cannot be zero or a negative
integer.

def-src-lit
is a nonnumeric literal or a figurative constant. However, it cannot be the figurative con­
stant ALL literal.

def-src-item
is the identifier of an alphanumeric data item.

stment
is an imperative statement executed for an on exception condition.

Syntax Rules

Format3

1. When DIGITAL extensions to the ACCEPT statement appear, dest-item can be no
more than 132 characters in length.

2. You cannot specify a phrase more than once tor any dest-item.

3. When you use the PROTECTED phrase without its SIZE option, the size of def-src-item
and def-src-lit must be less than, or equal to the size of dest-item.

4. When you use the PROTECTED phrase with its SIZE option, the size of def-src-item
and def-src-lit must be less than, or equal to protect-length.

Format4

5. No phrase can appear more than once for any key-dest-item.

General Rules

Format 1

1. The ACCEPT statement transfers data from input-source. The transferred data replaces
the contents of dest-item.

2. The ACCEPT statement transfers a stream of characters with no editing or conversion.
Data transfer begins with the leftmost character position of dest-item and continues to
the right.

3. If the data does not completely fill dest-item, remaining character positions are filled
with spaces. If the data is too long for dest-item, it is truncated on the right.

4. The ACCEPT statement treats dest-item as alphanumeric, regardless of its class.

5. If there is no FROM phrase, the ACCEPT statement transfers data from the default sys­
tem input device.

Format2

6. The ACCEPT statement transfers data to dest-item according to the MOVE statement
rules.

5-36 Procedure Division

ACCEPT
Continued

7. DATE, DAY, and TIME are not actual data items. Therefore, the source program must
not describe them.

8. DATE has three two-digit elements. From left to right, they are:

• Year of century

• Month of year

• Day of month

The ACCEPT statement operates as if DATE were described in the program as a six­
digit, unsigned elementary numeric integer data item (PIC 9(6)).

The date June 3, 1985 is expressed as 850603.

9. DAY has two elements. From left to right, they are:

• Year of century (two digits)

• Day of year (three digits)

The ACCEPT statement operates as if DAY were described in the program as a
five-digit, unsigned elementary numeric integer data item (PIC 9(5)).

The fifteenth day of 1986 is expressed as 86015.

10. TIME represents the elapsed time since midnight using a 24-hour clock. It has four
two-digit elements. From left to right, they are:

• Hours

• Minutes

• Seconds

• Hundredths of a second

The ACCEPT statement operates as if TIME were described in the program as an eight­
digit, unsigned elementary numeric integer data item (PIC 9(8)).

The time 6:13 P.M. is expressed as 18130000. The minimum and maximum values of
TIME are 00000000 and 23595999.

Formats 3 and 4

11. The ACCEPT statement transfers data from a video terminal. The data replaces the
contents of dest-item (Format 3), or key-dest-item (Format 4).

12. For a Format 3 ACCEPT statement, the maximum number of characters that can be
typed in at a terminal is 132.

13. The presence of either the LINE NUMBER phrase or the COLUMN NUMBER phrase
implies NO ADVANCING; that is, following data input, a line feed and carriage return
is not generated automatically. The cursor remains on the character position immedi­
ately following the position of the last input character. This is the default starting posi­
tion of the next data item you input from or display upon the terminal.

Procedure Division 5-37

ACCEPT
Continued

14. If you do not use either the LINE NUMBER phrase or the COLUMN NUMBER phrase,
data is accepted according to positioning rules for the Format 1 ACCEPT statement.
That is, a line feed and carriage return are automatically generated following data
input, and the next item displayed upon, or accepted from, the terminal will appear
on the following line.

LINE NUMBER Phrase

15. The LINE NUMBER phrase positions the cursor on a specific line of the video screen
for data input.

16. If the LINE NUMBER phrase does not appear, but the COLUMN NUMBER phrase
does, then data is accepted from the current line position and specified column
position.

17. You must use relative line positioning to advance the cursor position below the bot­
tom line position of the screen. If line-num or the value of line-id is greater than the
bottommost line position of the current screen, program results are undefined. (See
Technical Notes.)

18. If you use line-id without its PLUS option, the line position is the value of line-id.

19. If you use line-id with its PLUS option, the line position is the sum of plus-num and the
value of line-id.

20. If you use the PLUS option without line-id, the line position is the sum of plus-num
and the value of the current line position.

21. If you use the PLUS option, but you do not specify plus-num, then PLUS 1 is implied.

22. Data input results are undefined if your program generates a value for line-id that is
either zero or negative.

COLUMN NUMBER Phrase

23. The COLUMN NUMBER phrase positions the cursor on a specific column of the video
screen.

24. If the COLUMN NUMBER phrase does not appear, but the LINE NUMBER phrase does
appear, then data is accepted from column 1 of the specified line position.

25. If you use column-id without its PLUS option, the column position is the value of
column-id.

26. If you use column-id with its PLUS option, the column position,is the sum of plus-num
and the value of column-id.

27. If you use the PLUS option without column-id, the column position is the sum of plus­
num and the value of the current column position.

28. If you use the PLUS option, but do not specify plus-num, PLUS 1 is implied.

5-38 Procedure Division

ACCEPT
Continued

29. Data input results are undefined if the program generates a value for column position
that is one of the following:

•Zero

• Negative

• Greater than the last column position on the screen

ERASE Phrase

30. The ERASE phrase erases all, or part, of a line (or screen) before accepting data.

31. If you use its TO END option, the ERASE phrase erases the line (or screen) from the
implied, or stated, cursor position to the end of the line (or screen).

32. If you do not use its TO END option, the ERASE phrase erases the entire line (or
screen).

However, if the TO END option is not used, and the output device is a VT52 terminal,
then cursor position cannot be implied. In this case, you must specify both the LINE
NUMBER and the COLUMN NUMBER phrases, and you must use the PLUS option
only following line-id (or column-id).

If the output device is a VT52 terminal and the TO END option is not used, the ERASE
phrase produces undefined results when any of the following conditions are true:

• The LINE NUMBER phrase is absent.

• The COLUMN NUMBER phrase is absent.

• The PLUS option appears, but is not preceded by either line-id or column-id.

BELL Phrase

33. The BELL phrase rings the terminal bell before accepting data.

ON EXCEPTION Phrase

34. The ON EXCEPTION phrase allows execution of an imperative statement when an
exception (or error) condition occurs.

35. If you specify the ON EXCEPTION phrase in a Format 3 ACCEPT statement, typing
CTRL/Z causes stment to execute.

Format3

UNDERLINED Phrase

36. The UNDERLINED phrase echoes input characters to the terminal with the "under­
score on" character attribute.

37. When you use the UNDERLINED phrase with the PROTECTED phrase, the input field is
underlined prior to accepting data.

Procedure Division 5-39

ACCEPT
Continued

BOLD Phrase

38. The BOLD phrase echoes input characters to the terminal with the "bold on" charac­
ter attribute.

BLINKING Phrase

39. The BLINKING phrase echoes input characters to the terminal with the "blink on"
character attribute.

REVERSED Phrase

40. The REVERSED phrase echoes input characters to the terminal with the "reverse video
on" character attribute.

41. When you use the REVERSED phrase with the PROTECTED phrase, the input field
appears in reverse video prior to accepting data.

CONVERSION Phrase

42. The CONVERSION phrase allows you to accept data inta a field and achieve the same
results as you would with the MOVE statement. It enables validation of the accepted
data and facilitates editing and alignment of data within dest-item. How the
CONVERSION phrase affects data handling depends on the category of dest-item.
(Numeric data can be described by any USAGE clause.)

43. When dest-item is numeric or numeric edited, the CONVERSION phrase:

• Converts input numeric data to a numeric literal (the sign is placed in the rightmost
character position)

• Moves the result to dest-item (using MOVE statement rules)

44. When dest-item is numeric or numeric edited, and you use the CONVERSION phrase,
valid input characters are as follows:

• 0 through 9

• period(.)

• comma(,), if you specify DECIMAL POINT IS COMMA

• space (leading and trailing)

• sign (+ or -)

The terminal operator can input space characters only as leading and trailing spaces. If
this occurs, space characters are simply ignored during numeric conversion.

However, the operator cannot input space characters between numeric characters,
between numeric characters and a decimal point, or between a sign and any other
input character. When this occurs, the input data is invalid, and an error condition
results.

The operator can input only one sign character and one decimal point character.

When the operator inputs a sign character, it must precede or follow all numeric char­
acters and the decimal point.

5-40 Procedure Division

The default sign character is a plus sign (+).

The default number of decimal places is zero.

ACCEPT
Continued

45. When you use the CONVERSION phrase and dest-item is numeric, data input results
in an error condition if the operator enters:

• Too many characters on either side of the decimal point (The PICTURE clause of
dest-item determines this overflow condition.)

• Invalid data

When one of these error conditions occurs, and you do not specify the ON
EXCEPTION phrase: (1) the contents of dest-item do not change, (2) the terminal bell
rings, (3) the input field is erased, and (4) the ACCEPT statement executes again.

When one of these error conditions occurs, and you do specify the ON EXCEPTION
phrase: (1) the contents of dest-item do not change, (2) the input field is left as if no
error occurred, and (3) the imperative statement of the ON EXCEPTION phrase
executes.

46. When dest-item is not numeric, the CONVERSION phrase moves input characters to
dest-item as an alphanumeric string (MOVE statement rules apply). Therefore, data
can be accepted into an alphanumeric edited field, and the JUSTIFIED clause, if it
applies to dest-item, can take effect.

An overflow condition is not an error condition when dest-item is alphanumeric; in
this case, right-end truncation occurs. However, you can specify the PROTECTED and
SIZE phrases to limit the amount of input data when dest-item is alphanumeric.

47. When you use the CONVERSION phrase, and if the operator types the terminator key
prior to any data input:

• ZEROES are moved to a numeric or numeric edited dest-item, if you do not specify
the DEFAULT phrase.

• SPACES are moved to an alphanumeric or alphanumeric edited dest-item, if you do
not specify the DEFAULT phrase.

• However, the default value is moved to dest-item, if you do specify the DEFAULT
phrase.

If the default value is not a valid value for dest-item, an error condition results.

48. If you do not use the CONVERSION phrase, data is transferred to dest-item according
to Format 1 ACCEPT statement rules.

:>RQTECTED Phrase

49. The PROTECTED phrase limits the number of characters that can be entered from the
terminal.

50. If you do not specify the PROTECTED phrase, the cursor remains on the character
position immediately following the position of the last input character. This is the
default starting position of the next data item you input from or display upon the
terminal.

Procedure Division 5-41

ACCEPT
Continued

However, if you use the PROTECTED phrase to delimit the field of a data item, the cur­
sor moves to the character position immediately following the last position of the
input field. In this case, the default starting position of the next data item is always to
the right of the input field, as determined by the SIZE phrase or PICTURE clause.

51. When you specify the PROTECTED phrase:

• If the operator attempts to type beyond the rightmost position of the input field:
(1) the terminal bell rings, (2) the cursor remains on the rightmost position, and
(3) character entry attempts beyond the rightmost position are not echoed to the
terminal screen.

• If the operator attempts to delete beyond the leftmost position of the input field:
(1) the terminal bell rings, and (2) the cursor remains on the leftmost position.

52. If you use the PROTECTED phrase without the SIZE phrase, the maximum number of
characters that the operator can enter is the number of characters in dest-item.

However, if dest-item is numeric, the maximum number of characters allows for entry
of sign and decimal point characters when these are implied by dest-item's PICTURE
clause. For example, if PIC S9(4)V99 is the PICTURE clause for dest-item, then all of the
following character strings are valid input:

2222.22
2222
.22
+2222.22

53. When you use the PROTECTED phrase, the input field is filled with spaces prior to
accepting data. If you also use the UNDERLINED, REVERSED, BOLD, or BLINKING
phrases, those spaces have the specified character attribute(s).

54. If you use the PROTECTED phrase on a field that extends past the last column position
of the screen, the results are undefined.

55. If you do not use the PROTECTED phrase, an overflow condition is treated according
to rules for the Format 1 ACCEPT statement.

SIZE Phrase

56. You can use the SIZE phrase only when you also specify the PROTECTED phrase.

57. the SIZE phrase specifies the number of characters in the input field. It allows you to
specify fewer or more characters than are specified in the PICTURE clause for dest­
item.

NO ECHO Phrase

58. The NO ECHO phrase suppresses the display of input characters on the screen.

59. When you do not use the NO ECHO phrase, input characters are displayed on the
screen as they are typed.

5-42 Procedure Division

DEFAULT Phrase

ACCEPT
Continued

60. The DEFAULT phrase specifies default input values when no characters are entered
from the terminal. Null input is signaled by entering a legal terminator key that is not
preceded by data. (See the general rules for the CONTROL KEY phrase.)

61. When the null input condition occurs, def-src-lit or the value of def-src-ite.m is moved
to dest-item. When the move occurs, the specified default value is not displayed on
the terminal screen.

62. The value of def-src-item cannot be the figurative constant ALL literal.

CONTROL KEY Phrase

63. If you use the CONTROL KEY phrase, the characters representing PF keys and arrow
keys, as well as TAB and RETURN, are legal terminator keys and can be accepted from
the terminal. (See Technical Note 6.)

64. Key-dest-item stores the terminator key code; unused character positions, if any, are
filled with spaces. (See Technical Notes.)

65. When you use the CONTROL KEY phrase in Format 3, the operator must terminate
data input with a legal terminator key.

66. When you do not use the CONTROL KEY phrase in Format 3, the operator can termi­
nate data input only with RETURN or TAB.

Technical Notes

Format 1

1. The ACCEPT statement fills dest-item with spaces if the input is a carriage return only.

Formats 3 and 4

2. The DIGITAL extensions to the ACCEPT and DISPLAY statements support data input
and display only on VT52 and VT100 terminal types, and on the PROFESSIONAL video
terminal.

3. On RSX-11M systems ONLY:

If both the "get multiple characteristics" and "set multiple characteristics" options
were included when your system was generated, COBOL-81 automatically: (1) deter­
mines terminal type, (2) determines whether or not the terminal has been set to
/NOWRAP, and (3) sets a terminal to /NOWRAP, when necessary. No manual interven­
tion is needed for any supported terminal type. However:

• If the "get multiple characteristics" option has not been included during system
generation, then the DIGITAL extensions to the ACCEPT statement will not work on
a VT52 terminal. COBOL-81 needs this option to determine terminal type. It
assumes a terminal is a VT100 type if the "get characteristics" option is absent. There
is no manual command you can use to solve this problem.

The "get multiple characteristics" option also tells COBOL-81 whether a terminal
(any supported type) has the /WRAP or the /NOWRAP characteristic. The /NOWRAP
characteristic is needed for the DIGITAL extensions to the ACCEPT statement to
work.

Procedure Division 5-43

ACCEPT
Continued

• If the "set multiple characteristics" option has not been included during system
generation, then COBOL-81 cannot change a terminal's setting when this is neces­
sary. Therefore, prior to program execution, you must determine if a terminal (any
supported type) is set to /NOWRAP, and change the setting if it is not. Use the fol­
lowing MCR command to do this:

SET /NOWRAP[=ttnn:]

• If the "set multiple characteristics" option has been included during system genera­
tion, but the "get multiple characteristics" option has not, you can still use a VT100
type terminal. But, prior to program execution, you must determine whether the
terminal is set to /NOWRAP and manually change the setting when it is not. Use the
preceding MCR command to do this.

4. You should only accept data from input fields that are within screen boundaries. That
is, the terminal operator should see all the characters entered (assuming the NO
ECHO, CONVERSION, and PROTECTED phrases are not specified). If you accept data
from input fields that are outside screen boundaries, it does not result in an error con­
dition. However, your program might not produce the results you expect.

Values for screen boundaries depend on the terminal type and the column mode in
which it is operating. Refer to the appropriate terminal user's guide for more informa­
tion on screen boundaries.

5. Line positioning can be a one- or two-step process. The first (or only) step is absolute
positioning, which is using the value of line-num or line-id to determine the line posi­
tion. The second step is relative positioning, which is adding the value of plus-num to
line-id to determine the line position. Relative positioning beyond the bottom line of
the current screen results in scrolling.

For example, suppose that the screen for which you are programming can be a maxi­
mum of 24 lines and you need to scroll the screen up one line before accepting data.
The following sample statements illustrate how to use relative positioning to accom­
plish this (Assume ITEMA has a value of 14, and the current line position is 20):

ACCEPT DEST-EXAMPLE FROM LINE NUMBER PLUS 5,
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMA PLUS 11,

The following sample statements would produce undefined results because absolute
line positioning is beyond the bottom of the screen (assume ITEMB has a value of 25):

ACCEPT DEST-EXAMPLE FROM LINE NUMBER 25,
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB,
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB PLUS Q,

The last ACCEPT statement illustrates that use of the PLUS option does not necessarily
mean that scrolling will always occur. Absolute line positioning always occurs before
the relative positioning specified by the PLUS option. In this case, line-id (ITEMB) has
a value of 25. Therefore, the line position is outside the screen boundary before the
PLUS option executes, and program results are undefined.

5-44 Procedure Division

ACCEPT
Continued

6. When you use the CONTROL KEY phrase, key-dest-item stores the terminator key
code. Part IV of the COBOL-81 User's Guide for your system contains information on
these key code values. Refer to the chapter on programming video forms.

Additional References

Section 3.1.3
Section 5.1.4
Section 5.9.15

Part IV of the COBOL-81 User's
Guide for your system

Examples

SPECIAL-NAMES Paragraph
Scope of Statements
MOVE Statement

Refer to the chapter on
programming video forms

In the following examples, the character s represents a space. The examples assume that the
time is just after 2:15 PM on April 2, 1980. The Environment and Data Divisions contain the fol­
lowing entries:

SPECIAL-NAMES.
CONSOLE IS IN-DEl,!ICE.

DATA Dil.JISION.
0 1 ITEM A PIC X(G).

0 1 ITEMB PIC 99V99.
0 1 ITEMC PIC 9 (8).
01 ITEMD PIC 9 (5).
0 1 ITEME PIC 9 (8).
0 1 ITEMF PIC 9.

1. ACCEPT IT EMA,
Input ITEMA

COMPUTER COMPUT
VAX VAXsss
12.6 12.6ss

2. ACCEPT ITEMB FROM IN-DEl.JICE,

3. ACCEPT ITEME FROM DATE.

4. ACCEPT ITEMC FROM TIME.

5. ACCEPT ITEMD FROM DAY.

6. ACCEPT ITEMA FROM TIME.

7. ACCEPT ITEME FROM TIME.

Input ITEMB

1623 1623
4 4sss
60000 6000
-1.2 -1.2
1.23 1.23
COMPUTER COMP

Results

Equivalent To

16.23
invalid data
60.00
invalid data
invalid data
invalid data

ITEME = 800402

ITEMC = 14150516

ITEMD = 80093

ITEMA = 141505

ITEME = 150516

Examples containing DIGITAL extensions to the ACCEPT statement (Formats 3 and 4) are in Part
IV of the COBOL-81 User's Guide for your system. Refer to the chapter that discusses forms for
video terminals.

Procedure Division 5-45

ADD

5.9.2 ADD Statement

Function

The ADD statement adds two or more numeric operands and stores the result.

General Format

Format 1

ADD { num } ... TO { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 2

ADD { num } { num } ... GIVING { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 3

num

rsult

t CORRESPONDING }
ADD grrr-1 TO grrr-2 [ROUNDED] [ON SIZE ERROR stment]

CORR

is a numeric literal or the identifier of an elementary numeric item.

is the identifier of an elementary numeric item. However, in Format 2, rsult can be an ele­
mentary numeric edited item. It is the resultant identifier.

grp-1, grp-2
are the identifiers of numeric group items.

stment
is an imperative statement.

Syntax Rule

CORR is an abbreviation for CORRESPONDING.

General Rules

1. The data descriptions of the operands need not be the same. Conversion and decimal
point alignment will occur, as needed, throughout the calculation.

2. The maximum size of each operand is 18 digits.

3. Undefined results occur when operands overlap; that is, when sending fields and
receiving fields share a part of their storage areas.

4. In Format 1, the values of the operands before the word TO are added. The sum is then
added to the value of the first rsu/t. The process repeats for each later occurrence of
rs ult.

5-46 Procedure Division

ADD
Continued

5. In Format 2, the values of the operands before the word GIVING are added. The sum is
then moved to each rsult.

6. In Format 3, data items in grp-1 are added to and stored in the corresponding data items
in grp-2.

Additional References

Section 5.1.4
Section 5.6.1
Section 5.6.3
Section 5.6.4
Section 5.6.5
Section 5.6.6
Section 5.6.2

Examples

Scope of Statements
Arithmetic Operations
ROUNDED Option
ON SIZE ERROR Option
CORRESPONDING Option
Overlapping Operands and Incompatible Data
Multiple Receiving Fields in Arithmetic
Statements

In these examples, results are shown only for data items whose values change. The examples
assume the following data descriptions and beginning values:

03 ITEMA PIC 99 l.JALUE 85.
03 ITEMB PIC 99 l.JALUE 2 +

03 IT EMC t,JALUE II 123 11 t

05 ITEMD OCCURS 3 TIMES
PI C 9.

1. TO phrase:

ADD 2 ITEMB TO ITEMA.

2. SIZE ERROR clause:

(When the SIZE ERROR condition occurs, the value of the
resultant identifier does not change.)

ADD 38 TO ITEMA
ON SIZE ERROR

MOVE 0 TO ITEMB.

3. Multiple receiving fields:

(The operations proceed from left to right. Therefore, the sub­
script for ITEMD is evaluated after the addition changes its
value.)

ADD 1 TO ITEMB ITEMD <ITEMB).

4. GIVING phrase:

ADD ITEMB ITEMD <ITEMBl GIVING ITEMA.

Initial
Value

85
2

123

Results

ITEMA = 89

ITEMA = 85

ITEMB = 0

ITEMB = 3
ITEMD (3) = 4

ITEMA = 4

Procedure Division 5-47

CALL

5.9.3 CALL Statement

Function

The CALL statement transfers control to another program in the executable image.

General Format

CALL prog-name

[USING {
[BY REFERENCE] }

{ arg } ...
BY DESCRIPTOR

[{
BY REFERENCE }]]

{ arg }
BY DESCRIPTOR

prog-name

arg

must be a non numeric literal. It is the name of the program to which control transfers.

is the argument. It identifies the data that is available to both the calling and called pro­
grams. It is any data item described in the File Section, Working-Storage Section, or
Linkage Section.

stment
is an imperative statement.

Syntax Rules

1. Prag-name must be from 1 to 30 characters long. However, only the first 6 characters
are significant; therefore, they must be unique. Prag-name can contain the characters
A through Z, a through z, 0 through 9, and hyphen(-).

2. Prag-name is the entry-point in the called program. For COBOL programs, prag-name
is the program-name specified in the PROGRAM-ID paragraph.

3. The same arg can appear more than once in the USING phrase.

4. The maximum number of arguments is 255.

5. If there is no initial argument-passing mechanism (REFERENCE, or DESCRIPTOR), BY
REFERENCE is the default.

6. An argument-passing mechanism applies to every arg following it until a new mecha­
nism (if any) appears.

7. The CALL statement has a USING phrase only if there is a USING phrase in the
Procedure Division header of the called program. Both USING phrases must have the
same number of arguments.

8. If the argument-passing mechanism is BY DESCRIPTOR, arg must be an alphanumeric
item.

5-48 Procedure Division

General Rules

CALL
Continued

1. The program whose name is specified by prog-name is the called program. The pro­
gram containing the CALL statement is the calling program.

2. When the CALL statement executes, hyphens in prog-name are treated as periods,
and lowercase letters are treated as uppercase.

3. The CALL statement transfers control to the called program.

4. The called program is in its initial state the first time it is called. On subsequent
entries, the state of the called program is the same as when it was last exited.

5. Arguments correspond by position in the USING phrase - not by name. That is, the
first arg in CALL statement corresponds to the first data-name in the called program's
Procedure Division header, and so on.

However, no correspondence between calling and called programs exists for index­
names. If a table is passed as an argument, the index associated with that table in the
called program will be the one specified in the INDEXED BY phrase in the called pro­
gram, not the index specified in the calling program.

6. The arguments in the CALL statement USING phrase are made available to the called
program when the CALL executes.

7. Called programs can contain CALL statements. However, a called program must not
execute a CALL statement that directly or indirectly calls the calling program.

8. The CALL statement can make data available to the called program by two argument­
passing mechanisms:

• REFERENCE - The address of (pointer to) arg is passed to the called program. This is
the default mechanism: arguments are passed BY REFERENCE if there is no explicit
mechanism in the CALL statement.

• DESCRIPTOR- The address of (pointer to) the data item's descriptor is passed to the
called program.

9. If the called program is a COBOL program, the CALL statement can pass arguments
only BY REFERENCE. If the called program is a non-COBOL program, the mechanism
for each arg in the CALL statement USING phrase must be the same as the mechanism
for each data-name in the called program's argument list.

10. If the BY REFERENCE phrase is either specified or implied for a parameter, the called
program references the same storage area for the data item as the calling program.
This mechanism ensures that the contents of the parameter in the calling program is
identical at all times with the contents of the parameter in the called program.

Procedure Division 5-49

CALL
Continued

Additional References

Section 1.4.1
Section 2.1
Section 5.1.4

Part II of the COBOL-81 User's
Guide for your system

Examples

Procedure Division
PROGRAM-ID Paragraph
Scope of Statements

Refer to the chapter on
interprogram communication

1. Passing arguments by reference:

CALL 11 DATERTN 11 USING ITEMA ITEMB ITEMC.

2. Mixing argument-passing mechanisms:

(Reference arguments are ITEMA and ITEMD. Descriptor arguments are ITEMB, ITEMC,
ITEMD, and ITEMF. ITEMD is passed twice - by reference and by descriptor. It will cor­
respond to two different data items in the called program.)

CALL II NEWPROG II us I NG ITEM A
BY DESCRIPTOR ITEMB ITEMC
BY REFERENCE ITEMD
BY DESCRIPTOR ITEMD ITEMF

5-50 Procedure Division

CLOSE

5.9.4 CLOSE Statement

Function

The CLOSE statement ends processing of reels (or units) and files. It can also perform rewind,
lock, and removal operations.

General Format

CLOSE file-name

{
REEL}

[FOR REMOVAL]
UNIT

{
NO REWIND}

WITH
LOCK

file-name
is the name of a file described in the Data Division. It cannot be a sort or merge file.

Syntax Rules

1. The REEL or UNIT phrase can be used only for sequential files.

2. The words REEL and UNIT are equivalent.

General Rules

Note

In these rules, the term "reel" refers to "unit" as well.

1. A CLOSE statement can execute only for an open file.

2. To show the effects of CLOSE statements, all files are categorized as follows:

• Nonreel: a file for which the concepts of rewind and reel have no meaning because
of its input or output medium (for example, when a terminal device is used)

• Sequential single-reel: a sequential file contained entirely on one reel

• Sequential multireel: a sequential file contained on more than one reel

• Nonsequential: a file with other than sequential organization, whose medium is on
a mass storage device

3. Table 5-8 summarizes CLOSE statement results. Symbol definitions follow the table.

Where definitions differ for input, output, and input-output files, separate definitions
appear. Otherwise, a definition applies to files in all open modes.

Procedure Division 5-51

CLOSE
Continued

Table 5-8: Effects of CLOSE Statement Formats on Files by Category

File Category

CLOSE
Statement Sequential Sequential

Format Nonreel Single-reel Multi reel

CLOSE c C,G C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH NO x C,B C,B,A
REWIND

CLOSE REEL x F,G F,G

CLOSE REEL x F,D,G F,D,G
FOR REMOVAL

A Previous reels unaffected

Nonsequential

c
C,E

x

x
x

For input and input-output files: All reels in the file before the current reel are
processed according to the standard reel swap procedure. However, reels con­
trolled by an earlier CLOSE REEL/UNIT statement are not affected. If other reels
in the file follow the current reel, they are not processed.

For output files: All reels in the file before the current reel are processed
according to the standard reel swap procedure. However, reels controlled by
an earlier CLOSE REEL/UNIT statement are not affected.

B No rewind of current reel

The position of the current reel remains the same.

C Close file

The file is closed.

D Reel/unit removal

The current reel rewinds and is logically removed from the executable image.
However, the executable image can access the reel again in its proper order of
reels in the file. To do this, the executable image must subsequently execute:
(1) a CLOSE statement without the REEL/UNIT phrase for the file and (2) an
OPEN statement for the file.

E File lock

The executable image cannot open the file again in its current execution.

F Close reel/unit

For input and input-output files: If the current reel is the last or only reel for the
file:

• A reel swap does not occur

• The Current Volume Pointer remains the same

5-52 Procedure Division

CLOSE
Continued

• The Next Record Pointer indicates that there is no next logical record

If another reel follows the current reel for the file:

• A reel swap occurs.

• The Current Volume Pointer points to the next reel for the file.

• The Next Record Pointer points to the next record in the file. If there are no
records for the current volume, another reel swap occurs.

For output files: A reel swap occurs. The Current Volume Pointer points to the
new reel.

Executing the ne~t WRITE statement for the file transfers a logical record to the
new reel of the file.

G Rewind

The current reel (or device) is positioned to its physical beginning.

X Invalid

This is an invalid combination of CLOSE option and file category. It results in
FILE STATUS data item value "98".

4. Executing a CLOSE statement updates the value of the FILE STATUS data item associ­
ated with the file.

5. If an optional file is not present, standard end-of-file processing does not occur.

6. The WITH NO REWIND and FOR REMOVAL phrases have no effect at execution time if
they do not apply to the file's storage medium.

7. When the CLOSE statement applies to an output or extend file described with the
LINAGE clause, end-of-page processing occurs before the file is closed.

8. After successful CLOSE statement execution (without the REEL or UNIT phrase), the
file's record area is no longer available. After unsuccessful execution, record area
availability is undefined.

9. After successful CLOSE statement execution (without the REEL or UNIT phrase), the
file is no longer: (a) in the open mode or (b) associated with the file connector.

10. If the CLOSE statement has more than one file-name, the statement executes as if
there were a separate CLOSE statement for each file-name.

11. In the file-sharing environment, CLOSE statement execution unlocks all record locks
for file-name.

Procedure Division 5-53

CLOSE
Continued

Technical Notes

1. CLOSE statement execution can result in these FILE STATUS data item values:

FILE STATUS

00
94
98

Meaning

Successful
File never opened or already closed
Any other CLOSE error

2. The RSTS/E operating system does not support multivolume tape files. Therefore, sec­
tions of the General Rules that refer to multivolume files do not apply to COBOL-81
programs that execute on a RSTS/E system.

Additional Reference

Section 5.7 1-0 Status

5-54 Procedure Division

5.9.5 COMPUTE Statement

Function

The COMPUTE statement evaluates an arithmetic expression and stores the result.

General Format

COMPUTE { rsult [ROUNDED] } ... = arithmetic-expression [ON SIZE ERROR stment]

rsult

COMPUTE

is the identifier of an elementary numeric item or elemeritary numeric edited item. It is the
resultant identifier.

stment
is an imperative statement.

General Rules

1. The data descriptions of the operands need not be the same. Conversion and decimal
point alignment will occur, as needed, throughout the calculation.

2. The maximum size of each operand is 18 digits.

3. When the arithmetic expression is evaluated, its value replaces the current value(s) of
rsu/t(s).

4. Undefined results occur when operands overlap; that is when a sending and receiving
field share a part of their storage areas.

5. Exponents must be specified as integers.

Additional References

Section 5.1.4
Section 5.6.1
Section 5.6.3
Section 5.6.4
Section 5.6.6
Section 5.6.2

Examples

Scope of Statements
Arithmetic Operations
ROUNDED Option
ON SIZE ERROR Option
Overlapping Operands and Incompatible Data
Multiple Receiving Fields in Arithmetic
Statements

In these examples, results are shown only for data items whose values change. The examples
assume these data descriptions and beginning values:

03 ITEMA
03 ITEMB
03 I TEMC
03 ITEMD

PIC 999V99 VALUE 2,
PIC 999V99 VALUE 3,
PIC 999V99 VALUE 4,
PIC 999V99 VALUE 5.

Initial
Value

2
3
4
5

(continued on next page)

Procedure Division 5-55

COMPUTE
Continued

1. No rounding:

COMPUTE ITEMC
<ITEMA + 27) I ITEMB.

2. With rounding:

COMPUTE ITEMC ROUNDED =
<ITEMA + 27) I ITEMB.

3. The SIZE ERROR phrase:

COMPUTE ITEMB = <ITEMA * ITEMD> ** 3
ON SIZE ERROR

MOVE 100 TD ITEMC.

5-56 Procedure Division

Results

ITEMC = 9.66

ITEMC = 9.67

ITEMC = 100.00

5.9.6 DELETE Statement

Function

The DELETE statement logically removes a record from a mass storage file.

General Format

DELETE file-name RECORD [INVALID KEY stment]

file-name

DELETE

is the name of a relative or indexed file described in the Data Division. It cannot be the
name of a sequential file or a sort or merge file.

stment
is an imperative statement.

Syntax Rules

1. There cannot be an INVALID KEY phrase for a DELETE statement that references a file
in sequential access mode.

2. There must be an INVALID KEY phrase if: (a) the file is not in sequential access mode
and (b) there is no applicable USE AFTER EXCEPTION procedure.

General Rules

1. The file must be open in 1-0 mode when the DELETE statement executes.

2. For a file in sequential access mode, a successfully executed READ statement must be
the last input-output statement executed for the file before the DELETE statement.
Record Management Services (RMS-11) logically removes the record that the READ
statement accessed.

3. For a relative file in random or dynamic access mode, RMS-11 logically removes the
record identified by the file's RELATIVE KEY data item. If the file does not contain that
record, an invalid key condition exists.

4. For an indexed file in random or dynamic access mode, RMS-11 logically removes the
record identified by the file's prime record key data item. If the file does not contain
that record, an invalid key condition exists.

5. After successful DELETE statement execution, the identified record has been logically
removed from the file. It is no longer accessible.

6. DELETE statement execution does not affect the contents of the record area. It also
does not affect the contents of the data item referred to in the DEPENDING ON phrase
of the file's RECORD clause.

7. For sequential access files, DELETE statement execution does not affect the Next
Record Pointer.

Procedure Division 5-57

DELETE
Continued

8. For dynamic access files, the Next Record Pointer can point to the deleted record
before the DELETE. After the DELETE statement executes, the Next Record Pointer:

• Points to a relative file's next existing record.

• Points to an indexed file's next existing record, as established by the Key of
Reference.

• Indicates the at end condition if the file has no next record.

9. DELETE statement execution updates the value of the Fl LE STATUS data item for the
file.

10. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input or output condition occurs that would result in a nonzero value in a FILE STATUS
data item. However, it does not execute if the condition is invalid key, and there is an
INVALID KEY phrase. If the condition is not invalid key and no applicable USE AFTER
EXCEPTION Declarative procedure exists, the program run terminates abnormally.

11. When the invalid key condition is recognized, these actions occur in the following
order:

a. A value indicating the invalid key condition is placed in the FILE STATUS data item,
if one is specified, for the file.

b. If the statement causing the condition has an INVALID KEY phrase, control trans­
fers to the associated imperative statement. Any USE AFTER EXCEPTION procedure
for the file does not execute.

c. If there is no INVALID KEY phrase, control transfers to the applicable USE AFTER
EXCEPTION procedure for the file.

Technical Note

DELETE statement execution can result in the following FILE STATUS data item values:

FILE Access
STATUS Method Meaning

00 All Successful
23 Rand Record not in file (invalid key)
92 All Record locked by another program
93 Seq No previous READ
94 All File not open, or incompatible open mode
30 All All other permanent errors

Additional References

Section 5.1.4
Section 5.7
Section 5.7.1
Section 5.9.17
Section 5.9.31

Scope of Statements
1-0 Status
INVALID KEY Phrase
OPEN Statement
USE Statement

5-58 Procedure Division

DISPLAY

5.9.7 DISPLAY Statement

Function

The DISPLAY statement transfers low-volume data from the program to the default system out­
put device or to the object of a mnemonic-name.

General Format

Format 1

DISPLAY { src-item } ... [UPON output-dest] [WITH NO ADVANCING]

Format 2

DISPLAY

src-item

src-item

AT LINE NUMBER I :::::~"[PLUS I plusoum] J
PLUS [plus-num]

AT COLUMN NUMBER I ::~::::[PLUS (plus-num 1]
PLUS [plus-num]

ERASE [TO END OF] { SCREEN }

LINE

WITH BELL

UNDERLINED

BOLD

WITH BLINKING

REVERSED

WITH CONVERSION

[WITH NO ADVANCING]

is a literal or the identifier of a data item. The literal can be any figurative constant except
ALL literal.

Procedure Division 5-59

DISPLAY
Continued

output-dest
is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the Environment
Division.

line-num
is a numeric literal that specifies a line position on the terminal screen. Line-num must be a
positive integer. It cannot be zero or a negative integer.

line-id
is the identifier of a data item that provides a line position on the terminal screen.

column-num
is a numeric literal that specifies a column position on the terminal screen. Column-num
must be a positive integer. It cannot be zero or a negative integer.

column-id
is the identifier of a data item that provides a column position on the terminal screen.

plus-num
is a numeric literal that increments the current value for line or column position, or that
increments the value of line-id or column-id. Plus-num can be zero or a positive integer. It
cannot be a negative integer.

Syntax Rules

All Formats

1. In a DISPLAY statement, the number of src-item entries cannot exceed 254.

Format 2

2. No phrase can appear more than once for any src-item.

General Rules

Format 1

1. The DISPLAY statement transfers data from each src-item (in its order of appearance in
the statement) to output-dest.

2. No editing or conversion occurs during DISPLAY execution.

3. If src-item is a figurative constant, only one occurrence is displayed.

4. When there is more than one src-item, sending item size is the sum of the src-item
sizes.

5. If there is no UPON phrase, the DISPLAY statement transfers data to the default system
output device.

6. If there is a WITH NO ADVANCING phrase, the DISPLAY statement does not transfer
any device positioning information after the last src-item value.

7. If there is no WITH NO ADVANCING phrase, the DISPLAY statement transfers device
positioning information. It resets the output-dest position to the leftmost position on
the next line.

5-60 Procedure Division

Format 2

DISPLAY
Continued

8. The presence of either the LINE NUMBER phrase or the COLUMN NUMBER phrase
implies NO ADVANCING; that is, no line feed or carriage return is generated auto­
matically following data output. The cursor remains on the character position immedi­
ately following the position of the last character displayed. This is the default starting
position for the next data item you input from or display upon the terminal.

9. If you specify neither the LINE NUMBER phrase, the COLUMN NUMBER phrase, nor
the NO ADVANCING phrase, data is output according to Format 1 positioning rules
for the DISPLAY statement. That is, a line feed and carriage return is generated auto­
matically following data display.

LINE NUMBER Phrase

10. The LINE NUMBER phrase positions the cursor for output on a specific line position
on the terminal screen.

11. If you do not use the LINE NUMBER phrase, but you do use the COLUMN NUMBER
phrase, then data is displayed on the current line position and specified column
position.

12. You must use relative line positioning to advance the cursor position below the bot­
tom line position of the screen. If line-num or the value of line-id is greater than the
bottommost line position of the current screen, program results are undefined. (See
Technical Notes.)

13. If you use line-id without its PLUS option, the line position is the value of line-id.

14. If you use line-id with its PLUS option, the line position is the sum of plus-num and the
value of line-id.

15. If you use the PLUS option without line-id, the line position is the sum of plus-num
and the value of the current line position.

16. If you use the PLUS option, but you do not specify plus-num, ther.i PLUS 1 is implied . .
17. Data output results are undefined if the program generates a value for line position

that is negative or zero.

COLUMN NUMBER Phrase

18. The COLUMN NUMBER phrase positions the cursor for output on a specific column
of the video screen.

19. If the COLUMN NUMBER phrase does not appear, but the LINE NUMBER phrase
does, then data is displayed from column 1 of the specified line position.

20. If you use column-id without its PLUS option, the column position is the value of
column-id. .

21. If you use column-id with its PLUS option, the column position is the sum of plus-num
and the value of column-id.

22. If you use the PLUS option without column-id, the column position is the sum of plus­
num and the value of the current column position.

Procedure Division 5-61

DISPLAY
Continued

23. If you use the PLUS option, but do not specify plus-num, then PLUS 1 is implied.

24. Data output results are undefined if the program generates a value for column posi­
tion that is one of the following:

• Zero

• Negative

• Greater than the rightmost column position on the screen.

ERASE Phrase

25. The ERASE phrase erases all, or part, of a line (or screen) before displaying data.

26. If you use its TO END option, the ERASE phrase erases the line (or screen) from the
implied, or stated, cursor position to the end of the line (or screen).

27. If you do not use its TO END option, the ERASE phrase erases the entire line (or
screen).

However, if you do not use the TO END option and the output device is a VT52 termi­
nal, then cursor position cannot be implied. In this case, you must specify both the
LINE NUMBER and the COLUMN NUMBER phrases, and you can use the PLUS option
only when it's preceded by line-id (or column-id).

If the output device is a VT52 terminal and you do not use the TO END option, the
ERASE phrase will produce unpredictable results when any of the following conditions
are true:

• The LINE NUMBER phrase is absent.

• The COLUMN NUMBER phrase is absent.

• The PLUS option appears, but is not preceded by either line-id or column-id.

BELL Phrase

28. The BELL phrase rings the terminal bell before displaying data.

UNDERLINED Phrase

29. The UNDERLINED phrase displays characters on the screen with the "underscore on"
character attribute.

BOLD Phrase

30. The BOLD phrase displays characters on the screen with the "bold on" character
attribute.

BLINKING Phrase

31. The BLINKING phrase displays characters on the screen with the "blink on" character
attribute.

REVERSED Phrase

32. The REVERSED phrase display characters on the screen with the "reversed video on"
character attribute.

5-62 Procedure Division

DISPLAY
Continued

CONVERSION Phrase

33. The CONVERSION phrase allows you to display data in a field and achieve the same
results as you would with the MOVE statement. How the CONVERSION phrase affects
data handling depends on the category of dest-item. (Numeric data can be described
by any USAGE clause.)

34. The CONVERSION phrase displays without change: nonnumeric items, and numeric
edited items.

35. The CONVERSION phrase displays numeric items with DISPLAY usage (for example,
PIC 99, or PIC S99V99) after including space, when needed, for a decimal point and/or
sign.

If you specify the SIGN IS TRAILING clause for the data item, the sign is displayed as a
trailing sign. Otherwise, the sign is displayed as a leading sign.

36. The CONVERSION phrase displays numeric items without DISPLAY usage (for exam­
ple, PIC 99 COMP, or PIC S9V999 COMP SYNC) after converting them to DISPLAY
usage. The conversion proceeds according to the following rules:

• The size of the displayed field is determined from the PICTURE character-string.

• Leading zeroes are displayed only when they immediately precede a decimal point.

• A sign is displayed if an S is present in the PICTURE character-string; the sign
appears as a leading sign.

Only a minus sign (-) is displayed. (When a signed item with a positive value is dis­
played, the plus sign (+)does not appear.)

Only a leading sign can appear when the DISPLAY statement converts a numeric
item to DISPLAY usage.

37. If you do not specify the CONVERSION phrase, data is transferred to the screen
according to Format 1 rules for the DISPLAY statement.

Technical Notes

Format 1

1. When there is an UPON phrase, DISPLAY transfers data to the device associated with
the SPECIAL-NAMES paragraph description of output-dest.

Format2

2. The DIGITAL extensions to the ACCEPT and DISPLAY statements support data input
and display only on the VT52, and VT100 terminal types, and on the PROFESSIONAL
video terminal.

3. The UNDERLINED, BOLD, BLINKING, and REVERSED character attributes are not avail­
able on VT52 terminals or on VT100 terminals without the advanced video option.

Procedure Division 5-63

DISPLAY
Continued

4. On RSX-11M systems ONLY:

If both the "get multiple characteristics" and "set multiple characteristics" options
were included when your system was generated, COBOL-81 automatically: (1) deter­
mines terminal type, (2) determines whether or not the terminal has been set to
/NOWRAP, and (3) sets a terminal to /NOWRAP, when necessary. No manual interven­
tion is needed for any supported terminal type. However:

• If the "get multiple characteristics" option has not been included during system
generation, then DIGITAL extensions to the DISPLAY statement will not work on a
VT52 terminal. COBOL-81 needs this option to find out terminal type, and .it will
assume a terminal is a VT100 type if the "get characteristics" option is absent. There
is no manual command you can use to solve this problem.

The "get multiple characteristics" option also tells COBOL-81 whether a terminal
(any supported type) has the /WRAP or the /NOWRAP characteristic. The /NOWRAP
characteristic is needed for the DIGITAL extensions to the DISPLAY statement to
work.

• If the "set multiple characteristics" option has not been included during system
generation, then COBOL-81 cannot change a terminal's setting when this is neces­
sary. Therefore, prior to program execution, you must determine if a terminal (any
supported type) is set to /NOWRAP, and change the setting if it is not. Use the fol­
lowing MCR command to do this:

SET /NOWRAP[= ttnn :]

• If the "set multiple characteristics" option has been included during system genera­
tion, but the "get multiple characteristics" option has not, you can still use a VT100
type terminal. But, prior to program execution, you must determine whether the
terminal is set to /NOWRAP and manually change the setting when it is not. Use the
preceding MCR command to do this.

5. You should only DISPLAY data on fields that are within screen boundaries. That is, the
terminal operator should see all the characters entered. If data is displayed on fields
that are outside screen boundaries, it does not result in an error condition. However,
your program might not produce the results you expect.

Values for screen boundaries depend on the terminal type and the column mode in
which it is operating. Refer to the appropriate terminal user's guide for more informa­
tion on screen boundaries.

6. Line positioning can be a one- or two-step process. The first (or only) step is absolute
positioning, which is using the value of line-num or line-id to determine the line posi­
tion. The second step is relative positioning, which is adding the value of plus-num to
line-id to determine the line position. Relative positioning beyond the bottom line of
the current screen results in scrolling.

For example, suppose that the screen for which you are programming can be a maxi­
mum of 24 lines, and you want to scroll the screen up one line before displaying data.
The following sample statements illustrate how to use relative positioning to accom­
plish this (Assume ITEMA has a value of 14, and the current line position is 20):

DISPLAY SRC-EXAMPLE AT LINE NUMBER PLUS 5.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMA PLUS 11.

5-64 Procedure Division

DISPLAY
Continued

The following sample statements would produce undefined results because they use
absolute line positioning to reach a line beyond the bottom of the screen (assume
ITEMB has a value of 25):

DISPLAY SRC-EXAMPLE AT LINE NUMBER 25.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB PLUS 0.

The last DISPLAY statement illustrates that use of .the PLUS option does not necessarily
mean that relative positioning and scrolling will always occur. When you specify line­
id, absolute line positioning always occurs before a PLUS option can execute. In this
case, line-id (ITEMB) is specified, and it has a value of 25. Therefore, the line position is
outside the screen boundary before the PLUS option executes, and program results are
undefined.

Additional References

Section 3.1.3 SPECIAL-NAMES Paragraph

Part IV of the COBOL-81 User's . Refer to the chapter on forms
Guide for your system for video terminals

Examples

In the example results, the characters represents a space. The examples assume the following
Environment and Data Division entries:

SPECIAL-NAMES,
LINE-PRINTER IS ERR-REPORTER,

01 ITEMA PIC){ (G) 1.JALUE "ITEMS II

' 01 ITEMB PIC .){ (8) VALUE "VALID",
01 ITEMC PIC){ (5) t..JALUE "TODAY",
01 ITEMD PIC 99 t..JALUE 2 +

01 ITEME PIC){ (10) t..JALUE "MONDAY".

Results

1. DISPLAY ITEMC. TODAY

2. DISPLAY ITEMD UPON ERR-REPORTER+ <:>2

3. DISPLAY ITEMD ITEMA "ARE" ITEMB, 02ITEMSsAREVALIDsss

4. DISPLAY ITEMD SPACE ITEM A "AR Es" ITEMB+ 02sITEMSsAREsVALIDsss

5. DISPLAY ITEMC "s I Ss" NO ADt,JANC I NG, TODAYsISsMONDAYssss
DISPLAY ITEME, MONDAYssss
DISPLAY ITEME.

The COBOL-81 User's Guide for your system contains· examples using the DIGITAL extensions
to the DISPLAY statement (Format 2). Refer to the chapter in Part IV that discusses forms for
video terminals.

Procedure Division 5-65

DIVIDE

5.9.8 DIVIDE Statement

Function

The DIVIDE statement divides one or more numeric data items by another. It stores the
quotient and remainder.

General Format

Format 1

DIVIDE srcnum INTO { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 2

DIVIDE srcnum INTO srcnum GIVING { rsult [ROUNDED·] } . .. [ON SIZE ERROR stment]

Format 3

DIVIDE srcnum BY srcnum GIVING { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 4

DIVIDE srcnum INTO srcnum GIVING rsult [ROUNDED] REMAINDER remaind

[ON SIZE ERROR stment]

Format 5

DIVIDE srcnum BY srcnum GIVING rsult [ROUNDED] REMAINDER remaind

[ON SIZE ERROR stment]

srcnum

rs ult

is a numeric literal or the identifier of an elementary numeric item.

is the identifier of an elementary numeric item or an elementary numeric edited item.
However, in Format 1, rsu/t must be an elementary numeric item. It is the resultant
identifier.

remaind
is the identifier of an elementary numeric item or an elementary numeric edited item.

stment
is an imperative statement.

General Rules

1. The data descriptions of the operands need not be the same. Conversion and decimal
point alignment will occur, as needed, throughout the calculation.

5-66 Procedure Division

2. The maximum size of each operand is 18 digits.

DIVIDE
Continued

3. Undefined results occur when operands share a part of their storage areas.

Format 1

4. The value of srcnum is divided into the value of the first rsult. This quotient replaces the
current value of the first rsult. The process repeats for each of the other occurrences of
rs ult.

Format 2

5. The value of the first srcnum is divided into the value of the second. This quotient
replaces the current value of each rsult.

Format 3

6. The value of the first srcnum is divided by the value of the second. This quotient
replaces the current value of each rsult.

Formats 4 and 5

7. These formats produce a remainder (remaind) from the division operation. The remain­
der is the result of subtracting the product of the quotient (rsu/t) and the divisor from
the dividend.

If rsult refers to a numeric edited item, the quotient is an equivalent unedited interme­
diate field. For example, if you describe rsu/t with the PICTURE -ZZ.99, the compiler
uses an intermediate field with the implicit PICTURE S99V99.

When the ROUNDED phrase is present, the remainder computation uses an intermedi­
ate quotient field that is truncated rather than rounded.

8. The computation described in Rule 7 determines the accuracy of remaind. It includes
decimal point alignment and truncation (not rounding) required by the description of
remaind.

9. When the ON SIZE ERROR phrase is present:

• If the size error occurs on rsult, the contents of both rsult and remaind are
unchanged.

• If the size error occurs on remaind, its contents are unchanged. However, when a
size error occurs in any arithmetic statement with multiple results, your program
must analyze the results to determine where the size error occurred.

Additional References

Section 5.1.4
Section 5.6.1
Section 5.6.3
Section 5.6.4
Section 5.6.6
Section 5.6.2

Scope of Statements
Arithmetic Operations
ROUNDED Option
ON SIZE ERROR Option
Overlapping Operands and Incompatible Data
Multiple Receiving Fields in Arithmetic
Statements

Procedure Division 5-67

DIVIDE
Continued

Examples

In these examples, results are shown only for data items whose values the statements change.
The examples assume the following data descriptions and beginning values:

03
03
03
03
03

ITEMA PIC 991,199 t,JALUE 9.

ITEMB PIC 991,199 t,JALUE 2 ll.
ITEMC PIC 991,199 l.JALUE 8.
ITEMD PIC 99 !.JALUE 12.
ITEME PIC 991,199 !.JALUE 3.

1. Without GIVING phrase or rounding:

Dit.JIDE ITEMA INTO ITEMB.

2. With rounding:

DI!.JIDE ITEMA INTO ITEMB ROUNDED.

3. GIVING phrase:

DI!.JIDE ITEMA INTO ITEMB
Gii.JING ITEMD.

4. GIVING phrase with rounding:

DIVIDE ITEMA INTO ITEMB
GIVING ITEMD ROUNDED.

5. BYphrase:

DIVIDE ITEMA BY ITEMB
Gii.JING ITEMD.

6. REMAINDER phrase:

DIVIDE ITEMA INTO ITEMB
GIVING ITEMD REMAINDER ITEMC.

7. REMAINDER phrase with rounding:

DIVIDE ITEMA INTO ITEMB
GIVING ITEMD ROUNDED REMAINDER ITEMC.

8. Effects of decimal alignment on quotient and remainder:

DIVIDE ITEMA INTO ITEMB
GIVING ITEME REMAINDER ITEMC.

9. Effects of decimal alignment on remainder and quotient with
rounding:

DIVIDE ITEMA INTO ITEMB
GIVING ITEME ROUNDED REMAINDER ITEMC.

5-68 Procedure Division

Initial
Value

9.00
24.00
8.00
12
3.00

Results

ITEMB = 2.66

ITEMB = 2.67

ITEMD = 2

ITEMD = 3

ITEMD = 0

ITEMD = 2
ITEMC = 6.00

ITEMD = 3
ITEMC = 6.00

ITEME = 2.66
ITEMC = .06

ITEME = 2.67
ITEMC = .06

5.9.9 EXIT Statement

Function

The EXIT statement provides a common logical end point for a series of procedures.

General Format

EXIT.

Syntax Rule

EXIT

The EXIT statement must appear only in a sentence by itself and comprise the only sentence in
the paragraph.

General Rule . ·-
The EXIT statement associates a procedure-name with a point in the program. It has no other
effect on program compilation or execution.

Example

REPORT-INVALID-ADD,
DISPLAY
DISPLAY "INt,JALID ADDITION",
DISPLAY "RECORD ALREADY EXISTS",
DISPLAY "UPDATE ATTEMPT: " UPDATE-REC,
DISPLAY "EXISTING RECORD: II OLD-REC+

REPORT-INVALID-ADD-EXIT.
E>(IT.

Procedure Division 5-69

EXIT PROGRAM

5.9.10 EXIT PROGRAM Statement

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM

Syntax Rule

If the EXIT PROGRAM statement is in a consecutive sequence of imperative statements, it must
be the last statement in that sequence.

General Rules

1. If EXIT PROGRAM executes in a program that is not a called program, it has the same
effect as a STOP RUN statement; program execution ends.

2. If the EXIT PROGRAM statement executes in a called program, execution continues
with the next executable statement after the CALL statement in the calling program.

The state of the calling program does not change; it is the same as when the program
executed the CALL statement. However, the contents of data items and the positioning
of data files shared by the calling and called programs may change.

The state of the called program does not change. However, the called program is con­
sidered to have reached the ends of the ranges of all PERFORM statements it executed.
Therefore, an error does not occur if the called program is entered again during image
execution.

Example

TEST-RETURN.
IF ITEMA NOT = ITEMB

MOVE ITEMA TO ITEMB
E)<! T PROGRAM,

5-70 Procedure Division

GOTO

5.9.11 GO TO Statement

Function

The GO TO statement transfers control from one part of the Procedure Division to another.

General Format

Format 1

GO TO proc-name

Format 2

GO TO proc-name { proc-name } ... DEPENDING ON num

proc-name
is a procedure-name.

num
is the identifier of an elementary numeric item described with no positions to the right of
the assumed decimal point.

Syntax Rule

A Format 1 GO TO statement that is in a consecutive sequence of imperative statements in a
sentence must be the last statement in the sentence.

General Rules

Format 1

1. The GO TO statement transfers control to proc-name.

Format 2

2. The GO TO statement transfers control to the proc-name in the ordinal position indi­
cated by the value of num.

No transfer occurs, and control passes to the next executable statement if the value of
num is one of the following:

• Not greater than zero

• Greater than the number of proc-names in the statement

Examples

1. Format 1:

GO TO ENDING-ROUTINE,

Procedure Division 5-71

GOTO
Continued

2. Format 2:

GO TO FRESHMAN
SOPHOMORE
JUNIOR
SENIOR

DEPENDING ON YEAR-LEVEL,
MO<.JE

Sample Results

YEAR-LEVEL Transfers to

1 FRESHMAN
3 JUNIOR
5 MOVE statement
0 MOVE statement
-10 MOVE statement

5-72 Procedure Division

IF

5.9.12 IF Statement

Function

The IF statement evaluates a condition. The condition's truth value determines the program
action that follows.

General Format

IF condition THEN

stment-1
stment-2

j { stment-1 } ... }

l NEXT SENTENCE
[

ELSE { stment-2 } .. .]

ELSE NEXT SENTENCE ----

are imperative or conditional statements. An imperative statement can precede a condi­
tional statement.

Syntax Rule

The ELSE NEXT SENTENCE phrase is optional if it immediately precedes a separator period.

General Rules

1. The scope of an IF statement ends with any of the following:

• A separator period

• An ELSE phrase associated with an IF statement at a higher nesting level

2. If the condition is true, the following control transfers occur:

• If there is a stment-1, it executes.

Stment-1 can contain a procedure branching or conditional statement. Control then
transfers according to the rules of the statement.

Otherwise, the ELSE phrase (if any) is ignored. Control passes to the end of the IF
statement.

• If you use NEXT SENTENCE instead of stment-1, the ELSE phrase (if any) is ignored.
Control passes to the next executable sentence.

3. If the condition is false, the following control transfers occur:

• Stment-1 or its substitute NEXT SENTENCE is ignored. If stment-2 is used, it executes.

Stment-2 can contain a procedure branching or conditional statement. Control then
transfers according to the rules of the statement. Otherwise, control passes to the
end of the IF statement.

• If there is no ELSE phrase, stment-1 is ignored. Control passes to the end of the IF
statement.

• If the ELSE NEXT SENTENCE phrase is present, stment-1 is ignored. Control passes to
the next executable sentence.

Procedure Division 5-73

IF
Continued

4. An IF statement can appear in either or both stment-1 and stment-2. In this case, the IF
statement is considered nested, because its scope is entirely within the scope of
another IF statement.

5. IF statements within IF statements are paired combinations, beginning with IF and end­
ing with ELSE. This pairing proceeds from left to right. Thus, an ELSE applies to the first
preceding unpaired IF.

Additional References

Section 5.1 Verbs, Statements, and Sentences
Section 5.1.4 Scope of Statements
Section 5.5 Conditional Expressions

Examples

1. No ELSE phrase:

IF ITEMA < 20
MQl,JE "X" TO ITEMB+

ITEMA ITEMB

4 "X"
35
19 "X"

2. With ELSE phrase:

IF ITEM A > 10
MmJE "X" TO ITEMB

ELSE
GO TO PROC-A+

ADD + + +

ITEMA

96

Next
Statement ITEMB

8
ADD
PROC-A

"X"

3. With NEXT SENTENCE phrase:

(In each case, the next executable statement is the ADD statement.)

IF ITEMA < 10 OR > 20
NE)<T SENTENCE

ELSE
MOVE "X" TO ITEMB+

ADD + + +

ITEMA ITEMB

5
17 "X"
35

5-74 Procedure Division

4. Nested IF statements:

IF ITEMA 10
IF ITEM A I TEMC

MOt.JE "><" TO I TEMB
ELSE

MOt.JE "Y" TO I TEMB
ELSE

GO TO PROC-A.
ADD •••

ITEMA

12
12
8

ITEMC

6
12
8

Next
Statement

ADD
ADD

PROC-A

ITEMB

"X"

IF
Continued

Procedure Division 5-75

INSPECT

5.9.13 INSPECT Statement

Function

The INSPECT statement counts or replaces occurrences of single characters or groups of char­
acters in a data item.

General Format

Format 1

INSPECT src-string TALL YING "lly-ot' FOR { { ~~~OING }
CHARACTERS

compare-val

[{ ::::E l INITIAL deUm-,_I] }---

Format 2

INSPECT src-string REPLACING

CHARACTERS BY replace-char [{ BEFORE} INITIAL delim-val l
AFTER

{
ALL l { [{ BEFORE}] } LEADING compare-val BY replace-val INITIAL delim-val ..
FIRST AFTER
~- -~-

Format 3

INSPECT src-string

TALLYING
{

ALL } compare-val

LEADING

CHARACTERS

REPLACING

CHARACTERS BY replace-char [{BEFORE} INITIAL delim-val]
AFTER

{
ALL } { [{ BEFORE} LEADING compare-val BY replace-val
FIRST AFTER

INITIAL deUm-,_I] }--

5-76 Procedure Division

src-string

INSPECT
Continued

is the identifier of a group item or an elementary data item with DISPLAY usage. INSPECT
operates on the contents of this data item.

tally-ctr
is the identifier of an elementary numeric data item.

compare-val
is the character-string INSPECT uses for comparison. It is a non numeric literal (or figurative
constant other than ALL literal) or the identifier of an elementary alphabetic, alphanu­
meric, or numeric data item with DISPLAY usage.

delim-val
is the character-string that delimits the INSPECT operation. Its content restrictions are the
same as those for compare-val.

replace-char
is the one-character item that replaces all characters. Its content restrictions are the same
as those for compare-val.

replace-val
is the character-string that replaces occurrences of compare-val. Its content restrictions are
the same as those for compare-val.

Syntax Rules

All Formats

1. If compare-val, delim-val, or replace-char is a figurative constant, the figurative con­
stant represents a one-character data item.

2. An ALL, LEADING, CHARACTERS, or FIRST phrase can have either a BEFORE phrase or
an AFTER phrase following it, but not both.

Format 2

3. The sizes of the data referred to by replace-val and compare-val must be equal. When
replace-val is a figurative constant, its size equals that of the data referred to by
compare-val.

4. When there is a CHARACTERS phrase, the size of the data referred to by delim-val must
be one character.

Format3

5. A Format 3 INSPECT statement is equivalent to a Format 1 statement followed by a
Format 2 statement. Therefore, Syntax Rules 3 and 4 apply to the REPLACING clause of
Format 3.

General Rules

All Formats

1. Inspection includes: (a) comparison, (b) setting boundaries for the BEFORE and AFTER
phrases, and (c) tallying and/or replacing. Inspection starts at the leftmost character
position of the src-string data item. It proceeds to the rightmost character position, as
described in General Rules 3 through 5.

Procedure Division 5-77

INSPECT
Continued

2. If src-string, compare-val, delim-val, or replace-val refers to a data item, the INSPECT
statement treats the contents of the item according to the category implied by its data
description.

a. For an alphabetic or alphanumeric item - INSPECT treats the data item as a
character-string.

b. For an alphanumeric edited, numeric edited, or unsigned numeric item - INSPECT
treats the data item as though:

• The data item were redefined as alphanumeric

• The INSPECT statement were written to refer to the redefined data item. (See
General Rule 2a.)

c. For a signed numeric item - INSPECT treats the data item as though it were moved
to an unsigned numeric data item of the same length. It then applies General Rule
2b.

3. During inspection of src-string, each matched occurrence of compare-val is:

a. Tallied (Formats 1 and 3)

b. Replaced by replace-char or replace-val (Formats 2 and 3)

4. The comparison operation determines which occurrences of compare-val are tallied
and/or replaced:

a. INSPECT processes the operands of the TALLYING and REPLACING phrases in the
order they appear, from left to right. The first compare-val is compared to the same
number of contiguous characters, starting with the leftmost character position in
src-string. Compare-val and the compared characters in src-string match if they are
equal, character for character. Otherwise, they do not match.

b. If the comparison of the first compare-val does not produce a match, the compari­
son repeats for each successive compare-val until either:

• A match results

• There is no next compare-val

When there is no next compare-val, INSPECT determines the leftmost character
position in src-string for the next comparison. This position is to the immediate
right of the leftmost character position for the preceding comparison. The com­
parison cycle starts again with the first compare-val.

c. Each time there is a match, tallying and/or replacing occur, as described in General
Rules 8 through 16. INSPECT determines the leftmost character position in
src-string for the next comparison. This position is to the immediate right of the
rightmost character position that matched in the preceding comparison. The com­
parison cycle starts again with the first compare-val.

d. Inspection ends when the rightmost character position of src-string has either:

• Participated in a match

• Served as the leftmost character position

5-78 Procedure Division

INSPECT
Continued

e. When the CHARACTERS phrase is present, INSPECT does not perform any com­
parison on the contents of src-string. The cycle described in General Rules 4a
through 4d operates as if:

• Inspection compares a one-character data item to each character in src-string

• A match occurs for each comparison

5. The BEFORE phrase determines the final character position in src-string that will be
used in the comparison operation.

The position of the first occurrence of delim-val in src-string is determined before the
operation begins. Comparison then occurs on src-string only from its leftmost charac­
ter position to, but not including, the first occurrence of delim-val.

If delim-val does not occur in src-string, the comparison operation proceeds as if there
were no BEFORE phrase.

6. The AFTER phrase determines the first character position in src-string that will be used
in the comparison operation.

The position of the first occurrence of delim-val in src-string is determined before the
operation begins. Comparison then occurs on src-string beginning with the character
position to the immediate right of the rightmost character position of delim-val's first
occurrence.

If delim-val is not in src-string, no match occurs, and inspection causes no tallying or
replacement.

7. Undefined results occur when operands overlap; that is, when sending fields and
receiving fields share a part of their storage areas.

Format 1

8. Executing the INSPECT statement does not initialize the value of tally-ctr.

9. If the ALL phrase is present, the value of tally-ctr is incremented by one for each occur­
rence of compare-val in src-string.

10. If the LEADING phrase is present, the value of tally-ctr is incremented by one for each
contiguous occurrence of compare-val in src-string. The leftmost occurrence of
compare-val must be at the position where comparison begins in the first comparison
cycle. Otherwise, no tallying occurs.

11. If the CHARACTERS phrase is present, the value of tally-ctr is incremented by one for
each character matched in src-string (see General Rule 4e).

Format 2

12. The adjectives ALL, LEADING, and FIRST apply to succeeding BY phrases until the next
adjective appears.

13. If the CHARACTERS phrase is present, each character matched in src-string is replaced
by replace-char (see General Rule 4e).

14. When ALL is present, each occurrence of compare-val in src-string is replaced by
replace-val.

Procedure Division 5-79

INSPECT
Continued

15. When LEADING is present, each contiguous occurrence of compare-val in src-string is
replaced by replace-val. The leftmost occurrence of compare-val must be at the posi­
tion where comparison begins in the first comparison cycle. Otherwise, no replace­
ment occurs.

16. When FIRST is present, the leftmost occurrence of compare-val in src-string is
replaced by replace-val.

Format 3

17. A Format 3 INSPECT statement executes as if there were two successive INSPECT state­
ments with the same src-string. Execution proceeds as if:

• The first statement were a Format 1 statement with TALL YI NG phrases identical to
those in the Format3 statement

• The second statement were a Format 2 statement with REPLACING phrases identical
to those in the Format 3 statement

The General Rules for Formats 1 and 2 apply to the corresponding phrases in the
Format 3 statement.

Additional References

Section 5.9.15 MOVE Statement

Part II of the COBOL-81 User's
Guide for your system

Refer to the chapter on
non numeric character handling

Examples

In the following examples, the initial values of COUNT1 and COUNT2 are zero.

1. TALLYING phrase with BEFORE option:

INSPECT ITEMA TALLYING COUNT1 FOR LEADING "L" BEFORE "A",
COUNTZ FDR LEADING "A" BEFORE "L",

ITEMA

LARGE
ANALYST

COUNT1

1
0

COUNT2

0
1

2. TALLYING phrase and REPLACING LEADING phrase with AFTER option:

INSPECT ITEMA TALLYING COUNTl FDR ALL "L"
REPLACING LEADING "A" BY "E" AFTER INITIAL "L",

ITEMA COUNT1

CALLAR 2
SALAMI 1
LATIER 1

5-80 Procedure Division

ITEMA

CALLAR
SALEMI
LETIER

3. REPLACING ALL phrase with BEFORE option:

INSPECT ITEMA REPLACING ALL "A" BY "G" BEFORE "><".

ITEMA

ARXAX
HAN DAX
HANDAA

ITEMA

GRXAX
HGNDGX
HGNDGG

4. TALLYING and REPLACING ALL phrases:

5.

INSPECT ITEMA TALLYING COUNT1 FOR CHARACTERS AFTER "J"
REPLACING ALL "A" BY "B",

ITEMA COUNT1 ITEMA

ADJECTIVE 6 BDJECTIVE
JACK 3 JBCK
JUJMAB 5 JUJMBB

REPLACING ALL phrase:

INSPECT ITEMA REPLACING ALL "><" BY "Y", "B" BY "Z",
"W" BY "Q" AFTER "R".

ITEMA

RXXBQWY
YZACDWBR
RAWRXEB

ITEMA

RYYZQQY
YZACDWZR
RAQRYEZ

6. REPLACING CHARACTERS phrase:

INSPECT ITEMA REPLACING CHARACTERS BY "B" BEFORE "A".

ITEMA

12RXZABCD

12RXZBBCD

ITEMA

BBBBBABCD

BBBBBBBBB

7. REPLACING ALL phrase:

INSPECT ITEMA REPLACING ALL "A" BY "}(" ALL "R" BY "}("
AFTER "}(}(L".

ITEMA

MLRRRA
AXXLRRR

ITEMA

XXLRRRX
XXXLXXX

INSPECT
Continued

Procedure Division 5-81

MERGE

5.9.14 MERGE Statement

Function

The MERGE statement takes two or more identically sequenced files and combines them
according to the key values you specify. During the process, it makes records available, in
merged order, to routines in OUTPUT PROCEDURE or to an output file.

General Format

MERGE mergefile ON {
DESCENDING }

KEY { mergekey } ...
ASCENDING

[COLLATING SEQUENCE IS alpha l

USING infile { infile } ...

OUTPUT PROCEDURE IS first-proc [{ THRU } end-proc]
THROUGH

GIVING { outfile } ...

mergefile
is a file-name described in a sort-merge file description (SD) entry in the Data Division.

mergekey
is the data-name of a data item in a record associated with mergefile.

alpha

infile

is an alphabet-name defined in the SPECIAL-NAMES paragraph of the Environment
Division.

is the file-name of an input file. It must be described in a file description (FD) entry in the
Data Division.

first-proc
is the section-name of the output procedure's first section.

end-proc
is the section-name of the output procedure's last section.

outfile
is the file-name of an output file. It must be described in a file description (FD) entry in the
Data Division.

5-82 Procedure Division

Syntax Rules

MERGE
Continued

1. MERGE statements can appear anywhere in the Procedure Division except in:

• DECLARATIVES

• Sections of a SORT or MERGE statement's INPUT or OUTPUT PROCEDURE

2. If mergefile contains variable length records, infile records must not be smaller than
the smallest record in mergefile nor larger than the largest.

3. If mergefile contains fixed length records, infile records must not be larger than the
largest record described for mergefile. ·

4. If outfile contains variable length records, mergefile records must not be smaller than
the smallest record in outfile nor larger than the largest.

5. If outfile contains fixed length records, mergefile records must not be larger than the
largest record described for outfile.

6. Each mergekey must be described in records associated with mergefile.

7. Mergekey can be qualified.

8. Mergekey cannot be a group that contains variable occurrence data items.

9. The description of mergekey cannot contain an OCCURS clause or be subordinate to
one that does.

10. Mergefile can have more than one record description. However, mergekey need not
be described in more than one of the record descriptions. The character positions
referenced by mergekey are used as the key for all the file's records.

11. The words THRU and THROUGH are equivalent.

12. If outfile is an indexed file, the first mergekey must be in the ASCENDING phrase. It
must specify the same character positions in its record as the prime record key for
outfile.

13. Mergekey cannot be larger than 255 characters.

14. The total number of characters in all mergekeys for the file cannot be more than 512
characters.

15. Each MERGE statement can specify no more than 16 mergekeys.

16. Neither infi/e nor outfile can describe an indexed file in random access mode.

General Rules

1. The MERGE statement merges all records in the infile files.

2. If mergefile contains fixed length records, any shorter infile records are space filled on
the right after the last character. Space filling occurs before the infile record is
released to mergefile.

Procedure Division 5-83

MERGE
Continued

3. The leftmost mergekey is the major key, and the next mergekey is the next most signi­
ficant key. The significance of mergekey data items is not affected by how they are
divided into KEY phrases. Only left-to-right order determines significance.

4. The ASCENDING phrase causes the merged sequence to be from the lowest mergekey
value to the highest.

5. The DESCENDING phrase causes the merged sequence to be from the highest merge­
keyvalue to the lowest.

6. Merge sequence follows the rules for relation condition comparisons.

7. When the contents of all key data items of one record equals the contents of the cor­
responding key data items in another record, the order of return from the merge:

• Follows the order of the associated input files in the MERGE statement

• Causes all records with equal key values from one input fi'le to be returned before
any are returned from another.

8. The MERGE statement determines the comparison collating sequence for nonnumeric
mergekey items when it begins execution. If there is a COLLATING SEQUENCE phrase
in the MERGE statement, MERGE uses that sequence. Otherwise, it uses the collating
sequence that was established for the program as a whole in the PROGRAM
COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph. If you do not
specify the collating sequence in either the MERGE statement or the OBJECT­
COMPUTER paragraph, the program uses the NATIVE collating sequence.

9. The results of the merge are undefined unless the records in the infile files are
ordered as described in the MERGE statement's ASCENDING or DESCENDING KEY
clause.

10. The MERGE statement transfers all records in infile to mergefile. When the MERGE
statement executes, infile must not be open.

11. For each infi/e, the MERGE statement:

• Begins file processing as if the program had executed an OPEN statement with the
INPUT phrase

• Gets the logical records and releases them to the merge operation. MERGE obtains
each record as if the program had executed a READ statement with the NEXT and AT
END phrases.

• Te,rminates file processing as if the program had executed a CLOSE statement with
no optional phrases.

These implicit OPEN, READ, and CLOSE operations cause associated USE procedures
to execute if an exception condition occurs.

12. OUTPUT PROCEDURE consists of one or more sections that are:

• Contiguous in the source program

• Not a part of any other procedure

5-84 Procedure Division

MERGE
Continued

13. When the MERGE statement enters the OUTPUT PROCEDURE range, it is ready to
select the next record in merged order. Statements in the OUTPUT PROCEDURE
range must execute at least one RETURN statement to make records available for
processing.

14. The program must not pass control to any statements in the OUTPUT PROCEDURE
range except during execution of a related MERGE statement.

15. The OUTPUT PROCEDURE range cannot include SORT or MERGE statements. It must
not explicitly transfer control outside the range. However, its statements can cause
implied control transfers to DECLARATIVES.

16. The remainder of the Procedure Division must not transfer control to statements in
the OUTPUT PROCEDURE range.

17. If OUTPUT PROCEDURE is used, control passes to its sections during execution of the
MERGE statement. When control passes to the last statement in the OUTPUT
PROCEDURE range, the MERGE statement ends. Control then transfers to the next
executable statement after the MERGE statement.

18. During execution of statements in the OUTPUT PROCEDURE range - or any USE
AFTER EXCEPTION procedure implicitly invoked during the MERGE statement - no
statement outside the range can manipulate the files or record areas associated with
infile or outfile.

19. If there is a GIVING phrase, the MERGE statement writes all merged records to each
outfile. This transfer is an implied MERGE statement OUTPUT PROCEDURE.
Therefore, when the MERGE statement executes, outfile must not be open.

20. The MERGE statement begins outfile processing as if the program had executed an
OPEN statement with the OUTPUT phrase.

21. The MERGE statement gets the merged logical records and writes them to each outfile.
MERGE writes each record as if the program had executed a WRITE statement with no
optional phrases.

For relative files, the value of the relative key data item is 1 for the first returned
record, 2 for the second, and so on. When the MERGE statement ends, the value of
the relative key data item indicates the number of outfi/e records.

22. The MERGE statement terminates outfi/e processing as if the program had executed a
CLOSE statement with no optional phrases.

23. These implicit OPEN, WRITE, and CLOSE operations cause associated USE procedures
to execute if an exception condition occurs. If the MERGE statement tries to write
beyond the boundaries of outfile, the applicable USE AFTER EXCEPTION procedure
executes. If control returns from the USE procedure, or if there is no USE procedure,
outfile processing terminates as if the program had executed a CLOSE statement with
no optional phrases.

24. If outfile contains fixed length records, any shorter mergefile records are space filled
on the right after the last character. Space filling occurs before the mergefile record is
released to outfile.

Procedure Division 5-85

MERGE
Continued

Additional References

Section 3.1.2 OBJECT-COMPUTER Paragraph
Section 3.1.3 SPECIAL-NAMES Paragraph
Section 3.2.2 1-0-CONTROL Paragraph
Section 5.9.31 USE Statement

Part IV of the COBOL-81 User's Refer to the chapter on sorting
Guide for your system records and merging files

5-86 Procedure Division

MOVE

5.9.15 MOVE Statement

Function

The MOVE statement transfers data to one or more data areas. The editing rules control data
transfer.

General Format

Format 1

MOVE j src-item l TO

l 1it f { dest-item } ...

Format 2

{
CORRESPONDING l

MOVE src-item TO dest-item
CORR

src-item
is an identifier that represents the sending area.

lit
is a literal that represents the sending area.

dest-item
is an identifier that represents the receiving area.

Syntax Rules

1. CORR is an abbreviation for CORRESPONDING.

2. In the CORRESPONDING phrase, both src-item and dest-item must be group items,
and there can be only one dest-item.

3. If any dest-item is numeric or numeric edited, lit cannot be any of these: HIGH­
VALUE(S), LOW-VALUE(S), SPACE(S), or QUOTE(S).

4. No operand can be an index data item.

General Rules

1. When the CORRESPONDING phrase is present, selected items in src-item are moved
to selected items in dest-item. The rules for the CORRESPONDING option control
these moves. The results are the same as if the MOVE statement were replaced by sep­
arate MOVE statements for each pair of corresponding items in src-item and dest­
item.

2. The MOVE statement moves the sending area to the first dest-item, then to each addi­
tional dest-item, in the same order in which they appear in the statement.

3. Subscript or index evaluation for src-item occurs once, immediately before the move
to the first de st-item.

Procedure Division 5-87

MOVE
Continued

4. Subscript or index evaluation for a dest-item occurs immediately before the move to
that item.

5. The length of src-item is evaluated once, immediately before the move to the first
dest-item.

6. The length of dest-item is assumed to be the maximum in its data description.

7. The result of the first of the following MOVE statements is equivalent to the three that
follow. The word temp represents an intermediate result item supplied by the
compiler.

MOVE ITEMA <ITEMBI TO ITEMB1 ITEMC IITEMBl,

MOVE ITEMA IITEMBI TO temp,
MOVE temp TO ITEMB,
MOVE temp TO ITEMC IITEMBI.

8. Undefined results occur when a sending item and a receiving item overlap; that is,
when they share a part of their storage areas.

Elementary Moves

9. A move is elementary when dest-item is an elementary item, and the sending area is
either an elementary data item or a literal.

a. An elementary item belongs to one of these categories, depending on its PICTURE
clause:

• Numeric

• Alphabetic

• Alphanumeric

• Numeric edited

• Alphanumeric edited

b. Numeric literals are numeric. Non numeric literals are alphanumeric.

c. The figurative constant ZERO is numeric when moved to a numeric or numeric
edited item. Otherwise, it is alphanumeric.

d. The figurative constant SPACE is alphabetic.

e. All other figurative constants are alphanumeric.

10. These rules apply to elementary moves between categories:

a. The figurative constant SPACE or a numeric edited, alphanumeric edited, or alpha­
betic data item cannot be moved to a numeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, or a numeric or numeric edited
data item cannot be moved to an alphabetic data item.

c. A noninteger numeric literal or data item cannot be moved to an alphanumeric or
alphanumeric edited data item.

d. All other elementary moves are valid.

5-88 Procedure Division

Editing and Data Conversion

MOVE
Continued

11. Editing, or other required internal data conversions occur during elementary moves.
They are controlled by the description of dest-item.

12. When dest-item is alphanumeric or alphanumeric edited, alignment and space-filling
occur according to the Standard Alignment Rules.

If lit or src-item is signed numeric, the operational sign is not moved. If the oper­
ational sign occupies a separate character position:

a. The sign character is not moved

b. The size of lit or src-item is considered to be one less than its actual size (in terms of
Standard Data Format characters)

13. When dest-item is numeric or numeric edited, decimal point alignment and zero­
filling occur according to the Standard Alignment Rules.

a. When dest-item is a signed numeric item, the sign from lit or src-item is placed in it.
If the sending item is unsigned, a positive sign is placed in dest-item.

b. When dest-item is an unsigned numeric item, the absolute value of lit or src-item is
moved.

c. When lit or src-item is alphanumeric, the move occurs as if the item were described
as an unsigned numeric integer.

14. When dest-item is alphabetic, justification and space-filling occur according to the
Standard Alignment Rules.

Group Moves

15. Any nonelementary move is considered a group move. A group move occurs as if it
were an alphanumeric-to-alphanumeric elementary move. However, there is no inter­
nal data conversion. The move is not affected by individual elementary or group items
in either src-item or dest-item, except as noted in the General Rules for the OCCURS
clause.

16. Table 5-9 summarizes the valid types of MOVE statements.

Table 5-9: Valid MOVE Statements

Category of Receiving Data Item (dest-item)

Category of Sending Numeric Integer
Data Item Alphanumeric Edited Numeric Non-Integer

(lit or src-item) Alphabetic Alphanumeric Numeric Edited

Alphabetic Yes Yes No
Alphanumeric Yes Yes Yes
Alphanumeric Edited Yes Yes No
Numeric Integer No Yes Yes
Numeric Non-Integer No No Yes
Numeric Edited No Yes No

Procedure Division 5-89

MOVE
Continued

Additional References

Section 4.1.2.2
Section 4.2.13
Section 4.2.14
Section 4.2.18
Section 5.6.5

Examples

Standard Alignment Rules
OCCURS Clause
PICTURE Clause
SIGN Clause
CORRESPONDING Option

The following examples show the result of executing the statement:

MOVE ITEMA TO ITEM6,

An "s" indicates a space character.

1. Numeric edited receiving item:

(The PICTURE of ITEMA is S9999V99.)

ITEMA Value ITEMB PICTURE

a. +0023.00 ZZll.99
b. -0036.93 + + + + .99
c. +1234.56 Z,ZZZ.99
d. + 1234.56 Z,ZZZ.99-
e. + 1234.56 Z,ZZZ.99+
f. -1234.56 $,$$$,$$$.99DB
g. -1234.56 $,$$$.99-
h. +0001.25 $,$$$.99
i. -0001.25 $,$$$.99
j. +0000.00 $,$$9.99
k. +0000.00 $,$$$.$$

2. Alphanumeric receiving item:

(The PICTURE of ITEMA is X(4).)

ITEMA Value ITEMB Description

a. ABCD PICX(4)
b. ABCD PICX(6)
c. ABCD PIC X(6) JUST
d. AB Cs PIC X(6) JUST
e. ABCD PICXXX
f. ABCD PICXXJUST

3. Alphanumeric edited receiving item:

(The PICTURE of ITEMA is X(7).)

ITEMA Value ITEMB Description

a. 0630805 XX/99/XX
b. 30JUN80 99BAAAB99
c. 6374823 XXXBXXX/XX/X
d. 1234565 OXBOXBOXBOXB

5-90 Procedure Division

ITEMB Contents

ss23.00
s-36.93

1,234.56
1,234.56s
1,234.56+

sss$1,234.56DB
s$234.56-
sss$1.25
sss$1.25
sss$0.00
ssssssss

ITEMB Contents

ABCD
ABCDss
ssABCD
ssABCs
ABC
CD

ITEMB Contents

06/30/80
30sJUNs80
637s482/3s/s
01s02s03s04s

MULTIPLY

5.9.16 MULTIPLY Statement

Function

The MULTIPLY statement multiplies two numeric operands and stores the result.

General Format

Format 1

MULTIPLY srcnum BY { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 2

MULTIPLY srcnum BY srcnum GIVING { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

srcnum

rsult

is a numeric literal or the identifier of an elementary numeric item.

is the identifier of an elementary numeric item. However, in Format 2, rsult can be an ele­
mentary numeric edited item. It is the resultant identifier.

stment
is an imperative statement.

General Rules

1. The data descriptions of the operands need not be the same. Conversion and decimal
point alignment will occur, as needed, throughout the calculation.

2. The maximum size of each operand is 18 digits.

3. In Format 1, the value of srcnum is multiplied by the value of the first rsult. The product
replaces the current value of the first rsu/t. The process repeats for each later occur­
rence of rsult.

4. In Format 2, the values of the operands before the word GIVING are multiplied
together. The product replaces the current value of each rsult.

Additional References

Section 5.1.4 Scope of Statements
Section 5.6.1 Arithmetic Operations
Section 5.6.3 ROUNDED Option
Section 5.6.4 ON SIZE ERROR Option
Section 5.6.6 Overlapping Operands and Incompatible Data
Section 5.6.2 Multiple Receiving Fields in Arithmetic

Statements

Procedure Division 5-91

MULTIPLY
Continued

Examples

The examples assume these data descriptions and beginning values:

03
03
03
03

ITEMA PIC 888 t,JALUE 4.
ITEMB PIC 888 l)ALUE -35.
ITEMC PIC 888 l,JALUE 10.
ITEMD PIC 888 l)ALUE 5 +

1. Without GIVING phrase:

MULTIPLY 2 BY ITEMB+

2. SIZE ERROR phrase:

(When the SIZE ERROR condition occurs,
the values of resultant identifiers do not
change.)

MULTIPLY 3 BY ITEMB
ON SIZE ERROR

MOVE 0 TO ITEMC.

5-92 Procedure Division

Initial
Value

4
-35
10
5

Results

ITEMB = -70

ITEMA = 4
ITEMB = -35
ITEMC = 0
ITEMD = 5

OPEN

5.9.17 OPEN Statement

Function

The OPEN statement makes the file available to the program, begins the processing of a file,
and specifies file sharing.

General Format

{'"PUT } filo-"'m' [WITH NO REWIND] [ALLOWING {:::DEAS} J
OUTPUT

OPEN

{"TEND}
1-0

filo-oamo [ALLOWING {:::DEAS} J

file-name
is the name of a file described in the Data Division. It cannot be the name of a sort or
merge file.

Syntax Rules

1. The NO REWIND phrase can be used only for files with sequential organization.

2. The 1-0 phrase can be used only for mass storage files. In other words, the 1-0 phrase
applies only to files that can be accessed randomly, as well as sequentially.

3. The EXTEND phrase can be used only for files with sequential organization.

General Rules

1. Successful OPEN statement execution:

• Makes the file available to the program

• Puts the file in an open mode

• Associates the file with file-name through the file connector

• Makes the file's record area available to the program

Procedure Division 5-93

OPEN
Continued

2. An executable image can open a file-name more than once with the INPUT, OUTPUT,
1-0, and EXTEND phrases. After the first OPEN statement, each later OPEN for the
same file-name must follow the execution of a CLOSE statement for the file-name.
However, the CLOSE statement must not have a REEL, UNIT, or LOCK phrase.

3. The OPEN statement does not get or release the first data record.

4. For an OPEN statement with the INPUT, 1-0, or EXTEND phrases, file-name's file
description entry must be equivalent to that used when the file was created.

5. The NO REWIND phrase has no effect if the file is not on magnetic tape.

6. If the file is on magnetic tape, and:

• There is neither an EXTEND nor NO REWIND phrase, then OPEN statement execu­
tion positions the file at its beginning.

• There is a NO REWIND phrase, then the OPEN statement does not reposition the
file. The file must already be positioned at its beginning before the OPEN statement
executes.

7. Successful execution of an OPEN statement sets the Current Volume Pointer to:

• The first or only reel/unit for an available input or input-output file

• The reel/unit containing the last logical record for an extend file

• The new reel/unit for an unavailable output, input-output, or extend file

Multivolume tape files are not supported by all DIGITAL operating systems. Refer to
Technical Notes for more information.

8. If there is more than one file-name in the OPEN statement, execution is the same as if
there were separate OPEN statements, one for each file-name.

9. A file's maximum record size is established at the time the file is created and must not
subsequently be changed.

10. A file is avai I able if it is both:

• Physically present

• Recognized by Record Management Services (RMS-11)

Table 5-10 shows the result of opening available and unavailable sequential, relative,
and indexed files.

5-94 Procedure Division

OPEN
Continued

Table 5-10: Opening Available and Unavailable Sequential, Relative and Indexed Files

Open Mode File is Available File is Unavailable

INPUT Normal open Error

INPUT Normal open Normal open
(Optional File) The first read causes

the at end condition
or invalid key
condition

1-0 Normal open The open creates the
(RANDOM or file
DYNAMIC access)

1-0 Normal open Error
(SEQUENTIAL
access)

OUTPUT * The open creates the
file

EXTEND Normal open The open creates the
file

* On an RSX-11M/M-PLUS system, opening an existing file for output creates a new version of the file.

The RSTS/E operating system does not support multiple versions of the same file. When a file already
exists, and it is opened for output on a RSTS/E system, the OPEN statement creates a new file that
supersedes the existing one.

11. When a file is not in an open mode, no statement that references the file can execute
either implicitly or explicitly, except for:

• A MERGE statement

• An OPEN statement

• A SORT statement with the USING or GIVING phrase

12. An OPEN statement for a file must successfully execute before any allowable input­
output statement executes for the file. Table 5-11 shows allowable input-output state­
ments by file organization, access mode, and open mode for sequential, relative, and
indexed files.

Procedure Division 5-95

OPEN
Continued

Table 5-11: Allowable Input-Output Statements for Sequential, Relative, and Indexed Files

Open Mode
File Access

Organization Mode Statement INPUT OUTPUT 1-0 EXTEND

SEQUENTIAL SEQUENTIAL R~AD Yes No Yes No
REWRITE No No Yes No
WRITE No Yes No Yes

RELATIVE SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No No

RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No

DYNAMIC DELETE No No Yes No
READ Yes No Yes No
READ NEXT Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No

INDEXED SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No No

RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No

DYNAMIC DELETE No No Yes No
READ Yes No Yes No
READ NEXT Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No

13. If the file opened with the INPUT phrase is an optional file that is not present, the
OPEN statement sets the Next Record Pointer to indicate the at end condition on the
next READ. The Status Key is set to 05.

5-96 Procedure Division

OPEN
Continued

14. For indexed files opened with the INPUT or 1-0 phrase, the OPEN statement sets the
Next Record Pointer to the first record existing in the file when it is opened. The prime
record key is established as the Key of Reference. It determines the first record to be
accessed. If the file has no records, the OPEN statement sets the Next Record Pointer
to cause an at end condition on the next sequential READ statement for the file.

15. An OPEN statement with the EXTEND phrase positions the file immediately after its
last logical record (the last record written in the file).

16. The 1-0 phrase opens a mass storage file for both input and output operations.

17. Successful execution of an OPEN statement with the EXTEND or 1-0 phrase creates the
file if it is not available. Successful execution of an OPEN statement with the OUTPUT
phrase also creates the file. In each case, the created file contains no data records.

18. The ALLOWING phrase specifies a file sharing option for the file.

19. The READERS phrase allows access only by the READ statement.

20. The ALL phrase specifies unlimited file sharing. In other words, any other program can
execute READ, START, DELETE, WRITE, REWRITE, OPEN, and CLOSE statements on
the file during program execution.

21. If there is no ALLOWING phrase, the default is ALLOWING READERS.

Technical Notes

1. OPEN statement execution can result in these FILE STATUS data item values:

FILE
STATUS

00
05
91
94
95
96
97
30

Meaning

Successful
Optional file not present
File is locked by another program
File is already open, or closed with lock
No file space on device
Same Area busy
File not found
All other permanent errors

2. The RSTS/E operating system does not support multivolume tape files. Therefore, sec­
tions of the rules that refer to reels (or units) of a file do not apply to COBOL-81 pro­
grams that execute on a RSTS/E system.

Additional References

Section 5.9.4
Section 5.9.31

Part IV of the COBOL-81 User's
Guide for your system

CLOSE Statement
USE Statement

Processing Files and
Records

Procedure Division 5-97

PERFORM

5.9.18 PERFORM Statement

Function

The PERFORM statement executes one or more procedures. It returns control to the end of the
PERFORM statement when procedure execution ends.

General Format

Format 1

PERFORM first-proc [j THAU } end-proc] l THROUGH

Format 2

PERFORM first-proc [{ THAU } end-proc] repeat-count TIMES
THROUGH

Format 3

PERFORM first-proc [{THAU } end-proc] UNTIL cond
THROUGH

Format 4

PERFORM first-proc [{ THAU } end-proc]
THROUGH

VARYING var FROM init BY increm UNTIL cond

[AFTER var FROM init BY increm UNTIL cond] ...

first-proc
is a procedure-name that identifies a paragraph or section in the Procedure Division. The
set of statements in first-proc are the first (or only) set of statements in the PERFORM range.

end-proc
is a procedure-name that identifies a paragraph or section in the Procedure Division. The
set of statements in end-proc are the last set of statements in the PERFORM range.

repeat-count

cond

is a numeric integer literal or the identifier of a numeric integer elementary item. It con­
trols how many times the statement set (or sets) executes.

can be any conditional expression.

5-98 Procedure Division

var

in it

PERFORM
Continued

is an index-name or the identifier of a numeric elementary data item. Its value is changed
by increm each time all statements in the PERFORM range execute.

is a numeric literal, index-name, or the identifier of a numeric elementary data item. It
specifies the value of var before any statement in the PERFORM range executes.

increm
is a nonzero numeric literal or the identifier of a numeric elementary data item. It system­
atically changes the value of var each time the program executes all statements in the
PERFORM range.

Syntax Rules

All Formats

1. If either first-proc or end-proc is in the Declaratives part of the Procedure Division,
both must be in the same section of DECLARATIVES.

2. The words THRU and THROUGH are equivalent and interchangeable.

Format4

3. If var is an index-name:

• /nit must be an integer data item or a positive integer literal

• lncrem must be an integer data item or a nonzero integer literal

4. If init is an index-name:

• Var must be an integer data item

• lncrem must be an integer data item or a positive integer literal

General Rules

All Formats

1. When the PERFORM statement executes, control transfers to the first statement of
first-proc. However, control might not transfer to the statement set, depending on con­
dition evaluation, when a Format2, 3, or4 PERFORM statement begins.

Unlike the GO TO statement, control transfers back to the PERFORM statement after
the set(s) of statements in the PERFORM range executes. When control transfers, an
implicit control transfer to the end of the PERFORM statement is established according
to the following rules:

• If first-proc is a paragraph-name and there is no end-proc, the return is after the last
statement of first-proc.

• If first-proc is a section-name and there is no end-proc, the return is after the last
statement of the last paragraph of first-proc.

• If endcproc is a paragraph-name, the return is after the last statement of end-proc.

• If end-proc is a section-name, .the return is after the last statement of the last para­
graph of end-proc.

Procedure Division 5-99

PERFORM
Continued

2. First-proc and end-proc need not be related. However, they are the beginning and end
of a consecutive sequence of operations.

GO TO and PERFORM statements can occur between first-proc and end-proc. If there
is more than one logical path to the return point, end-proc can be a paragraph, con­
sisting of the EXIT statement, to which all these paths must lead.

3. A statement other than PERFORM can transfer control to statements inside the
PERFORM range. When this happens, control does not transfer back to the end of the
PERFORM statement after execution of statements in the range.

4. The range of a PERFORM statement consists of all statements executed as a result of
executing the PERFORM. It continues through execution of the implicit control trans­
fer to the end of the PERFORM statement.

The range includes all statements:

• Executed as the result of a control transfer by CALL, EXIT (without the PROGRAM
phrase), GO TO and PERFORM statements in the PERFORM statement range

• In Declarative procedures executed as a result of the execution of statements in the
PERFORM statement range The statements in the PERFORM range need not be in
consecutive order in the source program.

5. Statements executed as the result of a control transfer caused by an EXIT PROGRAM
statement in the PERFORM range are not part of the range.

6. A PERFORM statement range can contain another PERFORM statement. In that case,
the included PERFORM statement's sequence of procedures must be either totally
included in, or excluded from, the logical sequence of the first PERFORM statement.

Thus:

• An active PERFORM statement whose execution point is in the range of another
active PERFORM statement must not allow control to pass to the exit of the other
active PERFORM.

• Two or more active PERFORM statements cannot have a common exit.

Figure 5-3 shows valid and invalid nested PERFORM statements.

Format 1

7. Format 1 is the basic PERFORM statement. The statement set(s) in the PERFORM range
executes once. Control then passes to the end of the PERFORM statement.

Format 2

5-100

8. The statement set(s) executes the number of times specified by repeat-count. If the
value of repeat-count is zero or negative when the PERFORM statement executes, con­
trol passes to the end of the PERFORM statement.

During PERFORM statement execution, changing the value of repeat-count does not
change the number of times the statement set(s) executes.

Procedure Division

PERFORM
Continued

Formats 3 and 4

9. The PERFORM statement tests to determine if cond is true before procedure
execution.

Format 3

10. The statement set(s) executes until cond is true. Control then transfers to the end of
the PERFORM statement.

11. If cond is true when the PERFORM statement executes, there is no transfer to
first-proc; control passes to the end of the PERFORM statement.

Format 4

12. The Format 4 PERFORM statement systematically changes the value of var during its
execution.

13. If var is an index-name, its value, when PERFORM statement execution begins, must
equal the occurrence number of an element in its table.

14. If init is an index-name, var must equal the occurrence number of an element in the
table associated with init. As the value of the var index changes during PERFORM
execution, it cannot contain a value outside the range of its table. However, when the
PERFORM statement ends, the var index can contain a value outside the range of the
table by one increment or decrement value.

15. /ncrem must not be zero.

16. /nit must be positive when var is an index-name and init is an identifier.

17. If one var is varied (See Figure 5-1):

• Var is set to the value of initwhen PERFORM statement execution begins.

• If cond is false, the statement set executes once. The value of var changes by the
increment or decrement value (increm), and cond is evaluated again. This cycle con­
tinues until cond is true. Control then transfers to the end of the PERFORM
statement.

• If cond is true when the PERFORM statement begins executing, control transfers to
the end of the PERFORM statement.

18. If the PERFORM statement has two vars (See Figure 5-2):

• The first and second vars are set to the value of the first and second init when
PERFORM statement execution begins.

• If the first cond is true, control transfers to the end of the PERFORM statement.

• If the second cond is false, the statement set executes once. The second var changes
by the value of increm, and the second cond is evaluated again. This cycle continues
until the second cond is true.

• When the second cond is true, the second var is set to the value of the second init,
and the value of the first var changes by the value of the first increm. The first cond is
reevaluated. The PERFORM statement ends if the first cond is true. Otherwise, the
cycle continues until cond is true.

Procedure Division 5-101

PERFORM
Continued

19. At the end of a PERFORM statement:

• The value of the first var exceeds the last-used value by one increment or decrement
value. However, if cond was true when the PERFORM statement began, var contains
the current value of init.

• The value of each other var equals the current value of its associated init.

20. During execution of the set(s) of statements in the range, any change to var, increm,
or init affects PERFORM statement operation.

21. When there is more than one var, var in each AFTER phrase goes through a complete
cycle each time var in the preceding AFTER (or VARYING) phrase is varied.

Figure 5-1: PERFORM ... VARYING with One Condition

5-102

Set ITEMA to
current value

of ITEMB

false

Execute PROC-A
through PROC-B

Add the current
value of ITEMC

to ITEMA

PERFORM PROC-A THRU PROC-B
l,JARY I NG ITEM A

FROM ITEMB BY ITEMC
UNTIL CONDITION-A

>-tr_ue ______ exit

Procedure Division

PERFORM
Continued

Figure 5-2: PERFORM ... VARYING with Two Conditions

Set ITEMA to
current value

of ITEMS

Set ITEMD to
current value

of ITEME

false

Execute PROC-A
through PROC-B

Add the current
value of ITEMF

to ITEMD

PERFORM PROC-A THRU PROC-B
~JARY I NG ITEM A

FROM ITEMB BY ITEMC
UNTIL CONDITION-A

AFTER ITEMD
FROM ITEME BY ITEMF
UNTIL CONDITION-B

true
'>----------exit

true

Set ITEMD to
current value

of ITEME

Add the current
value of ITEMC

to ITEMA

Procedure Division 5-103

PERFORM
Continued

Figure 5-3: Valid and Invalid Nested PERFORM Statements

This combination is valid. The range of
the second PERFORM is totally con­
tained in the range of the first.

This combination is valid. The range of
the second PERFORM is totally outside
the range of the first PERFORM.

This combination is valid. The first
PERFORM is no longer active when the
second PERFORM executes.

This combination is invalid. The second
active PERFORM has the same exit as
the first active PERFORM.

proc-x

proc-a

proc-d

proc-f

proc-j

proc-m

proc-x

proc-a

proc-d

proc-h

proc-m

proc-f

proc-j

proc-x

proc-a

proc-f

proc-m

proc-j

proc-d

proc-x

proc-a

PERFORM proc-a THRU proc-m

PERFORM proc-fTHRU proc-j

PERFORM proc-a THRU proc-m

PERFORM proc-fTHRU proc-j

PERFORM proc-a THRU proc-m

PERFORM proc-fTHRU proc-j

PERFORM proc-a THRU proc-m

proc-f PERFORM proc-h THRU proc-m

This combination is valid if proc-m is
not in the logical range of the second
PERFORM. For example, proc-c may
transfer control to proc-f without
executing proc-m. Otherwise, this
combination is invalid.

5-104 Procedure Division

proc-h

proc-m

proc-x PERFORM proc-a THRU proc-m

proc-a

proc-b PERFORM proc-c THRU proc-f

proc-c

proc-m

proc-f

Additional References

Section 5.1.4 Scope of Statements
Section 5.5 Conditional Expressions

Examples

PERFORM
Continued

In the examples' results, s represents a space. The examples assume these Data Division and
Procedure Division entries:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEMA t,JALUE "ABCDEFGHIJ",

03 CHARA OCCURS 10 TIMES PIC X,
01 ITEMB VALUE SPACES,

03 CHARB OCCURS 10 TIMES PIC X,
01 ITEMC PIC 88 VALUE 1,
01 ITEMD PIC 88 VALUE 7.
01 ITEME PIC 88 VALUE 4,
01 ITEMF VALUE SPACES,

03 ITEMG OCCURS 4 TIMES,
05 ITEMH OCCURS 5 TIMES,

07 ITEM! PIC 88,

PROCEDURE DIVIS ION,

PROC-A,
MOVE CHARA CITEMCl TO CHARB CITEMCl,

PROC-B,
MOVE CHARA CITEMCI TO CHARB ClOI,

PROC-C,
ADD 2 TO ITEMC.

PROC-D,
MULTIPLY ITEMC BY ITEMD

GIVING ITEM! CITEMC1 ITEMDl+

1. Performing one procedure (Format1):

PERFORM PROC-A.

2. Performing a range of procedures (Format 1):

PERFORM PROC-A THRU PROC-B.

3. Performing a range of procedures (Format 2):

PERFORM PROC-A THRU PROC-C
3 TIMES.

Result
ITEMB = Asssssssss

Result
ITEMB = AssssssssA

Result
ITEMB = AsCsEssssE
ITEMC = 07

Procedure Division 5-105

PERFORM
Continued

4. Performing a range of procedures (Format 4):

PERFORM PROC-A THRU PROC-B
VARYING ITEMC FROM 1 BY 1
UNTIL ITEMC > 5.

5. Performing a range of procedures varying a data item
by a negative amount (Format 4):

PERFORM PROC-A THRU PROC-B
VARYING ITEMC FROM ITEMD BY -1
UNTIL ITEMC < ITEME+

6. Varying two data items (Format 4):

5-106

PERFORM PROC-D
VARYING ITEMC FROM 1 BY 1 UNTIL ITEMC > 4
AFTER ITEMD FROM 1 BY 1 UNTIL ITEMD > 5.

Procedure Division

Result
ITEMB = ABCDEssssE
ITEMC = 06

Result
ITEMB = sssDEFGssD
ITEMC = 03

Result
ITEMG (1) = 01s02s03s04s05s
ITEMG (2) = 02s04s06s08s10s
ITEMG (3) = 03s06s09s12s15s
ITEMG (4) = 04s08s12s16s20s

READ

5.9.19 READ Statement

Function

For sequential access files, the READ statement makes the next logical record available. For ran­
dom access files, READ makes a specified record available.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO dest-item] [AT END stment]

Format 2

READ file-name RECORD [INTO dest-item] [KEY IS key-name] [INVALID KEY stment]

file-name
is the name of a file described in the Data Division. It cannot be a sort or merge file.

dest-item
is the identifier of a data item that receives the record accessed by the READ statement.

stment
is an imperative statement executed for an at end or invalid key condition.

key-name
is the data-name of a data item specified as a record key for file-name. It can be qualified.

Syntax Rules

1. Format 1 must be used for a sequential access mode file.

2. There must be a NEXT phrase for dynamic access mode files to retrieve records
sequentially.

3. Format 2 can be used for random or dynamic access mode files to retrieve records
randomly.

4. The KEY phrase can be used only for indexed files.

5. There must be an INVALID KEY or AT END phrase when there is no applicable USE
AFTER EXCEPTION procedure for the file.

6. The storage area associated with dest-item and the record area associated with
file-name cannot be the same storage area.

General Rules

1. The file must be open in the INPUT or 1-0 mode when the READ statement executes.

2. For sequential access mode files, the NEXT phrase is optional. It has no effect on READ
statement execution.

Procedure Division 5-107

READ
Continued

5-108

3. Executing a Format 1 READ statement can cause the following to occur:

• The record pointed to by the Next Record Pointer becomes available in the file's
record area.

• For sequential and relative files, the Next Record Pointer points to the file's next
existing record.

• For indexed files, the Next Record Pointer points to the next existing record estab­
lished by the file's Key of Reference.

• If the file has no next record, the Next Record Pointer indicates that no next logical
record exists and the next attempt to read the file will cause the at end condition.

4. The READ statement updates the value of the FILE STATUS data item for the file.

5. A record is available before any statement executes after the READ.

6. More than one record description can describe a file's logical records. The records
then share the same record area in storage. Sharing a record area is equivalent to
implicit redefinition.

READ statement execution does not change the contents of data items in the record
area beyond the range of the current data record. The contents of those items are
undefined.

7. A Format 1 READ statement can recognize the end of reel/unit during its execution. If
it has not reached the logical end of the file, the READ statement performs a reel/unit
swap. The Current Volume Pointer points to the file's next reel/unit.

8. During execution of a Format 2 READ statement, the Next Record Pointer can indicate
that an optional file is not present. The invalid key condition then exists, and READ
statement execution is unsuccessful.

9. When a Format 1 READ statement executes, the Next Record Pointer can indicate that:

• There is no next logical record

• No valid next record has been established

• An optional file is not present

When the READ statement detects one of these conditions:

a. It updates the FILE STATUS data item for the file to indicate the at end condition.

b. If the READ statement has an AT END phrase, control transfers to stment. Even if
a USE AFTER EXCEPTION procedure is specifed for the file, it does not execute.

c. If there is no AT END phrase, a USE AFTER EXCEPTION procedure must be associ­
ated with the file. Control transfers to that procedure. Control returns from the
USE AFTER EXCEPTION procedure to the next executable statement after the end
of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

Procedure Division

READ
Continued

10. After the unsuccessful execution of a READ statement, the contents of the file's record
area are undefined. If an optional file is not present, the Next Record Pointer is
unchanged; otherwise, it indicates that no valid next record has been established. For
indexed files, the Key of Reference is undefined.

11. For a relative or indexed file in dynamic access mode, a Format 1 READ statement with
the NEXT phrase retrieves the file's next logical record.

12. For a relative file, a Format 1 READ statement updates the contents of the file's
RELATIVE KEY data item. The data item contains the relative record number of the
available record.

13. For a relative file, a Format 2 READ statement sets the Next Record Pointer to the
record whose relative record number is in the file's RELATIVE KEY data item. Execution
then continues as specified in General Rule 3.

If the record is not in the file, the invalid key condition exists, and READ statement
execution is unsuccessful.

14. When your program sequentially accesses an indexed file for records with duplicate
alternate record key values, those records are made available to your program in the
same order in which they were created. The duplicate values can be created by execu­
tion of WRITE or REWRITE statements.

15. For an indexed file, a Format 2 READ statement with the KEY phrase establishes key­
name as the Key of Reference for the retrieval. For a dynamic access mode file, the
same Key of Reference applies to later retrievals by Format 1 READ statement execu­
tions for the file. The Key of Reference continues in effect until a new Key of
Reference is established.

16. For an indexed file, a Format 2 READ statement without the KEY phrase establishes the
prime record key as the Key of Reference for the retrieval. For a dynamic access mode
file, the same Key of Reference applies to later retrievals by Format 1 READ statement
executions for the file. The Key of Reference continues in effect until a new Key of
Reference is established.

17. For an indexed file, a Format 2 READ statement compares the value in the Key of
Reference with the value in the corresponding data item in the file's records. The
comparison continues until the READ statement finds the first record with an equal
value. For an alternate key with duplicate values, the first record found is the first of a
sequence of duplicates released to RMS. The READ statement sets Next Record
Pointer to the record. Execution then continues as specified in General Rule 3.

If the READ statement cannot identify a record with an equal value, the invalid key
condition exists. READ statement execution is then unsuccessful.

If the size of the retrieved record exceeds the maximum size specified for the file,
READ statement exe,cution is unsuccessful.

Procedure Division 5-109

READ
Continued

18. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input condition occurs that would result in a nonzero value in a FILE STATUS data
item. However, it does not execute if: (a) the condition is invalid key, and there is an
INVALID KEY phrase or (b) the condition is at end, and there is an AT END phrase.

19. Executing a READ statement with the INTO phrase is equivalent to executing the same
statement without the phrase, then moving the current record from the record area to
the area specified by dest-item.

Technical Note

READ statement execution can result in the FILE STATUS data item values summarized in the fol­
lowing table:

FILE File Access
STATUS Organization Method Meaning

00 All All Successful
13 All Seq No next logical record (at end)
15 All Seq Optional file not present (at end)
16 All Seq No valid next record (at end)
23 Ind, Rel Rand Record not in file (invalid key)
90 All All Record locked by another program;

record available in record area
92 All All Record locked by another program;

record not available
94 All All File not open, or incompatible open mode
30 All All All other permanent errors

Additional References

Section 3.2.2
Section 4.1.1.3
Section 5.7
Section 5.7.1
Section 5.7.2
Section 5.7.4
Section 5.9.17
Section 5.9.31

1-0-CONTROL Paragraph, SAME Clause
Multiple Record Descriptions
1-0 Status
INVALID KEY Phrase
AT END Phrase
INTO Option
OPEN Statement
USE Statement

5 -110 Procedure Division

RELEASE

5.9.20 RELEASE Statement

Function

The RELEASE statement transfers records to the initial phase of a sort operation.

General Format

RELEASE rec [FROM src-area]

rec
is the name of a logical record in a sort-merge file description (SD) entry. It can be
qualified.

src-area
is the identifier of the data item that contains the data.

Syntax Rules

1. A RELEASE statement can be used only in an input procedure. The input procedure
must be associated with a SORT statement for the sort or merge file that contains rec.

2. Rec and src-area cannot refer to the same storage area.

General Rules

1. The rules for the FROM phrase appear in Section 5.7.3.

2. The RELEASE statement transfers the contents of rec to the first phase of the sort.

3. After the RELEASE statement executes, the record is no longer· available in rec unless
the associated sort or merge file-name is in a SAME RECORD AREA clause. In that case,
the record is available to the program as a record of the sort-merge file-name. It is also
available as a record of all other file-names in the same SAME RECORD AREA clause.

Additional References

Section 5.7.2
Section 5.7.3

Part IV of the COBOL-81 User's
Guide for your system

1-0-CONTROL Paragraph, SAME Clause
FROM Option

Refer to the chapter on sorting
records and merging files

Procedure Division 5 -111

RETURN

5.9.21 RETURN Statement

Function

The RETURN statement gets sorted records from a sort operation. It also returns merged
records in a merge operation.

General Format

RETURN smrg-file RECORD [INTO dest-area] AT END stment

smrg-file
is the name of a file described in a sort-merge file description (SD) entry.

dest-area
is the identifier of the data item to which the returned smrg-file record is moved.

stment
is an imperative statement.

Syntax Rules

1. A RETURN statement can be used only in an output procedure. The output procedure
must be associated with a SORT or MERGE statement for smrg-file.

2. The storage area associated with dest-area and the record area associated with smrg-file
cannot be the same storage area.

General Rules

1. The rules for the INTO phrase appear in Section 5.7.4.

2. When more than one record description describes the logical records for smrg-fi/e, the
records share the same storage area. The contents of storage positions beyond the
range of the returned record are undefined when the RETURN statement ends.

3. Before the output procedure executes, the Next Record Pointer is updated. It points to
the record whose key values make it first in the file. If there are no records, the Next
Record Pointer indicates the at end condition.

4. The RETURN statement makes the next record (pointed to by the Next Record Pointer)
available in the record area for smrg-file.

5. The Next Record Pointer is updated to point to the next record in smrg-file. The key val­
ues in the SORT or MERGE statement determine which is the next record.

6. If smrg-file has no next record, the Next Record Pointer is updated to indicate the at
end condition.

7. If the Next Record Pointer indicates the at end condition when the RETURN statement
executes, control transfers to stment. The contents of the smrg-file record areas are
then undefined.

5 -112 Procedure Division

8. When the at end condition occurs:

• RETURN statement execution is unsuccessful.

• The Next Record Pointer is not changed.

Additional References

Section 3.2.2
Section 5.7.2
Section 5.7.4

Part IV of the COBOL-81 User's
Guide for your system

1-0-CONTROL Paragraph, SAME Clause
AT END Phrase
INTO Option

Refer to the chapter on sorting
records and merging files

RETURN
Continued

Procedure Division 5 -113

REWRITE

5.9.22 REWRITE Statement

Function

The REWRITE statement logically replaces a mass storage file record.

General Format

REWRITE rec-name [FROM src-item] [INVALID KEY stment]

rec-name
is the name of a logical record in the Data Division File Section. It can be qualified.

src-item
is the identifier of the data item that contains the data.

stment
is an imperative statement.

Syntax Rules

1. The INVALID KEY phrase cannot be used in a REWRITE statement that refers to a
sequential file or to a relative file with sequential access mode.

2. For a relative file with random or dynamic access mode, or for an indexed file, the
REWRITE statement must have an INVALID KEY phrase when there is no applicable
USE AFTER EXCEPTION procedure for the file.

3. Rec-name and src-item cannot share the same storage area.

General Rules

All Files

1. The file associated with rec-name must be a mass storage file. It must be open in the
1-0 mode when the REWRITE statement executes.

2. For sequential access mode files, the last input-output statement executed for the file
before the REWRITE statement must be a successfully executed READ statement. The
REWRITE statement logically replaces the record accessed by the READ.

3. The record is no longer available in rec-name after a REWRITE statement successfully
executes unless the associated file-name is in a SAME RECORD AREA clause. In this
case, also available in the record areas of other file-names in the same SAME RECORD
AREA clause.

4. The REWRITE statement does not affect the Next Record Pointer.

5. The REWRITE statement updates the value of the FILE STATUS data item for the file.

6. The rules for the FROM phrase appear in Section 5.7.3, FROM Option.

Sequential Files

7. The record named by rec-name must be the same size as the record being replaced.

5 -114 Procedure Division

REWRITE
Continued

Relative Files

8. For a random or dynamic access mode file, the REWRITE statement logically replaces
the record specified in the RELATIVE KEY data item for rec-name's file. If the record is
not in the file, the invalid key condition exists. The update does not occur, and the
data in the record area is not affected.

Indexed Files

9. For a sequential access mode file, the prime record key specifies the record to be
replaced. The values of the prime record keys in the record to be replaced and the last
record read from (or positioned in) the file must be equal.

10. For a random or dynamic access mode file, the prime record key specifies the record
to replace.

11. For a record with an alternate record key:

• When the REWRITE does not change the value of an alternate record key, the order
of retrieval is unchanged when the key is the Key of Reference.

• When duplicate key values are allowed, and the value of an alternate record key
changes, the later retrieval order of the record changes when the key is the Key of
Reference. The record's logical position is last in the group of records with the same
value in the alternate record key that changed.

12. Any of the following occurrences cause the invalid key condition:

• The access mode is sequential, and the values in the prime record keys of the record
to replace and the last record read from (or positioned in) the file are not equal.

• The value in the prime record key does not equal that of any record in the file.

• The value in an alternate record key whose definition does not have a DUPLICATES
clause equals that of a record already in the file.

The update does not occur, and the data in the record area is not affected.

13. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input or output condition occurs that would result in a nonzero value in a FILE STATUS
data item. However, the INVALID KEY phrase (if present) supersedes a USE AFTER
EXCEPTION procedure when there is an invalid key condition. In this case, the USE
AFTER EXCEPTION procedure does not execute.

Procedure Division 5 -115

REWRITE
Continued

Technical Note

REWRITE statement execution can result in the FILE STATUS data item values summarized in the
following table:

FILE File
STATUS Organization

00 All
02 Ind
21 Ind
22 Ind
23 Ind, Rel
92 Ind, Rel
93 All
94 All

30 All

Additional References

Section 3.2.2
Section 4.1.1.3
Section 5.1.4
Section 5.7
Section 5.7.1
Section 5.7.3
Section 5.9.17
Section 5.9.19
Section 5.9.31

Access
Method Meaning

All Successful
All Created duplicate alternate key
Seq Primary key changed after READ
All Duplicate alternate key (invalid key)

Rand Record not in file (invalid key)
All Record locked by another program
Seq No previous READ
All File not open, or incompatible

open mode
All All other permanent errors

1-0-CONTROL Paragraph, SAME Clause
Multiple Record Descriptions
Scope of Statements
1-0 Status
INVALID KEY Phrase
FROM Option
OPEN Statement
READ Statement
USE Statement

5 -116 Procedure Division

SEARCH

5.9.23 SEARCH Statement

Function

The SEARCH statement searches for a table element that satisfies a condition. It sets the value of
the associated index to point to the table element.

General Format

Format 1

SEARCH src-table [VARYING pointr] [AT END stment]

{ {
stment } }

WHEN cond ...
NEXT SENTENCE

Format 2

SEARCH ALL src-table [AT END stment] WHEN

[AND

src-table
is a table identifier.

pointr

{
IS EQUAL TO}

elemnt
IS =

cond-name

arg

{
IS EQUAL TO}

elemnt
IS =

cond-name

l {
stment l
NEXT SENTENCE f

arg

is an index-name or the identifier of a data item described as USAGE INDEX, or an elemen­
tary numeric data item with no positions to the right of the assumed decimal point.

cond
is any conditional expression.

stment
is an imperative statement.

elemnt
is an indexed data-name. It refers to the table element against which the argument is
compared.

arg
is the argument tested against each elemnt in the search. It is an identifier, a literal, or an
arithmetic expression.

cond-name
is a condition-name.

Procedure Division 5 -117

SEARCH
Continued

Syntax Rules

Both Formats

1. Src-table must not be subscripted or indexed. However, its description must contain
an OCCURS clause with the INDEXED BY phrase.

Format2

2. Src-table must contain the KEY IS phrase in its OCCURS clause.

3. Each cond-name must be defined as having only one value. The data-name associated
with cond-name must be in the KEY IS phrase of the OCCURS clause for src-table.

4. Each e/emnt:

• Can be qualified

• Must be indexed by the first index-name associated with src-table, in addition to
other indexes or literals required for uniqueness

• Must be in the KEY IS phrase of the OCCURS clause for src-table

5. Neither arg nor any identifier in its arithmetic expression can either:

• Be used in the KEY IS phrase of the OCCURS clause for src-table

• Be indexed by the first index-name associated with src-table

6. When e/emnt or the data-name associated with cond-name is in the KEY phrase of the
OCCURS clause for src-table, each preceding data-name (or associated cond-name) in
that phrase must also be referenced.

General Rules

Both Formats

1. After executing a stment that does not end with a GO TO statement, control passes to
the end of the SEARCH statement.

2. Src-table can be subordinate to a data item that contains an OCCURS clause. In that
case, an index-name must be associated with each dimension of the table through the
INDEXED BY phrase of the OCCURS clause. The SEARCH statement modifies the set­
ting of only the index-name for src-table (and pointr, if there is one).

Format 1

A SEARCH statement must execute several times to search a multidimensional table.
Before each execution, SET statements must execute to change the values of index­
names that need adjustment.

3. The Format 1 SEARCH statement searches a table serially, starting with the current
index setting.

5 -118

a. The index-name associated with src-tab/e can contain a value that indicates a higher
occurrence number than is allowed for src-table. If the SEARCH statement execu­
tion starts when this condition exists, the search terminates immediately. If there is
an AT END phrase, stment then executes. Otherwise, control passes to the end of
the SEARCH statement.

Procedure Division

SEARCH
Continued

b. If the index-name associated with src-table indicates a valid src-table occurrence
number, the SEARCH statement evaluates the conditions in the order they appear.
It uses the index settings to determine the occurrence numbers of items to test.

If no condition is satisfied, the index-name for src-table is incremented to refer to
the next occurrence. The condition evaluation process repeats using the new
index-name settings. However, if the new value of the index-name for src-tab/e
indicates a table element outside its range, the search terminates as in General Rule
3a.

When a condition is satisfied:

• The search terminates immediately

• The stment associated with the condition executes

• The index-name remains set at the occurrence that satisfied the condition

4. If there is no VARYING phrase, the index-name used for the search is the first index­
name in the OCCURS clause for src-table. Other src-tab/e index-names are
unchanged.

5. If there is a VARYING phrase, pointr can be an index-name for src-tab/e. (Pointr is
named in the INDEXED BY phrase of the OCCURS clause for src-tab/e.) The search
then uses that index-name. Otherwise, it uses the first index-name in the INDEXED BY
phrase.

6. Pointr also can be an index-name for another table. (Pointr is named in the INDEXED
BY phrase in the OCCURS clause for that table entry.) In this case, the search incre­
ments the occurrence number represented by pointr by the same amount, and at the
same time, as it increments the occurrence number represented by the src-tab/e
index-name.

7. If pointr is an index data item rather than an index-name, the search increments it by
the same amount, and at the same time, as it increments the src-table index-name. If
pointr is not an index data item or an index-name, the search increments it by one
when it increments the src-table index-name.

8. Figure 5-4 describes the operation of a Format 1 SEARCH statement with two WHEN
phrases.

Format2

9. A SEARCH ALL operation yields predictable results only when:

• The data in the table has the same order as described in the KEY IS phrase of the
OCCURS clause for src-table

• The contents of the keys in the WHEN phrase identify a unique table element

10. SEARCH ALL causes a nonserial (or binary) search. It ignores the initial setting of the
src-table index-name and varies its setting during execution.

11. If the WHEN phrase conditions are not satisfied for any index setting in the allowed
range, control passes to the AT END phrase stment, if there is one, or to the end of the
SEARCH statement. In either case, the setting of the src-table index-name is not
predictable.

Procedure Division 5 -119

SEARCH
Continued

12. If all the WHEN phrase conditions are satisfied for an index setting in the allowed
range, control passes to either stment or the next sentence, whichever is in the state­
ment. The src-table index-name then indicates the occurrence number that satisfied
the conditions.

13. The index-name used for the search is the first index-name in the OCCURS clause for
src-table. Other src-table index-names are unchanged.

Figure 5-4: Format 1 SEARCH Statement with Two WHEN Phrases

> AT END

true

true

false

Increment ITEMB

Increment ITEME

5-120 Procedure Division

stment-1

stment-2

stment-3

03 ITEMA OCCURS 55 TIMES
INDEXED BY ITEMB,
05 ITEMC PIC X,
05 ITEMD PIC XX,

Each of these
control transfers
is to the end of
the SEARCH
statement unless
stment ends with
a GO TO statement

SEARCH ITEMA VARYING ITEME
AT END stment-1
WHEN ITEMC CITEMB> = SPACE

stment-2
WHEN I TEMC (I TEMB) = II x II

AND ITEMD CITEMB> = SPACES
stment-3,

Additional References

Section 4.2.13
Section 5.5

OCCURS Clause
Conditional Expressions

Examples

The examples assume these Data Division entries:

01 CUSTOMER-REC,
03 CUSTOMER-USPS-STATE PIC XX,
03 CUSTOMER-REGION PIC X,
03 CUSTOMER-NAME PIC Xl151,

01 STATE-TAB,
03 FILLER PIC Xl1531

VALUE
"AK3AL5AR5AZ4CA4C04CT1DC1DE1FL5GA5HI3
"IA2ID3IL2IN2KS2KY5LA5MA1MD1ME1MI2MN2
"MD5MS5MT3NC5ND3NE2NH 1NJ1NM4N'.J4NY1 OH2
"OK 40R3PA1RI1SC5SD3TN5D(4UT4'iA51JT 1 WA3
"WI2w1.15wya•.

01 STATE-TABLE REDEFINES STATE-TAB,
03 STATES OCCURS 51 TIMES

ASCENDING KEY IS STATE-USPS-CODE
INDEXED BY STATE-INDEX,
05 STATE-USPS-CODE PIC XX,
05 STATE-REGION PIC X,

01 STATE-NUM PIC 88.
01 STATE-ERROR PIC 8,
01 NAME-TABLE VALUE SPACES,

03 NAME-ENTRY OCCURS 8 TIMES
INDEXED BY NAME-INDEX,
05 LAST-NAME PIC Xl151,
05 NAME-COUNT PIC 888.

1. Binary search:

SEARCH
Continued

(The correctness of this statement's operation depends on the ascending order of key
values.)

SEARCH ALL STATES
AT END

MOVE 1 TO STATE-ERROR
WHEN STATE-USPS-CODE ISTATE-INDEXI CUSTOMER-USPS-STATE

MOVE 0 TO STATE-ERROR
MOVE STATE-REGION ISTATE-INDEXI TO CUSTOMER-REGION.

Results

CUSTOMER-ST A TE CUSTOMER-REGION STATE-INDEX ST A TE-ERROR

NH 1 31 0
CA 4 5 0
DM 10 1
WY 4 51 0

Procedure Division 5 -121

SEARCH
Continued

2. Serial search with two WHEN phrases:

3.

5-122

INITIALIZE-SEARCH.
MOVE 1 TO CUSTOMER-REGION,
MOVE "NH" TO CUSTOMER-USPS-STATE.

DISPLAY "States in custoMer's re9ion:",

SEARCH-LOOP,
SEARCH STATES

AT END
GO TO SEARCH END

WHEN STATE-REGION <STATE-INDEX> = CUSTOMER-USPS-STATE
SET STATE-NUM TD STATE-INDEX

WHEN STATE-REGION <STATE-INDEX> = CUSTOMER-REGION
DISPLAY STATE-USPS-CODE <STATE-INDEX>

WITH NO ADVANCING,
SET STATE-INDEX UP BY 1.
GO TO SEARCH-LOOP,

SEARCH-ENO,
DISPLAY
DISPLAY "Custorner state index nur,1ber

Results

IA 13 0
IL 15 0
IN 16 0
KS 17 0
Ml 23 0
MN 24 0
NE 30 0
NH 31 3
OH 36 3
WI 49 3

52 1

Updating a table in a SEARCH statement:

GET-NAME,
DISPLAY "Enter naMe: " NO ADt,JANCING.
ACCEPT CUSTOMER-NAME.
SET NAME-INDEX TD 1,
SEARCH NAME-ENTRY

AT END
DISPLAY " Table full"

SET NAME-INDEX TD 1
PERFORM SHOW-TABLE 8 TIMES
STOP RUN

II STATE-NUM.

WHEN LAST-NAME <NAME-INDEX> = CUSTOMER-NAME
ADD 1 TD NAME-COUNT <NAME-INDEX>

WHEN LAST-NAME <NAME-INDEX> = SPACES
MOVE CUSTOMER-NAME TD LAST-NAME <NAME-INDEX>
MOVE 1 TD NAME-COUNT <NAME-INDEX),

GO TO GET-NAME.
SHOW-TABLE,

DISPLAY LAST-NAME <NAME-INDEX) II II NAME-COUNT <NAME-INDE}().
SET NAME-INDEX UP BY 1,

Procedure Division

Results

Enter n a1r1 e: CRONKITE
Enter n ar11 e: GEORGE
Enter n ar11 e: PHARES
Enter n arr1 e: CRONK, I TE
Enter n arne: BELL
Enter n ar11e: SM ITH
Enter n ar11e: FRANKLIN
Enter n ar11e: HENr·n'
Enter n arr1e: GEORGE
Enter n arr1 e: ROBE'\ INS
Enter n arr1e: BELL
Enter name: FflANKLIN
Enter n a1r1e: SMITH
Enter n arr1e: BELL
Enter na1r1e: SMITH

Table full
CRONKITE 002
GEORGE 002
PHARES 001
BELL 003
SMITH 003
FRANKLIN 002
HENRY 001
ROBBINS 001

SEARCH
Continued

Procedure Division 5 -123

SET

5.9.24 SET Statement

Function

The SET statement sets values of indexes associated with table elements.

General Format

Format 1

SET { rs ult } ... TO val

Format 2

rs ult

val

indx

SET { indx } ... { UP BY } increm
DOWN BY

is an index-name, the identifier of an index data item, or an elementary numeric data item
described as an integer.

is a positive integer, which may be signed. It can also be an index-name (or the identifier of
an index data item) or an elementary numeric data item described as an integer.

is an index-name.

increm
is an integer, which may be signed. It can also be the identifier of an elementary numeric
data item described as an integer.

General Rules

1. Index-names are associated with a table in the table's OCCURS clause INDEXED BY
phrase.

2. Undefined results occur when operands overlap; that is, when they share a part of
their storage areas.

3. If rsult is an index-name, its value after SET statement execution must correspond to
an occurrence number of an element in the associated table.

4. If val is an index-name, its value before SET statement execution must correspond to
an occurrence number of an element in the table associated with rsult.

5. The value of indx, both before and after SET statement execution, must correspond to
an occurrence number of an element in the table associated with indx.

5 -124 Procedure Division

Format 1

SET
Continued

6. The SET statement sets the value of rsult to refer to the table element whose occur­
rence number corresponds to the table element referred to by val. If val is an index
data item, no conversion occurs.

7. If rsult is an index data item, val cannot be an integer. No conversion occurs when
rsult is set to the value of val.

8. If rsult is not an index data item or an index-name, val can only be an index-name.

9. When there is more than one rsult, SET uses the original value of val in each opera­
tion. Subscript or index evaluation for rsult occurs immediately before its value
changes.

10. Table 5-12 shows the validity of operand combinations. An asterisk(*) means that no
conversion occurs during the SET operation.

Table 5-12: Validity of Operand Combinations in Format 1 SET Statements

Receiving Item
Sending Item

Integer Data Item Index Index Data Item

Integer Literal Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6

Integer Data Item Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6

Index Valid/Rule 7 Valid/Rule 5 Valid/Rule 6*

Index Data Item Invalid/Rule 7 Valid/Rule 5* Valid/Rule 6*

Format 2

11. The SET statement increments (UP) or decrements (DOWN) indx by a value that corre­
sponds to the number of occurrences increm represents.

12. When there is more than one indx, SET uses the original value of increm in each
operation.

Additional References

Section 5.9.15
Section 5.9.23

MOVE Statement
SEARCH Statement

Procedure Division 5 -125

SORT

5.9.25 SORT Statement

Function

The SORT statement creates a sort file by executing input procedures or transferring records
from an input file. It sorts the records in the sort file using one or more keys that you specify.
Finally, it returns each record from the sort file, in sorted order, to output procedures or an out­
put file.

General Format

SORT sort1Ue ~ON j DESCENDING l
l ASCENDING '

KEY { sortkey } . .. } ...

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alpha l

[{
THRU }

INPUT PROCEDURE IS first-proc
THROUGH

USING { infile } ...

end-proc]

OUTPUT PROCEDURE IS first-proc [j THRU } end-proc] l THROUGH

GIVING { outfile } ...

sortfile
is a file-name described in a sort-merge file description (SD) entry in the Data Division.

sortkey
is the data-name of a data item in a record associated with sortfile.

alpha
is an alphabet-name defined in the SPECIAL-NAMES paragraph of the Environment
Division.

first-proc

infile

is the section-name of the first (or only) section of the INPUT or OUTPUT procedure range.

is the file-name of the input file. It must be described in a file description (FD) entry in the
Data Division.

5-126 Procedure Division

SORT
Continued

end-proc
is the section-name of the last section of the INPUT or OUTPUT procedure range.

outfile
is the file-name of the output file. It must be described in a file description (FD) entry in the
Data Division.

Syntax Rules

1. You can use SORT statements anywhere in the Procedure Division except in:

• Declaratives

• A SORT or MERGE statement input or output procedure

2. If sortfi/e contains variable length records, infile records must not be smaller than the
smallest in sortfile nor larger than the largest.

3. If sortfile contains fixed length records, infile records must not be larger than the larg­
est record described for sortfile.

4. If outfile contains variable length records, sortfile records must not be smaller than
the smallest in outfile nor larger than the largest.

5. If outfile contains fixed length records, sortfile records must not be larger than the
largest record described for outfile.

6. Sortkeycan be qualified.

7. Sortkey cannot be in a group item that contains variable occurrence data items.

8. The sortkey description cannot contain an OCCURS clause or be subordinate to a data
description entry that does.

9. Sortfile can have more than one record description. However, sortkey need be
described in only one of the record descriptions. The character positions referenced
by sortkey are used as the key for all the file's records.

10. The words THRU and THROUGH are equivalent.

11. If outfile is an indexed file, the first sortkey must be in the ASCENDING phrase. It must
specify the same character positions in its record as the prime record key for outfile.

12. Each sortkey cannot be larger than 255 characters.

13. The total number of characters in all sortkeys for the file cannot be more than 512
characters.

14. Each SORT statement can specify no more than 16 sortkeys.

15. Neither infile nor outfile can be an indexed file in random access mode.

Procedure Division 5 -127

SORT
Continued

General Rules

1. If sortfile contains fixed length records, any shorter infile records are space filled on
the right, following the last character. Space filling occurs before the infile record is
released to sortfile.

2. The first sortkey you specify is the major key, the next sortkey you specify is the next
most significant key, and so forth. The significance of sortkey data items is not
affected by how you divide them into KEY phrases. Only first-to-last order determines
significance.

3. The ASCENDING phrase causes the sorted sequence to be from the lowest to highest
sortkey value.

4. The DESCENDING phrase causes the sorted sequence to be from the highest to the
lowest sortkey value.

5. Sort sequence follows the rules for relation condition comparisons.

6. The DUPLICATES phrase affects the return order of records whose corresponding
sortkeyvalues are equal.

• When there is a USING phrase, return order is the same as the order of appearance
of infile names in the SORT statement.

• When there is an INPUT PROCEDURE, return order is the same as the order in
which the records were released.

7. If there is no DUPLICATES phrase, the return order for records with equal corre­
sponding sortkey values is unpredictable.

8. The SORT statement determines the comparison collating sequence for nonnumeric
sortkey items when it begins execution. If there is a COLLATING SEQUENCE phrase in
the SORT statement, SORT uses that sequence. Otherwise, it uses the program collat­
ing sequence described in the OBJECT-COMPUTER paragraph.

9. The INPUT PROCEDURE range consists of one or more sections that:

• Appear contiguously in the source program

• Do not form a part of an OUTPUT PROCEDURE range

10. The statements in the INPUT PROCEDURE range must include at least one RELEASE
statement to transfer records to sortfile.

11. The program must not pass control to any statement in the INPUT PROCEDURE range
except during execution of a related SORT statement.

12. The INPUT PROCEDURE range cannot contain SORT or MERGE statements. Its state­
ments must not transfer control explicitly outside the INPUT PROCEDURE section(s).
However, its statements can cause implied control transfers to Declaratives.

5-128 Procedure Division

SORT
Continued

13. The remainder of the Procedure Division must not transfer control to statements in
the INPUT PROCEDURE range.

14. If there is an INPUT PROCEDURE phrase, control passes to the first statement in its
range before the SORT statement sequences the sortfile records. When control passes
the last statement in the INPUT PROCEDURE range, the records released to sortfile are
sorted.

15. During execution of the INPUT or OUTPUT procedures, or any USE AFTER
EXCEPTION procedure implicitly invoked during the SORT statement, no outside
statement can manipulate the files or record areas associated with infile or outfile.

16. If there is a USING phrase, the SORT statement transfers all records in infile to sortfile.
This transfer is an implied SORT statement input procedure. When the SORT state­
ment executes, infile must not be open.

17. For each infile, the SORT statement:

• Initiates file processing as if the program had executed an OPEN statement with the
INPUT phrase.

• Gets the logical records and releases them to the sort operation. SORT obtains each
record as if the program had executed a READ statement with the NEXT and AT END
phrases.

• Terminates file processing as if the program had executed a CLOSE statement with
no optional phrases. The SORT statement ends file processing before it executes
any output procedure.

These implicit OPEN, READ, and CLOSE operations cause associated USE procedures
to execute when an on exception condition exists.

18. OUTPUT PROCEDURE consists of one or more sections that:

• Appear contiguously in the source program

• Do not form a part of an INPUT PROCEDURE range

19. When the SORT statement begins OUTPUT PROCEDURE, it is ready to select the next
record in sorted order. The statements in the OUTPUT PROCEDURE range must
include at least one RETURN statement to make records available for processing.

20. The program must not pass control to any statement in the OUTPUT PROCEDURE
range except during execution of a related SORT statement.

21. The OUTPUT PROCEDURE range cannot contain SORT or MERGE statements. Its
statements must not transfer control explicitly outside the range. However, its state­
ments cause implied control transfers to Declaratives if an on exception condition
occurs.

Procedure Division 5 -129

SORT
Continued

22. The remainder of the Procedure Division must not transfer control to statements in
the OUTPUT PROCEDURE range.

23. If there is an OUTPUT PROCEDURE phrase, control passes to the first statement in its
range after the SORT statement sequences the records in sortfile. When control
passes the last statement in the OUTPUT PROCEDURE range, the SORT statement
ends. Control then transfers to the next executable statement after the SORT
statement.

24. If there is a GIVING phrase, the SORT statement writes all sorted records to each out­
file. This transfer is a,n implied SORT statement output procedure. When the SORT
statement executes, outfile must not be open.

25. The SORT statement initiates outfife processing as if the program had executed an
OPEN statement with the OUTPUT phrase. The SORT statement does not initiate out­
file processing until after INPUT PROCEDURE execution.

26. The SORT statement gets the sorted logical records and writes them to each outfile.
SORT writes each record as if the program had executed a WRITE statement with no
optional phrases.

For relative files, the value of the relative key data item is 1 for the first returned
record, 2 for the second, and so on. When the SORT statement ends, the value of the
relative key data item indicates the number of outfile records.

27. The SORT statement terminates outfile processing as if the program had executed a
CLOSE statement with no optional phrases.

28. These implicit OPEN, WRITE, and CLOSE operations can cause associated USE proce­
dures to execute. For example, if the SORT statement tries to write beyond the bound­
aries of outfile, the applicable USE AFTER EXCEPTION procedure executes. If control
returns from a USE procedure, or if there are none, outfile processing terminates as if
the program had executed a CLOSE statement with no optional phrases.

29. If outfile contains fixed length records, any shorter sortfile records are space filled on
the right, after the last character. Space filling occurs before the sortfile record is
released to outfile.

Additional References

Section 3.1.2
Section 3.1.3
Section 3.2.2
Section 5.5.1
Section 5.8
Section 5.9.31

Part IV of the COBOL-81 User's
Guide for your system

5-130 Procedure Division

OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph
1-0-CONTROL Paragraph
Relation Conditions
Segmentation
USE Statement

Refer to the chapter on sorting
records and merging files

START

5.9.26 ST ART Statement

Function

The START statement establishes the logical position of the Next Record Pointer in an indexed
or relative file. The logical position affects subsequent sequential record retrieval.

General Format

IS EQUAL TO
IS =

START file-name KEY IS GREATER THAN key-data [INVALID KEY stment]
IS>
IS NOT LESS THAN ---
IS NOT<

file-name
is the name of an indexed or relative file with sequential or dynamic access. It cannot be
the name of a sort or merge file.

key-data
is the data-name of a record key, the leftmost part of a record key, or the relative key for
file-name. It can be qualified.

stment
is an imperative statement.

Syntax Rules

1. There must be an INVALID KEY phrase if file-name does not have an applicable USE
AFTER EXCEPTION procedure.

2. For a relative file, key-data must be the file's RELATIVE KEY data item.

3. For an indexed file, key-data can be either:

• A record key for the file.

• An alphanumeric data item subordinate to the description of the file's record key.
The leftmost character position of key-data must correspond to that of the record key
data item.

General Rules

All Files

1. The file must be open in the INPUT or 1-0 mode when the START statement executes.

2. If there is no KEY phrase, the implied relational operator is EQUAL.

3. START statement execution does not change: (a) the contents of the record area or (b)
the contents of the data item referred to in the DEPENDING ON phrase of the file's
RECORD clause.

Procedure Division 5-131

START
Continued

4. The comparison specified by the KEY phrase relational operator occurs between a key
for a record in the file and a data item. (See General Rules 11, 12, and 13.) If the file is
indexed, and the operand sizes are unequal, the comparison operates as if the longer
one was truncated on the right to the size of the shorter. All other numeric or nonnu­
meric comparison rules apply.

The Next Record Pointer is set to the first logical record in the file whose key satisfies
the comparison.

If no record in the file satisfies the comparison:

• The invalid key condition exists

• START statement execution is unsuccessful

• The Next Record Pointer indicates that no valid next record is established

5. The START statement updates the FILE STATUS data item for the file.

6. If the Next Record Pointer indicates that an optional file is not present when the
START statement executes, the invalid key condition exists. START statement execu­
tion is then unsuccessful.

Relative Files

7. The comparison described in General Rule 4 uses the data item referred to by the
RELATIVE KEY phrase in the file's ACCESS MODE clause.

Indexed Files

8. The START statement establishes a Key of Reference as follows:

• If there is no KEY phrase, the file's prime record key becomes the Key of Reference.

• If there is a KEY phrase, and key-data is a record key for the file, that record key
becomes the Key of Reference.

• If there is a KEY phrase, and key-data is not a record key for the file, the record key
whose leftmost character corresponds to the leftmost character of key-data
becomes the Key of Reference.

The Key of Reference establishes the record ordering for the START statement. (See
General Rule 4.) If the execution of the START statement is successful, later sequential
READ statements use the same Key of Reference.

9. If there is a KEY phrase, the comparison described in General Rule 4 uses the contents
of key-data.

10. If there is no KEY phrase, the comparison described in General Rule 4 uses the data
item referred to in the file's RECORD KEY clause.

11. If START statement execution is not successful, the Key of Reference is undefined.

12. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input or output condition occurs that would result in a nonzero value in a FILE STATUS
data item. However, it does not execute if the condition is invalid key and there is an
INVALID KEY phrase.

5 -132 Procedure Division

START
Continued

13. When the invalid key condition is recognized, these actions occur in the following
order:

a. A value indicating the invalid key condition is placed in the FILE STATUS data item,
if one is specified, for the file.

b. If the statement causing the condition has an INVALID KEY phrase, control trans­
fers to the associated imperative statem.ent. Any USE AFTER EXCEPTION procedure
for the file does not execute.

c. If there is no INVALID KEY phrase, control transfers to the applicable USE AFTER
EXCEPTION procedure for the file.

d. The Next Record Pointer is set to the beginning of the file.

Technical Note

START statement execution can result in these FILE STATUS data item values:

FILE
STATUS

00
23
90

92
94
30

Meaning

Successful
Record not in file (invalid key)
Record locked by another user,
record is available in record area
Record locked by another program
File not open, or incompatible open mode
All other permanent errors

Additional References

Section 5.5.1.1 Comparison of Numeric Operands
Section 5.5.1.2 Comparison of Nonnumeric Operands
Section 5.7 1-0 Status
Section 5.7.1 INVALID KEY Phrase
Section 5.9.17 OPEN Statement
Section 5.9.19 READ Statement
Section 5.9.31 USE Statement

Procedure Division 5 -133

STOP

5.9.27 STOP Statement

Function

The STOP statement permanently ends or temporarily suspends image execution.

General Format

STOP j RUN}

l disp

disp
is any literal, or any figurative constant except ALL literal.

Syntax Rule

If a STOP RUN statement is in a consecutive sequence of imperative statements in a sentence, it
must be the last statement in that sequence.

General Rules

1. STOP RUN ends image execution.

2. STOP disp temporarily suspends the image. It displays the value of disp on the user's
standard display device. If the user continues the image, execution resumes with the
next executable statement.

Technical Notes

1. STOP RUN causes all open files to be closed.

2. STOP disp suspends execution of the image without terminating it.

5-134

The user can continue image execution by typing in anything but "STOP". Then execu­
tion resumes with the next executable statement.

Procedure Division

STRING

5.9.28 STRING Statement

Function

The STRING statement concatenates the partial or complete contents of one or more data items
into a single data item.

General Format

STRING

src-string

{ src-string }... DELIMITED BY j delim} l SIZE

INTO dest-string [WITH POINTER pointr] [ON OVERFLOW stment]

is a non numeric literal or identifier of a DISPLAY data item. It is the sending area.

delim
is a nonnumeric literal or the identifier of a DISPLAY data item. It is the delimiter of src­
string.

dest-string
is the identifier of a DISPLAY data item. Dest-string is the receiving area that contains the
result of the concatenated src-strings.

pointr
is an elementary numeric data item described as an integer. It points to the position in
dest-string to contain the next character moved.

stment
is an imperative statement.

Syntax Rules

1. Pointr cannot define the assumed decimal scaling position character (P) in its PICTURE
clause.

2. Literals can be any figurative constant other than ALL literal.

3. The description of dest-string cannot: (a) have a JUSTIFIED clause or (b) indicate an
edited data item.

4. The size of pointr must allow it to contain a value one greater than the size of dest­
string.

General Rules

1. Delim specifies the character(s) to delimit the move.

2. If src-string is a variable length item, SIZE refers to the number of characters currently
defined for it.

Procedure Division 5 -135

STRING
Continued

3. When src-string or delim is a figurative constant, its size is one character.

4. The STRING statement moves characters from src-string to dest-string according to the
rules for alphanumeric to alphanumeric moves. However, no space-filling occurs.

5. When the DELIMITED phrase contains delim:

• The contents of each src-string are moved to dest-string in the sequence they appear
in the statement

• Data movement begins with the leftmost character and continues to the right, char­
acter by character

• Data movement ends when the STRING operation completes any of the following:

a. Reaches the end of src-string

b. Reaches the end of dest-string

c. Detects the characters specified by delim

6. When the DELIMITED phrase contains the SIZE phrase:

• The entire contents of each src-string is moved to dest-string in the same sequence
as they appear in the statement

• Data movement begins with the leftmost character and continues to the right, char­
acter by character

• Data movement ends when the STRING operation either:

a. Has transferred all data in each src-string

b. Reaches the end of dest-string

• If src-string is a variable length data item, the STRING statement moves the number
of characters currently defined for the data item

7. When the POINTER phrase appears, the program must set pointr to an initial value
greater than zero before executing the STRING statement. The PICTURE for pointr
cannot contain Ps.

8. When there is no POINTER phrase, the STRING statement operates as if pointr were
set to an initial value of 1.

9. When the STRING statement transfers characters to dest-string, the moves operate as
if:

• The characters were moved one at a time from src-string

• Each character were moved to the position in dest-string indicated by pointr (if
pointr does not exceed the length of dest-string)

• The value of pointrwere increased by one before moving the next character

10. When the STRING statement ends, only those parts of dest-string referenced during
statement execution change. The rest of dest-string contains the same data as before
the STRING statement executed.

5 -136 Procedure Division

STRING
Continued

11. Before it moves each character to dest-string, the STRING statement tests the value of
pointr. If it is less than one or greater than the number of character positions in dest­
string, the STRING statement:

• Moves no further data to de st-string

• Executes the ON OVERFLOW phrase stment

• Transfers control to the end of the STRING statement if there is no ON OVERFLOW
phrase

12. Subscripting or indexing evaluation for src-string and delim occur just before the
STRING statement examines src-string for its delimiters.

13. Subscripting or indexing evaluation for pointr occurs just before STRING statement
execution.

14. Undefined results occur when operands overlap; that is, when sending fields and
receiving fields share a part of their storage areas.

Additional References

Section 5.1.4
Section 5.9.15

Scope of Statements
MOVE Statement

Examples

The examples assume the following data description entries:

WORKING-STORAGE SECTION,
01
01
01

*

01
01
01

TD(T-STRING PIC i((30) •
INPUT-MESSAGE PIC i< <GO).
NAME-ADDRESS-RECORD.
03 CI t,1 IL-TITLE PIC)-((5) t

03 LAST-NAME PIC){ (10) •
03 FIRST-NAME PIC){ (1 (I) •

03 STREET PIC)-((15).
03 CIT PIC){ (15) •

Assur11e CITY ends 1,ii th II I II

03 STATE PIC >< >< •
03 ZIP PIC 9 (5).
PTR PIC 99.
HOLD-PTR PIC 99.
LINE-COUNT PIC 99.

1. Using both delimiters and SIZE:

DISPLAY " ".
DISPLAY NAME-ADDRESS-RECORD.
MOVE SPACES TO TEXT-STRING.
STRING CIVIL-TITLE DELIMITED BY

" " DELIMITED BY SIZE
FIRST-NAME DELIMITED BY " "
" " DELIMITED BY SIZE
LAST-NAME DELIMITED BY SIZE

INTO TEXT-STRING.
DISPLAY TEXT-STRING.
DISPLAY STREET+

(continued on next page)

Procedure Division 5 -137

STRING
Continued

5 -138

MOVE SPACES TO TEXT-STRING,
STRING CITY DELIMITED BY "/"

", " DELIMITED BY SIZE
STATE DELIMITED BY SIZE
" " DELIMITED BY SIZE
ZIP DELIMITED BY SIZE

INTO TEXT-STRING,
DISPLAY TEXT-STRING,

Results

Mr. Srrlith Ir1,1in 603 Main St.
Mr. Ir1,iin Srnith
603 Main St.
Merrirriacf\' NH 03054

Merrir11acf;/

Miss Lambert Alice 1229 Exeter St.Boston/
Miss Alice Lambert
1229 Exeter St.
Boston, MA 03102

Mrs. Gilbert Rose 8 State Street New York/
Mrs. Rose Gilbert
8 State Street
Ne1,1 Yo rf\, NY 10002

Mr. Cowherd Owen
Mr, 01,1en Co1,1he rd
1064 A St.
Washin9ton1 DC 20002

2. Using the POINTER phrase:

MOVE 0 TO LINE-COUNT.
MOl.JE 1 TO PTR.

GET-WORD.
IF LINE-COUNT NOT < 4

1064 A St.

DISPLAY " " TEi<T-STRING
GO TO GOT-WORDS.

ACCEPT INPUT-MESSAGE.
DISPLAY INPUT-MESSAGE.

SAME-WORD.
MOVE PTR TO HOLD-PTR.

Washin9ton/

STRING INPUT-MESSAGE DELIMITED BY SPACE
" DELIMITED BY SIZE

INTO TEXT-STRING
WITH POINTER PTR
ON Ot,JERFLOW

STRING " " DELIMITED BY SIZE
INTO TEXT-STRING
WITH POINTER HOLD-PTR

DISPLAY 11 II TD<T-STRING
MOVE SPACES TO TEXT-STRING

ADD 1 TO LINE-COUNT
MOl,IE 1 TO PTR
GO TO SAME-WORD.

GO TO GET-WORD.
GOT-WORDS.

Ei< IT,

Procedure Division

NH03054

MA03102

NY10002

DC20002

This
exar11Ple
demonstrates
h 01,1

Results

This' examPle1 demonstrates,
the
STRING
statement
can

how, the, STRING, state1t1ent,
construct
text
strin9s

can, construct, text,
us in 9
the
POINTER
Phrase

strin9's1 usin9'1 the1 POINTER,
Phrase,

STRING
Continued

Procedure Division 5 -139

SUBTRACT

5.9.29 SUBTRACT Statement

Function

The SUBTRACT statement subtracts one, or the sum of two or more, numeric items from one or
more items. It stores the result in one or more items.

General Format

Format 1

SUBTRACT { num } ... FROM { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 2

SUBTRACT { num } ... FROM num GIVING { rsult [ROUNDED] } ... [ON SIZE ERROR stment]

Format 3

num

rsult

grp

{
CORRESPONDING }

SUBTRACT grp--1 FROM grp--2 [ROUNDED] [ON SIZE ERROR stment)
CORR

is a numeric literal or the identifier of an elementary numeric item.

is the identifier of an elementary numeric item. However, in Format 2, rsuft can be an ele­
mentary numeric edited item. It is the resultant identifier.

is the identifier of a group item.

stment
is an imperative statement.

Syntax Rule

CORR is an abbreviation for CORRESPONDING.

General Rules

1. The data descriptions of the operands need not be the same. Conversion and decimal
point alignment will occur, as needed, throughout the calculation.

2. The maximum size of each operand is 18 digits.

3. Undefined results occur when operands share a part of their storage areas.

4. In Format 1, the values of the operands before the word FROM are summed. This total
is subtracted from the value of the first rsu/t. The process repeats for each later occur­
rence of rsult.

5-140 Procedure Division

SUBTRACT
Continued

5. In Format 2, the values of the operands before the word FROM are summed. This total
is subtracted from the num following the word FROM. The result replaces the current
value of each rsu/t.

6. In Format 3, data items in grp-1 are subtracted from and stored into the corresponding
data items in grp-2.

Additional References

Section 5.1.4
Section 5.6.1
Section 5.6.3
Section 5.6.4
Section 5.6.5
Section 5.6.6
Section 5.6.2

Examples

Scope of Statements
Arithmetic Operations
ROUNDED Option
ON SIZE ERROR Option
CORRESPONDING Option
Overlapping Operands and Incompatible Data
Multiple Receiving Fields in Arithmetic
Statements

In these examples, results are shown only for data items whose values change. The examples
assume these data descriptions and beginning values:

03 ITEMA PIC S99 VALUE -85,
03 ITEMB PIC 99 VALUE 2,
03 I TEMC !,JALUE II 123 II.

05 ITEMD OCCURS 3 TIMES
PIC 9,

03 ITEME PIC S99 VALUE -95,

1. Without GIVING phrase:

SUBTRACT 2 ITEMB FROM ITEMA,

2. SIZE ERROR clause:

(When the SIZE ERROR condition occurs, the value of the
resultant identifier does not change.)

SUBTRACT 38 FROM ITEMA
ON SIZE ERROR

MOt)E 0 TO I TEMB,

Initial
Value

--85
2

123

-95

Results

ITEMA = --89

ITEMA = --85
ITEMB = 0

Procedure Division 5 -141

SUBTRACT
Continued

5 -142

3. Multiple receiving fields:

(The operations proceed from left to right. Therefore, the sub­
script for ITEMB is evaluated after the subtraction changes its
value.)

SUBTRACT 1 FROM ITEMB ITEMD <ITEMB),

4. GIVING phrase:

SUBTRACT ITEME ITEMD <ITEMB) FROM ITEMA
Gil.JING ITEMB.

Procedure Division

ITEMS= 1
ITEMD (1) = 0

ITEMS= 8

UNSTRING

5.9.30 UNSTRING Statement

Function

The UNSTRING statement separates contiguous data in a sending field and stores it in one or
more receiving fields.

General Format

UNSTRING src-string [DELIMITED BY [ALL] delim [OR [ALL] delim J ... J

src-string

INTO { dest-string [DELIMITER IN delim-dest] [COUNT IN countr] } ...

[WITH POINTER pointr]

[TALLYING IN tally-ctr]

[ON OVERFLOW stment]

is the identifier of an alphanumeric class data item. Src-string is the sending field.

delim
is a nonnumeric literal or the identifier of an alphanumeric data item. It is the delimiter for
the UNSTRING operation.

dest-string
is the identifier of an alphanumeric, alphabetic, or numeric DISPLAY data item. It is the
receiving field for the data from src-string.

delim-dest
is the identifier of an alphanumeric data item. It is the receiving field for delimiters.

countr
is the identifier of an elementary numeric data item described as an integer. It contains the
count of characters moved.

pointr
is the identifier of an elementary numeric data item described as an integer. It points to the
current character position in src-string.

tally-ctr
is the identifier of an elementary numeric data item described as an integer. It counts the
number of dest-string fields accessed during the UNSTRING operation.

stment
is an imperative statement.

Procedure Division 5-143

UNSTRING
Continued

Syntax Rules

1. Literals can be any figurative constant other than ALL literal.

2. Pointr must be large enough to contain a value one greater than the size of src-string.

3. The DELIMITER IN and COUNT IN phrases can appear only if there is a DELIMITED BY
phrase.

4. Countr, pointr, dest-string, and tally-ctr cannot define the assumed decimal scaling
position character Pin its PICTURE clause.

General Rules

1. Countr represents the number of characters in src-string isolated by the delimiters for
the move to dest-string. The count does not include the delimiter characters.

2. When delim is a figurative constant, its length is one character.

3. When the ALL phrase is present:

• One occurrence, or two or more contiguous occurrences, of delim (whether or not
they are figurative constants) is treated as only one occurrence

• One occurrence of delim is moved to delim-dest when there is a DELIMITER IN
phrase

4. When any examination finds two contiguous delimiters, the current dest-string is
filled with:

• Spaces, if its class is alphabetic or alphanumeric

• Zeros, if its class is numeric

5. Delim can contain any characters in the computer character set.

6. Each delim is one delimiter. When delim contains more than one character, all its
characters must be in src-string (in contiguous positions and the given order) to
qualify as a delimiter.

7. When the DELIMITED BY phrase contains an OR phrase, an "OR" condition exists
between all occurrences of delim. Each delim is compared to src-string. If a match
occurs, the character(s) in src-string is a single delimiter. No character(s) in src-string
can be part of more than one delimiter.

8. Each delim applies to src-string in the order it appears in the UNSTRING statement.

9. When execution of the UNSTRING statement begins, the current receiving field is the
first dest-string.

10. If there is a POINTER phrase, the string of characters in src-string is examined, begin­
ning with the position indicated by pointr. Otherwise, examination begins with the
leftmost character position.

11. If there is a DELIMITED BY phrase, examination proceeds to the right until the
UNSTRING statement detects delim. (See General Rule 6.)

5 -144 Procedure Division

UNSTRING
Continued

12. If there is no DELIMITED BY phrase, the number of characters examined equals the
size of the current dest-string. However, if the sign of dest-string is defined as occupy­
ing a separate character position, UNSTRING examines one less character than the
size of dest-string. If dest-string is a variable-length data item, its current size deter­
mines the number of characters examined.

13. If the UNSTRING statement reaches the end of src-string before detecting the delimit­
ing condition, examination ends with the last character examined.

14. The characters examined (excluding delim) are:

• Treated as an elementary alphanumeric data item

• Moved to the current dest-string according to the MOVE statement rules

15. When there is a DELIMITER IN phrase, the delimiter is:

• Treated as an elementary alphanumeric data item

• Moved to delim-dest according to the MOVE statement rules

If the delimiting condition is the end of src-string, delim-dest is space-filled.

16. The COUNT IN phrase causes the UNSTRING statement to:

• Count the number of characters examined (excluding the delimiter)

• Move the count to countr according to the elementary move rules

17. When there is a DELIMITED BY phrase, UNSTRING continues examining characters
immediately to the right of the delimiter. Otherwise, examination continues with the
character immediately to the right of the last one transferred.

18. After data transfers to dest-string, the next dest-string becomes the current receiving
field.

19. The process described in General Rules 12 through 18 repeats until either:

• There are no more characters in src-string

• The last dest-string has been processed

20. The UNSTRING statement does not initialize pointr or tally-ctr. The program must set
their initial values before executing the UNSTRING statement.

21. The UNSTRING statement adds one to pointr for each character it examines in src­
string. When UNSTRING execution ends, pointr contains a value equal to its begin­
ning value plus the number of characters the statement examined in src-string.

22. At the end of an UNSTRING statement with the TALLYING phrase, tally-ctr contains a
value equal to its beginning value plus the number of dest-string fields the statement
accessed.

23. An overflow condition can arise from either of these conditions:

• When the UNSTRING statement begins, the value of pointr is less than one or
greater than the number of characters in src-string.

• During UNSTRING execution, all dest-string fields have been processed, and there
are unexamined src-string characters.

Procedure Division 5-145

UNSTRING
Continued

24. When an overflow condition occurs, the UNSTRING operation ends. If there is an ON
OVERFLOW phrase, stment executes. Otherwise, control passes to the end of the
UNSTRING statement.

25. Subscripting or indexing evaluation for src-string, pointr, and tally-ctr occurs only
once, just before the statement transfers any data.

26. Subscripting or indexing evaluation for delim occur only once, just before the state­
ment examines src-string for its set of delimiters.

27. Subscripting or indexing evaluation for dest-string, delim-dest, and countr occur just
before the statement transfers data to any of these data items.

28. Undefined results occur when operands overlap; that is, when sending fields and
receiving fields share a part of their storage areas.

Additional References

Section 5.1.4
Section 5.9.15

Scope of Statements
MOVE Statement

Examples

The examples assume these data descriptions:

WORKING-STORAGE SECTION,
01
01

0 1
01
01
01
01
01

INMESSAGE PIC }((20).
THEDATE,
03 THEYEAR PIC X>(
03 THEMONTH PIC }(}(

03 THEDAY PIC }{}{

HOLD-DELIM PIC XX+
PTR PIC 88.
FIELD-COUNT PIC 88.
MONTH-COUNT PIC 88.
DAY-COUNT PIC 88.
YEAR-COUNT PIC 88+

JUST RIGHT,
JUST RIGHT,
JUST RIGHT,

1. With OVERFLOW phrase:

5-146

DISPLAY "Enter a date: " NO ADIJANCING,
ACCEPT INMESSAGE+
UNSTRING INMESSAGE

DELIMITED BY "-" OR "/" OR ALL II II

INTO THEMONTH DELIMITER IN HOLO-DELIM
THEDAY DELIMITER IN HOLD-DELIM
THEYEAR DELIMITER IN HOLD-DELIM

ON OVERFLOW MOVE ALL "O" TO THEDATE,
INSPECT THEDATE REPLACING ALL " " BY "O",
DISPLAY THEDATE,

Procedure Division

(continued on next page)

Results

Enter a date: 6/13/80
800613

Enter a date: 6-13 80
800613

Enter a date: 6-13 80
800613

Enter a date: 6/13/80/2
000000

Enter a date: 1-2~3
030102

2. With POINTER and TALLYING phrases:

DISPLAY "Enter t1A10 dates in a ro1A1: "NO ADl,JANCING.
ACCEPT INMESSAGE.
MDl,JE 1 TO PTR,
PERFORM DISPLAY-TWO 2 TIMES.
GO TO DISPLAYED-TWO,

DISPLAY-TWO.
MOVE SPACES TO THEDATE.
MOVE 0 TO FIELD-COUNT.
UNSTRING INMESSAGE

DELIMITED BY "-" OR "/" OR ALL " "
INTO THEMONTH DELIMITER IN HOLD-DELIM

THEDAY DELIMITER IN HOLD-DELIM
THEYEAR DELIMITER IN HOLD-DELIM

WITH POINTER PTR
TALLYING IN FIELD-COUNT.

INSPECT THEDATE REPLACING ALL " " BY "O",
DISPLAY THEDATE " " PTR " " FIELD-COUNT.

DISPLAYED-TWO.
Ei<I T.

Results

Enter two dates in a row: 6/13/80 8/15/80
800613 09 03
800815 21 03

Enter two dates in a row: 10 15 80-1 1 81
801015 10 03
810101 21 03

Enter two dates in a row: 6/13/80-12/31/80
800613 09 03
801231 21 03

Enter two dates in a row: G/13/80-12/31
800613 09 03
001231 21 02

Enter two dates in a row: 6/13/80/12/31/80
800613 09 03
801231 21 03

UNSTRING
Continued

Procedure Division 5 -147

UNSTRING
Continued

3. With COUNT phrase:

5-148

DISPLAY "Enter t1.10 dates in a ro1A1: " NO ADt.JANCING+
ACCEPT INMESSAGE+
MO!.JE 1 TO PTR.
PERFORM DISPLAY-TWO 2 TIMES+
GO TO DISPLAYED-TWO+

DISPLAY-TWO.
MOVE SPACES TO THEDATE+
MOVE 0 TO FIELD-COUNT MONTH-COUNT DAY-COUNT YEAR-COUNT,
UNSTRING INMESSAGE

DELIMITED BY "-" OR "/" OR ALL II "

INTO THEMONTH DELIMITER IN HOLD-DELIM COUNT MONTH-COUNT
THEDAY DELIMITER IN HOLD-DELIM COUNT DAY-COUNT
THEYEAR DELIMITER IN HOLD-DELIM COUNT YEAR-COUNT

WITH POINTER PTR
TALLYING IN FIELD-COUNT+

INSPECT THEDATE REPLACING ALL " " BY "0".
DISPLAY THEDATE " " PTR " " FIELD-COUNT
II : " MONTH-COUNT "-" DAY-COUNT "-" YEAR-COUNT.

DISPLAYED-TWO.
E>(IT+

Results

Enter two dates in a row: 6/13/80 8/15/80
800613 08 03 01-02-02
800815 21 03 : 01-02-02

Enter two dates in a row: 10 15 80-1 1 81
801015 10 03 02-02-02
810101 21 03 : 01-01-02

Enter two dates in a ro1.1: 6/13/80-12/31/80
800613 08 03 01-02-02
801231 21 03 : 02-02-02

Enter two dates in a row: 6/13/80-12/31
800613 08 03 01-02-02
001231 21 02 : 02-02-00

Enter two dates in a row: 6/13/80/12/31/80
800613 08 03 01-02-02
801231 21 03 : 02-02-02

Procedure Division

USE

5.9.31 USE Statement

Function

The USE statement specifies Declarative procedures to handle input-output errors. These pro­
cedures supplement the standard procedures in the COBOL-81 Object Time System (OTS) and
PDP-11 Record Management Services (RMS-11).

General Format

{
EXCEPTION }

USE AFTER STANDARD PROCEDURE ON ---
ERROR

file-name

{ file-name } ...
INPUT
OUTPUT
1-0
EXTEND

is the name of a file connector described in a file description entry in a Data Division. It
cannot refer to a sort or merge file.

Syntax Rules

1. A USE statement can be used only in a sentence immediately after a section header in
the Procedure Division Declaratives area. It must be the only statement in the sen­
tence. The rest of the section can contain zero, one, or more paragraphs to define the
Declarative procedures.

2. The USE statement itself does not execute. It defines the conditions that cause execu­
tion of the Declarative.

3. ERROR and EXCEPTION are equivalent and interchangeable.

General Rules

1. A Declarative executes automatically:

• After standard input-output error processing end

• When an invalid key or at end condition results from an input-output statement that
has no INVALID KEY or AT END clause

2. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input or output condition occurs that would result in a nonzero value in a FILE STATUS
data item. However, it does not execute if: (a) the condition is invalid key and there is
an INVALID KEY phrase, or (b) the condition is at end, and there is an AT END phrase.

3. A procedure in the Declarative Section cannot refer to a procedure that is not in the
Declarative Section, and vice versa.

4. After a Declarative executes, control returns to the next executable statement in the
invoking routine, if one is defined. Otherwise, control transfers according to the rules
for explicit and implicit transfers of control.

Procedure Division 5 -149

USE
Continued

5. One input-output error cannot cause more than one USE AFTER EXCEPTION procedure
to execute.

6. More than one USE AFTER EXCEPTION procedure can apply to an input-output opera­
tion when there is one procedure for file-name and another for the applicable open
mode. In this case, only the procedure for file-name executes.

7. If an input-output error occurs and there is no applicable USE AFTER EXCEPTION pro­
cedure, the image terminates abnormally unless the condition is invalid key or at end
and the input-output statement has the appropriate phrase.

8. One USE AFTER EXCEPTION procedure can invoke another. However, a USE AFTER
EXCEPTION procedure must return control to the routine that invoked it before it can
be invoked again.

Additional References

Section 5.2

Part IV of the COBOL-81 User's
Guide for your system

Example

Transfer of Program Flow

Refer to the chapter on file 1-0
exception conditions handling

(The notes following this example explain execution of the USE procedures shown.)

PROCEDURE DIVISION.
DECLARATI l,JES,
000-FILEA-PROBLEM SECTION,

USE AFTER STANDARD ERROR PROCEDURE ON FILEA,
001-PROCA.

IF FILEA-STATUS ,,,
010-ALL-EXTEND-PROBLEM SECTION.

USE AFTER EXCEPTION PROCEDURE ON EXTEND.
011-PROCA,

DISPLAY •••
020-I-O-PROBLEM SECTION,

USE AFTER ERROR PROCEDURE ON I-0.
021-PROCA,

DISPLAY •••
END DECLARATIVES,

Notes

1. If any input-output statement for FILEA results in an error, 000-FILEA-PROBLEM
executes.

2. If an error occurs because of an input-output statement for any file open in the extend
mode except FILEA, 010-ALL-EXTEND-PROBLEM executes.

3. If an error occurs because of an input-output statement for any file open in the 1-0
mode except FILEA, 020-1-0-PROBLEM executes.

5-150 Procedure Division

WRITE

5.9.32 WRITE Statement

Function

The WRITE statement releases a logical record to an output or input-output file. It can also posi­
tion lines vertically on a logical page.

General Format

Format 1

WRITE rec-name [FROM src-item]

Format 2

j BEFORE l ADVANCING

l AFTER j

{
END-OF-PAGE l
EOP j

advance-num [LINE]

LINES

PAGE

stment l
WRITE rec-name [FROM src-item] [INVALID KEY stment]

rec-name
is the name of a logical record described in the Data Division File Section. It cannot be
qualified. The logical record cannot be in a sort-merge file description entry.

src-item
is the identifier of the data item that contains the data.

advance-num
is an integer or the identifier of an unsigned data item described as an integer. Its value can
be zero.

stment
is an imperative statement.

Syntax Rules

1. Format 1 must be used for sequential files.

2. Format 2 must be used for relative and indexed files.

3. If there is an END-OF-PAGE phrase, the file description entry containing rec-name
must have a LINAGE clause.

Procedure Division 5 -151

WRITE
Continued

4. The words END-OF-PAGE and EOP are equivalent.

5. In Format 2, there must be an INVALID KEY phrase if there is no applicable USE AFTER
EXCEPTION procedure for the file.

6. Rec-name and scr-item must not refer to the same storage area.

General Rules

All Files
I

1. The record is no longer available in rec-name after a WRITE statement successfully
executes. However, if the associated file-name is in a SAME RECORD AREA clause, the
record is available in rec-name. In this case, the record is also available in the record
areas of other file-names in the same SAME RECORD AREA clause.

2. Rules for the FROM phrase appear in Section 5.7.3, FROM Option.

3. For mass storage files, the WRITE statement does not affect the Next Record Pointer.

4. The WRITE statement updates the value of the FILE STATUS data item for the file.

5. A file's maximum record size is set when it is created. It cannot be changed later.

6. On a mass storage device, the number of characters required to store a logical record
in a file depends on file organization and record type.

7. WRITE statement execution releases a logical record to PDP-11 Record Management
Services (RMS-11).

Sequential Files

8. The file must be open in the OUTPUT, 1-0, or EXTEND mode when the WRITE state­
ment executes.

9. The sequence of records in a sequential file is set by the order of WRITE statement
executions that create the file. The relationship does not change, except when
records are added to the end of the file.

10. For a sequential file open in the extend mode, the WRITE statement adds records to
the end of the file as if the file were open in the output mode. If the file has records,
the first record written after execution of an OPEN statement with the EXTEND phrase
is the successor of the file's last record.

11. When a program tries to write beyond a sequential file's externally defined bound­
aries, an exception condition exists as follows:

5 -152

• The contents of the record area are unaffected.

• The value of the FILE STATUS data item forthe file indicates a boundary violation.

• If a USE AFTER EXCEPTION procedure applies to the file, it executes.

• If there is no applicable USE AFTER EXCEPTION procedure, the program terminates
abnormally.

Procedure Division

WRITE
Continued

12. If the end of a reel/unit is recognized, and the WRITE does not exceed the externally
defined file boundaries:

• A reel/unit swap occurs

• The Current Volume Pointer points to the file's next reel/unit

13. The ADVANCING and END-OF-PAGE phrases control the vertical positioning of each
line on a logical representation of a printed page. If there is no ADVANCING phrase,
the default is AFTER ADVANCING 1 LINE.

If there is an ADVANCING phrase:

• The WRITE statement advances the logical page by the number of lines specified by
the value of advance-num

• The BEFORE phrase causes the statement to write the line before advancing the logi­
cal page

• The AFTER phrase causes the statement to write the line after advancing the logical
page

• The PAGE phrase writes the line before or after (depending on the phrase) position­
ing the device to the next logical page

If the associated file description entry has a LINAGE clause, the device is positioned
to the first line that can be written on the next logical page. (The LINAGE clause
specifies which line is first.)

If there is no associated LINAGE clause, the device is positioned to the first line on
the next logical page.

If page has no meaning for the associated device, PAGE is the same as ADVANCING
1 LINE. However, the BEFORE and AFTER phrases affect operation sequence.

14. If the program reaches end of the logical page during execution of a WRITE statement
with the END-OF-PAGE phrase, stment executes. The LINAGE clause associated with
the file specifies the logical end.

15. An end-of-page condition is reached when a WRITE statement with the END-OF-PAGE
phrase causes printing or spacing in the footing area of the page body.

This condition occurs when the WRITE causes the LINAGE-COUNTER to equal or
exceed the value in the LINAGE clause FOOTING phrase. Stment then executes after
rec-name is written to the file.

16. An automatic page overflow condition occurs when the page body cannot fully
accommodate a WRITE statement (with or without the END-OF-PAGE phrase).

This condition occurs when WRITE statement execution would cause the LINAGE­
COUNTER to exceed the number of lines in the page body specified in the LINAGE
clause. When this happens, the line is presented on the logical page before or after
(depending on the phrase) device positioning. The device is positioned to the first line
that can be written on the next logical page (as described in the LINAGE clause).
Stment then executes after rec-name is written to the file.

Procedure Division 5 -153

WRITE
Continued

17. If there is no LINAGE clause FOOTING phrase, the WRITE statement operates as if the
FOOTING phrase value were the same as the number of lines on the logical page. That
is, the end-of-page condition occurs when the WRITE statement causes the LINAGE­
COUNTER to equal the number of lines on the logical page.

18. If there is a FOOTING phrase, and a WRITE statement would cause the LINAGE­
COUNTER to exceed both the number of lines in a logical page and the value in the
LINAGE clause FOOTING phrase, the WRITE statement operates as if there were no
FOOTING phrase.

Relative Files

19. The file must be open in the OUTPUT or 1-0 mode when the WRITE statement
executes.

20. When a relative file with sequential access mode is open in the output mode, the
WRITE statement releases a record to RMS-11. The first record has a relative record
number of 1. Subsequent records have relative record numbers of 2, 3, 4, and so on. If
rec-name has an associated RELATIVE KEY data item, the WRITE places the relative
record number of the released record into it.

21. When a relative file with random or dynamic access mode is open in the output mode,
the program must place a value in the RELATIVE KEY data item before executing the
WRITE statement. The value is the relative record number to associate with the record
in rec-name. The WRITE statement releases the record to RMS-11.

22. When a relative file is open in the 1-0 mode and the access mode is random or
dynamic, the program must place a value in the RELATIVE KEY data item before
executing the WRITE statement. The value is the relative record number to associate
with the record in rec-name. Executing a Format 2 WRITE statement releases the
record to RMS-11.

23. The invalid key condition exists when either:

• The access mode is random or dynamic, and the RELATIVE KEY data item specifies a
record that already exists in the file

• The program tries to write a record beyond the externally defined file boundaries.

24. When the program detects an invalid key condition, WRITE statement execution is
unsuccessful. The following results occur:

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to indicate the
cause of the condition.

• Program execution continues according to the rules for the invalid key condition.

Indexed Files

25. The file must be open in the OUTPUT or 1-0 mode when the WRITE statement
executes.

26. Executing a Format 2 WRITE statement releases a record to RMS-11. The contents of
the record keys enable later record access based on any defined key.

5 -154 Procedure Division

27. The value of the prime record key must be unique in the file's records.

WRITE
Continued

28. The program must set the value of the prime record key data item before executing
the WRITE statement.

29. If the file is open in the sequential access mode, the program must release records in
ascending order of prime record key values.

30. If the file is open in the random or dynamic access mode, the program can release
records in any order.

31. When the file description entry has an ALTERNATE RECORD KEY clause, the alternate
record key value can be non unique only if there is a DUPLICATES phrase, When a pro­
gram later accesses these records sequentially, the retrieval order is the same as the
order in which they were written.

32. The invalid key condition is caused by any of the following:

• The file is open in the sequential access mode and in the output mode, and the
prime record key value is not greater than the prime record key value of the pre­
vious record.

• The file is open in the output or 1-0 mode, and the prime record key value dupli­
cates an existing record's prime record key value.

• The file is open in the output or 1-0 mode, and the value of an alternate record key
(for which duplicates are not allowed) duplicates the value of the corresponding
data item in an existing record.

• The program tries to write a record beyond the externally defined file boundaries.

33. When the program detects an invalid key condition, WRITE statement execution is
unsuccessful. The following results occur:

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to indicate the
cause of the condition.

• Program execution continues according to the rules for the invalid key condition.

34. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an
input or output condition occurs that would result in a nonzero value in a FILE STATUS
data item. However, it does not execute if: (a) the condition is invalid key, and (b)
there is an INVALID KEY phrase.

Procedure Division 5 -155

WRITE
Continued

Technical Note

WRITE statement execution can result in the FILE STATUS data item values summarized in the
following table:

FILE File Access
STATUS Organization Method Meaning

00 All All Successful
02 Ind All Created duplicate Alternate Key
21 Ind Seq Attempted non-ascending key value (invalid key)
22 Ind, Rel All Duplicate key (invalid key)
24 Ind, Rel All Boundary violation (invalid key)
34 Seq Seq Boundary violation
92 Ind, Rel All Record locked by another program
94 All All File not open, or incompatible

open mode
30 All All All other permanent errors

Additional References

Section 3.2.2
Section 4.1.1.3
Section 5.7
Section 5.7.1
Section 5.7.3
Section 5.9.17

1-0-CONTROL Paragraph, SAME Clause
Multiple Record Descriptions
1-0 Status
INVALID KEY Phrase
FROM Option
OPEN Statement

5-156 Procedure Division

Chapter 6
The Copy Statement

Function

The COPY statement includes text from a library file in a COBOL source program.

General Format

COPY text-name [REPlACING

text-name

{
literal-1 } BY

word-1 j
{

literal-2 l
word-2 j

is the name of a COBOL library file available during compilation. It must be a nonnumeric
literal or a user-defined word representing the complete or partial specification of the
library file. If it is a user-defined word, the compiler treats it as if it were enclosed in quota­
tion marks.

literal-1
word-1

are arguments that the compiler compares against character-strings in the library text.

literal-2
word-2

are replacement items that the compiler inserts into the source program.

Syntax Rules

1. A COPY statement can be used anywhere that a character-string or separator (other
than a closing quotation mark) can be used in a program.

2. A space must precede the word COPY.

3. The COPY statement must be terminated by the separator period.

4. Word-1 or word-2 can be any single COBOL word.

6-1

General Rules

1. The COPY statement causes the compiler to copy the library text associated with
text-name into the program. The library text logically replaces the COPY statement,
beginning with the word COPY and ending with the separator period (inclusive).

2. The compiler evaluates the source program after processing all COPY statements.

3. The COPY statement does not change the original source program text file. Rather, it
causes the compiler to create a temporary source file that is a composite of the origi­
nal source text and the library text that replaces the COPY statement. The compiler
performs syntax evaluation on this temporary source file.

4. Library text must follow the source reference format rules. Library text and source
program formats must be the same; that is, both must be ANSI format or both must be
terminal format.

5. If there is no REPLACING phrase, the compiler copies the library text without change.

6. If there is a REPLACING phrase, the compiler changes the library text as it copies it.
The compiler replaces each successfully matched occurrence of an argument (/itera/-1
or word-1) in the library text by the corresponding replacement item (/iteral-2 or
word-2).

7. If there is a REPLACING phrase, COPY statement execution proceeds as follows:

a. The compiler compares the first character-string in the library text with each
REPLACING phrase argument until (a) a matc:h occurs or (b) there are no more
arguments.

b. If no match occurs after the compiler compares all REPLACING phrase arguments
with the character-string, the compiler copies the character-string from the library
text into the source program.

The compiler then resumes the matching operation, using the next character-string
in the library text, and matching it to each REPLACING phrase argument, in turn.

c. If a match occurs between a REPLACING phrase argument and a library text
character-string, then the compiler copies the replacement item (word-2 or
literal-2) into the source program.

The compiler then resumes the matching operation, as described in b.

d. The copy operation is complete when each successive character-string in the
library text has been either copied to the source program or replaced in the source
program by word-2 or litera/-2.

8. The compiler copies comment lines or blank lines in the library text into the source
program unchanged (see Example 1).

Comment lines that are contained within the bounds of literal-1 are copied, but they
appear immediately before the literal in the resultant source file.

6-2 The Copy Statement

9. The source program cannot contain a COPY statement after the compiler processes a
COPY statement. In other words:

• The library text cannot contain a COPY statement unless the replacement operation
changes the word COPY in the resultant source file.

• The replacement item in the REPLACING phrase must not insert a COPY statement
into the resultant source file.

10. When the compiler copies a character-string from the library text, it places the
character-string in the source program beg'inning in the same area as in the library
text. That is, a character-string that begins in Area A in the library text begins in Area A
of the source program after the copy operation. Similarly, a character-string that
begins in Area Bin the library text begins somewhere in Area B of the source program.

Tab and space characters are copied to the source program as they appear in the
library text. However, commas and semicolons are not copied to the source program.

Technical Notes

1. When the COPY statement executes, Record Management Services (RMS-11):

• Removes leading and trailing spaces and tab characters from the file specification

• Translates lowercase letters in the file specification to uppercase

2. The default file type for text-name is LIB. For example, "CUSTFILE" becomes
"CUSTFI LE. LIB".

Examples

The examples that follow copy library text from two library files:

Contents of "CUSTFILE.LIB":

Ol@IDCUSTOMER-REC.
@@03 CUST-REC-KEY@IDPIC)<C03l t,JALUE "KEY",
@@03 CUST-NAME@IDPIC)-((25),
@@03 CUST-ADDRESS,
@ID 05 CUST-CUST-STREET@IDP IC }((20 l,
@ID 05 CUST-CITY@IDPIC){(20),
@ID 05 CUST-STATE@IDPIC)C<.
@ID 05 CUST-ZIP@IDPIC 9(5),
* THE COMPILER IGNORES COMMENT LINES AND BLANK LINES

* FOR MATCHING PURPOSES
@@03 CUST-ORDERS OCCURS ><YZ TI MES,
@ID 05 CUST-ORDER@IDPIC 9(8),
@ID 05 CUST-ORDER-DATE@IDPIC 9(8),

Contents of "CPROC01.LIB":

@@ADD CUST-ORDER-AMT CXl TO TOTAL-ORDERS,
@@COMPUTE At.JERAGE-ORDER = (TOTAL-ORDERS - CANCELLED-ORDERS l
@ID I NUMBER-ORDERS.
@IDMOlJE CUST-REC-KEY
@ID OF CUSTOMER-REC TO CUST- ID 00,
@@MOVE CUST-REC-KEY
@ID OF KEY-HOLD TO NEW-KEY.

The Copy Statement 6-3

The original source program text is in lowercase. The extracts from resulting source program
listings show how replacements occur.

1. No REPLACING phrase:

(The compiler copies the library text without change. In this example, syntax errors
result from invalid library text.)

2
3
4
5
GL
7L
BL
9L
10L
11L
12L
13L
14L
15L
1GL
17L

*** F 223

*** I 501

18L
19L

identification division.
Pro•raM-id+ cust01+
data division.
workin•-stora•e section+
COP>' custfile.

01 CUSTOMER-REC,
03 CUST-REC-KEY PIC XC031 VALUE "KEY",
03 CUST-NAME PIC XC251.
03 CUST-ADDRESS,

05 CUST-CUST-STREET
05 CUST-CITY
05 CUST-STATE
05 CUST-ZIP

* THE COMPILER IGNORES COMMENT

* FOR MATCHING PURPOSES

PIC
PIC
PIC
PIC

LINES AND

03 CUST-ORDERS OCCURS XYZ TIMES,

}{ (20) +

){(20 I+
}{.X •

9(51 +
BLANK LINES

This is not a valid clause in a record descriPtion.
*COMPilation resuMed at this Point.

05 CUST-ORDER PIC 9(6),
05 CUST-ORDER-DATE PIC 9(6),

2. Replacing a word by a literal:

23L
2t'.IL
25L
26L
27L
28L
29L
30L
31L
32L
33L
3t'.IL
35L
36L

COPY custfile rePlacin• xyz by 6.
01 CUSTOMER-REC,

03 CUST-REC-KEY PIC){(031 t.JALUE "KEY",
03 CUST-NAME PIC XC251,
03 CUST-ADDRESS,

05 CUST-CUST-STREET PIC xc201.
05 CUST-CITY PIC XC20),
05 CUST-STATE PIC XX,
05 CUST-ZIP PIC 9(51+

* THE COMPILER IGNORES COMMENT LINES AND BLANK LINES

* FOR MATCHING PURPOSES
03 CUST-DRDERS OCCURS 6 TIMES,

05 CUST-ORDER PIC 9(6),
05 CUST-ORDER-DATE PIC 9C61,

6-4 The Copy Statement

3. Copying Procedure Division text without change:

37
38
39L
40L
41L
42L
43L
44L
45L
48

moue cust-rec-keY
of keY-hold to new-key, COPY cProc01.

ADD CUST-ORDER-AMT CXl TO TOTAL-ORDERS,
COMPUTE AVERAGE-ORDER = CTOTAL-OROERS - CANCELLED-ORDERS>

I NUMBER-ORDERS,
MOVE CUST-REC-KEY

OF CUSTOMER-REC TO CUST-ID (}(),
MOVE CUST-REC-KEY

OF KEY-HOLD TO NEW-KEY,
add 1 to cust-transactions.

4. Replacing a word by a longer item:

48
49
50
51L
52L
53L
54L
55L
5GL
57L
58L
59L
GOL
Gil
82

moue cust-rec-keY
of keY-hold to new-key, coPY cProc01

replacing x by cust-sub.
ADD CUST-DRDER-AMT C

cust-sub
l TO TOTAL-ORDERS,

COMPUTE AVERAGE-ORDER = <TOTAL-ORDERS - CANCELLED-ORDERS>
I NUMBER-ORDERS,

MOVE CUST-REC-KEY
OF CUSTOMER-REC TO CUST-ID

MOVE CUST-REC-KEY
OF KEY-HOLD TO NEW-KEY,

add 1 to cust-transactions.

cust-sub
) f

5. COPY statement in the middle of a source program line:

(This example shows the appearance of the source listing when the COPY statement
both follows and precedes other text on the same line.

In the source program, line 75 is:

add 1 to x. COPY cProc01, subtract from x,

This is the resulting source program listing.

75
7GL
77L
78L
79L
SOL
81L
82L
83

add 1 to x. COPY CProc01.
ADD CUST-ORDER-AMT CXl TO TOTAL-ORDERS,
COMPUTE AVERAGE-ORDER = <TOTAL-ORDERS - CANCELLED-ORDERS>

I NUMBER-ORDERS,
MOVE CUST-REC-KEY

OF CUSTOMER-REC TO CUST-ID CXl,
MOVE CUST-REC-KEY

OF KEY-HOLD TO NEW-KEY,
subtract 1 from x.

The Copy Statement 6-5

Appendix A
COBOL-81 N AX-11 COBOL Reserved Words

Some of the following reserved words pertain to features only available in VAX-11 COBOL.
However, to ensure upward compatibility between the two COBOL compilers, all words
reserved in VAX-11 COBOL programs are also reserved in COBOL-81 programs.

ACCEPT CALL CONTROLS
ACCESS CANCEL CONVERSION
ADD CD CONVERTING
ADVANCING CF COPY
AFTER CH CORR
ALL CHARACTER CORRESPONDING
ALLOWING CHARACTERS COUNT
ALPHABET CLOCK-UNITS CURRENCY
ALPHABETIC CLOSE CURRENT
ALPHABETIC-LOWER COBOL
ALPHABETIC-UPPER CODE DATA
ALPHANUMERIC CODE-SET DATE
ALPHANUMERIC-EDITED COLLATING DATE-COM Pl LED
ALSO COLUMN DATE-WRITIEN
ALTER COMMA DAY
ALTERNATE COMMIT DAY-OF-WEEK
AND COMMON DB
ANY COMMUNICATION DB-ACCESS-CONTROL-KEY
APPLY COMP DB-CONDITION
ARE COMP-1 DB-CURRENT-RECORD-ID
AREA COMP-2 DB-CURRENT-RECORD-NAME
AREAS COMP-3 DB-EXCEPTION
ASCENDING COMP-4 DB-RECORD-NAME
ASSIGN COMP-5 DB-SET-NAME
AT COMP-6 DB-STATUS
AUTHOR COMPUTATIONAL DE

COMPUTATIONAL-1 DEBUG-CONTENTS
BATCH COMPUTATIONAL-2 DEBUG-ITEM
BEFORE COMPUTATIONAL-3 DEBUG-LENGTH
BEGINNING COMPUTATIONAL-4 DEBUG-LINE
BELL COMPUTATIONAL-5 DEBUG-NAME
BIT COMPUTATIONAL-6 DEBUG-NUMERIC-CONTENTS
BITS COMPUTE DEBUG-SIZE
BLANK CONCURRENT DEBUG-ST ART

BLINKING CONFIGURATION DEBUG-SUB
BLOCK CONNECT DEBUG-SUB-1

BOLD CONTAINS DEBUG-SUB-2

BOOLEAN CONTENT DEBUG-SUB-3

BOTIOM CONTINUE DEBUG-SUB-ITEM

BY CONTROL DEBUG-SUB-N

A-1

DEBUG-SUB-NUM END-RECONNECT 1-0
DEBUGGING END-RETURN 1-0-CONTROL
DECIMAL-POINT END-REWRITE IDENTIFICATION
DECLARATIVES END-ROLLBACK IF
DEFAULT END-SEARCH IN
DELETE END-START INCLUDING
DELIMITED END-STORE INDEX
DELIMITER END-STRING INDEXED
DEPENDING END-SUBTRACT INDICATE
DESCENDING END-UNSTRING INITIAL
DESCRIPTOR END-WRITE INITIALIZE
DESTINATION ENDING INITIATE
DETAIL ENTER INPUT
DICTIONARY ENVIRONMENT INPUT-OUTPUT
Di SABLE EOP INSPECT
DISCONNECT EQUAL INSTALLATION
DISPLAY EQUALS INTO
DISPLAY-6 ERASE INVALID
DISPLAY-7 ERROR iS
DISPLAY-9 ESI
DIVIDE EVALUATE

JUST
DIVISION EVERY

JUSTIFIED
DOWN EXCEEDS
DUPLICATE EXCEPTION
DUPLICATES EXCLUSIVE KEEP
DYNAMIC EXIT KEY

EXOR
ECHO EXTEND LABEL
EGI EXTERNAL LAST
ELSE
EMI LO

EMPTY FAILURE LEADING

ENABLE FALSE LEFT

END FD LENGTH

END-ACCEPT FETCH LESS

END-ADD FILE LIMIT

END-CALL FILE-CONTROL LIMITS

END-COMMIT FILLER LINAGE

END-COMPUTE FINAL LINAGE-COUNTER

END-CONNECT FIND LINE

END-DELETE FINISH LINE-COUNTER

END-DISCONNECT FIRST LINES

END-DIVIDE FOOTING LINKAGE

END-ERASE FOR LOCALLY

END-EVALUATE FREE LOCK

END-FETCH FROM LOW-VALUES

END-FIND
END-FINISH

GENERATE MATCHES
END-FREE GET MEMBER
END-GET

GIVING MEMBERSHIP
END-IF

GLOBAL MEMORY
END-KEEP

GO MERGE
END-MODIFY

GREATER MESSAGE
END-MULTIPLY

GROUP MODE
END-OF-PAGE MODIFY
END-PERFORM MODULES
END-READ HEADING MOVE
END-READY HIGH-VALUE MULTIPLE
END-RECEIVE HIGH-VALUES MULTIPLY

A-2 COBOL-81NAX-11 Reserved Words

NATIVE READERS SET
NEGATIVE READY SETS
NEXT REALM SIGN
NO REALMS SIZE
NON-NULL RECEIVE SORT
NOT RECONNECT SORT-MERGE
NULL RECORD SOURCE
NUMBER RECORD-NAME SOURCE-COMPUTER
NUMERIC RECORDS SPACE
NUMERIC-EDITED REDEFINES SPACES

REEL SPECIAL-NAMES
OBJECT-COMPUTER REFERENCE STANDARD
OCCURS REFERENCE-MODIFIER STANDARD-1
OF REFERENCES STANDARD-2
OFF REGARDLESS START
OFFSET RELATIVE STATUS
OMITIED RELEASE STOP
ON REMAINDER STORE
ONLY REMOVAL STRING
OPEN RENAMES SUB-QUEUE-1
OPTIONAL REPLACE SUB-QUEUE-2
OR REPLACING SUB-QUEUE-3
ORDER REPORT SUB-SCHEMA
ORGANIZATION REPORTING SUBTRACT
OTHER REPORTS SUCCESS
OTHERS RERUN SUM
OUTPUT RESERVE SUPPRESS
OVERFLOW RESET SYMBOLIC
OWNER RETAINING SYNC

RETRIEVAL SYNCHRONIZED
PADDING RETURN
PAGE REVERSED TABLE
PAGE-COUNTER REWIND TALLYING
PERFORM REWRITE TAPE

PF RF TENANT

PH RH TERMINAL

PIC RIGHT TERMINATE

PICTURE RMS-FILENAME TEST

PLUS RMS-STS TEXT

POINTER RMS-STV THAN
POSITION ROLLBACK THEN
POSITIVE ROUNDED THROUGH
PRINTING RUN THRU

PRIOR TIME

PROCEDURE SAME TIMES
PROCEDURES SCREEN TO
PROCEED SD TOP

PROGRAM SEARCH TRAILING
PROGRAM-ID SECTION TRUE
PROTECTED SECURITY TYPE
PURGE SEGMENT

SEGMENT-LIMIT UNDERLINED

QUEUE SELECT UNEQUAL

QUOTE SEND UNIT

QUOTES SENTENCE UNLOCK

SEPARATE UNSTRING
RANDOM SEQUENCE UNTIL

RD SEQUENCE-NUMBER UP

READ SEQUENTIAL UPDATE

COBOL-81NAX-11 Reserved Words A-3

UPDATERS VARYING WRITE
UPON WRITERS
USAGE WAIT
USAGE-MODE WHEN ZERO
USE WHERE ZEROES
USING WITH ZEROS

WITHIN
VALUE WORDS
VALUES WORKING-STORAGE

A-4 COBOL-81NAX-11 Reserved Words

Appendix B
Computer Character Set

Table B-1 shows the characters of the computer (ASCII) character set with each character's deci-
mal and octal equivalent.

Characters belonging to set "C" constitute the COBOL character set. Set "L" contains those
characters that can appear in non numeric literals. The characters in set "X" delimit lines of the
source text.

Table B-1: ASCII Character Set

Decimal Octal Character Set Decimal Octal Character Set

000 000 NUL L 032 040 space C, L
001 001 SOH L 033 041 ! L
002 002 STX L 034 042 C, L
003 003 ETX L 035 043 # L
004 004 EOT L 036 044 $ C, L
005 005 ENQ L 037 045 % L
006 006 ACK L 038 046 & L
007 007 BEL L 039 047 L

008 010 BS L 040 050 C, L
009 011 HT c 041 051 C, L
010 012 LF x 042 052 C, L
011 013 VT x 043 053 + C, L
012 014 FF x 044 054 C, L
013 015 CR x 045 055 C, L
014 016 50 L 046 056 C, L
015 017 SI L 047 057 C, L

016 020 DLE L 048 060 0 C, L
017 021 DC1 L 049 061 1 C, L
018 022 DC2 L 050 062 2 C, L
019 023 DC3 L 051 063 3 C, L
020 024 DC4 L 052 064 4 C, L
021 025 NAK L 053 065 5 C, L
022 026 SYN L 054 066 6 C, L
023 027 ETB L 055 067 7 C, L

024 030 CAN L 056 070 8 C, L
025 031 EM L 057 071 9 C, L
026 032 SUB L 058 072 L
027 033 ESC L 059 073 C, L
028 034 FS L 060 074 < C, L
029 035 GS L 061 075 C, L
030 036 RS L 062 076 > C, L
031 037 us L 063 077 L

(continued on next page)

B-1

Table 8-1: ASCII Character Set (Cont.)

Decimal Octal Character Set Decimal Octal Character Set

064 100 @ L 096 140 L
065 101 A C, L 097 141 a L
066 102 B C, L 098 142 b L
067 103 c C, L 099 143 c L
068 104 D C, L 100 144 d L
069 105 E C, L 101 145 e L
070 106 F C, L 102 146 f L
071 107 G C, L 103 147 g L

072 110 H C, L 104 150 h L
073 111 I C, L 105 151 L
074 112 J C, L 106 152 j L
075 113 K C, L 107 153 k L
076 114 L C, L 108 154 I L
077 115 M C, L 109 155 m L
078 116 N C, L 110 156 n L
079 117 0 C, L 111 157 0 L

080 120 p C, L 112 160 p L
081 121 Q C, L 113 161 q L
082 122 R C, L 114 162 L
083 123 s C, L 115 163 s L
084 124 T C, L 116 164 t L
085 125 u C, L 117 165 u L
086 126 v C, L 118 166 v L
087 127 w C, L 119 167 w L

088 130 x C, L 120 170 x L
089 131 y C, L 121 171 y L
090 132 z C, L 122 172 z L
091 133 [L 123 173 L
092 134 \ L 124 174 L
093 135 I L 125 175 L
094 136 A L 126 176 I_

095 137 L 127 177 DEL I_

8-2 Computer Character Set

Appendix C
FILE STATUS Key Values

This appendix summarizes the values that can appear in FILE STATUS data items. The entry for
each statement describes specific causes for each condition.

Technical Note

If you use the /FIPS:74 switch when compiling your program, values for
some FILE STATUS data items are different than those in this table. Part I of
the COBOL-81 User's Guide for your system discusses the /FIPS:74 switch.
Refer to Appendix D, MCR (or CCL) Commands for COBOL-81.

FILE Input-Output File Access
STATUS Statements Organization Method Meaning

00 All All All Successful

02 REWRITE Ind All Created duplicate alternate key
WRITE

05 OPEN Seq Seq Optional file not present

13 READ All Seq No next logical record (at end)

15 READ Seq Seq Optional file not present (at end)

16 READ All Seq No valid next record (at end)

21 REWRITE Ind Seq Primary key changed after
READ

21 WRITE Ind Seq Attempted nonascending key
value (invalid key)

22 REWRITE Ind All Duplicate alternate key
(invalid key)

22 WRITE lnd,Rel All Duplicate key (invalid key)

23 DELETE lnd,Rel Ran Record not in file (invalid key)
READ
REWRITE
START

24 WRITE lnd,Rel All Boundary violation (invalid key)

30 All All All All other permanent errors

(continued on next page)

C-1

FILE Input-Output File Access
STATUS Statements Organization Method Meaning

34 WRITE Seq Seq Boundary violation

90 READ All All Record locked by another user;
record is available in record area

91 OPEN All All File locked by another program;
record is not available

92 DELETE All All Record locked by another
READ program
REWRITE
START
WRITE

93 DELETE All Seq No previous READ
REWRITE

94 CLOSE All All File never opened or already
closed

94 OPEN All All File already open, or closed with
lock

94 DELETE All All File not open, or incompatible
READ open mode
REWRITE
START
WRITE

95 OPEN All All No file space on device

96 OPEN All All Same area busy

97 OPEN All All File not found

98 CLOSE All All Any other CLOSE error

C-2 FILE STATUS Key Values

Appendix D
Ensuring COBOL-81 Compatibility with VAX-11 COBOL

COBOL-81 has some incompatibilities with VAX-11 COBOL due to the differences in architec­
ture between the PDP-11 and the VAX-11 computers. When you compile your COBOL-81 pro­
gram using the /STA:VAX switch, the compiler issues a diagnostic message whenever it pro­
cesses a definite or possible incompatibility with VAX-11 COBOL. If you plan to transfer a
COBOL-81 program or its corresponding data files to a VMS system, you must resolve any
VAX-11 COBOL incompatibilities flagged by the compiler.

Note

The /STA:VAX switch is available only when you use the C81 command.
Part I of the COBOL-81 User's Guide for your system explains how to use
this command and its options. Refer to Appendix D, Using MCR (or CCL)
Commands for COBOL-81.

The following sections describe each incompatibility and suggest ways to design your program
so that it is compatible with both COBOL products.

D.1 Size of INDEX Data Items

INDEX data items in COBOL-81 are two bytes long. In VAX-11 COBOL, they are four bytes long.
Therefore, INDEX data items will always cause an incompatibility when they are stored in files.
Such files are not directly transferable between COBOL-81 and VAX-11 COBOL.

This means that you can define USAGE IS INDEX items only for use within your program. You
must:

• Describe items with the USAGE IS INDEX clause only in the Working-Storage Section of
your program

• Not READ a record INTO or WRITE a record FROM records that you define in the
Working-Storage Section when these records contain USAGE IS INDEX items.

D.2 Alignment of COMP Data Items

COBOL-81 aligns COMPUTATIONAL data items only on word boundaries whereas VAX-11
COBOL aligns COMPUTATIONAL items on the next available byte boundary.

D-1

There are two ways you can create files that contain COMP data items and that are still transfer­
able between COBOL-81 and VAX-11 COBOL:

• Automatically, by writing the SYNCHRONIZED (or SYNC) clause for all COMP items in
your program.

• Manually, by inserting FILLER data items before any items that: (1) are COMP items or
groups containing COMP items, (2) you include in a record for a file, and (3) would align
on an odd byte boundary using VAX-11 COBOL.

DIGITAL recommends that you specify the SYNCHRONIZED clause to ensure COMP item com­
patibility. This is by far the easiest method to use. The following discussion of record allocation
is important only to those who choose the manual method.

When you use the SYNCHRONIZED clause for a COMP item, you specify a storage format that
is common to both COBOL-81 and VAX-11 COBOL. In other words, both products allocate
storage for a COMP SYNC item in the same way. The SYNCHRONIZED clause causes the com­
piler to insert fill bytes before a COMP item (and before any group item containing it) so that it
aligns on a predetermined boundary. Boundaries are predetermined by the size range in which
the item falls. Section 4.2.19, SYNCHRONIZED Clause, explains the correspondence between
size and alignment for COMP SYNC items.

In most cases, the fill bytes inserted before COMP SYNC items will not have a significant effect
on the size of a record or table in your program. Even large COMP items often align just before
the boundary on which their COMP SYNC counterparts would begin. However, you might want
to consider using the manual method if fill bytes cause your program to create a very large file
or table, and your system has limited disk space.

If you use the manual method, remember that you must force VAX-11 COBOL to align on a
word boundary even a COMP item in a Working-Storage Section record if you use that record
when writing to or reading from a file.

Example D-1 shows how you can change a simple record description so that both COBOL-81
and VAX-11 COBOL use the same storage format.

In the figures for examples, f represents an implicit fill byte and F represents a FILLER data item.

Example D-1: Changing a Simple Record to Ensure COMP item Compatibility

Incompatible record:

FD FILE-1,
01 ITEM-A.

03 ITEM-5

03 ITEM-C

Byte Offset 0
!

A

COBOL-81
Record

2 4
! !

A A A A Level 01

Level 05 Bl t}c c c

PI C)(,

PIC 9(9) COMP.

VAX-11 COBOL
Record

5 0 2 4
! ! ! t
A A A A A A

c BI c c c c

D-2 Ensuring COBOL-81 Compatibility with VAX-11 COBOL

(continued on next page)

Compatible record using SYNCHRONIZED clause:

FD FILE-2.
01 ITEM-A.

03 ITEM-6
03 ITEM-C

PIC X.
PIC 919> COMP SYNC.

COBOL-81 /VAX-11 COBOL
Record

Byte Offset 0 2 4 6 7
i i i ! !

Level01 A A A A A A A A

Level05 Blt f tl c c c c

Compatible record using FILLER insertion:

FD FILE-3,
01 ITEM-A.

03
03
03

Byte Offset

Level 01

Level 05

ITEM-6
FILLER
ITEM-C

COBOL-81 /
VAX-11 COBOL

Record

0 2 4 5
! ! ! !
A A A A A A

sIFic c c c

PIC x.
PIC }-{.

PIC 9 (9) COMP.

FILE-1 specifies a record that cannot be transferred to a VAX-11 COBOL program because each
COBOL compiler has a different storage format. COBOL-81 aligns ITEM-C OF FILE-1, a COMP
data item, on a word boundary; however, VAX-11 COBOL aligns the same item on the next
available byte boundary.

Both FILE-2 and FILE-3 specify records that can be transferred to a VAX-11 COBOL program. In
FILE-2, this is achieved by including the SYNCHRONIZED clause for the COMP item, ITEM-C. In
FILE-3, this is achieved manually by inserting a FILLER data item before ITEM-C.

ITEM-C is the same size in all files; however, its alignment requirements are different in each
file. In FILE-1, one fill byte precedes ITEM-C so that it aligns on a word boundary. In FILE-2,
three fill bytes precede ITEM-C because a nine-character COMP SYNC item must align either on
the boundary where the record begins or on a 4-byte offset from that boundary. In FILE-2, the
insertion of the FILLER data item ensures that ITEM-C naturally aligns on a word boundary and
no fill bytes are required.

The size of the record, ITEM-A, is not the same in all files. ITEM-A of FILE-1 occupies six bytes in
a COBOL-81 file and five bytes in a VAX-11 COBOL file. ITEM-A of FILE-1 contains a fill byte only
in a COBOL-81 file. ITEM-A of FILE-2 is eight bytes in length and contains three fill bytes. ITEM-A
of FILE-3 is the same size as the COBOL-81 ITEM-A of FILE-1 (six bytes); however, it contains no
implicit fill bytes.

Ensuring COBOL-81 Compatibility with VAX-11 COBOL D-3

Example D-2 shows how you can change a table to ensure COMP item compatibility.

Example D-2: Changing a Table to Ensure COMP Item Compatibility

Incompatible table:

01 ITEM-A,
05 ITEM-B OCCURS 3 TIMES.

10 ITEM-C PIC 8181 COMP,
10 ITEM-D PIC X,

Byte Offset

Level 01

Level 05

Level 10

Byte Offset

Level 01

Level 05

Level 10

0
!
A A

B B

c c

0
!
A A

B B

c c

COBOL-81 Table Allocation

2 4 6 8 10 12
! l ! l ! !
A A A A A A A A A A A

B B B f B B B B B f B

c clo f c c c cJo f c

VAX-11 COBOL Table Allocation

2 4 6 8 10 12
! ! ! l ! !
A A A A A A A A A A A

B B B B B B B B B B B

c clo c c c cio c c c

Compatible table using SYNCHRONIZED clause:

01 ITEM-A,
05 ITEM-B OCCURS 3 TIMES.

14
!

A A

B B

c c

14
!

A A

B B

cio

16 17
! l

A A A

B B f

cJo f

10 ITEM-C PIC 818) COMP SYNC,
10 ITEM-D PIC X,

COBOL-81 /VAX-11 COBOL Table Allocation

Byte Offset

Level 01

Level 05

Level 10

0
!
A

B

c

2
!

A A

B B

c c

4 6
! !

A A A A A

B B f f f

cJ D f f f

8 10 12 14 16
! ! ! ! !
A A A A A A A A A A

B B B B B f f f B B

c c c cio f f f c c

D-4 Ensuring COBOL-81 Compatibility with VAX-11 COBOL

18
!
A

B

c

20 22 23
! ! !

A A A A A

B B f f f

cio f f f

(continued on next page)

Compatible table using FILLER insertion:

(Note that the OCCURS clause is no longer on the same level as ITEM-B. This is to ensure that
no fill bytes are included in ITEM-B's length. Also note that you insert the FILLER item on the
same level as the group item, ITEM-B, rather than as an item subordinate to ITEM-B. This is the
method to use whenever a COMP item is subordinate to a group item and is on an even byte
offset from the beginning of the group. In all cases, the storage allocation for a compatible table
should mirror the COBOL-81 storage allocation for an incompatible table-except for the fact
that insertion of the FILLER item forces word alignment that otherwise would not occur.)

01 ITEM-A.
05 OCCURS 3 TIMES,

10 ITEM-B,
15 ITEM-C
15 ITEM-D

10 FILLER

PIC 9(9) COMP,
PI C ;; ,
PI C)<,

COBOL-81 /VAX-11 COBOL
Table Allocation

Byte Offset 0 2 4 6 8 10 12 14 16 17
! ! ! ! ! ! ! ! ! !

Level 01 A A A A A A A A A A A A A A A A A A

Level 05

Level 10 B B B B B F B B B B B F B B B B B F

Level 15 c c c clo I c c c clo f c c c cl D I

Example D-3 shows how to change a more complex record than appears in the previous exam­
ples. In this example, the COMP item aligns on an odd byte offset from the beginning of the
group. For this reason, one fill byte (or FILLER item) must precede the COMP item and adds to
the size of the group item.

Example D-3: Changing a Complex Record to Ensure COMP Item Compatibility

Incompatible record:

01 ITEM-A,
05 ITEM-B PIC }-(+

05 ITEM-C.
10 ITEM-D PIC)-{ +

10 ITEM-E PIC 9 <a) COMP,

VAX-11
COBOL-81 COBOL

Record Record

Byte Offset 0 1 2 3 4 5
! ! ! ! ! !

0 1 2 3
! ! ! !

Byte Offset

Level 01 A A A A A A Level 01 A A A A

Level 05 Bj1 c c c c Level 05 B c c c
Level 10 oltlE E D 1 E E

(continued on next page)
Level 10

Ensuring COBOL-81 Compatibility with VAX-11 COBOL D-5

Compatible record using SYNCHRONIZED clause:

01 ITEM-A.
05 ITEM-B
05 ITEM-C,

10 ITEM-0
10 ITEM-E

COBOL-81 I
VAX-11 COBOL

Byte Offset

Level 01

Level 05

Level 10

Record

0 1 2 3 4 5
! ! ! ! ! !
A A A A A A

BJt c c c c
DI f IE E

PI C){.

PIC){.
PIC 9141 COMP SYNC.

Compatible record using FILLER insertion:

01 ITEM-A,
05 ITEM-B
05 FILLER
05 ITEM-C.

1 (l ITEM-0
1 (l FILLER
1 (l ITEM-E

COBOL-81 I
VAX-11 COBOL

Byte Offset

Level 01

Level 05

Level 10

0
!
A A

BlF

Record

2 4 5
! ! !
A A A A

c c c c
D IFIE E

PIC }{.

PIC x.

PIC x.
PIC x.
PIC 9(4) COMP.

Data item alignment is a complex subject. You can find a more detailed explanation of implicit
fill byte insertion and record allocation in Chapter 4 of this manual and also in Chapter 1 in Part
Ill of the COBOL-81 User's Guide for your system.

D-6 Ensuring COBOL-81 Compatibility with VAX-11 COBOL

D.3 Detection of Invalid Decimal Data

The VAX processor traps many cases of invalid data in a numeric item while the PDP-11 proces­
sor does not.

The following program creates invalid data that the PDP-11 processor cannot detect:

IDENTIFICATION DIVISION,
PROGRAM-ID, INl)-DEC-DATA.
DATA DIVISION,
WORKING-STORAGE SECTION,
01 ITEM-A.

05 ITEM-B
05 I TEM-C

01 ITEM-D REDEFINES ITEM-A
PROCEDURE DIVISION,
P-NAME.

MOVE ZEROS TD ITEM-D.
MOVE "XX" TO ITEM-B.
MOVE "AA" TD ITEM-C.
ADD 2 TD ITEM-D.
DISPLAY ITEM-D.
STOP RUN.

PIC >:X.
PIC AA.
PIC 9999.

After the moves to ITEM-B and ITEM-C, ITEM-D no longer contains numeric data. If this pro­
gram were run on a VAX-11 system, it would terminate following the statement "ADD 2 to
ITEM-D". However, on a PDP-11 system, it would run to completion and display the invalid con­
tents of ITEM-D. It is always good programming practice to test an operand for numeric con­
tents before using it in an arithmetic operation. Keep this in mind when debugging COBOL-81
programs.

D.4 Size of Special Registers (RMS-STS, RMS-STV, and
LINAGE-COUNTER)

COBOL-81 special registers are one word in length. VAX-11 COBOL special registers are two
words in length. Therefore, if you move the contents of these registers to a data item you define
in your program, you must define the item to be two words in length in your COBOL-81 pro­
gram. (Your item description should be PIC S9(9) COMP.)

D.5 RMS-STS and RMS-STV Values

Record Management Services for PDP-11 systems returns different values to the RMS-STS and
RMS-STV registers than does Record Management Services for VAX-11 systems.

This is an incompatibility only if your exception handling procedures state RMS-STS and RMS­
STV values to determine which logical path your program should take. You still can display the
contents of these special registers for informational purposes. Part IV of the COBOL-81 User's
Guide for your system contains a sample program that illustrates display use of RMS-STS and
RMS-STV that is compatible with VAX-11 COBOL.

Ensuring COBOL-81 Compatibility with VAX-11 COBOL D-7

An alternative way to get around this problem is to create a library file that contains RMS-STS
and RMS-STV values and include these values in your program with the COPY statement. In this
case, only the library file would need modification when you transfer your program to a VMS
system.

The program in Example D-4 illustrates one error condition, an incorrect device specification
for an input file. Following the program is the library source code appropriate for each COBOL
compiler.

Example D-4: Including an RMS-STS Value Using the COPY Statement

Program:

IDENTIFICATION DIVISION,
PROGRAM-ID, STSEXAMPLE,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT DATA-FILE
ASSIGN TO "INPUT.DAT",

DATA DIVISION,
FILE SECTION,
FD DATA-FILE

VALUE OF ID IS WRONG-DEV.
01 DATA-REC PIC XCBO),
WORKING-STORAGE SECTION,
COPY "RMSVAL.LIB",
01 WRONG-DEV PIC XC4) VALUE IS "XYZ:",
PROCEDURE DIVISION,
DECLARATIVES.
DATA-FILE-ERROR SECTION,

USE AFTER EXCEPTION PROCEDURE ON DATA-FILE.
DATA-FILE-ERROR-PARAG,

MOVE RMS-STS OF DATA-FILE TO RMS-ERROR,
IF BAD-DEtJICE

END DECLARATIVES,
FIRST-SECT SECTION,
FIRST-PARAGRAPH,

OPEN INPUT DATA-FILE.

Contents of RMSVAL.LIB on PDP-11 system:

01 RMS-ERROR PIC S9(5) COMP VALUE IS ZEROS,
BB BAD-DEVICE VALUE IS -44B,

Contents of RMSVAL.LIB on VAX-11 system:

01 RMS-ERROR PIC S9(9) COMP,
BB BAD-DEVICE VALUE IS EXTERNAL RMS$_DEV,

D-8 Ensuring COBOL-81 Compatibility with VAX-11 COBOL

D.6 Not Allowing Duplicate Keys in Indexed Files

A VAX-11 COBOL program does not execute correctly when accessing COBOL-81 indexed files
that should not contain duplicate alternate record keys.

When a COBOL-81 program creates an indexed file that contains at least one alternate key for
which duplicates are not allowed, PDP-11 Record Management Services does not store this
information with the file. Rather, the COBOL-81 OTS (Object Time System) must check each
program that accesses the file to find out whether or not the file can contain duplicate keys.

However, VAX-11 Record Management Services stores duplicate key information with the file
and the VAX-11 COBOL OTS relies on this information. In effect, the information contained in
the file identifier overrides what the VAX-11 COBOL program specifies. Since COBOL-81-
generated indexed files do not contain this information, the VAX-11 COBOL OTS always treats
the file as if duplicate keys were allowed. This means that a VAX-11 COBOL program can never
execute an exception condition when your program attempts to create a record with a duplicate
key.

In this case, you must recreate the indexed file that you want to transfer to a VAX-11 system.
You can use a VAX-11 COBOL program to do this. The VAX-11 COBOL program must:

• Open the file for input

• Read each record in sequential order

• Write each record to another file with identical SELECT clause, file description entry, and
record description entry

Remember that you do not need to recreate indexed files in which duplicate alternate record
keys are allowed. These files are transferable.

D. 7 Value for ESCape Character (RSTS/E Only)

On RSTS/E systems, the value for the escape character is 155 decimal. However, on VMS sys­
tems, its value is 27 decimal. When the 155 value is used on a VMS system, the Terminal Driver
cannot adjust its character count to the terminal screen width. As a result, it wraps lines and
generates space characters in unexpected places.

If you have a program that includes terminal-handling procedures using the 155 value, you must
change that value to 27 when transferring the program to a VMS system.

D.8 Program-Names

COBOL-81 uses only the first six characters of the program-name. However, VAX-11 COBOL
uses all characters in the program-name. If you specify program-names that are longer than six
characters, you might create compile-time or link-time problems when you transfer a
COBOL-81 program to a VAXNMS system.

To ensure that a COBOL-81 program will compile, link and run on a VAXNMS system, limit all
program-names to six characters.

Ensuring COBOL-81 Compatibility with VAX-11 COBOL D-9

Glossary

abbreviated combined relation condition

The combined condition that results from the explicit omission of a common subject and
common relational operator in a consecutive sequence of relation conditions.

abnormal termination

The premature end of an image that occurs when the operating system detects a condition
that prevents further successful execution.

access mode

The way a program operates on a file's records.

access stream

A serial sequence of 1-0 operations on records in a sequential, relative, and indexed file.
Successful OPEN statement execution creates an access stream. A successful explicit or
implicit CLOSE statement terminates an access stream.

actual decimal point

The physical representation of the decimal point position in a data item. The characters
comma(,) or period(.) represent the decimal point.

alphabet-name

A user-defined word in the SPECIAL-NAMES paragraph of the Environment Division.
Alphabet-name assigns a name to a specific character set and/or collating sequence.

alphabetic character

A character that belongs to the set that includes the uppercase letters (A-Z) and the space.
For the contents of data items, the set also includes the lowercase letters (a-z).

alphanumeric character

Any character in the computer character set.

alternate record key

A key, other than the prime record key, whose contents identify a record in an indexed
file.

Glossary-1

ANSI

American National Standard Institute. An organization concerned with the standards to
which many products in the marketplace must adhere. This includes the COBOL language
upon which VAX-11 COBOL is based. The ANSI X3J4 Technical Committee specifies the
standard for COBOL.

application program

A sequence of instructions and routines, not part of the basic operating system, designed
to serve the specific needs of a user.

argument

One of the independent variables that determine the value of an expression.

arithmetic expression

• An identifier of a numeric elementary item

• A numeric literal

• Two of the items just described, separated by arithmetic operators

• Two arithmetic expressions separated by an arithmetic operator

• An arithmetic expression enclosed in parentheses

arithmetic operation

The process that results in a mathematically correct solution during:

• The execution of an arithmetic statement

• The evaluation of an arithmetic expression

arithmetic operator

Any of the following one- or two-character symbols:

Operator Meaning

+ Addition

*

**

Subtraction
Multiplication
Division
Exponentiation

arithmetic statement

The arithmetic statements are: ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

ascending key

A key whose values determine the ordering of data. Ascending order starts with the lowest
key value and ends with the highest, according to the rules for comparing data items.

Glossary-2

assumed decimal point

A decimal point position in a data item. The assumed decimal point has logical meaning
but no physical representation. It does not occupy a character position in the data item.

at end condition

bit

A condition caused during:

• READ statement execution for a sequentially accessed file, when no next logical record
exists or has been established for the file, or when an optional file is not present.

• RETURN statement execution, when no next logical record exists for the associated sort
or merge file.

• SEARCH statement execution, when the search operation ends without satisfying the
condition specified in the statement's WHEN phrase. ·

The smallest unit in the computer's storage structure. A bit can express two distinct
alternatives.

block

A physical unit of data that usually consists of one or more logical records. For mass stor­
age files, a block can contain part of a logical record. The size of a block has no direct rela­
tionship to the size of: (1) the file that contains the block, or (2) the logical record(s) that
are either contained in or overlap the block. Block is synonymous with Physical Record.

bottom margin

An empty area that follows the page body.

byte

An eight-bit unit of physical storage. In COBOL-81, a byte stores one character position.

called program

A program that is the object of a CALL statement. A called program is linked with the calling
• program to produce an executable image, or run unit.

calling program

A program that executes a CALL to another program.

character

The basic, indivisible unit of the COBOL language.

character data item

A data item that consists entirely of Standard Data Format characters.

Glossary-3

character position

The amount of physical storage needed to store one Standard Data Format character
whose usage is DISPLAY. In COBOL-81, a character position requires one byte of storage.

character-string

A sequence of contiguous characters that forms a COBOL word, literal, or PICTURE
character-string.

class condition

A test of whether the content of a data item is either wholly alphabetic or wholly numeric.

clause

A subdivision of a COBOL sentence; an ordered set of consecutive COBOL character­
strings that specifies an attribute of an entry.

COBOL character set

The set of characters used in the COBOL language, exclusive of the contents of nonnu­
meric literals, comment-entries, and comment lines:

Character

0, 1, ... , 9
A, B, ... ,Z
a, b, ... , z

@)

+

*

$

>
<

digit
letter

Meaning

lowercase letter (equivalent to letter)
space
horizontal tab (equivalent to space)
plus sign
minus sign (hyphen)
asterisk
slash (stroke)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point, full stop)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol
colon
underline or underscore

See also computer character set.

COBOL word

See word.

Glossary-4

CODASYL

An acronym for the Conference on Data Systems Languages, the committee that develops
the COBOL language. The CODASYL committee produces a document titled CODASYL
COBOL Journal of Development. This document serves as the basis for the standardization
of the COBOL language.

collating sequence

The character-ordering sequence for sorting, merging and comparing.

column

A character position within a line on a video terminal screen. The columns are numbered
from 1, by 1, starting at the leftmost character position of the line and extending to the
rightmost position of the line.

combined condition

A condition that results from connecting two or more conditions with the AND or the OR
logical operator.

comment line

A source program line with an asterisk in the Indicator Area. Both Area A and Area B can
contain any characters from the computer character set. The comment line is for documen­
tation only. A special form of comment line contains a stroke (/) in the Indicator Area
instead of an asterisk(*). It causes the display device to advance to the top of the next page
before printing the comment on the source listing.

compile time

When the compiler translates a COBOL source program to an object program.

compiler-directing statement

A statement that begins with a compiler-directing verb. A compiler-directing statement
causes the compiler to take a specific action during compilation.

complex condition

A condition in which one or more logical operators act on one or more conditions. See
negated simple condition; combined condition; negated combined condition.

computer-name

A system-name (PDP-11) that identifies the computer on which the program is to be com­
piled or run.

Glossary-5

computer character set

The set of characters available on the computer. Most elements of a COBOL program can
contain characters only from a subset of the computer character set. (See COBOL character
set.) However, comment lines, comment-entries, and nonnumeric literals can contain
characters from the full computer character set.

For COBOL-81, the computer character set is identical to the ASCII character set.

condition

The status of an executing program for which a truth value can be determined. When "con­
dition" refers to language specifications or general formats, it is a conditional expression
that consists of:

• A simple condition (with or without enclosing parentheses)

• A combined condition consisting of a combination of simple conditions, logical opera­
tors, and parentheses

condition-name

A data item (at level 88) that assigns a name to one value that a conditional variable can
assume.

In general formats, condition-name represents a unique data item reference. The refer­
ence is: (1) a condition-name, and (2) qualification, subscripting, or indexing needed for
uniqueness of reference.

condition-name condition

A proposition that tests whether or not a conditional variable's value is the same as that
represented by condition-name.

conditional expression

A simple condition or a complex condition specified in an IF, PERFORM, or SEARCH state­
ment. See simple condition; and complex condition.

conditional statement

A statement that determines the truth value of a condition. Subsequent program action
depends on the truth value.

conditional variable

A data item to which a condition-name applies.

configuration section

An Environment Division section that usually describes the source and object computers.

Glossary-6

connective

A reserved word used to:

• Associate a data-name, paragraph-name, condition-name or text-name with its qualifier

• Link two or more operands written in a series

• Form conditions (logical connectives)

See logical operator.

counter

A data item used for storing numbers or number representations, permitting them to be:
(1) increased or decreased by another number, or (2) changed or reset to zero or an arbi­
trary positive or negative value.

currency sign

The character$ of the COBOL character set.

currency symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If
there is no CURRENCY SIGN clause, the currency symbol is identical to the currency sign.

current record

In sequential, relative, or indexed file processing, the record that is available in the file's
record area.

data clause

A clause in a data description entry that describes an attribute of a data item.

data description entry

An entry in the Data Division that consists of a level-number followed by a data-name, if
required, and continuing with a set of data clauses, as required.

data item

A unit of data (excluding literals) defined in a COBOL program.

data-name

A user-defined word that names a data item described in a data description entry. In gen­
eral formats, data-name represents a word that must not be subscripted, indexed or quali­
fied unless specifically allowed by rules of the format.

declarative sentence

A compiler-directing sentence consisting of a single USE statement.

Glossary-7

declaratives

A set of one or more special-purpose sections at the beginning of the Procedure Division.
The key word DECLARATIVES precedes the first of these sections, and the key words END
DECLARATIVES follow the last. A declarative consists of a section header, followed, in
order, by a USE sentence and zero, one, or more paragraphs.

delimiter

A character or sequence of contiguous characters that mark the end of a string of charac­
ters. A delimiter separates a string of characters from the following string. A delimiter is not
part of the string of characters that it delimits.

descending key

A key whose values determine the ordering of data. Descending order starts with the high­
est key value and ends with the lowest, according to the rules for comparing data items.

digit position

The amount of physical storage needed to store one digit. This amount can vary depending
on the usage specified in the data description entry that defines the data item. When the
data description entry specifies that usage is DI SPLAY, a digit position equals one character
position.

division

A collection of zero, one, or more sections or paragraphs. Each of the four divisions con­
sists of a division header and division body. The divisions are:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

division header

A combination of words, followed by a separator period, that indicates the beginning of a
division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

dynamic access

An access mode in which a program can randomly or sequentially obtain records from, or
randomly place records into, a mass storage file. A program can use both types of access
during the scope of the same OPEN statement.

Glossary-8

editing character

A PICTURE clause character used to format data for output. Editing characters can be any of
the following set of single characters or fixed two-character combinations:

Character Meaning

B space
0 zero
+ plus

minus
CR credit
DB debit
Z zero suppress

check protect
$ currency sign

comma (decimal point)
period (decimal point)
slash (stroke)

elementary item

A data item that is not further subdivided.

end of Procedure Division

The physical position in a source program after which no further procedures appear.

entry

Any descriptive set of consecutive clauses, terminated by a separator period, in the Identi­
fication, Environment, or Data Division.

environment clause

A clause that is part of an Environment Division entry.

executable image

An image that is capable of being run in a process. When run, an executable image is read
from a file for execution in a process. Executable image and task image are equivalent
terms.

execution time

See object time.

expression

An arithmetic or conditional expression.

extend mode

The state of a file after a program opens it with the EXTEND phrase and before the program
closes it without the REEL or UN IT phrase.

Glossary-9

external switch

A software device that indicates that one of two alternate states exists.

figurative constant

A compiler-generated value that a program can refer to with specific reserved words.

file

A collection of logical records stored as a unit.

file clause

A clause that is part of a file description (FD) or sort-merge file description (SD).

file connector

A storage area that contains information about a file. It links:

• A file-name and a physical file

• A file-name and its associated record area

FILE-CONTROL

An Environment Division paragraph that declares the program's data files.

FILE-CONTROL entry

A SELECT clause and all its subordinate clauses. A File-Control entry declares a file's phys­
ical attributes.

file description entry

An entry in the File Section of the Data Division that starts with the level indicator FD. The
level indicator is followed, in order, by: (1) a file-name, and (2) a set of file clauses, as
required.

file-name

A user-defined word that names a file connector described in a file description entry or a
sort-merge file description entry.

file organization

The permanent logical file structure defined when a file is created.

FILE SECTION

A Data Division section. The File Section contains file description and sort-merge file
description entries and their associated record descriptions.

Glossary-1 O

fixed length record

A record of a file whose file description or sort-merge description entry requires that all
records contain the same number of character positions.

footing area

The position of the page body adjacent to the bottom margin.

format

A specific arrangement of a set of data.

group item

A data item that contains subordinate data items.

high order end

The leftmost character of a string of characters.

1-0 mode

The state of a file after a program opens it with the 1-0 phrase, and before the program
closes it without the REEL or UN IT phrase.

1-0-CONTROL

An Environment Division paragraph. The 1-0-CONTROL paragraph specifies input-output
techniques and sharing of the same areas by several data files.

1-0-CONTROL entry

An entry in the 1-0-CONTROL paragraph.

identifier

The combination of a data-name, qualifiers, subscripts, and indexes required for unique­
ness of reference. However, the rules for an identifier associated with a general format
may specifically prohibit qualification, subscripting, or indexing. An identifier names a data
item.

imperative statement

A statement that specifies an unconditional action. An imperative statement begins with an
imperative verb and can consist of a sequence of imperative statements.

implementor-name

A system-name that refers to a feature available in COBOL-81.

Glossary-11

implicit scope terminator

• A separator period that ends the scope of any preceding unterminated statement

• A phrase of a statement that, by its occurrence, ends the scope of any statement in the
preceding phrase

index

A computer storage area or register whose contents represent the identification of an ele­
ment in a table.

index data item

A data item in which a program can store the values associated with an index-name. The
USAGE IS INDEX clause defines an index data item.

index-name

A user-defined word that names an index associated with a specific table.

indexed data-name

An identifier that consists of a data-name followed by one or more index-names in
parentheses.

indexed file

A file with indexed organization.

indexed organization

lhe permanent logical file structure in which each record contains one or more keys
whose values identify it.

input file

A file opened in input mode.

input mode

The state of a file after a program opens it with the INPUT phrase, and before the program
closes it without the REEL or UNIT phrase.

input procedure

A set of statements that receives control during SORT statement execution. An input pro­
cedure controls the release of records to the sort.

INPUT-OUTPUT SECTION

An Environment Division section. The Input-Output Section names the program's files and
their external media. It also provides information required for transmission and handling
of data during program execution.

Glossary-12

input-output file

A file opened in 1-0 mode.

integer

A numeric literal or a numeric data item that has no character positions to the right of the
assumed decimal point. When the term integer appears in a general format, or in its associ­
ated rules, integer must not be a numeric data item. Also, it cannot be signed or zero
unless explicitly allowed by the rules of the format.

intermediate data item

A signed numeric data item provided by the compiler. It contains the results developed
during an arithmetic operation before moving the final result to the resultant-identifier, if
any. The default size of an intermediate data item is 18 digits.

invalid key condition

key

At run time, a condition caused when the value of the key associated with an indexed or
relative file is determined to be invalid.

A data item that identifies a record's location.

Key of Reference

The key, either prime or alternate, currently being used to access records in an indexed
file.

keyword

A reserved word required by a general format.

level indicator

Two alphabetic characters that identify a specific type of file.

level-number

A user-defined word, expressed as a one- or two-digit number, that indicates: (1) the hier­
archical position of a data item, or (2) the special properties of a data description entry.
Level-numbers from 1 through 49 indicate a data item's position in the hierarchical struc­
ture of a logical record. Level-numbers 66 and 88 identify special properties of a data
description entry. Level-number 77 identifies noncontiguous items in the Working-Storage
and Linkage Sections.

library text

The part of a source program that is included by the execution of a COPY statement. It is
not part of the original source program file.

Glossary-13

LINAGE-COUNTER

A special register whose value points to the current position in the page body.

line number

An integer that denotes the vertical position of a line on a video terminal screen, or on a
page within a print file.

LINKAGE SECTION

The section in the Data Division of a called program that describes data items available
from the calling program. Both the calling and the called programs can refer to these data
items.

literal

A character-string whose value is implied by the ordered set of characters comprising the
string.

logical operator

One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND
or OR, or both, can be used as logical connectives. NOT indicates logical negation.

logical page

A conceptual entity consisting of the top margin, page body, and bottom margin.

logical record

The most inclusive data item. The level-number for a logical record is 01or77. A record can
be either an elementary or a group item.

low order end

The rightmost character of a string of characters.

mass storage

A storage medium in which data can be organized and maintained both sequentially and
nonsequentially.

mass storage file

A collection of records assigned to a mass storage medium.

merge file

A collection of records to be merged by a MERGE statement. The merge file is created and
can be used only by the merge function.

Glossary-14

mnemonic-name

A user-defined word associated in the Environment Division with a specific implementor­
name.

NATIVE character set

The 256-character set that starts with the 128 characters of the ASCII character set.

NATIVE collating sequence

The collating sequence of the ASCII character set.

negated combined condition

The "NOT" logical operator immediately followed by a combined condition enclosed in
parentheses.

negated simple condition

The "NOT" logical operator immediately followed by a simple condition.

next executable sentence

The next sentence to which control transfers after execution of the current statement is
complete.

next executable statement

The next statement to which control transfers after execution of the current statement is
complete.

next record

The record that logically follows the current record of a file.

next record pointer

A conceptual entity for sequential, relative, and indexed files that points to the next logical
record. The next record pointer can also indicate that: (1) no next logical record exists or
has been established, or (2) an optional file is not present.

nonnumeric item

A data item whose description permits it to contain any combination of characters from the
computer character set. Certain categories of nonnumeric items can contain only more
restricted character sets.

nonnumeric literal

A literal bounded by quotation marks. The string of characters can include any character in
the computer character set.

Glossary-15

numeric character

A character that belongs to the set of digits 0 through 9.

numeric item

A data item whose description allows it to contain only digits. A signed numeric item can
also contain a"+", 11

-
11

1 or other representation of an operational sign.

numeric literal

A literal consisting of one or more numeric characters. A numeric literal can contain either
a decimal point or an algebraic sign, or both. The decimal point must not be the rightmost
character. The algebraic sign must be the leftmost character.

OBJECT-COMPUTER

An Environment Division paragraph that describes the computer environment in which the
program runs.

OBJECT-COMPUTER entry

An entry in the OBJECT-COMPUTER paragraph of the Environment Division. The entry
contains clauses that describe the computer environment in which the program runs.

object of entry

A set of operands and reserved words in a Data Division entry that immediately follows the
subject of the entry.

object program

A set of executable machine-language instructions and other material designed to interact
with data to solve problems. Where there is no danger of ambiguity, "program" means
"object program."

object time

When a program runs.

open mode

The state of a file after a program opens it and before the program closes it without the
REEL or UNIT phrase. The OPEN statement specifies the open mode as INPUT, OUTPUT,
1-0, or EXTEND.

operand

A component that is operated on. Any lowercase word(s) in a statement or entry format can
be considered: (1) an operand, and (2) an implied reference to the data indicated by the
operand.

Glossary-16

operational sign

An algebraic sign associated with a numeric data item or numeric literal to indicate whether
its value is positive or negative.

optional file

An input file whose presence is not necessary each time the program executes. The pro­
gram checks for the presence or absence of the file.

optional word

An optional reserved word included in a specific format only to improve the source pro­
gram's readability.

output file

A file opened in either output or extend mode.

output mode

The state of a file after a program opens it with the OUTPUT or EXTEND phrase, and before
the program closes it without the REEL or UNIT phrase.

output procedure

A set of statements that receives control during the execution of a SORT statement after
the sort function ends. Also, a set of statements that receives control during the execution
of a MERGE statement after the merge function has selected the next record in merged
order.

padding character

An alphanumeric character used to fill the unused character positions in a physical record.

page body

The part of the logical page in which lines can be written and/or spaced.

paragraph

In the Identification and Environment Divisions, a paragraph header followed by zero,
one, or more entries. In the Procedure Division, a paragraph-name followed by a separator
period and by zero, one, or more sentences.

Glossary-17

paragraph header

A reserved word, followed by a separator period, that indicates the beginning of a para­
graph in the Identification and Environment Divisions. Allowable paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
1-0-CONTROL.

paragraph-name

A user-defined word that identifies and begins a paragraph in the Procedure Division.

phrase

An ordered set of one or more consecutive COBOL character-strings that forms part of a
clause or procedural statement.

physical record

See block.

pointer

A place marker that identifies the record address of a storage segment.

prime record key

A key that uniquely identifies a record in an indexed file.

procedure

A paragraph (or section) or group of logically successive paragraphs (or sections) in the
Procedure Division.

procedure-name

A user-defined word that names a paragraph or section in the Procedure Division. It con­
sists of a paragraph-name (which can be qualified), or a section-name.

Glossary-18

program-name

A user-defined word that identifies a COBOL program.

punctuation character

A character from the following set:

Character Meaning

comma
semicolon
period (full stop)
quotation mark
left parenthesis
right parenthesis
space
equal sign

qualified data-name

An identifier that consists of one data-name followed by one or more OF (or IN) phrases
containing a another data-name.

qualifier

A procedural reference that uniquely identifies an element in a COBOL source program.
Qualifiers consist of the words IN or OF followed by:

1. A data-name or file-name when referring to:

• Another data-name representing an item subordinate to the qualifier

• A condition-name

• LINAGE-COUNTER

• RMS-STS

• RMS-STV

2. A section-name when referring to a paragraph-name appearing in that section

random access

An access mode in which the program-specified value of a key data item identifies the logi­
cal record in a relative or indexed file.

record

See logical record.

record access stream

See access stream.

Glossary -19

record area

A storage area allocated to process the sequential, relative, and indexed record described
in a record description entry in the File Section.

record description entry

The total set of data description entries associated with a record.

record key

A key whose contents identifies a record in an indexed file. Within an indexed file, record
key is either the prime record key or an alternate record key.

record-name

A user-defined word that names a record described in a record description entry.

reference format

A standard way to describe COBOL source programs.

relation

See relational operator.

relation character

A character from the following set:

Character Meaning

> Greater than
< Less than

Equal to

relation condition

A comparison of the value of an arithmetic expression or data item to the value of another
arithmetic expression or data item. See relational operator.

relational operator

In a relation condition, the reserved words used to compare the values of two operands.
Valid relational operators are:

Relational Operator

IS [NOT] GREATER THAN
IS [NOT]>

IS [NOT] LESS THAN
IS [NOT]<

IS [NOT] EQUAL TO
IS [NOT]=

Glossary-20

Meaning

Greater or not greater than

Less or not less than

Equal or not equal to

relative file

A file with relative organization.

relative key

A key whose contents identifies a logical record in a relative file.

relative organization

The permanent logical file structure in which each record is uniquely identified by positive
integer value. The integer value specifies the record's logical ordinal position in the file.

repeating group

A group data item whose description contains an OCCURS clause. Also, a group data item
subordinate to a data item whose description contains an OCCURS clause.

reserved word

A COBOL word specified in the list of words that can appear in a COBOL program. (See
Section 1.1.2.3, Reserved Words.) A reserved word cannot appear in a program as a
user-defined word or system-name.

resource

A facility or service controlled by the operating system that can be used by an executing
program.

resultant identifier

A user-defined data item that is to contain the result of an arithmetic operation.

RMS-STS

A Record Management Services (RMS-11) exception condition register. It contains the pri­
mary RMS-11 status value of an 1-0 operation. RMS-STV is the secondary value.

RMS-STV

A Record Management Services (RMS-11) exception condition register. It contains the sec­
ondary RMS-11 status value of an 1-0 operation. RMS-STS is the primary value.

section

A set of zero, one, or more paragraphs or entries (called a section body) that follows a sec­
tion header. Each section consists of the section header and related section body.

Glossary -21

section header

A combination of words (followed by a separator period) that indicates the beginning of a
section in the Environment, Data, and Procedure Divisions.

In the Environment and Data Divisions, a section header consists of reserved words fol­
lowed by a separator period. Valid section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header consists of:

• A section-name

• The reserved word SECTION

• A segment-number (optional)

• A separator period

section-name

A user-defined word that names a section in the Procedure Division.

segment-number

A user-defined word that classifies sections in the Procedure Division to enable segmenta­
tion. Segment-numbers can contain only the characters 0 through 9. They can be one- or
two-digit numbers.

sentence

A sequence of one or more statements, the last of which ends with a separator period.

separately compiled program

A program that is compiled separately from all other programs.

separator

A character or two contiguous characters that delimit character-strings.

sequential access

An access mode in which logical records are obtained from or placed into a file in consecu­
tive sequence. The order in which records were written to the file determines the logical
record sequence.

Glossary-22

sequential file

A file with sequential organization.

sequential organization

The permanent logical file structure established by the order in which records are written
to the file.

sign condition

A test to determine whether the algebraic value of a data item or an arithmetic expression
is either less than, greater than, or equal to zero.

simple condition

Any single relation, switch-status, condition-name, class, or sign condition that cannot be
reduced into two or more conditions. See also complex condition.

sort file

A collection of records to be sorted by a SORT statement. The sort file is created and can be
used only by the sort function.

sort key

The data item or items whose values determine how records are ordered in a sort or merge
file.

sort-merge file description entry

An entry in the File Section that consists of the level indicator SD, followed by: (1) a
file-name, and (2) a set of file clauses, as required.

SOURCE-COMPUTER

An Environment Division paragraph that describes the computer environment in which the
source program is compiled.

SOURCE-COMPUTER entry

An entry in the SOURCE-COMPUTER paragraph that contains clauses descr~bing the com­
puter environment in which the source program is compiled.

source program

A syntactically correct set of COBOL statements. A source program begins with the Identi­
fication Division or a COPY statement. It ends with the end of the Procedure Division.
When there is no danger of ambiguity, "program" means "source program."

Glossary-23

special character

A character from the set:

Character Meaning

+ plus sign
minus sign (hyphen)

* asterisk
slash (stroke)
equal sign

$ currency sign
comma (decimal point)
semicolon
period (decimal point, full stop)
quotation mark
left parenthesis
right parenthesis

> greater than symbol
< less than symbol

exclamation point
number sign
% percent
& ampersand

apostrophe
colon
question mark

@ at sign
underline (underscore)
backslash

special character word

A reserved word that is an arithmetic operator or relation character.

SPECIAL-NAMES

The name of an Environment Division paragraph that relates implementor-names to
user-specified mnemonic-names.

SPECIAL-NAMES entry

An entry in the SPECIAL-NAMES paragraph that contains clauses to: (1) specify the cur­
rency sign, (2) choose the decimal point, (3) relate implementor-names to user-specified
mnemonic-names, and (4) relate alphabet-names to character sets or collating sequences.

special registers

Compiler-generated storage areas primarily used to store information relating to specific
COBOL features.

Standard Data Format

A method of describing data as if the data appears on a printed page of infinite length and
breadth. It does not relate to the way that data is stored internally or on an external
medium.

Glossary-24

statement

In the Procedure Division, a syntactically valid combination of words and symbols that
begins with a verb.

subject of entry

An operand or reserved word that appears immediately after the level indicator or level­
number in a Data Division entry.

subprogram

See called program.

subscript

An integer whose value identifies a table element.

subscripted data-name

An identifier that consists of a data-name followed by one or more subscripts enclosed in
parentheses.

switch-status condition

The proposition that an external switch has been set to an "on" or "off" status.

system-name

A COBOL word that has already been defined by the implementor to refer to the program's
operating environment.

table

A set of logically consecutive data items defined with an OCCURS clause in the Data
Division.

table element

A data item that belongs to the set of repeated items comprising a table.

terminal operator

The individual who, at run time, enters data in response to program prompts.

text-name

A user-defined word that identifies a COBOL library.

Glossary-25

text-word

A character (or a sequence of characters) in a COBOL library or source program, that is:

1. A literal, including the opening and closing quotation marks for nonnumeric
literals

2. A separator other than a space or the opening and closing quotation marks of a
nonnumeric literal

The right and left parentheses are text-words, regardless of their context in a
library or source program.

3. Any other sequence of contiguous characters, bounded by separators, except:

• Comment lines

• Separators

top margin

An empty area that precedes the page body.

truth value

The result of determining whether a condition is true or false.

unary operator

A plus (+) or a minus (-)sign that precedes a variable or left parenthesis in an arithmetic
expression. It has the effect of multiplying the expression by + 1 or-1.

unsuccessful execution

The attempted execution of a statement that does not result in the execution of all its oper­
ations. The unsuccessful execution of a statement does not affect any data referenced by
that statement. However, it can affect status indicators.

user-defined word

A COBOL word that must appear in the source program to satisfy the format of a clause or
statement.

variable

A data item whose value can be changed by program execution. A variable used in an arith­
metic expression must be a numeric elementary item.

variable length record

A record associated with a file whose file description or sort-merge description entry per­
mits records to contain a varying number of character positions.

Glossary-26

variable occurrence data item

verb

A table element that is repeated a variable number of times. It must contain an OCCURS
DEPENDING ON clause in its data description entry or be subordinate to an item that does.

A word that causes the compiler or object program to take an action.

word

A character-string of not more than 30 characters that forms a user-defined word, a system­
name, or a reserved word.

WORKING-STORAGE SECTION

A Data Division section describing records and subordinate data items that are not parts of
files.

Glossary-27

Master Index

This Master Index contains a complete list of the references to subjects in the COBOL-81 Language
Reference Manuai and the four parts of the COBOL-81 User's Guide.

The index uses the following conventions:

Example

1-8t
4-6f

Explanation

A page number followed by a t indicates a table.
A page number followed by an f indicates a figure.

Entries in the Master Index are also preceded by an acronym indicating which manual, and part to a
manual, the page number refers to:

Acronym Title

LRM
RSTS/E UGI
RSX UGI
UG II

COBOL-81 Language Reference Manual
COBOL-81 User's Guide, Part I for RSTS/E
COBOL-81 User's Guide, Part I for RSX-11 M/M-PLUS
COBOL-81 User's Guide, Part II

UG Ill COBOL-81 User's Guide, Part Ill
UG IV COBOL-81 User's Guide, Part IV

Where a subject references more than one manual and/or parts, references to the COBOL-81 Language
Reference Manual appear first, followed in order by the COBOL-81 User's Guide Part I, then Part 11, Part
111, and Part IV.

A

Abbreviated combined relation conditions,
LRM 5-20 to 5-21

Abbreviating DCL commands, RSTS!E UC I
1-2, RSX UC 11-2

ACCEPT statement, LRM 5-34 to 5-45
reference to devices, LRM 3-6

Access mode ·
changing, UC IV 1-12
default, UC IV 1-12
dynamic, UC IV 1-12
random, UC IV 1-12
sequential, UC IV 1-12

ACCESS MODE clause, LRM 3-13 to 3-14
Access stream, UC IV 6-2

initializing, UC IV 6-2
terminating, UC IV 6-2
types, UC IV 6-5

Accessing a table with SEARCH, UC Ill
3-17f

Accounts, RSTS!E UC I 1-3, RSX UC I
1-3

Active I inactive arguments
inspecting data, UC Ill 2-35

ADD statement, LRM 5-46 to 5-47
Alignment, effect of SYNC clause, LRM

4-64 to 4-65
ALL literal figurative constant, LRM 1-8
ALLOWING clause, UC IV 6-2
ALPHABET clause, LRM 3-6
Alphabet-name, defined, LRM 1-5
ALPHABETIC test, LRM 5-16
AL TERNA TE RECORD KEY clause, LRM

3-15
ANSI format, LRM 1-19 to 1-22, RSTS!E

UC I 2-2, RSX UC I 2-2, UC II 5-3
/ANSLFORMAT compiler qualifier, RSTS!E

UC I 2-2, 3-2t, 3-3, RSX UC I 2-2,
3-2t, 3-3

APPEND, DCL command, RSTS!E UC I
1-6t, RSX UC I 1-6t

APPLY clause, UC IV 7-1
general rules for, LRM 3-22 to 3-23
syntax rules for, LRM 3-22

Area A
in ANSI format, LRM 1-20

lndex-1

Area A (Cont.)
in terminal format, LRM 1-17

Area B
in ANSI format, LRM 1-20
in terminal format, LRM 1-17

Argument address list
function, UC II 6-16
general format, UC II 6-15f
using, UC II 6-15

Arithmetic expressions, LRM 5-12 to 5-14
composition of, LRM 5-12
data items in, LRM 5-12
evaluation of, LRM 5-12
literals in, LRM 5-12
operators in, LRM 5-12
processing, UC Ill 1-20
using parentheses in, LRM 5-12
using signs in, LRM 5-12

Arithmetic operations
multiple receiving fields, LRM 5-22
restrictions for operands, LRM 5-22
rounding off results in, LRM 5-22, UC

//11-16
storing partial results, LRM 5-22

Arithmetic operators, LRM 5-12
Arithmetic statements, UC Ill 1-15 to

1-20
advantages over COMPUTE, UC Ill 4-4
binary truncation of, UC Ill 1-15
common errors in, UC Ill 1-19
defined, LRM 5-22
instead of COMPUTE, UC Ill 4-4
intermediate results, UC Ill 1-15
with GIVING phrase, UC Ill 1-18
with SIZE ERROR phrase, UC Ill 1-17

ASCENDING phrase, UC IV 10-1
ASCII character set, LRM B-1 to B-2

octal and decimal equivalents, LRM B-1
to B-2

ASSIGN clause, LRM 3-16
ASSIGN, DCL command, RSTS/E UC 11-5,

RSX UC I 1-5
Asterisk delimiter

to unstring data, UC Ill 2-20t
Asterisk indicator character (*)

See also Comment character (*)

in ANSI format, LRM 1-19
in terminal format, LRM 1-16

At end condition, LRM 5-28
planning for, UC IV 5-2

AUTHOR paragraph, LRM 2-3
Auxiliary keypad keys, UC IV 9-17

lndex-2

B

Binary search
of a table, LRM 5-119
requirements for, UC Ill 3-15
results of using, UC Ill 3-16
with AT END statement, UC Ill 3-16
with keys, UC Ill 3-15
with multiple keys, UC Ill 3-16, 3-20f

Binary truncation, UC Ill 1-15
Blank lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-17

BLANK WHEN ZERO clause, LRM 4-25
/BLD compiler switch, RSTS/E UC I D-3t,

D-4, RSX UC I D-3t, D-4
BLDODL utility

command line format, RSTS/E UC I D-8,
RSX UC I D-8

BLDODL utility switches
/CLU:, RSTS!E UC I D-8, RSX UC I

D-8
/DEB, RSTS/E UC I D-8, RSX UC I D-8
/DIA, RSTS/E UC I D-10, RSX UC I

D-10
improving program performance with,

UC II 5-2
/10:, RSTSIE UC I D-9, RSX UC I D-9
/IO:DECOV, RSTS!E UC I D-9, RSX UC

I D-9
/IO:MEMRES, RSTS/E UC I D-9, RSX

UC I D-9
/IO:NONOV, RSTS!E UC I D-9, RSX

UC I D-9, UC II 4-5
/IO:USEROV, RSTS!E UC I D-9, RSX

UC I D-9
/LRG, RSTS/E UC I D-9, RSX UC I D-9,

UC II 4-5
/MAP, RSTS!E UC I D-8, RSX UC I D-8
/MER, RSTS!E UC I D-9, RSX UC I D-9
/OBJ, RSTS!E UC I D-9, RSX UC I D-9
/RES, RSTS!E UC I D-9, RSX UC I D-9
/ULIB, RSTS!E UC I D-8, RSX UC I D-8

Block
definition of, UC IV 7-8

logical, UC IV 7-8
physical, UC IV 7-8

related to a record, LRM 4-5
BLOCK CONTAINS clause, LRM 4-26 to

4-27
Block size limit, magnetic tape, UC IV

7-10
Bottom margin, UC IV 8-16

/-BOU compiler switch, RSTS!E UC I
D-3t, D-5, RSX UC I D-3t, D-5

Boundary equivalence, LRM 4-10 to 4-14
Braces, use in general formats, LRM 1-13
Brackets, use in general formats, LRM

1-1 3
Bucket, UC IV 7-8

related to physical record, LRM 4-5
size, UC IV 7-8

Buffer areas, sharing, UC JV 7-7

c

C81, CCL/MCR command, RSTS!E UC I
D-1 I RSX UC I D-1

CALL statement, LRM 5-48 to 5-50
effect on program logic, UC fl 6-3
nesting, UC II 6-4
transferring program control, UC II 6-3

Called programs
defined, UC II 6-1
exiting from, UC II 6-3
Linkage Section of, LRM 4-17, UC II

6-8
Procedure Division header of, LRM 4-17

Calling programs
accessing data items in, UC II 6-7
COBOL-81 from MACRO, UC II 6-14
MACRO from COBOL-81, UC II 6-13

CANCEL BREAKPOINT, Debugger
command, UC II 3-2t, 3-8

Categories of data items, LRM 4-6
CCL commands

C81, RSTS!E UC I D-2
commas, use in compiler command line,

RSTSIE UC I D-2
compiler command line format, RSTS/E

UC I D-2
default file types, RSTSIE UC I D-2
examples, RSTS!E UC I D-2

Cell
contents, UC IV 3-1
location in the file, UC IV 3-1
numbering, UC IV 3-1
relative record number, UC IV 3-1
size, UC IV 3-1

Channel
See Logical Unit Number (LUN)

Character attributes for terminal screen,
UC IV 9-8

Character sets
and collating sequence, LRM 3-7
ASCII, LRM 3-7
COBOL-81, LRM 1-2

Character sets (Cont.)
computer, LRt\1 1-2
in ALPHABET clause, LRM 3-6
in CODE-SET clause, LRM 4-28

Character transfer
using the STRING statement, LRM 5-135

to5-139
using the UNSTRING statement, LRM

5-143to5-148
Character-string, LR1lvl 1-1
/CHECK compiler qualifier, RSTSIE UC I

3-21, 3-3, RSX UC I 3-2t, 3-3
for improving program performance, UC

II 5-2
/CHECK:BOUNDS compiler qualifier,

RSTS/E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:NOBOUNDS compiler qualifier,
RSTS!E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:NOPERFORM compiler qualifier,
RSTS!E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:PERFORM compiler qualifier,
RSTS!E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

Choice indicators, use in general formats,
LRM 1-14

/-CIS compiler switch, RSTSIE UC I D-3t,
D-6, RSX UC I D-3t, D-6

/CIS compiler switch, RSTS!E UC I D-3t,
D-4, RSX UC I D-3t, D-4

Class condition, LRM 5-16
Class tests, UC Ill 2-5

numeric, UC Ill 1-10
Classes

for nonnumeric data, UC Ill 2-4
of data items, LRM 4-6

CLOSE statement, LRM 5-51 to 5-54
/CLU: BLDODL switch, RSTS!E UC I D-8,

RSX UC I D-8
COBOL language elements, LRM 1-1
COBOL word, LRM 1-3
COBOL, DCL command, RSTS!E UC I 1-1,

RSX UC I 1-1
COBOL-81 Symbolic Debugger

See Debugger

CODE-SET clause, LRM 4-28
/CODE:[NO]CIS compiler qualifier, RSTS!E

UC I 3-2t, 3-4, RSX UC I 3-2t, 3-4
Collating sequence

as related to alphabet-name, LRM 3-5
in ALPHABET clause, LRM 3-6

lndex-3

Collating sequence (Cont.)
specifying in a COBOL program, LRM

3-3
when merging files, LRM 5-84

Combining files
See Merging files

Commas
as separators, LRM 1-11
using in C81 command line, RSTS!E UC

I D-2, RSX UC I D-2
Comment character(*), RSTS!E UC I 2-2,

RSX UC I 2-2
Comment lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-1 7

Common errors
in nonnumeric MOVE statements, UC Ill

2-10
in STRING statements, UC Ill 2-17
when inspecting data, UC Ill 2-47
when unstringing data, UC Ill 2-31

COMP data items
as VAX-11 COBOL incompatibility,

LRM D-1
COMP SYNC data items, LRM 4-64 to

4-65
Comparing operands, LRM 5-14, UC Ill

2-4
when alphabetic, LRM 5-16
when nonnumeric, LRM 5-15
when numeric, LRM 5-15, 5-16

Compile-time environment, documenting,
LRM 3-2

Compiler
command line format, RSTS!E UC I 3-2,

RSX UC I 3-2
diagnostics, RSTS!E UC I 3-7, RSX UC I

3-7
functions, RSTS!E UC I 3-1, RSX UC I

3-1
output files

OBJ, RSTSIE UC I 3-1, RSX UC I 3-1
SKL, RSTS!E UC I 3-1, RSX UC I 3-1

Compiler implementation limitations,
RSTS!E UC I A-1, RSX UC I A-1

Compiler qualifiers
I ANSl_FORMAT, RSTS/E UC I 2-2, 3-2t,

3-3, RSX UC I 2-2, 3-2t, 3-3
/CHECK, RSTS!E UC I 3-2t, 3-3, RSX

UC I 3-2t, 3-3
/CHECK:BOUNDS, RSTS!E UC I 3-2t,

3-3, RSX UC I 3-2t, 3-3

lndex-4

Compiler qualifiers (Cont.)
/CHECK:NOBOUNDS, RSTS!E UC I

3-2t, 3-3, RSX UC I 3-2t, 3-3
/CHECK:NOPERFORM, RSTSIE UC I

3-2t, 3-3, RSX UC I 3-2t, 3-3
/CHECK:PERFORM, RSTSIE UC I 3-2t,

3-3, RSX UC I 3-2t, 3-3
/CODE: [N01CIS, RSTS!E UC I 3-2t, 3-4,

RSX UC I 3-2t, 3-4
/CROSS_REFERENCE, RSTS!E UC I 3-2t,

3-4, RSX UC I 3-2t, 3-4
/DEBUG, RSTSIE UC I 3-2t, 3-4, RSX

UC I 3-2t, 3-4, UC II 3-2
/DIAGNOSTICS, RSTS!E UC I 3-2t, 3-5,

RSX UC I 3-2t, 3-5
examples, RSTS!E UC I 3-6, RSX UC I

3-6
/LIST, RSTSIE UC I 3-2t, 3-5, 3-5t, RSX

UC I 3-2t, 3-5, 3-5t
/NAMES, RSTS!E UC I 3-2t, 3-5, RSX

UC I 3-2t, 3-5
I NOANSLFORMAT, RSTS!E UC I 3-2t,

3-3t, RSX UC I 3-2t, 3-3t
I NOC HECK, RSTSIE UC I 3-2t, RSX UC

I 3-2t
I NOCROSS_REFERENCE, RSTS!E UC I

3-2t, 3-4t, RSX UC I 3-2t, 3-4t
/NODEBUG, RSTS!E UC I 3-2t, 3-4t,

RSX UC I 3-2t, 3-4t
I NODIAGNOSTICS, RSTS!E UC I 3-2t,

3-5t, RSX UC I 3-2t, 3-5t
/NOLIST, RSTS!E UC I 3-2t, RSX UC I

3-2t
/NOOBJECT, RSTS!E UC I 3-3t, 3-5,

RSX UC I 3-3t, 3-5
I NOSH OW, RSTS!E UC I 3-3t, 3-5t,

RSX UC I 3-3t, 3-5t
/NOSUBPROGRAM, RSTS!E UC I 3-3t,

3-5t, RSX UC I 3-3t, 3-5t
/NOTRUNCATE, RSTS/E UC I 3-3t, 3-6t,

RSX UC I 3-3t, 3-6t
/NOWARNINGS, RSTS!E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6
/OBJECT, RSTS!E UC I 3-3t, 3-5, RSX

UC I 3-3t, 3-5
/SHOW, RSTS!E UC I 3-3t, 3-5, RSX

UC I 3-3t, 3-5
/SHOW:MAP, RSTS!E UC I 3-3t, 3-5,

3-5t, RSX UC I 3-3t, 3-5, 3-5t
/SUBPROGRAM, RSTS!E UC I 3-3t, 3-5,

RSX UC I 3-3t, 3-5
/TEMPORARY, RSTS!E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6

Com pi !er qua I ifiers (Cont.)
/TRUNCATE, RSTS!E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6
using to improve performance, UC II

5-1
/WARNINGS, RSTS!E UC I 3-6, RSX

UC I 3-6
/WARNINGS:INFORMATIONAL, RSTS!E

UC I 3-3t, 3-6, RSX UC I 3-3t,
3-6

/WARNINGS:NOINFORMATIONAL,
RSTS!E UC I 3-3t, 3-6, RSX UC I
3-3t, 3-6

Compiler switches
/BLD, RSTS!E UC I D-3t, D-4, RSX UC

I D-3t, D-4
/-BOU, RSTS/E UC I D-3t, D-5, RSX

UC I D-3t, D-S
/-CIS, RSTS/E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/CIS, RSTSIE UC I D-3t, D-4, RSX UC I

D-3t, D-4
/CRF, RSTS!E UC I D-3t, D-4, RSX UC

I D-3t, D-4
/CVF, RSTS/E UC I D-3t, D-4, RSX UC

I D-3t, D-4
/DEB, RSTS/E UC I D-3t, D-5, RSX UC

I D-3t, D-5
examples, RSTS!E UC I D-7, RSX UC I

D-7
/FIPS:74, RSTS!E UC I D-3t, D-6, RSX

UC I D-3t, D-6
/-INF, RSTS/E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/KER, RSTS/E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/MAP, RSTS!E UC I D-3t, D-5, RSX UC

I D-3t, D-5
/-PER, RSTS!E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/-SKL, RSTS!E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/STA:VAX, RSTS!E UC I D-3t, D-5, RSX

UC I D-3t, D-5
/SUB, RSTSIE UC I D-3t, D-5, RSX UC

I D-3t, D-5
/TMP, RSTS!E UC I D-3t, D-7, RSX UC

I D-3t, D-7
/TRU, RSTS!E UC I D-3t, D-5, RSX UC

I D-3t, D-5
Compiler-directing sentence, LRM 5-3
Compiler-directing statement, LRM 5-3
Compiling

main and subprograms, UC II 6-2

Compiling (Cont.)
source programs, RSTS!E UC I 3-1, RSX

UC I 3-1
Complex conditions, LRM 5-18
COMPUTE statement, LRM 5-55 to 5-56
Computer character set, LRM B-1 to B-2

octal and decimal equivalents, LRM B-1
to B-2

Concatenating items, UC Ill 2-11
Concise Command Language (CCL)

See CCL commands
Condition-name condition, LRM 5-17
Condition-names

associating values with, LRM 4-71 to
4-73

defined, LRM 1-5
in general formats and rules, LRM 5-11
in SWITCH clause, LRM 3-6
qualifying, LRM 5-11

Conditional expressions, LRM 5-14 to
5-18

class condition, LRM 5-16
combining, LRM 5-19
complex conditions, LRM 5-18
condition-name, LRM 5-1 7
evaluation of, LRM 5-21
negating, LRM 5-19
relation condition, LRM 5-14 to 5-16
sign condition, LRM 5-18
switch-status condition, LRM 5-18

Conditional sentence, LRM 5-4
Conditional statement, LRM 5-4
Conditional variables

relation to condition-names, LRM 1-5
Configuration Section, LRM 3-2
Continuation character (-), RSTS!E UC I

2-2, RSX UC I 2-2
in Debugger commands, UC II 3-3
to continue DCL commands, RSTS/E UC

I 1-2, RSX UC I 1-2
CONTINUE, DCL command, RSTS!E UC I

1-2, RSX UC 11-7

Control footing, UC IV 8-4
Control heading, UC IV 8-4
CONTROL KEY IN clause, UC JV 9-17
Controlling index, UC //13-15
Conventional report

line counter usage, UC IV 8-12
logical page, UC IV 8-10
makeup, UC IV 8-10
page advancing, UC IV 8-10
page-overflow condition, UC IV 8-11

lndex-5

Conventional report (Cont.)
printing the, UC IV 8-24

CONVERSION clause, UC IV 9-9, 9-24
COPY statement, LRM 6-1 to 6-5, RSTS/E

UC I 2-3, RSX UC I 2-3
COPY, DCL command, RSTSJE UC I 1-6t,

RSX UC/ 1-6t
CORRESPONDING phrase, LRM 5-23
Counting characters in a data item, LRM

5-76 to 5-81
CREATE, DCL command, RSTSJE UC I

1-6t, RSX UC I l -6t
/CRF compiler switch, RSTSJE UC I D-3t,

D-4, RSX UC I D-3t, D-4
/CROSS_REFERENCE compiler qualifier,

RSTSJE UC I 3-2t, 3-4, RSX UC I
3-2t, 3-4

CTRL/C
in DCL commands, RSTSJE UC I 1-2
in Debugger commands, UC II 3-11

CTRL/U
in DCL commands, RSX UC I 1-2

CURRENCY SIGN clause, LRM 3-7
Currency symbol

in PICTURE clause, LRM 4-47
in SPECIAL-NAMES paragraph, LRM 3-5

Cursor positioning keys, UC IV 9-17
/CVF compiler switch, RSTSIE UC I D-3t,

D-4, RSX UC I D-3t, D-4

D

Data description
complete entry skeleton, LRM 4-22 to

4-24
elements of, LRM 1-25, 4-1

Data Division
entries, elements of, LRM 1-25
general format and rules, LRM 4-15

Data handling techniques
for improving program performance, UC

II 5-3
Data items

assigning initial values to, LRM 4-71 to
4-73

categories of, LRM 4-6, 4-44
classes of, LRM 4-6
COMP-3, UC Ill 1-7
contents and class incompatibility, LRM

5-24
default initial values, LRM 4-16
DISPLAY, UC Ill 1-7
in arithmetic expressions, LRM 5-12
index, LRM 5-10, UC Ill 3-13

lndex-6

Data items (Cont.)
maximum size of PICTURE clause for a,

LRM 4-43
naming, LRM 4-29
specifying characteristics of, LRM 4-22

to 4-24, 4-43 to 4-52
specifying nonstandard data positioning

in, LRM 4-31
specifying storage format for, LRM 4-66

to 4-70
with DISPLAY usage, UC Ill 1-6

Data movement, UC Ill 2-5 to 2-47
with editing symbols, UC Ill 2-8f
with no editing, UC Ill 2-9f

Data organization, UC Ill 2-2
DATA RECORDS clause, LRM 4-30
Data storage

representation on media, LRM 4-28
word and byte representation, UC Ill

1-2f
Data testing, UC Ill 2-3 to 2-5
Data transfer

positioning rules for, LRM 4-6
using the MOVE statement, LRM 5-87 to

5-90
Data types

COMP, UC Ill 4-1
COMP compared to COMP SYNC, UC

///1-2,1-7
COMP-3, UC I// 1-5, 1-7, 4-2
scaling and mixing, UC Ill 4-2

Data-handling operations
undefined results

from incompatible data, LRM 5-24
from operand overlap, LRM 5-24

Data-name clause, LRM 4-29
Data-names

defined, LRM 1-5
in an identifier, LRM 5-11
using as subscripts, UC Ill 3-12

DCL commands
abbreviating, RSTSJE UC I 1-2, RSX UC

I 1-2
APPEND I RSTSJE UC I 1-6t, RSX UC I

1-6t
ASSIGN, RSTS!E UC/ 1-5, RSX UC I

1-5
COBOL, RSTSJE UC I 1-1, RSX UC I

1-1
CONTINUE, RSTSJE UC/ 1-2
COPY, RSTS!E UC I 1-6t, RSX UC I

l-6t
CREATE, RSTS!E UC I 1-6t, RSX UC I

l-6t

DCL commands (Cont.)
DELETE, RSTS/E UC I 1-6t, RSX UC I

1-6t
DIRECTORY, RSTSIE UC I 1-6t, RSX

UC I 1-6t
EDIT, RSTSIE UC I 1-1, l -6t, RSX UC I

1-1 I 1 -6t
HELP, RSTS/E UC I 1-6, RSX UC I 1-6
LINK/C81, RSTS!E UC 11-1, 4-1, RSX

UC I 1-1, 4-1
RENAME, RSTSIE UC I l -6t, RSX UC I

l -6t
RUN, RSTS/E UC 11-1, RSX UC 11-1
STOP, RSTS/E UC I 1-2
TYPE, RSTS!E UC I l -6t, RSX UC I 1-6t
using continuation character(-) with,

RSTS/E UC 11-2, RSX UC 11-2
/DEB BLDODL switch, RSTSIE UC I D-8,

RSX UC I D-8
/DEB compiler switch, RSTSIE UC I D-3t,

D-5, RSX UC I D-3t, D-5
/DEBUG compiler qualifier, UC II 3-2

with COBOL command, RSTS/E UC I
3-2t, 3-4, RSX UC I 3-2t, 3-4

/DEBUG qualifier
with LINK/C81 command, RSTS/E UC I

4-3, RSX UC I 4-3
Debugger

command line format, UC II 3-3
commands for position, UC II 3-4
I /0 requirements, UC II 3-2
invoking, UC II 3-3
limitations, UC II 3-3
memory requirements, UC JI 3-2
symbols file, UC II 3-2
using CTRL/C, UC II 3-11

Debugger commands
CANCEL BREAKPOINT command, UC II

3-2t, 3-8
DEFINE command, UC II 3-2t, 3-9
DISPLAY command, UC II 3-2t, 3-5

ASCII option, UC II 3-5
BYTE option, UC II 3-5

HELP command, UC II 3-2t, 3-5
MOVE command, UC II 3-2t, 3-6
PROCEED command, UC II 3-2t, 3-10
SET BREAKPOINT command, UC II 3-2t,

3-7
SHOW BREAKPOINTS command, UC II

3-2t, 3-8
SHOW SYNONYMS command, UC II

3-2t, 3-10
STOP command, UC II 3-2t, 3-11
UNDEFINE command, UC II 3-2t, 3-10

Decimal point
selecting for a program, LRM 3-5
specifying as comma, LRM 3-7

Decimal scaling position, UC Ill 1-6
Decimal truncation

reasons for avoiding, UC Ill 4-3
/TRUNCATE compiler qualifier, UC Ill

4-3
DECIMAL-POINT IS COMMA clause, LRM

3-7
Declarative procedures

examples, UC IV 5-7
EXTEND, UC IV 5-7
file name, UC IV 5-6
1-0, UC IV 5-7
INPUT, UC IV 5-7
OUTPUT, UC IV 5-7
referencing with the USE statement, LRM

5-149 to 5-150
sort, UC IV 10-6
using, UC IV 5-6

Declaratives
structure of, LRM 1-2 5

DEFAULT clause, UC IV 9-14
Defau It file types

See File types, default
DEFERRED-WRITE phrase of the APPLY

clause, LRM 3-22
DEFINE, Debugger command, UC II 3-2t,

3-9
Defining tables, UC Ill 3-1 to 3-8
DELETE statement, LRM 5-57 to 5-58
DELETE, DCL command, RSTSIE UC I 1-6,

RSX UC I 1-6t
Delimiters

as subscripts
sample results, UC Ill 2-17t

Delimiting
multiple receiving items, UC Ill 2-21 t
with all asterisks, UC Ill 2-22t
with all double asterisks, UC Ill 2-23t
with two asterisks, UC Ill 2-22t

DESCENDING phrase, UC IV 10-1
Descriptions of relational operators, UC Ill

2-3f
Detail lines, UC IV 8-4
Devices

program references to, LRM 3-6
/DIA BLDODL switch, RSTS/E UC I D-10,

RSX UC I D-10
Diagnostics

See Error messages

lndex-7

/DIAGNOSTICS compiler qualifier, RSTS!E
UC I 3-2t, 3-5, RSX UC I 3-2t, 3-5

Directory
file specification for, RSTSIE UC I 1-3,

RSX UC 11-3
DIRECTORY, DCL command, RSTS!E UC I

1-6t, RSX UC I 1-6t
Disk I ibraries

See Libraries
DISPLAY option with SET BREAKPOINT

Debugger command, UC II 3-7
DISPLAY statement, LRM 5-59 to 5-65

reference to devices, LRM 3-6
DISPLAY, Debugger command, UC II 3-2t,

3-5
ASCII option, UC II 3-5
BYTE option, UC II 3-5

DIVIDE statement, LRM 5-66 to 5-68
Division by zero, LRM 5-23
Divisions, in a COBOL program, LRM

1-23
Duplicate keys, not allowing, LRM D-9
DUPLICATES IN ORDER phrase, UC IV

10-4

E

EDIT, DCL command, RSTSIE UC I 1-1,
1-6t, RSX UC I 1-1 , 1-6t

Edited moves
nonnumeric data, UC Ill 2-8

Editing rules
for numeric data, UC Ill 1-1 3
for PICTURE clause, LRM 4-47

Editing symbols
for numeric data, UC Ill 1-13
in PICTURE clause, LRM 4-44 to 4-47

Efficiency of indexing, UC Ill 4-3
Elementary data items

defined, LRM 4-2
nonnumeric, UC Ill 2-2
specifying alternative groupings of, LRM

4-60 to 4-61
Elementary moves, LRM 5-88, UC Ill

1-11
legal, UC Ill 2-7t
nonnumeric, UC Ill 2-7
numeric, UC Ill 1-11
numeric edited, UC Ill 1-13

Ellipsis, in general formats, LRM 1-14

lndex-8

Environment Division
syntax and general rules, LRM 3-1

Erasing
a line on the terminal screen, UC IV

9-3
entire terminal screen, UC IV 9-3
to end of line on terminal screen, UC IV

9-3
to end of terminal screen, UC IV 9-3

Error handling
with the USE statement, LRM 5-149 to

5-150
Error messages

limitations, RSTS!E UC I 3-7, RSX UC I
3-7

link-time, RSTS!E UC I 4-3, RSX UC I
4-3

run-time, RSTS!E UC I 5-2, C-1, RSX
UC I 5-2, C-1

types of, RSTS!E UC I 3-7, RSX UC I
3-7

Errors
in arithmetic statements, UC Ill 1-19
in MOVE statements, UC Ill 1-14
in size, UC Ill 1-17

Escape sequences, UC IV A-1
as incompatibility with VAX-11 COBOL,

LRM D-9
Execution control, transferring with CALL

statement, UC II 6-3
EXIT PROGRAM statement, LRM 5-70

effect on program logic, UC II 6-3
format, UC II 6-3
returning control, UC JI 6-3

EXIT statement, LRM 5-69
Exponentiation, LRM 5-13

results when invalid, LRM 5-23
Expression processing

arithmetic, UC Ill 1-20
EXTENSION phrase, LRM 3-23

F

FAB
See File Access Block

Fatal diagnostics, RSTS!E UC I 3-7, RSX
UC I 3-7

FD
See File description

Figurative constants, LRM 1-8 to 1-9
ALL literal, LRM 1-8
HIGH-VALUE, LRM 1-8

Figurative constants (Cont.)
LOW-VALUE, LRM 1-8
QUOTE, QUOTES, LRM 1-8
SPACE, LRM 1-8
ZERO, LRM 1-8

File
connector, UC IV 1-9
defining a disk, UC IV 1-9
defining a magnetic tape, UC IV 1-9
handling, UC IV 1-8
identifying, UC IV 1-9
multiple openings in same program, UC

IV 1-1 3
opening and closing a, UC IV 1-13
optimization, UC IV 7-1
protection level, UC IV 6-2
system, UC IV 6-2

File access (OPEN statement), LRM 5-93
to 5-97

File Access Block (FAB), LR1\1 3-24 to
3-25

Fi le attributes
defining, UC IV 1-3

File description
clauses of, LRM 4-15
complete entry skeleton, LRi'v1 4-18 to

4-20
purpose of, LRM 4-1
structure of, LRM 4-15

File mapping, LRM 3-23
File name, specifying, RSTS!E UC I 1-3,

RSX UC I 1-3
File optimization

for improving I 10 performance, UC II
5-3

using 1-0-CONTROL paragraph, LRM
3-21 to 3-25

File organization, UC IV 1-1
advantages and disadvantages, UC IV

1-2
default, UC IV 1-11
indexed, UC IV 1-11
relative, UC IV 1-11
sequential, UC IV 1-11
specifying, UC IV 1-3

File Section, LRM 4-15
Fi le sharing, UC IV 6-1

common file status values, UC IV 6-8
common RMS-11 completion codes,

UC IV 6-8
requirements, UC IV 6-3

File specification, RSTS/E UC I 1-3, RSX
UC I 1-3

Fi le specification
assigning

with ASSIGN clause, LRM 3-16
with VALUE OF ID clause, LRM 4-74

examples, RSTS/E UC I 1-3, RSX UC I
1-3

format, RSTS!E UC I 1-3, RSX UC I 1-3
how RMS-11 builds a COBOL, UC IV

1-13
keeping as a variable, UC IV 1-10
overriding at run-time, UC IV 1-10
variable, UC IV 1-10

Fi le status
data item, LRM 5-24
values

complete list of, LRM C-1 to C-2
for COBOL-81, UC IV 5-3
for RMS-11, UC IV 5-5

FILE ST AlUS clause, LRM 3-17
File structure

specifying in a COBOL program, LRM
3-18

File types, default
examples, RSTS!E UC I 1-5, RSX UC I

1-5
for object file, RSTS!E UC I 3-1, RSX

UC I 3-1
for skeleton descriptor file, RSTS!E UC I

3-1, RSX UC I 3-1
FILE-CONTROL paragraph, LRM 3-10 to

3-12
Fi le-hand Ii ng

specifying input-output status, LRM
3-17

File-names
assigning file specifications to, LRM

3-16
defined, LRM 1-5

Fill bytes, defined, LRM 4-7
FILL-SIZE phrase of the APPLY clause,

LRM 3-23
FILLER data items, LRM 4-29
/FIPS:74 compiler switch, RSTS!E UC I

D-3t, D-6, RSX UC I D-3t, D-6
Fixed insertion editing, LRM 4-48
Fixed-length records, LRM 4-53 to 4-55
Floating insertion editing, LRM 4-49
/FMS:NORESIDENT qualifier, RSTS!E UC I

4-2
/FMS:RESIDENT qualifier, RSTSIE UC I

4-2
Footing area, UC IV 8-16
Form control bytes, UC IV 1-8

lndex-9

Format
of print files, LRM 4-34 to 4-37
record (RECORD clause), LRM 4-53 to

4-55
Format conversion

ANSI to terminal, UC II 1-1
terminal to ANSI, UC II 1-3

Format, source program
See Source program reference formats

Format, syntax
See General format

FROM option of statements, LRM 5-28 to
5-29

G

General format
defined, LRM 1-12
function of, LRM 1-26
notation used in, LRM 1-12

General rules, defined, LRM 1-26
Generic term, defined, LRM 1-26
GIVING phrase

in SORT statement, UC IV 10-2
Global entry point, UC II 6-13
GO TO DEPENDING phrase

advantages of using, UC Ill 4-4
GO TO statement, LRM 5-71 to 5-72
Group data item, LRM 4-2
Group indicating, UC IV 8-29
Group items

nonnumeric, UC Ill 2-2
Group moves, LRM 4-8, 5-89, UC Ill

1-11

H

description, UC Ill 1-11
nonnumeric data, UC Ill 2-7

/HELP switch
with C81 command, RSTSIE UC I D-2,

RSX UC I D-2
with BLDODL utility, RSTS/E UC I D-7,

RSX UC I D-7
HELP, DCL command, RSTS/E UC I 1-2,

1-6, RSX UC I 1-6
example, RSTS!E UC I 1-2, RSX UC I

1-2
HELP, Debugger command, UC II 3-2t,

3-5
HIGH-VALUE figurative constant, LRM

1-8, 3-7
Horizontal tab, LRM 1-12

lndex-10

Hyphen indicator character (-)
See also Continuation character (-)
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

1-0 status
See Input-output status

1-0-CONTROL paragraph, LRM 3-21 to
3-25

Identification area
in ANSI format, LRM 1-20
in terminal format, LRM 1-16

Identification Division
syntax and general rules for, LRM 2-1 to

2-3
Identifiers

defined, LRM 5-11
subscripted data-name, LRM 5-9

Identifying a subprogram, UC II 6-2
with /SUBPROGRAM compiler qualifier,

UC II 6-2
with USING phrase, UC II 6-2

Identifying table elements, UC Ill 3-10 to
3-20

IF statement, LRM 5-73 to 5-75
Illegal values for numeric data items, UC

Ill 1-9
Image size and performance trade offs, UC

II 5- 1
Imperative sentence, LRM 5-4
Imperative statement, LRM 5-3
Improving I /0 performance, UC II 5-1,

5-3, UC IV 1-2
Improving program performance

/CHECK compiler qualifier, UC II 5-2
/NOCHECK compiler qualifier, UC II

5-2
/TEMPORARY compiler qualifier, UC fl

5-2
using BLDODL switches, UC II 5-2
using compiler qualifiers, UC II 5-1,

5-2
using data handling techniques, UC II

5-3
using terminal format, UC II 5-3

Indentation, relation to level-numbers,
LRM 4-3

Index data items, LRM 5-10, UC Ill 3-12,
3-13, 3-14

as VAX-11 COBOL incompatibility,
LRM D-1

comparing, LRM 5-16
declaration, UC Ill 3-13
defining in program, LRM 4-67
modifying with SET, UC Ill 3-13
where defined, UC Ill 3-3

Index-names
comparing, LRM 5-16
defined, LRM 1-5
rules associated with, LRM 4-39
storing value of in a data item, LRM

5-10
Indexed file

access modes, UC IV 4-3
alternate key, UC IV 4-1
at end condition, handling, UC JV 5-2
backing up an, UC IV 4-15
bucket, UC IV 7-8
bucket size, UC IV 7-8
bucket size calculation, UC IV 7-24
buffer size calculation, UC IV 7-23
CONTIGUOUS PREALLOCATION, UC

IV 7-3
corrupt, fixing a, UC IV 4-15
creating an, UC IV 4-4
default number of 1-0 buffers for, LRM

3-20
DEFERRED-WRITE, UC IV 7-1
defining an, UC IV 4-4
design considerations, UC IV 4-2
EXTENSION, UC IV 7-2
file status values, using, UC IV 5-3
FILL-SIZE, UC IV 7-2
I /0 statements, UC IV 4-3
index, UC IV 4-2
invalid key condition, handling the, UC

IV 5-2
key, UC IV 4-1
key length, UC IV 4-1
key location, UC IV 4-1
MASS-INSERT, UC IV 7-2
open modes, UC IV 4-3
optimization techniques, UC IV 7-1
optional key, UC IV 4-1
organization, UC IV 4-1

advantages, UC IV 1-2
disadvantages, UC IV 1-2

population, initial, UC IV 4-5
PREALLOCATION, UC IV 7-2
primary key, UC IV 4-1
reading an, UC IV 4-6

Indexed file (Cont.)
recreating an, UC IV 4-15
reorganization of, UC IV 4-5
reserving buffer areas, UC IV 7-6
starting position in, LRM 5-131 to

5-133
updating an, UC IV 4-10
WINDOW, UC IV 7-3

Indexes, UC Ill 3-2
initializing, UC Ill 3-13

with SET statement, UC Ill 3-13
setting values for, LRM 5-117, 5-124 to

5-125
Indexing, LRM 5-10 to 5-11

advantages, UC Ill 4-3
basis for, LRM 4-38
efficiency order, UC Ill 4-3
in an identifier, LRM 5-11
versus subscripting, UC Ill 4-3

Indicator character
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

/-INF compiler switch, RSTS/E UC I D-3t,
D-6, RSX UC I D-3t, D-6

Informational diagnostics, RSTS/E UC I
3-7, RSX UC I 3-7

Initializing
alphanumeric items, UC Ill 3-9f
data item values

in Linkage Section, LRM 4-17
in Working-Storage Section, LRM

4-16
mixed usage items, UC Ill 3-9f
tables, UC Ill 3-8 to 3-10

INPUT PROCEDURE phrase, usage, UC IV
10-2

Input-output
of low-volume data

using ACCEPT statement, LRM 5-34 to
5-45

using DISPLAY statement, LRM 5-59
to 5-65

specifying buffers for, LRM 3-20
status, LRM 5-24 to 5-27

specifying in a program, LRM 3-17
values for, LRM 5-24

Input-Output Section, LRM 3-10
INSPECT statement, LRM 5-76 to 5-81

using, UC Ill 2-31
Inspecting data

active/inactive arguments, UC Ill 2-35
BEFORE I AFTER phrase, UC Ill 2-32
common errors when, UC Ill 2-47
example, UC Ill 2-35f

lndex-11

Inspecting data (Cont.)
finding a match, UC Ill 2-36
implicit redefinition, UC Ill 2-33
INSPECT operation, UC Ill 2-34
interference in tally argument list, UC Ill

2-40
matching delimiter characters, UC Ill

2-33f
replacing phrase, UC Ill 2-43
results of implicit redefinition, UC Ill

2-34t
results of separate scan tallies, UC Ill

2-40f
setting the scanner, UC Ill 2-35
subscripted items, UC Ill 2-37
tally argument, UC Ill 2-38
tally counter, UC Ill 2-38
TALLYING phrase, UC Ill 2-37

Interference
in replacement argument list, UC Ill

2-46
in tally argument list, UC Ill 2-40

Intermediate data item, LRM 5-22
size of, LRM 5-22

Intermediate results
for arithmetic statements, UC Ill 1-15

Interrupting DCL commands, RSTSIE UC I
1-2

INTO phrase, LRM 5-29
Invalid decimal data, detecting, LRM D-7
Invalid key condition, LRM 5-27

planning for, UC IV 5-2
/10: BLDODL switch, RSTS!E UC I D-9,

RSX UC I D-9
/IO:DECOV BLDODL switch, RSTS!E UC I

D-9, RSX UC I D-9
/IO:MEMRES BLDODL switch, RSTS!E UC

I D-9, RSX UC I D-9
/IO:NONOV BLDODL switch, RSTS!E UC

I D-9, RSX UC I D-9
for nonoverlayable RMS-11, UC II 5-2

/IO:USEROV BLDODL switch, RSTS!E UC
I D-9, RSX UC I D-9

J

JUSTIFIED clause, LRM 4-31
related to Standard Alignment Rules,

LRM 4-6
Justified moves, UC Ill 2-9

lndex-12

K

/KER compiler switch, RSTSIE UC I D-3t,
D-6, RSX UC I D-3t, D-6

Key word, LRM 1 -6
Keys

L

ascending, UC Ill 3-2, 3-5
descending, UC Ill 3-2, 3-5

LABEL RECORDS clause, LRM 4-32
Left-to-right storage allocation

compared to major-minor storage
allocation, LRM 4-8

defined, LRM 4-7
Level indicators, LRM 1-25
Level-numbers, LRM 4-2 to 4-4, 4-33

b6, LRM 4-3, 4-33
77, LRM 4-4, 4-33
88, LRM 4-4, 4-33
defined, LRM 1-5
for records, LRM 4-2
01 through 49, LRM 4-2

Libraries, UC fl 4-2 to 4-6
advantages of

clustering option, UC II 4-3
disk, UC II 4-2
resident, UC II 4-3

defined, UC II 4-2
using

disk, UC II 4-5
resident, UC II 4-6
to reduce task size, UC II 4-2 to 4-6

Library file, RSTS!E UC I D-11, RSX UC I
D-11

C81 CIS, RSTS!E UC I 4-2, RSX UC I
4-2

C81 LIB, RSTS/E UC I 4-2, RSX UC I
4-2

Library text, copying into source program,
LRM 6-1 to 6-5

LINAGE clause, LRM 4-34 to 4-37
usage, UC IV 8-16

LINAGE-COUNTER, LRM 1-7, 4-35
special register, UC IV 8-17
usage, UC IV 8-21

Linage-file report
bottom margin, UC IV 8-16
footing area, UC IV 8-16
logical page, UC IV 8-15
makeup, UC IV 8-15
page advancing, UC IV 8-17
page body, UC IV 8-16

Linage-file report (Cont.)
page-overflow condition, UC IV 8-17
printing the, UC IV 8-24, 8-25
top margin, UC IV 8-16

Line continuation
in ANSI format, LRM 1-20
in terminal format, LRM 1-17

Line length
in terminal format, LRM 1-18

Linear search
See Sequential search

LINK/C81 qualifiers
/DEBUG, RSTSJE UC I 4-3, RSX UC I

4-3
/FMS:NORESIDENT, RSTSJE UC I 4-2
/FMS:RESIDENT, RSTS/E UC I 4-2
/MAP, RSTSJE UC I 4-3, RSX UC I 4-3
/NODEBUG, RSTS/E UC I 4-3, RSX UC

I 4-3
/NOMAP, RSTS!E UC I 4-3, RSX UC I

4-3
JOTS, UC II 4-6
/OTS:NORESIDENT, RSTSJE UC I 4-2,

RSX UC 14-2
/OTS:RESIDENT, RSTS/E UC I 4-2, RSX

UC 14-2
/RMS, UC II 4-6
/RMS:NORESIDENT, RSTS!E UC I 4-2,

RSX UC 14-2
/RMS:RESIDENT, RSTS/E UC I 4-2, RSX

UC 14-2
LINK/C81, DCL command, RSTSIE UC I

1-1 , 4-1 , RSX UC I 1-1 , 4-1
functions, RSTS/E UC I 4-1, RSX UC I

4-1
Linkage Section, LRM 4-17, UC II 6-8

contents, UC II 6-8
function, UC II 6-8

/LIST compiler qualifier, RSTS/E UC I 3-2t,
3-5, 3-5t, RSX UC I 3-2t, 3-5, 3-5t

Literal subscripts
accessing tables, UC Ill 3-10
defined, UC Ill 3-10

Literals, LRM 1-9 to 1-10
in arithmetic expressions, LRM 5-12
nonnumeric, LRM 1-10
numeric, LRM 1-9

Location equivalence, LRM 4-8 to 4-14
Lacking operations on files, LRM 5-51 to

5-54
Logical block, UC IV 7-8
Logical data characteristics, LRM 4-1
Logical names, RSTS/E UC I 1-5, RSX UC

I 1-5, UC IV 1-11

Logical page
defined, UC IV 8-6
horizontal spacing on the, UC IV 8-6
structure, UC IV 8-6
vertical spacing on the, UC IV 8-6

Logical records, mapping to physical
records, LRM 4-26 to 4-27

Logical Unit Number (LUN), UC IV B-1
LOW-VALUE figurative constant, LRM 1-8,

3-7
Lowercase letters, compiler treatment of,

LRM 1-3
Lowercase words, use in general formats,

LRM 1-13
/LRG BLDODL switch, RSTS!E UC I D-9,

RSX UC I D-9
for overlayable RMS-11, UC II 5-2

LUN
See Logical Unit Number (LUN)

M

MACRO programs
calling, UC II 6-13
calling command format, UC II 6-14
global entry point, UC II 6-13
in COBOL-81 programs, UC II 6-13

Magnetic tape
block size limit, UC IV 7-10

Main program
defined, UC II 6-1

Major-minor storage allocation, LRM 4-8
to 4-14

compared to left-to-right storage
allocation, LRM 4-8

/MAP BLDODL switch, RSTS!E UC I D-8,
RSX UC I D-8

obtaining memory allocation map, UC II
4-11

/MAP compiler switch, RSTS/E UC I D-3t,
D-5, RSX UC I D-3t, D-5

/MAP qualifier, RSTS!E UC 14-3, RSX UG
I 4-3

Mapping a simple table into memory, UC
Ill 3-5f

Margin A, LRM 1-19
Margin B, LRM 1-19
Margin C, LRM 1-19
Margin L, LRM 1-19
Margin R, LRM 1-19
MASS-INSERT phrase of the APPLY clause,

LRM 3-23
Matching arguments

inspecting data, UC Ill 2-36

lndex-13

Matching delimiter characters, UC Ill
2-33f

MCR commands
C81, RSX UC I D-2
commas, use in compiler command line,

RSX UC I D-2
compiler command line format, RSX UC

I D-2
default file types, RSX UC I D-2
examples, RSX UC I D-2

Memory allocation
segmented program, UC II 4-9f

Memory allocation map
example, UC II 4-13f
obtaining, using /MAP switch, UC II

4-11
reading, UC II 4-11

MEMORY SIZE clause, LRM 3-3
/MER BLDODL switch, RSTS!E UC I D-9,

RSX UC I D-9
MERGE statement, LRM 5-82 to 5-86

sample program, UC IV 10-7, 10-8
using, UC IV 10-7

Merging files, LRM 4-21, 5-82 to 5-86
using the RETURN statement, LRM

5-112 to 5-113
Meta-language, LRM 1-12
Mnemonic-names, LRM 3-5

defined, LRM 1-5
Monitor Console Routine (MCR)

See MCR commands
MOVE statement, LRM 5-87 to 5-90, UC

II I 1-11 ' 2-6
common errors, UC Ill 1-14

MOVE, Debugger command, UC II 3-2t,
3-6

Multiple delimiters
for unstringing data, UC Ill 2-23, 2-24t

Multiple operands
in ADD and SUBTRACT statements, UC

//11-18
Multiple program task

defined, UC II 6-1
Multiple receiving items

for arithmetic operations, LRM 5-22
for unstringing data, UC Ill 2-18

Multiple record definitions, LRM 4-33
Multiple results

See Multiple receiving items
Multiple sending items

for stringing data, UC Ill 2-11
Multiple-key binary search, UC Ill 3-16
MULTIPLY statement, LRM 5-91 to 5-92

lndex-14

N

/NAMES compiler qualifier, RSTS!E UC I
3-2t, 3-5, RSX UC I 3-2t, 3-5 .

using to compile subprograms, UC II
6-2

Naming a COBOL program, LRM 2-1 to
2-2

Naming files in a COBOL program, LRM
3-11

Nesting CALL statements, UC II 6-4
NO ECHO clause, UC IV 9-13
/NOANSl_FORMAT compiler qualifier,

RSTS/E UC I 3-2t, 3-3t, RSX UC I
3-2t, 3-3t

/NOCHECK compiler qualifier, RSTS!E UC
I 3-2t, RSX UC I 3-2t

for improving program performance, UC
II 5-2

/NOCROSS_REFERENCE compiler qualifier,
RSTS!E UC I 3-2t, 3-4t, RSX UC I
3-2t, 3-4t

/NODEBUG compiler qualifier, RSTS!E UC
I 3-2t, 3-4t, RSX UC I 3-2t, 3-4t

with LINK/C81 command, RSTS/E UC I
4-3, RSX UC I 4-3

/NODIAGNOSTICS compiler qualifier,
RSTS/E UC I 3-2t, 3-5t, RSX UC I
3-2t, 3-5t

/NOLIST compiler qualifier, RSTS!E UC I
3-2t, RSX UC I 3-2t

/NOMAP qualifier, RSTS!E UC I 4-3, RSX
UC I 4-3

Non-COBOL-81 programs
including in a task, UC II 6-12

Non-overlayable RMS-11 routines
using /IO:NONOV compiler switch, UC

II 5-2
Nonnumeric data

classes of, UC Ill 2-4
concatenating items, UC Ill 2-11
edited moves, UC Ill 2-8
elementary moves, UC Ill 2-7, 2-7t
group moves, UC Ill 2-7
justified moves, UC Ill 2-9
organization of, UC Ill 2-2
receiving items, UC Ill 2-9
special characters, UC Ill 2-2
STRING statement, UC Ill 2-11
subscripted moves, UC Ill 2-10
transferring

with MOVE CORRESPONDING
statement, UC Ill 2-10

with MOVE statement, LRM 5-87 to 5-90,
UC Ill 2-6

Nonnumeric data
transferring (Cont.)

with the ACCEPT statement, LRM 5-40
with the DISPLAY statement, LRM

5-63
with the STRING statement, LRM

5-135 to 5-139
Nonnumeric data items

elementary, UC Ill 2-2
testing, UC Ill 2-3

Nonnumeric literals, LRM 1-10
/NOOBJECT compiler qualifier, RSTS!E UC

I 3-3t, 3-5, RSX UC I 3-3t, 3-5
/NOSHOW compiler qualifier, RSTS/E UC

I 3-3t, 3-5t, RSX UC I 3-3t, 3-5t
/NOSUBPROGRAM compiler qualifier,

RSTS!E UC I 3-3t, 3-5t, RSX UC I
3-3t, 3-5t

/NOTRUNCATE compiler qualifier, RSTS!E
UC I 3-3t, 3-6t, RSX UC I 3-3t, 3-6t

/NOWARNINGS compiler qualifier, RSTS!E
UC I 3-3t, 3-6, RSX UC I 3-3t, 3-6

Numeric class tests, UC Ill 1-10
Numeric data

class test, UC Ill 1-9
compared, UC Ill 1-6
illegal values in, UC Ill 1-9
optimizing, UC Ill 4-1
relation test, UC Ill 1-9
representation of, UC Ill 4-1
sign test, UC Ill 1-9
storage of, UC Ill 1-1
testing, UC Ill 1-9
transferring

with the ACCEPT statement, LRM 5-40
with the DISPLAY statement, LRM

5-63
with the MOVE statement, LRM 5-87

to 5-90
Numeric data items

maximum number of digit positions,
LRM 4-45

Numeric data types
comparing efficiency, UC Ill 4-1 t

Numeric edited data items
contents, UC Ill 1-13
description, UC Ill 1-13
example of, UC Ill 1-14f
maximum number of digit positions,

LRM 4-45
rules for, UC Ill 1-13

Numeric edited moves
elementary, UC Ill 1-13

Numeric editing
symbols, UC Ill 1-13

Numeric literals, LRM 1-9
Numeric moves

elementary, UC Ill 1-11
NUMERIC test, LRM 5-16

0

OBJ file type, RSTS!E UC I 3-1, RSX UC I
3-1

/OBJ BLDODL switch, RSTS!E UC I D-9,
RSX UC I D-9

/OBJECT compiler qualifier, RSTS!E UC I
3-3t, 3-5, RSX UC I 3-3t, 3-5

Object Time System
See OTS (Object Time System)

OBJECT-COMPUTER paragraph, LRM 3-3
to 3-4

OCCURS clause, LRM 4-38 to 4-42
options

indexes, UC Ill 3-2
keys, UC Ill 3-2

related to subscripting, LRM 5-8
ON EXCEPTION clause, UC IV 9-9
Open mode

EXTEND, UC IV 1-13
1-0, UC IV 1-13
INPUT, UC IV 1-13
OUTPUT, UC IV 1-13

OPEN statement, LRM 5-93 to 5-97
effect on LINAGE values, LRM 4-35

Optional words, LRM 1-6
ORGANIZATION clause, LRM 3-18
OTS (Object Time System)

diagnostics, RSTS!E UC I 5-2, RSX UC I
5-2

error checking, UC II 6-12
functions, RSTS!E UC I 5-1, RSX UC I

5-1
/OTS:NORESIDENT qualifier, RSTS!E UC I

4-2, RSX UC I 4-2
/OTS:RESIDENT qualifier, RSTS!E UC I

4-2, RSX UC I 4-2
OUTPUT PROCEDURE phrase, usage, UC

IV 10-2
Overflow statements

sample, UC Ill 2-15t
Overlapping operands, LRM 5-24
Overlayable RMS-11 routines

using /LRG switch, UC II 5-2

lndex-15

p

Packed-decimal data format, LRM 4-68
Page

logical, UC JV 8-6
physical, UC IV 8-6
size definition, UC IV 8-24

Page body, UC IV 8-16
Page footing, UC IV 8-4
Page heading, UC IV 8-4
Paragraph

defined, LRM 1-24
header, LRM 1-24
in Procedure Division, LRM 5-32

Paragraph-names
defined, LRM 1-5
rules for, LRM 1-24

Parentheses, LRM 1-11
in arithmetic expressions, LRM 5-12

/-PER compiler switch, RSTS!E UC I D-3t,
D-6, RSX UC I D-3t, D-6

PERFORM statement, LRM 5-98 to 5-106
Performance, improving, UC II 5-1, UC

IV 1-2
Period

as a separator, LRM 1-11
in general formats, LRM 1-15

Physical block, UC IV 7 -8
Physical data characteristics, LRM 4-1
Physical page

defined, UC IV 8-6
Physical records, mapping logical records

to, LRM 4-26 to 4-27
PICTURE character-strings, LRM 1-11
PICTURE clause, LRM 1-11, 4-43 to 4-52

editing methods for, LRM 4-47 to 4-51
specifying the currency symbol, LRM

3-7
symbol precedence rules for, LRM 4-51

Preallocation of disk blocks, LRM 3-23
PREALLOCATION phrase, LRM 3-23
PRINT command, for LINAGE files, LRM

4-36
Print file, UC IV 2-4

format for sequential files, LRM 3-23,
4-34 to 4-37

PRINT-CONTROL phrase, LRM 3-23
Print-controlled file, UC JV 1-4, 1-8
Procedure Division

header, LRM 5-32
Procedure-names

defined, LRM 5-32
PROCEED, Debugger command, UC II

3-2t, 3-10

lndex-16

PROCEED, with SET BREAKPOINT
command, UC II 3-7

Program execution
terminating with STOP statement, LRM

5-134
Program function keys, UC IV 9-1 7
Program listing

example, UC II 2-3 to 2-5
explanation of, UC II 2-1 to 2-2

PROGRAM-ID paragraph, LRM 2-2
Program-name

as incompatibility with VAX-11 COBOL,
LRM D-9

defined, LRM 1-5
Project-Programmer Number (PPN),

RSTS!E UC I 1-3
PROTECTED clause, UC IV 9-11
PSECT names

Q

assigned by default, UC II 4-10
uniqueness in subprograms, UC II 6-2
using /NAMES:XX switch, UC II 4-9

Qualification, LRM 5-6 to 5-8
in an identifier, LRM 5-11

Qualifiers, compiler
See Compiler qualifiers

Quotation marks, LRM 1-12
QUOTE figurative constant, LRM 1-8

R

RAB
See Record Access Block

READ statement, LRM 5-107 to 5-110
Receiving items

nonnumeric data, UC Ill 2-9
Record

areas, sharing, UC JV 7-4
as a logical concept, LRM 4-1
as a physical concept, LRM 4-2
attributes, UC IV 1-3
blocking, specifying, UC IV 1-3
cells, UC JV 3-1
defining length of, LRM 4-53 to 4-55
deleting from files, LRM 5-57 to 5-58
fixed-length, UC IV 1-4
format, UC IV 1-3
locking, UC JV 6-1, 6-9
maximum size, UC IV 1-4
record-length field, UC IV 1-4
size, UC IV 7-8

Record
size (Cont.)

related to storage medium, LRM 4-26
to 4-27

space needs on a physical device, UC
JV 1-3

specifying size, UC JV 1-3
unit of transfer for, LRM 4-5
unit size, UC JV 7-8
variable-length, UC JV 1-4

Record access
by alternate key, LRM 3-15
by primary key, LRM 3-19
order of, LRM 3-13 to 3" 14
using the READ statement, LRM 5-107

to 5-110
using the RELEASE statement, LRM

5-111
using the RETURN statement, LRM

5-11 2 to 5-113
using the ST ART statement, LRM 5-131

to 5-133
Record Access Block (RAB), LRM 3-24 to

3-25
Record alignment boundaries, LRM 4-7
Record allocation, LRM 4-7 to 4-14
RECORD clause, LRM 4-53 to 4-55
Record description

hierarchical structure of, LRM 4-2
purpose of, LRM 4-1

RECORD KEY clause, LRM 3-19
Record transfer

using the WRITE statement, LRM 5-151
to 5-156

Record-length descriptions, multiple, UC
IV 1-8

Record-name
defined, LRM 1-5

Records
logical characteristics of, LRM 4-2
physical characteristics of, LRM 4-4

REDEFINES clause, LRM 4-56 to 4-59
Redefinition

implied when inspecting data, UC Ill
2-33

Reducing compile time
using terminal format, UC II 5-3

REFORMAT utility, UC II 5-3
error messages, UC II 1-4 to 1-5
executing, UC II 1-2, 1-3

Relation condition, LRM 5-14 to 5-16
Relation tests

description, UC Ill 1-9
equivalent sign tests, UC Ill 1-1 Ot

Relation tests (Cont.)
nonnumeric data, UC Ill 2-3

Relational operators
defined, LRM 5-14
description of, UC Ill 2-3f

Relative file
access modes, UC JV 3-3
at end condition, handling, UC IV 5-2
bucket, UC JV 7-8
bucket size calculation, UC JV 7-16
buffer size calculation, UC JV 7-16
capabilities, UC JV 3-2
CONTIGUOUS PREALLOCATION, UC

IV 7-3
creating a, UC JV 3-4
default number of 1-0 buffers for, LRM

3-20
DEFERRED-WRITE, UC JV 7-1
defining a, UC JV 3-4
deleting records in a, UC JV 3-12
design considerations, UC IV 3-2
EXTENSION, UC JV 7-2
file status values, using, UC JV 5-3
I /0 statements, UC JV 3-3
invalid key condition, handling the, UC

JV 5-2
open modes, UC JV 3-3
optimization techniques, UC JV 7-1
organization, UC IV 3-1

advantages, UC JV 1-2
disadvantages, UC JV 1-2

PREALLOCATION, UC JV 7-2
reading a, UC IV 3-6
reserving buffer areas, UC JV 7-6
rewriting records in a, UC IV 3-9
RMS-11 allocation for a cell, UC JV 3-2
starting position in, LRM 5-131 to

5-133
tables, similarity to, UC JV 3-2
updating a, UC JV 3-9
using, UC JV 3-2
WINDOW, UC JV 7-3

Relative indexing, UC Ill 3-13
system overhead, UC Ill 3-13

Relative record number, UC IV 3-1
RELEASE statement, LRM 5-111, UC IV

10-2
Removal operations for file media, LRM

5-51 to 5-54
RENAME, DCL command, RSTS!E UC I

1-6t, RSX UC I 1-6t
RENAMES clause, LRM 4-60 to 4-61
Replacement argument, UC Ill 2-45,

2-45f

lndex-17

Replacement argument list
interference in, UC Ill 2-46
to inspect data, UC Ill 2-45

Replacement value, UC Ill 2-45
Replacing characters in a data item, LRM

5-76 to 5-81
Replacing phrase

to inspect data, UC Ill 2-43
Replacing records (with REWRITE

statement), LRM 5-114 to 5-116
Report

balding items in a, UC IV 8-31
bottom margin, UC IV 8-16
components of a, UC IV 8-4
control footing, UC IV 8-4
control heading, UC IV 8-4
conventional, UC IV 8-10
crossfoot totals, UC IV 8-8
design, UC IV 8-1
detail lines, UC IV 8-4
footing area, UC IV 8-16
layout worksheet, UC IV 8-2
line counter usage, UC IV 8-12
logical page, UC IV 8-10, 8-15
modes of printing, UC IV 8-6
online printing, UC IV 8-7
page advancing, UC IV 8-10
page body, UC IV 8- 1 6
page footing, UC IV 8-4
page heading, UC IV 8-4
page-overflow condition, UC IV 8-11
printing the, UC IV 8-24
printing totals before detail lines, UC IV

8-30
problem solving, UC IV 8-25
report footing, UC IV 8-4
report heading, UC IV 8-4
rolled forward totals, UC IV 8-8
spooling, UC IV 8-7
streamlining your, UC IV 8-30
subtotals, UC IV 8-8
top margin, UC IV 8-16
total accumulating, UC IV 8-8
underlining in a, UC IV 8-31

Representation of numeric data, UC Ill
4-1

Required words, LRM 1-6
Requirements for binary search, UC Ill

3-15
Requirements for sequential search, UC Ill

3-14
RERUN clause

general rules for, LRM 3-24

lndex-18

/RES BLDODL switch, RSTS!E UC I D-9,
RSX UC I D-9

RESERVE clause, LRM 3-20
Reserved words, LRM 1-4 to 1-9

list of, LRM A-1
Resident libraries

See Libraries
Resultant identifiers

purpose of, LRM 5-22
RETURN statement, LRM 5-112 to 5-113

using, UC IV 10-2
Rewind operations for file media, LRM

5-51 to 5-54
REWRITE statement, LRM 5-114 to 5-116
RMS-11, UC IV 1-1

bucket filling for indexed files, LRM
3-23

completion codes, UC IV 5-5
file extension, LRM 3-23
file mapping using the WINDOW phrase,

LRM 3-23
preallocation of disk blocks, LRM 3-23

RMS-11 libraries, RSTS!E UC I 4-2, RSX
UC I 4-2

RMS-STS, LRM 1-7, UC IV 5-5
as VAX-11 COBOL incompatibility,

LRM D-7
RMS-STV, LRM 1-7, UC IV 5-5

as VAX-11 COBOL incompatibility,
LRM D-7

/RMS:NORESIDENT qualifier, RSTS/E UC I
4-2, RSX UC I 4-2

/RMS:RESIDENT qualifier, RSTSIE UC I
4-2, RSX UC I 4-2

Rounding off arithmetic results, LRM 5-22,
UCl//1-16

Rules for numeric editing, UC //11-13
Run time, see performance
RUN, DCL command, RSTSIE UC I 1-1,

RSX UC I 1-1
Run-time environment, documenting, LRM

3-3 to 3-4
Run-time error messages

list of, RSTS/E UC I C-1, RSX UC I C-1

s

SAME AREA clause, LRM 3-22 to 3-23
SAME RECORD AREA clause, LRM 3-23
SAME SORT AREA clause, LRM 3-24
Sample overflow statements, UC Ill 2-1 St
Scaling

defined, UC Ill 4-2
Scaling and Mixing data types, UC Ill 4-2

Scaling position, decimal, UC III 1-6
Scope of statements, LRM 5-4
Screen positioning

absolute, UC IV 9-5
relative, UC IV 9-5

SD
See Sort-merge file description

SEARCH ALL statement
advantages of using, UC Ill 4-5
requirements for using, UC Ill 4-5

Search argument
use in REPLACING phrase, UC Ill 2-44

SEARCH statement, LRM 5-117 to 5-123
Searching tables, UC Ill 3-14
Section headers

elements in, LRM 1-23
Section, in Procedure Division, LRM 5-32
Section-name

defined, LRM 1-5
using in segmentation, UC II 4-7

Segment numbers
using in segmentation, UC II 4-7

SEGMENT-LIMIT clause
rules for, LRM 3-4
using in segmentation, UC II 4-7

Segment-number, defined, LRM 1-5
Segmentation, LRM 5-29 to 5-30

in a multiple program task, UC II 4-9
in a single program task, UC II 4-8
nonoverlayable, UC II 4-7
overlayable, UC II 4-7
programming considerations, UC II 4-7
using PSECT names, UC II 4-9
with SEGMENT-LIMIT clause, LRM 3-4

Segmented program example, UC II 4-12f
Segmented task image

creating, UC II 4-8, 4-11
Semicolon, as a separator, LRM 1-11
Sentences, COBOL, LRM 5-1, 5-32

compiler-directing, LRM 5-3
conditional, LRM 5-4
imperative, LRM 5-4

Separators, LRM 1-11 to 1-12
defined, LRM 1-1

Sequence numbers
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

Sequential file
access modes, UC IV 2-3
at end condition, handling, UC IV 5-2
buffer size, UC IV 7-8
buffer size calculation, UC IV 7-9
CONTIGUOUS PREALLOCATION, UC

IV 7-3

Sequential file (Cont.)
creating a, UC IV 2-4, 2-5
default number of 1-0 buffers for, LRM

3-20
defining a, UC IV 2-3
design, UC IV 2-2
end-of-file mark, UC IV 2-1
end-of-volume label, UC IV 2-2
extending a, UC IV 2-4, 2-8
EXTENSION, UC IV 7-2
file status values, using, UC IV 5-3
I /0 statements, UC IV 2-3
multiple volumes, UC IV 2-2
open modes, UC IV 2-3
optimization techniques, UC IV 7-1
organization, UC IV 2-1
organization of

advantages, UC IV 1-2
disadvantages, UC IV 1-2

PREALLOCATION, UC IV 7-2
print file, as a, UC IV 2-4
reading a, UC IV 2-6
reserving buffer areas, UC IV 7-6
rewriting records in a, UC IV 2-7
storage file, as a, UC IV 2-4
unit of transfer, UC IV 7-8
WINDOW, UC IV 7-3

Sequential search, LRM 5-118
requirements for, UC Ill 3-14
results of using, UC Ill 3-14
with AT END statement, UC Ill 3-14

Serial search
See Sequential search

SET BREAKPOINT, Debugger command,
UC II 3-2t, 3-7

SET statement, LRM 5-124 to 5-125
indexing function, UC Ill 3-13

Setting program switches, LRM 5-18
Setting the scanner

inspecting data, UC Ill 2-35
Sharing execution control

in multiple subprograms, UC II 6-5
Short lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-18

SHOW BREAKPOINTS, Debugger
command, UC II 3-2t, 3-8

/SHOW compiler qualifier, RSTSIE UC I
3-3t, 3-5, RSX UC I 3-3t, 3-5

SHOW SYNONYMS, Debugger command,
UC II 3-2t, 3-10

/SHOW:MAP compiler qualifier, RSTS!E
UC I 3-3t, 3-5, RSX UC I 3-3t, 3-5

lndex-19

/SHOW:NOMAP compiler qualifier,
RSTSIE UC I 3-5t, RSX UC I 3-5t

Sign
conventions, UC Ill 1-6
default for unsigned operands, LRM

5-15
in arithmetic expressions, LRM 5-12
sharing same byte with digit, UC Ill 1-8t
specifying position of, LRM 4-62 to

4-63
specifying representation of, LRM 4-62

to 4-63
storage

COMP-3 data items, UC Ill 1-7
SIGN clause, LRM 4-62 to 4-63
Sign condition, LRM 5-18
Sign control symbols, LRM 4-48

in fixed insertion editing, LRM 4-48
in floating insertion editing, LRM 4-49

Sign tests
description of, UC Ill 1-10
equivalent relation tests, UC Ill 1-1 Ot

Significant digits, UC Ill 4-2
Signs val id for COMP-3 1 UC Ill 1-7
Simple insertion editing, LRM 4-48
Size

fixed-length tables, UC Ill 3-2
variable-length tables, UC Ill 3-5

SIZE clause, UC IV 9-12
Size error condition

and evaluation of exponentiation, LRM
5-13

description of, LRM 5-23
/-SKL compiler switch, RSTSIE UC I D-3t,

D-6, RSX UC I D-3t, D-6
SKL, skeleton descriptor file, RSTS/E UC I

3-1 , RSX UC I 3-1
Slash indicator character (/), RSTS/E UC I

2-2, RSX UC I 2-2
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

Sort
declarative procedure, UC IV 10-6
features

file organization, UC IV 10-5
multiple sorts, UC IV 10-5

hierarchy, UC IV 10-1
intermediate key, UC IV 10-1
major key, UC IV 10-1
minor key, UC IV 10-1
programming considerations

preventing I /0 aborts, UC IV 10-6
USE statement, UC IV 10-7

lndex-20

Sort
programming considerations (Cont.)

variable-length records, UC IV 10-6
sample program, UC IV 10-8

SORT statement, LRM 5-126 to 5-130
Sort-merge file description, LRM 4-21

clauses of, LRM 4-16
structure of, LRM 4-16

Sorting records, LRM 4-21, 5-126 to
5-130

using the RELEASE statement, LRM
5-111

using the RETURN statement, LRM
5-112 to 5-113

Source program reference formats, LRM
1-15 to 1-22

SOURCE-COMPUTER paragraph, LRM
3-2

Space characters, LRM 1-11
as delimiters of

arithmetic operators, LRM 5-12
relational operators, LRM 5-15

SPACE figurative constant, LRM 1-8
Space indicator character

in ANSI format, LRM 1-19
Spaces, as zero replacements, LRM 4-25
Special characters

nonnumeric data, UC Ill 2-2
Special insertion editing, LRM 4-48
Special registers, LRM 1-7

as VAX-11 COBOL incompatibility,
LRM D-7

LINAGE-COUNTER, LRM 1-7
RMS-STS, LRM 1-7
RMS-STV, LRM 1-7

Special-character words
defined, LRM 1-6
use in general formats, LRM 1-12

SPECIAL-NAMES paragraph, LRM 3-5 to
3-9

Special-purpose words, LRM 1-7
Spooler, system, UC IV 8-24
/STA:VAX compiler switch, RSTS/E UC I

D-3t, D-5 1 RSX UC I D-3t, D-5
Standard Alignment Rules, LRM 4-6
ST ART statement, LRM 5-131 to 5-133
Statements, COBOL, LRM 5-1, 5-32

compiler-directing, LRM 5-3
conditional, LRM 5-4
delimiting, LRM 5-4
imperative, LRM 5-3
options of, LRM 5-22 to 5-24

Status Key 1, LRM 5-25
Status Key 2, LRM 5-26

STB file type, UC II 3-2
STOP statement, LRM 5-1 34
STOP, DCL command, RSTS!E UC I 1-2
STOP, Debugger command, UC II 3-2t,

3-11
Storage allocation, LRM 4-7 to 4-14

differences for COMP and COMP SYNC
data items, UC Ill 1-3f

effect of fill bytes on, UC Ill 1-3, 3-6
for COMP and COMP SYNC items, LRM

4-7, 4-10 to 4-14, UC Ill 1-3
for COMP-3 data items, UC Ill 1-5f
for elementary items, LRM 4-8, 4-9
for group items, LRM 4-7, 4-8, 4-9,

4-10 to 4-14
for INDEX data items, LRM 4-7
for records, LRM 4-7
for redefined items, LRM 4-7
left-to-right technique, LRM 4-7
major-minor technique, LRM 4-8 to

4-14
of table data, UC Ill 3-5
of tables containing COMP or COMP

SYNC items, UC Ill 3-6
of tables not containing COMP, COMP

SYNC, or USAGE INDEX items, UC
Ill 3-5

when multiple entries describe the same
area, LRM 4-56 to 4-59

word boundaries, UC Ill 3-6
Storage file, UC IV 2-4
Storage format of a data item, LRM 4-66

to 4-70
Storing numeric data, UC Ill 1-1
STRING statement, LRM 5-135 to 5-139
Stringing data

with DELIMITED BY phrase, UC Ill 2-12
with multiple sending items, UC Ill 2-11
with OVERFLOW statement, UC Ill 2-14
with POINTER phrase, UC Ill 2-12
with subscripted items, UC Ill 2-15

/SUB compiler switch, RSTS/E UC I D-3t,
D-5, RSX UC I D-3t, D-5

/SUBPROGRAM compiler qualifier, RSTS!E
UC I 3-3t, 3-5, RSX UC I 3-3t, 3-5

using to identify a subprogram, UC II
6-2

Subprograms
defined, UC II 6-1
identifying, UC II 6-2
unique PSECT names, UC II 6-2
using to reduce task size, UC II 4-6

Subscript sequence evaluation, UC Ill
2-30

Subscripted items
inspecting data, UC Ill 2-37
to string data, UC Ill 2-15
to unstring data, UC Ill 2-29

Subscripted moves
nonnumeric data, UC Ill 2-10

Subscripting, LRM 5-8 to 5-9
basis for, LRM 4-38
in an identifier, LRM 5-11
with index-name items, UC Ill 3-12f

Subscripts
defined, UC Ill 3-10

SUBTRACT statement, LRM 5-140 to
5-142

SWITCH clause, LRM 3-6
Switch-status condition, LRM 5-18
Switches

See also BLOOOL utility switches
See also Compiler switches
setting values for, LRM 5-18
specifying in SPECIAL-NAMES paragraph,

LRM 3-6
Symbolic Debugger

See Debugger
Symbols

numeric editing, UC Ill 1-13
SYNCHRONIZED clause, LRM 4-64 to

4-65
Syntax rules, defined, LRM 1-26
System spooler, UC IV 8-24
System-names, LRM 1-4

T

Tab characters
in ANSI format, LRM 1-21
in terminal format, LRM 1-18
purpose of, LRM 1-12

Tab stops
in ANSI format, LRM 1-21
in terminal format, LRM 1-18

Table access
with SEARCH statement, UC Ill 3-14

Table elements
initializing, UC Ill 3-8

Table handling
binary search for a table element, LRM

5-119
searching for a table element, LRM

5-117 to 5-123
sequential search for a table element,

LRM 5-118

lndex-21

Tables
accessing

with indexes, UC Ill 3-10, 3-12
with subscripts, UC Ill 3-10, 3-11,

3-11 f
defining with OCCURS clause, LRM

4-38 to 4-42, UC Ill 3-1
fixed-length

multidimensional, UC Ill 3-3
one-dimensional, UC Ill 3-2
specifying size of, UC Ill 3-2

indexing
rules for, LRM 5-10 to 5-11

initializing, UC Ill 3-8f
effect of fill bytes on, UC Ill 3-10
redefining group level, UC Ill 3-8
with VALUE clause, UC Ill 3-8

multidimensional, UC Ill 3-1
storage allocation for, UC Ill 3-5
subscripting

rules for, LRM 5-8 to 5-9 UC Ill 3-11 f
with data-names, UC Ill 3-12, 3-12f

variable-length, UC Ill 3-5
Tally argument

to inspect data, UC Ill 2-38
Tally counter

to inspect data, UC Ill 2-38
Task Builder

diagnostics, RSTS!E UC I 4-3, RSX UC I
4-3

Task image
defined, UC II 4-1
size of, UC II 4-1

Task reduction techniques, UC II 4-1
Task-building

command line format, RSTS!E UC I
D-11, RSX UC I D-11

with CMD files, RSTS!E UC I D-10, RSX
UC I D-10

/TEMPORARY compiler qualifier, RSTS!E
UC I 3-3t, 3-6, RSX UC I 3-3t, 3-6

for improving program performance, UC
II 5-2

Terminal format, LRM 1-16 to 1-19,
RSTS!E UC I 2-2, RSX UC I 2-2

for improving program performance, UC
II 5-3

for reducing compile time, UC JI 5-3
limitations, RSTS!E UC I 2-2, RSX UC I

2-2
versus ANSI format, UC II 5-3

Testing
for the sign of a value, LRM 5-18

lndex-22

Testing (Cont.)
nonnumeric data items, UC Ill 2-3
numeric items, UC Ill 1-9

Text-name, defined, LRM 1-5
/TMP compiler switch, RSTS!E UC I D-3t,

D-7, RSX UC I D-3t, D-7
Top margin, UC IV 8-16
Top-of-page character(/), RSTS!E UC I

2-2, RSX UC I 2-2
Transferring execution control

with CALL statement, LRM 5-48 to 5-50,
UC II 6-3

with EXIT PROGRAM statement, LRM
5-70

with GO TO statement, LRM 5-71 to
5-?2

with IF statement, LRM 5-73 to 5-75
with MERGE statement, LRM 5-82 to

5-86
with PERFORM statement, LRM 5-98 to

5-106
with READ statement, LRM 5-107 to

5-110
!TRU compiler switch, RSTS/E UC I D-3t,

D-5, RSX UC I D-3t, D-5
/TRUNCATE compiler qualifier, RSTS!E UC

I 3-3t, 3-6, RSX UC I 3-3t, 3-6
Truth value

defined, LRM 5-1
of conditional expressions, LRM 5-14

TSK file
compared to task image, UC II 4-1

TYPE, DCL command, RSTS!E UC I 1-6t,
RSX UC I 1-6t

u

I ULIB BLDODL switch, RSTS!E UC I D-8,
RSX UC I D-8

UNDEFINE, Debugger command, UC II
3-2t, 3-10

Undefined results in a data-handling
operation, LRM 5-24

Uniqueness of Reference, LRM 1-4
UNSTRING statement, LRM 5-143 to

5-148
using, UC Ill 2-18

Unstringing data, UC Ill 2-18
common errors, UC Ill 2-31
COUNT phrase, UC Ill 2-24
delimiting with all asterisks, UC Ill

2-22t

Unstringing data (Cont.)
delimiting with all double asterisks, UC

Ill 2-23t
delimiting with asterisk, UC Ill 2-20t
delimiting with two asterisks, UC Ill

2-22t
multiple delimiters, UC Ill 2-23, 2-24t
multiple receiving items, UC Ill 2-18
OVERFLOW statement, UC Ill 2-28
POINTER phrase, UC Ill 2-26
receiving items based on sending item,

UC Ill 2-19t
sending item too short, UC Ill 2-19t
TALLYING phrase, UC Ill 2-27
using subscripted items, UC Ill 2-29
with DELIMITED BY phrase, UC Ill 2-20
with DELIMITER phrase, UC Ill 2-25

Uppercase words, as used in general
formats, LRM 1-12

USAGE clause, LRM 4-66 to 4-70
USE statement, LRM 5-149 to 5-150

and invalid key condition, LRM 5-28
User-defined words, LRM 1-3 to 1-4

uniqueness of, LRM 5-6
USING phrase

v

in SORT statement, UC IV 10-2
of CALL statement, LRM 5-32, 5-48 to

5-49
of Procedure Division header, LRM 4-17,

5-32, 5-48 to 5-49

VALUE IS clause, LRM 4-71 to 4-73
use in Linkage Section, LRM 4-17
use in Working-Storage Section, LRM

4-16
VALUE OF ID clause, LRM 4-74

using the, UC IV 1-10

Variable-length records, LRM 4-53 to
4-55

creation of, UC IV 1-4 to 1-8
record-length field, UC IV 1-4

VAX-11 COBOL
ensuring COBOL-81 compatibility with,

LRM D-1 to D-9
Verbs, COBOL, LRM 5-1

w

Warning diagnostics, RSTS!E UC I 3-7,
RSX UC I 3-7

/WARNINGS compiler qualifier, RSTS!E
UC I 3-6, RSX UC I 3-6

/WARNINGS:INFORMATIONAL compiler
qualifier, RSTS!E UC I 3-3t, 3-6, RSX
UC I 3-3t, 3-6

/WARNINGS:NOINFORMATIONAL
compiler qualifier, RSTS!E UC I 3-3t,
3-6, RSX UC I 3-3t, 3-6

WINDOW phrase of the APPLY clause,
LRM 3-23

WITH DUPLICATES IN ORDER phrase,
UC IV 10-4

Word boundaries
effects on storage allocation, UC Ill 3-6
with COMP and COMP SYNC, UC Ill

1-2
Working-Storage Section of Data Division,

LRM 4-16
WRITE statement, LRM 5-151 to 5-156

effect on LINAGE values, LRM 4-35

z

ZERO figurative constant, LRM 1-8
Zero suppression editing, LRM 4-50

lndex-23

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-171 O

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

cl o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

COBOL-81
Language Reference Manual

AA-J434B-TC

Note: This form is for document comments only. DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for

improvement.---~

Did you find errors in this manual? If so, specify the error and the page number.
----------------~

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Other (please specify) -----------------------------------

Organization ______________________________________ _

Street ___ _

Zip Code
City _____________________________________ State ______________ co8~try

- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~nmno~o ' ""
BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - - Do Not Tear- Fold Here -

