COBOL

COBOL-81
Language Reference Manual

Order No. AA-J434B-TC

COBOL-81
Language Reference Manual

Order No. AA—J434B-TC

May 1983

This document describes the COBOL-81 language.

OPERATING SYSTEM AND VERSION: RSX-11M
RSX-1TM-PLUS
RSTS/E

SOFTWARE VERSION: COBOL-81

digital equipment corporation, maynard, massachusetts

V4

\%

V2

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1983 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER’'S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

g) <

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor

Chapter 1 General Program Concepts
COBOL Language Elements
COBOL-81 General Format Notation
Source Program Reference Formats
Program Structure
Sample Format Entry Page

Chapter 2 Identification Division
Format Entry Pages

Chapter 3 Environment Division
Format Entry Pages

Chapter 4 Data Division
Data Division Concepts

Format Entry Pages

Chapter 5 Procedure Division
Procedure Division Concepts

Format Entry Pages

Chapter 6 The COPY Statement
Format Entry Pages

Appendixes
COBOL-81/VAX-11 COBOL Reserved Words
Character Sets
File Status Key Values
Ensuring COBOL-81 Compatibility with VAX—11 COBOL
Glossary

Master Index

Book Map

Contents

Page
TotheReader. i
Intended Audience. Xi
Structure of ThisDocument xi
Associated Documents. L L Xi
Conventions Used in This Document Xii
Summary of Technical Changes xii
Incompatibilities with VAX-11TCOBOL Xiii
Acknowledgment XV
Chapter 1 General Program Concepts
1.1 COBOLLlanguageElements. 1-1
1.1.1 The COBOL-81 CharacterSet 1-2
1.1.2 COBOLWords e 1-3
1.1.2.1 User-DefinedWords. 13
1.1.2.2 System-Names 1-4
1.1.2.3 ReservedWords 1-4
1.1.2.3.1 Required Words (Key Words and Special
Characters), . 1-6
1.1.23.2 OptionalWords 1-6
1.1.2.3.3 Special-Purpose Words (Registers and
Constants) 1-7
1.1.2.3.4 Literals (Numeric and Nonnumeric) 1-9
1.1.3 PICTURE Character-Strings. 1-11
1.1.4 Separators 1-1
1.2 COBOL-81 General Format Notation (Meta-Language) 1-12
1.2.1 Uppercase and Special-CharacterWords 1-12
1.2.2 LowercaseWords. Lo 1-13
1.2.3 BracketsandBraces 1-13
1.2.4 Choicelndicators.o 1-14
1.2.5 ThekEllipsis 1-14
1.2.6 TheSeparatorPeriod 1-15

Chapter 2

Chapter 3

1.3

1.4

1.5

Source Program Reference Formats 1-15

1.3.1 Terminal Format 1-16
1.3.1.1 Source Line Structure 1-16
1.3.1.2 Line Continuation 1-17
1.3.1.3 BlankLines 117
1.3.1.4 CommentlLlines 17
1.3.1.5 Short Lines and Tab Characters 1-18
1.3.2 ANSIFormat 1-19
1.3.2.1 Source Line Structure oL 1-19
1.3.2.2 Line Continuation 1-20
1.3.2.3 BlankLines 1-21
1.3.2.4 Commentlines 1-21
1.3.2.5 Short Lines and Tab Characters 1-21
Program Structure. e 1-22
1.4.1 DivisionHeader 1-23
1.4.2 SectionHeader 1-23
1.4.3 Paragraph, Paragraph Header, Paragraph-Name 1-24
1.4.4 DataDivisionEntries 1-25
1.4.5 Declaratives. 1-25
Sample FormatEntryPage. 1-26

Identification Division

2.1
2.2

PROGRAM-ID Paragraph 2-2
AUTHORParagraph 2-3

Environment Division

3.1

3.2

Configuration Section.o 3-2
3.1.1 SOURCE-COMPUTER Paragraph. 3-2
3.1.2 OBJECT-COMPUTER Paragraph 3-3
3.1.3 SPECIAL-NAMES Paragraph 3-5
Input-Output Sectiono 3-10
3.2.1 FILE-CONTROL Paragraph 3-10
3.2.1.1 ACCESSMODEClause. 3-13
3.2.1.2 ALTERNATERECORDKEYClause 3-15
3213 ASSIGNClause. L 3-16
3.2.1.4 FILESTATUSClause 3-17
3.2.1.5 ORGANIZATIONClause. 3-18
3.21.6 RECORDKEYClause 3-19
3.21.7 RESERVEClause 3-20
3.2.2 1-O-CONTROL Paragraph 3-21

Chapter 4 Data Division

4.1

4.2

Data Division Concepts 4-1
411 logicalConcepts 4-1

4.11.1 Record Description 4-2

41.1.2 Level-Numbers. L 4-2

4.1.1.3 Multiple Record Definitions 4-4
4.1.2 PhysicalConcepts 4-4

41.2.1 Categoriesand Classesof Data 4-5

4.1.2.2 Standard AlignmentRules 0L 4-6

4123 RecordAllocation 4-7

4.1.2.4 LocationEquivalence oL 4-8

4.1.2.5 BoundaryEquivalenceo 4-10
Data Division General FormatandRules 4-15
4.2.1 FD (File Description) — Complete Entry Skeleton. 4-18
4.2.2 SD (Sort-Merge File Description) — Complete Entry Skeleton 4-21
4.2.3 Data Description — Complete Entry Skeleton. 4-22
4.2.4 BLANKWHENZERO Clause 4-25
425 BLOCKCONTAINSClause 4-26
426 CODE-SETClause. 4-28
4.2.7 Data-Name Clause 4-29
4.2.8 DATARECORDS Clause 4-30
429 JUSTIFIED Clause 4-31
4.2.10 LABELRECORDS Clause 4-32
4211 Level-Number 4-33
4212 LINAGEClause 4-34
4213 OCCURSClause 4-38
4214 PICTUREClause 4-43
4215 RECORDClause 4-53
4.2.16 REDEFINES Clause 4-56
4.2.17 RENAMES Clause 4-60
4218 SIGNClause 4-62
4.2.19 SYNCHRONIZED Clause 4-64
4220 USAGEClause 4-66
4.2.21 VALUEISClause 4-71
4.2.22 VALUEOFIDClause 4-74

Chapter 5 Procedure Division

5.1

5.2

Verbs, Statements, and Sentences 5-1
5.1.1 Compiler-Directing Statements and Sentences 5-3
5.1.2 Imperative Statementsand Sentences 5-3
5.1.3 Conditional Statements 5-4
5.1.4 ScopeofStatements Lo 5-4
Transferof Program Flow 5-5
5.2.1 ExplicitChanges 5-5
5.2.2 ImplicitChanges 5-5

vi

5.3

5.4

5.5

5.6

5.7

5.8

59

Uniquenessof Reference oL 5-6

5.3.1 Qualification 5-6
5.3.2 SubscriptsandiIndexes. 0oL 5-8

5.3.2.1 Subscripting 5-8

5322 Indexing 5-10
5.3.3 Identifiers. 5-11
5.3.4 Ensuring Unique Condition-Names 5-11
Arithmetic Expressionso 5-12
5.4.1 ArithmeticOperators. 5-12
5.4.2 Formation and Evaluation of Arithmetic Expressions 5-12
Conditional Expressions L 5-14
5.5.1 Relation Conditions 5-14

5.5.1.1 Comparison of NumericOperands 5-15

5.5.1.2 Comparison of NonnumericOperands 5-15

5.5.1.3 Comparisons of Index-Names or Index Data ltems 5-16
5.5.2 ClassCondition. 5-16
5.5.3 Condition-Name Condition 5-17
5.5.4 Switch-Status Condition 5-18
5.55 SignConditiono 5-18
5.5.6 Complex Conditions 5-18

5.5.6.1 Negated Simple Conditions 5-19

5.5.6.2 Combined and Negated Combined Conditions 5-19
5.5.7 Abbreviated Combined Relation Conditions 5-20
5.5.8 Condition EvaluationRules. 0. 5-21
Common Rules and Options for DataHandling 5-22
5.6.1 Arithmetic Operations 5-22
5.6.2 Multiple Receiving Fields in Arithmetic Statements 5-22
5.6.3 TheROUNDED Option. 5-22
5.6.4 The ONSIZEERROROption 5-23
5.6.5 CORRESPONDING Option. 5-23
5.6.6 Overlapping Operands and IncompatibleData 5-24
I-OStatus 5-24
571 TheINVALIDKEY Phrase 5-27
5.7.2 TheATENDPhrase 5-28
573 TheFROMOption 5-28
574 ThelINTOOption. 5-29
Segmentationo Lo 5-29
5.8.1 Organization L0 5-29
5.8.2 Usingthe Segmentation Facility 5-30
Procedure Division General FormatandRules 5-31
59.1 ACCEPT Statement Lo 5-34
5.9.2 ADDStatement. e 5-46
59.3 CALLStatement. 5-48
5.9.4 CLOSEStatement. 5-51
5.9.5 COMPUTE Statement. 5-55
59.6 DELETEStatement Lo 5-57

5.9.7 DISPLAY Statement 5-59

5.9.8 DIVIDE Statement 5-66
5.9.9 EXIT Statement 5-69
5.9.10 EXITPROGRAM Statement 5-70
5.9.11 GOTO Statement 5-71
5.9.12 IFStatement, 5-73
5.9.13 INSPECT Statement 5-76
5.9.14 MERGE Statement L 5-82
5.9.15 MOVE Statement, 5-87
5.9.16 MULTIPLY Statement 5-91
5.9.17 OPEN Statement 5-93
5.9.18 PERFORM Statement 5-98
5.9.19 READ Statement 5-107
5.9.20 RELEASE Statement 5-111
5.9.21 RETURN Statement 5-112
5.9.22 REWRITE Statement. 5-114
5.9.23 SEARCH Statement 5-117
5.9.24 SET Statement. 5-124
5.9.25 SORT Statement L 5-126
5.9.26 START Statement 5-131
5.9.27 STOP Statement 5-134
5.9.28 STRING Statement 5-135
5.9.29 SUBTRACT Statement 5-140
5.9.30 UNSTRING Statement 5-143
5.9.31 USEStatement 5-149
5.9.32 WRITE Statement 5-151

Chapter 6 The COPY Statement

Appendix A COBOL-81/VAX-11 COBOL Reserved Words

Appendix B Computer Character Set

Appendix C FILE STATUS Key Values

Appendix D Ensuring COBOL-81 Compatibility with VAX-11 COBOL

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8

Sizeof INDEXDataltems D-1
Alignmentof COMPDataltems D-1
Detection of Invalid DecimalData D-7
Size of Special Registers (RMS-STS, RMS-STV, and LINAGE-COUNTER) D-7
RMS-STSand RMS-STV Values D-7
Not Allowing Duplicate Keys in Indexed Files D-9
Value for ESCape Character (RSTS/EOnly) D-9
Program-Names D-9

vii

Examples

Figures

Tables

viii

1-1

1-3
1-4

1-6
1-7

D-1
D-2

D-4

1-1
1-2
1-3
1-4
1-5
4-1
42
4-3
4-4
4-5

4-7
4-8

4-10
5-1

5-3
5-4

1-2
1-3
4-1
4-2
4-3
4-4
45
4-6
4-7

Size and Value of NumericLiterals 1-10
Size and Value of NonnumericLiterals 1-10
Line Continuation of Numeric and Nonnumeric Literals (Terminal Format) . . 1-17
Compiler Interpretation of Shortened Source Lines (Terminal Format) 1-18
Line Continuation of Numeric and Nonnumeric Literals (ANSI Format). 1-20
Compiler Interpretation of Shortened Source Lines (ANSI Format) 1-21
IncorrectUseof TAB 1-22
Multiple Record Definition Structure. oL 4-4
Changing a Simple Record to Ensure COMP Item Compatibility D-2
Changing a Table to Ensure COMP Item Compatibility D-4
Changing a Complex Record to Ensure COMP Item Compatibility D-5
Including an RMS-STS Value Using the COPY Statement D-8
COBOL Language Elements. 1-2
Sample General Format Lo 1-6
Terminal Program Reference Format 1-16
ANSI Program Reference Format 1-19
StructureofaCOBOLProgram 1-22
Hierarchical Record Structureo 4-3
Level-Number Record Structure00 4-3
Record AlignmentBoundaries 4-7
Data Alignment Requirements Without and With Location Equivalence 4-9
Record Allocation Without and With Location Equivalence 4-9
Effect of Boundary and Location Equivalence Rules on Sample Record 4-10
Storage Allocation for SampleRecord 4-11
Record Allocation Without and With Boundary Equivalence 4-11
Logical Page Areas Resulting froma LINAGE Clause 4-37
Storage Format of COMP-3 Dataltems 4-68
PERFORM ... VARYING with One Condition 5-102
PERFORM ... VARYING with Two Conditions 5-103
Valid and Invalid Nested PERFORM Statements 5-104
Format 1 SEARCH Statement with Two WHEN Phrases 5-120
The COBOL-81 CharacterSet 1-3
COBOL-81 User-DefinedWords 1-5
COBOL-81System-Names 1-6
Classes and Categoriesof Dataltems. 4-6
Data Items Requiring Alignment 4-8
Summary of PICTURE ClauseRules 4-44
Using Sign Control Symbols in Fixed Insertion Editing. 4-49
Using Sign Control Symbols in Floating Insertion Editing 4-50
PICTURE Symbol PrecedenceRules 4-52
Positive and Negative Signs for All Numeric Digits 4-63

4-10

5-10
5-11

5-12
B-1

COMP and COMP SYNC Alignment Differences. 4-65

Unscaled Data Items and Corresponding Storage Data Types 4-69
Scaled Data Items and Corresponding Storage Data Types 4-70
Types and Categories of COBOL Statements. 5-2
Contents of COBOL Sentences 5-3
Combinations of Symbols in Arithmetic Expressions 5-13
Relational Operators and Corresponding True Conditions 5-15
How Logical Operators Affect Evaluation of Conditions 5-19
Combinations of Conditions, Logical Operators, and Parentheses 5-20
Possible Combinations of Status Keys1and2 5-25
Effects of CLOSE Statement Formats on Files by Category 5-52
Valid MOVE Statements 5-89
Opening Available and Unavailable Sequential, Relative and Indexed Files . . 5-95
Allowable Input-Output Statements for Sequential, Relative, and Indexed

Files . . o . 5-96
Validity of Operand Combinations in Format 1 SET Statements 5-125
ASCIllI CharacterSet B-1

To the Reader

Objectives

This manual describes the COBOL-81 language. It presents some general COBOL concepts and
explains the use of each COBOL-81 language element.

Intended Audience

This manual is for the experienced COBOL programmer. It does not attempt to teach the
COBOL language or operating system concepts and procedures. If you are a new COBOL user,
you should read introductory COBOL textbooks and take DIGITAL COBOL courses — either
self-paced or classroom.

Structure of This Document

The information in this manual is organized into six chapters. Supplementary information is
also provided in the appendixes and glossary.

The document map, which follows the title page, lists the content areas of each chapter and
appendix.

The master index at the end of this manual guides you to all the topics discussed in the
COBOL-81 documentation set.

Associated Documents

Within the COBOL-81 documentation set:

e The COBOL-81 RSTS/E User’s Guide, Order No. AA-J435C-TC, or the COBOL-81
RSX-1IM/M-PLUS User’s Guide, Order No. AA-M179B-TC, describes how to compile,
debug, link, and run COBOL-81 programs. Your user’s guide also discusses a variety of
topics of interest to COBOL programmers.

® The COBOL-81 Pocket guide, Order No. AV-H630C-TC, summarizes key information
from both this manual and the user’s guide. The pocket guide lists all COBOL-81 lan-
guage formats, commands, reserved words, and character sets.)

e The COBOL-81 RSTS/E Installation Guide/Release Notes, Order No. AA-L028D-TC, or the
COBOL-81 RSX-11M/M-PLUS Installation Guide/Release Notes, Order No. AA-M181C-TC,
describes the installation and certification procedures for the COBOL-81 compiler. Your
installation guide also contains release information that explains changes made to the
compiler.

e The PDP-11 COBOL to COBOL-81 Translator Utility, Order No. AA-N339A-TC, contains
information needed by users who have purchased the Translator Utility.

Xi

Outside the COBOL-81 documentation set:

The system directory lists and describes all manuals in your operating system’s documentation
set. One of the following directories can help you find the system information you need:

- ® RSTS/E Documentation Directory
® RSX-TIM/RSX-11S Information Directory and Index
® RSX-TIM-PLUS Information Directory and Index

Conventions Used in This Document

The following conventions apply to this manual:
Convention Meaning

RET A symbol with a one- to three-character abbreviation
indicates that you must press a key on the terminal; for
example, RET and TAB indicate that you press the
RETURN key and the TAB key on your keyboard.

The symbol indicates that you must press a key
labeled CTRL while you simultaneously press another

key; for example, (LD, CTALD.

$ COBOL Black ink indicates all output lines or prompting charac-
ters that the system prints or displays. Red ink indicates
all user-entered commands.

$File: PAYROLL
£
PROCEDURE DIVISION, A vertical series of periods, or ellipses, means that not all

the data a user would enter is shown.

BEGIN-PROC,

+
+

+

END-PROC,

Summary of Technical Changes

This section lists, by chapter and appendix, the major technical changes documented in the
COBOL-81 Language Reference Manual. These changes reflect additions and changes to the
COBOL-81 programming language.

Chapter 1:
1. Special registers LINAGE-COUNTER, RMS-STS, and RMS-STV

2. System-name additions (mnemonics for devices)

Xii

Chapter 3:
3. Modification of SELECT clause to include relative files
4. Device-name and SWITCH clauses (SPECIAL-NAMES paragraph)
5. WINDOW option of the APPLY clause (I-O-CONTROL paragraph)
6. REEL/UNIT option of the RERUN clause (I-O-CONTROL paragraph)
7. Sort (or merge) files in SAME clause (I-O-CONTROL paragraph)

Chapter 4:
8. Sort/merge file description entry
9. New file description entry to include relative files
10. Minimum to maximum record size option of RECORD CONTAINS clause
11. LINAGE clause of file description entry
12. DEPENDING ON phrase of OCCURS clause
13. RENAMES clause of data description entry (level 66 items)

14. Condition-names in data description entry (level 88 items)

Chapter 5:
15. Qualification
16. Abbreviated combined relation conditions
17. Condition-name conditions
18. Extensions to the ACCEPT and DISPLAY statements to facilitate video forms design
19. CORRESPONDING phrase of the ADD, SUBTRACT, and MOVE statements
20. Separate formats and rules for EXIT and EXIT PROGRAM statements
21. Multiple receiving fields for arithmetic statements
22. VARYING phrase of the PERFORM statement
23. SORT, MERGE, RELEASE, and RETURN statements

Chapter 6:
24. REPLACING phrase of the COPY statement

Appendix A:
25. Modified reserved word list

Some formats that are not included in this list have minor rule modifications because of the new
features for this release.

Incompatibilities with VAX-11 COBOL

COBOL-81 is a subset of VAX-11 COBOL, but the two products have some incompatibilities
because of differences between the PDP-11 and the VAX-11 computer systems. Appendix D,
Ensuring COBOL-81 Compatibility with VAX-11 COBOL, lists and describes all known
incompatibilities.

xiii

Acknowledgment

COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL
Committee as to the accuracy and functioning of the programming system and language. More-
over, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used herein are: FLOW-MATIC
(trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) | and II, Data Auto-
mation Systems, copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial Transla-
tor Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL speci-
fications in programming manuals or similar publications.

XV

Chapter 1
General Program Concepts

This chapter contains general information about the language and structure of COBOL source
programs. It describes COBOL language elements, source program reference formats, notation
used in general formats, and program organization.

1.1 COBOL Language Elements

The character is the basic, indivisible unit of your COBOL program. To the COBOL-81 compiler,
a COBOL program is a stream of contiguous characters that is syntactically correct according to
the rules of the COBOL language. The compiler breaks down this continuous series of charac-
ters into character-strings and separators.

A character-string is any elementary unit of the COBOL language that provides information to
the compiler. There are various types of character-strings. Each type is carefully defined in the
COBOL language so that the compiler can only interpret it and use it in certain ways. For
instance, PROGRAM-ID, “Enter employee number: ", and 9(10)V99 each represent a different
type of character-string that appears in your source programs. Each of these character-strings
provides the compiler with a different type of information.

Separators are the space characters and “punctuation” characters that mark the boundaries of
character-strings. One of these separators, the period, also tells the compiler that it has reached
the end of a header, sentence, or statementin a COBOL source program.

Some parts of your source program provide no information to the compiler. The compiler
ignores comment lines and entries that make your program easier to understand and to main-
tain, but that do not add anything to program logic, data specifications, or device assignments.
In short, the compiler does not consider “documentation only” sections as part of your source
program.

Figure 1-1 illustrates how the compiler breaks down your source program into COBOL language
elements. The sections following Figure 1-1 first discuss the COBOL character set, and then
each COBOL language element in detail.

1-1

Figure 1-1: COBOL Language Elements

source program

/\

character-strings @ separators

COBOL words @ literals @ PICTURE character-strings @

— N .

user-defined words @ system-names @ reserved words @ numeric literals @ nonnumeric literals @

D

~ o 1
AN i

AN l’

required words ® optional words @ special purpose words @\ //

\
/.\‘l,'
key words @ special character words @ special registers ® figurative constants @

Examples:

@ comment-entry

| 1
1. lAUTHDF\‘. ILEN TRASTMART . RED
u

® ©® ®» ® ® O O

10O

2. m[T)~(—RATE'PIC' '91.’9(3)' rW\LUE' 15 |1 .253]. RET)
L I [} g ou]
® ® ®

J @
@
] ©)
©
@
©

rd
m
=
[}
wm
jw]
—
43}
o
—
pog

1
Invalid data." Qe
Ll

@
@c
©)
@
@[
@

® 00 ® ® ®» ®
o

[1 [110 T] 1 1
BII_FI LINAGE-COUNTER 50, WRITE HEADER-REC AFTER PAGE.RE
(. |5 L (W] J (-] U

®®® ® ® ® ®

»
=

1.1.1 The COBOL-81 Character Set

The COBOL-81 character set, shown in Table 1-1, is used to form character-strings and
separators.

The only components of a COBOL-81 program that can contain characters outside this set are
nonnumeric literals, comment-entries, and comment lines. Appendix B specifies the more
inclusive computer character sets these components can use.

1-2 General Program Concepts

Table 1-1: The COBOL-81 Character Set

Character Meaning

.9 digit

4 letter

B lowercase letter (equivalent to letter)
plus sign

minus sign (hyphen)

asterisk

slash (stroke, virgule)

equal sign

currency sign

greater than symbol

less than symbol

colon

underline (underscore)

space

horizontal tab (equivalent to space)

(left parenthesis

)) right parenthesis

&
-

S w

ANV T ol e

=
=g
=

comma (decimal point)
semicolon

period (decimal point, full stop)
quotation mark

Except in nonnumeric literals, the compiler treats lowercase letters as if they were uppercase.
Therefore a program can contain COBOL words without regard to case. For example, the com-
piler recognizes the COBOL words in each of the following pairs as identical:

WORKING-STORAGE Working-Storage

Input input
file-a FILE-A
INSPECT InSpect

1.1.2 COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms one of the
following: , f :

e A user-defined word
® Asystem-name
® Areserved word

A system-name or user-defined word cannot be a reserved word. However, a program can use
the same COBOL word as both a user-defined word and a system-name. The compiler deter-
mines the word’s class from its context.

1.1.2.1 User-Defined Words — A user-defined word is a COBOL word that you must supply to
satisfy the format of a clause or statement. This word consists of characters selected from the

set A through Z, 0 through 9, and hyphen (-). The hyphen can neither begin nor end a user-de-
fined word.

General Program Concepts 1-3

COBOL-81 recognizes 13 types of user-defined words. Those that define program resources are
grouped into sets. The letters preceding the word types show the set structure:

(A) alphabet-name
(B) condition-name
(B) data-name
(C) file-name
(D) index-name
level-number
(E) mnemonic-name
(F) paragraph-name
(G) program-name
(B) record-name
(H) section-name
segment-number
() text-name

All user-defined words in a program, except segment-numbers and level-numbers, can belong
to one and only one of these sets. User-defined words in each set must be unique, or defined
according to the rules for uniqueness of reference. (See Section 5.3, Uniqueness of Reference.)
However, any segment-number or level-number can be the same as any other segment-number
or level-number.

Except for section-names, paragraph-names, segment-numbers, and level-numbers, all
user-defined words must contain at least one alphabetic character.

Table 1-2 describes the COBOL-81 user-defined words.

1.1.2.2 System-Names — A system-name is a COBOL word that has been defined by DIGITAL to
refer to the program’s operating environment. It is similar to a reserved word, except that its
use is “‘reserved” only in particular places in the program. Anywhere else in the program, it can
be used as a user-defined word. The compiler determines whether the word is a system-name
or a user-defined word from its context in the program.

Table 1-3 lists the 16 COBOL-81 system-names, and specifies their locations in the source
program.

1.1.2.3 Reserved Words — A reserved word can be used only as specified in the general formats.
It cannot be a user-defined word. See Appendix A, COBOL-81/VAX-11 COBOL Reserved
Words.)

There are three types of reserved words:
1. Required words
2. Optional words

3. Special-purpose words

1-4 General Program Concepts

Table 1-2: COBOL-81 User-Defined Words

User-Defined Word

Purpose

Alphabet-Name

Condition-Name

Data-Name

File-Name

Index-Name
Level-Number

Mnemonic-Name

Paragraph-Name

Program-Name

Record-Name
Section-Name

Segment-Number

Text-Name

Assigns a name to a character set and/or collating sequence. Alphabet-names
must be defined in the SPECIAL-NAMES paragraph. (See Section 3.1.3, SPECIAL-
NAMES Paragraph.)

Assigns a name to a value, set of values, or range of values in the complete set of
values that a data item can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names assigned in the SPECIAL-
NAMES paragraph to the “on” or “off” status of switches are also condition-
names.

Names a data item described in a data description entry. When specified in a gen-
eral format, data-name cannot be subscripted, indexed, or qualified unless speci-
fically allowed by the rules for that format.

Names a file connector. A file connector is the link between:

¢ Afile-name and a physical file

¢ Afile-name and its associated storage area

File description and sort-merge file description entries describe file connectors.
Names an index associated with a specific table.

Is a one- or two-digit number that describes a data item’s special properties or its
position in the structure of a record. (See Section 4.1.1.1, Record Description, and
Section 4.1.1.2, Level-Numbers.)

Associates a name with a system-name, such as CONSOLE, or SWITCH. (See
Section 3.1.3, SPECIAL-NAMES Paragraph.)

Names a Procedure Division paragraph. (See Section 1.4.3.) Paragraph-names are
equivalent only if they are identical, that is, when they are composed of the same
sequence and number of digits and/or characters.

For example:

START-UP START-UP Equivalent
START-UP STARTUP Different
Start-up START-UP Equivalent
001-START-UP 01-START-UP Different
017 017 Equivalent
017 17 Different

Identifies a COBOL source program. Only the first six characters of program-
name are significant. (See Section 2.1, PROGRAM-ID Paragraph.)

Names a data item described with level-number 01 or 77.

Names a Procedure Division section. Section-names are equivalent only if they
are identical: when they are composed of the same sequence and number of dig-
its and/or characters. (See Section 1.4.3.)

Is a one- or two-digit number that classifies a Procedure Division section for seg-
mentation. In COBOL-81 programs, segment-numbers specify overlayable and
nonoverlayable segments. (See Section 5.8, Segmentation.)

Identifies library textin a COBOL library. (See Chapter 6, COPY Statement.)

General Program Concepts 1-5

Table 1-3: COBOL-81 System-Names

System-Name

Location

CARD-READER
CONSOLE
CONTIGUOUS
DEFERRED-WRITE
EXTENSION
FILL-SIZE

1D

LINE-PRINTER
MASS-INSERT
PAPER-TAPE-PUNCH
PAPER-TAPE-READER
PDP-11
PREALLOCATION
PRINT-CONTROL
SWITCH

WINDOW

SPECIAL-NAMES paragraph

SPECIAL-NAMES paragraph

APPLY clause of the I-O-CONTROL paragraph
APPLY clause of the 1-O-CONTROL paragraph
APPLY clause of the I-O-CONTROL paragraph
APPLY clause of the I-O-CONTROL paragraph
VALUE OF ID clause of the file description entry
SPECIAL-NAMES paragraph

APPLY clause of the I-O-CONTROL paragraph
SPECIAL-NAMES paragraph

SPECIAL-NAMES paragraph
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs
APPLY clause of the I-O-CONTROL paragraph
APPLY clause of the I-O-CONTROL paragraph
SPECIAL-NAMES paragraph

APPLY clause of the I-O-CONTROL paragraph

1.1.2.3.1 Required Words (Key Words and Special Characters) — A required word must be used
whenever the statement or clause containing it is used in a program.

There are two types of required words: key words and special character words.
1. Key Words
In general formats, key words are in uppercase and underlined.
In Figure 1-2, the key words are COMPUTE, ROUNDED, SIZE, and ERROR.

Figure 1-2: Sample General Format

COMPUTE { rsult [ROUNDED] } ... = arithmetic-expression [ON SIZE ERROR stment]

2. Special Character Words

The arithmetic operators and relation characters are special character words. They are
not underlined in general formats.

In Figure 1-2, the equal sign (=) is a special character word.

1.1.2.3.2 Optional Words — In general formats, uppercase words that are not underlined are
optional. They can make a program more readable, but have no semantic effect. In Figure 1-2,
ON is an optional word.

1-6 General Program Concepts

1.1.2.3.3 Special-Purpose Words (Registers and Constants) — There are two types of special-
purpose words: (1) special registers, which name and refer to special storage areas (special reg-
isters) that the compiler provides, and (2) figurative constants, which name and refer to specific
constant values.

1.

Special Registers

The COBOL special registers appear only in Procedure Division statements. They store
information related to or produced by specific COBOL features. The special registers
are as follows:

® For Linage Files

LINAGE-COUNTER - The reserved word LINAGE-COUNTER names a line counter
that the compiler provides when a file description entry contains a LINAGE clause. Its
value is the number of the current record within the page body. (See Section 4.2.12,
LINAGE Clause.) The implicit size of LINAGE-COUNTER is four decimal digits repre-
sented by PIC S9(4) COMP. You can qualify it with a file-name. Procedure Division
statements can access the value of LINAGE-COUNTER but cannot change the value.

® For PDP-11 Record Management Services (RMS-11)

RMS-STS — The reserved word RMS-STS names a Record Management Services
exception condition register. It contains the primary RMS status value of an I-O
operation (RMS-STV is the secondary value). RMS-STS provides additional informa-
tion on COBOL File Status values resulting from [-O operations. It is a four digit
COMP item represented by PIC S9(4) USAGE IS COMP. You can qualify RMS-STS
with a file-name. Before the program opens the file for the first time, the value of
RMS-STS is undefined. After your program executes an OPEN or CLOSE statement,
RMS-STS is set to the value of the STS field in the associated File Access Block. After
execution of a READ, WRITE, REWRITE, DELETE, or START statement, RMS-STS is set
to the value of the STS field in the associated Record Access Block. For an explanation
and a listing of these values, refer to the RMS-11 Macro Programmer’s Guide.
Procedure Division statements can read the value in RMS-STS; however, only RMS-11
can change the value. For an example of its use, refer to the chapter on I-O excep-
tions conditions handling in Part IV of the COBOL-81 User’s Guide for your system.

RMS-STV — The reserved word RMS-STV names a Record Management Services
exception condition register. It contains the secondary (RMS-STS is primary) RMS sta-
tus value of an 1-O operation. The interpretation of this value is dependent on the
value in RMS-STS. It is a four digit COMP item represented by PIC S9(4) USAGE IS
COMP. You can qualify RMS-STV with a file-name. The value in RMS-STV is unde-
fined prior to the initial OPEN of the file. After your program executes an OPEN or
CLOSE statement, RMS-STV is set to the value of the STV field in the associated File
Access Block. After execution of a READ, WRITE, REWRITE, DELETE, or START state-
ment, RMS-STV is set to the value of the STV field in the associated Record Access
Block. For an explanation and a listing of these values, refer to the RMS-11 Macro
Programmer’s Guide. Procedure Division statements can read the value in RMS-STV;
however, only RMS-11 can change the value. For an example of its use, refer to the
chapter on I-O exceptions conditions handling in Part IV of the COBOL-81 User’s
Guide for your system.

General Program Concepts 1-7

1-8

2. Figurative Constants

Figurative constants name and refer to specific constant values generated by the com-
piler. The singular and plural forms of figurative constants are equivalent and
interchangeable.

The figurative constants are:
ZERO, ZEROS, ZEROES

Represent the value zero, or one or more occurrences of the character 0 from the
computer character set, depending on context. In the following example, the first
use of the word ZERO represents a zero value; the second use represents six 0
characters:

03 ABC PIC 89(3) VALUE ZEROD.
03 DEF PIC X(B) VALUE ZERD.

SPACE, SPACES
Represent one or more space characters from the computer character set.
HIGH-VALUE, HIGH-VALUES

Represent one or more occurrences of the character with the highest ordinal posi-
tion in the program collating sequence. The value of HIGH-VALUE depends on the
collating sequence specified by clauses in the OBJECT-COMPUTER and SPECIAL-
NAMES paragraphs. (See Section 3.1.2, OBJECT-COMPUTER Paragraph and Section
3.1.3, SPECIAL-NAMES Paragraph.) For example, HIGH-VALUE for the NATIVE col-
lating sequence is octal 377, but HIGH-VALUE for the STANDARD-1 collating
sequence is octal 177.

LOW-VALUE, LOW-VALUES

Represent one or more occurrences of the character with the lowest ordinal posi-
tion in the program collating sequence. The value of LOW-VALUE is octal 00,
regardless of what collating sequence is specified. (See Section 3.1.2, OBJECT-
COMPUTER Paragraph, and Section 3.1.3, SPECIAL-NAMES Paragraph.)

QUOTE, QUOTES

Represent one or more occurrences of the quotation-mark character (). QUOTE or
QUOTES cannot be used in place of a quotation mark to delimit a nonnumeric lit-
eral. The following examples are not equivalent:

QUOTE abed QUOTE
"ahed"

ALL Literal

Represents one or more occurrences of the string of characters comprising the lit-
eral. The literal must be either nonnumeric, or a figurative constant other than ALL
literal. When it precedes a figurative constant (for example, ALL ZEROES), the word
ALL is redundant and serves only to enhance readability.

General Program Concepts

When a figurative constant represents a string of one or more characters, the string’s
length depends on its context:

1. The string’s length can vary for a figurative constant in a VALUE IS clause, or for one
associated with another data item (for example, when the figurative constant is
moved to or compared with another data item). Proceeding from left to right, the
compiler repeats the string of characters that represents the figurative constant. It
repeats them, character by character, until the size of the resultant string equals
that of the associated data item. This is done before and independent of the appli-
cation of any JUSTIFIED clause specified for the data item.

2. When a figurative constant is not associated with another data item (for example,
when itis in a DISPLAY, STRING, STOP, or UNSTRING statement), the length of the
string is one occurrence of the ALL literal or one character in all other cases.

A figurative constant is valid wherever the word “literal” (or its abbreviation, “lit”)
appears in a General Format, or its associated rules. However, ZERO (ZEROS, ZEROES)
is the only valid figurative constant for literals restricted to numeric characters.

The actual characters associated with HIGH-VALUE(S) depend on the program collating
sequence. (See Section 3.1.2, OBJECT-COMPUTER Paragraph, and Section 3.1.3,
SPECIAL-NAMES Paragraph.)

1.1.2.3.4 Literals (Numeric and Nonnumeric) — A literal is a character-string whose value is speci-
fied by: (1) the ordered set of characters it contains, or (2) a reserved word that is a figurative
constant.

There are two types of literals: numeric and nonnumeric.

Numeric Literals

A numeric literal is a character string of 1 to 20 characters selected from the digits 0 through 9,
the plus sign (+), the minus sign (-), and the decimal point (.).

The value of a numeric literal is the algebraic quantity represented by the characters in the lit-
eral. Its size equals the number of digits in the character-string.

The syntax rules for numeric literals are as follows:

1.
2.

A numeric literal must contain at least one digit and not more than 18 digits.

A numeric literal can contain only one sign character, which must be the leftmost char-
acter. If the literal is unsigned, its value is positive.

A numeric literal can contain only one decimal point. The decimal point is treated as an
assumed decimal point. It can be used anywhere in the literal except as the rightmost
character.

If a numeric literal contains no decimal point, itis an integer.

The compiler treats a numeric literal enclosed in quotation marks as a nonnumeric
literal.

General Program Concepts ~ 1-9

Example 1-1: Size and Value of Numeric Literals

Size
Literal Value in Digits
12 12 2
-123456789012345678 -123456789012345678 18
000000003 3 9
-34.455445555 -34.455445555 11
0 0 1
+0.000000000001 +0.000000000001 13
+ 0000000000001 +1 13

Nonnumeric Literals

A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited on both ends by a
quotation mark (“).

The value of a nonnumeric literal is the value of the characters in the character-string. It does
not include the quotation marks that delimit the character-string. All other punctuation charac-
ters in the nonnumeric literal are part of its value.

The compiler truncates nonnumeric literals to a maximum of 256 characters.

The syntax rules for nonnumeric literals are as follows:
1. Aspace or left parenthesis must immediately precede the opening quotation mark.
2. The closing quotation mark must be immediately followed by one of the following:

Space

Comma
Semicolon
Period

Right parenthesis

3. Because quotation marks are used as delimiters, two consecutive quotation marks
must be used within the literal to represent the value of one quotation mark.

Example 1-2: Size and Value of Nonnumeric Literals

In the following examples, s represents a space character.

Size in
Literal Value Characters
"ABC" ABC 3
"ot 01 2
"sO1" 501 3
"DUUEMTEY DUE"F 5
"a.sb" a.hb 3
O " ‘I
II‘JII nn IIKH ‘JI! "K 4
IIDIIIIPII"DH DHPHQ 5
" R o oan S oo T 1 R nn 8 "o T 7

1-10 General Program Concepts

1.1.3 PICTURE Character-Strings

A PICTURE character-string defines the size and category of an elementary data item. It can con-
sist of the currency symbol and certain combinations of characters in the COBOL character set.
(See Section 4.2.14, PICTURE Clause.)

A punctuation character that is part of a PICTURE character-string is not considered to be a
punctuation character. Instead, the compiler treats it as a symbol within the PICTURE character-
string.

1.1.4 Separators

A separator delimits character-strings. It can be one character or two contiguous characters
formed according to the following rules:

Space The space can be a separator or part of a separator.

1. Where a space is used as a separator or part of a separator, more
than one space can be used.

2. Aspace can immediately precede any separator except:

a. As specified by the rules for reference formats (See Section
1.3)

b. The closing quotation mark of a nonnumeric literal; the space
is then considered part of the nonnumeric literal rather than a
separator

3. Aspace can immediately follow any separator except the opening
quotation mark of a nonnumeric literal. After an opening quota-
tion mark, the space is considered part of the nonnumeric literal
rather than a separator.

Comma and Semicolon The comma and semicolon are separators when they immediately
precede a space. In this case, the comma and semicolon are inter-
changeable with each other and with the separator space. They can
be used anywhere in a source program that a separator space can be
used.

Period The period is a separator when it immediately precedes a space or a
return character. It can be used only where allowed by:

1. Statement and sentence structure definitions (Section 5.1, Verbs,
Statements, and Sentences)

2. Reference format rules (Section 1.3, Source Program Reference
Formats)

Parentheses Parentheses can be used only in balanced pairs of left and right par-
entheses to delimit:

Subscripts

Indexes

Arithmetic expressions
Conditions

General Program Concepts 1-11

Quotation Marks An opening quotation mark (") must be immediately preceded by a
separator space or a left parenthesis. A closing quotation mark (*)
must be immediately followed by one of the separators: space,
comma, semicolon, period, or right parenthesis.

Horizontal Tab The horizontal tab aligns statements or clauses on successive col-
umns of the source program listing. It is interchangeable with the
separator space. When the compiler detects a tab character (other
than in a nonnumeric literal), it generates one or more space charac-
ters consistent with the tab character position in the source line. (See
Section 1.3, Source Program Reference Format.)

1.2 COBOL-81 General Format Notation (Meta-Language)

Throughout this manual, general formats are shown for all COBOL-81 clauses and statements.
General formats show the specific arrangement of the parts of an entry, paragraph, clause, or
statement. When you can use more than one arrangement of its parts, the general format is sep-
arated into separate formats (Format 1, Format 2, and so forth). Unless the general format’s
rules state otherwise, you must write clauses in the sequence shown.

The notation used in the general formats is called the COBOL meta-language. Because it illus-
trates the rules to follow when writing a source program, COBOL meta-language helps you to
write your own statements or clauses. However, some of the elements of COBOL meta-
language would not actually appear in any source program.

The following meta-language elements are combined into general formats. Those elements that
do not actually appear in a source program are followed by an asterisk (*):

® Uppercase and special-character words

® | owercase words

Brackets *

® Braces *

Choice indicators *

Ellipsis *

Separator period

1.2.1 Uppercase and Special-Character Words

All uppercase and special-character words are COBOL reserved words; that is, they cannot
appear in your program as words you define or as system-names.

Underlined uppercase words are key words. A key word is required and must be spelled cor-
rectly when it is included in the source program. The following special-character words are not
underlined in general formats but are required where they appear: +, -, <, >, comma (,),
and =.

1-12 General Program Concepts

In the general format for the SIGN clause, the key words are SIGN, LEADING, TRAILING, and
SEPARATE:

LEADING

[SIGN IS] { } [SEPARATE CHARACTER |

TRAILING

Uppercase words not underlined are optional. They serve only to improve the source pro-
gram’s readability. In the preceding general format, the optional words are IS and CHARACTER.

1.2.2 Lowercase Words

Lowercase words are generic terms. They indicate entries the programmer must provide.
Lowercase words can represent COBOL words, literals, PICTURE character-strings, comment-
entries, or complete syntactical entries.

1.2.3 Brackets and Braces

Brackets ([1) enclose an optional part of a general format. When they enclose vertically stacked
entries, brackets indicate that you can select one (but no more than one) of the enclosed
entries.

Braces ({ }) indicate that you must select one (but no more than one) of the enclosed entries. If
one of the entries contains only reserved words that are not key words, that entry is the default
option when no other entry is selected.

In the general format for the SYNCHRONIZED clause:
® The entire clause is optional
e [f the clause is used, it must contain either SYNCHRONIZED or SYNC

e The clause can contain either LEFT or RIGHT (or neither)

SYNCHRONIZED LEFT
SYNC RIGHT

The following SYNCHRONIZED clause entries are valid:

SYNCHRONIZED
SYNCHRONIZED LEFT
SYNCHRONIZED RIGHT
SYNC

SYNC LEFT

SYNC RIGHT

General Program Concepts 1-13

1.2.4 Choice Indicators

If choice indicators, {I 1}, enclose part of a general format, you must select one or more of the
enclosed entries (in any order). However, no entry can be used more than once.

In the general format for the ACCEPT statement (format 4), one or more of the vertically stacked
entries must be selected:

ACCEPT CONTROL KEY IN key-dest-item
line-num

{ line-id [PLUS [plus-num]]
PLUS [plus-num]

FROM LINE NUMBER

column-num
FROM COLUMN NUMBER
{ column-id [PLUS [plus-num]]

PLUS [plus-num]

SCREEN
ERASE [TO END OF]

LINE

WITH BELL

[ON EXCEPTION stment]

Some valid ACCEPT statement entries are:

ACCEPT KEY IN A-KEY LINE 10 COLUMN 20,
ACCEPT CONTROL KEY IN A-KEY ERASE LINE WITH BELL.
ACCEPT CONTROL KEY A-KEY COLUMN 15,

1.2.,5 The Ellipsis

In general formats, the ellipsis (...) allows repetition of a part of the format.
To determine which part of the format can be repeated:
1. Find the ellipsis.
2. Scanning to the left, find the first right delimiter, either] or }.
3. Continuing to the left, find its logically matching left delimiter, either [or {.

The ellipsis applies to the part of the format between the matched pair of delimiters.

1-14 General Program Concepts

In the general format for the STRING statement, the ellipsis allows repetition of the shaded
part:

delim
STRING { src-string }... DELIMITED BY

INTO dest-string [WITH POINTER pointr | [ON OVERFLOW stment |

Some valid STRING statement entries are:

STRING A B DELIMITED BY SIZE INTO C.
STRING A DELIMITED BY B, C DELIMITED BY D INTO E.
STRING A B DELIMITED BY SIZE, C DELIMITED BY D INTO E.

1.2.6 The Separator Period

The separator period (.) is the period used to "punctuate’” the source program. Separator
periods are required where shown in a general format. For example, there are eight separator
periods in the general format for the Identification Division:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]
[INSTALLATION. [comment-entry | ...]
[DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry] ...]
[SECURITY. [comment-entry] ...]

The separator periods following the words, DIVISION, PROGRAM-1D, and program-name must
appear in every source program. The separator periods following the words AUTHOR,
INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and SECURITY must appear in a source
program that includes these optional paragraphs.

1.3 Source Program Reference Formats

The COBOL-81 compiler recognizes two source program formats: terminal and ANSI.
¢ Terminal format is a compact DIGITAL-specified format.
e ANSI format conforms to the American National Standard COBOL reference format.

Terminal format is the default program reference format (unless this was changed by your sys-
tem manager at installation time). In other words, the compiler expects terminal format source
lines if the compiler command line either: (1) includes the qualifier NOANSI_FORMAT, or (2)
has no source format qualifier. The compiler expects ANSI format only when the command line
includes the /ANSI_FORMAT qualifier.

The program reference format spacing rules take precedence over all other spacing rules.

General Program Concepts 1-15

1.3.1 Terminal Format

COBOL-81 terminal format shortens program preparation time and reduces storage space for
source programs. If you have used only ANSI format in the past, note that terminal format:

e Combines the indicator area with Area A

¢ Eliminates the sequence number and identification areas

® Permits up to 200 characters in a source program line

Figure 1-3 illustrates how Areas A and B are mapped to character positions in the source code
line. The value n can be less than or equal to 200.

Figure 1-3: Terminal Program Reference Format

Without Indicator Character

Area A Area B
| : I ' ,
1123141567]|8]9[|10(11]12[13]14]|15]|16(17 n
M 0 VYV E N E T - P A Y R 44

With Indicator Character

Area A Area B
| 1
1T]
1121341516718 9)|10|11]12|13|14}15]|16|17}|..| n
- " I L I T Y L E Y E L +.+.

The following five sections discuss the definitions and rules that apply to terminal format.

1.3.1.1 Source Line Structure

Indicator An indicator occupies the first character position. In terminal format, the com-

piler recognizes the following valid indicator characters in the first character
position:

Character Source Line Interpretation

hyphen (-) Continuation line. The compiler processes the line as a con-
tinuation of the previous source line.

asterisk (*) Comment line. The compiler ignores the contents of the line.
However, the source line appears on the program listing.

slash (/) New listing page. The compiler treats the line as a comment
line. However, it advances the program listing to the top of
the next page before printing the line.

1-16 General Program Concepts

Area A When no indicator is present, Area A occupies character positions 1 through 4.
When an indicator is present, Area A occupies character positions 1 through 5.

Area A contains division headers, section headers, paragraph headers,
paragraph-names, level indicators, and certain level-numbers.

Area B Area B begins with the character position immediately following Area A. It ends
when the compiler detects a carriage return.

Area B contains all other COBOL text.

1.3.1.2 Line Continuation — Sentences, entries, phrases, and clauses that continue in Area B of
subsequent lines are called continuation lines. The line being continued is called the continued
line.

A hyphen in a line’s indicator area causes its first nonblank character in Area B to be the imme-
diate successor of the last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

However, if the continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in Area B of the continuation line must be a quotation mark. The
continuation starts with the character immediately after the quotation mark. Area A of the con-
tinuation line must be blank.

If the indicator area is blank:
1. The compiler treats the first nonblank character on the line as if it followed a space.

2. The compiler treats the last nonblank character on the preceding line as if it preceded a
space.

Example 1-3 illustrates the use of line continuation in terminal format. The example shows con-
tinuation of a numeric literal, a nonnumeric literal, and a sentence (in that order).

Example 1-3: Line Continuation of Numeric and Nonnumeric Literals (Terminal Format)

01 NUMERIC-CONTINUATION,
03 NUMERIC-LITERAL PIC 8(016) YALUE IS5 123
- 4367890123456,
01 NONNUMERIC-CONTINUATION,.
03 NONNUMERIC-LITERAL PIC X(40) VALUE IS "AB
- "CDEFGHIJKLMNOPORSTUVWXYZabecdefdhidKlmn™,
PROCEDURE DIVISION,
SENTENCE-CONTINUATION,
IF NUMERIC-LITERAL NOT = SPACES
DISPLAY "NUMERIC-LITERAL NOT = SPACES"
ELSE
DISPLAY NUMERIC-LITERAL.

1.3.1.3 Blank Lines — A blank line contains no characters. The compiler recognizes a blank line
by the presence of the carriage return.

1.3.1.4 Comment Lines — A comment line is any source line with an asterisk (*) or slash (/) in its
indicator area. Area A and Area B can contain any character(s) from the computer character set.
Comment lines can be anywhere in a source program or library text.

General Program Concepts 1-17

1.3.1.5 Short Lines and Tab Characters — Because terminal format does not have a fixed 80-
character line length, you can press RETURN to delimit lines that are shorter than that. The
RETURN key inserts a return character into the source program file, and the compiler recog-
nizes the return character as the end of the line.

The TAB key inserts a tab character into the source program file. Tab characters, other than
those in nonnumeric literals, cause the compiler to generate enough space characters to posi-
tion the next character you enter at the next tab stop.

In terminal format, the compiler’s tab stops are: (1) on the first character position of Area B and
(2) every eight character positions to the right, until the end of the line.

Using TAB makes it easy for you to move directly into Area B without counting spaces. Using
TAB also makes it easier to obtain consistent vertical alignment within Area B to improve pro-
gram readability.

Note

Although the lines in a source program can be as long as 200 characters, you
must remember that the maximum length of the source line includes all
spaces represented by a tab character.

Also, only 125 characters of the source program line appear on the program
listing. The compiler processes the complete source line but displays only
the first 125 characters on the listing.

Example 1-4 shows how the compiler interprets carriage return and tab characters:

Example 1-4: Compiler Interpretation of Shortened Source Lines (Terminal Format)

Source Lines Entered from Terminal

*The following record descrirtion shows the source line format@D
O1@MBRECORD -A . RED)

03 GROUP-A.RD

@BTBOS ITEM-ATBRPIC X(10).@D

*TAThe tab character in the nonnumeric literalRD

*#@Bon the next line is stored as one characte rRD

[B[0S ITEM-BBPIC X VALUE IS "@B®".RD

@3 ITEM-CEB@BPIC K(10).RD

Compiler Iinterpretation

*¥The followind record description shows the source line format
01 RECORD-A.
03 GROUP-A,

05 ITEM-A PIC H(10),
* The tab character in the nonnumeric literal
* on the next line is stored as one character
05 ITEM-B PIC ¥ VALUE IS "@®".

03 ITEM-C PIC K10},

1-18 General Program Concepts

1.3.2 ANSI Format

ANSI program reference format describes COBOL programs so that they can be stored on
punched card media. For compatibility with card format, a source program line must be limited
to 80 characters. Also, each area of the input line is defined as a set sequence of character posi-
tions. "Margins’ between the areas are fixed to define the columns of the punched card. Figure
1-4 illustrates how ANSI format areas are mapped to character positions in the input source line.

Figure 1-4: ANSI Program Reference Format

Margin Margin Margin Margin Margin
L C A B R
l Vo l !
1121345167]|8|9]|10|11[12|13|14] ...]172173|74({75|76|77|78| 79| 80
L J L L Il]
T T T T
Sequence Number Area A Area B Identification Area
Area
Indicator
Area

The following five sections discuss the definitions and rules that apply to ANSI format.

1.3.2.1 Source Line Structure

Margin L Immediately to the left of the leftmost character position.
Margin C Between character positions 6 and 7.

Margin A Between character positions 7 and 8.

Margin B Between character positions 11 and 12.

Margin R Between character positions 72 and 73.

Sequence Number Area The six character positions between Margin L and Margin C. The
contents can be any character(s) from the computer character set.

The compiler does not check the contents of this area for either
uniqueness, or ascending sequence.

Indicator Area The seventh character position. The character in this position
directs the compiler to interpret the source line in one of the fol-
lowing ways:

Character Source Line Interpretation

space () Default. The compiler processes the line as normal COBOL
text.

hyphen (-) Continuation line. The compiler processes the line as a con-
tinuation of the previous source line.

asterisk (*) Comment line. The compiler ignores the contents of the
line.

slash (/) New listing page. The compiler treats the line as a comment

line. However, it advances the program listing to the top of
the next page before printing the line.

(continued on next page)

General Program Concepts 1-19

Area A The four character positions between Margin A and Margin B. Area
A contains division headers, section headers, paragraph headers,
paragraph-names, level indicators, and certain level-numbers.

Area B The 61 character positions between Margin B and Margin R. Area B
contains all other COBOL text.

Identification Area The eight character positions immediately following Margin R. The
compiler ignores the contents of the identification area.

1.3.2.2 Line Continuation — Sentences, entries, phrases, and clauses that continue in Area B of
subsequent lines are called continuation lines. The line being continued is called the continued
line.

A hyphen in a line’s indicator area causes its first nonblank character in Area B to be the imme-
diate successor of the last nonblank character of the preceding line. This continuation excludes
intervening comment lines and blank lines.

However, if the continued line contains a nonnumeric literal without a closing quotation mark,
the first nonblank character in Area B of the continuation line must be a quotation mark. The
continuation starts with the character immediately after the quotation mark. The compiler con-
siders all 61 character positions in Area B of the continued line as part of the literal. Pressing
RETURN will not suppress spaces following text entry on the continued line. Area A of the con-
tinuation line must be blank.

If the indicator area is blank:
1. The compiler treats the first nonblank character on the line as if it followed a space.

2. The compiler treats the last nonblank character on the preceding line as if it preceded a
space.

Example 1-5 illustrates use of line continuation in ANSI format.

Example 1-5: Line Continuation of Numeric and Nonnumeric Literals (ANSI Format)

001010 01 NUMERIC-CONTINUATION.

001020 03 NUMERIC-LITERAL PIC 9d16) UVALUE IS 123
001030~ 4367890123456,

001040 01 NONNUMERIC-CONTINUATION,

001030 03 NONNUMERIC-LITERAL PIC X(40) UALUE IS "AB
0010B0- "CDEFGHIJKLMNOPORSTUVWRYZabeodefdhidKlmn",

001070 PROCEDURE DIVISION.
001080 SENTENCE-CONTINUATION.

001090 IF NUMERIC-LITERAL NOT = SPACES

001100 DISPLAY "NUMERIC-LITERAL NOT = SPACES"
001110 ELSE

001120 DISPLAY NUMERIC-LITERAL.

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050 and 001060 con-
tinue a nonnumeric literal. A sentence that spans four lines begins on line 001090.

1-20 General Program Concepts

1.3.2.3 Blank Lines — A blank line contains no characters other than spaces between Margin C
and Margin R. Blank lines can be anywhere in a source program or in library text that you intend
to include in a source program with the COPY statement.

1.3.2.4 Comment Lines — A comment line is any source line with an asterisk or slash in its indi-
cator area. Area A and Area B can contain any character(s) from the computer character set.
Comment lines can be anywhere in a source program or library text.

1.3.2.5 Short Lines and Tab Characters — If the source program input medium is not punched
cards, using the TAB and RETURN keys can shorten source program lines. A tab character is
inserted into the source program by the TAB key; a return character is inserted by the RETURN
key.

The compiler recognizes the end of the input line as Margin R. Tab characters, other than those
in nonnumeric literals, cause the compiler to generate enough space characters to position the
next character at the next tab stop. The compiler’s tab stops are at character positions 8 (first
character postion in Area A), 12 (first character position in Area B), 20, 28, 36, 44, 52, 60, 68, and
76.

Example 1-6 shows how the compiler interprets carriage return and horizontal tab characters in
ANSI format.

Example 1-6: Compiler Interpretation of Shortened Source Lines (ANSI Format)

Shortened ANSI format source line

000100%The following record description shows the source line format@e
Q000110 O1TRECORD-A R

000120003 GROUP-A.RD

Q001300BMmITBCS ITEM-ATBPIC X(10).@D

000140%@BThe tab character in the nonnumeric literal@E)

0001530*@Bon the next line is stored as one characte r@e

0001600ABTABTABCS ITEM-B@BPIC X VALUE IS "@AB".RED)

Q00170003 ITEM-C@BMBPIC X(10).,.RD

Source line as interpreted by compiler

Q00100%The followingd record description shows the source line format
000110 01 RECORD-A.

000120 03 GROUP-A,.

000130 05 ITEM-A PIC X(10),

000140% The tab character in the nonnumeric literal
000150% on the next line is stored as one character
000160 05 ITEM-B PIC X VALUE IS "@®".
000170 03 ITEM-C PIC X(10),

Do not use the TAB key more than necessary. You will get compiler error diagnostics if you
insert tab characters beyond the permissible character position(s) for a COBOL statement or
entry. Example 1-7 shows how the compiler treats a source program line with tab characters
inserted incorrectly. The problem is in line 000004: it contains one too many tab characters. This
places the paragraph-name PO out of Area A.

General Program Concepts 1-21

Example 1-7: Incorrect Use of TAB

Shortened ANSI Format Source Line

Source Line as Interpreted by Compiler

000001 IDENTIFICATION DIVISION,
0D0000Z PROGRAM-ID. ANSI-TEST.
DOO003 PROCEDURE DIVISION,
OQO00d PO,

LR e
X

* % %
* %%
* % %

4530 Undefined reference.

519 Invalid statement syntax.
000005 STOP RUN.

mmm T

* %%

i

1.4 Program Structure

3890 A section header or paradgrarh-name

301 *#Compilation resumed at this Foint.

required,

Figure 1-5 shows the basic program structure of a COBOL program. It illustrates the organiza-
tion of a program into divisions, sections, paragraphs, sentences, and entries.

Figure 1-5: Structure of a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. main-program.
AUTHOR.

INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
[-O-CONTROL.

DATA DIVISION.

FILE SECTION.

file and record description entries
sort-merge file and record description entries
WORKING-STORAGE SECTION.

record description entries

LINKAGE SECTION.

record description entries

1-22 General Program Concepts

(continued on next page)

PROCEDURE DIVISION
DECLARATIVES.
sections

paragraphs

sentences

END DECLARATIVES.
sections

paragraphs

sentences

1.4.1 Division Header

A division header identifies and marks the beginning of a division. It is a specific combination of
reserved words followed by a separator period. Division headers start in Area A.

Except for the COPY statement (See Chapter 6, The COPY Statement.), the statements, entries,
paragraphs and sections of a COBOL source program are grouped into four divisions in this
order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

The end of a COBOL source program is indicated by the end of that program’s Procedure
Division.

Note

The Procedure Division header can contain a USING phrase. (See Section
5.9, Procedure Division General Format and Rules.)

Only these items can immediately follow a division header:
® Another division header
® Asection header
® A paragraph header or paragraph-name
® Acommentline
e Ablankline
e DECLARATIVES (after the Procedure Division header only)
¢ PROGRAM-ID (after the Identification Division header only)

1.4.2 Section Header

A section header identifies and marks the beginning of a section in the Environment, Data, and
Procedure Divisions. In the Environment and Data Divisions, a section header is a specific com-
bination of reserved words followed by a separator period. In the Procedure Division, a section
header is a user-defined word followed by the word SECTION (and an optional segment-
number). A separator period always follows a section header. Section headers start in Area A.

General Program Concepts 1-23

The valid section headers follow for each division.
In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division:
user-name SECTION [segment-number |.
Only these items can immediately follow a section header:
e Adivision header
® Another section header
® A paragraph header or paragraph-name
® Acomment line
e A USE statement (in the Declaratives part of the Procedure Division only)
e Ablankline

® A Data Division entry (in the Data Division)

1.4.3 Paragraph, Paragraph Header, Paragraph-Name

A paragraph consists of a paragraph header or paragraph-name (depending on the division) fol-
lowed by zero, one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period. Paragraph headers iden-
tify paragraphs in the Identification and Environment Divisions.

The paragraph headers are:

Identification Environment
Division Division

PROGRAM-ID. SOURCE-COMPUTER.
AUTHOR. OBJECT-COMPUTER.
INSTALLATION. SPECIAL-NAMES.
DATE-WRITTEN. FILE-CONTROL.
DATE-COMPILED. 1-O-CONTROL.
SECURITY.

A paragraph-name is a user-defined word followed by a separator period. Paragraph-names
identify Procedure Division paragraphs.

Paragraph headers and paragraph-names start in Area A of any line after the first line of a divi-
sion or section.

The first entry or sentence of a paragraph begins in either:
® On the same line as the paragraph header or paragraph-name

® In Area B of the next nonblank line that is not a comment line

1-24 General Program Concepts

Successive sentences or entries begin in Area B of either:
¢ The same line as the preceding entry or sentence

e The next nonblank line thatis nota commentline

1.4.4 Data Division Entries

A Data Division entry begins with a level indicator or level-number and is followed, in order,
by:

1. Aspace
2. The name of a data item or file connector
3. Asequence of independent descriptive clauses
4. A separator period
The level indicators are:
® D (for file description entries)

¢ SD (for sort-merge file description entries)

Level indicators start in Area A.

Entries that begin with level-numbers are called data description entries. The level-number val-
ues are 01 through 49, 66, 77, and 88. Level-numbers 01 through 09 can be one- or two-digit
numbers.

Level 01 and 77 data description entries begin in Area A. All other data description entries can
begin on the first character position of Area B. Further indentation has no effect on level-
number magnitude; it merely enhances readability.

1.4.5 Declaratives

Declaratives specify procedures to be executed only when certain conditions occur. You must
write declarative procedures at the beginning of the Procedure Division in consecutive sec-
tions. The key word DECLARATIVES begins the declaratives part of the Procedure Division; the
pair of key words END DECLARATIVES ends it. Each of these reserved word phrases must: (1) be
on aline by itself, starting in Area A; and (2) be followed by a separator period.

For example:

PROCEDURE DIVISION.
DECLARATIVES,
IDERROR SECTION,
USE AFTER STANDARD ERROR PROCEDURE +.+.+
PAR-1.

.

END DECLARATIVES,
FIRST-ONE SECTION.
PARAG-1,

+
+

+

When you use declarative procedures, you must divide the remainder of the Procedure
Division into sections.

General Program Concepts 1-25

1.5 Sample Format Entry Page

Most entries in this manual adhere to the format on the following sample page. Each COBOL
division or major topic begins a new chapter and each entry begins on a new page.

Entry-Name

Entry-Name

Function
The function paragraph describes the function or the effect of the entry.
General Format

A general format shows the specific arrangement of elements in the entry. If there is more
than one arrangement, the formats are numbered. All clauses (mandatory and optional)
must be used in the sequence shown in the format. However, the syntax rules sometimes
allow exceptions.

generic-term
Following the general format are definitions of its generic terms. These terms are sup-
plied by the programmer and appear in the rules in italics. Restrictions applied to
generic terms are equivalent to syntax rules.

Syntax Rules

Syntax rules define or clarify the arrangement of words or elements. They can also impose
or relax restrictions implied by the general format. Syntax rule violations are detected at
compile time.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an element or
set of elements. They also define the semantics of an entry, describing its effects on pro-
gram compilation or execution. General rule violations are detected at run time.

Technical Notes

Technical notes describe an entry’s effects in system-specific terms. They define relation-
ships between the COBOL program and the operating system, RMS-11, the hardware, and
other components in the PDP-11 system.

Additional References

Additional references point to other relevant information in this manual, the COBOL-81
User’s Guide for your system, and manuals in the operating system documentation set.

Examples

Examples show the use of a statement, clause, or other entry. The COBOL-81 User’s Guide
for your system contains examples in application contexts.

1-26 General Program Concepts

Chapter 2
Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also identifies a pro-
gram and its source listing.

General Format

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]
« [INSTALLATION. [comment-entry] ...]

* [DATE-WRITTEN. [comment-entry] ...]
* [DATE-COMPILED. [comment-entry] ...]
* [SECURITY. [comment-entry] ...]

* These paragraphs are not described in individual entries; they follow the same format as
the AUTHOR paragraph and are for documentation only.

Syntax Rules
1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the ldentification Division header. The
header consists of the reserved words IDENTIFICATION DIVISION followed by a sepa-
rator period.

3. The PROGRAM-ID paragraph must immediately follow the Identification Division
header.

2-1

PROGRAM-ID

2.1 PROGRAM-ID Paragraph

Function
The PROGRAM-ID paragraph identifies a program.
General Format

PROGRAM-ID. program-name.

Syntax Rules
1. The PROGRAM-ID paragraph must be present in every program.

2. Program-name must contain 1 to 30 characters. Only the first six characters of program-
name are significant to to the compiler.

General Rules

1. Program-name is a user-defined word that identifies a COBOL program and its source
listing. The first six characters of program-name appears as the first word in the first line
of every page in the compiler source listing.

2. Program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program, the first
six characters of the program-name for each separately compiled program must be
unique. :

Additional References
Chapter6 ~ COPY Statement
Examples

PROGRAM-ID., PROGA.
PROGRAM-ID, JOBGa.

PROGRAM-ID.
WRITEMASTERREPORT.

2-2 ldentification Division

AUTHOR

2.2 AUTHOR Paragraph

Function
The AUTHOR paragraph is for documentation only.
General Format

AUTHOR. [comment-entry | ...

Syntax Rules

1. Comment-entry can consist of any combination of characters from the computer char-
acter set.

2. Comment-entries can span several lines in Area B. However, they cannot be continued
by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

Examples

AUTHOR. STAN GUSSO0.
AUTHOR, This prodram was written by Phil Goodrich
122 Thompson Ln.

Grover Corners: MN

AUTHOR .

Identification Division 2-3

Chapter 3
Environment Division

Function

The Environment Division describes the program’s physical environment. It also specifies
input-output control and describes special control techniques and hardware characteristics.
General Format

ENVIRONMENT DIVISION.

[CONFIGURATlON SECTION.

[SOURCE-COMPUTER. [source-computer-entry.]]
[OBJECT-COMPUTER. [object-computer-entry.]]
SPECIAL-NAMES. [special-names-entry.]]

L

INPUT-OUTPUT SECTION.

FILE-CONTROL. { file-control-entry. }

I-O—CONTROL. [input-output-control-entry.]]
L

Syntax Rules

1. The Environment Division follows the ldentification Division.

2. The general format defines the order of appearance of Environment Division entries.

3-1

CONFIGURATION SECTION
SOURCE-COMPUTER

3.1 Configuration Section

The Configuration Section can contain three paragraphs: SOURCE-COMPUTER, OBJECT-
COMPUTER, and SPECIAL-NAMES.

3.1.1 SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph specifies the computer on which the source program is to
be compiled.

General Format

PDP-11
SOURCE-COMPUTER. .
computer-type

computer-type
is a user-defined word that names the computer.

Syntax Rule
The word PDP-11 is a system-name. It is not a reserved word.
General Rule

This paragraph is for documentation only.

3-2 Environment Division

OBJECT-COMPUTER

3.1.2 OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph describes the computer on which the program is to
execute.

General Format

PDP-11
OBJECT-COMPUTER.
computer-type

—

WORDS
MEMORY SIZE integer CHARACTERS]
MODULES

PROGRAM COLLATING SEQUENCE IS alphabet-name]

-

SEGMENT-LIMIT IS segment-number] .

computer-type
is a user-defined word that names the computer.

alphabet-name
the name of a collating sequence defined in the ALPHABET clause of the SPECIAL-NAMES
paragraph.

segment-number
is an integer from 1 through 49.

integer
is an integer from 1 through 65,535.

Syntax Rules

1. The word PDP-11 is a system-name. It is not a reserved word and is for documentation
only.

2. either PDP-11 or computer-type must be specified if any other OBJECT-COMPUTER
clauses appear.

General Rules
1. The MEMORY SIZE clause is for documentation only.

2. The PROGRAM COLLATING SEQUENCE clause causes the program to use the collating
sequence of alphabet-name to determine the truth value of nonnumeric comparisons
in:

e Relation conditions

o Condition-name conditions

Environment Division 3-3

OBJECT-COMPUTER
Continued

3. The PROGRAM COLLATING SEQUENCE clause also applies to nonnumeric merge and

sort keys. However, the COLLATING SEQUENCE phrase in a MERGE or SORT statement
takes precedence over the PROGRAM COLLATING SEQUENCE clause.

If there is no PROGRAM COLLATING SEQUENCE clause, the program uses the NATIVE
collating sequence.

The SEGMENT-LIMIT clause determines how a program is overlaid in memory.
When the SEGMENT-LIMIT clause is specified, segments with numbers from
segment-number through 49 are overlaid; that is, they are swapped in and out of a
given memory area as needed. Those segments with numbers less than segment-
number comprise the program ““root.”

When the executable image contains only one program, segments in the root always
remain in memory.

When the executable image contains two or more programs (and if at least two pro-
grams contain the SEGMENT-LIMIT clause), there is more than one root. In this case,
one root is always in memory, but the various roots are overlaid.

Additional References

Section 3.1.3 SPECIAL-NAMES Paragraph

Section 4.2.2 ' Sort-Merge File Description

Section 5.5.1 Relation Condition

Section 5.5.3 Condition-Name Condition

Section 5.8 Segmentation

Part IV of the COBOL-81 User’s Refer to the chapter on

Guide for your system Sorting Records and Merging Files
Examples

1. Computer name only:

3-4

2.

3.

OBJECT-COMPUTER. PDP-11,

No computer name (if the computer is not specified, then no other clause can appear):
OBJECT-COMPUTER,

With PROGRAM COLLATING SEQUENCE clause:

The SPECIAL-NAMES paragraph must define ALPH-A.

OBJECT-COMPUTER. PDP-11
PROGRAM COLLATING SEQUENCE IS ALPH-A,

Environment Division

SPECIAL-NAMES

3.1.3 SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph: (1) associates operating system device names with user-de-
fined mnemonic-names, (2) specifies the currency sign, (3) selects the decimal point, and (4)
relates alphabet-names to character sets or collating sequences.

General Format

SPECIAL-NAMES .

- -
CARD-READER
PAPER-TAPE-READER
CONSOLE IS device-name
LINE-PRINTER
PAPER-TAPE-PUNCH
IS switch-name [ON STATUS IS cond-name] [OFF STATUS IS cond-name]
IS switch-name [OFF STATUS IS cond-name] [ON STATUS IS cond-name |
SWITCH switch-num
ON STATUS IS cond-name [OFF STATUS IS cond-name]
OFF STATUS IS cond-name [ON STATUS IS cond-name]
[STANDARD-1
ALPHABET alphabet-name IS
NATIVE
[CURRENCY SIGN IS char]
[DECIMAL-POINT IS COMMA | .
device-name
is a mnemonic-name for a device. Only the ACCEPT and DISPLAY statements can refer to
it.
switch-num

is the number of a program switch. Its value can range from 1 through 16.

Environment Division 3-5

SPECIAL-NAMES
Continued

switch-name
is a mnemonic-name for the program switch.

cond-name
is a condition-name for the “on’’ or ““off”’ status of the switch. Its truth value is ““true’’ when
the STATUS phrase matches the status of the switch, “/false” when it does not.

alphabet-name
is the user-defined word for a character set and/or collating sequence.

char
is a one-character nonnumeric literal that specifies the currency symbol.

General Rules

device-name Clause

1. The device-name clause associates an operating system device name with a user-de-
fined mnemonic-name (device-name). The COBOL-81 system-names PAPER-TAPE-
READER, CARD-READER, CONSOLE, LINE-PRINTER, and PAPER-TAPE-PUNCH act as
““connectors”” between the device-names specified in the program and system
devices. Therefore, an ACCEPT or DISPLAY statement that refers to a program specific
device-name can transfer data from (or to) the device associated with the COBOL-81
system-name.

The system-names and their default device equivalents are:

System-Name Device
CARD-READER CR:
PAPER-TAPE-READER PR:
CONSOLE TI:
LINE-PRINTER LP:
PAPER-TAPE-PUNCH PP:

Note

By default, CONSOLE is associated with the interactive terminal (TI:) that
begins program execution, rather than with the computer console.

SWITCH Clause

2. The ON STATUS (or OFF STATUS) phrase of the SWITCH clause associates the status
of switch-name with a corresponding cond-name. The program uses a switch-status
condition in the Procedure Division to test the switch.

ALPHABET Clause
3. The ALPHABET clause relates a name to a character code set, collating sequence, or
both.

3-6 Environment Division

SPECIAL-NAMES
Continued

The ALPHABET clause specifies:

e A character code set, when alphabet-name is in a CODE-SET clause in the file
description entry.

¢ A collating sequence, when alphabet-name is in: (1) the PROGRAM COLLATING
SEQUENCE clause in the OBJECT-COMPUTER paragraph or (2) the COLLATING
SEQUENCE phrase of a SORT or MERGE statement

STANDARD-1 refers to the ASCII character set. The ASCII character set is defined in
American National Standard X3.4-1968, *‘Code for Information Interchange.”

5. NATIVE refers to the native character set. It consists of 256 characters. The lowest-
valued 128 characters are the ASCII character set. The highest-valued 128 characters
are reserved for later standardization and definition by DIGITAL.

6. The character with the highest ordinal position in the program collating sequence
equals the figurative constant HIGH-VALUE.

7. The character with the lowest ordinal position in the program collating sequence
equals the figurative constant LOW-VALUE.

CURRENCY SIGN Clause

8. In the CURRENCY SIGN clause, char specifies the PICTURE clause currency symbol. It

can be any printable character from the computer character set except:

e O0through9

e A,B,C,D,P,R,S,V, X, Z, orthe space

® Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.), semicolon (;),
comma (,), quotation mark (*), equal sign (=), or slash (/)

9. The CURRENCY SIGN clause can contain lowercase counterparts of the valid upper-

10.

case alphabetic characters. However, lowercase and uppercase alphabetic characters
are equivalent in PICTURE character-strings. Therefore, lowercase letters in the
CURRENCY SIGN clause cannot match any PICTURE character-string entry.

If there is no CURRENCY SIGN clause, the PICTURE clause uses the currency sign ($)
as the default.

DECIMAL-POINT IS COMMA Clause

11.

The DECIMAL-POINT IS COMMA clause exchanges the functions of the comma and
period in: (1) the PICTURE clause character-string and (2) numeric literals.

Additional References

Section3.1.2 OBJECT-COMPUTER Paragraph
Section 4.2.6 CODE-SET Clause
Section5.5.4 Switch-Status Condition
Section 5.9.1 ACCEPT Statement

Section 5.9.7 DISPLAY Statement

Appendix B Computer Character Set

Environment Division 3-7

SPECIAL-NAMES
Continued

Examples

3-8

1.

Device-name clause:

This example allows ACCEPT and DISPLAY statements to use THE-CARDS to refer to the
device CR: and LOCAL-USER to refer to the device Tl:.

CARD-READER IS5 THE-CARDS
CONSOLE IS LOCAL-USER

SWITCH clause:

(Procedure Division statements can use the condition-names defined in the SWITCH
clause. At run time, COBOL-81 prompts you to enter the numbers for the switch(es)
you want on during program execution.)

SWITCH 1 IS5 FIRST-SWITCH ON IS ONE-ON OFF IS ONE-OFF
SWITCH 4 ON FOUR-ON

The following results assume that switch 1is on and switch 4 is off.

Truth

Condition Value

IF FOUR-0ON false
IF ONE-ON true
IF NOT ONE-0OFF true

IF ONE-ON AND NOT FOUR-ON true

ALPHABET clause:
ALPHABET MY-SET IS STANDARD-1,

This clause defines the alphabet named MY-SET to be the ASCII character set.

In the results of the following examples, the character s represents a space. The exam-
ples assume these data description entries:

01 ITEMA PIC X(3).

01 ITEMB PIC X(S5).

01 ITEMC PIC GG,GGS9.,99,

01 ITEMD PIC ZZZ.,229,99,
ZZZ 4

P -

01 ITEME PIC

Environment Division

CURRENCY SIGN clause:

CURRENCY SIGN "G"

The following MOVE statements show the effect of the CURRENCY SIGN clause:

MOVE 12,34 TO ITEMC

MOVE
MOVE

Statement

100 TO ITEMC
1000 TO ITEMC

ITEMC
Value

sssG12.34
ssG100.00
G1,000.00

DECIMAL-POINT IS COMMA clause:

MOVE
MOVE
MOVE
MOVE

Statement

1 70 ITEMD
1000 TO ITEMD
1+1 TO ITEMD
12 TO ITEME

Result

ITEMD = ssssss1,00
ITEMD = ss1.000,00
ITEMD = ssssss1,10
ITEME = 512,

SPECIAL-NAMES
Continued

Environment Division

3-9

INPUT-OUTPUT SECTION
FILE-CONTROL

3.2 INPUT-OUTPUT SECTION

The INPUT-OUTPUT Section can contain two paragraphs: FILEEFCONTROL and I-O-CONTROL.

3.2.1 FILE-CONTROL Paragraph

Function
The FILE-CONTROL paragraph contains file-related specifications.
General Format

FILE-CONTROL.

Format 1 — Sequential File

SELECT [OPTIONAL] file-name
ASSIGN TO file-spec

AREA
RESERVE reserve-num

I AREAS |

[ORGANIZATION IS] SEQUENTIAL

[ACCESS MODE IS SEQUENTIAL]
[FILE STATUS IS file-stat]

Format 2 — Relative File
SELECT file-name

ASSIGN TO file-spec

AREA
RESERVE reserve-num

AREAS

[ORGANIZATION IS] RELATIVE

SEQUENTIAL [RELATIVE KEY IS rel-key]

ACCESS MODE IS RANDOM
RELATIVE KEY IS rel-key
DYNAMIC

[FILE STATUS IS file-stat | .

3-10 Environment Division

(continued on next page)

INPUT-OUTPUT
Continued

Format 3 — Indexed File
SELECT file-name

ASSIGN TO file-spec

AREA
RESERVE reserve-num

AREAS

[ORGANIZATION IS] INDEXED

SEQUENTIAL
ACCESS MODE 1S RANDOM
DYNAMIC

—

RECORD KEY IS rec-key]

[ALTERNATE RECORD KEY IS alt-key [WITH DUPLICATES]]
[FILE STATUS IS file-stat | .

Format 4 — Sort or Merge File

SELECT file-name ASSIGN TO file-spec .

file-name
names a file within your COBOL program. Each file-name must have a file description (or
sort-merge file description) entry in the Data Division. The same file-name cannot appear
more than once in the FILE-CONTROL paragraph.

Syntax Rules
Ali Formats
1. The FILE-CONTROL paragraph must have at least one SELECT clause.

2. SELECT must be the first clause in the FILEE-CONTROL paragraph. The other clauses can
follow it in any order.

3. Each file described in the Data Division must be specified only once in the FILE-
CONTROL paragraph.

Format 1

4. You can specify the OPTIONAL phrase only for input files.

Environment Division 3-11

INPUT-OUTPUT
Continued

General Rules

Format 1

1. You must specify an OPTIONAL phrase for input files that need not be present when
the program runs.

Formats 2 and 3

2. Therules for the OPEN statement describe the effects of the OPTIONAL phrase.
Additional Reference

Section5.9.17 OPEN Statement
Examples

The following examples assume that the VALUE OF ID clause is not in any associated file
description entry.

1. Sequential file:

(This SELECT clause refers to two files with sequential organization.)

SELECT FILE-A

ASSIGN TO "REPORT".
SELECT FILE-B

ASSIGN TO "UPDATE".

2. Indexed file:

SELECT FILE-A
ASSIGN TO "DK1:ALUMNI.DAT"
ORGANIZATION INDEXED
ACCESS IS5 DYNAMIC
RECORD KEY IS STUDENT-NUM.

3. Sortor merge file:

SELECT INPUT-FILE
ASSIGN TO "DK1:MAILST.DAT",

3-12 Environment Division

ACCESS MODE

3.2.1.1 ACCESS MODE Clause

Function

The ACCESS MODE clause specifies the order of access for a file’s records.
General Format

Format 1 — Sequential File

[ACCESS MODE IS SEQUENTIAL

Format 2 — Relative File

SEQUENTIAL [RELATIVE KEY IS rel-key]

[ACCESS MODE Is] RANDOM
DYNAMIC

} RELATIVE KEY IS rel-key

Format 3 — Indexed File

SEQUENTIAL
[ACCESS MODE IS] RANDOM
DYNAMIC

rel-key /
is the file’s relative key data item.

Syntax Rules

1. Rel-key must be the data-name of an unsigned integer data item whose description
does not contain a PICTURE symbol "P*. Rel-key can be qualified.

2. If the USING or GIVING phrase of a SORT or MERGE statement contains the name of
the file, the ACCESS MODE RANDOM clause cannot be used for the file.

3. If a START statement references a relative file, the program must specify the RELATIVE
KEY phrase for that file.

Environment Division 3-13

ACCESS MODE
Continued

General Rules

All Formats

1.
2.

If there is no ACCESS MODE clause, the access mode is sequential.
For sequential access, record access sequence depends on file organization:

e Sequential files — The sequence is the same as that established by the execution of
WRITE statements that created or extended the file.

e Relative files — The sequence is the order of ascending relative record numbers of the
file’s existing records.

¢ Indexed files — The sequence is the order of ascending record key values within a
given key of reference according to the collating sequence of the file.

Formats 2 and 3

3.

For random access, the value of rel-key (for relative files) or a record key data item (for
indexed files) indicates the record to be accessed.

4. Fordynamic access, the program can access records sequentially and randomly.

Format 2

3-14

5.

Relative record numbers uniquely identify records in relative files. A record’s relative
record number identifies its ordinal position in the file. The first record in the file has a
relative record number of 1. Subsequent records have progressively higher relative
record numbers. However, if the file is created with random access, the numbers need
not be consecutive (for example, ’1,2,4,7,8,9,11").

The relative key data item associated with the execution of an input/output statement is
rel-key in the SELECT clause of the file associated with the statement.

Environment Division

ALTERNATE RECORD KEY

3.2.1.2 ALTERNATE RECORD KEY Clause

Function

The ALTERNATE RECORD KEY clause specifies an alternate access path to indexed file records.
General Format

ALTERNATE RECORD KEY IS alt-key [WITH DUPLICATES]

alt-key
is the alternate record key for the file. It is the data-name of a data item in the file’s record
description entry. The data item must be described as: (1) alphanumeric or alphabetic or (2)
a group item.

Syntax Rules
1. Alt-key can be qualified; however, it cannot be subscripted or indexed.
2. Alt-key cannot be a group item that contains a variable-occurrence data item.

3. Alt-key cannot have the same leftmost character position as that of the prime record
key data item or any other alt-key for the same file.

General Rules

1. When a program creates an indexed file with one or more ALTERNATE RECORD KEY
clauses, each subsequent program referencing this indexed file must:

e Use the same data description for alt-key

e Define the same relative location in the record as alt-key

e Specify the same number of ALTERNATE RECORD KEY clauses
® Maintain the same order of ALTERNATE RECORD KEY clauses

2. The DUPLICATES phrase specifies that two or more records in the file can have dupli-
cate values in the same alt-key data item. If there is no DUPLICATES phrase, two
records cannot have the same value in corresponding alternate record keys.

3. If the file has more than one record description entry, you need to describe alt-key in
only one of those entries. The character positions referenced by alt-key in any one
record description entry are implicitly referenced as an alternate key for all other
record description entries of that file.

4. Afile can have up to 254 alternate record keys.

Environment Division 3-15

ASSIGN

3.2.1.3 ASSIGN Clause
Function
The ASSIGN clause associates a file with a partial or a complete file specification.

General Format

ASSIGN TO file-spec

file-spec
is a nonnumeric literal that provides a partial or a complete file specification.

General Rules

1. If there is no VALUE OF ID clause in the file description entry, or that clause contains
no file specification, file-spec is the file specification.

2. Ifthereis a full or a partial file specification in an associated VALUE OF ID clause, those
file specification components will override file-spec.

3. File-spec can contain a logical name.

Technical Note

When an OPEN statement executes, PDP-11 Record Management Services (RMS-11):
e Removes leading and trailing spaces and tab characters from the file specification
¢ Translates lowercase letters in the file specification to uppercase

® Performs logical name translation

Additional Reference
Section 4.2.22 VALUE OF ID Clause

3-16 Environment Division

FILE STATUS

3.2.1.4 FILE STATUS Clause
Function
The FILE STATUS clause names a data item that contains the status of an input-output operation.

General Format

FILE STATUS IS file-stat

file-stat
Working-Storage Section or Linkage Section. File-stat is the file’s FILE STATUS data item.

Syntax Rule
File-stat can be qualified.
General Rule

After execution of every |-O statement that refers to the file, a value is moved to file-stat. That
value indicates the statement’s execution status.

Additional References

Section 5.7 I-O Status
Appendix C File Status Values

Environment Division 3-17

ORGANIZATION

3.2.1.5 ORGANIZATION Clause

Function

The ORGANIZATION<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>