
BASiC/RT11
Language Reference

Manual
Order No. DEC-11-LBACA-E-D

digital equipment corporation · maynard. massachusetts

First Printing, Sept. 1973
Revised, Dec. 1973
Revised, June, 1974
Revised, Oct. 1974
Revised, Oct. 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @) 1973, 1974, 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-IO
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECsystem-20

MAS SB US
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

7/77-15

PREFACE

CHAPTER 1

1.1

CHAPTER 2

2.1

2.2

2.3

2.4

2.5
2.5.1
2.5.2

CHAPTER 3

3.1

3.2
3.2.1

3.3
3.3.1
3.3.2

CHAPTER 4

4.1

4.2

4.3

4.4

CHAPTER 5

5.1

5.2

5.3

5.4

5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.2
5.5.2.1
5.5.3
5.5.4

CONTENTS

INTRODUCTION

LOADING AND RUNNING BASIC

RT-11 BASIC ARITHMETIC

NUMBERS

VARIABLES

SUBSCRIPTED VARIABLES

EXPRESSIONS

ARITHMETIC OPERATIONS
Priority of Arithmetic Operations
Relational Operators

RT-11 BASIC STRINGS

STRINGS

STRING VARIABLES
Subscripted String Variables

STRING OPERATIONS
Concatenation
Relational Operations

IMMEDIATE MODE OPERATIONS

USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

PROGRAM DEBUGGING

MULTIPLE STATEMENTS PER LINE

RESTRICTIONS ON IMMEDIATE MODE

RT-11 BASIC STATEMENTS

STATEMENT NUMBERS

RE~-~RK STATEMENT

THE ASSIGNMENT STATEMENT - LET

THE DIMENSION STATEMENT - DIM

INPUT/OUTPUT STATEMENTS
PRINT Statement

Printing Variables
Printing Strings
Use of Comma and Semicolon (11

,
11

Selecting Output Device
PRINT Statement - TAB Function

INPUT Statement
Selecting Input Devices

DATA Statement
READ Statement

iii

and 11
; ")

Page
vii

., .,

.L - .L

2-1

2-2

2-2

2-4

2-4
2-4
2-6

3-1

3-1
3-1

3-2
3-2
3-2

4-1

4-1

4-2

4-2

5-1

5-1

5-2

5-3

5-4
5-4
5-4
5-5
5-6
5-7
5-8
5-8
5-9
5-10
5-10

5.5.5

5.6

5.7
5.7.1
5.7.2
5.7.3
5.7.4

5.8
5.8.1
5.8.2
5.8.3

5.9
5.9.1
5.9.2
5.9.3

CHAPTER 6

CHAPTER

6.1
6.1.1
6 .1. 2
6.1. 3
6.1. 4
6.1. 5
6.1. 6
6 .1. 7
6 .1. 8
6 .1. 9
6.1.10
6.1.11

6.2

6.3
6.3.1

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

RESTORE Statement

RANDOMIZE Statement

PROGRAM CONTROL
GO TO Statement
IF THEN, IF GO TO and IF END Statements
FOR-NEXT Statements
GOSUB and RETURN Statements

PROGRAM TERMINATION
END Statement
STOP Statement
CHAIN Statement

FILE CONTROL
OPEN Statement
CLOSE Statement
OVERLAY Statement

BASIC/RT-11 FUNCTIONS

ARITHMETIC FUNCTIONS
Sine and Cosine Functions, SIN(x)
Arctangent Function, ATN(x)
Square Root Function, SQR(x)
Exponential Function, EXP(x)
Logarithm Function, LOG(x)
Absolute Function, ABS(x)
Integer Function, INT(x)
Random Number Function, RND(x)
Sign Function, SGN(x)
Binary Function, BIN(x$)
Octal Function, OCT(x$)

USER DEFINED FUNCTIONS

STRING FUNCTIONS
User-Defined String Functions

EDITING COMMANDS

SCRATCH COMMAND

OLD COMMAND

LIST/LISTNH COMMANDS

SAVE COMMAND

REPLACE COMMAND

RUN/RUNNH COMMANDS

CLEAR COMMAND

RENAME COMMAND

NEW COM..'l'.1AND

iv

and COS(x)

5-11

5-12

5-13
5-13
5-14
5-15
5-18

5-20
5-20
5-20
5-20

5-21
5-22
5-25
5-26

6-1
6-2
6-2
6-3
6-4
6-4
6-6
6-6
6-7
6-8
6-9
6-9

6-10

6-15
6-16

7-2

7-3

7-3

7-5

7-5

7-6

7-6

7-7

7-7

CHAPTER 8

8.1

8.2

8.3
8.3.l

8.4

8.5

8.6

8.7
8.7.1
8.7.2

8.8

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

APPENDIC C

c.1

c.2

C.3

APPENDIX D

APPENDIX E

APPENDIX F

F.l
F.1.1

F.2
F.2.1

APPENDIX G

INDEX

USING ASSEMBLY LANGUAGE ROUTINES WITH BASIC

CALL STATEMENT

SYSTEM FUNCTION TABLE

WRITING ASSEMBLY LANGUAGE ROUTINES
Sample User Functions

SYSTEM ROUTINES IN BASIC

REPRESENTATION OF NUMBERS IN BASIC

REPRESENTATION OF STRINGS IN BASIC

FORMAT OF TRANSLATED BASIC PROGRAM
Symbol Table Format
Translated Code

BACKGROUND ASSEMBLY LANGUAGE ROUTINE

ERROR MESSAGES

DEMONSTRATION PROGRAMS

BOOTSTRAPPING THE RT-11 SYSTEM

ASCII CHARACTER SET

STATEMENTS, COMMANDS, FUNCTIONS

RT-11 BASIC STATEMENTS

COMMANDS

FUNCTIONS

GETARG, STORE, SSTORE LISTING

BASIC ERROR MESSAGES

ASSEMBLING AND LINKING BASIC

ASSEMBLING BASIC/RTll
Floating Point Math Package

LINKING BASIC/RTll
Linking BASIC/RTll With User Functions

BASIC CORE MAP

v

8-1

8-2

8-3
8-5

8-7

8-11

8-11

8-12
8-12

8-15

9-1

10-1

A-1

B-1

C-1

C-1

C-3

c-4

D-1

E-1

F-1

F-1
F-2

F-3
F-4

G-1

Index-1

PREFACE

This document describes the operating procedures for the BASIC/RTll
program and the features of the BASIC/RTll language.

The user should be somewhat fa~iliar with the standard BASIC language.
If the user is totally unfamiliar with BASIC it is suggested that a
BASIC primer be read prior to using this document. The BASIC language
as it pertains to BASIC/RTll is described in Chapters 5 and 6.
Chapters 1, 2, 3 and 4 provide an introduction to BASIC/RTll operating
procedures, arithmetic and string operations. Editing commands, error
messages and demonstration programs are covered in Chapters 7, 9 and
10.

The experienced BASIC user should pay particular attention to the
description of operating procedures (Chapter 1) and the use of
assembly language routines (Chapter 8) and the summary of statements,
commands and functions (Appendix D} .

NEW AND CHANGED INFORMATION

This revision of the manual incorporates the update DEC-ll-LBACA-D-DN3,
which removes the description of the laboratory and graphics extensions
and corrects technical errors.

A description of the laboratory and
available for use with BASIC/RT-11
manuals:

graphics extensions
can be found in the

• BASIC-11 Lab Extensions User's Guide
(DEC-11-LBEPA-A-D)

• BASIC-11 Graphics Extensions User's Guide
(DEC-11-LBGEA-A-D)

vii

which are
following

CHAPTER 1

INT RODUC'T ION

BASIC/RTll is a single-user, conversational programming language which
uses simple English-type statements and familiar matheMatical
notations to perform an operation. BASIC is one of the simplest
computer languages to learn and once learned has the facility of
advanced techniques to perform more intricate manipulations or express
a problem more efficiently.

BASIC/RTll interfaces with the RT-11 Monitor to provide powerful
sequential and random-access file capabilities and allows the user to
save and retrieve programs from peripheral devicese BASIC/RTll has
provision for alphanumeric character string I/O and string variables
(12K or larger systems) and allows user defined functions and assembly
language subroutine calls from user BASIC programs.

1.1 LOADING AND RUNNING BASIC

BASIC is loaded under the control of the RT-11 monitor (Refer to the
RT-11 System Reference Manual (DEC-11-0RUGA-A-D) for additional
information on the RT-11 system), by typing:

R BASIC

and the RETURN key.

Through replies to the initial dialogue, BASIC allows selection of the
functions to be loaded. Selectively loading functions maximizes space
available for the user's program by removing unwanted functions from
core.

When BASIC is first loaded with the R command, the dialogue described
belvw is
again.

BASIC prints:

BASIC VOl-05

*

1S once~only dialogue and does not occur

(or current version)

and awaits specification on inclusion of the optional functions shown
below. Refer to Chapter 6 for information on these functions~
Depending on the response (carriage return, A, N or I) made to this
message, all functions {carriage return or A) are included, none of
the functions {N) are included or the functions are listed and may be
individually selected for inclusion (I).

Selectively excluding furictions can provide space for up to 20 or 30
additional user program lines.

Reply with one of the following codes:

Code Explanation

A ~Loads
or
carriage
return

all of the optional functions

N Loads none of the optional functions

I Allows the functions to be specified individually

If any character other than a car:J;iage return, A, N, or I is typed,
the message is repeated. If the reply is I, BASIC prints

Y-YES N-NO

RND:

to allow specification of each function to be loaded as part of BASIC/
RTll.

Reply with a Y or N for the RND function and each additional function
as the names are printed. The optional functions are:

String BASIC

RND
ABS
SGN
BIN
OCT
TAB
LEN
ASC
CHR$
POS
SEG$
VAL
TRM$
STR$

No String

RND
ABS
SGN
BIN
OCT

Each exclusion of a function provides room for between
additional program lines. Excluding the POS and
provides approximately ten additional lines each.

two and five
SEG$ functions

If a "user function" has been linked (Refer to Appendix F) into BASIC
(to be referenced by a CALL statement) BASIC prints:

USER FNS LOADED

BASIC th-en prints the message

READY

and waits for a comnand or program line to be typed (refer to Chapter
4).

Typing CTRL/C at any time returns BASIC to the RT-11 Monitor. To
continue BASIC after a CTRL/C return to the monitor, type the Monitor
command REENTER (RE). BASIC will then print the READY message.

1-2

The program in core when the CTRL/C was executed is
user program execution may be terminated at
destroying the user program.

1-3

retained.
any time

Thus,
without

CHAPTER 2

RT-11 BASIC ARITHMETIC

2.1 NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers--that
is, it accepts any decimal number, and assumes a decimal point after
an integer. The advantage of treating all numbers as decimal numbers
is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range io-38<N<lo+38.

In addition to integer and real formatsr a third format is recognized
and accepted by BASIC. This format is called exponential or E-type
notation, and in this format, a number is expressed as a decimal
number times some power of 10. The form is:

xxEn

where E represents "times 10 to the power of"i thus the number is
read: "xx times 10 to the power of n". For example:

23.4E2 = 23.4*10
2 = 2340

Data may be input in any one or all three of these forms. Results of
computations are output as decimals if they are within the range
.Ol<n<999999; otherwise, they are output in E format. Numbers are
stored up to 24 bits of significance. If a number with more than 24
bits is entered, it is rounded and stored as 24 bits. BASIC handles
six significant digits in normal operation and prints 6 decimal digits
as illustrated below:

Value Typed In

.01

.0099
999999
1000000

Value output By BASIC

.01
9.90000E-03
999999
l.OOOOOE+06

BASIC automatically suppresses the printing of leading and trailing
zeros in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all exponential numbers in the form:

(sign) x.xxxxxE{+ or -)n

where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponential
value. For example:

-3.47021E+08 is equal to -347,021,000
7.26000E-04 is equal to .000726

Floating point format is used when storing and calculating most
numbers.

However, if the number entered is an integer, it
integer unless the operation being performed

2-1

is handled as an
requires that it be

changed to floating point. Multiply and divide operations require
this transfonnation but addition and subtraction of integer quantities
less than 215 in magnitude is done with the corresponding single
machine instruction. Thus, maintaining numbers in (or converting
numbers to} integer form may significantly increase the speed of
arithmetic expression evaluation.

NOTE

Because core size limitations prohibit the storage
of infinite binary numbers, some numbers cannot be
expressed exactly in BASIC/RT. Accuracy is
approximately 5-1/2 digits, and errors in the 6th
digit can occur. For example, .999998 as a result
of some functions may be equal to 1.
Discrepancies of this type are magnified when such
a number is used in mathematical operations.

2.2 VARIABLES

A variable in BASIC is an algebraic symbol representing a number, and
is formed by a single letter or a letter optionally followed by a
single digit. For example:

Acceptable Variables

I

B3

x

Unacceptable Variables

2C - a digit cannot begin a variable.

AB - two or more letters cannot form a
variable.

11 - numbers alone
variable.

cannot form a

Subscripted and string variables are described in later sections. The
user may assign values to variables either by indicating the valu~s in
a LET statement, or by inputting the values as data in an INPUT
statement or by a READ statement; these operations are discussed in
Chapter 5.

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable.
All variables are set equal to zero (0) before program execution. It
is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming practice
would be to set variables equal to 0 wherever necessary. This ensures
that later changes or additions will not misinterpret values.

2.3 SUBSCRIPTED VARIABLES

In addition to the simple variables described in section 2.2, BASIC
allows the use of subscripted variables. Subscripted variables
provide additional computing capabilities for dealing with lists,
tables, matrices, or any set of related variables. In BASIC,
variables are allowed one or two subscripts.

2-2

The name of a subscripted variable is any acceptable BASIC variable
name followed by one or two integer expressions (within the range
0-32767) in parentheses. For example, a list might be described as
A{I) where I-goes from 0 to 5 as shown below:

A{O) ,A{l) ,A(2) ,A(3) ,A(4) ,A{S)

This allows reference to each of the six elements in the list, and can
be considered a one-dimensional algebraic matrix as follows:

I ACO} I
@
I A(2)

~32_

~ I A{S) J

A two-dimensional matrix B{I,J) can be defined in a similar manner:

B(O,O) ,B(O,l) ,B(0,2) , ••• ,B(O,J) , ••• ,B(I,J)

and graphically illustrated as follows:
~------

t B{O,O) B{O,l) B(0,2)

l B(l,O) B(l,l) B(l,2)

B{2,0) B(2,l) B{2,2)

l B(3,0) B (3, 1) B(3,2)
l

B(I,O) B(I,l) B(I,2)

B{0,3) J
B(l,3) ~
B(2,3)

B(3,3)

\
B(I,3) _)

\
}

j

\ B{O,J)

)B(l,J)

B(2,J)

\ B(3 ,J)

)B<I,J)

Subscripts used with subscripted variables throughout a program can be
explicitly stated or be any legal expression. If the value of the
expression is non-integer, the value is truncated so that only the
subscript is an integer.

I
1

It is possible to use the same variable name as both a subscripted and
unsubscripted variable. Both A and A(I) are valid variables and can
be used in the same program. The variable A has no relationship to
any element of the matrix A(I). However, BASIC will not accept the
same variable name as both a singly and a doubly subscripted variable
name in the same program.

Use of subscripted variables requires a dimension (DIM) statement to
define the maximum number of elements in a matrix. ("Matrix" is the
general term used in this manual to describe all elements of a

2-3

subscripted variable.} The DIM statement is discussed in paragraph
5.4.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each
dimension {that is, having eleven elements in each dimension, 0
through 10). However, all matrices should be correctly dimensioned in
a program.

2. 4 EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC.
Expressions are composed of numbers, variables, functions, or a
combination of the preceding separated by arithmetic or relational
operators.

The following are examples of expressions acceptable to BASIC:

Arithmetic Expressions

4
A7* (Bt2+1}

Not all kinds of expressions can be used in all statements, as is
explained in the sections describing the individual statements.

2.5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathmetical notation. The five operators used in
writing most formulas are:

Symbol
Operator

+

*
I
t

Example

A+ B
A - B
A * B
A I B
A t B

Meaning

Add B to A
Subtract B from A
Multiply A by B
Divide A by B
Exponentiation (Raise A to the Bth
power)

Unary plus and minus are also allowed, e.g., the - in the -A+B or the
+ in +X-Y. Unary plus is ignored. Unary minus is treated as
explained below.

2.5.l Priority of Arithmetic Operations

When more than one operation is to be performed in a single formula,
as is most often the case, rules are observed as to the precedence of
the operators.

2-4

In any given mathematical formula, BASIC performs the arithmetic
operations in the following order of evaluation:

The

The

1. Parentheses receive
parentheses is

top priority. Any expression within
evaluated before an unparenthesized

expression.

2. In the absence of parentheses, the order of priority is:

a. Unary minus

b. Exponentiation (proceeds from left to right)~

c. Multiplication and Division (of equal priority).

d. Addition and Subtraction (of equal priority).

3. If either 1 or 2 above does not clearly designate the order
of priority, then the evaluation of expressions proceeds from
left to right.

expression AtBtC is evaluated from left " right as follows: '-V

1. AtB = step 1

2. (result of step l)tC = answer

expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1

2. (result of step l)*C = answer

The expression A+B*CtD is evaluated as:

1. cto = step 1

2. (result of step l)*B =step 2

3. (result of step 2)+A = answer

Parentheses may be nested, or enclosed by a second set (or more) of
parentheses. In this case, the expression within the innermost
parentheses is evaluated first, and then the next innermost, and so
on, until all have been evaluated.

In the following example:

A=7* { (Bt 2+4) /X)

The order of priority is:

1. Bt2 = step 1

2. (result of step 1)+4 = step 2

3. (result of step 2)/X = step 3

4. (result of step 3)*7 = A

2-5

Parentheses also prevent
expression is evaluated.

A*Bt2/7+B/C*Ot2

any confusion
For example:

((A*Bt2) /7)+ ((B/C) *Dt2)

or doubt as to how the

Both of these formulas are executed in the same way, but the second is
easier to understand.

Spaces may be used in a similar manner.
ignores spaces (except when enclosed
statements:

10 LET B = Ot2 + 1
10LETB=Dt2+1

Since the BASIC interpreter
in quotation marks) , the two

are identical, but spaces in the first statement provide ease in
reading. When the statement is subsequently listed, extra spaces are
ignored.

2.5.2 Relational Operators

Relational operators allow comparison of two values and are used to
compare arithmetic expressions or strings in an IF ••• THEN statement.
The relational operators are:

Mathematical BASIC
Symbol Symbol Example Meaning

= = A=B A is equal to B.

< < A<B A is less than B.

:s <= or =< A<=B A is less than or equal to B.

> > A>B A is greater than B.

~ >= or => A>=B A is greater than or equal to
B.

r < > Or> < A><B A is not equal to B.

The symbols =<; =>, >< are accepted by BASIC but are converted to <=,
>= and <> and are shown in that f orrn in a listing.

2-6

CHAPTER 3

Rr-11 BASIC STRINGS

3.1 STRINGS

The previous chapters describe the manipulation of numerical
information only; however, BASIC also processes information in the
form of character strings. A string, in this context, is a sequence
of characters treated as a unit. A string can be co~posed of
alphabetic, numeric, or special characters. (A character string may
contain letters, numbers, spaces, or any combination of characters.) A
character string can be 255 characters long~ Howeverf the LINE FEED
key cannot be used to type a string on two or more terminal lines.

3.2 STRING VARIABLES

Any variable name followed by a dollar sign ($) character indicates a
string variable. For example:

A$
C7$

are simple string variables and can be used, for example, as follows:

LET A$=" HELLO"
PRINT A$

Note that the string variable A$ is separate and distinct from the
variable A.

3.2.1 Subscripted String Variables

Any list or matrix variable name followed by the $ character denotes
the string form of that variable. For example:

V$(n)
C$ (m, n)

M2$(n)
Gl$(m,n)

where m and n indicate the position of the matrix eleMent within the
whole.

The same name can be used as a numeric variable and as a string
variable in the same program with the restriction that a
one-dimensional and a two-dimensional matrix cannot have the same name
in the same program. For example:

A
A$

A(n)
A$(m,n)

can all be used in the same program, but

3-1

or

cannot.

A(n) and A(m,n)

A$(n} and A$(m,n)

String lists and matrices are defined with the DIM
(paragraph 5.4), as are numerical lists and matrices.

In BASIC without strings, string variables are illegal.

3.3 STRING OPERATIONS

3.3.1 Concatenation

statement

Concatenation puts one string after another without any intervening
characters. It is specified by an ampersand (&) and works only with
strings. The maximum length of a concatenated string is 255
characters.

For example:

10 READ A$, B$, C$
20 DATA "ll","33","22"
30 PRINT A$&C$&B$
40 END
RUNNH
112233

3.3.2 Relational Operations

When applied to string operands, the relational operators indicate
alphabetic sequence. The comparison is done, character by character,
left to right, on the ASCII value. For example:

55 IF A$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
B$) are compared; if they are the same, then the second characters of
each string are compared and so on until the characters differ. If
the character in A$ is less than the character in B$ then execution
continues at line 100. Otherwise, execution continues at the next
statement in sequence. Essentially the strings are compared. for
alphabetic order. Table 3-1 contains a list of the relational
operators and their string interpretations.

In any string comparison, trailing blanks are ignored {i.e., "ABC" is
equivalent to "ABC ").

3-2

Operator

=

<

>

<= or =

>= or =>

<> or ><

Table 3-1

Relational Operators Used With
String Variables

Example

A$ = B$

A$ < B$

A$>B$

A$<= B$

A$>= B$

A$ <> B$

Meaning

The strings A$ and B$ are alphabetically
equal.

The string A$ alphabetically precedes!
B$.

The string A$ alphabetically follows B$.

The string A$ is equivalent to or
precedes B$ in alphabetical sequence.

The string A$ is equivalent to or
follows B$ in alphabetical sequence.

The strings A$ and
alphabetically equal.

3-3

B$ are not

CHAPTER 4

IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC. Most of
the statements discussed in this manual can be included in a program
~or later execution or given on-line as comrnands, which are
immediately executed by the BASIC processor. This latter facility
makes BASIC an extremely powerful calculator.

BASIC distinguishes between lines entered for later execution and
those entered for immediate execution solely on the presence (or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately
upon being entered to the system. Thus the line:

10 PRINT "THIS IS A PDP-11"

produces no action at the console upon entry, while the statement:

PRINT "THIS IS A PDP-11"

causes the immediate output:

THIS IS A PDP-11

4.2 PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas: program
debugging and the perfonnance of simple calculations in situations
which do not occur with sufficient frequency or with sufficient
complications to justify writing a program.

In order to facilitate debugging a program, STOP statements can be
liberally placed throughout the program. Each STOP statement causes
the program to halt, at which time the various data values can be
examined and perhaps changed in immediate mode. The

GO TO xxxxx

command is used to continue program execution (where xxxxx is the
number of the next program line to be executed). The values assigned
to variables when the RUN command was executed remain intact until a
Scratch, Clear, or another RUN Command is executed.

When using immediate mode, nearly all the standard statements can be
used to generate or print results. If the STOP occurs in the middle
of a FOR loop, modifications cannot be made to the section of the
program which precedes the FOR.

If CTRL/C is used to halt program execution, the GO TO command can be
used to continue execution but since CTRL/C does not print the number
of the line where execution stopped, it is difficult to know where to
resume the program.

4-1

4.3 MULTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode.
For example:

A=l \PRINT A
1

On a LT33 or LT35 terminal, type a SHIFT/L to produce the backslash
character.

Program loops are allowed in immediate mode; thus a table of square
roots can be produced as follows:

FOR I=l TO
1
2
3
4
5
6
7
8
9
10

10\PRINT I,SQR(I)\NEXT I
1
1.41421
1.73205
2
2.23607
2.44949
2.64575
2.82843
3
3.16228

4.4 RESTRICTIONS ON IMMEDIATE MODE

Certain commands, while not illegal, make no logical sense when used
in immediate mode. Commands in this category are DEF, DIM, DATA and
RANDOMIZE.

The INPUT statement is illegal in immediate mode and its use results
in the ?ILN error message.

Also, since user functions are not defined until the program is
executed, function references in immediate mode cause an error unless
the program containing the definition was previously executed.

Thus the following dialogue might result if a function was defined in
a user program and then referenced in immediate mode.

10 DEF FNA(X) = Xt2 + 2*X\REM SAVED STATEMENT
PRINT FNA (1) \REM IMMEDIATE MODE

?UFN

READY

but if the sequence of statements is:

RUNNH
READY

4-2

PRINT FNA(l)
3

the immediate mode statement is executed.

If output files are opened in immediate mode, a CLOSE command must be
issued or the last block of data may not be written.

Note that virtual files can be edited by selectively modifying values
in immediate mode. For example,

OPEN "FILE" AS FILE VFl (1000)
VFl (137) =12. 6
PRINT VFl (212)
13.l
CLOSE

4-3

CHAPTER 5

RT-11 BASIC STATEMENTS

A user program is composed of lines of statements containing
instructions to BASIC. Each line of the program begins with a line
number that identifies ·that line as a statement and indicates the
order of statement execution. Each statement starts with an English
word specifying the type of operation to be performed. Statement
lines are terminated with the HETUFN key which is non-printing.

5. 1 STATEMENT NUMBERS

A 1-5 digit statement number is placed at the beginning of each line
in a BASIC program. BASIC executes the statements in a program in
numerically consecutive order regardless of the order in which they
were typed. Statement numbers must be within the range 1 to 65532.
When first writing a program, it is advisable to number lines in
increments of five or ten to allow insertion of forgotten or
additional lines when debugging the program. If there are no
available lines for insertion of statements, the user program can be
resequenced. (Refer to Chapter 10, program #4 for a resequence
example.)

All BASIC statements and computations must be written on a single
line; they cannot be continued onto a following line. However, more
than one statement may be written on a single line when each statement
after the first is preceded by a backslash. For example:

10 INPUT A,B,C

is a single statement line, whereas

20 LET X=ll \PRINT X,Y,Z\ IF X=A THEN 10

is a multiple statement line containing three statements: LET, PRINT,
and IF. Most statements may be used anywhere in a multiple statement
line; exceptions are noted in the discussion of each statement. Only
the first statement on a line can (and must) have a line number. It
should be remembered that program control cannot be transferred to a
statement within a line, but only to the first statement of a line.

Typing a statement number with no statement after it causes the
previous statement with the same number to be deleted*

5.2 REMARK STATEMENT

It is often desirable to insert notes and messages within a user
program. Such data as the name and purpose of the program, how to use
it, how certain parts of the program work, and expected results at
various points are useful things to have present in the program for
ready reference by anyone using that program.

5-1

The REMARK or REM statement is used to insert remarks or comments into
a program without these comments affecting execution. Remarks do,
however, use core area which may be needed by an exceptionally long
program.

The REMARK statement must be preceded by a line number except when the
REMARK statement is used in a multiple statement line, where it can
only be the last statement. The message itself can contain any print­
ing character on the keyboard. BASIC completely ignores anything on a
line following the letters REM. {The line number of a REM statement
can be used in a GO TO or GOSUB statement, see sections 5.7.1 and
5.7.4, as the destination of a jump in the program execution.) Typical
REM statements are shown below:

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

5.3 THE ASSIGNMENT STATEMENT - LET

The LET statement assigns the value of the expression to the specified
variable. The general format of the LET statement is:

LET variable = expression

where variable is a numeric or string variable and expression is an
arithmetic or string expression. All items in the statement must be
either string or numeric; they cannot be mixed. The word LET is
optional.

The LET statement does not indicate algebraic equality, but performs
calculations within the expression (if any) and assigns the value to
the variable.

The meaning of the equal (=) sign should be clarified. In algebraic
notation, the formula X=X+l is meaningless. However, in BASIC (and
most computer languages) , the equal sign designates replacement rather
than equality. Thus, this formula is actually translated: "add one
to the current value of X and store the new result back in the same
variable X". Whatever value has previously been assigned to X will be
combined with the value l. An expression such as A=B+C instructs the
computer to add the values of B and C and store the result in a third
variable A. The variable A is not being evaluated in terms of any
previously assigned value, but only in terms of B and c. Therefore,
if A has been assigned any value prior to its use in this statement,
the old value is lost; it is instead replaced by the value B+C.

The LET statement can also be used to set a value in a virtual memory
file element as follows:

Examples:

LET VFn(i)=expression

LET X=2

LET X=X+l+Y

Assigns the value 2 to the variable x.

Adds 1 to the current value of X then adds
the value of Y to that result and assigns
that value to x.

5-2

LET B$="STRING"
Assigns the characters "STRING" to the string
variable B$.

5.4 THE DIMENSION STATEMENT - DIM

The DIMension statement reserves space for lists and tables used by
the program. The DIM statement is of the form:

DIM variable {n) , variable (n ,m) , variable$ {n) , variable$ (n ,m)

where variables specified are indicated with their maximum subscript
value(n) or values(n,m).

For example:

10 DIM X (5) , Y (4 , 2) , A { 10 , 10)
12 DIM I4(100), A$(25)

Only integer constants (such as 5 or 5070) can be used in DIM
statements to define the size of a matrix. Variables cannot be used
to specify the bounds of arrays. Any number of matrices can be
defined in a single DIM statement as long as their representations are
separated by cc~~as.

The first element of every matrix is automatically assumed to have a
subscript of zero. Dimensioning A(6,10) sets up room for a matrix
with 7 rows and 11 columns. This zero element is illustrated in the
following program:

10 REM - MATRIX CHECK PROGRAM
20 DIM A(6,10)
30 FOR I=O TO 6
40 LET A(I ,O) = I
50 FOR J=O TO 10
60 LET A(O ,J) = J
70 PRINT A (I ,J) ;
80 NEXT J \ PRINT\NEXT I
90 END

RUNNH
0 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0

READY

Notice that a variable has a value of zero until it is assigned
another value.

Whenever an array is dimensioned fm,n) , the matrix is allocated m+l by
n+l elements. Core space can be conserved by using the 0th element of
the matrix.

5-3

For example, DIM A(S,9) dimensions a 6 x 10 matrix which would then be
referenced beginning with the A(O,O) element.

The size and number of matrices which can be defined depend upon the
amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement line
and can appear anywhere in the program. A matrix can only be
dimensioned once. DIM statements need not appear prior to the first
reference to an array, although DIM statements are generally among the
first statements of a program to allow them to be easily found if any
alterations are later required.

All arrays specified in DIM statements are allocated space when the
RUN command is executed.

5. 5 INPUT /OUTPUT STATEMENTS

Input/Output (I/O) statements, such as PRINT, INPUT, and READ, bring
data into and output results or data from a program during execution.

5.5.1 PRINT Statement

The PRINT statement is used to output data to the terminal. The
general format of the PRINT statement is:

PRINT list

The list is optional and can contain expressions, text
both. Elements of the list must be separated by
delimiters (space, comma, semicolon).

When used without the list, the PRINT statement:

25 PRINT

strings, or
appropriate

causes a blank line to be output on the terminal (a carriage
return/line feed operation is performed).

S.S.1.1 Printing Variables

PRINT statements can be used to perform calculations and print
results. Any expression within the list is evaluated before a value
is printed. For example,

10 LET A=l \ LET B=2\ LET C=3+A
20 PRINT
30 PRINT A+B+C
RUNNH

7

READY

5-4

All numbers are printed with a preceding sign (minus for negative and
space for positive) and a following blank space.

The PRINT statement can be used anywhere in a multiple statement line.
For example:

10 A=l\ PRINT A\ A=A+S\ PRINT\ PRINT A

prints the following on the terminal when executed:

1

6

READY

Notice that the terminal performs a carriage return/line feed at the
end of each PRINT statement. Thus the first PRINT statement outputs a
1 and a carriage return/line feed; the second PRINT statement, the
blank line; and the third PRINT statement, a 6 and another carriage
return/line feed.

5.5.1.2 Printing Strings

The PRINT statement can be used to print a message or string of
characters, either alone or together with the evaluation and printing
of numeric values. Characters are indicated for printing by enclosing
them in single or double quotation marks (therefore each type of
quotation mark can only be printed if surrounded by the other type of
quotation mark). For example:

10 PRINT "TIME'S UP"
2 0 PRINT I "NEVERMORE II I

RUN NH
TIME'S UP
"NEVERMORE"

READY

As another example, consider the following line:

40 PRINT "AVERAGE GRADE IS" ;X

which prints the following (where X is equal to 83.4):

AVERAGE GRADE IS 83.4

between the
Leading and
using the

as they are

When a character string is printed, only the characters
quotes appear; no leading or trailing spaces are added.
trailing spaces can be added within the quotation marks
keyboard space bar; space-s appear in the printout exactly­
typed within the quotation marks.

5-5

When a comma separates a text string from another PRINT list item, the
item is printed at the beginning of the next available print zone
(refer to paragraph 5.5.1.3). Semicolons separating text strings from
other items are ignored. Thus, the previous example could be
expressed as:

40 PRINT "AVERAGE GRADE IS" X

and the same printout would result.
the last item of a PRINT list
return/line feed operation.

A cormna or semicolon appearing as
always suppresses the carriage

BASIC does an automatic carriage return/line feed if a string is
printing past column 72.

Although string variables are illegal in the BASIC without strings,
literal strings may be used in a PRINT statement.

5.5.1.3 Use of Comma and Semicolon (","and";")

BASIC considers the terminal printer to be divided into five zones of
fourteen columns each. When an item in a PRINT statement is followed
by a comma, the next value to be printed appears in the next available
print zone. For example:

10 LET A=3\ LET B=2
20 PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3
-1

2 5

Notice that the sixth element in the PRINT
first entry on a new line, since the
72-character line were already used.

list
five

6 1

is printed as the
print zones of the

Two commas together in a PRINT statement cause a print zone to be
skipped. ~or example:

10 LET A=l\ LET B=2
20 PRINT A,B,,A+B
RUN NH

1 2

READY

3

If the last item in a PRINT statement is followed by a comma, no
carriage return/line feed is output, and the next value to be printed
(by a later PRINT statement) appears in the next available print zone.
For example:

10 A=l \B=2\C=3
20 PRINT A,\PRINT B\ PRINT C
RUN NH

1 2
3

5-6

READY

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output. A conu-na causes the print head to move at
least one space to the next print zone or possibly perform a carriage
return/line feed. The following example shows the effects of the
semicolon and comma.

10 LET A=l\ B=2\ C=3
20 PR INT A.: B; c;
30 PRINT A+t;s+1;c+1
40 PRINT A1B.;C
99 END
RUNNH

1 2 3 2 3 4
l 2

READY

3

The following example demonstrates the use of
characters , and : with text strings:

the formatting

110 LET X=l19050\G=87\A=85.44\N=26
120 PRINT "t\JO."X,"GRADE ="G;"AVE. ="A;
130 PRINT "NO. IN CLASS ="N
900 END
RUNNH
1\10· 11905'.3 GRADE= 87.AVE. = 85.44 NO. IN CLASS

READY

5.5.1.4 Selecting Output Device

26

The PRINT statement can also be used to select a particular output
file. The form of the statement is:

PRINT #expression:expression list

where expression has the value 0 to 7. If the value of the expression
is O, output is ~u the terminal: otherwise, the output is to the
sequential file which was opened as logical unit (expression). (See
section 5.9.1, OPEN statement.) Output is formatted exactly as if
done by the PRINT statement. The colon (:) is required when variables
follow the expression.

If a file written by the PRINT statement is to be later read by
INPUT statement then the necessary separating commas must
specified (within quotation marks) in a PRINT statement with
than one i tern in the PRINT list.
Examples:

10 OPEN "LP:" FOR OUTPUT AS FILE #2
20 OPEN "DTO: DATA" FOR OUTPUT AS FILE #7
30 PRINT #0: "OUTPUT TO TERMINAL"
40 PRINT #2: "OUTPUT TO LINE PRINTER"
50 PRINT #7: 10,",",20, 11 ,",30

HQXg

If the line printer is not on line when a
BASIC program is attempting to output to it,
BASIC will wait for the line printer to be
put on line and will then start or continue
its output.

5-7

the
be

more

5.5.1.5 PRINT Statement - TAB Function

The TAB function is used in a PRINT statement to space to the
specified column on the output device. The columns on the output
devices are numbered 0 to 71.

The form of the command is:

PRINT TAB (x);

where (x)
however,
spaces to
specified
printed.
number is

is the column number in the range 0-255. If x exceeds 71,
consecutive subtractions of 72 are done until the number of
be output is less than or equal to 71. If the column number
is greater than 255 or negative, the error message ?ARG is

If (x) is non-integer, only the integer portion of the
used.

If the column number (x) specified is less than or equal to the
current column number, printing starts at the current position.

The PRINT TAB(x) statement can be used with any output device which
can be specified in a PRINT statement (refer to paragraph 5.5.1.4).

Examples:

PRINT #0: TAB(S);

PRINT #2: TAB(80);

5.5.2 INPUT Statement

Spaces to column 5 of the terminal paper
and prints next output beginning at
column 5. If ; is missing, the output
of the next PRINT statement executed
begins at the left margin of the next
line.

Outputs 8 spaces on the line printer
assuming #2 previously opened.

The INPUT statement is used when data is to be input from the terminal
keyboard or a file during program execution. The form of the
statement is:

INPUT list

where list is a list of variable names separated by commas. Refer to
paragraph s.s.2.1 for data input from files.

When an INPUT statement is executed, BASIC prints a question mark (?)
on the terminal and waits for data to be input.

BASIC inputs the next number from the input stream, saves the value as
a numeric value. Numbers input on the same line must be separated by
commas. If the data is alphabetic, BASIC inputs all characters up to
a carriage return.

For example:

10 INPUT A,B,C

5-8

causes BASIC to pause during execution, print a question mark, and
wait for input- of three- numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC prints another ? to indicate that
more data is needed and waits for the additional data to be entered.
If too many values are typed, the excess data on that line is ignored.
The strings entered in response to the INPUT statement cannot be
continued on another line since string input is tenninated by the
RETURN key.

When there are several values to be entered via the INPUT statement:
it is helpful to print a message explaining the data needed.

For example:

10 PRINT "YOUR AGE IS " . I

20 INPUT A
30 PRINT "SOC. SEC. i";
40 INPUT B

5.5.2.1 Selecting Input Devices

The INPUT statement also allows the selection of a particular input
device. The form of the statement is:

INPUT #expression:list

where expression has the value O to 7. If the value is equal to O,
the terminal is the input device. If the value is not O, input is
read from the sequential file with the logical unit number expression
(assigned by the OPEN statement). If the value is not within the
range 0 - 7 or was not specified in an OPEN statement; the error
message ?DCE (Device Channel Error) results. A question mark is not
output when this form of the INPUT statement is used.

Excess data on an input line is ignored. If the data is insufficient
to fill the list, BASIC looks for more data on the next line.

The colon (:) is required when variables follow the expression.

Examples:

OPEN "PR:" FOR INPUT AS FILE #1
INPUT #1 :A, B

This statement causes BASIC/RTll to input data from the high speed
paper tape reader and store the data in variables A and B.

INPUT #0: X,Y,Z

Input data from the terminal and store in variab-les X, Y and z.
Logical unit 0 defaults to the terminal.

5-9

5.5.3 DATA Statement

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA data list

where the data list contains the numbers or strings to be assigned to
the variables listed in a READ statement. Individual items in the
data list are separated by conunas; strings must be enclosed in
quotation marks.

For example,

150 DATA 4,7.2,3
170 DATA l.34E-3, 3.17311,"ABC"

The location of DATA statements is arbitrary as long as they appear in
the correct order; however, it is good practice to collect all DATA
statements near the end of the program for fast reference when
checking a program.

When the RUN command is executed, BASIC searches for the first DATA
statement and saves a pointer to its location. Each time a READ
statement is encountered in the program, the next value in the data
statement is assigned to a variable. If there are no more values in
that DATA statement, BASIC looks for the next DATA statement. If
control is transferred to a DATA statement, the statement is ignored.

5.5.4 READ Statement

A READ statement assigns the next available element in a DATA
statement to the first variable in its list. Then it assigns the
next available element in a DATA statement to the next variable
in its list until all variables have been satisfied. The elements
in the DATA statement must be in the correct order by type; if a
string element is found where a number element is expected, or
vice versa, the error message ?NSM is output. The READ statement
is of the form:

READ variable list

The items in the variable list may be simple variable names or string
variable names or subscripted variables and are separated by conunas.
For example,

READ Al,A2,B$,Bl,C(3,5},D$(1)

Since data must be read before it can be used in a program, READ
statements generally occur near the beginning of the program. A READ
statement can be placed anywhere in a multiple statement line.

If an element in a data list is neither a number nor a string
enclosed in quotes, the message ?BDR is printed. All subsequent
READ's cause the ?OOD message. If there is no data available in
the data table for the READ to store, the message ?OOD is printed.

5-10

Items in the data list in excess of those needed by the program's READ
statements are ignored.

5=5o5 RESTORE Statement

The RESTORE statement resets the DATA list or specified sequential
file (previously opened for input) to the beginning. RESTORE is of
the form:

where n

Examples:

RESTORE #n

is a digit in the range 1 to 7. If #n is omittedr the
DATA list is reset to its start. When a digit is
specified, the appropriate input sequential file is
repositioned to its start. (Refer to Section 5.9 for
types of files.)

30 RESTORE

causes the next READ statement following line 30 to begin reading data
from the first DATA statement in the program, regardless of where the
last value was found.

100 RESTORE #2

repositions the input sequential file associated with logical unit #2
to the beginning.

A further example of the use of RESTORE follows:

15 READ B,C,D

55 RESTORE
60 READ E ,F ,G

80 DATA 6,3,4,7,9,2

100 END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80. (If the RESTORE statement had not been
inserted before line 60, then the second READ would pick up data in
line 80 starting with the fourth value.)

Since the values are being read as though for the first time, the same
variable names may be used the second time through the data, if
desired. To skip unwanted values, replacement, or dummy, variables
may -be inserted. For example:

5-11

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N
25 PRINT "VALUES OF x ARE: II
30 FOR I=l TO N
40 READ X
50 PRINT X,
60 NEXT I
70 RESTORE
185 PRINT
190 PRINT "SECOND LIST OF X VALUES"
200 PRINT "FOLLOWING RESTORE STATEMENT:"
210 FOR I=l TO N
220 READ X
230 PRINT X,
240 NEXT I
250 DATA 4,1,2
251 DATA 3,4
300 END

RUNNH
VALUES OF X ARE:

1 2
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

3

4 1 2
READY

4

3

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, BASIC
prints:

4 1 2 3

To circumvent this, a dwnmy variable could be inserted to pick up and
store the first value. This variable would not be represented in the
PRINT statement, so the output would be the same each time through the
list.

5.6 RANDOMIZE Statement

The RANDOMIZE statement causes the random number generator to
calculate different random numbers every time the program is run.
When executed, RANDOMIZE causes the RND function (explained in Chapter
6) to choose a random starting value to produce random results. The
RANDOMIZE statement is written as

RANDOMIZE

RANDOMIZE may be placed anywhere in the program. It is good
to completely debug a program before inserting the
statement.

practice
RANDOMIZE

The following program demonstrates the use of the RANDOMIZE statement.

10 REM - RANDOM NUMBERS USING RANDOMIZE.
15 RANOOMIZE

5-12

25 PRINT "RANDOMIZED NUMBERS:"
30 FOR I = 1 TO 4
40 PRINT RND{ O} ,
50 NEXT I
60 END

RUN NH
RANDOMIZED NUMBERS:

.7785034E-l .1632385
READY
RUN NH
R&~DOMIZED NUMBERS:

.8417053 .1678467E-2

RUN NH
RANDOMIZED NUMBERS:

.6651917 .2846375
READY

• 2787781

• 434 7229

• 7210999

.2035217

.5932312

.7648621

Removing the RANDOMIZE statement and changing line 25:

15
25 PRINT "REPRODUCIBLE RANDOM NUMBER SET. "

program output is as follows.

RUNNH
REPRODUCIBLE RANDOM NUMBER SET •

.0407319 .528293 • 803172 .0643915
READY

RUN NH
REPRODUCIBLE RANDOM NUMBER SET.

.0407319 .528293 • 803172 .0643915
READY

RUN NH
REPRODUCIBLE RANOOM NUMBER SET.

.0407319 .528293 .803172 .0643915
READY

5.7 PROGRAM CONTROL

The statements described in the following paragraphs cause the
execution of a program to jump to a different line either
unconditionally or depending upon some condition within the program.

5.7.1 GO TO Statement

The GO TO statement is used when it is desired to unconditionally
transfer to some line other than the next sequential line in the
program. In other words, a GO TO statement causes an irranediate jump
to - ·a. specified line, out of the normal consecutive line number order
of execution. The general format of the statement is as follows:

5-13

GO TO line number

The line number to which the program jumps can be either greater or
less than the current line number. It is thus possible to jump
forward or backward within a program.

For example,

10 LET A=2
20 GO TO 50
30 LET A=SQR(A+l4)
50 PRINT A,A*A

causes the following to be printed:

2 4

When the program encounters line 20, control transfers to line 50;
line 50 is executed, control then continues to the line following line
so. Line 30 is never executed. Any number of lines can be skipped in
either direction.

When written as part of a multiple statement line, GO TO should always
be the last statement on the line (except for REM statements) , since
any statement following the GO TO on the same line is never executed.
For example:

110 LET A=ATN(B2)\ PRINT A\ GO TO 50

5.7.2 IF THEN, IF GO TO and IF END Statements

The IF THEN statement is used to transfer conditionally from the
normal consecutive order of statement numbers, depending upon the
truth of some mathematical relation or relations. The basic format of
the IF statement is as follows:

{
THEN l

IF expression rel.op. expression l line number
GO TO/

where expression

rel.op.

line number

is an arithmetic or string expression.
Expressions cannot be mixed; both must be
string or both must be numeric. Numeric
comparisons are handled as described in
Section 2.5.2. String comparisons are
performed on the ASCII values of the strings
as described in Section 3.3.2.

is one of the relational operators described
in section 2.5.2.

is the line of the program to which control
is conditionally passed.

If the relation is true, control passes to the line number specified.
If the relation is false, control passes to the next statement in
sequence.

5-14

Examples:.

10 IF A=B TfJF.N 20\ PRINT "A<>B"
15 STOP
20 PRINT A+B

10 IF A<>lO GO TO 20\PRINT A
15 STOP
20 D=A+B*C

in Tl:' 1\ <: <'."'D <: THEN 20\STOP .&.V ..&.J.: ~ ... -~ ...
20 PRINT A$

BASIC/RTll provides a special
an end of file condition
statement is:

form of the IF statement used to detect
on a sequential file. The form of the

IF END #~~) line number

where #n represents the logical file number.

If the next input statement executed for the sequential file (#n)
would detect an end of file (and an OUT OF DATA error message) then
the branch to the line number is taken. The following example
illustrates the use of the IF END statement:

10 OPEN "TEST" AS FILE #1
20 IF END #1 THEN 100
30 INPUT U: A$
40 PRINT A$
50 GO TO 20
100 PRINT "END OF FILE"
110 STOP

The program prints out the contents of the ASCII file "TEST.DAT",
followed by the message

END OF FILE

5.7.3 FOR-NEXT Statements

FOR and NEXT statements define the beginning and end of a program
loop. (A loop is a set of instructions which are repeated over and
over again, each time being modified in some way until a terminal
condition is reached.) The FOR statement is of the form:

where

FOR variable = expression! TO expression2 STEP expression3

variable

expression

must be a nonsubscripted numeric variable.

is an --arithmetic
noninteger.

5-15

expression - which may be

The variable is the index: expression! is the initial value of the
index; expression2, the index terminal value (the value which the
index reaches before execution of the loop halts) and expression3, the
increment value.

For positive STEP values, the loop is executed until the control
variable is greater than its final value. For negative STEP values,
the loop continues until the control variable is less than its final
value.

For example:

15 FOR K=2 TO 20 STEP 2

causes program execution of the designated loop as long as K is less
than or equal to 20. Each time through the loop, K is incremented by
2, so the loop is executed a total of 10 times. When K=20, program
control passes to the line following the associated NEXT statement.

The NEXT statement signals the end of the loop which began with the
FOR statement. The NEXT statement is of the form:

NEXT variable

where the variable is the same variable specified in the FOR
statement. There must be only one NEXT statement for each FOR
statement. Together the FOR and NEXT statements define the boundaries
of the program loop. When execution encounters the NEXT statement,
the computer adds the STEP expression value to the variable and checks
to see if the variable is still less than or equal to the tenninal
expression value. When the variable exceeds the terminal expression
value, control falls through the loop to the statement following the
NEXT statement.

If the STEP expression and the word STEP are omitted from the FOR
statement, +l is the assumed value. Since +l is a common STEP value,
that portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon
initial entry to the loop. The test for completion of the loop is
made prior to each execution of the loop. (If the test fails
initially, the loop is never executed.)

The index variable can be modified within the loop. When control
falls through the loop, the index variable retains the last value used
within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop
is executed 10 times; the value of I is 10 when control leaves the
loop: and +l is the assumed STEP value:

10 FOR I=l TO 10
20 PRINT I
30 NEXT I
40 PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=lO, control passes to line
40 which causes 10 to be printed again. If line 10 had been:

5-16

10 FOR I = 10 TO 1 STEP -1

the value printed by line 40 would be 1.

10 FOR I = 2 TO 44 STEP 2
20 LET I = 44
30 NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

If, however, the initial value of the variable is
terminal value, the loop is not executed at all.
the statement:

greater than the
The loop set up by

10 FOR I = 20 TO 2 STEP 2

will not be executed, although a statement like the following will
initialize execution of a loop properly:

10 FOR I=20 TO 2 STEP -2

not overlapped. The depth of nesting
of user storage space available (in other
user program and the amount of core

programming technique in which one or more
another loop. The field of one loop (the
FOR statement to the corresponding NEXT

FOR loops can be nested but
depends upon the amount
words, upon the size of the
available). Nesting is a
loops are completely within
numbered lines from the
statement, inclusive) must not cross the field of another loop.

ACCEPTABLE NESTING
TECHNIQUES

Two Level Nesting

Ir FOR Il = 1 TO
l FOR I2 = 1 TO

lC;~;: ri2 = 1 TO
NEXT 13
NEXT Il

Three Level Nesting

FOR Il = 1 TO

rOR I2 = 1 TO
[FOR I3 = 1 TO

NEXT 13
[FOR I4 = 1 TO

NEXT I4
NEXT 12
NEXT Il

10
10

10

10
10
10

10

UNACCEPTABLE NESTING
TECHNIQUES

rt FOR Il = 1 TO 10
FOR I2 = 1 TO 10

L-~:~ i~

FOR Il = 1 TO 10
FOR I2 = 1 TO 10

[FOR I3 = 1 TO 10
NEXT I3

[FOR I4 = 1 TO 10
NEXT I4
NEXT Il
NEXT I2

An example of nested FOR-NEXT loops is shown below:

5 DIM X(S,10)
10 FOR A=l TO 5
20 FOR B=2 TO 10 STEP 2
30 LET X(A,B)= A+B

5-17

40 NEXT B
50 NEXT A
55 PRINT X(5,10)

When the above statements are executed, BASIC prints 15 when line 55
is processed.

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or
unconditional transfer can be used to leave a loop. Control can only
transfer into a loop which had been left earlier without being
completed, ensuring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple
statement line. For example:

10 FOR I=l TO 10 STEP 5\ NEXT I\ PRINT "I=";I

causes:

I= 6

to be printed when executed.

5.7.4 GOSUB and RETURN Statements

The GOSUB statement causes execution of a block of statements called a
subroutine. The RETURN statement causes program control to return to
the statement following the GOSUB.

A subroutine is a section of code performing some operation required
at more than one point in the program. Sometimes a complicated I/O
operation for a volume of data, a mathematical evaluation which is too
complex for a user-defined function, or any number of other processes
may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they can be placed one after another at the end of the program
(in line number sequence). A useful practice is to assign distinctive
line numbers to subroutines; for example, if the main program uses
line number 0 up to 199, use 200 and 300 as the first numbers of two
subroutines.

Subroutines are usually placed physically at the end of a program
before DATA statements, if any, and always before the END statement.
The program begins execution and continues until it encounters a GOSUB
statement of the form:

GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine. For example:

50 GOSUB 200

5-18

Control is transferred to line 200 in the user program. The first
line in the subroutine can be a remark or any executable statement.

Having reached the line containing a GOSUB statement, control
transfers to the line indicated after GOSUB; the subroutine is
processed until BASIC encounters a RETURN statement of the form:

RETURN

which causes control to return to the statement following the
GOSUB statement. A subroutine is always exited via a
statement.

calling
RETURN

Before transferring to the subroutine, BASIC internally records the
next sequen~iai statement to be processed after the GOSUB statement;
the RETURN statement is a signal to transfer control to this
statement. In this way, no matter how many subroutines there are or
how many times they are called, BASIC always knows where to transfer
control next. The following program demonstrates the use of GOSUB and
RETURN.

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X)= ABS(INT(X))
20 INPUT A,B,C
30 GOSUB 100
40 LET A=FNA (A)
50 LET B=FNA(B)
60 LET C=FNA(C)
70 PRINT
80 GOSUB 100
90 STOP
100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: AXt 2 + BX + C = 0
120 PRINT "THE EQUATION IS " A "*Xt2 + " B"*X + " C
130 LET D=B*B - 4*A*C
140 IF D<>O THEN 170
150 PRINT "ONLY ONE SOLUTION ••• X="; -B/(2*A)
160 RETURN
170 IF D<O THEN 200
180 PRINT "TWO SOLUTIONS ••• X =(";
185 PRINT (-B+SQR(D))/(2*A);") AND("; (-B-SQR(D))/(2*A;")"
190 RETURN
200 PRINT "IMAGINARY SOLUTION ••• X=(";
205 PRINT -B/(2*A) ;"+"; SQR(=D}/(2*A) ;"I) AND (";
207 PRINT -B/(2*A);"-"; SQR{-D)/{2*A);"*I)"
210 RETURN
900 END

Subroutines can be nested; that is, one subroutine can call another
subroutine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the line following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself. Subroutines can be entered at any point and
can have more than one RETURN statement. It is possible to transfer
to the beginning or any part of a subroutine; multiple entry points
and RETURNs make a subroutine more versatile. Up to 20 levels of
GOSUB nesting are allowed.

5-19

5.8 PROGRAM TERMINATION

The STOP and END statements are used to terminate program execution.

The CHAIN statement also causes execution to cease but in addition,
loads and executes a previously stored program.

5.8.l END Statement

The END statement is the last statement in a BASIC program and is of
the form:

END

The line number of the END statement must be the largest line number
in the program, since any lines having line numbers greater than that
of the END statement are not executed (although they are saved with
the SAVE command. The END statement is optional. When an END
statement is executed, program execution stops; all open files are
automatically closed. If the program does not have an END or STOP
statement, the open files are not closed.

5.8.2 STOP Statement

The STOP statement causes termination of program execution and can
occur several times throughout a single program with conditional jumps
determining the actual end of the program. The STOP statement is of
the form:

STOP

and causes the message:

STOP AT LINE nnn

where nnn is the statement number of the STOP statement.

Execution of a STOP statement causes the message:

READY

to be printed on the terminal and all open files are automatically
closed. This signals that the execution of a program has been
terminated or completed, and BASIC is able to accept further input.

5.8.3 CHAIN Statement

The CHAIN statement terminates execution of the program currently in
core then loads and executes the specified program. The execution of
this previously stored program begins at the lowest line number unless
another line number is specified. This allows a large program to be
broken into segments and then linked together for execution with
CHAIN.

5-20

The form of the command is

CHAIN "dev:filnam.ext" LINE number

The file descriptor (dev: filnam.ext) may be a literal string or a
non-subscripted string variable name.

CHAIN closes all files which are open
program file containing the program
extension is .BAS.

then opens and
to be executed.

closes the
The default

All variables used in the current program are erased when the CHAIN
statement is executed. If variables are to be passed to the next
program, they must be stored in a file which is then read by the new
program.

Examples:

CHAIN ''DTl: PART2;; LINE 10

Halts execution of current program then loads program, PART2.BAS, from
DECtape unit 1 and begins execution at line 10.

5.9 FILE CONTROL

Any RT-11 file may be used or created by a BASIC progr~~, including
EDIT and MACRO files. A file may be used in one of two ways: first as
an ASCII "sequential" file, as if it were typed at the terminal. Here
are examples of statements which access sequential files:

INPUT #1: A$, B, C
PRINT # 2 : II fu.~SWERS : II x; y

Alternatively, a file may be used as a random-access binary "virtual
memory" file, as if each item were an element of a large array. The
following are examples of statements which access virtual memory
files.

LET A=(VFl(I)+VFl(J))/2
LET VF2(K)=A*3*SIN(X)

A virtual memory file may consist of string or numeric data, as
explained below.

A sequential data file is limited in its applications and depends upon
a strictly sequential treatment of I/O. With virtual data storage,
reference can be made to any element within the file regardless of
where that element resides.

The file control statements, OPEN and CLOSE, provide access to
sequential and virtual memory files.

The OVERLAY statement overlays the program currently in memory with
the specified file and continues execution.

NOTE

If a disk or DECtape is the device in an
OPEN, CLOSE, OVERLAY, or CHAIN statement
or OLD, SAVE, or REPLACE command (see
Chapter 7) and the device is not on line
a ?M-DIR I/O ERR? will be printed and
control will return to the RT-11 monitor
which will give an ?ILL CMD? message to
the first command input. BASIC may then
be reloaded by the RUN command but the
stored program will be lost. This also
occurs when a device is WRITE locked and
the BASIC program attempts to output to it.

5-21

5.9.1 OPEN Statement

The OPEN statement opens files
program and has two forms,
virtual.

for input or output by the BASIC
one for sequential files and one for

For sequential files, the format is:

OPEN "dev:filnam.ext" FOR(INPUT _AS FILE #digit DOUBLE BUF
OUTPuV'

where "dev: filnam.ext"

digit

may be a literal string or a scalar
string variable name.

is a logical unit number in the range
1-7. The maximum number of files which
may be opened at one time is 14 (7
sequential and 7 virtual).

If FOR OUTPUT or FOR INPUT is not included in the
file is open for input. If the file name is
program name is used. Thus, if the program name
statement to open file n will open the file
extension is omitted, .DAT (data) is assumed.

specification, the
omitted, the current
is TEST, then the
DK:TEST.DAT. If the

This form of the statement opens the specified file (or a non-file
structured device) as a sequential ASCII file with logical unit number
<expression>. The file is either for input or output as specified.
Once opened, an input file may be read by the INPUT # statement, and
an output file may be written by the PRINT # statement.

The OPEN statement can be used to specify the number of blocks to be
assigned to an output file on disk or DECtape in the form:

••• OUTPUT(blocks) •••

Each block holds 512 ASCII characters including carriage return and
line feed. If the program then attempts to write past the end of the
file created, the message ?FTS (File Too Short) results. If the
number of blocks is not specified, one half of the largest available
group of blocks is used.
There is a 256-word input/output buffer associated with every file.
Output to a file actually occurs only after the buff er is filled or
the file is closed. For example, execution of a PRINT # statement
where the device is the line printer will produce no visible output
until the buffer is filled or the file is closed. DOUBLE BUF is op­
tional and if specified a second 256-word I/O buffer is allotted to
the file. Using DOUBLE BUF improves the execution speed of programs
with extensive I/O but requires more memory.

Examples:

OPEN "ABC" FOR OUTPUT (5) AS FILE il
Creates ABC.DAT on disk as logical
file 1 and allocates 5 blocks.

LET A$=XYZ
OPEN A$ AS FILE #2 DOUBLE BUF

Opens disk file XYZ.DAT as logical
file 2 and allocates two 256-word
I/O buffers for input.

5-22

OPEN "ALTO.MAC" FOR INPUT AS FILE i3
Opens disk file ALTO.M..~C as logical
file 3 for input.

OPEN "LP:" FOR OUTPUT AS FILE il
Opens the specified device "LP:"
for output as file il. If FOR
OUTPUT were not specified, input
would be assumed and an error
message would result since the line
printer is a write-only device.

The virtual memory file OPEN statement has the form:

OPEN "dev:filnam.ext• FO~~AS FILE VFnx(dimension)=string length

where

dev: filnam.ext

n

may be a literal string or a scalar
string variable.

is a number in the range 1-7
representing the virtual file logical
unit nU&~.ber. The maximum nU&~.ber of
files which may be opened at one time is
14 (7 sequential and 7 virtual).

x is the type of virtual file as follows:

type

blank
or

null

%

$

(dimension)

=string length

File data type

The file consists of 2-word
floating-point numbers.

The file consists of 1-word
integers.

signed

The file consists of strings of a given
length. This length is 32 characters,
unless otherwise specified.

is maximum subscript to be used in
referencing the virtual file.

may be included for string virtual files
to indicate the length of the strings in
the file. The values which can be
specified are 1,2,4,8,16,32,64 and 128.
The default value is 32.

This form of the statement opens the specified
file VFn. This special file is distinct
<digit>.

file as the virtual
from a sequential file

If FOR OUTPUT is specified, the system allocates blocks to accommodate
the maximum dimension specified. Any previous file with the same name
will be deleted. FOR OUTPUT should only be specified to create a new
file. To allow output to an existing virtual file neither FOR INPUT
nor FOR OUTPUT should be specified. If the device cannot acconnnodate

5-23

the blocks specified, the message ?NER (Not Enough Room) results. As
with sequential files, the number of blocks to be assigned to an
output file can be specified after the phrase FOR OUTPUT. The number
of blocks so specified overrides the maximum subscript specified if
any. If neither is specified, the largest block number written
becomes the length of the file.

The following table can be used to calculate the number of blocks
needed for a file.

file type # bytes per element # elements Eer block

blank (floating point) 4 128
% (integer) 2 256

$ 32 16
$=1 1 512
$=2 2 256
$=4 4 128
$=8 8 64
$=16 16 32
$=32 32 16
$=64 64 8
$=128 128 4

If the phrase FOR INPUT is included, then the file is write-protected;
it may only be read by the program. If the phrase FOR OUTPUT is
specified, a new file is created and can be used for input or output.
If FOR INPUT or FOR OUTPUT is not specified an existing file is opened
for input and/or output.

Once a virtual file has been opened, its elements may be used as any
other variables in the BASIC program. A virtual file element may only
be set by an assignment statement.

Examples:

OPEN "TEST" AS FILE VF1$(2000)=8
Opens the file TEST.DAT on disk as
virtual memory file 1 containing 2000
string elements; each one 8 bytes long.
This file is now available for input and
output operations. A program reference
to file element 2001 causes an error.

OPEN "TEST" FOR OUTPUT AS FILE VF2$(500)
Creates a file TEST.DAT on disk for
output as virtual memory file 2 with 500
string elements, each 32 bytes long.

OPEN "TEST" FOR INPUT AS FILE VF3

LET A$="TEST"

Opens the file TEST.DAT for input only
operations as virtual memory file 3, it
consists of floating point numbers.

OPEN A$ FOR OUTPUT (10) AS FILE VF4%(50)
Creates the file TEST.DAT and opens it
for input or output as virtual memory
file 4 with 10 blocks. The number of
blocks overrides the number of elements
(SO).

5-24

These files can then be used in BASIC operations as follows:

LET A= B + VF3(I}/2
Uses the value of virtual file element
VF3(I) in computing an expression.

PRINT "VARIABLE", N, VF4(N)
Uses the value of integer virtual memory
file element VF4(N) in a print list.

LET VF3 (2*N+l) = (A+ Bji2

LET VFl(lO) = "ABCD"

Sets the value of virtual memory file
element VF3(2*N+l) to the value of the
expression (A+B)i2.

Sets the value of string virtual memory
file element VFl(lO) to "ABCD". The
string will be truncated or lengthened
and filled with blanks to the
appropriate length, as specified in the
OPEN statement.

5.9.2 CLOSE Statement

The CLOSE statement closes the logical file specified and has the form

CLOSE file identification

where file identification contains the file numbers of the form:

#n for sequential files

VFn for virtual memory files

where n is a digit in the range 1 to 7.

If no file identification is specified, all open files are closed.

If a file is referenced after a CLOSE, the message ?FNO (File Not
Open) is printed.

Examples:

NOTE

In addition to CLOSE, the SCRATCH, NEW, OLD
and CLEAR commands, the END, STOP and CHAIN
statements and the ?FIO error routine close
all open file when executed.

CLOSE #1 Closes the sequential file associated
with logical unit 1.

CLOSE VF3 Closes the virtual memory
associated with logical unit 3.

file

5-25

5.9.3 OVERLAY Statement

The OVERLAY statement causes the program currently in core to be
"overlaid" or merged with the specified file, which also contains a
BASIC program.

The form of the OVERLAY statement is:

OVERLAY "file descriptor"

All variables and arrays defined keep their current values. All data
files remain open. If a program line in the new program has a line
number identical to one in the current program, the current program
line is replaced by the new program line. After the overlaid program
has been merged with the current program, execution continues at the
first program line which now follows the statement number of the
OVERLAY statement. Thus, programs can be segmented into separate
files as with the CHAIN statement, and data can be communicated among
segments in the arrays, and a very long program can be divided up into
several smaller overlay segments.

The new program must not contain DIM, RANDOMIZE, or DEF statements.
If a DEF statement in the current program is overlaid, the function
will no longer be defined.

As an example :

Main Program

10 DIM A (100)
20 FOR I = 0 TO 100
30 LET A (I) = SQR (I)
40 NEXT I
50 DEF FNS(I) = SQR (A (I))
60 OPEN "LP:" FOR OUTPUT AS FILE il

100 FOR I = 0 TO 100
110 PRINT il: A (I),
120 NEXT I
900 OVERLAY "OVl"
910 GO TO 100

Overlay Section, file OVl.BAS

100 PRINT U:
110 FOR J = 0
120 PRINT il:
130 NEXT J
140 STOP

"FIRST OVERLAY"
TO 100

FNS (J) ,

Execution of the main program sets the elements of A to the square
root of I; the function FNS(I) is set to the square root of A(I), or
the fourth root of I. The main program then prints out the elements
of A on the line printer.

The execution of the OVERLAY statement causes the file

"DK:OVl.BAS"

to be edited into the program.

5-26

The program in memory is now:

10 DIM A(lOO)
20 FOR I = 0 TO 100
30 L~T A(I) = SQR{I)
40 NEXT I
50 DEF FNS(I) = SQR (A(I))
60 OPEN "LP:" AS FILE #1

100 PRINT #1: "FIRST OVERLAY"
110 FOR J = 1 TO 100
120 PRINT #1: FNS (J),
130 NEXT J
140 STOP
900 OVERLAY "OVl"
910 GO TO 100

Control now passes to statement 910, which is the first statement fol­
lowing statement 900 in the merged program.

Execution at statement 100 causes

"FIRST OVERLAY"

to be printed, followed by the fourth roots of the numbers from 0 to
100.

Finally, "STOP AT LINE 140" is output at the terminal.

An overlay statement executed in the immediate mode (without a line
number) will act like an OLD command, except that the program cur­
rently in core is not scratched. Instead, the program lines in the
specified file will be edited into the program, just as if they were
typed in via the console.

A very useful application of this feature is when the BASIC programmer
has a "library" of GOSUB subroutines to edit into his program. The
procedure is as follows.

Type in the BASIC program as if there were subroutines at specific
(high) statement numbers such as 1000, 2000, etc. Then SAVE the pro­
gram. The next step is to resequence the required library routines
using the BASIC program RESEQ (see Chapter 10) so that they begin at
the correct statement numbers. Then read in the saved program again
with the OLD command. Finally, edit in the subroutines with immediate
mode OVERLAY statements such as

OVERLAY "SUBl"
OVERLAY "SUB2"

Finally, a REPLACE command will update the saved program.

5-27

CHAPTER 6

BASIC/RT-11 FUNCTIONS

6.1 ARITHMETIC FUNCTIONS

BASIC provides eleven functions to perform certain standard
mathematical operations such as square roots, logarithms, etc.

·.L·nese functions nave
parenthesized argument.
in a program.

Call Name

ABS (x)

ATN{x)

BIN (x$}

COS(x)

EXP (x)

INT (x)

LOG(x)

OCT(x$)

RND {x)

SGN {x}

SIN {x)

SQR(x)

TAB {x)

three-letter caJ..J.. namt:!s followed oy a
They are pre-defined and may be used anywhere

Function

Returns the absolute value of x.

Returns the arctangent of x as an angle in
radians in range + or - pi/2.

Computes the integer value from a string
of blanks (ignored), zeroes, and ones (binary
integer).

Returns the cosine of x radians.

Returns the value of etx where e=2.71828 •••

Returns the greatest integer less than or
equal to x, (INT (-. 5) =-1).

Returns the natural logarithm of x.

Computes an integer value from
blanks (ignored} and digits
(octal integer) .

a string of
from 0 to 7

Returns a random number greater than or equal
to 0 and less than 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Returns the square root of x.

Causes the terminal type head to tab to
column number x. Valid in PRINT statement
only (refer to paragraph 5.5.1.5).

The argument x to the functions can be a constant, a variable, an
expression, or another function. A square bracket cannot be used as
the first enclosing character for the argument x, e.g., SIN[x] is
illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be used as expressions or as elements of
expressions anywhere that expressions are legal.

6-1

Values produced by the functions SIN(x), COS(x), ATN(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

6.1.1 Sine and Cosine Functions, SIN(x) and COS(x)

The sine and cosine functions require an argument angle expressed in
radian measure. If the angle is stated in degrees, conversion to
radians may be done using the identity:

<radians> = <degrees> (pi/180)

In the following example program, 3.14159265 is used as a nominal
value for pi. P is set equal to this value at line 20. At line 40
the above relationship is used (in the expression within the LET
statement) to convert the input value into radians.

10 REM - CONVERT ANGLE (X) TO RADIANS, AND
11 REM - FIND SIN AND COS
20 LET P = 3.14159265
25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"
30 INPUT X
40 LET Y = X*P/180
60 PRINT X, Y, SIN(Y), COS(Y)
70 GO TO 30
RUN NH
DEGREES
?O

0
?10

10
?20

20
?30

30
?360

360
?45

45
?tC
.REENTER
READY

RADIANS

0

.174533

.349066

.523598

6.28319

.785398

6.1.2 Arctangent Function, ATN(x)

SINE

0

.173648

.34202

.5

-3.7457E-07

• 707107

COSINE

1

.984808

.939693

.866025

1

• 707107

The arctangent function returns a value in radian measure, in the
range +pi/2 to -pi/2 corresponding to the value of a tangent supplied
as the argument (X).

In the following program, input is an angle in degrees. Degrees are
then converted to radians at line 40. At line 50 the radian value (Y)
is used with the SIN and COS functions to derive the tangent of the
input angle according to the identity:

SIN (X)
TAN(X) =

COS(X)

6-2

At line 70 the tangent value, z, is supplied as argument to the ATN
function to derive the value found in column 4 of the printout under
the label ATN(X). Also in line 70 the radian value of the arctangent
function is converted back to degrees and printed in the fifth column
of the printout as a check against the input value shown in the first
column.

10 LET P = 3.14159265
20 PRINT nsUPPLY AN ANGLE IN DEGREES"
25 PRINT ii ANGLEii, ii ANGLE", i'TAN (X) ii, ii ATAN (X) ",ii ATAN (X) ii
26 PRINT "(DEGS) " 1 " (RADS}" 111

11 (DEGS)"
30 INPUT X
40 LET Y = X*P/180
45 IF ABS(COS(Y})<.01 THEN 100
50 LET Z = SIN(Y)/COS{Y)
70 PRINT X,Y,Z,ATN(Z) ,ATN(Z)*l80/P
85 PRINT
90 GO TO 30
100 PRINT "ANGLE ERROR"
110 GO TO 30
RUNNH
SUPPLY AN ANGLE IN DEGREES
ANGLE ANGLE TAN (X)
{DEGS) (RADS)
?O

0 0 0

?45
45 .785398 .999999

?10
10 .174533 .176327

?tC
.REENTER
READY

ATAN(X)

0

.785398

.174533

ATAN (X)
(DEGS}

0

45

10

Note that the tangent of an odd multiple of pi/2 radians is not
defined. Since the cosine of such an angle is O, the statement on
line 50 would be dividing by 0 and the statement on line 45 checks for
an angle close to the odd multiple of pi/2 radians to circumvent this
problem.

6.1.3 Square Root Function, SQR(x)

This function derives the square root of any positive value as shown
below.

10 INPUT X
20 LET X = SQR(X)
30 PRINT X
40 GO TO 10
RUNNH
?16

6-3

4
?100

10
?1000

31.6228
?123456789
11111.1

?17
4.12311

?25E2
50

?1970
44.3847

?tC
.REENTER
READY

6.1.4 Exponential Function, EXP(x)

The exponential function raises the number e to the power x.
the inverse of the LOG function. The relationship is

LOG{EXP{X)) = X

EXP is

The following program prints the exponential equivalent of an input
value. Note that the output values derived below are used as input to
the LOG function in Section 6.1.5.

10 INPUT X
20 PRINT EXPCX)
40 GO TO 10
99 END
RUN NH
?4

54·5981
?10

22026·5
?9·421006

12345
?4. 60517

100
?25

7•20049E+l0
?!C

·REENTER

READY

6.1.5 Logarithm Function, LOG(x)

The LOG function derives the logarithm to the base e of a given value.
In the following program at line 20, the LOG function is used to
convert an input value to its logarithmic equivalent.

10 INPUT X
20 PRINT LOG(X)

6-4

30 GO TO 10

RUNNH
?54.59815

4
?22026.47

10
?12345
9.42101

?100
4.60517

? • 720049Ell
25

?tC
.REENTER
READY

Logarithms to the base e may easily be converted to any other base
using the following formula:

log N=
a

log N
e

log a
e

where a represents the desired base.
illustrates conversion to the base 10.

The

1 REM - CONVERT BASE E LOG TO BASE 10
5 PRINT "VALUE" , "BASE E LOG" , "BASE 10

15 INPUT x
17 PRINT x,
20 PRINT LOG(X),
40 PRINT LOG(X)/LOG(lO)
50 GO TO 15
I""/"\ END OU

RUNNH
VALUE BASE E LOG BASE 10 LOG
?4

4 1.38629 .60206
?250

250 5.52146 2.39794
?5

5 1.60944 .69897
?60

60 4.09434 1. 77815
?100

100 4.60517 2
?tc
.REENTER
READY

following program

LOG.
LOG"

An attempt to do a LOG(O) or logarithm of a negative number causes the
?ARG error message.

6-5

6.1.6 Absolute Function, ABS{x)

The ABS function returns an absolute value for any input value.
Absolute value is always positive. In the following program, various
input values are converted to their absolute values and printed.

10 INPUT X
20 LET X = ABS(X)
30 PRINT X
40 GO TO 10
RUN NH
?-35.7

35.7
?2

2
?25El0
2.50000E+ll

?105555567
l.05556E+08

?10.12345
10.1234

?-44.555566668899
44.5556

?tC
.REENTER
READY

6.1.7 Integer Function, INT(x)

The integer function returns the value of the greatest integer not
greater than x. For example:

PRINT INT (34. 67)
34

PRINT INT { -5. 1)
-6

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value. For
example:

PRINT INT(-23.45)
-24

PRINT INT(-14.39)
-15

PRINT INT (-11)
-11

The INT function can be used to round numbers to the nearest integer,
using INT(X+.5). For example:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)
-5

6-6

INT(X) can also be used
integral power of 10,
argument:

to round to any given decimal place or
by using the following expression as an

(X*lOto+.5)/lOtD

where D is an integer supplied by the user.

10 REM - INT FUNCTION EXAMPLE.
15 PRINT
20 PRINT "NUMBER TO BE ROUNDED: II
25 INPUT A
40 PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D
60 LET B = INT(A*lOtD +
70 PRINT "A ROUNDED = "
80 GO TO 15
90 END

RUN NH

NUMBER TO BE ROUNDED:
?55.65842
NO. OF DECIMAL PLACES:
?2
A ROUNDED = 55.66

NUMBER TO BE ROUNDED:
?78.375
NO. OF DECIMAL PLACES:
?-2
A ROUNDED = 100

NUMBER TO BE ROUNDED:

NO. OF DECIMAL PLACES:
?-1
A ROUNDED = 70

NUMBER TO BE ROUNDED:
?tc
.REENTER
READY

.5)/1otD
B

6.1.8 Random Number Function, RND(x)

The random number function produces a random number, or random number
set, between 0 and 1. If the RANDOMIZE statement is not present in
the program: the numbers are reproducible in the SaJTle order for later
checking of a program. The argument (x) is not used and can be any
number (but cannot be a string expression): it serves only to
standardize all- BASIC function representations. The form- mm is also
legal. For example:

6-7

10 REM - RANDOM NUMBER EXAMPLE.
25 PRINT "RANDOM NUMBERS:"
30 FOR I = 1 TO 15
40 PRINT rum { 0) ,
50 NEXT I
60 END
RUNNH
RANDOM NUMBERS:

.1002502 .9648132

.3061218 .285553

.9854126E-l .5221863

READY

.8866272

.9582214

.2462463

.6364441

.1793518
• 7778015

To obtain random digits from 0 to 9, change line 40 to read:

40 PRINT INT{lO*RND(O)),

.8390198

.4521179

.450592

and run the program again. This time the results will be printed as
follows.

RUNNH
RANDOM NUMBERS :

l 9
3 2
0 5

READY

8
9
2

6
l
7

8
4
4

It is possible to generate random numbers over a given range. If the
open range (A,B) is desired, use the expression:

(B-A) *RND(O)+A

to produce a random number in the range A<n<B.

The following program produces a random number set in the open range
4,6 (the extremes, 4 and 6, are never reached).

10 REM - RANDOM NUMBER SET IN OPEN RANGE 4 , 6.
20 FOR B = 1 TO is
30 LET A = {6-4) * RND(O) +4
40 PRINT A,
50 NEXT B
60 END

RUNNH
4.2005
4.61224
4.19708

READY

5.92962
4.57110
5.04437

6.1.9 Sign Function, SGN{x)

5.77325
5. 91644
4.49249

5.27288
4.35870
5.55560

5.67804
4.90423
4.90118

The sign function returns the value 1 if x is a positive value, O if x
is O, and -1 if x is negative. For example:

6-8

PRINT SGN (3. 42)
1

PRINT SGN (-42)
-1

PRINT SGN(23-23)
0

The following example program illustrates the use of the SGN function.

10 REM- SGN FUNCTION EXAMPLE.
20 READ A,B,C
25 PRINT "A = "A, "B = "B, "C = "C
30 PRINT "SGN (A} ="SGN (A) , "SGN (B) ="SGN (B) ,
40 PRINT "SGN(C) ="SGN(C)
50 DATA -7.32, .44, 0
60 END
RUNNH
A = -7.32
SGN(A) =-1

READY

B = .44
SGN(B) = l

6.1.10 Binary Function, BIN(x$)

c = 0
SGN{C) = 0

The BIN function computes the integer value of a string of l's and
O's. Spaces are ignored (allowing input in convenient bit groupings),
and the parentheses arotL~d the argument are not required.

For example,

PRINT BIN ('100101001')
297

The binary nu..~~er is treated as a signed 2's complement integer and its
absolute value may not be larger than 215-1.

For example,

PRINT BIN ('l 111 111 111 111 111')
-1

6.1.11 Octal Function, OCT(x$)

The OCT function computes an integer value from a string of blanks
(ignored) and digits from 0 to 7. Spaces are ignored (allowing input
in convenient spacing), and the parentheses around the argument are
not required.

For example,

PRINT OCT ('177777')
-1

The number is treated as a signed 2's complement and its absolute value
may not be larger than 215-1.

6-9

6.2 USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places.
BASIC allows definition of unique operations or expressions and the
calling of these functions in the same way as the square root or trig
functions.

These user-defined functions consist of a function name: the first two
letters of which are FN followed by a third letter. For example:

legal

FNA

illegal

FNAl
FN2

Each function is defined once and the definition may appear anywhere
in the program. The defining or DEF statement is formed as follows:

DEF FNa (variable list) = expression

where a is an alphabetic character which becomes part
of the function name. The expression,
however, need not contain all the arguments.

variable list may consist of one to five dummy variables.

expression (to the right of the equal sign) may contain
the variables named in the variable list.

For example :

10 DEF FNA(S) = St2

causes a later statement:

20 LET R=FNA (4) + 1

to be evaluated as R=l7. As another example:

50 DEF FNB(A,B) = A+Xt2
60 LET Y=FNB(l4.4,R3)

causes the function to be evaluated using the current value of the
variable X squared +14.4. In this case the dununy argument B (which
becomes the actual argument R3 in the function call) is unused.

The two following programs

Program #1:

10 DEF FNS (A) = At A
20 FOR I=l TO 5
30 PRINT I, FNS(I)
40 NEXT I
50 END

6-10

Program #2:

cause the

10 DEF FNS(X) = xtx
20 FOR I=l TO 5
30 PRINT I, FNS(I)
40 NEXT I
50 END

same output:

RUNNH
1 1 ., A
&. "t

3 27
4 256
c:: .,, '>C::
J J.1.&.J

READY

The arguments in the DEF statement can be seen to have no
significance; they are strictly dummy variables. (A DEF statement
with no arguments is illegal.) The function itself can be defined in
the DEF statement in terms of numbers, variables, other functions, or
mathematical expressions. For example:

10 DEF FNA(X) = Xt2+3*X+4
20 DEF FNB(X) = FNA(X)/2 + FNA(X)
30 DEF FNC(X) = SQR(X+4)+1

The statement in which the user-defined function appears can have that
function combined with numbers, variables, other functions, or
mathematical expressions. For example:

40 LET R = FNA(X+Y+Z)*N/(Yt2+D)

A user-defined function can be a function of one to five variables, as
shown below:

25 DEF FNL(X,Y,Z) = SQR(xt2 + yt2 + zt2)

A later statement in a program containing the above user-defined
function might look like the following:

55 LET B = FNL(D,L,R)

where D, L, and R have some values in the program.

The number of argmnents with which a user-defined function is called
must agree with the number of arguments with which it was defined.
For example:

10 DEF FNA (X) = X*2 + X/2
20 PRINT FNA(3,2)

causes the error message:

?ARG AT LINE 20

When calling a user-defined function, the parenthesized arguments can
be any legal expressions. The value of each expression is substituted
for the corresponding function variable. For example:

6-11

10 DEF FNZ(X)=Xt2
20 LET A=2
30 PRINT FNZ(2+A)

line 30 causes 16 to be printed.

If the same function name is defined more than once, an error message
is printed.

10 DEF FNX(X)=Xt2
20 DEF FNX(X)=X+X
%IDF AT LINE 20

and the program cannot be executed until corrected.

The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4 +2
20 LET R = FNA(lO)+l
30 PRINT R
40 END
RUN NH

7

The program in Figure 6-1 contains examples of a multi-variable DEF
statement in lines 10, 25, and 40.

6-12

1 REM MODULUS ARITHMETIC PROGRAM
5 REM FIND X MOD M
10 DEF FNMCX,M>=X-M*INTCX/M)
15 REM
20 REM FIND A+B MOD M
25 DEF FNA(A,B,M>=FNMCA+B,M>
30 REM
35 REM FIND A*B MOD M
40 DEF FNBCA,B,M>=FNMCA*B,M>
41 REM
45 PRINT
50 PRINT "ADDITION AND MULTIPLICATION TABLES MOD M"
55 PRINT "GIVE ME AN M";\INPUT M
60 PRINT \PRINT "ADDITION TABLES MOD "M
65 GOSUB 800
70 FOR 1=0 TO M-1
75 PRINT H" ";
80 FOR J=0 TO M-1
85 PRINT FNACI,J,M>J
90 NEXT J\PRINT \NEXT I
100 PRINT \PRINT \
110 PRINT "MULTIPLICATION TABLES MOD "M
120 GOSUB 800
130 FOR I=0 TO M-1
140 PRINT l.J" 11

;

150 FOR J=0 TO M-1
160 PRINT FNBCI,J,M);
170 NEXT J\PRINT \NEXT l
180 STOP
800 REM SUBROUTINE FOLLOWS:
810 PRINT \PRINT TABC5)J0J
820 FOR I=l TO M-1
830 PRINT IJ\NEXT !\PRINT
840 FOR I=l TO 3*M+4
850 PRINT "-";\NEXT !\PRINT
860 RETURN
870 END

Figure 6-1 Modulus Arithmetic

6-13

RUN NH

ADDITION AND MULTIPLICATION TABLES MOD M
GIVE ME AN M?7

ADDITION TABLES MOD 7

0 2 3 4 5 6

--------~--------------~-
0 0 l 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 l 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

MULTIPLICATION TABLES MOD 7

0 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 l 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 l

STOP AT LINE 180

READY

Figure 6-1 (Cont.) Modulus Arithmetic

6-14

6.3 STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determin~ the number of characters in a string: generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful
operations. The various functions available are summarized in Table
6-1.

FtL"lction Code

ASC(x$)

CHR$ (x)

DAT$

LEN(x$)

POS(x$,y$,z}

SEG$(x$,y,z)

Table 6-1

String Functions

~.eaning

Returns the seven-bit internal code for the
one-character string (x$) as a decimal
number. If the argument is a null string or
contains more than one character, the ?ARG
error message is output.

Generates a one-character string having the
ASCII value of x where x is a number greater
than or equal to 0 and less than or equal to
255. Refer to Appendix B. For example:
CHR$(65) is equivalent to "A". Arguments
greater than 127 are treated modulo 128.
Only one character can be generated.

Returns the current date, as set by the RT-11
Monitor, in the form 07-MAY-73.

Returns the number of characters in the
string x$ (including trailing blanks). For
example:

PRINT LEN (A$)
")C
4:0V

Searches for and returns the position of the
first occurrence of y$ in x$ starting with
the zth position. If the string y$ is not
found in the string x$, then 0 is returned.
If x$ is a null string, 0 is returned. If y$
is a null string, the character position of
z is returned.

Returns the string of characters in positions
y through z in x$.

If y =<O, 1 is assumed.
If z =< O, a null string is returned. If
z > the length of (x$}, the string to end of
x$ is returned.
If z < y, a null string is returned.
If y > LEN (x$), a null string is returned.

6-15

Function Code

STR$(x)

TRM$ {X$)

VAL (x$)

Table 6-1 (Cont.)

String Functions

Meaning

Returns the string which represents the
numeric value of x as it would be printed by
a PRINT statement but without a leading or
trailing blank.

Returns X$ with trailing blanks
(trimmed).

removed

Returns the number represented by the string
x$. If x$ does not represent a number, the
?ARG error message is output.

In the above examples, x$ and
expressions and x, y, and z
expressions.

y$ represent any legal string
represent any legal arithmetic

6.3.l User-Defined String Functions

Character string functions can be written in the same way as numeric
functions. (See Section 6.2.)

User-defined string functions return character string values, although
both numeric and string values can be used as arguments to the
function.

10 DEF FNL{A$,X)=A$&STR$(X)

The following function combines two strings into one string:

10 DEF FNC(X$,Y$)=X$&Y$

Numbers cannot be used as arguments in a function where strings are
expected or vice versa. Line 80 is unacceptable:

10 DEF FNA(A$) = CHR$(LEN(A$)+1)
80 LET Z=FNA (4)

The message:

?NSM AT LINE 80

is printed.

6-16

CHAPTER 7

EDITING COMMANDS

BASIC provides key commands which can be used to halt program
execution, erase characters or delete lines. Table 7-1 provides an
explanation of each of the key cornrnands.

Key

CTRL/C

Table 7-1

Key Commands

Explanation

Interrupts execution of a command or program and
returns control to the RT-11 monitor BASIC can be
restarted without loss of the current program by
using the monitor RE command.

A control command is typed by holding down the
CTRL key while typing the letter key.

CTRL/O Stops output on the terminal but does not halt
execution ~~til an input statement is encountered
or the program terminates. If CTRL/O is typed
again, type out resumes. If desired, immediate
mode statements can be used to print the results
of the program after a CTRL/O suppresses output.

I I
(Shift 0) Deletes the last character typed and echoes as a
or backarrow on the terminal. For example,
RUBOUT

ALT MODE
or
CTRL/U

,

RT-11 BASc+-Ic

RUBOUT typed here.

Spaces as well as characters may be erased. On a
Vl'OS or an LA30, the underscore key (-) is used
instead of RUBOUT to delete characters.

Deletes the entire current line (provided the
RETURN key has not been typed). BASIC displays

DELETED

at the end of the line. For example:

OS BASIC DELETED
t
ALTMODE typed here.

. i On some terminals, the ESCAPE key must be used.

If the RETURN key has already been typed, a program line can be
corrected by typing the appropriate line number and retyping the line
correctly.

7-1

The line can be deleted by typing the RETURN key inunediately after the
line number; removing both the line number and line from the program.

If the line number of a line not needing correction is accidentally
typed, the RUBOUT key (also SHIFT/O, ALTMODE, ESC or CTRL/U) may be
used to delete the number(s); then the correct number can be typed.
Assume the line:

10 IF A>S GO TO 230

is correct. A line 15 is to be inserted, but

10 LET

is typed by mistake. The correction is made as follows:

10 LET+++++S LET X=X-3

Line 10 remains unchanged, and line 15 is entered.

Following an attempt to run a program, error messages may be output on
the terminal indicating illegal characters or formats, or other user
errors in the program. Most errors can be corrected by typing the
line number(s) and the correction(s) and then rerunning the program.
As many changes or corrections as desired may be made before each
program run.

The following editing commands are
terminated by the RETURN key.
program in core, assign a program
program.

7.1 SCRATCH COMMAND

entered in immediate mode and
These commands are used to erase a

name and list, punch or run a

The SCRATCH (or SCR) command clears the storage area set up by BASIC
(refer to Appendix G). This deletes any commands, programs arrays,
strings or symbols currently stored by BASIC.

SCRATCH should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area.

Example:

SCR

READY
10 READ A

clears the storage area and inserts the program being input at the
keyboard.

7-2

7.2 OLD COMMAND

The OLD command (OLD) erases the contents of the storage area (SCRATCH
and CLEAR) and inputs the program via the specified device.

The form of the command is:

OLD "dev:filnarn.ext"

If the file descriptor (dev:filnam.ext) is not specified as part of the
OLD command, BASIC prints:

OLD FILE NAME--

and waits for the file description and the return key. Type the name
of the file containing the BASIC program (do not enclose the filename
in quotation marks). If a filename is not entered, BASIC assumes the
name NONAME.

In the examples of OLD commands that follow, the computer printout is
underlined

OLD
OLD FILE NAME--TESTl

clears user area and inputs program TESTl.BAS from Disk (DK).

OLD "DTl:PROGl"

clears user area and inputs program PROGl.BAS from DECtape unit 1.

OLD 11 PR:RESEQ"

clears user area and inputs the program RESEQ from the high speed paper

tape reader.

7.3 LIST/LISTNH COMMANDS

The LIST command prints tne specified lines or tne user program cur­
rently in memory on the terminal. The program name, date and the
BASIC version number are output as a header line for the lines being
listed. The form of the LIST command is:

LIST statement no.-statement no.

Several variations of the LIST command can be used:

LIST statement no.

LIST-statement no.

LIST statement no.­
LIST statement no.-END

Lists only the specified line.

Lists from the beginning of the pro­
gram to and including the specified
line.

Lists from the specified line to the
end of the program.

7-3

LIST statement no.-statement no.
Lists the specified section of the
program.

If no statement number is specified, the entire program is listed. If
the statement number specified does not exist, the first line of the
program is listed.

Typing LIST followed by the stateMent number causes the header line
and the line specified to be listed. The LISTNH command also prints
the lines currently in core but suppresses the header line.

Type CTRL/O (depress the CTRL key and type the O key) to suppress an
undesired listing. BASIC returns to the READY message when command
execution is complete.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC are stored in a
standard manner when they appear outside of quotation marks.

Character Character
typed stored

1)
[(

=< <=
=> >=
>< <>

2. Literals are stored to 24 bits of accuracy. Those with more
than 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to 6
decimal digits.

4. Literals are output in standard BASIC format, regardless of
how they were input, for example,

10 LET X=3.0+l.0000001
20 PRINT X-1E7
LIST
10 LET X=3+1
20 PRINT X-l.OOOOOE+07

5. Spaces in the input program are ignored, except within
strings and REM statements. The LIST command prints the
program with spaces inserted to separate keywords and line
numbers from numeric information. The listed program is
therefore easier to read. In the case of an IF ••• GO TO
statement, no space is typed before the GO TO keyword.

Examples:

LISTNH 100 lists line 100.

7-4

LIST-10 lists the header line and the program lines
up to line 10.

LIST 10-20 lists the header line and lines 10 to 20 of
the program in memory.

7.4 SAVE COMMAND

The SAVE command creates an ASCII file and saves the BASIC
currently in memory as specified in the file descriptor.
program can be retrieved with the OLD command or CHAIN or
statement. The form of the command is:

SAVE "dev:filnam.ext"

program
A SAVEd
OVERLAY

If no file descriptor is specified, it is assumed to be DK: name.BAS
where name is the current program name.

The SAVE command can be used to list the program currently in memory
on the line printer.

If the file specified already exists, then the error message

?RPL or USE REPLACE

is typed on the console.

Examples:

SAVE "DTl:PROGl"

SAVE

SAVE "LP:"

7.5 REPLACE COMMAND

outputs program in core to DECtape unit 1 as
PROGl.BAS.

outputs program to the system device with
current program name, and extension BAS.

lists the program on the line printer.

The REPLACE command is just like the SAVE command, except that it
replaces, or updates a file previously created by SAVE. The
destinction between creation and replacement of files prevents the
user from inadvertently destroying programs which he has previously
saved.

The form of the command is

REPLACE "dev:filnam.ext"

If no file descriptor is specified, it is assumed to be DK:filnam.bas
where filnam is the current program name.

7-5

7.6 RUN/RUNNH COMMANDS

After the user program is entered into memory, it can be executed by
typing the command

RUN

and the RETURN key. The RUN command causes a header line (program
name, date and BASIC version number) to be printed before the program
is executed.

When BASIC is first loaded or when a SCR command is executed, the user
program name is set to NONAME until a RENAME command is executed.

The program is scanned~ arrays are created in core and then the
program is executed. Any appropriate error messages are printed and
when the END or STOP statement is encountered, execution halts and a
message is printed. Execution of a program can be halted before
executing an END or STOP statement by using the CTRL/C, RE combination
to return BASIC to a READY message.

After execution, the variables used in a program remain accessible for
use in immediate mode until a SCRATCH, CLEAR or another RUN command is
executed.

The RUNNH command also executes the program in core but suppresses the
header line.

Example:

RUN
PROGl 03-JUN-73
10

RUNNH
10

7.7 CLEAR COMMAND

BASIC VOl-05

The CLEAR command clears the contents of the user array and string
buffers. This command is generally used when a program has been
executed and then edited. Before it is rerun, the array and string
buffers are set to zeros and nulls by the CLEAR command to provide
more memory.

These buffers will be filled again when the RUN command is executed.

Example:

10 A=lO
20 PRINT A
CLEAR

READY

RUN NH
10

READY

7-6

7.8 RENAME COMMAND

The RENAME conmand assigns the specified name to the program currently
in memory. The form of the command is:

RENAME "filnam"

followed by the P.ETUPN key. The filnam is optional and if not
specified BASIC responds with

FILE Nll._ME--

Type the 1 to 6 character program name (don't enclose the name in
quotation marks) followed by a carriage return. If a device or
extension are specified with the file name they are ignored. The
characters in the program name may consist of A-Z or 1-9.

If more than 6 characters are entered, the excess characters are
ignored. Blanks are also ignored. If no name is specified in answer
to the FILE NAME message, the default name, NONAME, is used. The
program itself does not change.

7. 9 NEW COMMAND

The NEW command clears the storage area set up by BASIC (same as
SCRATCH) and assigns the specified name to the program currently in
memory (same as RENAME).

The form of the command is:

NEW "filnam"

If the file n~~e is not specified as part of the NEW command; BASIC
prints:

NEW FILE NAME--

and waits for the file name and RETURN key to be typed. Type the file
name, (do not enclose in quotation marks) and the RETURN key. If
specified, device or extension are ignored.

7-7

CHAPTER 8

USING ASSEMBLY LANGUAGE
ROUTINES WITH BASIC

RT-11 BASIC has a facility which allows experienced PDP-11 assembly
language programmers to interface their own assembly language routines
to BASIC. This facility permits the user to add functions to BASIC
which can operate directly on special purpose peripheral devices.
This chapter describes in some detail the internal characteristics of
BASIC during the execution of a BASIC program, and is intended to
serve as a programming guide for the creation of such user-coded
assembly language functions. This material assumes the user is
familiar with PDP-11 assembly language. For additional information on
this subject, refer to the RT-11 System Reference Manual
DEC-11-0RUGA-A-D.

The CALL statement is used to reference these assembly language
routines from the BASIC program.

8.1 CALL STATEMENT

The CALL statement can be inserted anywhere in the BASIC program and
has the form:

CALL string expression (argument list)

Where string expression

argument list

specifies the name (up to 4 characters)
assigned to the assembly langua~e
routine to be called. This name is
assigned via the System Function Table,
as described in Section 8.2. The
routine named must be linked with the
BASIC system with the Linker.

is the optional list of arguments to the
assembly language routine, separated by
co:runas. There may be any number of
arguments to a routine, as long as the
CALL statement fits on one line. The
elements of the argument list are
expressions, variable names, and array
elements~ These may include values
passed to the user routine, and
variables set by it.

In BASIC without strings, string variables are not allowed but a
literal string, enclosed in quotes, may be used in the CALL statement.

Examples:

CALL "AND" (A,B,C) Calls the routine assigned the name AND
in the System Function Table which sets
the variable C to the value of A ANDed
with the value of B.

8-1

CALL "OR" (A,B ,C)

LET F$="REV"
CALL (F$) (A$,B$)

8.2 SYSTEM FUNCTION TABLE

Calls the routine named OR,
the values of A and B,
result in c.

which OR' s
storing the

Calls the routine named REV which sets
the string B$ equal to the string A$
with the characters in reverse order.

For a routine to be accessible from the CALL statement, it must be
defined in the special System Function Table. The first word of the
BASICR CSECT contains the address of this table. The table consists
of a series of 3-word entries, followed by a 0 byte indicating the end
of the table. Each entry defines one user routine. The first two
words of the entry contain the ASCII characters of the routine name to
be used in the CALL statement. Those names with less than four
characters are followed with O bytes to fill the remainder of the two
words. The third word of the entry contains the address of the
function.

The following source program generates a system functon table based on
the sample CALL statements in section 8.1:

FUNCTION TABLE
.GLOBL
.CSECT
.WORD
.CSECT

FUNTAB:
.ASCII
.BYTE
.WORD
.ASCII
.BYTE
.WORD
.ASCII
.BYTE
.WORD

.BYTE

.END

DEFINITION
ANDFN , ORFN , REVFN
BAS I CR
FUNT AB
FUNl

'AND'
0
ANDFN
'OR'
0,0
ORFN
I REV'
0
REVFN

0

;ASCII NAME OF FUNCTION
;(4 BYTES)
;ADDRESS OF FUNCTION ROUTINE

;INSERT NEW ENTRIES HERE
;ENO-TABLE FLAG

To produce a BASIC system with the functions defined in the example,
link the following modules with LINK.

BAS I CR
BAS ICE
BASICX

FPMP

FUNl

FUN2

Basic object modules, starting at location 400

Object module (floating point math package)

Object module, produced from the above source.

Object module produced from the source in section
8.3.1.

8-2

GETARG Object module, produced from the source shown in
Appendix H.

BASICH BASIC High object module.

Use the LINK command string:

*BASIC=BASICR,FPMP,BASICE,BASICX/B:400/C

*FUN1,FUN2,GETARG,BASICH

8.3 WRITING ASSEMBLY LANGUAGE ROUTINES

The user's assembly language routine must interface with the BASIC
system to pass its arguments to and from the calling BASIC program.

If the user's routine does not accept a variable number of arguments,
then the general subroutines GETARG,STORE, and SSTORE, which are
listed in Appendix H, may be used to interface the user routines with
BASIC. The routine GETARG checks the syntax of the CALL statement,
and the argument types. It accesses the routine arguments as
specified in the CALL statement, and stores references to them in a
table, addressed by RO.

Argument Type

1 - Input numeric expression

Stored in table at (RO;

two words,
value

the expression

2 - Output numeric target variable three words, used by STORE
subroutine

3 - Input string expression

4 - Output string target variable

zero words are stored
table, string pointer
returned on the stack

in
is

three words , used by SSTORE
subroutine

To store target variables (argument types 2 and 4), the user routine
addresses the corresponding three-word entry in the table set up by
GETARG and calls the subroutine STORE for numeric target variables,
and SSTORE for string target variables. The examples in section 8.3.1
show how these routines are used.

once the user routine has called GETARG to reference its arguments, it
may use any registers except RS for calculations. The routine must
return via an "R',rS PC" instruction, with the stack unchanged.

The GETARG, STORE, and SSTORE subroutines assume that all arguments to
the user routines will be in the CALL statement. In the case of a
user routine which handles optional arguments, it may use the system
subroutines described below in section 8.4 to pass the arguments to
and from BASIC. Each of the routines named is a .GLOBL symbol.

When the CALL statement is executed, the user's assembly language
routine is called by the instruction:

JSR PC, routine address

8-3

When the user routine is entered, these registers contain information
about the calling sequence:

Rl

R4

RS

is a pointer to the translated code of the CALL
statement. (See section 8.7 for the format of the
translated code.)

If the routine has an argument list, Rl points to
the 1-byte token (refer to section 8.7.2 for an
explanation of tokens) which represents the left
parenthesis in the calling sequence. This token
has the value .LPAR.

CALL "AND"

Rl
+
(A,B,C)

The 1-byte values of code bytes (tokens) .LPAR,
.COMMA and .RPAR (right parenthesis) are global
symbols. These are not the same as the ASCII
representation of these characters.

Contains the low limit of the stack. If the stack
is used heavily, the function must check that it
never goes below this limit. (If it does,
transfer control to ERRPDL, a global location in
BASIC.)

Contains the address of
must be preserved
subroutines.

the "user area",
for all calls to

which
BASIC

Once the argument references are no longer required by the function RO
through RS may be used in any way. RO , R2, and R3 need not be
preserved in any case.

The function may use the stack, but must return via an

RTS PC

instruction with the stack unchanged.

The user routine can not use the TRAP instruction, as it is reserved
for use by the BASIC system program.

A user routine which does not use the GETARG subroutine should verify
the syntax of the invoking CALL statement by checking that the left
parenthesis, comma and right parenthesis tokens are contained in the
code where expected. (.LPAR, .COMMA and .RPAR are the global values
of these 1-byte tokens, respectively.)

In general, arguments which are expression values are passed to the
user by the subroutine EVAL, as described in section 8.4. The program
can then obtain the value of the expression from the floating
accumulator or FAC (FACl(RS) and FAC2{RS)).

8-4

Arguments are passed from the user routine back to BASIC by first
calling GETVAR to address the target variable and then calling STOVAR
for numeric results and STOSVAR for strina results to store the new
value in the BASIC variable. These routines are also described in
section 8.4.

The example in section 8.3.l contains the code for both of these types
of argument transfer.

8.3.l Sample User Functions

The following source progra~ shows how the routines AND; OR and REV in
the example above would interface with the BASIC system to pass their
arguments to the calling program. Each of the system subroutines used
in the example is described in section 8.4.

; FUN2 - SAMPLE USER FUNCTIONS
.TITLE FUN2
.GLOBL ANDFN, ORFN, REVFN
.GLOBL GETARG, STORE, SSTORE

R0=%0
Rl=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
FAC1=40
FAC2=42

"AND"
ANDFN:

; "OR"
ORFN:

(A,B,C)
MOV
JSR

P.Vl'J'k' . .-..... ~
.EVEN
MOV
ADD
MOV
COM
MOV
BIC
MOV
COM
MOV
BIC
MOV
JSR

RTS
(A,B,C)
MOV
JSR
.BYTE
.EVEN
MOV

#TABLE,RO
PC,GETARG , , ? n
~,~,c..rv

#FAC1,R3
RS ,R3
Al,R2
R2
Bl, (R3)
R2, (R3) +
A2 ,R2
R2
B2, (R3)
R2, (R3)
#C,RO
PC,STORE

PC

#TABLE,RO
PC,GETARG
1,1,2,0

#FAC1,R3

;ADDRESS VARIABLE STORAGE AREA
;CHECK SYNTAX AND SET ARGS
; (ARG TYPES}

;ADDRESS FACl(RS) IN R3

;FACl(RS) IS Al (AND) Bl

;FAC2(R5) IS A2 (AND) B2
;ADDRESS C
;STORE FAC1,FAC2 IN C

; ADDRESS ARGUMENT TABLE
;CHECK SYNTAX AND GET ARGS
; { ARG TYPES)

;ADDRESS FACl(RS) IN R3

8-5

ADD R5,R3
MOV Al, (R3)
BIS Bl, (R3) + ; FACl (RS) IS Al {OR) Bl
MOV A2, (R3)
BIS B2, {R3) ;FAC2(R5) IS A2 (OR) B2
MOV fC,RO ;ADDRESS C
JSR PC,STORE ;STORE FAC1,FAC2 IN c
RTS PC

; "REV" (A$,B$)
REVFN: MOV #TABLE,RO ;ADDRESS ARG AREA

JSR PC,GETARG ;CHECK SYNTAX AND GET ARGS
.BYTE 3,4,0 ; (ARG TYPES)

.EVEN
CMP (SP) , i-1 ;CHECK NULL STRING

BEQ REVX
CLR R2
MOV (SP) , R3
BISB (R3) + ,R2 ; R2 IS STRING LENGTH
CMPB (R3) + , { R3) + ;R3 ADDRESSES CHARS

REVl: DEC R2 ;ADDRESS NEXT PAIR OF BYTES
MOV R3,RO ;TO SWITCH
ADD R2,RO
CMP RO ,R3 ;CHECK DONE--REACHED MIDDLE
BLOS REVX
MOVB (RO) ,Rl ;EXCHANGE ANOTHER PAIR
MOVB (R3) , (RO) ;OF BYTES
MOVB Rl,(R3)+
DEC R2
BR REVl

REVX: MOV #B$,RO ;ADDRESS B$

JSR PC,SSTORE ; STORE STRING ON STACK

RTS PC

; ARGUMENT AREA
TABLE:
Al: .WORD 0 ;VALUE OF A (2 WORDS)
A2: .WORD 0
Bl: .WORD 0 ;VALUE OF B (2 WORDS)
B2: .WORD 0
C: .WORD o,o,o ;ADDRESS OF c (3 WORDS)

;
.=TABLE

;POINTER TO A$ IS ON STACK
B$: .WORD o,o,o ;ADDRESS OF B$ (3 WORDS)

.END

8-6

8.4 SYSTEM ROUTINES IN BASIC

The routines described below are all global symbols and are available
to the user functions:

Routine Name
(Global)

BOMB

ERRPDL

ERRSYN

ERRARG

EVAL

Call

TRAP 0
.ASCIZ 'MESSAGE'
.EVEN

JMP ERRPDL

JMP ERRSYN

JMP ERRARG

JSR PC,EVAL

Description

This routine stops execution of
the BASIC program and types the
message:

?MESSAGE AT LINE xxxx

If the $LONGER option is specified,
the '?' character is omitted.
BASIC then types the READY message.

Called when the stack pointer {SP)
goes below the value in R4. Causes
execution to halt and types out
?ETC AT LINE xxxxx. There are 20
extra "buffer" words on the stack.
If the user routine will definitely
not use more than this many words
on the stack, the routine need not
check for a stack overflow.

Syntax error. Stops execution and
prints out ?SYN AT LINE xxxxx.

Argument error. Stops execution
and prints out ?ARG AT LINE xxxxx.

Evaluate expression. Rl points to
the start of the expression in the
code. EVAL sets the carry bit as
follows:

carry = 0: The expression is
numeric.

The value of the expression is
contained in the floating
accumulator {FACl and FAC2).

carry = 1: A string expression.

If the string is non-null, the top
of the stack is an indirect pointer
to the string. (See section 8.6
for the format of string
variables.)

If the string is null, the top of
the stack is the value 177777.

In both cases, Rl is moved to point
to the byte following the
expression in the code. If it
detects an error in the expression,
EVAL branches to the appropriate
error routine.

8-7

Routine Name
(Global)

GETVAR

MSG

STOVAR

STOSVAR

Call

JSR PC,GETVAR

JSR Rl,MSG
.ASCIZ 'MESSAGE'
. EVEN

JSR PC,STOVAR

JSR PC,STOSVAR

Description

Address variable or array element.
R2 must contain the address of the
symbol table entry for the variable
and Rl must point to the next byte
beyond the second byte of the sym­
bol table offset on call. GETVAR
looks up and saves the address of
the variable reference, so that a
subsequent STOVAR or STOSVAR will
store a value in the addressed vari­
able. GETVAR destroys the FAC when
addressing an array element; Rl is
left unchanged unless the variable
is subscripted, in which case Rl is
advanced past the right parenthesis.
To address the symbol table entry,
precede the GETVAR call with the
code:

MOVB (Rl)+,R2 ;FIRST BYTE OF
;OFFSET

BMI ESYN ;IF NEGATIVE, ERROR
SWAB R2
BISB (Rl)+,R2 ;GET 2ND HALF OF

;OFFSET
ADD (RS) , R2 ;ADD BASE OF SYMBOL

;TABLE

Print message on console. Prints
the ASCII characters specified after
the JSR instruction up to the 0-byte .
MSG prints only those characters
specified in the calling sequence
plus padding characters specific to
the terminal in use. The calling
program must insert a carriage re­
turn where required. MSG clears
the CTRL/O condition.

Store numeric variable. Stores the
FAC in the variable or array element
last referenced by GETVAR. If it
was a string variable, STOVAR stops
execution of the program, and pro­
duces the ?NSM error message.

Store string variable. Stores the
top of the stack in the variable or
array element last referenced by
GETVAR, and pops one word from the
stack. If it was a numeric variable,
STOSVAR stops execution of the pro­
gram and produces the ?NSM error
message.

8-8

Routine Name
(Global}

INT

Call Description

Integerize the FAC. Sets the value
of the FAC to the greatest integer
contained in the previous contents
of the FAC. The number is
expressed in the BASIC integer
format if possible.

MAKE ST JSR PC,MAKEST Make non-null string variable. The
top of the stack contains the
length of the string to be created.
R2 contains an indirect pointer to
(the start of the ASCII characters
to fill the string) -3. MAKEST
returns an indirect pointer to the
string on the top of the stack.
(Called MAKESTR in sources.)

In addition, the user program may call the following FPMP-11 routines,
which are documented in the FPMP-11 User's Manual (DEC-11-NFPMA-A-D).

$POLSH

$IR

$MLR

$DVR

$ADR

$SBR

SIN

cos

SQRT

ALOG

ATAN

EXP

Enter "Polish Mode"

Integer-to-Real Conversion

Multiply Real

Divide Real

Add Real

Subtract Real

Sine Function

Cosine Function

Square Root Function

Logarithm Function (Base e)

Arctangent Function

Exponentiation Function

The following list contains all the .GLOBL symbols available to the
user's assembly language routines. Other .GLOBL's may not exist in
future releases of BASIC.

GLOBL Symbol

BOMB

ERRARG

ERRPDL

ERRSYN

EVAL

Description

Error routine, called by TRAP 0

Argument error

Stack overflow error

Syntax error

Evaluate expression

8-9

GLOBL Symbol

GET VAR

INT

MAKE ST

MSG

NUMSGN

STOSVAR

STOVAR

.COMMA

.DQUOT

.EOL

.LPAR

.RPAR

.SQUOT

Description

Address variable

Integerize floating accumulator

Create a string

Print a message on the terminal

Convert from numeric to ASCII

Store string variable

Store numeric variable

comma token

double quote token n

end-line token \
left-parenthesis token

right-parenthesis token

single quote token

The offset of system variables in the "user area 11 starts at the address
contained in RS. The most commonly-used user offsets are described
below:

User area off set DescriEtion

SYMBOLS = 0 Address of symbol table

CODE = 16 Address of stored program

LINE = 20 Address of input line buffer

VARSAVE = 22 saved symbol table entry address

SSlSAVE = 24 Saved first array subscript

SS2SAVE = 26 Saved second array subscript

LIN ENO = 30 Line number being executed

FACl = 40 Floating accumulator, upper word

FAC2 = 42 Floating accumulator, lower word

PROGNM 142 Program name, 6 ASCII bytes

8-10

8.5 REPRESENTATION OF NUMBERS IN BASIC

The value stored in the floating accumulator (FACl(RS)
by EVAL is always two words long: FACl(RS) contains
and FAC2(R5), the low-order portion. If FACl(RS) is
the number is stored as a two-word floating-point
format:

and FAC2 (RS))
the high-order,
non-zero, then
number, in this

Word Bit (s)

FACl(RS) 15

14-7

6-0

FAC2 (RS) 15-0

Description

Sign bit, set if the number is
negative.

Exponent, with a bias of 200 octal.

The second through eighth
significant bits of mantissa. The
first significant bit is always an
assumed 1.

The 9th through 24th significant
bits of mantissa.

If FACl{RS) is zero then FAC2(R5) contains the integer value of the
number in 2's compleITlent form. Note that the integers from -32,768 to
+32,768 do not have a unique representation: they may be stored in the
floating-point or integer form. For example, the number represented
by

FACl:
FAC2:

40640
0

has the same value as

FACl:
FAC2:

0
5

;Floating-point "5"

; Integer "5"

The subroutine INT, described in sections 6.1.7 and 8.4, converts a
number from the floating point representation to an integer.

8.6 REPRESENTATION OF STRINGS IN BASIC

Non-null strings are represented as follows:

Byte (s)

0

1 and 2

3 to 0(2+N)

3+N

Contents

The length of the string, N

An internal "back-pointer" used by BASIC. Do
not change this value.

The ASCII -characters of the string

The length of the string, N

8-11

A null string is not stored in BASIC; rather, the indirect pointer to
the string has the value 177777.

8.7 FORMAT OF TRANSLATED BASIC PROGRAM

When the user inputs a BASIC program, the BASIC system does not store
the program exactly as it is typed or read from the input file.
Instead, it translates the program to an intermediate form which can
be used in two different ways. The intermediate code can be
"un-translated" by the LIST or SAVE commands to produce an ASCII
program which looks very similar to the input program, or the
translated code can be very quickly interpreted by the RUN command to
provide swift execution of a program under BASIC/RT-11.

8.7.1 Symbol Table Format

As the BASIC program is input, the system builds a symbol table in
core at the indirect address O(RS). There are four different types of
symbol table entries, as shown in Table 8-1.

Symbol Table
Definition

Line Number

Numeric Scalar

Numeric Array

Table 8-1

Symbol Table Entries

Description

This entry is two words long, with this format:

Word 1:

Word 2:

Line number as an
integer.

unsigned 16-bit

The highest number allowed is 177774
octal or 65,532 decimal.

The address of the specified line in the
stored translated program.

This is five words long, with this format:

Word 1:
Word 2:
Word 3:
Word 4:
Word 5:

Constant 177775
High-order Scalar Value
Low-order Scalar Value
Constant 0
ASCII scalar name, the second byte is 0
if the name is only one character.

This entry is five words long, with this format:

Word 1:
Word 2:
Word 3:

Word 4:

Constant l 77776
Address of array
Maximum value of first subscript (SSlMAX
below)
Maximum value of second subscript or -1
if the array is singly-dimensioned

(Continued on next page)
8-12

Symbol Table
Definition

String

Table 8-1 {Cont.)

Symbol Table Entries

Description

Word 5: ASCII name

The scalar with the same name as an array is
stored internally as the first element of the
array. The address of the array is actually the
address of this element. The arrays are stored
with the first subscript varying the fastest; each
element of the array takes up two words.

The address of the (M,N) element in the array is
the array address plus the quantity:

4*{N*SS1MAX+M+l)

This entry is five words long, with this format:

Word 1:
Word 2:

Word 3:

Word 4:

Word 5:

Constant 177777
Array Address, or string
Word 3=-1

pointer, if

Maximum value of first subscript (SSlMAX
below) , or -1 if not a string array
Maximum value of second subscript, or -1
if the array is singly-dimensioned or
scalar
ASCII string name,
character omitted

with the • $.

Strings and string arrays are stored as 1-word
pointers to the strings, or the flag 177777 for a
null string. If a string is dimensioned or used
as a string array, the scalar string with the same
name is stored as the first entry in an aLLay.

Otherwise, the pointer to the scalar string is
stored directly in the symbol table entry, as
indicated above. The address of the pointer to
the (M,N) element in the array is then the array
address plus the quantity:

2*(N*SS1MAX+M+l)

8.7.2 Translated Code

After the line is input, the TRAN subroutine is called to translate it
to the internal format. TRAN scans the input line from left to right,
and translates it as described below.

All references to line numbers or variable names are stored as the
two-byte off set into the symbol table of the entry for that variable
name. The symbol table entries for all numeric variables are
initially scalars, and are changed to dimensioned arrays when the RUN
statement is executed. This two-byte offset is, of course, not
negative; therefore, it may be distinguished from the "keyword tokens"
described below. It is not necessarily aligned to a word boundary.

8-13

All sequences of characters
language are defined as
keywords:

used as a
"Keywords".

single unit by the BASIC
The following are examples of

LET
INPUT
STEP
+
(
)
SIN(
GO TO
RANDOMIZE

TRAN scans the characters in the program line for the occurrence of
any of the keywords, disregarding blanks. When one is found, the
corresponding 1-byte system "token" is stored in the saved program.
Thus, only one byte in the stored program is required to store such
keywords as GOSUB and RANDOMIZE. All of the tokens have the
high-order bit set.

At the end of every line in the code, there is a special ".EOL" token.
At the end of the program there is an ".EOF" token.

The values of the tokens may be found in a listing of BASIC. Since
they are only used internally, some of the values may be different for
different versions of BASIC.

When an integer literal is encountered in the program following a
GOSUB, GO TO, THEN, LIST, or LISTNH keyword, or as the first element
on a line, it is stored as a symbol table reference to a line number
entry.

When TRAN finds any other literal numeric value in the input program
line, it stores it in the translated program in one of the following
forms:

1-Byte Literal

1-word Literal

2-word literal

An integer constant in the range 0-255 is stored
as two bytes in the translated program:

Byte 1: constant 375
Byte 2: 1-byte value

An integer constant with an absolute value less
than 32,768 which is not in the range 0-255 is
stored as three bytes in the translated program:

Byte 1: Constant 376
Bytes 2-3: 2-byte value

Any other numeric constant is stored as five bytes
in the translated program:

Byte 1: constant 374
Bytes 2-5: 4-byte floating

the literal,
section 8.5.

8-14

point value
as described

of
in

Certain Keywords translate into tokens which are followed by special
"extra bytes" when they are translated, as described below.

Keyword

I Or n

FN

NEXT

Translated code

When the first quote character is encountered, TRAN
the corresponding token, followed by a .TEXT token,
value 377. Next follow all of the ASCII characters
program line up to the closing quote character.
TRAN outputs a 0 byte and a matching close-quote
the translated program.

outputs
with the
in the

Finally,
token to

A special byte is placed in the translated code after tne FN
token. It contains a function number to represent the
function name, as follows:

Function Number
(octal)

0
2
4
6

62

Function Name

FNA
FNB
FNC
FND

FNZ

Ten extra bytes are output to the translated code following
the NEXT statement: these are required at execution ti~e for
the proper nesting of FOR-NEXT loops.

REM The REM token in the code is followed by a .TEXT token, and
then the remaining characters on the line.

Any sequence of characters which cannot be translated into a token,
and is not a symbol table reference or literal, is translated as the
.TEXT token, followed by the remaining characters on the line. The
BASIC language does not allow a program to have two variable names
together without a character in between. If this occurs, the
remainder of the line will be translated as described above. When any
such translated program line is executed, it will produce a syntax
error.

8.8 BACKGROUND ASSEMBLY LANGUAGE ROUTINE

BASIC/RTll provides for the execution of a "background" assembly
language subroutine during its idle-time, that is, when it is waiting
for terminal input. An example of such a background routine is one
that displays data from an array on a CRT. This array could be filled
with data by CALL statements, and displayed by the background
subroutine. The background subroutine is called by a JSR PC
instruction. It must preserve all register contents, and exit with
the stack intact. This subroutine should be of limited duration, such
as one loop through the display buffer. In the case of a long
idle-time, the subroutine will be evoked many times. The routine may
use the same GLOBL symbols as one called by the CALL statement, but
there are no arguments passed to or from BASIC.

8-15

To use a background subroutine, it must be linked with BASIC, and the
address of the subroutine must be specified in the word following the
function table address (FNTBL) in the CSECT BASICR. If no background
routine is specified, the contents of this word should not be changed.
The following source code generates the information necessary to
include a background subroutine, BKG:

.CSECT BAS I CR

.=.+2 ; SKIP OVER FNTBL

.WORD BKG ;ADDRESS OF BACKGROUND ROUTINE

.CSECT BKGMOD

BKG: ; START OF BACKGROUND RTN

RTS PC

.END

To create a version of BASIC with this module included, assemble it as
the object module BKGMOD. It may then be linked by the LINK command
string:

*BASIC.BKG=BASICR,FPMP,BASICE,BASICX/B:400/C
*BKGMOD,BASICH

8-16

CHAPTER 9

ERROR MESSAGES

When BASIC encounters an error, execution of the conunand or statement
in error halts. An error message and then the READY message are
printed.

The BASIC error messages are printed in one of the following formats:

message
or

message AT LINE xxxxx

where xxxxx is the line number of the statement containina the error.
Error messages in immediate mode do not include AT LINE ixxxx. Table
9-1 lists the error messages produced by BASIC. Normally the
abbreviated message is printed unless long messages are specified at
assembly. (Refer to Appendix F.)

Table 9-1

BASIC Error Messages

IAJ;>brevia­
tion Message Explanation

?ARG

?ATL

?BDR

?BRT

?BSO

?DCE

?DNR

ARGUMENT ERROR AT LINE xxxxx
Arguments in a function call do
match, in number or in type,
arguments defined for the function.

not
the

ARRAYS TOO LARGE AT LINE xxxxx
There is not enough
available for the
the DIM statements.

room in the core
arrays specified in

BAD DATA FEAD AT LINE xxxxx
Item input from DATA statement list by
READ statement is bad.

BAD DATA-RETYPE FROM ERROR
Item entered to input statement is bad.

BUFFER STORAGE OVERFLOW
Not enough room available
buffers ..

in file

DEVICE CHANNEL ERROR AT LINE xxxxx

DEVICE NOT READY

The device channel number specified for
a sequential or virtual memory file is
out of range (1-7) or has been opened,
or OPEN statement tried to open a virtual
memory file on a non-file structured
device.

An I/O device referenced -by an OLD,
SAVE, or PRINT command is not on-line or
the file does not contain any legal
BASIC program lines.

{Continued on next page)

9-1

l

Table 9-1 (Cont.)

BASIC Error Messages

Abbrevia­
tion Message Explanation

?DVO

?ETC

?FOE

?FIO

?FNF

?FNO

?FTS

?FWN

?GND

?IDF

?IDM

?ILN

?ILR

?LTL

DIVISION BY 0 AT LINE xxxxx
Program attempted
quantity by O.

to divide some

EXPRESSION TOO COMPLEX AT LINE xxxxx

FILE DATA ERROR

FILE I/O ERROR

FILE NOT FOUND

FILE NOT OPEN

FILE l'OO SHORT

The expression being evaluated caused
the stack to overflow usually because
the parentheses are nested too deeply.

The degree of complexity that produces
this error varies, according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the
error.

Tried to write an element on an integer
virtual memory file outside the range
(x)<32,768.

An I/O error occurred.
automatically closed.

All files are

The file requested was not found on the
specified device.

The sequential or virtual memory file
referenced is not open.

The sequential file space allocated to
an output file is inadequate.

FOR WITHOUT NEXT AT LINE xxxxx
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

GOSUBS NESTED TOO DEEPLY AT LINE xxxxx
Program GOSUB nested to more than 20
levels.

ILLEGAL DEF AT LINE xxxxx
The define function statement contains
an error.

ILLEGAL DIM AT LINE xxxxx

ILLEGAL NOW

ILLEGAL READ

LINE TOO LONG

Syntax error in a dimension statement.

Execution of INPUT statement was
attempted in immediate mode.

Tried to read on a sequential f ije open
for output.

The line being typed is longer than 120
characters: the line buffer overflows.

(Continued on next page)

9-2

Table 9-1 (Cont.)
BASIC Error Messages

A~brevia-I
tion I Message Explanation

?NBF

?NER

?NPR

I ?NSM

?OOD

?OVF

I ?PTB

?RBG

?RPL

?SOB

?SSO

?STL

?SYN

NEXT BEFORE FOR AT LINE xxxxx

I NOT
ENOUGH ROOM

NO PROGRAM

The NEXT statement corresponding to
a FOR statement precedes the FOR
statement.

There is not enough room on the se­
lected device for the specified num­
ber of output blocks.

The RUN command has been specified,
but no program has been typed in.

!

NUMBERS AND STRINGS MIXED AT LINE xxxxx
String and numeric variables may not
appear in the same expression, nor
may they be set = to each other; for
example, A$=2.

OUT OF DATA AT LINE xxxxx

OVERFLOW AT LINE xxxxx

I PROGRA.fv! TOO BIG

The data list was exhausted and a
READ requested additional data.

The result of a computation is too
large for the computer to handle.

The line just entered caused the
program to exceed the user code area.

RETURN BEFORE GOSUB AT LINE xxxxx
A RETURN was encountered before exe­
cution of a GOSUB statement.

I

USE REPLACE File already exists. Use REPLACE
command.

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is greater
than 32,767 or is outside the bounds
defined in the DIM statement.

STRING STORAGE OVERFLOW AT LINE xxxxx
There is not enough core available to
store all the strings used in the
program.

STRING TOO LONG AT LINE xxxxx
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE xxxxx
The program has encountered an unrec­
ognizahle statement. Common examples
of syntax errors are misspelled com­
mands and unmatched parentheses, .and
other t o ra hical errors.

{Continued on next page)

9-3 July 1976

Abbrevia­
tion Message

Table 9-1 (Cont.}

BASIC Error Messages

Explanation

?TLT LINE TOO LONG TO TRANSLATE

?UFN

?ULN

?WLO

?+ER

Lines are translated as entered and the
line just entered exceeds the area
available for translation.

UNDEFINED FUNCTION AT LINE xxxxx
The function called was not
the program or was not
BASIC.

defined by
loaded with

UNDEFINED LINE NUMBER AT LINE xxxxx

WRITE LOCKOUT

t ERROR AT LINE xxxxx

The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

Tried to write on a sequential
virtual file opened for input only.

or

The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer. This produces a complex
number which is not represented in
BASIC.

When the message ?DNR AT LINE xxxxx is printed because the device
referenced is not on-line, turn the device on and issue a GO TO xxxxx
statement. Execution of the program resumes at the line (xxxxx)
specified. This message may also indicate that a program file does
not contain any legal BASIC program lines.

When the message ?OOD AT LINE xxxxx is printed because the file
referenced by an INPUT#l stateMent is not ready, prepare the file and
issue a GO TO statement to resume execution.

Function Errors

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For example, PRINT SIN(X,Y)
will produce a syntax error.

In addition, the functions give the errors listed below.

FNa (•••) ?UFN

RND or RND (X)

SIN (X)

The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

9-4

COS (X}

SQR(X)

ATN (X)

EXP (X)

LOG(X)

ABS (X)

INT (X)

SGN (X)

TAB(X)

LEN(A$)

ASC{A$)

CHR$ (X)

POS(A$,B$,N)

SEG$(A$,Nl,N2)

?ARG

?tER

?ARG

?ARG

?ARG

?ARG

VAL(A$) ?ARG

STR$ (X)

TRM$ (A$)

BIN (X$)

OCT{X$)

?ARG

?ARG

No errors

X is negative

No errors

X is greater than 87

X is negative or 0

No errors

No errors

No errors

X is not in the range O<x<256

No errors

A$ is not a string of length 1

X is not in the range O<x<256

No errors

No errors

A$ is not a valid numeric expression

No errors

No errors

Character other than blank, 0 or 1 in string

Character other than blank or 0 through 7

9-5

CHAPTER 10

DEMONSTRATION PROGRAMS

PROGRAM #1:

50 REM PROGRAM TO CALCULATE E BY AN INFINITE SERIES
100 LET E=l
110 LET I=I+l
120 LET D=l
130 FOR J=l TO I
140 LET D=D*J
150 NEXT J
160 LET E=E+l/D
170 PRINT E
180 GO TO 110
999 END

RUNNH

PROGRAM #2:

2
2.5
2.66666
2.70833
2.71666
2. 71805
2. 71825
2. 71827
2.71828
2.71828
2.71828
2. 71828

50 REM PROGRAM TO ROUND OFF DECIMAL NUMBERS
100 PRINT "WHAT NUMBER DO YOU WISH TO ROUND OFF";
110 INPUT N
120 PRINT "TO HOW MANY PLACES";
130 INPUT Y
140 PRINT
150 LET A=INT(N*lOtY+0.5)/{lOtY)
160 PRINT N "=" A "TO" Y "DECIMAL PLACES."
170 PRINT
180 GO TO 100
190 END

RUN NH
WHAT NUMBER DO YOU WISH TO ROUND OFF?56.0237
TO HOW MANY PLACES?2

56.0237 = 56.02 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?8. 449
TO HOW MANY PLACES?!

10-1

8.449 = 8.4 TO 1 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?3.685
TO HOW MANY PLACES?2

3.685 = 3.69 TO 2 DECIMAL PLACES.

WHAT NUMBER DO YOU WISH TO ROUND OFF?3.67449
TO HOW MANY PLACES?2

3.67499 = 3.67 TO 2 DECIMAL PLACES.

PROGRAM #3:

5 REM PROGRAM TO PLOT SINE WAVE
10 FOR X=O TO 19 STEP .25
20 LET Q=30+30*SIN(X)
30 FOR B=l TO Q
40 PRINT H ";

50 NEXT B
60 PRINT "X"
70 NEXT X
80 END

PROGRAM #4:

The following BASIC program uses another BASIC program file as data,
and resequences its line numbers.

Q0 REM • PROG~AM TO RESEQUENCE ~Aste PROGRAMS
100 DIM L(500),M(500),K5(2)
110 READ D
120 DATA 500
1J0 REAO K$(0),KS(1),K$(2)
140 DATA "GO TO "•"THEN "•"GOSU6 "
150 PRINT "RESEQUENCE"
1•0 PRINT "OLO FILE~I
110 INPUT P$
180 PRINT "N!W FILE"J\RE~ • MAY ~AVE SAME NAME
1Q0 INPUT QS
200 PRINT "START INPUT LINE, START OUTPUT LINE, INTERVAL SIZE"r
210 INPUT L0,~t,I1
220 IF QSc>"" THEN 230 \LET QS•P$
230 LET PS•PS&",BAS"
240 LfT QS•QS&"•BAS"
2&0 IF Ltc~0 THEN 2?0 \LET L.1ct0
i70 IF 11«•0 THEN 280 \LET 11•10
180 OPEN PS AS FILE #1
24i0 LET C•"l
300 IF END #1 TM!N 410
310 INPUT #111,.S
320 L.ET L2•L.2•1
330 LET T•POS(LS," "11)
340 ~ET S$•SEGS(~S,1,T•l)
350 LET S•VALCSI)

10-2

3&0 IF sc~0 THEN 300
370 LET C•C+1
380 IF c~o THEN 2000
390 LET i..(C)•S
400 GO TO 300
410 LET S•INTCL1l
4U FOR 1'0 TO C
430 l..ET tHil;S
440 IF S>65530 TM!N 2010
4S0 L.ET S'S+I1
4U NE:XT I
410 RESTORE #1
480 OPEN QS FOR OUTPUT AS FILE •2
490 OPEN "LPS" POW OUTPUT AS FILE #3
500 FOR 1•1 TO L2
510 INPUT #1 IL.S
5i0 LET C2•POSCLS1" "1ll•l
SH L.ET Cll!ll
540 GOSUB 1000
550 FOR J10 TO 2
SU L.ET C1•1
S70 LET C1•POSCLS,KSCJ),C1l
580 IF C1'0 TM!N 700
590 LET C1•t1•LENCKiCJll
&00 LET Ci•POSCLS," "1C1)•t
•10 LET E1POS(l,.$,P\" 1 C1)
•i0 IF f 4~0 THEN &30 \LET f •25&
~30 LET Qt•POS(LS,ij'"•Cl'
&40 LET Qi•POSCLS1'"'1Cl,
&50 IF C2c•0 THEN 6&0 \LET ca•E•1
&&0 IF (E•Q1)•Q1>0 THEN 570
&70 IF CE•Q2l•Q2>0 T~EN 570
U0 GO SUB t 000
"10 GO TO 570
100 NEXT J
710 PRINT #21L.S
720 PRINT #311,.$
130 NEXT-l
740 PRINT "OONE"\STOP
1e00 LET $S,SEGSCLS,Ct,C2)
1010 L!T $•V4LC•S)
1020 l' 5>•L0 THEN 1030 \RETURN
1030 FOR K•0 TO C
1040 IF L(K)•S TMfN 1070
1050 NEXT I<
10&0 RETURN
1070 LET L.ll•SfGS(Llr1,C1•1)
1080 LET L3$•SEGSCLl,C2•1125&)
10•0 LET L2S1STRSCMCK))
1100 LET LS•LlS&Lcl&L3S
1110 RETURN
2000 P~INT "TOO MANY LlNES"\STOP
2010 PRINT "LINE NO, TOO BIG"\STOP
UH ENO

10-3

PROGRAM #5:

100 PRINT "OCTAL DUMP"\REM THIS PROGRAM PRINTS AN OCTAL
110 PRINT "FILE NAME"J\REM DUMP OF THE SPECIFIED FILE
120 INPUT F$
130 PRINT "START BLOCK1IBLOCKS"
140 INPUT B 11 82
190 OPEN F$ FOR INPUT AS FILE VFlX
200 OPEN "LP:" FOR OUTPUT AS FILE # 1
210 PRINT #l:"OCTAL DUMP OF FILE ";F$
220 FOR B=Bl TO Bl+B2-1
230 PRINT #l
240 PRINT #l:"BLOCK";B
250 FOR L=0 TO OCT'37'
260 LET V=L*16
270 GOSUB 1000
280 PRINT #l :SEGCV.14.16H"/".i
290 FOR S=0 TO 7
300 LET V=VFl<B*256+L*8+S>
310 GOSUB 1000
320 NEXT S
340 PRINT 11
350 NEXT L
360 PRINT #l
370 NEXT B
380 STOP
1000 LET Vl=V\REM
1005 REM
1010 LET V$='"'\REM
1020 LET V1S='0'\REM
1030 IF V>=0 THEN 1060 \REM
1040 LET Vl=Vl+2t15\REM
1050 LET VIS=' l'
1060 FOR I=l TO 5
1070 LET V3=INT<Vl/8)
1080 LET V2S=STR$CV1-V3*8>
1090 LET VS=V2S&V$
1100 LET Vl=V3
1110 NEXT I
1120 LET V$=Vl$&VS
1130 RETURN
9000 END

10-4

THIS SUBROUTINE CONVERTS
INTEGER V
TO ASCII STRING V$1WHICH
IS THE OCTAL VALUE OF V
USES Vl.1V21V3,Vl$,V2$
V IS PRESERVED

APPENDIX A

BOOTSTRAPPING THE RT-11 SYSTEM

Complete bootstrapping instructions may be found in section 2.1 of the
RT-11 SYSTEM REFERENCE MANUAL {DEC-11-0RUGA-C-D). For the user's con­
venience the instructions for systems with the BM792-YB hardware boot­
strap follow:

1. Write-enable unit ~ of the system device.

2. Press the HALT switch.

3. Load 1731~~ in the Switch Register.

4. Press the ADDR switch.

5. Load 1774~6 in Switch Register (177344 for DECtape)
and press START.

The system responds with

Enter the DATE cormnand, for example

.DA ll-SEP=73

and then

.R BASIC

If the RT-11 system is already in core, just type:

.R BASIC

A-1

APPENDIX B

ASCII CHARACTER SET

ASCII
7-BIT
OCTAL
CODE CHAR.

000 NUL
001 SOH
002 STX
003 ETX
004 EQT
005 ENQ
006 ACK
007 BEL
010 BS
011 HT
012 LF
013 VT
014 FF
015 CR
016 so
017 SI
020 T'"\.T T.'t

LJ.US:.

021 DCl
022 DC2
023 DC3
024 DC4
025 NAK
026 SYN
027 ETB
030 CAN
031 EM
032 SUB
033 ESC
034 FS
035 GS
036 RS
037 us
040 SP
041
042 "
043 i
044 $
045 %
046 &
047
050 (
051)
052 *
053 +
054
055
056 .
057 I

B-1

ASCII
7-BIT
OCTAL
CODE CHAR. --

060 0
061 1
062 2
063 3
064 4
065 5
066 6
067 7
070 8
071 9
072
073 .

I

074 <
075 =
076 >
077 ?
100· @

101 A
102 B
103 c
104 D
105 E
106 F
107 G
110 H
111 I
112 J
113 K
114 L
115 M
116 N
117 0
120 p
121 Q
122 R
123 s
124 T
125 u
126 v
127 w
130 x
131 y
132 z
133 [
134
135]
136 t
137 +

140
141 a
142 b
143 c
144 d
145 e
146 f
147 g
150 h
151 i
152 j

B-2

ASCII
7-BIT
OCTAL
CODE CHAR.

153 k
154 1
155 m
156 n
157 0

160 p , t::,
N

.:..v~ ':l

162 r
163 s
164 t
165 u
166 v
167 w
170 x
171 y
172 z
173 {
174 I
175 }
176 -
177 DEL

B-3

APPENDIX C

STATEMENTS, COMMANDS, FUNCTIONS

C.l RT-11 BASIC STATEMENTS

The following summary of BASIC statements defines the general format
for the statement and gives a brief explanation of its use.

CALL "function name" (argument list)
Used to call assembly language user
functions from a BASIC program.

CHAIN "dev:filnam .. ext" LINE nurriber

DATA data list

Terminates execution of user program,
loads and executes the specified program
starting at the line number if included.

Closes the logical file specified. If
no file is specified, closes all files
which are open.

Used in conjunction with READ to input
data into an executing program.

DEF FNfunction (argument)=expression
Defines a user function to be used in
the program.

DIM variable(n), variable(n,m),variable$(n) ,variable$(n,m)

END

Reserves space for lists and tables
according to subscripts specified after
variable name.

Placed at the physical end of the
program to terminate program execution.

FOR variable = expression! TO expression2 STEP expression3

GOSUB line nmnber

Sets up a loop to be executed the
specified number of times.

Used to transfer control to the first
line of a subroutine.

GO TO line number Used to unconditionally transfer control
to other than the next sequential line
in the program.

IF expression rel.op. expressionfTHEN \. line number
\.Go To)

IF END in(THEN l line number
~GO TOj

Used to conditionally transfer control
to the specified line of the program.

Used to test for end file on sequential
input file #n.

C-1

INPUT list

INPUT #expression: list

[LET] variable = expression

[LET] VFn(i)=expression

NEXT variable

Used to input data f rorn the terminal
keyboard or papertape reader.

Inputs from a particular device.

Used to assign a value to the specified
variable (s).

Used to set the value of a virtual
memory file element.

Placed at the end of a FOR loop to
return control to the FOR statement.

[(b)] AS FILE #digit [DOUBLE BUF]

Opens a sequential file for input or out­
put as specified. File may be of the form
"dev:filnam.ext" or may be a scalar string
variable. The number of blocks can be spec­
ified by b.

OPEN file [FOR c~:~UT)] [(b)] AS FILE VFdigitx (dimension) =string length

Opens a virtual mernorv file for input or
output. x represents the type of file:
floating point (blank), integer (%},or
character strings ($). File may be of

OVERLAY "file descriptor"

PRINT list

PRINT "text"

the form "dev:fil.ext" or may be a scalar
string variable. The number of blocks
can be specified by b.

Used to overlay or merge program
currently in core with specified file
and continue execution*

Used to output data to the terminal.
The list can contain expressions or text
strings.

Used to print a message or a string of
characters.

PRINT #expression: expression list

PRINT TAB (x} ;

RANDOMIZE

READ variable list

Outputs to a particular output device,
as specified in an OPEN statement.

Used to space to the specified column.

Causes the random number generator to
calculate different random numbers every
time the program is run.

Used to assign the values listed in a
DATA statement to the specified
variables.

C-2

REM comment

RESTORE

RESTORE #n

RETURN

STOP

C.2 Commands

Used to insert explanatory comments into
a BASIC program.

Used to reset data block pointer so the
same data can be used again.

Rewinds the input sequential file #n to
the beginning.

Used to return prograITt
statement following
statement.

control to
the last

the
GOSUB

Used at the logical end of the progra~
to terminate execution.

The following key commands halt program execution, erase characters or
delete lines.

Key

ALT MODE

CTRL/C

CTRL/O

CTRL/U

RUBOUT

Explanation

Deletes the entire current line. Echoes DELETED
message (same as CTRL/U). On some terminals the
ESC key must be used.

Interrupts execution of a command or program and
returns control to the RT-11 monitor. BASIC can
be restarted without loss of the current program
by using the monitor RE command.

Stops output to terminal and returns BASIC to
READY message when program or command execution is
completed.

Deletes the entire current line.
message (same as ALTMODE).

Echoes DELETED

(SHIFT/O) Deletes the last character
echoes a backarrow {same as RUBOUT) •
LA30 use the underscore (-} key.

typed and
On VTOS or

Deletes the last character typed and echoes a
backarrow (same as+).

The following commands list, punch, erase, execute and save the
program currently in core.

Command

CLEAR

LIST

LIST
LIST
LIST

Explanation

Sets the array and string buffers to nulls
and zeroes.

Prints the user program currently in core on
the terminal.

line number
-line number
line nurnber-[END]

C-3

Command

LIST

Explanation

line number-line nmnber

Types out the specified program line(s) on
the terminal.

LISTNH
LISTNH
LISTNH
LISTNH

line number
-line number
line number-[END]
line number-line number

NEW "filnam"

OLD"file"

RENAME "filnam"

Lists the lines associated with the specified
numbers but does not print a header line.

Does a SCRatch and sets the current program
name to the one specified.

Does a SCRatch and inputs the program from
the specified file.

Changes the current program name to the one
specified.

REPLACE "dev:filnarn.ext"

RUN

RUN NH

Replaces the specified file with the current
program.

Executes the program in core.

Executes the program in core area but does
not print a header line.

SAVE "dev:filnam.ext"

SCRatch

c.3 Functions

Outputs the program in core as the specified
file.

Erases the entire storage area.

The following functions perform standard mathematical operations in
BASIC.

ABS (x)

ATN(x)

BIN (x$)

COS (x)

EXP (x)

INT{x)

Explanation

Returns the absolute value of x.

Returns the arctangent of x as an angle in radians
in the range + or - pi/2.

Computes the integer value from a string of blanks,
l's and O's.

Returns the cosine of x radians.

Returns the value of etx where e=2.71828.

Returns the greatest integer less than or equal to
x.

C-4

Name

LOG (x)

OCT(x$)

RND {x)

SGN (x)

SIN {x)

SQR(x}

TAB(x)

Explanation

Returns the natural logarithm of x.

Computes an integer value from a string of blanks I
and digits from 0 to 7.

Returns a random number between 0 and 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Returns the square root of Xe

Causes the terminal type head to tab to column
number x.

The string functions are:

ASC(x$)

CHR$ (x)

DAT$

LEN (x$)

POS(x$,y$,z)

SEG$ (x$, y, z)

STR$ (x)

TRM$ (x$)

VAL(x$)

Returns as a decimal number the seven-bit internal
code-for the one-character string (x$).

Generates a one-character string having the ASCII
value of x.

Returns the current date in the format 07-MAY-73.

Returns the number of characters in the string
{x$) •

Searches for and returns the position of the first
occurrence of y$ in x$ starting with the zth
position.

Returns the string of characters in positions y
.&..h_ ,....\,... .., ..: .,.,, c
~~.Lvuy.u t:. .a.~~ L>.V •

Returns the string which represents the numeric
value of x.

Returns x$ without trailing blanks.

Returns the number represented by the string (x$).

C-5

APPENDIX D

GETARG, STORE, SSTORE LISTING

r GETAPG, STORE, SSTORE : SUBROUTINES FOR
J LINKAGE OF ASSEMBLER SUBROUTINES TO BASIC ,

,

.TITLE
• GLOBI...
,GLOBI..
.GLOSL.
ii G!..OBL.
.IfNDF
.GL.06L
.ENOC
,CSECT

JSNOSTR • ,
R0=X0
R1=U
~2d2
R3•X3
R4•X4
~5•%5
SP•X6
PC•X7
NVAl.•4

NVAL.•3
,IFOF

,ENDC
• TEXT•377
FAC1•40
FAC2•42
V,ARSAV•22

GET•RG 2q•AUG•73
GETARG, STORE
EVAL, GETVAR, ERQARG, ERRSVN
,LPAR, ,COMMA, ,RPAR, ,EOL
STOVAR; ;$QUOT~ =OQUOT
$NOSTR
SSTORE, STOSVAR
JSNOSTR
GET

1

$N.OSTR

JSNOSTR

;DELETE 'J' TO •SSEMBLE FOR
J8ASIC WITH NO STRINGS

D-1

1---SUBROUTINE 'GETARG' CALLEO BV MOV #TABLE,R0
JSR PC,GETARG
.BYTE N1,N2, ••• ,0
.EVEN

1 ,
1 , , , , , ,

. ,
GETARG:

GET1:

GET2:

MOV
MOVB
BLE
CMP~

6NE
BR
CMPB
SNE
CMP
BHI
ASL
MOV
MOV
MOV

WHERE TABLE IS THE ADDRESS OF A
TABLE TO MOLD THE 4RG REFERENCES.
Nt,Na,ETc. INDICATE THE ARG TYPES:
1 INPUT NUMERIC EXPRESSION. c

2

CT~E EXPRESSION VALUE) ARE
STORED IN T4BLE.
OUTPUT NUMERIC VARIABLE. 3 WORDS
ARE STORED IN TABLE.

STRING VERSION ONLY:
3 INPUT STRING EXPRESSION. NO WORDS

ARE STORED IN TABLE. THE STRING
POINTER IS ON T~E STACK.
OUTPUT STRING VARIABLE. 3 WORDS
ARE STORED IN TABLE.

NO STRING VERSION:
3 INPUT STRING ~ITERAL. 2 WORDS

ARE STORED IN TABLE, WORD 1 CON•
TAINS THE START OF THE ASCII STRING.
WORD 2 CONTAINS THE LENGTH OF THE
STRING IN BYTES.

cHeCKS THE SYNTAX OF THE CA~LING
STATEMENT ANO FINDS THE REQUESTED
ARGUMENT REFeRENCES, STORING THEM
CONSECUTIVELY IN TABLE •

CSP)+ 1 R3 JADOR OF CALL IN R3
(R!)+,~2 'GET 1ST BYTE IN ~2
GETX ,NO ARGS, EXIT
(Rl)+,# 1 LPAR JCHECK STARTING 'C'
GETERS JNO, SYNTAX ERROR
GET2 JENTER LOOP
(R1)+,#,COMMA ,CHECK ',' BETWEEN ARGS
GeTERS ,NO, SYNTAX ERROR
R2,#NVAL JCHECK VALID BYTE
GETE~A
Re
R0,R0S
R3,~3S

JSAVE REGS

BRTAB·2(R2),PC 1BRANCH TO ROUTINE

D-2

J NUMERIC EXPRESSION
NUMEXP: JSR PC,EVAL

8tS GETE-R•
MOV R0S,R0
MOv FACiCRS),CR0)+
MOV FAC2CRS),(R0l+
SR NXTARG

1 STRING EXPRESSION
STREXP:

.IFNOF $NOSTR
JSR PC,EVAI..
BCC GETER A
MOV R0S,R0
BR NXTARG
.ENDC JSNOSTR
.IFOF sNOSTR
Mova CR1)+p•(SP)
CMPB CSP),#.SQUOT
BEQ STR1
CMP8 CSP),#.OQUOT
SNE GETERS

STR1: CMP8 (R1)+,i,TEXT
BNE GETERS
MO\/ R0S,R121
,..OV R1, CR0)+
CL.R R2

STR2: TST8 CR1)+
SEQ STij3
INC R2
BR STR2

STR3s MQV R2, (R0'+
CMPB (SPJ+,(R1)+
BNE GE TE RS
SR NXT•RG
,ENDC J$NOSTR

J NUMERIC TARGET VARIABLE
NUMVARS CLR .(SP)

.IFNOF SNOSTR
BR VAl:U

J STRING TARGET VARIABLE
STRVAR: MOV R2,.(SP)

,ENOC J$NOSTR
VAR11 MOVB (R1)+,R2

BMI GETERS
SWAB R2
BISS CR1)+,R2
ADD (R5), R2
JSR PC,GETVAR
MOV R0S,R0
MO\I RS,R2
ADO #VA~SAV,R2
MOV (R2),R3
MOV (R2)+,(R0)+
MOV CR2)+,(R0)+
MOV CR2) 1 (R0)+
TST (SP)+
BNE V AF~2
CMP (R3) ,#•1
SEQ GETER A
B~ NXTARG

VAR21 CMP (R3),#•1
BNE GE:TERA

JEVALUATE!
'STRING IS BAO
JRESTORE TASLE POINTER

JSAVE VAi.LIE

'EVAL.UATE1
JNUMERIC IS BAO
JRESiORE iABLE POINTER

r~OOK FOR STRING LITERAL
JCHECK QUOTE CH.AR,

ICHECK ,TEXT TOKEN NEXT

JRESTORE TABLE POINTER
JSAVE STRING ADDRESS IN TABLE
JNOW FINO 1..ENGT~
;E~D OF STRING IS B~TE 00

JCOUNT

ISAVE LENGTH IN TABLE
JCHECK M•TCHING CL.CSE QUOTE

JREMEMSER IT'S NUMERIC

JREMEMBER IT'S STRING

JGET SYMTA.B REF IN R2

rAODRESS VARIABLE
JRESTORE TABLE POINTER
JAOORESS VARUV

JSAVE A. COPV
1MOVE 3 WORDS INTO TABLE

JSTRING OR NUM

JNUMERIC, CHECK TYPE AGREES

D-3

. GO TO NEXT ARGU"1ENT ,
NXTARG: MOV R3S,R3

MOVij (R3)+,R2 'GET NEXT BYTE IN Re
BGT GET1 ;LOOP TIL.L BYTE IS 0
CMPB (R1)•,#.,:(PAR JC HECK CLOSING ,) ,
BNE GETf"RS

GETX: CMPB (Rl)+,#.EOL JANO ENO•L.INE TOKEN
BNE GETERS
!NC R3 JMAl<E SURE R3 IS EVEN
AS~ w3
ASL R3
JMP (R3)

i:rns: .WORD 0
R3S: .wORO 0
GETERA: JMP ERRARG
GETERS: JMP ERRSYN
BRH.8: .WORD NUMEXP

.woRo NUMVAR

.WORD STREXP
,IFNOF SNOSTR
,wORO STQV1H'
, EN('.IC J$NOSTR

D-4

, __ _

I SUBROUTINE 'STORE' , CALLED BV JSR PC,STO~E
~0 POINTS TO 3•WORO ARG REFERENCE
SET UP BV GETVAR , , ,

STORE: MOV
AOD
MOV
MOV
MOV
JSR
RTS

SAVES THE VALUE OF THE FAC
IN T~E SPECIFIED NUMERIC VARIAB~E

JAOORESS VARSAV R5,R2
#VARS4V,R2
(R0)+, (R2)+
CR0) +, CR2) +
(R0), (R2)
PC,STOVAR
PC

JMOVE FROM TABLE TO USER AREA

J STORE IT

.IFNOF $NOST~

1---------------······-···-----··-·-----·---·--······-----· J SUBROUTINE 'SSTOQE' CALLEO BV JSR PC,SSTORE
J R0 POINTS TO 3•WORO ARG REFERENCE
I SET UP BY GETVAR
J STRING POINTER IS AT THE TOP OF STK
1 SAVES THE STRING AT TOP OF STK
J IN THE SPECIFIED STRING VARIABLE
SSTORE: MOV R5,R2

ADO #VARSAV,R2 ,ADDRESS VARSAV
MOV (R0)+,(R2)+ JMOVE FROM TBL TO USER AREA
MOV CR0)+,(R2)+
MOV CR0) 1 (R2l
MOv CSF),R3 ;SWITCM ~ETURN & STRING PTR
MOV 2 CSP), CSP)
MOV R3r2CSP)
JSR PC,STOSVAR JSTORE STRING
RTS PC JRETURN
• ENOC r !NOSTR
.ENO

D-5

APPENDIX E

BASIC ERROR MESSAGES

Abbrevia­
tion Message Explanation

?ARG

?ATL

?BDR

?BRT

?BSO

?DCE

?DNR

?DVO

ARGUMENT ERROR AT LINE xxxxx
Arguments in a function call do not
match, in number or in type, the
arguments defined for the function.

ARRAYS TOO LARGE AT LINE xxxxx
There is not enough
available for the
the DIM statements.

BAD DATA READ AT LINE xxxxx

room in the core
arrays specified in

Item input from DATA statement list by
READ statement is bad.

BAD DATA-RETYPE FROM ERROR
Item entered to input statement is bad.

BUFFER STORAGE OVERFLOW at line xxxxx
Not enough room available
buffers.

DEVICE CHANNEL ERROR AT LINE xxxxx

in file

The device channel number specified for
a sequential or virtual memory file is
out of range (1-7) , or tried to open a
virtual memory file on a non-file
structured device.

DEVICE NOT READY An OLD command read a file which did not
have any BASIC statements.

DIVISION BY 0 AT LINE xxxxx
Program attempted
quantity by O.

to divide some

?ETC EXPRESSION TOO COMPLEX AT LINE xxxxx

?FDE

.?FIO

The expression being evaluated caused
the stack to overflow usually because
the parentheses are nested too deeply.

The degree of complexity that produces
this error varies according to the
amount of space available in the stack
at the time. Breaking the statement up
into several simpler ones eliminates the
error.

FILE DATA ERROR AT LINE xxxxx
Tried to write an element on an integer
virtual memory file outside the range
(x) < 3 2 , 7 6 a •

FILE I/O ERROR AT LINE xxxxx
An I/O error occurred. All files are
automatically closed.

E-1

Abbrevia­
tion Message Explanation

?FNF

?FNO

?FTS

?FWN

?GND

?IDF

?IDM

?ILN

?ILR

?LTL

?NBF

?NER

?NPR

?NSM

FILE NOT FOUND AT LINE xxxxx
The file requested was not found on the
specified device.

FILE NOT OPEN AT LINE xxxxx
The sequential or virtual memory file
referenced is not open.

FILE TOO SHORT AT LINE xxxxx
The sequential file space allocated to
an output file is inadequate.

FOR WITHOUT NEXT AT LINE xxxxx
The program contains a FOR statement
without a corresponding NEXT statement
to terminate the loop.

GOSUBS NESTED TOO DEEPLY AT LINE xxxxx
Program GOSUBS nested to more than 20
levels.

ILLEGAL DEF AT LINE xxxxx
The DEF statement contains an error.

ILLEGAL DIM AT LINE xxxxx

ILLEGAL NOW

Syntax error in a dimension statement.

AN ATTEMPT WAS MADE TO EXECUTE AN INPUT
statement in immediate mode.

ILLEGAL READ AT LINE xxxxx
Tried to open a write-only device for
input or tried to read on a sequential
file open for output.

LINE TOO LONG The line being typed is longer than 120
characters; the line buffer overflows.

NEXT BEFORE FOR AT LINE xxxxx
The NEXT statement
FOR statement
statement.

corresponding to a
precedes the FOR

NOT ENOUGH ROOM AT LINE xxxxx

NO PROGRAM

There is not enough room on the selected
device for the specified number of
output blocks.

The RUN command has been specified, but
no program has been typed in.

NUMBERS AND STRINGS MIXED AT LINE xxxxx
String and numeric variables may not
appear in the same expression, nor may
they be set equal to each other as in
A$=2.

E-2

Abbrevia­
tion

?OOD

?OVF

?PTB

?RBG

?RPL

?SOB

?SSO

?STL

?SYN

?TLT

?UFN

?ULN

?WLO

Message Explanation

OUT OF DATA AT LINE xxxxx
The data list was exhausted and a READ
requested additional data.

OVERFLOW AT LINE xxxxx The result of a computation is too
large for the computer to handle.

PROGRA_M TOO BIG The line just entered caused the pro­
gram to exceed the user code area.

RETURN BEFORE GOSUB AT LINE xxxxx

USE REPLACE

A RETURN was encountered before execu=
tion of a GOSUB statement.

File already exists. Use REPLACE com­
mand.

SUBSCRIPT OUT OF BOUNDS AT LINE xxxxx
The subscript computed is greater than
32,767 or is outside the bounds defined
in the DIM statement.

STRING STORAGE OVERFLOW AT LINE xxxxx
There is not enough core available to
store all the strings used in the pro­
gram.

STRING TOO LONG AT LINE xxxxx
The maximum length of a string in a
BASIC statement is 255 characters.

SYNTAX ERROR AT LINE xxxxx
The program has encountered an unrec­
ognizable statement. Common examples
of syntax errors are misspelled com­
mands and unmatched parentheses, and
other typographical errors.

LINE TOO LONG TO TRANSLATE
Lines are translated as entered and the
line just entered exceeds the area
available for translation.

UNDEFINED FUNCTION AT LINE xxxxx
The function called was not defined by
the program or was not loaded with
BASIC.

UNDEFINED LINE NUMBER AT LINE xxxxx
The line number specified in an IF, GO
TO or GOSUB statement does not exist
anywhere in the program.

WRITE LOCKOUT AT LINE xxxxx
Tried to open a read-only device for
output, or tried to write on a sequen­
tial or virtual file opened for input
only.

E-3

Abbrevia­
tion Message Explanation

?tER tERROR AT LINE xxxxx

Function Errors

The program tried to compute the value
AtB, where A is less than 0 and B is not
an integer. This produces a complex
number which is not represented in
BASIC.

The following errors can occur when a function is called improperly.

?ARG

?SYN

The argument used is the wrong type. For
example, the argument was numeric and the
function expected a string expression.

The wrong number of arguments was used in a
function, or the wrong character was used to
separate them. For exal!lple, PRINT SIN(X,Y)
produces a syntax error.

In addition, the functions give the errors listed below.

FNa (•••) ?UFN

RND or rum ex>

SIN {X)

COS {X)

SQR(X) ?ARG

ATN {X)

EXP (X) ?tER

LOG (X) ?ARG

ABS (X)

INT (X)

SGN {X)

TAB (X) ?ARG

LEN (A$}

ASC (A$) ?ARG

CHR$ (X) ?ARG

The function a has not been defined (function
cannot be defined by an immediate mode
statement).

No errors

No errors

No errors

X is negative

No errors

X is greater than 87

X is negative or 0

No errors

No errors

No errors

x is not in the range osx<256

No errors

A$ is not a string of length 1

X is not in the range O~x<256

E-4

DAT$

POS(A$,B$,N)

SEG$(A$,Nl,N2)

TRM$(A$)

VAL (A$)

STR$ (X)

BIN {x$)

?ARG

?ARG

?ARG

No errors

No errors

No errors

No errors

A$ is not a valid numeric expression

No errors

Character other than blank, 0 or 1 in string

Character other
string

E-5

thaJ1 blank or
.... u

APPENDIX F

ASSEMBLING AND LINKING BASIC

F.l ASSEMBLING BASIC/RTll

The source program of BASIC/RTll consists of three source files:
A 16K system is required to asseMble BASIC.

BASICL.MAC
BASICH.MAC
FPMP.MAC

It is necessary to create the files BASICR, BASICE, and BASICX which
consist of only one line of code each. They specify the conditionals
necessary to assemble BASICL into the three object modules BASICR.OBJ,
BASICE.OBJ and BASICX.OBJ.

They are created using the EDIT program, as follows:

(]) Represents the Altrnode key
.R EDIT
*EWBASICR.MAC ®@
*IBASICR=l

@EX@@

.R EDIT
*EWBASICE .MAC @@
*IBASICE=l

@EX@@

.R EDIT
*EWBASICX.MAC @@
*IBASICX=l
@EX@@

If any other options are desired, include the conditionals for them
in these files. For example:

$NOSTR=l
$LONGER=!
$NOVF=l
$NOPOW=l
$STKSZ=n

;NO STRINGS
;LONG ERROR MESSAGES
;NO VIRTUAL MEMORY FILES
;NO POWER-FAIL OPTION
;PROGRAM STACK SIZE
;IN BYTES (DEFAULT IS
;200 (OCTAL) BYTES

If BASIC is to run on an 8K system, the $NOSTR conditional must be
specified.

For example, to create a BASIC with no strings, no virtual memory files,
and a stack size of 300 (octal) the BASICR, BASICE, and BASICX files
should be created using the EDIT program, as follows

. R EDIT
*EWBASICR.MAC @@
*IBASICR=l
$NOSTR=t
$NOVF=l
$STKSZ=300
@EX@)@

F-1

.R EDIT
*EWBASICE .MAC @ ©
*IBASICE=l
$NOSTR=l
$NOVF=l
~TKSZ=300

~EX®®
.R EDIT
*EWBASICX.MAC @©
*IBASICX=l
$NOSTR=l
$NOVF=l
$STKSZ=300

0) EX®®

© represents the Altmode key.

To assemble Basic, type the following as input to the MACRO Assembler:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*BASICH=BASICH
*FPMP=FPMP

This produces the five object modules

BASICR

BAS ICE

BASICX

FPMP

BASICH

BASIC Root section

BASIC Edit overlay

BASIC Execution overlay

~loating ~9int ~ath ~ackage

BASIC High section, with once-only
code and optional functions

F.1.1 Floating Point Math Package

Assembly of the FPMP source file produces a "standard" FPMP for BASIC,
which runs on any PDP-11, but will not make use of special arithmetic
hardware. All of the routines needed for the full complement of BASIC
arithmetic functions are included. A non-standard FPMP may be speci­
fied, as outlined in the table below:

Parameter

MIN

FPMP Assembly Parameters

Default Value

undefined

Description

Define to eliminate code for BASIC
functions SIN, COS, SQR, and ATN.
When linked, the functions are
listed as "undefined references".
However, when executed by a BASIC
program, they produce a ?UFN
(UNDEFINED FUNCTION) error.

F-2

Parameter

FPU

EAE

MULDIV

Default Value

undefined

undefined

undefined

Description --

Define to assemble a version for
the PDP-11/45 FPU hardware.

Defined to assemble for the EAE
hardware.

Define to assemble for the
PDP-11/40 extended instruction
set (EIS) or the 11/45 processor.

If MIN is defined, then the following parameters may be specified
to include the SIN, COS, ATN, and SQR functions, selectively

CND$37

CND$39

CND$41

1

1

1

Define (only if MIN is specified)
to include the code for the SIN
and COS functions.

Define (only if MIN is specified)
to include the code for the ATN
function.

Define (only if MIN is specified)
to include the code for the SQR
function.

To assemble the Floating Point Match Package with conditionals it is
necessary to use the EDIT program to either insert the conditionals
in the beginning of the FPMP.~-~C file or create a new file, FPMPC.~-~C
which will be assembled with FPMP.MAC. For example, to create the
FPMP with the ATN function excluded, with the SIN, COS, and SQR function
included, and to run with the EAE hardware, the file FPMPC.MAC is
created by the EDIT program, as follows:

.R EDIT
*EWFPMPC. MAC @@
*IMIN=l
EAE=l
CND$37=1
CND$41=1
@EX@@

The MACRO assembly instructions would then be:

*BASICR=BASICR,BASICL
*BASICE=BASICE,BASICL
*BASICX=BASICX,BASICL
*FPMP=FPMPC,FPMP

F.2 LINKING BASIC/RTll

The five object modules (BASICR, BASICE, BASICX, FPMP BASICH) may be
linked with or without an overlay structure. The o~erlay option has
the advantage that sections of BASIC which are not required at the
same _time occup¥ the same core space alternately when they are used;
the disadvantage is that BASIC will run somewhat slower and there
will be I/O time spent when switching overlay segments in and out of
core. When BASIC is linked to run in an SK system, it must use the
overlay option.

F-3

To link BASIC without overlays, type the following command string to
the Linker (LINK) :

!_BASIC.,BASIC=BASICR,FPMP ,BASICE ,BASICX,BASICH/B: 4~~

To link BASIC with overlays, use this LINK command sequence:

.!BASIC,BASIC=BASICR,FPMP/T/B:4~~/C
TRANSFER ADDRESS =
GO
*BASICE/0:1/C
*BASICX/0:1/C
:BASICH/0:2

F.2.1 Linking BASIC/RTll with User Functions

The System Function Table address used by the CALL statement to link
the user's assembly language routines must be set in the first word of
the BASICR control section.

The source code for the System Function Table and the actual function
routines must be broken into two separate source files. The source
file FUNl consists of the System Function Table definition, with this
general outline:

FUNTAB:

.GLOBL

.CSECT

.WORD

Function entry points

FNl, FN2
BAS I CR
FUNT AB

.CSECT FUN!
(function table entries for FN1,FN2, •••)

The source and file FUN2 consists of the code for the function
routines, with this general outline:

FNl:

FN2:

.GLOBL FN1,FN2, •••
• CSECT FUN2

(The user function rou~ines)

F-4

To link BASIC with the user functions in a non-overlay system, type
this command string to the Linker:

~BASIC=BASICR,FPMP,BASICE,BASICX/B:4~~/C

~FUN1,FUN2[,GETARG],BASICH

GETARG is the general argument interface module listed in Appendix H.
In an overlay system, there are two possible ways in which to link
BASIC with the user functions.

If the user function routines contain no aata which must be preserved
from one function call to the next, that is, if the code for the
routines may be refreshed at the beginning of each function call, then
the routines may be incorporated into the execution overlay by using
this LINK command string:

*BASIC,BASIC=BASICR,FPMP,FUN1/T/B:4~~/C
TRANSFER ADDRESS
GO
*BASICE/0:1/C
*BASICX,FUN2[,GETARG]/O:l/C
~BASICH/0:2

In this case, the function routines· (in the module FUN2) occupy space
in the first overlay segment which is normally unused, since the Edit
overlay segment (BASICE) is about 250 words longer in the 8K no-string
system than the Execution overlay segment (BASICX) • These first 250
words of storage are "free" in this case.

In the case where FUN2 may not be read in anew whenever it is used,
type this command string to the Linker:

*BASIC=BASICR,FPMP,FUN1,FUN2/T/B:4~~/C
TRANSFER ADDRESS
GO
*BASICE/0:1/C
*BASICX[,GETARG]/0:1/C
~BASICH/0:2

There are three additional object modules (FPMP.FPU, FPMP.EAE, FPMP.EIS)
which allow BASIC/RTll to be linked for special arithmetic hardware.

Processor

EAE hardware

PDP-11/40 extended
processor or PDP-11/45
processor

PDP-11/45 FPU
hardware

Replace FPMP.OBJ With

FPMP.EAE

FPMP.EIS

FPMP.FPU

F-5

APPENDIX G

BASIC CORE MAP

BASIC stores a user program in core in the following format:

Arrays

Strings

Symbol Table

User Code

The symbol table and user code area are created when the program is
entered. When the RUN command is given the user program is scanned
and arrays are set up. The string buffer is created during program
execution.

The SCRatch com.~and (refer to paragraph 7.1) clears all the user code,
symbol table, strings and arrays from core. The CLEAR command clears
the arrays and strings but does not affect the user code or symbol
table.

The total amount of core storage required to store a BASIC program
depends upon the following parameters:

Parameter

L

K

R

s

Il

I2

F

Definition Examples

Number of lines in the BASIC program

Number of keywords per line

Number of symbol references per line.
There are 3 symbol references in the line:

LET A=B*C+l

Total number of symbols used in the program.

Total number of integer literals in the
range O x 255

Total number of integer literals
in the range -32,768sxso or 256sxs32,767

Number of non-integer literals and
integer literals not in the above ranges

G-1

FOR I=l TO N

LET X=SOOOO

LET Y=X*2.5

Parameter

T

c

Definition

Total number of literal strings in the
program

Total number of characters inside
quotation marks (literal strings)

Examples

LET A$="ABC"

(C=3 IN THE
ABOVE LINE)

The number of bytes required to store the program is then:

L*(K + 2*R + 7) + lO*S + 2*Il + 3*I2 + S*F + 2*T + C+ 1

When the BASIC program is running, the following additional array and
string storage is required. For each numeric array, the number of
bytes allocated is

4* (SS1MAX+2)

for a singly-dimensioned array.

or

4*[(SS1MAX+l)*(SS2MAX+l)+l]

for a doubly-dimensioned array.

Where SSlMAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively. For each string array, the number of
bytes allocated is

2*(SSlMAX+2)

for a singly-dimensioned array or

2*[(SS1MAX+l)*(SS2MAX+l)+l]

for a doubly-dimensioned array.

Where SSlMAX and SS2MAX are the maximum values of the first and second
array subscripts, respectively.

For each non-null string scalar or array eleMent of length N currently
defined in the BASIC program, N+4 bytes of string storage are
required.

G-2

Arithmetic,
Functions, 6-1
Operations, 2-4

ASC Function, 6-15
Assembly,

Instructions, F-1
Language routines, 8-1, 8-3

Assignment Statement, 5-2
ATN Function; 6-2

Background Subroutine, 8-15
BIN Function; 6-9
BOMB system routine, 8-7
Buffers,

I/0 1 5-22

CALL Statement, 8-1
CHAIN Statement, 5-20
CHR Function, 6-15
CLEAR command, 7-6
CLOSE Statement, 5-25
Comma usage, 5-6
Command sununary, C-3
Commands, Key, 7-1
Concatenation, 3-2
Conditional Transfer, 5-14
Core map, G-1
COS Function, 6-2
CTRL/C Command, 1-2

DAT Function, 6-15
DATA Statement, 5-10
Debugging, Program, 4-1
Demonstration programs,

10-1
Dialuyue, 1-1
Dimension Statement, 5-3

END Statement, 5-20
ERRARG system routine, 8-7
Error message summary, E-1
Error messages, 9-1
ERRPDL system routine, 8-7
ERRSYN system routine, 8-7
EVAL system routine, 8-7
EXP Function, 6-4
Exponential format, 2-1
Expressions, 2-4

File control, 5-21
Files,

Sequential, 5-21
Virtual memory, 5-21

Floating point format, 2-1
FOR loops, nested, 5-17
FOR Statement, 5-15
FPMP routines, 8-9
Function arguments, 6-1
Function selection, 1-1
Function summary, C-4

INDEX

Functions
ABS I 6-6
ASC, 6-15
ATN, 6-2
BIN, 6-9
CHR, 6-15
cos, 6-2
DAT, 6-15
EXP, 6-4
INT, 6-6
LEN I ·6-15
LOG, 6=4
OCT, 6-9
POS, 6-15
RND, 6-7
SEG, 6-15
SGN, 6-1
SIN, 6-2
SQR, 6-3
STR, 6-16
TAB, 6-1
TRM, 6-16
VAL, 6-16

Functions#
Arithmetic, 6-1
Optional, 1-2
String, 6-15
User defined, 6-10
User defined string, 6-16

Functions system routines,
Sample user, 8-3

GETVAR system routine, 8-8
GO TO Statement, 5-13
GOSUB nesting, 5-19
GOSUB Statement, 5-18

I/O Buffers, 5-22
IF END Statement, 5-14
IF GO TO Statement, 5-14
IF THEN Statement, 5-14
Immediate mode restrictions,

4-2
Immediate statement

execution, 4-1
Input device selection, 5-9
INPUT Statement, 5-8
Input/Output Statements,

5-4
INT Function, 6-6
INT system routine, 8-9
Integer Numbers, 2-1

Key Commands, 7-1

Leading and Trailing Zeroes,
2-1

LEN Function, 6-15
LET Statement, 5-2
Linking instructions, F-3

Index-1

LIST command, 7-3
LISTNH command, 7-3
Load procedure, A-1
Loading BASIC, 1-1
LOG Function, 6-4
Loop, Program, 5-15

MAKEST system routine, 8-9
Monitor,

Return to the, 1-2
MSG system routine, 8-8
Multiple statements,

immediate mode, 4-2

Nested FOR loops, 5-17
NEW command, 7-7
NEXT Statement, 5-15
Numbers, 8-11

Integer, 2-1
Real, 2-1

NUMSGN system routine, 8-8

OCT Function, 6-9
OLD command, 7-3
OPEN Statement, 5-22
Optional Functions, 1-2
Output device selection,

5-7
OVERLAY Statement, 5-26

POS Function, 6-15
Power off, 1-3
PRINT Statement, 5-4
Printing Strings, 5-5
Printing Variables, 5-4
Program,

Control, 5-13
Debugging, 4-1
Loop, 5-15
Tennination, 5-20

RANDOMIZE Statement, 5-12
READ Statement, 5-10
Real Numbers, 2-1
Relational operations,

strings, 3-2
Relational operators, 2-6
REMARK Statement, 5-1
RENAME command, 7-7
REPLACE command, 7-5
RESTORE, 5-11
Restrictions,

Immediate mode, 4-2
RETURN Statement, 5-18
Return to the Monitor, 1-2
RND Function, 6-7
RUN command, 7-6
RUNNH command, 7-6

Sample user functions
system routines, 8-3

SAVE command, 7-4
SCRATCH commands, 7-2
SEG Function, 6-15
Semicolon (;) usage, 5-6
Sequential Files, 5-21
SGN Function, 6-1
SIN Function, 6-2
SQR Function, 6-3
Statement, 5-11

Assignment, 5-2
CALL, 8-1
CHAIN, 5-20
CLOSE, 5-25
DATA, 5-10
Dimension, 5-3
END, 5-20
FOR, 5-15
GO TO, 5-13
GOSUB, 5-18
IF END, 5-14
IF GO TO, 5-14
IF THEN, 5-14
Immediate execution, 4-1
INPUT, 5-8
LET, 5-2
NEXT, 5-15
OPEN, 5-22
OVERLAY, 5-26
PRINT, 5-4
RANDOMIZE, 5-12
READ, 5-10
REMARK, 5-1
RETURN I 5-18
STOP, 5-20
Summary, C-1

Statements,
Input/Output, 5-4

STEP values, 5-16
STOP Statement, 5-20
STOSVAR system routine, 8-8
STOVAR system routine, 8-8
STR Function, 6-16
String functions, 6-15

User defined, 6-16
String operations, 3-2
String Variables,

Subscripted, 3-1
Strings, 3-1, 8-11

Printing, 5-5
Subroutine,

Background, 8-15
Subroutine execution, 5-18
Subscripted String

Variables, 3-1
Subscripted Variables, 2-2
Symbol table fonnat, 8-12
System function table, 8-2
System routines,

Sample user functions, 8-3

Index-2

READER'S COMMENTS

BASIC/RTll Language
Reference Manual
DEC-11-LBACA-E-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

CitY~~~~~~~~~~~~~~State~~~~~~~Zip Code~~~~~~~­
or

Country

If you require a written reply, please check here. []

--~Fold llere--

·--- Do Not Tear - Fold llere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

momoomo
Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	G-02
	Index-1
	Index-2
	replyA
	replyB
	xBack

