BASIC
Reference Manual

Order No. AA-L334A-TK

inciuding AD—-L334A-T 1

February 1984

This manual describes language elements, compiler commands, and com-
piler directives of VAX BASIC and PDP-11 BASIC-PLUS-2.

OPERATING SYSTEM AND VERSION: VAX/VMS V3
RSX-11M-PLUS V2
RSX-11M V4
RSTS/E V8
SOFTWARE VERSION: VAX BASIC V2

PDP-11 BASIC-PLUS-2 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1982, 1984 by Digital Equipment Corporation. All Rights Reserved.

The postage—paid READER’S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DECwri RS
Aol X

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem—10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor

Commercial Engineering Publications typeset this manual using DIGITAL’s TMS—11 Text
Management System.

Contents

To the Reader

PART | — Program Elements and Structure

1.0

2.0

3.0
4.0

5.0

Page

xi

Elements of a BASIC Program 1
1.1 LineNumbers. 1
1.2 Labels oL L. 2
1.3 Statements L . L. e 3
1.3.1 Keywords. 3

1.3.2 Single-Statement Lines and Continued Statements 4

1.3.3 Multi-Statement Lines. 5

1.4 Compiler Directives 7
1.5 Line Terminators oo 7
1.6 Lexical Order.o 8
Program Documentation L. 8
2.1 Comment Fields. e e e e e s 8
2.2 REM Statements. 9
2.3 Empty Statements L0 10
BASIC Character Set 10
BASICData Types i0
4.1 Implicit Data Typing. 13
4.2 Explicit Data Typing 13
Constants. 14
5.1 Numeric Constants 15
5.1.1 Floating-Point Constants 15

5.1.2 Integer Constants 17

5.1.3 Packed Decimal Constants (VAX—11 BASIC). 17

5.2 StingConstants. 18
5.3 Named Constants 19
5.3.1 Naming Constants Within a Program Unit. 19

5.3.2 Naming Constants External to a Program Unit 20

5.4 Explicit Literal Notation 21
5.5 Predefined Constants. 23

iii

6.0

7.0

Variables, 25

6.1 Variable Names. 25
6.2 implicitly Declared Variables 26
6.3 Explicitly Declared Variables 27
6.4 Subscripted Variables and Arrays 27
6.5 Initialization of Variables. 29
Expressions L L L L L L s 30
7.1 Numeric Expressions. 31
7.1.1 Floating-Point and Integer Promotion Rules 31
7.1.2 DECIMAL Promotion Rules (VAX-11 BASIC). 32
7.2 String Expressions L. L 34
7.3 Conditional Expressions 34
7.3.1 Numeric Relational Expressions 35
7.3.2 String Relational Expressions 36
7.3.3 Logical Expressions. e e e e 37
7.4 Evaluating Expressions 40

PART Il - Compiler Commands

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

APPEND 43
ASSIGN (VAX—TT1 BASIC). s 45
BRLRES (BASIC-PLUS-2), 46
BUILD (BASIC-PLUS-2) s, 48
$Command L 49
COMPILE. o s 51
CONTINUE. o s, 53
DELETE s, 54
DSKLIB (BASIC-PLUS-2) 55
EDIT. . . . s, 57
i0.1 DEFINE (BASIC-PLUS-2). 61
10.2 EXECUTE (BASIC-PLUS-2) 62
10.3 EXIT or CTRL/Z (BASIC-PLUS-2) 63
10.4 FIND (BASIC-PLUS-2). 64
10.5 INSERT (BASIC-PLUS-2). 65
10.6 SUBSTITUTE (BASIC-PLUS-2) 66
0 68
HELP. o . 69
IDENTIFY. o s, 71
INQUIRE. o oo oot 72
LIBRARY (BASIC-PLUS-2) 73
LISTand LISTNH 75
LOAD s, 77
LOCK . . . o, 78
NEW. . . o s, 79
ODLRMS (BASIC-PLUS=2) o o 80
OLD 82
Qualifiers. L 83
RENAME, 95
REPLACE s, 97

25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0

RESEQUENCE (VAX—T1BASIC) 98

RMSRES (BASIC—PLUS=2). o e 100
RUNand RUNNH. o oo 102
SAVE. . . . e e e e e e e e 104
SCALE . . . e 105
SCRATCH o e e e e e e e e e 106
SEQUENCE.« . o o o e 107
SET . . e e e e e e e e e e e 108
SHOW e e e e e e e s e e 109
UNSAVE e e e e e e e e e 111

PART lil - Compiler Directives

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0

%ABORT.« . oo e 113
%CROSS L e e e e 114
%IDENTo e 115
%IF—%THEN—%ELSE-%END—%IF 117
%INCLUDE. o oo e 119
%LET . . e e e e e 121
%WLIST I 3
%BNOCROSS oL e e 123
%NOLIST o e e e e 124
%PAGE L o e e e 125
%SBTTL o e e e e e 126
%TITLE. o o o e e e e e e 127
%VARIANT o o 128

PART IV — Statements

February 1984

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0

CALL. o e e e e 129
CHAIN. . . . oo o e e e 134
CHANGE. o o o oo e e e 136
CLOSE o o o e e e e e e 138
COMMON o oo e 139
DATA e e e e 143
DECLARE. o e e 145
DEF e e e 149
DEF*. . . . e e 153
DELETE o o o oo e e e e e 157
DIMENSION o . o e 158
END o e e e e 162
EXIT . . . o e e e 164
EXTERNAL o o o oo e 166
FIELD o o o e e e e e 169
FIND. o o e e e 171
FNEND oo o s e e e 177
ENEXIT. . . . o o o o e e 178
L 179
FREE (VAX=11 BASIC) oo 182
FUNCTION. 0 o o oo o oo e e s e e e e 183
FUNCTIONEND. o o oo o oo 187
FUNCTIONEXIT. o o o oo oo s e e e e 188

\%

vi

24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0
49.0
50.0
51.0
52.0
53.0
54.0
55.0
56.0
57.0
58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0
67.0
68.0
69.0
70.0
71.0
72.0
73.0
74.0
75.0
76.0
77.0
78.0

GOSUB 195
GOTO L, 196
IF o 197
INPUT . . o oo o 199
INPUTLINE . . . 0 ..o 0. .. e e 202
ITERATE S 204
KILL . o o 205
LET . o o 206
LINPUT . o oL o 207
LSET . . . o 209
MAP. . . ., 210
MAPDYNAMIC. oo 213
MARGIN (VAX-11 BASIC) 215
MAT . o o, 216
MATINPUT 0oL 219
MATLINPUT oo 221
MATPRINT. oo 223
MATREADo o . 225
MOVE o 227
NAMEAS o 230
NEXT . . o 231
NOMARGIN (VAX-TTBASIC). 232
ONERRORGOBACK 233
ONERRORGOTO o . 234
ONERRORGOTOOo o, 235
ONGOSUB 236
ONGOTOo 237
OPEN o e 238
OPTION 248
PRINT . . o, 251
PRINTUSING. 254
PUT o o258
RANDOMIZE oo 260
READ 261
RECORD (VAX-TT1BASIC), 263
REM . . o 267
REMAP. 268
RESTORE (RESET) 271
RESUME 272
RETURN oo 273
RSET. . . . o o, 274
SCRATCH . . . o oo 275
SELECT. o o 276
SLEEP . . . L 278
STOP . . . 279
SUB . . o o 280
SUBEND 284
SUBEXIT o o oo 285
UNLESS o, 286
UNLOCK. 287
UNTIL . . 288
UPDATE o o 289
WAIT . oo 291
WHILE. oo 292

PART V - Functions

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0
49.0
50.0
51.0
52.0
53.0

ABS . . 293
ABS% . . o 294
ASCH . o o o 295
ATN . o 296
BUFSIZ. . o o o e e 297
CCPOS. . o o oo e 298
CHRS . o o e e 299
COMP% . . o o o e e 300
COS .\ o o 301
CTRLC .+ o o e e e, 302
CVTSS . o o o o o e 303
CVTXX. o o o e e 304
DATES . © o o o e e 306
DECIMAL (VAX=TT BASIC) . . « .« o o oot e 307
DET . . o o oo e 308
DIFS . o o o o o 309
ECHO . . o o o o e e e 310
EDITS . . o o oo e 311
ERL . o o o o e e e 312
ERNS . . o oo 313
ERR . o o o o e 314
ERTS. o o o oo e e 315
EXP . o e 316
FIX o oo e 317
FORMATS . o o o oo e e e 318
FSPS . o o o e 319
FSS$ (BASIC=PLUS=2) . . . « « o v i 320
GETRFA . . o o o e 321
INSTR © o o v oo e e o, 322
INT © oo e 324
INTEGER . . o o o v e e 325
LEFTS . . o o oo o e e e 326
LEN & o e e 327
LOC (VAX=11 BASIC) . . « o o o o e 328
LOG . © o o o o 329
LOGI0. o o o oo e e 330
MAG. . o o o o e 331
MAGTAPE . . o o o e e e 332
MAR (VAX=TT BASIC) . . . o o oo i e 334
MIDS . o o e e e 335
NOECHO .« o o o o e e e 336
NUM o oo e e 337
NUM2 . o o o e e 338
NUMS . o oo e e 339
NUMTS © oo e 340
ONECHR (BASIC=PLUS=2) . . . « « o o i it 341
PLACES . © o o o e e 342
POS . o o e 345
PRODS$. . o o o oo e 347
QUOS .« o o e 349
RADS .« o o o 351
RCTRLC © « o o v oo e e e e e e 352
RCTRLO .« o o v e e e e e e e 353

vii

54.0 REAL. oL, 354

55.0 RECOUNT 355
56.0 RIGHTS o0 356
57.0 RND. o, 357
58.0 SEGS.o, 358
59.0 SGN.35
60.0 SIN . . Lo, 360
61.0 SPACES 361
62.0 SQR. . . . oL 362
63.0 STATUS o 363
64.0 STRS. 365
65.0 STRINGS. 366
66.0 SUMS$ L 367
67.0 SWAP% L, 368
68.0 SYS . . Lo 369
69.0 TAB 371
70.0 TAN . ..o, 372
7.0 TIME. . . o oL 373
720 TIMES L 375
73.0 TRMS$. .o 376
74.0 VAL . . oL, 377
750 VAL% . . . oL 378
76.0 XLATE oL 379

PART VI - BASIC-PLUS-2 Debugger Commands

1.0 BREAK (BASIC-PLUS-2) e e e e e e 383
2.0 CONTINUE (BASIC-PLUS=2) 385
3.0 CORE (BASIC-PLUS-2). 386
4.0 ERL (BASIC-PLUS-2). 387
5.0 ERN (BASIC-PLUS-2) 388
6.0 ERR(BASIC-PLUS-2) 389
7.0 EXIT BASIC-PLUS-2) 390
8.0 FREE (BASIC-PLUS-2) 391
9.0 I/OBUFFER (BASIC-PLUS-2). 392
10.0 LET (BASIC-PLUS-2). 393
11.0 PRINT (BASIC-PLUS=2) 395
12.0 RECOUNT (BASIC-PLUS-2) 396
13.0 REDIRECT (BASIC-PLUS-2). 397
14.0 STATUS (BASIC-PLUS=2). 398
15.0 STEP (BASIC-PLUS-2) 400
16.0 STRING (BASIC-PLUS-2). 401
17.0 TRACE (BASIC-PLUS-=2) 402
18.0 UNBREAK (BASIC-PLUS-2). 403
19.0 UNTRACE (BASIC-PLUS-2). 405

Appendix A Reserved BASIC Keywords
Appendix B Program and Subprogram Coding Conventions

Index

viii

Tables

O ONOU b WwN =

NN DNMNMNRNRNRNRN = = -2 -
ONOUR,WN=0O0OWCONOULWN=O

Keyword Space Requirements 4
BASICData Types « .« « v v v v v v e e e e e e 12
NumbersinENotation. 16
Predefined Constants.o 23
Arithmetic Operators. oo 30
Result Data Types in BASIC Expressions 32
VAX—11 BASIC Result Data Types 32
Result Data Types for DECIMALData 33
Numeric Relational Operators. 35
String Relational Operators 37
Logical Operatorso 38
Truth Tables Lo 38
Numeric Operator Precedence 47
BASIC-PLUS-2 Editing Mode Commands. 60
ODLFiles o i e 81
VAX-11 BASIC COMPILE and SET Command Qualifiers 84
BASIC-PLUS—2 Command Qualifiers. 90
RMS Libraries oo e e e 101
VAX-11 BASIC Parameter Passing Mechanisms 132
BASIC-PLUS-2 Parameter Passing Mechanisms 133
FILL ltem Formats and Storage Allocations 141
EDIT$ Values o oo 311
MAGTAPE FunctionCodes« . o o o . 332
Performing MAGTAPE Functions in VAX-11 BASIC 333
Rounding and Truncation of 123456.654321 344
VAX=11 BASIC STATUS Bits ... 364
VAX=11 BASIC Subset of RSTS/ESYSCalls 369
TIME Function Valueso 374

To the Reader

This manual is part of the BASIC documentation set. This set of manuals was designed to let you learn
and use BASIC regardless of your prior experience with computers. The documentation set includes:

For the beginner:

¢ [ntroduction to BASIC

® BASIC for Beginners

® More BASIC for Beginners

For all systems:

® BASIC User’s Guide
® BASIC Reference Manual
® BASIC Pocket Reference Guide

For specific systems:

® BASIC on RSTS/E Systems
® BASIC on RSX—11M/M-PLUS Systems
® BASIC on VAX/VMS Systems

For the system manager:

® BASIC—PLUS—2 RSTSI/E Installation Guide and Release Notes
® BASIC-PLUS—2 RSX—11M/M=PLUS Installation Guide and Release Notes
® VAX—11 BASIC Installation Guide and Release Notes

For the beginner, Introduction to BASIC explains the fundamentals of the BASIC language and shows
how to use BASIC to solve programming problems. BASIC for Beginners and More BASIC for
Beginners lead the reader step-by-step through planning and writing several practical programs that
teach BASIC programming techniques. In addition, the first chapter of the system-specific user’s guide
tells you how to log on to your computer system, create and execute programs, and do simple file
operations such as printing, typing, and deleting files.

Xi

For programmers who are more familiar with BASIC, the BASIC User’s Guide and the system-specific
user’s guides include a complete explanation of BASIC and how to use it on your system. If you need
information on a particular feature or statement, the BASIC Reference Manual describes the format of
each BASIC command or keyword individually.

The BASIC documentation set has several new features that let you find information quickly and
easily. Each manual has its own index (with instructions on its use) and the BASIC Reference Manual
has a master index to the entire documentation set. For quick reference the BASIC Pocket Reference
Guide provides a brief explanation of all BASIC commands and functions. Similar information is also
available at the computer terminal from the BASIC HELP facility.

The following pages describe the function of this particular manual. We welcome your comments
and encourage you to use the Reader’'s Comments Form provided at the back of this book.

Document Objectives

This manual describes the language elements and syntax of Version 2 of VAX=11 BASIC and
BASIC-PLUS-2. The term BASIC is used generically in this manual to refer to both VAX=11 BASIC
and BASIC-PLUS-2. The term VAX—11 BASIC refers specifically to VAX—11 BASIC as implemented on
VAX/VMS systems. BASIC-PLUS-2 refers specifically to BASIC-PLUS-2 as implemented on RSTS/E,
RSX—11M, and RSX-11M-PLUS systems.

Note

For your convenience, examples, formats, or rules specific to VAX-11 BASIC,
BASIC—PLUS-2, or BASIC-PLUS-2 on RSTS/E or RSX—11M/M—-PLUS are identified by
a marginal symbol:

indicates VAX=11 BASIC only.
indicates BASIC—PLUS—2 only.
indicates BASIC-PLUS—2 on RSTS/E systems.

RsX | indicates BASIC-PLUS—2 on RSX—11M/M—-PLUS systems.

Intended Audience

This manual should be used by programmers familiar with computer concepts and the BASIC lan-
guage. It is a reference manual to be used in conjunction with the BASIC user’s guides.

Document Structure

This manual consists of six parts, two appendixes, and a master index to the BASIC documentation
set. With the exception of Part I, BASIC language elements are arranged in alphabetical order within
each part; each language element begins on a separate page. A sample format page is included on
page xiv.

Part | Describes BASIC program elements and structure.

Part Il Describes BASIC compiler commands.

xii

Part Il Describes BASIC compiler directives.

Part IV Describes BASIC statements.
Part V Describes BASIC functions.
Part VI Describes BASIC-PLUS-2 debugger commands.

Appendix A Lists reserved keywords.

Appendix B Summarizes program and subprogram coding conventions.

This manual also includes three tabbed dividers for convenient reference:

® The first divider summarizes the conventions used in this manual.
® The second divider lists most BASIC

L] i N

® The third divider precedes the Master Index and describes its use.

Xiii

Sample Format Page

ENTRY NAME

1.0 ENTRY NAME

Function

Describes the entry’s function or effect.
Format

A format shows the syntax of a language element. When you have a choice of formats, the
formats are named for clarity. When a format is named General, it applies to both VAX-11
BASIC and BASIC-PLUS-2. Format components are explained in syntax and general rules.
When a language element has more than one format, formats are referred to by name.
Some formats are divided into two parts. The first part, in the top portion of the box, shows
the general elements and order of the format.

The second part of the format, in the lower portion of the box, shows the components
and order of the individual elements in the general format.

Syntax Rules

Syntax rules tell you how to order format elements to form clauses or statements. They also
impose restrictions or relax restrictions implied by the format.

General Rules

" General rules define the semantics of the entry and the entry’s effect on program execution or
compilation.

Examples

This section presents one or more sample program lines. All examples work for both VAX—11 BASIC
and BASIC-PLUS-2 unless otherwise noted.

Xiv

Conventions

Formats present the correct syntax for writing BASIC source code. You must order syntax elements as
shown in the format unless the syntax rules indicate otherwise.

Syntax formats consist of BASIC keywords, metalanguage mnemonics, and punctuation symbols.
Metalanguage mnemonics are symbolic derivations of BASIC objects or structures. The tabbed
divider that follows this section lists the most frequently used mnemonics and their meanings, as well
as the most frequently used punctuation symbols.

Note

BASIC keywords are always capitalized in this manual and must be spelled exactly as
shown. Mnemonics are in lowercase letters in formats and are italicized in the syntax
and general rules.

Some metalanguage mnemonics are derived directly from BASIC keywords. For example:

e Map From MAP
¢ Com From COMMON
® Func From FUNCTION
® Def From DEF
® Sub From SUB

Others are abbreviated forms of words. For example:

® Vbl For variable

® Unsubs For unsubscripted
® Subs For subscripted

® Str For string

® Const For constant

® Exp For expression

® Nam For name

¢ Cond For conditional

® Int For integer

® File-spec For file-specification

® Data-type For data-type

Most mnemonics used in formats are combinations of mnemonics. For example:

e Const-nam Is a constant name.
® Sub-nam Is the name of a SUB subprogram.
¢ Unsubs-vbl Is an unsubscripted variable. (continued on next page)

XV

® Int-exp Is an integer expression.
® Cond-exp Is a conditional expression.

® Str-unsubs-vbl Is a string unsubscripted variable.

Mnemonics are combined in this way to indicate exactly what type of object or structure BASIC
expects. Some BASIC statements, for example, allow you to specify any type of variable (string or
numeric) in the format, while others allow only a numeric variable (integer or floating-point), a string -
variable, an integer variable, or a floating-point variable.

Thus, the uncombined form of the variable mnemonic (vbl) in a format means that you can use any
type of variable (string or numeric). A combined variable mnemonic (such as str-vbl, num-vbl, or
int-vbl) in a format means that you can specify only a particular type of variable.

Within formats, mnemonics are either simple or complex. Simple mnemonics identify a format
element (such as an expression, a variable, or a name) that needs no further definition. For example:

EXTERNAL data-type CONSTANT const-nam,...

The mnemonics in this format need no further definition. The EXTERNAL keyword must be followed
by a data-type, the CONSTANT keyword, and then a const-nam. The comma and ellipsis (...), as
defined in the Punctuation Symbols Table, indicate that you can specify more than one const-nam.
The data-type mnemonic is defined in the Mnemonics Table as a BASIC data-type keyword, and
const-nam is defined as a constant name. Restrictions to the use of data-type keywords in the
EXTERNAL statement are specified in the syntax rules.

Complex mnemonics identify a format element (such as a parameter passing mechanism or a state-
ment clause) that has more than one component. Complex mnemonics are further defined in the
lower portion of the format box by simple mnemonics. For example:

Format

Variables

DECLARE data-type decl-item [, [data-type] decl-item]...
DEF Functions

DECLARE data-type FUNCTION { def-nam [([def-param },...)] }....
Named Constants

DECLARE data-type CONSTANT { const-nam = const },...

decl-item: unsubs-vbl-nam
array-nam (int-const,...)

def-param: [data-type]

Xvi

When you look at the upper portion of this format, you can see that a data-type keyword must follow
the DECLARE statement and that a decl-item must follow the data-type keyword. Decl-item is a
complex mnemonic that is then further defined in the lower portion of the box. There you can see
that a decl-item can be a simple variable name or an array name followed by parentheses and integer
constants separated by parentheses. The portion of the upper format in brackets indicates that you can
specify another data-type keyword and another array name or simple variable name. The comma and
ellipsis (...), as defined on the tabbed divider in this section, indicate that you can continue adding
data-type keywords and array names or simple variable names.

This type of format unfolds the syntax of BASIC language elements and indicates the type of element
BASIC expects to receive.

Note

In most cases, BASIC signals an error if the syntax element does not exactly match the
indicated format. In other instances, particularly with numeric elements, BASIC con-
verts the numeric element you specify to the type of numeric element it expects to
receive. These instances are noted in the syntax rules.

Multiple occurrences of mnemonics in a format are numbered to prevent confusion. VbI3, for exam-
ple, is the third unique variable in a general format and is referred to as vbi3 in the syntax and general
rules.

The most frequently used punctuation symbols and metalanguage mnemonics are listed and
described on the first tabbed divider in this manual. Less frequently used mnemonics and most
complex mnemonics are defined as they occur in syntax formats.

Please use the Reader’'s Comments Form in the back of this book to report errors or to make sugges-
tions for future documentation releases.

Xvii

Conventions

Syntax Mnemonics

Mnemonic

exp
vbl

unsubs

subs

array
const

lit

num
real
int
str

cond

log
rel
lex

target

lin-num
label

item

nam
com

def

func

map

sub

chnl
data-type
file-spec

file-nam

Definition

An expression
A variable

Unsubscripted; used with the variable mnemonic to indicate a simple variable, as opposed to an array
element

Subscripted; used with the variable mnemonic to indicate an array element; the element’s position in the array
fe cmamiliod L

is specified by subscripts enclosed in parentheses and separated by commas
An array; syntax formats indicate whether you can specify bounds and dimensions, or just dimensions
A constant value

A literal value, in quotation marks; a literal is always a constant, but a constant may be named, so constants
are not always literals

A numeric value

A floating-point value
An integer value

A character string

Conditionai; used with the expression mnemonic to indicate that an expression can be either logical or
relational

Logical; used with the expression mnemonic to indicate a logical expression
Relational; used with the expression mnemonic to indicate a relational expression
Lexical; used to indicate a component of a compiler directive

The target point of a branch statement; used to indicate that the target point can be either a program line
number or a statement label

A program line number
An alphanumeric statement label

Allowable BASIC objects, such as variables, data types, and parameters; allowable objects are defined in
formats as they occur

Name; indicates the declaration of a name or the name of a BASIC structure, such as a SUB subprogram
Specific to a COMMON

Specific to a DEF '

Specific to a FUNCTION subprogram

Specific to a MAP

Specific to a SUB subprogram

An 1/0 channel associated with a file

A data-type keyword

A file-specification

A file name

Punctuation Svmbols

Svmbols

Definition

[Rrarketc enclnce an nntinnal nortinn nt a tarmat Rrackets arnnnd vertically stacked entries indicate that vou
can select one of the enclosed elements. You must include all punctuation as it appears in the brackets.

{} Braces enclose a mandatory portion of a general format. Braces around vertically stacked entries indicate
that you must choose one of the enclosed elements. Braces also group portions of a format as a unit. You
must include all punctuation as it appears in the braces.

An ellipsis indicates that the immediately preceding language element can be repeated. An ellipsis following
a format unit enclosed in brackets or braces means that you can repeat the entire unit. If repeated elements
or format units must be separated by commas, the ellipsis is preceded by a comma ,...).

Definitions

In this manual, the following definitions apply:

BASIC

BASIC-PLUS-2

Cannot

Cursor

or
cursor position
Must
Program module
Subprogram

Subroutine

VAX-11 BASIC

The term BASIC refers to Version 2 of both VAX-—11 BASIC and PDP-11
BASIC—PLUS=-2.

The term BASIC-PLUS-2 refers specifically to Version 2 of PDP-11
BASIC-PLUS—2 as implemented on RSTS/E, RSX—11M, and RSX-11M-PLUS
systems.

Cannot indicates than an operation cannot be performed and that an attempt to
perform the operation causes BASIC to signal an error.

Cursor or cursor position refers to a terminal’s print mechanism. It can be the
flashing cursor on a video display terminal or the print head on a hard-copy
terminal.

Must indicates that an operation must be performed and that failure to perform the
specified operation causes BASIC to signal an error.

A program module is a BASIC main program, a SUB subprogram, or a FUNCTION
subprogram.

A separately compiled program module that must be linked or task-built with the
main program.

A subroutine is a block of code accessed by a GOSUB or ON GOSUB statement. It
is always in the same program module as the statement that accesses it.

The term VAX—11 BASIC refers specifically to Version 2 of VAX-11 BASIC as
implemented on VAX/VMS systems.

Arrays

DET
DIMENSION
MAT

MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ
NUM

NUM?2

Data Conversion

ASCII
CHANGE
CHR$
NUM$
NUMT$
STRS

"~ VAL

VAL%

Data Definition

COMMON
DECLARE
DIMENSION
MAP

MAP DYNAMIC
MOVE

RECORD
REMAP

Data Formatting

FORMAT$
PRINT USING

Data Typing

COMMON
DECLARE
DEF
DIMENSION
EXTERNAL
FUNCTION
MAP
OPTION
SUB

Date and Time Conversion

DATE$
TIME
TIME$

Functional List of BASIC Keywords

Error Handling
ERL
ERN$
ERR
ERT$

ON ERROR GO BACK
ON ERROR GOTO
ON ERROR GOTO 0

RESUME

Function Definition

DEF
END DEF

END FUNCTION

EXIT DEF

EXIT FUNCTION

EXTERNAL
FUNCTION

1/0 to Files

CLOSE
DELETE
FIND

FREE

GET
INPUT #
INPUT LINE #
KILL
LINPUT #
MAR
MARGIN
MOVE
NAME AS
OPEN
PRINT #
PUT #
RECOUNT
RESTORE #
SCRATCH
UNLOCK
UPDATE

I/0 to Terminals

CCPOS
CTRLC
ECHO
INPUT
INPUT LINE
LINPUT
MAR

NOECHO
PRINT USING
RCTRLC
RCTRLO
RECOUNT
TAB

Numbers

ABS
ATN
COMP%
COS
DECIMAL
EXP

FIX

INT
INTEGER
LOG
LOG10
MAG
RANDOMIZE
REAL
RND
SGN

SIN

SQR
SWAP%
TAN

Program Control

END

EXIT LOOP
FOR
GOSUB
GOTO

IF

ITERATE
ON GOTO
RETURN
SELECT
SLEEP
STOP
UNLESS
UNTIL
WAIT
WHILE

Program Segmentation

CALL
CHAIN

END FUNCTION

END SUB

EXIT FUNCTION

EXIT SUB
EXTERNAL
FUNCTION
LOC

SUB

Strings

EDIT$
FORMAT$
INSTR
LEFT$
LEN

LSET
MID$
POS
RIGHT$
RSET
SEG$
SPACE$
STRINGS
TRM$
XLATE

String Arithmetic

DIF$
PLACE$
PROD$
QUO%
SUM$

Value Assignmen

DATA
LET

LSET
READ
RESTORE
RSET

PART |
Program Elements
and Structure

1.0 Elements of a BASIC Program

A BASIC program is a series of program lines that contain instructions for the BASIC compiler. These
instructions are in the form of BASIC statements. Program lines contain the BASIC keywords, opera-
tors, and operands that make up a BASIC program.

The first line of a BASIC program must begin with a line number. The program lines that follow may
contain:

e Line numbers or labels

¢ Statements

e Optional compiier directives
¢ Optionali comment fieids

e Line terminator (carriage return)

1.1 Line Numbers

Every BASIC statement must be associated with a line number. Thus, the first element in a BASIC
program must be a line number. A line number must be an integer between 1 and 32767, inclusive.
A space or tab terminates the line number. Embedded spaces, tabs, and commas within line numbers
are invalid.

A line number followed by a carriage return does not constitute a BASIC program line. A program line
must contain a statement or a comment field. Comment fields are discussed in Section 2.1. A new
line number or a carriage return terminates a BASIC program line.

A program line can contain any number of text lines; however, a text line cannot exceed 255

characters in VAX=11 BASIC and BASIC-PLUS—2 on RSTS/E systems, and 132 characters in
BASIC-PLUS-2 on RSX—11M/M-PLUS systems.

February 1984 BASIC Reference Manual 1

The BASIC language uses line numbers to:
¢ Indicate the order of statement execution
* Provide control points for branching

* Help in debugging and updating programs
¢ Find the location of run-time errors

® Resume processing after an error has been handled

Therefore, each line number must be unique. BASIC ignores leading spaces, tabs, and zeros in line
numbers.

1.2 Labels

A label is a 1- to 31—character name that immediately precedes a statement. It may immediately
follow a line number. The label logically identifies a statement or block of statements. The label name
must conform to the rules for naming variables, described in Section 6.1. The label name must be
separated from the statement it labels with a colon (:). For example:

100 Yes_routine: PRINT "Your answer is YES,"

The colon is not part of the label name. It tells BASIC that the label is being defined rather than
referenced. Consequently, the colon is not allowed when you use a label to reference a statement.
For example:

200 GOTO Yes_routine

The BASIC language uses labels to:
* Provide contro! points for branching
¢ Help in debugging programs

* Help in maintaining and updating programs
You can reference a label anywhere you can reference a line number, with three exceptions:

® You cannot compare the value returned by the ERL function (the line number associated with the
program line where the last error occurred) with a label.

® You cannot use the RESUME statement to reference a label.

* You cannot reference a label in an IF-THEN-ELSE statement without using the keyword GOTO or
GO TO. You can use the implied GOTO form only to reference a line number. For example:

100 IF A% = B%
THEN 1000
ELSE 1050

200 IF A% = "YEG"

THEN GOTO Yes
ELSE GOTO No

2 BASIC Reference Manual

Because the first statement references a line number, the GOTO keyword is not required; the second
statement references a label, so the GOTO keyword is required.

1.3 Statements

A BASIC statement consists of a statement keyword and optional operators and operands. For
example:

400 LET A% = 534% + (SUM% - DIF%}
PRINT A%

The first statement assigns a value to the integer variable A%. The PRINT statement causes BASIC to
display the value of A% on your terminal.

A statement is either executabie or nonexecutabie:

e Executable statements perform operations (for example, PRINT, GOTO, and READ).

¢ Nonexecutable statements describe the characteristics and arrangement of data, specify usage infor-
mation, and serve as comments in the source program (for example, DATA, DECLARE, and REM).

BASIC can accept and process one statement on a line of text, several statements on a line of text,
multiple statements on multiple lines of text, and single statements continued over several lines of
text. Each line of program text is associated with the last specified line number.

Multi-statement and continuation lines are discussed in Sections 1.3.2 and 1.3.3.

1.3.1 Keywords

A keyword is a reserved element of the BASIC language. Every statement except LET and empty
statements must begin with a keyword. BASIC uses keywords to:

e Define data and user identifiers
¢ Perform operations
e Invoke built-in functions

Note

Keywords are reserved words and cannot be used as variable names or as names for
MAP or COMMON areas.

Keywords cannot be used in any context other than as BASIC keywords. STRING$ = “YES”, for
example, is invalid because STRINGS is a reserved BASIC keyword. Appendix A in this manual
contains a list of BASIC reserved keywords.

A BASIC keyword cannot have embedded spaces and cannot be split across lines of text. There must
be a space, tab, or special character such as a comma between the keyword and any other variable or
operator.

BASIC Reference Manual 3

Some keywords use two words. In this case, their spacing requirements vary, as shown in Table 1.

Table 1: Keyword Space Requirements

Optional Space | Mandatory Space No Space
GO SuB BY DESC FNEND
GO TO BY REF FNEXIT
ON ERROR BY VALUE FUNCTIONEND
END DEF FUNCTIONEXIT
END FUNCTION NOECHO
END GROUP NOMARGIN
END IF SUBEND
END RECORD SUBEXIT
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ

1.3.2 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one numbered line or one statement continued
over two or more text lines. For example:

100 PRINT B # C / 12

This single-statement line has a line number, keyword (PRINT), operators (*, /), and operands (B, C
and 12). '

’

You can have a single statement span several text lines by typing an ampersand (&) and a carriage
return. For example:

100 OPEN "SAMPLE.DAT" AS FILE 2%, &GO

SEQUENTIAL VARIABLE, &GE)
MAFP ABC

The ampersand must come immediately before the carriage return in VAX—11 BASIC. BASIC—PLUS—2
ignores spaces or tabs that follow the ampersand and precede the carriage return. For compatibility,
DIGITAL recommends that you type the carriage return immediately after the ampersand.

The ampersand continuation character may be used but is not required for continued REM state-
ments. The following example is valid:

100 REM This is a remark

And this is also a remark

4 BASIC Reference Manual

You can continue any BASIC statement, but you cannot continue a string literal or BASIC keyword.
For example, BASIC returns the error message ‘“Unterminated string literal” if you try to print the
following:

100 PRINT “FEE-FIE- &
FOE-FUM®

This example is valid:

200 PRINT "FEE-"3} &
"FIE-"; B
"FOE-"3 &
IIFUMH

A more efficient way to continue string literals is to use the string concatenation operator:

100 PRINT "FEE-" &
+ "FIE-" &
+ "FOE-" &
+ IIFUM"

BASIC concatenates the four string literals at compile time and stores them as one string. When the
PRINT statement executes, BASIC displays the one concatenated string literal rather than four sepa-
rate string literals, thereby causing your program to execute faster and more efficiently.

Continued statements do not have line numbers, although the compiler counts and numbers them as
sublines.

1.3.3 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text or multiple statements on separate
lines of text. All the statements on a multi-statement line are associated with a single line number.

Multiple statements on one line of text must be separated by backslashes (\). For example:

400 PRINT A \ PRINT ¥ \ PRINT G

Because all statements are on the same program line, any reference to line number 400 refers to all
three statements and execution begins with the first statement on the line. That is, BASIC cannot
execute the second statement without executing the first statement.

A statement that unconditionally transfers control to another program line should always be the last
statement on a multi-statement line. Otherwise, the statements that follow the statement transferring
control will never execute. The following program line, for example, will execute, but it is not
recommended:

200 PRINT A \ GOTO 410 \ PRINT B

BASIC prints the value of A and then branches to line 410. The statement PRINT B will never execute.

BASIC Reference Manual 5

You can also write a multi-statement program line that associates all statements with a single line
number by ending each statement with an ampersand (&) and a carriage return and preceding the
next statement with a backslash. For example:

400 PRINT A B
\ PRINT ¥V &
\ PRINT G

Because programs written in this format tend to be cluttered and hard to read, BASIC allows you to
associate multiple statements with a line number by placing each statement on a separate line without
using the ampersand or backslash. This format requires only a space or tab at the beginning of each
new line of text. BASIC assumes that such an unnumbered line of text is either a new statement or an
IF statement clause. For example:

400 PRINT A
PRINT B
PRINT "FINISHED"

In this example, each line of text begins with a BASIC statement and each statement is associated with
line number 400.

BASIC also recognizes IF statement keywords on a new line of text and associates such keywords with
the preceding IF statement. For example:

100 IF (A% = "YES") OR (A% = "Y")
THEN PRINT "You tyeped YES"
ELSE PRINT "You tvrped NO"
sSTOP
END IF

The BASIC compiler listing file numbers the lines associated with line number 100 as they occur. The
VAX=11 BASIC listing file looks like this:

1 100 IF (A% = "YES") OR (A% = "Y")
2 THEN PRINT "You tvyped YES"

3 ELSE PRINT "You tveped NO"

4 STOP

S END IF

The BASIC-PLUS-2 listing file looks like this:

00001 100 IF (A% = "YES") OR (A% = "Y")
00002 THEN PRINT "You tvred YES"
00003 ELSE PRINT "You tveped NO*®
00004 sSToP

00003 END IF

Each statement has a number that indicates its position in the line. The BASIC compiler counts the
statements in a multi-statement line to locate compile-time errors. You cannot use statement numbers
as targets of branch statements. Targets of branch statements such as GOTO must be a line number or
a label.

6 BASIC Reference Manual

You can use any BASIC statement in a multi-statement line. However, a REM or DATA statement
must be the last statement on a multi-statement line. This is because the compiler:

* Ignores all text following a REM keyword until it reaches a new line number.

® Treats all text following a DATA keyword as data untii it reaches a new line number; thus, every
DATA statement in your program has to have its own line number.

Because a leading space or tab not followed by a line number implies a new statement in a multi-
statement line, compiler commands and immediate mode statements cannot be preceded by a space
or tab. If you enter a compiler command or immediate mode statement, you cannot add more
continuation lines to the last program line. If you attempt to do so, BASIC signals the error ““unknown
command input”’.

1.4 Compiler Directives

Compiler directives are instructions in a program that tell BASIC to perform certain operations as it
compiles the program. With compiler directives, you can:

e Place program titles and subtitles in the header that appears on each page of the listing file
¢ Place a program version identification string in both the listing file and object module

e Start or stop the accumulation of listing information for selected parts of a program

e Start or stop the accumulation of cross-reference information for selected parts of a program
e Include BASIC code from another source file

¢ Conditionally compile parts of a program

¢ Terminate compilation

¢ Include CDD record definitions in a BASIC program (VAX—11 BASIC only)

All compiler directives:

® Must begin with a percent sign

e Can be preceded by an optional line number

¢ Must be the only text on the line {except for %IF—%THEN—%ELSE—%END—-%IF)
® Must be preceded by a space, tab, or line number

e Cannot appear within a quoted string

See the BASIC User’s Guide and Part lll in this manual for more information on compiler directives.

1.5 Line Terminators

In the BASIC environment, a carriage return/line feed combination (8)) followed by an optional
space or tab and a new line number ends a BASIC program line. An ampersand followed by a
carriage return ends a line of text but not the program line. All statements between the first line
number and the next line number are associated with the first line number.

BASIC Reference Manual 7

1.6 Lexical Order

Lexical order refers to the order in which BASIC compiles statements in a program. In general terms,
BASIC compiles program lines in sequential order from the lowest to the highest line number. Thus,
statement A precedes statement B if the line number with which statement A is associated is lower
than the line number with which statement B is associated. If both statements are associated with the
same line number, statement A precedes statement B only if it physically precedes statement B or
appears to the left of statement B. BASIC processes statements on a line of text from left to right and
lines of text from top to bottom.

Some BASIC statements, such as comments and MAP declarations, are nonexecutable. If program
control passes to a nonexecutable statement, BASIC executes the first statement that lexically follows
the nonexecutable statement.

2.0 Program Documentation

Documentation clarifies and explains source program structure. You can provide such explanations
with:

* Comment fields

¢ REM statements

2.1 Comment Fields

A comment field begins with an exclamation point (!) and ends with a carriage return. You supply text
after the exclamation point to document your program. BASIC does not execute text in a comment
field. For example:

100 ! FOR loop to initialize list O
FOR I = 1 TO 10
Q(I) = 0 ! This is a comment
NEXT I

! List now initialized
BASIC executes only the FOR loop. The comment fields, preceded by exclamation points, do not
execute.

Comment fields help make your program more readable and allow you to format your program into
readily visible logical blocks. They can also serve as target lines for GOTO and GOSUB statements:

10 1
! Sauare root Prodram
]
INPUT ‘Enter a number’j3A
PRINT ‘SQR of ‘3A3’is ‘3iSOR(A)
!
! More square roots?
!
INPUT ‘Tvre "Y" to continues a carriage return to quit‘ANSS
GOTO 10 IF ANSs = ‘¥’
!
99 END

8 BASIC Reference Manual

You can also use an exclamation point to terminate a comment field, but this practice is not recom-
mended. Therefore, you should make sure that there are no exclamation points in the comment field
itself; otherwise, BASIC treats the text remaining on the line as source code.

Note

Comment fields in DATA statements are invalid; the compiler treats the comments as
additional data.

2.2 REM Statements

A REM statement begins with the REM keyword and ends when BASIC encounters a new line
number. The text you suppiy between the REM keyword and the next line number documents your
program. Like comment fields, REM statements do not affect program execution. BASIC ignores all
characters between the keyword REM and the next line number. Therefore, the REM statement can be
continued without the ampersand continuation character and should be the only statement on the
line or the last of several statements in a multi-statement line:

10 REM This is an examrle
20 A=3
B=10

REM A eauals ©
B esuals 10
30 PRINT A: B

The REM statement is nonexecutable. When you transfer control to the line number of a REM
statement, BASIC executes the next executable statement that lexically follows the referenced line.
For example:

i¢ REM #% Ssuare roct Program

20 INPUT ‘Enter a number’iA
PRINT ’'8QR of ‘5A43‘is ‘3S5QR{A}
INPUT ‘Type "Y" to continues a carriage return to suit’3iANSS
GOTO 10 IF ANS$ = ‘Y’

40 END

When the conditional GOTO statement in line 20 transfers program control to line 10, BASIC ignores
the REM comment on line 10 and continues program execution at line 20.

Note

Because BASIC treats all text between the REM statement and the next line number as
commentary, REM should be used very carefully in programs that follow the implied
continuation rules. Program statements intended for execution will not execute when
they are inside a REM statement. DIGITAL recommends the use of comment fields (1)
for program documentation in programs formatted with implied continuation lines.

BASIC Reference Manual 9

2.3 Empty Statements

Empty statements consist of a line number and an exclamation mark followed by optional text, a line
terminator and a new line number. For example:

100 !
! FOR loor to initialize list Q@
1

200 FOR I = 1 TO 10
Q(I) = 0 ' This is a comment
NEXT I
300 !
! List is now initialized

Lines 100 and 300 are empty statements.

3.0 BASIC Character Set

BASIC uses the full ASCII character set. This includes:
e The letters A through Z, both upper- and lowercase
® The digits O through 9

¢ Special characters

Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX—11M/M—PLUS Systems, and BASIC on
RSTS/E Systems contains the full ASCII character set and character values.

The compiler:

* Does not distinguish between upper- and lowercase letters except in string literals or within a DATA
statement

® Does not process nonprinting characters unless they are part of a string literal

® Does not process characters in REM statements or comment fields

In string literals, BASIC processes:

* Lowercase letters as lowercase

¢ Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot appear in a string literal. Use the
CHRS$ function or explicit literal notation to use this character and terminators.

You can use nonprinting characters in your program, for example, in string constants, but to do so
you must use: 1) a predefined constant such as ESC and DEL, 2) the CHR$ function to specify an
ASCII value, or 3) explicit literal notation for character constants. See Section 5.4 in this manual for
more information on explicit literal notation. See the BASIC User’s Guide for more information on
predefined constants and the CHR$ function.

4.0 BASIC Data Types

All data in a BASIC program has a specific data type that determines how many bits of storage should
be considered as a unit and how the unit is to be interpreted and manipulated.

10 BASIC Reference Manual

VAX—11 BASIC recognizes five primary data types: integer, floating-point, character string, packed
decimali, and RFA. These types correspond to the BASIC generic data-type keywords:

¢ INTEGER
¢ REAL

¢ STRING
e DECIMAL
e RFA

BASIC-PLUS-2 recognizes four primary data types: integer, floating-point, character string, and RFA.
These types correspond to the BASIC generic data-type keywords:

o INTEGER
¢ REAL

¢ STRING
* RFA

Integer data are stored as binary values in a byte, a word, or a longword. These values correspond to
the BASIC data-type keywords:

e BYTE
e WORD
¢ LONG

Floating-point values are stored using a signed expohent and a binary fraction. VAX-11 BASIC allows
four floating-point formats: single, double, gfloat, and hfloat. These formats correspond to the BASIC
data-type keywords:

e SINGLE

¢ DOUBLE
e GFLOAT
¢ HFLOAT

BASIC-PLUS-2 allows only single and double floaﬁng-point formats. These formats correspond to the
BASIC data-type keywords:

¢ SINGLE
e DOUBLE

VAX—11 BASIC packed decimal data is stored in a string of bytes. Refer to Appendix C in BASIC on
VAX/VMS Systems for more information on the storage of packed decimal data.

Character data are strings of bytes containing ASCII codes as binary data. The first character in the
string is stored in the first byte, the second character is stored in the second byte, and so on. VAX—T11
BASIC allows up to 65535 characters for a STRING data element. BASIC-PLUS-2 allows up to 32767
characters.

BASIC Reference Manual 11

In addition to these data types, BASIC also recognizes a special RFA data type to provide information
about a Record File Address (RFA). A Record File Address consists of a block number within a file and
an offset into that block. An RFA uniquely identifies a record in a file. You can access RMS files of any
organization by Record File Address (RFA). This means that you specify the disk address of a record,
and RMS retrieves the record at that address. Accessing records by RFA is more efficient and faster
than other forms of random record access.

The RFA data type is unique and can be used only for:
¢ RFA operations (with the GETRFA function and GET and FIND statements)
® Assignments to other variables of the RFA data type

® Comparisons with other variables of the RFA data type using the equal to (=) or not equal to (<>)
relational operators

¢ Formal and actual parameters

® DEF and function results

You cannot use variables or constants of the RFA data type for any arithmetic operations. You cannot
declare a constant of the RFA data type.

The RFA data type requires six bytes of information: four bytes for the address of a disk block, and
two bytes for the offset into the disk block. See Chapter 9 in the BASIC User’s Guide for more
information on Record File Addresses and the RFA data type.

Table 2 lists BASIC data-type keywords and summarizes BASIC data types.
Table 2: BASIC Data Types

Precision
Data Type (decimal
Keyword* Size Range** digits)
INTEGER — specifies integer data
BYTE 8 bits -128to +127 NA
WORD 16 bits —-32768 to + 32767 NA
LONG 32 bits —2147483648 to NA
+2147483647
REAL — specifies floating-point data
SINGLE 32 bits 29+ 10 t0 1.7 » 10® 6
DOUBLE 64 bits 29+ 10" t0 1.7 » 10* 16
GFLOAT 64 bits 56+ 107%t0 .9« 107 15
HFLOAT 128 bits 84+ 107 to .59 » 10™* 33
DECIMAL(d,s) Oto 16 bytes 110" to 1 % 10" 31
STRING One character NA NA
per byte
RFA 6 bytes NA NA

* VAX=11 BASIC only data types are italicized.

“ Approximate for REAL and DECIMAL data types.

12 BASIC Reference Manual February 1984

For the VAX-11 BASIC only DECIMAL data type, you can specify the total number of digits (d) in the
data type and the number of digits to the right of the decimal point (s). For instance, DECIMAL(10,3)
specifies decimal data with a total of 10 digits, 3 of which are to the right of the decimal point.

In Table 2, REAL and INTEGER are generic data-type keywords that specify floating-point and integer
storage, respectively. if you use the REAL or INTEGER keywords to type data, the actual data type
(SINGLE, DOUBLE, GFLOAT or HFLOAT in VAX—11 BASIC, BYTE, WORD, or LONG) depends
on the current default. That is, if you do not explicitly type REAL and INTEGER data as SINGLE,

DOUBLE, BYTE, WORD, and so on, BASIC uses the current defaults for REAL and INTEGER.

You can specify data-type defaults in the BASIC environment with the SET and COMPILE commands
or in a program module with the OPTION statement. On VAX/VMS systems, you can also specify
data-type defaults from DCL level with the DCL BASIC command. You can also specify whether
program values are to be typed implicitly or explicitly. The following sections discuss data-type
defaults and implicit and explicit data typing.

4.1 Implicit Data Typing

You implicitly assign a data format to program values by adding a suffix to the variable name or
constant value or by specifying no suffix with the variable name or constant value:

* A dollar sign suffix ($) specifies STRING storage.
* A percent sign suffix (%) specifies INTEGER storage.

* No suffix character specifies storage of the default type, which may be INTEGER, REAL, or
DECIMAL (VAX—11 BASIC only).

Suffixes on variable names and program constants specify string, integer, or floating-point storage of
the default size. No suffix character implies that the value is of the default type (integer, floating-
point, or packed decimal in VAX—11 BASIC). With implicit data typing, the range and precision for
integer, floating-point, and packed decimal values (VAX—11 BASIC only) is determined by the current
default data type. The default data type is determined by the system default (REAL) or the data type set
for the BASIC environment with the SET or COMPILE commands. VAX—11 BASIC qualifiers are

described in Table 16. BASIC-PLUS-2 qualifiers are described in Table 17.

Note that if you compile your program with the /TYPE: EXPLICIT qualifier, you cannot type program
values implicitly. All program values must be explicitly assigned a data type in your program or
BASIC signals an error.

Good programming practice dictates that you do not mix implicit and explicit data typing in expres-
sions or in program units and that you do not rely extensively on implicit data typing. Explicit data
typing makes programs easier to understand and maintain because the data type of all program values
is explicitly spelled out in the program and is not as dependent upon compilation defaults that may
change.

4.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to specify the type, range and preci-
sion of your program values. Declarative statements associate attributes such as data type and value
with user identifiers. For example:

BASIC Reference Manual 13

100 DECLARE STRING CONSTANT ZIP_CODE = 03060
DECLARE STRING EMP_NAME . DOUBLE WITH_TAX: SINGLE INT_RATE

The first DECLARE statement associates the constant value 03060 and the STRING data type with a
constant named ZIP_CODE. The second DECLARE statement associates the STRING data type with
EMP_NAME, the DOUBLE data type with WITH_TAX, and the SINGLE data type with INT_RATE.
No constant values are associated with user identifiers in the second DECLARE statement because
they are variable names. :

With explicit data typing, each program variable within a program can have a different range and
precision. This gives you more control over your program. Because you can explicitly assign data
types to variables, constants, arrays, parameters, and functions, all integer data, for instance, does not
have to take the compilation defaults. Likewise, all floating-point data does not have to take the
compilation default because you can declare floating-point values as SINGLE or DOUBLE in
BASIC-PLUS-2 and as SINGLE, DOUBLE, GFLOAT, or HFLOAT in VAX—11 BASIC. See the BASIC
User’s Guide and the sections on these statements in this manual for more information on explicitly
typing data.

Using the REAL and INTEGER keywords to explicitly type program values allows you to write pro-
grams that are transportable across systems, since these data-type keywords specify that all floating-
point and integer data take the current default for REAL and INTEGER. The data type INTEGER, for
example, specifies only that the constant or variable is an integer. The actual subtype (BYTE, WORD,
or LONG) depends on the default set with the COMPILE or SET command, the VAX—11 BASIC DCL
BASIC command, or the OPTION statement.

You can also specify a particular data type size for values declared INTEGER or REAL with compila-
tion qualifiers. The qualifier /DOUBLE, for instance, specifies that all data typed REAL is to be treated
as double-precision data.

The /TYPE: EXPLICIT qualifier or OPTION TYPE = EXPLICIT statement allows you to specify that all
program data must be explicitly typed. Compiling a program with /TYPE: EXPLICIT or specifying
OPTION TYPE=EXPLICIT means that any program value not explicitly declared causes BASIC to
signal an error.

For new applications, DIGITAL recommends using BASIC's explicit data typing features. See Chapter
5 of the BASIC User’s Guide for more information.

5.0. Constants

A constant is a numeric or character literal that does not change during program execution. A
constant can also be named and associated with a data type. BASIC allows the following types of
constants:

¢ Numeric
Floating-point
Integer
Packed decimal (VAX—11 BASIC only)

e String (ASCII characters enclosed in quotation marks)
A constant of any of the above data types can be named with the DECLARE CONSTANT statement.

You can then refer to the constant by name in your program. Refer to Section 5.3 for information on
naming constants.

14 BASIC Reference Manual

You can also use a special explicit literal notation to specify the value and data type of a numeric
literal. Explicit literal notation is discussed in Section 5.4.

If you do not specify a data type for a numeric constant with the DECLARE CONSTANT statement or
with explicit literal notation, the type and size of the constant is determined by the default REAL,
INTEGER, or (VAX—11 BASIC only) DECIMAL set:

e At installation (BASIC-PLUS-2 only)

e With the DCL BASIC command (VAX-11 BASIC only)
¢ With the SET command

e With the COMPILE command

¢ With the OPTION statement

BASIC also supplies predefined constants for ease in representing some ASCII characters and mathe-
matical values.

The following sections discuss numeric and string constants, named constants, explicit literal nota-
tion, and predefined constants.

5.1 Numeric Constants

A numeric constant is a literal or named constant whose value never changes. In VAX-11 BASIC, a
numeric constant can be a floating-point number, an integer, or a packed decimal number. In
BASIC-PLUS-2, a numeric constant can be either a floating-point number or an integer. The type and
size of numeric constants are determined by the current default values, the data-type qualifiers
specified with the COMPILE command, the defaults set by the SET command, the data type specified
in a DECLARE CONSTANT or OPTION statement, or by explicit literal notation.

If you use a declarative statement to declare data type and name a numeric constant, the constant is
of the type and size specified in the statement. For example:

100 DECLARE BYTE CONSTANT AGE = 12

This example associates the numeric literal 12 and the BYTE data type with the user identifier AGE.
To specify a data type for unnamed numeric constants, you must use the explicit literal notation
format described in Section 5.4.

5.1.1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more decimal digits, either
positive or negative, an optional decimal point and an optional exponent (E notation). If the default
data type is INTEGER, a decimal point or an E is required or BASIC treats the literal as an INTEGER. In
VAX—11 BASIC, if the default data type is DECIMAL, an E is required or VAX—11 BASIC treats the
literal as a packed decimal value. The following, for example, are REAL literals:

Default type REAL:

—8.738
239.21E-6
.79

299

BASIC Reference Manual 15

Default type INTEGER:

—-8.738
239.21E-6
.79

299t

Default type DECIMAL (VAX—11 BASIC only):

-8.738E
239.21t-6
.79E

299E

Very large and very small numbers can be represented in E (exponential) notation. This form of
mathematical shorthand uses the format:

+ number E = n

where:

+ or— Is the number’s sign. The plus sign is optional, but negative numbers require a minus
sign.

number Is the number carried to a maximum of:
¢ 6 decimal places for SINGLE precision
¢ 16 decimal places for DOUBLE precision
® 15 decimal places for GFLOAT precision (VAX—11 BASIC only)
* 33 decimal places for HFLOAT precision (VAX—11 BASIC only)
E Represents the words ““times 10 to the power of.”

+ or— Is the exponent’s sign. The plus sign is optional, but the minus sign is mandatory for
negative exponents.

n Is an integer constant (the power of 10). If an exponent sign is specified, n can be zero,
but not blank. If an exponent sign is not specified, n can be blank.

Table 3 compares numbers in standard and E notation.

Table 3: Numbers in E notation

Standard Notation E Notation

.0000001 .1E-06

1,000,000 J1E+07
-10,000,000 - 1E+08
100,000,000 TE+09
1,000,000,000,000 JE+13

16 BASIC Reference Manual

The range and precision of floating-point constants are determined by the current default data types or
the explicit data type used in the DECLARE CONSTANT statement. There are, though, limits to the
range allowed for numeric data types. Table 2 lists BASIC data types and ranges. BASIC signals the
fatal error ““floating point error or overflow’” when your program specifies a constant value outside of
the allowable range for a floating-point data type.

5.1.2 Integer Constants

An integer constant is a literal or named constant, either positive or negative, with no fractional digits
and an optional trailing percent sign (%). The percent sign is required for integer literals if the default
type is not INTEGER. For example:

Default type INTEGER:

81257
—3477
79

Default type REAL or (VAX=11 BASIC only) DECIMAL:

81257%
-3477%
79%

The range of allowable values for integer constants is determined by either the current default data
type or the explicit data type used in the DECLARE CONSTANT statement. Table 2 lists BASIC data
types and ranges. BASIC signals an error for a number outside the applicable range.

BASIC treats numeric literals as floating-point numbers unless:
¢ The default data type is INTEGER
e The literal has a % suffix

Thus, BASIC must convert numeric literals when assigning them to integer variables. This means that
your program runs somewhat slower than it would if integer values were explicitly declared. You can
prevent this conversion step by using percent signs for integer constants, numeric literal notation, or
named integer constants.

Note

You cannot use percent signs in integer constants that appear in DATA statements. An
attempt to do so causes BASIC to signal ‘“Data format error’”” (ERR=50).

5.1.3 Packed Decimal Constants (VAX-11 BASIC Only)

A packed decimal constant is a number, either positive or negative, that has a specified number of
digits and a specified decimal point position (scale). You specify the number of digits (d) and the
position of the decimal point (s) when you declare the constant as a DECIMAL. If the constant is not
declared, the number of digits and the position of the decimal are determined by the representation of
the constant. For example, when the default data type is DECIMAL, 1.234 is a DECIMAL(4,3) con-
stant, regardless of the default decimal size. Likewise, using explicit literal notation, ““1.234"P is a

BASIC Reference Manual 17

DECIMAL(4,3) constant, regardless of the default data type and default DECIMAL size. Explicit literal
notation is described in Section 5.4. See the BASIC User’s Guide for more information on packed
decimal numbers.

5.2 String Constants

String constants are either string literals or named constants. A string literal is a series of characters
enclosed in string delimiters. Valid string delimiters are:

¢ Double quotation marks (‘‘text’’)

¢ Single quotation marks (‘text’)

You can embed double quotation marks within single quotation marks (‘this is a “text” string’) and
vice versa (“this is a ‘text’ string”’). Note, however, that BASIC does not accept incorrectly paired
quotation marks and that only the outer quotation marks must be paired. The following character
strings, for example, are valid:

““The record number does not exist.”’
“I'm here!”
““The terminating ‘condition’ is equal to A$.”
““REPORT 543"
The following strings are not valid:
“’Quotation marks do not match’
“No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, or any ASCII character except a
line terminator or NUL (ASCII code 0). If you need a string constant that contains a NUL, you should
use the NUL predefined constant in a compile-time constant expression or explicit literal notation.
See Section 5.4 in this manual for information on explicit literal notation and the BASIC User’s Guide
for more information on the NUL predefined constant.

BASIC determines the value of the string constant by scanning all its characters. For example, because
of the number of spaces between the delimiters and the characters, these two string constants are not
the same:

“ END-OF—FILE REACHED "
““END-OF-FILE REACHED"”

BASIC stores every character between delimiters exactly as you type it into the source program,
including:

® Lowercase letters (a—z)
® Leading, trailing, and embedded spaces
e Tabs

e Special characters

18 BASIC Reference Manual

BASIC does not print the delimiting quotation marks when executing the program. That is, the value
of the string constant does not include the delimiting quotation marks. For example:

100 PRINT "END-OF-FILE REACHED"
1
!
!

200 END

RUNNH
END-OF-FILE REACHED

BASIC prints double or single quotation marks when they are enclosed in a second paired set:

100 PRINT ‘FAILURE CONDITION: "RECORD LENGTH"’
!
!

200 END

RUNNH

FAILURE CONDITION: "RECORD LENGTH®

5.3 Named Constants

BASIC allows you to name constants. You can assign a mnemonic name to a constant that is internal
to your program and refer to the constant by name throughout the program. You can also name a
constant that is external to your program and refer to it by name throughout your program. This
naming feature is useful for the following reasons:

e If a commonly-used constant must be changed, you need to make only one change in your
program.

e A logically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for example, to specify the number
of elements in an array.

You cannot change the value of an explicitly named constant during program execution. To change
the value of a constant, you must change the program statement that names the constant and declares
its value and then recompile the program.

5.3.1 Naming Constants Within a Program Unit
You name constants within a program unit with the DECLARE statement. For example:

100 DECLARE DOUBLE CONSTANT Preferred_rate = ,147
DECLARE SINGLE CONSTANT Normal_rate = ,1B2
DECLARE DOUBLE CONSTANT RisKy_rate = ,175
!
!
!
500 New_bal = 0Old_bal *# (1 + Preferred_rate) "Years_pravment

BASIC Reference Manual 19

When interest rates change, only three lines have to be changed rather than every line that contains
an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly declared variables listed in
Section 6.1. No constant name can have embedded spaces.

The value associated with a named constant can be a compile-time expression as well as a literal
value. For example:

100 DECLARE STRING CONSTANT Condrats = B
B e +" + LF + CR + &
"} Condratulations! i" + CR + CR + &
LI S 4+

500 PRINT Condrats
!
]
|

1000 PRINT Condrats

Named constants can save you programming time (since you don’t have to retype the congratulations
box every time you want to display it) and execution time (since the named constant is known at
compile time).

Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic, relational, and
logical operators except exponentiation. You cannot use built-in functions in DECLARE CONSTANT
expressions.

BASIC-PLUS-2 allows you to name floating-point, integer, and string constants, but floating-point
constants cannot be named as expressions. Only STRING and INTEGER constants can be named as
expressions in DECLARE CONSTANT statements. VAX—11 BASIC allows constants of all data types to
be named as expressions. For example:

100 DECLARE DOUBLE CONSTANT &
MIN_VALUE Qs &
MAX _VALUE PI/2

This example is valid only in VAX=11 BASIC.

Note that you can specify only one data type in a DECLARE CONSTANT statement. To declare a
constant of a different data type, you must use a second DECLARE CONSTANT statement.

5.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL statement. For example:

200 EXTERNAL LONG CONSTANT 5S5%._NORMAL
EXTERNAL WORD CONSTANT IS.SUC

The first line declares the VAX/VMS status code SS$_NORMAL to be an external LONG constant.
The second line declares 1S.SUC, a success code, to be an external WORD constant. Note that
VAX—11 BASIC allows external BYTE, WORD, LONG, and SINGLE constants, while BASIC—PLUS-2
allows only external WORD constants. The linker or task builder supplies the values for the constants
specified in EXTERNAL statements.

20 BASIC Reference Manual

External constant names cannot exceed six characters in BASIC-PLUS—2 and 31 characters in
VAX-11 BASIC and must conform to the rules for naming external variables listed in Section 6.1. No
constant name can have embedded spaces.

The types of external constants you can refer to vary from system to system. In VAX—11 BASIC, the
named constant might be a system status code or a global constant declared in a VAX—11 MACRO or
VAX-11 BLISS program. In BASIC-PLUS-2, the named constant might be a global constant declared
in a MACRO-11 program or an RMS constant. See the user’s guide for your system for more informa-
tion on external constants available to your programs.

5.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a special notation. The format of
this notation in VAX—11 BASIC is:

[radix] num-str-lit [data-type]
Radix specifies an optional base.
In VAX=11 BASIC, radix can be:
e D Decimal (base 10)

e B Binary (base 2)

¢ O Octal (base 8)

e X Hexadecimal (base 16)

The VAX=11 BASIC default radix is D, but you can also specify binary, octal, and hexadecimal
integer literals. Binary, octal, and hexadecimal notation allows you to set or clear individual bits in
the representation of an integer. This feature is useful in forming conditional expressions and in using
logical operations.

In BASIC-PLUS-2, num-str-lit is always treated as decimal (base 10), so the format for explicit literal
notation in BASIC-PLUS-2 is:

num-str-lit [data-type]
Num-str-lit is a quoted string that can consist of digits and an optional decimal point when the radix is

decimal. You can also use E notation for floating-point constants. A leading minus sign cannot appear
inside the quotation marks, but can appear before the radix.

In VAX—11 BASIC, num-str-lit can be the digits 0 and 1 when the radix is binary, the digits 0 through 7
when the radix is octal, and the digits 0 through F when the radix is hexadecimal.

Data-type is an optional single letter that corresponds to a data-type keyword, excluding INTEGER
and REAL:

e B BYTE

e W WORD
el LONG
e SINGLE

(continued on next page)

BASIC Reference Manual 21

e D DOUBLE

e G GFLOAT (VAX=11 BASIC only)

e H HFLOAT (VAX=11 BASIC only)

e P DECIMAL (VAX—11 BASIC only)

For example:
“255"L Specifies a LONG decimal constant with a value of 255.
“4000"'F Specifies a SINGLE decimal constant with a value of 4000.

—"125""B Specifies a BYTE decimal constant with a value of —125.

A quoted numeric string alone, without a radix and a data-type, is a string literal, not a numeric
literal. For example:

“255"W Specifies a WORD decimal constant with a value of 255.
“255" Is a string literal.

In VAX-11 BASIC, if you specify a binary, octal, or hexadecimal radix, data-type must be an integer.
If you do not specify a data type, BASIC uses the default integer data type. For example:

B“11111111”B Specifies a BYTE binary constant with a value of —1.
B“11111111”"W Specifies a WORD binary constant with a value of 255.

B“11111111” Specifies a binary constant of the default data type (BYTE, WORD, or LONG).
B“11111111"F Is illegal because F is not an integer data type.

XFF"'B Specifies a BYTE hexadecimal constant with a value of —1.

X“FF"'W Specifies a WORD hexadecimal constant with a value of 255.

X“FF"'D Is illegal because D is not an integer data type.

O“377"'B Specifies a BYTE octal constant with a value of —1.

O"377"W Specifies a WORD octal constant with a value of 255.

0377"G Is illegal because G is not an integer data type.

When you specify a radix other than decimal, VAX—11 BASIC treats the numeric string as an unsigned
integer. When, however, this value is assigned to a variable or used in an expression, VAX—11 BASIC
treats the variable as a signed integer. For example:

100 DECLARE BYTE A
A = B"11111111"B
PRINT A

RUNNH

-1

1

In this example, VAX—11 BASIC sets all eight bits in storage location A. Because A is a BYTE integer, it
has only 8 bits of storage and its value is ~1 (the 8-bit two’s complement of 1 is 11111111). If the
data type were W (WORD), VAX—11 BASIC would set the bits to 0000000011111111, and its value
would be 255.

22 BASIC Reference Manual

Note that in VAX—11 BASIC a D can appear in both the radix position and the data type position. D in
the radix position specifies that the numeric string is to be treated as a decimal number (base 10). D in
the data type position specifies that the value is to be treated as a double-precision, floating-point
constant. A P in the data type position specifies a packed decimal constant. For example:

“255"D Specifies a double-precision constant with a value of 255.

255.55”P Specifies a DECIMAL constant with a value of 255.55.

You can also use explicit literal notation to represent a single-character string in terms of its 8-bit
ASCII value. The format in VAX=11 BASIC is:

[radix] num-str-lit C

The format in BASIC-PLUS-2 is:

num-str-lit C

The letter C is an abbreviation for CHARACTER. The value of the numeric string must be between 0

and 255, inclusive.

This feature lets you create your own compile-time string constants containing nonprinting charac-

ters. For example:

100 DECLARE STRING CONSTANT CONTROL_G = "7"C
PRINT CONTROL_G

This example declares a string constant named CONTROL_G (ASCII decimal value 7). When BASIC
executes the PRINT statement, the terminal bell sounds.

See the BASIC User’s Guide for more information on explicit literal notation.

5.5 Predefined Constants

Predefined constants are symbolic representations of either: 1) ASCII characters or 2) mathematical
values. They are also called compile-time constants because their value is known at compile time
rather than at run time. Predefined constants:

¢ Format program output to improve readability

¢ Make source code easier to understand

Table 4 lists predefined constants supplied by BASIC, their ASCII values, and their purposes.

Table 4: Predefined Constants

Decimal
ASCII
Constant Value Purpose
BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves the cursor one position to the left
HT (Horizontal Tab) 9 Moves the cursor to the next horizontal tab stop

(continued on next page)

BASIC Reference Manual 23

@

Table 4: Predefined Constants (Cont.)

Decimal
ASCll
Constant Value Purpose
LF (Line Feed) 10 Moves the cursor to the next line
VT (Vertical Tab) 11 Moves the cursor to the next vertical tab stop
FF (Form Feed) 12 Moves the cursor to the start of the next page
CR (Carriage Return) 13 Moves the cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen formatting, and alternate graphics
S (Shift In) 15 Shifts in for communications networking, screen formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
Pi None Represents the number Pl with the precision of the default floating-point data type

You can use predefined constants in many ways. For example, to print and underline a word on a

hard copy terminal:

110 PRINT "MAME:" + BS + BS + BS + BS + BS + "_____ "
120 END

RUNNH

NAME:

To print and underline a word

100
110 END
RUNNH

NAME:

PRINT ESC + "[4mNAME:" + ESC +

on a VT100 video display terminal:

n EQM"

Note that the “m’’ in the above example must be lowercase.

You can also create your own predefined constants with the DECLARE CONSTANT statement. For

example:

10 DECLARE STRING CONSTANT Underlined_mame = ESC + "[AmNAME:" + ESC + "[Om"
20 DECLARE DOUBLE CONSTANT D_PI = PI

30 PRINT Underlined_name

PRINT D_PI,sPI

Line 10 defines Underlined_name as a string constant equivalent to the constant displayed by line
100 in the previous example. Line 20 defines D_PI as a DOUBLE constant equal to the predefined
constant P1. If the default REAL data size is SINGLE, the program can use both single-precision Pl and
double-precision D_PI. See the BASIC User’s Guide for more information on predefined constants
and their use in BASIC programs.

24

BASIC Reference Manual

6.0 Variables

A variable is a named quantity whose value can change during program execution. Each variable
name refers to a location in the program’s storage area. Each location can hold only one value at a
time. Variables of all data types can have subscripts that indicate their position in an array.

Depending on the program operations specified, the value of a variable can change from statement to
statement. BASIC uses the most recently assigned value when performing calculations. This value
remains until another statement assigns a new value to the variable.

You can declare variables implicitly or explicitly.
BASIC accepts these general types of variables:

® Floating-point

® |nteger

e String

® RFA

® Packed Decimal (VAX-11 BASIC only)

® Record (VAX—11 BASIC only)

See Chapter 9 in the BASIC User’s Guide for more information on RFA variables and Chapter 6 in
BASIC on VAX/VMS Systems for more information on record data structures.

6.1 Variable Names

The name given to a variable depends on whether the variable is internal or external to the program
and whether the variable is implicitly or explicitly declared.

1. The name of an internal, explicitly declared variable must conform to the following rules:

® The name consists of from 1 to 31 characters.

® The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

® The last character of the name cannot be a dollar sign ($) or a percent sign (%).

® The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

2. The name of an internal, implicitly declared variable must conform to the following rules:

® The name consists of from 1 to 31 characters.

® The first character of the name must be an upper- or lowercase alphabetic character (A
through 7).

® The last character of the name can be either a dollar sign ($) to indicate a string variable or a
percent sign (%) to indicate an integer variable. If the last character is neither a dollar sign
nor a percent sign, the name indicates a variable of the default type.

BASIC Reference Manual 25

® The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

3. The name of an external, explicitly declared variable in VAX-=11 BASIC must follow the rules
for naming an internal, explicitly declared variable.

4. The name of an external, explicitly declared variable in BASIC~PLUS—2 must conform to the
following rules:

® The name consists of from one to six characters.

® The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

® The remaining characters, if present, can be any combination of upper- or lowercase letters

(A through Z), numbers (0 through 9), dollar signs ($), or periods (.).

5. A program cannot have external, implicitly declared variables since all implicitly declared
names except SUB subprogram names are internal to the program.

In all cases, no variable name can have embedded spaces.

6.2 Implicitly Declared Variables

BASIC accepts three types of implicitly declared variables:

® Floating-point (or default data type)
® Integer

® String

The name of an implicitly declared variable defines its data type. Integer variables end with a percent
sign (%), string variables end with a dollar sign ($), and variables of the default type (usually floating-
point) end with any allowable character except a percent sign or dollar sign. All three types of
variables must conform to the rules listed in Section 6.1 for naming variables. The current data-type
default (INTEGER, REAL, or, in VAX-11 BASIC, DECIMAL) determines the data type of implicitly
declared variables that do not end in a percent sign (%) or dollar sign ($).

A floating-point variable is a named location that stores a single floating-point value. The current
default size for floating-point numbers (SINGLE, DOUBLE, or, in VAX—11 BASIC, GFLOAT or
HFLOAT) determines the data type of the floating-point variable. The following are valid floating-
point variable names:

C L...5 ID_NUMBER
M1 BIG47 STORAGE.LOCATION.FOR.XX
F67T.) Z2. STRESS_VALUE

If a numeric value of a different data type is assigned to a floating-point variable, BASIC converts the
value to a floating-point number.

26 BASIC Reference Manual

An integer variable is a named location that stores a single integer value. The current default size for
integers (BYTE, WORD, or LONG) determines the data type of an integer variable. The following are
valid integer variable names:

ABCDEFG% C_8% RECORD.NUMBER%
B% D6E7 % THE.VALUE.LWANT%

If the default data type is INTEGER, the percent suffix (%) is not necessary.

If you assign a floating-point or decimal (VAX—11 BASIC only) value to an integer variable, BASIC
truncates the fractional portion of the value. It does not round to the nearest integer. For example:

100 BY = -5.7

BASIC assigns the value —5 to the integer variable, not —6.

A string variable is a named location that stores strings. The following are valid string variable names:

C1$ M$ EMPLOYEE_NAME$
L.6$ F34G$ TARGET.RECORD$
ABC1$ T..$ STORAGE_SHELF_IDENTIFIER$

Strings have both value and length. BASIC sets all string variables to a default length of zero before
program execution begins, except those in a COMMON, MAP, or virtual array. See Sections 5.0 and
35.0 in Part [V of this manual for information on string length in COMMON and MAP areas. See the
BASIC User’s Guide for information on default string length in virtual arrays.

During execution, the length of a character string associated with a string variable can vary from zero
(signifying a null or empty string) to 65535 characters in VAX—11 BASIC or 32767 characters in
BASIC-PLUS-2.

6.3 Explicitly Declared Variables

In addition to implicitly declared variables described in the previous sections, BASIC lets you explic-
itly assign a data type to a variable or an array. For example:

100 DECLARE DOUBLE Interest_rate

Data-type keywords are described in Section 4.0. For more information on explicit declaration of
variables, see the sections on COMMON, DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL,
MAP, and SUB in Part IV of this manual and Chapter 5 in the BASIC User’s Guide.

6.4 Subscripted Variables and Arrays

A subscripted variable is part of an array. Arrays can be of any valid data type. Subscripted variables
and arrays follow the same naming conventions as nonsubscripted variables. Subscripts follow the
variable name in parentheses and define the variable’s position in the array. When you create an
array, bounds follow the array name in parentheses and define the maximum size of the array. For
example:

100 DECLARE STRING Emp_name(1000)
200 FOR I%Z = 0% TO 1000%
INPUT "Emplovee name"SEmp_name(I%)
NEXT I%

BASIC Reference Manual 27

The DECLARE statement in the example on the previous page sets the bounds of array Emp_name to
1000. Thus, the maximum value for an Emp_name subscript is 1000. The bounds of the array define
the maximum value for a subscript of that array.

In VAX—11 BASIC, subscripts can be any positive integer value from 0 to 2147483646 in LONG
mode. In BASIC-PLUS-2, subscripts can be any non-negative integer value from 0 to 32766.

Note

The compiler signals an error if a subscript is bigger than the allowable range. Also,
the amount of storage the system can allocate depends on available memory. There-
fore, very large arrays may cause an internal allocation error.

An array is a set of data ordered in any number of dimensions. A one-dimensional array, like
Emp_name(1000), is called a list or vector. A two-dimensional array, like Payroll_data(5,5), is called
a matrix. An array of more than two dimensions, like Big_array(15,9,2), is called a tensor.

BASIC arrays are always zero-based. That is, the number of elements in any dimension always
includes element number zero. For example, the array Emp_name(1000) contains 1001 elements,
since BASIC allocates element zero. Payroll_data(5,5) contains 36 elements because BASIC always
allocates row and column zero.

For all arrays except virtual arrays, the total number of array elements cannot exceed 2147483647
in VAX-11 BASIC and 32767 in BASIC-PLUS-2. For example, VAX-11 BASIC allows array
A(2147483646) but does not allow array A(1,2147483646). BASIC-PLUS-2 allows array A(32766)
but does not allow array A(1,32766).

VAX—11 BASIC arrays can have up to 32 dimensions. BASIC-PLUS-2 arrays can have up to eight
dimensions. You can also specify the type of data the array contains with data-type keywords. Table 2
lists BASIC data types.

An element in a one-dimensional array has a variable name followed by one subscript in parentheses.
There can be a space between the array name and the parenthetical subscripts. For example:
A(6%)
B (6%)
C$ (6%)

A(6%) refers to the seventh item in this list:

A(0%) A(1%) A(2%) A(3%) A(4%) A(5%) A(6%)
An element in a two-dimensional array has two subscripts, in parentheses, following the variable
name. The first subscript specifies the row number, the second specifies the column. Use a comma to

separate the subscripts. There can be a space between the array name and the parenthetical sub-
scripts. For example:

A (7%,2%) A% (4%,6%) A$(10%,10%)

28 BASIC Reference Manual

In the following table, the arrow points to the element specified by the subscripted variable
A%(4%,6%):

COL UMNS
0 1 2 3 4 5 o
RO O0O0OOUO OO 0O
O1 00O0OO0OOTO
W2 0 0O0O0O0O0TUOO
S 3 00O0O0O0O0TO
4 0 0 0 0 0 0 0 0 =~— A%4%,6%)

An element in an array has as many subscripts as there are dimensions. An element of
Big_array(15%,9%,2%), for example, would have three subscripts.

Although a program can contain a variable and an array with the same name, this is regarded as poor
programming practice. Variable A and the array A(3%,3%) are separate entities and are stored in
completely separate locations and should have different names.

Note

A program cannot contain two arrays with the same name and a different number of
subscripts. For example, the arrays A(3%) and A(3%,3%) are invalid in the same
program.

BASIC arrays can be redimensioned at run time. See Chapter 7 in the BASIC User’s Guide for more
information on arrays.

6.5 Initialization of Variables

BASIC sets variables to zero or null values at the start of program execution. Variables initialized by
BASIC include:

* Numeric variables and in-storage array elements (except those in MAP or COMMON statements).
® String variables (except those in MAP or COMMON statements).

e Local variables in function definitions. In addition, BASIC sets these values to zero each time the
program calls the function.

* Variables in subprograms. Subprogram variables are initialized to zero or the null string each time
the subprogram is called.

BASIC does not initialize virtual arrays.

Note

In BASIC-PLUS-2, variables in a MAP statement referenced in an OPEN statement are
initialized to zero or the null string when the file is opened. In VAX—11 BASIC, these
variables are not initialized. You can also use MACRO-11 routines to initialize MAP
and COMMON areas. See BASIC on RSX—11M/M—PLUS Systems or BASIC on RSTS/E
Systems for more information.

BASIC Reference Manual 29

7.0 Expressions

BASIC expressions consist of operands (numbers, strings, constants, variables, functions, or array
elements) separated by:

¢ Arithmetic operators
e String operators

¢ Relational operators
e Logical operators

All BASIC expressions except string concatenation and invocations of string-valued functions yield
numeric values. The way you combine numeric operators and operands and use the resulting values
allows you to produce:

* Numeric expressions
e String expressions

¢ Conditional expressions

BASIC evaluates expressions according to operator precedence and uses the results in program execu-
tion. Parentheses can appear in expressions to group operands and operators, thus controlling the
order of evaluation.

The following sections explain the types of expressions you can create and the way BASIC evaluates
expressions.

7.1 Numeric Expressions

Numeric expressions consist of floating-point, integer, or packed decimal (VAX—11 BASIC only)
operands separated by arithmetic operators and optionally grouped by parentheses. Table 5 shows
how numeric operators work in numeric expressions.

Table 5: Arithmetic Operators

Operator | Example Use
+ A+ B | AddBto A
- A-B Subtract B from A
* A=*B Multiply A by B
/ A/B Divide A by B
° A'B Raise A to the power B
ok AxxB Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same expression. Exceptlons
are the unary plus and unary minus. The following expressions are valid:

Ax+ B
A*—-B
A * (-B)
A*x+ -+ —B

30 BASIC Reference Manual

The following expression is not valid:
A—=+B

An operation on two numeric operands of the same data type yields a result of that type. For example:
A% + B% vyields an integer value of the default type.
G3 * M5 yields a floating-point value if the default type is REAL.

If the result of the operation exceeds the range of the data type, VAX—11 BASIC signals an overflow
error message. For example:

10 DECLARE BYTE As B

A = 127
B = 127
PRINT A + B

g8 END

This example causes VAX—11 BASIC to signal the error “’Integer error or overflow’” because the sum of
A and B (254) exceeds the range of —128 to + 127 for BYTE integers. Similar overflow errors occur for
REAL and DECIMAL data types whenever the result of a numeric operation is outside the range of the
data type.

Assigning a value of one data type to a variable of a different data type changes the assigned value’s
data type to the variable’s data type. For example:

10 AL = 5.1 * B.3

This example assigns the value 32 to the integer variable A% even though the floating-point value of
the expression is 32.13. This is called numeric conversion. See Chapter 5 of the BASIC User’s Guide
for more information on numeric conversion.

7.1.1 Floating-Point and Integer Promotion Rules

When an expression contains operands with different data types, the data type of the result is deter-
mined by BASIC’s data type promotion rules:

¢ With one exception, BASIC promotes operands with different data types. to the lowest common data
type that can hold the largest or most precise possible value of either operand’s data type, then
performs the operation in that data type, and yields a resuit of that data type.

® The exception to the previous rule is that when an operation involves SINGLE and LONG data
types, BASIC promotes the LONG data type to SINGLE, rather than to DOUBLE, performs the
operation, and yields a result of the SINGLE data type.

Note that BASIC does a sign extend when converting BYTE and WORD integers to a higher INTEGER
data type (WORD or LONG). That is, the high order bit (the sign bit) determines how the additional
bits are set when the BYTE or WORD is converted to WORD or LONG. If the high order bit is zero
(positive), all higher-order bits in the converted BYTE or WORD are set to zero. If the high order bit is
one (negative), all higher-order bits in the converted BYTE or WORD are set to one.

Table 6 lists the data type results possible in numeric expressions that combine BYTE, WORD,
LONG, SINGLE, and DOUBLE data. Table 7 lists the data type results possible in numeric expres-
sions that combine the VAX—11 BASIC only data types, GFLOAT and HFLOAT. Note that in VAX-11
BASIC, when the operands are DOUBLE and GFLOAT, BASIC promotes both values to HFLOAT, and

BASIC Reference Manual 31

returns an HFLOAT value. The promotion of DOUBLE and GFLOAT to HFLOAT is necessary because
a DOUBLE value is more precise than a GFLOAT value, but cannot contain the largest possible
GFLOAT value. Consequently, BASIC promotes these data types to a data type that can hold the
largest and most precise value of either operand.

Table 6: Result Data Types in BASIC Expressions

Operand 2

Operand 1 BYTE WORD LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE
WORD WORD WORD LONG SINGLE DOUBLE
LONG LONG LONG LONG SINGLE DOUBLE
SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Table 7: VAX—11 BASIC Result Data Types

Operand 2

Operand 1 GFLOAT HFLOAT

BYTE GFLOAT HFLOAT
WORD GFLOAT HFLOAT
LONG GFLOAT HFLOAT
SINGLE GFLOAT HFLOAT

DOUBLE HFLOAT HFLOAT
GFLOAT GFLOAT HFLOAT
HFLOAT HFLOAT HFLOAT

As Table 6 shows, if one operand is SINGLE and one operand is DOUBLE, BASIC promotes the
SINGLE value to DOUBLE, performs the specified operation, and returns the result as a DOUBLE
value. This promotion is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible SINGLE values. If BASIC
did not promote the SINGLE value and the operation yielded a result outside of the SINGLE range,
loss of precision and significance would occur.

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple hierarchy: if all operands
in an expression are these data types, the result of the expression is the highest data type used in the
expression.

7.1.2 DECIMAL Promotion Rules (VAX-11 BASIC only)

VAX—11 BASIC also allows the DECIMAL(d,s) data type. The number of digits (d) and the scale or
position of the decimal point (s) in the result of operations involving a DECIMAL value depends on the

32 BASIC Reference Manual

data type of the other operand. If one operand is DECIMAL and the other is DECIMAL or INTEGER,
the d and s values of the result are determined as follows:

® |f both operands are typed DECIMAL, and if both operands have the same digit (d) and scale (s)
values, no conversions occur and the result of the operation has exactly the same d and s values as
the operands. Note, however, that overflow can occur if the result exceeds the range specified by
the d value.

o If both operands are DECIMAL but have different digit and scale values, BASIC always uses the
larger number of specified digits for the result.

For example:

100 DECLARE DECIMAL(S3:+2) A
DECLARE DECIMAL(4:3) B

Variable A allows three digits to the left of the decimal point and two digits to the right. Variable B
allows one digit to the left of the decimal point and three digits to the right. Therefore, the result
allows three digits to the left of the decimal point and three digits to the right:

A _—_——
B

Result N,

e |f one operand is typed DECIMAL and one is typed INTEGER, the INTEGER value is converted to a
DECIMAL(d,s) data type as follows:

BYTE is converted to DECIMAL(3,0).
WORD is converted to DECIMAL(5,0).
LONG is converted to DECIMAL(10,0).

BASIC then determines the d and s values of the result by evaluating the d and s values of the
operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data type. If one operand is
DECIMAL and one is floating-point, the DECIMAL value is converted to a floating-point value. The
total number of digits (d) in the DECIMAL value determines its new data type, as shown in Table 8.

Table 8: Result Data Types for DECIMAL Data

Number of Floating-point Operands
DECIMAL Digits
in Operand SINGLE DOUBLE GFLOAT HFLOAT
1-6 SINGLE DOUBLE GFLOAT HFLOAT
7-15 DOUBLE DOUBLE GFLOAT HFLOAT
16 DOUBLE DOUBLE HFLOAT HFLOAT
17-31 HFLOAT HFLOAT HFLOAT HFLOAT

BASIC Reference Manual 33

If the value of d is between 7 and 15, the operand is converted to:

e DOUBLE if the fioating-point operand is SINGLE or DOUBLE
e GFLOAT if the floating-point operand is GFLOAT
e HFLOAT if the fioating-point operand is HFLOAT

Thus, a DECIMAL(8,5) operand is converted to DOUBLE if the other operand is SINGLE or DOUBLE,
to GFLOAT if the other operand is GFLOAT, and to HFLOAT if the other operand is HFLOAT.

Note also that exponentiation of a DECIMAL data type returns a REAL value.

See the BASIC User’s Guide for more information on data type interactions, conversions, and promo-
tion rules in BASIC numeric expressions.

7.2 String Expressions

String expressions are string entities separated by the plus sign (+). When used in a string expression,
the plus sign concatenates strings.

For example:

100 INPUT "TyPe two words to be combined"3As: Bs$
C% = A% + B%
PRINT C%

200 END

RUNNH

Trre two words to be combined? hello
? doodbve

hellodoodbve

Ready

7.3 Conditional Expressions

Conditional expressions can be either relational or logical expressions.

Numeric relational expressions compare numeric operands to determine whether the expression is
true or false. String relational expressions compare string operands to determine which string expres-
sion occurs first in the ASCII collating sequence.

Logical expressions contain integer operands and logical operators. BASIC determines whether the
specified logical expression is true or false by testing the numeric result of the expression. Note that in
conditional expressions, as in any numeric expression, when BYTE and WORD operands are con-
verted to WORD and LONG, the specified operation is performed in the higher data type, and the
result returned is also of the higher data type. When one of the operands is a negative value, this
conversion will produce accurate but perhaps confusing results, because BASIC performs a sign
extend when converting BYTE and WORD integers to a higher integer data type. See Section 7.1.1 for
information on integer conversion rules.

34 BASIC Reference Manual February 1984

7.3.1 Numeric Relational Expressions

Operators in numeric relational expressions compare the values of two operands and return: 1) a
minus one if the relation is true or 2) a zero if the relation is false. The data type of the result is the
default integer type. For example:

Example 1

100 A= 10
B = 15
KL = (A <> B)
IF X% = -1%

THEN PRINT ‘Relationship is true’

ELSE IF X4 = 0
THEN PRINT ‘Relationship is false’
END IF

END IF

RUNNH

Relationship is true

Example 2

10 4 = 10
B = 15
¥i = A = B
IF X% = -1%

THEN PRINT ‘Relationshiep is true’

ELSE IF X% = 0
THEM PRINT ‘Relationshiep is false’
END IF

END IF

RUNNH
Relationshipr is false

Tabie 9 shows how numeric operators work in numeric reiationai expressions.

Table 9: Numeric Relational Operators

Operator Example Meaning

A=B A is equal to B.
A<B A is less than B.

vV A

A>B A is greater than B.
=or =< A<=8B A is less than or equal to B.
=or => A>=B A is greater than or equal to B.

<> or>< A<>B A is not equal to B.

A== A and B will PRINT the same because
they are equal to six significant digits.

BASIC Reference Manual 35

7.3.2 String Relational Expressions

Operators in string relational expressions determine how BASIC compares strings. BASIC determines
the value of each character in the string by converting it to its ASCIi value. ASCII values are listed in
Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX—11M/M—PLUS Systems, and BASIC on
RSTS/E Systems. BASIC compares the strings character by character, left to right, until it finds a
difference in ASCII value. For example:

i0 A% = ‘ABC’
Bs = ’'ABZ’
20 IF A% < B%
THEN PRINT ‘ABC comes before ABZ'
GOTO 99
ELSE IF A% == B%
THEN PRINT ‘The strinds are identical’
GOTO 99
ELSE IF A% > B$
THEN PRINT ‘ABC comes after ABZ’

GOTO 99
END IF
END IF
END IF
55 PRINT ‘Stringds are esual but not identical’

99 END

In this example, BASIC compares A$ and B$ character by character. The strings are identical up to
the third character. Because the ASCII value of “Z” (90) is greater than the ASCII value of “C" (67),
A$ is less than B$. BASIC evaluates the expression A$ < B$ as true (—1), prints “ABC comes before
ABZ"" and goes to line 99.

If two strings of differing lengths are identical up to the last character in the shorter string, BASIC pads
the shorter string with spaces (ASCII value 32) to generate strings of equal length, unless the operator
is the double equals sign (= =). If the operator is the double equals sign, BASIC does not pad the
shorter string. For example:

10 A% = ‘ABCCE’
B¢ = ‘ABC’
20 PRINT ‘B% comes before A%’ IF B% ¢ A%
PRINT ‘A% comes before B$’ IF A% ¢ B%
30 C¢ = 'ABC '
IF B% == C4%
THEN PRINT ‘B% exactly matches C$°
ELSE PRINT ‘B$% does not exactly match C$’
END IF
IF B% = C%
THEN PRINT ‘B% matches C$ with padding’
ELSE PRINT ‘B$% does not match C%$’
END IF

RUNNH

B% comes before A%
B¢ does not exactly match C$%
B matches C$% with padding

In this program, BASIC compares “ABCDE” to “ABC "’ to determine which string comes first in the
collating sequence. “ABC "’ comes before “ABCDE" because the ASCII value for space (32) is lower
than the ASCII value of “D” (68). Then BASIC compares “ABC " with “ABC”’ using the double

36 BASIC Reference Manual

equals sign and determines that the strings do not match exactly without padding. The third compari-
son uses the single equals sign. BASIC pads “ABC”" with spaces and determines that the two strings
match with padding.

Table 10 shows how numeric operators work in string relational expressions.

Table 10: String Relational Operators

Operator Example Meaning

= A$ = B$ Strings A$ and B$ are identical after the shorter string has been padded with spaces to
equal the length of the longer string.

< A$ < B$ String A$ occurs before string B$ in ASCII sequence.

> A$ > B$ String A$ occurs after string B$ in ASCII sequence.
<=or =< | A$ <= B$ | String A$ is identical to or precedes string B$ in ASCIl sequence.
>=or => | A$ >= B$ | String A$ is identical to or follows string B$ in ASCII sequence.
<> or >< A$ <> B$ | String A$ is not identical to string B$.

== A$ == B$ | Strings A$ and B$ are identical in composition and length, without padding.

BASIC treats unquoted strings typed in response to the INPUT statement differently than quoted strings
by ignoring leading and trailing spaces and tabs. That is, BASIC evaluates the quoted strings “ABC”
and “ABC " as equal but not identical because the = = operator does not pad the shorter string
with spaces. When you input the same strings as unquoted strings in response to the INPUT prompt,
BASIC evaluates them as equal and identical because it ignores the trailing spaces. The LINPUT
statement, on the other hand, treats unquoted strings as string literals so the trailing spaces are part of
the string, and BASIC evaluates the strings as equal but not identical.

7.3.3 Logical Expressions

A logical expression contains either:

e A unary logical operator and one integer operand

e Two integer operands separated by a binary logical operator

® One integer operand

Logical expressions are valid only when the operands are integers. If the expression contains two
integer operands of differing data types, the resulting integer has the same data type as the higher
integer operand. For instance, the result of an expression that contains a BYTE integer and a WORD
integer would be a WORD integer. Table 6 shows how integer data types interact with each other in
expressions.

BASIC determines whether the condition is true or false by testing the result of the logical expression
to see whether any bits are set. If no bits are set, the value of the expression is zero and it is evaluated
as false; if any bits are set, the value of the expression is nonzero, and the expression is evaluated as
true. BASIC generally accepts any nonzero value in logical expressions as true. However, logical
operators can return unanticipated results unless minus one is specified for true values and zero for
false. Therefore, logical operators should be used on the results of relational expressions to obtain
valid and predictable results. Table 11 lists logical operators. Examples that show how logical opera-
tors work on nonzero and minus one values follow the table.

BASIC Reference Manual 37

Table 11: Logical Operators

Operator Example Meaning

NOT NOT A% The bit-by-bit complement of A%. If A% is true (=1), NOT A% is false (0).

AND A% AND B% | The logical product of A% and B%. A% AND B% is true only if both A% and B% are true.

OR A% OR B% | The logical sum of A% and B%. A% OR B% is false only if both A% and B% are false;
otherwise, A% OR B% is true.

XOR A% XOR B% | The logical exclusive OR of A% and B%. A% XOR B% is true if either A% or B% is true
but not if both are true.

EQV A% EQV B% | The logical equivalence of A% and B%. A% EQV B% is true if A% and B% are both true
or both false; otherwise, the value is false.

IMP A% IMP B% | The logical implication of A% and B%. A% IMP B% is false only if A% is true and B% is
false; otherwise, the value is true.

The truth tables in Table 12 summarize the results of these logical operations. Zero is false; minus one

is true.

Table 12: Truth Tables

A% NOT A% A% B% A% OR B%
0 -1 0 0 0
-1 0 0 -1 -1
-1 -0 -1
-1 -1 -1

A% B% A% AND B% A% B% A% EQV B%
0 0 0 0 0 -1
0 -1 0 0 -1 0
-1 0 0 ~1 0 0
-1 -1 -1 -1 -1 -1

A% B% A% XOR B% A% B% A% IMP B%
0 0 0 0 0 -1
0 -1 -1 0 -1 -1
-1 0 -1 -1 0 0
-1 -1 0 -1 -1 -1

The operators XOR and EQV are logical complements.

Note that in logical expressions, any nonzero value is evaluated as true, while in relational expres-
sions, a minus one is generated as a true value. Logical operators set bits in the result of the expres-
sion; any bit set is a nonzero value and is evaluated as true. For this reason, it is important to use

logical operators on the results of relational expressions (the values of minus one and zero) to avoid
unanticipated results. For example:

10 A% =
20 BY% =
30 IF A%
38

2%
4%

THEN PRINT

‘A% IS TRUE’

BASIC Reference Manual

40 IF BZ THEN PRINT ‘B% IS TRUE’

50 IF A% AND BY¥ THEN PRINT ‘A% AND BXZ IS TRUE’
ELSE PRINT ‘A% AND B% IS FALSE’

(=10] END

RUNRNH

A% IS TRUE
B%Z IS TRUE
A% AND B% IS FALSE

In this example, the values of A% and B% both test as true because they are nonzero values.
However, the logical AND of these two variables returns an unanticipated result of ““false.”

The program returns this seemingly contradictory result because logical operators work on the indi-
viduai bits of the operands. The 8-bit binary representation of 2% is:

0 00 0O0OTO
The 8-bit binary representation of 4% is:
000 O0O0T1TO0O0

Each value tests as true because it is nonzero. However, the AND operation on these two values sets
a bit in the result only if the corresponding bit is set in both operands. Therefore, the result of the
AND operation on 4% and 2% is:

0O 000 0 O OO
No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true (nonzero) because both 6% and
2% have the second bit set. Therefore, BASIC sets the second bit in the result and the value tests as
nonzero and true.

The 8-bit binary representation of minus one is:

1 1 1 1 1 1 1 1
1 i i 1 i i i i

The result of —1% AND —1% is —1% because BASIC sets bits in the result for each corresponding bit
that is set in the operands. The result, therefore, tests as true because it is a nonzero value. For
example:

10 A% -1%

20 B% -1%

30 IF A% THEN PRINT ‘A% IS TRUE’

40 IF B% THEN PRINT ‘B% IS TRUE’

50 IF A% AND BYZ THEN PRINT ‘A% AND BY IS5 TRUE’
ELSE PRINT ‘A% AND BY% IS FALSE’

B0 END

RUNNH

A% IS TRUE
BZ IS TRUE
A% AND B%Z IS TRUE

BASIC Reference Manual 39

Your program may also return unanticipated results if you use the NOT operator with a nonzero
operand that is not minus one. For example:

10 Al=-17%
20 Bi=2
30 IF A% THEN PRINT ‘A% IS TRUE’
ELSE PRINT ‘A% IS FALSE’
40 IF BZ THEN PRINT ‘B% IS TRUE’
ELSE PRINT ’‘B% IS FALSE’
50 IF NOT A% THEN PRINT ‘NOT A%Z IS TRUE’
ELSE PRINT ‘NOT A% IS FALSE’
60 IF NOT B% THEN PRINT ’‘NOT B%Z IS TRUE’
ELSE PRINT ‘NOT BZ 1S FALSE’
99 END

RUNNH

AZ IS TRUE
B% IS TRUE
NOT A% IS5 FALSE
NOT B% IS5 TRUE

In this example, BASIC evaluates both A% and B% as true because they are nonzero. NOT A% is
evaluated as false (zero) because the binary complement of minus one is zero. NOT B% is evaluated
as true because the binary complement of two has bits set and, therefore, is a nonzero value.

Note

DIGITAL recommends that you use logical operators on the results of relational
expressions to avoid obtaining unanticipated results.

7.4 Evaluating Expressions

BASIC evaluates expressions according to operator precedence. Each arithmetic, relational, and string
operator in an expression has a position in the hierarchy of operators. The operator’s position tells
BASIC when to perform the operation. Parentheses can change the order of precedence.

Table 13 lists all operators as BASIC evaluates them. Note that:

* Operators with equal precedence are evaluated logically from left-to-right.

* BASIC evaluates expressions enclosed in parentheses first, even when the operator in parentheses
has a lower precedence than that outside the parentheses.

40 BASIC Reference Manual

Table 13: Numeric Operator Precedence

**or” Highest
— (unary minus) or + (unary plus)
xor/

+ or—

+ (concatenation)

all relational operators

NOT

AND

OR, XOR

IMP)
EQV Lowest

BASIC thus evaluates the expression A = 15"2 + 12"2 — (35 * 8) in five steps:

1. 1572 = 225 Exponentiation (left-most expression)
2. 1272 = 144 Exponentiation

3. 225 + 144 = 369 Addition

4. (35x8) = 280 Multiplication

5. 369 -280 = 89 Subtraction

There is one exception to this order of precedence: when an operator that does not require operands
on either side of it (such as NOT) immediately follows an operator that does require operands on both
sides (such as +), BASIC evaluates the second operator first. For example:

A% + NOT B% + C%

This expression is evaluated as:

(A% + (NOT B%)) + C%

BASIC evaluates the expression NOT B before it evaluates the expression A + NOT B. When the
NOT expression does not follow the + expression, the normal order of precedence is followed:

NOT A% + B% + C%

This expression is evaluated as:

NOT (A% + B%) + C %)

BASIC Reference Manual 41

BASIC evaluates the two plus expressions (A% + B%) and (A% + B%) + C%) because the plus (+)
operator has a higher precedence than the NOT operator.

BASIC evaluates nested parenthetical expressions from the inside out. For example:

100 A = (({(25 + 3) / 5) % 7) + 3)
PRINT A

300 B =25+35/5 % 7 + 3
PRINT B

RUNNH

a5

35

In this program, BASIC evaluates the parenthetical expression A quite differently from expression B.
For expression A, BASIC evaluates the innermost parenthetical expression (25 + 5) first, then the
second inner expression (30 / 5), then (6 * 7), and finally (42 + 3). For expression B, BASIC evaluates
(5 /5) first, then (1 * 7), then (25 + 7 + 3) to obtain a different value.

42 BASIC Reference Manual

PART I
Compiler
Commands

APPEND

1.0 APPEND

Function

The APPEND command merges an existing BASIC source program with the program currently in
memory.

Format

APPEND [file-spec]

Syntax Rules

1. File-spec names the file of BASIC program lines you want to merge with the program
currently in memory. The VAX—11 BASIC default file type is BAS, and the BASIC-PLUS-2
default file type is B2S.

General Rules

1. If you type APPEND without specifying a file name, BASIC prompts with:

Arpend file name--

Respond with a file name. If you respond with a carriage return and no file name, VAX—11
BASIC searches for a file named NONAME.BAS. BASIC—PLUS—-2 searches for a file named
NONAME.B2S. If the compiler cannot find NONAME.BAS or NONAME.B2S, VAX-11
BASIC signals the error “file not found”’; BASIC-PLUS-2 signals “can’t find file or
account”’.

BASIC Reference Manual 43

APPEND

2. You can append the contents of file-spec to a source program called into memory with the
OLD command or created in the BASIC environment. If there is no program in memory,
BASIC appends the file-spec to an empty program with the default file name, NONAME.

3. If the file-spec contains a BASIC line with the same line number as a line of the program in
memory, the line in the appended file replaces the line of the program in memory. Other-
wise, BASIC inserts appended lines into the program in memory in sequential, ascending
line number order.

4. The APPEND command does not change the name of the program in memory.

5. If you have not saved the appended version of the program, BASIC signals the warning
“Unsaved change has been made, CTRL/Z or EXIT to exit” the first time you try to leave
the BASIC environment.

Examples

APPEND PROGB

44 BASIC Reference Manual

ASSIGN

2.0 ASSIGN (VAX-11 BASIC)

Function

The ASSIGN command equates a logical name to a complete file specification, a device, or another
logical name within the context of the BASIC environment.

Format

ASSIGN equiv-nam([:] log-nam([:}

Syntax Rules

1.

Equiv-nam specifies the file specification, device, or logical name to be assigned a logical
name. If you specify a physical device name, terminate it with a colon (3).

Log-nam is the 1— to 63—character logical name to be associated with equiv-nam. You can
specify a logical name for any portion of a file specification. If the logical name translates
to a device name, and will be used in place of a device name in a file specification,
terminate it with a colon (:).

General Rules

1.

Examples

When the logical name assignment supersedes another logical name assigned previously,
BASIC displays the message “‘previous logical name assignment replaced”’.

If log-nam has more than 63 characters, BASIC signals the error “invalid logical name”’.

Logical names assigned with the ASSIGN command are placed in the process logical name
table and remain there until you exit the BASIC environment.

ASSIGN [LEONARD.BAS] PRO:

BASIC Reference Manual 45

BRLRES

3.0 BRLRES (BASIC-PLUS-2)

Function

The BRLRES command allows you to specify a memory-resident BASIC—PLUS-2 or user-created
library to be used when you task-build the program. When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command file. The default library for
the BRLRES command is chosen by your system manager when BASIC—PLUS-2 is installed.

Format

BRLRES [lib-param]

lib-param: file-spec

NONE

Syntax Rules

1.

If you enter the BRLRES command without a lib-param, BASIC prompts for one and dis-
plays the name of the current default memory-resident library.

¢ File-spec can be a library supplied by BASIC-PLUS-2 or a user-created library.

e NONE tells the Task Builder not to link your task to the BASIC—PLUS-2 default resident
library. Therefore, the Task Builder links to the BASIC-PLUS-2 object module library,
BP20OTS.OLB.

e If you type a carriage return in response to the prompt, the current default memory-
resident library is used.

General Rules

46

1.

The memory-resident libraries supplied by BASIC—PLUS-2 are LB:[1,1]BP2RES and
LB:[1,1]BP2SML on RSX-11M/M-PLUS systems and LB:BP2RES and LB:BP2SML on
RSTS/E systems. LB: is a RSTS/E logical name for the library account on disk. Because
memory-resident libraries are optional, your system manager can select none, one, or both
when BASIC-PLUS-2 is installed. See BASIC on RSX—11M/M-PLUS Systems or BASIC on
RSTS/E Systems for information on BASIC-PLUS-2 memory-resident libraries.

BASIC-PLUS-2 links the specified memory-resident library to your program when you
task-build the program, so you must use the BRLRES command before you use the BUILD
command to include the specified library in the Task Builder command file.

The BRLRES library you specify is included in your Task Builder command files until you
specify a new library with the BRLRES command or exit from the BASIC environment.
When you exit from the environment, the original default library is restored as the default.

You can override the BRLRES command with the /BRLRES qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD operation.

BASIC Reference Manual

BRLRES

5. The Task Builder returns an error message when the requested memory-resident library is
not available.

6. Consult your system manager for information about the resident libraries available to you.

Examples
RSX—11M/M—-PLUS Systems

BRLRES LB:[1,11BPZRES

BRLRES LB:BP2ZRES

BASIC Reference Manual 47

BUILD

4.0 BUILD (BASIC-PLUS-2)

Function

The BUILD command generates a command (CMD) file and an overlay description language (ODL)
file for the Task Builder. The command file contains instructions that enable the Task Builder to link
your program module(s) with libraries and other routines. The overlay description language file
specifies how segments of the task-built program are overlaid when you run it.

Format
BUILD [prog-nam [sub-nam,...]] [/qualifier ...
Syntax Rules

1. Prog-nam names the program you want to build. If you do not specify a prog-nam,
BASIC-PLUS-2 creates CMD and ODL files for the current program or for NONAME if
there is no current program.

2. Sub-nam names the subprogram or subprograms you want to link to the main program.
You must specify a prog-nam if you specify a sub-nam.

3. The command file takes the name of the main program and a default extension of CMD.
The ODL file takes the name of the main program and a default extension of ODL.

4. /Qualifier specifies a qualifier keyword that sets a BASIC default. Table 17 lists all
BASIC-PLUS-2 qualifiers and describes their functions.

5. The BUILD command line must fit on a single 80—character line.

General Rules

1. The BUILD command does not change the current context of the BASIC—PLUS-2
environment.

2. The BUILD command generates the CMD and ODL files. It does not cause the Task Builder
to begin operation.

3. In addition to program names and build qualifiers, the BUILD command accepts defaults
from previously specified BRLRES, DSKLIB, ODLRMS, RMSRES, LIBR, and SET commands.

4. BUILD qualifiers tell the Task Builder to perform special operations on object modules
when you task-build the program. You can abbreviate all qualifiers to the first three letters
of the qualifier keyword.

Examples

BUILD MAIN,SUB1:S5UB2/DUMP /REL

48 BASIC Reference Manual

$ Command

5.0 $ Command

Function

You can enter a system command while in the BASIC environment by typing a dollar sign ($) before
the command. BASIC passes the command to the operating system for execution. The context of the
BASIC environment and the program currently in memory do not change in VAX—11 BASIC and
BASIC-PLUS-2 on RSX—11M/M—-PLUS systems. On RSTS/E systems, the system command executes
and control returns to the default run-time system, not to BASIC-PLUS-2.

Format

$ system-command

Syntax Rules

1. BASIC passes system-command directly to your operating system without checking for
validity.

General Rules

1. The terminal displays any error messages or output that the system-command generates.

VAX=11 BASIC

1. Control returns to the BASIC environment after the system-command executes. The context
(source file status, loaded modules, and so on) of the BASIC environment and the program
currently in memory do not change unless the system-command causes the operating
system to abort BASIC or log you out.

2. On VAX/VMS systems, the system-command you specify executes within the context of a
subprocess. Consequently, commands such as the DCL SET command execute only within
the subprocess and do not affect the process running BASIC.

BASIC—PLUS-2

1. On RSX—11M/M-PLUS systems, control returns to the BASIC environment after the
system-command executes. The context (source file status, loaded modules, and so on) of
the BASIC environment and the program currently in memory do not change unless the
system-command causes the operating system to abort BASIC or log you out.

2. On RSTS/E systems, the context of the environment and the program currently in memory
are lost. After the system command executes, control passes to monitor level, not to
BASIC-PLUS-2.

3. If you have made changes to the program currently in memory, BASIC-PLUS-2 displays
the message ‘‘Unsaved change has been made — type SCRATCH or REPLACE” when you
enter a system-command.

BASIC Reference Manual 49

RSX

$ Command

Examples
VAX-11 BASIC

Ready

$5HOW PROTECTION
SYSTEM=RWED s+ OWNER=RWED: GROUP=RWED: WORLD=RE

Ready

BASIC-PLUS-2

$DIR STOCK.B2S
ZUnsaved chande has been made - tvee SCRATCH or REPLACE.,

BASICZ
REPLACE
BASICZ

$DIR STOCK.B2Z2S

50 BASIC Reference Manual

COMPILE

6.0 COMPILE

Function

The COMPILE command converts a BASIC source program to an object module and writes the object
file to disk.

Format

COMPILE [file-spec][/qualifier]...

Syntax Rules

1.

File-spec specifies a name for the output file or files. If you do not provide a file-spec, the
compiler uses the name of the program currently in memory for the file name, a default file
type of OBJ for the object file, and a default file type of LIS (VAX=11 BASIC) or LST
(BASIC—PLUS=2) for the listing file, if a listing file is requested. BASIC-PLUS-2 uses a
default file type of MAC for the macro source code file when a macro file is requested.

In VAX=11 BASIC, file-spec can precede or follow /qualifier. In BASIC-PLUS-2, file-spec
must precede the qualifiers.

/Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 16 lists and describes VAX—11 BASIC qualifiers.
Table 17 lists and describes BASIC-PLUS-2 qualifiers.

In cases of ambiguous or erroneous qualifiers, VAX—11 BASIC signals “Unknown quali-
fier”, BASIC—PLUS-2 signals “Illegal switch”, and the program does not compile. When
qualifiers conflict, BASIC compiles the program using the last specified conflicting quali-
fier. For example:

COMPILE /0BJ /NODBJ
BASIC compiles the program currently in memory but does not create an OB/ file.
You can abbreviate all positive COMPILE qualifiers to the first three letters of the qualifier

keyword. A negative qualifier can be abbreviated to NO and the first three letters of the
qualifier keyword.

There must be a program in memory or the COMPILE command does not execute and
BASIC does not signal an error or warning.

General Rules

1.

If an object file for the program already exists in your directory, BASIC-PLUS—2 on RSTS/E
systems overwrites it with the new object file. VAX—11 BASIC and BASIC-PLUS-2 on
RSX—11M/M—=PLUS systems create a new version of the OB} file.

BASIC Reference Manual 51

COMPILE

2. You should not specify both a file name and file type. For example:
COMPILE NEWOBJ.FIL/LIS/0BJ

® VAX—11 BASIC creates two versions of NEWOBJ.FIL. The first version, NEWOBJ.FIL;1, is

the listing file; the second version, NEWOBJ.FIL;2, is the object file. If you specify only a
file name, BASIC uses the OB) and LIS file type defaults when creating these files.

® BASIC-PLUS-2 creates only the object file and names it NEWOBJ.FIL.

3. Use the COMPILE/NOOBJECT command to check your program for errors without pro-
ducing an object file.

Examples

COMPILE NEMWSTRING/DOUBLE /LIST

52 BASIC Reference Manual

CONTINUE

7.0 CONTINUE

Function

The CONTINUE command continues program execution after BASIC executes a STOP statement or,
in VAX—11 BASIC, encounters a CTRL/C.

Format

CONTINUE

Syntax Rules

None.

General Ruies

1. In VAX=11 BASIC, a program stops executing in response to a STOP statement or a
CTRL/C:

¢ You can enter immediate mode commands and resume program execution with the
CONTINUE command.

¢ You cannot resume program execution if you have made source code changes or
additions.

2. In BASIC-PLUS-2, a program stops executing when BASIC executes a STOP statement and
control passes to the BASIC-PLUS-2 debugger, which prompts with a pound sign (#).
Type the CONTINUE command to resume program execution. Note that if the program
was executed with the RUN/DEBUG command, you can enter debugger commands be-
fore resuming program execution with the CONTINUE command. See Part VI in this
manual for more information on debugger commands.

Examples
VAX-11 BASIC

%“BAS-I-5T0: StoP
-BAS-I-FROLINMOD: from line 23 in module ABC
Ready

CONTINUE

BASIC-PLUS-2

Stor at line 20

#CONTINUE

BASIC Reference Manual 53

DELETE

8.0 DELETE

Function

The DELETE command removes a specified line or range of lines from the program currently in
memory.

Format

DELETE lin-num [sep lin-num] ,...
sep: ; , ‘

Syntax Rules

1. You must enter at least one line number. If you do not, DELETE has no effect in VAX—11
BASIC, while BASIC-PLUS-2 signals the error “lllegal Delete command”’.

2. The sep characters allow you to delete individual lines or a block of lines.
* If you separate line numbers with commas, BASIC deletes each specified line number.

* If you separate line numbers with a hyphen (-), BASIC deletes the inclusive range of
lines. The lower line number must come first. If it does not, DELETE has no effect in
VAX=11 BASIC, while BASIC-PLUS-2 signals the error “/Bad line number pair”.

3. You can combine individual line numbers and line ranges in a single DELETE command.
Note, however, that a line number range must be followed by a comma and not another
hyphen, or BASIC signals an error.

General Rules

1. BASIC-PLUS-2 signals an error if there are no lines in the specified range. VAX—11 BASIC
does not signal an error and the DELETE command has no effect.

2. If you do not specify a beginning line number for a range, VAX-11 BASIC signals the error
“illegal line number”. BASIC-PLUS-2 assumes a beginning line number of 1 and deletes
all lines in the range 1 — lin-num.

3. If you do not specify an end line number in a range, VAX—11 BASIC does not delete any
lines and does not signal an error. BASIC-PLUS-2 deletes only the specified line number.

Examples

DELETE 30
DELETE 70-80: 110, 124

DELETE 50:80,90-110

54 BASIC Reference Manual

DSKLIB

9.0 DSKLIB (BASIC-PLUS-2)

Function

The DSKLIB command lets you select a disk-resident, object module library to be used when you
build your program. When you use the BUILD command, BASIC-PLUS-2 includes the specified
library in the Task Builder command file. Every system has a disk library default set when
BASIC—PLUS-2 is installed.

Format

DSKLIB [file-spec]

Syntax Rules

1.

If you enter the DSKLIB command without a file-spec, BASIC-PLUS-2 prompts for one and
displays the name of the current default disk-resident library.

* File-spec can be a disk-resident, object module library supplied with BASIC-PLUS-2 or a
user-created library.

¢ If you type a carriage return in response to the prompt, BASIC-PLUS-2 uses the default
disk-resident library.

General Rules

1.

The object module libraries supplied by BASIC-PLUS-2 are LB:BP2OTS.OLB on RSTS/E
systems and LB:[1,11BP2OTS.OLB on RSX—11M/M-PLUS systems. LB: is a RSTS/E logical
name for the library account on disk. These libraries contain the BASIC Object Time
System (OTS). OLB is the default object module library file type. If your system does not
have memory-resident libraries, the Task Builder extracts all BASIC routines from these
disk-resident libraries. See BASIC on RSX—11M/M-PLUS Systems and BASIC on RSTS/E
Systems for more information on object module libraries.

The Task Builder links the specified library to your program when you task-build the
program. You must use the DSKLIB command before you use the BUILD command to
include the library you want in the Task Builder command file.

The DSKLIB library you specify is included in all Task Builder command files until you
specify a new library with the DSKLIB command or exit from the BASIC environment.
When you exit from the BASIC environment, the default object module library set at
installation is restored as the default disk-resident library.

You can override the DSKLIB command with the /DSKLIB qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

The Task Builder returns an error message when the requested disk-resident library is not
available.

Consult your system manager for information about the disk-resident libraries available to
you.

BASIC Reference Manual 55

DSKLIB

Examples
RSX—11M/M—-PLUS Systems

DSKLIB LB:[1,11BP20TS

RSTS/E Systems

DSKLIB LB:BP20TS

56 BASIC Reference Manual

10.0

Function

EDIT

EDIT

The EDIT command allows you to edit individual program lines in the BASIC environment. In
VAX-11 BASIC, EDIT with no arguments invokes the default text editor and reads the current program
into the editor’s buffer. In BASIC-PLUS-2, EDIT with no arguments puts you in the BASIC—PLUS—2
editing mode. BASIC-PLUS-2 editing mode commands are listed in Table 14 and described in
Sections 10.1 to 10.6.

Format

VAX-11 BASIC

EDIT [[lin-num] search-clause [replace-clause]]

search-clause: delim ung-str1 delim
replace-clause: [ung-str2] [delim [int-const1] [, int-const2]]

BASIC-PLUS-2

EDIT { [lin-num [—lin-num]] search-clause [replace-clause]]

search-clause: delim ung-str1 delim
replace-clause: [ung-str2] delim [int-const1]

Syntax Rules

1. Lin-num specifies the line to be edited.

2. Search-clause specifies the text you want to remove or replace. Ung-str1 is the search
string you want to remove or replace.

3. Replace-clause specifies the replacement text and the occurrence of the search string you
want to replace.
e Ung-str2 is the replacement string.
® Int-const1 specifies the occurrence of ung-str1 you want to replace. If you do not specify

an occurrence, BASIC replaces the first occurrence of ung-stri1.

4. Delim can be any printing character not used in ung-str1 or ung-str2. The examples in this
and the following sections use the slash (/) as a delimiter.

5. The delim characters in search-clause must match, or BASIC signals an error.

6. If the delim you use to signal the end of replace-clause does not match the delim used in

search-clause, BASIC does not signal an error and treats the end delim as part of ung-str2.

BASIC Reference Manual 57

EDIT

7. BASIC replaces or removes text in a program line as follows:

e If ung-str1 is found, BASIC replaces it with ung-str2.
e If ung-str1 is not found, BASIC signals an error.

e If ung-str1 is null, VAX-11 BASIC signals “no change made”. BASIC—PLUS-2 replaces
the first character of the last edited line with ung-str2 and does not signal an error.

* If ung-str2 is null, BASIC deletes ung-str1. The delim in the replace-clause is required if
you want to delete ung-str1.

* BASIC matches and replaces strings exactly as you type them. If ung-str1 is uppercase,
BASIC searches for an uppercase string. If it is lowercase, BASIC searches for a lowercase
string.

VAX=11 BASIC

1. The EDIT command followed by a carriage return causes BASIC to temporarily save your
program in a file called BASEDITMP.TMP. BASIC then invokes the same editor you use
when you type the DCL EDIT command. When you finish editing your program and
exit the editor, the edited program is the program currently in memory, and the context
of the BASIC environment is unchanged. Note that BASIC deletes all versions of
BASEDITMP.TMP when you return to BASIC from the editor.

2. Int-const2 in replace-clause specifies the sub-line of a block of program code where you
want BASIC to begin the search.

BASIC—PLUS—2

1. The EDIT command followed by a carriage return puts you in the BASIC—PLUS-2 editing
mode. Editing mode commands, listed in Table 14 and described in Sections 10.1 to 10.6,
are valid only in the BASIC-PLUS-2 editing mode. The editing mode prompt is an asterisk
(*).

2. BASIC-PLUS-2 sets a specified line number as the current edit line, even when the editing
operation fails. That line number remains set as the current edit line until you specify
another line number or exit the BASIC environment.

3. You can edit a range of lines by separating two line numbers with a hyphen. BASIC signals
an error and does not edit the specified range if there are spaces between the hyphen and
the line numbers.

4. If you specify a range of lines and an occurrence, BASIC replaces each occurrence of
ung-str1 in each line of the range beginning with the specified occurrence. For example:

10 PRINT DISPLAY$, DISPLAY$, DISPLAYS$
20 PRINT DISPLAY$, DISPLAY$,» DISPLAYS
EDIT 10-20 /DISPLAY$%/NEW$/2

10 PRINT DISPLAY$: NEW$+ NEW$
20 PRINT DISPLAY%, NEW$: NEW$

"DISPLAY$" rerplaced by "NEWS",
4 substitutions

58 BASIC Reference Manual

EDIT

General Rules
VAX—11 BASIC

1. VAX-11 BASIC displays the edited line with changes after the EDIT command successfully
executes.

2. If you specify a lin-num with no text parameters, VAX—11 BASIC displays the line.
BASIC-PLUS-2
1. BASIC-PLUS-2 displays the edited line or lines with changes after the EDIT command

successfully executes. It also displays a message showing the search string, replacement
string, and number of replacements made.

2. If you want to edit a range of numbers, you must specify both the beginning and end of the
range. BASIC—PLUS-2 does not default to the last edited line or to the last line number in
the program.

3. When you specify a lin-num with no text parameters, BASIC-PLUS-2 displays the message
““Current edit line is x’, where x is the specified lin-num.

4. When you type EDIT with no parameters to enter the editing mode, BASIC—PLUS—2 checks
the last edited line number to make sure that it still exists in the current program. If it has
been deleted, BASIC-PLUS-2 displays the message ‘“2No current line”’.

Examples
VAX-11 BASIC

EDIT 100 /LEFT$/RIGHT$/3,2
EDIT
BASIC-PLUS-2

EDIT 300-400 /LEFT%//
EDIT 300 /LEFT$/RIGHT%/3

EDIT

BASIC Reference Manual 59

EDIT

Table 14: BASIC-PLUS—2 Editing Mode Commands

Command Function

DEFINE Used to enter a macro definition. A macro definition consists of editing commands. You cannot,
though, use the DEFINE and EXECUTE commands in a macro definition. To end the macro
definition, type a carriage return and then EXIT or CTRL/Z. You must use the EXECUTE command
to execute the macro definition.

EXECUTE Executes the macro defined by the DEFINE command as many times as you specify.

EXIT (or CTRL/Z) Allows you to exit from editing mode, execute an INSERT command, or end a DEFINE command.

FIND Searches from the last edited line to the end of the current program for a specified string.

INSERT Allows you to add program lines after a specified line number. Type a carriage return and EXIT or
CTRL/Z to execute this subcommand.

SUBSTITUTE Performs the same function and accepts the same text parameters as the EDIT command; you
cannot, however, specify line numbers or line number ranges.

60 BASIC Reference Manual

DEFINE

10.1 DEFINE (BASIC-PLUS-2)

Function

The DEFINE editing mode command allows you to enter a macro definition. The macro consists of a
series of editing mode commands in the order in which they are to execute.

Format

D
(DEHNE)

Syntax Rules

1. The macro definition must consist of valid editing mode commands or BASIC-PLUS-2
signals an error. You cannot use the DEFINE or EXECUTE editing mode commands in a
macro definition.

General Rules

1. Type the DEFINE command and a carriage return, then enter your macro definition. Type
EXIT or CTRL/Z in response to the DEFINE prompt (—>) when you have finished entering
your macro definition. BASIC-PLUS-2 displays the editing mode prompt, and you can
enter more editing commands.

2. BASIC writes the macro definition to a file, so the definition remains in effect until you
enter another DEFINE command. That is, an EXECUTE command executes the last defined
macro definition.

Examples

#DEFINE

Enter command sesuence:
->FIND REM

-»SUBSTITUTE /REM/ !/
-2EXIT

BASIC Reference Manual 61

EXECUTE

10.2 EXECUTE (BASIC-PLUS-2)

Function

The EXECUTE editing mode command executes the last macro defined by the DEFINE command. You
specify the number of times the macro is to execute.

Format

EXE
EXECUTE

[int-const]

Syntax Rules

1. Int-const specifies the number of times the macro executes. If you do not specify int-const,
BASIC-PLUS-2 executes the macro once.

General Rules

1. An EXECUTE command always executes the last defined macro definition. If no macro
definition exists, BASIC-PLUS-2 signals the error ““Command sequence has not been
defined”.

Examples

#EXECUTE 5

62 BASIC Reference Manual

EXIT

10.3 EXIT or CTRL/Z (BASIC-PLUS-2)

Function

The EXIT or CTRL/Z editing mode command marks the end of a DEFINE or INSERT command or exits
from editing mode.

Format

|E |

| EXIT |

Syntax Rules

None.

General Rules

1. If you type EXIT or CTRL/Z in response to the editing mode prompt, BASIC—PLUS-2 exits
from editing mode.

2. If you type EXIT or CTRL/Z to end a DEFINE or INSERT command, BASIC-PLUS-2 dis-
plays the editing mode prompt and you can enter more editing commands.

Examples

#*DEFINE

Enter command sesquence
->FIND REM
=>BUBE /REM/!

-»EXIT

BASIC Reference Manual 63

FIND

10.4 FIND (BASIC-PLUS-2)
Function

The FIND editing mode command searches the current program for a specified string starting at the
last edited line and continuing to the end of the program.

Format

F
FIND

[ung-str]

Syntax Rules

1. The FIND command does not require character delimiters for ung-str. Delimiters are the
space after the command and a carriage return.

General Rules

1. When ung-str is found, BASIC-PLUS-2 displays the line that contains the ung-str, sets it as
the last edited line, and displays an informational message.

2. If ung-str is not found, the last edited line remains unchanged and BASIC—PLUS-2 displays
a message telling you that the string was not found.

3. The FIND command matches ung-str exactly as you type it. If ung-str is uppercase,
BASIC-PLUS-2 searches for uppercase characters. The delimiters (space and carriage
return) are not included in the match.

4. If you do not specify an ung-str, the FIND command matches the ung-str specified by the
last FIND command. If there is no previous FIND command, BASIC—PLUS—-2 matches the
first character of the last edited line.

Examples

#FIND PRIMT
330 PRIMT ‘How many receipts do vou have’SRECEIPTS

"PRIMT" found on line 330
*

64 BASIC Reference Manual

INSERT

10.5 INSERT (BASIC-PLUS-2)

Function

The INSERT editing mode command allows you to add lines to a program.

Format

INSERT | [lin-num]

Syntax Rules

1. Lin-num specifies the line number after which you want to insert new program lines. If you
do not specify a lin-num, BASIC defaults to the last edited line.

2. If lin-num does not exist in the source program currently in memory, BASIC signals an
error.

General Rules

1. Type in program lines, beginning with a line number, after entering the INSERT command.
When you are finished inserting lines, type EXIT or CTRL/Z to return to the editing mode.
BASIC-PLUS-2 displays the editing mode prompt and you can enter more editing
mode commands.

2. If you insert a line number that already exists, BASIC-PLUS-2 replaces the existing line
with the code you insert and does not signal a warning.

3. BASIC—PLUS-2 does not perform syntax checks on inserted program lines even when
S\/n+ v r'«eckunn 1 al‘\lnrl

YIIL VAN] | § Ill6 l \.all R,
4. The current edit line does not change. For example, if the current edit line is 10 and you
insert lines 20 and 30, line 10 remains the current edit line.

Exampies

*INSERT 30

Enter lines to be added after line 30
->»40 INPUT ‘More receirts’/iRECEIPTS%
-»>50 IF RECEIPTS$ = "*"

- THEN GOTO 32767
- END IF

->EXIT

*

BASIC Reference Manual 65

SUBSTITUTE

10.6 SUBSTITUTE (BASIC-PLUS-2)

Function

The SUBSTITUTE editing mode command allows you to substitute one character string for another in
the program currently in memory. SUBSTITUTE is the editing mode equivalent of the EDIT command
with one exception: you cannot specify a range of lines. The SUBSTITUTE subcommand can replace
only one occurrence of the specified search string, while the EDIT command can replace all occur-
rences in a range of lines, if you so specify.

Format
S
SUBSTITUTE | search-clause [replace-clause]
search-clause: delim ung-str1 delim
replace-clause: [ung-str2] delim [int-const]
Syntax Rules
1. Delim marks the beginning and end of the search and replace strings. Delimiters are
required before and after ung-str1. The delimiter after ung-str2 is optional.

* Delim can be any printing character not used in the search or replace strings. The
examples in this section use the slash (/) as a delimiter.

® The beginning and ending delim characters must match, or BASIC signals an error.

2. Ung-str1 specifies the string you want to remove or replace. Ung-str2 specifies the string to
be substituted for ung-str1.

¢ If ung-str1 is found, BASIC replaces it with ung-str2.

e If ung-str1 is not found, BASIC signals an error.

* If you do not specify ung-str2, BASIC deletes ung-str1.

e If you do not specify ung-str1, BASIC replaces the first character of the last edited line
with ung-str2.

* The SUBSTITUTE subcommand matches and replaces strings exactly as you type them. If
ung-str1 is uppercase, BASIC searches for an uppercase string. If it is lowercase, BASIC
searches for a lowercase string.

3. Int-const specifies the occurrence of str-lit1 you want to replace. If you do not specify an
int-const, BASIC replaces the first occurrence of str-lit1.
4. If you type only the SUBSTITUTE subcommand and a carriage return, BASIC—PLUS—2

signals the error “Parameters required”’.

66 BASIC Reference Manual

SUBSTITUTE

General Ruleg

1. BASIC displays the edited line with changes after the SUBSTITUTE command executes.
Examples

#SUBSTITUTE /A% /ABSOLUTEZL/3

BASIC Reference Manual 67

EXIT

11.0 EXIT

Function

The EXIT command or CTRL/Z clears memory and returns control to the operating system.

Format

EXIT

Syntax Rules

None.

General Rules

1.

Examples

EXIT

If you type EXIT after creating a new program or editing an old program without first typing
SAVE or REPLACE, BASIC signals “Unsaved change has been made, CTRL/Z or EXIT to
exit”. The message warns you that the new or revised program will be lost if you do not
SAVE or REPLACE it. If you type EXIT again, BASIC exits from the environment whether
you have saved your changes or not.

68 BASIC Reference Manual

HELP

12.0 HELP

Function

The HELP command displays on-line documentation for BASIC commands, keywords, statements,
functions, and conventions.

Format

HELP [ung-str] ...

Syntax Rules

1. If you type HELP with no parameters, BASIC displays a list of topics.
2. Ung-str is BASIC topic, keyword, command, statement, function, or convention.

3. The first ung-str must be a topic. If it is not, BASIC displays a list of topics for you to choose
from.

4. You can specify a subtopic after the topic. Separate one ung-str from another with a space.

5. You can use the asterisk (*) wildcard character in ung-str or alone as ung-str. If you use an
asterisk in ung-str, BASIC displays information on all topics that match the specified por-
tion of ung-str. If you use the asterisk alone, BASIC displays information on all BASIC
topics.

General Rules

1. If the ung-str you specify is not a unique topic or subtopic, BASIC displays a information on
all topics or subtopics beginning with ung-str. For example:

Readvy
HELP STATEMENTS CH

STATEMENTS
CHAIN
The CHAIN statement transfers control fromthecurrent prodramto another
BASIC eprodram. The prodram to which vyou CHAIN must be in executable
format.
Format
CHAIN <str-exp:

Examprle

240 CHAIN "COSINE.EXE"
(continued on next page)

BASIC Reference Manual 69

HELP

STATEMENTS
CHANGE
The CHANGE statement: 1) converts a strindg of characters to their ASCII
inteder valuess or Z) converts a list of numbers to a string of ASCII
characters,
Format
String Variable to Arrav:
CHANGE str-exp TO num-arravy
Arrar to String Variable:
CHANGE num-array TO str-vubl
Example
200 CHANGE ARRAY_CHANGES TO A%
Toric?

2. An asterisk (¥) indicates that you want to display information that matches any portion of
the topic you specify. For example, if you type HELP GO*, BASIC displays information on
GOSUB and GOTO.

3. When information on a particular topic or subtopic is not available, BASIC signals the
message “Sorry, no documentation on ung-str’” and a list of ““Additional information
available” .

Examples

HELP STATEMENTS ON GOTO
STATEMENTS
ON
GOTO

The ON GOTO statement transfers program control to one of several lines:
depending on the value of a control exPpression.

Format

{ GO 10O %
ON int-exp { GOTD 2 tardet +..,, [DTHERWISE target]

Example
330 ON INDEXY GOTO 700,800,900 OTHERMWISE 1000

Toric?

70 BASIC Reference Manual

IDENTIFY

13.0 IDENTIFY

Function

The IDENTIFY command displays an identification header on the controlling terminal. The header
contains the name and version number of BASIC.

Format

IDENTIFY

General Rules

1. The message displayed by the IDENTIFY command includes the name of the BASIC com-
piler and the version number.

Examples
VAX-11 BASIC

IDENTIFY

VAX-11 BASIC V2.0

BASIC-PLUS-2

IDENTIFY

PDP-11 BASIC-PLUS-Z VZ.0

BASIC Reference Manual 71

INQUIRE

14.0 INQUIRE

Function

The INQUIRE command is a synonym for the HELP command. See the HELP command for syntax
rules.

72 BASIC Reference Manual

LIBRARY

15.0 LIBRARY (BASIC-PLUS-2)

Function

The LIBRARY command allows you to specify a memory-resident BASIC-PLUS—2 or user-created
library to be used when you task-build the program. When you use the BUILD command,
BASIC—-PLUS-2 includes the specified library in the Task Builder command file. The default library for
the LIBRARY command is chosen by your system manager when BASIC—PLUS-2 is installed.

Format
LIBRARY [lib-param]
lib-param: file-spec
lib-nam
| NONE
Syntax Rules

1. If you enter the LIBRARY command without a lib-param, BASIC-PLUS—2 prompts for one and
displays the name of the current default memory-resident library.

e Lib-nam or file-spec can be a memory-resident library supplied by BASIC-PLUS-2 or a user-
created library. If you specify only lib-nam with no device, BASIC-PLUS—2 assumes LB: on
RSTS/E systems and LB:[1,1] on RSX—11M/M—PLUS systems.

® NONE tells the Task Builder not to link your task to the BASIC default memory-resident
library. Therefore, the Task Builder links to the BASIC disk-resident, object module
library, BP20OTS.OLB.

s if you type a carriage return in response to the prompt, the current default memory-resident
library is used.

General Rules

1. The memory-resident libraries supplied by BASIC-PLUS—2 are BP2RES and BP2SML.
Because memory-resident libraries are optional, your system manager can select none,
one, or both then BASIC-PLUS-2 is installed. See BASIC on RSX—11M/MPLUS Systems or
BASIC on RSTS/E Systems for information on using BASIC—PLUS—-2 memory-resident librar-
ies. See your system manager for information on the libraries available on your system.

2. On RSTS/E systems, the LIBRARY command does not require the LB: logical name. BASIC
automatically searches this account for the memory-resident library symbol table. On
RSX—11M/M—-PLUS systems, the LIBRARY command automatically references libraries on
LB:[1,1] unless you specify another UIC.

3. BASIC-PLUS-2 links the specified library to your program when you task-build the pro-
gram. You must use the LIBRARY command before you use the BUILD command to
include the specified library in the Task Builder command file.

BASIC Reference Manual 73

LIBRARY

4. The library you specify is included in your Task Builder command files until you specify a
new library with the LIBRARY command or exit from the compiler. When you exit from the
compiler, the original default library is restored as the default.

5. You can override the LIBRARY command with the /LIBRARY qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

6. The Task Builder returns an error message when the requested resident library is not
available.

Examples

LIBRARY BPZRES

74 BASIC Reference Manual

LIST

16.0 LIST and LISTNH

Function

The LIST command displays the program lines of the program currently in memory. Line numbers are
sequenced in ascending order. LISTNH displays program lines without the program header.

Format

VAX-11 BASIC

{ LISTNH |
LIST [lin-num [sep [lin-num]1]] ..
sep: 1 -
BASIC-PLUS-2
LISTNH
LIST [[—1lin-num][sep [lin-num]]...
sep: t - i
Syntax Rules
1. The LIST command displays program lines, along with a header containing the program
name, the current time, and the date. To suppress the program header, type LISTNH.

2. LIST without parameters displays the entire program.

3. The sep characters allow you to display single lines or a range of lines.

e To display single lines, separate line numbers with commas. For example:

LIST 30,70
displays a header and lines 30 and 70.

¢ To display an inclusive range of lines, separate line numbers with a hyphen. The first
number must be lower than the second number in the range or BASIC signals an error.
- For example:

LIST 30-70
displays lines 30 through 70.

4. Line number ranges must be separated from other ranges or individual line numbers by
commas as BASIC does not allow two consecutive hyphens.

BASIC Reference Manual 75

LIST

VAX=11 BASIC

1
.

A lin-num followed by a hyphen and a carriage return displays the specified line and all
remaining lines in the program.

A hyphen between the LIST command and lin-num causes VAX—11 BASIC to signal an
error.

BASIC-PLUS-2

1.

3.

A hyphen between the LIST command and the lin-num displays all lines from the begin-
ning of the program up to and including the lin-num you specify.

A lin-num followed by a comma or a hyphen and a carriage return displays only the
specified line.

If there are no lines in the specified range, BASIC-PLUS-2 signals an error.

General Rules

1.

Examples

BASIC displays the source program lines in the order you specify in the command line.
That is, BASIC displays line 100 before line 10 if you type LIST 100,10.

VAX-11 BASIC

LIST 50

200-300, 30000-

BASIC-PLUS-2

LISTNH -30, 2000-2500, 139000

76 BASIC Reference Manual

LOAD

17.0 LOAD

Function

The LOAD command makes a previously created object module or modules available for execution
with the RUN command.

Format

LOAD file-spec [+ file-spec] ...

Syr{tax Rules

1.

4.

File-spec must be a BASIC object module or BASIC signals an error. OBJ is the default file
type. If you specify only the file name, BASIC searches for an OB] file in the current default
directory.

Each device and directory specification applies to all following file specifications until you
specify a new directory or device.

Each new LOAD command cancels the effect of a previous LOAD command. That is, the
LOAD command clears all previously loaded object modules from memory.

The LOAD command accepts multiple device, directory, and file specifications.

General Rules

1.

3.

Examples

BASIC does not process the loaded object files until you issue the RUN command. Conse-
quently, errors in the loaded modules may not be detected until you execute them.

BASIC signals an error:

e If the file is not found

o If the file specification is not valid

o |f the file is not a BASIC object module

e If run-time memory is exceeded

Errors do not change the program currently in memory.

Typing the LOAD command does not change the program currently in memory.

LOAD PROGA + PROGB + PROGC

BASIC Reference Manual 77

LOCK

18.0 LOCK

Function

The LOCK command changes default values for COMPILE command qualifiers. It is a synonym for
the SET command. See the SET command for syntax rules.

78 BASIC Reference Manual

NEW

19.0 NEW

Function

The NEW command clears BASIC memory and allows you to assign a name to a new program.

Format

NEW [prog-nam]

Syntax Rules

1.

Prog-nam is the name of the program you want to create. VAX-11 BASIC and
BASIC—PLUS—2 on RSX—11M/M—PLUS systems allow names to contain up to nine alpha-
numeric characters. BASIC—PLUS—2 on RSTS/E systems allows names to contain up to six
alphanumeric characters.

BASIC—PLUS—2 on RSTS/E systems truncates a prog-nam that exceeds six characters and
does not signal an error.

VAX=11 BASIC and BASIC—PLUS-2 on RSX—11M/M-PLUS systems signal an error if the
prog-nam exceeds nine characters.

VAX—11 BASIC signals ““error in program name’’ if you specify a file type. BASIC-PLUS-2
ignores the file type and does not signal an error.

General Rules

1.

Examples

If you do not specify a prog-nam, BASIC prompts with:

New file name--

The defauit name is NONAME. if you do not provide a prog-nam in response to the
prompt, BASIC assigns the file name NONAME to your program.

When you type the NEW command, the program currently in memory is lost. Program
modules loaded with the LOAD command remain unchanged.

NEW PROGI1

BASIC Reference Manual 79

ODLRMS

20.0 ODLRMS (BASIC-PLUS-2)

Function

The ODLRMS command allows you to select an overlay description (ODL) file to describe the RMS
overlay structure to be used when your program is task built. When you use the BUILD command,
BASIC-PLUS-2 includes the specified ODL file in the Task Builder command file. Every system has
an ODL default set when BASIC-PLUS-2 is installed. See your system manager for the name of your
BASIC default.

Format

ODLRMS [odl-param]

file-spec
NONE

odl-param:

Syntax Rules

1.

If you enter the ODLRMS command without an odl-param, BASIC-PLUS-2 prompts for
one and displays the name of the current default ODL file.

® File-spec can be an ODL file supplied by RMS or a user-created file. Table 15 lists and
describes RMS ODL files.

* NONE tells the Task Builder not to link your task to any RMS ODL file.

* If you type a carriage return in response to the prompt, BASIC-PLUS-2 uses the default
ODL file.

General Rules

1.

New versions of RMS can change ODL file names, so consult the RMS distribution kit for
current ODL names. LB: is a RSTS/E logical name for the library account on disk. On
RSX=TTM/M=PLUS systems, you must specify LB:[1,1] before the ODL file name.

Enter the ODLRMS command before you enter the BUILD command. The ODL file you
specify is included in all Task Builder command files until you enter a new ODLRMS
command or exit from the BASIC environment, at which time BASIC—PLUS—2 returns to the
ODL default file.

You can override the ODLRMS command with the ODL qualifier to the BUILD command
for a single BUILD operation.

Refer to the RMSRES compiler command to see which ODL files are required for each RMS
library.

80 BASIC Reference Manual February 1984

(92

ODLRMS

The Task Builder returns an error message if the ODL file you select is not available or
valid. Consult your system manager for information about ODL files available to you.

Consult BASIC on RSX—11M/M—PLUS Systems or BASIC on RSTS/E Systems for more
information on using RMS libraries.

Table 15: ODL Files

ODLRMS File Organization Type of Overlay
Option Seq | Rel ind Library Segments
RMSRLX Yes Yes Yes Memory None
DAPRLX Yes Yes Yes Memory None
RMS11S Yes | Yes No Disk 11
RMS125 Yes | Yes No Disk 5
RMST1X Yes | Yes Yes Disk 35
RMS12X Yes | Yes Yes Disk 13
DAP11X Yes | Yes Yes Disk 16
Examples

RSX—=11M/M—-PLUS Systems

ODLRMS LB:[1,1IRMSRLX.ODL

RSTS/E Systems

ODLRMS LB:RMSRLX.ODL

February 1984 BASIC Reference Manual 81

oLD

21.0 OLD

Function

The OLD command brings a previously created BASIC program into memory.

Format

OLD [file-spec]

Syntax Rules

1.

2.

If you do not name a file-spec, BASIC prompts for one. If you do not enter a file-spec in
response to the prompt, BASIC searches for a file named NONAME.BAS (VAX=11 BASIC)
or NONAME.B2S (BASIC-PLUS-2) in the current default directory.

The default file type is BAS for VAX—11 BASIC and B2S for BASIC-PLUS-2.

General Rules

1.

If the compiler cannot find the file-spec, VAX—11 BASIC signals the error “file not found”
and BASIC-PLUS-2 signals ““can’t find file or account”.

2. When the specified file is found, it is placed in memory and any program currently in
memory is erased. If BASIC does not find the specified file, the program currently in
memory does not change.

3. Ifyou specify a file that does not begin with a line number, BASIC discards all text up to the
first line number, brings the file into memory, and signals the error “‘Non-continued state-
ment has no line number near <line number>". You can then LIST and SAVE the
program.

Examples
OLD CHECK
Ready

82 BASIC Reference Manual

Qualifiers

22.0 Qualifiers

Function

BASIC qualifiers allow you to specify defaults for the compilation process and the BASIC environ-
ment. You specify qualifiers with the COMPILE and SET commands. In BASIC-PLUS-2, you can also
specify qualifiers with the BUILD and RUN commands.

Format

Syntax Rules

1. The slash delimiter is not required before the first qualifier in the SET command. Multiple
qualifiers, however, must be separated by siashes or commas. See the syntax ruies for the
SET command for more information on separating qualifiers.

2. You can abbreviate all positive qualifiers to the first three letters of the qualifier keyword.

You can abbreviate a negative qualifier to NO and the first three letters of the qualifier
keyword.

General Rules

1. Table 16 lists VAX—11 BASIC qualifiers and their functions. Table 17 lists BASIC-PLUS-2
qualifiers, the commands they can be used with, and their functions.

2. In cases of ambiguous or erroneous qualifiers, VAX—11 BASIC signals the error ‘“Unknown
qualifier”, while BASIC-PLUS-2 signals “lllegal switch”.

3. When you exit from the BASIC environment, all defaults set with qualifiers return to the
defaults. Use the SHOW command before setting any qualifiers to dispiay your system
defaults.

Examples

COMPILE /NDOBJ /DOUBLE / DEBUG

SET /TYPE_DEFAULT: EXPLICIT/LIST

BASIC Reference Manual 83

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers

Qualifier

Function

[NOJANSI_STANDARD

Tells BASIC to compile programs according to the ANSI Minimal
BASIC Standard and to flag syntax that does not conform to the
standard. See BASIC on VAX/VMS Systems for information on
the ANSI Minimal BASIC Standard.

[NOJAUDIT [sep text-entry]

|

str-lit
file-spec

sep:

text-entry:

Tells BASIC to include a history entry in the CDD data base when
a CDD definition is extracted. Str-lit is a quoted string. File-spec
is a text file. The history entry includes:

® The contents of str-lit, or up to the first 64 lines in the file
specified by file-spec

¢ The name of the program module, process, user name, and
user UIC that accessed the CDD

® The time and date of the access
® A note that access was made by the BASIC compiler

® A note that the access was an extraction

[NOIBOUNDS_CHECK

Tells BASIC to perform range checks on array subscripts. BASIC
checks that all subscript references are within the array bound-
aries set when the array was declared.

BYTE

Causes the compiler to allocate eight bits of storage as the default
for all integer data not explicitly typed in the program. Untyped
integer vaiues are treated as BYTE vaiues and must be in the
BYTE range or BASIC signals the error “Integer error or over-
flow". Table 2 in this manual lists BASIC data types and ranges.

[NOICROSS_REFERENCE [sep [NOIKEYWORDS |

Causes the compiler to include cross-reference information in the
program listing file. If you specify KEYWORDS, BASIC also
cross-references BASIC keywords used in the program. The list-

sep:
P = ing file takes the program name as the file name and a default file
type of LIS.
[NOIDEBUG Tells BASIC to provide records for the VAX-11 Symbolic

Debugger. See BASIC on VAX/VMS Systems for information on
using the VAX—11 Symbolic Debugger.

DECIMAL_SIZE sep (d,s)

- |

Allows you to specify the default size and precision for all
DECIMAL data not explicitly assigned size and precision in the
program. You specify the total number of digits (d) and the num-
ber of digits to the right of the decimal point (s). BASIC signals
the error ““Decimal error or overflow” (ERR=181) when
DECIMAL values are outside the range specified with this quali-
fier. See Table 2 in this manual and Appendix C in BASIC on
VAX/VMS Systems for information on the storage and range of
packed decimal data.

84 BASIC Reference Manual

Qualifiers

Table 16: VAX=11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

Function

DOUBLE

Causes the compiler to allocate 64 bits of storage in
D_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating-
point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC signals the error “Floating-
point error or overflow”. Table 2 in this manual lists BASIC
data types and ranges.

[NOJFLAG [sep (flag-clause,...)]

- |

{NO]BP2COMPATIBILITY

flag-clause: [NO]DECLINING

Causes BASIC to provide compile-time information about
program elements that are not compatible with
BASIC—PLUS=2 or that DIGITAL designates as declining.
An element is designated declining when BASIC has a
preferred and often more powerful way to perform the
operation.

If you specify BP2COMPATIBILITY, BASIC will flag the
following source code as incompatible with
BASIC-PLUS-2:

e String comparisons using (<),(>),(<=), or (> =)

¢ DECIMAL keyword and DECIMAL function

e HFLOAT keyword

e GFLOAT keyword

e LOC function

e MAR and MAR% functions

o MARGIN and NOMARGIN statements

e RECORD declarations

e More than 16 digits of precision in a floating-point literal
e Explicit literal notation that specifies a radix

e Explicit literal notation with data type other than “B”
(BYTE), “W’ (WORD), “L” (LONG), “S” (SINGLE), “D”
(DOUBLE), or “C” (CHARACTER)

o Names in the EXTERNAL statement that have more than
six characters or contain characters not in the Radix-50
character set

e BY DESC clauses on anything other than entire arrays or
unsubscripted STRING variables

e BY VALUE clauses for anything other than BYTE or
WORD unsubscripted variables

¢ More than eight parameters to a DEF, subprogram, or
external function

February 1984

(continued on next page)

BASIC Reference Manual 85

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier Function

e Arrays of more than eight dimensions

e Terminal-format files opened with no MAP or
RECORDSIZE clause and no ACCESS READ clause

e BY DESC, BY REF, and BY VALUE clauses in SUB and
FUNCTION statements

If you specify DECLINING, BASIC will flag the following
source code as declining:

o CVT$$ (use EDITS)

o CVT$%, CVT$F, CVT%$, CVTF$, and SWAP% (use
multiple MAP statements)

e DEF* functions (use DEF functions)
o FIELD statements (use MAP DYNAMIC and REMAP)

¢ GOTO lin-num% (do not use the integer suffix with a
line number)

GFLOAT Causes the compiler to allocate 64 bits of storage in
G_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating-
point values are treated as GFLOAT values and must be in
the GFLOAT range or BASIC signals “Floating-point error
or overflow”. Table 2 in this manua! lists BASIC data types
and ranges.

HFLOAT Causes the compiler to allocate 128 bits of storage in
H_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating-
point values are treated as HFLOAT values and must be in
the HFLOAT range or BASIC signals “Floating-point error
or overflow”. Table 2 in this manual lists BASIC data types
and ranges.

[NOJLINE Includes line number information in object modules. If you
specify NOLINE in a program containing a RESUME state-
ment or using the run-time ERL function, BASIC warns that
the NOLINE qualifier has been overridden.

[NOILIST Tells BASIC to produce a source listing file. By default, this
file contains a memory allocation map. The listing file

takes the name of the program and a default file type of
LiS.

(continued on next page)

86 BASIC Reference Manual

Qualifiers

Table 16: VAX=11 RASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

Function

LONG

Causes the compiler to allocate 32 bits of storage as the
default size for all integer data not explicitly typed in the
program. Untyped integer values are treated as LONG val-
ues and must be in the LONG range or BASIC signals the
error ““Integer error or overflow’’. Table 2 in this manual

licsc DACL
lists BASIC data types and ranges.

[NOJMACHINE_CODE

Causes BASIC to include the machine code generated by
the compilation in the program listing file.

[NO]OBJECT

Generates an object module with the same file name as the
program and a default file type of OBJ. Use NOOBJECT to
check your program for errors without creating an object
file.

[NOJOVERFLOW [sep (data-type,...)]

Tells BASIC to report arithmetic overflow for operations on
integer and/or packed decimal data.

sep: ’ :
data-type: INTEGER
ype DECIMAL
[NOJROUND Tells BASIC to round rather than truncate DECIMAL
values.
INOJSETUP Tells BASIC to make calls to the Run-Time Library that set

up the stack for BASIC variables, set up dynamic string and
array descriptors, initialize variables, and enable BASIC
error handling. If you specify NOSETUP, BASIC will
attempt to optimize your program by omitting these calls.
If your program contains any of the following elements,
BASIC provides an informational diagnostic and does not
optimize your program:

e CHANGE statements
o DEF or DEF* statements

e Dynamic string variables

Executable DIM statements

EXTERNAL string functions

o MAT statements
e MOVE statements for an entire array

o ON ERROR statements

(continued on next page)

BASIC Reference Manual 87

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

Function

e READ statements

REMAP statements
RESUME statements

e String concatenation
e Built-in string functions
e Virtual array declarations

Note that program modules compiled with NOSETUP
cannot perform any /O and have no error handling capa-
bilities. If an error occurs in such a module, the error is
resignaled to the calling program.

[NOJSHOW [sep (show-item,...) |

Tells BASIC what to include in the listing file:

o CDD_DEFINITIONS specifies translated CDD defini-
sep: _ tions.
o ENVIRONMENT specifies a listing of the compilation
INOJCDD_DEFINITIONS qualifiers in effect.
[NOJENVIRONMENT e INCLUDE specifies a listing of the contents of %IN-
show-item: [INOJINCLUDE CLUDE files.
’ [INOIMAP ”
[NOJOVERRIDE ® MAP specifies a storage allocation map.
o OVERRIDE cancels the efiect of all %NOLIST directives
in the source program.
If you do not specify a show-item, BASIC uses the defaults
set with the DCL command.
SINGLE Causes the compiler to allocate 32 bits of storage in

F_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating-
point values are treated as SINGLE values and must be in
the SINGLE range or BASIC signals the error “‘Floating-
point error or overflow”. Table 2 in this manual lists BASIC
data types and ranges.

[NOJSYNTAX_CHECK

Tells BASIC to perform syntax checking after each program
line is typed.

[NOJTRACEBACK

Causes BASIC to include traceback information in the ob-
ject file that allows reporting of the sequence of calls that
transferred control to the statement where an error
occured.

88 BASIC Reference Manual

(continued on next page)

Qualifiers

Table 16: VAX—11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier Function

'TYPE_DEFAULT sep default-clause Sets the default data type (REAL, INTEGER, or DECIMAL)
for all data not explicitly typed in your program or specifies
that all data must be explicitly typed (EXPLICIT).

= o REAL specifies that all data not explicitly typed is float-
ing-point data of the default size (SINGLE, DOUBLE,
REAL GFLOAT, or HFLOAT).

INTEGER
DECIMAL
EXPLICIT

sep:

default-clause: o INTEGER specifies that all data not explicitly typed is
integer data of the default size (BYTE, WORD, or

LONG).

o DECIMAL specifies that all data not explicitly typed is
packed decimal data of the default size.

o EXPLICIT specifies that all data in a program must be
explicitly typed. Implicitly declared variables cause
BASIC to signal an error.

VARIANT sep int-const Establishes int-const as a value to be used in compiler
directives. The variant value can be referenced in a lexical
sep: : expression by using the lexical function, %VARIANT.
= Int-const always has a data type of LONG.

[NOIWARNINGS [sep warn-clause] Tells BASIC to display warning and/or informational mes-
sages. If you specify WARNINGS but do not specify a
sep: : warn-clause, BASIC displays both warnings and informa-
tional messages.

[NOIWARNINGS

wam-clause: [NOJINFORMATIONALS

WORD Causes the compiler to allocate 16 bits of storage as the
default for all integer data not explicitly typed in the pro-
gram. Untyped integer values are treated as WORD values
and must be in the range —32768 to 32767 or BASIC sig-
nals the error “Integer error or overflow.” Table 2 in this
manual lists BASIC data types and ranges.

BASIC Reference Manual 89

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers

Qualifier

Commands

Function

BRLRES: lib-param

BUILD

Lets you specify a memory-resident library to be
linked to your program. File-spec can be a library
supplied with BASIC-PLUS-2 or a user-created
library. NONE tells the Task Builder not to link
your task to the default memory-resident library.
See the BRLRES command syntax rules in this man-
ual for more information on memory-resident
libraries.

COMPILE
RUN
SET

Causes the compiler to allocate eight bits of storage
as the default for all integer data not explicitly
typed in the program. Untyped integer values are
treated as BYTE values and must be in the BYTE
range or BASIC signals the error “Integer error or
overflow”. Table 2 in this manual lists BASIC data
types and ranges.

. . file-spec
lib-param: NONE ‘
BYTE
INOICHAIN

COMPILE**
RUN**
SET**

Enables other programs to CHAIN into the program
using the LINE clause of the CHAIN statement. The
default (CHAIN or NOCHAIN) is an installation
option. If the program has more than 200 line
numbers, NOCHAIN reduces the memory needs of
the output program by disabling storage of line
numbers in memory. You cannot chain from one
DECNET node to another.

BUILD
SET

Tells the Task Builder to cluster memory-resident
libraries to increase the space available for your
task. For the cluster qualifier to have an effect, at
least two resident libraries must be linked to the
task: the BASIC—PLUS-2 resident library, and one
other resident library. File-spec specifies a mem-
ory-resident library to be clustered. NONE speci-
fies that only the BASIC-PLUS—2 and RMS libraries
are clustered.

If there is no default CLUSTER library, the
CLUSTER qualifier without a parameter acts the
same as the CLUSTER:NONE qualifier. The speci-
fied library must be in the account LB: on RSTS/E
systems or the account LB:[1,1] on RSX systems.
Consult BASIC on RSX—11M/M—-PLUS Systems or
BASIC on RSTS/E Systems for more information on
using RMS libraries.

[NOJCROSS__REFERENCE[:[NOJKEYWORDS]

COMPILE
SET

Causes the compiler to include cross-reference
information in the program listing file. If you spec-
ify KEYWORDS, BASIC also cross-references
BASIC keywords used in the program. The listing
file takes the program name as the file name and a
default file type of LST.

920 BASIC Reference Manual

(continued on next page)

February 1984

Tabie 17: BASIC—PLUS—2 Command Qualifiers (Con

t.)

Qualifiers

Qualifier Commands Function
INOIDEBUG COMPILE Tells BASIC to provide records for the
RUN BASIC—-PLUS—2 debugger when you compile a pro-
SET gram or to pass contro! to the debugger when you
execute a program with RUN in the BASIC envi-
ronment. The LINE qualifier must be in effect when
you compile a program with the DEBUG quaiifier
in effect.
DOUBLE COMPILE Causes the compiler to allocate 64 bits of storage
RUN as the default size for all floating-point data not
SET explicitly typed in the program. Untyped floating-
point values are treated as DOUBLE values and
must be in the DOUBLE range or BASIC signals the
error ‘Floating-point error’”. Table 2 in this manual
lists BASIC data types and ranges.
DSKLIB : file-spec BUILD Lets you specify a disk-resident object module
library to be linked to your program. File-spec can
be a library supplied with BASIC-PLUS-2 or a
user-created library. NONE tells the Task Builder
not to link your task to the default object module
library. See the DSKLIB command syntax rules for
more information on disk-resident libraries.
[NOIDUMP BUILD Tells the Task Builder to generate a memory dump
SET if the program aborts with a fatal error.
EXTEND: int-const BUILD Specifies the amount of space to be added to the
SET initial task size when the task is started. The Task
Builder rounds the extension up to the nearest
32-word boundary. The maximum extension is
32000.
FLAG:(NO]DECLINING COMPILE Causes BASIC to provide compile-time information
RUN about program elements that DIGITAL designates
SET declining. An element is designated declining

when BASIC has a preferred and often more
powerful capablity. When you specify
FLAG:DECLINING, BASIC will flag the following
source code:

e CVT$$ (use EDITS)

e CVT$%, CVT$F, CVT%$, CVTF$, and SWAP%
(use multiple MAP statements)

e DEF* functions (use DEF functions)

February 1984

(continued on next page)

BASIC Reference Manual 91

Qualifiers

Table 17: BASIC-PLUS—2 Command Qualifiers (Cont.)

Qualifier

Commands

Function

o FIELD statements (use MAP DYNAMIC and
REMAP)

e GOTO lin-num% (do not use the integer suffix
with a line number)

[NOJIND

BUILD
SET

Causes the Task Builder to include the code
needed for indexed file operations. BASIC—PLUS—2
enables this qualifier automatically for programs
containing an OPEN statement with an
ORGANIZATION INDEXED clause.

LIBRARY: lib-param

lib-nam
file-spec
NONE

lib-param:

BUILD

Lets you specify a memory-resident library to be
linked to your program. File-spec and lib-nam can
be a library supplied with BASIC-PLUS-2 or a
user-created library. If you specify only a lib-nam
with no device, BASIC assumes LB: on RSTS/E sys-
tems and LB:[1,1] on RSX systems. NONE tells the
Task Builder not to link your task to the default
memory-resident library. Therefore, the Task
Builder links to the BASIC disk-resident, object
module library, BP20OTS.OLB. See the LIBRARY
command syntax rules for more information on
memory-resident libraries.

[NOJLINE

COMPILE
RUN
SET

Includes line number information in object
modules. If you specify NOLINE in a program con-
taining a RESUME statement or using the run-time
ERL function, BASIC warns that the NOLINE quali-
fier has been overridden.

[NOILIST

COMPILE
SET

Tells BASIC to produce a source listing file. The
listing file takes the name of the program and a
default file type of LST.

LONG

COMPILE
RUN
SET

Causes the compiler to allocate 32 bits of storage
as the default size for all integer data not explicitly
typed in the program. Untyped integer values are
treated as LONG values and must be in the LONG
range or BASIC signals the error “Integer error’’.
Table 2 in this manual lists BASIC data types and
ranges.

[NOIMACRO

COMPILE
SET

Converts the program into MACRO source code
and saves it in a file with the same name as the
program and a file type of MAC. The MAC file can
be assembled.

92 BASIC Reference Manual

(continued on next page)

Tabie 17: BASIC-PLUS-2 Command

n
0

ualifiers {Cont.

Qualifiers

Qualifier

Commands

Function

[NOJMAP

BUILD

Includes information for the allocation map in the
Task Builder command file.

[NOJOBJECT

COMPILE
SET

Generates an object module with the same file
name as the program and a default file type of OBJ.
Use NQORIECT to check your program for errors

without creating an object file.

ODLRMS: odl-param
file-spec

odl-param: NONE

BUILD

Lets you specify an ODL file to describe the RMS
overlay structure to be used by the Task Builder.
File-spec can be an ODL file supplied by RMS or a
user-created file. NONE tells the Task Builder not
to link your task to the default ODL file. See the
ODLRMS command syntax rules in this manual for
more information on ODL files.

PAGE_SIZE: int-const

COMPILE
SET

Sets the page size for the listing file. Int-const must
be greater than zero or BASIC signals the warning
“Listing length out of range — ignored”’.

[NOIREL

BUILD
SET

Causes the Task Builder to include the code
needed for relative file operations. BASIC-PLUS-2
sets this qualifier automatically for programs con-
taining an ORGANIZATION RELATIVE clause in
an OPEN statement.

RMSRES: lib-param
file-spec

lib-param: NONE

BUILD

Lets you specify an RMS library that supplies code
for file and record operations to be linked to your
program. File-spec can be a library supplied by
RMS or a user-created library. NONE tells the Task
Builder not to link your task to the default RMS
library. See the RMSRES command syntax rules for
more information on RMS libraries.

[NOJSCALE: const

COMPILE

Allows control of accumulated round-off errors
when double precision numbers (values typed
DOUBLE) are used. Numbers are stored as multi-
ples of 10 by setting the scale factor (const) from O
to 6. Floating-point numbers are truncated to an
integer value of O to 6. A scale factor larger than 6
causes BASIC to signal the error message ‘“Scale
factor of n is out of range.”

INOISEQ

BUILD
SET

Causes the Task Builder to include the RMS-11
code needed for sequential file operations.
BASIC~PLUS-2 sets this qualifier automatically for
programs containing an ORGANIZATION
SEQUENTIAL clause in the OPEN statement.

February 1984

(continued on next page)

BASIC Reference Manual 93

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont.)

Qualifier Commands Function
SINGLE COMPILE Causes the compiler to allocate 32 bits of storage
RUN as the default size for all floating-point data not
SET explicitly typed in the program. Untyped floating-
point values are treated as SINGLE values and must
be in the SINGLE range or BASIC signals the error
“Floating-point error’’. Table 2 in this manual lists
BASIC data types and ranges.
[NOJSYNTAX_CHECK COMPILE Tells BASIC to perform syntax checking after each
RUN program line is typed.
SET
TYPE_DEFAULT: default-clause COMPILE Sets the default data type (REAL or INTEGER) for all
RUN data not explicitly typed in your program or speci-
REAL SET fies that all data must be explicitly typed
default-clause: INTEGER (EXPLICIT).
EXPLICIT
¢ REAL specifies that all data not explicitly typed is
floating-point data of the default size (SINGLE or
DOUBLE).
¢ INTEGER specifies that all data not explicitly
typed is integer data of the default size (BYTE,
WORD, or LONG).
¢ EXPLICIT specifies that all data in a program
must be explicitly typed. Implicitly declared vari-
ables cause BASIC to signal an error.
VARIANT: int-const COMPILE Establishes int-const as a value to be used in com-
RUN piler directives. The variant value can be refer-
SET enced i. a lexical expression by using the lexical
function, %VARIANT. Int-const always has a data
type of WORD.
[NOJVIR BUILD* Causes the Task Builder to include the RMS code
SET* needed for virtual array and block 1/0 file opera-

tions. BASIC-PLUS-2 sets this qualifier automati-
cally when you compile a program containing an
ORGANIZATION VIRTUAL clause in the OPEN
statement.

94 BASIC Reference Manual

(continued on next page)

Qualifiers

Qualifier Commands Function
WIDTH: int-const COMPILE Sets the width of the listing file. Int-const must be
SET in the range 72 to 132, inclusive, or BASIC signals
the warning “Listing width out of range —
ignored”’.
WORD COMPILE Causes the compiler to allocate 16 bits of storage
RUN as the default for all integer data not explicitly
SET typed in the program. Untyped integer values are
treated as WORD values and must be in the range
—32768 to 32767 or BASIC signals the error
“Integer error.” Table 2 in this manual lists BASIC
data types and ranges.
* RSX only

** RSTS/E only

BASIC Reference Manual 94.1

RENAME

23.0 RENAME

Function

The RENAME command allows you to assign a new name to the program currently in memory.
BASIC does not write the renamed program to a file until you save the program with the REPLACE or
SAVE command.

Format

Syntax Rules

1. Prog-nam specifies the new program name. VAX-11 BASIC and BASIC-PLUS-2 on
RSX—11M/M-PLUS systems allow names to contain up to nine aiphanumeric characters.
BASIC—PLUS-2 on RSTS/E systems allows names to contain up to six alphanumeric
characters.

2. The program you want to rename must be in memory. If you type RENAME with no
program in memory, BASIC renames the default program, NONAME, to the specified
prog-nam.

VAX=11 BASIC

1. If you do not specify a prog-nam, VAX—11 BASIC renames the program currently in mem-
ory NONAME.

2. If you specify a file type, VAX—11 BASIC signals the error “error in program name’’.

BASIC—PLUS—2

1. BASIC-PLUS-2 prompts for the new prog-nam if you do not specify one with the
RENAME command. ¥ you do not specify a prog-nam in response to the prompt, the name
of the program currently in memory remains unchanged.

2. If you specify a file type, BASIC-PLUS-2 ignores the file type, does not signal an error, and
assigns the B2S file type to the file when you save it.

General Rules

1. You must type SAVE or REPLACE to write the renamed program to a file. If you do not type
SAVE or REPLACE, BASIC does not save the renamed program.

2. The RENAME command does not affect the original saved version of the program. For
example:

OoLD TEST
Ready

RENAME NEWTES
Ready

SAVE

BASIC Reference Manual 95

RENAME

In this example, the OLD command calls the program named TEST into memory. The
RENAME command renames TEST to NEWTES and the SAVE command writes
NEWTES.BAS (VAX—11 BASIC) or NEWTES.B2S (BASIC—PLUS-2) to a file. The original file,
TEST.BAS or TEST.B2S, is not changed and is not deleted from your account.

Examples

RENAME NEWPRO

96 BASIC Reference Manual

REPLACE

24.0 REPLACE

Function

The REPLACE command writes the current program to a storage medium.

Format

REPLACE [file-spec]

Syntax Rules

1. If you do not supply a file-spec, BASIC writes the program to the default disk with the file
name of the program currently in memory.

e VAX—11 BASIC and BASIC—PLUS-2 on RSX—11M/M—PLUS systems create and save a
new version of the file, incrementing the version number by one. Previous versions of the
file remain unchanged.

e BASIC—PLUS—2 on RSTS/E systems overwrites the original version of the file with the
new version.

General Rules

1. The file-spec does not have to match that of the program currently in memory. You can
differentiate a changed program from the original version of the program by specifying a
new file-spec. BASIC saves the program with the new file-spec.

2. The program currently in memory does not change.
Examples

REPLACE PROGA.NEW

BASIC Reference Manual 97

RESEQUENCE

25.0 RESEQUENCE (VAX-11 BASIC)

Function

The RESEQUENCE command allows you to resequence the line numbers of the program currently in
memory. BASIC also changes all references to the old line numbers so they reference the new line
numbers.

Format

RESEQUENCE [lin-num1 [- lin-num2][lin-num3 1 1[STEP int-const]

Syntax Rules

1. Lin-num1 is the line number in the program currently in memory where resequencing
begins. The default for lin-num1 is the first line of the program module.

2. Lin-num2 is the optional end of the range of line numbers to be resequenced. If you specify
a range, BASIC begins resequencing with lin-num1 and resequences through lin-num2. If
you do not specify lin-num2, BASIC resequences the specified line. If you do not specify
either lin-num1 or lin-num2, BASIC resequences the entire program.

3. Lin-num3 specifies the new first line number; the default number for the new first line
is 100.

® If lin-num3 will cause existing lines to be deleted or surrounded, BASIC signals an error.

® You can specify lin-num3, the new first line number, only when resequencing a range of
lines.

4. Int-const specifies the numbering increment for the resequencing operation. The default for
int-const is 10.

5. BASIC signals an error when you try to resequence a program that contains a %IF directive.
BASIC also signals an error when you try to resequence a program that has a %INCLUDE
directive if the file to be included contains a reference to a line number.

General Rules

1. Before the RESEQUENCE command executes, BASIC verifies the syntax of the program. If
the program is not syntactically valid, the RESEQUENCE command does not execute.

2. BASIC sorts the renumbered program in ascending order when the RESEQUENCE com-
mand executes.

3. Ifthe renumbering creates a line number greater than the maximum line number of 32767,
BASIC signals an error.

4. BASIC signals an error if resequencing causes a change in the order in which program
statements are to execute and does not resequence the program.

5. BASIC issues the error “‘undefined line number” in the case of undefined line numbers and
does not resequence the program.

938 BASIC Reference Manual

Examples

RESEQUENCE

BASIC does not modify the program currently in memory when the RESEQUENCE com-
mand generates an error.

In general, the RESEQUENCE command is not recommended for programs containing error
handlers that test the value of ERL. However, the RESEQUENCE command correctly modi-
fies the program if the tests that reference ERL are of this form:

ERL relational-operator int-1it

The RESEQUENCE command does not correctly renumber programs if the test compares
ERL with an expression or a variable, or if ERL follows the relational operator. The follow-
ing line number references, for example, would not be correctly renumbered:

IF ERL = 1000 + A% THEN ...
IF 1000 > ERL THEN ...

RESEQUENCE 100-1000 STEP 5

BASIC Reference Manual 99

RMSRES

26.0 RMSRES (BASIC-PLUS-2)

Function

The RMSRES command allows you to select an RMS memory-resident library to be used when your
program is task built. You can also choose to use no RMS memory-resident library. The RMS library
supplies RMS code for file and record operations. After you specify a library with the RMSRES
command, when you use the BUILD command, BASIC-PLUS-2 includes the specified library in the
Task Builder command file. Every system has an RMS library default set when BASIC—PLUS-2 is
installed. ,

Format

RMSRES lib-param

lib-param: file-spec

NONE

Syntax Rules

1. If you enter the RMSRES command without a lib-param, BASIC-PLUS-2 prompts for one
and displays the name of the current default RMS library.

® File-spec can be RMSRES (the RMS memory-resident library) or a user-created resident
library. Table 18 lists and describes RMS libraries.

® NONE tells the Task Builder not to link your task to the RMS default resident library.
Therefore, the Task Builder links to the RMS object module library, RMSLIB.OLB.

® If you type a carriage return in response to the prompt, the current default memory-
resident library is used.

General Rules

1. LB:is a RSTS/E logical name for the library account on disk. On RSX—11M/M—PLUS
systems, you must specify LB:[1,1] before the ODL file name.

2. BASIC-PLUS-2 links the specified RMS library to your program when you task-build the
program. You must use the RMSRES command before you use the BUILD command to
include the specified library in the Task Builder command file.

3. If you use an RMS library other than the default, you must specify one of the RMS QDL
files listed in Table 18. See the ODLRMS compiler command for more information.

100 BASIC Reference Manual February 1984

RMSRES

The RMSRES library you specify is included in your Task Builder command files until you

specify a new library with the RMSRES command or exit from the BASIC environment.
When you exit from the environment, the original RMS default library is restored as the

You can override the RMSRES command with the /RMSRES qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

The Task Builder returns an error message when the requested library is not available.

Consult your system manager for information about the RMS libraries available to you.
Consult BASIC on RSX—11M/M—-PLUS Systems or BASIC on RSTS/E Systems for more

4.
default.
5.
6.
7.
information on using RMS libraries
Table 18: RMS Libraries
Library File Organization Type of ODL File
Name Seq | Rel Ind Library Required
RMSRES Yes Yes Yes Memory RMSRLX.ODL
DAPRES Yes | Yes Yes Memory DAPRLX.ODL
RMS115.0DL
RMS125.0DL
RMSLIB Yes Yes Yes Disk RMS11X.0ODL
RMS12X.0ODL
DAP11X.ODL
Examples

RSX—-11M/M-PLUS Systems

RMSRES LB:C1,:1IRMEBRES

RSTS/ES

ystems

RMSRES LB:RMSRES

February

1984

BASIC Reference Manual 101

RUN

27.0 RUN and RUNNH

Function

The RUN command allows you to execute a program from the BASIC environment without first
invoking the PDP—11 Task Builder or the VAX~17 Linker to construct an executable image. The
program can be:

* A BASIC program brought into memory with the OLD command, created in response to the NEW
command, or specified in the RUN command

* An object module or modules placed in memory with the LOAD command
¢ A combination of the above

RUN executes the program starting at the lowest line number. Program modules previously compiled
and placed in memory with the LOAD command are referenced when the RUN command is given.
RUNNH executes the program but does not display the program header.

Format

VAX-11 BASIC

RUNNH
RUN [file-spec]
BASIC-PLUS-2
RUNNH
‘ RUN ‘ [file-spec][/qualifier]...

Syntax Rules

1. If you specify only the file name, BASIC searches for a file with a BAS (VAX=11 BASIC) or
B2S (BASIC-PLUS-2) file type in the current default directory.

2. If you do not supply a file-spec, BASIC executes the program currently in memory.

3. BASIC signals the warning message “No main program” if you do not supply a file-spec
and do not have a program currently in memory.

4. The RUNNH command is identical to RUN, except that it does not display the program
header, current date, and time.

BASIC-PLUS-2

1. /Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 17 lists all BASIC-PLUS-2 qualifiers and the com-
mands they can be used with, and describes their functions.

2. Support for RUN is an installation option. Use the SHOW command to see whether your
system supports the RUN command.

102 BASIC Reference Manual

RUN

General Rules

1. When you specify a file-spec with the RUN command, BASIC brings the program into
memory and then executes it. You do not have to bring a program into memory with the
OLD command in order to run it. The RUN command executes just as if the program had
been brought into memory with the OLD command.

2. If your program calls a subprogram, the subprogram must be compiled and placed in
memory with the LOAD command. If your program tries to call a subprogram that has not
been compiled and loaded, BASIC signals an error.

3. The RUN command does not create an object module file or a listing file.

VAX-11 BASIC

1. The program stops executing and control passes to the BASIC environment and immediate
mode when BASIC encounters a STOP statement in the program.

® Any BASIC statement that does not require the creation of new storage can be entered in
immediate mode to debug the program. You cannot create new variables in immediate
mode.

¢ Type the CONTINUE command to resume program execution.

2. The RUN command uses whatever qualifiers have been set with the exception of those that
have no effect on a program running in the environment. These are:

¢ NOCROSS

* NODEBUG

e NOLIST

e NOMACHINE

e NOOBJECT

These quaiifiers are always in effect when you run a program in the environment.
BASIC-PLUS-2

1. The program stops executing when BASIC encounters a STOP statement:

¢ If you used the RUN command to execute the program, BASIC displays a pound sign (#)
prompt. In response to the prompt, you can type only CONTINUE to resume program
execution, or EXIT to end the program.

¢ If you used the RUN/DEBUG command to execute the program, control passes to the
BASIC-PLUS-2 debugger. You can then use BASIC-PLUS-2 debugger commands to
display and change program values and to analyze your program. Use the CONTINUE
debugger command to resume program execution. See Part VI in this manual for more
information on debugger commands.

Examples

RUN PROG1

BASIC Reference Manual 103

SAVE

28.0 SAVE

Function

The SAVE command writes the BASIC source program currently in memory to a file on the default or
specified device.

Format

SAVE | file-spec]

Syntax Rules

1. If you do not supply a file-spec, BASIC saves the file with the name of the program
currently in memory and the BAS (VAX—11 BASIC) or B2S (BASIC—PLUS-2) default file
type.

2. If you specify only the file name, BASIC saves the program with the default file type in the
current default directory.

General Rules

1. In BASIC-PLUS-2, if you type SAVE and the file-spec already exists as a disk file, BASIC
displays the message “’File exists — Rename or Replace”.

2. VAX=TT BASIC writes a new version of a previously saved program when you type the
SAVE command.

3. BASIC stores the sorted program in ascending line number order.

4. You can store the program on a specified device. For example:
SAVE DBA1:NEWTST.PRO

BASIC saves the file NEWTST.PRO on disk DBAT:.
Examples

SAVE JUNK.BAS

104 BASIC Reference Manual

SCALE

29.0 SCALE

Function

The SCALE command allows you to control accumulated round-off errors by multiplying numeric
values by 10 raised to the scale factor before storing them.

Format

SCALE int-const

Syntax Rules

1. In BASIC-PLUS-2, SCALE with no argument causes BASIC to display the message ““Current
scale factor is n’’, where n is an integer from 0 to 6 inclusive. In VAX—11 BASIC, SCALE
with no argument causes BASIC to signal the error “illegal argument for command”’.

2. Int-const specifies the power of 10 you want to use as the scaling factor.

* In VAX—11 BASIC, int-const must be an integer from 0 to 6, inclusive, or BASIC signals
the error “illegal argument for command”’.

® In BASIC-PLUS-2, int-const can be a floating-point or integer number up to 6.999999.
BASIC truncates a floating point value and displays the message ‘‘%Scale factor has been
truncated to n”, where n is the integer portion of the value. If the specified value is
greater than 6.999999, BASIC signals the error ““Scale factor of n is out of range”, where
n is the specified value.

General Rules

1. CALE affects only values of the data type DOUBLE.

2. BASIC multiplies values using the scale factor you specify. The vaiue 2.488888, for
example, is rounded as follows:

Scale: Produces:

2.48889
2.4
2.48
2.488
2.4888
2.48888
2.48889

UV WN—=O

Examples

SCALE 2

February 1984 BASIC Reference Manual 105

SCRATCH

30.0 SCRATCH

Function

The SCRATCH command clears any program currently in memory, removes any object files loaded
with the LOAD command, and resets the program name to NONAME.

Format

SCRATCH

Syntax Rules
None.

General Rules

None.
Examples

SCRATCH

106 BASIC Reference Manual

310 S

Function

SEQUENCE

EQUENCE

The SEQUENCE command causes BASIC to automatically generate line numbers for your program
text. BASIC supplies line numbers for your text until you end the procedure or reach the maximum
line number of 32767.

Format

SEQUENCE [lin-num][, int-const]

Syntax Rules

i.

Lin-num specifies the line number where sequencing begins.

¢ If you do not specify a lin-num, the VAX—11 BASIC default is the last line inserted by a
SEQUENCE command; if there is no previous SEQUENCE command, the default is line
number 100.

e The BASIC-PLUS-2 default lin-num is always line number 100.

Int-const specifies the line number increment for your program.

e If you do not specify an increment, VAX—11 BASIC defaults to the int-const specified in
the last SEQUENCE command; if there is no previous SEQUENCE command, the default
is 10.

® BASIC-PLUS-2 always defaults to 10.

General Rules

1.

6.

Examples

If you specify a lin-num that already contains a statement, or if the sequencing operation
generates a line number that already contains a statement, BASIC signals ““Attempt to
sequence over existing statement”’, and returns to normal input mode.

Enter your program text in response to the line number prompt; the carriage return ends
each line and causes BASIC to generate a new line number.

If you enter a CTRL/Z in response to the line number prompt, BASIC terminates the
sequencing operation and prompts for another command.

You can also terminate the sequence operation in BASIC-PLUS-2 by typing a carriage
return in response to the line number prompt.

When the maximum line number of 32767 is reached, BASIC terminates the sequencing
process and returns to normal input mode.

BASIC does not check syntax during the sequencing process.

SEQUENCE 100:10

BASIC Reference Manual 107

SET

32.0 SET

Function

The SET command allows you to specify BASIC defaults for all BASIC qualifiers. Qualifiers control the
compilation process and the run-time environment. Qualifiers are set or reset as you specify. The
defaults you set remain in effect for all subsequent operations until they are reset or until you exit from
the compiler.

Format

qualifier,...
SET /qualifier...

Syntax Rules

1. /Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 16 lists and describes all VAX—11 BASIC qualifiers.
Table 17 lists and describes all BASIC-PLUS-2 qualifiers.

2. If you do not specify any qualifiers, VAX—11 BASIC resets all defaults to the defaults
specified with the DCL BASIC command.

3. If you do not specify any qualifiers, BASIC-PLUS-2 resets all qualifiers except those set
with the BRLRES, DSKLIB, LIBRARY, ODLRMS, RMSRES, or EXTEND gualifier to the
installation defaults. The SCALE value set with the SCALE command is also not reset to the
installation default.

4. VAX-11 BASIC signals the error ““unknown qualifier’” and BASIC-PLUS-2 signals “lllegal
switch” if you do not separate multiple qualifiers with commas or slashes, or if you mix
commas and slashes on the same command line. The same error is signaled if you separate
qualifiers with a slash but do not prefix the first qualifier with a slash.

General Rules
None.

Examples

SET /DOUBLE/BYTE/LIST

108 BASIC Reference Manual

33.0 SHOW

Function

SHOW

The SHOW command displays the current defaults for the BASIC compiler on your terminal.

Format

SHOW

Syntax Rules

None.

General Rules

None.

Examples
VAX=11 BASIC

SHOW
VAX-11 BASIC V2. Current Environm
DEFAULT DATA TYPE INFORMATION:

Data trype : REAL

Real size : SINGLE

Inteder size : LONG

Decimal size (15:+2)

Scale factor : O

NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
ObJect file
Overflow check inteders
OQverflow check decimal numbers
Bounds checKing
NO Syntax checKing
Lines
VYariant : O
HWarningds
Informationals
Setup
ObJect Libraries : NONE
Ready

BASIC-PLUS-2

SHOW
PDP-11 BASIC-PLUS-2Z2 V2,0
ENVIRONMENT INFORMATION:
Current edit line : O
NO Modules loaded
NO Main module loaded
Run surrort

ent Status 11-DEC-1882 10:05:56.57
LISTING FILE INFORMATION INCLUDES:
NO Source
NDO Cross reference
CDD Definitiaons
Environment
NO Override of %NOLIST
NO Machine code
Map
INCLUDE files

FLAGGERS:
Declining features
NO BASIC PLUS 2 subset

DEBUG INFORMATION:
TracebacK records
NO Debud symbol records

RMS FILE ORGANIZATION:
NO Index
NDO Relative
NDO Sequential

NO Virtual .
(continued on next page)

BASIC Reference Manual 109

SHOW

DEFAULT DATA TYPE INFORMATION:

Data tvyrpe : REAL

Real size : SINGLE

Inteder size : WORD

Scale factor : 0
COMPILATION QUALIFIERS:

NO Obdect

NO Macro

Lines

NO Debusg records

ND Svyntax checKing

Flag : Declining

Variant : 0

110 BASIC Reference Manual

LISTING FILE INFORMATION:
NO Source
NO Cross Reference
NO Kevwords
60 lines by 132 columns
BUILD QUALIFIERS:

NO Dump

ND Mar

Task extend : S12

RMS ODL file : LB:RMSRLX

BP2 Disk lib : LB:BP20TS

BPZ Resident 1lib : LB:BPZRES
RMS Resident lib : LB:RMSRES

UNSAVE

34.0 UNSAVE

Function

The UNSAVE command deletes a specified file from storage.

Format

UNSAVE [file-spec]

Syntax Rules

1. File-spec is optional.

¢ If you do not supply a file-spec, BASIC deletes a file that has the file name of the program
currently in memory and a file type of BAS (VAX—11 BASIC) or B2S (BASIC-PLUS-2).

e If you do not supply a file-spec and do not have a program in memory, BASIC searches
for the default file NONAME.BAS.

2. You do not have to supply a full file-spec. If you specify only a file name, BASIC deletes the
file with the specified name and the BAS (VAX—11 BASIC) or B2S (BASIC-PLUS-2) file type
from the default device and directory. Other file types with the same file name are not
deleted.

General Rules

1. The program currently in memory does not change even when it is the deleted file because
it is a copy of the deleted file.

Examples

UNSAVE DB2:CHECK.DAT

BASIC Reference Manual 111

PART Il
Compiler
Directives

%ABORT

1.0 %ABORT

Function

The %ABORT directive terminates program compilation and displays a fatal error message you
supply.

Format

%ABORT [str-lit]

Syntax Rules
1. The %ABORT directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%ABORT directive.

General Rules

1. BASIC stops the compilation and terminates the listing file as soon as it encounters a
%ABORT directive. Str-lit is displayed on the terminal screen and in the compilation
listing, if one has been requested.

Examples
100 LIF YVARIANT = 2 %THEN
LABORT "Cannot compile with variant 2"
LEND %IF

BASIC Reference Manual 113

%CROSS

2.0 %CROSS

Function

The %CROSS directive causes BASIC to begin or resume accumulating cross-reference information
for the listing file.

Format

%CROSS

Syntax Rules
1. The %CROSS directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%CROSS directive.

General Rules

1. When a cross-reference is requested, the compiler starts or resumes accumulating cross-
reference information immediately after encountering the %CROSS directive.

Examples

1000 4CROSS

114 BASIC Reference Manual February 1984

%IDENT

3.0 %IDENT
Function

The %IDENT directive lets you identify the version of a program module. The identification text is
placed in the object module and printed in the listing header.

Format

YIDENT str-iit

Syntax Rules

1. Str-lit is the identification text. VAX—11 BASIC allows str-lit to consist of up to 31 ASCI
characters. BASIC—PLUS-2 allows str-lit to consist of up to six RAD-50 characters. Both
truncate extra characters from str-lit and signal a warning message.

2. In BASIC-PLUS-2, if str-lit contains non—-RAD-50 characters, a warning message is
issued, and the %IDENT directive is ignored. See BASIC on RSX—11M/M—PLUS Systems
or BASIC on RSTS/E Systems for more information on RAD-50 characters.

3. The %IDENT directive cannot begin in column one.

4. Only a line number or a comment field can appear on the same physical line as the
%IDENT directive.

General Rules

1. The compiler inserts the identification text in the first 6 or 31 character positions of the
second line on each listing page. The compiler also includes the identification text in the
object module, if the compilation produces one, and in the map file created by the Task
Builder (BASIC-PLUS-2) or the VAX—11 Linker.

2. The %IDENT directive should appear at the beginning of your program if you want the
identification text to appear on the first page of your listing. If the %IDENT directive
appears after the first program statement, the text will appear on the next page of the listing
file.

3. You can use the %IDENT directive only once in a module. If you specify more than one
%IDENT directive in a module, BASIC signals a warning and uses the identification text
specified in the first %IDENT.

February 1984 BASIC Reference Manual 115

%IDENT

The default BASIC-PLUS-2 identification text is a 6-digit number. The first two digits
represent the compiler base level, while the last four digits represent the month and day.
For example, the identification text 100712 represents base level 10, and a date of July 12.

5. VAX=11 BASIC does not provide a default identification text.

Examples

100 ZIDENT "V3.,2"

116 BASIC Reference Manual

%IF=%THEN—%ELSE-%END-%IF

4.0 %IiF—%THEN-%ELSE-%END—%IF
Function

The %IF—%THEN—%ELSE-%END—%IF directive lets you conditionally include source code or exe-
cute another compiler directive.

Format

%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules

1. The %IF directive can appear anywhere in a program where a space is allowed, except in
column one or within a quoted string. This means that you can use the %IF directive to
make a whole statement, part of a statement, or a block of statements conditional.

2. lex-exp is always a LONG integer in VAX-11 BASIC and a WORD integer in
BASIC—PLUS-2. It can be:

o A lexical constant named in a %LET directive.

¢ An integer literal, with or without the percent sign suffix.
e A lexical built-in function (% VARIANT).

¢ Any combination of the above, separated by valid lexical operators. Lexical operators
include logical operators, relational operators, and the arithmetic operators for addition
(+), subtraction (=), multiplication (), and division (/).

3. Code is BASIC program code. It can be any BASIC statement or another compiler directive,
including another %IF directive. You can nest %IF directives to eight levels.

4. %THEN, %ELSE, and %END %IF do not have to be on the same physical line as %IF.

General Rules

1. If lex-exp is true, BASIC processes the %THEN clause. If lex-exp is false, BASIC processes
the %ELSE clause. If there is not an %ELSE clause, BASIC processes the %END %IF clause.
The compiler includes statements in the %THEN or %ELSE clause in the source program
and executes directives in order of occurrence.

2. You must include the %END %IF clause. Otherwise, BASIC assumes the remainder of the
program is part of the last % THEN or %ELSE clause and signals the error “missing %END
%IF"" when compilation ends.

BASIC Reference Manual 117

%IF-%THEN-%ELSE-%END-%IF

Examples

100 *IF (%AVARIANT = 2)
ZTHEN DECLARE SINGLE HOURLY_PAY(100)
XZELSE %ZIF (ZVARIANT = 1)
4ZTHEN DECLARE DOUBLE SALARY_PAY(100)
LELSE %ZABORT "Can’t compPile with specified variant"
“END %IF
*END ZIF

1000 PRINT %IF (ZVARIANT = 2)
ATHEN PRINT ‘Hourly Wade Chart’
GOTO Hourly_routine
ZELSBE PRINT ‘Salaried Wade Chart’
GOTO Salary_routine
*END %IF

118 BASIC Reference Manual

%INCLUDE

5.0 %INCLUDE
Function

The %INCLUDE directive lets you include BASIC source text from another program file in the current

program compilation. VAX=11 BASIC also lets you access record definitions in the VAX—11 Common
Data Dictionary (CDD).

Format

Nnonnwnl
gciicial

%INCLUDE file-spec

VAX-11 BASIC

%INCLUDE %FROM %CDD str-lit

Syntax Rules
1. The %INCLUDE directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%INCLUDE directive.

3. File-spec specifies the file to be included. BASIC uses the default device, directory, and file
type (BAS in VAX—11 BASIC and B2S in BASIC-PLUS-2) if you do not specify these parts of
the file specification.

4. File-spec must be a disk file or BASIC signals an error.
5. File-spec must be a string literal enclosed in quotation marks.

VAX=11 BASIC only

1. Str-lit specifies a VAX=11 CDD path specification. This lets you extract a RECORD defini-
tion from the CDD.

2. There are two types of CDD path names: absolute and relative. An absolute path name
begins with CDD$TOP and specifies the complete path to the record definition. A relative
path name begins with any string other than CDD$TOP.

General Rules

1. The compiler includes the specified source file in the program compilation at the point of
the %INCLUDE directive and prints the included code in the program listing file if the
compilation produces one.

2. The included file cannot contain line numbers or BASIC signals the error “’Line number
may not appear in %INCLUDE file".

BASIC Reference Manual 119

%INCLUDE

4.
5.

All statements in the accessed file are associated with the line number of the program line
that contains the %INCLUDE directive. This means that a %INCLUDE directive cannot
appear before the first line number in a source program.

A file accessed by %INCLUDE can itself contain a %INCLUDE directive.

All %IF directives in an included file must have a matching %END %IF directive in the file.

VAX=11 BASIC only

1.

You can control whether or not included text appears in the compilation listing with the
/SHOW:INCLUDE qualifier. When you specify /SHOW:INCLUDE, the compilation list-
ing file identifies any text obtained from an included file by placing a mnemonic in the first
character position of the line on which the text appears. The mnemonic is of the form “In”’
where “1” tells you that the text was accessed with a %INCLUDE directive and “n”’ is a
number that tells you the nesting level of the included text. See the BASIC User’s Guide for
more information on listing mnemonics.

When you use the %INCLUDE directive to extract a record definition from the CDD,
BASIC translates the CDD definition to the syntax of the BASIC RECORD statement.

You can use the /SHOW:CDD_DEFINITIONS to specify that translated CDD definitions
(in RECORD statement syntax) are included in the compilation listing file. BASIC places a
“C"” in column one when the translated RECORD statement appears in the listing file.

When you do not specify /SHOW:CDD_DEFINITIONS, BASIC includes the names, data
types, and offsets of the CDD record components in the program listing’s allocation map.

See BASIC on VAX/VMS Systems and the VAX—11 Common Data Dictionary Utilities
Reference Manual for more information on CDD definitions.

Examples

General

100

%ZINCLUDE "YESNO"®

VAX-11 BASIC only

1000

120

ZINCLUDE %ZFROM %CDD "CDD%$TOP.EMPLOYEE"

BASIC Reference Manual

%LET

6.0 S%LET
Function

The %LET directive declares and provides values for lexical constants. You can use lexical constants
only in conditional expressions in the %IF-%THEN-%ELSE directive and in lexical expressions in
subsequent %LET directives.

Format

%LET %lex-const-nam = lex-exp

Syntax Rules

1. Llex-const-nam is the name of a lexical constant. Lexical constants are aiways LONG
integers in VAX—11 BASIC and WORD integers in BASIC-PLUS-2.

2. Lex-const-nam must be preceded by a percent sign and cannot end with a dollar sign ($) or
percent sign.

3. Lex-exp can be:
e A lexical constant named in a previous %LET directive.
e An integer literal, with or without the percent sign suffix.
e A lexical built-in function (% VARIANT)

e Any combination of the above, separated by valid lexical operators. Lexical operators
may be logical operators, relational operators, and the arithmetic operators for addition
(+), subtraction (=), multiplication (*), and division (/).

4. The %LET directive cannot begin in column one.

5. Only a line number or a comment field can appear on the same physical line as the %LET
directive.

General Rules

1. You cannot change the value of lex-const-nam within a program unit once it has been
named in a %LET directive.

Examples

100 %LET ZDEBUG_ON = 1%

BASIC Reference Manual 121

%LIST

7.0 %LIST

Function

The %LIST directive causes the compiler to start or resume accumulating compilation information for
the program listing file.

Format

%LIST

Syntax Rules

1. The %LIST directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%LiST directive.

General Rules

1. Assoon as it encounters the %LIST directive, the compiler starts or resumes accumulating
information for the program listing file. Thus, the directive itself appears as the next line in
the listing file.

2. The %LIST directive has no effect unless you requested a listing file.

Examples

100 ALIST

122 BASIC Reference Manual February 1984

%NOCROSS

8.0 %NOCROSS
Function

The %NOCROSS directive causes the compiler to stop accumulating cross-reference information for
the program listing file.

Format

7CINAT N S

Syntax Rules
1. The %NOCROSS directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%NOCROSS directive.

General Rules

1. The compiler stops accumulating cross-reference information for the program listing file
immediately after encountering the %NOCROSS directive.

2 The %NOCROSS directive has no effect unless you requested cross-reference
information.

3. Digital recommends that you not embed a %NOCROSS directive within a statement.
Embedding a %NOCROSS directive within a statement makes the accumulation of cross-
reference information behave unpredictably.

Examples

1000 ZNOCROSS

February 1984 BASIC Reference Manual 123

%NOLIST

9.0 %NOLIST

Function

The %NOLIST directive causes the compiler to stop accumulating compilation information for the
program listing file.

Format

%NOLIST

Syntax Rules
1. The %NOLIST directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%NOLIST directive.

General Rules

1. Assoon as it encounters the %NOLIST directive, the compiler stops accumulating informa-
tion for the program listing file. Thus, the directive itself does not appear in the listing file.

2. The %NOLIST directive has no effect unless you requested a listing file.

3. In VAX-11 BASIC, you can override all %NOLIST directives in a program with the
/SHOW:OVERRIDE qualifier.

Examples

100 ANOLIST

124 BASIC Reference Manual February 1984

%PAGE

10.0 %PAGE

Function

The %PAGE directive causes BASIC to begin a new page in the program listing file immediately after
the line that contains the %PAGE directive.

Format

%PAGE

Syntax Rules
1. The %PAGE directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%PAGE directive.

General Rules

None.

Examples

1000 *PAGE

BASIC Reference Manual 125

%SBTTL

11.0 %SBTTL

fFunction

The %SBTTL directive lets you specify a subtitle for the program listing file.

Format

%SBTTL str-lit

Syntax R
1.

ules

VAX-11 BASIC allows str-lit to contain 45 characters. BASIC-PLUS-2 allows str-lit to
contain 48 characters.

BASIC truncates extra characters from str-lit and does not signal a warning or error.
The %SBTTL directive cannot begin in column one.

Only a line number or a comment field can appear on the same physical line as the
%SBTTL directive.

General Rules

1. The specified subtitle appears underneath the title on the second line of all pages of the
listing file until the compiler encounters another %SBTTL or %TITLE directive.

2. Because BASIC assumes that a subtitle is associated with a title, a new %TITLE directive
eliminates the current subtitle. In this case, no subtitle appears in the listing until the
compiler encounters another %SBTTL directive.

3. If you want a subtitle to appear on the first page of your listing, the %SBTTL directive
should appear at the beginning of your program, immediately after the %TITLE directive.
Otherwise, the subtitle will appear on the second page of the listing, but not on the first.

4. If you want the subtitle to appear on the page of the listing that contains the %SBTTL
directive, the %SBTTL directive should immediately follow a %PAGE directive or a %TITLE
directive that follows a %PAGE directive.

Examples

100

126

Z5BTTL ‘DESMAZ19 Production Elements’

BASIC Reference Manual

%TITLE

12.0 %TITLE

Function

The %TITLE directive lets you specify a title for the program listing file.

Format

%TITLE str-lit

Syntax Rules

1. VAX=11 BASIC allows str-lit to contain 45 characters. BASIC-PLUS-2 allows str-lit to
contain 48 characters.

2. BASIC truncates extra characters from str-lit and does not signal a warning or error.
3. The %TITLE directive cannot begin in column one.

4. Only a line number or a comment field can appear on the same physical line as the
%TITLE directive.

General Rules

1. The specified title appears on the first line of every page of the listing file until BASIC
encounters another %TITLE directive in the program.

2. The %TITLE directive should appear on the first line of your program, before the first
statement, if you want the specified title to appear on the first page of your listing.

3. If you want the specified title to appear on the page that contains the %TITLE directive, the
%TITLE directive should immediately follow a %PAGE directive.

4. Because BASIC assumes that a subtitle is associated with a title, a new %TITLE directive
eliminates the current subtitle.

Examples

100 LZTITLE ‘Production Control for DESMAZIO’

BASIC Reference Manual 127

%VARIANT

13.0 %VARIANT

Function

%VARIANT is a built-in lexical function that allows you to conditionally control program compila-
tion. %VARIANT returns an integer value when you reference it in a lexical expression. You set the
variant value with the /VARIANT qualifier when you compile the program or with the SET command.

Format

%VARIANT

Syntax Rules

1. The %VARIANT function can appear only in a lexical expression.

General Rules

1. The %VARIANT function returns the integer value specified at compile-time with the
/VARIANT qualifier to the COMPILE command or with the SET command, or in VAX=11
BASIC, set with the DCL BASIC command. The returned integer always has a data type of
LONG in VAX=11 BASIC and WORD in BASIC-PLUS-2.

Examples

100 LIF (ZLOOP_CONST <= ZVARIANT)
ATHEN GOTO Tax_Routine
XELSE %ABORT ‘Variant too larde for prosram to compile’
*END %ZIF

128 BASIC Reference Manual

PART 1V
Statements

CALL

1.0 CALL

Function

The CALL statement transfers control to a BASIC subprogram or other callable routine. You can pass
optional arguments to the routine and can specify how these arguments are to be passed. When the
called routine finishes executing, control returns to the calling program.

Format

CALL routine [pass-mech] [([actual-param]....)]

routine: sub-nam

any callable routine

pass-mech: BY REF
BY VALUE
BY DESC
actual-param: exp
array ([]..-) [pass-mech]

Syntax Rules

1. Routine is the name of the BASIC SUB subprogram you want to call or the name of any
other callable module, such as a system service or an RTL routine on VAX/VMS systems. It
cannot be a variable name.

BASIC Reference Manual 129

(&)

CALL

130

Pass-mech specifies how arguments are passed to the called routine. If you do not specify a
pass-mech, BASIC passes arguments as indicated in Tables 19 and 20.

You can use passing mechanisms only when calling non—BASIC routines.

When pass-mech appears before the parameter list, it applies to all arguments passed to the
called routine. You can override this passing mechanism by specifying a pass-mech for
individual arguments in the actual-param list.

Actual-param lists the arguments to be passed to the called routine.

You can pass expressions or entire arrays. Optional commas in parentheses after the array
name specify the dimensions of the array. The number of commas is equal to the number
of dimensions minus one. Thus, no comma specifies a one-dimensional array, one comma
specifies a two-dimensional array, two commas specify a three-dimensional array, and
SO on.

VAX-11 BASIC

1.

3.

4

The name of the routine can consist of from 1 to 31 characters and must conform to the
following rules:

® The first character of an unquoted name must be an alphabetic character (A through 7).
The remaining characters, if present, can be any combination of letters, digits (O through
9), dollar signs ($), periods (.), or underscores (_).

® A quoted name can consist of any combination of printable ASCII characters.

Routine can be a system service, an RTL routine, or any procedure written in a language
that supports the VAX—11 Procedure Calling Standard. See BASIC on VAX/VMS Systems for
more information on using system services, RTL routines, and other procedures.

VAX-11 BASIC allows you to pass up to 255 parameters.

You cannot pass virtual arrays.

BASIC-PLUS-2

1.

The name of the routine can consist of from one to six characters and must conform to the
following rules:

® The first character of an unquoted name must be an alphabetic character (A through 7).
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), or periods (.).

® A quoted name can consist of any combination of alphabetic characters, digits, dollar
signs ($), periods (.), or spaces.

Routine can be a BASIC-PLUS-2 subprogram or a subprogram written in another
language.

Note

Although you can call routines written in other languages, BASIC—PLUS—2 does
not support calling anything but BASIC-PLUS-2 routines.

BASIC Reference Manual

CALL

You can pass all arguments BY REF, but you can pass only string values and entire arrays
BY DESC.

BASIC-PLUS-2 lets you pass up to eight parameters to a BASIC-PLUS—2 subprogram and
up to 255 parameters to a MACRO-11 subprogram.

General Rules

1.

7.

The optional pass-mech clauses tell BASIC how to pass arguments to the called sub-
program. Table 19 describes VAX—11 BASIC parameter passing mechanisms. Table 20
describes BASIC-PLUS—2 parameter passing mechanisms.

® BY REF specifies that BASIC passes the argument’s address. This is the default for all
arguments except strings and entire arrays.

® BY VALUE specifies that VAX=11 BASIC passes the argument’s 32-bit value and that
BASIC—PLUS-2 passes the argument’s 16-bit value.

e BY DESC specifies that BASIC passes the address of a VAX—11 BASIC descriptor or a
BASIC—PLUS-2 descriptor. For information about the format of a VAX—11 BASIC descrip-
tor for strings and arrays, see Appendix C in BASIC on VAX/VMS Systems; for informa-
tion on other types of descriptors, see the VAX Architecture Handbook. BASIC—-PLUS-2
creates descriptors only for strings and arrays; these descriptors are described in Appen-
dix C in BASIC on RSX—11M/M—-PLUS Systems and BASIC on RSTS/E Systems.

You can specify a null argument as an actual-param for non—-BASIC routines by omitting
the argument and the pass-mech, but not the commas or parentheses. This forces BASIC to
pass a null argument as defined by your operating system and allows you to access system
routines from BASIC.

Arguments in the actual-param list must agree in data type and number with the formal
parameters specified in the subprogram.

An argument is modifiable when changes to it are evident in the calling program. Changing
a modifiable parameter in a subprogram means the parameter is changed for the calling
program as well. Variables and entire arrays passed BY DESC or BY REF are medifiable.

An argument is nonmodifiable when changes to it are not evident in the calling program.
Changing a nonmodifiable argument in a subprogram does not affect the value of that
argument in the calling program. Arguments passed BY VALUE, constants, and expressions
are nonmodifiable. Passing an argument as an expression (by placing it in parentheses)
changes it from a modifiable to a nonmodifiable argument.

For expressions and virtual array elements passed BY REF, BASIC makes a local copy of the
value, and passes the address of this local copy. For dynamic string arrays, BASIC passes a
descriptor of the array of string descriptors. BASIC passes the address of the argument’s
actual value for all other arguments passed BY REF.

No files are closed when the CALL statement executes.

VAX-11 BASIC

1.

Only BYTE, WORD, LONG, and SINGLE values can be passed by BY VALUE. BYTE and
WORD values passed by VALUE are converted to LONG values.

BASIC Reference Manual 131

CALL

BASIC_PLUS—2

1. Only BYTE and WORD values can be passed BY VALUE. BYTE values passed BY VALUE
are converted to WORD values.

2. BASIC-PLUS-2 does not allow recursion. That is, once a subprogram is called, it cannot
be called again until the SUBEND or SUBEXIT statement has executed or until an error has
been trapped with ON ERROR GO BACK.

Examples

200 CALL SUB1 BY REF (EMPNAME$, (Z%) BY VALUE, D$() BY DESC)

Table 19: VAX—11 BASIC Parameter Passing Mechanisms

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments

Variables **YES *YES YES
Constants **YES *Local copy | Local copy
Expressions **YES *Local copy | Local copy
Array elements **YES *YES YES
Virtual array elements **YES *Local copy | Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO NO

String Arguments

Variables NO YES *YES
Constants NO Local copy | *Local copy
Expressions NO Local copy | *Local copy
Array elements NO YES *YES
Virtual array elements NO Local copy | *Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO NO

" One asterisk indicates the default parameter passing mechanisms for
BASIC programs.

™ Two asterisks indicate that the value can have 32 bits, at most.

132 BASIC Reference Manual

Table 20: BASIC-PLUS-2 Parameter Passing Mechanisms

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments

Variables **YES *YES NO
Constants **YES *Local copy NO
Expressions **YES *Local copy NO
Array elements **YES *Local copy NO
Virtual array elements **YES *Local copy NO
Entire arrays NO YES *YES
Entire virtual arrays NO NO *YES

String Arguments

Variables NO YES *YES
Constants NO Local copy | *Local copy
Expressions NO Local copy | *Local copy
Array elements NO Local copy | *Local copy
Virtual array elements NO Local copy | *Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO *YES

* One asterisk indicates the default parameter passing mechanisms for
BASIC programs. You should never use a BY clause when calling a BASIC

e e e o ™ mmn i e

SUOPIOgirdim WoMm a BASIC main prograin.

** Two asterisks indicate that the value can be only WORD or BYTE. Other
data types require more than the 16 bits of storage allowed.

Note

DIGITAL recommends that you not pass entire virtual arrays as parameters in the CALL
statement. Instead, you can share the data in a virtual array between a calling program
and a subprogram by opening a virtual file in either program and dimensioning the
array (using the same channel number) in both programs.

BASIC Reference Manual

CALL

133

CHAIN

2.0 CHAIN

Note

The CHAIN statement is not recommended for new program development. DIGITAL
recommends that you use the CALL statement for program segmentation.

Function

The CHAIN statement transfers control from the current program to an executable BASIC program.
CHAIN closes all files, then requests that the new program begin execution. Control does not return
to the original program when the new program finishes executing.

Format

General
CHAIN str-exp
BASIC-PLUS-2 on RSTS/E only

CHAIN str-exp [LINE lin-num]

Syntax Rules

1. Str-exp represents the file specification of the program to which control is passed. It can be
a quoted or unquoted string.

® Str-exp must refer to an executable image or BASIC signals an error.

® If you do not specify a file type, VAX-11 BASIC searches for an EXE file type and
BASIC-PLUS-2 searches for a TSK file type.

® You cannot chain to a program on another node.
BASIC-PLUS-2

1. On RSTS/E systems you can specify that control pass to a specified line number in another
BASIC—PLUS-2 program.

® Lin-num specifies a line in another BASIC program. It must be in the range 1 to 32767,
inclusive.

® If you specify a lin-num, the program to which control passes must have been compiled
with the /CHAIN qualifier. The /CHAIN qualifier overrides the /NOLINE qualifier.

General Rules

1. Execution starts at the first line number of the specified program unless your system is
RSTS/E and you have specified a lin-num at which execution is to start.

2. On RSTS/E systems, BASIC-PLUS-2 signals an error when the specified line number does
not exist.

134 BASIC Reference Manual

CHAIN

3. Before chaining takes place, all active output buffers (except terminal-format files) are
written, all open files are closed, and all storage is released. On RSTS/E systems, the last
buffer (512 bytes) of a terminal-format file does not get written unless the file is closed
before the CHAIN statement executes.

4. Because a CHAIN statement passes control from the executing image, the values of any
program variables are lost. This means that you can pass parameters to a chained program
only by using files or a system-specific feature such as the GET/PUT Core Common on
RSTS/E systems, or LIBSGET and LIB$PUT on VMS systems.

5 See BASIC on RSTS/E Systems or BASIC on RSX—11M/M-PLUS Systems for information
about how the CHAIN statement is implemented on your system.

Examples

General

100 CHAIN "PROGZ"
800 CHAIN PROGS.EXE

BASIC—PLUS-2 on RSTS/E only

200 CHAIN PROGA.TSK LINE 300

BASIC Reference Manual 135

CHANGE

3.0 CHANGE

Function

The CHANGE statement: 1) converts a string of characters to their ASCII integer values or 2) converts
a list of numbers to a string of ASCII characters.

Format

String Variable to Array
CHANGE str-exp TO num-array
Array to String Variable

CHANGE num-array TO str-vbl

Syntax Rules

1. Num-array should be a one-dimensional array (or list). If you specify a two-dimensional
array, BASIC converts only the zero row of that array. BASIC does not support CHANGE to
or from arrays of more than two dimensions.

2. Str-exp is a string expression.

I 3. VAX=11 BASIC does not support RECORD elements as a destination string or as a source
or destination array for the CHANGE statement.

Genera! Rules

String Variable to Array

1. This format converts each character in str-exp to its ASCII value.

N

BASIC assigns the value of str-exp’s length to the zero element (0) or (0,0) of the num-array.

3. BASIC assigns the ASCII value of the first character in str-exp to the first element, (1) or
(0,1), of num-array, the ASCII value of the second character to the second element, (2) or
(0,2), and so on.

4. If the string is longer than the bounds of num-array, BASIC does not translate the excess
characters, and signals the error “subscript out of range” (ERR=55). Element zero, (0) or
(0,0), of num-array still contains the length of str-exp.

Array to String Variable
1. This format converts the elements of num-arr to a string of characters.

2. The length of str-vbl is determined by the value in the zero element, (0) or (0,0), of
num-array. If the value of element zero is greater than the array bounds, BASIC signals the
error ““subscript out of range’’ (ERR=55).

136 BASIC Reference Manual February 1984

CHANGE

3. BASIC changes the first element, (1) or (0,1), of num-array to its ASCIl character equiva-
lent, the second element, (2) or (0,2), to its ASCII equivalent, and so on. The length of the
returned string is determined by the value in the zero element of num-array. For example,
if num-arr is dimensioned as (10), but the zero element (0) contains the value 5, BASIC
changes only elements (1), (2), (3), (4), and (5) to string characters.

4. BASIC truncates floating-point values to integers before converting them to characters.

5. Values in array elements are treated modulo 256.

Examples
String Variabie to Array

50 DIM ARRAY_CHANGESXZ(B)
60 CHANGE "ABCDE" TO ARRAY_CHANGESZ

Array to String Variable

200 CHANGE ARRAY_CHANGESYZ TO A%

BASIC Reference Manual 137

CLOSE

4.0 CLOSE

Function

The CLOSE statement ends /O processing to a device or file on the specified channel.

Format

CLOSE chnl-exp,...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
can be preceded by an optional pound sign (#).

General Rules

1. BASIC writes the contents of any active buffers to the file or device before it cl