
-- . . - - ·' -
·- / f"'~41 · J.i.tl.i 6"';"!; -- 'f•G -

- o ... irtt1' 'r' UI O .,ft - =- • o •
~- -- .o..,. • ., <> .. .,. " ... • J - .. • L • I • •- - t ~ • .. • ,. -

·--- ·- -=--=-

DIGITAL Facility, Maynard, Massachusetts

CORPORATE PROFILE
Digital Equipment Corporation designs, manufactures, sells and ser­
vices computers and associated peripheral equipment, and related
software and supplies. The Company's products are used world-wide
in a wide variety of applications and programs, including scientific
research, computation, communications, education, data analysis, in­
dustrial control, timesharing, commercial data processing, word proc­
essing, health care, instrumentation, engineering and simulation.

so~tware handbook

Digital Equipment Corporation makes no representation that the in­
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip­
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi­
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS

PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of

Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing Group

using an in-house text-processing system.

Copyright~., 1982 Digital Equipment Corporation.
All Rights Reserved.

ii

PREFACE

This Handbook is intended for a spectrum of customers with varying
expertise; so, if you are reading about computer software for the first
time or if you are an expert, you will be able to learn something new,
and to make better informed decisions about DIGITAL operating sys­
tems and associated software.

It is not necessary to read straight through this Handbook to get a view
of PDP-11 software. Whether you are interested in the higher-level
programming languages, the user level utilities, the data managers,
networks, or the operating systems themselves, you will find a concise
description and an explanation of the benefits to be derived from each
software product. The Table of Contents gives details of the chapters
and should help you find material of interest. For example, if you are
reading about computers for the first time, you will probably want to
read Chapters 1 and 2. Operators and users may want to go directly to
the chapters that describe programming languages, operating sys­
tems, file management, database management, and distributed proc­
essing and networks.

The goal of this Handbook is to introduce the system software without
delving into the degree of technicality one finds in the user documen­
tation delivered with the system. A glossary of software terms, an
alphabetic listing of most commonly used abbreviations, and a
thorough index are included for the convenience of the reader. There
is also an appendix on the resources of DECUS, the Digital Equipment
Computer Users Society, from which members can obtain specialized
software developed by other members.

DIGITAL is constantly improving existing products and introducing
new ones. Your best source for the latest word on software is your
sales representative, who can keep you up to date on recent releases
and enhancements to traditional products.

iii

iv

TABLE OF CONTENTS

PREFACE .. iii

CHAPTER 1 INTRODUCTION TO PDP-11 SOFTWARE 1
HARDWARE/SOFTWARE SYSTEMS 1
COMMUNICATIONS SOFTWARE 1
OPERATING SYSTEMS .. 2
PACKAGED TOGETHER VS. SOLD SEPARATELY 3
POSITIONING INFORMATION TABLES 5

CHAPTER 2 OPERATING SYSTEMS 14
INTRODUCTION .. 15
COMPONENTS AND FUNCTIONS 15
PROCESSING METHODS 17
SYSTEM GENERATION .. 19
DATA MANAGEMENT .. 20
USER INTERFACES .. 38
PROGRAMMED SYSTEM SERVICES 42

CHAPTER 3 RSTS/E AND CTS-500 44
OVERVIEW .. 45
USER INTERFACE .. 50
SYSTEM CONFIGURATION AND OPERATION 51
FEATURES .. 53

CHAPTER 4 THE RSX-11 FAMILY 64
INTRODUCTION .. 65
FAMILY MEMBERS , 66
RSX-11M-PLUS .. 66
RSX-11M .. 66
RSX-11S .. 66
FEATURES .. 67
RSX-11M-PLUS UNIQUE FEATURES 67
FEATURES COMMON TO RSX-11 M-PLUS

AND RSX-11 M .. 68
PROGRAM DEVELOPMENT TOOLS 71
REAL TIME SYSTEM HARDWARE INTERFACES 76

CHAPTER 5 RT-11 78
INTRODUCTION .. 79
MONITORS .. 79
SYSTEM UTILITIES .. 81

v

PROGRAM ALTERATION 83
BATCH .. 85
ADDITIONAL SOFTWARE COMPONENTS 86
SYSTEM SUBROUTINE LIBRARY 86
RT-11 AUTOPATCH .. 87

CHAPTER 6 CTS-300 90
INTRODUCTION .. 91
CONCURRENT PROGRAM DEVELOPMENT 91
EASE OF PROGRAMMING 92
COMMAND LANGUAGE 93
DATA MANAGEMENT SERVICES 94
OPTIONAL SOFTWARE 94

CHAPTER 7 DIGITAL STANDARD MUMPS 100
MINIMUM HARDWARE REQUIRED 102
OPTIONAL HARDWARE 103
USER INTERFACE .. 104
INTERPRETER .. 104
TERMINALS AND ANCILLARY_ 1/0 DEVICES 105
SPOOLING .. 106
JOURNALING .. 107
DATA MANAGEMENT .. 107
THE MUMPS LANGUAGE 109

CHAPTER 8 MICROPOWER/PASCAL 116
INTRODUCTION .. 117
PRODUCT DESCRIPTION 117
OPERATING ENVIRONMENT 123

CHAPTER 9 PROGRAMMING LANGUAGES 126
INTRODUCTION TO PROGRAMMING LANGUAGES 127

CHAPTER 10 PDP-11 MACRO 132
ASSEMBLY LANGUAGE FEATURES 133
PROGRAM STRUCTURE 133
ASSEMBLER OPERATION 141
ASSEMBLER ENVIRONMENTS 141

CHAPTER 11 FORTRAN 144
INTRODUCTION .. 145
ELEMENTS COMMON TO PDP-11 FORTRAN IV

AND PDP-11 FORTRAN-77 145

vi

PDP-11 FORTRAN IV FUNCTIONS AND FEATURES 147
PDP-11 FORTRAN IV COMPILER OPERATION 157
PDP-11 COMMAND STRING SPECIFICATION OPTIONS 157
PDP-11 FORTRAN IV INTERNAL OPERATION

AND STRUCTURE 158
PDP-11 FORTRAN IV OPERATING ENVIRONMENTS 161
PDP-11 FORTRAN-77FUNCTIONSANDFEATURES 163
PDP-11 FORTRAN-77 LANGUAGE EXTENSIONS 164

CHAPTER 12 THE BASIC LANGUAGE 168
INTRODUCTION .. 169
PDP-11 BASIC IMPLEMENTATIONS 169
FEATURES COMMON TO THE BASIC LANGUAGE 170
PRODUCT DESCRIPTIONS 177
BASIC-PLUS-2 .. 177
BASIC-PLUS .. 182
BASIC LANGUAGE FEATURES TABLE 185

CHAPTER 13 COBOL 192
INTRODUCTION .. 193
COBOL-81 .. 193
PDP-11 COBOL .. 200
COBOL LANGUAGE ELEMENTS COMPARISON CHART 206

CHAPTER 14 DIBOL 220
INTRODUCTION .. 221
ST A TEM ENT TYPES .. 222

CHAPTER 15 INTRODUCTION TO FILE MANAGEMENT 226

CHAPTER 16 FILE MANAGEMENT UTILITIES 230
FILE CONTROL SERVICES (FCS) 231
SORT .. 236
OTHER UTILITIES (PIP, FILEX, ETC.) 243

CHAPTER 17 RECORD MANAGEMENT SERVICES (RMS) .. 246
RMS OVERVIEW .. 247
FILE ORGANIZATION .. 247
RMS ACCESS MODES 250
FILE ATTRIBUTES .. 256
PROGRAM OPERATIONS ON RMS FILES 261
RMS RUNTIME ENVIRONMENT 264
FILE PROCESSING ENVIRONMENT 264

vii

RECORD PROCESSING ENVIRONMENT 266

CHAPTER 18 INTRODUCTION TO DATABASE
MANAGEMENT .. 268

HOW A DATABASE WORKS 270

CHAPTER 19 DATATRIEVE 276
INTRODUCTION .. 277
DESCRIPTION .. 277
DATATRIEVE-11 COMMANDS 279

CHAPTER 20 DATABASE MANAGEMENT
SYSTEM (DBMS-11) 286

INTRODUCTION .. 287
RECORD CHARACTERISTICS 288
SET CHARACTERISTICS 289
PHYSICAL SPACE MANAGEMENT 292
DATABASE UTILITES .. 293
DATA MANIPULATION LANGUAGES (DML) 295
COBOL DML COMPILATION 296
FORTRAN DML COMPILATION 299
PROGRAMMING REQUIREMENTS 299
EXECUTION OF OBJECT DML PROGRAMS 300

CHAPTER 21 INTRODUCTION TO OTHER UTILITIES 304
EDITORS .. 305
SCREEN FORMATTERS 305

CHAPTER 22 THE EDT EDITOR 308
INTRODUCTION .. 309
EDT MODES OF OPERATION 310

CHAPTER 23 SCREEN FORMATTERS 314
FMS-11 FORMS MANAGEMENT SYSTEM 315
DECFORM-SCREEN FORMATTING UTILITY 321
INDENT-INTERACTIVE DATAENTRY 325

CHAPTER 24 DISTRIBUTED PROCESSING
AND NETWORKS 328

INTRODUCTION .. 329
CONCEPTS .. 330
DECNET CAPABILITIES 330
INTERNETS .. 336

viii

NETWORK COMPARISON TABLE 337
INTERNETS SUPPORT TABLE 339
SNA .. 339
PUBLIC PACKET SWITCHING NETWORKS 345

APPENDIX A DECUS 347

APPENDIX B COMMONLY USED ABBREVIATIONS 349

APPENDIX C ASCII CODES 357

GLOSSARY .. 361

INDEX .. 389

ix

CHAPTER 1

INTRODUCTION TO PDP-11 SOFTWARE

HARDWARE/SOFTWARE SYSTEMS
The PDP-11 computer family is a wide range of compatible processors
complemented by a variety of peripheral devices, software, and ser­
vices.

This Handbook discusses the major software available for the PDP-11
family of computers, and explains its features and benefits. Software
is the collection of programs or routines that allow people to use
computer hardware. Generally speaking, programming creates and
changes software, while engineering design alters hardware.

Since your computer hardware is only as useful as the software oper­
ating in conjunction with it, you should understand certain software
concepts. This chapter and the next introduce basic concepts, at the
same time briefly showing how DIGITAL implements those ideas.

Compatibility is a key feature of both hardware and software in the
PDP-11 world. Small systems can grow easily into larger ones as your
data processing needs increase. Your software can run in different
PDP-11 hardware environments. For example, some operating sys­
tems can run on several processors, and all can grow to accommo­
date new languages, peripherals, and other improvements.

While a few of the characteristics of software may vary from applica­
tion to application, compatibility helps guarantee that personnel and
programs can move among systems with a minimum of trouble.

For example, the FORTRAN IV programming language runs on sever­
al operating systems, and a person who has learned FORTRAN IV
could, with little difficulty, write programs that would run in several
environments. Likewise, a FORTRAN IV application program can be
readily transported to any DIGITAL PDP-11 system that supports the
language.

The flexibility of PDP-11 hardware/software systems allows you to
select both the most appropriate hardware for your particular applica­
tion needs, and the operating system and languages that can serve
your immediate requirements and still allow for possible growth.

COMMUNICATIONS SOFTWARE
DIGITAL produces powerful technology that permits the linking of
computers and terminals into flexible configurations called networks.
Networks can vastly increase the efficiency and cost-effectiveness of

Introduction to PDP-11 Software

data processing operations. Chapter 24 outlines the gamut of PDP-11
networking and distributed processing capabilities.

OPERATING SYSTEMS
An operating system not only provides access to the features of a
processor, it also organizes a processor and peripherals into useful
tools for a certain range of applications. For example, there are sys­
tems that manage one user's task at a time. There are others that
accept many tasks, and allocate use of the central processor accord­
ing to a scheme of priorities, privileges, and time quotas. Some sys­
tems support realtime applications, that is, applications in which the
computer is required to respond within given time limits to an external
message, make a decision, and respond quickly (e.g., flight simulator
control; power plant management; laboratory experiment supervi­
sion).

The operating systems featured in this Handbook are:

RSTS/E
and
CTS-500

RSX-11M

RSX-11 M-PLUS

Resource-Sharing Timesharing Sys­
tem/Extended Operating System for PDP-11
Processors

A moderate to large-sized timesharing system,
expressly designed to optimize the interplay
between people and system; RSTS/E is used in a
variety of multiuser applications ranging from
business data processing to academic instruc­
tion.

Realtime System Executive Operating System for
PDP-11 Processors

A small- to moderate-sized realtime multi­
programming system that can be generated for a
wide range of application environments-from
small, dedicated systems to large, multipurpose
realtime application and program development
systems.

Realtime System Executive Operating System­
PLUS for high-end PDP-11 Processors

A large realtime system meant to take advantage
of enhanced hardware features and larger memo­
ry available on the PDP-11 /44 and PDP-11 /70
processors. RSX-11 M-PLUS is a superset of
RSX-11M.

2

RSX-11S

RT-11
and
CTS-300

DSM-11

Introduction to PDP-11 Software

Realtime System Executive Operating System for
PDP-11 Processors

A small, execute-only member of the RSX-11
family for dedicated realtime multiprogramming
applications (requires a host RSX-11 M, RSX-
11 M-PLUS, IAS, or VAX/VMS system).

Realtime Operating System for PDP-11 Proces­
sors

A small, single-user foreground/background sys­
tem that can support a realtime application job's
execution in the foreground and an interactive or
batch program development job in the back­
ground.

DIGITAL Standard Mumps Operating System fo.r
PDP-11 Processors

A small- to large-sized timesharing system that
offers a unique fast-access data storage and re­
trieval system for large database processing;
originally designed for medical record manage­
ment and now available for similar database ap­
plications.

Chapter 2 of this Handbook defines and illustrates the concept of an
operating system.

PACKAGED TOGETHER VS. SOLD SEPARATELY
Some software products are packaged with other products and sold
together as a unit. The RSTS/E operating system includes a BASIC­
PLUS language processor; MUMPS-11 language is inseparable from
the DSM operating system. Similarly, one form or another of the Re­
cord Management Services (RMS) is included in each operating sys­
tem that supports them.

Separately sold products, on the other hand, are distinct options, not
necessarily included as part of any other software. Special application
software packages (such as stress analysis, statistical analysis, or
general accounting) are sold separately from the operating systems
they work with.

The flexibility produced by this approach aids in tailoring a system to
your specific needs, without sacrificing or omitting vital routines and
utilities.

DIGITAL's operating systems support a considerable variety of soft­
ware products, both those that are packaged together and those that

3

Introduction to PDP-11 Software

are sold separately, along with numerous central processors and peri­
pherals. The three tables which follow, compare the processors on
which PDP-11 operating systems run, the languages supported under
each system, and the configurations of typical systems.

Since both hardware and software are continually evolving and being
improved, these tables are meant to be used as guides to what is
currently available.

4

Operating Systems

LSl-11/2
Based

RT-11-foreground/background or x
single-job operating system

DSM-11-multiuser data base
management system

C.11

RSX-11S-execute only real-time, x
multiprogramming system

RSX-11M-small to moderate sized
real-time, multiprogramming system

RSX-11M-PLUS-moderate sized
real-time, multiprogramming system

RSTS/E-general-purpose
timesharing system

IAS-multipurpose,
multiprogramming system

Table 1-1 Processors

Processors

PDP-11 Family

11/03L 11/23
11/23-

11/04 11/24
PLUS

x x x x

x x

x x x x x

x x x x

x x

x x

11/34 11/44

x x

x x

x x

x x

x

x x

x x

11/70

x

x

x

x

x

x

:;-
a
Q..
c:
(')

g.
::i

0

" 0
-p
.....
CIJ
0

~
(i1

Languages

RT-11 DSM-11

MACRO Assembler x
BASIC-11 x
BASIC PLUS

MU BASIC x

O> BASIC-PLUS-2

PDP-11 COBOL

COBOL-81

FORTRAN-77

FORTRAN-IV x
Standard MUMPS x
CORAL 66

PEARL

MICROPOWER/PASCAL x
1 Task Execution only.

Table 1-2 Languages

Operating Systems

PDP-11 Family

RSTS/E RSX-11M RSX-11M~PLUS

x x x
x x

x

x x x
x x x
x x x
x x x
x x x

x
x

RSX-115 IAS

XI x
x

x
x

XI x
XI x

x x

5" a
2-
0 g.
::i

0
1J
0
;:i
en
0

~
Cil

Introduction to PDP-11 Software

Table 1-3 (cont.) Typical System

TOPIC DSM-11

SYSTEM TYPE: Data management timesharing facilities
for up to 63 simultaneous users which includes
interactive users and detached jobs

CPU: PDP-11/34 with KY11-LB
PDP-11/23/24/44
PDP-11/70

TYPICAL SYSTEM RL01 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RK07 Cartridge disk drive
RM02 Disk pack drive
RM03 Disk pack drive
RM05 Disk pack drive
RP06 Disk pack drive

TYPICAL LOAD RL01 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RK07 Cartridge disk drive
TS11 Magtape
TE16 Magtape

MINIMUM MEMORY 96K
(bytes):

MAXIMUM MEMORY 248K (PDP-11/23/34)
SUPPORTED (bytes): 1M (PDP-11/24/44/70)

HIGH-LEVEL ANSI STANDARD MUMPS
LANGUAGES:

COMMUNICATION DMC11 (opt.)
CAPABILITIES: DMR11 (opt.)

7

Introduction to PDP-11 Software

Table 1-3 Typical System

TOPIC RSTS/E
SYSTEM TYPE: General timesharing; Up to 63 simultaneous

users, which includes interactive terminal users,
detached jobs and batch processing.

CPU: PDP-11/24 through PDP-11/70 with memory
management and EIS

TYPICAi- SYSTEM RL02 Cartridge disk drive
DEVICES: RK07 Cartridge disk drive

RP06 Disk pack drive
RM02 Disk pack drive
RM03 Disk pack drive
RMOS Disk pack drive

TYPICAL LOAD TE16 Magtape
DEVICES: TU77 Magtape

RL01 Cartridge disk drive
RL02 Cartridge disk drive
RK07 Cartridge disk drive
TS11 Magtape & Controller

MINIMUM MEMORY 128K (without RMS)
(bytes): 248K (with RMS)

MAXIMUM MEMORY 248K (except PDP-11/44 and PDP-11/70)
SUPPORTED (bytes): 1024K (PDP-11/24 and PDP-11/44)

3840K (PDP-11/70)

HIGH-LEVEL BASIC-PLUS (inc.)
LANGUAGES: FORTRAN IV (opt.)

FORTRAN-77 (opt.)
PDP_-11 COBOL (opt.)
COBOL-81 (opt.)
BASIC-PLL!S-2 (opt.)

COMMUNICATION RSTS/E-2780 (opt.)
CAPABILITIES: RSTS/E High Performance

2780/3780 Emulator (opt.)
DECnet/E (opt.)
RSTS/E 3271 PE (opt.)
DX/RSTS (opt.)

8

Introduction to PDP-11 Software

Table 1-3 (cont.) Typical System

TOPIC RSX-11M
SYSTEM TYPE: Compact, efficient real-time multiprogramming

applications and development system

CPU: Any UNIBUS PDP-11 Processor and
PDP-11/23, or PDP-11/70

TYPICAL SYSTEM RK07 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RP06 Disk pack drive
RM02 Disk pack drive
RM03 Disk pack drive

TYPICAL LOAD RL01 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RK07 Cartridge disk drive
TE16 Magtape
TS 11 Magtape

MINIMUM MEMORY 32K without concurrent program
(bytes): development

48K with concurrent program
development and application
execution

MAXIMUM MEMORY 56K (without memory management)
SUPPORTED (bytes): 3840K (with memory management)

HIGH-LEVEL FORTRAN IV (opt.)
LANGUAGES: FORTRAN-77 (opt.)

PDP-11 COBOL (opt.)
COBOL-81 (opt.}
BASIC (opt.)
BASIC-PLUS-2 (opt.}
CORAL-66 (opt.)
PEARL-11 (opt.)

COMMUNICATION DECnet-11M (opt.)
CAPABILITIES: RSX-11 2780/3780 Emulator (opt.)

RSX-11M/3271 PE (opt.}
RJE/HASP (opt.}
UN1004/RSX (opt.)
MUX200/RSX-IAS (opt.)
RSX-11M/SNA PE (opt.)
RSX-11 PSI/FR (opt.}
RSX-11 PSI/CAN (opt.)
RSX DLX-11 (opt.)
DX/11M (opt.}

9

Introduction to PDP-11 Software '

Table 1-3 (cont.) Typical System

TOPIC RSX-11M-PLUS

SYSTEM TYPE: Moderate sized real-time multiprogramming
system that is optimized for large multipurpose
real-time applications and program develop-
ment systems

CPU: PDP-11/23-PLUS, 11/24, 11/44, 11/70

TYPICAL SYSTEM RL02 Cartridge disk drive
DEVICES: RK07 Cartridge disk drive

RM02 Disk drive
RM03 Disk drive
RMOS Disk drive
RP06 Disk drive

TYPICAL LOAD RL02 Cartridge disk drive
DEVICES: RK07 Cartridge disk drive

TE16 Magtape
TU77 Magtape
TS 11 Magtape

MINIMUM MEMORY 256K
(bytes):

MAXIMUM MEMORY 3840K
SUPPORTED (bytes):

HIGH-LEVEL BASIC (opt.)
LANGUAGES: BASIC-PLUS-2 (opt.)

FORTRAN IV (opt.)
FORTRAN-77 (opt.)
PDP-11 COBOL (opt.)
COBOL-81 (opt.)

COMMUNICATION DECnet·11M-PLUS (opt.)
CAPABILITIES: RSX-11 PSI/FR (opt.)

RSX-11M/3271 PE (opt.)
RSX-11 2780/3780 Emulator (opt.)
RSX-11M·PLUS RJE/HASP (opt.)

10

Introduction to PDP-11 Software

Table 1-3 (cont.) Typical System

TOPIC RSX-115

SYSTEM TYPE: Execute-only real-time multiprogramming
applications system; requires RSX-11M,
RSX-11M-PLUS, or VAX/VMS system
for generation and program development

CPU: All PDP-11 processors (LSl-11 based to
PDP-11/70)

TYPICAL SYSTEM None required
DEVICES:

TYPICAL LOAD TE 16 Magtape
DEVICES: TS 11 Magtape

MINIMUM MEMORY 16K
(bytes): 32K for on-line task loading or execution

of tasks written in FORTRAN

MAXIMUM MEMORY 56K (without memory management)
SUPPORTED (bytes): 3840K (with memory management)

HIGH-LEVEL No compilers supported, but tasks are
LANGUAGES: developed on host system using

FORTRAN IV, FORTRAN-77, or CORAL 66

COMMUNICATION DECnet-11S (opt.)
CAPABILITIES: RSX DLX-11 (opt.)

11

Introduction to PDP-11 Software

Table 1-3 (cont.) Typical System

TOPIC IAS

SYSTEM TYPE: Large, multiuser timesharing system;
supports'concurrent interactive, batch
and real-time applications

CPU: PDP-11/34 through PDP-11170 with
memory management

TYPICAL SYSTEM RL01 Cartridge disk drive
DEVICES: RK07 Cartridge disk drive

RP06 Disk drive
RM03 Disk drive
RM05 Disk drive

TYPICAL LOAD TE16 Magtape
DEVICES: RL01 Cartridge disk drive

RL02 Cartridge disk drive

MINIMUM MEMORY 96K
(bytes):

MAXIMUM MEMORY 248K (PDP-11/34) or
SUPPORTED (bytes): 3840K (PDP-11/44/70)

HIGH-LEVEL FORTRAN IV (opt.)
LANGUAGES: FORTRAN-77 (opt.)

PDP-11-COBOL (opt.)
BASIC (opt.)
BASIC-PLUS-2 (opt.)
CORAL-66 (opt.)

COMMUNICATION DECnet-IAS (opt.)
CAPABILITIES: IAS/2780 (opt.)

RSX-11M/IAS
RJE-HASP (opt.)
MUX200/RSX-IAS (opt.)

12

Introduction to PDP-11 Software

Table 1-3 (cont.) Typical System

TOPIC RT-11

SYSTEM TYPE: Single user, real-time application
Foreground/Background program
development or batch job

CPU: All PDP-11 processors (LSl-11 based
products through the PDP-11/44) except
the PDP-11/70 or VAX Family

TYPICAL SYSTEM RL01 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RK07 Cartridge disk drive
RX01 Floppy disk drive
RX02 Floppy disk drive

TYPICAL LOAD RL01 Cartridge disk drive
DEVICES: RL02 Cartridge disk drive

RX01 Floppy disk drive
RX02 Floppy disk drive
TE16 Magtape
TU58 Cartridge tape

MINIMUM MEMORY 24K Single job
(bytes): 32K Single job with BATCH or MACRO

32K Foreground/Backgound

MAXIMUM MEMORY 60K for systems running the SJ or FB
SUPPORTED (bytes): monitor

248K for systems running under the XM
monitor

HIGH-LEVEL BASIC (opt.}
LANGUAGES: Multiuser BASIC (opt.}

FORTRAN IV (opt.}

COMMUNICATION DECnet/RT (opt.}
CAPABILITIES: RT-11/2780/3780 PE (opt.}

13

14

INTRODUCTION

CHAPTER 2

OPERATING SYSTEMS

An operating system is a collection of control programs and routines
designed to make computer hardware devices easy to use. Operating
systems vary greatly in the kinds of hardware with which they are
compatible, the range of complexity of tasks they handle, the degree
of adaptability to special user purposes, and the programming lan­
guages which they support.

Operating systems not only provide a way by which a user's specific
program can run on the computer, but they can also have a set of
utilities and routines which manage such resources as printers and
terminals, detect errors in programs, keep user accounts, protect in­
formation, warn the operator of failures-and much more.

COMPONENTS AND FUNCTIONS
Operating systems are collections of programs that organize a set of
hardware devices into a working unit. Figure 2-1 illustrates the rela­
tionship between users, operating system, and hardware.

PDP-11 operating systems consist of two sets of software: the monitor
(or executive) software and the system utilities.

,------------------,
I
I

APPLICATION
PROGRAMS

OPERATING
SYSTEM HARDWARE

L------------------~

Figure 2-1 Computer System

The monitor (an integrated set of routines) acts as the primary
interface between the hardware and a program running on the system,
and between the hardware and the people who use the system. The
monitor's basic functions can be divided among the following services:

• User interface

• Programmed processing services

• Device and data management

15

Operating Systems

• Memory allocation

• Processor time allocation

In general, a monitor can have two distinct operating components: a
memory resident portion and a temporarily resident (called "tran­
sient") portion. Typically, the operating system is delivered on a hard­
ware medium, called the system device, such as a disk or magnetic
tape. In order for any useful work to be done, the monitor must be
transferred ("loaded") into the memory part of the hardware proces­
sor. When the monitor is loaded into memory and started, all of the
monitor is resident. Its first duty is to communicate with the person
running the system-the operator. The monitor simply waits until an
operator requests some service, and then it performs that service. In
general, such services include loading and starting programs, control­
ling program execution, modifying or retrieving system information,
and setting system parameters. In most systems, these functions are
serviced by transient portions of the monitor. By being able to move
back and forth-between memory and the system device-the
transient portion of the monitor can make room for programs that
need memory space, thereby improving the size-to-performance ratio
of the computer. Movements of this sort occur in time spans measured
in milliseconds.

The memory resident portion remains in memory to act on requests
from the program, which generally include input/output (110) services
such as file management, device-dependent operations, blocking and
unblocking data, allocating storage space, and managing memory
areas. In large systems, these services might also include intertask
communication and coordination, memory protection, and task exe­
cution scheduling.

In some cases, the user can adjust the size of the monitor by eliminat­
ing features that are not needed in an application environment.
RSTS/E, RSX-11 M, and RSX-11 S are examples of such systems. RT-
11 offers several monitors of varying size and capability; monitors can
be customized to add features. The RSX-11 S system monitor (called
an executive) is always memory resident when the system is operat­
ing. In this case, the user concerned with size can remove routines that
perform unneeded operations. In general, all PDP-11 operating sys­
tems are designed to be flexible enough to operate in a relatively wide
range of hardware environments.

System Utilities
System utilities are the individual programs supplied by DIGITAL that
are run under control of the monitor to perform useful system-level
operations. System utility programs enhance the capabilities of an

16

Operating Systems

operating system by providing users with commonly performed gen­
eral services. There are three classes of system utilities: those used for
program development; those used for file management; and those
used to perform special system management functions.

In the first category are the text editors, assemblers, compilers, link­
ers, program librarians, and debuggers. A whole section of this
Handbook is dedicated to programming languages and program de­
velopment, and another section introduces some utilities-such as
editors and screen formatters-that are useful both in program devel­
opment and in other contexts. File management utilities include file
copy, transfer, and deletion programs, file format translators, and
media verification and clean-up programs. For more detailed informa­
tion on these, see the Handbook section on file and data management.
System management utilities vary from system to system, depending
on the purpose and functions the system serves. Some examples are
system information programs, user accounting programs, error log­
ging, and on-line diagnostic programs.

PROCESSING METHODS
Interactive processing-as opposed to batch processing-permits
"dialogs" between the computer and the user. People typing com­
mands at terminals and getting quick response, and people writing
and editing programs at video terminals, are working interactively with
the operating system. In batch processing, however, the whole pro­
gram must be supplied, along with all necessary data, before any
response can be obtained from the computer. Note that all DIGITAL
operating systems support interactive processing. Some support
batch processing, as well.
The basic distinction among DIGITAL operating systems is the pro­
cessing method each uses to execute programs. The key distinctions
among PDP-11 systems are:

• Single-user vs. multiuser
• Single-job vs. foreground/background
• Foreground/background vs. multiprogramming
• Timesharing vs. event-driven multiprogramming

A single-user operating system receives demands upon its resources
from a single source. It has only to manage the resources based on
these demands. As a result, these systems do not require account
numbers to access the system or data files. They usually provide no
protection from user programs for the operating system. RT-11 is a
single-user operating system.

A multiuser operating system receives demands for its resources

17

Operating Systems

from many different individuals and/or programs. The system must
manage its resources based on these demands. For example, several
users may want sole control of a device at the same time. The system
handles access to the device. In addition, people may be using the
system for different purposes, so that some. privacy must be main­
tained. As a result, a multiuser system normally has an account system
to manage different users' files. The RSTS/E, RSX-11 M, and RSX-
11 M-PLUS systems are all multiuser systems, and all provide device
allocation control and file accounts. In the case of the RSTS/E and
RSX-11 M systems, the file account structure is also used to keep track
of the amounts of system resources an individual uses. Furthermore,
the RSTS/E, RSX-11 M, and RSX-11 M-PLUS systems extend privacy
by protecting individual users at a system level from the effects of any
other users of the system.

An RT-11 system can operate in two modes: as a single-job system or
as a foreground/background system. In a foreground/background
system, memory for user programs is divided into two separate re­
gions. The foreground region is occupied by a program requiring fast
response to its demands and priority on all resources while it is pro­
cessing (for example, a process-control or data acquisition applica­
tion program). The background region is available for a low-priority,
pre-emptable program, for example, one doing numerical analysis or
program development.

Two independent programs, therefore, can reside in memory, one in
the foreground region and one in the background region. The
foreground program is given priority and executes until it relinquishes
control to the background program. The background program is al­
lowed to execute until the foreground program again requires control.
Thus two programs effectively share the resources of the system, for
when the foreground program is idle, the system does not go unused.
Yet, when the foreground program requires service, it is immediately
ready to execute. Input/output (110) operations, such as the input of
data from the realtime process, or the output of accounting files to the
lineprinter, are processed independently of the requesting job to en­
sure that the processor is used efficiently, as well as to enable fast
response to all 110 interrupts.

The basis of foreground/background processing is the sharing of a
system's resources between two tasks. An extension of fore­
ground/background processing is multiprogrammlng. In multi­
programmed processing, many jobs compete for the system's
resources. While it is still true that only one program can have control
of the central processor (CPU) at a time, concurrent execution of sev-

18

Operating Systems

eral tasks is achieved because other system resources, particularly
1/0 device operations, can execute in parallel. While one task is wait­
ing for an 1/0 operation to complete, another task can have control of
the CPU. Timeslicing (see below) can also manage multiprogramming
environments.

The RSX-11 family of operating systems employs multiprogrammed
processing based on a priority-ordered queue of programs demand­
ing system resources. In this case, memory is divided into several
regions called partitions, and all tasks loaded in the partitions can
execute in parallel. Program execution, as in the RT-11 fore­
ground/background system, is event-driven. That is, a program
retains control of the CPU until it declares a "significant"
event-normally meaning that it can no longer run, either because it
has finished processing, or because it is waiting for another operation
to occur. When a significant event is declared, the RSX-11 executive
gives control of the CPU to the highest priority task ready to execute.
Furthermore, a high-priority task can interrupt a lower-priority task if it
requires immediate service.

The RSTS/E and DSM systems also perform concurrent execution of
many independent jobs. RSTS/E and DSM, however, process jobs on
a timesharing rather than an event-driven basis, since this is best
suited for a purely interactive processing environment.

In a timesharing environment each job is guaranteed a certain amount
of CPU time (a time slice). Jobs receive time one after another, in a
round-robin fashion. The system itself manages timesharing process­
ing to obtain the best overall response, depending generally on wheth­
er jobs are compute-intense or 1/0-intense. The system manager or
privileged users can also specify the minimum guaranteed time for a
particular job when it gets service, as well as modify its priority.

SYSTEM GENERATION
System generation is the tailoring of an operating system to a custom­
er's particular hardware configuration and software services. Such
structuring is necessary because each installation is unique, and each
requires a different combination of the capabilities potential in the
system when it is first supplied. For example, your installation may not
have a lineprinter, but may have extra disk drives or expanded
memory. It would be wasteful to reserve valuable memory space for
the code necessary to lineprinters. In addition, the system must be
configured so that it can use the facility of the disk drive. This is
accomplished at system generation (SYSGEN) time. Some operating
systems, such as RT-11, provide several monitor options, so that
many customers find they don't have to do a system generation at all.

19

Operating Systems

System generation is also the point at which the system manager
decides upon the inclusion, allocation, or definition of various utilities
and system-wide parameters. In an RSX-11 M system, for example, the
manager could decide whether both event-driven and time-slice
scheduling for realtime tasks should be available.

Finally, some layered software products are "added on" at sysgen
time. (Other layered products might have been added after system
installation, but before system generation.) If a RSTS/E manager
wants to have the PASCAL compiler available to users, for example, it
is during system generation that the choice to add the compiler is
implemented.

Systems may, of course, be re-sysgened as needs change; for exam­
ple, if the system grows, hardware is expanded or additional compil­
ers are added. Usually system generation is a routine procedure that
involves a menu and a dialog between the system and the manager or
DIGITAL software specialist. In some situations the sysgen can occur
while the system is running; in others it may be necessary to bring the
system down for the small time the operation requires.

DATA MANAGEMENT
Computers deal with binary information. Of course, most people find it
inconvenient to "think" in binary codes, so DIGITAL's operating sys­
tems are programmed to translate easier-to-understand program­
ming languages into binary. The way in which people interpret and
manipulate the binary information is called data management.

This section describes PDP-11 software data management structures
and techniques, from the physical storage and transfer level to the
logical organization and processing level. (For definitions of words you
are unfamiliar with, see the Glossary.) Contents of the following
sections include:

• ASCII and binary storage formats-how binary data can be in­
terpreted

• Physical and logical data structures-the difference between how
data storage devices operate and how people use them

• File structures-how physical units of data are logically organized
for easy reference

• File directories-how files are located and retrieved

• File protection-how files are protected from unauthorized users

• File naming conventions-how files are identified

Physical and Logical Units of Data
Computers-at their most fundamental level-understand only binary

20

Operating Systems

information. Physical units of data are the elements which computers
use to store, transfer, and retrieve binary information. A bit (binary
digit) is the smallest unit of data that computer systems handle. An
example of a bit is the magnetic core, used in some processor memo­
ries, that is polarized in one direction to represent the binary number 0
and in the opposite direction to represent the binary number 1.

In PDP-11 computers, a byte is the smallest memory-addressable unit
of data. A byte consists of eight binary bits. An ASCII character code
can be stored in one byte. Two bytes constitute a 16-bit word. Some
m'achine instructions are stored in one word.

The smallest unit of data that a record-oriented 1/0 peripheral device
can transfer is called its physical record. The size of a physical record
is usually fixed and depends on the type of device being referenced.
For example, a card reader can read and transfer 80 bytes of informa­
tion at a time, stored on an 80-column punched card. The card read­
er's physical record length is 80 bytes. (Character oriented
devices-paper tapes and terminals-can obviously transfer a single
character at one time.)

A block is the name for the physical record of a mass storage device
such as disk or magnetic tape. An RK05 disk block consists of 512
contiguous bytes. Its physical record length is 512 bytes.

Physical blocks can be grouped into a collection called a device or a
physical volume. This collection has a size equal to the capacity of the
device medium. The term physical volume is generally used with re­
movable media, such as disk packs or magnetic tape.

Logical units of data are the elements manipulated by people and
programs to store, transfer and retrieve information. The information
has logical characteristics; for example, data type (alphabetic, deci­
mal, etc.) and size. The logical characteristics are not device depen­
dent; they are determined by the people using the system. It is the job
of the operating system to correlate physical and logical data units.
This frees the programmer or user from worrying about manipulation
and allows him to concentrate on solving an application problem.

A field is the smallest logical unit of data. For example, the field on a
punched card which contains a person's name is a logical unit of data.
It can have any length necessary, as determined by the programmer
who defines the field.

A logical record is a collection of fields treated as a unit. It can contain
any logically related information, in any one of several data types, and
it can be any user-determined length. Its characteristics are not device
dependent, but they can be physically defined. For example, a logical

21

Operating Systems

record can occupy several blocks, or it can reside in a single block, or
several logical records can reside in a single block. Its characteristics
are determined by the programmer. A record could contain all of the
status information about an item in inventory or about a loan applicant.

A file is a logical collection of data that occupies one or more blocks
on a mass storage device such as a disk or magnetic tape. A file is a
system-recognized logical unit of data. Its characteristics can be de-
termined by the system or the programmer. ,

A file can be a collection of logical records treated as a unit. An
example is an employee file that contains one logical record in the file
for each employee. Each record contains an employee's name and
address and other pertinent information. If the logical record length is
50 bytes and there are 200 employees, the complete employee file
could be stored in 20 512-byte blocks. Depending on the file structure
used in the system, the blocks could be scattered over the disk, or
could be located one after the other.

A logical volume is a collection of files that reside on a single disk or
tape. It is the logical equivalent of a physical device unit (a physical
volume) consisting of physical records, such as a disk pack. The files
on a volume may have no specific relationship other than their res­
idence on the same magnetic medium. In some cases, however, the
files on a volume may all belong to the same user of the system.

Figure 2-2 illustrates some of the kinds of physical and logical units of
data that PDP-11 computer systems handle.

Data Storage alid Transfer Modes
All PDP-11 operating systems use two basic methods of data storage:
ASCII and binary. Data stored in ASCII format conform to the Ameri­
can Standard Code for Information Interchange, in which each char­
acter is represented by a 7-bit code. The 7-bit code occupies the low­
order seven bits of an 8-bit byte. The high-order bit is normally zero
for PDP-11 systems. Text files are examples of data stored in ASCII
format.

Binary storage always uses all eight bits of a byte to store information.
The significance of any bit varies depending on the kind of information
to be stored. Machine instructions (2's complement integer data), and
floating point numeric data are some examples of data stored in bina­
ry format.

Figure 2-3 illustrates the way in which binary data can be interpreted
as either ASCII data or machine instructions. The figure shows
examples of a word of storage containing a sequence of bits, interpret­
ed first as two ASCII characters and second as a machine instruction.

22

Operating Systems

PHYSICAL UNITS Of DATA

8 OR 0 BIT

ON OFF
SET NOT SET

I I I BYTE
8-BITS 7 6 5 4 3 2 l 0

16 I I I I I I I I I I I I I I I I I WORD
BITS 15 14 13----------8 7-------3 2 1 0
~

HIGH-ORDER BYTE LOW-ORDER BYTE

WDPHYSICAL
RECORD

e.g. A DISK BLOCK
256 WORDS
(512 BYTES)

225

LOGICAL UNITS OF DATA

JONES I FIELD

JONES I J I 122-76-5931 I ~~26~~L
'--._-JL._)~

FIELD FIELD FIELD

LOGICAL
RECORDS

JONES J 122-76-5931 FILE

CHAO M 224-62-1892
BEAN s 298-67-1976

,-------~LOGICAL

FILE ABC DAT VOLUME

FILE XFER. FOR

FILE SYS AV

FILE XFER. OBJ

Figure 2-2 Physical and Logical Data Storage

In large, sophisticated systems such as RSTSIE, RSX-11 M, and RSX-
11 M-PLUS, the way in which data are stored on the byte or bit level is
rarely a concern of the application programmer. The operating system
handles all data storage and transfer operations. In smaller systems
such as RT-11, the programmer can become involved in data storage
formats, although this is not generally a necessity. A particular appli­
cation may require the selection of a particular storage format.

The data storage format is related to the way in which data are trans­
ferred in an 1/0 operation.

Formatting can also be applied at a higher level to define the type of
data file being processed. In the RT-11 system, there are four types of
binary files; each type signifies that a special interpretation applies to

23

I\)

"""'

DATA

• 111111 • I ITII
15 7 0

t '-- 7-BITASCll CODE t '-- 7-BITASCll CODE ~
LPARITY BIT LPARITY BIT

SAME

INSTRUCTION
(SINGLE OPERAND)

L I I I I I I I I I I I I I I I l
15 6 5 3 2 0

' ~~
OP CODE MODE REGISTER

INTERPRETED AS TWO BYTES /PAN~R~ INTERPRETED AS A WORD

I a I a I a I a J 1 I a 11 I a 1 a 11 I a I a I a / a I TI I a I a I a I a 11 I a 11 I a I a 11 I a I a / a I a 11 11 1

~~ ~ ~\._____-._,---/~
OCTAL 0 l 2 l 0 3 OCTAL 0

\._ j _______)

HIGH-ORDER BYTE
l F (LINE FEED)

LOW-ORDER BYTE
C (UPPER CASE CJ

~~~~ 
0 5 l 0 3 

'-- ~ 
OP CODE 

COMPLEMENT 

INSTRUCTION: COM R3 

MODE 
DIRECT 

REGISTER 
3 

Figure 2-3 ASCII and Binary Storage 

~ 
CD 
iil 
§' 

(C) 

Ci) 

'6i 
(ii 
3 
"' 



Operating Systems 

the kind of binary data stored. For example, a memory image file is an 
exact picture of what memory will look like when the file is loaded to be 
executed. A relocatable image file, however, is an executable program 
image whose instructions have been linked as if the base address 
were zero. When the file is loaded for execution, the system has to 
change all the instructions according to the offset from base address 
zero. 

1/0 Devices and Physical Data Access Characteristics 
In a PDP-11 computer system, data moves from external storage de­
vices into memory, from memory into the CPU registers, and out 
again. The window from external devices to the CPU is called the 1/0 
page. Each external 1/0 device in a computing system has an 1/0 page 
address assigned to it. Figure 2-4 illustrates the data movement path 
in a PDP-11 computing system. 

PHYSICAL ORGANIZATION 

CPU MAIN 
MEMORY 

FROM THE PROGRAM'S VIEWPOINT 

EJ--
~IIO ----'.a }~ 

MAIN w 
MEMORY /LJ 

'----VE-CT-0-RS---' ) 

Figure 2-4 Memory and 1/0 Devices 

Although all external devices are controlled similarly, devices differ in 
their ability to store, retrieve or transfer data. Almost all PDP-11 oper­
ating systems provide device independence between devices that 

25 



Operating Systems 

have similar characteristics and, where possible, between differing 
devices in situations where the data manipulation operations are func­
tionally identical. Primarily, PDP-11 operating systems differentiate 
between: 

• File-structured and non-file-structured devices 
• Block-replaceable and non-block-replaceable devices 

Terminals and lineprinters are examples of devices that do not pro­
vide any means to store or retrieve physical records selectively. They 
can transfer data only in the sequence in which they occur physically. 

In contrast; mass storage devices such as disk and tape have the 
ability to store and retrieve physical records selectively. For example, 
an operating system can select a single file from among many stored 
on the medium. 

Mass storage devices are called file-structured devices since a file, 
consisting of a group of physical records, can be stored on and re­
trieved from the device. Terminals and lineprinters are called non-file­
structured devices because they do not have the ability to selectively 
read or write the physical records constituting a file. 

Finally, mass storage devices differ in their ability to read and write 
physical records. Disk devices are block~replaceable devices because 
a given block can be written without accessing or disturbing all the 
other blocks on the medium. Magnetic tape is not a block-replaceable 
device. 

A device's physical data access characteristics determine which data 
transfer methods are possible for that device. Non-file-structured de­
vices allow sequential read or write operations only. Block­
replaceable devices allow both sequential and random read or write 
operations. Figure 2-5 summarizes the read/write capabilities of each 
category of 1/0 device. 

Physical Device Characteristics and Loglcal Data Organizations 
One of the most important services an operating system provides is 
the mapping of physical device characteristics into logical data or­
ganizations. You do not have to write the programs needed to handle 
input and output to any standard peripheral devices, since appropri­
ate routines are supplied by DIGITAL with the operating system. 

There are generally two sets of routines provided in any operating 
system, depending on its complexity: 1) device drivers or handlers; 2) 
file management services. 

Device drivers or handlers perform operations to relieve the user of 

26 



~ 
~ 

CARDS 

NON-FILE-STRUCTURED 

Operating Systems 

PAPER TAPE LINE PRINTER 

SEQUENTIAL READ OR WRITE ONLY 

- ---- ----- - ----- --,-----
FILE-STRUCTURED 

MAGNETIC TAPE 

READ AND WRITE SEQUENTIAL 

NON-BLOCK REPLACEABLE 
BLOCK REPLACEABLE - - - - - - - - - - - --

DISK 

READ & WRITE SEQUENTIAL OR RANDOM 

Figure 2-5 1/0 Device Read/Write Capabilities 

the burden of 1/0 services, overlapping 1/0 considerations, and device 
dependence. They can: 

• Service 1/0 devices 

• Provide device independence 
• Block and unblock data records for devices, if necessary 

• Allocate or deallocate storage space on the device 

• Manage memory buffers 

An operating system can also provide you with a uniform set of file 
management services. For example, the RT-11 system provides file 
management services through the part of the monitor called the User 
Service Routine (USR), which loads device handlers, opens files for 
read/write operations, and closes, deletes and renames files. 

27 



Operating Systems 

In summary, an operating system maps physical device characteris­
tics into logical file organizations by providing routines to drive 110 
devices and to interface with user programs. Figure 2-6 illustrates the 
transition between the user interface routines and the 1/0 devices. 

USER INTERFACE 

OPERATING SYSTEM 

HARDWARE INTERFACES 

PROGRAM 
OR 

USER 

FILE 
MANAGEMENT 

ROUTINES 

110 
MANAGEMENT 

ROUTINES 

PERIPHERAL 
DEVICES 

Figure 2-6 Device Control and File Management Services 

As an example of the mapping of physical characteristics into logical 
organizations, the RSX-11 system's device driver and handler and file 
management services allow the user program to treat all file-struc­
tured devices in the same manner. That is, all of these devices appear 
to the user program to be organized into files consisting of 
consecutive 512-byte blocks which are numbered from block zero of 
the file to the last block of the file. In reality, the blocks may be scat­
tered over the device and, in some cases, the device's actual physical 
record length may not be 512 bytes. 
In RSX-11 terminology, the actual physical records on the device (for 
example, the sectors on a disk) are called physical blocks. At the 
device driver or handler level, the system maps these physical blocks 
into logical blocks. Logical blocks are numbered in the same relative 
way that physical blocks are numbered, starting at block zero-as the 
first block on the device-and ending at the last block on the device. 
At the user interface level, the operating system maps logical blocks 
into virtual blocks. Virtual block numbers become file relative values, 
while logical block numbers are volume relative values. 

Figure 2-7 illustrates the mapping between physical, logical and virtual 

28 



Operating Systems 

blocks in an RSX-11 system. The figure shows two disk device types 
which have different physical record lengths. In this case, the blocks 
constituting a file are scattered over the disk. The file is a total of 5 
blocks long. At the logical block level, the operating system views the 
file as a set of non-contiguous blocks. At the virtual block level, the 
user software views the file as a set of contiguous, sequentially num­
bered blocks. 

SYSTEM SOFTWARE USER-LEVEL SOFTWARE 

5 LOGICAL BLOCKS 
512 BYTES/BLOCK 

5 VIRTUAL BLOCKS 
512 BYTES/BLOCK 

DISK \\ 
TYPE I \) a

5PH~~ BLOCK 29 

BLOCK 30 

BLOCK 31 

BLOCK 32 

BLOCK 33 

<: > 

BLOCK I 

BLOCK 2 

BLOCK 3 

BLOCK 4 

BLOCK 5 /) 

10 PHYSICAL BLOCKS ---~551~0BGYITCEAS/LBBLLOOCCKKS 
BLOCK I 

5 VIRTUAL BLOCKS 
512 BYTES/BLOCK 

DISK 
TYPE 2 

256 ~ BLOCK 29 • 

0() 0;"/ BLOCK30 U\) BLOCK31 

(:\ Q /) BLOCK 32 

'0t:::Jc;/} I_/ BLOCK 33 

<: > 
BLOCK 2 

BLOCK 3 

BLOCK 4 

BLOCK 5 

Figure 2-7 Physical, Logical and Virtual Blocks 

File Structures and Access Methods 
A file structure is a method of organizing logical records into files. It 
describes the relative physical locations of the blocks constituting a 
file. The file structure or structures that a particular operating system 
employs is a product of the way in which the system views the particu­
lar 1/0 devices and the kinds of data processing requirements the 
system fulfills. 

File structure is important because a file can be effective in an applica­
tion only if it meets specific requirements involving: 

SIZE 

ACTIVITY 

VOLATILITY 

Growth of the file may require a change in the file 
structure or repositioning of the file. 

The need to access many different records in a 
file or frequently access the same file influences 
data retrieval efficiency. 

The number of additions or deletions made to a 
file may affect the access efficiency. 

An access method is a set of rules for selecting logical records from a 

29 



Operating Systems 

file. The simplest access method is sequentiai: each record is 
processed in the order in which it appears. Another common access 
method is direct access: any record can be named for the access. A 
non-block replaceable device such as magnetic tape, can only be 
processed sequentially. A block-replaceable device, such as disk, can 
be processed by· either access method, but direct access takes 
greatest advantage of the device characteristics. 

PDP-11 operating systems provide a variety of file structures and ac­
cess methods appropriate to their processing services. All PDP-11 file 
structures are, however, based on some form of the following basic file 
structures: 

FILE STRUCTURE 

Linked 
Contiguous 
Mapped 

ACCESS METHODS 

Sequential 
Sequential or D_irect Access 
Sequential or Direct Access 

Linked files are a self-expanding series of blocks which are not physi­
cally adjacent to one another on the device. The operating system 
records data blocks for a linked file by skipping several blocks 
between each recording. The system then has enough time to process 
one block while the medium moves to the next block to be used for 
recording. In order to connect the blocks, each block contains a point­
er to the next block of the file. Figure 2-8a shows the format of a linked 
file. 

Linked file structure is especially suited for sequential processing in 
which the final size of the file is not known. It readily allows later 
extension, since the user can add more blocks in the same way the file 
was created. In this manner, linked files make efficient use of storage 
space. Linked files can also be joined together easily. 

The blocks of contiguous files are physically adjacent on the record­
ing medium. This format is especially suited for random (direct ac­
cess) processing, since the order of the blocks is not relevant to the 
order in which the data is processed. The system can readily deter­
mine the physical location of a block without reference to any other 
blocks in the file. Figure 2-8b shows the format of a contiguous file. 

Mapped files are virtually contiguous files; they appear to the user 
program to be directly addressable sets of adjacent blocks. The files 
may not, however, actually occupy physically contiguous blocks on the 
device. The blocks can be scattered anywhere on the device. Separate 
information, called a file header block, is main.tained to identify all the 
blocks constituting a file. This method provides an efficient use of 
available storage space and allows files to be extended easily, while 

30 



Operating Systems 

f-olRECTORY-ENTRY~ 
: (4 BLOCKS FROM r- ----, 
l-!_!~~6_) ____ ~ : 

I 

BLOCK# 1046: ~ ""' 8---i 
"°" #W"' ~-~1 

''°"nw [SJ~:'. 
DATA : 

I 
I 
I 

"°''°" P9_J 
FINISH 

Figure 2-8a Linked File Structure 

still maintaining a uniform program interface. Figure 2-9a illustrates a 
mapped file format. 

If desired, a mapped file can be created as a contiguous file to ensure 
the fastest random accessing, in which case it is both virtually and 
physically contiguous. 

The basic file structures discussed above can be modified or com­
bined to extend the features of each type for special-purpose logical 
processing methods. Some examples are indexed files and global 
array files. 

For the most generalized and flexible file structure, you can use 
indexed files, which are actually two contiguous files. One file acts as 
an ordered map of a second file containing the target data. The index 
portion or map contains either an ordered list of key data selected 
from the target data records or pointers to data records in the second 
file, or both. 

31 



Operating Systems 

ioiiifcroiiY ENTRY:i 
1(6 BLOCKS FROM ~---, 

l~_7~~2_!. _ - - _J i 
j_ 

BLOCK #7352: 

DATA 

BLOCK # 7353: 

DATA 

BLOCK # 7354: 

DATA 

BLOCK #7355: 

DATA 

BLOCK #7356 

DATA 

BLOCK #7357 

DATA 

Figure 2-8b Contiguous File Structure 

The target data records can be processed in the order of the index 
portion, or the target data records can be selected by searching 
through the index portion for the key data identifying the records. 
These methods of logically processing the target data are called in­
dexed sequential access and random access by key, respectively. 

The Digital Standard Mumps (DSM) operating system provides anoth-' 
er special file structure, called global array files, a version of the 
linked file structure. The arrays themselves are a logical tree-struc­
tured organization consisting of one or more subscripted levels of 
elements. All elements on a particular subscripting level are stored in 
a single chain of linked blocks. At the end of each block in the chain is 
a pointer to the next block in the chain. The levels of the array (all the 
block chains) are linked together through pointers in the first block of 
each chain. This file structure ensures that the time it takes to access 
any element of the array is minimal. Figure 2-9C shows the DSM 
global array structure. 

32 



Operating Systems 

DATA 
LOGICAL AREA 1 

BLOCK VIRTUAL 

FILE HEADER BLOCU 

FILE I.D. 

DATA AREA PTR 1 

#221 BLOCK 
#1 

#222 #2 

DATA AREA PTR 2 1------i 
DATA AREA PTR 3 !---, #223 #3 

#224 #4 

#225 #5 

DATA 
LOGICAL AREA 2. 
BLOCK VIRTUAL 
#172 BLOCK 

#6 

#173 #7 

#174 #8 

DATA 
LOGICAL AREA 3 
BLOCK 
#450 

Figure 2-9a Mapped File Structure (Non-contiguous File) 

Directories and Directory Access Techniques 
Just as file structure and access methods are required to locate re­
cords within files, directory structures and directory access 
techniques are required to locate files within volumes. 

A directory is a system-maintained structure used to organize a vol­
ume into files. It allows the user to locate files without specifying the 
physical addresses of the files. It is a direct access method applied to 
the volume to locate files. 

RT-11 supports the simplest kind of file directory. When disk and tape 
media are initialized for use, the system creates a directory on the 
device. Each time a file is created, an entry is made in the directory 
that identifies the name of the file, its location on the device, and its 
length. When access to the file is requested thereafter, the system 
examines the directory to find out where the file is actually located. 

33 



"' -l>-

PRIMARY INDEX 

...--------. 

ADAMS• • • • 

L 
r 

ACCT I ADDR I • • • 

14 

KEY 
DEFINITIONS 

ALTERNATE INDEX 

ACCT I ACCT I ACCT 
14 23 76 

' ,,,.,,, 
,,, I 

I 
I 

I 

/ 

! ,,,.,,..,..,. 
ACCT I A:CT 

78 81 

I 

I 
I 

I 
I 

I 
I 

I 

A~~T I ADDR I • • • I TUFTS I AiiT I ADDR I • • • lw1 RTHI ~~CT 1 ADDR 

DATA RECORDS J 
I 

Figure 2-9b Indexed File Structure 

~ 
Cl> 
iil 
§ 

CQ 

Ci) 

~ 
iii 
3 
Cl) 



Operating Systems 

Figure 2-9c DSM Global Array Structure 

The system can access the file quickly without having to examine the 
entire device. 

In multiuser systems such as RSTS/E and RSX-11 M, two different 
kinds of directories are used to enable the system to differentiate 
between files belonging to different users. They are the Master File 
Directory (MFD) and the User File Directories (UFD). These directories 
are maintained as files themselves, stored on the (physical) volume for 
which they provide a directory. 

The MFD is a directory file containing the names of all the possible 
users of a particular device. The UFD is a directory file containing the 
names of all the files created by a particular user on a device. The 
system first checks the MFD to locate the UFD for the particular user, 
and then checks the UFD to locate the file. Figure 2-1 O illustrates the 
use of the Master and User File Directories. 

Though the directories are important in the operi;ition and access of 
the system, most users need not worry about them. The system main­
tains directories on behalf of all users. Of course, as with most system 
services, privileged users may do their own directory creation and 
maintenance. 

File Protection 
RT-11 provides the simplest form of file protection with a one-bit "pro­
tected" designation. Files so named cannot be accidentally deleted. 
Under RT-11 no system of user numbers or accounts is needed. 
Directories form the basis for file access protection in multiuser sys­
tems. Unauthorized users cannot access a file unless they know the 
account under which it is stored and can obtain access to that ac­
count. Account systems and file access protection techniques are re­
lated. 

Multiuser systems identify the individuals who use the system by ac­
count numbers called User Identification Codes (UIC), which are 

35 



MASTER 
FILE 

DIRECTORY 
UFO TOM 
UFO MAFrl 

UFO MIKE 

Operating Systems 

UFD TOM 
FILE LIST 

FILE PROG 

FILE MAP 

UFO MARY 
FILE PROG 

FILE DATA 

FILE OBS 

UFD MIKE 

FILE LIST 
FILE 1LOAD' 

Figure 2-10 Master and User File Directories 

FILE LIST 

FILE MAP 

FILE PROG 

FILE DATA 

FILE OBS 

FILE LIST 

normally assigned by the system manager. In general, a UIC consists 
of two numbers: the first number is used to identify a related group of 
users; the second number is used to identify an individual user in the 
group. 

In RSTS/E systems, an individual file can be protected against read 
access or write access where distinctions are made on the basis of the 
UIC account number under which a file is stored. For example, a file 
can be read protected against all users who are not in the same ac­
count group and write protected against all users except the owner. 

The RSX-11 file system provides a protecUon scheme for both vol-

36 



Operating Systems 

umes and files. It is possible to specify protection attributes for an 
entire volume as well as for the files in the volume. A file or an entire 
volume can be read-, write-, extend- or delete-protected. Distinctions 
are made on the basis of account number, where the system recog­
nizes four groups of users: privileged users, owner, owner's group, 
and all others. 

File Naming 
The most common way users communicate their desire to process 
data is through file specifications. A file specification uniquely identi­
fies and locates any logical collection of data which is on-line to a 
computer system. 

A language processor, for example, needs to know the name and 
location of the programming language source program file that it is to 
compile; it also needs to know the name that the user wants to use for 
the output object program and listing files it produces. Most PDP-11 
operating systems share the same basic format for input and output 
file specifications. 

Typically, the file specification includes a device name (given by an 
abbreviation mnemonic) for the device where the file resides, a unit 
number, the file name itself, and a file type-a group of one to three 
characters that conventionally tells what kind of file it is. (For example, 
.FOR as a file type says the file is a source program in the FORTRAN 
language.) In multiuser systems, the file specification might also 
include the UIC of the user and the file version number. If a network 
application is being run, the file specification would include the node 
name of the node where the file is, if other than the host system. 

In most cases, the user does not have to issue a complete file specifi­
cation. The PDP-11 operating systems use default values when a por­
tion of a file specification is not supplied. The filename extension de­
faults, for example, depend on the kind of operation being performed. 

The device name, if omitted, is normally assumed to be the system 
device, and most systems also allow the user to omit the unit number. 
If omitted, the unit number is assumed to be unit number 0. 

In addition to relying on defaults in the file specification, the user can 
also put an asterisk in place of a file name, file name extension, ac­
count number, or version number to indicate a class of files. The 
asterisk convention, also called the wlldcard convention, is 
commonly used in PDP-11 operating systems when performing the 
same operation on related files. For example, the file specification 
DP1:[2,1 ]PROG. * refers to all files on DP1: under account [2, 1] with a 
file name PROG and any extension. The file specification DK:[*,*] 

37 



Operating Systems 

FILE.SAV refers to the files under all accounts on drive unit 0 named 
FILE.SAV. 

USER INTERFACES 
User interface refers to both the software that passes information 
between an operator and a system and the language that a system and 
an operator use to communicate. In the latter sense, a user interface 
consists of commands and messages. Commands are the instructions 
that the user types on a terminal keyboard (or gives to a batch pro­
cessor) to tell the system what to do. Messages are the text that a 
system prints on a terminal that tells the operator what is going on; for 
example, prompting messages, announcements, and error messages. 
This section discusses commands, the portion of the user interface 
that tells the system what to do, and prompting messages, the mes­
sages the system prints when it is ready to receive commands or 
information. 

There are basically four types of commands used in PDP-11 operating 
systems: 

• Monitor or command language commands-used to request ser­
vices from the system as a whole 

• 1/0 commands-used to direct any kind of 1/0 operation (often a 
part of monitor commands) 

• Special terminal commands-these use keys on a terminal for spe­
cial functions 

• System program commands-commands used in system programs 
that perform operations relevant only for the individual program 

Since system program commands are relevant only for individual 
system programs, and not for operating systems in general, this sec­
tion discusses only monitor and command language commands, 1/0 
commands and special terminal commands. 

Special Terminal Commands 
Special terminal commands involve a set of keys or key combinations 
that, when typed on a terminal, perform special functions. For exam­
ple, a user normally types the carriage return key at the end of an input 
command string to send the command to the system, which responds 
immediately by performing a carriage return and line feed on the 
terminal. The key labeled RUBOUT or DELETE is used to delete the 
last character typed on the input line. 

The most significant special terminal commands are those used with 
the key labeled CTRL (control). When the CTRL key is held down (like 
the shift key) and another key is typed, a control character is sent to 
the system to indicate that an operation is to be performed. 

38 



Operating Systems 

For example, a line currently being entered (whether as part of a 
command or as text) will be ignored by the system if you type a 
CTRL/U combination. A new input line can then be entered. The 
CTRL/U function is the same as typing successive RUBOUT keys to 
the beginning of a line. CTRL/U is standard on PDP-11 operating 
systems. 

Another example is the CTRL/O function. If, during the printing of a 
long message or a listing on the terminal, you decide you are printing 
the wrong file, you can type a CTRL/O to stop the terminal output. If 
you wish to stop and then resume output to a terminal, you type 
CTRL/S to stop it and then CTRL/Q to resume. CTRL/O, CTRL/S, and 
CTRL/Q are standard functions on PDP-11 operating systems. 

1/0 Commands 
Users communicate their intentions to process data files by issuing 
1/0 commands consisting of at least one file specification. Normally, 
the 110 commands used in a system are standard throughout that 
system; in addition, most PDP-11 operating systems share the same 
basic 1/0 command string format. 

Three command string formats are generally available; the older, less 
convenient Command String Interpreter (CSI), the newer, easier 
Concise Command Language (CCL), and DIGITAL Command Lan­
guage (DCL) formats. Under CCL and DCL, the command, input and 
output file specifications and options may all be entered in a single line 
in response to the system prompt. 
• COPY MYFIL YOURFIL 

Omitted information will be prompted for by the system until the com­
mand is complete in its general format: 

• COMMAND input filespec output filespec/option 

Because CCL and DCL use English-like commands and options, they 
are easy to learn and use. 

The older CSI requires several more steps: in response to the system 
prompt, the user enters a RUN command and the name of a program 
to be run, e.g., PIP (Peripheral Interchange Program). The response is 
a command level prompt for file specifications: 

•RUN PIP 
YOURFIL = MYFIL. 

The general format, including single-letter switches, is: 

• RUN Program 
output filespec = input filespec/switch 

To return to the monitor level, the user types tc. 

39 



Operating Systems 

Command string switches are simply ways of appending qualifying 
information to an 1/0 command string. The switches used vary from 
program to program. They are not usually required in an 1/0 com­
mand string, since most programs assume default values for any 
switch. 

Monitor and Command Language Commands 
The primary system/user interface is provided in PDP-11 operating 
systems by either monitor software or special command language 
interface programs that run under the monitor. The monitor software 
and command languages allow the user to request the system to set 
system parameters, load and run programs, and control program exe­
cution. 

An input command line consists of the command name (an English 
word that describes the operation to be performed) followed by a 
space and a command argument. For example, the command to run a 
program is the word RUN followed by the name of the file containing 
the program. If the command name is long, it can usually be abbreviat­
ed. 

In the RT-11 system, a monitor component called the keyboard moni­
tor performs the function of notifying the user that the monitor is ready 
for input by printing a period at the left margin. The user enters a 
command string on the same line and terminates the command string 
by typing the carriage return key. 

In the RSTS/E system, there are four keyboard monitors which share 
the responsibility for interpreting commands. The four standard key­
board monitors are DCL, BASIC-PLUS, RSX, and RT-11. All of these 
interpret sets of system commands, that is, words followed by optional 
command parameters. These system commands allow users to 
perform all the fundamental functions required to use the RSTS/E 
system, such as logging on and off, and running programs. 

DIGITAL Command Language (DCL) 
DIGITAL Command Language is a quickly learned command lan­
guage that can be used by both interactive and batch-processed jobs 
for: 
• Interactive program development 

• Device and data file manipulation 

• Program execution and control 

Commands are composed of English words; command parameters 
such as file name specification and options can follow the command 
on the same line, or can be printed on subsequent lines in response to 
the system prompt. 

40 



Operating Systems 

In order to make DCL friendlier, DIGITAL has supplied it with exten­
sive HELP facilities that both guide the user on the proper operation of 
the commands and supply explanations of system messages. In addi­
tion, through the use of defaults, DCL relieves programmers of many 
routine decisions and much redundant typing in order to complete 
parameters and options. Of course, the programmer may override the 
defaults in any command by the use of simple command options. 
Abbreviations also speed up the command typing procedure, allowing 
the programmer to use the shortest unique form of both commands 
and parameters. File specifications for DCL can be as simple as the 
name of the file only, or as detailed as a full listing of network, node 
device (including type, controller, and unit), directory, file name, file 
type, and version number. 

Though there are more than a hundred DCL commands, the program­
mer may also program and store commands of his own, and then use 
them just as the DIGITAL-supplied commands are used. 

DIGITAL Command Language (DCL) is a DIGITAL company standard 
that makes movement from one DIGITAL system to another easier by 
providing consistent formats and syntax. It is now available on RT-11, 
RSX-11M, RSX-11M-PLUS, RSTS/E, and VAX/VMS operating sys­
tems. 
A Concise Command Language (CCL) command is used to run and 
pass arguments automatically to designated programs stored in the 
system library. The programs can be system utilities supplied with the 
operating system, or can be user-written console routine programs 
that perform application operations specific to your job. 

CCL commands not only provide an easy-to-use command interface, 
but they can also provide protection from unauthorized use of certair1 
programs. For example, if a particular program performs several 
operations, some of which should not be available to unauthorized 
users, the system manager can prevent those users from issuing the 
RUN command to run the program, but can allow them to perform the 
safe operation subset by using CCL commands. 

In the RSX-11 systems, an additional command interface called the 
Monitor Console Routine (MCR) allows the user to perform system 
level operations. There are two kinds of commands that MCR accepts: 
general user commands and privileged user commands. General user 
commands provide system information, run programs, and mount and 
dismount devices. Privileged user commands control system opera­
tion and set system parameters. 

RT-11 's version of the CCL is the set of keyboard monitor commands, 
whose features include wildcards, factoring (a simplifying method of 

41 



Operating Systems 

string replacement), abbreviations, and prompts. Here is a short ex­
ample of prompting: 

COPY /CONCATENATE 
From? 
DX1: (TEST.LST, TESTA.LST) 
To? 
DX2: TEST.LST. 

The system continues to prompt for input and output file specifications 
until you provide them. Keyboard monitor commands can be collected 
together into indirect command files. 

PROGRAMMED SYSTEM SERVICES 
All PDP-11 operating systems provide access to their numerous ser­
vices through requests that programs or tasks can issue during execu­
tion. A programmed request inserted directly into the program 
provides the mechanism. 

Under the RT-11 system, MACR0-11 programmers may use pro­
grammed requests to perform file manipulation, data transfer, and 
other system services such as loading deviee handlers, setting a mark 
time for asynchronous routines, suspending a program, and calling 
the Command String Interpreter (CSI). 

In the RSTS/E system, users have access to the monitor's services 
through system function calls. The function calls allow a program to 
control terminal operation, to read and write core common strings, 
and to issue calls, in turn, to the system file processor. File processor 
calls, in turn, enable a program to set program run priority and privi­
leges, scan a file specification, assign devices, set terminal character­
istics, and perform directory operations. When the function operation 
is performed, the program continues execution. 

The RSX-11 executive includes programmed services called executive 
directives. Directives can be executed in MACRO programs using sys­
tem macro calls provided with the system. The directives allow a pro­
gram to obtain system information, control task execution, declare 
significant events, and perform 1/0 operations. The RSX-11 M operat­
ing system also includes programmed file control services which en­
able the programmer to perform record-oriented and block-oriented 
1/0 operations. 

SYSTEM UTILITIES 
PDP-11 operating systems provide, in general, three kinds of system 
utility programs: program development utilities, file management utili­
ties, and special system management utilities. 

42 



Operating Systems 

Most system management utilities included in an operating system 
are dependent on the function the operating system serves. For exam­
ple, RSX-11M, RT-11, and RSTS/E include system error logging and 
report programs. RSTS/E, and RSX-11 M-PLUS include user 
accounting programs. The chapters on specific operating systems will 
give you an idea of some of the system management utilities associat­
ed with each system. For details on file management utilities and 
program development utilities, see the pertinent sections of this 
Handbook. 

43 



44 



OVERVIEW 

CHAPTER 3 

RSTS/E AND CTS-500 

RSTS/E is the pre-eminent timesharing system for minicomputers, 
and reflects a decade's careful growth and development by DIGITAL. 
Many thousands of timesharing customers, from financial institutions 
and schools to manufacturers, insurance companies, and airlines, find 
RSTS/E a "blue chip" system: reliable, stable, friendly, and forgiving. 
CTS-500 is a commercial software system that includes all of RSTS/E 
plus appropriate languages and data management software needed 
for effective development, running, and maintenance of most com­
mercial applications. 

RSTS/E runs on a variety of DIGITAL processors, accommodating the 
complete range of peripherals, hardware and add-ons that any cus­
tomer might need. RSTS/E is well-adapted to the growth of an individ­
ual system-as hardware and software are added-and is fully up­
ward- and downward-compatible for applications being migrated 
across RSTS/E systems. 

RSTS/E allows concurrent word processing and data processing us­
ing DECword/DP and can also communicate with stand alone word 
processors. Its built-in and layered functions reflect a DIGITAL com­
mitment to keep the system easy for naive users and yet extremely 
powerful for users who want to write complex or innovative programs. 

Some of the features of RSTS/E systems are listed in the pages that 
follow. All have as their goal the creation of a programming environ­
ment highly "available," so that programmer productivity is maxim­
ized, down-time is reduced to a minimum, and system operations are 
easy to learn and manage. RSTS/E provides excellent security, 
particularly useful in sensitive business applications such as bank 
transactions and stock transfers, where access to certain data must be 
severely restricted; or for educational institutions in which novice 
users must be prevented from bringing the system down by inexperi­
ence or intent. 

Excellent communications software available for RSTS/E lets the 
computer link into distributed networks of DIGITAL computers (DEC­
nets) or into flexible lnternets with computers from other manufactur­
ers. Also, thanks to the availability of a DCL subset with RSTS/E there 
is increased compatibility among RSTS/E, VMS, and RSX operating 
systems. 

45 



RSTSIE and CTS-500 

System accounting facilities included with RSTS/E give the system 
manager a detailed record of who used the various processor modes 
and for how long, so that both system management and billing for 
timesharing time can be done accurately. 

There is an enormous amount of specialized software available for 
customers, from DIGITAL and from commercial developers who spe­
cialize in writing program packages for RSTS/E users in numerous 
industries. Resources of this sort help every customer who needs to 
enhance the operating system with software designed for financial 
accounting and general ledger, billing, forecasting, business simula­
tion, materials control, a variety of banking transactions, freight 
tracking, insurance claim processing, and hundreds of additional 
timesharing applications. 

Timesharing 
Because computer hardware can really do processing of only one 
program or task at a time, it is important to determine, based upon the 
uses to which a computer is to be put, how that central processor is to 
be allocated. In timesharing environments, the processor is sche­
duled-usually in a round-robin fashion-among all the jobs that want 
it and are ready to do usefu~ work. There may be levels of priority in 
timesharing so that, for example, agents who are confirming hotel 
reservations get served ahead of clerks who are doing inventory con­
trol programs; but every timesharing system accounts for all executa­
ble programs eventually. 

From the user's point of view, the most important timesharing parame­
ter to consider is computer response time which is the time that 
elapses between entering an instruction or field of data and the com­
puter's response-computation, a ledger entry, an output operation to 
a printer or terminal. 

RSTS/E systems provide excellent response time to users, who can 
number up to 127 at one time, and to jobs, which can number up to 63 
at one time. A typical mix of users would include some people doing 
program development and working in a very interactive mode with the 
computer, some clerks doing data entry for delivery schedules or 
invoicing, some sales people entering transaction information, and 
perhaps even a batch job or two being run to complete the weekly 
salary. In addition, another computer owned by the company might be 
providing delivery status information via DECnet, or a mainframe from 
another computer manufacturer might be linked through Internet soft­
ware from DIGITAL. 
With such a diverse mix of users, we might find some people who 
know very little of the internal working of the computer, some who are 

46 



RSTSIE and CTS-500 

programmers and expert in a language like COBOL or BASIC-PLUS-
2, and some who are system-level programmers and system manag­
ers, capable of adapting the software to a variety of specific needs and 
of tuning the operating system for maximum performance. Under 
RSTS/E, all will get excellent response time, and all will feel as though 
they have unique control of the central processor and other resources 
of the computer. 

Resources 
Just about every kind of service you might want from an operating 
system is available with RSTS/E. Since high programmer productivity 
was an aim of DIGIT AL in producing RSTS/E, the features of an easy, 
forgiving environment are included. User commands to the RSTS/E 
system are handled and interpreted by one of the run-time systems 
capable of acting as a keyboard moriitor. The most popular languages 
for business and educational applications are available, including BA­
SIC-PLUS-2, PDP-11 COBOL, COBOL-81, FORTRAN IV, FORTRAN-
77, and DIBOL. This choice of languages lets you adapt your language 
to the function at hand, and lets you tap programming talent already 
trained in these popular languages. If you are familiar with traditional 
batch-mode program development requirements, you will be im­
pressed by the ease and speed of developing applications under a 
RSTS/E system. 

Text editors, particularly the DIGITAL standard editor (EDT), help 
speed program development and correction. EDT is a text editor that 
can be used to create a file, enter, and manipulate text in the file, and 
save or delete work done during edit sessions. It is easy to use and 
when used with DIGIT AL'S terminals provides full screen video editing 
capabilities. In actual applications, the RSTS/E user can take advan­
tage of features such as Record Management Services (RMS), soft­
ware that supports building and accessing sequential, relative, and 
multi key indexed sequential file structures, and relieves programmers 
of many tedious tasks of 1/0 management. Calls from most of the 
various programming languages to RMS are sufficient to invoke the 
utility or access method desired. 

FMS-11 /RSTS Forms Management System is a software package that 
provides sophisticated screen formatting for application programs. 
FMS-11 /RSTS allows non-programmers to design forms interactively 
on the video screen and eliminates tedious editing and recompiling of 
a forms program. The keypad-operated editor and the HELP facility 
are easy to learn. FMS-11 /RSTS provides extensive field protection 
and validation featur~s that help prevent data errors caused by typing 
errors. 

47 



RSTSIE and CTS-500 

Other features are described in more detail in sections that follow, and 
will be of interest to readers who want to know exactly what is available 
with RSTS/E, and what services it provides to users. 

Timesharing Overview 
RSTS/E tries to keep the CPU busy by running several jobs concur­
rently. Each user program be it a system utility, run-time system, or 
application program is a job. A job runs until it either enters an 110 wait 
state or exhausts its time quantum. At that point, the scheduler finds 
the next ready job and begins running that job. Meanwhile, the inter­
rupt-driven 1/0 device handlers are processing requested data 
transfers. Upon completion of a transfer, the scheduler marks the job 
that requested the transfer as ready to run again and starts it from the 
point at which execution ceased. 

RSTS/E attempts to keep as many jobs in memory as possible. When 
more memory is required to run a job than is available, the system 
temporarily swaps some jobs out of memory and stores them in a 
swap file. When it is the job's turn to run again, the job in the swap file 
is brought back into memory. Jobs waiting for more CPU time or 
keyboard input are most likely to be stored in the swap file, while jobs 
currently running or involved in disk or magnetic tape data transfers 
are necessarily in memory. 

As the system processes each job, it maintains accounting information 
concerning that job. When the user logs off the system, all the informa­
tion accumulated for all the jobs run by the user is used to update the 
accounting information stored on disk for that user account. This is 
particularly important to systems in which time is billed among various 
users. 

To begin a timesharing session, a user logs into the system by enter­
ing an account name and a password (these are assigned by the 
system manager, the password is agreed jointly by the system manag­
er and the user). The terminal is then under control of the keyboard 
monitor of the system default run-time system. The recommended 
default run-time system is DCL. 

Whatever the default run-time system is, after the log in verification is 
complete and the system messages have been displayed, the user is 
in command mode. Each run-time system identifies itself by an identi­
fying prompt. These are: 

• DCL "$" 

•RSX">" 
• BASIC "Ready" 

48 



RSTSIE and CTS-500 

• RT-11 "." 

Commands are issued to the keyboard monitor of the run-time sys­
tem. These commands cause the execution of Commonly Used 
System Programs (CUSP's) or application programs. The user is per­
mitted to execute all the commands available to a non-privileged user. 
Privileged users have additional commands available for system man­
agement and maintenance. 

A privileged user can detach the running job from the terminal, and 
run another job. The detached job continues to run unattended, but is 
still associated with the account number under which the user logged 
in. To retrieve control of a detached job, the user can log in on any free 
terminal and attach that job to the terminal. 

The use of BASIC-PLUS is an important feature of the RSTS/E system. 
BASIC-PLUS can be run either from any default run-time system by 
issuing the BASIC command or it can be a run-time system itself. 
When BASIC-PLUS is entered it is in edit mode, to which it returns 
when program execution is completed or whenever a CTRL/C is 
typed. In edit mode, BASIC-PLUS examines each line typed by the 
user and determines whether that line is: 

• A system or installation defined command 

• An immediate mode statement 

• A program statement 

System and installation defined commands are executed immediately 
after being entered; immediate mode statements are first translated 
into an intermediate code, (placed in the user's job area) and are 
executed immediately by the run-time system. Program statements 
(lines of ASCII text preceded by the line numbers) are stored in their 
ASCII form in a temporary disk file under the user's account. Program 
statements without line numbers are immediately executed and not 
stored. This feature is provided for program debugging. 

A user's job area is initialized by either executing the BASIC command 
or by logging in and being given a size of 2 KB or 4 KB, depending on 
the run-time system being used. The job area can grow in increments 
of 2 KB to a maximum size chosen by the system manager. When the 
user enters program statements in the edit mode, intermediate code 
created in the user's job area is not executed automatically. A copy of 
the intermediate code of the program can be transferred to disk sto­
rage or to an external storage medium. 

You can change from edit mode to run mode by typing the RUN sys­
tem command or the CHAIN immediate mode statement. In RUN 
mode, the run-time system interpretively executes the intermediate 

49 



RSTSIE and CTS-500 

code stored in your job area. When a program finishes execution, the 
terminal returns to edit mode as signaled by the printing of the prompt 
"Ready." You can interrupt the BASIC-PLUS program by typing 
CTRL/C, which also returns the terminal to edit mode. 

Management Commands 
RSTS/E users can expect efficient operation because the operating 
system dynamically allocates processor time, memory space, file 
space, and peripherals to best suit changing demands. The system 
manager and designated privileged users have access to the RSTS/E 
system management commands either interactively using system utili­
ties or under program control. Additional system commands and utili­
ty programs are also available to all users. 

The RSTS/E file system provides a wide range of online processing 
capabilities. Files can be accessed randomly or sequentially, either 
through one of the keyboard command or utility programs or through 
the RSTS/E file system. Files can contain alphanumeric string, integer 
numeric, floating point numeric, or binary data; they can be created, 
updated, extended or deleted interactively either from the user's ter­
minal or under program control, and can be sorted by the SORT-11 
program. Files can be p·rotectsd from access on an individual, group, 
or system basis; they can also be accessed by many users while being 
updated online. 

Total or selective file backup and restore can be done online without 
disrupting users, or it can be done during periods when timesharing or 
application processing is not permitted. Private disk volumes may be 
used to limit user access. Removable disk media permit safe storage 
of valuable records at sites remote from the system. 

RSTS/E is a high performance system, and it includes a variety of user 
tools to tune applications to perform even better. For example, with 
software disk caching (unrelated to CPU memory caching, which is 
also available), blocks of heavily used disk data are held in main mem­
ory to reduce the number of disk accesses. In addition, heavily used 
program segments can be held resident in main memory and shared 
among programs, saving memory space, reducing swapping time, 
and thus increasing performance. RMS data management code can 
also be shared for further memory savings. Use of common, shared, 
resident RMS also results in substantially reduced disk accessing for 
overlays and thus improves applications performance. 

USER INTERFACE 
User Command Language 
The command language interpreter is interactive, comprehensive, 

50 



RSTSIE and CTS-500 

easy to use, and very flexible. It enables the user to log into the system, 
manipulate files, develop and test programs, and obtain system infor­
mation. 

The four standard keyboard monitors are DCL, BASIC-PLUS, RSX, 
and RT-11. All of these interpret sets of system commands, that is, 
words followed by optional command parameters. These system com­
mands allow users to perform all the fundamental functions required 
to use the RSTS/E system, such as logging on and off, and running 
programs. 

Digital Command Language (DCL) 
The DCL feature is based upon the DCL available on most PDP-11 and 
VAX/VMS operating systems. It is a subset of the DCL implemented 
on VAX/VMS. DCL is implemented as a run-time system or as an 
additional keyboard monitor. Its command set gives the user access to 
most RSTS/E system features. 

Concise Command Language (CCL) 
The RSTS/E system commands issued by the user at a terminal are 
familiar words or abbreviations. The system accepts both long and 
short command formats for inexperienced and experienced users. It 
responds with understandable statements and, if a command does not 
supply complete information, prompts the user for remaining data. 
CCL commands allow you to enter one command that runs a system 
utility and specifies a single command for the utility to execute. The 
number of CCL commands that can be defined varies from system to 
system, depending on the number of "small buffers" configured into 
the system. An average system probably includes a fairly standard set 
of CCL commands for certain RSTS/E utility programs. The system 
manager has the option of freely adding to, deleting from, or modify­
ing the standard set of CCL commands. 

SYSTEM CONFIGURATION AND OPERATION 
RSTS/E system software exists as system code, language processing 
code, and system program code. The system code and language 
processing code are tailored at system generation time according to 
the hardware configuration on which the system runs and the software 
features which are chosen by the system manager. Once the system is 
generated, the system code and language processing code are frozen, 
and are alterable by patching or generating new code. The system 
program code exists in a library of programs executable by the system 
software or by individual users on the system. The library of programs 
is alterable and expandable during timesharing without requiring re­
generation of the system. 

51 



RSTS!E and CTS-500 

System Code 
The RSTS/E system code is stored on the system disk as a save­
image library (SIL). A SIL, when loaded into memory, is immediately 
executable by the PDP-11 computer. The system code comprises 
many distinct elements which are either resident in memory or on disk 
during timesharing. Permanently resident elements are the following: 

• Interrupt and trap vectors 

• Small and large system buffers 
• System information and data tables 
• Disk and device drivers 
• File processor modules 

Optionally, the following are also resident modules: 
• FMS/RSTS forms code in the terminal driver 
• DECnet/E-Network Communications handler 

• RJ2780-Remote Job Entry handler 

The following elements are either permanently resident or disk resi­
dent (overlay) elements, the choice to be selected during system gen­
eration: 
• File processor modules 
• Infrequently used utility routines 

System initialization code is loaded only during system start-up. 

RSTS/E operations start when the system disk is bootstrapped. The 
bootstrap routine loads the initialization code which determines the 
hardware configuration and performs many consistency checks to en­
sure the integrity of the software. When checking is completed, the 
initialization code remains resident and allows many options. 

Language Processing Code 
DCL serves as the recommended default run-time system. However, 
any of the languages mentioned above may be used for applications 
programs. The auxiliary run-time system or object time system associ­
ated with a given language processor is loaded into memory only 
when a request is made to execute that language compiler or to 
execute a compiled program written in that language. The language 
processors reside on the system disk in machine executable form and 
can be either permanently resident in memory or temporarily resident 
(swappable). Usually the language compiler is swapped out to disk as 
required, just as any normal user job would be. 

52 



RSTSIE and CTS-500 

The run-time system may vary in size from 4 KB to 32 KB, and is 
generally shared among users. 

FEATURES 

System Generation 
System generation is normally a one-time operation in which the sys­
tem manager defines the hardware configuration and selects the basic 
software options. The system manager needs to perform a system 
generation only when the system is first installed or when the hard­
ware configuration changes. Software options can be included in the 
system to tailor the system to the needs of the application. 

In addition to defining the number and kinds of peripherals and pro­
cessing hardware during system generation, the system manager de­
fines special configuration options. Some of these options are 
discussed below. 

Pseudo Keyboards - The system manager can define the system to 
have one or more pseudo keyboards. Using a pseudo keyboard as a 
communications device, you can write a program to control other jobs. 
In addition, each copy of the BATCH system program requires one 
pseudo keyboard to run jobs in a batch stream. 

Multiple Terminal Service - The multiple terminal service option 
allows one program to interact with several users simultaneously by 
servicing their terminals on one 1/0 channel. This eliminates the need 
to run separate copies of the same program when several terminals 
must perform a similar function. 

Floating Point Precision and Scaled Arithmetic - The system man­
ager can select either single precision (2-word) or double precision (4-
word) floating point numeric format. If the system has floating point 
hardware, the system manager can select a floating point math pack­
age that will increase processing speed by using the hardware instruc­
tions. The scaled arithmetic feature is included in all 4-word floating 
point math packages. Scaled arithmetic avoids loss of precision in 
floating point calculations; it is therefore very useful in calculating 
sums of money that cannot be manipulated easily as integer quanti­
ties. 

System-Wide Logical Names - RSTS/E allows the system manager 
to assign up to 50 logical names on a system-wide basis. Any user can 
type a system-wide logical name to access the device (and, optionally, 
the account) it represents. 

File Processor Buffering - The optional file processor (FIP) 
buffering module accelerates file processing on the RSTS/E system. 

53 



RSTSIE and CTS-500 

The module reduces the number of accesses to disk by maintaining 
more.than one disk directory block in memory. The system manager 
can enhance FIP buffering by allocating additional memory to extend­
ed buffer space for use as a cache for disk directory blocks. 

Data Caching 
RSTS/E supports software disk caching of file directories and file data 
blocks. 

Software disk cache is a dynamically allocated portion of main memo­
ry in which blocks of disk-accessed file data are stored. When a re­
quest is made to read a disk block, the operating system first checks 
the cache. If the block of data is there, a physical disk access is 
avoided. This results in faster program execution because disk 
accesses are minimized. 

When the cache is full, new information is read into an area that con­
tains the least recently used block of data. This automatic mechanism 
ensures that frequently-used blocks of data remain in the cache. 

Cache size is determined by the system manager. The system manag­
er can designate specific files for caching, or can specify that all files 
be cached. The system manager can also enable or disable caching of 
file data, independent of caching disk directory blocks. This system­
level capability gives the system manager a powerful method of tuning 
system performance. 

Systems Initialization 
After generating the system, the system manager bootstraps the 
RSTS/E system to load the initialization (INIT) code into memory. The 
INIT code is a collection of routines used to create the file structures, 
system files, and start-up conditions required for normal operation of 
the RSTS/E system. The INIT code is essentially one large stand alone 
program with many functions. INIT includes routines which ensure the 
integrity of disk file structures and perform many checks on the hard­
ware configuration. Options are provided which enable the system to 
function even when certain hardware elements are inoperative. Final­
ly, the initialization code is responsible for loading the RSTS/E Monitor 
into memory for normal timesharing operations. 

Once the default system initialization startup parameters are set up, 
the system manager does not have to repeat manual startup each time 
the system is started. Using the automatic restart feature, the RSTS/E 
system can recover and restart the timesharing session automatically 
after a system malfunction or power failure. When the system is start­
ed in automatic restart mode, control by-passes all parts of the start­
up code that call for operator intervention. 

54 



RSTSIE and CTS-500 

System Program Code 
A library of programs is produced and stored on disk during the sys­
tem library build procedures of system generation. Both the system 
and users execute these programs to perform system housekeeping 
and common utility functions. (Indeed, they are sometimes referred to 
as CUSP's, Commonly Used System Programs.) The system manager 
can use the programs to monitor and regulate system usage. Some 
library programs can be tailored by altering the source statements 
supplied by DIGITAL and recompiling to replace the current copy on 
the system disk. 

System Management Utility Programs 
RSTS/E includes system utility programs for both the system manager 
and general user. Some system management utilities are privileged 
programs and can be run only by the system manager or privileged 
users. Other utilities are not privileged and can be run by the general 
user, but have privileged features that can be executed only by the 
system manager. 

System management utilities include: system initialization and 
maintenance programs, resource management and accounting pro­
grams, system error logging and analysis programs, operator services 
and spooling programs, and user communication programs. 

System Accounts and Libraries 
RSTS/E systems have three system accounts that are integral to the 
operation of the system and have auxiliary accounts for more efficient 
operation of the system. The Master File Directory (MFD) account is 
used on the system device and other disk devices in the system to 
control system access. The system library account is used by the 
RSTS/E system to manage a library of generally available and restrict­
ed use system programs and message and control files. A third spe­
cial system account contains RSTS/E monitor files and routines which 
are critical to the operation of the system. 

Of particular interest to the system manager is the accounting infor­
mation maintained on each user account in the MFD on the system 
device. This accounting information is normally accessed through the 
system accounting utility programs. The system manager or privileged 
users can also access and change this information for programmers 
using the SYS monitor functions. 

Privileged Capabilities and System Operation 
Privilege is a special condition for a user job. With privilege, a job has 
capabilities not available to other, nonprivileged jobs. These 
capabilities are: 

55 



RSTSIE and CTS-500 

• Unlimited access on the system 
• Ability to designate privileged programs 
• Use of privileged aspects of system programs 
• Use of privileged SYS system functions and the PEEK function 

A job has privilege under one of the following conditions: 
• It is a logged-out job (a job without an account) 
• It is running under a privileged account 

• It is running a privileged program 

A logged-out job has privilege because the system must perform cer­
tain privileged operations to log a job into the system. The privilege 
remains in effect as long as the job remains logged out. 

A job running under a privileged account has privilege, and the privi­
lege remains in effect until it is logged out or changes to a nonpriv­
ileged account. 

A privileged program is an executable file with a protection code of 
<192> (the sum of the privileged protection <128> and the compiled 
file protection <64>) or greater. The privilege is temporary unless the 
job is running under an account which itself has permanent privilege. 
The privilege remains until the program exits or until the program 
drops its temporary privilege. 1his temporary privilege allows a non­
privileged user to run a privileged program. 

The following paragraphs summarize briefly privileged capabilities. 

Unlimited Access 
No file in the RSTS/E system can be protected against a privileged 
job. A privileged job can create and delete files under any account 
number OQ any disk. Such unlimited access does not generate the 
normal PROTECTION VIOLATION error. 

Ability to Designate Prlvlleged Programs 
A program is privileged when it is an executable file and has a 
protection code of <192> or greater. Only the system manager or 
other users running under privileged accounts can create or modify 
privileged programs. 

Use of Privileged Features of System Programs 
If a program is designated privileged and is not protected against 
execution, any user can run the program with temporary privilege. 
Temporary privilege means that system operations normally reserved 
to a user of a privileged account can be executed while running under 
nonprivileged account. 

56 



RSTSIE and CTS-500 

The ability to designate a program as privileged allows the system 
manager to extend use of privileged functions to non privileged users. 
For example, the program TTYSET allows general users to change 
characteristics of their terminals. Such an action is a privileged system 
function; with temporary privilege, however, execution of the function 
by the owner of a non privileged account does not generate the normal 
PROTECTION VIOLATION error. 

The same TTYSET program additionally allows a privileged user to 
change characteristics of other terminals. A check is built into the 
program to ensure that a user attempting to change the characteristics 
of a terminal other than his own is indeed a permanently privileged 
user. In effect, the execution of some privileged functions is made 
available to the nonprivileged user but other privileged features are 
available only to those users logged into the system under privileged 
accounts. 

General System Utility Programs 
RSTS/E provides several utility programs available to the general 
user. These programs include system information and terminal utility 
programs, file utility programs, and special service programs. Like the 
system management utilities, they are stored in the system library 
account and are called and executed by issuing the RUN system com­
mand or, if it is available, the appropriate CCL command. 

The list of programs that follows is not exhaustive; it is·only meant to 
suggest the range of utilities available under RSTS/E operating sys­
tems. 

System Information Programs 
SYST AT Provides current status of system jobs, devices, 

and buffers. Identifies active jobs in the system, 
accounts under which they are running, their size, 
their associated keyboard (if attached), and their 
current activity. Also identifies which devices are 
assigned and to wliich jobs. 

QUOLST 

MONEY 

Provides current system information, including 
number of free blocks remaining on the system 
structure, number of blocks used by an account, 
number of free blocks remaining in and disk quo­
ta of an account. 

Prints current account status, including amount of 
CPU time, connect time, kilo-core ticks and disk 
blocks used. 

57 



GRIPE 

TTYS ET 

INUSE 

PIP 

COPY 

BACKUP 

DIRECT 

FIL COM 

RSTSIE and CTS-500 

Allows the user to communicate with the system 
manager. 

Allows a user to establish terminal characteris­
tics. The user can call a macro command that 
establishes the standard characteristics for a se­
lected type of terminal or can select an individual 
combination of characteristics. 

Prints the message "IN USE" at a terminal to allow 
a user to leave the terminal momentarily. 

Allows the user to transfer files from one device to 
another, merge files, delete files, initialize a de­
vice directory or list a device directory. 

Copies all the information on a disk, DECtape or 
magnetic tape device. 

A package of programs which allow the user to 
preserve ancl recall files stored under one or 
more user accounts by transferring multiple files 
from the private or public disk structure to a pri­
vate disk, DECtape, or magnetic tape. 

Prints directories of selected file-structured de­
vices. 

Compares two text files line by line and prints any 
differences found. 

Special Service Programs 
MAC Assemble MACR0-11 source code into object 
MACRO format. MAC operates under the RSX-11 run-time 

system; MACRO operates under the RT-11 run­
time system. 

LINK 

TKB 
(Task Builder) 

QUE 

Link object modules produced by FORTRAN or 
MACRO into an executable image which runs un­
der the RT-11 run-time system. 

Builds an executable image by linking object 
modules produced by the MAC assembler or lan­
guage processors other than FORTRAN. The re­
sulting task image runs under the RSX run-time 
system specified by the user. 

Creates jobs that are to be executed by spooling 
progr~ms such as BATCH and SPOOL. It also 

58 



RUNOFF 

Batch Processing 

RSTSIE and CTS-500 

lists pending requests and kills pending requests. 

Generates a formatted listing of a text file contain­
ing special RUNOFF text formating commands. 

The capability to execute a batch command allows the user to submit 
jobs to be run without terminal dialog. BATCH is particularly useful in 
executing large data processing operations for which interactive re­
quirements are not a factor. 

Batch input can be submitted from standard job control files on a 
random access file-structured device or from an 110 device. The input 
consists of elements of the batch control language and is collectively 
referred to as a batch stream. It is possible to execute multiple 
streams simultaneously by running multiple copies of the BATCH pro­
gram. The capability to run more than a single batch stream is con­
trolled by the system manager. 

Logical Disk Structures 
Access to all executable code and to system and user data on the 
RSTS/E system is accomplished through a logical structure of files. 

The logical disk structure is divided into two types: public and private, 
but the file structure on a disk, whether public or private, is the same. 

On a public disk, any user can create files. Every user has an account 
on a public disk. There is always at least one public disk on the sys­
tem, which is called the "system disk." All public disks together on a 
system are called the "public structure" because the system itself 
treats all the public disks together as a unit. For example, when a 
program creates a file in the public structure, that file is placed on the 
public disk with the most space available. This is done to ensure 
proper distribution of files across the disks in the public structure. 

The system disk contains the system code. Language processors and 
the library of system programs are also contained on the public struc­
ture. Storage of active user jobs which are temporarily swapped out of 
memory are in swapping files, at least one of which is on the system 
disk. 

Any remaining disk drives in the RSTS/E disk structure can be devot­
ed to private disk packs or disk cartridges. A private disk is one that 
belongs to a few user accounts, conceivably to a single user account. 
Files can be created only under these accounts, and can be read (or 
written) by other users only if the protection code of the file permits. A 
user who does not have an account on a private disk cannot create a 
file on it. 

59 



RSTSIE and CTS-500 

File Access Techniques 
There are several file access methods available for the RSTS/E sys­
tem: 

• RMS-11 
• BASIC-PLUS 

• DMS-500 

RMS-11 is the main file and record access method available on 
RSTS/E. It is used by BASIC-PLUS-2, PDP-11 COBOL, COBOL-81, 
FORTRAN-77, and optionaly on MACR0-11 and DIBOL-11. In addi­
tion, most of the utility programs and layered software products, e.g. 
SORT-11 and DATATRIEVE-11, will only work when using files main­
tained through RMS-11. 

RMS-11 supports three file organizations: 

• Sequential 
• Relative 
• Indexed 

The indexed file organization allows each indexed file to have one 
primary key and up to 254 alternative keys. In addition to random 
access based on key values, programs can access records in an in­
dexed file sequentially in ascending order by key values. Records are 
stored physically only in primary key order. 

RMS-11 supports four record formats: 
• Fixed length records 
• Variable length records 

• Variable length with fixed control fields 
• Stream records 

Indexed files are restricted to either of the two record formats: fixed or 
variable. The stream record format is restricted to sequential disk files 
only. Languages that do not use RMS (e.g. FORTRAN IV) cannot proc­
ess RMS files unless the record format is stream. 

User programs are provided with logical data record access to RMS 
files through extended language syntax statements. The form of the 
statements are dependent upon the application language interface. 
The functions provided are: 

• OPEN 
• CLOSE 
• READ/GET 

• WRITE/PUT 
• REWRITE/UPDATE 

60 



RSTSIE and CTS-500 

• DELETE 

In addition to the facilities provided for programming languages, there 
are a set of RMS-11 utilities that enable the user to create, load, main­
tain, and backup RMS-11 files. 

BASIC-PLUS on RSTS/E provides three methods of file access: 

Formatted 
ASCII 

Virtual Arrays 

Record 1/0 

For standard sequential 1/0 operations. 

For random access of large data files. A 
virtual array is stored on disk and can con­
tain string, integer and floating point ma­
trices. 

Allows the user to have complete control 
over 1/0 operations. 

Formatted ASCII data files are the simplest method of data storage, 
involving a logical extension of the BASIC-PLUS PRINT and INPUT 
statements. The INPUT statement allows data to be entered to a run­
ning program from an external device, for example, the user's key­
board, a disk, DECtape, or paper tape reader. The PRINT statement 
causes the output of a specified string of characters to a selected 
device. 

The PRINT-USING statement allows the user to control output 
formatting. A special set of formatting characters allows the user to 
format strings and numeric fields with tabs, special characters and 
punctuation. For example, the user can format check amounts with 
asterisk-fill for protection. 

The RSTS/E virtual array facility provides the means for a program to 
operate on data structures that require fast random access processing 
yet are too large to be accommodated in memory at one time. To 
accomplish this, RSTS/E uses the disk file system for storage of data 
arrays, and maintains only portions of these files in memory at any 
given time. 

Virtual arrays are stored as unformatted binary data. This means that 
no 110 conversions (internal form to ASCII) need to be performed in 
storing or retrieving elements in virtual storage. Thus, there is no loss 
of precision in these arrays, and no time is wasted performing conver­
sions. 

The third type of 1/0, record 1/0, permits a program to have complete 
control of 1/0 operations. Record 1/0 is a flexible and efficient tech-

61 



RSTSIE and CTS-500 

nique of data transfer. Input and output to record 110 file is performed 
by the BASIC-PLUS GET and PUT statements. These statements allow 
the user to read or write specific blocks (physical records) of a file, 
where the block size is dependent on the type of device being ac­
cessed. For example, disk file blocks are always 512 bytes long, while 
records from a keyboard device are one line long, where a line is 
delimited by a carriage return or similar terminating character. With 
disk files, the program has the capability of performing random ac­
cess 1/0 to any block of the file. Furthermore, using record 1/0 
operations, the user can create a logical organization for file formats 
by controlling record length. 

DMS-500 is a collection of BASIC-PLUS routines which are optional 
on RSTS/E systems and standard on the CTS-500 package. DMS-500 
comprises a selection of routines which provide capabilities for orga­
nizing and processing data records stored in indexed, indexed se­
quential, and relative file structures. The optional DIBOL-
11/DECFORM language package can use either RMS-11 or DMS-500. 

The major components of DMS-500 include: 

• ISAM/RAM (Indexed Sequential/Relative Access Method). Random 
access is either by means of a unique or duplicate ASCII key or by 
means of a relative record number. 

• IAM (Indexed Access Method). A hashing technique is used to ran­
domly store or retrieve a data record with a minimum number of 
disk accesses. 

• DSORT (Extended Disk Sort) This method sorts disk resident multi­
volume files containing blocked, fixed-length records up to 512 
bytes in length on up to 15 ascending key fields. 

In addition to the basic RSTS/E file handling capabilities, DMS-500 
IASM/RAM provides multi-volume disk file support by logically linking 
together multiple files. 

Sys System Functions and the Peek Function 
Many programs, particularly MACR0-11 assembly language pro­
grams are required to perform functions which directly affect the way 
in which the system handles such things as memory, 1/0 devices, run­
time systems, etc. Rather than allow the application or system pro­
grammer to perform these manipulations in an uncontrolled way, the 
RSTS/E system provides a series of System Function Calls. These are 
calls from the program directly to the monitor that bypass the run-time 
system. The monitor performs the function, then returns to the calling 
program. 

Some of the system function calls are privileged and can be issued 

62 



RSTSIE and CTS-500 

only by privileged users or jobs, while others are available to all users. 
This ensures that the unprivileged user cannot gain access to system 
functions that could drastically change the way the system is sup­
posed to operate. 

System function calls are available to most of the high level languages 
available on RSTS/E. The calls are formatted for each language con­
sistent with the general language syntax. One major note is that the 
calls are very system dependent. 

The Peek system call is a privileged system call that allows any 
privileged job to examine any location in the monitor part of memory. 
This allows the user to read the monitor code, monitor data structures, 
including data structures of other users, and the file processor. This 
function does not allow a user program to examine the contents of 
another user's program. 

63 



64 



INTRODUCTION 

CHAPTER 4 

THE RSX-11 FAMILY 

DIGITAL offers excellent realtime multitasking with its RSX-11 family 
of operating systems. Different members of the family are particularly 
suited to various classes of PDP-11 processors, but there is guar­
anteed compatibility across the family, so that programs written for 
one system will migrate easily to other systems. Upward and down­
ward compatibility in the family assure that growth of the installation 
and changing requirements are easily accommodated. 

RSX-11 systems offer: 

• Fast response 
• Numerous user and system utilities 
• A wide range of programming languages 
• Management of up to 250 priority levels 

• Good program protection 
• Low overhead 
• Realtime leadership 
• Interactive program development and execution 
• Multiuser multiprogramming 

The high-end RSX-11 M-PLUS product can also handle batch job exe­
cution. 

You can tailor your RSX-11 system to meet the requirements of any 
application. Of course, as your requirements change, the software can 
be reconfigured quickly to match the altered situation. 

As the pioneer in distributed processing, DIGITAL has made sure that 
computers operating with RSX-11 can be linked together using the 
DECnet networking software. They can also be linked via lnternets 
(protocol emulators) to certain computers from other manufacturers. 
In these ways, regardless of their geographical locations, tasks can 
communicate with, supply information to, and control one another. In 
fact, programs may be developed on one system and then loaded into 
and run on another. Operators at terminals can control peripherals 
and processors at other locations in the network. 

RSX systems are highly reliable systems with built-in protection me­
chanisms in both hardware and software to ensure data integrity and 
system availability. 

65 



The RSX-11 Family 

FAMILY MEMBERS 

RSX-11 M-PLUS 
RSX-11 M-PLUS is a multiuser system for both program development 
and application execution designed to run on PDP-11 /23-PLUS, PDP-
11 /24, PDP-11/44 and PDP-11170 computers. This operating system 
takes advantage of the expanded memory capability of these 
machines to provide the most flexibility and best performance of any 
member of the family. 

RSX-11M 
The RSX-11 M operating system has a subset of the capabilities of 
RSX-11M-PLUS and is optimized to run on small and medium sized 
PDP-11 s. It is designed to support factory automation, laboratory data 
acquisition and control, graphics, process monitoring, process con­
trol, communications, and other applications demanding immediate 
response. Its multiprogramming capabilities permit RSX realtime ac­
tivities to execute concurrently with less time-critical activities such as 
program development, text editing, and data management. 

Unique features of RSX-11 M-PLUS include: 

• User mode l/D space 

• Multistream batch 
• 1/0 request queue optimization 

• Performance enhancements 
• Dynamic dual path disk support 
• Shadowed disk support 

• Accounting 

Features Commop to RSX-11 M-PLUS and RSX-11 M 
• Realtime multiprogramming 

• DIGITAL Command Language (DCL) 

• Generalized command line interpreter 

• Memory management 
• Cluster library support 
• Error logger 
• Power failure restart 

RSX-11S 
A memory-resident subset of RSX-11 M is called RSX-11 S. Since a file­
system is not part of .RSX-11 S, the file features of its parent, such as 
checkpointing and data management, are not supported. Instead, 
RSX-11 S is used as a super-efficient execute-only system, generally 

66 



TheRSX-11 Family 

under conditions in which a disk could not safely operate, for example, 
on the floor of a manufacturing plant. RSX-11 S provides excellent on­
line process control, because all programs are memory-resident, re­
sponse is extremely fast. Tasks for an RSX-11 S system are developed 
on DIGITAL computers with an RSX-11 M, RSX-11 M-PLUS, or 
VAX/VMS operating system. Such tasks are then loaded into the RSX-
11 S system image by using a supplied.host utility, by using an RSX-
11 S utility known as the On-line Task Loader (OTL), or by down-line 
loading if both the host and the RSX-11 S system have DECnet or the 
DECdataway running. RSX-11S runs on all PDP-11 computers, from 
the microprocessor LSl-11 to the high-end PDP-11 /70. 

FEATURES 

RSX-11M-PLUS UNIQUE FEATURES 

User Mode l/D Space 
RSX-11 M-PLUS supports separate l/D space hardware. This means 
that a user task has the ability to address up to 32K words of instruc­
tion and 32K words of data at the same time, giving a 64K word total. 
This simplifies the development and enhances performance of large 
application programs by reducing the need for overlays. 

Multistream Batch 
RSX-11 M-PLUS has a multistream batch processing capability. The 
operations personnel can control the number of batch streams that 
can run. Batch jobs can be submitted. by an interactive user, a pro­
gram, or another batch job. When the number of batch jobs submitted 
exceeds the number of streams, the remainder of the batch jobs are 
held in a batch input queue. As with the spool queues, the operator 
can control the batch job queue by changing job priority, holding a 
job, or killing a job. 

Volume mount commands issued in a batch job can request a generic 
device such as a disk or specific device unit such as disk-drive unit 2. 
The batch job waits until the operator satisfies the mount request, 
while other batch jobs proceed. 

1/0 Request Queue Optimization 
This feature allows request queues for disks to be sorted by cylinder 
number of the request. The end result is that the average seek length 
is reduced, improving throughput as much as 30%. This is in addition 
to the enhanced performance already available through overlapped 
disk seeks. 

67 



The RSX-11 Family 

Performance Enhancements 
Overlapped disk seeks on RSX-11 M-PLUS allow more disk accesses 
per unit of time. Communications microprocessors reduce the system 
load of interprocessor communications. Priority scheduling, the ability 
to lock tasks in memory, and other controls allow for further perform­
ance tuning. 

Dynamic Dual Path Disk Support 
RSX-11 M-PLUS provides dynamic dual path support for RK06/07, 
RP04/05/06, and RM02/03/05/80 disks. 

Shadowed Disk Support 
In dual disk configurations, RSX-11 M-PLUS supports disk shadowing 
where all disk information is written to both disks. This results in each 
disk being an exact duplicate of the other and enables the system to 
continue processing without interruption when one disk fails. 

Accounting 
For accounting purposes, the RSX-11 M-PLUS system itself creates 
and maintains records of the use of system resources. These records 
are kept in an accounting log file. 

Using the detailed accounting log records provided by the system, the 
system manager or a system programmer can establish programs for 
reporting on the use of system resources and for billing. 

Because the users of the system resources are identified in two ways, 
reports on the use of system resources and bills for the use of system 
resources can easily be generated in either of two ways: by user name 
or by account name. 

FEATURES COMMON TO RSX-11 M-PLUS AND RSX-11 M 

Efficient Realtime Multiprogrammlng 
Multiprogr.amming, the concurrent processing of two or more tasks 
residing in memory, is accomplished by logically dividing memory into 
a number of named partitions. Tasks are built to execute in a specific 
partition; all tasks in a given partition and all partitions in the system 
can operate in parallel. A task can be fixed in a partition to ensure 
immediate execution when it is activated, or itcan reside on disk while 
it is dormant to make memory available to other tasks. This allolll{s a 
number of programs to run simultaneously and maximizes the use of 
the central orocessor. 

DIGITAL Command Language (DCL) 
The DIGITAL Command Language is a useful tool for establishing and 
controlling the environment in which a process executes. A command 

68 



The RSX-11 Family 

is a request directed from a terminal to the operating system for a 
specific action. Frequently used strings of commands can be built into 
command pr'ocedures. DCL provides you with an extensive set of 
commands for: 

• Interactive program development 

• Device and data file manipulation 
• Interactive and batch program execution and control 

Generalized Command Line Interpreter (CLI) 
This feature provides the ability to write CU as part of the application 
code without the need for internal operating system knowledge. No 
privileged "system" code is required for the new CU implementation. 
There can be multiple CU's on one system with the added feature that 
each terminal can be set for a unique CU. 

Memory Management 
RSX-11 systems with hardware memory management provide au­
tomatic memory protection. The memory area assigned to a task is 
protected from other tasks executing in the system. Each task has a 
specific address range in which to execute. Very large programs can 
be executed using either disk or memory overlav structures. 

The basis of event-driven task scheduling is the software priority as­
signed by your system manager to each active task. Realtime tasks 
require top priority on the system resources in order to be served 
properly. RSX-11 systems provide 250 software priority levels to allow 
concurrent processing of time-critical tasks, interactive terminals, and 
background computation. These software priority levels enable the 
user to compile/assemble, debug, and install tasks without affecting 
realtime task response.· Software priority levels allow optimization of 
central processor use, as well as flexible performance options that can 
be tailored to specific application needs. 

When a significant event occurs (such as 1/0 completion), the system 
Executive automatically interrupts the executing task and searches for 
the highest priority task that is ready to execute. It is possible to have 
several tasks assigned to the same priority. For part of the priority 
range, a given task will run until it needs to wait for an event. Then the 
next task at that priority will start executing. For the rest of the priority 
range, the tasks'are rotated in the queue by a round-robin scheduler 
on a timeslice basis. The effect is to distribute the processor time 
evenly so that each task has its own turn at the top of the queue. 

One~ a task is in memory, the Executive normally allows it to run to 
completion even if memory is required for the execution of a higher 

69 



The RSX-11 Family 

priority non-resident task. An alternative with RSX-11 is to declare a 
task checkpointable. A checkpointable task currently active in a parti­
tion can be interrupted and swapped out of memory to disk when a 
higher priority task requests the partition. Later, after the higher 
priority task has completed its execution, the checkpointed task will 
restart execution where it was interrupted. With the checkpointing 
feature, more tasks can run concurrently in a given amount of memo­
ry, giving greater system throughput. 

As an option in RSX-11 systems with hardware memory management, 
the RSX-11 Executive can dynamically allocate available memory in 
system-controlled partitions for more efficient use of memory. Effec­
tively, this allows a task to be loaded anywhere there is room for it. The 
Executive keeps a list of the available areas of memory and loads 
tasks into it on a priority basis until either the requests are satisfied or 
there is no memory available in the partitions. When a task terminates, 
the memory it occupies becomes available again. 

Cluster Library Support 
With cluster libraries, only the library in use at any point in time is 
actually mapped to the task address space rather than the simulta­
neous mapping of all libraries. This leaves more task ·address space 
for application code. 

Error Logger 
The error logger features complete and easy to read reports, and 
includes error logging and reporting of customer added devices. 

Power Failure Restart 
Power failure restart is the ability of a system to smooth out intermit­
tent short-term power fluctuations with no apparent loss of service or 
data. Power failure restart also maintains logical consistency within 
the application tasks and the system itself. 

System Use 
RSX-11 operating systems provide the facilities needed by users to 
implement efficient real time applications easily. The powerful Monitor 
Console Routine (MGR) command language connects the user to the 
RSX-11 system. MGR or the DCL command language include ini­
tialization commands, status, message, task control, and system 
maintenance commands. The MGR organization makes it possible for 
users to add commands to meet their own special application needs. 

DIGITAL Command Language (DCL) is also available for interactive as 
well as batch processing. DCL is simple to learn and use, because it 
prompts users for missing arguments and provides a HELP facility to 

70 



The RSX-11 Family 

aid users who have forgotten command formats. 

To increase program and system development accuracy, RSX-11 sys­
tems also have an indirect command file processor. An indirect com­
mand file is a text file containing a series of commands exclusive to, 
and interpretable by, a single task. The interpreting task is usually a 
system-supplied component of RSX-11 M/M-PLUS, such as MCR, 
MACR0-11, or the Taskbuilder. 

There are two types of indirect command files: indirect task command 
files and indirect MCR/DCL command files. 

An indirect task command file is a sequential file containing a list of 
task-specific commands. Rather than retyping commonly used se­
quences of commands, you can type the sequence once and store it in 
a file. The indirect task command file is specified in place of the com­
mand line(s) normally submitted to the task. 

An indirect MCR/DCL command file contains a list of MGR or DCL 
commands. It can, however, contain both normal commands and spe­
cial commands to be interpreted by the processor itself and used to 
control command file processing. 

In RSX-11 system multiuser environments, a number of terminals can 
operate concurrently, each running its own set of tasks. It is important 
to maintain data and system integrity in this kind of development and 
application environment. RSX-11 has user identification codes, privi­
leged and non privileged accounts, password protection, and separate 
user directories; such multiuser protection allows you to monitor and 
control individual users of the system. 

To reduce waiting time and accommodate more active terminals, 
RSX-11 provides print spooling, which allows programs to run to com­
pletion at full speed with print data going to a disk and without tying up 
memory resources waiting for the lineprinter. When a spooler finishes 
a job, it automatically selects the highest priority job from the queue 
for printing. 

Under RSX-11M-PLUS, and as an additional option under RSX-11M, 
there is spooler· support for multiple printers and print queues. Users 
of these systems do not have to compete with one another for access 
to the printer. 

PROGRAMDEVELOPMENTTOOLS 
RSX-11 has a comprehensive selection of application tools designed 
to shorten the program development cycle. Using the programming 
languages and the system utilities, users write, test, and execute pro­
grams quickly, interactively examine and evaluate the results of pro-

71 



The RSX-11 Family 

gram execution, and modify and tune programs online. Compared to 
batch, interactive program pevelopment and testing is much faster 
and easier. If you are familiar with batch program development, you 
will be impressed with the ease of these interactive techniques. 

RSX-11 Programming 
RSX-11 systems offer an impressive range of programming languages 
so users can select the right language for their specific applications. 
For example, an organization that uses RSX-11 for a realtime process 
control application might use the same system to account for its Work 
In Process (WIP). The process control application could be written in 
FORTRAN IV, while COBOL might best suit the WIP program. 

MACRO, a powerful assembly language supplied with RSX-11 sys­
tems, processes source programs and produces a relocatable object 
module. Its extensive features allow a programmer to code directly 
and efficiently in assembly language. Programmers can define 
individual macros that describe entire sequences of operations: the 
macro definition is required only once, but the operations can be used 
repeatedly in any program, simply by invoking the macro. 

DIGITAL provides, under separate license, a complete series of higher 
level languages for RSX-11 systems: FORTRAN IV, the primary real 
time language; easy-to-use BASIC-PLUS-2; PDP-11 COBOL, the lan­
guage for commercial applications; and CORAL 66, a British govern­
ment prescribed language. For larger RSX-11 M and RSX-11 M-PLUS 
systems, DIGITAL offers performance-optimized FORTRAN-77. 

RSX-11 SYSTEM UTILITIES, LANGUAGES, AND EDITORS 
With these RSX-11 system features, users can create and edit source 
program files and data files, share programs and routines, and per­
form general system activities. RSX-11 M/11 M-PLUS systems give 
users: 
• A choice of two editors, EDT or EDI 
• A sophisticated task builder (TKB) to link modules and prepare 

executable programs 

• System library routines to reduce program development time 
• FMS-11 /RSX Forms Management System 
• Online debuggers (ODT) that allow users to examine, alter, search 

and execute programs 

• Task patch programs (PAT) 
• Record and file management utilities (RMS and FCS) 

Editors 
The RSX-11 editors are EDT, the standard editor offered on most of 

72 



The RSX-11 Family 

DIGITAL's operating systems and EDI, a line-oriented text editor. Nei­
ther editor modifies the input file directly, so that if a user accidentally 
deletes a large amount of text, the original input is still available for 
quick recovery. 

TKB Taskbuilder 
The taskbuilder creates loadable memory images from assembled or 
compiled tasks. It links relocatable object modules and resolves any 
reference to global symbols, common areas, and shared libraries. The 
taskbuilder is used to specify a task's attributes, such as checkpoint­
ability, priority, etc. The taskbuilder is also used to create shareable 
commons. The task builder provides an overlay descriptor language to 
construct task overlays. The overlay descriptor language simplifies the 
process of dividing tasks into overlaid segments and specifying load 
methods. If it is requested by the taskbuild command, a cross refer­
ence of all global symbols defined or referenced in the task may be 
obtained by the user. The taskbuilder also has the capacity to link an 
unlimited number of library files and up to seven virtual memory 
areas. 

Librarian (LBR) 
LBR provides the capability to create and maintain disk-resident li­
braries of object modules and user-defined macros. In addition, LBR 
may be used to create and maintain universal libraries (i.e., libraries 
whose entries may be any files legal under FILES-11: ASCII files, ob­
ject files, executable task images, etc.) 

Forms Management System (FMS-11/RSX) 
Another feature available with RSX is FMS, an optional Forms Man­
agement System, which makes it easier for application programs to 
interact with users at video terminals. With FMS, programmers can 
create applications that use forms displayed on the terminal screen to 
handle user inquiry or response. The forms are easy to read, simple to 
fill in, and the data are moved quickly and efficiently through the appli­
cation and the system. 

ODT Online Debugger 
ODT aids the user in debugging programs that have been assembled 
or compiled and taskbuilt. From the keyboard, the user interacts with 
ODTto: 

• Print or change the contents of a location in the task 

• Run the program using the breakpoint features to halt the program 
at specified points 

• Search the program for a specific bit pattern 

73 



The RSX-11 Family 

• Calculate offsets for relative addresses 

Trace capability is also provided to aid in the debugging of FORTRAN 
programs. 

Data Management Services 
Data management services help you to better manage and work with 
the information in the computer system. RSX-11 M/11 M-PLUS data 
management includes: 

• FILES-11, a file system that provides volume structuring and 
protection 

• File Control (FCS) and Record Management Services (RMS) which 
have a variety of access modes for file storage, retrieval, and 
modification 

• A record management services query 1anguage-UA I ATRIEVE 
• A powerful database management system-DBMS 

Each of these services has a more detailed description in a later chap­
ter of this book, but each has a short description below. 

FILES-11 
FILES-11 oversees the storage and handling of both user and system 
files on volumes. Each volume contains its own set of file directories 
and information on the protection, size and location of the files on the 
volumes. The FILES-11 files can be manipulated with system utilities 
or user-written tasks. 

FCSand RMS 
The File Control Services (FCS) and Record Management Services 
(RMS) extend the programming languages by providing general-pur­
pose file and record handling capabilities. They enable a programmer 
to choose the file organization and record access method appropriate 
for .the data processing application. The file organization and record 
access methods are independent of the language in which they were 
programmed. 

FCS, the basic file handling system on RSX-11 M/M-PLUS systems, 
treats logical records as data units. These units can be retrieved from 
a file without requiring the user to know the format in which they were 
written. FCS supports sequential and random file access. 

RMS, a superset of FCS, is compatible with FCS-written files. It adds 
important capabilities at a level above that of traditional file manage­
ment services. RMS permits relative, sequential, and multikey indexed 
sequential file organizations. RMS allows access mode to be 
sequential, random, or according to Record File Address. 

74 



The RSX-11 Family 

DATATRIEVE 
Using DATATRIEVE, an optional inquiry language, data from RMS 
files can be rapidly extracted and updated. Users can also generate 
reports and create a directory containing command procedures. In 
order to perform query, display, report writing, and other activities, 
DATATRIEVE uses a special command language. The simple English­
like commands are designed to be easy to use for every level of user. 

DBMS 
DBMS, an optional CODASYL database management system, extends 
the upper range of DIGIT Al's data services software. It offers powerful 
and comprehensive facilities for the management of databases. By 
allowing the creation of one central database to act as a common 
resource to any number of application programs, DBMS reduces re­
dundant data, provides data consistency and allows the database to 
be maintained more easily and with more security. Application pro­
grams are shorter, easier to code, and easier to debug. 

Other Utilities 

PIP Peripheral Interchange Program 
PIP is used to copy files from one device to another, for example, from 
disk to printer; to rename files; to list files; and to delete files. 

SLP Source Input Program 
SLP is a noninteractive editing program used to create and maintain 
source language correction files on disk. 

ZAP Task Patch 
ZAP provides a facility for examining and modifying task image files 
and data files. With ZAP, permanent patches can be made to task 
image or data files without having to recreate the file. 

PAT Object Module Patch 
PAT allows patching or updating code in a relocatable binary object 
module. 

BRU Backup and Restore Utility 
BRU is a high-performance, powerful backup/restore utility. For ex­
ample, it is able to copy a 200 MB RP06 disk to tape in less than an 
hour. BRU also supports incremental backups (such as backing up 
only the files that have been modified since the previous backup), 
which greatly reduces the amount of time required for proper disk 
backup. 

75 



The RSX-11 Family 

REAL TIME SYSTEM HARDWARE INTERFACES 
For applications handling a wide range of realtime 
processes-whether you need high speed data acquisition, fast re­
sponse, monitoring and control of online processes, or the rapid reply 
to terminal inquiry-the flexible and powerful RSX-11 operating sys­
tems can do the job well. 

To accommodate a wide range of uses, DIGITAL complements its 
RSX-11 systems with a comprehensive selection of off-the-shelf inter­
faces that connect realtime or communication equipment to the PDP-
11 computer. 

Ready-built for communication, industrial, and laboratory applications 
are asynchronous and synchronous interfaces, interfaces for analog­
to-digital and digital-to-analog conversions, and interfaces for digital 
input/output. And, if it is needed, the RSX-11 operating systems pro­
vide a solid foundation and the tools necessary for building one's own 
interface. 

76 



77 



78 



INTRODUCTION 

CHAPTER 5 

RT-11 

DIGITAL provides a compact operating system for realtime, single­
user applications: RT-11. It is well suited to such applications as labo­
ratory and factory instrument control, manufacturing process control, 
flight management, mapping problems, and numerous other technical 
jobs. RT-11 also finds widespread use in commercial applications, 
and RT-11 systems can be found doing word processing, medical 
record management, computerized estimating for general contrac­
tors, and typesetting for newspaper publications. 

But despite its small size, RT-11 is far from primiti.ve in either its 
services or its friendly environment. For example, RT-11 supports the 
standard DIGITAL Command Language (DCL), making access to sys­
tem services as easy as typing English-like commands. Instead of 
having to manage system calls directly, you can call services through 
DCL commands that will prompt for any missing parameters, and will 
offer HELP if a problem or question arises. 

The keypad editor, KED, is especially designed for a wide range of 
video terminals, and takes advantage of all their advanced features. 
Screen oriented editing lets you see immediately what effect your 
editing instructions have, and makes quick changes to correct errors 
or to accommodate altered program needs. KED is simple to use and 
easy to learn; even a novice can begin editing right away, since most 
common editing requirements use no more than two keystrokes, and 
the editing instructions themselves are clearly named to explain what 
they do. 

Other software features are described later in this chapter to show you 
the full range of tasks RT-11 accomplishes in making the system ac­
cessible to both novice and experienced users alike. 

MONITORS 
The monitor is that part of the operating system which controls and 
allocates the services of the rest of the system. RT-11 systems give 
you a choice of any one of three different monitors. To accommodate 
the range of typical RT-11 users, DIGITAL supplies the system with: 
• A single-job monitor, called SJ, that organizes the system for single­

user, single-program conditions. SJ can run in configurations with 
as little as 24 Kbytes of memory, though in so doing it doesn't have 
to sacrifice access to system programs, services, or features 

79 



RT-11 

(except extended memory and the use of a foreground or system 
job). Since the resident portion of the SJ monitor itself needs only 4 
Kbytes of memory, it leaves lots of room for extensive program 
development. Also, because the monitor services interrupts very 
quickly, SJ systems are ideal for programs that require a high data 
transfer rate. 

• A foreground/background monitor takes advantage of the fact that 
much central processor time is often spent waiting for external 
events such as 1/0 transfer or realtime interrupts. In FB monitor 
systems this waiting time is put to good use by allowing you to use 
the central processor for another (background) job while your prin­
cipal job is pausing. For example, if your foreground monitor is 
running a laboratory sampling program, your background job could 
be a FORTRAN program development session, or an accounting file 
update. When the foreground pauses to receive data from the in­
struments, the background lets a programmer work on his coding, 
or update the file. 

In FB situations, the foreground job is always of higher priority than 
the background one, so.that the system returns control to the fore­
ground job when it is again ready to run. The FB monitor can set 
timer routines and send data and messages between the two jobs. 

• Finally, there is an extended memory monitor, XM, which allows 
both foreground and background jobs to extend their effective logi­
cal program space beyond the 64 Kbyte space imposed by 16-bit 
addresses on PDP-11 computers. The XM monitor contains all the 
features of FB plus the capability of accessing up to 248 Kbytes of 
memory. Extended memory is managed by the monitor as a system 
resource and is dynamically allocated to programs as they need it. 
The extended memory overlay feature permits overlays to reside in 
extended memory rather than on disk; this results in faster 
execution time for overlaid programs. 

These three monitors are upwardly compatible: FB provides all the 
services of SJ; XM provides all the services of FB. As system genera­
tion options, FB and XM monitors support error logging and system 
jobs. 

You can access the monitor through either keyboard commands or 
programmed requests. With keyboard commands, you can load and 
run programs, start or restart programs at specific addresses, modify 
the contents of memory, and assign alternative device names to men­
tion only a few of the services available. If you have a series of key­
ooard commands, you may create an indirect command file, a list of 
commands to be executed sequentially by the computer. Typically, 

80 



RT-11 

you would write an indirect file for jobs that use a lot of computer time 
but do not need your supervision or intervention. Another possible use 
of indirect files is for command sequences that you use repeatedly and 
that are time-consuming to retype. Simply construct the indirect file 
and call it up when you want the monitor command procedures it 
includes. 

Programmed requests to the monitor appear in a MACR0-11 source 
library and permit an assembly language program to access monitor 
services. Once a program is running, it communicates to the monitor 
through programmed requests. If your programs are written in FOR­
TRAN IV, they can access the monitor services through the system 
subroutine library. Typical programmed requests manipulate files, 
perform input and output, and suspend or resume program opera­
tions. 

SYSTEM UTILITIES 
Though you may call most of the system services through keyboard 
monitor commands, the keyboard monitor itself does not perform the 
work. Instead, it passes the requests on to the appropriate system 
utility programs. By providing this simple interface, the monitor re­
duces the complexity of programming or operating the computer, and 
thus increases your productivity. Some of the utility programs and 
their functions are listed below. 

Peripheral Interchange Program 
The Peripheral Interchange Program (PIP) is a file transfer and file 
maintenance utility program. PIP is used to transfer files between any 
of the RT-11 devices and to merge, rename, and delete files. With PIP 
you can perform numerous operations simply and avoid the difficulty 
usually associated with file transfer and manipulation requirements. 

PIP allows you to protect files against accidental deletion. File protec­
tion is indicated by the letter "P" ·next to the file size as listed in the 
file's directory. Files may be protected and unprotected only by using 
the RENAME keyboard command or the PIP utility. 

Device Utility Program 
The device utility program (DUP) is a device maintenance utility pro­
gram. DUP creates files on file-structured RT-11 devices. It can also 
extend files on certain file-structured devices (disks and DECtape), 
and it can compress, scan for bad blocks, image copy, initialize, or 
boot R; -11 file-structured devices. 

Directory Program 
The directory program (DIR) performs a wide range of directory listing 

81 



RT-11 

operations. It can list directory information about a specific de•,ice, 
such as the number of files stored on the device, their names, and 
their creation dates. DIR can list details about certain files, too, 
including their names, file types, and sizes in blocks. DIR can also print 
a device directory summary, and it can organize its listings in several 
ways, such as alphabetically or chronologically. 

Command String Interpreter 
The command string interpreter (CSI) is the part of the RT-11 system 
that accepts a line of ASCII input, usually from the user at the console 
terminal, and interprets it as a string of input specifications, output 
specifications, and options for use by a system utility program. 

Librarian 
The librarian utility program (LIBR) lets you create, update, modify, 
list, and maintain library files. A library file is a direct access file (a file 
that has a directory) that contains one or more modules of the same 
module type. The librarian organizes the library files so that the linker 
and MACRO assembler can access them rapidly. The modules in a 
library file can be routines that are repeatedly used in a program, 
routines that are used by more than one program, or routines that are 
related and simply gathered together for convenience. 

DUMP 
DUMP is the RT-11 program that prints on the console or lineprinter, 
or writes to a file, all or any part of a file in octal words, octal bytes, 
ASCII characters, or Radix-50 characters. DUMP is particularly useful 
for examining directories and fil~s that contain binary data. 

Fiie Exchange Program 
The file exchange program (FILEX) is a general file transfer program 
that converts files from one format to another so that they can be used 
with other operating systems. 

Source Compare Program 
The source compare program (SRCCOM) compares two ASCII files 
and lists the differences between them. SRCCOM can either print the 
results or store them in a file. SRCCOM is particularly useful when it is 
necessary to compare two similar versions of a source program. A file 
comparison listing highlights the changes made to a program during 
an editing session. SRCCOM can also produce (as output) a file of SLP 
commands that can be used later with SLP to patch an original file to 
match its edited version. 

82 



RT-11 

Binary Compare Program 
The binary compare program (BINCOM) compares two binary files 
and lists the differences between them. You can direct BINCOM to 
print the results of the comparison at the terminal or lineprinter, or 
store them in a file. It can also create an indirect command file that 
invokes SIPP to patch one save file to match another version. 

Resource Program 
The resource program (RESORC) displays information about the sys­
tem configuration. 

Linker 
The RT-11 linker (LINK) converts object modules produced by an RT-
11 supported language processor into a format suitable for loading 
and execution. The linker processes the object modules of the main 
program and subroutines to: 

• Relocate each object module and assign absolute addresses 

• Link the modules by correlating global symbols that are defined in 
one module and referenced in another 

• Create the initial control block for the linked program that the GET, 
R, RUN, and FAUN commands use 

• Create an overlay structure if specified and include the necessary 
run-time overlay handler and tables 

• Search libraries specified by the user, to locate any unresolved glo­
bals 

• Automatically search a default system library to locate any remain-
ing unresolved globals 

• Produce a map showing the layout of the executable module 

• Produce a symbol definition file 

The linker runs in a minimal RT-11 system of 24 Kbytes of memory; it 
uses any additional memory to facilitate efficient linking and to extend 
the size of the symbol table. The linker accepts input from any random 
access device on the system; there must be at least one random­
access device (disk or DECtape) for memory image or relocatable 
format output. 

PROGRAM ALTERATION 
Five RT-11 programs help you debug programs and make changes to 
programs that are already assembled. They are: the on-line debug­
ging technique (ODT), PATCH, save image patch program (SIPP), the 
object module patching utility (PAT), and the source language patch 
program (SLP). 

83 



RT-11 

RT-11 On-Line Debugging Technique 
RT-11 on-line debugging technique (ODT) is a program supplied with 
the system that aids in debugging assembly language programs. From 
the terminal, you can direct the execution of programs with ODT. ODT 
performs the following tasks: 

• Prints the contents of any location for examination or alteration 
• Runs all or any portion of an object program using the breakpoint 

feature 

• Searches the object program for specific bit patterns 
• Searches the object program for words that reference a specific 

word 

• Calculates offsets for relative addresses 
• Fills a single word, block of words, byte or block of bytes with a 

designated value 

PATCH 
The PATCH utility program is used to make modifications to any RT-
11 file. PATCH can be used to examine and then change bytes or 
words in the file. 

Save Image Patch Program 
The save image patch program (SIPP) lets you make modifications to 
any RT-11 file that exists on a random-access storage volume. It is 
especially useful for maintaining .SAV image files. Using SIPP, you 
can examine locations within a file. You can use SIPP from the 
console, an indirect command file or a BATCH stream to patch all files 
created with the linker. SIPP can patch overlaid files created with the 
Version 4 linker, and nonoverlaid files created by previous linkers. 

SIPP was designed to replace the former PATCH utility. However, 
PATCH is included in the Version 4 release so that patches that have 
been published prior to this release can be installed, and PATCH can 
patch overlaid files created with the earlier linker. 

Object Module Patch Utility 
The RT-11 object module patch utility (PAT) allows you to patch or 
update any code in a relocatable binary object module. PAT does not 
permit examination of the octal contents of an object module; that is a 
function of SIPP. An advantage to using PAT is that relatively large 
patches can be added to an object module without performing any 
octal calculation. PAT accepts a file containing corrections or addi­
tional instructions and applies these corrections and additions to the 
original object module. 

84 



RT-11 

Source Language Patch Program 
SLP is a patching tool you can use for modifying source files. When 
used with SRCCOM, you can patch a source file so that it will match an 
edited version. SLP accepts as input a source file you wish to patch 
and a command file created by SRCCOM. 

Text Editors 
One of the most useful of all utilities is a text editor, since it makes the 
job of creating, correcting, and updating programs and files a simple 
matter of using commands at the terminal. RT-11 provides a selection 
of editors, including EDIT and KED. 

EDIT is a program that creates or modifies ASCII source files and 
prepares them as input to other programs, such as compilers or as­
semblers. The EDIT program can read files from any input device and 
write them on any output device. It is a line-oriented editor, most 
useful for hard copy terminals. 

EDIT performs four functions, exactly those you would expect an edit­
ing program to provide: 

• Locates the text to be changed 

• Executes and verifies the changes you command 

• Lists a copy of the edited page on your terminal 

• Outputs the page to the output file 

In order to process text, EDIT thinks of a file as divided into logical 
units called pages of about 50 or 60 lines in length. Such a logical page 
corresponds roughly to a physical page in a program listing. One page 
at a time is read from the input file to the buffers, where it becomes 
available for editing. 

KEO is a video display editor meant for use with VT100 and VT100-
compatible terminals. It takes advantage of the special keypad to the 
right of the terminal's keyboard. Keypad keys provide quick operation 
of various editing functions, such as moving the cursor left or right by a 
word or character. KEO provides a HELP file in order to make keypad 
editing easy to learn and enjoyable to use. 

BATCH 
RT-11 BATCH is a complete job control language that allows RT-11 to 
operate unattended. RT-11 BATCH processing is ideally suited to fre­
quently run production jobs, large and long-running programs, and 
programs that require little or no interaction with the user. 

RT-11 BATCH permitsyouto: 

• Execute a RT-11 BATCH stream from any legal RT-11 input device 

85 



RT-11 

• Output a log file to any legal RT-11 output device (except magtape 
or cassette) 

• Execute the BATCH stream with the single-job monitor or in the 
background of the foreground/background monitor or with the 
extended memory monitor 

• Generate and support system-independent BATCH language jobs 
• Execute RT-11 monitor commands from the BATCH stream 

ADDITIONAL SOFTWARE COMPONENTS 
The RT-11 operating system supplies several other useful software 
components that help in the smooth operation qt your computer. Two 
features available under RT-11 are the System Jobs Feature and the 
Queue Package. 

The System Jobs Feature permits an FB or XM monitor created 
through system generation to run up to six extra jobs, in addition to the 
normal foreground and background jobs. DIGIT AL provides two sys­
tem jobs: the file queuing job, QUEUE, and the error logger, EL. If you 
generate a monitor with support for system jobs, you can run either or 
both of the supplied system jobs along with a foreground and back­
ground job (although this reduces memory available for foreground 
and background operation). Under the distributed FB monitor, you 
can run a system job as the foreground job. 

With the file queuing package (QUEUE and QUEMAN), you can send 
files to any valid RT-11 output device. Although the Queue Package is 
particularly useful for obtaining hardcopy listings of files, queuing is 
not restricted to a lineprinter or to other serial devices. The QUEUE 
program runs with the FB or XM monitors, as either a foreground or 
system job. QUEMAN, the user interface to QUEUE, runs in the back­
ground. 

Error Logger 
The error logger (EL) monitors the hardware reliability of the system. It 
keeps a statistical record of all 1/0 operations on devices that call it. At 
intervals that you determine, the error logger produces individual or 
summary reports on some or all of the errors that have occurred. 
Support for the error logger must be obtained through system genera­
tion. The error logger runs with the FB or XM monitors, as either a 
foreground or system job, but is not supported under the SJ monitor. 

SYSTEM SUBROUTINE LIBRARY 
The RT-11 FORTRAN IV System Subroutine Library (SYSLIB) is a 
collection of FORTRAN-callable routines that allows a FORTRAN user 
to access various features of RT-11 foreground/background (FB) and 

86 



RT-11 

single-job (SJ) monitors. SYSLIB also provides various utility 
functions, a complete character string manipulation package, and a 
two-word integer support. This library file is the default library that the 
linker uses to resolve undefined globals and is resident on the system 
device (SY:). 

Some of the functions provided by SYSLIB are: 
• Complete RT-11 110 facilities, including synchronous, asynchro­

nous, and completion-driven modes of operation. FORTRAN sub­
routines may be activated upon completion of an input/output oper­
ation. 

• Timed scheduling of asynchronous sub jobs (completion routines). 
This feature is standard on FB and optional on the SJ monitor. 

• Complete facilities for interjob communication between foreground 
and background jobs (FB and XM only). 

• FORTRAN interrupt service routines. 
• Complete timer support facilities, including timed suspension and 

time-of-day information. These timer facilities support either 50- or 
60-cycle clocks. 

• All auxiliary input/output functions provided by RT-11, including the 
capabilities of opening, closing, renaming, creating, and deleting 
files from any device. 

• All monitor-level informational functions, such as job partition par­
ameters, device statistics, and input/output channel statistics. 

• Access to the RT-11 Command String Interpreter (CSI) for 
acceptance and parsing of standard RT-11 command strings. 

• A character string manipulation package supporting variable-length 
character strings. 

• INTEGER*4 support routines that allow two-word integer computa-
tions. 

SYSLIB allows a FORTRAN IV user to write almost all application 
programs completely in FORTRAN IV with no assembly language cod­
ing. 

RT-11 AUTOPATCH 
RT-11 Autopatch is a software tool that automatically installs manda­
tory patches to modules on unaltered distribution kits of RT-11 and 
some of its layered products. Autopatch eliminates the need to install 
manually the patches published in the RT-11 Software Dispatch. The 
Autopatch kit also provides optional patches in machine-readable 
form so you do not have to type them. However, Autopatch does not 
automatically install these patches. 

87 



RT-11 

RT-11 Autopatch guides you through an interactive dialog. Your re­
sponses to the dialog questions supply Autopatch with information 
about which RT-11 products you want to patch and which devices you 
are using. Following the dialog, Autopatch automatically installs man­
datory patches to the RT-11 operating system or layered products of 
your choosing. Autopatch tells you whenever you must switch volumes 
while the software is being patched. When Autopatch finishes instal­
ling the mandatory patches, you can use the optional patch files pro­
vided on the kit to install optional patches. 

Autopatch is available to be purchased separately from the RT-11 
system. 

88 



89 



90 



INTRODUCTION 

CHAPTER 6 

CTS-300 

Where high reliability and flexibility are needed in a small business 
computer, DIGITAL's CTS-300 is a solution. It is based on RT-11, one 
of the most versatile of all operating systems, and uses DIBOL, a 
popular, friendly programming language especially designed for writ­
ing business applications. 

CTS-300 is a complete software environment designed for small 
DIGITAL general purpose computer systems. It provides an operating 
system, a higher level programming language, system utilities, a text 
editor, a Sort/Merge program, and program development tools. Pro­
gram development may be done in a time-sharing environment. CTS-
300 is capable of supporting up to 12 users or up to 16 jobs simulta­
neously, depending on your application programs. 

Depending upon hardware and system generation options, suitably 
configured Datasystem computers can accommodate a mix of appli­
cation and program development terminals. In addition, if the hard­
ware includes VT100 video terminals, the DECFORM screen handler 
running as part of CTS-300 will take full advantage of the VT100's wide 
range of features. 

CTS-300 has a diverse customer base of more than 15,000 banks, 
retail stores, insurance offices, service bureaus, wholesalers, account­
ing firms, and business offices of numerous companies. Some users 
connect their Datasystems to distributed networks, some run them as 
stand alone computers. 

CTS-300 provides you with immediate access to on-line information. 
Interaction with the system comes through high-speed video termi­
nals, where the entire resources of the system are at your disposal for 
running programs. User programs may perform any data processing 
job from inventory control to accounts receivable. 

Programs are not swapped in and out of memory while running, but 
reside in memory in dynamic partitions. This provides for two major 
benefits-fast terminal response time and a smaller resident operat­
ing system. 

CONCURRENT PROGRAM DEVELOPMENT 
A major capability of CTS-300 is made available through the CRT­
oriented programming editor, DKED. With this feature, it is possible to 

91 



CTS-300 

create and modify DIBOL programs on-line, with multiple copies run­
ning under Extended Memory Time-Shared DIBOL (XMTSD). Further, 
one or more of the developers could be remote, using dial-up lines 
under XMTSD. 

Concurrent program development and application execution provide 
excellent flexibility. XMTSD runs in either the background or in the 
foreground. In this latter case, the background partition is available for 
program development. 

There are two ways of using the background. The first is with one 
application programmer occupying the background for program de­
velopment using familiar utilities. Simult!ineously, XMTSD can execute 
applications in the foreground. The second mix occurs when more 
than one programmer is developing in the foreground. This is 
accomplished by running DKED, the editor, in the foreground parti­
tion, as a job under XMTSD. When a program is ready for compiling 
and linking, it is then submitted to a command file in the background 
queue. Requests are executed in the order submitted: the queue will 
hold up to sixteen requests from various programmers. 

EASE OF PROGRAMMING 
The FLAGS subroutine permits a DIBOL application to select up to 
eight independent options at run time with one optional argument. 
During the running of an application, it is often desirable to change 
one of the eight options. This is accomplished by using an optional 
second argument to FLAGS. 

In routine operator/CRT interaction, it is often desirable to time such 
things as messages displayed on terminals. For instance, information 
displayed as part of a program could take some length of time for an 
operator to read before the next application subset could occur. The 
SLEEP statement under TSD/XMTSD monitors will defer execution of 
a job for a specified period of time, thus allowing programmers to 
better utilize the scheduling of time among the other jobs. 

The Print Utility provides programmers with a tool to produce simple, 
ad hoc reports from data files. This utility enables a search of a file 
index for report creation, while leaving the master file intact. It is unne­
cessary to sort the master file first, in a different order, then create a 
report; a small sorted index file will be sufficient. The enhanced Print 
Utility can improve programmer productivity. 

The ISAM Utility allows end-user operators to create ISAM files with­
O'-lt operator intervention. The autocreate feature can be initiated 
directly at a terminal or indirectly via chaining. Faster and easier file 
reorganization is tbe result. 

92 



CTS-300 

The high-speed Sort/Merge utility permits users to easily define the 
parameters for sorting and merging data files. Users can specify up to 
eight key fields to control the ordering of the output records, in either 
ascending or descending sequence. A wide range of control over op­
erating parameters, such as the number of work files to be used, is 
provided to enable users to achieve maximum sort efficiency. In addi­
tion, CTS-300 includes numerous utilities importi;int in making system 
use easy. They are briefly explained below. 

The Linker, an easy-to-use utility, converts the output from the DIBOL 
compiler into a run time format. The Linker allows a main program to 
be combined with many compiled external subroutines into a single 
executable job, and provides the ability to specify overlays. (Overlays 
allow the run time job to use less main memory than would otherwise 
be required.) 

The Peripheral Interchange Program (PIP) allows either ASCII or bina­
ry files to be transferred among any RT-11 supported devices. It per­
forms directory operations, renames files, extends the size of a given 
file, and consolidates empty files into one contiguous space. 
Segmented files can be merged during a PIP transfer, or multiple 
transfers may be executed in response to a single keyboard com­
mand. 

The File Exchange (FILEX) Program provides a universal file format 
via floppy disks between Datasystem 300s and 500s. FILEX creates an 
IBM-compatible floppy in 3741 format that can be read by either IBM 
systems or other DEC Datasystems. 

The Device Utility Program (DUP) performs general utility functions in 
support of disk devices. Among DUP functions are initializing devices, 
scanning for bad blocks, and compressing data on a disk. 

The Directory Program (DIR) is used to list the file directories for disk 
devices. DIR allows directory listings to be sorted by file name, file 
type, date, size, or position. 

The Librarian creates and maintains libraries of commonly used pro­
grams. Each library has a catalog, listing the sections with sufficient 
information to enable the Linker to find them. The Librarian's tasks 
include creating libraries, adding new modules to existing libraries, 
copying options, including selective deletion and replacement during 
the copy, and listing the catalogs of libraries. 

COMMAND LANGUAGE 
CTS 300 is designed for interactive use. The keyboard commands are 
consistent in format and easy to understand, and the high-level com­
mand language allows transition from source code to executing code 

93 



CTS-300 

with only one statement. CTS-300 also features indirect command 
files, which permit you to invoke a whole stream of system commands, 
similar to a BATCH stream, by issuing a single, one-word command. 
Unlike a BATCH stream, however, there is no complicated job control 
language to learn. Indirect command files accept the same monitor 
commands that users type at the terminal. 

DATA MANAGEMENT SERVICES 
Data Management Services for CTS-300 (DMS-300) provide capabili­
ties for handling sequential, random, or ISAM structured files. DMS-
300 also supports file sharing and multivolume files. Multivolume file 
support permits one file, extending over several disk drives, to be 
processed sequentially or by keyed access, without requiring special 
programming. 

OPTIONAL SOFTWARE 

RDCP (Remote Data Communications Package) 
RDCP is a powerful batch data communications package which uses 
both IBM 2780 and 3780 protocols. It is easy to use, yet gives the data 
processing center the control necessary to manage a network of 
systems from a single location. It can be used to communicate with 
IBM processors as well as other DIGITAL Datasystems. Its key capa­
bilities are as follows: 
• Concurrent operation with other application programs, provided the 

system is configured with 28 KB of memory 

• Unattended operation, depending on hardware configuration 

• Batch command stream 
• Recovery restart 
• Data compression/decompression 
• Transparent data 
• Automatic calling, depending on hardware configuration 

• Auto dial auto answer depending on hardware 

DIBS-11 (Integrated Business System) 
DIGITAL's DIBS-11 Integrated Business System is a multitask busi­
ness application package that consists of six fully integrated mod­
ules-Order Entry/Invoicing, Inventory Management, Accounts Re­
ceivable, Accounts Payable, Payroll, and General Ledger. These 
modules may be utilized separately or as part of a totally integrated 
system that shares information between jobs. When integrated, infor­
mation from the separate modules is posted automatically to General 
Ledger accounts in the system. Integration keeps information current 
and reduces operator .time. 

94 



CTS-300 

Collectively, the DIBS-11 modules answer the de.ta processing re­
quirements of most business users. If additional functionality 1s re­
quired, new software can be developed and easily integrated into the 
system. The modules can be selectively introduced into a business. 
This minimizes the disruption of on-going operations ~Y allowing the 
user to make adequate preparations and to complete the necessary 
training in phases. As the modules are introduced, they can be easily 
integrated with one another, enabling the sharing of data resources 
and system capabilities. Each module is thoroughly documented by 
comprehensive manuals, and while all were designed to function 
together, each can be used independently of the others if desired. 

To simplify the implementation and use of the DIBS-11 accounting 
software modules, we have designed them using a common frame­
work of standard routines and programs. When used properly, the 
routines provide system security, file protection, and a means of 
chaining programs together into job streams. They also serve as a 
means of assuring consistency of documentation and maintenance for 
any new software which might be added to the basic modules. 

A further aid to programmers is the inclusion of various "hooks" in 
each of the modules. These hooks can be used to customize or ex­
pand the functionality already provided. Many of the hooks are aready 
predefined, making the programmer's task even easier. For example, 
certain data fields have been defined even though they are not used by 
the application programs. 

All of the modules use a common set of external subroutines to handle 
processes that are frequently encountered. This not only helps to sim­
plify the programmer's task, it also minimizes program length and 
helps to maintain the consistency of system design. Some of these 
subroutines include printer, terminal, and disk 1/0 routines; commonly 
used algorithms such as day or date calculations; and routines specifi­
cally designed for the multiple-branch environment. 

Whenever possible, general functions such as file protection in multi­
user environments are handled in common routines. This, too, relieves 
the programmer of some design burden and allows concentration on 
the unique aspects of the problem at hand. 

The DIBS-11 modules employ essentially the same design concept. In 
general, all data files are either standard indexed file access or a fixed 
length, sequential file format. In addition to the regular application 
files, DIBS-11 maintains a number of special-purpose files which con­
tribute to system functionality. One is a menu processor that contains 
all of the screen prompts appearing in the user menus, along with 
associated program or menu names. Through the menu processor, 

95 



CTS-300 

screen formats and the sequence of program execution can be 
changed without having to write source code. 

Others are a system file that in run time use allows an operator to 
select and use system peripherals without the need for special pro­
gramming; a table file of miscellaneous application data used by the 
modules (e.g., sales code tables, price rules, branch names); a user 
file that keeps track of which program is running or about to run, and 
any messages passed between programs; a file that is updated with 
the current status of each data file and is the means by which data files 
are protected in multi-user environments. 

Another important system feature is a subroutine which causes struc­
tures to be copied into source programs automatically. This allows 
common code (e.g., record layouts and procedure) to be shared by all 
application programs system-wide. 

DIBS-11 is written in DIBOL. It is a customer-supported product which 
is distributed with source code. 

DECtype-300 
DECtype-300 is word processing software for CTS-300 which provides 
concurrent word and data processing. It is intended for use by or­
ganizations whose primary need is data processing. Systems 
equipped with DECtype-300 give users at every terminal word or data 
processing as needed. 

DECtype-300 is a word processing application that produces docu­
ments. As you type text from a keyboard, DECtype-300 displays it on a 
video screen. Once the text is typed, DECtype files (saves) the docu­
ment on a storage device, making it available for later use. At any time 
you can call the text back to the screen and use the keyboard to 
modify the document. You can tell DECtype-300 to print the document 
on any of several printers which may be attached. 

DECtype-300 provides many options which let you produce docu­
ments that present your ideas as you intended them. You can highlight 
certain text by underlining or bolding it. You can type two or more 
characters in the same place on the paper, producing composite char­
acters. You can use subscripts and superscripts for footnotes or 
mathematical formulas. You cah right- or left-justify text, or center text 
between the margins. You can add space between words and margins 
and tab stops in any part of the document. You can indent paragraphs, 
switch between single-spacing and double-spacing, include tables in 
the text, and produce many other effects. 

DECtype's "advanced features" make use of its general-purpose com­
puter to meet applications other than word processing. You can: (1) 

96 



CTS-300 

insert information from a list document into the blanks in a form letter, 
producing "customized" letters; (2) run it at the same time as other 
business applications; and (3) perform simple mathematical calcula­
tions. 

DECtype is easy for the new operator to use and understand. Wher­
ever you must make major choices, DECtype-300 displays a "menu," 
describing all the options and indicating which letters to type to select 
each option. Before deleting information, DECtype either asks for con­
firmation or gives you a "second chance" to recover the information. 
When you give DECtype-300 an invalid command, it displays an 
understandable message telling you how to correct the problem. 

DECtype is also optimized for the experienced user. The actual key­
strokes required to invoke an option are minimal and easily memor­
ized. DECtype-300 automatically wraps text so that lines of text will fit 
within the indicated margins, freeing you to look at the source docu­
ment instead of the screen. If you should later change the margins, 
DECtype-300 automatically refits the text to conform to the new mar­
gins. DECtype ensures that questions of formatting do not slow down 
an experienced user during text entry. 

QUILL 
QUILL is a query/report writer program for business applications 
running on CTS-300. By locating the specific information you need, 
this program helps you create many types of reports and terminal 
queries. 

QUILL is friendly and easy to use-you communicate with QUILL by 
using simple English-like commands. QUILL uses Dictionaries to de­
scribe the data files. Using the field names in the Dictionary, the opera­
tor can use arithmetic, relational, and Boolean expressions to locate 
desired records. QUILL locates the records in the data file which satis­
fies the operator's request, and establishes a collection. 

The collection is a much smaller file which is comprised of pointers to 
the physical locations of the desired records. QUILL uses the pointers 
in the collection to process the selected records. This is especially 
important for smaller systems with limited disk space. 

Once the collection has been established, the operator is ready to 
create the output: either a query list on the terminal, a simple to com­
plex report for a printer or disk, or a List Document for DECtype-300. 
All of the commands which create any of the forms of output can be 
retained in a log file. To create the output again, a command can 
simply be typed in, and QUILL will automatically go to work. The 

97 



CTS-300 

logged commands will generate the output against the current, up-to­
date data. 

QUILL interfaces with DECtype-300, a full-featured word processing 
application. As easy as it is to create a simple query-QUILL "selects" 
the appropriate data from an established data file and creates a List 
Document for DECtype's List Processing facility and Editor. Users will 
no longer have to maintain duplicate sets of data; one for data proc­
essing and the other for word processing. With QUILL, the List Docu­
ments will be as current and up-to-date as the actual data file. No 
conversion is necessary. As soon as QUILL has created the List Docu­
ment, DECtype can then access it immediately via the list processing 
routine or the editor. 

98 



99 



100 



CHAPTER 7 

DIGITAL STANDARD MUMPS 

Digital Standard MUMPS (DSM) is a multiuser data management sys­
tem that consists of an interactive, high-level programming language, 
a data management facility, and a time-sharing executive. 

The language is an extension of the ANSI Standard Specification 
(X11.1-1977) for Massachusetts General Hospital Utility Multi-Pro­
gramming System (MUMPS). MUMPS was originally developed atthe 
Laboratory of Computer Science at Massachusetts Gene'ral Hospital 
and was supported by Grant HS00240 from the National Center for 
Health Services Research and Development. System capabilities are 
heavily oriented toward string manipulation and relieve the user of any 
concern for programming peripheral devices or for structuring data­
bases in the traditional sense. 

Language processing by the system is interpretive. This greatly facili­
tates program development by eliminating the need to load editors, 
assemblers, linkers, etc. The DSM application programmer need only 
be concerned with developing the proper logical hierarchy for a data­
base and efficient logic for the application requirements. 

The DSM language is provided with its own standalone operating 
system. In addition to supporting the Standard MUMPS language and 
providing all operating system capabilities, the system affords a 
unique database structure. Data, referred to symbolically, is automati­
cally stored and linked in sparse, hierarchical structures called M­
trees. The physical and logical allocation of mass storage for the tree­
structured database is handled completely by the operating system so 
the programmer can concentrate on application data relationships. 
The database can be made available to all system users or be restrict­
ed to a class of users. 

The DSM-11 operating system runs on any of the PDP-11 /23, 11 /24, 
11 /34, 11 /44 and 11 /70 central processors. The system permits up to 
63 simultaneous users, or partitions, operating on any of up to 128 
terminals. 

A partition holds one active user's program, local data, and system 
overhead data. There is no fixed correspondence between terminals 
and user partitions. Indeed, jobs can run without having terminals 
associated with them, and multiple terminals can be attached to one 
partition. 

Partition assignment is performed dynamically either at log-in time or 
during execution. The recommended size for a partition is approxi-

101 



DSM 

mately 4K bytes. Partitions do not all have to be the same size; the 
maximum partition size is 16K bytes. 

Additional features include: 

• Dynamic file storage with variable length string subscripts allows the 
user to modify or expand data elements in the existing database 
easily. 

• A programmer can rapidly write, test, debug, or modify a program 
so that a working application is quickly established. A user can 
enter, inspect, or change data interactively and efficiently. 

• A high-performance database handler uses an in-memory disk 
cache (with write-through) to allow efficient sharing of the data 
among all users. 

• A system level, transparent journal of database modifications can 
be maintained on either disk or magnetic tape. 

• Distributed database management is implemented using DMC11 or 
DMR11 high-speed data communication links. 

• Output to devices can be spooled. 

• DSM-11 has automatic power-fail restart capability for processors 
with battery back-up. 

• DSM-11 provides bad-block management for all disk media. 

• On-line, high-speed database backup, disk media preparation, and 
tape-to-tape copying are standard DSM-11 features. 

• Hardware device error reporting, system patching utility, and an 
executive debugger facilitate system maintenance. 

• Streamlined, system installation and system generation procedures 
allow the DSM-11 system to quickly adapt to any supported hard­
ware configuration. 

The following summarizes supported hardware of the DSM-11 operat­
ing system: 

MINIMUM HARDWARE REQUIRED 
• One of the following processor systems: 

PDP-11/23 

PDP-11/24 

PDP-11/34 

PDP-11/44 

PDP-11/70 

102 



DSM 

• At least 96 KB of memory required to build a minimum system with 
up to three terminals 

• One of the following mass storage packages: 

Dual drive RL 11 /RL211 or RLV11 /RLV21 cartridge disk system 

Dual drive RK11 cartridge disk system (unit O must be an 
RK05J) 

Dual drive RK611 /RK711 cartridge disk system 

A single drive disk system that consists of: One RK05J, RL01, 
RL02, RK06, RP04, RP05, RP06, RM02, RM03, or RM05 disk 
drive and one TS03, TE10, TE16, TU45, or TS 11 tape drive 

• One KW11-L or KW11-P line frequency clock (The line frequency 
clock included with a DL 11-W serial line interface is acceptable) 

• One LA34, LA36, LA38, LA120, or LA180 hardcopyterminal console 
device 

OPTIONAL HARDWARE 
• Additional memory up to a system total of 248 KB on PDP-11 /23, or 

PDP-11 /34 and up to 1 MB on the PDP-11 /24, PDP-11 /44, or PDP-
11170 

• Up to eight RK05 disk drives (an RK05F disk drive represents two 
units) 

• Up to four RL01 /RL02 disk drives 

• Up to eight RK06/RK07 disk drives 

• Up to eight RP04/RP05/RP06/RM03/RM05 disk drives 

• Up to four TS03, TE10, TE16, TU45, TS11 tape transports 

• Terminal and communication devices as follows: 

VT50, VT52, VT55 (no graphics support), VT100 (in VT52 com­
patibility mode), LA34, LA36, LA38, LA120, or LA180 terminals 
on DZ11, DH 11, DL11, DL V11 and DL V11-J interfaces; modem 
support provided for DL 11-E, DH11-AD, and DZ11-A (with 
BC05D cable) 

Up to a total of 128 terminals using DZ11 or DL 11 interfaces 

Up to a total of 17 terminals using single line DL 11 interfaces 

Up to a total of 16 terminal and communication interfaces, 
where each DMC11, DMR11, DZ11, DH11, or DL11 counts as 
one interface 

• Up to a total of 17 LP11 or LA 11-P lineprinters, single line interfaces, 
and/or high-speed data links 

103 



DSM 

USER INTERFACE 
DSM-11 users gain access to the system's programs by using a spe­
cial log-in sequence that involves one or two access codes (depending 
on the user's privileges). These codes, provided by the system manag­
er, are the User Class Identifier Code (UGI) and the Programmer Ac­
cess Code (PAC). 

The DSM-11 system can have up to 50 UCls (classes of users). A UGI 
allows access to the programs and globals listed in the program and to 
global directories for that UGI. A user who is permitted simply to run 
programs needs to know only the UGI and the name of the programs 
for that UGI. 

Users who are allowed to create or modify programs and global files 
must know the system's PAC, which permits system operation in 
direct mode. A programmer can issue DSM commands at the key­
board, as well as create, modify, and delete data and programs asso­
ciated with the user's UGI. 

DSM-11 also employs a concept known as "tied terminals." An at­
tempt to log-in at a tied terminal activates the task to which the termi­
nal is tied and limits the user to the resources associated with that 
task. This capability gives the system manager an effective control 
mechanism for system access. 

INTERPRETER 
DSM-11 is implemented as an interpreter. This minimizes the 
programmer's time in solving a problem, the computer time needed to 
check it, and the elapsed time required to obtain a final running pro­
gram. The interpreter is that part of the operating system responsible 
for these services. 

The interpreter examines and analyzes all Standard MUMPS language 
statements and executes the desired operations. Each Standard 
MUMPS language statement undergoes identical processing each 
time it is executed by the interpreter. Intermediate code is not generat­
ed. Comprehensive error checking is also performed to ensure proper 
language syntax. 

In addition, the interpreter stores and loads programs through the £1isk 
storage system. During program execution, the interpreter can overlay 
external program segments invoked by an active program. Proper 
linkages are set up to return to the invoking program when execution 
of the segments terminates. 

A number of major advantages are obtained from the interpreter. 
Programs written in an interpretive language do not require any com-

104 



DSM 

pilation or assembly. Error comments during execution are printed at 
the programmer's terminal and allow quick recovery, program modifi­
cation, and re-execution. All program debugging and modification op­
erations are performed directly at the terminal in the DSM language. 

Almost any DSM command or function can be executed from the 
keyboard in direct mode. When a command is entered, the DSM 
language interpreter immediately executes it and gives the appropri­
ate response to the programmer. A command line can consist of sev­
eral Standard MUMPS commands and arguments, comments and 
data. For example, the programmer can enter the command line: 

>WRITE "7+5=",7+5 

This command tells DSM to print the characters "7 +5 =" 
on the terminal, evaluate the arithmetic expression 7 +5 
and print the result on the terminal. DSM responds by 
typing: 

7+5=12 
> 

The DO command tells DSM to begin executing at a specified label of 
the stored program. It will continue until it encounters a control com­
mand such as GOTO or QUIT, or arrives at a point where there is 
nothing else to interpret. 

To create a program, the programmer enters one or more lines of 
MUMPS commands. Once a program has been created, the program­
mer can store the contents of the partition's program buffer on disk or 
on a secondary storage device such as magnetic tape. The program 
can then be reloaded into the program buffer from the disk or 
secondary storage. A program can be modified when it is loaded in the 
program buffer by adding new lines or by replacing, deleting, or modi­
fying existing lines of code. 

TERMINALS AND ANCILLARY 1/0 DEVICES 
In addition to the disk space reserved by the DSM database supervi­
sor, DSM allows access to terminals and ancillary 1/0 devices such as 
the lineprinter and magnetic tape. Each 1/0 device has a unique iden­
tification number in the system. 

The OPEN command establishes ownership of terminals and ancillary 
1/0 devices. Then 1/0 may proceed, using available 1/0 commands. In 
general, the programmer need not be concerned with specific charac­
teristics of 1/0 devices, since data transfers consist of ASCII strings 
not greater than 255 characters. There are, however, certain physical 
operating characteristics that may be of interest to the programmer, 

105 



DSM 

such as rewinding a magtape or a form feed on the lineprinter. 

The commands affecting input/output operations to the terminals and 
ancillary devices are: READ, WRITE, WRITE *, ZLOAD and ZPRINT. 
The WRITE command is used to output both local and global data, as 
well as literals, constants, and format control characters. The WRITE * 
command is used primarily to take advantage of 110 device special 
features, which are specified, generally, by non-printing ASCII codes. 
The WRITE * command accepts numeric arguments, of which the low­
order seven bits are taken as the decimal representation of the ASCII 
code. For example, the command W *10 is used to output a line feed 
character. 

DSM also has three special "devices." They are the Sequential Disk 
Processor, the CPU-CPU device, and the Job Communication device. 

The Sequential Disk Processor (SOP) allows the user to physically 
access the disk as an assignable sequential 1/0 device. The SOP can 
access only the disk space that is explicitly set aside for its use. Other 
disk space, including the global database structure, cannot be 
accessed. Sequential disk processing allows the user to impose any 
file structure on the SOP space. 

The CPU-CPU device is a DMC11 synchronous interface, full- or half­
duplex, that connects one DSM-11 CPU to another CPU. The other 
CPU does not necessarily have to be a DSM-11 system, but does have 
to recognize DDCMP protocol. This device allows a DSM program to 
communicate with a program running on another central processor. 

In-memory job communication (Job Comm) permits jobs to send in­
formation to other jobs without using the disk. Communication occurs 
through a series of pseudo-devices that are used in pairs; even-num­
bered devices are "receivers" and odd-numbered devices are "trans­
mitters." 

SPOOLING 
DSM-11 also includes the ability to spool output to line printers. The 
spooling device is a file-structured mechanism used for temporary 
storage of information. Typically, a user directs the output of several 
programs to separate files on this device. The files are then processed 
one at a time by a de-spooling program that writes them to an output 
device. 

To aid in classifying spool files, each has a destination code and its 
own unique file index number. The destination code is a value, in the 
range of 1 to 255, recorded in the directory entry for easy access. By 
using this code, a file can easily aid in retrieving a particular group of 
files. 

106 



DSM 

JOURNALING 
DSM-11 also supports the technique known as journaling, which al­
lows an addittonal copy of data modified on the disk to be made on 
another device. In the DSM system, any item that is changed on the 
database may also be written to a disk or magnetic tape as a journal 
record. Even if a disk failure occurs, it is always possible to restore the 
journal tape entries onto the previous backup copy and bring the 
system up-to-date as of the time of the failure. Journaling runs at the 
system level, and is transparently built into the operating system so 
that DSM-11 programs need not be modified or specially written to 
handle journaling. The desired database transactions are recorded 
automatically onto the journaling media. 

DATA MANAGEMENT 

Data Storage Elements 
In DSM-11, all data are referenced symbolically, in the context of 
hierarchical global variables and arrays. The content and structure of 
the tree-structured global arrays are logicaly mapped into the 
system's physical storage medium. 

All user data, numeric or string, is stored in the system as ASCII 
character strings~ DSM-11 interprets these strings in one of two ways: 
as numbers, such as those used in calculations, or as strings, such as 
names and addresses. 

Numbers in DSM are signed numbers that can be up to 32 significant 
decimal digits long. Examples of numbers are: 

2.08 
151.95 
403.333 
.6379465 

DSM string data is any contiguous series of legal DSM characters that 
are to be considered a single data entity. Strings in DSM can be up to 
255 characters long. Examples of strings are: 

HELLO, MY NAME IS 
55 SECONDS 
2,564,843,485,076, 193 
FRIENDS, ROMANS, COUNTRYMEN ... 
FROP%X10.CF 

Variables 
Program data values can be expressed as literals, constants, or vari­
ables. Two types of variables can be created in DSM programs: local 
variables and global variables, each of which may be subscripted. 

107 



DSM 

Variables can be created, modified, and deleted using the SET, READ, 
and KILL commands. 

A subscript is a value enclosed in parentheses and appended to a 
variable name. It uniquely identifies data elements that are to reside 
under that variable name. All subscripted variables residing under a 
common name are collectively referred to as an array. An array can 
consist of variables with more than one level of subscripting; when 
more than one level is used for global array subscripts, they are separ­
ated by commas. 

DSM uses sparse arrays that contain only those elements explicitly 
defined. Unlike other languages that may require a declaration of the 
maximum size of an array to preallocate space, DSM dynamically 
allocates storage for all array elements only as needed. 

Local variables, which are variables that reside in the same partition as 
the commands that created them, are used as scratch or transient 
data. They are accessible only to programs running in the same parti­
tion. Variables such as ABC, R45, X, %D have no subscripts and are 
called simple variables. Subscripted variables can have multiple levels 
of subscripting, with numeric or string subscripts, such as ABC(2), 
R49("LIST"), ABC(4+B(C*D)/X,89). 

Global variables are subscripted arrays stored on disk. External to a 
program's partition, they provide a common database available to all 
programs authorized through the system protection scheme. There is 
no logical limit to the number of subscripts that can be used. Like 
subscripted local variables, global arrays also reside in sparse arrays 
and are created simply by reference in a program. Each global array 
name is similar to a local variable name, but is always preceded by the 
circumflex symbol"t". 

The DSM Disk Structure and Global Arrays 
Disk volumes allocated for the storage of DSM globals and programs 
are the primary storage media used by the DSM-11 system. Each UCI 
defined by the system manager has two directories associated with it: 
the global directory (that is, the file directory) and the program directo­
ry. 

The system manager, who can locate the directories on any disk unit 
in the system, can also limit program and global storage to specific 
disk units. 

Globals are logically organized as multi-dimensional tree-structured 
arrays. An element of an array has a logical name consisting of the 
global name and the subscript(s) uniquely identifying the element. For 
example, tABC(2,3.4,"JONES") is the name of the element in the 

108 



DSM 

global called ABC, whose first subscript is 2, whose second subscript 
is 3.4, and whose third subscript is "JONES." The elements of a global 
array are called nodes. The user's global directory contains the names 
of all the globals it can reference, as well as pointers to the tree struc­
ture for each of the globals. 

UTILITIES 
A set of DSM language utility programs provides the user with the 
tools to maintain and service the system efficiently. All these utilities 
are written as Standard MUMPS language programs and as such can 
be easily modified and extended to suit the needs of a particular 
installation. 

The utility programs consist of two operationally distinct groups: sys­
tem utility programs and library utility programs. The system utility 
programs provide functions for use by the system manager. They are 
under the control of the system UCI and are accessible only to those 
individuals possessing the system UCI code. 

Library utility programs provide general services which are available 
to all system users, regardless of UCI. These programs also reside 
under the system UCI but employ a naming convention which distin­
guishes them from system utilities. 

The DSM-11 backup utility programs allow the user to save significant 
data from DSM disks. Some of the other utility programs include func­
tions to: 

• Label disks and magtapes for identification purposes 

• Format and test disks; initialize disks to be used in a DSM 
environment 

• Make exact image copies of magtape and disk volumes 

• Allow the direct allocation or deallocation of individual blocks on a 
DSM disk 

• Check the integrity of the database 

THE MUMPS LANGUAGE 
The following paragraphs discuss some of the major elements of the 
Standard MUMPS language. 

EXPRESSIONS 

An expression is a value description that can be made in the Standard 
MUMPS language, including any legal combinations of operands and 
operators. The following are examples of expression elements: 

123.34 constant 

109 



ABC 
"ABCD" 
MX(S) 

tXYZ(2,5) 
$LENGTH(Z) 
(A+B-(C/D)) 

DSM 

simple variable 
literal 
local subscripted variable 

global variable 
function reference 
subexpression 

The operators in an expression serve to represent the various 
arithmetic and logical computations of the Standard MUMPS lan­
guage. Following is a list of Standard MUMPS expression operators: 

TYPE 

Arithmetic 

Relational 

Boolean 

String 

relational 

String 

concatenation 

Indirection 

SYMBOL FUNCTION 

+Addition 

- Subtraction or Unary minus 

* Multiplication 

I Division 

#Module 

\Integer divide 

<Less than 

> Greater than 

=Equality 

&AND 

!OR 

'NOT 

[Contains 

] Follows 

? Pattern verification 

=Equality 

- Concatenation 

@ Indirection 

Indirection is denoted by the character @ followed by an atomic 
expression. The value of the expression is substituted for the occur­
rence of indirection before the rest of the line is interpreted. 

110 



DSM 

Of special importance are the relational string operators. They provide 
facilities for determining the characteristics of string data. The opera­
tors return true or false results. They are: 

• String Contains ([) - The string specified by the left operand is 
examined for the occurrence of the string specified by the right 
operand. 

• String Follows (]) - The string specified by the left operand is com­
pared character-for-character with the string specified by the right 
operand to establish relative position according to the ASCII collat­
ing sequence. 

• Pattern Verification (?) - The string specified by the left operand is 
examined for the occurrence of the character patterns specified by 
pattern specification codes. 

Commands 
A command is the basic unit of expression in the Standard MUMPS 
language. A command is a mnemonic that symbolizes the action to be 
performed, such as GOTO or SET. The command name can be 
abbreviated to one letter. It usually takes one or more arguments that 
specify the objects of the action to be performed. Several Standard 
MUMPS commands can be present on a command line. 

An optional Boolean-valued expression preceded by a colon can be 
used as part of an argument to specify conditional execution. For 
example, "GOTO LOOP:A>B" means that control is transferred to 
"LOOP" if A is greater than B. 

The following is a list of DSM commands: 

BREAK Suspends execution of a routine and brings 
the terminal back to direct mode. 

CLOSE 

DO 

ELSE 

FOR 

GOTO 

HALT 

Releases one or more designated devices 
from ownership. 

Initiates execution of DSM routine at the la­
bel specified, with an implied return. 

Conditionally executes the statements fol­
lowing it. 

Produces looping by repeating commands 
residing on the same line for a specific set 
of variable values. 

Interpreter execution is transferred either to 
a specified line or routine. 

Ends your use of DSM-11. 

111· 



HANG 

IF 

KILL 

LOCK 

OPEN 

QUIT 

READ 

SET 

USE 

VIEW 

WRITE 

XECUTE 

ZCommands 

DSM 

Suspends program execution for a speci­
fied time interval. 

Permits the conditional execution of the 
commands or statement that follow it. 

Deletes the specified local and global vari­
ables. 

Makes a particular variable or node of a 
variable unavailable for locking by another 
user. 

Obtains ownership of one or more devices. 

Terminates the current flow of execution. 

Receives data from the current device. 

Assigns the value of an expression to a vari­
able. 

Designates a specific open device as the 
current device for input and output. 

Allows you to read and write data to disk 
storage or to alter locations in memory. 

Sends data and/or control information to 
the current device. 

Executes DSM-11 statements that result 
from the evaluation of an expression. 

The following commands, known as Z-commands, are the DSM-11 
extensions to the Standard MUMPS language: 

ZGO 

ZINSERT 

ZJOB 

ZLOAD 

ZPRINT 

ZREMOVE 

Resumes execution of a routine after a 
BREAK command. 

Inserts a line into the routine currently in 
memory. 

Starts a specified routine in a new partition. 

Loads a routine into memory. 

Writes the current routine to the current 
output device. 

Deletes the current routine or specified 
lines in the current routine. 

112 



ZSAVE 

ZUSE 

ZWRITE 

Functions 

DSM 

Stores a routine in your routine directory. 

Allows temporary use of a terminal device 
owned by another job. 

Writes all local variables to the current out­
put device. 

A function performs an operation and returns a value, based on the 
outcome of that operation. The following is a list of available functions: 

$ASCII Returns the ASCII code of a string character 

$CHAR 

$DATA 

$EXTRACT 

$FIND 

$JUSTIFY 

$LENGTH 

$NEXT 

$PIECE 

$RANDOM 

$SELECT 

$TEXT 

$VIEW 

as a decimal integer. 

Translates a decimal integer into a ASCII 
character. 

Returns an integer indicating whether a 
specified node contains data or has des­
cendants. 

Returns a substring of a string expression, 
selected by position number. 

Returns an integer specifying the end posi­
tion of a specified substring. 

Returns a string, right-justified in a field of a 
specified length. 

Returns number of characters in a string. 

Returns the subscript of the next sibling in 
collating sequence to the specified global or 
local node. 

Returns a substring from a specified string 
selected by delimiter. 

Returns a pseudo-random integer uniform­
ly distributed in a closed interval. 

Returns the value of the first expression in 
its argument list, whose matched truth value 
expression is true. 

Returns the specified line from the routine 
currently in memory. 

Returns an integer between 0 and 65535, 
equal to the contents of the memory loca­
tion specified in the argument. 

113 



DSM 

$Z-Function Descriptions 
Certain functions, called $Z-functions, are DSM-11 specific. They are 
provided as extensions to Standard MUMPS, giving more options to 
the user. 

$ZCALL 

$ZN EXT 

$ZS ORT 

Special Variables 

Provides a general-purpose function call to 
user-written routines. 

Performs a physical scan of a global array. 

Returns the subscript of the next sibling in a 
string collating sequence of a specified 
array node. 

A number of special reference-only variables are defined within the 
system to control the flow of information and to provide system infor­
mation to Standard MUMPS programmers. These variables are main­
tained and updated by the system for each job partition. The following 
is a list of the special variables, including the $Z special variables. 

$HO RO LOG Contains the current date and time. 

$10 Identifies the current 1/0 device. 

$JOB 

$STORAGE 

$TEST 

$X 

$Y 

$ZA 

$ZB 

$ZERROR 

$ZNAME 

Contains the job number. 

Contains the amount of free space available 
within the current partition. 

Contains a truth value computed from exe­
cution of the most recent IF command, con­
taining an argument, or an OPEN, LOCK, or 
READ with a timeout. 

Contains a non-negative integer value equal 
to the next column position to be output. 

Contains the current line number. 

Contains status or error information for the 
current device. 

Contains status information on the current 
device, in the form of a numeric value. 

When an error occurs, this variable 
contains the line segment that caused the 
error. 

Contains the name of the current routine. 

114 



$ZTRAP 

$ZVERSION 

DSM 

Contains a reference to a line and/or rou­
tine to which you want control to pass in the 
event of an error. 

Contains the name and version of your DSM 
system. 

115 



116 



INTRODUCTION 

CHAPTER 8 

MICROPOWER/PASCAL 

MicroPower/Pascal is an advanced software tool kit for developing 
microcomputer applications. It includes a high-performance, optimiz­
ing Pascal compiler, a subset of the RT-11 operating system, and all 
the tools you need to create concurrent, real-time application pro­
grams. You create these applications on a PDP-11 host system for 
execution and debugging in a separate target microcomputer that can 
be any DIGITAL Q-BUS processor from the FALCON SBC-11/21 to 
the PDP-11 /23-PLUS. Each application is constructed especially for 
its target system, with the exact set of operating system services need­
ed. 

MicroPower/Pascal is particularly suited for dedicated, real-time mi­
crocomputer applications such as process control, instrumentation, 
and robotics. 

Target Environment 
• Pascal extensions support real-time multitasking 

• Applications reside in ROM and/or RAM 

• Assembly language interface allows MACR0-11 tasks 

• Applications can be debugged interactively 

• File system is compatible with RT-11 

• Device drivers support many LSl-11 bus interfaces 

• DPV11 synchronous serial line interface supports X.25 protocol 

• Applications can be transported from the host to the target by: (1) 
Down-line loading, (2) ROM, or (3) Bootable media 

Host Development Environment 
• Optimizing compiler produces fast, compact object code 

compatible with any DIGIT AL microcomputer 

PRODUCT DESCRIPTION 
MicroPower/Pascal is a microcomputer software architecture that ex­
tends standard Pascal to incorporate system implementation lan­
guage capabilities and support concurrent programming (multitask­
ing). MicroPower/Pascal lets you code microcomputer applications 
that have direct access to device registers, and can perform interrupt 
handling. Built-in procedures allow easy access to the file system, 
clock process, device drivers, and the operating system services of 
the kernel. 

117 



Micropower!Pascal 

When you team MicroPower/Pascal with your PDP-11 system, you will 
have a complete hardware/software package with everything you 
need to build quality microcomputer applications. MicroPower/Pascal 
builds a complete and powerful real-time software application so com­
pact that it could reside in as little as 8 Kbytes of memory. For your 
most complex applications, you can address up to 4 Mbytes of memo­
ry on the LSl-11 /23. 

FILE 
SYSTEM 

DEVICE 
DRIVERS 

MICROPOWER KERNEL 

OPERATING SYSTEM SERVICES 

Figure 8-1 MicroPower/Pascal Components 

Those components that reside in the host are shown by background 
shading. Those components not shaded reside in the target system 
(only those components and services that your application requires 
are included). 

Host and Target Processors 
MicroPower/Pascal uses a two processor development environment: 
a host PDP-11 running the RT-11 extended memory (XM) operating 
system, where the Pascal compiler and development utilities reside 
and execute, and a target Q-bus PDP-11, where the application pro­
gram resides and executes. This provides the most effective work 
environment for developing target system programs. You can trans­
port your final application program to the target microcomputer by 
one of three methods: writing it into read-only memory (ROM), down­
line loading it over a serial line, or recording it on magnetic storage 
media such as a floppy disk or tape cartridge which you can bootstrap 
on the target. 

118 



Micropower!Pascal 

Concurrent Programming Capability 
Concurrent programming means your Pascal source code is 
structured into independent parts called processes, that appear to 
execute simultaneously. Each process competes with all other 
processes for control of the target processor, but cooperates with all 
other processes in manipulating shared resources such as memory 
and peripheral devices. 

Target System Kernel 
MicroPower/Pascal processes have no need for a conventional oper­
ating system. Instead, every application contains its own customized 
set of routines, called the kernel, that supports them. Micro­
Power/Pascal automatically selects those operating system services 
your application requires from a library in the PDP-11 host computer, 
and places them in a kernel. By including only required system ser­
vices, the kernel and the application it supports make the most effi­
cient use of memory. 

The target system kernel lets applications access device registers, the 
file system, the clock process, and device drivers. The kernel also 
performs interrupt handling and lets concurrent tasks share the target 
processor. 

Synchronizing Processes 
Key to this concurrent application design is the mechanism for sharing 
control of the CPU and other common resources, such as data areas 
and peripheral devices. In the MicroPower/Pascal target system, 
executing processes are synchronized by semaphores. 

Semaphores are global data structures that are manipulated by two or 
more processes. They act like flags that are raised and lowered by 
processes to signal their progress to other processes. You create 
semaphores in a source program to guide the response of the entire 
application to external, real-time events. Semaphores can halt a proc­
ess until another process sends it a signal to proceed. This lets two 
processes share access to common data, without corrupting the data. 

Application Development Tools 
MicroPower/Pascal utility programs construct your application and 
load it into the target system memory. They accept as input object 
modules of compiled or assembled source code contained in files. 
The utilities also accept object modules from various module libraries. 
They link these object modules with a customized kernel to create the 
application. 

Modular architecture makes it easy to test, debug, update, and ex-

119 



Micropower/Pascal 

pand your applications. It also reduces memory requirements for ap­
plications without sacrificing the ability to build large, versatile, 4 
Mbyte configurations. 

The MicroPower/Pa~cal utilities include: 

•MERGE 

• RELOC 

• MIB 
• DLLOAD 

• COPYB 

MERGE accepts multiple object modules containing compiled or as­
sembled source code and data as input. It automatically combines 
program sections (p-sects) with identical names from all input object 
modules. MERGE also uses the symbol tables created in each object 
module during compilation to resolve intermodule references. For ev­
ery reference to a declared EXTERNAL name, MERGE looks for a 
declared GLOBAL definition in the other object modules. Undefined 
symbols are flagged. 

The first component of the merged object module which MERGE out­
puts is the kernel of basic services required to support your 
processes. To make a relocatable kernel, MERGE must have configu­
ration information (which you supply in a separate object module) and 
the system libraries of object modules. 

RELOC is the utility program that assigns addresses to the entities 
within a merged object module. It produces a process image module 
with one base address. This base address is later assigned to be the 
module's correct location within the application's memory range. With 
RELOC, you can directly specify the virtual base addresses of different 
parts of the application. RELOC also separates p-sects according to 
their Read-Only or Read/Write attributes, and modifies the code sec­
tions to execute properly at their assigned addresses. 

The Memory Image Builder (MIB) utility creates the executable appli­
cation by placing all its components into one structure, called the 
memory image. This memory image includes each merged, relocated 
piece of the application with intermodule references resolved. The 
MIB utility lets you control the placement of pieces of the application in 
memory. 

DLLOAD lets you load your application into target system RAM over a 
communication link (DLV11 serial line interface) from the develop­
ment system. When you run DLLOAD at the host, the bootstrap 
program in the target LSl-11 's ROM begins running as soon as you 

120 



Micropower!Pascal 

power up the target. The target system boots the application from the 
host into its memory and begins to run it. 

COPYB generates a bootable media volume for either TU58 tape car­
tridge or RX02 floppy diskette. You can then use this volume to load 
your application into the target system. 

There is another way to load an application into the target system: you 
can burn the application program into a ROM chip and install the chip 
into the target. (However, ROM programming hardware and software 
are not included with this product.) 

MicroPower/Pascal Compiler 
The MicroPower/Pascal compiler runs on any PDP-11 with the RT-11 
XM operating system and at least 128 Kbytes of memory. This compil­
er contains the most sophisticated global optimization available. It 
inspects all program modules for redundancy and produces code that 
executes almost as quickly as MACRO for a ROM and/or RAM envi­
ronment. It significantly reduces the size and improves the speed of 
application programs by efficiently using the LSl-11 'S general pur­
pose registers and hardware stack capabilities. The compiler provides 
for separate module compilation and efficient interfacing to MACR0-
11 assembly language routines. High-level language access to the 
modular run-time routines (kernel) means more efficient, and less 
expensive, system level software development with little need for 
MACRO coding. You need not get involved in intricate machine in­
structions, nor must you learn separate operating system functions. 

Compliance with International Standards Organization (ISO) specifi­
cations allows using the source code from other ISO compilers with 
full compatibility. 

An extensive library of Object Time System (OTS) routines provides 
the compiler with run-time support for Pascal functions including utili­
ty and 1/0 routines and arithmetic routines such as floating-point sup­
port. 

Symbolic Debugger 
The Symbolic Debugger program, PASDBG, residing in the host PDP-
11, down-line loads and remotely controls the execution of 
applications in the target processor. This is accomplished without ex­
pensive in-circuit emulation hardware. Not only does it allow full pro­
gram debugging in the original Pascal language terms, but it also 
enables the programmer to view the target's kernel and concurrently 
executing processes. Debugging the application in the actual target 
system assures a more reliable final product. 

121 



Micropower/Pasca/ 

Although PASDBG resides in the host, debugging an application pro­
gram requires some additional code in the target. Building an applica­
tion for debugging adds about 800 words to the size of the application. 
Setting the debug switch also increases the size of the code generated 
when compiling a module. However, you only set the debug switch on 
modules you are debugging. You add undebugged modules to the 
application a few at a time, debugging each, then rebuilding without 
debugger support. In this manner, the entire application is built from 
small, debugged pieces. 

RT-11 Operating System 
The MicroPower/Pascal software package includes a subset of the 
RT-11 operating system for use on the host development system. The 
following RT-11 components are included: 

• Extended memory (XM) monitor 

• SYSMAC 

•HELP 
• KED, EDIT, and K52 

• MACR0-11 
• LINKER (LINK) 

• Peripheral Interchange Programs (PIP) 

• Resource (RESOURC) 

• Librarian (LIBR) 

• Device Utility Program (DUP) 

• Directory (DIR) 

• Queue Packages 

•DUMP 
• SRCCOM and BINCOM 

• FILEX 

•FORMAT 

• RT-11 documentation subset 

MACR0-11 Source Libraries 
The MACR0-11 interface to the run-time system is included in the 
form of a macro library, which is useful in developing MACR0-11 
programs. Using MACR0-11 modules lets you handle the most time­
critical applications. 

Device and File Support 
MicroPower/Pascal provides precompiled driver processes that act 
as interfaces between your application and various DIGITAL devices 

122 



Micropower!Pasca/ 

(such as the RX02 floppy disk drive). You can also include a file system 
process and modules that allow you to create, access and maintain 
data on target mass storage devices in a format compatible with RT-
11. Because driver processes and the file system are both fully 
accessible from your Pascal source code, 110 operations are much 
easier. 

OPERATING ENVIRONMENT 

Host Development System 
The RT-11 XM operating system comes with the MicroPower/Pascal 
software package. This package will run on any of the following PDP-
11 or LSl-11 systems: 

• 11 /23, 11/23-PLUS,11/24,11/34,11/35,11/40,11/44,11 /45, 
11/50,11/55,or11/60 

• EIS, KT-11 memory management unit and line frequency clock 
• Minimum of 128 Kbytes of memory 

• 18-bit memory management 
• Two serial-line interfaces of the DL 11 or DLV11 family (with cables) 

for the console terminal and the host/target communication line 

• Console terminal: VT52, VT100, LA34, LA36, LA120 
• Two random-access, mass-storage device drives (RK06, RK07, 

RL01, RL02, or RX02), at least one of which must be either RL02 or 
RX02 

Note: MicroPower/Pascal is shipped as files on one of two 
media-RL02 disk or RX02 floppy diskette. 

Target Environment 
MicroPower/Pascal applications will run on any of the following Q-bus 
processors: 

• LSl-11, 11/2, 11/23 
• PDP-11 /03, 11 /23, 11 /23-PLUS 
• FALCON SBC-11/21 (KXT11-A2 chips required during debugging) 

A serial line interface is required to use PASDBG. 

Maximum memory on a PDP-11 /23 or LSl-11 /23 with 22-bit address­
ing is 4 Mbytes. Minimum memory on the FALCON, PDP-11/03, or 
LSl-11 /2 is 8 Kbytes. 

The following devices are supported in the target environment: 

• MRV11-C PROM board 

• MSV11-D, L (parity and 22-bit address support), and P RAMs 

• MXV11-A RAM with ROM option 

123 



Micropower/Pascal 

• DLV11-E, F, and J asynchronous communications interfaces 

• DPV11 synchronous communications interface 

• DRV11, DRV11-J, and FALCON SBC11 /21 parallel 110 devices 

• TU58 DECtape II, RX02 floppy disks 

• Line clocks for the LSl-11, LSl-11 /2, LSl-11 /23, and FALCON SBC 
11/21 

124 



125 



126 



CHAPTER 9 

PROGRAMMING LANGUAGES 

INTRODUCTION TO PROGRAMMING LANGUAGES 
Doing useful work on a computer depends upon the ease with which 
you can communicate your information and requests to it. Different 
circumstances determine different methods of programming, and 
broad categories of problems are often treated in different ways. This 
accounts for the growth of many different programming languages. 

Some languages, such as FORTRAN, were originally intended for 
processing enormous amounts of numerical data through complicat­
ed formulas at high speeds. Others, such as COBOL, were developed 
for commercial applications in which there wasn't so much computing, 
but there was more data management. And still others, like BASIC, 
were invented to provide easy, non-threatening access to students, so 
that they could quickly use the computer for problem solving, rather 
than worry about the intricacies of programming. 

While some of these distinctions have become blurred over time, it is 
still true that certain kinds of problems are best attacked through 
certain kinds of languages, and the chapters that follow attempt to 
show the special strengths of each DIGITAL-supplied language in 
satisfying specific application needs. 

The American National Standards Institute (ANSI) defines standards 
for the various computer languages typically found in the United 
States. Such a standard is designated with a year suffix-e.g., FOR­
TRAN-77 is the most recent FORTRAN standard-and a programmer 
familiar with that language can tell immediately what general function­
alities will be available in the language. Of course, computer lan­
guages are not frozen, and over time new standards develop, based 
upon need, either in industry or government, and pressure from users 
of the language. Consequently, most vendors offer standard lan­
guages with enhancements, so that they meet both government 
requirements and the needs of the programmers. Subsequent chap­
ters explain DIGIT Al's enhancements to ANSI standards. 

One of the great benefits of standardization is that each operating 
system takes care of the implementation of any particular language. 
For example, the actual realization of FORTRAN in the RSTS/E system 
might operate much differently from that in the RSX-11 M system, but 
the programmer need not really know how those differences are man­
aged. He or she need only spend a day or two learning system-specific 
characteristics, and then can program with complete ease. 

127 



Introduction to Programming Languages 

There are three types of language processors in programming. Essen­
tially what they all do is to take the words and symbols typed by the 
programmer at a terminal and translate them into a series of binary 
codes that the computer can actually understand. When the computer 
is to output information, the processors take the binary codes and 
return them to a format that can be read and understood by people. 

The first type of processor is called an assembler. It is a one-for-one 
translator: one coded instruction becomes one instruction to the com­
puter. The assembler-level language on PDP-11 computers is called 
MACR0-11. It is slower to code and compile MACR0-11 programs 
than just about any other language, but in return the programmer gets 
considerably more control over the actual operation of a program than 
is possible under other languages. 

Compilers and interpreters are the other two types of language 
processors. As opposed to the assembler-level language, these proc­
ess what are always called the higher level languages, the languages 
with such familiar names as FORTRAN, BASIC, and COBOL. In addi­
tion to such industry-wide languages, DIGITAL-specific languages 
such as DATATRIEVE-11 and DIBOL are also higher level languages. 

A fundamental difference between compilers and assemblers is the 
number of machine instructions that may be represented by a single 
language instruction. It may be, for example, that a single FORTRAN 
command is compiled into twenty or more machine instructions. Of 
course, this speeds up the coding process immensely, but it also 
means that the programmer must relinquish some of the control over 
program execution and environment that would be available to the 
MACR0-11 program. 

Most compilers do not translate the source code which the program­
mer has written until they read the program all the way through at least 
once. Several passes over the source code are used to produce what 
is called object code, the form of binary formats that the machine can 
actually execute. Such multipass compilation allows 'the compiler to 
eliminate unnecessary code-called code optimization-and to per­
form many levels of error checking. A virtue of error checking at com­
pilation time is that far fewer errors are actually encountered in the 
execution (running) of the program. Thus, programmer time is more 
efficiently spent and the computer resources are better used. 

Interpreters translate source statements immediately into a format 
that the machine can interpret. The option for code optimization is lost, 
but this is balanced by the ability to execute programs on a statement­
by-statement basis. Program development is enhanced in an interpre­
ter, since there is an immediate response from the computer to the 

128 



Introduction to Programming Languages 

programmer in the case of detected errors. An entire program need 
not be read to find one level of error. In many situations, this is 
preferable to waiting until the entire program is compiled. 

Most operating systems offered by DIGITAL can support a variety of 
language processors. It is unlikely that a particular installation would 
require all the compilers and interpreters available from DIGIT AL, but 
it might have several, such as FORTRAN, DATATRIEVE, and BASIC. 
Language processors are usually layered products, purchased in ad­
dition to the operating system. For example, COBOL is a layered prod­
uct for IAS, but BASIC is bundled with RSTS/E. 

In many cases, application programs need not be written exclusively in 
a single language. For example, it may happen that a specific opera­
tion, such as the management of 1/0 devices (by 1/0 drivers) is best 
accomplished by programs written in assembler-level language, while 
the rest of the program is coded in COBOL. The driver may be coded 
in its most efficient format and later incorporated into the compiled 
COBOL object code. The complex details of this type of operation are 
handled by the operating system and the language processors, and 
are transparent to the programmer. 

Many of the actual routines required by an application program are 
not written into the program. When the BASIC programmer asks the 
machine to extract a square root, for example, he might simply use the 
SQRT instruction in his program. Within the Object Time System 
(OTS) of the BASIC compiler is a mathematical functions library, 
which holds a square root algorithm. The SQRT instruction causes the 
algorithm to be called up into the program and to run on the appropri­
ate variable. Since there are many cases in which it is simpler to 
include commonly used routines in programs than to rewrite them 
from scratch, each compiler is equipped with an Object Time System, 
filled with frequently required routines and functions. As the compila­
tion process occurs, the locations of needed OTS routines are flagged. 
At the end of compilation, when the object code is ready, the appropri­
ate routines from the OTS are inserted in the program at the flags. An 
interpreted language may also have an OTS, but it is more likely to be 
called at runtime, rather than at compile-time. 

You may insert your own common routines into the OTS, so that your 
efficiency in coding is improved. Drivers for your specific devices, or 
algorithms for often-run procedures, can be programmed once, and 
then just called as necessary. 

Program development refers to the operation of writihg and checking 
workable computer programs. Obviously, there is more to it than 
merely writing the language code, but the more sophisticated the op-

129 



Introduction to Programming Languages 

erating system, the easier will be the use of the facilities available for 
program development. In computer jargon, the more features the op­
erating system provides to simplify the programmer's task, the 
"friendlier" the program development environment. PDP-11 comput­
ers provide a very friendly environment under most operating sys­
tems. The history of software improvement is often the history of mak­
ing the full functionality of the computer more and more readily avail­
able to users. 

Some of the facilities of the program development environment are 
listed and described below. Not every operating system provides all 
such facilities; the chart (Table 1-2, Chapter 1) provides a comparison 
across the operating systems provided for use with the PDP-11 family. 

First among the program development utilities are the editors. An 
editor allows the addition, deletion, movement, and concatenation of 
text. It also provides capabilities for searching a text for specific 
character strings, for replacement of one string by another, and for 
most of the other text manipulation operations one might want to 
perform in any writing. In developing a program, the editors provide 
an easy way to create a file and to correct and alter programs, either 
for experimenting with new ideas or for changing programs as re­
quired by new application circumstances or by the discovery of errors. 

The debugger is another utility of extreme usefulness to program­
mers. It vastly simplifies the task of checking a program for logical 
errors by letting the programmer "step through" the program and 
follow what is happening to the values of chosen variables at each step 
of the way. Both the debugger and the editor are usually used by the 
programmer right at a video or hardcopy terminal, in an interactive 
session. 

The linker is the crucial utility that takes object files written (created) 
by the language processors and prepares them for execution. It does 
this in various ways for various machines, operating systems, and 
languages. Basically, the linker adjusts addresses of the modules that 
make up the program-both those modules in the source code and 
those drawn from the OTS and its libraries; the linker "resolves" ad­
dresses-that is, it arranges the modules in such a way that there is no 
inconsistency in the references among modules and within the seg­
ments of the program. The linker also organizes, defines, and resolves 
certain kinds of symbols used internally in the compilation and 
execution of computer programs. 

The librarian is, just as the name implies, the utility that manages the 
creation, modification, and maintenance of libraries in the operating 
system. 

130 



Introduction to Programming Languages 

Modularity is the term used to describe the division of a program into 
blocks of logically related material. Very large programs might be 
modularized in order to compile efficiently, or to run efficiently. Com­
plex programs might be broken into modules for program develop­
ment: code optimization, debugging. An advantage of modularized 
programs in this latter situation is that modules can be computed 
individually before linking, so that an error requires only the recompi­
lation of one module rather than the whole program. 

131 



132 



ASSEMBLY LANGUAGE FEATURES 

CHAPTER 10 

PDP-11 MACRO 

The assembly level language for PDP-11 operating systems is called 
PDP-11 MACRO (or sometimes, MACR0-11). It is a fast, compact 
assembly language that gives the programmer complete control over 
the environment in which a program is developed and executes. 

PDP-11 MACRO processes source programs written in the MACRO 
assembly language and produces a relocatable object module and 
optional assembly listing. MACRO is included with the RT-11, RSX-
11 M, RSX-11 M-PLUS, IAS, RSTS/E, and VAX/VMS operating sys­
tems. 

In addition, it provides for: 

• Global symbols for linking separately assembled object programs. 
(This promotes modular program design.) 

• Device and file name specifications for input and output files. 

• User-defined macros. 

• Comprehensive system macro library. 

• Program sectioning directives. 

• Conditional assembly directives. 

• Assembly and listing control functions at program and command 
string levels. 

• Alphabetized, formatted symbol table listing. 

• Default error listing on command output device. 

The MACRO assembler for all operating systems also features: 

• Global arithmetic, global assignment operator, global label opera­
tor, and default global declarations. 

• Multiple macro libraries with fast access structure. 

• Predefined (default) register definitions. 

PROGRAM STRUCTURE 
A MACRO source program is composed of a sequence of source 
coding lines, each of which contains a single assembly language state­
ment followed by a statement terminator, such as a carriage return. 
The assembler processes source statements sequentially, generating 
binary machine instructions and data words or performing assembly-

133 



MACRO 

time operations (such as macro expansions) for each statement. 

A statement can contain up to four fields, identified by order of 
appearance and by specified terminating characters. The general 
statement is: 

label: operator operand(s) ;comments 

of which the label and comment fields are optional. Operator and 
operand fields are interdependent: either can be be omitted depend­
ing on the contents of the other. 

A label is a unique user-defined symbol which is assigned the value of 
the current location counter and entered into the user-defined symbol 
table. It provides a symbolic means of referring to a specific location 
within a program. The value of the label can be either absolute (fixed in 
memory independent of the position of the program) or relocatable 
(not fixed in memory), depending on whether the location counter 
value is currently absolute or relocatable. 

Comments do not affect assembly processing or program execution, 
but are useful in source listings for later analysis, documentation, or 
debugging purposes. 

An operator field can contain a macro call, a PDP-11 instruction mne­
monic, or an assembler directive. When the operator is a macro call, 
the assembler inserts the appropriate code during assembly to ex­
pand the macro; for an instruction mnemonic, it specifies the instruc­
tion to be generated and the action to be performed on any operands 
which follow; and when the operator is an assembler directive, it 
specifies a certain function or action to be performed during assem­
bly. Operands can be expressions, numbers, symbolic arguments, or 
macro arguments. 

Some statements have no operands: 

BPT 

Some statements have one operand: 

CLR RO 

while others have two: 

MOV #344,R2 

Symbols and Symbol Definitions 
Three types of symbols can be defined for use within MACRO source 
programs: permanent symbols, user-defined symbols, and macro 
symbols. Correspondingly, MACRO maintains three types of symbol 
t'lbles: the Permanent Symbol Table (PST), the User Symbol Table 
(UST), and the Macro Symbol Table (MST). 

134 



MACRO 

Permanent symbols consist of the PDP-11 instruction mnemonics and 
assembler directives. Also, the assembler has REGISTER names pre­
defined for RO to RS, SP (stack pointer), and PC (program counter). 
The PST contains all the permanent symbols automatically recognized 
by MACRO; it is part of the assembler itself. Since these symbols are 
permanent, they do not have to be defined by the user in the source 
program. 

User-defined symbols are those given as labels or defined by direct 
assignment, while macro symbols are those symbols used as macro 
names. The UST and MST are constructed during assembly by adding 
the symbols to the UST or MST as they are encountered. To determine 
the value of the symbol, the assembler searches the three symbol 
tables; for opcodes, the search order is MST, PST, UST; for operands, 
the search order is UST, PST. 

The search orders allow redefinition of Permanent Symbol Table en­
tries as user-defined or macro symbols, so that the same name can be 
assigned to both a macro and a label. 

User-defined symbols are either internal or external (global) to a 
source program module. An internal symbol definition is limited to the 
module in which it appears. A global symbol can be defined in one 
source program module and referenced within another. 

Internal symbols are temporary definitions, resolved by the assem­
bler. Global symbols are preserved in the object module and are not 
resolved until the object modules are linked into an executable pro­
gram. With some exceptions, all user-defined symbols are internal 
unless explicitly defined as global. 

A direct assignment statement with the general format symbol = 
expression associates a symbol with a value. 

By using two equal signs instead of one, the symbol is declared a 
global symbol. Expressions are combinations of terms that are joined 
together by binary operators-+, -, •, +, & (logical AND), ! (logical 
OR)-and that reduce to a 16-bit value. 

Local symbols are specially formatted internal symbols used as la­
bels within a given range of source code, called a local symbol block. 
They have the form n$, where n is a decimal integer between 1 and 
65,535, inclusive, for example, 1$, 27$, 59$, 104$. 

Local symbols provide a convenient means of generating labels to be 
referenced only within a local symbol block. Their use reduces the 
possibility of entry point symbols with multiple definitions. Because a 
local symt:>vl may not be referenced from other source program mod­
ules or even from outside its local symbol block, local symbols of the 

135 



MACRO 

same name can appear in other local symbol blocks without conflict. 

Directives 
A program statement can contain one of three different operators: a 
macro call, a PDP, 11 instruction mnemonic, or an assembler direc" 
tive. MACRO includes directives for: 

• Listing control 

• Function specification 

• Data storage 

• Radix and numeric usage declarations 

• Location counter control 

• Program termination 

• Program boundaries information 

• Program sectioning 

• Global symbol definition 

• Conditional assembly 

• Macro definition 

• Macro attributes 

• Macro message control 

• Repeat block definition 

• Macro libraries 

The six numbered sections that follow illustrate some of the capabili" 
ties of the various classes of directives. 

1. Listing Control Directives 
Several directives are provided to control the content, format, and 
pagination of all listing output generated during assembly. Facilities 
also exist for creating object module names and other identification 
information in the listing output. 

The listing control options can also be specified at assembly time 
through options included in the listing file specification in the 
command string issued to the MACRO assembler. The use of these 
options overrides all corresponding listing control directives in the 
source program. 

When no listing file is specified, any errors encountered in the source 
program are printed on the terminal from which MACRO was initiated. 

136 



MACRO 

2. Function Directives 
Function control options are available through the .ENABL and 
.DSABL directives. These directives are included in a source program 
to invoke or inhibit certain MACRO functions and operations inciden­
tal to the assembly process. They include: 

• Produce absolute binary output. 

• Assemble all relative addresses as absolute addresses. This func­
tion is useful during the debugging phase of program development. 

• Cause source columns 73 and greater (to the end of the line) to be 
treated as comment. The most common use of this feature is to 
permit sequence numbers in card columns 73-80. 

• Truncate or round floating point literals. 

• Accept lower case ASCII input instead of converting it to upper case. 

• Enable a local symbol block to cross program section boundaries. 

• Inhibit binary output. 

• Inhibit the normal default register definitions. 

• Treat all undefined symbol references as default global references. 

3. Conditional Assembly Directives 
Conditional assembly directives enable the programmer to include or 
exclude blocks of source code during the assembly process, based on 
the evaluation of stated condition tests within the body of the program. 
This allows a programmer to generate several variations of a program 
from the same source. 

The programmer can define a conditional assembly block of code, 
and within that block, issue subconditional directives. Subconditional 
directives indicate.: 

• The assembly of an alternate body of code when the condition of the 
block tests false. 

• The assembly of a non-contiguous body of code within the condi­
tional assembly block, depending on the result of the conditional 
test on entering the block. 

• The unconditional assembly of a body of code within a conditional 
assembly block. 

Conditional assembly directives can be nested to 16 levels. 

4. Macro Definitions and Repeat Blocks 
In assembly language programming, it is often convenient and desira­
ble to generate a recurring coding sequence by invoking a single 

137 



MACRO 

statement within the program. In order to do this, the desired coding 
sequence is first established with dummy arguments as a macro 
definition. Once a macro has been defined, a single statement calling 
the macro by name with a list of real arguments (replacing the corre­
sponding dummy arguments in the macro definition) generates the 
desired coding sequence or macro expansion. 

MACRO can automatically create unique local symbols. This automat­
ic facility is invoked on each call of a macro whose definition contains 
a dummy argument preceded by the question mark (?)character, if a 
real argument of the macro call is either null or missing. 

An indefinite repeat block is a structure that is very similar to a macro 
definition. Such a structure is essentially a macro definition that has 
only one dummy argument. At each expansion of the indefinite repeat 
range, this dummy argument is replaced with successive elements of 
a specified real argument list. An indefinite repeat block directive and 
its associated repeat range are coded inline within the source pro­
gram. This type of macro definition does not require calling the macro 
by name. 

An indefinite repeat block can appear within or outside of another 
macro definition, indefinite repeat block, or repeat block. 

5. Macro Calls and Structured Macro Libraries 
All macro definitions must occur prior to their references within the 
user program. MACRO provides a selection mechanism for the pro­
gram mer to indicate in advance those system macro definitions 
required in the program. (System macros include the monitor pro­
grammed requests or executive directives available with each operat­
ing system.) 

The .MCALL directive is used to specify the names of all the macro 
definitions not defined in the current program but used in the pro­
gram. When this directive is encountered, MACRO searches the sys­
tem macro library file to find the requested definition. 

MACRO extends this macro call facility by enabling the programmer to 
retrieve macros from libraries of user-defined macros. The .MCALL 
directive provides the means to access both user-defined and system 
macro libraries during assembly. 

The MACRO assembler assumes that the system macro library and 
user-defined macro libraries are constructed in a special direct access 
format to retrieve macro definitions quickly. These structured macro 
libraries are created by the Librarian utility program. 

Each library file contains an index of the macro definitions it contains. 

138 



MACRO 

When an .MCALL directive is encountered in the source program, 
MACRO searches the user macro library(s) for the named macro 
definitions, and, if necessary, continues the search with the system 
macro library. Because each macro library contains an index of all of 
its entries, MACRO searches only the index in each library to find 
where the macro definition is stored. 

6. Program Sectioning Directives 
The .PSECT directive is used to declare names for program sections 
and to establish certain program section attributes. These program 
section attributes are used when the program is linked into an execu­
table load module or task. 

A program can consist of an absolute program section, an unnamed 
relocatable program section, and up to 254 named relocatable or 
absolute program sections. Absolute program sections serve to link 
the program with fixed memory locations such as interrupt vectors 
and the peripheral device register addresses, as well as to define 
values of constants. 

The relocatable program sections are not fixed at an absolute ad­
dress. Instead, symbols within a relocatable section are defined rela­
tive to the start of that section. The programmer specifies the overall 
ordering of relocatable .PSECTS, but the task builder (or linker) re­
solves the final addresses of the .PSECTS according to their 
attributes. 

By maintaining separate location counters for each program section, 
MACRO allows the user to create data structures which are not physi­
cally contiguous within the program, but which can be linked contigu­
ously following assembly. 

The programmer can save the current .PSECT context with a .SAVE 
directive, and later restore that context with a .RESTORE directive. 

The .PSECT directive allows the user to exercise absolute control over 
the memory allocation of a program at taskbuild time, since any pro­
gram attributes established through this directive are passed to the 
Taskbuilder. For example, if a programmer is writing programs for a 
multiuser environment, a program section containing pure code (in­
structions only) or a program section containing impure code (data 
only) can be explicitly declared through the .PSECT directive. Further­
more, these program sections can be explicitly declared as read-only 
code, qualifying them for use as protected, reentrant programs. In 
addition, program sections exhibiting the global attribute can be 
explicitly allocated in a task's overlay structure by the user at taskbuild 
time. The advantages gained through sectioning programs in this 

139 



MACRO 

manner therefore relate primarily to control of memory allocation, pro­
gram modularity, and more effective partitioning of memory. 

The .PSECT directive allows the user to define the following program 
section attributes: 

• Access - Two types of access can be permitted to the program 
section: read-only or read/write. RSX-11 M-PLUS and IAS support 
read-only access by setting hardware protection for the program 
section. 

• Contents - A program section can contain either instructions or 
data. This attribute allows the Taskbuilder to differentiate global 
symbols that are program entry-point instructions from those that 
are data values. 

• Scope - The scope of the program section can be global or local. 
In building single-segment programs, the scope of the program has 
no meaning, because the total memory allocation for the program 
will go into the root segment of the task. The global or local attribute 
is significant only in the case of overlays. If an object module con­
tains a local program section, then the storage allocation for that 
module will occur within the segment in which the module resides. 
Many modules can reference this same program section, and the 
memory allocation for each module is either concatenated or over­
laid within the segment, depending on the argument of the program 
section defining its allocation requirements (see below). If an object 
module contains a global program section, the memory area alloca­
tions to this program section are collected across segment 
boundaries, and the allocation of memory for that section will go into 
the segment nearest the root in which the first memory allocation to 
this program section appeared. 

• Relocatabllity - A program section can be absolute or relocatable. 
When a program section is declared to be absolute, the program 
section requires no relocation. The program section is assembled 
and loaded, starting at absolute virtual address 0. When the pro­
gram section is declared to be relocatable, the Taskbuilder calcu­
lates a relocation bias and adds to it all refer:ences within the pro­
gram section. 

• Allocation Requirements - The program section can be concaten­
ated or overlaid. When concatenated, all memory allocations to the 
program section are to be concatenated with other references to 
this same program section in order to determine the total memory 
allocation requirements for this program section. When overlaid, all 
memory allocations to the program section are to be overlaid. Thus, 

140 



MACRO 

the total allocation requirement for the program section is equal to 
the largest individual allocation request for this program section. 

ASSEMBLER OPERATION 
The MACRO assembler can accept source data from any input device. 
The sources to be included in a single assembly are listed in the 
command string from left to right in the order of assembly. The last 
statement in the last source specified is normally the .END statement, 
but if the .END statement is not provided, it is assumed. 

Assembler output consists of the binary object file and an optional 
assembly listing followed by the symbol table listing and a cross 
reference listing. 

MACRO is a two-pass assembler. During pass one, MACRO locates 
and reads all required macros from libraries, builds symbol tables and 
program section tables for the program, and performs a rudimentary 
assembly of each source statement. During pass two, MACRO com­
pletes the assembly, writes out an object file, and generates an assem­
bly and symbol table listing for the program. 

The object module MACRO produces must be processed by the oper­
ating system's linker utility program (called Linker or Taskbuilder) to 
create an executable program. The linker joins separately assembled 
object modules into a single load module (or task image). The linker 
fixes (makes absolute) the values of the external or relocatable 
symbols in the object module. 

To enable the linker to fix the value of an expression, MACRO passes it 
certain directives and parameters. In the case of the relocatable 
expressions in the object module, the linker adds the base of the 
associated relocatable program section to the value of the relocatable 
expression provided by MACRO. In the case of external expression 
values, the linker determines the value of the external term in the 
expression (since the external expression must be defined in at least 
one of the other object modules being linked together) and then adds 
it to the absolute portion of the external expression, as provided by 
MACRO. 

In summary, an executable program image can be constructed from 
one or more source modules, which can be assembled either sepa­
rately or together. The resultant object module(s) must be linked 
together using the linker utility. Figure 9-1 illustrates the processing 
steps required to produce an executable program from several 
sources stored as files. 

141 



MACRO 

ASSEMBLER ENVIRONMENTS 
MACRO is the assembler included in the RT-11, RSX-11 M, RSX-11 M­
PLUS, IAS, and VAX/VMS operating systems. IAS MACRO is identical 
to the MACRO assembler used in the RSX-11 systems. In addition, 
MACRO is included in the FORTRAN IV package option available for 
the RSTS/E system. MACRO is included with the VAX/VMS operating 
systems to assemble compatibility mode programs. 

SOURCE 
FILE IA 

SOURCE 
FILE lB 

SOURCE 
FILE 3 

ASSEMBLY • 
LISTING AND 

SYMBOL TABLE 

ASSEMBLER -----

OBJECT 
FILE 1 

OBJECT 
FILE 2 

~---~ 

EXECUTABLE 
LOAD MODULE 

(TASK IMAGE) 

\ 
ASSEMBLY • OBJECT [LOAD M::::J 

LISTING AND FILE 3 
SYMBOl TABLE 

---~~ ~.CAN ALSO INCLUDE A CROSS-REFERENCE ~ , SYMBOL TABLE USTING ON RT 11 MACRO 

ASSEMBLY * 
LISTING AND 

SYMBOL TABLE 

••CAN ALSO INCLUDE A GLOBAL CROSS­
REFERENCE USTING !N RSX-11 TASK BUILDER 

Figure 10-1 MACRO Assembly Procedure 

142 



143 



144 



INTRODUCTION 

CHAPTER 11 

FORTRAN 

FORTRAN was developed in the mid-1950s specifically to handle 
scientific applications in which large amounts of computation were to 
be done. Since then, it has evolved into one of the most widely used 
languages, with applications in realtime control (scientific experi­
ments, industrial processes, data collection and reduction), computa­
tion (structural analysis, simulation and modeling, electronic design, 
heavy computing data reduction), and general data processing 
(maintenance of data bases and report generation). Because of its 
traditional predominance in certain markets and its long, stable histo­
ry, FORTRAN continues to be taught to most people specializing in 
computer and information science in college. 

DIGITAL offers two versions of FORTRAN for use on its PDP-11 com­
puters. The first, FORTRAN IV, is based on the ANSI (X3.9-1966) FOR­
TRAN standard. This FORTRAN language works on all PDP-11 operat­
ing systems and is characterized by high compilation speed and 
efficiency in small memory environments. 

The second FORTRAN offering, PDP-11 FORTRAN-77 conforms to 
the most recent ANSI FORTRAN standard, X3.9-1978, (commonly re­
ferred to as FORTRAN-77) at the subset language level. Earlier ver­
sions of PDP-11 FORTRAN-77 were called PDP-11 FORTRAN-IV­
PLUS and were based on the 1966 ANSI standard. PDP-11 FORTRAN-
77 runs under the RSX-11 M, RSX-11 M-PLUS, IAS, and RSTS/E oper­
ating systems. It produces machine code highly optimized for execu­
tion on a PDP-11 with a floating point processor. PDP-11 FORTRAN-
77 features optimization techniques, which improve memory efficiency 
and increase program execution speed. 

ELEMENTS COMMON TO PDP-11 FORTRAN IV AND PDP-11 
FORTRAN-77 

Specifications and Standards 
PDP-11 FORTRAN IV is based on the previous specification for ANSI 
FORTRAN, X3.9-1966. The following are enhancements to this stan­
dard: 

• Array Subscripts - Any arithmetic expression can be used as an 
array subscript. If the value of the expression is not an integer, it is 
converted to integer type. 

• Array Dimensions - Arrays can have up to seven dimensions. 

145 



FORTRAN 

• Alphanumeric Literals '."""" Strings of characters bounded by apo­
strophes can be used in place of Hollerith constants. 

• Mixed-Mode Expressions - Mixed-mode expressions can contain 
any data type, including complex and byte. 

• End of Line Comments - Any FORTRAN statement can be fol­
lowed, in the same line, by a comment that begins with an exclama­
tion point. 

• Debugging Statements - Statements that are included in a 
program for debugging purposes can be so designated by the letter 
D in column 1. Those statements are compiled only when the asso­
ciated compiler command string option switch is set. They are treat­
ed as comments otherwise. 

• Read/Write End-of-File or Error Condition Transfer -The specifi­
cations END=n and ERR=n (where n Is a statement number) can be 
included in any READ or WRITE statement to transfer control to the 
specified statement upon detection of an end-of-file or error condi­
tion. The ERR=n option is also permitted in the ENCODE and 
DECODE statements, allowing program control of data format er­
rors. 

• General Expressions in 1/0 Lists - General expressions are permit­
ted in 1/0 lists of WRITE, TYPE, and PRINT statements. 

• General Expression DO and GO TO Parameters - General expres­
sions are permitted for the initial value, increment, and limit param­
eters in the DO statement, and as the control parameter in the 
computed GO TO statement. 

• DO Increment Parameter - The value of the DO statement incre­
ment parameter can be negative. 

• Optional Statement Label List - The statement label list in an as­
signed GO TO is optional. 

• Override Field Width Specifications - Undersized input data fields 
can contain external field separators to override the FORMAT field 
width specifications for those fields (called "short field termination"), 
permitting free-format input from terminals. 

• Default FORMAT Widths - The FORTRAN IV programmer may 
specify input or output formatting by type and default width and 
precision values will be supplied. 

• Additional 1/0 Statements: 

File Control and Attribute Definition 
OPEN 
CLOSE 

List-Directed (Free Format) u = Logical Unit Number 
READ (u,*) 

146 



FORTRAN 

WRITE(u,*) 
TYPE* 
ACCEPT* 
PRINT* 

Device-Oriented 1/0 
ACCEPT 
TYPE 
PRINT 

Memory-to-Memory Formatting 
ENCODE 
DECODE 

Unformatted Direct Access 1/0 
DEFINE FILE 
READ(u'r) 
WRITE (u'r) 
FIND (u'r) 

u = logical unit number 
r = record number 

The unformatted direct access 1/0 facility allows the FORTRAN pro­
grammer to read and write files written in any format. 

• Logical Operations on INTEGER Data - The logical operators 
.AND., .OR., .NOT.! .XOR., and .EQV. may be applied to integer data 
to perform bit masking and manipulation. 

• Additional Data Type - The byte data type (keyword LOGICAL *1 or 
BYTE) is useful for storing small integer values as well as for storing 
and manipulating character information. 

• IMPLICIT Declaration - IMPLICIT redefines the implied data type of 
symbolic names. 

PDP-11 FORTRAN IV FUNCTIONS AND FEATURES 
Any FORTRAN program consists of two kinds of FORTRAN state­
ments (executable and nonexecutable) and optional comments. Exe­
cutable statements describe the action of the program. Nonexecutable 
statements describe the data arrangement and characteristics, and 
provide editing and data conversion information. 

FORTRAN comprises assignment statements, control statements, 1/0 
statements, FORMAT statements, and specification statements. Of 
these, FORMAT and specification statements are nonexecutable. Ta­
ble 10-1 summarizes the FORTRAN language components common to 
both PDP-11 FORTRAN IV and PDP-11 FORTRAN-77. 

The PDP-11 FORTRAN IV compiler and Object Time System are avail­
able as an optional language processing system for the RT-11, RSTS, 
IAS, RSX, and VMS operating systems. The compiler accepts source 
programs written in the FORTRAN IV language and produces an ob­
ject file which must be linked prior to execution. 

147 



FORTRAN 

Table 11-1 PDP-11 FORTRAN IV and PDP-11 FORTRAN-77 
Common Language Components 

Expression Operators 
Type Operator 

Arithmetic 

Relational 

Logical 

•• exponentiation 
• multiplication 
I division 
+,-addition, 
subtraction, unary 
plus and minus 

.GT. greater than 

.GE. greater than or 
equal to 
.LT. less than 
.LE. less than or 
equal to 
.EQ. equal to 
.NQ. not equal to 
(FORTRAN IV) 
.NE. not equal to 
(FORTRAN-77) 

.NOT .. NOT.A is true 
if and only if A is 
false 

.AND.A.AND.Bis 
true if and only if A 
and B are both true 

.OR. A.OR.B is true 
if and only if A or B 
or both are true 

.EQV. A.EQV.B is 
true if and only if ei­
ther A and Bare 
both true or A and B 
are both false 

.XOR.A.XOR.Bis 
true if and only if A 
is true and B is false 
or B is true and A is 
false 

148 

Operates On 

arithmetic or logical 
constants, variables 
and expressions 

arithmetic or logical 
constants, variables 
and expressions (all 
relational operators 
have equal priority) 

logical or integer 
constants, variables 
and expressions 



FORTRAN 

Assignment Statements 

variable= 
expression 

ASSIGN-TO 

Arithmetic/Logical Assignment: 
The value of the arithmetic or logical expression 
is assigned to the variable. 

The ASSIGN statement is used to associate a 
statement label with an integer variable. The vari­
able can then be used as a transfer destination in 
a subsequent assigned GO TO statement in the 
same program unit. 

Control Statements 

GOTO 

IF 

Unconditional 

Computed 

Assigned 

Arithmetic 

Logical 

Transfers control to the same 
statement every time it is exe­
cuted. 

Permits a choice of transfer 
destinations, based on a value 
of an expression within the 
statement. 

Transfers control to a statement 
label that is represented by a 
variable. Because the relation­
ship between the variable and a 
specific statement label must be 
established by an ASSIGN 
statement, the transfer destina­
tion can be changed, depending 
upon which ASSIGN statement 
was most recently executed. 

Transfers control to a statement 
depending on the value of an 
arithmetic expression. Used for 
conditional control transfers. 

Executes a statement if the test 
of a logical expression is true. 

Block Conditionally executes blocks 
(or groups) of statements (FOR­
TRAN-77 only). 

DO Causes the statements in its range to be repeat-

149 



CONTINUE 

CALL 

RETURN 

PAUSE 

STOP 

END 

OPEN 

FORTRAN 

edly executed a specified number of times. The 
range of the DO begins with the statement follow­
ing the DO and ends with a specified terminal 
statement. The number of iterations is deter­
mined by the values for the initial, terminal, and 
increment parameters. 

Passes control to the next executable statement. 
Used primarily as the terminal statement of a DO 
loop when that loop would otherwise end with a 
GO TO, arithmetic IF, or other prohibited control 
statement. 

Executes a SUBROUTINE subprogram or other 
external procedure and passes it actual 
arguments to replace the dummy arguments in 
the subprogram. 

Returns control from a subprogram to the calling 
program unit. 

Temporarily suspends execution and displays a 
message on the terminal. 

Terminates program execution and returns con­
trol to the operating system. Prints an optional 
message on the terminal. 

Marks the end of a program unit. In a main pro­
gram, if control reaches the END statement, a 
CALL EXIT is implicitly executed. In a subpro­
gram, a RETURN statement is implicitly executed. 

Associates an existing file with a logical unit, or 
creates a new file and associates it with a logical 
unit. In addition, the statement can contain speci­
fications for file attributes that direct the creation 
or subsequent processing. The attributes include 
specifying: the file name, the method of access 
(direct, sequential or append), protection (read­
only or read/write), form (formatted, unformat­
ted), record size, block allocation or extension, 
whether the file can be shared, and disposition 
(whether the file is to be deleted or saved when 
closed). In addition, the OPEN statement can be 
modified by an ERR keyword which specifies the 
statement to which control is transferred if an er­
ror is detected. 

150 



CLOSE 

FORTRAN 

Disassociates a file from a logical unit. Disposition 
attributes specified in the OPEN statement can be 
modified. For example, a file opened as a file to 
be deleted can be saved, or a file opened to be 
saved can be deleted. 

Input/Output Statements 

READ Formatted Reads at least one logical 
record from the specified unit 
according to the given format 
specifications, and assigns val-
ues to the elements in a list. 

Unformatted Reads one logical record from 
the specified unit, assigning the 
input values to the variables in a 
list. 

Direct Access Reads the specified logical re-
cord from the specified unit and 
assigns the input values to the 
variables in a list. 

List-directed Reads data from the specified 
unit, converts it into internal for-
mat, and assigns the input val-
ues to the elements of the 1/0 
list, converting the value to the 
data type of the element if 
necessary. 

Error Control Optional elements in the READ 
statement allow control transfer 
on error conditions. If an end-
of-file condition is detected and 
the END option is specified, ex-
ecution continues at a given 
statement. If a recoverable 1/0 
error occurs and the ERR option 
is specified, execution contin-
ues at a given statement. 

WRITE Formatted Writes one or more logical re-
cords containing the values of 
the variables in a list onto the 

151 



ACCEPT 

TYPE 

PRINT 

DEFINE FILE 

REWIND 

BACKSPACE 

END FILE 

Unformatted 

Direct Access 

List-directed 

Error Control 

FORTRAN 

specified unit in the given for­
mat. 

Writes one logical record con­
taining the values of the 
variables in the list onto the 
specified unit. 

Writes one logical record con­
taining the values of the vari­
ables in the list into the speci­
fied record of the given unit. 

Writes the elements of the 1/0 
list to the specified unit, trans­
lating and editing each value 
according to the data type of the 
value. 

Optional elements in the WRITE 
statement allow control transfer 
on error conditions. If an 1/0 er­
ror occurs and the ERR option 
is specified, execution contin­
ues at the given statement. 

Identical to a formatted or list-directed READ 
statement, except that input comes from a logical 
unit normally connected to the terminal keyboard. 

Identical to a formatted or list-directed WRITE ex­
cept that output is directed to a logical unit nor­
mally connected to the terminal printer. 

Same as a TYPE statement, except that output is 
directed to a logical unit normally connected to 
the lineprinter. 

Defines the record structure of a direct access 
file: the logical unit number, the number of fixed­
length records in the file, the length of a single 
record, and the pointer to the next record. 

The given logical unit is repositioned to the begin­
ning of the currently open file. 

The currently open file on the given logical unit is 
backspaced one record. 

An end-of-file record is written on the file open on 

152 



FIND 

ENCODE 

DECODE 

Format Statements 

FORMAT 

FORTRAN 

the given logical unit. 

Positions the direct access file on the given logi­
cal unit to the specified record and sets the 
associated variable. 

Writes the elements in the 1/0 list into a memory 
buffer, translating the data into ASCII format. The 
ERR option allows control transfer to a given 
statement if an error condition is detected. 

Reads the elements in the 1/0 list from a memory 
buffer, translating the data from ASCII format into 
internal binary format. The ERR option allows 
control transfer to a given statement if an error is 
detected. 

Describes the format in which one or more re­
cords are to be transmitted. The format descrip­
tors include integer and octal, logical, real, double 
precision, complex, literal and editing. Real, dou­
ble precision and complex formats can be scaled. 

Specification Statements 

IMPLICIT 

type var1, 
var2, ... ,varn 

DIMENSION 

Overrides the implied data type of symbolic 
names, in which all names that begin with the let­
ters I, J, K, L, M, or N are presumed to be INTEG­
ER values, and all names beginning with any 
another letter are assumed to be REAL values, 
unless otherwise specified. IMPLICIT allows the 
programmer to define the initial letters for implied 
data types. If a variable is not given an explicit 
type, and its name begins with a letter defined in 
an IMPLICIT statement, its default type is that de­
fined by the IMPLICIT statement. 

Type Declaration: The given variable names are 
assigned the specified data type in the program 
unit. Type is one of INTEGER*2, INTEGER*4, 
REAL *4, REAL *8, DOUBLE PRECISION, COM­
PLEX*8, LOGICAL *4, LOGICAL *1, or BYTE. 

Specifies the number of dimensions in an array 
and the number of elements in each dimension. 

153 



COMMON 

EQUIVALENCE 

EXTERNAL 

DATA 

PROGRAM 

BLOCK DATA 

FORTRAN 

Reserves one or more contiguous blocks of sto­
rage space under the specified name to contain 
the variables associated with the block name. 

Declares two or more variable names in the same 
program unit to be associated with the same sto­
rage location. 

Permits the use of external procedures (func­
tions, subroutines and FORTRAN library 
functions) as arguments to other subprograms. 

Assigns initial values to variables, arrays, and ar­
ray elements prior to program execution. 

Assigns a symbolic name to a main program unit. 
If present, it is the first statement in the main pro­
gram. 

Begins a special type of program unit that de­
clares common blocks and defines data in com­
mon blocks. 

User-Written Subprograms 

name (var1, var2, 
... ) = expression 

FUNCTION 

SUBROUTINE 

Arithmetic Statement Function: Creates a user­
defined function having the variables as dummy 
arguments. When referenced, the expression is 
evaluated using the actual arguments in the 
function call. 

Begins a FUNCTION subprogram, indicating the 
program name and any dummy variable names. 
An optional type specification can be included. 

Begins a SUBROUTINE subprogram, indicating 
the program name and any dummy variable 
names. 

FORTRAN Library Functions 

ABS(X) Real absolute value 

IABS(X) 

DABS{X) 

CABS(Z) 

FLOAT(I) 

Integer absolute value 

Double Precision absolute value 

Complex to Real, absolute value 

Integer to Real conversion 

154 



IFIX(X) 

SNGL(X) 

DBLE(X) 

REAL(Z) 

AIMAG(Z) 

CMPLX(X,Y) 

AINT(X) 

INT(X) 

IDINT(X) 

AMOD(X,Y) 

MOD(l,J) 

DMOD(l,J) 

AMAXO(l,J, ... ) 

AMAX1(X,Y, ... ) 

MAXO(l,J, ... ) 

MAX1(X,Y, ... )· 

DMAX1(X,Y, ... ) 

AMINO(l,J, ... ) 

AMIN1(X,Y, ... ) 

MINO(l,J, ... ) 

MIN1(X,Y, ... ) 

DMIN1(X,Y, ... ) 

SIGN(X,Y) 

ISIGN(l,J) 

DSIGN(X,Y) 

DIM(X,Y) 

IDIM(l,J) 

EXP(X) 

DEXP(X) 

CEXP(Z) 

FORTRAN 

Real to Integer conversion 

Double to Real conversion 

Real to Double conversion 

Complex to Real conversion 

Complex to Real conversion 

Real to Complex conversion 

Real to Real truncation 

Real to Integer conversion 

Double to Integer conversion 

Real remainder 

Integer remainder 

Double Precision remainder 

Real maximum from Integer list 

Real maximum from Real list 

Integer maximum from Integer list 

Integer maximum from Real list 

Double maximum from Double list 

Real minimum of Integer list 

Real minimum of Real list 

Integer minimum of Integer list 

Integer minimum of Real list 

Double minimum from Double list 

Real transfer of sign 

Integer transfer of sign 

Double Precision transfer of sign 

Real positive difference 

Integer positive difference 

e raised to the X power (X is Real) 

e raised to the X power (Xis Double) 

e raised to the Z power (Z is Complex) 

155 



ALOG(X) 

ALOG10(X) 

DLOG(X) 

DLOG10(X) 

CLOG(Z) 

SQRT(X) 

DSQRT(X) 

CSQRT(Z) 

SIN(X) 

DSIN(X) 

CSIN(Z) 

COS(X) 

DCOS(X) 

CCOS(Z) 

TANH(X) 

ATAN(X) 

DATAN(X) 

ATAN2(X,Y) 

DATAN2(X,Y) 

CONJG(Z) 

RAN(l,J) 

FORTRAN 

Returns the natural log of X (Xis Real) 

Returns the log base 1 O of X (X is Real) 

Returns the natural log of X (Xis Double) 

Returns the log base 1 O of X (X is Double) 

Returns the natural log of Z (Z is Complex) 

Square root of Real argument 

Square root of Double Precision argument 

Square root of Complex argument 

Real sine 

Double Precision sine 

Complex sine 

Real cosine 

Double Precision cosine 

Complex cosine 

Hyperbolic tangent 

Real arctangent 

Double Precision arctangent 

Real arctangent of (X/Y) 

Double Precision arctangent of (X/Y) 

Complex conjugate 

Returns a random number between O and 1 

The PDP-11 FORTRAN IV compiler is characterized by extremely rap­
id compilation rates, yet it also performs well in small environments. 
For example, on an RT-11 system with as little as 16 Kbytes of memo­
ry, FORTRAN IV can compile programs of up to 450 lines. On an RT-11 
system with 56 Kbytes, FORTRAN IV can compile programs 
containing as many as 2200 lines. 

Despite its small size requirements and high compilation rate, FOR­
TRAN IV provides a high level of automatic object program optimiza­
tion. The compiler performs redundant expression elimination, con­
stant expression folding, branch structure optimization, and several 
types of subscripting optimizations. 

156 



FORTRAN 

FORTRAN IV has no statement-ordering requirements; therefore, de­
clarations can appear anywhere within the source program. Terminal 
format input (using the tab character to delimit field) makes program 
preparation easier. 

In order to allow larger FORTRAN programs, FORTRAN IV can 
allocate array storage outside a program's logical address space. 
Such arrays· are called virtual arrays and can contain any data type, 
but they may also require operating system support of memory man­
agement directives. 

PDP-11 FORTRAN IV COMPILER OPERATION 
The PDP-11 FORTRAN IV compiler accepts a source written in the 
FORTRAN language as input and produces an object file and a listing 
file as output. The object file must subsequently be processed by the 
operating system's linker program (for example, Linker or Taskbuild­
er) to produce an executable program. 

PDP-11 COMMAND STRING SPECIFICATION OPTIONS 
In the input/output file specification command string issued to the 
FORTRAN IV compiler to request program compilation, a programmer 
can specify switch parameter options, some of which are: 

Specify Listing Options 
The user can request a number of listing options. By default, the user 
is supplied with diagnostics (if any), a source program listing, and the 
storage map. In addition, the user can request a generated code list­
ing, or can combine any of the listing options in a single listing. The 
generated code listing contains a symbolic representation of the ob­
ject code generated by the compiler, including a location offset from 
the base of the program unit, the symbolic Object Time System (OTS) 
routine names, and routine arguments. The code generated for each 
statement is labeled with the same internal sequence number that 
appears in the source program listing, for easy cross reference. 

Selectively Compile Debugging Statement Lines 
The user can request the compiler to include in the compilation those 
lines with a D in column one. These statements allow the inclusion of 
programmer-selected debugging aids (see below). 

Code Generation Options 
The compiler can generate in-line code which directly supports FIS, 
EIS, EAE or threaded code for machines without the additional 
arithmetic hardware. 

157 



FORTRAN 

Include or Suppress Internal Sequence Numbers 
Suppressing internal sequence number accounting reduces program 
storage requirements for generated code and slightly increases exe­
cution time, but disables line number information during traceback. 

Allocate Two Words for Default Length of Integer Variables 
Normally, single storage words will be the default allocation for integer 
variables not given an explicit length specification (i.e., INTEGER*2 or 
INTEGER*4). Only one word is used for computation. You can request 
that the default allocation be two storage words. 

Enable/Disable Vectoring of Arrays 
Array vectoring is a process which decreases the time necessary to 
reference elements of a multidimensional array by using some addi­
tional memory to store array accessing information. Where size is a 
more critical factor than speed, you can disable the vectoring of all 
arrays. If-arrays are vectored, it is so noted in the storage map listing. 

Enable/Disable Compiler Warning Diagnostics 
Warning diagnostics report conditions which are not fatal error condi­
tions, but which can be potentially dangerous at execution time, or 
which may present compatibility problems with other FORTRAN com­
pilers running on the operating systems. For example, a warning 
message is generated if a variable name exceeds six characters in 
length. This is potentially dangerous because another variable name 
may have the same first six characters. Warning diagnostics are nor­
mally enabled, but the user can suppress their inclusion in the diag­
nostics listing. 

PDP-11 FORTRAN IV INTERNAL OPERATION AND STRUCTURE 
Instead of using temporary files to process source programs, the FOR­
TRAN IV compiler performs all its activities in main memory. It reads 
the entire source program once, stores it in memory in a compacted 
format, and processes the compacted code in memory. Since a disk 
device is not used for temporary file operations, compilation speed is 
significantly increased. 

To reduce the memory requirements of such a compilation system, 
the FORTRAN IV compiler employs a multiphase overlaid structure. 
The compiler consists of a large number of overlays. Most of the space 
allocated to the compiler is occupied by the compressed source code. 
The compiler begins by reading in as much of the source program as 
can fit in memory. It then compresses the source code in memory by 
removing blanks and other unnecessary data. It continues to read in 
more source code, compressing it as it goes, until the entire program 
segment fits in memory. 

158 



FORTRAN 

SYMBOL TABLE 
(DYNAMIC) 

(GROWS DOWNWARD) 

f- ______ J _______ 
CURRENT INTERNAL 
FORM OF SOURCE 

PROGRAM 
(DYNAMIC) 

110 BUFFER AREA 

ACTIVE OVERLAY AREA 

ROOT SEGMENT AND 
OVERLAY LOADER 

VECTORS AND SYSTEM 
COMMUNICATION AREA 

HIGH ADDRESSES 

.25K 

MINIMUM 
1.25K WORDS 

.25K WORDS 

.25K WORDS 
LOW ADDRESSES 

Figure 11-1 Compile-Time Memory Map 

Once the source code is compacted into memory, the compiler begins 
processing the internal form of the source code as a whole. Because 
the entire program segment is available to the compiler, FORTRAN IV 
does not require statement ordering restrictions. 

Object Code Generation 
A few executable FORTRAN statements can be translated directly into 
machine instructions. Typical FORTRAN operations, however, require 
long sequences of PDP-11 machine instructions. For example, stan­
dard sequences are needed to locate an element of a 
multidimensional array, initialize an 1/0 operation, or simulate a float­
ing point operation not supported by the hardware configuration. 

The common sequences of PDP-11 machine instructions are con­
tained in a library known as the FORTRAN Object Time System (OTS). 
The FORTRAN IV compiler does not always generate pure machine 
instructions for the FORTRAN source code statements. It simply deter­
mines which combination of appropriate OTS routines is needed to 
implement a FORTRAN program. During the linking process for an 
object program, the linker utility includes the needed OTS routines 
into the load module. During program execution, these routines are 
chained together to effect the desired result. However, in-line code is 
used for improved execution speed for some operations where appro­
priate. 

During compilation, FORTRAN IV performs ten categories of program 
optimization. 

159 



FORTRAN 

Briefly, they are: 

• Compiled FORMAT Statements - FORMAT statements are 
translated into internal form at compile time, increasing execution 
speed and decreasing program size. 

• Array Vectoring - Provides for faster location of array elements in 
multidimensional arrays. 

• Constant Folding - Integer constant expressions are evaluated at 
compile time. 

• Constant Subscript Evaluation - Constant subscript expressions in 
array calculations are evaluated at compile time. 

• Unreachable Code Elimination - Unreachable statements are eli­
minated from the object code. 

• Common Subexpression Elimination - Redundant subexpressions 
whose operands do not change between computations are replaced 
by temporary values calculated only once. 

• Peephole Optimizations - Sequences of operations are replaced 
with shorter and faster equivalent operations. 

• Branch Optimization for Arithmetic and Logical IF - Branch struc­
tures can be sped up and decreased in size. 

• Register Allocation - Register allocation is improved to minimize 
direct memory references for variables. 

• Loop Optimization - Expressions dependent on loop index vari­
ables are replaced with less complex arithmetic operations. 

Libraries 
The FORTRAN programmer can create a library of commonly used 
assembly language and FORTRAN functions and subroutines. The 
operating system's librarian utility provides a library creation and 
modification capability. Library files may be included in the command 
string to the linker utility. The linker recognizes the file as a library file 
and links only those routines in the library that are required in the 
executable program. By default, the linker also automatically searches 
the FORTRAN system library for any other required routines. 

Debugging a FORTRAN Program 
Two debugging facilities are available to the FORTRAN programmer. 
The FORTRAN Object Time System provides a traceback feature for 
fatal runtime errors. This feature locates the actual program unit and 
line number of a runtime error. Immediately following the error mes­
sage, the error handler will list the line number and program unit name 
in which the error occurred. If the program unit is a subroutine or 
function subprogram, the error handler will trace back to the calling 

160 



FORTRAN 

program unit and display the name of that program unit and the line 
number where the call occurred. This process will continue until the 
calling sequence has been traced back to a specific line number in the 
main program. This allows the exact determination of the location of 
an error even if the error occurs in a deeply nested subroutine. 

In addition to the FORTRAN OTS error diagnostics which include the 
traceback feature, there is another debugging tool available. A "D" in 
column one of a FORTRAN statement allows that statement to be 
conditionally compiled. These statements are considered comment 
lines by the compiler unless the appropriate debugging lines switch is 
issued in the compiler command string. In this case, the lines are 
compiled as regular FORTRAN statements. Liberal use of the PAUSE 
statement and selective variable printing can provide the programmer 
with a method of monitoring program execution. This feature allows 
the inclusion of debugging aids that can be compiled in the early 
program testing stages and later eliminated without source program 
modification. 

PDP-11 FORTRAN IV OPERATING ENVIRONMENTS 
Though the compiler operation and facilities under all operating sys­
tems are essentially identical, each operating system provides addi­
tional features particular to the environment. For example, the monitor 
programmed requests or executive directives are usually available as 
a library of FORTRAN-callable routines. 

Under RT-11 
The entire PDP-11 FORTRAN IV language processing system is oper­
ational in 16 Kbytes under the RT-11 SJ, FB, or XM monitors. The RT-
11 System Subroutine Library (SYSLIB) is a collection of FORTRAN­
callable routines that allow a FORTRAN user to utilize various features 
of the RT-11 Foreground/Background (FB) and Single-Job (SJ) moni­
tors. SYSLIB also provides various utility functions, a complete 
character string manipulation package, and 2-word integer support. 
SYSLIB is provided as a library of object modules to be combined with 
FORTRAN programs at link-time. SYSLIB allows the RT-11 FORTRAN 
user to write almost all application programs in FORTRAN with no 
assembly language coding. 

Also available under RT-11 are: 

• A library of FORTRAN-callable graphics routines supporting the 
VT11, GT40, GT42, and GT44 graphics hardware systems. 

• Plotting support for the LV11 electrostatic printer/plotter. 
• Laboratory data acquisition and manipulation routines used in con­

junction with the LPS-11 and AR11 laboratory peripheral hardware. 

161 



FORTRAN 

• The Scientific Subroutine Library, providing FORTRAN-language 
routines for mathematical and statistical applications. 

• Stand-alone program execution. 

Under RSTS/E 
PDP-11 FORTRAN IV operates in interactive or batch mode under the 
RSTS/E monitor. The FORTRAN IV language processing system in­
cludes the FORTRAN IV compiler, the Object Time System (OTS), and 
several utility programs. 

The entire system (including compiler and optimization components) 
is completely functional in an 16 Kbyte user area. A system interface 
occupying 8 Kbytes of memory is shareable among all FORTRAN IV 
users on the system. In addition, the FORTRAN IV system provides 
overlay support for programs and data, allowing extremely large pro­
grams to be run in a small region of memory. 

RSTS/E FORTRAN IV provides assembly language subprogram sup­
port, using the MACRO assembler. Although the assembly language 
subprogram cannot issue any monitor calls, MACRO provides the 
experienced user with a tool to further enhance computational per­
formance. 

Under RSX-11 and IAS 
In RSX-11 M and RSX-11 M-PLUS, the FORTRAN IV compiler runs in a 
minimum partition of 14 Kbytes. If run in a larger partition, it uses the 
extra space for program and symbol table storage. In IAS, the 
compiler task requires 16 Kbytes minimally and can be extended 
when it is installed. As with RSX-11 systems, the additional space 
allows the processing of larger FORTRAN programs. 

An RSX-11 /JAS library consists of object modules. Two types of librar­
ies exist, shared and relocatable. 

Relocatable libraries are stored in files. Object modules from relocata­
ble libraries are built into the task image of each task referencing the 
module. The Taskbuilder is used to include modules from relocatable 
libraries in a task image. When a library specification is encountered in 
the command string, those modules in the library which contain defi­
nitions of any currently undefined global symbols are included in the 
task image. The user can construct relocatable libraries of assembly 
language and FORTRAN routines using the Librarian utility. 

Shared libraries are located in main memory and a single copy of each 
library is used by all referencing tasks. Access to a shared library is 
gained by specifying the name of the library in an option at taskbuild 
time. Shared libraries are built using the taskbuilder. They must con-

162 



FORTRAN 

tain shareable (re-entrant) code. 

Each RSX-11 /IAS system has a system relocatable library. The system 
relocatable library is automatically searched by the Taskbuilder if any 
undefined global references are left after processing all user-specified 
input files. The FORTRAN OTS may be included in the system library 
and hence is loaded automatically with FORTRAN programs. 

The RSX-11 /IAS system library provides FORTRAN-callable forms of 
most executive directives. The FORTRAN programmer can schedule 
the execution of tasks, communicate with concurrently executing 
tasks, and manipulate system resources through these calls. 

Industrial Society of America (ISA) extensions for process 1/0 control 
are available in FORTRAN-callable format under RSX-11 M. Support 
for laboratory and process control peripherals is also included. 

PDP-11 FORTRAN-77 FUNCTIONS AND FEATURES 
The PDP-11 FORTRAN-77 compiler accepts a source program and 
produces a relocatable object module and optionally a listing file as 
output. PDP-11 FORTRAN-77 is designed to minimize the size and 
increase the speed of executable programs. It accomplishes this 
through extensive optimizations such as subexpression elimination, 
peephole optimizations, removal of invariant expressions from DO 
loops, and allocation of processor registers across block IF constructs 
and DO loops. 

The PDP-11 FORTRAN-77 language processor is a high-performance, 
optimizing compiler whose language specifications conform to the 
American National Standard Institute (ANSI) FORTRAN standard 
X3.9-1978 at the subset language level. The FORTRAN-77 compiler 
provides optional, switch-selectable support for programs conforming 
to the previous ANSI FORTRAN standard X3.9-1966. Programs which 
successfully compile using the PDP-11 FORTRAN-77 compiler can be 
compiled using VAX-11 FORTRAN without modification to the source 
code. Programs which successfully compile using PDP-11 FORTRAN­
IV can be compiled using either FORTRAN-77 or VAX FORTRAN by 
setting the /NOF77 switch. 

Full-language FORTRAN-77 Features 
PDP-11 FORTRAN-77 includes the following features of full-language 
FORTRAN as defined by the ANSI FORTRAN standard X3.9-1978: 
• Double precision and complex data types. 
• Function subprograms, including LEN, ICHAR, and INDEX. 

• Exponentiation forms, including double precision. 

• Format edit descriptors, including S, SP, SS, T, TL, and TR. 

163 



FORTRAN 

• Generic function selection based on argument data type for FOR­
TRAN-defined functions. 

• Use of any arithmetic expression as the initial value, increment, or 
final value in a DO statement. 

• Use of a real or double-precision variable as a DO statement control 
variable. 

• CLOSE and OPEN statements. 

• Use of the specification ERR=s in READ or WRITE statements to 
transfer control when an error occurs to the statement specified by 
s. 

• Use of list-directed 1/0 to perform formatted 1/0 without a format 
specification. 

• Use of constants and expressions in the 1/0 lists of WRITE, 
REWRITE, TYPE, and PRINT statements. 

• Specification of lo.wer bounds for array dimensions in array declara­
tors. 

• Use of ENTRY statements in SUBROUTINE and FUNCTION subpro­
grams to define multiple entry points. 

• Use of PARAMETER statements to assign symbolic names to con­
stant values. 

LANGUAGE EXTENSIONS 

DIGITAL-Supplied Enhancements to the FORTRAN-77 Subset 
Standard 
The following language extensions beyond the ANSI FORTRAN stan­
dard X3.9-1978 are included in PDP-11 FORTRAN-77: 

• You can use any arithmetic expression as an array subscript. If the 
expression is not an integer type, it is converted to integer type. 

• Mixed-mode expressions can contain elements of any data type 
except character. 

• The LOGICAL *1 and LOGICAL *2 data types have been added. 

• The IMPLICIT statement redefines the implied data type of symbolic 
names. 

• The following input/output statements have been added: 

ACCEPT 
TYPE 
PRINT 

READ (u'r) 
WRITE (u'r) 
FIND (u'r) 

Device-oriented 1/0 

Unformatted direct-access 1/0 

164 



READ (u'r,fmt) 
WRITE (u'r,fmt) 

DEFINE FILE 

ENCODE 
DECODE 

READ (u,f,key) 
READ (u,key) 

REWRITE 
DELETE 
UNLOCK 

FORTRAN 

Formatted direct-access 1/0 

File control and attribute specification 

Formatted data conversion in memory 

Indexed 1/0 

Record control and update 

• You can include any explanatory comment on the same line as any 
statement. These comments begin with an exclamation point (!). 

• You can include debugging statements in a program by placing the 
letter D in column 1. These statements are compiled only when you 
specify a compiler command qualifier; otherwise, they are treated 
as comments. 

• You can use any arithmetic expression as the control parameter in 
the computed GO TO statement. 

• Virtual arrays provide large data areas outside of normal program 
address space. 

• You can include the specification ERR=s in any OPEN, CLOSE, 
FIND, DELETE, UNLOCK, BACKSPACE, REWIND, or ENDFILE 
statement to transfer control to the statement specified by s when an 
error condition occurs. 

• The INCLUDE statement incorporates FORTRAN statements from a 
separate file into a FORTRAN program during compilation. 

• ENCODE, DECODE statements. The ENCODE and DECODE state­
ments transfer data between variables or arrays in internal storage, 
and translate that data from internal to character form, or from 
character to internal form, according to format specifiers. 

• The INTEGER*4 data type provides a sign bit and 31 data bits. 

• You can use hexadecimal and octal constants in place of any nu­
meric constants. 

• 0 and Z format edit descriptors. 
• You can use character substrings and all the character intrinsic 

functions defined in the full language except CHAR. 

PDP-11 FORTRAN-77 Object Time System (OTS) 
The compiler's Object Time System (OTS) is a library of routines that 

165 



FORTRAN 

are selectively linked with compiler-produced object modules by the 
operating system's taskbuilder, to produce a task ready for execution. 
The PDP-11 FORTRAN-77 OTS contains routines for 1/0 processing, 
task control, error processing, mathematical computation and system 
subroutine access. By selective linking, if a program performs only 
sequential formatted 1/0, none of the direct-access 110 routines is 
included in the task. The OTS is composed of the following routines: 

• Math routines, including the FORTRAN-77 library functions and oth-
er arithmetic routines (e.g., exponentiation routines). 

• Miscellaneous utility routines (e.g. ASSIGN, DATE, ERRSET). 

• Routines that handle FORTRAN-77 input/output. 
• Error-handling routines that process arithmetic errors, 1/0 errors, 

and system errors. 

• Miscellaneous routines required by the compiled code. 

PDP-11 FORTRAN-77 can create either or both of the following object 
time systems: 

• The OTS based on File Control Services (FCS), is a package of 
routines that can handle many file operations transparently to the 
user, and allows sequential and random access to sequentially or­
ganized files. 

• The OTS based on Record Management Services (RMS), uses RMS 
to provide access to sequential, relative, and indexed files. 

PDP-11 FORTRAN-77 Optimizations 
Optimizations are techniques used to increase the execution efficiency 
of an object program. PDP-11 FORTRAN-77 optimizations include: 

• Peephole optimizations: The initial machine instructions generated 
by a FORTRAN program are examined to find operations which can 
be replaced by shorter, faster code sequences. The final code 
generated by the compiler contains these improved code se­
quences. 

• Common subexpression elimination: Often the same subexpression 
appears in more than one computation. If the values of the operands 
of a common subexpression are not changed between computa­
tions, that value can be computed once and substituted wherever 
the subexpression appears. 

• Removal of invariant expressions from DO loops: An algorithm exe­
cutes faster if computations are moved from frequently executed 
program sequences to less frequently executed program se­
quences. In particular, computations within a loop involving only 
constants can be moved outside the loop. 

166 



FORTRAN 

• Allocation of processor registers across block IF constructs and DO 
loops: Wherever possible, frequently referenced variables are 
retained in registers to reduce the number of load and store instruc­
tions executed. Frequently used variables and expressions are also 
assigned to registers across block IF constructs and DO loops. 

• Shareable Code: For the RSX-11 M-PLUS and IAS operating sys­
tems, the compiler produces shared object code as a compile-time 
option. Shared tasks may then be created by using the multiuser­
linker option. This improves memory utilization in multiuser systems 
because many users share one memory-resident task. 

167 



168 



INTRODUCTION 

CHAPTER 12 

THE BASIC LANGUAGE 

BASIC is an acronym for Beginner's All-purpose Symbolic Instruction 
Code. BASIC was developed at Dartmouth College to answer the need 
for an easy-to-learn, conversational programming language accessi­
ble to people who are not computer specialists. Characteristics of the 
BASIC language include simple English words, understandable ab­
breviations, and the familiar symbols for mathematical and logical 
operations. 

BASIC is the most widely implemented and most widely used pro­
gramming language in the world today. DIGITAL's BASICS have al­
ways been in the vanguard of the computer industry, and today, 
DIGIT Al's BASIC implementations are acknowledged as the industry 
leaders. 

BASIC, in its interactive versions, such as BASIC-PLUS and BASIC-
11, gives the novice programmer almost immediate use of the com­
puter, allowing him or her to get results for mathematical requests 
very easily. In addition, with little training the beginner can write and 
run meaningful programs. Interactivity encourages the new user to 
practice and experiment with the language, since there is a quick 
response from the computer telling whether the instruction worked 
and, if not, what went wrong. BASIC also includes powerful capabili­
ties necessary to users who want to do file management, matrix mani­
pulation, editing, and other more advanced computer operations. 

Most of DIGIT Al's versions of BASIC offer the advantages of interac­
tive program development, including powerful statement editing fea­
tures plus HELP and debugging facilities. Their friendly environments 
have made BASIC one of the most popular programming languages in 
commercial and technical applications, as well as in academia. 

PDP-11 BASIC IMPLEMENTATIONS 

BASIC-PLUS-2 
PDP-11 BASIC-PLUS-2 is the most powerful, most advanced BASIC 
language implementation available on PDP-11 systems. As a true 
compiler, BASIC-PLUS-2 significantly improves the performance of 
compute-bound BASIC applications. Fast program execution and a 
variety of advanced programming features make BASIC-PLUS-2 a 
highly productive programming environment and powerful enough for 

169 



The BASIC Language 

a wide variety of applications. BASIC-PLUS-2 is available on the 
RSTS/E, CTS-500, RSX-11M, RSX-11M-PLUS, and IAS operating sys­
tems and is generally a superset of BASIC-PLUS and a subset of VAX-
11 BASIC. This makes BASIC-PLUS-2 applications highly transporta­
ble across a wide variety of DIGIT AL systems. More detailed informa­
tion on BASIC-PLUS-2 is included in the Product Descriptions section 
of this chapter. 

BASIC-PLUS 
BASIC-PLUS was specifically designed for and runs exclusively on 
RSTS/E and CTS-500 as one of many language options. It is included 
with both operating systems. Because of its conversational nature, 
BASIC-PLUS is especially suited to their timesharing environments. 
Experienced programmers can use BASIC-PLUS's advanced features 
and facilities to produce complex and efficient programs. In general, 
BASIC-PLUS provides the following advantages: 

• Programs can be written to conserve memory space and reduce 
execution time. 

• Programs can handle a wide range of data by manipulating charac­
ter strings. 

• Programmers can obtain greater precision than is possible with 
floating-point and integer operands by using arithmetic and numer­
ic string data manipulation. 

It is not surprising that BASIC-PLUS is widely used for sophisticated 
scientific and business applications. Beginning programmers find 
BASIC-PLUS convenient and easy to use. BASIC-PLUS is also widely 
used as an educational tool in installations ranging from elementary 
schools to universities. 

BASIC-11 
BASIC-11 is an easy-to-learn programming language similar to Dart­
mouth standard BASIC. Like Dartmouth BASIC, it is a conversational 
language that uses simple English statements and familiar mathemati­
cal notation. Its immediate response and interactive features allow 
users to develop and debug programs in a minimum of time. It can be 
used for executing large data processing tasks and for performing 
quick, one-time calculations. It also provides advanced techniques for 
intricate data manipulation and efficient problem solution. BASIC-11 
is available on the RT-11, RP, RP/PDT, RSX-11 M, RSX-11 M-PLUS, 
and IAS operating systems. 

FEATURES COMMON TO THE BASIC LANGUAGE 

GENERAL SYNTAX 
A BASIC program is composed of groups of statements containing 

170 



The BASIC Language 

instructions to the computer. Each group begins with a number that 
identifies it as a statement and indicates the order of statement 
execution relative to other lines in the program. Each statement starts 
with an English word specifying the type of operation to be performed. 

More than one statement can be written on a single line when each 
statement after the first is preceded by a backslash. For example: 

10 INPUT A,B,C 

is a single statement line, while 

20 LET X= 11 \PRINT X,Y,Z \IF X=A THEN 10 

is a multiple statement line containing three statements: LET, PRINT, 
and IF. 

BASIC Language Elements 
In addition to real and integer formats, BASIC accepts exponential 
notation. Numeric data can be input in any one or all of these formats. 
BASIC automatically uses the most efficient format for printing a num­
ber, according to its size. It automatically suppresses leading and 
trailing zeros in integer and decimal numbers and formats all expo­
nential numbers. 

It can also process information in the form of strings. A string is a 
sequence of alphabetic, numeric, or special characters treated as a 
unit, either a constant or a variable. 

A string constant is a list of characters enclosed in quotes that can be 
used in such diverse BASIC statements as PRINT, CALL, and CHAIN. 
String constants can also be used to assign a value to a string variable, 
for example, in the LET and INPUT statements, as with: 

30 LET A$ = "HELLO" 

Subscripted variables provide additional computing capabilities for 
dealing with lists, tables, matrices, or any set of related variables. In 
BASIC, variables are allowed either one or two subscripts. For exam­
ple, a list of floating point values might be stored in an array A(I) where 
I goes from 0 to 5: 

A(O), A(1), A(2), A(3), A(4), A(5) 

This allows reference to each of the six elements in the list, and can be 
considered a one-dimensional algebraic matrix. Analogously, you can 
construct two-dimensional arrays by using two subscripts. For exam­
ple: 

B(l,J) 

where I goes from Oto 3 and J goes from Oto 5, defines a 
24-element matrix. 

171 



The BASIC Language 

Any variable name followed by a percent sign (%) indicates an integer 
variable. For example: A%, C7%, C%(5). 

Any variable name followed by a dollar sign ($) character indicates a 
string variable (for example: A$, C7$), while a matrix variable name 
followed by the dollar sign character denotes the string form of that 
variable (for example: V$(n), M2$(n), C$(m,n), G1$(m,n)). 

Variables without% or$ suffixes are considered floating point 
variables; e.g., A, B7, C(I), D(J,K). 

The user can assign values to variables by using a LET statement, by 
entering the value as data in an INPUT statement, or by using a READ 
statement with associated data statements. Values assigned to a vari­
able do not change until the next time a statement that contains a new 
value for that variable is encountered. 

Operators - BASIC performs addition, subtraction, multiplication, 
division and exponentiation. IF-THEN statements have access to a 
variety of relational operators (less than, not equal, greater than or 
equal to, for example). Most operators of both kinds work with strings 
as well as with numerical arguments; for strings, the relational opera­
tors do alphabetic comparisons. 

Statements - The following summary of BASIC statements gives a 
brief explanation of each statement's use. 

CALL 

CHAIN 

CLOSE 

DATA 

DEFFN 

DIM 

END 

Transfers control to a subprogram, optionally 
passes parameters to it, and stores the location of 
the calling program for an eventual return. 

Terminates execution of the program, loads the 
program specified, and begins execution of the 
lowest line number or, when a line number is pre­
sent in the statement, at the specified line num­
ber. 

Closes the file(s) associated with the logical unit 
number(s) and virtual file logical unit number(s). 

Creates a data block for the READ statement. Can 
contain any combination of strings and numbers. 

Defines a user function. 

Reserves space in memory for arrays according 
to the subscripts specified. 

Placed at the physical end of the program toter­
minate execution (optional). 

172 



FOR 

GOSUB 

GOTO 

IF 

INPUT 

KILL 

LET 

NAME AS 

NEXT 

ON GOSUB 

ON GOTO 

OPEN FOR IN­
PUT [OUTPUT] 
AS FILE#n 

OVERLAY 

PRINT 

The BASIC Language 

Sets up a loop to be executed the specified num­
ber of times. 

Unconditionally transfers control to specified iine 
of subroutine. 

Unconditionally transfers control to specified line 
number. 

Conditionally executes the specified statements 
or transfers control to the specified line number. If 
the condition is not satisfied, execution continues 
at the next sequential line. The expressions and 
the relational operator must all be string or all be 
numeric. 

Inputs data from a file or from the user's terminal. 
Variables can be arithmetic or string. 

Deletes the specified file. 

Assigns the value of an expression to the 
specified variable(s). 

Renames the specified file. 

Placed at the end of the FOR loop to return con­
trol to the FOR statement. 

Conditionally transfers control to the subroutine 
at one line number specified in the list. The value 
of the expression determines the line number to 
which control is transferred. 

Conditionally transfers control to one line number 
in the specified list. The value of the expression 
determines the line number to which control is 
transferred. 

Opens a file for input [or output] and associates 
the file with the specified logical unit number or 
channel number. 

Merges the current program with a program seg­
ment stored in a file (BASIC-11 only). 

Prints the values of the specified expressions on 
the terminal or, when specified, to the file associ­
ated with the logical unit expression. The TAB 
function can also be included. 

173 



PRINT USING 

RANDOMIZE 

READ 

REM 

RETURN 

RESTORE 

STOP 

FUNCTIONS 

The BASIC Language 

Generates output formatted according to a format 
string (either numeric or string). 

Causes the random number generator (RND 
function) to produce different random numbers 
every time the program is run. 

Assigns values listed in DATA statements to the 
specified variables. These variables can be nu­
meric or string. 

Contains explanatory comments in a BASIC 
program. 

Terminates a subroutine and returns control to 
the statement following the last executed GOSUB 
statement. 

Resets to the beginning the data pointer. 

Suspends execution of the program. 

BASIC provides a variety of functions to perform mathematical and 
string operations. 

Arithmetic Functions 
ABS Returns the absolute value of an expression 

ATN 

cos 
EXP 

INT 

LOG 

LOG10 

Pl 

RND 

SGN 

SIN 

SOR 

Returns the arc tangent as an angle in radians 

Returns the cosine of an expression in radians 

Returns the value of the constant e (approximate­
ly 2.71828) raised to a given power, which can be 
an expression 

Returns the greatest integer less than or equal to 
a given expression 

Returns the natural logarithm of an expression 

Returns the base 10 logarithm of an expression 

Returns the value of pi (approximately 3.14159) 

Returns a random number between 0 and 1 

Returns value indicating the sign of an expression 

Returns the sine of an expression in radians 

Returns the square root of an expression 

174 



TAB 

SYS 

String Functions 
CHR$ 

TIME$ 

DATE$ 

LEN 

POS 

SEG$/MID 

STR$ 

TRM$ 

VAL 

The BASIC Language 

Causes the terminal print head to tab to column 
number given by an expression (valid only in 
PRINT) 

Special system function calls; controls terminal 
1/0 and performs special functions 

Generates a one-character string whose ASCII 
value is the low-order eight bits of the integer val-
ue of the given expression 

Returns the time as a string 

Returns the date as a string 

Returns the number of characters in the given 
string 

Searches for and returns the position of the first 
occurrence of a substring in a string 

Returns the string of characters in the given posi­
tions in the string 

Returns the string which represents the numeric 
value of the given expression 

Returns the given string without trailing blanks 

Returns the value of the decimal number con­
tained in the given string expression 

User-Defined Functions 
In some programs you may find it necessary to execute the same 
sequence of statements in several different places. BASIC allows you 
to define unique operations or expressions and to call these functions 
in the same way as, for example, the square root or trigonometric 
functions. Each function can be defined once and can appear any­
where in the program. User-defined functions simplify program entry, 
contribute to modular coding, and help to streamline programs. 

BASIC Files 
Data are stored either in sequential files or in random access, virtual 
array files. Data are read by an INPUT statement and written by a 
PRINT statement. Virtual arrays are random-access, disk-resident 
files that are similar to arrays stored in memory. A program can create 
and access virtual arrays just as it accesses memory-resident arrays: 
using array names and subscript values. Because the arrays are 
stored on disk, programmers can manipulate large amounts of data 

175 



The BASIC Language 

without affecting program size. 

BASIC-PLUS-2 also provides the RMS-11 Record Management Sys­
tem. Through RMS-11, BASIC-PLUS-2 provides virtual array, block 
110, terminal-format, sequential, relative, and indexed files. 

Creating, Modifying and Executing BASIC Programs 
A BASIC program is entered in the system using the editing com­
mands. Once the program has been entered, it can be retrieved, list­
ed, modified, or executed using the editing commands. These com­
mands are: 

APPEND 

BYE 

CLEAR 

LENGTH 

LIST 
LISTNH 

NEW 

OLD 

RENAME 

REPLACE 

RESEQ 

Merges the program currently in m_emory with a 
program stored in a file. All lines in the program in 
memory that have duplicate line numbers with the 
program in the file are replaced by the lines from 
the program in the file. 

Terminates the session at the terminal. 

This command is used when a program has been 
executed and then edited. Before rerunning the 
program, the array and string butters are cleared 
to provide more memory space. (interpreters 
only) 

Displays on the terminal the amount of storage 
required by the BASIC-11 program currently in 
memory. This information is useful in determining 
the minimum user area in which a specific pro­
gram can run. 

Types on the terminal the program currently in 
memory. A range of line numbers can be speci­
fied. The "NH" suffix suppresses header printing. 

Clears the user area in memory and assigns a 
specified name to the current program. Used to 
create a new program. 

Clears the user area and reads a program from a 
specified file into the user area in memory. 

Chahges the current program name to a specified 
name. 

Replaces the specified file with the program cur­
rently in memory. 

Allows a user to resequence the line numbers in a 

176 



RUN 
RUN NH 

SAVE 

UNSAVE 

The BASIC Language 

program. (BASIC-11 only) 

If issued with no file specification, executes the 
program currently in memory. If a file specifica­
tion is issued, clears the user area, reads a 
program in from the file, and executes the pro­
gram. The "NH" suffix suppress header printing. 
(not BASIC-PLUS-2/RSX) 

Copies the contents of the user area to a file, lists 
the contents on the lineprinter, or punches the 
contents on paper tape. 

Deletes the specified file. 

In addition to the editing commands, the BASIC system recognizes the 
following special control characters: 

CTRL/C Interrupts program execution and prints the 
READY message 

CTRL/O 

CTRL/U 

RUBOUT 

Enables/disables console output 

Deletes the current line being typed 

Deletes the last character typed 

PRODUCT DESCRIPTIONS 

BASIC-PLUS-2 

Functions and Features 
BASIC-PLUS-2 is the most powerful and advanced BASIC available 
on PDP-11 systems. It combines a powerful implementation language 
compiler with an integrated set of program development utilities. Fast 
program execution is one way BASIC-PLUS-2 helps improve pro­
grammer productivity. A language-integrated 1/0 syntax conveniently 
accesses the RMS-11 record/file handling facilities. CALL statements 
allow modular structuring of programs. MAP statements permit vari­
able-oriented data record access. 

BASIC-PLUS-2 generates "threaded code." Threaded code executes 
at high-speed and produces smaller object programs than conven­
tional inline instruction generation. Smaller programs mean fewer 
overlays are needed, fewer trips to disk are necessary, and throughput 
is higher. 

Language Features 
BASIC-PLUS-2's language features provide greater programmer flex­
ibility, more language statements, more sophisticated data typing and 

177 



The BASIC Language 

manipulation, and, through RMS, easier file access than most other 
BASIC implementations-including DIGIT Al's BASIC-PLUS. 

Data Typing and Declarations 
The type of variable or numeric value in BASIC-PLUS-2 is identified by 
the last character of the variable name or constant. A variable ending 
in a dollar sign indicates a string variable; a variable or numeric con­
stant ending in a percent sign indicates an integer; and a variable or 
numeric constant ending in any other character specifies a floating­
point quantity. 

Variables may be used in BASIC-PLUS-2 programs without being "de­
clared" to the compiler. Scalar (i.e., single-value) variables that are not 
declared are assigned storage from a general dynamic storage area, 
which is available to the current program (or subprogram) only. Unde­
clared arrays have a dimension size of 10, if one-dimensional, or 
10X10, if two-dimensional. The DIMENSION statement is used to de­
clare arrays with a size other than the default. 

COMMON and MAP Statements - The COMMON and MAP declara­
tions are used to declare variables or arrays in a static, naed storage 
area, accessible to other subroutines in the program image. 

The COMMON statement defines a named, shared area of memory 
called a COMMON block, occupied by specified variable values. 
These values can be read or changed by any BASIC-PLUS-2 subpro­
gram with a COMMON block of the same name. The COMMON state­
ment enables a subprogram to pass data to another program or sub­
program. Strings passed in COMMON are fixed length, thus reducing 
string handling overhead. 

COMMON and MAP are similar in function. The MAP statement allo­
cates record buffer space. With MAP, users create a storage area that 
will serve as an 1/0 buffer associated with one or more open 1/0 
channels. The MAP feature is unique to PDP-11 BASIC-PLUS-2 and 
VAX-11 BASIC-no other BASIC implementation provides it. MAP's 
save program space and perform better than other methods of 
declaring variables. Because a MAP statement defines fixed-length 
character strings, it provides maximum control over storage allocation 
and reduces overhead. And, because MAP statements define data 
types at compile time, execution time is faster. 

Functions 
A function performs one or more operations on a specified set of 
arguments and returns a result, either numeric or string, to the calling 
program. BASIC-PLUS-2 provides both library and user-defined func­
tions. 

178 



The BASIC Language 

String Handling Functions - With BASIC-PLUS-2, programmers can 
concatenate and compare strings; convert string and numeric repre­
sentations, and analyze the composition of strings. BASIC-PLUS-2 
includes string functions that: 

• Create a string containing a specified number of identical charac­
ters 

• Locate a substring within a longer string 

• Edit a string: change lowercase to uppercase; change square brack­
ets to parentheses; trim trailing blanks/tabs from a string; delete 
form feeds, rubouts, line feeds, carriage returns, and nulls; trim 
parity, etc. 

• Determine the length of a string 

BASIC-PLUS-2 also supports string functions to perform string-to­
n u meric and numeric-to-string conversions. Unlike many BASIC 
languages, BASIC-PLUS-2 imposes no limit on the size of string val­
ues or string elements of arrays manipulated in memory, other than 
the amount of available memory. 

Mathematical and Numeric String Functions 
BASIC-PLUS-2 provides algebraic, exponential, trigonometric, and 
random number functions. In addition, its string arithmetic functions 
permit greater precision-up to 56 digits-than floating-point calcula­
tions. BASIC-PLUS-2 also includes matric functions for transposing 
and inverting matrices. 

Program Control Constructs 
In a BASIC program, control ordinarily moves from one line to another 
in consecutive line order. Within a line, control moves from statement 
to statement. However, execution can be diverted from the normal 
sequence to another portion of a program or to a subprogram, contin­
ue execution at that point, and then return control to the original pro­
gram. BASIC-PLUS-2 provides a variety of methods to control pro­
gram execution sequence. These include: 

• Subroutine constructs 
• CALL statement for subprograms 

• Statement modifiers 

Programmers can use BASIC-PLUS-2 to write structured programs 
much as they would use structured programming languages such as 
PASCAL. Structured programs are easier to write and maintain than 
conventional programs. 

Subroutines - A subroutine is a block of statements within a program 
that performs an operation and returns program control to the 

179 



The BASIC Language 

statement following the subroutine reference. The BASIC-PLUS-2 
subroutine constructs use GOSUB, ON GOSUB, and RETURN state­
ments. 

Subroutines differ from functions and subprograms. A subroutine is a 
sequence of instructions to be executed several times in the course of 
a program. User-defined functions define a mathematical expression 
to be evaluated once, which then can be used repeatedly throughout a 
program. Subprograms are program units that can be separately 
compiled and then invoked from an external program. 

Subprograms - Separately compiled subprograms can be invoked 
using the CALL statement. Subprograms: 
• Divide large programs into more manageable units 

• Provide a convenient means for executing frequently used pro-
grams 

• Permit control to transfer from one program to another 

• Permit program overlays to conserve memory 

Statement Modifiers - Programmers can use statement modifiers 
for conditional or repetitive execution of a statement. Modifiers save 
program text space and increase readability. Any nondeclarative 
statement in BASIC-PLUS-2 can have one of the five supported state­
ment modifiers: FOR, IF, UNLESS, UNTIL, and WHILE. 

Modifiers cannot stand alone; they must be appended to a statement, 
and all executable BASIC-PLUS-2 statements can be modified. 

When using statement modifiers with the various forms of the IF state­
ment, the following rules apply: 

1. Append statement modifiers to either the THEN clause or the 
ELSE clause of an IF statement. 

2. The statement modifier applies only to the clause it is appended 
to and not to the statement as a whole. 

If there is more than one statement on a line, the modifier applies only 
to the statement immediately preceding it. More than one statement 
modifier can be appended to a single statement. In this case, BASIC­
PLUS-2 processes the modifiers from right to left. 

Matrix Operations 
With the MAT statement, the following operations can be performed 
on arrays: 
1. Assignment 
2. Addition 

3. Subtraction 

180 



The BASIC Language 

4. Multiplication 

5. Transposition 

6. Inversion 

Each MAT operation statement begins with the keyword MAT followed 
by an expression to be evaluated. The value of one array can be 
assigned to another, for example, as in: 

10 MAT A=B 

This statement sets each entry to array A equal to the corresponding 
entry of array B. A is redimensioned to the size of array B. 

Files and Records 
A major distinction between BASIC-PLUS-2 and BASIC-PLUS is ac­
cess to the Record Management Services (RMS) with BASIC-PLUS-2. 
RMS greatly increases the ease with which programmers can develop 
and run complex programs. 

There are four types of files in BASIC-PLUS-2: 

1. RMS record files 

2. Terminal format files 

3. Virtual array files 

4. RSTS native (block 1/0) 

RMS-11 
RMS-11 is a record and file management system that provides a varie­
ty of file organizations and access modes. Through RMS, BASIC­
PLUS-2 provides virtual array, block 1/0, terminal format, sequential, 
relative, and indexed files. This variety means users can choose file 
organizations and access methods best suited to individual applica­
tions. 

BASIC-PLUS-2 has specific language elements for creating a file, de­
scribing the attributes of a file, opening a file, associating a record 
buffer with the file, describing the contents of the record buffer, 
performing input/output operations on a file, and allowing multiuser 
access to a file. With specific language elements for each of these 
operations, a CALL statement is not necessary for performing file 
handling functions. Because programmers can deal with logical re­
cords rather than with physical disk blocks, record and file handling is 
much easier than with other BASIC systems. 

Terminal Format Files 
A terminal format file is a stream of ASCII characters stored in lines of 
various lengths. The end of a line is determined by a line terminator, 

181 



The BASIC Language 

e.g., line feed. BASIC-PLUS-2 stores these ASCII characters, includ­
ing spaces and line terminators, exactly as they would appear on the 
terminal; hence the name terminal format file. 

Terminal format files are sequential access files (i.e., they contain 
records that must be read or written one after another from the begin­
ning of the file). This means that a record cannot be retrieved without 
first retrieving each of the items preceding it in turn. 

BASIC-PLUS-2 maintains a file pointer that keeps track of the user's 
location in the file. To add new items to an existing file without 
overwriting current information, the entire file must be read. This ac­
tion places the file pointer at the end of the file where data can be 
added. 

Virtual Array Files 
A virtual array file, like a terminal format file, is information store.don a 
disk. Once a virtual array file is opened, however, the similarity with 
terminal format files ends. Elements in a virtual array can be accessed 
exactly as elements in an array in memory. 

Virtual array files are random access files. The last element in a virtual 
array can be accessed as quickly as the first. 

When BASIC-PLUS-2 stores data in a virtual array file, it does not 
.convert them to ASCII characters bufrather stores them in the internal 
binary representation. Consequently, there is no loss of precision 
caused by data conversion. 

Transportability Package 
The BASIC Transportability Package provides both documentation 
and software aids for users of DIGITAL BASIC. The software utilities 
and the BASIC Transportability Manual assist users wishing to move 
programs from DIGITAL BASIC implementations to the mainstream 
Digital offerings (i.e., VAX-11 BASIC and PDP-11 BASIC-PLUS-2). The 
documentation also covers both moving existing programs and data 
between operating systems and also writing new applications in BA­
SIC that are transportable across systems. 

BASIC-PLUS 

Functions and Features 
The BASIC-PLUS language interpreter enables you to write programs 
in BASIC-PLUS and to interact with the RSTS/E operating system. 
BASIC-PLUS runs exclusively on RSTS/E. 

BASIC-PLUS incorporates the following features: 

182 



The BASIC Language 

Immediate Mode: Commands can be executed immediately by BAS­
IC-PLUS instead of being stored for later execution. 

Program Editing: An existing program can be edited by adding or 
deleting lines, or renaming the program. The user can combine two 
programs into a single program and request the listing of a program, 
either in whole or in part, on a terminal or lineprinter. 

Program Control and Storage: Facilities are included for storing both 
programs and data on any mass storage device and for retrieving 
them later for use during program execution. 

Documentation and Debugging: The insertion of remarks and com­
ments within a program is easy in this version of BASIC. Program 
debugging is aided by the printing of meaningful diagnostic messages 
that pinpoint errors detected during the program's execution. 

Access to System Peripheral Equipment: The user program is able 
to perform input and output with various equipment, such as disk, 
industry-compatible magnetic tape, lineprinter, and floppy disks. 

Record 1/0: Language extensions provide a means of handling re­
cords composed of fixed-length fields in a highly efficient manner. 

Matrix Computations: A set of commands is available for performing 
matrix 1/0, addition, subtraction, multiplication, inversion, and trans­
position. 

Alphanumeric Strings: Alphanumeric strings can be manipulated 
with the same ease as numeric data. Individual characters within these 
strings are accessible to the user. 

Output Formatting: The PRINT and PRINT-USING statements include 
facilities for tabs and spaces as well as precise specifications of the 
output line formatting and floating dollar sign, asterisk fill, and comma 
insertion in numeric output. 

String Arithmetic: A set of functions performs arithmetic on operands 
that are numeric strings instead of integer or floating point numbers. 
This provides a means of calculating values of higher than normal 
precision, or values that must not be affected by round-off error (at the 
expense of slower execution time). 

Immediate Mode Operations 
Most BASIC-PLUS statements can either be included in a program for 
later execution or be issued online at the terminal as commands that 
are immediately executed by the BASIC language processor. Immedi­
ate mode operation is especially useful in two ways: 1) to perform 
simple calculations that do not justify writing a complete program; 2) 
to debug a program. 

183 



The BASIC Language 

To make program debugging easier, you can insert several STOP 
statements in the program. When the program is run, each STOP 
statement causes the program to halt and identify the line in the pro­
gram at which the program was interrupted. You can then examine the 
current contents of variables and change them if necessary, and then 
continue. 

Data Formats and Operations 
BASIC-PLUS allows you to manipulate string, integer numeric, or flo­
ating point numeric data. BASIC-PLUS permits a user program to 
combine integer variables or integer-valued expressions using a logi­
cal operator to give a bitwise integer result. The logical operators AND, 
OR, NOT, XOR, IMP, and EQV operate on integer data in a bitwise 
manner. 

BASIC-PLUS users working with floating point numbers can increase 
accuracy of operations involving fractional numbers by using the 
scaled arithmetic feature or the string arithmetic functions. Further­
more, users can perform arithmetic operations using a mix of integer 
and floating point numbers. If both operands of an arithmetic opera­
tion are either explicitly integer or explicitly floating point, the system 
automatically generates integer or floating point results. If one oper­
and is an integer and another is floating point, the system converts the 
integer to a floating point representation and generates a floating point 
result. If one operand is an integer and the other operand is a constant 
that can be interpreted either as a floating point number or an integer, 
the system generates an integer result. 

Matrix Manipulation 
Variables of any type are legal in matrices, though any particular ma­
trix must be composed of a single type of data. Explicitly dimensioning 
a matrix establishes the number of elements in each row and column 
and the number of elements in the matrix. (Implicitly dimensioned 
matrices are assumed to have ten elements in each dimension 
referenced.) Explicit dimensioning is done using the DIM statement. 

By using the matrix 1/0 (MAT) statements, you can alter the number of 
elements in each row and the number of columns in the matrix, as long 
as the total number of elements does not exceed the number defined 
when the matrix was dimensioned. The MAT operations do not set row 
zero or column zero, nor do they initialize values in the space allocated 
to the matrix unless specific MAT functions are executed. 

The operations of addition, subtraction, and multiplication (including 
scalar multiplication) can be performed on matrices using the com­
mon BASIC mathematical operators; functions also exist for perform-

184 



The BASIC Language 

ing transposition and inversion of matrices. 

Advanced Statement and Function Features 
BASIC-PLUS extends the BASIC language by including several addi­
tional statements for easier logic flow control, function definitions, and 
faster response in a timesharing environment. The ON-GOTO, ON­
GOSUB, IF-THEN-ELSE, FOR-WHILE, and FOR-UNTIL statements 
provide a variety of conditional controls over looping and subroutine 
execution. The ON ERROR GOTO statement allows the programmer 
to write subroutines that handle error conditions normally considered 
fatal. The program can test a system variable named ERR to deter­
mine which error occurred, and can examine a system variable named 
ERL to determine the line number at which the error occurred. SLEEP 
and WAIT allow program suspension, either for a specified time inter­
val or until input from a terminal is received. The PRINT-USING state­
ment provides special output formatting, including exponential repre­
sentation, dollar signs, commas, trailing minus sign, and asterisk fill. 
The DEF statement allows multiple-line function definitions. Multiple­
line function definitions can be nested, can be written in any data type 
and can contain any variety of argument types. 

Five statement modifiers are available within BASIC-PLUS; IF, 
UNLESS, FOR (including FOR-WHILE and FOR-UNTIL), WHILE and 
UNTIL. These modifiers are appended to program statements to indi­
cate conditional execution of the statement or the creation of implied 
FOR loops. 

RSTS/E also includes several system functions and statements that 
allow program access to system information and conversion routines. 
The program can obtain the current date and time, the CPU time, 
connect time, kilocore ticks, and device time used for the job. It can 
convert a numeric value to a string date or time or vice versa, can 
swap bytes, or convert an integer in RADIX-50 format to a character 
string. 

Table 12-1 Basic Language Features 

B-11/RT-11 BASIC-
MU B-11/ PLUS BASIC-

RT-11 RSTS/E PLUS-2 

Data and Variables 
Integer constants and variables __ _ x x x 
Floating point constants 

and variables ________ _ x x x 
Character string constants 

and variables ________ _ x1 x x 

1 Not in BK. 

185 



The BASIC Language 

Table 12-1 (Cont.) Basic Language Features 

B-11/RT-11 BASIC-
MUB-11 PLUS BASIC-

RT-11 RSTS/E PLUS-2 

Integer arrays, one or two 
dimensions x x x 

Floating point arrays, 
one or two dimensions x x x 

Character string arrays, 
one or two dimensions x1 x x 

Long variable and array names 
(up to 30 characters) x2 x 

Expre_ssions 
+-*I x x x 
** equivalent to x x 
<>=<=>=<> 

for numeric data x x x 
= = (approximately equal) 

for numeric data x x 
relations for strings 

re collating sequence xa x x 
AND, OR, NOT, XOR, IMP, EQV, 

logic operations on integers x x 
string concatenation xa x x 
string arithmetic x x 
Matrix operations + - * x x 
Matrix inversion and transpose x x 
= (Matrix assignment scale, 

matrix scalar multiplication) x x 
Matrix determinant ZER, CON, 

IND, NUL$ x x 
Matrix initialization x x 
string== x x 
LSET/RSET x x 

Functions 
Mathematical (ABS, SIN, COS, 

TAN, COT, SGN, LOG, EXP, ATN, 
INT, RND, SQR) x x x 

Mathematical (ATN2, FIX, MOD, 
MOD%, Pl) x10 x10 

String LEFT, RIGHT, 
MIDdle, LENgth X4,s x x 

String search for substring xs,s x x 

2 In EXTEND mode. 
3 Not in BK. 

LEN, SEG functions. 
Not in BK. 
POS function. 
TIME supported in V2. 
STR$ is NUM$ in BASIC-PLUS. 

10 Pl and FIX only. 

186 



The BASIC Language 

Table 12-1 (Cont.) Basic Language Features 

B-11/RT-11 BASIC-
MU B-11/ PLUS BASIC-

RT-11 RSTS/E PLUS-2 

SPACE$ x x 
TRM$ (delete trailing spaces) xs xs x 
ASCII code of character xs x x 
Character equivalent to 

ASCII code (CHR$) xs x x 
Date and time X7 x x 
Numeric String Conversion 

(VAL and STR$) X5 xs x 
FORMATS x 
Octal and Binary Functions 

(OCT and BIN) x 
Common log (LOG10) x x x 
TAB for print positioning x x x 
Assembly language routines x x11 
TRC 
POS, CCPOS, COMP$, DIF$, 

NUM$, PLACE$, PROD$, QUO$, 
FIAD$, SUM$, XLATE) x11 x x 

Prc·gram Lines 
Maximum line number 32767 32767 32767 
Multiple statement lines x x x 
Multiple line statements x x 
Assignment 
LET x x x 
Word LET optional x x x 
Multiple assignments x x 
MOVE with (MAP) x 
Control 
GOTO x x x 
IF-THEN x x x 
IF-GOTO x x x 
IF-THEN-ELSE x x 
FOR, NEXT x x x 
FOR-WHILE, FOR-UNTIL x x 
WHILE, UNTIL x x 
ON-GOTO x x x 
CHAIN x x x 
OVERLAY x 
Subroutines and Functions 
GOSUB x x x 
RETURN x x x 
ON-GOSUB x x x 

11 Octal only. 
12 DEF in BASIC-PLUS is DEF*. 
,, DEF in BASIC-PLUS is DEF*. 
14 For machine language subroutines only. 

187 



The BASIC Language 

Table 12-1 (Cont.) Basic Language Features 

B-11/RT-11 BASIC-
MUB-11 PLUS BASIC-

RT-11 RSTS/E PLUS-2 

locals in DEF 
DEF, single line x x12 x12 
DEF, multiple line x13 x13 
DEF*, multi-line 

(global arguments) x 
SUB x 
CALL X14 x 
FNEXIT x 
SUB EXIT x 
Program overlay x 

Error Trapping 
ON ERROR GOTO x1s x x 
RESUME x1s x x 
ON ERROR GO BACK x1s,15 x 

MATRIX 1/0 
MAT READ x xr 
MAT INPUT x )"· 

MAT PRINT x ){ 

MATLET x x 
MAT LINPUT x 

Statement Modifiers 
IF, UNLESS, FOR, WHILE, UNTIL x x 

Input/Output 
GET x x 
PUT x x 
FIELD x x 
UNLOCK x x 
DELETE, FIND, RESTORE, 

SCRATCH, UPDATE x 
record/bucket locking x x 
INPUT x x x 
INPUT LINE x x 
LINPUT x x 
PRINT x x x 
PRINT USING x17 x x 

Files 
OPEN x x x 
CLOSE x x x 
NAME-AS x1a x x 
KILL x x x 

15 RESUME O has same function. 
. 16 MU BASIC-11 V02 only . 

" Not in BK. 
1• NAMETO. 
19 Utility program for BASIC-PLUS-2. 

188 



The BASIC Language 

Table 12-1 (Cont.) Basic Language Features 

B-11/RT-11 BASIC-
MU B-11 PLUS BASIC-

RT-11 RSTS/E PLUS-2 

IFEND x 
Virtual Files x x x 
Record Files x x 
READ x x x 
DATA x x x 
NO DATA 
RESTORE x x x 
Specifications 
REM x x x 
DIM x x x 
RANDOMIZE x x x 
COMMON x19 x 
MAP x 
CHANGE string to/from array x x x 
STOP x x x 
END x x x 
END statement optional x x x 
SLEEP x x x 
WAIT x 
Editing 
DELETE x x x 
RENAME x x x 
LIST x x x 
LENGTH x x 
RESEQ x x 
SUB x 
Debugging aid (BREAK, STEP, 

PRINT, LET, TRACE, etc.) x 
Intra-line character editing 
SEQUENCE x 
CROSS REFERENCE x 
Program storage/retrieval 
NEW x x x 
OLD x x x 
SAVE x x x 
REPLACE x x x 
UN SAVE x x x 
APPEND x x x 
COMPILE x x x 
CATALOG x20 x 
COMPILE with switches x 

20 Utility program for MU BASIC-11 V01. 
,, RSTS/E only. 
" MU BASIC-11 V2 only. 
2s Several functions available. 
24 BASIC-11/RT-11 only. 

189 



The BASIC Language 

Table 12-1 (Cont.) Basic Language Features 

8-11/RT-11 BASIC-
MUB-11 PLUS BASIC-

RT-11 RSTS/E PLUS-2 

BUILD x 
INQUIRE x 
Miscellaneous 
KEY x 
TAPE x x 
RUN x x x21 
HELLO x22 x 
BYE x23 x 
SCALE x x 
MON 
SYS x23 x21 )<21 
Immediate Mode x x 
CALL Interface to FMS-11 

(Forms Management System) X24 x 

190 



191 



192 



INTRODUCTION 

CHAPTER 13 

COBOL 

COBOL, the COmmon Business Oriented Language is an industry­
wide data processing language that has been designed specifically for 
business applications such as payroll, inventory control, and accounts 
receivable. 

DIGITAL offers PDP-11 COBOL and COBOL-81, both of "'{hich con­
form to the ANSl-74 COBOL standard (X3.23-1974) and run on sys­
tems ranging in size from the PDP-11 /23 and PDP-11 /24 through the 
PDP-11/70. 

COBOL-81 provides an efficient, entry-level COBOL for small RSTS/E, 
RSX-11M, and RSX-11M-PLUS business systems where small size, 
high performance, ease of use, and low cost are prime considerations. 
By fully utilizing the Commercial Instruction Set (CIS), COBOL-81 pro­
duces compact, high-performance programs. 

COBOL-81 is a subset of VAX-11 COBOL. Programs written for CO­
BOL-81 can be compiled and executed using VAX-11 COBOL without 
source changes, giving customers a migration path from the smallest 
PDP-11 systems to the largest VAX/VMS systems. This compatibility 
is important to the increasing number of customers who combine VAX 
and PDP-11 systems to meet their business needs. 

PDP-11 COBOL is designed for sophisticated applications requiring 
rich functionality. A typical PDP-11 COBOL customer will meet one of 
the following criteria: 

• Have a large library of PDP-11 COBOL programs 

• Or, have applications based on other vendors' high-level ANSl-74 
COBOL 

COBOL-81 
COBOL-81 is one member of DIGITAL's commercial language 
offerings. It is a high-performance compiler that produces compact 
object code. COBOL-81 not only follows very closely Level 1 of the 
ANSl-74 standard, but also implements many items planned for'the 
next release of the ANSI standard, anticipated in 1982. 

COBOL-81 provides features that are aimed at making the COBOL 
programmer and the COBOL programs highly productive on small 
business systems. 

COBOL-81 is designed and implemented to run under the RSTS/E, 

193 



COBOL 

RSX-11 M, and RSX-11 M-PLUS operating systems and on the PDP-
11 /23-PLUS, PDP-11/24's and PDP-11/44's, on which compactness, 
speed, and ease-of-use are prime considerations. 

COBOL-81, a subset of VAX-11 COBOL, has been designed for up­
ward compatibility to VAX-11 COBOL. COBOL-81 is intended for en­
try-level users; it will enable them to begin with a small PDP-11 system 
and grow upward to all PDP-11 and VAX systems. Programs written 
for COBOL-81 can compile and execute using VAX-11 COBOL without 
source changes. 

The hardware configuration supporting COBOL-81 is any valid 
RSTS/E, RSX-11 M, or RSX-11 M-PLUS operating system configura­
tion with a user area of at least 48 Kbytes of memory, if one is using an 
RMS resident library (otherwise 52 Kbytes and at least 3500 free 
blocks of on-line storage on the public disk structure, plus additional 
space for user programs and data files). The RSX-11 M and RSX-11 M­
PLUS configurations must include the Extended Instruction Set. Op­
tional hardware supported includes any mass storage, unit record, or 
terminal device supported by the prequisite software (except TU56 
DECtape and TU58 DECtape II). Also supported are the KEF-11 BB 
Commercial Instruction Set for 11 /24, the KEF11-B Commercial ln­
stru~tion Set for 11 /23-PLUS, and the KE44-A Commercial Instruction 
Set for 11 /44. 

General Characteristics 
COBOL-81 has been designed so that customers can install the soft­
ware without requiring the aid of a DIGITAL software specialist. The 
installation procedure determines a default compiler for the user's 
hardware configuration. If the compiler is acceptable to the user 
(indicated by a yes response to questions from the system), the default 
compiler is then built. If, however, the compiler is not acceptable, the 
system prompts the user with several more questions in order to build 
a customized compiler. 

The compiler performance is impressive; it averages up to 500 lines 
per minute on a PDP-11/44. Because the compiler is designed for the 
Commercial Instruction Set (CIS), it generates compact high-perform­
ance object code, resulting in highly productive applications. This de­
sign also requires less use of time-consuming overlays. 

COBOL-81 is defined as an implementation of ANSI COBOL with sup­
port of the following: 

Language Features 
• Level 1 + Nucleus Module 
• Level 1 Table-Handling Module 

194 



COBOL 

• Level 1 + Sequential 1/0 Module 

• Level 2 Indexed 1/0 Module 

• Level 2- Segmentation Module 

• Level 1 Library Module 

• Level 1 lnterprogram Communication Module 

The COBOL-81 processing Modules are: 

Nucleus This Module contains all the essential lan­
guage elements required for internal 
processing. 

Table Handling Module This Module provides the ability to define 
and manipulate tabular data. 

Sequential 1/0 Module This Module provides the ability to define 
and access sequentially organized files. 

Indexed 110 Module This Module provides the ability to define 
and access indexed sequential files includ­
ing dynamic access. 

Segmentation Module This Module allows for specifying overlay of 
the Procedure Division at object time. 

Library Module The Library Module provides the facility for 
copying predefined COBOL text into the 
source program. 

lnterprogram Com­
munication Module 

Data Types 

This Module provides the functionality of 
communicating with one or more other pro­
grams at runtime. 

COBOL-81 provides the following data types to the COBOL program­
mer: 

• Numeric DISPLAY Data 

195 



COBOL 

Trailing overpunch sign 

Leading overpunch sign 

Tr~iling separate sign 

Leading separate sign 

Unsigned 

Numeric-edited 

• Numeric COMPUTATIONAL Data 

Word fixed binary 

Longword fixed binary 

Quadword fixed binary 

• Packed-Decimal Data (COMPUTATIONAL-3) 

Unsigned packed decimal 

Signed packed decimal 

• Alphanumeric DISPLAY Data 

Alphanumeric 

Alphabetic 

Alphanumeric-edited 

As indicated previously, COBOL-81 supports the COMP-3 (packed­
decimal) data type (two decimal digits per byte). This data type offers 
the following advantages: 

• faster arithmetic operations than standard numeric display data 
type (on a CIS machine) 

• storage (disk and memory) savings 

• compatibility with and migration from other COBOL vendors 

These data types are required over a spectrum of application systems; 
they provide for flexibility in system specification and design and for 
compatibility with both IBM and other COBOL implementations. 

File Organization 
The Sequential 110 Module meets full Level 1 ANSl-74 standards with 
several Level 2 features. The Indexed 110 Module meets full Level 2 
ANSl-74 standards. The Indexed 110 Module statements enable CO­
BOL-81 programs to use RMS multikey record management services 
to process files. These files can be accessed sequentially, randomly, 
and dynamically, using one or more indexed keys to select records. 

196 



COBOL 

Because COBOL-81 uses RMS for 1/0 handling, it is capable of han­
dling files created under other PDP-11 languages, given data type 
compatibility. This multikey facility offers flexibility and power in the 
development of application systems and is a valuable language fea­
ture. 

Additional 1/0 features include variable-length records through 
extensions to the RECORD VARYING clause, the ability to designate 
sequential input files as OPTIONAL, additional FILE STATUS values, 
and an APPLY clause from which to specify file characteristics that are 
not ordinarily available through COBOL language syntax. 

COBOL-81 also supports file sharing, an important feature required 
for interactive applicaton programs. 

Character String Facilities 
COBOL-81 provides INSPECT, STRING, and UNSTRING verbs for 
character-string handling. Using these verbs, programmers can count 
and/or replace embedded character strings and can join together or 
break out separate strings with variou.s delimiters. 

CALL Facility 
The CALL statement enables a COBOL programmer to execute rou­
tines that are external to the source module in which the CALL state­
ment appears. The COBOL-81 compiler produces an object module 
from a single source module. The object module file can be task built 
with other object modules to produce an executable image. Thus, 
COBOL programs can call external routines written in MACR0-11 in 
addition to other COBOL-81 programs. 

The CALL statement facility has been extended by allowing the user to 
pass arguments BY REFERENCE (the default in COBOL) and BY DE­
SCRIPTOR. 

Library Facility 
COBOL-81 supports a full Level 1 ANSl-74 library facility. All frequent­
ly used data descriptions and program text sections can be stored in 
library files that are available to all programs. The library files can be 
copied at compile time to reduce program preparation time and to 
eliminate a common source of error during program development. 

Symbolic Interactive Debugger 
COBOL-81 provides an easy-to-learn, easy-to-use interactive debug­
ger. The COBOL Symbolic Interactive Debugger allows for faster, er­
ror-free program development. Programmers can debug COBOL 
programs by including the debugger when taskbuilding the program, 

197 



COBOL 

rather than having to alter the source program during testing. Pro­
grammers can follow the program flow during the execution of a job. 

The debugger offers the programmer the capability to: 
• Reference data items by their user-defined names 

• Reference section names and paragraph names 
• Examine and modify the value of variables during program execu­

tion 
• Optionally stop and restart programs at the line numbers, section 

name or paragraph name specified by the programmer 
• Gain control at program commencement and at abnormal termina­

tion 

Other Debugging Features 
To make program debugging even easier, the COBOL-81 compiler 
produces source listings with embedded English-language diagnos­
tics. Fully descriptive diagnostic messages are listed at the point of 
error. Many error conditions, varying from simple warnings to fatal 
error detections, are checked at compile time. 

When an error occurs during execution, the type of error, program 
name, and line number of the source statement that caused the error 
are displayed on the user's terminal. If the program is executing with 
an active PERFORM, the line numbers of the active PERFORM 
statements will be produced on the user's terminal. When the error is 
detected during execution of a subprogram, a backwards trace of the 
calling programs that were active at the time of the error is produced 
on the user's terminal. 

The issuance of specific English-like error messages, coupled with the 
traceback facility, offers the user a powerful debugging tool in identify­
ing programming errors. 

Debugging large source programs is further simplified with the option­
al Data Division and Procedure Division allocation maps and with 
modular programming techniques offered by the segmentation and 
interprogram communication facilities. 

Another useful debugging aid is the optional cross-reference listing 
produced by the compiler. This is a listing of all data names, pro­
cedure names, and the source-line numbers of those program lines 
containing the definitions and references. For each name, a list of 
ordered source-line numbers is displayed. Source-line numbers for 
defined items are distinguished from source-line numbers for refer­
enced items. 

198 



COBOL 

Interactive COBOL Execution 
Programmers have the flexibility to design their own screen format. 
COBOL-81 ACCEPT and DISPLAY statements (in the Procedure Divi­
sion) allow for easy terminal-oriented interaction between a COBOL-
81 program and the programmer. 

The ACCEPT statement lets the programmer enter input lines to the 
COBOL program. 

The DISPLAY statement transfers data from a specified literal or data 
item to a programmer's terminal. The statement can be modified by a 
special WITH NO ADVANCING phrase (without automatic appending 
of carriage return and linefeed) that allows the COBOL program to 
control the format of the message sent. The WITH NO ADVANCING 
phrase causes the device to remain positioned on the same line and 
the same character position following the last character displayed. 
This is especially useful when prompting messages are typed on the 
terminal, or when the programmer wishes to control the linefeeds 
within the program. 

COBOL-81 also has the capability to call FMS, the Forms Management 
System. 

Source Program Formats 
The COBOL-81 compiler accepts source programs that are coded 
using either the ANSI-standard or a shorter, easy-to-enter DIGITAL 
terminal format. Terminal format is designed for use with interactive 
text editors. It eliminates the line numbers and identification fields and 
allows the user to enter horizontal tab characters and short text lines. 

Utility Programs 
COBOL-81 provides the REFORMAT and BLDODL utilities to aid the 
user in data processing. 

The REFORMAT utility reads COBOL source programs that are coded 
using DIGITAL terminal format and converts the source statements to 
the ANSI standard format accepted by other COBOL compilers 
throughout the industry. It also has the inverse option to accept pro­
grams written in ANSI standard format and to convert the source 
statements to DIGITAL terminal format. This offers the advantage of 
saving disk space and compile-time processing when a user is initially 
migrating from a non-DIGITAL COBOL system to COBOL-81. 

The BLDODL utility combines skeleton overlay description files gener­
ated by COBOL compilations into a single ODL file for use by the task­
builder. This utility allows the user a simplified way of structuring seg­
mented programs or subprograms into an efficient task image. 

199 



COBOL 

Commercial Instruction Set (CIS) 
COBOL-81 takes full advantage of the CIS to enhance performance in 
data movement and packed-decimal arithmetic. The utilization of CIS 
also provides the added benefit of compact object code, reducing the 
requirement for time-consuming overlays. 

Resident Library Support 
COBOL-81 provides for resident library support that decreases disk 
storage requirements for task images, increases Taskbuilder 
performance, and increases memory availability in a multi-user envi­
ronment. 

PQP-11 COBOL 
PDP-11 COBOL is a high-level language specifically designed to pro­
vide fast direct access data processing for commercial applications. 
Its high computational capabilities complement the performance ca­
pabilities of the RSTS, IAS, RSX-11M, and RSX-11M-PLUS operating 
systems. PDP-11 COBOL can be used to create online terminal appli­
cations or to write batch applications. It is based on the ANSl-74, 
X3.23-1974 standard and includes interactive symbolic debugging 
facilities and packed-decimal data support. On systems with the CIS, 
PDP-11 COBOL takes advantage of the Commercial Instruction Set to 
enhance performance in data movement and packed-decimal 
arithmetic. 

The hardware configuration supporting PDP-11 COBOL is any valid 
RSTS/E, RSX-11 M, RSX-11 M-PLUS, or IAS operating system configu­
ration with a user area of at least 60 Kbytes of memory and at least 
4000 free blocks of on-line disk storage in the public disk structure. 
The RSX-11 M and RSX-11 M-PLUS configurations must include the 
Extended Instruction Set. Optional hardware supported includes any 
storage, unit record, or terminal device supported by the prequisite 
software, except TU56 DECtape and TU58 DECtape II. Also supported 
are the KEF-11 BB Commercial Instruction Set for 11 /24, the KEF~ 11 B 
Commercial Instruction Set for 11 /23-PLUS, and the KE44-A Com­
mercial Instruction Set for 11 /44. 

PDP-11 COBOL is a compiler conforming in language element, repre­
sentation, symbology, and coding format to ANSl-74 COBOL. It in­
cludes: 

Language Features 
• Full Level 2 Nucleus Module 

• Full Level 2 Table-Handling Module 

• Full Level 2 Sequential 1/0 Module 

200 



COBOL 

• Full Level 2 Relative 1/0 Module 

• Full Level 2 Indexed 1/0 Module 

• Level 2- Segmentation Module 

• Level 1 + Library Module (with partial high-level replacing facility) 

• Full Level 1 lnterprogram Communication Module 

The PDP-11 COBOL processing modules are: 

Nucleus This Module contains all the essential 
language elements required for internal 
processing. 

Table Handling Module This Module provides the ability to define 
and manipulate tabular data. 

Sequential 1/0 Module This Module provides the ability to define 
and access sequentially organized files. 

Relative 1/0 Module This Module provides the capability for de­
fining and accessing external files in which 
records are identified by relative record 
numbers. 

Indexed 1/0 Module This Module provides the ability to define 
and access indexed sequential files includ­
ing dynamic access. 

Segmentation Module This Module allows for specifying overlay of 
the Procedure Division at object time. 

Library Module The Library Module has partial high-level 
REPLACING facility for copying predefined 
COBOL text into the source program, 
changing text while copying. 

201 



COBOL 

lnterprogram Com­
munication Module 

This Module provides the functionality of 
communicating with one or more other pro­
grams at runtime. 

Because PDP-11 COBOL uses RMS for 110 handling, it is capable of 
handling files created under other PDP-11 languages, given data-type 
compatibility. 

The nucleus, table handling, sequential 110, relative 110, and indexed 
110 modules of PDP-11 COBOL meet full ANSl-74 high-level stan­
dards. PDP-11 COBOL offers high-level extensions in the Segmenta­
tion and Library modules. 

Data Types 
PDP-11 COBOL supports the standard data types plus most of the 
other common COBOL data types. They include: 

• Numeric DISPLAY Data 

Trailing overpunch sign 

Leading overpunch sign 

Trailing separate sign 

Leading separate sign 

Unsigned 

Numeric-edited 

• Numeric COMPUTATIONAL Data 

Packed decimal 

1-word fixed binary 

2-word fixed binary 

4-word fixed binary 

• Alphanumeric DISPLAY Data 

Alphanumeric 

- Alphabetic 

- Alphanumeric-edited 

These are data types which are required over a spectrum of applica­
tion systems and are provided for flexibility in the specification and 
design of such systems. 

202 



COBOL 

File Organization 
The Sequential 1/0, Relative 1/0, and multikey Indexed 1/0 modules 
meet the full ANSl-74 high-level standards and include all the COBOL 
verbs. The Indexed 1/0 Module statements enable COBOL programs 
to use RMS multikey record management services to process files. 
These files can be accessed sequentially, randomly, and dynamically, 
using one or more indexed keys to select records. This multikey 
facility offers flexibility and power in the development of application 
systems and is a valuable language feature. 

Character String Facilities 
PDP-11 COBOL provides INSPECT, STRING, and UNSTRING verbs 
for character-string handling. Using these verbs, programmers can 
count and/or replace embedded character strings, and can join 
together or break out separate strings with various delimiters. 

CALL Facility 
The CALL statement enables a COBOL programmer to execute rou­
tines that are external to the source module in which the CALL state­
ment appears. The COBOL-81 compiler produces an object module 
from a single source module. The object module file can be task built 
with other object modules to produce an executable image. Thus, 
COBOL programs can call external routines written in MACR0-11 in 
addition to other COBOL-81 programs. 

The CALL statement facility has been extended by allowing the user to 
pass arguments BY REFERENCE (the default in COBOL) and BY DE­
SCRIPTOR. 

Library Facility 
With PDP-11 COBOL, programmers have a full Level 1 ANSl-74 library 
facility that includes high-level extensions (COPY ... REPLACING). Fre­
quently used data descriptions and program text sections can be held 
in library files that are available to all programs. These files can then 
be copied at compile time to reduce program preparation time and to 
eliminate a common source of errors. 

Symbolic Interactive Debugger 
PDP-11 COBOL provides an easy-to-learn, easy-to-use interactive de­
bugger. The Symbolic COBOL Interactive Debugger reduces the time 
required to test programs. Altering source programs during testing is 
often unnecessary because the programmer can debug COBOL pro­
grams by including the debugger when linking the program. The 
symbolic debugger allows programmers to follow program flow during 
the execution of a job and offers: 

203 



COBOL 

• The ability to reference data items by their user-defined names, 
including qualification and subscripting. 

• The ability to reference section names and paragraph names. 

• The ability to examine and modify the value of variables during 
program execution. 

• The option to stop and restart programs at locations specified by the 
programmer at the beginning or during the execution of the pro­
gram. 

• The ability to alter program flow during the debugging session. 
• The ability to gain control before normal or abnormal termination. 

Other Debugging Features 
To make program debugging even easier, the PDP-11 COBOL com­
piler produces source-language listings with embedded diagnostics. 
Fully descriptive diagnostic messages are listed at the point of error. 
Over 400 different error conditions are checked-varying from simple 
warnings to fatal error detections. 

Debugging large source programs is further simplified with the option­
al Data Division allocation map and with modular programming tech­
niques offered by the segmentation and interprogram communication 
facilities. 

Another useful debugging aid is the optional cross-reference listing 
produced by the compiler. This is a listing of all data names, 
procedure names, and the source-line numbers of those program 
lines containing the definitions and references. For each item, a list of 
ordered s.ource-line numbers is displayed. Source-line numbers for 
defined items are distinguished from source-line referenced items. 

Interactive COBOL Execution 
The ACCEPT and DISPLAY statements of the PROCEDURE DIVISION 
allow for easy terminal-oriented interaction between a PDP-11 COBOL 
program and a programmer. 

The ACCEPT statement enables the programmer to enter input lines 
to the COBOL program. 

The DISPLAY statement transfers data from a specified literal or data 
item to a·programmer's terminal. The statement can be modified by a 
special WITH NO.ADVANCING phrase (without automatic appending 
of carriage return and linefeed) that allows the COBOL program to 
control the format of the message sent. The WITH NO ADVANCING 
phrase causes the device to remain positioned on the same line and 
the same character position following the last character displayed. 

204 



COBOL 

This is especially useful when typing prompting messages on the ter­
minal, or when the programmer wishes to control the linefeeds within 
the program. 

The ACCEPT and DISPLAY statements are intended primarily for use 
with keyboard devices. However, PDP-11 COBOL also allows the AC­
CEPT statement to accept cards from a card reader and the DISPLAY 
statement to display data on a lineprinter. 

In addition, more advanced screen facilities can be invoked by PDP-
11 COBOL by calling FMS, the Forms Management System. 

Source Program Formats 
PDP-11 COBOL compiler accepts source programs that are coded 
using the ANSI (conventional) format or the shorter, easy-to-enter 
DIGITAL terminal format. Terminal format is designed for use with 
interactive text editors. It eliminates the line number and identification 
fields and allows horizontal tab characters and short lines. These ca­
pabilities offer potential savings in disk space and allow for easier 
interactive input of source programs. 

Utility Programs 
PDP-11 COBOL provides the RFRMT and MERGE utilities to aid the 
user with data processing. The RFRMT (reformat) utility reads COBOL 
source programs that are coded using DIGITAL terminal format and 
converts the source statements to the ANSI standard format accepted 
by other COBOL compilers throughout the industry. The MERGE utility 
program merges skeleton overlay description files generated by CO­
BOL compilations into a single ODL file. 

205 



COBOL 

Table13-1 Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

CHARACTER SET 
Words 
0,1, ... 9A,B, ... z- NUC x x x 
Punctuation 
. ' () space or blank 1 NUC x x x 

1 NUC x x 
'' 

2 NUC x x x 
' EXT x 
Arithmetic + -*I * * 2 NUC x x x 
Relational < > = 2 NUC x x x 
Editing 
B 0 + -CR DB Z * $ . , NUC x x x 
I NUC x x x 
Separators 
: and , not permitted NUC x 
; and , are permitted 1 NUC x x x 
COBOL WORDS (max 30 chars)_ 1 NUC x x x 
User-defined Words 1 NUC x x x 
cd-name 1 COM x 
condition name 2 NUC x x 
data-name (1st char alpha) __ 1 NUC x 
data-name 2 NUC x x x 
file-name 1 SEQ x x x 
index-name 1 TBL x x x 
level-number 1 NUC x x x 
library-name 2 LIB x x 
mnemonic-name 1 NUC x x 
paragraph-name 1 NUC x x x 
program-narne 1 NUC x x x 
record-name 1 SEQ x x x 
report-name 1 RPW x 
routine-name {optional) 1 NUC x 
section-name 1 NUC x x x 
segment-number 1 SEG x x x 
text-name 1 LIB x x x 
System Names 1 NUC x x x 
computer-name x x x 
implementor-name x x x 
language-name {optional) x 
Reserved Words NUC x x x 
key words NUC x x x 
optional words 1 NUC x x x 
qualifier connectives: OF IN __ 2 NUC x x 
series connectives: , ; 2 NUC x x x 

206 



COBOL 

Table 13-1 (cont.} Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

logical connectives: 
AND, OR, AND NOT, OR NOT_ 2 NUC x x x 
LINE-, PAGE-COUNTER registers_ 1 RPW x 
LINAGE-COUNTER register __ 2 SEQ x x 
DEBUG-ITEM register 1 DEB x 
ZERO constant 1 NUC x x x 
ZEROS, ZEROES constctnts __ 2 NUC x x x 
SPACE constants 1 NUC x x x 
SPACES constant 2 NUC x x x 
HIGH-VALUE, LOW-VALUE __ 1 NUC x x x 
HIGH-VALUES, LOW-VALUES_ 2 NUC x x x 
QUOTE constant 1 NUC x x x 
QUOTES constant 2 NUC x x x 
ALL literal 2 NUC x x x 
arithmetic special chars 2 NUC x x x 
relational special chars 2 NUC x x x 
non-numeric literals (1-120 chars) 1 NUC x x x 
quote within non-numeric literals_ x x x 
numeric literals (1-18 chars) __ x x x 
PICTURE strings 1 NUC x x x 
comment entries 1 NUC x x x 
No Qualification Permitted 1 NUC x x x 
Qualification Permitted 2 NUC x x 
Subscripting to 3 Levels 1 TBL x x x 
Indexing to 3 Levels 1 TBL x x x 
IDENTIFICATION DIVISION 
PROGRAM-ID 1 NUC x x x 
AUTHOR 1 NUC x x x 
INSTALLATION 1 NUC x x x 
DATE-WRITTEN 1 NUC x x x 
DATE-COMPILED 2 NUC x x x 
SECURITY 1 NUC x x x 
ENVIRONMENT DIVISION 
Configuration Section 
Can be omitted EXT x x 
SOURCE-COMPUTER 1 NUC x x x 
WITH DEBUGGING MODE __ 1 DEB x 
OBJECT-COMPUTER 1 NUC x x x 
MEMORY SIZE 1 NUC x x x 
COLLATING SEQUENCE 1 NUC x x x 
SEGMENT-LIMIT 2 SEG x x x 
SPECIAL-NAM ES 1 NUC x x x 
ON STATUS 1 NUC x x 

207 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

OFF STATUS NUC x x 
SPECIAL-NAMES series 1 NUC x x 
STANDARD-1 alphabet-name __ 1 NUC x x x 
NATIVE alphabet-name 1 NUC x x x 
Implementor-name 

alphabet-name 1 NUC x 
literal alphabet-name 2 NUC x 
CURRENCY SIGN 1 NUC x x x 
DECIMAL-POINT 1 NUC x x x 
Input-Output Section 
FILE-CONTROL SELECT 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 SRT x 

OPTIONAL 2 SEQ x x x 
ASSIGN TO implementor-name_ 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 SRT x 

RESERVE integer AREA(S) __ 2 SEQ x x x 
2 REL x x 
2 INX x x x 

SEQUENTIAL ORGANIZATION_ 1 SEQ x x x 
RELATIVE ORGANIZATION __ 1 REL x x 
INDEXED ORGANIZATION __ 1 INX x x x 
SEQUENTIAL .ACCESS MODE_ 1 SEQ x x x 

1 REL x x 
1 INX x x x 

RANDOM ACCESS MODE 1 REL x x 
1 INX x x x 

DYNAMIC ACCESS MODE __ 2 REL x x 
2 INX x x x 

RELATIVE KEY 1 REL x x 
RECORD KEY 1 INX x x x 
ALTERNATE RECORD KEY __ 2 INX x x x 
FILE STATUS 1 SEQ x x x 

1 REL x x 
1 INX x x x 

1-0 CONTROL: RERUN 1 SEQ x x x 
1 REL x x 
1 INX x x x 

SAME AREA 1 SEQ x x x 
1 REL x x 
1 INX x x x 

208 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

SAME RECORD AREA 2 SEQ x x x 
2 REL x x 
2 INX x x x 
2 SRT x 

SAME SORT-MERGE AREA __ 2 SRT x 
SAME series 1 SEQ x x x 

1 REL x x 
1 INX x x x 

MULTIPLE FILE TAPES 2 SEQ x x 
APPLY EXT x x 
DATA DIVISION 
Communication Section COM x 
File Section SEQ x x x 

REL x x 
INX x x x 
SRT x 
RPW x 

linkage section IPC x x x 
working storage section NUC x x x 
report section RPW x 
communications description entry 1 COM x 
data description entry 1 NUC x x x 
file description entry 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 RPW x 

record description entry 1 SEQ x x x 
1 REL x x 
1 INX x x x 

Sort-merge description entry __ 1 SRT x 
Report description 1 RPW x 
Report group description entry_ 1 RPW x 
Clauses 
BLANK WHEN ZERO clause __ 1 NUC x x x 
BLOCK CONTAINS clause 
integer CHARACTERS/RECORDS 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 RPW x 

integer-1 TO integer-2 2 SEQ x 
2 REL x 
2 INX x 
1 RPW x 

209 



COBOL 

Table13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

CODE clause 1 RPW x 
CODE-SET clause 1 SEQ x x x 

1 RPW x 
COLUMN NUMBER clause __ 1 RPW x 
CONTROL clause 1 RPW x 
data-name clause 1 NUC x x x 

1 RPW x 
DATA-RECORD clause 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 SRT x 

FILLER 1 NUC x x x 
GROUP INDICATE clause 1 RPW x 
JUSTIFIED clause (JUST) 1 NUC x x x 
LABEL RECORDS clause 
STANDARD/OMITTED 1 SEQ x x x 

1 REL. x x 
1 INX x x x 
1 RPW x 

LEVEL-NUMBER 
01 thru 10 (must be 2 digits) __ 1 NUC x 
1thru49 (may be one digit) __ 2 NUC x x x 
66 2 NUC x x 
77 1 NUC x x x 
88 2 NUC x x 
LINAGE clause 2 SEQ x x 
LINE NUMBER clause 1 RPW x 
NEXT GROUP clause 1 RPW x 
OCCURS clause 
integer times 1 TBL x x x 
ASCENDING/DESCENDING __ 2 TBL x x 
data-name series 2 TBL x x 
INDEXED BY index-name 1 TBL x x x 
lnteger-1 TO integer-2 
DEPENDING ON 2 TBL x x 
PAGE clause 1 RPW x 
PICTURE clause 
Character string max 30 chars_ 1 NUC x x x 
Data characters: A X 9 1 NUC x x x 
Operational symbols: S VP_. __ 1 NUC x x x 
Fixed insertion characters: 
0 B , . $ + -CR DB 1 NUC x x x 
Fixed insertion character: / __ 1 NUC x x x 

210 



COBOL 

Table13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

Replacement chars: $ + -Z * __ 1 NUC x x x 
Currency sign substitution 1 NUC x x x 
Decimal point substitution 1 NUC x x x 
RECORD CONTAINS clause __ 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 SRT x 
1 RPW x 

REDEFINES clause 
(must not be nested) 1 NUC x 

REDEFINES clause (nesting) __ 2 NUC x x x 
RENAMES clause 2 NUC x x 
REPORT clause 1 RPW x 
SIGN clause 1 NUC x x x 
SOURCE clause 1 RPW x 
SUM clause 1 RPW x 
SYNCHRONIZED clause 1 NUC x x x 
TYPE clause 1 RPW x 
USAGE clause 
COMPUTATIONAL (means binary) NUC x x x 
DISPLAY NUC x x x 
INDEX TBL x x x 
VALUE clause 
literal 1 NUC x x x 
literal series 2 NUC x x 
literal THRU literal 2 NUC x x 
literal range series 2 NUC x x 
VALUE OF clause 
implementor-name IS literal __ 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 RPW x 

implementor-name IS data-name_ 2 SEQ x x x 
2 REL x x 
2 INX x x x 
2 RPW x 

PROCEDURE DIVISION 
USING phrase 1 IPC x x x 
Declaratives 1 SEQ x x x 

1 REL x x 
1 INX x x x 
1 RPW x 
1 DEB x 

Arithmetic expressions 2 NUC x x x 

211 



COBOL 

Table13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

Conditional expressions 1 NUC x x x 
Simple conditions 1 NUC x x x 
Relation conditions 1 NUC x x x 
[NOT] GREATER THAN 1 NUC x x x 
[NOT]> 2 NUC x x x 
[NOTI LESS THAN 1 NUC x x x 
[NOT]< 2 NUC x x x 
[NOTI EQUAL TO 1 NUC x x x 
[NOT]= 2 NUC x x x 
numeric operands 1 NUC x x x 
nonnumeric operands (must be 

equal size) 1 NUC x 
nonnumeric (may be unequal)_ 2 NUC x x x 
Class conditions 1 NUC x x x 
NOT option 1 NUC x x x 
Switch-status condition 1 NUC x x 
NOT option EXT x 
Condition-name condition 2 NUC x x 
NOT option EXT x 
Sign condition 2 NUC x x x 
NOT option 2 NUC x x x 
Logical AND OR and NOT 2 NUC x x x 
Negated simple conditions __ 2 NUC x x x 
Combined and negated combined 2 NUC x x x 
Abbreviated combined relation_ 2 NUC x x 
Arithmetic operands 1 NUC x x x 
Overlapping operands 1 NUC x x x 

1 TBL x x x 
Multiple arithmetic results 2 NUC x x 
ACCEPT statement 
Only one transfer of data 1 NUC x x x 
No restrictions on transfers __ 2 NUC x 
FROM 2 NUC x x x 
FROM DATE 2 NUC x x x 
FROM DAY 2 NUC x x x 
FROM TIME 2 NUC x x x 
MESSAGE COUNT 1 COM x 
ADD statement 
identifier literal series 1 NUC x x x 
TO identifier 1 NUC x x x 
TO identifier series 2 NUC x x 
GIVING identifier 1 NUC x x x 
GIVING identifier series 2 NUC x x 
ROUNDED 1 NUC x x x 

212 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

SIZE ERROR 1 NUC x x x 
CORRESPONDING 2 NUC x x 
ALTER procedure-name 1 NUC x x 
ALTER procedure-name series_ 2 NUC x x 
CALL literal 1 IPC x x x 
CALL identifier 2 IPC x 
CALL USING data-name 1 IPC x x x 
CALL ON OVERFLOW 2 IPC x 
CANCEL statement 2 IPC x 
CLOSE single file-name 1 SEQ x x x 
CLOSE file-name series 2 SEQ x x x 

1 REL x x 
1 INX x x x 

REEL 1 SEQ x x 
UNIT 1 SEQ x x 
NO REWIND 2 SEQ x x x 
LOCK 2 SEQ x x x 

1 REL x x 
1 INX x x x 

FOR REMOVAL 2 SEQ x x 
COMPUTE identifier series __ 2 NUC x x x 
DELETE statement 1 REL x x 

1 INX x x x 
DISABLE statement 
INPUT 1 COM x 
TERMINAL INPUT 2 COM x 
OUTPUT 1 COM x 
KEY identifier/literal 1 COM x 
DISPLAY statement 
only one transfer of data 1 NUC x 
no restriction 2 NUC x x x 
UPON 2 NUC x x 
WITH NO ADVANCING EXT x x 
DIVIDE statement 
INTO identifier 1 NUC x x x 
INTO identifier series 2 NUC x x 
BY identifier 1 NUC x x x 
GIVING identifier 1 NUC x x x 
GIVING identifier series 2 NUC x x 
ROUNDED 1 NUC x x x 
REMAINDER 2 NUC x x x 
SIZE ERROR 1 NUC x x x 
ENABLE statement 
INPUT COM x 

213 



COBOL 

Table13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

TERMINAL INPUT 2 COM x 
OUTPUT 1 COM x 
KEY identifier/literal 1 COM x 
ENTER statement (optional) __ 1 NUC x 
EXIT statement 1 NUC x x x 
EXIT PROGRAM statement __ 1 IPC x x x 
GENERATE statement 1 RPW x 
GO TO statement 
procedure-name required 1 NUC x x x 
procedure-name optional 2 NUC x x 
DEPENDING ON phrase 1 NUC x x x 
IF statement 
statements must be imperative_ 1 NUC x 
nested statements 2 NUC x x x 
ELSE 1 NUC x x x 
INITIATE statement 1 RPW x 
INSPECT statement 
single character data item 1 NUC x x x 
multi-character data item 2 NUC x x x 
MERGE statement 2 SRT x 
MOVE statement 
TO identifier 1 NUC x x x 
TO identifier series 1 NUC x x x 
CORRESPONDING 2 NUC x x 
MULTIPLY statement 
BY identifier 1 NUC x x x 
BY identifier series 2 NUC x x 
GIVING identifier 1 NUC x x x 
GIVING identifier series 2 NUC x x 
ROUNDED 1 NUC x x x 
SIZE ERROR 1 NUC x x x 
OPEN statement 
INPUT single file-name 1 SEQ x x x 
INPUT file-name series 2 SEQ x x x 

1 REL x x 
1 INX x x x 

INPUT REVERSED 2 SEQ x 
INPUT NO REWIND 2 NUC x x x 
OUTPUT single file-name 1 SEQ x x x 
OUTPUT file-name series 2 SEQ x x x 

1 REL x x 
1 INX x x x 

OUTPUT NO REWIND 2 SEQ x x x 
1-0 single file-name 1 SEQ x x x 

214 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

1-0 file-name series 2 SEQ x x x 
1 REL x x 
1 INX x x x 

EXTEND 2 SEQ x x x 
INPUT, OUTPUT, 1-0, EXTEND_ 2 SEQ x x x 
INPUT, OUTPUT and 1-0 series_ 

1 REL x x 
1 INX x x x 

PERFORM statement 
procedure name 1 NUC x x x 
THRU 1 NUC x x x 
TIMES 1 NUC x x x 
UNTIL 2 NUC x x x 
VARYING 2 NUC x x 
READ statement 
file-name 1 SEQ x x x 

1 REL x x 
1 INX x x x 

INVALID KEY 1 REL x x 
1 INX x x x 

INTO identifier 1 SEQ x x x 
1 REL x x 
1 INX x x x 

NEXT 2 REL x x 
2 INX x x x 

ATEND 1 SEQ x x x 
1 REL x x 
1 INX x x x 

KEYIS 2 INX x x x 
RECEIVE statement 
MESSAGE 1 COM x 
SEGMENT 2 COM x 
INTO identifier 1 COM x 
NO DATA phrase 1 COM x 
RELEASE statement 
record name SRT x 
FROM SRT x 
RETURN statement 
file-name SRT x 
INTO SRT x 
ATEND SRT x 
REWRITE statement 
FROM identifier SEQ x x x 

REL x x 

215 



COBOL 

Table13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

USE FOR DEBUGGING statement 
procedure-name 1 DEB x 
procedure-name series 1 DEB x 
ALL PROCEDURES 1 DEB x 
ALL REFERENCES OF identifier_ 2 DEB x 
file-name series 2 DEB x 
cd-name series 2 DEB x 
WRITE statement 
record-name 1 SEQ x x x 

1 REL x x 
1 INX x x x 

SEGMENTATION 
segment-number 1 SEG x x x 
Fixed Memory Range 0-49 __ 1 SEG x x x 
Non-fixed Memory Range 50-99_ 1 SEG x 
SEGMENT-LIMIT 2 SEG x x x 
LIBRARY 
COPY 1 LIB x x x 
OF/IN LIBRARY 2 LIB x 
REPLACING 2 LIB x x 
Pseudo-text may be replaced_ 2 LIB x 
REFERENCE FORMAT 
Sequence Numbers NUC x x x 
may be omitted EXT x x 
AreaA 1 NUC x x x 
Division header 1 NUC x x x 
Section header 1 NUC x x x 
Paragraph header 1 NUC x x x 
Data Division entries 1 NUC x x x 
Area B 1 NUC x x x 
Paragraphs 1 NUC x x x 
Data Division entries 1 NUC x x x 
Continuation of Lines 
Nonnumeric Literals 1 NUC x x x 
Words and Numeric Literals __ 2 NUC x x x 
Comments 
With* 1 NUC x x x 
With I 1 NUC x x x 
WithD 1 DEB x x 
FIPS INFORMATION 
FIPS Flagging at 
Low FIP x 
Low-Intermediate FIP x 

and 1-0 procedures 

216 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 
V4.4 V1.1 

1 INX x x x 
INVALID KEY phrase 1 REL x x 

1 INX x x x 
SEARCH statement 2 TBL x x 
SEND statement 
FROM identifier 2 COM x 
FROM identifier WITH 1 COM x 
WITH identifier 2 COM x 
WITH EGI 1 COM x 
WITH EMI 1 COM x 
BEFORE/AFTER ADVANCING_ 1 COM x 
SET statement 1 TBL x x x 
SORT statement 
Limited to one SORT, STOP 
and 1-0 procedures 1 SRT x 
Program not limited to one SORT_ 2 SRT x 
COLLATING SEQUENCE phrase_ 2 SRT x 
START statement 2 REL x x 

2 INX x x x 
STOP statement 1 NUC x x x 
STRING statement 2 NUC x x x 
SUBTRACT statement 
identifier/literal series 1 NUC x x x 
FROM 1 NUC x x x 
FROM series 2 NUC x x 
GIVING identifier 1 NUC x x x 
GIVING identifier series 2 NUC x x 
ROUNDED 1 NUC x x x 
SIZE ERROR 1 NUC x x x 
CORRESPONDING 2 NUC x x 
SUPPRESS statement 1 RPW x 
TERMINATE statement 1 RPW x 
UNSTRING statement 2 NUC x x x 
USE statement 
EXCEPTION/ERROR 
PROCEDURE ON file-name/ 
INPUT/OUTPUT/1-0 1 SEQ x x x 

1 REL x x 
1 INX x x x 

ON file-name series 2 SEQ x x x 
2 REL x x 
2 INX x x x 

ON EXTEND 2 SEQ x x x 
BEFORE REPORTING 1 RPW x 

217 



COBOL 

Table 13-1 (cont.) Comparison of COBOL Language Elements 
PDP-11 

Language Elements Level Module ANS-74 COBOL COBOL-81 

High-Intermediate FIP 
High FIP 
Certified at 
Low Level FIP 
Low-Intermediate FIP 
High-Intermediate FIP 
High FIP 

Abbreviations: 
X = feature implemented according to standard 
- = feature not implemented 

NUC = Nucleus 
TBL = Table Handling 
SEQ = Sequential 1/0 
REL = Relative 1/0 
INX = Indexed 1/0 
SRT = Sort/Merge 
RPW = Report Writer 
SEG = Segmentation 
LIB = Library 
DEB = Debugging 
IPC = Inter-program comm 
COM = Communications 
EXT =Additions to COBOL language 

218 

V4.4 V1.1 

x 
x 



219 



220 



INTRODUCTION 

CHAPTER 14 

DIBOL-11 

DIGIT Al's business-oriented DIBOL-11 programming language is 
similar in some ways to COBOL, but is more concise and easier to use. 
DIBOL-11 programs can do data manipulation, evaluation of arithme­
tic expressions, subscripting, record redefinition, calls to subroutines, 
and sequential, indexed, and random access to files. In addition, the 
interactive on-line debugging utility simplifies the programmer's job of 
isolating and correcting program errors. 

Because of its high interactivity, DIBOL-11 is a good program develop­
ment language, and its simple syntax and free-form coding make the 
language easy to learn while providing for simpler program documen­
tation. 

DIBOL-11 can be used in multijob timesharing environments to permit 
several application programs to run simultaneously. Of course, pro­
grams written for timesharing can also run on a single-user system. 
Another language feature is the availability of external subroutine 
libraries. Because subroutines can be held in libraries, programmers 
may create more compact programs, increasing efficiency and pro­
ductivity. Such subroutines can be either DIGITAL-supplied or user­
developed. 

The DIBOL-11 programming language is provided as part of the CTS-
300 commercial operating system, which itself is based on the RT-11 
operating system. DIBOL-11 is an option for CTS-500, a commercial 
operating system based on RSTS/E. 

Program Structure 
A DIBOL-11 program is separated into two major parts: a Data Divi­
sion and a Procedure Division. The Data Division contains the nonexe­
cutable data specification statements that define the characteristics 
and identity of the data used by the program. The Procedure Division 
contains all the program statements that implement the actions or 
tasks to be performed. PROC and END statements are used to define 
the program structure. The PROC statement separates the Data Divi­
sion statements from the-Procedure Division statements, and the END 
statement specifies the logical end of the program. 

Data Division statements from the Procedure Division statements, and 
the END statement specifies the logical end of the program. 

221 



DIGITAL 

E::3 
CARTRIDGE 

DISK 

DJBOL 

BUSINESS-ORIENTED LANGUAGE IMPLEMENTATION 
SOURCE LANGUAGE INPUT MEDIA 

EJ 
DISK 
PACK 

SYSTEM EDITOR 

DIBOL 
COMPILER 

OBJECT PROGRAM 

LINKER 

PROGRAM 
EXECUTION 

APPLICATION 
IIO 

~ ii 
FLOPPY TERMINAL 

DISK KEYBOARD 

COMPILATION 
DIAGNOSTICS 

Figure 14-1 DIBOL Implementation 

STATEMENT TYPES 

) 

DIBOL-11 statements fall into five functional groups: compiler 
directives, data specifications, data manipulation, control, and in­
put/output. They include both arithmetic and logical expressions. The 
operators in an expression represent various arithmetic and manipu­
lative functions of the DIBOL-11 language. Operators are classified 
either as unary or binary operators and include most of the usual 
arithmetic, relational, and boolean operations. In addition, there is a 
simple mechanism for formatting converted decimal data. 

Compiler Directive Statements 
As the name suggests, these are instructions to the compiler; they are 
not executable at runtime and do not affect program operation. 
Among the compiler directives are statements that identify programs 

222 



D/BOL 

as external subroutines, that separate Data Division statements from 
Procedure Division statements, that cause the program listing to skip 
to a new page, that end the program, and that perform other, similar 
chores. 

Data Specification Statements 
Data specification statements (also referred to as field definition state­
ments) define and identify the characteristics of the data processed by 
a DIBOL-11 program. For example, data can be either numeric or 
alphanumeric, and can have certain size requirements and initial val­
ues. Fields of data that are grouped together are preceded by a RE­
CORD or COMMON statement, and may be redefined at that level. The 
data specification statements are: 

RECORD 

COMMON 

Defines and identifies the beginning of one or 
more grouped fields 

Defines and identifies the beginning of one or 
more grouped fields and allows external subrou­
tines directly to use/share a field defined in the 
main program Data Division 
section 

Data Manipulation Statements 
These statements are used to perform calculations as well as data 
modification, conversion, and movement as stated below: 

INCR 

LOCASE 

UPCASE 

Data Movement 

Increments a variable by one 

Converts uppercase characters to lowercase 

Converts lowercase characters to uppercase 

Moves the results of the expression on the right of 
the equal sign to the variable specified on the left 
of the equal sign 

The operators in an expression represent various arithmetic and man­
ipulative functions of the DIBOL-11 language. Operators are classified 
either as unary or binary operators and include most of the usual 
arithmetic, relational, and boolean operations. In addition, there is a 
simple mechanism for formatting converted decimal data. 

Control Statements 
Control statements govern the order of a program's instruction by 
modifying the normal sequence of statement execution. Some control 
statements call either internal or external subroutines (CALL, XCALL), 

223 



DIBOL 

some transfer control to other statements (GOTO), some execute a 
statement based on the results of a logical condition (IF). In addition, 
there are controls for disabling and enabling trapping of runtime er­
rors (OFFERROR, ONERROR), for returning from subroutines (RE­
TURN), for suspending program operation for specified intervals 
(SLEEP), and for terminating execution, and (optionally) chaining to 
another program (STOP). 

Input/Output Statements 
Input/output statements control the transmission and reception of da­
ta between memory and PDP-11 input/output devices such as the 
disk, the lineprinter, and the terminal. The input/output statements 
are: 

ACCEPT 

CLOSE 

DELETE 

DISPLAY 

FORMS 

LPQUE 

OPEN 

READ 

READS 

UNLOCK 

WRITE 

WRITES 

Debugging Tools 

Reads a character from a device 

Terminates use of an input/output channel and 
closes the associated file 

Deletes a record from an ISAM file 

Writes a character string to a device 

Sends special form control characters used by 
line printers 

Requests printing of a file by a spooling program 

Initializes a file in preparation for input/output op­
erations 

Reads a record from a file (direct access) 

Reads the next record in sequence from a file 

Releases a file record for access by another pro­
gram when operating in a time-sharing environ­
ment 

Writes a record to a file (direct access) 

Writes the next record in sequence to a file 

The DIBOL Debugging Technique (DDT) allows you to interact with 
your DIBOL program while it is executing. Using DDT, you can set 
predetermined stopping points (called breakpoints) where you wish to 
temporarily suspend execution of the program. You can examine or 
alter the contents of variables using their symbolic n'imes, trace 
through complicated sequences of subroutine nestings, and single 

224 



DIBOL 

step through lines of a DIBOL program. These features allow you to 
locate problems, correct data values, and identify programming errors 
directly, before re-editing, recompiling, and relinking your program. 

225 



226 



CHAPTER 15 

INTRODUCTION TO FILE MANAGEMENT 

PDP-11 operating systems provide a number of utilities and programs 
that are designed to make file management easy, both in the structur­
ing and in the accessing of files. 

A file is any designated collection of related information. FORTRAN 
programs can be files; lists of employees and their Social Security 
numbers are files; accounts receivable for July comprise a file; even a 
roster of comments from operators to the system manager could con­
stitute a file. The elements that make up a file, namely, records and 
fields, were described in Chapter 2, but it might be useful to review 
them here. 

Fields are specified groups of bits (or more typically, bytes). An em­
ployee's name is a field in his record, as is the part code in an invento­
ry record. But fields need not have content-specific definitions. For 
example, bytes 19 through 45 of an accounts receivable record may 
be a field of interest to a programmer even though they cannot be 
interpreted as a name, amount, or number. 

Records are combinations of fields. Together, a person's name, Social 
Security number, address, identification number, and salary code 
could constitute a record in the personnel file. Accounts receivable for 
a particular customer could be a record in the accounts receivable file. 

The way programs get at records is called the access mode. Some­
times records are accessed sequentially, from the beginning of the file 
right through to the end. Sometimes they are accessed randomly: that 
is, the address of the record is known and the computer goes directly 
to it. Sometimes they are accessed according to information in the 
records themselves; for example, all employees with the number 
01754 in their zip code field could be retrieved by the computer. Since 
the way in which records are accessed depends upon the way in which 
the information was put into the file in the first place, an important 
consideration for any programmer is the structure-or organiza­
tion-of the file. And while a programmer may want to determine all 
the complex details of file and record organization himself, it is impor­
tant to note that most DIGITAL operating systems supply ample facili­
ties for making this chore fast and easy. 

Most important among such facilities are the Record Management 
Services (RMS). This powerful software is, in varying versions, part of 
all the operating systems that support it (i.e., packaged together). 
RMS makes many of the details of file structure and access transpar-

227 



Introduction to File Management 

ent to the programmer, and thus helps boost programmer 
productivity. 

RSX-11 systems also include the File Control Services (FCS), a pack­
age of routines that can handle many file operations transparently to 
the user. 

Some of the other programs or utilities that make file and record 
manipulation easy in PDP-11 systems are SORT, PIP, FILEX, VERIFY, 
and DUMP. SORT provides four different sorting techniques, among 
which a user can choose to best accommodate job needs and deci­
sions about speed, record format, and storage devices. Like RMS, 
SORT handles almost all the sorting details once it is invoked by the 
program, cutting program development time and improving work 
speed. 

The Peripheral Interchange Program (PIP) moves files from one de­
vice (e.g., a disk) to another (e.g., lineprinter). Invoking the PIP pro­
gram is a simple matter: once called up, it manages all the details of 
the transfer. Another file copy routine, FILEX, can copy files from one 
format into another format. VERIFY validates data in files; DUMP lets a 
programmer examine the contents of files at a terminal or lineprinter. 
Such utilities sometimes have slightly different names or capabilities 
under the various operating systems, but they generally conform to 
the characteristics outlined in the next chapter. · 

In some ways, the distinction between file management and database 
management is arbitrary. In all cases, DIGITAL is committed to provid­
ing you with speed, power, and ease of use in the handling of records 
and files. But because we want to emphasize the distinction between 
databases and simple groups of data, we have gathered DATATRIEVE 
and DBMS into a section of their own. Naturally, many of the capabili­
ties of database managers overlap, or even exploit, those of the file 
managers. Thus, DATATRIEVE is combined with RMS to give end 
users excellent access to information in databases without requiring 
that they know anything about the programmer's procedures in 
designing and creating the information. 

It is true of file and record management software, as with all DIGITAL 
products, that continual development and improvement may enhance 
the capabilities described in the chapters that follow. As always, your 
DIGITAL software specialist is a good source of information on the 
most recent versions of software products. 

228 



229 



230 



CHAPTER 16 

FILE MANAGEMENT UTILITIES 

While the descriptions that follow do not exhaust the list of DIGIT Al's 
file management programs or utilities, they do suggest the breadth of 
products available. 

FILE CONTROL SERVICES (FCS) 
RSX-11 File Control Services enable you to perform record-oriented 
and block-oriented 1/0 operations, and to perform additional func­
tions required for file control, such as open, close, wait, and delete 
operations. To invoke FCS functions, the user issues macro calls to 
specify desired file control operations. The FCS macros are then 
called at assembly time to generate code for specified functions and 
operations. Figure 16-1 illustrates the file access operation. 

USER-ISSUED MACRO CALL 

FILE CONTROL SERVICES 

FILE CONTROL PRIMITIVES 

PERIPHERAL DEVICE HARDWARE 
(e.g., DISK, TERMINAL) 

Figure 16-1 File Access Operation 

FCS is a set of routines linked with the user program at taskbuild time 
from a resident system library or a system object module library. 
These routines, consisting of pure, position-independent code, pro­
vide a user interface to the file system, enabling the user to read and 
write files on file-structured devices and to process files in terms of 
logical records. 

FCS allows you to write a collection of data (consisting of distinct 
logical records) to a file in a way that enables you to retrieve the data at 
will. Data can be gotten from the file without having to know the exact 
form in which it was written to the file. FCS thus provides a sense of 
transparency to the user so that records can be read or written in 
logical units that are consistent with an applications requirement. 

231 



File Management Utilities 

File Access Method 
Under FCS, RSX-11 supports both sequential and direct access to 
files. The sequential access method is device-independent, that is, it 
can be used for both record-oriented and file-structured devices (for 
example, card reader and disk, respectively). The direct access 
method can be used only for file-structured devices. 

Data Formats for File-Structured Devices 
Data are transferred between peripheral devices and memory in 
blocks. A data file consists of virtual blocks, each of which may contain 
one or more logical records. Records in a virtual block can be either 
fixed or variable in length. 

Virtual blocks and logical records within a file are numbered sequen­
tially, starting with one. A virtual block number is a file-relative value, 
while a physical block number is a volume-relative value. For example, 
the first virtual block in a file is always virtual block number 1, but at 
the same time it could also be physical block number 156. 

Block 1/0 Operations 
The READ and WRITE macro calls allow the user to read and write 
virtual blocks of data from and to a file without regard to logical re­
cords in a file. Block 110 operations provide a very efficient means of 
processing file data, since such operations do not involve the blocking 
and deblocking of records within the file. Also, in block 110 operations, 
the user can read or write files in an asynchronous manner; control 
can be returned to the user program before the request 1/0 operation 
is completed. 

When block 1/0 is used, the number of the virtual block to be proc­
essed is specified as a parameter in the appropriate READ and WRITE 
macro call. The virtual block so specified is processed directly in a 
buffer reserved by the program in its own memory space. 

As implied above, the user is responsible for synchronizing all block. 
1/0 operations. Such asynchronous operations can be coordinated 
through an event flag specified in the READ and WRITE call. The event 
flag is used by the system to signal the completion of the 1/0 transfer, 
enabling the user to coordinate those block 1/0 operations which de­
pend on each other. 

Record 1/0 Operations 
The GET and PUT macro calls are provided for processing record­
oriented files. GET and PUT operations perform the necessary 
blocking and deblocking of the records within the virtual blocks of the 
file, allowing the user to read or write individual records. 

232 



File Management Utilities 

In preparing for record 1/0 operation$, the user program must specify 
the format of the records. For example, it must specify whether the 
records are fixed or variable in length, or whether records that are to 
be output to a carriage-control device are to contain carriage-control 
information, which can be either at the beginning of the record or 
embedded within the records. 

For sequential access files, 1/0 operations can be performed for both 
fixed and variable length records. For direct access files, 1/0 opera­
tions can be performed only for fixed length records. 

In contrast to block 1/0 operations, all record 1/0 operations are syn­
chronous; control is returned to the user program only after the 
requested 1/0 operation is performed. 

Because GET and PUT operations process logical records within a 
virtual block, only a limited number of GET or PUT operations result in 
an actual 1/0 transfer, that is, when the end of a data block is encoun­
tered. Therefore, all GET and PUT 110 requests will not necessarily 
involve a physical transfer of data. 

The File Storage Region 
The file storage region (FSR) is an area allocated in the user program 
as the working storage area for record 110 operations. The FSR con­
sists of two program sections which are always contiguous to each 
other. The first program section of the FSR contains the block buffers 
and the block buffer headers for record 110 processing. The user 
determines the size of the area at assembly time. The number of block 
buffers and associated headers is based on the number of files that 
the user intends to open simultaneously for record 110 operations. 

The second program section of the FSR contains input data that are 
used and maintained by FCS in performing record 1/0 operations. 
Portions of this area are initialized at task-build time, and other por­
tions are maintained by FCS. This program section is intentionally 
isolated from the user to preserve its integrity. 

Blocking and deblocking of records during input is accomplished in 
the FSR block buffer during output. Note also that FCS serves as the 
user interface to the FSR block buffer pool. All record 110 operations 
initiated through GET and PUT calls are totally synchronized by FCS. 

Data Transfer Modes 
When record 110 is used, a program can gain access to a record in 
either of two ways after the virtual block has been transferred into the 
FSR from a file: 

MOVE MODE Individual records are moved from the FSR 

233 



File Management Utilities 

LOCATE MODE 

Shared Access to Files 

buffer. Move mode simulates the reading of 
a record directly into a user record buffer, 
thereby making the blocking and deblock­
ing of records transparent to the user. 

The user program accesses records 
directly in the FSR block buffer. Program 
overhead is reduced in locate mode, since 
records can be processed directly within 
the FSR block buffer. 

FCS permits shared access to files according to established conven­
tions. Two macro calls, among several available in FCS for opening 
files, can be issued to invoke these functions. The OPNS macro call is 
used spe.cifically to open a file for shared access. The OPEN call, on 
the other hand, invokes generalized open functions which have shared 
access implications only in relation to other 110 requests then issued. 

OPNS allows several active read-access requests and one write-ac­
cess request for the same file. OPEN allows multiple read-access re­
quests for the same file, but does not permit concurrent write access. 
Note that shared access during reading does not necessarily imply the 
presence of read requests from several separate tasks. The same task 
can open the same file using different logical unit numbers. 

Spooling Operations 
FCS provides facilities at both the macro and subroutine level to 
queue files for subsequent printing. A task issues the PRINT macro 
call to queue a file for printing on the system lineprinter. 

FCS Macros and Macro Use 
FCS includes four basic kinds of macro that simplify the user's inter­
face to the system's file control primitives. The four kinds are: 

• Initialization macros 

• File-process macros 

• Command line processing macros 

• The CALL macro 

The initialization and file-processing macros are used to establish the 
database description and the necessary temporary storage areas 
needed to perform 1/0 operations. The command line processing ma­
cros are used to dynamically process 1/0 commands entered frc;m a 
terminal. The CALL macro is used to invoke file control routines. 

The initialization and file-processing macros set up the following 

234 



File Management Utilities 

structures to define the database: 
• A file data block (FOB) that contains execution-time information 

necessary for file processing. It defines the basic characteristics of a 
file, i.e., record type, record size, access privileges, etc. 

• A data set descriptor that is accessed by FCS to obtain the file 
name, type, version number, and location necessary to open a spec­
ified file. The data set descriptor is used when a program accesses a 
given set of known or predefined files. 

• A default file name block that is accessed by FCS to obtain default 
file information required to open a file. This is accessed when com­
plete file information is not specified in the data set descriptor. It is 
used by programs written to access a general set of files. 

There are two types of initialization macros: assembly time macros 
and runtime macros. Data supplied during assembly of the source 
program establish the initial values in the FDB. Data supplied at run 
time can either initialize additional portions of the FDB or change 
values established at assembly time. Furthermore, the data supplied 
through the file-processing macros can either initialize portions of the 
FDB or change previously initialized values. The user not only has a 
broad range of control over defining the data base characteristics, but 
also has control over when the definitions are made. 

File processing macros also determine the way in which files are pro­
cessed. These macro calls are invoked and expanded at assembly 
time. The resulting code is then executed at runtime to perform the 
following operations: 

OPEN 

OPNS 

OPNT 

OFID 

GET 

GETR 

GETS 

PUT 

Opens and prepares a file for processing 

Opens and prepares a file for processing; allows 
shared access to the file {depending on the mode 
of access) 

Creates and opens a temporary file for process­
ing 

Opens an existing file using the file identification 
provided in the filename block 

Reads logical records from a file 

Reads fixed-length records from a file in random 
access mode 

Reads records from a file in sequential access 
mode 

Writes logical records to a file 

235 



PUTR 

PUTS 

READ 

WRITE 

DELETE 

WAIT 

PRINT 

File Management Utilities 

Writes fixed-length records to a file in random 
mode 

Writes records to a file in sequential mode 

Reads virtual blocks from a file 

Writes virtual blocks to a file 

Removes a named file from the associated 
volume directory and deallocates the space occu-
pied by the file 

Suspends program execution until a requested 
block 110 is performed 

Queues a file for printing on a special terminal or 
lineprinter 

In summary, the file-processing macros allow the user to specify ran­
dom access or sequential access to files, and perform block oriented 
or record oriented file processing. In addition, the PRINT macro allows 
the user to spool files to a lineprinter or terminal device. 

The command line processing macros allow the user to access special 
routines available in the system object library. The Get Command Line 
(GCML) routine accomplishes all the logical functions associated with 
the entry of a command line from a terminal, an indirect command file, 
or an on-line storage medium. The Command String Interpreter (CSI) 
routine takes command lines from the GCML input buffer and parses 
them into appropriate data set descriptors required by FCS for open­
ing files. 

The CALL macro allows the user to access a special set of file control 
routines. These routines allow a MACRO program to perform the fol­
lowing operations: find, insert, or delete a directory entry, rename a 
file, extend a file, mark a temporary file for deletion, and delete a file, 
among other operations. 

SORT 
The SORT utility program allows you to reorder data from any input 
file into a new file in either ascending or descending sequence based 
upon control or key fields within the input data records themselves. 
SORT runs under any operating system that includes RMS (Record 
Management Services). 

If you do not wish to sort the actual data, SORT can still be used to 
extract key information, sort that information, and store the sorted 
information on a permanent file. Later that file can be used to access 
the data in the order of the key information on the sorted file. The 

236 



File Management Utilities 

contents of the sorted file may be entire records, key fields, or record 
indexes relative to the position of each record within the file (the first 
record on the data base is record 1, the second, 2, etc.). SORT 
provides four sorting techniques which are outlined later in this chap­
ter. 

The SORT utility program may be controlled by a command string and 
an optional specification file. There is a simple format for each. If your 
SORT application does not require that records be restructured or that 
only a subset of the input file be sorted, then only a command string is 
needed to control SORT. 

DATA FILES 
SORT may accept a file from any one of the peripheral devices avail­
able in the system configuration: disk units, magtape units, or termi­
nals. 

A record is usually divided into several logical areas called data fields. 
The data in each field may or may not be relevant to SORT. SORT uses 
record identifiers to distinguish the various types of records in a file, 
while it uses the key fields in each record to reorder an input file. The 
key fields may be any one of a number of different data types including 
character, zoned decimal, two's-complement binary, and 2- or 4-word 
floating point. Any other data field in a record may be retained in the 
output file or ignored. 

Table 16-1 Selecting the Sorting Process and Devices That Best 
Suit the Processing Environment 

Sorting 
Technique 

SORTA 
(Record Sort) 

SORTT 
(Tag Sort) 

SORTA 
(Address 
routing Sort) 

Input 
File 

Disk 
Magtape* 
Paper Tape 
Cards 
Console 

Disk 

Disk 

Output 
File 

Disk 
Mag tape* 
Paper Tape 
Printer 
Console 

Disk 
Magtape* 
Printer 
Console 
Paper Tape 

Disk 

237 

Work 
File 

Disk 
(3-8 files) 

Disk 
(3-8 files) 

Disk 
(3-8 files) 



Sorting 
Technique 

SORTI 
(Index Sort) 

Input 
File 

Disk 

File Management Utilities 

Output 
File 

Disk 

Work 
File 

Disk 
(3-8 files) 

* Provided records are at least 18 bytes long. Magtape must be in ANSI for­
mat. 

COMMAND STRING AND SPECIFICATION FILE 
The user can direct the SORT program by entering a command string, 
which serves three functions: 

1. References devices in the system for each file in the current sort. 

2. Specifies switches that define file parameters used in the sorting 
process. 

3. References a specification file or specifies other switches to 
control the sort. 

Several command string switches define the sorting process parame­
ters. One switch describes record formats and the maximum record 
size. Another delimits the internal work files. Others provide detailed 
fil~ information to RMS. 

Normally, the sort must be directed with a specification file, but two 
additional switches may be used instead of a specification file. The 
first specifies the sorting process option; the second identifies the key 
fields. The use of these switches is limited to sorting an input file of 
uniform format: 

1. The key fields must reside in the same location in every record of 
the input file. 

2. The file must contain only the records to be included in the sort. 
Figure 16-2 illustrates a general sort that would require only a 
command string and switches. 

1 A I D 

1 D 

1 c 

l B 

l c 

I-' 

SORT USING COMMAND STRING ANO SWITCHES 

Figure 16-2 Sort Using Command String and Switches 

238 



File Managemont Utilities 

The specification file is the supplement to the command string, which 
provides the basis for controlling and directing the sorting process. 

The specification file provides a variety of controlling features. They 
are listed below: 
1. Record Selection 

r D 

r c 
r B r B 

I--

RECORD SELECTION 

11-l522. 

Figure 16-3 Record Selection 

You can include or omit any records from the sorting process. The 
output file will contain only the specified records. 

2. Alternate Collating Sequence 

r D 

r c 
r B 

I B r c 
r D 

~ e-o.o-e ____. 

ALTERNATE COLLATING SEQUENCE 

Figure 16-4 Alternate Collating Sequence 

If necessary, you can specify an alternate collating sequence. The 
normal sequence is that implied in ASCII code. One alternate 
choice is EBCDIC values. The other is an individual alternate col­
lating sequence (AL TSEQ). An AL TSEQ can be used to change 
the ASCII values of the normal sequence. It applies to all the 
alphanumeric key data in the records, but only during the actual 
sorting process. The output record remains unchanged. 

239 



File Management Utilities 

3. Forced Keys 

l 102 

l 333 

l 102 

l 242 

l 351 l 351 

242 333 
-..3nn - Inn-----+ 

FORCED KEY 

Figure 16-5 Forced Key 

An AL TSEQ applies to all positions of the key. Forced keys allow 
the user to specify an alternate sequence for particular positions 
within the key. An alternate can be specified by substituting a 
lower-valued character, such as the slash (/) in the example 
above. Since the slash comes before 0, the 300-series records in 
the example are brought to the front of the file. Notice that the 
records so treated are in sequence and in front of the rest of the 
sorted file. The net effect is that of two sorted files, one behind the 
other. 

4. Input Format Variation 

l Abbby 

l N 141 
l Aom 

J A aaaz 

l Abbby 

l N207 

N 207 N 141 

INPUT FORMAT VARIATION 

Figure 16-6 Input Format Variation 

If the input file contains records with several different formats, the 
user can identify those records by type so that they may be prop­
erly handled. Note that only one type may be selected and sorted 
per run. 

In the example above, A and N are record identifiers. 

240 



File Management Utilities 

5. Output Format Variation 

l 0 UV 23 

J B mn 19 

l st C17 

l UV 0 23 

J est 17 J mn B 19 

A xy ff 11.y A tf 

OUTPUT FORMAT VARIATION 

Figure 16-7 Output Format Variation 

You can change the format of the data file during the sort, but you 
cannot change the contents of any given data item. 

SORT OPERATION 
The SORT program consists of two basic parts: a control program and 
a subroutine package called SORTS. The control program directs the 
overall processing, while SORTS serves as a collection of subroutines 
available to the control program during its processing. The subroutine 
package can be invoked from a user-written program. This is support­
ed in most PDP-11 programming languages. 

There are three phases of operation in the SORT control program. In 
the first phase, SORT reads the command string, decodes it, and 
stores the switch values and the specification file, if present. Any er­
rors in the command string or specification file are reported at this 
point. 

Phase two begins the presort operation. The control program is called 
to open and read the input file and establish the keys. The SORTS 
subroutine begins the initial sorting process. At this point, the amount 
of available internal storage space becomes important to the efficien­
cy of the sort. If that space is not sufficient to hold all the records, 
SORT builds strings of sorted records and transfers them to scratch 
files on bulk storage devices. In order to merge these files and 
complete the sort, space for at least three scratch files must be avail­
able. The SORT program normally provides for a maximum of eight 
scratch files. Either a switch in the command string or the amount of 
available internal work space can reduce the number of scratch files 
used. 

The final merge phase rebuilds the intermediate scratch files into a 
merged file. Another subroutine_ reads the records in the proper se-

241 



File Management Utilities 

quence. The records are then written into the output file. If there are no 
scratch files to merge because main memory was sufficient to hold all 
the records, the sorted records are written directly into the output file. 
After the last record is written, the control program cleans up the 
scratch files and returns to the first phase; SORT is then ready to 
accept another job. 

SORT PROCESSING OPTIONS 

Table 16·2 Sorting Process Options 

Type of Type of File Record Size Speed Device 
SORT and Format 

SORTR(Re- Input and Any Slowest Any 
cord Sort) Output 

SORTT Input Any Slow for Disk 
(Tag Sort) large file 

Output Any Any 

SORTA Input Any Fastest Disk 
(Address 
routing Sort) 

Output Fixed, six Any 
bytes 

SORTI Input Any Fast Disk 
(Index Sort) 

Output Fixed, Any 
6-byte point-
er+ original 
key 

Record Sort (SORTR) 
The Record Sort (SORTA) outputs all specified record data in a sorted 
sequence. Each record is kept intact throughout the entire sorting 
process. Since it moves the whole record, SORTA is relatively slow 
and may require considerable main memory or external storage work 
space for large files. 

Tag Sort (SORTT) 
The Tag Sort (SORTT) produces the same kind of output file as 
SORTA, but it handles only record pointers and key fields. SinctJ 
SORTT moves a smaller amount of data than SORTA, SORTT usually 
performs a faster sort than SORTA. The input file must be randomly 

242 



File Management Utilities 

reaccessed to create the entire output file, which may be lengthy proc­
ess for large files. 

Address Routing Sort (SORTA) 
SORTA produces address routing files, which consist of relative re­
cord pointers, beginning at 1, in binary words. These files can be used 
as a special index file to access randomly the data in the original file. It 
is possible to maintain only one data file, but several different index 
files as needed. Like SORTT, SORTA uses the minimum amount of 
data necessary in the sorting process. Once the input phase is com­
pleted, the input file is not read again. The output data are in a restrict­
ed mode. This means that SORTA is the fastest sorting method in the 
sort package. 

Index Sort (SORTI) 
SORTI produces an index file consisting of relative record pointers, as 
in SORTA, and index keys. This makes it slightly slower than SORTA. 
During processing, SORTI handles only the relative record pointers 
and two forms of the key fields. One form is used for sorting and the 
other is left as it was in the original data. 

OTHER UTILITIES 
Running across most systems is a group of file management utilities 
that help make the various operations you need easier and quicker. 
The major features of these utilities are listed below. 

PIP The Peripheral Interchange Program (PIP) is a 
general-purpose file utility package for both the 
general user and programmer and the system 
manager. PIP normally handles all files with the 
operating systems standard data formats. In gen­
eral, the program transfers data files from any 
device in the system to any other device in the 
system. PIP can also delete or rename any exist­
ing file. Some operating systems include special 
file management operations in the PIP utility, 
such as directory listings, device initialization and 
formatting, and account creation. 

FILEX A File Exchange program, this is a special-pur­
pose file transfer utility similar in operation to PIP. 
It provides the ability to copy files stored in one 
kind of format to another format. This enables a 
user to create data on one system in a special 
format and then transfer the data to a device in a 

243 



DUMP 

VERIFY 

DUP 

DSC 

CMP 

BAU 

File Management Utilities 

format that another system can read. (FILEX is 
called FLX on RSX-11 systems.) 

DUMP displays all or selected portions of a file on 
a terminal or lineprinter. In general, DUMP en­
ables the user to inspect the file in any of three 
modes: ASCII, byte, and octal. In ASCII mode, the 
content of each byte is printed as an ASCII 
character. In byte mode, the content of each byte 
is printed as an octal value. In octal mode, the 
content of each word is printed as an octal value. 
(DUMP is DMP for RSX-11 systems.) 

In general, a VERIFY program checks the reada­
bility and validity of data on a file-structured de­
vice. (VERIFY is VFY for RSX-11 systems.) 

The device utility program (DUP) is a Device 
Maintenance Utility Program. DUP creates files 
on file-structured RT-11 devices. It can also ex­
tend files on certain file-structured devices such 
as disks, and it can compress, image copy, initial­
ize, or boot RT-11 file structured devices. DUP 
does not operate on non-file-structured devices 
such as lineprinters or terminals. 

DSC enables the user to backup/restore disk vol­
umes to magnetic tape or other disks and to com­
bine unused blocks on disks to create contiguous 
blocks. DSC comes both as a stand-alone and an 
online program. 

CMP is a utility that will compare, line by line, two 
ASCII files. Its output can be either a new file with 
all the differences encountered, a listing of one 
with change bars marking the differences, or an 
output suitable for input to the SLP utility. 

BAU backs up an RP06 disk to TU45 tape in less 
than an hour, which is approximately a 4-to-1 
improvement over the current DSC program. 
BAU also supports incremental backups (such as 
backing up only the files that have been modified 
since the previous backup), greatly reducing the 
amount of time required for proper disk backup. 

244 



245 



246 



CHAPTER 17 

RECORD MANAGEMENT SERVICES (RMS) 

RMS OVERVIEW 
Record Management Services, a set of general-purpose file-handling 
capabilities, combines with a host operating system to provide effi­
cient and flexible data storage, retrieval, and modification. When writ­
ing programs, you can select processing methods suitable to your 
application from among several RMS file structuring and accessing 
techniques. 

Not only does RMS handle such functions as file organization and 
access methods, but it also manages the other file attributes (e.g., 
storage medium and record format) and the runtime environment. By 
accomplishing most of its work transparently, RMS relieves program­
mers of many of the complexities associated with file and record mani­
pulation. 

The pages that follow describe in some detail the Record Management 
Services available on PDP-11 computers. All operating systems avail­
able from DIGITAL for the PDP-11 family have RMS bundled, that is, 
included as part of the operating system. 

FILE ORGANIZATION 
A file is a collection of related information whose requirements are 
established by the nature of application programs needing the 
information. For example, a company might maintain personnel infor­
mation (employee names, addresses, job titles) in one file and product 
information (part numbers, prices, specifications) in a second, sepa­
rate, file. Within each of these files, the information is divided into 
records. In the personnel file, it would be logical for all the information 
on a single employee to constitute a single record and for the number 
of records in the file to equal the number of employees. Similarly, each 
record in the product information file would represent a description of 
a single product. The number of records in the file reflects the require­
ments of a particular application, in this case, a central registry of 
products sold by a company. 

Each record in the personnel and product files would be subdivided 
into discrete pieces of information known as data fields whose num­
ber, location within the record, and logical interpretation are defined 
by the programmer. Program applications then interpret a particular 
data field in records of the personnel file as the name of an employee. 
They would interpret another data field in records of the product file as 

247 



Record Management Services 

a part number. Figure 17-1 illustrates records that might occur in a 
personnel file and in a product.file. 

DATA FIELDS' NAME ADDRESS BADGE li:!O- DEPARTMENT TITLE 

I 
JONES MAIN ST, USA 1452 I PAYROLL CLERK 

I 

PERSONNEL RECORD 

DATA FIELDS' PART NO. DESCRIPTION PRICE IN STOCK SPECIFICATION 

219 WIDGET $1.86 1430 3"ic.2" )( 1" 

PRODUCT RECORD 

Figure 17-i Personnel and Product Records 

Thus, the relationships among data fields and records 1;1re known and 
are embedded in the logic of the programs. RMS does not require an 
awareness of such logical relationships; rather, RMS processes 
records as single units of data. Programs either build records and 
pass them to RMS for storage in a file or issue requests for records 
while RMS performs the necessary operations to retrieve the records 
from a file. 

The purpose of RMS, then, is to ensure that every record written into a 
file can subsequently be retrieved and passed to a requesting pro­
gram as a single logical unit of data. The structure, or organization, of 
a file establishes the manner in which RMS stores and retrieves re­
cords. The way a pEogram requests the storage or retrieval of records 
is .known as the access mode. Legal access modes depend on the 
organization of a file. 

RMS FILE ORGANIZATIONS 
When creating a file, you have a choice of three file organizations: 

• Sequential 
•Relative 
• Indexed 

Sequential Fiie Organization 
In sequential file organization (see Figure 17-2), records appear in a 
physical sequence that is always identical to the order in which the 
records were originally written to the file by an application program. 

Relative File Organization 
When relative organization is selected, RMS structures a file as a 

248 



Record Management Services 

END OF FILE 

~ 

RECORD RECORD RECORD RECORD RECORD RECORD • • • • RECORD RECORD 

Figure 17-2 Sequential File Organization 

series of fixed-size record cells. Cell size is based on the size specified 
as the maximum permitted length for a record in the file. RMS consid­
ers these cells as successively numbered from 1 (the first) to n (the 
last), and the cell's number represents its location relative to the be­
ginning of the file. 

Each cell in a relative file can contain a single record. There is no 
requirement, however, that every cell contain a record. Empty cells 
can be interspersed among cells containing records. 

Since cell numbers in a relative file are unique, they can be used to 
identify both a cell and the record (if any) occupying that cell. Thus, 
record number 1 occupies the first cell in the file, record number 17 
occupies the seventeenth cell, .and so forth. When a cell number is 
used to identify a record, it is also known as a relative record number. 
Figure 17-3 depicts the structure of a relatively organized file. 

RECORD RECORD 
I 2 

999 

RECORD 
999 

Figure 17-3 Relative File Organization 

Indexed File Organization 

1000 

Unlike the physical ordering of records in a sequential file or the 
relative positioning of records in a relative file, the location of records 
in indexed file organization is transparent to the program. RMS com­
pletely controls the placement of records in an indexed file. The pres­
ence of keys in the records of the file governs this placement. 

The key, chosen by the programmer, is a data type present in every 
record of a particular indexed file. The location and length of this data 
type are attributes of the file, and therefore are identical for all records 
in the given file. Legal key data types are: string (1-255 bytes), integer 
(2 and 4 bytes), unsigned binary (2 and 4 bytes), and packed decimal 
(1-16 bytes). Selecting a data type indicates to RMS that the content 
(i.e., key value) of that key in any particular record written to the file 
can be used by a program to identify that record for subsequent re-

249 



Record Management Services 

trieval. Since the key is the arbitrary choice of the programmer, it can, 
of course, be equal to a field. Therefore, in the inventory file, the part 
number field could be a key; in the personnel file, the last name field 
could be a key. 

At least one key, the primary key, must be defined for every indexed 
file. Optionally, additional alternate keys can be defined. Each alter­
nate key represents an additional character string in records of the 
file. The key value in any one of these additional strings can also be 
used as a means of identifying the record for retrieval. 

As programs write records into an indexed file, RMS locates the 
values contained in the primary and alternate keys. From the values in 
keys within records, RMS builds a tree-structured table known as an 
index, consisting of a series of entries, each of which contains a key 
value copied from a record that a program wrote into the file. With 
each key value is a pointer to the location in the file of the record from 
which the value was copied. RMS builds and maintains separate in­
dexes for the primary and alternate keys defined for the file. Each 
index is stored in the file. Figure 17-4 shows the general structure of an 
indexed file that has been defined with only a single key. Figure 17-5 
depicts an indexed file defined with two keys: a primary key and one 
alternate key. 

KEY DEFINITION 

JONES • • • • SMITH, 

I 
ABLE ELM AV I 24379 

I 

JONES : MAIN ST 19724 
' I 
' ' SMITH I HOLT RO I 35888 
I I 

-----------DATA RECORDS-----------~ 

Figure 17-4 Single Key Indexed File Organization 

RMS ACCESS MODES 
The various methods of retrieving and storing records in a file are 
called access modes. A different access mode can be used to process 
records within the file each time it is opened. Additionally, a program 

250 



I\) 
(11 ..... 

ABLE 

PRIMARY INDEX 
(EMPLOYEE NAME) 

---
ABLE ELM AV 

KEY DEFINITIONS 

11733 

/ 
/ 

19724 

v ...... ---
~-\-

/ 

------
JONES 

__ -;:;-.,,,.. \ 

>.::' \ 
_.,,..... -- ----- \\ 

I 
I MAIN ST 
I 

19724 

I 

SMITH 
I 

ALTERNATE INDEX 
(BADGE l\IJMBER) 

--

I HOLT RD 11733 

'-~~~~~~~~~~~~~~~~-DATA RECORDS~~~~~~~~~~~~~~~~~~~ 

Figure 17-5 Multikey Indexed File Organization 

•5591 

~ 
8 a 
~ 
:::s 
~ 
(1) 

3 
~ 
(/) 
(1) .., 
~-



Record Management Services 

can change access mode during the processing of a file, by a pro­
cedure known as dynamic access. 

RMS provides three record access modes: 

• Sequential 

•Random 
• Record's file address (RFA) 

For logical reasons, RMS permits only certain combinations of file 
organization and access mode. Table 17-1 lists these combinations. 

Table 17-1 Permissable Combinations of Access Modes and File 
Organizations 

File 
Organization Access Mode 

Sequential Random RFA 

Record# Key Value 

Sequential Yes No No Yes* 

Relative Yes Yes No Yes 

Indexed Yes No Yes Yes 

*Disk files only. 

The following subsections describe RMS access modes and the capa­
bility of changing access mode during program execution. 

Sequential Access Mode 
Sequential access mode can be used with any RMS file. Sequential 
access means that records are retrieved or written in a particular 
sequence. The organization of the file establishes this sequence. 

Sequential Access to Sequential Files In a sequentially organized 
file, physical arrangement establishes the order in which records are 
retrieved when using sequential access mode. To read a particular 
record in a file-say one is the fifteenth record-a program must open 
the file and access the first fourteen records before accessing the 
desired record. Thus each record in a sequential file can be retrieved 
only by first accessing all records that physically precede it. Similarly, 
once a program has retrieved the fifteenth record, it can read all the 

252 



Record Management Services 

remaining records (from the sixteenth on) in physical sequence. It 
cannot, however, read any preceding record without beginning again 
with the first record. 

When writing new records to a sequential file in sequential access 
mode, a program must first request that RMS position the file 
immediately following the last record. Then each sequential write op­
eration the program issues causes a record to be written following the 
previous record. 

Sequential Access to Relative Files During the sequential access of 
records in the relative file organization, the contents of the record cells 
in the file establish the order in which a program processes records. 
RMS recognizes whether successively numbered record cells are 
empty or contain records. 

When a program issues read requests in sequential access mode for a 
relative file, RMS ignores empty record cells and searches successive 

· cells for the first one containing a record. If, for example, a relative file 
contains records only in cells 3, 13, and 47, successive sequential read 
requests cause RMS to return relative record number 3, then relative 
record number 13, and finally relative record number 47. 

When a program adds new records in sequential access mode to a 
relative file, the order in which RMS writes the records depends on 
ascending relative cell numbers. Each write request causes RMS to 
place a record in the cell whose relative number is one higher than the 
relative number of the previous request, as long as that cell does not 
already contain a record. If the cell already contains a record, RMS 
rejects the write operation. Thus, RMS allows a program to write new 
records only into empty cells in the file. 

Sequential Access to Indexed Files In an indexed file, the presence 
of one or more indexes permits RMS to determine the order in which 
to process records in sequential access mode. The entries in an index 
are arranged in ascending order by key values. Thus, an index repre­
sents a logical (rather than physical) ordering of the records in the file. 
If more than one key is defined for the file, each separate index associ­
ated with a key represents a different logical ordering of the records in 
the file. A program, then, can use the sequential access mode to 
retrieve records in the order represented by any index. 

When reading records in sequential access mode from an indexed file, 
a program initially specifies a key (e.g., primary key, first alternate key, 
second alternate key, etc.) to RMS. Thereafter, RMS uses the index 
associated with that specified key to retrieve records in the sequence 
represented by the entries in the index. Each successive record RMS 

253 



Record Management Services 

returns in response to a programmed read request contains a value in 
the specified key field that is equal to or greater than that of the 
previous record returned. 

In contrast to a sequential read request, sequential write requests to 
an indexed file do not require the initial key specification. Rather, RMS 
uses the stored definition of the primary key field to locate the primary 
key value in each record to be written to the file. When a program 
issues a series of sequential write requests, RMS verifies that each 
successive record contains a key value in the primary key field that is 
equal to or greater than that of the preceding record. 

Random Access Mode 
In random access mode, the program, rather than the organization of 
the file, establishes the order in which records are processed. Each 
program request for access to a record operates independently of the 
previous record accessed. Associated with each request in random 
mode is an identification of the particular record of interest. Succes­
sive requests in random mode can identify and access records any­
where in the file. 

Random access mode cannot be used with sequentially organized 
files. Both the re!ative and indexed file organizations, however, permit 
random access to records. The subsections that follow describe the 
use of random access with these organizations. Each organization 
provides a distinct way programs can identify records for access. 

Random Access to Relative Files Programs can read or write 
records in a relative file by specifying relative record numtier. RMS 
int~rprets each number as the corresponding cell in the file. A pro­
gram can read records at random by successively requesting, for 
example, record number 47, record number 11, record number 31, 
and so forth. If no record exists in a specified cell, RMS returns a 
nonexistence indicator to the requesting program. Similarly, a pro­
gram can store records in a relative file by identifying the cell in the file 
that a record is to occupy. If a program attempts to write a new record 
in a cell already containing a record, RMS returns a record-already­
exists indicator to the program. 

Random Access to Indexed Files The indexed file organization also 
permits random access of records. However, for indexed files, a key 
value rather than a relative record number identifies the record. 

Each program read request in random access mode specifies a key 
value and the index (e.g., primary index, first alternate index, second 
alternate index, etc.) that RMS must search. When RMS finds the key 
value in the specified index, it reads the record that the index entry 

254 



Record Management Services 

points to and passes the record to the user program. Under random 
access the programmer could, for example, instruct RMS to return all 
records with SMITH in the key equal to last name field. 

In contrast to read requests, which require a program-specified key 
value, program requests to write records randomly in an indexed file 
do not require the separate specification of a key value. All key values 
(primary and, if any, alternate key values) are in the record itself. When 
an indexed file is opened, RMS retrieves all definitions stored in the 
file. Thus, RMS knows the location and length of each key field in a 
record. Before writing a record into the file, RMS examines the values 
contained in the key fields and creates new entries in the indexes. In 
this way RMS ensures that the record can be retrieved by any of its key 
values. Thus, the process by which RMS adds new records to the file is 
precisely the process it uses to construct the original index or indexes. 

Record's File Address {RFA) Access Mode 
Record's file address (RFA) access mode can be used with any file 
organization as long as the file resides on a disk device. This access 
mode is further limited to retrieval operations only. Like random ac­
cess mode, however, RFA access allows a specific record to be identi­
fied for retrieval. 

As the name suggests, every record within a file has a unique address. 
The actual format of this address depends on the organization of the 
file. In all instances, however, only RMS can interpret this format. 

The most important feature of RFA access is that the address (RFA) of 
any record remains constant while the record exists in the file. After 
every successful read or write operation, RMS returns the RFA of the 
subject record to the program. The program can then save this RFA to 
use again to retrieve the same record. It is not required that this RFA 
be used only during the current execution of the program. RFAs can 
be saved and used at any subsequent time. 

Dynamic Access 
Dynamic access is not strictly an access mode. Rather, it is the 
capability to switch from one access mode to another while processing 
a file. There is no limitation on the number of times such switching can 
occur. The only limitation is that the file organization (or, in the case of 
RFA access, the device containing the file) must support the access 
mode selected. 

As an example, dynamic access can be used effectively immediately 
following a random or RFA access mode operation. When a program 
accesses a record in one of these modes, RMS establishes a new 
current position in the file. Programs can then switch to sequential 

255 



Record Management Services 

access mode. By using the randomly accessed record (rather than the 
beginning of the file) as the starting point, programs can retrieve 
succeeding records in the sequence established by the file's organiza­
tion. 

FILE ATTRIBUTES 
The logical and physical characteristics of a RMS file are known as its 
attributes. These characteristics are defined by the source language 
statements of an application program or by the RMS utility program 
DEFINE. RMS uses this information about the attributes to structure a 
file on the storage medium. 

The most important attribute of any RMS file is its organization. A file 
for use in a particular application can be tailored by making the proper 
selection of this and other attributes. In addition to file organization, 
the user can choose from among the following attributes: 
• Storage medium on which the file resides 
• File and protection specification of the file 

• Format and size of records 

• Size of the file 
• Size of a particular storage structure, known as the bucket, within 

relative and indexed files 
• Definition of keys for indexed files 

Storage Media 
Selection of a storage medium on which RMS builds a file is related to 
the organization of the file. Permanent sequential files can be created 
on disk devices or ANSI magnetic tape volumes. Transient files can be 
written on devices such as lineprinters and terminals. Unlike sequen­
tial files, relative and indexed files can reside only on disk devices. 

File Specifications 
The name assigned to a new file enables RMS to find the file on the 
storage medium. RMS allows for the assignment of a protection speci­
fication to a file at the time it is created. 

When a file is created, the user must provide the format and maximum 
size specifications for the records the file will contain. The specified 
format establishes how each record appears physically in the file on a 
storage medium. The size specification allows RMS to verify that re­
cords written into tne file do not exceed the length specified when the 
file was created. 

RMS Record Formats 
• Fixed 

256 



Record Management Services 

•Variable 

• Variable-with-fixed-control (VFC) 

•Stream 

Like the selection of a storage medium, the choice of a format for the 
records of a file depends on a file's organization. Table 17-1 shows the 
allowed combinations of record format and file organization. 

Table 17-2 Record Formats and File Organizations 

File Organization Record Format 

Fixed Variable VFC Stream 

Sequential Yes Yes Yes disk only 

Relative Yes Yes Yes No 

Indexed Yes Yes No No 

Fixed Length Record Format The term fixed length record format 
refers to records of a file that must all be one specified size. Each 
record occupies an identical amount of space in the file. 

Variable Length Record Format In variable length record format, 
records in a file can be either equal or unequal in length. To allow 
retrieval of variable length records from a file, RMS prefixes a count 
field to each record it writes. The count field describes the length (in 
bytes) of the record. RMS removes this count field before it passes a 
record to the program. 

Variable-with-Fixed-Control Record Format Variable-with-fixed­
control (VFC) records consist of two distinct parts: the fixed control 
area and the user data record. The size of the fixed control area is 
identical for all records of the file. The contents of each fixed control 
area are completely under the control of the program and can be used 
for any purpose. As an example, fixed control areas can be used to 
store the identifier (e.g., relative record number or RFA) of related 
records. 

The second part of a VFC record is similar to a variable length record. 
It is a user data record, variable in length and composed of individual 
data fields. 

257 



Record Management Services 

Stream Format Records Records in stream format can vary in size. 
However, no count field precedes each record. Instead, RMS consid­
ers the entire file a stream of contiguous ASCII characters. Each re­
cord in the file is delimited by one of the following: 

• Form feed (FF) 

• Vertical tab (VT) 

• Line feed (LF) 
• Carriage return immediately followed by line feed (CR-LF) 

Stream format records are supported for file interchange with non­
RMS-application programs. Since this format is not very efficient, it 
should be used only when such interchange is a concern. 

Size of Records 
The programmer provides RMS with record size information along 
with the selected record format. RMS use of this information depends 
on the record format chosen. 

When fixed format records are chosen, the actual size of each record 
in the file must be indicated. This size specification becomes part of 
the information stored and maintained by RMS for the file. Thereafter, 
if a program attempts to write a record whose length differs from this 
specified size, RMS will reject the operation. 

When creating a file with variable length format records, you can spec­
ify a maximum record size greater than zero or, for sequential and 
indexed files, a maximum record size equal to zero. If the specified 
size is greater than zero, RMS interprets the value as the size of the 
largest record that can be written into the file. 

VFC format records require two size specifications. The first size iden­
tifies the length of the fixed control area of all records in the file; the 
second size specification represents the maximum length of the data 
portion of the VFC records. RMS handles this second size 
specification in a manner similar to its handling of the size specifica­
tion for variable format records. 

For stream format records, RMS permits the user to specify the same 
record size information as for variable format records. That is, a non­
zero value represents the maximum permitted size of any record writ­
ten in the file while a zero value suppresses RMS size checking. 

Size of RMS Files 
The size of an RMS file is expressed as a number of virtual blocks. 
Virtual blocks are physical storage structures. That is, each virtuai 
block in a file is a unit of data whose size depends on the physical 

258 



Record Management Services 

medium on which the file resides. For example, the size of virtual 
blocks in files on disk devices is 512 bytes. 

The operating system assigns ascending numbers to a file's virtual 
blocks. This numbering scheme allows a file to appear as a series of 
adjacent virtual blocks. In reality, though, the successive numbering of 
virtual blocks and the physical placement of these blocks on a storage 
medium need not correspond. 

The virtual blocks of a file contain the records that programs write into 
the file. Depending on the size of records, a virtual block can contain 
one record, more than one record, or a portion of a record. 

When creating an RMS file, you can specify an initial allocation size. If 
no file size information is given, RMS allocates the minimum amount 
of storage needed to contain the defined attributes of the file. 

Buckets in Relative and Indexed Flies 
RMS uses a storage structure known as a bucket for building and 
maintaining relative and indexed files. Unlike a virtual block, a bucket 
can never contain a portion of a record. That is, RMS does not permit 
records to span bucket boundaries. 

The size of buckets in a file is defined at the time the files are created. 
A large bucket size will serve to increase sequential mode processing 
speed of a file, since fewer actual 1/0 transfers are required to access 
records. Minimizing bucket size, on the other hand, means that less 
1/0 buffer space is required to support file processing. 

Key Definitions for Indexed Files 
To define a key for an indexed file, the position and length of character 
data in the records of the file must be specified. At least one key, the 
primary key, must be defined for an indexed file. Additionally, up to 
254 alternate keys can be defined. Each primary and alternate key 
represents from 1 to 255 characters in each record of the file. 

When identifying the position and the length of keys to RMS, you can 
define either simple or segmented keys. A simple key is a single, 
contiguous string of characters in the record; in other words, a single 
data field. A segmented key, however, can consist of from two to eight 
data fields within records. These data fields need not be contiguous, 
and RMS treats the separate data fields (segments) as a logically 
contiguous character string. 

At file creation time, two characteristics for each key can be specified: 

• Duplicate key values are allowed 

• Key value can change 

259 



Record Management Services 

If duplicate key values are allowed, the programmer indicates that 
more than one record in the file can have the same value in a given 
key. 

The personnel file can serve as an example of the use of duplicate 
keys. At file creation time, the department name field could be defined 
as an alternate key. As programs wrote records into the file, the alter­
nate index for the department name key field would contain multiple 
entries for each key value (e.g., PAYROLL, SALES, ADMINISTRA­
TION) since departments are composed of more than one employee. 
When such duplication occurs, RMS stores the records so that they 
can be retrieved in first-in/first-out (FIFO) order. 

An application could be written to list the names of employees in any 
particular department. A single execution of the application could list 
the names of all employees working, for example, in the department 
called SALES. By randomly accessing the file by alternate key and the 
key value SALES, the application would obtain the first record written 
into the file containing this value. Then, the application could switch to 
sequential access and successively obtain records with·the same val­
ue, SALES, in the alternate key field. Part of the logic of the application 
would be to determine the point at which a sequentially accessed 
record no longer contained the value SALES in the alternate key field. 
The program could then switch back to random access mode and 
access the first record containing a different value (e.g., PAYROLL) in 
the department name key field. 

The second key characteristic (key value can change) indicates that 
records can be read and then written back into the file with a modified 
value in the key. When such modification occurs, the appropriate in­
dex is automatically updated to reflect the new key value. This charac­
teristic can be specified only for alternate keys. Further, when specify­
ing this characteristic, the user must also specify that the duplicate key 
values are allowed. 

If the sample personnel file were created with the department name 
field as an alternate key, the creator of the file would need to specify 
that key values can change. This allows a program to access a record 
in the file and change the contents of a department name data field to 
reflect the transfer of an employee from one department to another. 

The user can also declare the converse of either of these two key 
characteristics. That is, the user can specify for a given key that 
duplicate key values are not allowed or that key values cannot ci~s:i.nge. 
When duplicate key values are not allowed, RMS rejects any program 
request to write a record containing a value in the key that is already 

260 



Record Management Services 

present in another record. Similarly, when the key value cannot 
change, RMS does not allow a program to write a record back into the 
file with a modified value in the key. 

PROGRAM OPERATIONS ON RMS FILES 
After RMS has created a file according to the user's description of file 
characteristics, a program can access the file and store and retrieve 
data. The organization of the file determines the types of record oper­
ations permitted. 

If the record accessing capabilities of RMS are not utilized, programs 
can access the file as a physical structure, in which case RMS consid­
ers the file simply as an array of virtual blocks. To process a file at the 
physical level, programs use a type of access known as block 1/0. 

Record Operations on RMS Files 
The organization of a file, defined when the file is created, determines 
the types of operations that the program can perform on records. 
Depending on file organization, RMS permits a program to perf.orm 
the following record operations: 
• Read a record-RMS returns an existing record within the file to the 

program. 
• Write a record-RMS adds a new record that the program con­

structs to the file. The new record cannot replace an already existing 
record. 

• Find a record-RMS locates an existing record in the file. It does not 
return the record to the program, but establishes a new current 
position in the file. 

• Update a record-The program modifies the contents of a record 
read from the file. RMS writes the modified record into the file, 
replacing the old record. 

Sequential File Organization Record Operations 
In sequential file organization, a program can read existing records 
from the file using sequential or RFA access modes. New records can 
be added only to the end of the file and only through the use of 
sequential access mode. The find operation is supported in both se­
quential and RFA access mode. In sequential access mode, the 
program can use a find operation to skip records. In RFA access 
mode, the program can use the find operation to establish a random 
starting point in the file for sequential read operations. The sequential 
file organization does not support the delete operation, since the 
structure of the file requires that records be adjacent in and across 
virtual blocks. A program can, however, update existing records in 
disk files as long as the modification of a record does not alter its size. 

261 



Record Management Services 

Relative Fiie Organization Record Operations 
Relative file organization permits programs greater flexibility in per­
forming record operations than does sequential organization. A pro­
gram can read existing records from the file using sequential, random, 
or RFA access mode. New records can be sequentiaily or randomly 
written as long as the intended record cell does not already contain a 
record. Similarly, any access mode can be used to perform a find 
operation. After a record has been found or read, RMS permits the 
delete operation. Once a record has been deleted, the record cell is 
available for a new record. A program can also update records in the 
file. If the format of the records is variable, update operations can 
modify record length up to the maximum size specified when the file 
was created. 

Indexed File Organization Record Operations 
Indexed file organization provides the greatest flexibility in performing 
record operations. A program can read existing records from the file 
in sequential, RFA, or random access mode. When reading records in 
random access mode, the program can choose one of four types of 
matches that RMS must perform using the program-provided key val­
ue. The four types of matches are: 
• Exact key match 
• Approximate key match 
• Generic key match 
• Approximate and generic key match 

Exact key match requires that the contents of the J<ey in the record 
retrieved precisely match the key value specified in the program read 
operation. 

The approximate match facility allows the program to select either of 
the following relationships between the key of the record retrieved and 
the key value specified by the program: 
• Equal to or greater than 
• Greater than 

The advantage of this kind of match is that if the requested key value 
does not exist in any record of the file, RMS returns the record that 
contains the next higher key value. This allows the program to retrieve 
records without knowing an exact key value. 

Generic key match means that the program need specify only an initial 
portion of the key value, thereby forming a logical truncation upon the 
key. RMS returns to the program the first occurrence of a record 
whose key contains a value beginning with those characters. This 

262 



Record Management Services 

capability is useful in applications where a series of records must be 
retrieved according to the contents of only a part of the key field. In an 
indexed inventory file, for example, a company might designate its 
part numbers in such a way that the first three digits represent the 
vendor from whom the part is purchased. In order to retrieve the 
record associated with a particular part, the program would normally 
supply the entire part number. Generic selection permits the retrieval 
of the first record representing parts purchased from a specific ven­
dor. 

The final type of key match combines both generic and approximate 
facilities. The program specifies only an initial portion of the key value, 
as with generic match. Additionally, a program specifies that the key 
data field of the record retrieved must be either: 

• Equal to or greater than the program-supplied value 
• Greater than the program-supplied value 

In addition to versatile read operations, RMS allows any number of 
new records to be written into an indexed file. It rejects a write 
operation only if the value contained in a key of the record violated a 
user-defined key characteristic (e.g., duplicate key values not permit­
ted). 

The find operation, similar to the read operation, can be performed in 
sequential, RFA, or random access mode. When finding records in 
random access mode, the program can specify any one of the four 
types of key matches provided for read operations. 

In addition to read, write, and find operations, the program can delete 
any record in an indexed file and update any record. The only restric­
tion RMS applies during an update operation is that the contents of the 
modified record must not violate any user-defined key characteristic 
(e.g., key values cannot change and duplicate key values are not per­
mitted). 

Block 1/0 
Block 1/0 allows a program to bypass the record processing capabili­
ties of RMS entirely. Rather than performing record operations 
through the use of supported access modes, a program can process a 
file as a physical structure consisting solely of virtual blocks. 

Using block 1/0, a program reads or writes multiple virtual blocks by 
identifying a starting virtual block number in the file. Regardless of the 
organization of the file, RMS accesses the identified block or blocks on 
behalf of the program. 

Since RMS files, particularly relative and indexed files, contain internal 

263 



Record Management Services 

information meaningful only to RMS itself, DIGITAL does not recom­
mend that a file be modified by using block 1/0. The presence of the 
block 1/0 facility, however, does permit user-created file structures. 
Th& resultant structures must be user-maintained using specialized 
programs. The structures cannot be accessed using RMS record ac­
cess mode and record operations. 

RMS RUN TIME ENVIRONMENT 
The environment within which a program processes RMS files at run 
time consists of two levels, the file processing level and the record 
processing level. 

At the file processing level, RMS and the host operating system pro­
vide an environment that permits concurrently executing programs to 
share access to the same file. RMS ascertains the amount of sharing 
permissible from information provided by the programs themselves. 
Additionally, at the file processing level, RMS provides facilities that 
allow programs to minimize buffer space requirements for file pro­
cessing. 

At the record processing level, RMS allows programs to access re­
cords in a file through one or more record access streams. Each 
record access stream represents an independent and simultaneously 
active series of record operations directed toward the file. Within each 
stream, programs can perform record operations synchronously or 
asynchronously on operating systems which support this facility. That 
is, RMS allows programs to choose between receiving control only 
after a record operation request has been satisfied (synchronous op­
eration) or receiving control before the request has been satisfied 
(asynchronous operation). 

For both synchronous and asynchronous record operations, RMS 
provides two record transfer modes: move mode and locate mode. 
Move mode causes RMS to copy a record from an 1/0 buffer into a 
program-provided location. Locate mode allows programs to address 
records directly in an 1/0 buffer. 

FILE PROCESSING ENVIRONMENT 
RMS provides two major facilities at the file processing level: file shar­
ing and buffer handling. 

File Sharing 
Timely access to critical files requires that more than one concurrently 
executing program be allowed to process the same file at the same 
time. Therefore, RMS allows executing programs to share files rather 

264 



Record Management Services 

than process files serially. The manner in which a file can be shared 
depends on the organization of the file. Program-provided information 
further establishes the degree of sharing of a particular file. 

File Organization and Sharing With the exception of magnetic tape 
files, which cannot be shared, every RMS file can be shared by any 
number of programs that are reading, but not writing, the file. Sequen­
tial files on disk can be accessed by a single writer or shared by 
multiple readers. Relative and indexed files, however, can be shared 
by multiple readers and multiple writers. 

Program Sharing A file's organization establishes whether it can be 
shared for reading with a single writer or for multiple readers and 
writers. A program specifies whether such sharing actually occurs at 
runtime. The user controls the sharing of a file through information the 
program provides RMS when it opens the file. First, a program must 
declare what operations it intends to perform on the file. Second, a 
program must specify whether other programs can read the file or 
both read and write the file concurrently with that program. 

The combination of these two types of information allows RMS to 
determine if multiple user programs can access a file at the same time. 
Whenever a program's sharing information is compatible with the 
corresponding information another program provides, concurrent ac­
cess is allowed. 

Bucket Locking RMS uses a bucket locking facility to control opera­
tions to a relative or indexed file that is being accessed by one or more 
writers. The purpose of this facility is to ensure that a program can 
add, delete, or modify a record in a file without another program's 
simultaneously accessing the same record. 

When a program opens an indexed or relative file with the declared 
intention of writing or updating records, RMS locks any bucket ac­
cessed by the program. This locking prevents another program from 
accessing any record in the bucket until the program releases it, and 
remains in effect until the program accesses another bucket. RMS 
then unlocks the first bucket and locks the second. 

Buffer Handling 
To a program, record processing under RMS appears as the move­
ment of records directly between a file and the program itself. 
Transparently to the program, however, RMS reads or writes virtual 
blocks or buckets of a file into or from internal memory areas known 
as 1/0 buffers. Records within these buffers are then made available to 
the program. 

265 



Record Management Services 

In addition to buffers that contain virtual blocks or buckets, RMS re­
quires a set of internal control structures to support file processing. 
The combination of these buffers and control structures is known as 
the space pool. 

RECORD PROCESSING ENVIRONMENT 
After opening a file, a program can access records in the file through 
the RMS record processing environment. This environment provides 
three facilities: 
• Record access streams 
• Synchronous or asynchronous record operations 
• Record transfer modes 

Record Access Streams In the record processing environment, a 
program accesses records in a file through a record access stream, a 
serial sequence of record operation requests. For example, a program 
can issue a read request for a particular record, receive the record 
from RMS, modify the contents of the record, and then issue an up­
date request that causes RMS to write the record back into the file. 
The sequence of read and update record operation requests can then 
be performed for a different record, or other record operations can be 
performed, again in a serial fashion. Thus, within a record access 
stream, there is at most one record being processed at any time. 
However, for relative and indexed files, RMS permits a program to 
establish multiple record access streams for record operations to the 
same file. The presence of such multiple record access streams allows 
programs to process in parallel more than one record of a file. Each 
stream represents an independent and concurrently active sequence 
of record operations. Further, when such streams update records in 
the file, RMS employs the same bucket locking mechanism among 
streams that it uses to control the sharing of a file among separate 
programs. 

Synchronous and Asynchronous Record Operations Within each re­
cord access stream, a program can perform any record operation 
either synchronously or asynchronously. (The RSTS/E operating sys­
tem supports synchronous record operations only.) When a record 
operation is performed synchronously, RMS returns control to a 
program only after the record operation request has been satisfied 
(e.g., a record has been read and passed to one program). When a 
record operation is performed asynchronously, RMS can return con­
trol to one program before the record operation request has been 
satisfied. A program, then, can utilize the time required for the physi­
cal transfer between the file and memory of the block or bucket con-

266 



Record Management Services 

taining the record to perform other computations. However, a pro­
gram cannot issue a second record operation through the same 
stream until the first record operation has completed. To ascertain 
when a record operation has actually been performed, a program can 
issue a wait request and regain control when the record operation is 
complete. 

Record Transfer Modes In addition to specifying synchronous or 
asynchronous operations for each request in a record access stream, 
a program can utilize either of two record transfer modes to gain 
access to each record in memory: 

• Move Mode Record Transfers-RMS permits move mode record 
operations for all file organizations and record operations. Move 
mode requires that an individual record be copied between the 1/0 
buffer and a program. For read operations, RMS reads a block or 
bucket into an 1/0 buffer, finds the desired record within the buffer, 
and moves the record to a program-specified location. 

Before a write or update operation in move mode, the program 
builds or modifies a record in its own work space. Then the program 
issues a write or update record operation request, and RMS moves 
the record to an 110 buffer. 

• Locate Mode Record Transfers-RMS supports locate mode record 
transfers for read operations to all file organizations. However, it 
permits locate mode on write operations for sequential files only. 

Locate mode reduces the amount of data movement, thereby saving 
processing time. This mode enables programs to access records 
directly in an 1/0 buffer. Therefore, there is normally no need for 
RMS to copy records from the 1/0 buffer to a program. To allow the 
program to access a record in the 1/0 buffer, RMS provides the 
program with the address and size of the record in the 1/0 buffer. 

267 



268 



CHAPTER 18 

INTRODUCTION TO DATABASE MANAGEMENT 

Computers have helped both to promote and to manage the data 
explosion of the last two decades. Whether to satisfy government re­
quirements, to manage inventory more efficiently, to speed up order 
processing and billing, or to serve in one of thousands of other data 
operations, computer-produced information is now an integral part of 
organizational life. And increasingly, organizations must view the data 
that they generate or collect as a valuable resource. Such a resource is 
costly, both in its production and its maintenance: many operations 
would be hampered or halted if it were disrupted. Therefore, just as an 
organization's physical plant and personnel are resources that must 
be protected and managed effectively, so, too, must the data resource 
be protected and managed. Just as raw materials and equipment for 
manufacturing processes need to be maintained and kept up to date, 
information needs to be kept current. 

It would probably be inefficient for a company to have three or four 
groups charged with the responsibility of purchasing and warehousing 
identical parts for a manufacturing operation. Wasted time and space, 
redundancy of labor allocation, and loss of useful space could all 
result. 

What is really needed is a central acquisition and storage facility, with 
excellent distribution, to get parts quickly and efficiently to locations 
that require them. 

Naturally enough, there may be parts specific to a location and neces­
sary only to the local operation. These should be purchased and 
stored locally. 

Similarly, a savings in time and cost, and an increase in accuracy can 
be obtained through the establishment of a central database to handle 
data common to several operations (application programs) within a 
company. 

If people store the same information, then there is waste in the genera­
tion cost and in the storage overhead; if programmers must spend 
their time finding and reformatting information that others have creat­
ed and stored, instead of writing application programs, then there is 
inefficiency and waste; if unauthorized people have access to data 
they don't need for their jobs, there is the chance of error or violation 
of confidentiality. Local data, of course, can still be created and stored 
as required by local programs. 

269 



Introduction to Database Management 

Database management is a step toward reducing the problems that 
arise when management confronts the data explosion and the ever­
increasing cost and complexity of the data it needs. 

Once a consistent plan of database design is adopted, daily opera­
tions can call for some central data and some local data. Redundant 
data generation is reduced because everyone knows and can get at 
necessary data. Installation growth is simplified since alterations of the 
database need be done just once, instead of once for each form in 
which the information is stored: 

Though database establishment is a centralizing act, it is not contrary 
to the philosophy of distributed processing. In fact, the centralized 
database actually can increase the efficiency of distributed processing 
by making information developed at one node available to users at all 
nodes who have a legitimate need for it. If, for example, inventory and 
accounting data are generated by half a dozen different departments 
and locations within the company, the central data base can act as a 
filter to let regional personnel learn quickly what is happening at other 
locations and to let management at the corporate level get uniformly 
formatted reports from everywhere. 

How a Database Works 
Consider a series of application programs, A1, A2, ••• , An, and a series 
of files, F1, F2, ••• , F n as illustrated in Figure 18-1. As long as A1 wishes 
to access and use data in F 1, the corresponding file, and as long as 
there is no need for programs to access other files, then there would 
be no need for a comprehensive database. 

AP PUCA TIONS 

. . . 

FILES 

Figure 18-1 Pre-Database Configuration 

But now consider the case of some of the applications wanting to 
access, use, or update information in a variety of files, sometimes 

270 



Introduction to Database Management 

severai at a time, in order to accomplish their tasks. Naturally, each 
application could redevelop all the data it needs, but the cost would be 
high overhead and reduced programmer productivity. Or, as illustrat­
ed in Figure 18-2, the application programmer could try to get into 
each of the files built by other applications and to use their data. 

Figure 18-2 Complex File Sharing 

Some of the problems that arise here are incompatibility of data 
formats and complexity of the interrelationships that the programmer 
has to manage. Data integrity is threatened because of access by 
numerous users with different interests and needs. Program mainte­
nance becomes very complicated: if any one of the files is changed in 
format, all the programs that access it have to be changed, too. Data 
security is weakened when the data are available to a variety of users 
with several privilege options and degrees of skill. And finally, the end 
user finds himself confronting really difficult data management pro­
gramming-the system becomes increasingly forbidding to nonspe­
cialists who only want to get some information quickly in order to do 
their jobs, and who cannot write the sophisticated programs necessa­
ry to dig data out of entangled files. 

As time goes on, the program-file problem grows more and more 
complex, unless a database properly structured and managed is intro­
duced to solve some data processing difficulties. Temporarily we may 
think of a database as a pool of data. Through a structure of "schema" 
and "subschema," any program that needs it can access the database 
and, according to the job and privilege, read, write, and update the 
material in it, or use the information for computations. Thus, the data­
base would now be both functionally simpler and operationally easier 
than the same amount of data without a database system. Figure 18-3 
is a schematic of the database with its defining schema and subsche­
ma. 

271 



Introduction to Database Management 

Figure 18-3 A Database System 

Numerous benefits accrue to the organization that develops such a 
database. First, development resources are now used tor develop­
ment. That is, programmer time is spent in program development 
rather than in program maintenance-those activities required to up­
date all programs when files change, and to make programs agree 
with the data formats developed prior to the program. It has been 
estimated that a maintenance-tree database could save 50% on pro­
grammer costs. 

Both data security and data integrity are better served. Fewer complex 
accesses to the data means less likelihood of erroneous updating or 
deletion; better organization means easier determination of who 
should and should not get to certain kinds of information. As a corolla­
ry, data redundancy is reduced because fewer persons have to have 
exclusive access to it, and also because everyone now knows what is 
available in the central database. 

Finally, and most importantly, a level of data/program independence 
is achieved. The benefit is that it is no longer necessary to update 
programs each time the data files are changed, nor to alter the data 
formats each time a new program is written that wants to get at some 
information. 

272 



Introduction to Database Management 

To gain the maximum benefit from a database management system, 
the company or organization must commit to a comprehensive data­
base analysis. Through such an analysis the company determines the 
proper data relations and structures, and other details that must be 
considered before implementation. 

Knowledgeable people are required to design and continually main­
tain the database. As a payoff, once the company has committed the 
necessary resources-a small group of people to organize and orche­
strate database activities-then the majority of programmers can 
spend their time more productively than before, doing development 
rather than maintenance, helping users with queries, and so on. 

Naturally, there is a genuine need to incorporate security measures 
into any database structure, just as they are built into less sophisticat­
ed file and record systems. The use of "subschemas" provides levels 
of security that give users only information that they require. With 
proper privilege and special kinds of prior recognition, users can ac­
cess increasingly sensitive levels of data. Of course, the masking of 
data also provides for increased simplicity apart from the whole se­
curity side of the database. One receives only the information that is 
useful to a particular application, and no other. 

The Conference on Data Systems Languages-CODASYL-produced 
the so-called CODASYL specifications, which define the standard da­
tabase. DIGIT Al's Database Management System (DBMS-11) 
described in Chapter 20 is a CODASYL-based product. Figure 18-4 
illustrates schematically how an inquiry language such as DATA­
TRIEVE, DBMS-11, and DIGITAL's Record Management Services 
(RMS), see Chapter 17, work to give users access to databases. 

USER 

DATA DATA 

Figure 18-4 The End User in DBMS 

273 



Introduction to Database Management 

Database design and implementation are complex operations that are 
usually accomplished incrementally in organizations, especially those 
that already have some database capacity, or have many subgroups 
generating and using data. The two chapters that follow explain some 
aspects of database design and implementation. (Chapter 19 de­
scribes DATATRIEVE, the inquiry, update and report generating lan­
guage. Chapter 20 describes DIGITAL's Database Management Sys­
tem.) But in every case, you should consult your DIGITAL software 
specialist to get the most recent word both on feasibility for your appli­
cation, and on the power of DIGITAL database software products. 

274 



275 



276 



INTRODUCTION 

CHAPTER 19 

DATATRIEVE-11 

DATATRIEVE-11 is a data maintenance, inquiry and report writing 
system. It is available on IAS, RSTS/E, RSX-11 M, and RSX-11 M-PLUS 
operating systems for PDP-11 computers. It provides users with 
direct, fast, easy access to the data in sequential, indexed, and relative 
RMS-11 files. DATATRIEVE-11 accepts simple words and phrases to 
extract, modify, or update RMS-11 data. With fewer than ten com­
mands, users can find, print, update, and sort records. 

By eliminating the need for many specialized application programs 
and their time-consuming compilations, DATATRIEVE-11 helps to 
maximize programmer and system productivity. And because it is so 
easy to learn and simple to use, all users can access data without the 
services of a programmer. DATATRIEVE-11 can be learned quite easi­
ly, thanks to its familiar syntax. In addition, it immediately notifies you 
of any errors, so that you may correct them immediately. DATA­
TRIEVE-11 makes file access simple, while maintaining the file securi­
ty provided by the operating system. 

Additional facilities are provided by the system for selective data re­
trieval, sorting, formatting, updating, and report generation. 

DESCRIPTION 
There are many advantages of using DATATRIEVE-11 over 
application programs to generate ad hoc queries and reports. The 
three major categories of DATATRIEVE-11 capabilities are: 
• Data Access and Update Facilities 
• Report Generation Facilities 
• Data Dictionary Facility 

Data Access and Update Facilities 
The inquiry and update commands provided by DATATRIEVE-11 en­
able the user to perform record and file manipulation. DATATRIEVE-
11 offers simple and advanced commands. Simple commands enable 
the novice to find, update, and sort records. Advanced commands can 
be used to perform more complex functions such as combining com­
mands to form procedures. 

DATATRIEVE-11 provides the first time user with flexible "value­
based" data access/update capabilities that can eliminate the need for 
programming overhead in many situations. Information is returned to 

277 



Datatrieve 

the user in the form of collections of records that can be manipulated 
and/or displayed on the terminal or printer using the DATATRIEVE-11 
report writing facility. Several specific features bring this power to 
users. 
• GUIDE MODE is a tutorial aid with automatic prompting. This fea­

ture permits the novice to retrieve and display data by stepping 
through a subset of commands. 

•The documentation set for DATATRIEVE-11 includes a Primer de­
signed to introduce the novice to the use of DATATRIEVE-11, and a 
User's Guide that uses examples to present the various DATA­
TRIEVE-11 functions. 

• The commands are simple words and phrases instead of confusing 
acronyms. 

• DATATRIEVE-11 supports simple arrays. 
• A data type is provided that recognizes data formats and facilities, 

entering and displaying dates in any one of several formats. 

• DAT ATRIEVE-11 provides a full set of arithmetic operators (addi­
tion, subtraction, multiplication, division, and negation), statistical 
operators (total, average, maximum, minimum, and count), and 
conversion between data types used in DIGITAL's FORTRAN, CO­
BOL, DIBOL, and BASIC-PLUS-2 languages. 

Report Generation 
In ad.dition to its inquiry and update commands, DATATRIEVE-11 pro­
vides a report writing facility to generate reports from RMS-11 files 
and DBMS-11 databases. The data can come directly from the files or 
can be preselected and manipulated through a series of DATA­
TRIEVE-11 commands. Users can specify such parameters as spac­
ing, titles, headings, and totals on their reports. As in the inquiry and 
update facility, errors in commands are discovered immediately to 
avoid printing wrong or incomplete reports. 

Data Dictionary Facility 
The Data Dictionary maintains definitions of record structures and 
domain names. A record structure describes the format of the records 
in the file. A domain is a named group of data containing records of a 
single type. Record structures and domain names must be defined 
before DAT ATRI EVE-11 can be used to access data. 

The definitions provide a substantial level of data and program 
independence because the definitions (or views) can cross file bound­
aries. Thus, by providing a single value-based DAT ATRIEVE-11 query, 
users can access information from multiple files and records. DATA­
TRIEVE-11 also provides commands to list the contents of the Data 

278 



Datatrieve 

Dictionary, to delete entries, and to control access to individual en­
tries. 

DATATRIEVE-11 COMMANDS 
DATATRIEVE-11 is a multifaceted data management facility that can 
store, update, and retrieve information and generate reports. The ma­
jor commands include: 

• HELP - which provides a summary of each DATATRIEVE-11 
command 

• READY - which identifies a domain for processing and controls the 
access mode to the appropriate file 

• FIND - which establishes a collection (subset) of records contained 
in either a domain or a previously established collection based on a 
Boolean expression 

• SORT - which reorders a collection of records in either the ascend­
ing or descending sequence of the contents of one or more fields in 
the records 

• PRINT - which prints one or more fields of one or more records. 
Output can optionally be directed to a lineprinter or disk file. Format 
control can be specified. A column header is generated automati­
cally 

• SELECT - which identifies a single record in a collection for subse­
quent individual processing 

• MODIFY - which alters the values of one or more fields for either 
the select record or all records in collection. Replacement values 
are prompted for by name 

• STORE - which creates a new record. The value for each field 
contained in the record is prompted for by name, or indicated on a 
predefined form 

• ERASE - which deletes one or more records from the RMS-11 file 
corresponding to the appropriate domain 

• FOR - which executes a subsequent command once for each re­
cord in record collection, providing a simple looping facility 

• DECLARE - which defines global and local variables to be used 
within a DATATRIEVE-11 query 

• DEFINE - which provides a consistent mechanism for creating 
domain, record, table, procedure, and view definitions in the DATA­
TRI EVE-11 Data Dictionary 

• EDIT - which invokes an editor that inserts, modifies, or deletes 
text from the DATATRIEVE-11 Data Dictionary 

In addition to the simple data manipulation commands, a number of 

279 



Datatrieve 

more complex commands are available for the advanced user. These 
commands, such as REPEAT, BEGIN-END, and IF-THEN-ELSE, may 
be used to combine two or more DATATRIEVE-11 commands into a 
single compound command. These, in turn, may be stored in the Data 
Dictionary as procedures for invocation by less experienced users. 

DATATRIEVE-11 can be used interactively from a terminal or in batch. 
Data can be accessed in RMS-11 files and DBMS-11 database struc­
tures. 

Designed to be used by both novices and computer professionals, 
DATATRIEVE-11 operates effectively in commercial, technical, scien­
tific, industrial, or educational environments. Typical applications 
range all the way from producing a complex report to answering a 
casual question. For example, using DATATRIEVE-11, a personnel file 
could be queried to determine how many employees held bachelor's 
degrees, or the same file could be used to produce a report with a 
complete statistical analysis of the employee education versus com­
pensation. 

Another typical environment where DATATRIEVE-11 would be useful 
is a distributorship with an order processing system. In this setting, 
sales data could be extracted by territory. Order backlogs might be 
retrieved, sorted by supplier, and printed on a report. 

Data Definition 
The data definition process involves establishing special DATA­
TRIEVE-11 constructs called domains. 

Domains - The main concept is central to DATATRIEVE-11. Domains 
represent relationships between actual physical data and descriptions 
of data. DATATRIEVE-11 performs all data management in terms of 
domains. Domains must be defined before DATATRIEVE-11 can man­
age the data associated with them. 

In the simplest form, a DATATRIEVE-11 domain definition consists of 
a domain name, the name of the RMS-11 file, and the name of a 
record format description. A record format description defines the 
fields within a record, assigning each field a name and specifying its 
length, data type, and other vital parameters. All DATATRIEVE-11 do­
main definitions and record format descriptions are contained in the 
DATATRIEVE-11 Data Dictionary. 

Record format descriptions can specify data validation criteria on a 
per-field basis. DATATRIEVE-11 automatically uses the validation 
parameters to screen data at the time of input so that only data defined 
as valid is accepted. Supported validation parameters include range 
checks, or must-match tables. 

280 



Datatrieve 

Domains can span multiple RMS-11 'files or DBMS-11 record types 
and can also include the name of an associated DATATRIEVE-11 ta­
ble. 

Data Management 
Data management involves creating and maintaining data in a current 
and correct state by adding, eliminating, and modifying records. The 
STORE, ERASE, and MODIFY statements are used to perform these 
relatively straightforward functions. 

Populating Files - When an application requires the creation of new 
files, the files must be filled with data. This process is called "populat­
ing" the file. A series of successive STORE statements is used for this 
purpose. With the STORE statement, DAT ATRI EVE-11 prompts the 
user for each field value and, before accepting input, performs any 
validation checks specified by the record format description. 

Data Retrieval 
Maintaining an accurate database, however, is not an end in itself. 
Data is used to make decisions, generate reports, initiate transactions, 
and generally facilitate the operational processes of an enterprise. 
DATATRIEVE-11 allows stored data to be retrieved in an easily under­
stood form regardless of underlying data structure (RMS-11 or DBMS-
11 ). 

The data retrieval statements of DATATRIEVE-11 are simple and par­
ticularly powerful statements. They consist of verbs modified by a 
Record Selection Expression (RSE). The RSE defines a subset of the 
records in the domain. These records are then selected by DATA­
TRIEVE-11 for retrieval. One statement can get the answer to a casual 
query or produce a long, detailed report. 

"EMPLOYEES WITH SALARY GREATER THAN $20,000," 
"ACCOUNTS WITH UNPAID-BALANCE GREATER THAN $600," or 
"DONORS WITH BLOOD TYPE EQUAL 0-NEG" are examples of typi­
cal RSE's. Multiple conditions can be combined in a single RSE-for 
example, "DONORS WITH BLOOD TYPE EQUAL 0-NEG AND LAST 
DONATION DATE LESS THAN JANUARY 1982." The DATATRIEVE-11 
SORT operator can be appended to the RSE to order the records 
being retrieved. 

Ad hoc information retrieval with DATATRIEVE-11 is normally per­
formed as an iterative process using a series of statements to progres­
sively narrow down the group of records to be retrieved. This works by 
using a FIND request with a specified domain as its object to establish 
what is called the current collection. Subsequent FIND requests prog-

281 



Datatrieve 

ressively narrow down the current coilection until the user is satisfied 
with the results. For example, the statement "FIND DONORS WITH 
BLOOD TYPE EQUAL 0-NEG AND LAST DONATION DATE LESS 
THAN JANUARY 1981" might yield the DATATRIEVE-11 response 
"200 RECORDS FOUND." In this case, the user could narrow down the 
current collection with the statement "FIND CURRENT WITH ZIP­
CODE EQUAL 77451." DATATRIEVE-11 might then respond with "14 
RECORDS FOUND" and the user could PRINT .these records to get 
telephone numbers for soliciting blood donations to help an accident 
victim. 

Report Generation 
In addition to its inquiry and update commands, DATATRIEVE-11 pro­
vides a report writer facility to generate reports directly from the RMS-
11 files, DBMS-11 data, or the current collection. Although the report 
facility allows application programmers to specify spacing, titles, 
headings, and totals, the default settings are suitable for many appli­
cations, further simplifying its use. As in the inquiry and update facility, 
errors in commands are discovered immediately so that you can cor­
rect the commands before printing wrong or incomplete reports. 

When reporting requirements change, you need not rewrite or modify 
an entire reporting program. All you do is issue modified statements to 
the report facility. The DATATRIEVE-11 report writer provides easy-to­
use commands to control the following report functions: 

• Report name, date, and page numbering 
• Page width and length specification 

• Detail line specification 

• Multiple control break specification with automatic totaling at any 
level 

• Multiple report sections 

• Statistical lines-such as total, average, count, etc. 

A DAT ATRI EVE-11 report command can be freely intermixed with 
other DATATRIEVE commands. 

Reports 
The PRINT statement is used to output information to a display termi­
nal, a printer, or a RMS-11 file. Though there are some formatting 
options possible with the PRINT statement, they are limited. The RE­
PORT command provides a more comprehensive set of formatting 
options for producing standard printed reports with page and column 
headings, page numbers, totals, and subtotals. 

282 



Datatrieve 

Stored Procedures 
With the DEFINE PROCEDURE command, users can define 
sequences of DATATRIEVE-11 commands and statements and store 
them for later use. PROCEDURES can be invoked to run by them­
selves or can be embedded in other sequences of commands and 
statements. 

Ease of Use Features 
Guide Mode - DATATRIEVE-11 provides a self-teaching facility for 
use with VT52 and VT100 family terminals called guide mode. In this 
mode of operation, users are guided through their DATATRIEVE-11 
sessions with a series of prompts. 

To invoke guide mode, the user issues a SET GUIDE command. DA­
TATRIEVE-11 immediately responds with "ENTER COMMAND, TYPE 
? FOR HELP." If"?" is typed at this point, DATATRIEVE-11 will present 
the user with the possible responses-in this case, READY, SHOW, or 
LEAVE. If one of the alternatives is selected, DATATRIEVE-11 then 
proceeds to guide the user through the syntax of the selected state­
ment. In the case of READY, DATATRIEVE-11 prompts with "DOMAIN 
NAME, END WITH SPACE." 

DATATRIEVE-11 Editor - The DATATRIEVE-11 editor is a subset of 
the Digital standard editor, EDT. It may be used only in line mode and 
may edit only definitions stored in the DATATRIEVE Data Dictionary. 

Application Design Tool - The Application Design Tool (ADT) is a 
DATATRIEVE-11 utility that simplifies the process of defining do­
mains, record formats, and creating RMS-11 data files. Operating in 
an interactive mode, ADT presents the user with a series of simple 
questions. The user's responses provide ADT with information to 
generate the proper definitions. For RMS-11 files, ADT will prompt the 
user to get a full set of parameters pertaining to organization, index 
keys, etc. ADT will then create an indirect command file that the user 
can execute immediately or at some later time to create the desired 
file. 

Advanced Features 
View Domains - DATATRIEVE-11 allows domains to be defined 
that can subset the fields of a record and can span multiple RMS-11 
files or DBMS-11 record types. These are called view domains be­
cause they provide a user's logical view of the data. Once view do­
mains have been established, they can be used in much the same way 
as simple domains. 

This facility is basic to high-level data access. It makes it possible for a 
single statement to retrieve a set of related records. For example, in an 

283 



Datatrieve 

employee records application there might be an employee master file 
with company confidential information pertaining to salary that could 
be masked out during a view domain. Other information in the master 
file such as addresses and telephone numbers could then be com­
bined in another view domain with a special file of records used in a 
car-pooling application. 

View domains can also be used with RMS-11 files for domains con­
taining records related in a hierarchical fashion. For example, in an 
order processing application there might be an account master file 
and an order file. These files could be combined in a view domain to 
produce billing statements with data drawn from both files. A single 
record in this view domain could be defined to contain one account 
master record and all the orders applying to that account. 

DBMS Domains - DBMS domains are a DATATRIEVE-11 feature to 
take advantage of the record format descriptions and interrecord rela­
tionships defined in DBMS-11 subschemas. When DBMS-11 domains 
are used, a schema, subschema, and a record type are simply identi­
fied. DATATRIEVE-11 uses the record format description and relation­
ships defined for the record type in the DBMS-11 Data Dictionary. 

Tables - DATATRIEVE-11 tables can be defined to reside in the 
DATATRIEVE-11 Data Dictionary. Tables can be used as a must­
match list for field validation or for argument function type conver­
sions. For instance, a must-match list of valid U.S. Mail state abbrevia­
tions could be used to check an address field, or an argument function 
table could be used to convert from state abbreviation codes to the 
spelled-out state name. 

Data Protection 
Data protection is accomplished through two independent mecha­
nisms: the protection systems of the host operating system and those 
within DATATRIEVE-11. The DATATRIEVE-11 protection system uses 
passwords and User Identification Codes (UIC's or PPN's) to allow a 
user to regulate access to domains, records, procedures, and tables 
through access requirements recorded in the Data Dictionary. Thus, 
each resource has its own security system to assure access is not 
granted to unauthorized users. 

284 



285 



286 



CHAPTER 20 

DATABASE MANAGEMENT SYSTEM (DBMS-11) 

INTRODUCTION 
DBMS-11 is a CODASYL-compliant database management system 
that runs under the RSX-11 M, RSX-11 M-PLUS, and IAS operating 
systems. By allowing the creation of a common data resource for any 
number of application programs, DBMS-11 reduces redundant data, 
provides data consistency, and allows the database to be maintained 
more easily and securely. In addition to the data modeling capabilities 
of a network database, DBMS-11 offers security and data protection 
features like journaling, automatic recovery, and subschemas which 
define the users view of the database. 

DBMS-11 permits each application program to access an appropriate 
subdivision of the database through a simple set of commands that act 
as extensions to COBOL and FORTRAN programs or through calls 
from BASIC and MACRO programs. 

Two sets of language facilities control DBMS-11 for database adminis­
tration and application programming. The Data Description Lan­
guages (DDL) allows the central database to be defined and created; 
the Data Manipulation Language (DML) allows individual application 
programmers to access portions of the database by using simple 
commands embedded within application programs. 

The description of each database is called the schema and is imple­
mented with the Schema Data Description Language (Schema DDL). 
The Schema DDL performs these three functions: 

• Defines all data elements (records, groups, items) in the database 

• Describes all logical relationships (sets) that are to exist between 
elements 

• Defines the physical mapping of the schema to files 

Record definition-Records are defined in DBMS-11 with a definition 
language similar to PDP-11 COBOL. Most data types used in PDP-11 
COBOL and FORTRAN-77 are supported by DBMS-11. In addition, 
such structures as groups, repeating groups, and variable length re­
peating groups can be defined. 

Set Definition-DBMS-11 allows logical relationships among records 
to be defined in any combination of sequential, hierarchical, or net­
work data structures. This flexibility optimizes record access, reduces 
or eliminates duplication of stored data, and provides direct access to 
associated records in the database. 

287 



Data Base Management System 

Physical Mapping-Physical mapping of areas into files is accom­
plished using the Schema DDL. In the Schema DDL, the size of an area 
is described as a number of pages. A page is a fixed-length block of 
information transferred to and from physical storage. The actual size 
of a page is set in the DMCL. The DMCL can exclude some areas 
defined in the schema, making them unavailable for general 
processing. 

Once a central database is defined, any number of logical subdivisions 
can be defined using the Subschema DDL. Each subschema defines a 
specific combination of records and structures which apply to a given 
application program. Central control and controlled allocation of each 
database not only provide for maintainability and security of data, but 
also permit markedly improved application programmer efficiency. 
For example, the data description function is removed from the scope 
of the application programmer. Individual application programs are 
easier to write and debug, and have superior portability and better 
maintainability. 

APPLICATIONS 

SCHEMA 

SUBSCHEMA n 

DATA BASE 

Figure 20-1 Schema and Subschemas 

RECORD CHARACTERISTICS 
The basic unit within the DBMS-11 database is the record. Individual 
records are differentiated from one another by their format-defined 
using the Schema DDL. For example, one record type might be named 
CUSTOMER and could include all record occurrences that have the 
following three data items: 

• 8 characters for customer number 

288 



Data Base Management System 

• 32 characters for customer name 

• 32 characters for customer address 

Any number of record types can be defined to meet the needs of the 
user community. Further, each record type can be included in any 
number of subschemas; identical record types need not be duplicated 
for different application programs. For example, the record type EM­
PLOYEE can be in the subschema for both the personnel and medical 
benefits application programs. 

Since large databases are generally stored on disk systems where the 
time between successive accesses is the key to optimum perform­
ance, database performance can be improved by locating and retriev­
ing these related records with a single access. DBMS-11 offers three 
modes of record storage that provide flexible record placement con­
trol. 

These record location modes are: 

• DIRECT - gives the user control over logical storage location. In 
this mode, a suggested database key (desired location) is supplied 
before the record is stored. If the suggested database key is 
available, it will be assigned to that record. If unavailable, the next 
available database key will be assigned. 

• CALCULATED (CALC) - stores the record based on the value of 
one or more data items within the record. This option can be used to 
spread records evenly over an area. Every CALC record provides a 
"keyed" entry point into the database. 

• VIA - used for record occurrences that will be referenced primarily 
in conjunction with another record type. For example, if record type 
EMPLOYEE is usually accessed in conjunction with record type 
COMPANY, the VIA option would store record occurrences of EM­
PLOYEE as close to occurrences of the specific COMPANY as is 
possible. This clusters member records around owners, minimizing 
the number of physical accesses necessary. 

SET CHARACTERISTICS 
While the ability to control the physical placement of records is impor­
tant to optimize system speed, the most important aspect of any data­
base management system's usability is the number and kind of data 
relationships that can be supported. 

Logical relationships are established by defining named collections of 
record types-each called a set. Each set must have one record type 
declared as the owner record and one or more record types declared 

289 



Data Base Management System 

as its member records. Seven characteristics of sets in DBMS-11 are 
illustrated in Table 20-1. 

Set Ordering 
DBMS-11 includes a series of options to establish and maintain set 
relationships. Since each set is described independently from any 
other set, the record order of each set can be defined for most efficient 
access. Record order within a set may be defined to be: 

• FIRST (New records are positioned first in a series of records.) 

• LAST (New records are positioned last in the series of records.) 

• PRIOR (New records go immediately before a record occurrence 
established by the user program.) 

• NEXT (New records go immediately after a record occurrence esta­
blished by the user program.) 

• SORTED (Records will be logically positioned in ascending or des­
cending order based on the value of one or more data items within 
the record.) 

The logical ordering of member record occurrences in a set is inde­
pendent of the physical placement of the records. Additionally, the 
same record type can participate (be a member) in any number of 
different sets, each with a different ordering criterion. 

Set Membership 
Not only can a record type participate as a member of different sets 
with a different relationship in each set, but the type of membership 
may be different in each set. Set membership can be optional or 
mandatory, and manual or automatic, depending on whether the user 
application program is permitted to CONNECT or DISCONNECT an 
occurrence of this record type from the set. 

• Optional set membership allows a record to be removed from a set 
(DISCONNECT) without the record's being deleted from the data­
base. 

• Mandatory set membership defines a record as a permanent mem­
ber of a set as long as the record is present in the database. 

• Automatic set membership defines the record to be specified as a 
member of a set as an automatic function performed by the data­
base management system when the record occurrence is stored in 
the database. 

• Manual set membership allows the connection to a set of a r"ecord 
occurrence to be performed by the user program (CONNECT). 

290 



Data Base Management System 

Table 20-1 Set Relationships 

1. Any record may participate as a member in one or more SETs. 

ZIP CODE 

EMPLOYEE 

2. Any record may be specified as the owner of one or more SETs. 

EMPLOYEE 

EDUCATION DEPENDENTS 

3. Any record may participate as a member of any number of SETs. and also be an 
owner of one or more SETs. 

4. A SET may have only one record type as its owner but may have one or more 
record types as members. 

~ I DEGREE COURSE r--- ~ 
~ 

5. Any number of SET relationships may exist between two record types. 

DEPARTMENT 

Active History 

EMPLOYEE 

6. A record type may exist without any SET participation-as neither a member nor 
an owner of a SET. 

I GRADE/SALARY I 
7. Any record type may be defined as an optional member of a SET. Participation of 

each record occurrence is established or deleted based on execution of a 
statement within a user program. 

DEPARTMENT 

EMPLOYEE 

~-E_o_u_c_A_ri_o_N~~~· SALARY HISTORY 

291 



Data Base Management System 

Set Linkage 
The relationship between record types within a set is maintained by 
the existence of pointers (linkage) to related records. Members of sets 
are always linked in the forward direction (next pointer). Sets may also 
be defined to be linked in the reverse direction (prior pointer) or linked 
to the owner (owner pointer). Owner pointers allow the owner record 
to be accessed directly from a member record without following the 
next or prior pointer chain to the end. 

Thus, options for set linkage are: next pointers, next and prior 
pointers, next and owner pointers, or riext, prior, and owner pointers. 

PHYSICAL SPACE MANAGEMENT 
The basic unit of physical space management under DBMS-11 is the 
page. A page is a fixed-length block transferred to and from storage 
(size defined by the user) which will be maintained by the DBMS-11 
input/output routines. 

The physical extent of the database is described in pages using the 
Schema DDL. The database is divided by the Schema DDL into areas. 
For example, area 1 might be pages 1-1000; area 2, pages 1001-3000, 
and so on. 

Within a page, any number of records of different types may be stored, 
each with its own length. Space management is employed within each 
page so that when a record is deleted, the associated space is made 
available for reuse. This eliminates efficiency-robbing gaps in the da­
tabase. 

The database may be mapped to any combination of system files: 

• The entire database may be assigned to a single file 

• Files may be assigned to areas on a one-to-one basis 

• Several files may be associated with one area 

The applications programmer is never aware of which files are con­
nected to the portion of the database. 

Note that each database has its own buffer pool, whose size is defined 
through the DMCL. Database pages are read and maintained accord­
ing to a "least-recently-used" algorithm. This technique reduces over­
all 1/0 overhead. 

Multiple Databases 
DBMS-11 supports up to five simultaneously active databases per 
system. Although the centralization of data is a goal of database 
management, some database applications are essentially disjointed. If 
the Engineering Department needs a database for design information 

292 



Data Base Management System 

and shares a computer with the Medical Records Department which 
also uses DBMS-11, they are not required to pool their information. 
Similarly, one database can be used to debug new programs while 
production work continues. 

Table 20-2 Physical Storage Allocation Under DBMS-11 

DBMS-11 AREAS 

POSSIBLE "FILES" 
MAPPINGS 

AREA 1 
PAGES 1-1000 
(1st Physical 
Area) 

FILE A 

DATABASE UTILITIES 

PAGES 1-N 
(Entire Physical Database) 

AREA 2 I AREA "X" 
PAGES 1001-3000 )PAGES "b"-"N" 
(2nd Physical 

~ I 
Xth Physical 

Area) Area) 

FILES B & C FILES D-Z 

B c 

DBMS-11 includes a comprehensive set of utilities that allows the 
database administrator to monitor and audit the activity of the system, 
measure the performance of the system, and recover the database 
after a hardware or software failure. 

Data Dictionary Utilities - The Data Dictionary contains information 
about the definitions, structures, and use of data. Information in the 
dictionary is used by the DML processors so that each program gets 
an accurate picture of the database. Programmers do not code data 
declarations for DBMS records and sets. The data dictionary report 
program produces reports on the dictionary contents tailored to the 
needs of programmers and database administrators. A second utility, 
DBCLUC, allows language specific information to be stored in the data 
dictionary. 

Database Recovery and Journaling - Database recovery and jour­
naling automatically maintain a journal of all changes made to the 
database. This journal includes both "before" and "after" images of 
modified portions of the database. Checkpoint statistics are also in­
cluded. 

• Online Recovery-immediately recovers a database without affect­
ing other programs operating at the same time. This runtime facility 
performs as a rollback operation replacing "before" images for the 
program that terminated abnormally. 

• Journal File Fix-creates a usable journal file if no ending labels 
were placed on that file because of operating system failure, hard-

293 



Data Base Management System 

ware crash, etc. It writes the appropriate end-label information on 
the output journal file. 

• Journal Roi/forward-recovers the database forward to a specified 
point in time by reapplying "after" images from the journal tape to 
the database in chronological order. It provides information about 
each end-of-job checkpoint reached and determines if the data 
base is in a logical quiescent condition at this checkpoint. The roll­
forward utility also takes into account a multitasking environment, 
and at each checkpoint will display all other programs that were 
active, which areas the programs had open, and their declared 
usage mode in each area. 

• Journal Rollback-recovers the DBMS-11 database to a user-speci­
fied point backward in time by reapplying "before" page images 
from the journal tape. 

Runtime Modules - Runtime modules are created by the schema, 
subschema, and DMCL compilers. The result of the subschema 
compilation is the subschema object module that describes the logical 
database. Similarly, the DMCL compiler creates an object module 
which describes the physical database. This module contains the 
physical control blocks for mapping areas to files used by the DBCS at 
run time. The schema, subschema, and DMCL definitions are placed 
in the Data Dictionary. 

The information processed by the schema, subschema, and DMCL 
compilers is used by the DBCS and the applications at runtime. The 
DBCS is the portion of DBMS-11 that, together with the host operating 
system, accesses the database. DBCS receives requests from appli­
cation programs and sends them to the host operating system. This 
relieves the application program from the burden of physical 1/0 pro­
cessing and keeps the physical database under central control. 

Page Find/Fix - This utility is used to fix corrupted internal data 
structures. It can locate and display a page based on a page number 
or key value of a CALC record. If the key value is submitted, the utility 
performs the CALC transform on the value and displays the page that 
contains the record occurrence with that value. 

CALC Routine - This is a callable unit which transforms a CALC key 
value into a page number using the algorithm used by the database 
system. It may be used to test a key value set for even distribution in an 
area or as a mechanism to permit presenting records so that a data­
base can be efficiently loaded. 

Database Query - This utility allows the user to use interactive DML 
commands to access a database without writing programs. 

294 



Data Base Management System 

Database Verify - This verifies that the internal structure of a data­
base is consistent and that all set linkages are complete. 

Database Operator Utility(DBO) - used to control and monitor 
database operation. Using DBO, the database administrator can de­
fine databases, start or stop individual databases or the entire system, 
initialize database files, set journaling characteristics, and display the 
status of some or all of the users of a database. DBO also includes 
backup and restore functions that provide a high-speed copy of a 
database or portions of it. DBO also produces a description of space 
utilization in the database. 

DATA MANIPULATION LANGUAGES 
Application programs access data under the direction of a predefined 
subschema. The Data Manipulation Language (DML) contains sets of 
high-level language statements that form syntactical and logical ex­
tensions to the FORTRAN and COBOL programming languages. The 
programmer writes all data manipulation requests using the appropri­
ate DML statements. DBMS-11 allows DML statements and host lan­
guage statements to be intermixed within the application program. 

Applications can also make use of the CALL statement interface, 
which consists of a set of subroutine calls to the DBCS interface. 
These calls can be used with any language that supports a CALL 
external-subroutine statement. 

The simple command structure of the data manipulation language 
means: 

• Programmer learning time is minimized. 

• Programs written by one programmer are easily understood by oth­
ers. 

• Application programs are portable and maintainable. 

• Programming productivity is increased. 

Control statements establish access to a portion of a database. The 
READY statement announces the user's intention to start processing 
within the specified area. The corresponding FINISH statement an­
nounces the end of processing. 

Locating or accessing records is done with the following statements: 

• FIND locates a record occurrence in the database that satisfies the 
record-selection-expression portion of the statement. 

• GET causes a retrieval from the most recently located record. 

• ACCEPT CURRENCY causes movement of the database key of the 
most recently located record to a named location in the program. 

295 



Data Base Management System 

Modification statements result in a change to the contents of the data­
base. Changes include the addition of new data, modifications to ex­
isting data item values, or deletion of data in the database. 

• STORE uses data established by the user in working storage to 
create a new record occurrence in the database. 

• MODIFY changes the data content of an existing record in the 
database. 

• CONNECT and DISCONNECT cause a change in the set relationship 
of an existing record occurrence in the database. 

• ERASE causes an existing record occurrence to be removed from 
the database. 

The application programmer can access the database only through a 
subschema which is predefined by the database administrator. A sub­
schema is made available to a program via a declarative statement. 
Records defined in the subschema specify the only database data that 
can be manipulated by the application program. This furnishes data 
privacy independence at the application program level. Data manipu­
lation statements are referred to as the data manipulation language 
(DML). The DML processors supply record type descriptions from the 
subschema into the working area of the user's program. 
COBOLDML 
The programmer must identify a subschema in the subschema section 
of the Data Division. DML statements may appear anywhere in the 
Procedure Division and may be considered by the programmer as an 
extension to the COBOL language. This means that, surrounded by 
other COBOL statements, they may be placed at the appropriate point 
in any procedure. The COBOL DML processor (CDML) reads the CO­
BOL DML source statements and searches within the Data Division for 
the subschema section to obtain the name of the subschema speci­
fied. Once the subschema name has been verified, the DML processor 
obtains the names of all valid records, sets, and areas. These are used 
to validate DML statements in the Procedure Division. 

CDML will establish an 01 level record entry followed by selected data 
items in working storage for each record type included in the 
subschema. System control and communication data items are in­
cluded automatically. 

Each DML command is validated for correct syntax and usage of 
record-set-area relationships. At compile time, these DML validations 
guard against the programmer's using the database improperly; 
hence resources are not wasted later during system/program debug­
ging. All DML errors detected by CDML will be displayed with the 
source statement in error. 

296 



Data Base Management System 

Table 20-3 DBMS~11 COBOL Data Manipulation Language 

CONTROL STATEMENTS: 

DB sub-schema-name WITHIN schema-name. 

READY [realm-name] [usAGE MODE IS [PROTECTED] {RETRIEVAL}] • 
EXCLUSIVE UPDATE 

FINISH. 

FIND [record-name] DB-KEY 

FIND CURRENT [WITHIN 

IS identifier. 

{ set-name }] 
realm-name ' 

FIND {~E } [record-name] {
set-name } 

WITHIN • 
realm-name 

integer 
identifier 

FIND OWNER WITHIN set-name. 

{ ANY } 
FIND DUPLICATE record-name. 

FIND record-name WITHIN set-name [CURRENT] USING identifier. 

IF set-name IS [NOT] EMPTY imperative-statement. 

IF [NOT] set-name {~~~~~R};mperative-statement 
MODIFICATION STATEMENTS: 

[{
PERMANENT} ] 

ERASE [record-name] ~~~ECTIVE MEMBERSj • 

CONNECT [record-name] TO set-name 

MODIFY [record-name]. 

DISCONNECT [record-name] FROM set-name. 

STORE record-name. 

RETRIEVAL STATEMENTS: 

GET [record-name] 

{
record-name} 

ACCEPT identifier FROM set-name CURRENCY. 
realm-name 

297 



Data Base Management System 

Table 20·4 DBMS-11 FORTRAN Data Manipulation Language 

CONTROL STATEMENTS: 

INVOKE ( [SUBSCHEMA = subschema ,SCHEMA = schema)) 

READY i:~~LM = realm11 [ f ~~~~~::T l J [ 1~~:~tL l} ,error)) 

FINISH (ALL[.error)) 
FIND (rse [,end)[,error)) 

USE 

where rse is in one of the following six formats: 

Format 1 

KEY = dbkey [,RECORD = record1) 

Format 2 

(DUPLICATE J 
!ANY ,RECORD = record1 

Format 3 l OFFSET = integer-exp l 
FIRST (REALM = realm11 
LAST [,RECORD = record1) , l SET = set1 j 
NEXT 
PRIOR 

Format 4 

CURRENT , REALM = realm1 [ !RECORD = record1 l J 
SET= set1 

Format 5 

OWNER, SET = set1 

Format 6 

RECORD= record1, [CURRENT,) SET= set1, USING= id-item 

Format 1 

USE (PROCEDURE= identifier.1~~~ER l (,error)) 
STATUS = status-list , 

Format 2 

!CLEAR l 
USE ( SAVE ,ALL [,error)) 

RESTORE 

298 



Data Base Management System 

Table 20-4 (cont.) DBMS-11 FORTRAN DML 

MODIFICATION STATEMENTS 

ERASE ([RECORD= record1J [./:E:;T~~~Tl}·errorJ) 
CONNECT ( (RECORD = record1,] SET = set1 (,error]) 

DISCONNECT ([RECORD = record1, J SET = set1 (,error]) 

MODIFY ((RECORD = record1] (,error]) 

STORE (RECORD= record1 (,error]) 

RETRIEVAL STATEMENTS 

GET ([RECORD = record1] (,erro[rl]) RECORD = recordJlJ 

SET= set1 
ACCEPT (CURRENCY= dbkey REALM = realmJ . (,error]) 

~ 
RUNUNIT 

ETCH (rse(,end](,error]) 

where rse is in one of the six formats presented for the FIND statement. 

! 

FORTRAN DML Compilation 
The user identifies a predefined subschema using a DML INVOKE 
statement at the beginning of each main or subprogram module that 
contains DML statements. FORTRAN DML statements may be consid­
ered by the programmer as an extension to the FORTRAN language, 
and, as such, DML statements may appear anywhere in a FORTRAN 
program that executable statements are allowed. The FORTRAN DML 
preprocessor (FDML) reads the FORTRAN DML source program and 
converts all DML statements to standard FORTRAN statements. 

FDML includes all the functionality of the COBOL DML, plus dynamic 
(runtime) naming, end error phrases, USE procedures, dynamic buff­
er binding, and selective record copies from the subschema division. 

CALL Statement Interface 
DBMS-11 can be used with any language, such as BASIC and MA­
CR0-11, that supports a CALL statement. The user communicates 
with DBMS-11 from these languages by passing arguments through 
the CALL statement. The CALL statement procedure is straightfor­
ward and easy to use. 

PROGRAMMING REQUIREMENTS 
The DBMS-11 input/output area for the database resides in a region 

299 



Data Base Management System 

of memory called the User Work Area (UWA), a loading and unloading 
zone for data. Each record included in the subschema is automatically 
included in working storage by the DML processor followed by the 
statements that describe the name and data type of each data item. 
Only those data items of the record defined in the subschema are 
transferred to the user program. Input of a record from the database 
always appears in its like named area in working storage. 

Storage (or output) of a record to the database requires the movement 
of data from various locations in the user's program to each of the data 
items described for the specific record in working storage. Once this is 
completed by user procedure statements, the record is moved 
physically from working storage into the database using the STORE 
statement. 

The user ii:! responsible for initializing all data items required to exe­
cute a DML statement successfully and must ensure that the data are 
correct. DBMS-11 has extensive runtime error diagnostic facilities and 
will update error status after every DML statement. To determine the 
action taken by the system in response to the request, the user must 
examine the error status following each DML command. 

In summary, three operations are required for each access to the 
database: 

• Initialization of data items as required by the DML statement to be 
executed 

• Initiation of the database operation by the DML statement 

• Error checking to determine the outcome of the preceding DML 
command 

EXECUTION OF OBJECT DML PROGRAMS 
The operations that take place when a DML statement is executed are 
discussed in this section. Numbers in parentheses refer to Figure 20-
2. 
• A DML statement appears in the object program as a request to the 

DBMS-11 interface routine (1 ). The request identifies the type of 
database service desired and any additional information, such as 
record name, set name, and area name, required to interpret the 
request properly. 

• The DBMS-11 interface routine sends the request to the database 
control system fDBCS). 

• The DBCS performs the requested database service using informa­
tion supplied by the object subschema. The operation performed 
depends upon the type of DML statement executed. In the event of a 

300 



Data Base Management System 

request to locate a record (FIND statement), the DBCS will look in 
the system page buffers to see if the requested record is present. If 
the record is not in the system page buffers, a request will be made 
to the operating system (4) to input a database page from the direct 
access file to the system page buffers (5,6). No input is initiated if the 
record is already present in the system page buffers. 

• Changes to the database are recorded on the database journal file 
(7). 

• The DBCS performs the requested service using additional 
information contained in the object subschema. The object sub­
schema contains a representation of the data structure, record 
placement control, record characteristics, currency status, data­
base operation, statistics, and constraints on DML operations. In 
general, the object subschema controls the operations and access 
of the database for each program that invokes it. 

• Whenever a specified record occurrence is located by the DBCS, 
the database key and other system information related to the record 
are moved from the system page buffer to locations within the ob­
ject subschema (8). This information represents the currency status 
of the area, sets, and record type of the record occurrence which 
has been located. 

• The DBCS returns to the interface routine with an indication of the 
success or failure of the database service (9). 

• If the request to the DBCS specifies movement of the contents of a 
record to the user working area (GET statement), data will be moved 
from a system page buffer to a specified record area in the user 
working area (10). Only the data portion of the requested record is 
delivered to the user; system-controlled structure data are retained 
by the DBCS to ensure database integrity. Data movement from the 
user working area to the system page buffers will occur in response 
to a STORE or MODIFY statement. 

• The subschema interface routine moves status information regard­
ing the outcome of the DML statement executed to locations within 
the user working area of the program (11 ). 

• Control is returned to the user's program at the statement following 
the DM L statement just executed ( 12). 

• The user must determine the status of the previous DML statement 
by examining the contents of the system status information (13). For 
example, if a FIND statement was just executed, the contents of 
system status information would indicate whether the specified re­
cord occurrence was located or not. If the system status information 

301 



Data Base Management System 

condition indicates. that the service requested was completed 
successfully, the user would access the user working area as need­
ed (14). 

DATABASE 
JOURNAL 
FILE 

SYSTEM 
PAGE 
BUFFERS 

USER 
WORKING 
AREA 

14 

10 

SECONDARY STAGE 

DATA BASE 

OBJECT 
SUB-SCHEMA 

USER PROGRAM 

Figure 20-2 

302 

9 

11 PJmFACE 
ROUTINE 

12 

4 OPERATING 
SYSTEM 



303 



304 



EDITORS 

CHAPTER 21 

INTRODUCTION TO OTHER UTILITIES 

Editors are among the most important utilities in an operating system. 
Editors let you manipulate text in computer files that contain anything 
from programs to personal letters. 

Because of the computer's excellent memory capabilities and its abili­
ty to work with enormous files, computer editors provide services that 
would be tedious or impossible to perform by pen and paper or 
typewriter. With an editor you can insert, delete, and relocate text, 
whether by single characters or by large blocks of text. If you are 
editing programs, you can insert, delete, or reorder program lines, 
correct erroneous instructions, and append programs that should 
logically go together. 

When you edit text, you can scan the file and correct it quickly and 
easily. If you use a video terminal to work on a file, you can work 
through pass after pass without needing an intermediate hard copy. 
Therefore, you can save considerable time and materials. 

Editors have several impressive features. They can search huge files 
for every occurrence of a string of characters (such as a word or 
phrase) and tell you where each occurrence is found. Editors can 
delete strings or replace them with other strings. For example, you 
could replace each use of the phrase "capital distribution" with "div­
idend" in an anriual report. One or two editor commands accomplish 
this. Many editors can also perform search-and-delete, search-and­
replace, and other such operations on designated sections of text. 

Editors can be either "character-oriented" or "line-oriented." The 
choice of a character or line editor is often a matter of personal prefer­
ence. Operating systems may have more than one editor available, 
thus allowing you to choose the best editor for your application. 

Editors are generally used interactively, which means that you can 
actually carry on a dialog with the computer. However, editors can also 
be used in batch mode. With batch jobs, you submit editing instruc­
tions as a command file, so that the instructions take effect when the 
job is run. 

SCREEN FORMATTERS 
Video terminals are growing increasingly important in both scientific 
and commercial computer applications. It is essential, therefore, to 
make sure that information displayed on terminals is clear to people 

305 



Introduction to Other Utilities 

who may not be computer specialists, just as it is important to assure 
that non programmers can insert information properly into the terminal 
programs. A good screen formatter helps here, by presenting the user 
with a formatted screen that shows data in easy-to-understand style, 
draws his or her attention to crucial information, and offers explana­
tions and help for any complicated fields. Similarly, video formatters 
can help those who input data by showing them exactly where and in 
what format to type it, by verifying that the data conform to program 
requirements, and by highlighting important fields. People inputting 
information at terminals can also get help from the system when there 
is a complicated field to fill in, or where several options exist that might 
need explanations. 

Chapter 23 describes three different DIGITAL screen formatters, the 
Forms Management System (FMS), DECFORM, and INDENT. FMS is 
intended specifically to take advantage of the extensive capabilities of 
the VT100 terminal. DEC FORM works on VT50, VT52, or VT100 termi­
nals and is meant to be used specifically with the CTS-300 and CTS-
500 operating systems. INDENT supports DIGITAL's VT52 and VT100 
terminals and uses the following VT100 features-reverse video, bold, 
underline, blink,.132 column lines, scroll, split-screen, reverse screen, 
and the line drawing character set-to produce highly functional, 
aesthetically pleasing formats. 

FMS is a software "front end" that accepts user input and gets it ready 
for the program, or receives program output and styles it in ways easy 
for people to understand. Through this flexibility, the formatter can be 
used with a variety of programs, with only minor modification. 
DECFORM usually is used for stand-alone file maintenance; that is, 
data collection, validation, and editing without the use of a host pro­
gram written in another language. INDENT is a forms management 
and data entry system which greatly simplifies and expedites applica­
tion program development of programs written in DIBOL, COBOL, or 
BASIC-PLUS-2 running under the RSTS/E operating system. INDENT 
was designed to enable you to create forms, enter data through these 
forms, and validate data. Because the INDENT command language is 
so easy to use, an entry level programmer can quickly learn to create 
and modify forms definitions. 

306 



307 



308 



INTRODUCTION 

CHAPTER 22 

THE EDT EDITOR 

EDT is a powerful text editor available on many DIGITAL operating 
systems. Though you can use EDT at a variety of terminals, it is espe­
cially powerful in conjunction with VT52 and VT100 video terminals, 
because it can take advantage of the editing keypad that such termi­
nals offer. With keypad mode, a single keystroke performs an entire 
editing function-for example, deleting, reinserting or replacing a 
word. You can even redefine the functions of keypad keys (through 
key macros) to produce commonly needed operations. EDT provides 
a wide range of benefits to anyone who has to do editing 
work-including file creation-on a computer. 

First, EDT is very easy to learn. Editing instructions are English words 
or their shortest unique abbreviations. The order of operands is logical 
for English syntax; parameters can be either line numbers in the text 
file or character strings that you choose. Extensive HELP facilities 
remind you quickly of the possible options for a particular command 
and of the format for that editing instruction. You can get help on 
general EDT operations by typing HELP. If you need help while in 
keypad mode, pressing the help key displays information that is spe­
cific to keypad editing. 

Second, the editor protects your editing session with a journaling ca­
pability. EDT makes a record of everything you type so that your work 
will not be lost if your editing session is terminated by equipment 
failure. In addition, the editing session does not alter the original file 
until you are sure that you have done what you want. Instead, all 
editing activity takes place upon a copy of the original file in a tempo­
rary workspace called a buffer. A buffer is a part of EDT's memory that 
can hold an essentially unlimited amount of text. Only when you have 
ended the session do you have to determine whether or not to incor­
porate your editing activities into the file. 

EDT is capable of working with many files at once. If you want to 
concatenate several files, create several files from one, or distribute 
part of a file among many others, you can do so with EDT. 

In change mode on a VT100 or VT52 terminal you edit one 22-line 
window (screenful) at a time so that you can observe immediately the 
effects of any editing operations you perform. Instead of being 
restricted to the most recently altered line, you can see a whole 
screenful of text, and visualize the relationship of new and old lines. Of 

309 



EDT 

course, if the text is longer than 22 lines, you can easily scroll through 
it to get to any point you want to edit. 

EDT MODES OF OPERATION 

Keypad and Line Editing 
With EDT you have a choice of keypad or line mode editing. These 
modes of editing allow you to: 

• Display a range of iines 

• Find, substitute, insert, and delete text 

• Move, copy, and renumber lines 

• Copy text into a buffer and write it on files 

• Define the functions of keys 

Keypad editing is available on VT100 and VT52 terminals. You use the 
group of keys at the right of the keyboard to enter keypad functions. 
Keypad editing is powerful and versatile, yet it is easy to learn and use. 
In keypad editing, the active buffer is displayed on the screen as you 
edit. You can see the changes you make to a buffer as they take place. 
There are a wide variety of keypad editing functions, each of which 
requires you to press only one or two keypad keys to perform the 
function. You enter commands, insert text, and perform control func­
tions from the keyboard. 

Line editing is useful for those who have hardcopy terminals or who 
prefer editing by numbered lines. In line editing, you make all entries 
from the keyboard. As you make changes to the contents of the buffer, 
EDT displays one or more lines at a time. 

Keypad Layout 
Keypad functions allow you to perform a variety of operations with a 
single keystroke. You can change the function of any keypad key to 
meet your needs with the DEFINE KEY command. The following dia­
grams show the keypad for the VT100 and the VT52. 

Editing Operations 
EDT provides facilities for positioning the cursor, inserting and delet­
ing text, repositioning blocks of text within a file, creating auxiliary 
files, and more. The combination of a clear and readable video display 
screen, coupled with the extensive keypad functions supported by the 
VT100 and VT52 terminals, makes editing quick and easy. 

Cursor Positioning - You move the cursor around on the screen to 
position it properly for inserting or modifying text. The cursor can go in 
any direction. For example, the arrows at the top of the VT100 key-

310 



EDT 

board can move the cursor to the right or left by any number of 
characters. It can be moved up or down by any number of lines. In 
addition, special function keys on the keypad can move the cursor to 
the right or left by one word or one character, to the beginning or end 
of a line, or to the beginning or end of the buffer. 

Backspace 

Delete 

Linefeed 

CTRL/A 

CTRL/D 

17 DELL 

CHAR 21 

ENTER 

0 LINE 

SUBS 

NOTE: THE NUMBERS IN THE UPPER LEFT CORNER OF THE 
KEYS ARE WHAT ACTUALLY APPEAR ON THE KEYS. 

Common Keyboard Functions 

Go to beginning of line CTRL/E Increase tab level 

Delete character CTRL/K Define key 

Delete to start of word CTRL/T Adjust tabs 

Compute tab level CTRL/U Delete to start of line 

Decrease tab level CTRL/W Refresh screen 

CTRL/Z Return to line mode 

Figure 22-1 EDT VT100 Keypad 

You can also move the cursor through a buffer by specifying a charac­
ter string that will serve as the object of a search and then moving the 

311 



EDT 

cursor backward or forward directly to that point. The entire buffer is 
always available for editing; you may scroll forward or backward 
through the buffer at will. 

Backspace 

Delete 

Linefeed 

CTf'!L/A 

CTRL/D 

CTRL/E 

NOTE: THE NUMBERS IN THE UPPER LEFT CORNER OF THE 
KEYS ARE WHAT ACTUALLY APPEAR ON THE KEYS. 

Common Keyboard Functions 

Go to beginning of line CTRL/F Fill text 

Delete character CTRL/K Define key 

Delete to start of word CTRL/T Adjust tabs 

Compute tab level CTRL/U Delete to start of line 

Decrease tab level CTRL/W Refresh screen 

Increase tab level CTRL/Z Return to line mode 

Figure 22-2 EDT VT52 Keypad 

Inserting and Deleting Text - There are several ways to insert and 
delete text in a buffer. You enter text by typing alphanumeric. and 
special characters at the keyboard. You can delete a single character, 
a word, or a line, and multiple words and lines backward and forward 

312 



EDT 

relative to the cursor by using keypad functions. Furthermore, text 
deleted during the current editing session can be restored by using 
the UNDELETE keys to recall it from special buffers reserved for the 
purpose. This allows quick recovery from editing mistakes or mis­
typed commands. You can also combine insert and delete operations 
by using the special keypad functions for finding and substituting text. 

Moving Text - Special function keys on the keypad allow you to mark 
off an entire section of text and then move it to a new position in the 
file, or string it together with other sections similarly marked off. 

Creating Auxiliary Files - From EDT's change mode you have ac­
cess to EDT's line mode commands, including the WRITE and IN­
CLUDE commands, which allow you to read and write files during an 
editing session. 

313 



314 



CHAPTER 23 

SCREEN FORMATTERS 

FMS-11 FORMS MANAGEMENT SYSTEM 
There are numerous instances of commercial, scientific, and industrial 
applications in which a formatted video screen provides excellent 
ease-of-use benefits. For example, clerks updating inventory lists use 
a well-designed form to guarantee that the proper part codes, quanti­
ties, prices, suppliers, and other pertinent data are all entered exactly 
as required by the program that is to manipulate them. Rather than 
presenting the clerk with a blank screen and a complicated menu of 
instructions for entering the data, a form-managed video terminal sup­
plies pictures that automatically tell where each field goes, instantly 
checks to see that it is filled with the right number and types of charac­
ters, and aids the clerk with concise HELP messages appropriate to 
the field or to the form as a whole. 

Such forms can be extremely simple, or they can be quite complex, 
depending upon the necessities of the program that is to use the 
information being formatted. A chain of related forms might be re­
quired in some applications. 

FMS-11 Forms Management System is a software package that 
provides sophisticated screen formatting for application programs. 
FMS-11 makes it easy to create, use, and update video forms with the 
VT100 family of terminals. It allows non-programmers to design forms 
interactively, right on the video screen, without first drafting the form 
on paper. FMS-11 eliminates tedious editing and recompiling of a 
forms program to see whether the form is satisfactory. Programmers 
and users will appreciate the easy-to-learn keypad-operated editor 
and the HELP facility. Users will like the extensive field protection and 
validation features that help prevent typing errors. 

FMS-11 software supports a variety of standard programming lan­
guages under the major PDP-11 operating systems. Forms developed 
for PDP-11 systems can be run without any conversion on VAX/VMS 
systems using VAX-11 FMS software. FMS-11 Forms Management 
System is a software package that provides sophisticated screen for­
matting for application programs. It allows non-programmers to de­
sign forms interactively, right on the video screen, without first drafting 
the form on paper. FMS-11 eliminates tedious editing and recompiling 
of a forms program to see whether the form is satisfactory. 

FMS-11 makes it easy to use the distinctive video attributes of the 
VT100: reverse video, bold, blink, underline, 132-column lines, jump 

315 



Screen Formatters 

or smooth scrolling, split or reverse screen. In addition, character data 
types within fields (pictures) are checked on a character-by-character 
basis. Furthermore, special symbols used for formatting can be 
imbedded within a field without breaking the field into smaller fields. 

FMS-11 allows programmers to develop application programs in most 
higher level languages on all DIGITAL PDP-11 and VAX operating 
systems. Programs can be coded to be completely independent of the 
forms layout, since form and field names are not bound to the pro­
gram until execution time. 

FEATURES 

Programmer Benefits 
• Easy, interactive design and maintenance of video forms and appli-

cation programs 

• Field and record-level 1/0 calls 

• Reduced memory usage 

• Increased application flexibility 

• Supported languages: BASIC-11, BASIC-PLUS-2, PDP-11 COBOL, 
COBOL-81, FORTRAN-IV, FORTRAN-77, DIBOL-11, and MACR0-
11 

• Supported PDP-11 operating systems: RT-11, RSX-11 M, RSX-11 M­
PLUS, RSTS/E, and IAS 

User Benefits 
• Keypad-operated editor speeds training and use 

• Field access by name allows complete rearrangement of a form 
without changing the application program 

• Extensive field protection and validation help prevent errors 

• On-line HELP for every field and every form reduces documentation 
and training 

Description 
FMS-11 is a set of utilities and subroutines that provide flexible screen 
formatting for applications written in assembler or high-level lan­
guages. A special-purpose interactive editor is used to create FMS-11 
form definitions for display on the VT100 family of terminals (VT100, 
VT101, VT102, and VT125). The Form Utility provides a means for 
maintaining disk-resident form libraries, creating listings or object 
modules of forms descriptions, and listing directories. Application 
programs control the operator's interaction with the form by subrou­
tine calls to the FMS-11 Form Driver subroutine library. 

316 



Screen Formatters 

FMS-11 Forms 
An FMS-11 form is a video screen image composed of data fields with 
protection and validation information, and constant background text. 
The data fields and background text can be highlighted using the 
VT100 video attributes such as reverse video and underline, blinking, 
and bold characters. Split screen and scrolling capabilities permit 
users to view more data than can be displayed on the screen at one 
time. 

Figure 23-1 shows sample of a screen form generated by the Form 
Editor and demonstrates the use of different display attributes, such 
as reverse, bold, and underline: 

Sa•ple of FHS Video Attributes that use the VTlOO's Video Capabilities 

Nor11al : 

UnW::: 
linf 

:am: 

Bold 

Underline 
& 1llml 
& Bold : 

COHHAND: 

This line has only the assigned for11-wide attribute. 

(single attribute) &:aD & Bold 

SPRING upward iiWl!b@ DRIVE like aad 

- - SLIDE s11oothly 

STAND tall - LIVE dangerously 

1:&w.w1.wwwwaaat1•cma1mam1Ma• m.1um.11wwwa1.1.wa1.mnaMw1:Lwm. 
!!idWIM&!W&l1i•iitlllllid&MtliiiRMil.C 

Figure 23-1 Sample Screen Form 

Individual data fields can be display-only, enter-only (no echo), or can 
be restricted to modification by privileged users. Data fields can be 
formatted with fill characters, default values, and formatting charac­
ters (such as the dash in a phone number), which assist the user, but 
are not visible to the application program. Fields may be right- or left­
justified or may use a special fixed-decimal field type to align data 
properly. 

Field validation includes checking each keystroke in a field for the 

317 



Screen Formatters 

proper data type (e.g., alphabetic, numeric, etc.). Fields may also be 
defined as "must enter" or "must complete." 

A line of HELP information may be associated with each field, and a 
chain of HELP screens may be associated with each form. If users 
need help while using a form, they should press the HELP key to see a 
line of useful information about the current field. Pressing the key a 
second time will display the first HELP screen associated with the 
current form. Continuing to press HELP will chain through any addi­
tional HELP forms chained to the first one until the operator chooses 
to return to the original application context. 

FMS-11 Programs 
A number of components are used to create FMS-11 applications. 
These are: the Form Editor (FED), the Form Utility (FUT), the Form 
Driver (FDV), and, for RT-11 only, the Application Runtime Supervisor. 

Figure 23-2 illustrates the relationship of FMS-11 components to each 
other and to an application program. 

FORM 
EDITOR 

FORM LIBRARY FILE 

FORM 
DRIVER 

Figure 23-2 FMS-11 Components 

The Form Editor 
The Form Editor is a system program that provides a simple means of 
entering, modifying, and storing FMS-11 form descriptions. The FED 
allows non-programmers to customize existing, general application 
programs by creating or modifying form descriptions. (This is possible 
because the form descriptions are independent of the applications 
that use them.) The FED is an interactive program that uses many of 

318 



Screen Formatters 

the special capabilities of VT100 family video terminals. 

When using the FED, a user's screen always shows the current state of 
the form that is being edited. Keypad and keyboard functions allow 
users to specify video display characteristics for either constant text or 
field characters. Fields are defined on the screen with picture 
characters similar to those used in COBOL. Short, helpful explana­
tions about individual fields and about each form as a whole may be 
included as part of the form description. 

Fields and forms are accessed by name, rather than by less flexible 
structures such as row-column coordinates and sizes. Because the 
relationship between programs and fields is made at execution time, a 
form can be completely restructured without changing the applica­
tions that use the form. 

Another feature that enhances program flexibility is named data. The 
named data feature provides a mechanism for storing constant data 
(such as file names and range check parameters) in the form descrip­
tion, rather than with the application program. With named data, a 
non-programmer can easily customize program parameters with the 
Form Editor. Named data allows the same application program to 
communicate with a form that can display information and accept 
input in multiple human languages. By using named data, the pro­
grammer can write a more general, more maintainable application. 

Form Utility 
The Form Utility is a system program that performs a variety of form 
library maintenance functions, including creation of new libraries and 
the insertion, deletion, replacement, and extraction of individual 
forms. It also creates hard-copy listings of form descriptions, lists the 
directory of a form library, and produces object modules from form 
descriptions. These object modules can be linked with the application 
program to produce forms that are entirely memory-resident. In addi­
tion, on systems that support COBOL the Form Utility can write out 
Data Division code that corresponds to a form definition and is suit­
able for copying into a COBOL source program. 

Form Driver 
The Form Driver, a re-entrant system subroutine, uses the forms 
created with FED. Under the direction of the calling program, FDV 
displays forms, performs all screen management a form requires, 
handles all terminal 1/0 for application programs, and validates user 
responses by checking each response against the field and form de­
scription. Depending on the needs of the application, programs and 
forms may interact on either a field-by-field or a whole record basis. 

319 



Screen Formatters 

The FDV may be called from applications written in any of the follow­
ing languages supported by the operating system: BASIC-11, BASIC­
PLUS-2, PDP-11 COBOL, COBOL-81, FORTRAN-77, FORTRAN-IV, 
DIBOL-11, or MACR0-11. Because the Form Driver calls are virtually 
identical in all languages, proficiency in using FMS-11 is easily trans­
ferable across languages and operating systems, and programs them­
selves become much more portable. 

Application Runtime Supervisor 
Available only with FMS-11/RT-11, the Application Runtime Supervi­
sor (ARTS) controls the interface between form applications and the 
RT-11 operating system. The ARTS runs in the background area of the 
RT-11 foreground/background monitor, along with the individual ap­
plication programs, which are called tasks. When an application is 
running, each terminal has its own copy of a task. The ARTS includes a 
demand scheduler that handles resources and processing activities 
so that each terminal may run its task independently. 

The ARTS allows multiterminal applications to be written in FORTRAN 
IV or MACR0-11. In multiterminal applications, concurrent tasks can 
share public files and resident code libraries. Applications can include 
global system tasks not attached to any terminal. Terminal tasks can 
use a system task by sending messages to it and receiving messages 
from it. 

Form applications using ARTS may be either dynamic or static. Dy­
namic systems allow each terminal to change tasks without affecting 
the tasks executing at other terminals. Static systems, on the other 
hand, provide fixed relationships between tasks and terminals, locking 
each terminal into its own individual task. Static systems are most 
suitable when users do the same work for long periods of time and 
when that work can be implemented as a small, fixed number of tasks. 

Form application systems that use FDV but do not include any of the 
special ARTS multitask or multiterminal capabilities are also available. 
The most common use for such a system is debugging and testing 
tasks as they are being written. 

The FMS-11 system generation procedure uses a clear interactive 
dialogue to select the ARTS features required for a particular applica­
tion. The hardware on which the application executes may be 
predefined at ARTS generation time, or it may be specified when 
ARTS begins to run. 

FMS-11 Example 
The following code fragment (Figure 23-3) is a sample of FORTRAN 
application code. FMS Form Driver calls FGET and FPFT are used to 

320 



Screen Formatters 

emulate a call to get all fields, but to allow the calling program to 
validate responses immediately on entry, before proceeding to the 
next field in the form. 

2 

10 

CALL FCLASH <FORM> 

CALL FGET IAESPo TEAM, "*") 
CALL FGCF <FIELD> 
GOTO 2 

! DisPlaY the form 

1 Get first field in form 
! Get the name of the field 
! Validate response if 
! necessar>· 

CALL FGET <RESP, TEAM, FIELD> I G•t o fl•ld 

Validate the u~er's response. 
Followins ualidation, the uariable "ERRVAL' is zero 
if the response is ualid1 non-zero if invalid, 

IF IEARVAL .NE, 0) GOTO l 
IF <TERM ,EQ, 0) GOTO 10 

CALL FPFT 
CALL FGCF <FIELD> 
GOTO I 

CALL FAETAL <DATA> 

1 Get field asain on error 
1 Branch if terMinator was 
I "ENTER, 
1 Else Process field terminator 
1 Get name of field to 'et 
! Get ne)(t field 

1 Return responses for all 
I fie l •j S 

Figure 23-3 Sample Code 

DECFORM-SCREEN FORMATTING UTILITY 
A second video formatter option is offered especially for the CTS-300 
and CTS-500 Datasystems. DECFORM is a program generator which 
produces stand-alone modules for screen formatting, data entry, veri­
fication and validation, file creation and maintenance. Using an easy­
to-learn descriptor language, the form designer defines the form lay­
out, data fields, prompts, and validation options. DECFORM then pro­
duces a progr.am which can stand alone for file creation and mainte­
nance, or can work in conjunction with a second data processing 
application. 

Designing interactive data entry screens and several file review func­
tions are made easy for the programmer and end-user by the 
DECFORM utility, and by the special keypad to the right of the key­
board on VT52 and VT100 terminals. Cursor-control keys in the key­
pad allow you to advance or back up a field, and to go to the top of the 
screen to correct data, terminate data input, change file maintenance 
modes, and so forth. 

Screens formatting under DECFORM is accomplished through the use 
of a simple forms creation language. The form designer works interac-

321 



Screen Formatters 

tively, at a high level, with the terminal and the Datasystem, so that he 
or she can quickly change anything that needs correction. Generally, 
the designer sketches out the form on a printed sheet-such as the 
sample shown in Figure 23-4-and then translates the design into the 
forms creation language. 

Screen formatting is helped by the availability of multiple fields and 
multiple screens. Multiple fields simply means that several fields can 
be entered on a single video line, making the screen more nearly 
resemble a printed form. Thus, both name and employee identification 
number could be fields on the first line of the personnel file form. 
People not trained in computers find them easier to use when the 
video formats correspond fairly closely to more familiar printed ones. 
When there is more to the form than will fit comfortably on one screen, 
multiple screens may be used. They help divide the format into con­
venient units, so that the form designer can avoid squeezing and 
crowding the format awkwardly. 

For statistical, comparative, or mathematical applications, the video 
screen can be made to resemble a large grid. Screen formatting for 
such applications as order entry, shipping, and credit authorization is 
facilitated by the use of descriptor text. Descriptor text, written into the 
form design file by the programmer, guides the end user through an 
easy,fill-in-the-blanks method of data entry. The filling-in menu can be 
as simple or as complex as the designer wants, based upon the com­
plexity of the application and the degree of technical expertise of end 
users. 

Error messages are displayed at the bottom of the screen to notify the 
user of the invalid entries. Further data entry operations are inhibited 
until the error is acknowledged and corrected. 

Once the form is entered into the library of forms by the designer, it is 
readily available to anyone authorized to use it. Stored forms are, of 
course, accessible by several users at once, but only one programmer 
at a time may alter the form. 

File Creation 
Most data entry sessions commence with a simple instruction or two to 
call up the form: the information typed in by the end user can then 
either be passed to a program for computation or can be held in a file. 
In order to assure the accuracy of such data, DECFORM provides 
basic and advanced editing functions. Basic checks include numeric 
field, free format numeric field, alphabetic fields, check digit formulas, 
batch totals, table look-up, and range check. 

322 



"" 
15 

c 
E 
t; 

"' 

~ 

"' il 
~ . 
i ~ a: 

~ 
~ 

~ ~ 
0 

IC:I 
IE) 
Cl 
m::::I 
Eil 
m::::I 
El 

\ J 

.... 
c 
2 
a:: 
0 
II. 

2 
a: 
0 
II. 
(.) 
w 
c 

-

: . 
-
1 
-. -

-:J 
J 
1 

" 1 , 
1 . . 

"" 

. 
~ 
1 , 

"" - ~ .. 
_I 

j 
~ 
~ 

- .. 

Screen Formatters 

. . ::::::::!::.::t;:;:;;::. 

~ ~ 
~ ~ j j l j J j -i 

l i ~ 

~ ~ ~ i J ~ J ~ , 1 1 1 
~ 

j 
., 

~ Q) 1 . 
] J Q) -

1 

i J .i::. . 
' . • en 

1 j ~ ' 1ii 
~ . E ' 1 J ' ... 1 0 1 1 j . u. -

1 

. 
~ ' ~ ~ 

~ 
:ii! - J a: -

' 0 - . -

~ ' 
u. . . 0 . 

~ ~ ' LI.I - . 0 1 . 

1 1 
. 

~ ' 

1 
. ~ 

I _, 
1 ' (') 

1 . C\I 

~ . 
~ 

. Q) . ... . 
' ~ 

~ 
. Cl 

1 1 l 
u::: 

- . . 
j 

~ 
j 
~ 1 ~ .., 

I l .. . ~ j ~-, ., 

~ ~ 1 
1 1 

• • ! : ::: - - - - : : : : ;; :: ::: ! 

323 



Screen Formatters 

In addition, DECFORM expands the number of editing functions avail­
able to the user by offering advanced edit checks and field display 
options. Advanced edit checks include file validation, a math option, 
conditional field validation, and a programmable option. DECFORM 
field display options include protected field, required field, full field, 
no-clear, auto-halt, auto-duplicate, and override. The combination of 
basic and advanced edit checks and field display options provides you 
with additional flexibility in designing screen formats. 

DECFORM also supplies efficient, easy-to-use file maintenance 
through such commands as CHANGE, DELETE, VERIFY, or INQUIRY. 
A hidden field option protects confidential or restricted information 
from use by unauthorized personnel. The hidden field option requires 
that a user give a special password before access to the protected 
information is permitted. 

File Inquiry 
Once the appropriate format and the type of maintenance is chosen, 
the programmer or user then selects the file to be examined. File 
inquiry is accomplished by initiating a file search, which is started 
when the user fills in fields on the screen with key information that he 
or she wishes to search for in a record. The program takes the key 
information and searches through the appropriate file until the first 
record with a matching key field is found. After displaying and review­
ing the selected record, the user may continue the inquiry to the next 
record in the file, or may specify a new search key, causing the system 
to locate a record matching the new specification. 

Searches may be either sequential or indexed. Indexed searches re­
quire that the key fields be specified when the screen format is created 
originally, and that the file under inquiry be set up as an ISAM file. 
Sequential searches may use any field as a search key. 

File inquiry is a flexible operation, able to fulfill the needs of various 
application environments. The forms designer may request such infor­
mation as a password, name of the data file where data records are to 
be stored, or the specific type of transaction that is to occur. This 
degree of flexibility enables DECFORM to be customized to suit indi­
vidual requirements. 

At the discretion of the forms designer, DEC FORM can also maintain a 
question and answer dialog with the user throughout the entire data 
entry and file inquiry procedure. Questions such as IS SCREEN O.K.?, 
or IS RECORD 0.K.? are flashed on the video terminal to remind the 
user to sight-verify any information before leaving that particular 
screen or record. This question and answ,er dialog allows the user to 
reposition the cursor within the screen or record field, thereby de-

324 



Screen Formatters 

creasing errors and increasing productivity. 

File Review and Update Modes 
There are four file review and update modes important to a commer­
cial system using DECFORM. 

1. Inquiry mode-inquires into a record within a file. This mode al­
lows the operator to review data previously entered as a record 
within the system files. 

2. Change mode-allows for both review and update of information 
in a record within a file. Once the record is displayed on the 
screen in the appropriate format, the operator may examine data 
and make changes where necessary. This function is one of the 
primary methods by which files in the system are maintained. 

3. Delete mode-allows for selective deletion of records from a file. 
Again, the record is displayed on the screen, using the appropri­
ate display format. 

4. Verification mode-increases the reliability of the data. With the 
verify function, an operator reviews a record displayed on the 
screen and selectively re-keys data fields. If any of the re-keyed 
fields differ from the original contents of those fields, the operator 
is informed of this difference and asked which data are desired. 
As with the data which were originally entered, any changes must 
also pass any edit checks associated with fields in question. 

Format Control File 
The code serving as input to DECFORM is called the Format Control 
File, which the format developer generates to specify the exact layout 
of data entry and review formats. A separate Format Control File is 
required for each format. DECFORM takes the code composing the 
Format Control File and translates it into DIBOL-11 program source 
statements with annotated comments. It is then compiled into 
intermediary code, linked, and stored. Each terminal using a 
DECFORM format operates independently of any other terminal and 
therefore requires its own copy of the linked format code. The amount 
of memory space necessary to handle each format (and thus each 
terminal) varies, depending on the size and complexity of the format. 
Generally, the space requirements are 8-12 Kbytes of memory per 
format. 

INDENT-INTERACTIVE DATA ENTRY 
INDENT is a forms management and data entry system which greatly 
simplifies and expedites application program development of pro­
grams written in DIBOL, COBOL, or BASIC-PLUS-2 running under the 

325 



Screen Formatters 

RSTS/E operating system. INDENT was designed to eliminate the 
many drawbacks associated with traditional forms management in 
commercial applications. It offers both user and developer benefits 
that result in more efficient program development and in more cost 
effective application processing. 

INDENT's powerful runtime system allows a multiterminal application 
to simultaneously engage in many tasks with only a single host appli­
cation program. INDENT supports DIGITAL's VT52 and VT100 
terminals and uses the following VT100 features-reverse video, bold, 
underline, blink, 132 column lines, scroll, split-screen, reverse screen, 
and the line drawing character set-to produce highly functional, ae­
sthetically pleasing formats. 

INDENT was designed to enable you to create forms, enter data 
through these forms, and validate data. INDENT form definitions are 
created using a text editor. INDENT offers very flexible screen han­
dling. Forms can be displayed all at once or one field at a time. Fields 
from different forms can be displayed one after another. Fields from a 
single form can be displayed in an order different from that in which 
they occur in the form. Forms can be chained together. Portions of a 
form can be scrolled on the screen. Several forms can be displayed 
simultaneously. 

Functionality is further provided through INDENT's powerful set of 
forms directives and host program commands. Boxes and lines can 
be quickly defined; tables can include lists of literals or variables; form 
variables can be defined and accessed by host programs; forms can 
initialize host programs and host programs can initialize forms; de­
faults can be set and reset. 

Application programming is simple and fast. Changes to host pro­
grams, data management, or forms definitions can be implemented 
independently of one another. Because the INDENT command lan­
guage is so easy to use, an entry level programmer can quickly learn 
to create and modify forms definitions. The field definitions are simple 
so the forms designers don't have to be programmers. 

326 



327 



328 



CHAPTER 24 

DISTRIBUTED PROCESSING AND NETWORKS 

INTRODUCTION 
DIGITAL produces powerful computer hardware and software prod­
ucts that permit the linking of computers and terminals into flexible 
configurations called networks. With networks, you can optimize the 
efficiency and cost-effectiveness of your data processing operation. 

No matter where your processors or terminals are located-around 
the plant or around the world-they can, under certain circumstances, 
be connected in ways that allow exchange of information, files, pro­
grams, and control, as well as the sharing of peripherals. Small com­
puters can access the powerful capabilities of mainframes when they 
are networked; large computers can take advantage of smaller dedi­
cated systems that have been chosen for specific application environ­
ments. 

With distributed processing, minicomputers are placed at the loca­
tions where they are needed, whether on the floor of a manufacturing 
plant, in an accounting department, in a laboratory, or in a home 
office. As organizations become more complex, or develop more so­
phisticated demands for their computer resources, the ability to net­
work processors and share resources becomes increasingly impor­
tant. DIGITAL has the distributed processing and networking products 
to provide customers with these essential capabilities. 

DIGITAL's networking architecture offers a broad range of compatible 
networking options: 
• DECnet-DECnet is a family of networking products which enable 

two or more DIGITAL computer systems to communicate. 
• lnternets-DIGITAL offers a family of protocol emulators called 

lnternets. lnternets provide a way for DIGITAL computers and termi­
nals to communicate with computers and terminals built by CDC, 
IBM, UNIVAC, and several other companies. Users of IBM main­
frames, for example, might find it efficient to distribute a number of 
DIGITAL minicomputers at various locations to do local computing, 
and then link them to the headquarters central computer to giv,e 
management access to important information quickly and accurate­
ly. 

• Packetnet System Interfaces (PSl)-Packetnets are computer and 
terminal interfaces to public packet-switched networks. These inter­
faces allow DIGITAL computers to communicate with those from 
other manufacturers through a public data network. 

329 



Distributed Processing and Networks 

Each of these series of products will be outlined in detail later in this 
chapter. First, however, some important networking concepts will be 
introduced. 

CONCEPTS 
A node is a point in a network through which a user can gain access to 
the network or where network work may be done. In network 
schematics, nodes are the endpoints of the communications links that 
join the network. Communications links may be either dedicated or 
leased or dialed-up lines or satellite or microwave beams. 

There are basically two types of nodes: routing and nonrouting. A 
routing node can receive messages from remote nodes and pass them 
to nodes other than those linked directly to itself. This sophisticated 
capability allows for more complex transfer of information around the 
network, but requires more software "overhead" to manage it. Non­
routing nodes can receive messages from anywhere in the network, 
but cannot pass them along. For this reason they are also sometimes 
referred to as "end nodes." 

The phrase "point-to-point" describes the physical configuration of a 
network. In point-to-point networks, each node must have a physical 
link to any other node it wants to communicate with. Two point-to­
point networks are shown below in Figures 24-1 and 24-2. 

The routing network shown in Figure 24-2 provides the same level of 
communication as does a fully communicating point-to-point network, 
but with a reduced number of lines/modems needed by using node A 
as a routing node. 

Multidrop connections, however, are more like party telephone lines: 
several nodes share a single telephone line or local line. Figure 24-3 is 
an illustration of a multidrop network. It is important to note that one 
computer is always designated as the master or control node and all 
other computers on that line are slaves or tributaries and respond to 
polling by the master node. 

DECNET 
DECnet expands the power of DIGITAL computers so that each sys­
tem can be used to its full advantage independently, and, as part of a 
network, each can also provide additional computing benefits. There 
is a DECnet product to support each of DIGITAL's major operating 
systems. Capabilities vary for particular DECnet systems, but general­
ly include the following. 

DECNET CAPABILITIES 

Adaptive Routing 
Adaptive routing is the automatic routing of messages through a mul-

330 



Distributed Processing and Networks 

Figure 24-1 Fully Communicating Point-to-Point Network 

Figure 24-2 Routing Network 

Figure 24-3 Multidrop Network 

tisystem network. This is a technique in which the network chooses the 
least costly of all alternative routes for the transmission of network 
messages from one node to another, and automatically adjusts for 
faulty lines, interruptions, and changing line status. Nodes can be 
added or deleted without disrupting network operations. This feature 
makes larger networks feasible as well as cost-effective. 

331 



Distributed Processing and Networks 

Multipoint 
Multipoint permits nodes to share a common communication line. The 
tributary (or slave) nodes can only communicate with the control (or 
master) station when the master has polled them. They communicate 
with one another through the master node. Multipoint reduces com­
munication costs by minimizing the number of lines and modems 
between nodes. 

Network Command Terminal 
This feature permits a terminal at one network node to have direct 
logical access to another node. The user's terminal appears to be 
physically linked to the other system and the standard network and 
system utilities of that other system are available for use. Consider, for 
example, a programmer in one city, say Seattle, who wants to use 
DAT A TRI EVE on a huge database stored in a computer in Boston. The 
Network Command Terminal feature lets that programmer work as if 
the Boston database were connected directly to the Seattle computer. 
There is no need to duplicate data and software on multiple systems. 
The only restriction is that the two communicating nodes be the same 
operating system and DECnet software. Intermediate nodes may be 
any other DECnet implementation. 

Network Management 
Tools for monitoring and controlling network operation are the 
substance of network management. For day-to-day operations, the 
architecture includes facilities for tuning parameters, for logging 
events, and for testing nodes, lines, modems, and communications 
interfaces. 

For monitoring network operation or for testing a new network appli­
cation, DECnet provides statistical and error information. Statistics 
relate both to nodes and to communications lines, including data on 
traffic and error types. The network manager can get information such· 
as the number of connect messages sent over logical links and the 
number received. 

Line counters are also available which record statistics like the num­
ber of data blocks sent and received successfully, the number of 
blocks received with errors, and the number of times tributary status 
has chang~d. Data can be logged and displayed at will. 

Loopback testing is a valuable aspect of network management. A 
network manager can send and receive test messages over individual 
lines, either between nodes or through other loopback arrangemerits, 
and then compare the messages. Utilities are included for a logical 
series of tests that aid in isolating software and hardware problems. 

332 



Distributed Processing and Networks 

Access to network performance information allows potential problems 
to be solved before they degrade performance. If A-to-B traffic in­
creases, the line capacity can be increased. This network manage­
ment capability, combined with the performance information available 
from the network coordinators and the Network Profile, provides 
unique data tor planning tor the future. It means customers who use 
DECnet have control and can grow with assurance. 

Task-to-Task Communication 
In task-to-task communication, cooperating programs exchange data. 
These programs can be running under different operating systems; 
they can be written in different languages. One important benefit of 
this feature is that the network manager can make specified programs 
secure from access. 

As an example of networked task-to-task, think of a manufacturing 
test/material handling application. A group of PDP-11 /34's is testing 
system components in MACRO and FORTRAN-77 under RSX-11. 
Once a day, the Operations Manager reviews production schedules. 
The number of units which have passed final test and are ready for 
shipment is important information tor the COBOL data analysis pro­
gram running under RSTS/E at headquarters. To the failure analysis 
program in each RSX-11 system, the running tally it keeps of the 
number of units which pass the test is relatively insignificant. When the 
COBOL programs goes to get the information tor its production sche­
duling, though, it's there and available. 

File Transfer 
All DECnet systems support exchange of sequential ASCII or binary 
files. The DECnet software handles compatibility issues among oper­
ating systems by translating the file syntax of the sending node into a 
common network syntax and then retranslating at the receiving end 
appropriately tor that node. 

The transfer of file types other than sequential ASCII and binary may 
also be supported between particular operating systems. Check with 
your DIGITAL Network Specialist tor details. 

As an example of file transfer, think back to the task-to-task example. 
Since the Operations Manager in that example needed only one re­
cord in tlie FORTRAN program's file, a task-to-task solution made 
sense. If additional information in that file had also interested the 
Operations Manager, transferring the whole tile might have been 
preferable. 

333 



Distributed Processing and Networks 

Remote Resource Access 
Sharing such resources as expensive peripheral devices or massive 
database files is economical as well as convenient. A person at one 
node can make use of a remote disk storage device or specialized 
peripheral equipment that makes overhead projection transparencies 
from word-processor files, just as if they were nearby. 

This capability is sometimes also referred to as "remote file (or record) 
access" when programs access file-structured devices remotely. Fig­
ure 24-4 illustrates remote resource access. 

11/04 

11/04 

BEFORE 
DECnet 

I i 
- ., 

I 

' ------:,;; "ll1i--- " 

Figure 24-4 Remote Resource Access 

Remote Command File Submission and Execution 

11170 

11170 

A user at a source node requests a destination node to execute a 
command file. The command file may already be at the destination 
node, or the source may send it along with the request. This capability 
turns the user console into a remote job entry terminal for a system 
that supports batch or indirect command processing. In combination 
with the file transfer function, it's very powerful. 

334 



Distributed Processing and Networks 

A small lab system, for example, might acquire data but might not be 
powerful enough to run the data analysis program. This could be run 
as a batch job on a larger processor, with the commands submitted 
from the lab. Later, the file containing the results could be transferred 
back to the lab for review. 

DECnet can also support full batch capability with log file and spooling 
on base systems that support batch. On RSX-11 M-PLUS, for example, 
the user can generate the node with either command file or batch 
capability. 

Downline Loading 
Tasks (programs) or whole software systems can be developed on a 
node with good peripheral, compiler, and memory support and then 
be sent to the computer where they will ultimately be used. 

Down line task loading is invaluable for final check-out of applications 
programs which have been developed by a central, but geographically 
separated, applications programming group. 

Down line system loading (and its converse, upline system dumping) is 
particularly useful for small memory-based systems or for systems in 
hostile environments. 

Our example in Figure 24-5 shows an RSX-11S system (the only sys­
tem supported for downline loading), monitoring conditions in a coal 
mine. It is a likely candidate for downline task or system loading. New 
applications, once tested, can be downline task loaded. Likewise, the 
whole system can be regenerated and downline system loaded. The 
applications or system programmer can do this from a comfortable 
location with good computer peripheral support. Programs already 
executing on the core-only RSX-11 S node can be check pointed to the 
disk file system of an adjacent node and later restored to main memo­
ry of the RSX-11 S node. No hardhat and elevator descent are re­
quired. 

Upline dump of crash information is also supported for memory-only 
satellite nodes. The dump yields the contents of registers and 
memory. These may be analyzed on RSX-11 M and RSX-11 M-PLUS 
systems by a Network Crash Dump Analyzer. 

Terminal Communication 
The terminal communication facility has many applications. It's a han­
dy way to talk to a person at another terminal or system console. You 
can request the computer operator at headquarters to mount a 
magnetic tape with data you need to produce a report remotely. You 
can tell a remote operator that you're ready to send data and that he 
should be prepared. 

335 



I 
I 
I 
I 
I 
I 
I 
I 

Distributed Processing and Networks 

PDP-11170 

L_ _________________ _ 

POP·ll/03 

Figure 24-5 Downline Loading 

Auto-Answer 
Once someone dials the number of a destination node, DECnet 
answers the call, which establishes the communications link, and then 
attends to the processing requests. Auto-Answer is supported by 
DECnet. 

In order to get an overview of the entire DECnet picture, please refer to 
Table 24-1. It compares the capabilities of all our different DECnet 
products running on PDP-11 operating systems. Note that the names 
of DECnet products reflect their compatible operating systems; for 
example, DECnet/E is the DECnet software for the RSTS/E operating 
system. 

INTERNETS 

Data Transfer Facilitators, Not Hardware Emulators 
lnternets are a family of protocol emulator products that connect 
DIGITAL computers with non-DIGITAL systems. If you need a way for 
DIGITAL computers to communicate and exchange data with comput­
ers from other manufacturers, DIGITAL provides mechanisms for in­
terchanging data with IBM, UNIVAC, CDC, and other host processors. 
DIGITAL's goal is not to provide plug-compatible replacements for 
terminal subsystems, but instead, to interchange data by using com­
mon communications protocols. Emulating a protocol already recog­
nized and supported on another vendor's system is the easiest way to 
speak to that system. 

While our protocol emulator products appear to another vendor's 
computers to be supported devices, they are, in fact, parts of powerful 
DIGITAL systems. You get local file systems, many different lan­
guages, transaction processing-a wide selection of computing 
power. 

336 



Distributed Processing and Networks 

Table 24·1 

NETWORK MANAGEMENT 
Loopback Testing 

Physical Link 
Logical Link 
Event Logging 
Status/Statistics 

Line 

Node 
Node Resources 

Configuration 
Monitoring 

HOMOGENEOUS NETWORK 
COMMAND TERMINALS 

FILE TRANSFER 
Copy Sequential Files 

Copy ISAM Files 
(Homogeneously) 

Directory of Files 

File Spooliflg 

REMOTE JOB ENTRY 
Command File 

Submission 
Command File 

Execution 

Batch 

REMOTE RESOURCE ACCESS 
Local Node to Remote 

Files 
Unit Record 
Terminal 

Remote Node to Local 
Files 
Unit Record 
Terminal 

LANGUAGE 
MACRO 
FORTRAN IV 
BASIC-PLUS 
BASIC-PLUS-2 
COBOL 

SOFTWARE INTERFACE 
Message Level 

Segment Level 

HOST SUPPORT FOR RSX-11 S 
MEMORY-ONLY SYSTEM 

Down-Line System Load 
Down-Line Task Load 
Up-Line Crash Dump 

" Phase Ill systems. 

x 
x 

x 

x 

x 
x 

x 

x 
x 

x 
x 

x 
x 

x 

x 

Network Comparisons 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 

x 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 

x 
x 

x 

x 
x 
x 

337 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 
x 
x 
x 

x 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 

x 
x 

x 

x 
x 
x 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 

x 

x 

x 
x 
x 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 
x 
x 

x 
x 
x 

x 
x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 



Distributed Processing and Networks 

DIRECT LINE ACCESS 
MACRO 
Multipoint 
Point-to-Point 
Multiple Lines 

TRANSPORT 
Full-Routing 
Non-Routing 
Point-to-Point 

PHYSICAL CONNECTIONS 
Multipoint 
Point-to-Point 
Multiple Lines 

CONFIGURATION 
Mapped, Full-Routing or 

Non-Routing 
Unmapped, 

Non-Routing 

COMMUNICATIONS SUPPORT 
Synchronous 
Asynchronous 
Parallel 
Local Coaxial 
Local 20 mA 
Remote-

EIA RS-232/CCITT (V.24) 

EIA RS-449/422 
CCITT (V.35) 

Half-Duplex 
Full-Duplex 
Autoanswer 

* Phase Ill Systems. 

1 Tributaries only. 

2 Mapped. non~routing. 

3 Unsupported network command terminal 
capabilities to RSX and VMS systems. 

x 
x 
x 
x 

x 
x 
x 

x 
x 
x 

x 

x 

x 
x 
x 
x 
x 

x 

x 
x 

x 
x 
x 

Internet Products Summary 

x 
X' 
x 

x 
x 

X' 
x 

X' 

x 

x 
x 

x 
x 

x 

x 
x 

x 
x 
x 

x 
x 
x 
x 

x 
x 
x 

x 
x 
x 

x 

x 

x 
x 
x 
x 
x 

x 

x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 

x 

x 

x 
x 

x 
x 
x 

x 
x 
x 

x 
x 

x 
x 
x 
x 
x 

x 

x 

x 
x 
x 

x 

x 

x 
x 
x 

x 

x 
x 
x 
x 
x 

x 

x 
x 

x 
x 
x 

x 

x 

x 
x 

x 

x 

x 

x 
x 

x 
x 
x 

x 

x 
x 

x 

x 

x 

x 

x 

Over the past several years, DIGITAL has developed a large number of 
Internet products to meet customer communications needs. Our Inter­
net products emulate these protocols: 

e IBM System Network Architecture: SNA 

• IBM Remote Batch: 2780, 3780, HASP Workstation 

• IBM Interactive: 3271 

338 



Distributed Processing and Networks 

• UNIVAC Remote Batch: UN1004 

• CDC Interactive/Batch: MUX200 

Table 24-2 below shows which members of our Internet family are 
supported by PDP-11 operating systems. 

Table 24·2 Internet Support by Operating Systems 

(RSX-11S) 

RT-11 
(CTS-300) 

RSX-11M 

RSX-11M-
PLUS 

RSTS/E 
(CTS-500) 

IAS 

IBM 
RJE/ 

2780 3780 HASP 3271 

x x x 

x x x x 

x x x x 

x x x 

x x 

Univac CDC 

SNA UN1004 MUX200 

x x x 

x 

Following are brief descriptions of these major Internet products avail­
able from DIGITAL. 

SNA 
The RSX-11 M/SNA Protocol Emulator provides a mechanism by 
which a DIGITAL application program can exchange data with an ap­
plication program in an IBM SNA network. (SNA is IBM's Systems 
Network Architecture.) The SNA Protocol Emulator appears to the IBM 
system to be a programmable cluster controller, supported by SNA. 
DIGITAL realizes that many IBM users who move to SNA would like to 
have the flexibility of adding other vendors to the network. To meet 
this need, we have developed the RSX-11 M/SNA Protocol Emulator. 

Features - The RSX-11 M/SNA Protocol Emulator· (SNA P.E.) prod­
uct is the link by which a DIGITAL program exchanges data with an 
IBM pro~ram running in an SNA network. The DIGITAL protocol emu­
lator allows interactive access between a program in a IBM host and a 
program in a DIGITAL system. Its application is functionally similar to 
that of the 3271 Protocol Emulator, except that its interface is to an 
SNA communications controller and driver. 

The SNA P.E. appears to SNA to be a programmable cluster 

339 



Distributed Processing and Networks 

controller, a supported device. It supports up to four lines and up to 32 
SNA sessions. It can coexist on a multipoint line with IBM SNA de­
vices. 

A particularly important feature is that it provides the flexibility of three 
levels of user interface. SNA is a layered architecture-different func­
tions occupy separate layers. 

Sample Application - Let's consider an example of an SNA Internet 
application. An automotive company has DIGITAL equipment in five 
remote warehouses and a large IBM mainframe at headquarters. SNA 
is implemented on the IBM mainframe. Each warehouse has a PDP-
11 /34 running RSX-11 M to maintain local inventories. The mainframe 
maintains the corporate database, which includes the inventories at all 
five warehouses. 

Suppose a customer needs a part not stocked in the local warehouse. 
The local parts department has the opportunity to check the corporate 
database, by means of the SNAP. E., to see if the part is available from 
one of the other warehouses. The mainframe system transmits price 
and delivery information to the requestor. It places an order with the 
warehouse which has the part and updates the master and local data­
bases. The applications themselves are handled by user-written pro­
grams. Figure 24-6 shows this SNA example. 

Product Description - As stated earlier, the RSX-11 M SNA/P. E. is a 
product designed to allow RSX-11 M systems to participate within an 
SNA environment. Since SNA is a layered architecture, each node in 
the network must be able to provide the layers required for SNA. 

If a user wanted to use anything other than an IBM product, he would 
have to perform all of the functions of each SNA layer. This would be a 
major programming effort, requiring an indepth knowledge of SNA 
protocols and a commitment to provide ongoing support. 

The SNA P.E. is designed to perform the functions of the SNA layers 
up to and including part of presentation services, depending on the 
level of support the user selects. 

Three levels of support are available to the user: 

EC Emulator Control 
XEC Extended Emulator Control 
AC Application Control 

Regardless of the mode selected, the IBM application program and 
the RSX-11 M application program must cooperate. This cooperntion 
can be achieved by designing the two applications together, or by 

340 



Distributed Processing and Networks 

WAREHOUSE I WAREHOUSE 2 WAREHOUSE 3 WAREHOUSE 4 

IBM 
MAINFRAME -------1 

SNA 

Figure 24-6 SNA Example 

IBM 
MAINFRAME 

knowing the intricacies of one program and designing the other to 
cooperate. Simultaneous design is the preferred method, except for 
existing IBM applications, in which case it would probably be most 
practical to design the RSX-11 M application to the IBM specification. 

Emulator Control Mode (EC) requires the least involvement for the 
application in SNA protocols. EC session support is restricted to a 
subset of what IBM refers to as a "type 1 interactive session" of an IBM 
3790 cluster controller. The application's responsibility is to identify 
the resource in the IBM SNA network with which it wishes to engage in 
a session, and to issue, send, and receive directives at the appropriate 
times. EC mode could be used to speak to a CICS application. The 
user is responsible for providing an application program (the end-user 
layer) in the IBM system and an application program covering the end­
user level and some of the presentation services in the RSX-11 M sys­
tem. 
Extended Emulator Control Mode (XEC) provides more support of 
SNA protocol but requires the user application to get more deeply 
involved with the SNA layers. XEC mode requires a greater knowledge 
of SNA protocol. The support provided is approximately the equi­
valent of the "type 2 interactive session" of an IBM 3790 cluster con­
troller. 

The user is responsible for providing an application program (end­
user) in the IBM system and an application program in the RSX-11M 
system which must cover the end-user, presentation services, and 

341 



Distributed Processing and Networks 

part of the data flow control layers. 

Applications Control Mode (AC) provides the application direct access 
to the SNA protocol (Transmission Subsystem). The AC mode is the 
most powerful, but it's also the most difficult to implement and re­
quires the greatest programming effort. An application programmer 
making use of AC mode should be well-versed in SNA protocol. 

IBM Remote Batch Protocol Emulators 
(2780/3780, HASP Workstation) 
Three DIGITAL remote job entry (RJE) emulators are available for 
exchanging data with IBM systems: 2780, 3780 and HASP Workstation 
Protocol Emulators. 

The DIGITAL products offer distinct advantages over the IBM prod­
ucts whose protocols they emulate. At the IBM RJE stations, storage is 
limited to cards for input and to printer or card-punch for output from 
the host. The DIGITAL Internet products, since they are integrated into 
base operating systems, handle all 110 through file systems. Before 
submitting programs, data, and commands to the host, the DIGITAL 
user can create and edit files on his computer facilities. Output from 
the mainframe to the DIGIT AL system can be spooled to printer or to 
disk. 

The 2780/3780 and HASP are the most commonly implemented 
communications protocols. They are excellent, low-risk, entry-level 
products-turnkey packages with standard IBM system software at 
the IBM end and a straightforward user interface at the DIGITAL end. 

In addition to IBM systems, the 2780/3780 and HASP protocol emula­
tors can be compatible with Honeywell, pata General, and other 
manufacturers' products. Your DIGITAL network specialist can help 
you determine how these lnternets can fit into your communications 
design. 

The IBM 2780/3780 is a card reader, card punch, printer, and control 
unit. It transmits a single data stream. The IBM operator loads a card 
deck with JCL (Job Control Language) headers and transmits the 
batch job. Our emulator makes use of our mass storage devices. We 
simulate a card deck with a JCL header in our file. 

HASP is sometimes referred as "HASP Workstation" or "Multileaving 
Workstation." A real HASP Workstation is, functionally, an enhanced 
2780. Besides the reader, punch, and printer, it supports a terminal 
with CRT and keyboard. Through the DIGITAL HASP Protocol Emula­
tor, operators can communicate directly with the IBM mainframe from 
a local terminal to control and check the status of jobs on the IBM host. 
This capability is referred to as remote console support. 

342 



Distributed Processing and Networks 

The HASP Protocol Emulator product also supports multiple 1/0 
streams, the capability of having several devices and/or file transfers 
active at the samli' time. With this multileaving capability a short job 
can be interleaved while a longer job is running. 

IBM Programmable Interactive Protocol Emulator (3271) 
DIGITAL's 3271 Protocol Emulator provides an interactive, task-to­
task link to an IBM mainframe. It provides a mechanism by which an 
IBM program and a DIGITAL program can communicate. 

A real 3271 (3270 is the IBM series number, 3271 the controller prod­
uct) is a multidrop BISYNC cluster controller with video terminals and 
printers. The 3271 can transmit and receive data a screenful at a time. 
It is often used for form-filling applications with CICS, IMS, DL 1, or 
user-coded applications, or for general-purpose timesharing under 
TSO. 

Our emulator appears to the IBM system as a cluster controller. To run 
it, you need two application programs, one for the IBM side, one for 
the DIGITAL side, to send and receive the data. The IBM system treats 
the user application program on the DIGITAL side as just another 
terminal connected to a control unit. The DIGITAL system can coexist 
with 3270 terminals in a network. IBM customers can make use of their 
existing terminal-support application. 

The DIGITAL emulator program frames the data with appropriate 
characters: Start of Text, Unit Identification (Control Unit and Terminal 
Unit Numbers), CRCs, End Text. It segments the message into proto­
col-acceptable units and generally manages the line protocol as re­
quired. 

The DIGITAL user application program has two responsibilities: 
• To identify itself to the protocol emulator by terminal unit and con­

trol unit number. This step is also referred to as "attaching a pseu­
do-device." 

• To send/receive data in a format acceptable to the IBM program at 
the other end. 

Note also that, since the 3271 Protocol Emulator emulates a cluster 
controller, multiple DIGITAL user application programs can 
send/receive data simultaneously to/from the mainframe on the same 
physical line. The 3271 also provides multi line support. 

UNIVAC Protocol Emulators(UN1004) 
UN1004/RSX Capabilities - UN1004/RSX is a PDP-11 based soft­
ware package that provides a means of communication with UNIVAC 
1100 series mainframes. This product can be compared functionally to 

343 



Distributed Processing and Networks 

the IBM 2780 protocol emulator. The 2780 protocol is symmetrical, but 
the UN1004 protocol allows only specific non-identical operations by 
each of the communicating components. In simple language, this 
means that while the 2780 protocol could, in principle, be used to 
communicate between two PDP-11s, the UN1004 could not. 

The UN1004 protocol was designed by UNIVAC to provide communi­
cation between a host UNIVAC 1100 series mainframe and a remote 
batch terminal consisting of a keyboard, a card reader/punch, and a 
lineprinter. The input for UN1004/RSX can be from any valid RSX-
11 M-supported peripheral that will store a valid UNIVAC batch 
stream. 

Although the UN1004/RSX emulator is a single-user product, more 
than one user can submit jobs to a common job queue. The resulting 
output from the UNIVAC host will be received in a common queue 
which does not contain any user identification. 

Figure 24-7 illustrates a typical UN1004 configuration. 

OTHER 
SUPPORTED 
PERIPHERALS 1 ----------, 

LINE 
PRINTER 

CARD 
READER 

I 

PDP·ll 

RT 
TASK 

RSXll OR !AS 
OPERATING 
SYSTEM 

UNI 
TASK 

Figure 24-7 UN1004 Configuration 

CDC Protocol Emulator (MUX200) 

UNIVAC 
1100 

(HOST 
COMPUTER) 

MUX200/RSX-IAS Capabllltles - MUX200/RSX-IAS is a PDP-11 
based software package which provides a means of communication 
with a CDC-6000 or CDC-CYBER series host computer. The product 
may be used to communicate to the host computer either interactively 
or in remote job entry (RJE) mode. Up to 16 terminals may be connect­
ed to the host through MUX200/RSX. However, in many cases the host 
software restricts this number to 12. Each of the interactive users may 
submit jobs to a job queue that MUX200/RSX-IAS uses to schedule 
transmissions to the host. Output from the host is automatically 
spooled to a device which has been defined by the system manager. 

344 



Distributed Processing and Networks 

The protocol used is the CDC mode 4A protocol, which allows speeds 
up to 9600 baud. Note that the DIGITAL product is warranted for 
speeds up to 4800 baud. 

MUX200/RSX-IAS is not a one-to-one replacement for the CDC-
200UT, which uses the same protocol. 

MUX200/RSX-IAS has the following features: 

• Output received from the host CDC system may be spooled to a 
lineprinter upon detection of a text string predefined by the user. 

• Up to eight RSX-IAS datasets may be specified for transmission to 
the host in a single command. 

• RSX-IAS terminals may be detached for other use while the software 
package is operating. Data received from the host which are direct­
ed to the terminal are saved for printout when the terminal is reat­
tached. 

• User-written tasks can replace the RSX-IAS terminal and control the 
emulator as if the task were a terminal. 

PUBLIC PACKET SWITCHING NETWORKS (PACKETNETS) 
In the 1970's the International Telephone and Telegraph Consultative 
Committee-CCITT-developed a series of recommendations for 
standard communications protocols that could be used by the PTT's 
and other common carriers to provide data communications services. 
Known as X.25, this recommendation, developed for the public packet 
switching networks (PPSN's), defines the interface between the com­
puter and the network. 

The fundamental technology used in Public Packet Switched Net­
works (PPS N's) is called packet switching. With it, user data and con­
trol information needed to assure delivery to the correct location are 
formed into discrete entities-packets. The network dynamically inter­
leaves the packets of many users over shared transmission facilities 
and routes packets to their destinations. Unlike conventional 
telephone setups, where the user is charged for both connect time and 
distance, regardless of the amount of data passed, charges in PPSN's 
are determined so that the person who uses the line the most pays the 
most. 

DIGITAL's lmplementatlon of the X.25 Interface 
Since 1975, DIGITAL has been following the growth of packet­
switched networks with great interest and has an ongoing program to 
provide the X.25 software on its 16-, 32-, and ~6-bit computer systems. 

345 



Distributed Processing and Networks 

The X.25 interface has been incorporated into DIGIT AL Network Ar­
chitecture so that DIGITAL-based networks can communicate over 
both a nationwide PPSN and a private network at the same time. No 
other computer manufacturer supports this type of approach to net­
working under multiple computer architectures and operating sys­
tems. 

X.25 is rapidly becoming the standard international communications 
protocol, as it finds increasing adoption among users and computer 
manufacturers. X.25 allows computers from different manufacturers 
to work together: with appropriate security validation, any system on 
the network can send data to any other system on the network. X.25 
provides dynamic routing and ensures data integrity, at the same time 
relieving users of any concern about input and output speeds of the 
various processors in the network. 

Before the advent of packet-switched networks, users required leased 
or switched lines. These lines are generally not used very efficiently 
since there are long idle periods between actual data transmissions. 
Sending data in packets significantly improves the efficiency of the 
transmission lines, since, by sharing the line among many users, the 
amount of time the line is idle is reduced. Bandwidth is allocated 
allocated only when a user is actually transmitting data. 

Within the near future, interfaces to PPSN's will be available in: 

United States - Telenet 
Canada - Datapac 
France - Transpac 
United Kingdom - PSS 
Holland-DN1 
Germany - Datex-P 

As others become operational, they will be selectively supported. 

346 



APPENDIX A 

DECUS 
DECUS, The Digital Equipment Computer Users Society, is one of the 
largest and most active user groups in the computer industry. DECUS 
has grown into an international organization with over 60,000 mem­
bers worldwide since it was founded in 1961. 

DECUS membership is free-upon application-to owners of DEC 
computers and to their computer-interested employees. Membership 
carries important benefits and opportunities; among them are access 
to the program library; membership in local, regional, and national 
organizations; invitations to symposia dedicated to optimal use of DEC 
equipment; opportunity to present papers and workshops on your 
own ideas; and, finally, access to special interest groups dedicated to 
particular uses, languages, operating systems, and hardware configu­
rations. 

The program library maintained by DECUS cont~ins over 1700 active 
software packages written and submitted by members and DIGITAL 
employees, and available to you for the media fee and reproduction 
cost only. Programs in the library range from enhanced editors and 
cross compilers to statistics packages and games. Of particular inter­
est to college and university customers, for example, might be a pack­
age of programs for registration, class scheduling, dormitory manage­
ment, and annual giving records. A laboratory user could take 
advantage of various statistical packages or programs that perform 
Fourier transforms or least squares fitting. There are programs for 
circuit analysis, resonance simulation, blood-count evaluation, and 
stress testing, and scores of others which medical, scientific, or engi­
neering customers could employ. Business people can find account­
ing packages, case studies, and payroll programs among the library's 
offerings. In addition, of course, there is a wide range of data manage­
ment, display graphics, and enhanced utility programs available. 

Local, regional, and national DECUS organizations give members the 
opportunity to meet other DIGITAL customers and employees in an 
informal setting. From the monthly local meeting to the semi-annual 
national symposium, the members can discuss their ideas, can learn 
what others are doing, and can give DIGITAL feedback necessary in 
improvement and future development of important products. Often, 
the national meetings in the various countries also provide the stage 
for major new product announcements by the company, and a show­
place for interesting developments in both hardware and software 

347 



technology. At any meeting a member might describe ideas and 
programs he has implemented, or fine tuning that has been achieved 
for a particular application. Members give papers, participate in panel 
discussions, lead workshops, or conduct demonstrations for the be­
nefit of other members. 

DECUS also publishes newsletters focusing on special interests, 
technical books that contain the compilation of symposia presenta­
tions, and a society newsletter. 

Many members derive a particular benefit from joining DECUS Spe­
cial Interest Groups. Special Interest Groups often meet as subsets of 
regional and national meetings, or they may meet on their own, to 
discuss their special field. Here, for example, all RSTS/E users or 
everyone interested in COBOL can have a chance to get together and 
discuss topics of mutual importance. At present there are 22 active 
Special Interest Groups (SIGs) in the US alone. Many of the SIGs print 
newsletters and disseminate valuable technical information to mem­
bers. The SIGs really are the front-line of mutual help and problem 
solving. 

DIGITAL provides DECUS with administrative personnel and office 
space around the world, but the organization is run by its members, 
who act as speakers for conferences, planners for meeting, editorial 
and production talent for newsletters and minutes, and the inventors 
of the ideas and new programs necessary to keep the library up to 
date. Belonging to DECUS is a valuable adjunct to owning DIGITAL 
equipment on both the program exchange and the information ex­
change fronts. 

For further information about DECUS, contact: 

DEC US One Iron Way (MR2-2/E55)Marlboro, MA 01752 

348 



A 

AID 

ACP 

ANSI 

ASCII 

AST 

ATL 

BAG 

BAK 

BAS 

BASIC 

BAT 

Bl 

BP 

CAI 

CBL 

CCITT 

GIL 

CL 

cu 
CMD 

CMI 

co 
COB 

Amps 

Analog/Digital 

APPENDIX B 

COMMONLY USED 
ABBREVIATIONS 

Ancillary Control Processor 

American National Standards Institute 

American Standard Code for Information 
Interchange 

Asynchronous System Trap 

Active Task List 

BASIC Compiled Program File 

Back-up File 

BASIC Source Program File 

Beginner's All-purpose Symbolic Instruction 
Code 

Batch File 

Batch Input Device 

Batch Pseudo-Device 

Computer Assisted Instruction 

COBOL Source Program 

Comite Consultatif Internationale de Telegraphie 
et Telephonie 

Core Image Library 

Console Log Device 

Command Language Interpreter 

Command File 

Computer Managed Instruction 

Console Output Device 

COBOL Source Program 

349 



COBOL 

CO MT EX 

CPU 

CR 

CRC 

CREF 

CRT 

CSECT 

CSI 

CT 

CTRL 

CUSPs 

DAT 

DBMS 

DEC 

DDCMP 

DIR 

DMP 

DMS 

DNA 

DOS 

DP 

DPB 

DSM 

DSW 

DT 

EAE 

EDT 

EDI 

Commonly Used Abbreviations 

Common Business Oriented Language 

Communications Oriented Multiple Terminal 
Executive 

Central Processing Unit 

Card Reader 

Cyclic Redundancy Check 

Cross-Reference 

Cathode Ray Tube 

Control Section 

Command String Interpreter 

Cassette Tape 

Control Key 

Commonly-Used System Programs 

Data File 

Data Base Management System 

Digital Equipment Corporation 

DIGITAL Data Communications Message Proto­
col 

Directory File 

Dump File 

Data Management System 

DIGITAL Network Architecture 

Disk Operating System 

Data Processing 

Directive Parameter Block 

DIGITAL Standard Mumps 

Directive Status Word 

DECtape 

Extended Arithmetic Element 

DIGITAL Standard Editor 

Editor Utility 

350 



EDIT 

EIA 

EIS 

EMT 

EOD 

EOF 

EOJ 

EOL 

EOM 

FA 

FB 

FIB 

FCP 

FCS 

FDB 

FILEX 

FIS 

FLX 

FNB 

FOR 

FORTRAN 

FPP 

FSR 

FTN 

F4P 

G 

GT 

HASP 

Hz 

IAS 

Commonly Used Abbreviations 

Editor Utility 

Electronics Industry Association 

Extended Instruction Set 

Emulator Trap 

End of Data 

End of File 

End of Job 

End of Line 

End of Medium 

Formatted ASCII 

Formatted Binary 

Foreground/Background 

File Control Primitives 

File Control Services 

File Data Block 

File Exchange Utility 

Floating Instruction Set 

File Exchange Utility 

Filename Block 

FORTRAN Source Program 

Formula Translator 

Floating Point Processor 

File Storage Region 

FORTRAN Source Program 

FORTRAN IV-PLUS Source Program 

Giga (one billion) 

Graphics Terminal 

Houston Automatic Spooling Program 

Hertz 

Interactive Application System 

351 



Commonly Used Abbreviations 

ID Identification Code 

110 Input/Output 

IOT Input/Output Trap 

IOX 110 Executive 

ISR Interrupt Service Routine 

JMP Jump 

JSR Jump to Subroutine 

K 1024 decimal (from "kilo") 

KB Keyboard 

KBL Keyboard Listener 

KCT Kilo-Core Tick 

LBR Librarian 

LOA Load Module 

LED Light Emitting Diode 

LIB Library File 

LIBR Librarian 

LICIL Linked Core Image Library 

LIS Listing File 

LP Line Printer 

LST Listing File 

LUN Logical Unit Number 

µ micro (mu - one millionth) 

m milli (one thousandth), or meters 

M mega (one million) 

MAC MACRO Source Program 

MAP Load Map 

MCR Monitor Console Routine 

MFD Master File Directory 

MO Message Output Device 

MST Macro Symbol Table 

352 



MT 

MTBF 

n 

NCP 

NPR 

OBJ 

ODL 

ODT 

OEM 

OTL 

OTS 

PC 

PDF 

PDS 

PDP 

PIC 

PIP 

pp 

PR 

PSECT 

PST 

PTT 

PUD 

010 

ROM 

RSTS/E 

RSX-11 

RT-11 

RTS 

AWED 

Commonly Used Abbreviations 

Magnetic Tape 

Mean Time Between Failures 

nano (one billionth) 

Network Control Processor 

Nonprocessor Request 

Object Module 

Overlay Description Language 

On-line Debugging Technique 

Original Equipment Manufacturer 

On-line Task Loader 

Object Time System 

Program Counter 

Processor-Defined Function 

Program Development System 

Programmed Data Processor 

Position Independent Code 

Peripheral Interchange Program 

Paper Tape Punch 

Paper Tape Reader 

Program Section 

Permanent Symbol Table 

Post, Telegraph, and Telephone Administration 

Physical Unit Directory 

Queue 110 

Read-only Memory 

Resource-sharing Timesharing System/Extended 

Real-time Resource Sharing Executive 

Real-time Foreground/Background System 

Run Time System 

Read, Write, Extend and Delete 

353 



Commonly Used Abbreviations 

SAV Saved File or System Image File 

SCI System Control Interface 

SCOM System Communication Area 

SGA Shareable Global Area 

SIP System Image Preservation 

SIPP Save Image Patch Program 

SP Stack Pointer 

SPC Small Peripheral Controller 

SPA Software Performance Report 

SST Synchronous System Trap 

SY System Device 

SYS System File 

SYSGEN System Generation 

TCP Timesharing Control Primitives 

Tl Terminal Interface 

TKB Task Builder 

TKTN Task Termination Notice 

TMP Temporary File 

TSK Task Image File 

TT Terminal Device 

TTY Terminal Device 

UA Unformatted ASCII 

UB Unformatted Binary 

UFO User File Directory 

UIC User Identification Code 

USA User Service Routine 

UST User Symbol Table 

v Volts 

VDT Video Display Terminal 

VT50 DECscope Video Display Terminal 

354 



VT52 

VT100 

XOR 

Commonly Used Abbreviations 

Table Top Alphanumeric Video Display Terminal 

High-performance Video Terminal 

Exclusive OR 

355 



356 



CONTROL CHARACTERS 

CHAR OCTAL BINARY 

NUL 000 0000000 
SOH 0 0 1 0000001 
STX 002 0000010 
ETX 003 0000011 
EOT 004 0000100 

ENO 005 0000101 
ACK 006 0000110 
BEL 007 0000111 
BS 0 1 0 0001000 
HT 0 1 1 0001001 

LF 0 1 2 0001010 
VT 0 1 3 0001011 
FF 0 1 4 0001100 
CR 0 1 5 0001101 
so 0 1 6 0001110 

SI 0 1 7 0001111 
OLE 020 0010000 
DC1 0 2 1 0010001 
DC2 022 0010010 
DC3 023 0010011 

DC4 024 0010100 
NAK 025 0010101 
SYN 026 0010110 
ETB 027 0010111 
CAN 030 0011000 

EM 031 0011001 
SUB 032 0011010 
ESC 033 0011011 
FS 034 0011100 
GS 035 0011101 
RS 036 0011110 
us 037 0011111 
DEL 1 7 7 1111111 

357 

APPENDIX C 

ASCII CODES 

CONTROL CHARACTER KEY 
NUL All zeros 
SOH Start of heading 
STX Start of text 
ETX End of text 
EOT End of transmission 
ENQ Enquiry 
ACK Acknowledgement 
BEL Bell or attention signal 
BS Back space 
HT Horizontal tabulation 
LF Line feed 
VT Vertical tabulation 
FF Form Feed 
CR Carriage return 
so Shift out 
SI Shift in 
OLE Data link escape 
DC 1 Device control 1 
DC2 Device control 2 
DC3 Device control 3 
DC4 Device control 4 
NAK Negative acknowledgement 
SYN Synchronous/idle 
ETB End of transmitted block 
CAN Cancel (error in data) 
EM End of medium 
SUB Start of special sequence 
ESC Escape 
FS Information file separator 
GS Information group separator 
RS Information record separator 
us Information unit separator 
DEL Delete 



ASCII Codes 

PRINTABLE CHARACTERS 

CHAR OCTAL BINARY 

SP 040 0100000 
! 041 0100001 
" 042 0100010 
# 043 0100011 
$ 044 0100100 

% 045 0100101 
& 046 0100110 

047 0100111 
( 050 0101000 
) 051 0101001 

. 052 0101010 
+ 053 0101011 

054 0101100 
- 055 0101101 

056 0101110 

I 057 0101111 
0 060 0110000 
1 061 0110001 
2 062 0110010 
3 063 0110011 

4 064 0110100 
5 065 0110101 
6 066 0110110 
7 067 0110111 
8 070 0111000 

9 0 7 1 0111001 
072 0111010 
073 0111011 

< 074 0111100 
= 075 0111101 
> 076 0111110 
? 077 0111111 
@ 100 1000000 

358 



ASCII Codes 

PRINTABLE CHARACTERS PRINTABLE CHARACTERS 

CHAR OCTAL BINARY CHAR OCTAL BINARY 

A 1 0 1 1000001 a 1 4 1 1100001 
B 102 1000010 b 142 1100010 
c 103 1000011 c 143 1100011 
D 104 1000100 d 144 1100100 
E 105 1000101 e 145 1100101 

F 106 1000110 f 146 1100110 
G 1 07 1000111 9 147 1100111 
H 11 0 1001000 h 150 1101000 
I 1 1 1 1001001 i 151 1101001 
J 1 1 2 1001010 j 152 1101010 

K 1 1 3 1001011 k 153 1101011 
L 1 1 4 1001100 I 154 1101100 
M 1 1 5 1001101 m 155 1101101 
N 1 1 6 1001110 n 156 1101110 
0 1 1 7 1001111 0 157 1 1 0 1 1 1 1 

p 1 2 0 1010000 p 160 1110000 
a 1 21 1010001 q 161 1110001 
R 122 1010010 r 162 1110010 
s 123 1010011 s 163 1110011 
T 124 1010100 t H4 1110100 

u 125 1010101 u 165 1110101 
v 126 1010110 v 166 1110110 
w 127 10101 1 1 w 167 1110111 
x 130 1011000 x 170 1111000 
y 1 31 1011001 y 171 1111001 
z 132 1011010 z 172 1111010 

359 



360 



GLOSSARY 

absolute address A binary number that is assigned as the address 
of a physical memory storage location. 

absolute loader A stand-alone program which, when in memory, 
enables the user to load into memory data in absolute binary format. 

access privileges Attributes of a file which specify the class of users 
allowed to access the file. 

account number A discrete code used to identify a system user. It 
normally consists of two numbers, separated by a comma, called the 
project number and programmer number or the group number and 
member number. See also user identification code. 

active task list A priority-ordered list of active tasks used normally 
in an event-driven multiprogrammed system to determine the order in 
which tasks receive control of the CPU. 

address 1. A name, label, or number which identifies a register, a 
location in storage, or any other data source or destination. 
2. The part of an instruction that specifies the location of an operand of 
that instruction. 

adjacent node A node removed from the local node by a single 
physical line. 

algorithm A prescribed set of well-defined rules or processes for the 
solution of a problem; a program. 

alphanumeric Referring either to the entire set of 128 ASCII charac­
ters or the subset of ASCII characters which includes the 26 alphabetic 
characters and the ten numeric characters. 

ancillary peripherals In the DSM-11 system, peripherals not under 
control of the data base supervisor. 

ANSI American National Standards Institute. 

append To add information to the end of an existing file. 

application program A program that performs a task for a particular 
end-user's needs. Generally, an application program is any program 
written on a program development operating system that is not part of 
the basic operating system. 

argument 1. A variable or constant which is given in the call of a 
subroutine as information to it. 

361 



Glossary 

2. A variable upon whose value the value of a function or other opera­
tion depends. 
3. The known reference factor necessary to find an item in a table or 
array (i.e., the index). 

array An ordered arrangement of subscripted variables. 

ASCII The American Standard Code for Information Interchange, 
consisting of 128 7-bit binary codes for upper and lower case letters, 
numbers, punctuation, and special communication control characters. 

assemble To translate from a symbolic program to a binary pro­
gram by substituting binary operation codes for symbolic operation 
codes and absolute or relocatable codes and absolute or relocatable 
addresses for symbolic addresses. 

assembler A program that translates symbolic source code ("as­
sembly level language") into machine instructions by replacing 
symbolic operation codes with binary operation codes and symbolic 
addresses with absolute or relocatable addresses. 

assembler directives The mnemonics used in an assembly lan­
guage source program that are recognized by the assembler as com­
mands to control and direct the assembly process. 

assembly language A symbolic programming language that can 
normally be translated directly into machine language instructions and 
is, therefore, specific to a given computing system. 

assembly llstlng A listing produced by an assembler that shows the 
symbolic code written by a programmer next to a representation of the 
actual machine instructions generated. 

assigning a device Putting an 1/0 device under control of a particu­
lar user's job either for the duration of the job or until the user relin­
quishes control. See also attach. 

asynchronous A mode of operation in which an operation is started 
by a signal that the operation on which it depends is completed. When 
referring to hardware devices, it is the method in which each character 
is sent with its own synchronizing information. The hardware 
operations are scheduled by ready and done signals rather than by 
time intervals. In addition, it implies that a second operation can begin 
before the first operation is completed. 

asynchronous system trap A system condition which occurs as the 
result of an external event such as completion of an 1/0 request. On 
occurrence of the significant event, control passes to an AST service 
routine. 

362 



Glossary 

asynchronous transmission Time intervals between transmitted 
characters may be of unequal length. Transmission is controlled by 
start and stop elements at the beginning and end of each character. 
Also called Start-Stop transmission. 

attach To dedicate a physical device unit for exclusive use by the 
task requesting attachment. See also assigning a device. 

background processing The automatic execution of a low priority 
computer program when higher priority programs are not using the 
system resources. 

backup file A copy of a file created for protection in case the primary 
file is unintentionally destroyed. 

bad block A defective block on a storage medium that produces a 
hardware error when attempting to read or write data in that block. 

base address An address used as the basis for computing the value 
of some other relative address. 

base segment The always-memory-resident portion of a program 
that uses overlays. See also root segment. 

batch processing A method of scheduling programs in which pro­
grams are accumulated and fed to the computer for execution with no 
programmer interaction. 

batch stream The collection of commands and data interpreted by a 
batch processor that directs batch processing. 

baud 1. A unit of signalling speed equal to the number of signal 
events per second. 
2. For asynchronous transmissions, the unit of modulation rate corres­
ponding to one unit interval per second. If, for example, the length of 
the unit's interval is 25 milliseconds, the modulation rate is 40 baud. 
Baud is frequently, though erroneously, used as a synonym for bits 
per second. 

binary The number system with a radix of two. 

binary code A code that uses two distinct characters, usually the 
numbers 0 and 1. 

binary loader See absolute loader. 

bit A binary digit. 

bit map A table describing the state of each member of a related set. 
A bit map is most often used to describe the allocation of storage 
space. Each bit in the table indicates whether a particular block in the 
storage medium is occupied or free. 

363 



Glossary 

block 1, A group of specified size of physically adjacent words or 
bytes. A block size is particular to a device. 
2. The smallest system-addressable segment on a mass-storage de­
vice in reference to 110. 

Boolean valued expression An expression which, when evaluated, 
produces either "true" or "false" as a result. 

bootstrap 1. A technique or device designed to bring itself into a 
desired state by its own action. 
2. To cause an operating system to load itself and prepare to run. 

bootstrap loader A routine whose first instructions are sufficient to 
load the remainder of itself into memory from an input device and 
normally start a complex system of programs. 

bottom address The lowest memory address in which a program is 
loaded. 
bps Bits per second. A commonly used measure for data transfer 
rate. (Other notations are bit, b.p.s., bit/sec, etc.) 

breakpoint A location at which program operation is suspended in 
order to examine partial results. A preset point in a program where 
control passes to a debugging routine. 

buffer A storage area used to temporarily hold information being 
transferred between two devices or between a device and memory. A 
buffer is often a special register or a designated area of memory. 

bug An instruction or sequence of instructions in a program that 
causes unexpected and undesired results. 

bus One or more conductors used for transmitting signals or power 
from one or more sources to one or more destinations, but usually 
with many connections. 

byte The smallest memory-addressable unit of information in a 
PDP-11 system. A byte is equivalent to eight bits. 

call To transfer control to a specified routine. 

calling sequence A specified arrangement of instructions and data 
necessary to pass parameters and control to a given subroutine. 

carriage return key The key on a terminal keyboard most often 
used in PDP-11 systems to terminate input lines. 

CCITT Comittee Consultatif Internationale Telegraphie et Telepho­
nie, a committee which sets international communications standards. 

Central Processing Unit (CPU) or Central Processor That part of a 
computing system containing the arithmetic and logical units, instruc­
tion control unit, timing generators, and memory and 1/0 interfaces. 

364 



Glossary 

character A single letter, numeral, or symbol used to represent in­
formation. 

checkpoint A point in a program or routine at which job and system 
status are recorded, so that the job can later be restarted. 

checksum A number used for checking the validity of data transfers. 

clear 1. To erase the contents of a storage location by replacing the 
contents with zeros or spaces. 
2. In binary code, to set to zero. 

clock A time-keeping or frequency-measuring device within a com­
puting system. 

code A system of symbols and rules used for representing 
information. 

coding Writing instructions for a computer using symbols meaning­
ful to the computer itself, or to an assember, compiler, or other lan­
guage processor. 

collate To combine items from two or more ordered sets into one 
set having an order not necessarily the same as any of the original 
sets. 

command or command name A word, mnemonic, or character 
which, by virtue of its syntax in a line of input, causes a predefined 
operation to be performed by a computer system. 

command language The vocabulary used by a program or set of 
programs that directs the computer system to perform predefined 
operations. 

Command Language Interpreter The program that translates a 
predefined set of commands into instructions that a computer system 
can interpret. 

command string A line of input to a computer system that generally 
includes a command, one or more file specifications, and optional 
qualifiers. 

Command String Interpreter A special program or routine that ac­
cepts a line of ASCII string input and interprets the string as input and 
output file specifications with recognized qualifiers. 

common A section in memory which is set aside for common use by 
many separate programs or modules. 

compatibility The ability of an instruction, source language, or peri­
pheral device to be used on more than one computer. 

compile To translate a source (symbolic) program into a binary-

365 



Glossary 

coded program. In addition to translating the source language, appro­
priate subroutines may be selected from a subroutine library. Linkage 
is supplied, and everything is output in binary code along with the 
main program. 

compiler A program which translates a higher level source language 
into a language suitable for a particular machine. 

completion routine A routine that is called at the completion of an 
operation. 

compute bound A state of program execution in which all opera­
tions are dependent on the activity of the central processor, for 
example, when a large number of calculations is being performed. 
Contrast with //0 bound. 

computer operator A person who performs standard system opera­
tions such as adjusting system operation parameters at the system 
console, loading a tape transport, placing cards in a card reader, and 
removing listings from the line printer. 

concatenate To combine several files into one file, or several strings 
of characters into one string, by appending each file or string one after 
the other. 

conditional assembly The assembly of parts of a symbolic program 
only when certain conditions are met. 

configuration A particular selection of hardware devices or software 
routines or programs that function together. 

consecutive access The method of data access characterized by 
the sequential nature of the 1/0 device involved. For example, a card 
reader is an example of a consecutive access device. Each card must 
be read after the preceding one, and no distinction is made between 
logical sets of data in or among the cards in the input hopper. 

console The console of a central processor is the set of switches 
and display lights used by an operator or programmer to determine 
the status and control the operation of the computer. 

console terminal A keyboard terminal which acts as the primary 
interface between the computer operator and the computer system 
and is used to initiate and direct overall system operation through 
software running on the computer. 

constant A value which remains the same throughout a distinct op­
eration. Compare with variable. 

context switching The switching between one mode of execution 
and other, involving the saving of key registers and other memory 
areas prior to switching between jobs, and restoring them when 

366 



Glossary 

switching back. A common example of context switching is the tempo­
rary suspension of a user program so that the monitor or executive 
can execute an operation. 

contiguous file A file consisting of physically adjacent blocks on a 
mass-storage device. 

control character A character whose purpose is to control an action 
rather than to pass data to a program. An ASCII control character has 
an octal code between 0 and 37. It is typed by holding down the CTRL 
key on a terminal keyboard while striking a character key. 

control section A named, contiguous unit of code (instructions or 
data) that is considered an entity and that can be relocated separately 
without destroying the logic of the program. 

core memory The most common form of main memory storage 
used by the central processing unit, in which binary data are repre­
sented by the switching polarity of magnetic cores. 

core common See common. 

crash A hardware crash is the complete failure of a particular de­
vice, sometimes affecting the operation of an entire computer system. 
A software crash is the complete failure of an operating system char­
acterized by some failure in the system's protection mechanisms. 

create To open, write data to, and close a file for the first time. 

cross reference listing or table A printed listing that identifies all 
references in a program to each specific label in a program. A list of all 
or a subset of symbols used in a source program and statements 
where they are defined or used. 

CTRL/C (tC) The control character issued from a terminal which is 
most commonly used to return the operator to communication with the 
system-level program. In most PDP-11 systems, it is typed on the 
terminal keyboard to gain the attention of the operating system before 
commencing the login procedure, or to terminate the currently execut­
ing program and return to communication with the monitor. In some 
cases, it simply issues a call to the console listener or console service 
routine without interrupting current program execution. 

CTRL/U (tU) The control character issued from a terminal that tells 
the program currently accepting input to ignore the characters 
entered on the line up to the point where CTRL/U was typed. 

CTRL/Z (tZ) The control character used in RSX-11 systems to termi­
nate the system program currently waiting for input from the terminal. 
It is essentially an end-of-file character. 

367 



Glossary 

data base A collection of interrelated data items organized by a 
consistent scheme that allows one or more applications to process the 
items without regard to physical storage locations. 

data base management system A scheme used to create, main­
tain, and reference a data base. 

debug To detect, locate, and correct coding or logic errors in a 
computer program. 

DECnet A family of hardware/software products that create distrib­
uted networks from DIGITAL computers and their interconnecting da­
ta links. 

DECtape A convenient, pocket-sized reel of magnetic tape 
developed by DIGITAL for extremely reliable data storage and random 
access. 

default The value of an argument, operand, or field assumed by a 
program if a specific assignment is not supplied by the user. 

delimiter A character that separates, terminates, or organizes ele­
ments of a character string, statement, or program. 

detach a device Free an attached physical device unit for use by 
tasks other than the one that attached it. 

device A hardware unit such as an 1/0 peripheral, e.g., magnetic 
tape drive or card reader. Also often used synonymously with volume. 

device controller A hardware unit which electronically supervises 
one or more of the same type of devices. It acts as the link between the 
CPU and the 1/0 devices. 

device driver A program that controls the physical hardware activi­
ties on a peripheral device. The device driver is generally the device­
dependent interface between a device and the common, device-inde­
pendent 1/0 code in an operating system. 

device handler A program that drives or services an 1/0 device. A 
device handler is similar to a device driver, but provides more control 
and interfacing functions than a device driver. 

device independence The ability to request 1/0 operations without 
regard for the characteristics of specific types of 1/0 devices. 

device name A unique name that identifies each device unit on a 
system. It usually consists of a 2-character device mnemonic followed 
by an optional device unit number and a colon. For example, the 
common device name for DECtape drive unit one is "DT1 :". 

device unit One of a set of similar peripheral devices; e.g., disk unit 
0, DECtape unit 1. Also used synonymously with volume. 

368 



Glossary 

diagnostic Pertaining to the detection and isolation of malfunctions 
or mistakes. 

dial-up line A communications circuit that is established by a 
switched circuit connection. 

DIGITAL Network Architecture (DNA) The common network archi­
tecture of DECnet. 

digital transmission Transmission of data characters which are 
coded into discrete separate pulses or signal levels. 

dfrect access See random access. 

direct mode The mode of DSM-11 system operation which enables 
the programmer to enter commands and or functions for immediate 
execution, and to create or modify steps of a user's program. 

directive A type of executive request issued by a program that pro­
vides a facility inherent in the hardware which is controlled and organ­
ized by the operating system. See also programmed request. 

directory A table that contains the names of and pointers to files on 
a mass-storage device. 

directory device A mass-storage retrieval device, such as disk or 
DECtape, that contains a directory of the files stored on the device. 

disk 1. A mass storage device. Basic unit is an electromagnetic plat­
ter on which data are magnetically recorded. Features random access 
and faster access time than magnetic tape. 
2. The platter itself. 

double-buffered 1/0 An input or output operation which uses two 
buffers to transfer data. While one buffer is being used by the pro­
gram, the other buffer is being read from or written to by an 1/0 
device. 

down-line load The process by which one node in a computer 
network transfers an entire system image or a program (task) image to 
another node and causes it to be executed. 

dump To copy the contents of all or part of core memory, usually 
onto an external storage medium. Also, the copy so produced. 

echo The printing by an 1/0 device, such as teletype or CRT, of 
characters typed by the programmer. 

editor A program which interacts with the programmer to enter new 
programs into the computer and edit them as well as modify existing 
programs. Editors are language-independent and will edit anything in 
alphanumeric representation. 

369 



Glossary 

emulator A hardware device that permits a program written for a 
specific computer to be run on a different type of computer system. 

executive The controlling program or set of routines in an operating 
system. The executive coordinates all activities in the system including 
110 supervision, resource allocation, program execution, and operator 
communication. See also monitor. 
executive mode A central processor mode characterized by the 
lack of memory protection and relocation by the normal execution of 
all defined instruction codes. 

exponentiation A mathematical operation denoting increases in the 
base number by a factor previously selected. 

expression A combination of operands and operators which can be 
evaluated by a computing system. 

external storage A storage medium other than main memory, for 
example, paper tape, magnetic tape, or disks. 

field 1. One or more characters treated as a unit. 
2. A specified area of a record used for a single type of data. 

file A logical collection of data treated as a unit. It occupies one or 
more blocks on a mass-storage device such as disk, DECtape, or 
magtape. A file can be referenced by a logical name. 

file gap A fixed length of blank tape separating files on a magnetic 
tape volume. 

file name The alphanumeric character string assigned by a user to 
identify a file, and which can be read by both an operating system and 
a user. A file name identifies a unique member of a group of files 
which: 1) has the same file name extension and version number (if 
any), 2) is located on the same volume, and 3) belongs in the same 
User File Directory (if any). A file na·me has a fixed maximum length 
which is system dependent (generally six or nine characters). 

file specification A name that uniquely identifies a file maintained in 
any operating system. A file specification generally consists of at least 
three components: a device name identifying the volume on which the 
file is stored, a file name, and a file type. In addition, depending on the 
system, a file specification can include a User File Directory name or 
UIC, and a version number. 

file structure A method of recording and cataloging files on mass­
storage media. 

file-structured device A device on which data are organized into 
files. The device usually contains a directory of the files stored on the 
device. 

370 



Glossary 

file type The alphanumeric character string assigned to a file either 
by an operating system or a user, and which can be read by both the 
operating system and the user. System-recognizable file types are 
used to identify files having the same format or type (e.g., FORTRAN 
source files might have the file type .FOR in its file specification). A file 
type follows the file name and is separated ·from it by a period. A file 
name extension has a fixed maximum length which is system depen­
dent (generally three chara,cters, excluding the preceding period). 

flag A variable or register used to record the status of a program or 
device. In the latter case it is sometimes called a device flag. 

floating point numeric A floating point number which, if stored in 
four words, is approximately in the range 10-3s to 1038• 

foreground 1. The area in memory designated for use by a high­
priority program. 
2. The program, set of programs, or functions that gain the use of 
machine facilities immediately upon request. 

format The arrangement of the elements constituting any field, rec­
ord, file, or volume. 

formatted ASCII Refers to a mode in which data are transferred. A 
file containing formatted ASCII data is generally transferred as strings 
of 7-bit ASCII characters (bit eight is zero) terminated by a line feed, 
form feed or vertical tab. Special characters, such as NULL, RUBOUT, 
and TAB may be interpreted specially. 

formatted binary Refers to a mode in which data are transferred. 
Formatted binary is used to transfer checksummed binary data (8-bit 
characters) in blocks. Formatting characters are start-of-block indica­
tors, byte count, and checksum values. 

formatted device A volume which has been prepared for use on a 
system under program control. 

frame That part of the packet carrying data required by the link 
control protocol and defining the leading and trailing ends of the bit 
stream. 

full-duplex The line can transmit data in both directions simulta­
neously. A full-duplex line allows a node to send and receive data at 
the same time. 

fully connected network A network in which each node is directly 
connected with every other node. 

function An algorithm accessible by name and contained in the 
system software. It performs commonly-used operations, such as the 
square root calculation function. 

371 



Glossary 

generation number See version number. 

global A value defined in one program module and used in others. 
Globals are often referred to as entry points in the module in which 
they are defined, and externals in the other modules which use them. 
Also, in the DSM-11 system, a global array. 

global array A data file stored in the common DSM-11 data base. 
Global arrays constitute an external system of symbolically referenced 
arrays. 

global variable A global variable in the DSM-11 system is a sub­
scripted variable which forms a part (or node) of a global array. 

half-duplex The line can transmit data in either direction, but only in 
one direction at any given time. In other words, the line cannot be used 
to send and receive data simultaneously. 

handler See device handler. 

hard copy A printed copy on some kind of paper, generally in read­
able form, such as listings and other documents. 

hardware The physical equipment components of a computer sys­
tem. 

HASP Houston Automatic Spooling Program. An IBM 360/370 OS 
software front-end which performs job spooling and controls com­
munications between local and remote processors and Remote Job 
Entry (RJE) stations. 

higher level language A programming language whose statements 
are translated into more than one machine language instruction. 
Examples are BASIC, FORTRAN, and COBOL. 

host A computer connected to a network and implementing its pro­
tocols in such a way that its computing power is accessible through the 
network. 

host node A node that provide services for another node. For exam­
ple, the host node supplies program image files for a down-line load .. 

idle time That part of uptime in which no job could run because all 
jobs are halted or waiting for some external action such as 110. 

image mode Refers to a mode of data transfer in which each byte of 
data is transferred without any interpretation or data changes. 

impure code The code which is modified during the course of a 
program's execution, e.g., data tables. 

incremental compiler A compiler that immediately translates each 
source statement into an internal format, ready for execution. 

372 



Glossary 

indirect file or indirect command file A file containing commands 
that are processed sequentially, yet which could have been entered 
interactively at a terminal. 

indirect mode The mode of DSM-11 system operation in which 
steps of a stored program can be executed. In this mode, neither 
commands nor functions can be entered at the terminal, nor can pro­
grams be created or modified. 

indirect reference A feature of the MUMPS language which permits 
the symbolic representation of an argument or argument list in a com­
mand by a string variable. In operation, the string value of the variable 
is taken as the argument or argument list for the command. The indi­
rection symbol, a back-arrow - or underscore U, must precede the 
variable reference. 

initialize To set counters, switches, or addresses to starting values 
at prescribed points in the execution of a program, particularly in 
preparation for re-execution of a sequence of code. To format a vol­
ume in a particular file-structured format in preparation for use by an 
operating system. 

input 1. Data to be processed. 
2. The process of transferring data to memory from a mass storage 
device or from other peripheral devices which read data from other 
media. 

instruction One unit of machine language, usually corresponding to 
one line of assembly language, which tells the computer what 
elementary operation to do next. 

interactive A technique of user/system communication in which the 
operating system immediately acknowledges and acts upon requests 
entered by the user at a terminal. Compare with batch. 

Interface A shared boundary, for example, the wires and perhaps 
other electronics connecting two subsystems. 

Internet A network linking DIGITAL computers to non-DIGITAL 
computers. 

interpreter A computer program that translates and executes each 
source language statement before translating and executing the next 
statement. 

interrupt A signal which, when activated, causes a transfer of control 
to a specific location in memory, thereby breaking the normal flow of 
control of the routine being executed. An interrupt is normally caused 
by an external event such as a done condition in a peripheral. It is 
distinguished from a trap which is caused by the execution of a proc­
essor instruction. 

373 



Glossary 

interrupt service routine The routine entered when an external in­
terrupt occurs. 

interrupt vector address A unique address which points to two con­
secutive memory locations containing the start address of the inter­
rupt service routine and priority at which the interrupt is to be 
serviced. 

1/0 bound A state of program execution in which all operations are 
dependent on the activity of an 1/0 device. For example, when a pro­
gram is waiting for input from a terminal. Compare compute bound. 

1/0 page That portion of memory in which specific storage locations 
are associated directly with 1/0 devices. 

1/0 rundown A process which delays the availability of a partition 
until all transfers to and from that partition have been stopped or have 
been allowed to complete. 1/0 rundown is invoked when a task is 
terminated and has outstanding transfers pending to or from its parti­
tion. 

job A group of data and control statements which does a unit of 
work, e.g., a program and all its related subroutines, data and control 
statements; also, a batch control file. 

journaling The parallel writing of updated records to a second medi­
um in addition to the original file. 

K 1. An abbreviation for the prefix kilo, i.e., 1000 in decimal notation. 
2. In the computer field, two to the tenth power, which is 1024 in 
decimal notation. Hence, a 4K memory has 4096 words. 

keyboard monitor A prograr\1 that provides and supervises com­
munication between the user at the system console and an operating 
system. 

latency 1. The time from initiation of a transfer operation to the 
beginning of actual transfer; i.e., verification plus search time. 
2. The delay while waiting for a rotating memory to reach a given 
location. 

leader A blank section of tape at the beginning of a reel of magnetic 
tape or at the beginning of paper tape. 

leased-line A line reserved for the exclusive use of a leasing 
customer without interchange switching arrangements. Also called a 
private line. 

library 1. A file containing one or more relocatable binary modules 
which are routines that can be incorporated into other programs. 
2. A class of MUMPS programs listed in the system program directory 
and available to all users of the system. 

374 



Glossary 

line 1. A string of characters terminated with a vertical tab, form 
feed, or line feed. 
2. The network management component that provides a distinct 
physical data path. 

linked file A file whose blocks are joined together by references (a 
link word or pointer imbedded in the block) rather than consecutive 
location. 

linker A program that combines many relocatable object modules 
into an executable program module. It satisfies global references and 
combines control sections. 

linking loader A program that provides automatic loading, reloca­
tion, and linking of compiler and assembler generated object mod­
ules. 

listing The hard copy generated by a lineprinter. 

literal An element of a programming language which permits the 
explicit representation of character strings in expressions and com­
mand and function elements. In most languages, a literal is enclosed 
in either single or double quotes to denote that the enclosed string is 
to be taken "literally" and not evaluated. 

load 1. To store a program or data into memory. 
2. To mount a tape on a device such that the read point is at the 
beginning of the tape. 
3. To place a removable disk in a disk drive and start the drive. 

load image file A program that can be executed in a stand-alone 
environment without the aid of relocation. 

load map A table produced by a linker that provides information 
about a load module's characteristics, e.g., the transfer address and 
the low and high limits of the relocatable code. 

load module A program in a format ready for loading and executing. 

local node A frame of reference; the node at which the user is physi­
cally located. 

local variable In the DSM-11 system, a local variable is a variable 
which is stored only in the partition in which a program is executed (as 
opposed to a global variable). 

location An address in storage or memory where a unit of data or an 
instruction can be stored. 

log in To identify oneself to an operating system as a legitimate user 
of the system and gain access to its services. 

log out or log off To sign off a system. 

375 



Glossary 

logical block An arbitrarily defined, fixed number of contiguous 
bytes which is used as the standard 1/0 transfer unit throughout an 
operating system. For example, the commonly-used logical block in 
PDP-11 systems is 512 bytes long. An 1/0 device is treated as if its 
block length is 512 bytes, although the device may have an actual 
(physical) block length which ls not 512 bytes. Logical blocks on a 
device are numbered from block O consecutively up to the last block 
on the volume. A logical block is synonymous with a physical block on 
any device that has 512-byte physical blocks. See also virtual block, 
physical block, logical record, and physical record. 

loglcal device name An alphanumeric name assigned by the user 
to represent a physical device. The name can then be used synony­
mously with the physical device name in all references to the device. 
Logical device names are used in device-independent systems to en­
able a program to refer to a logical device name which can be as­
signed to a physical device at run time. 

logical link A carrier of a single stream of full-duplex traffic between 
two user-level processes. 

logical record A logical unit of data within a file whose length is 
defined by the user and whose contents have significance to the user. 
A group of related fields treated as a unit. 

logical unit number A number associated with a physical device 
unit during a task's 1/0 operations. Each task in the system can estab-
1 ish its own correspondence between logical unit numbers and 
physical device units. 

machine language The language, peculiar to each kind of comput­
er, that that computer understands. It is a binary code which contains 
an operation code to tell the computer what to do, and an address to 
tell the computer on which data to perform the operation. 

macro Directions for expanding abbreviated text. A boilerplate that 
generates a known set of instructions, data or symbols. A macro is 
used to eliminate the need to write a set of instructions which are used 
repeatedly. For example, an assembly language macro instruction en­
ables the programmer to request the assembler to generate a prede­
fined set of machine instructions. 

main memory The set of storage locations connected directly to the 
Central Processing Unit. Also called (generically) core memory. 

main program The module of a program that contains the instruc­
tions at which program execution begins. Normally, the main program 
exercises primary control over the operations performed and calls 
subroutines or subprograms to perform specific functions. 

376 



Glossary 

mapped system A system which uses the hardware memory 
management unit to relocate virtual memory addresses. 

mass storage Pertaining to a device which can store large amounts 
of data readily accessible to the Central Processing Unit; for example, 
disk, DECtape, magnetic tape, etc. 

master file directory The system-maintained file on a volume that 
contains the names and addresses of all the files stored on the vol­
ume. 

matrix A rectangular array of elements. A table can be considered a 
matrix. 

memory Any form of data storage, including main memory and 
mass storage, in which data can be read and written. In the strict 
sense, memory refers to main memory. 

memory image A replication of the contents of a portion of memory. 

memory mapping A mode of computer operation in which the high­
order bits of a virtual address are replaced by an alternate value, 
providing dynamic relocatability of programs. 

memory protection A scheme for preventing read and/or write ac­
cess to certain areas of memory. 

modulo A mathematical operation that yields the remainder function 
of division. Thus 39 modulo 6 equals 3. 

monitor The master control program that observes, supervises, 
controls, or verifies the operation of a computer system. The collection 
of routines that controls the operation of user and system programs, 
schedules operations, allocates resources, performs 1/0, etc. 

monitor command An instruction issued directly to a monitor from a 
user. 

monitor console The system control terminal. 

Monitor Console Routine (MCR) The executive routine that allows 
the user to communicate with the system using an on-line terminal 
device. MCR accepts and interprets commands typed on the terminal 
keyboard and calls appropriate routines to execute the specified re­
quests. 

mount a device or volume To associate a physical mass storage 
media logically with a physical device unit. To place a volume on a 
physical mass storage drive unit; for example, place a DECtape on a 
DECtape drive and put the drive on-line. 

multiplexing Use of one communications line circuit for two or more 
simultaneous data paths. 

377 



Glossary 

multipoint A communication line (circuit) with three or more com­
municating devices on it (terminals or computers). Use of this type of 
line normally requires a polling technique with an address for each 
device. Also called multidrop. 

multiprocessing Simultaneous execution of two or more programs 
by two or more processors. 

multiprogramming A processing method in which more than one 
task is in an executable state at any one time. 

naked syntax A feature of the MUMPS language, providing an ab­
breviated method for accessing global variables, which controls the 
disk access time. The node reference includes only subscript(s) for 
the element; the global variable name is assumed from the last global 
reference in which a name was explicitly stated. 

network A configuration of two or more computers linked to share 
information and resources. A computer having the capacity to partici­
pate in a network is called a node. 

node 1. A dynamically allocated set of bytes from a node pool used 
for system communication and control in an RSX-11/IAS system. 
2. An element of a global array in a DSM-11 system (also called a 
global variable). 
3. A network management component consisting of a system that 
supports network software. 

noncontiguous file A file whose blocks are not physically 
contiguous on the volume. 

non-file-structured device A device, such as paper tape, lineprinter 
or terminal, in which data are not referenced as a file. 

nonrouting (end) node A nonrouting node can send packets tooth­
er nodes in the network, but it cannot forward packets or route them 
through itself. It can be adjacent to one other node only; therefore, it is 
always an end node in a Phase Ill configuration. 

null modem A device which interfaces between a local peripheral 
that normally requires a modem, and the computer near it that expects 
to drive a modem to interface to that device; an imitation modem in 
both directions. 

object code Relocatable machine language code. 

object module The primary output of an assembler or compiler; it 
can be linked with other object modules and loaded into memory as a 
runnable program. The object module is composed of the relocatable 
machine language code, relocation information, and the correspond­
ing symbol table defining the use of symbols within the module. 

378 



Glossary 

object program The relocatable binary program which is the output 
of a compiler or assembler. 

Object Time System The collection of modules that is called by 
compiled code in order to perform various utility or supervisory opera­
tions. For example, an Object Time System usually includes 1/0 and 
trap handling routines. 

octal Pertaining to the base eight number system. 

off-line Pertaining to equipment or devices not under direct control 
of the Central Processing Unit. 

offset The difference between a base location and the location of an 
element related to the base location. The number of locations relative 
to the base of an array, string or block. 

on-line Pertaining to equipment or devices directly connected and 
under control of the Central Processing Unit. 

operating system The collection of programs, including a monitor 
or executive and system programs, that organizes a central processor 
and peripheral devices into a working unit for the development and 
execution of application programs. 

output 1. The results of processing data. 
2. The process of transferring data from memory to a mass storage 
device or from memory to a copying device such as a lineprinter or 
paper tape punch. 
3. The process of moving information from a mass storage device to a 
copying device. 
4. The peripheral device receiving the information described above. 

overlay description language The set of instructions interpreted by 
a linker that defines the overlay structure of a task. 

overlay segment A section of code treated as a unit which can 
overlay code already in memory and be overlaid by other overlay 
segments. 

overlay structure A task overlay system consisting of a root seg­
ment and optionally one or more overlay segments. 

p-section (program section) A section of memory that is a unit of 
the total task allocation. A source program is translated into object 
modules that consist of p-sections with attributes describing access, 
allocation, relocatability, etc. 

pack 1. To compress data in storage by using an algorithm for its 
storage and retrieval. 
2. A removable disk. 

379 



Glossary 

packet The unit of data switched through a Packet Switching Ser­
vice, normally a user data field accompanied by a header carrying 
destination and other information and enclosed in a frame, possibly 
shared with other packets. 

packet switching A data transmission process utilizing addressed 
packets, whereby a channel is occupied only for the duration of 
transmission of the packet. 

parity bit A binary digit appended to a group of bits to make the sum 
of all the bits always odd (odd parity) or always even (even parity). 
Used to verify data storage. 

parse To break a command string into its elemental components for 
the purpose of interpretation. 

part number In the MUMPS language, the integer portion of a pro­
gram step which is used to refer collectively to all steps having a 
common integer base. 

partition A contiguous area of memory within which tasks are load­
ed and executed. 

patch To modify a program by changing the binary code rather than 
the source code. 

peripheral Any device distin.ct from the central processor which can 
provide input to or accept output from the computer. 

Phase II node A node which runs a Phase II implementation of 
DECnet and, therefore, does not support routing. It can send packets 
only to adjacent nodes and it cannot forward packets it receives on to 
other nodes in the network. It can be adjacent to one or more full­
routing nodes and/or to other Phase II nodes. Logically, it is an end 
node within a Phase Ill configuration. 

Phase Ill node A node which runs under a Phase Ill implementation 
of DECnet and supports routing as either a full-routing or nonrouting 
(end) node. See also routing node. 

physical address space The set of memory locations where infor­
mation can actually be stored for program execution. Virtual memory 
addresses can be mapped, relocated, or translated to produce a final 
memory address which is sent to hardware memory units. The final 
memory address is the physical address. 

physical block A physical record on a mass storage device. 

physical device An 1/0 or peripheral storage device connected to 
or associated with a central processor. 

physlcal record The largest unit of data that the read/write hard-

380 



Glossary 

ware of an 110 device can transmit or receive in a single 110 operation. 
The length of a physical record is device dependent. For example, a 
punched card can be considered the physical record for a card 
reader; it is 80 bytes long. The physical record for an RK11 disk is a 
block; it is 512 bytes long. 

position independent code Code which can execute properly wher­
ever it is loaded in memory, without modification or relinking. General­
ly, this code uses addressing modes which form an effective memory 
address relative to the central processor's Program Counter (PC). 

priority A number associated with a task that determines the prefer­
ence its requests tor service receive from the executive, relative to 
other tasks requesting service. 

privilege A characteristic of a user or program that determines what 
kinds of operations that user or program can perform. In general, a 
privileged user or program is allowed to perform operations normally 
considered to be the domain of the monitor or executive or which can 
affect system operation as a whole. 

program development The process of writing, entering, translating, 
and debugging source programs. 

programmed requests An instruction (available only to programs) 
that is used to invoke a monitor service. 

programmer access code The system identification code that en­
ables a user to gain access to a DSM-11 system in direct mode to 
create, modify, and execute programs. 

project-programmer number See account number. 

protocol A formal set of conventions governing the format and 
relative timing of message exchange between two communicating 
processes. 

pseudo device A logical entity treated as an 1/0 device by the user 
or the system, but which is not actually any particular physical device; 

PTT Abbreviation tor the post, telegraph and telephone adminstra­
tions which act as common carriers tor telecommunications in many 
European and other countries. 

publlc disk structure The disk volume or set of volumes which are 
used as a general storage pool available to any users having quotas oh 
the public structure. 

pure code Code that is never modified during execution. It is possi­
ble to let many users share the same copy of a program that is written 
as pure code. 

381 



Glossary 

qualifier A parameter specified in a command string that modifies 
some other parameter. See switch. 

queue Any list of items; for example, items waiting to be scheduled 
or waiting to be processed according to system- or user-assigned 
priorities. 

Radix-50 A storage format in which three ASCII characters are 
packed into a 16-bit word. 

random access Access method in which the next location from 
which data is to be obtained is not dependent on the location of the 
previously obtained data. 

read To transfer information from a peripheral device into core 
memory or into a register in the CPU. 

real time processing Computation performed while a related or 
controlled physical activity is occurring, so that the results of the com­
putation can be used in guiding the process. 

record A collection of adjacent data items treated as a unit. See 
logical record and physical record. 

record gap An area between two consecutive records. 

recursive Pertaining to a process that is inherently repetitive. The 
result of each iteration of the process is usually dependent on the 
result of the previous iteration. 

re-entrant The property of a program that enables it to be interrupt­
ed at any point by another program, and then resumed from the point 
where it was interrupted. 

relocatable Describes a routine, module, or segment whose ad­
dress constants can be modified to compensate for a change in origin. 

remote batch terminal A combination of hardware items (usually a 
card reader, communication interface and a printer) and a communi­
cation link that allows the transmission of a series of records (the job) 
to a host computer. The host processes the records as a job stream 
and transmits the results of the job back to the lineprinter. 
Communiation is typically at the file level. See also RJE emulator, RJE. 

remote node A frame of reference; any node other than the one at 
which the user is located in th~ network. Compare local node. 

resident Pertaining to data or instructions that are normally per­
manently located in main memory. 

resource sharing The joint use of resources available on a network 
by a number of dispersed users. 

382 



Glossary 

restart address The address at which a program can be restarted. It 
is normally the address of the code required to initialize variables, 
counters, etc. 

root segment The segment of an overlay tree that, once loaded, 
remains resident in memory during the execution of a task. 

routine A set of instructions arranged in proper sequence to cause 
the computer to perform a desired task. 

routing node A full-routing node can forward packets to other 
nodes in the network and can be adjacent to all other types of nodes. 

secondary storage Mass storage other than main memory. 

segment 1. That part of a long program which may to resident in 
core at any one time. 
2. To divide a program into segments or to store part of a program on 
a mass storage device to be brought into memory as needed. 

sentinel file The last file on a cassette tape which represents the 
logical end-of-tape. 

sequential access A data access method in which records or files 
are read one after another in the order in which they appear in the file 
or volume. 

shareable program A (re-entrant) program that can be used by sev­
eral users at the same time. 

significant event An event or condition which indicates a change in 
system status in an event-driven system. A significant event is de­
clared, for example, when an 110 operation completes. A declaration 
of a significant event indicates that the executive should review the 
eligibility of task execution, since the event might unblock the execu­
tion of a higher priority task. The following are considered to be signifi­
cant events: 1/0 queuing, 1/0 request completion, a task request, a 
scheduled task execution, a mark time expiration, a task exit. 

single user access The status of a volume that allows only one user 
to access the file structure of a volume. 

single-stream batch A method of batch processing in which only 
one stream of batch commands is processed. 

sliver A 32-word section of memory. 

source language The system of symbols and syntax, easily 
understood by people, which is used to describe a procedure that a 
computer can execute. 

sparse array Refers to the method of storage allocation used in 
MUMPS for local and global arrays in which space is allocated only as 

383 



Glossary 

variables are explicitly defined (unlike some other languages which 
require dimension or size statements for preallocation of storage). 

spooling The technique by which output to low-speed devices (e.g., 
lineprinters) is placed into queues on faster devices (e.g., disks) to 
await transmission to the slower devices. 

statement An expression or instruction in a source language. 

step number A number in the range 0.01 to 327.67 used to identify 
each line of a MUMPS program. 

string A connected sequence of entities such as a line of characters. 

subscript A numeric valued expression which is appended to a vari­
able name to identify specific elements of an array. Subscripts are 
enclosed in parentheses. Multiple subscripts must be separated by 
commas. For example, a two-level subscript might be (2,5). 

swapping The process of copying areas of memory to mass storage 
and back in order to use the memory for more than one purpose. Data 
are swapped out when a copy of the data in memory is placed on a 
mass storage device; data are swapped in when a copy on a mass 
storage device is loaded in memory. 

swapping device A mass storage device especially suited for swap­
ping because of its fast transfer rate. 

switch An element of a command or command string that enables 
the user to choose among several options associated with the com­
mand. In PDP-11 software systems, a switch element consists of a 
slash character (/) followed by the switch name and, optionally, a 
colon and a parameter. For example, a command used to print three 
copies of a file on the lineprinter could be: "PRINT filename/COPIES: 
3." 

synchronous The performance of a sequence of operations con­
trolled by an external clocking device. Implies that no operation can 
take place until the previous operation is complete. 

synchronous system trap A system condition which occurs as a 
result of an error or fault within the executing task. 

system device The device on which the operating system is stored. 

system generation The process of building an operating system on 
or for a particular hardware configuration with software configuration 
modifications. 

system manager The person at a computer installation responsible 
for the overall nature of its operation. 

system operator See operator. 

i384 



Glossary 

system program 1. A program that performs system-level functions. 
2. Any program that is part of the basic operating system. 
3. A system utility program. 

system programmer A person who designs and codes the 
programs that control the basic operations of a computer system, as 
opposed to an application programmer. 

system UCI The User Class Identifier (UGI) code in a DSM-11 sys­
tem which is assigned to the first entry in the system's UGI table. The 
program and global directories associated with the System UGI are 
used to contain both system and library programs and globals. 

task In RSX-11 terminology, a load module with special characteris­
tics. In general, any discrete operation performed by a program. 

TELENET The Packet-Switching Network available in the U.S.A. 

terminal An 1/0 device, such as an LA36 terminal, which includes a 
keyboard and a display mechanism. In PDP-11 systems, a terminal is 
used as the primary communication device between a computer sys­
tem and a person. 

time quantum In time-sharing, a unit of time alloted each user by the 
monitor. 

timesharing A method of allocating CPU time and other computer 
services to multiple users so that the computer, in effect, processes a 
number of programs concurrently. 

time slice The period of time allocated by the operating system to 
process a particular program. 

topology The physical or logical placement of nodes in a computer 
network. 

transaction A single predefined data processing operation within an 
application. 

transaction processor A collection of data tables and software ca­
pable of processing an application's transactions. 

tributary station A station, other than the control station, on a 
centralized multipoint data communication system, which can com­
municate only with the control station when polled or selected by the 
control station. 

turnkey 1. Pertaining to a computer system and its software which 
are sold together ready to go. 
2. A computer console containing only one control, a power switch to 
turn the system on and off. 

385 



Glossary 

staging The delay of each update to a file until the end of the trans­
action instance requesting the update. 

unattended operation The automatic features of a node's operation 
which permit the transmission and reception of messages on a unat­
tended basis. 

unbundling A practice by which a computer manufacturer does not 
sell computer equipment and software under one price structure, but 
sells them separately. 

unformatted ASCII A mode of data transfer in which the low-order 
seven bits of each byte are transferred. No special formatting of the 
data occurs or is recognized. 

unformatted binary A mode of data transfer in which all bits of a 
byte are transferred without regard to their contents. 

UNIBUS The single, asynchronous, high-speed bus structure 
shared by the PDP-11 processor, its memory, and all of its peripher­
als. 

unmapped system An RSX-11 M or RSX-11 S system that does not 
have a hardware memory management unit available for virtual ad­
dress relocation. 

user class Identifier An identification code that enables a user to 
gain access to a DSM-11 system to execute programs. 

user identification code The number or set of numbers that serves 
to distinguish a particular user or collection of files in a multiuser 
system. The common format for a user identification code is two num­
bers separated by a comma, enclosed in brackets, e.g., [3, 11 ]. 

user program An application program. 

utility Any general-purpose program included in an operating sys­
tem to perform common functions. 

variable The symbolic representation of a logical storage location 
which can contain a value that changes during a discrete processing 
operation. 

virtual address space A set of memory addresses that is mapped 
into physical memory addresses by the paging or relocation hardware 
when a program is executed. 

virtual array A RSTS/E file structure that is logically organized as a 
dimensioned array. 

virtual block One of a collection of blocks constituting a file (or the 
memory image of that file). The block is virtual only in that its block 

386 



Glossary 

number refers to its position relative to other blocks within the file, 
instead of to its position relative to other blocks on the volume. That is, 
the virtual blocks of a file are numbered sequentially beginning with 
one, while their corresponding logical block numbers can be any 
random list of valid volume-relative block numbers. 

volume A mass storage media that can be treated as file-structured 
data storage. 

word Sixteen binary digits treated as a unit in PDP-11 processor 
memory. 

X.25 A communication protocol created by CCITT that recommends 
how a computer connects to a packet switched network. PTTs have 
accepted X.25 as their standard for Public Packet Switching Networks. 

zero a device To erase all the data stored on a volume and re­
initialize the format of the volume. 

387 



388 



INDEX 

AC (Applications Control Mode), 342 

ACCEPT statement, 199, 204-205 

access 
to data, using DATATRIEVE-

11, 277-278 
directories for, 35-35 
to files, in FCS, 232 
to files, in RMS, 250-256 
to files, in RSTS/E, 50, 60-62 
to remote resources, using 
DECnet, 334 

access codes, ·104 

access methods, 29-32 

access modes, 227, 248, 250-256 

accounting information 
maintained on RSTS/E, 48, 55 
maintained on RSX-11 M-PLUS, 68 

account numbers, 35-37 

adaptive routing, 330-331 

Address Routing Sort (SORT A), 243 

ADT (Application Design Tool), 283 

alternate keys, 250 

AL TSEQ (alternate collating 
sequence), 239-240 

American National Standards 
Institute (ANSI), 127, 163 

Application Design Tool (ADT), 283 

application development tools, in 
MicroPower/Pascal, 119-123 

Application Runtime Supervisor 
(ARTS), 320 

Applications Control Mode (AC), 342 

approximate and generic key 
matches, 263 

approximate key matches, 262 

areas, in DBMS-11, 292 

arrays 
in BASIC, 171, 175, 180-181 
in DSM, 108 

389 

vectoring of, in FORTRAN IV, 158 

ARTS (Applicaton Runtime 
Supervisor), 320 

ASCII data format, 22 

assemblers, 128 
PDP-11 MACRO, 141-142 

assembly language, see MACR0-11 

assembly time macros, 235 

assignment statements, 149 

asterisk conventions (wildcard 
convention), 37-38 

asynchronous record 
operations, 266-267 

Auto-Answer, 336 

automatic restarts, 54 

AUTOPATCH, 87-88 

background regions, 18 

BACKUP program, 58 

backup and restore utility (BRU), 75, 
244 

BASIC, 127, 169-190 

BASIC-11, 170 

BASIC-PLUS, 170, 182-185 
in RSTS/E, 49, 61-62 

BASIC-PLUS-2, 169-170, 177-182 

BASIC Transportability Package, 182 

BATCH (job control language), 85-86 

batch processing 
in RSTS/E, 59 
in RSX-11 M-PLUS, 67 

batch streams, 59 

binary code, 20, 22-25 

binary compare program 
(BINCOM), 83 

bits, 21 



Index 

BLDODL utility, 199 

block 1/0 operations, 232, 261, 263-
264 

block-replaceable devices, 26 

blocks, 21, 28-29, 232 

bootstrapping, on RSTS/E, 54 

BRU backup and restore utility, 75, 
244 

bucket locking, 265 

buckets, 259 

buffers 
in BASIC, 178 
in EDT editor, 309, 310 
for file processing 53-54 
RMS handling of, 265-266 

bytes, 21 

caches, data, 50, 54 

CALC routine, 294 

CALCULATED (CALC) record 
location mode, 289 

CALL macro, 234, 236 

CALL statement 
in COBOL, 197, 203 
in Data Manipulation 

Languages, 295, 299 

card readers, 21 

CCITT (International Telephone and 
Telegraph Consulative 

Committee), 345 

CCL (Concise Command 
Language), 39, 41-42, 51 

CDC protocol emulator, 344-345 

CDML (COBOL DML processor), 296 

cells (record), 249 

central processor units, (CPUs) 
multiprogramming and, 18-19 
timesharing on, 46 

character strings, 197, 203 

390 

checkpointing, 70 
in DBMS-11, 293, 294 

CIS (Commercial Instruction 
Set), 193, 194, 200 

CU (command line interpreter), 69 

cluster libraries, 70 

CMP utility, 244 

COBOL, 127, 193-218 

COBOL-81, 193-200 
COBOL DML, 296 

CODASYL (Conference on Data 
Systems Languages), 273, 287 

code optimization, 128 

command language, 50-51 

command language commands, 40 

command line interpreter (CU), 69 

command line processing 
macros, 234, 236 

commands, 38-42 
in BASIC, 176-177 
in CTS-300, 93-94 
in DATATRIEVE-11, 279-280 
in FORTRAN IV, 157-158 
in MUMPS, 105, 111-113 
remote submission and execution 

of, 334-335 
in RSTS/E, 49-51 
in RSX-11 operating systems, 68-

71 
in RT-11, 80-81 

Command String Interpreter 
(CSI), 39, 82, 236 

command strings, 238-241 

Commercial Instruction Set 
(CIS), 193-194, 200 

Commonly Used System Programs 
(CUSP's), 49, 55 

COMMON statement, 178 

communications software, 1-2 
DECnet, 330-336 
lnternets, 336-345 
Packetnet, 345-346 



Remote Data Communications 
Package, 94 
for RSTS/E, 45 
RSX-11 operating systems and, 65 

compatibility, 1 

compiler directive statements, 222-
223 

compilers, 128 
COBOL-81, 194, 198 
FORTRAN IV, 156-158 
FORTRAN-77 168 
for MicroPower/Pascal, 121 
PDP-11 COBOL, 200 

computer response time, 46 

Concise Command Language 
(CCL), 39, 41-42, 51 

concurrent programming 
using CTS-300, 91-92 
using MicroPower/Pascal, 119 

conditional assembly directives, 137 

Conference on Data Systems 
Languages (CODASYL), 273, 287 

configuration, of RSTS/E, 51-53 

contiguous files, 30, 31 

control statements 
in DIBOL-11, 223-224 
in FORTRAN, 149-151 

COPYB utility, 121 

COPY program, 58 

CPU-CPU devices, 106 

CPUs (central processor units) 
multiprogramming and, 18-19 
timesharing on, 46 

CSI (Command String 
Interpreter), 39, 82, 236 

CTRL/C function, 49, 50 

CTRL (control) key, 38 

CTRL/O function, 39 

CTRL/Q function, 39 

CTRL/S function, 39 

CTRL/U function, 39 

Index 

CTS-300 (operating system) 3, 91-98 
DECFORM on, 321 
DIBOL-11 on, 221 

CTS-500 (operating system), 2, 45-
63 

DECFORM on, 321 
DIBOL-11 on, 221 

CUSP's (Commonly Used System 
Programs), 49, 55 

data 
caching of, 50, 54 
DATATRIEVE-11 accessto, 277-

278 
DSM storage and handling of, 101 
formats for, for file-structured 

devices, 232 
INDENT interactive data entry 

for, 325-326 
logical organization of, 26-29 
physical access characteristics 

of, 25-26 
physical and logical units of, 20-22 
retrieval of, using DAT ATRIVE-

11, 281-282 
tranfer modes for, 22-25, 233-234 
types of, for COBOL, 195-196, 202 

database control system 
(DBCS), 300-301 

database management, 269-274 
DBMS-11 for, 287-302 
file management and, 228 

database management system, see 
(DBMS-11) 

Database Operator Utility (DBO), 295 

Database Query utility, 294 

Database Verify utility, 295 

data definition process, 280-281 

Data Description Language 
(DDL), 287 

Data Dictionary 
in DATATRIEVE-11, 278-280, 284 
in DBMS-11, 293-294 

Data Division 
in COBOL DML, 296 

391 



in DIBOL-11, 221 

data fields, 237, 247-248 

data management, 20-38 
DATATRIVE-11 for, 281 
DBMS-11 for, 287-302 
in DSM, 107-109 

data management services, 74-75 
in CTS-300 94 

Data Manipulation Languages 
(DML), 287, 295-302 

data manipulation statements, 223 

data set descriptors, 235 

data specification statements, 223 

DAT A TRI EVE-11 75, 228, 277-284 

DBCLUC utility, 293 

DBCS (database control 
system), 300-301 

DBMS-11 (database management 
system), 75, 273, 287-302 
DATATRIEVE-11 and, 280-281, 

284 

DBMS domains, 284 

Index 

DBO (Database Operator Utility), 295 

DCL (DIGITAL Command 
Language), 39-42, 51, 68-71, 79 

DDL (Data Description 
Languages), 287 

DDT (DIBOL Debugging 
Technique), 224-225 

debuggers, 130 

debugging 
in BASIC-PLUS, 183-184 
in COBOL, 197-198, 203-204 
in DIBOL-11, 224-225 
in FORTRAN IV 157, 160-161 
in MicroPower/Pascal, 121-122 
ODT online debugger for, 73-74 
in RT-11, 83-85 

DECFORM (screen formatting 
utility), 306, 321-325 

DECnet, 329-336 

392 

DECtype-300, 96-97 

DECUS (Digital Equipment 
Corporation Users Society), 349-
350 

DECword/DP, 45 

default file name blocks, 235 

DEFINE PROCEDURE 
command, 283 

DEFINE utility, 256 

device drivers and handlers, 26-28 

device names, 37 

device utility program (DUP), 81, 93, 
244 

diagnostics 
in COBOL 198, 204 
in FORTRAN JV, 158 

DIBOL-11, 91-92, 221-225 

DIBOL Debugging Technique 
(DDT), 224-225 

DIBS-11 (Integrated Business 
System), 94-96 

Dictionaries, 97 
in DA TA TRIEVE-11, 278-28b, 284 
in DBMS-11, 293-294 

DIGITAL Command Language 
(DCL), 39-42, 51, 68-71, 79 

Digital Equipment Corporation 
Users Society (DECUS), 349-350 

DIGITAL Network Architecture 
(DNA), 346 

DIGITAL Standard MUMPS 
(DSM-11), 3, 19, 101-115 
global array files in, 3 

DIR (directory program), 81-82, 93 

direct access files, 82 

direct access method, 30 

directives, 42 
in PDP-11 MACRO, 136-141 

directories, 33-35 
in DSM, 108 



directory program (DIR), 81-82, 93 

DIRECT program, 58 

DIRECT record location mode, 289 

disks 
logical structure of, 59 
RSX-11 M-PLUS support for, 68 

DISPLAY statement, 199, 204-205 

distributed processing, 329-346 
database management and, 270 

OKED (editor), 91-92 

DLLOAD utility, 120-121 

DMCL (Device/Media Control 
Language), 288, 294 

DML (Data Manipulation 
Languages), 287, 295-302 

DMS-500, 62 

domains, 278, 280-281, 283-284 

downline loading, 335 

DSC utility, 244 

DSM-11 (Digital Standard MUMPS; 
operating system), 3, 19, 101-115 
global array files in, 32 

DSORT (Extended Disk Sort), 62 

DUMP utility, 82, 228, 244 

Index 

DUP, (device utility program), 81, 93, 
244 

duplicate keys, 259-260 

dynamic access, 255-256 
dynamic dual path disk 
support, 68 

EC (Emulator Control Mode), 341 

EDI (text editor), 73 

EDIT (editor), 85 

edit mode, 49 

editors, 130, 305 
available with CTS-300, 91-92 
available with RSTS/E, 47 
available with RSX-11 operating 

systems, 72-73, 75 

393 

available with RT-11, 79, 85 
in DATATRIEVE-11, 283 
EDT, 309-313 

EDT (DIGITAL standard editor), 47, 
72-73, 309-313 

Emulator Control Mode (EC), 341 

end (nonrouting) nodes, 330 

error checking, 128-129 
in COBOL, 198 
in FORTRAN IV, 160-161 

error loggers, 70, 86 

event-driven program execution, 19 

event-driven task scheduling, 69 

exact key matches, 262 

executive directives, 42 

executives (monitors), 16 
in RSX-11 operating systems, 69-

70 

expressions 
in MUMPS, 109-115 
in PDP-11 MACRO, 135 

Extended Emulator Control Mode 
(XEC), 341 

extended memory monitor (XM), 80, 
118, 121, 123 

Extended Memory TimE!!-Shared 
DIBOL (XMTSD), 92 

external (global) symbols, 135 

FB (foreground/background 
monitor), 80, 86-8"7, 161 

FCS (File Control Services), 74, 228, 
231-236 

FOB (file data blocks), 235 

FDV (Form Driver), 316, 319-320 

FED (Form Editor), 318-319 

fields, 21, 227, 237, 247-248 

FILCOM program, 58 

File Control Services (FCS), 74, 228, 
231-236 



Index 

file data blocks (FOB), 235 

file exchange program (FILEX), 82, 
93, 228, 243-244 
file header blocks, 30 

file management, 227-228 
utilities for, 17, 43, 231-244 

file-processing macros, 234-236 

file processor (FIP), buffering, 53-54 

files 22, 227, 247 
access to, using FCS, 232 
attributes of, in RMS, 256-261 
BASIC manipulation of, 175-176, 

181 
COBOL manipulation of, 196-197, 

203 
in DBMS-11, 292 
DECFORM and, 324-325 
DECnet transfers of, 333 
DIBS-11, 95 
directories and, 33-35 
FORTRAN IV manipulation of, 157 
logical disk structures for, 59 
MicroPower/Pascal support 

for, 122-123 
naming of, 37-38 
populating of, 281 
protection for, 35-37 
RMS access modes for, 250-256 
RMS organization of, 248-250 
RMS program operations on, 261-

264 
RSTS/E access to, 50, 60-62 
shared access to, 234 
sharing of, 264-265 
structures of and access methods 

for, 29-32 
terminal format, 181-182 
virtual array, 182 

FILES-11, 74 

file specifications, 37, 256 

file storage region (FSR), 233 

file-structured devices, 26 

FILEX (file exchange program), 82, 
93, 228, 243-244 

394 

FIND requests, 281-282 

FIP (file processor) buffering, 53-54 

fixed length record format, 257 

FLAGS subroutine, 92 

floating point, in RSTS/E, 53 

FMS-11 (Forms Management 
System), 306, 315-321 

FMS-11 /RSTS (Forms Management 
System), 47 

FMS-11 /RSX (Forms Management 
System), 73 

forced keys, 242 

foreground/background monitor 
(FB), 80, 86-87, 161 

foreground/background operating 
systems, 18 
CTS-300, 92 
RT-11, 80, 86-87 

Format Control File (DECFORM), 325 

format statements, 153 

formatted ASCII data files, 61 

Form Driver (FDV), 316, 319-320 

Form Editor (FED), 318-319 

Forms Management System (FMS-
11 ), 306, 315-321 
FMS-11 /RSTS, 47 
FMS-11 /RSX, 73 

Form Utility(FUT), 316,319 

FORTRAN, 127, 145-167 

FORTRAN IV, 145-163 
System Subroutine Library for, 86-
87 

FORTRAN-77, PDP-11, 145-156, 
163-167 

FORTRAN DML, 299 

FSR (file storage region), 233 

function calls, 42 

function directives, 137 

functions 
in BASIC, 174-175, 178-179, 185 



in FORTRAN, 154-156 
in MUMPS, 113-115 

FUT (Form Utility), 316, 318 

GCML (Get Command Line) 
routine, 236 

generalized command line 
interpreter 

(CLI), 69 

general system utility programs, 57-
59 

general user commands, 41 

generic key matches, 262-263 

Get Command Line (GCML) 
routine, 236 

global array files, 32 

global arrays, 108-109 

global directories, 108-109 

global (external) symbols, 135 

global variables, 108 

GRIPE program, 58 

Guide Mode, 278, 283 

hardware 
for DSM, 102-103 
realtime system interfaces for, 76 

HASP Workstation Protocol 
Emulators, 342-342 

HELP facilities 
in DIGITAL Command 

Language, 41, 70-71 
in EDT editor, 309 
in FMS, 315, 318 

IAM (Indexed Access Method), 62 

IAS (Interactive Application 
System), 162-163 

IBM 
Programmable Interactive 
Protocol 

Emulator for, 343 

Index 

remote batch protocol emulators 
for, 342-343 

SNA protocol emulator for, 339-
342 

l/D space, 67 

immediate mode (BASIC­
PLUS), 183-184 

indefinite repeat blocks, 138 

INDENT (interactive data entry), 306, 
325-326 

Indexed Access Method (IAM), 62 

indexed file organization, 31-32, 60, 
249-250 

keys for, 259-261 
random access to, 254-255 
record operations on, 262-263 
sequential access to, 253-254 

indexed sequential access, 32 

Indexed Sequential/Relative Access 
method (ISAM/RAM), 62 

Index Sort (SORT!), 243 

indirect command files, 71, 80-81, 94 

Industrial Society of America 
(ISA), 163 

INIT (initialization) code, 54 

initialization, of RSTS/E, 54 

initialization macros, 234-235 

Integrated Business System (DIBS-
11), 94-96 

Interactive Application System 
(IAS), 162-163 

interactive data entry (INDENT), 306, 
325-326 

interactive processing, 17 

interfaces 
hardware, for realtime 

applications, 76 
Packetnet, 329, 345-346 
user, 38-42, 50-51, 104 

internal symbols, 135 

International Standards 
Organization (ISO), 121 

395 



International Telephone and 
Telegraph Consulative Commit­

tee (CCITT), 345 

lnternets 329, 336-345 

interpreters, 128-129 
for DSM-11, 104-105 

INUSE program, 58 

110 buffers, 265, 267 

1/0 commands, 39-40 

1/0 devices, 25-26 
for DSM, 105-106 

1/0 operations 
block, 261, 263-264 
in FCS, 232-233 

1/0 pages, 25 

110 request queue optimization, 67 

1/0 statements 
in DIBOL-11, 224 
in FORTRAN, 151-153 

ISAM/RAM (Indexed 
Sequential/Relative 

Access Method), 62 

ISAM Utility, 92 

Job Communication device, 106 

jobs, 48 
privileged, 56 

journaling 
in DBMS-11, 293-294 
in DSM, 107 
in EDT editor, 309 

KEO (keypad editor), 79, 85 

kernel (in MicroPower/Pascal), 119 

keyboard monitors, 40 
in RSTS/E, 48-49, 51 

key fields, 238 

keypad editors 
EDT, 309-313 
KEO, 79, 85 

Index 

396 

keys 
to indexed files, 60, 249-250, 259-

261 
random access to, 254-255 
record operations using, 262-263 
sequential access to, 253-254 

language processing code, 51-53 

languages, 127-131 
available with RSTS/E, 47 
available with RSX-11 operating 

systems, 72 
BASIC, 169-190 
COBOL, 193-218 
DIBOL-11, 91-92, 221-225 
DIGITAL Command Language, 40-

42 
FORTRAN, 145-167 
MUMPS (DSM), 101, 104, 109-115 
PDP-11 MACRO, 133-142 

LBR (librarian), 73 

LIBR (librarian), 82 

librarians, 130 
on CTS-300, 93 
in FORTRAN IV, 160 
LBR, 73 
LISA, 82 
in PDP-11 MACRO, 138 

libraries 
cluster, 70 
in COBOL, 197, 200, 203 
DECUS, 349 
in FORTRAN, 154-156, 160, 162-

163, 165-166 
MACR0-11, 122, 138-139 
in RSTS/E, 55 
inRT-11,81 
universal, 73 

line editors, EDT, 310 

linkage, in DBMS-11, 292 

linked files, 30 

linkers (LINK), 58, 130 
in CTS-300, 93 
in FORTRAN IV, 157, 159 
in PDP-11 MACRO, 141 



Index 

in RT-11, 83 

listing control directives, 136 

listing options (in FORTRAN), 157 

local symbols, 135-136, 138 

locate mode, 264, 267 

logging in 
in DSM-11, 104 
in RSTS/E, 48 

logical block numbers, 28 

logical blocks, 28-29 

logical disk structures, 59 

logical names, 53 

logical records, 21-22 

logical units of data, 21-22 

logical volumes, 22 

loopback testing, 332 

MAC program 58 

MACR0-11 (PDP-11 MACRO; 
assembly language), 72, 128, 133-

142 
programmed requests in, 42 
source libraries in, 81, 122 

macro calls, 138-139 

macro definitions, 137-138 

MACRO program, 58 

MCA (Monitor Console Routine), 41, 
70-71 

memory 
in foreground/background 

systems, 18 
FORTRAN IV use of, 158-159 
monitor loaded into, 16 
partitioning of, in 
multiprogramming, 68 

Memory Image Builder (MIB) 
utility, 120 

memory image files, 25 

memory management in RSX-11 
operating systems, 69-70 

menu processor, 95-96 

MERGE utility, 120, 205 

messages, 38 

MFD (Master File Directory), 35, 55 

MIB (Memory Image Builder) 
utility, 120 

MicroPower/Pascal, 117-124 

modularity, 131 

MONEY program, 57 

monitor commands, 40 

Monitor Console Routine (MCA), 41, 
70,71 
monitors (executives), 15-16 

on RT -11 , 79-81 
macros, in FCS 234-236 

move mode, 264, 267 
macro symbols, 135 

MST (Macro Symbol Table), 134-135 
Macro Symbol Table (MST), 134-135 

mapped files 30-31 

mapping, 28-29 
physical, in DBMS-11, 288 

MAP statement, 178 

mass storage devices, 26 

Master File Directory (MFD), 35, 55 

matrix operations, 180-181, 184-185 

MAT statement, 184 

MCALL directive, 138-139 

M-trees, 101 

multiple terminal service, 53 

multipoint communications, 332 

multiprogramming, 18-19, 68 

multistream batch processing, 67 

multiuser operating systems, 17-18 
directories for, 35 
file protection on, 35-37 
RSX-11 M-PLUS, 66 

MUMPS (language), 109-115 
see also DSM-11 

397 



names 
files, 37-38 
logical, 53 

Network Command Terminals, 332 

network management, 332-333 

networks, 1-2, 329-346 

Index 

RSX-11 operating systems and, 65 

nodes, 330-332 

non-fil'e structured devices, 26 

nonrouting (end) nodes, 330 

object code, 128 
for FORTRAN IV, 159 

object module patch utility (PAT), 75, 
84 

Object Time System (OTS), 129 
in FORTRAN IV, 147, 157, 159-
160, 163 in FORTRAN-77, 165-166 
in MicroPower/Pascal, 121 

ODT online debugger, 73-74, 84 

online recovery (in DBMS-11 ), 293 

Online Task Loader (OTL), 67 

OPENcall 234 

operating systems 2-3, 15-43 
CTS-300 91-98 
DSM-11, 101-115 
RSTS/E and CTS-500, 45-63 
RSX-11 family, 65-76 
RT-11 79-88 

operation 
of RMS, 261-264 
of RSTS/E, 51-53, 55-57 

operators 
in BASIC, 172 
in FORTRAN, 148 
in MUMPS, 110-111 

OPNS macro call, 234 

OTL (Online Task Loader), 67 

OTS, see Object Time System 

PAC (Programmer Access 
Code), 104 

398 

Packetnet System Interfaces 
(PSI), 329, 345-346 

packet switching, 345 

Page Find/Fix utility, 294 

Pages 
in DBMS-11, 288,292 
1/0, 25 

partitions (in DSM), 101-102 

Pascal (MicroPower/Pascal), 117-
124 

PASDBG (Symbolic Debugger in 
MicroPower/Pascal), 121-122 

passwords, 48 
in DATATRIEVE-11, 284 

PAT (object module patch utility), 7q, 
84 

patches, AUTOPATCH for, 87-88 

PATCH utility program, 84 

PDP-11 COBOL, 193, 200-205 

PDP-11 FORTRAN-77, 145-156, 163-
167 

PDP-11 MACRO, see MACR0-11 

Peek system, 63 

Peripheral Interchange Program 
(PIP), 58, 228, 243 
in CTS-300, 93 
in RSX-11 operating systems, 75 
in RT-11, 81 

permanent symbols, 135 

Permanent Symbol Table 
(PST), 134-135 

physical blocks, 28, 29 

physical mapping, in DBMS-11, 288 

physical records, 21 

physical units of data, 21 

physical volumes, 21 

PIP, see Peripheral Interchange 
Program 

pointers, in DBMS, 292 

populating of files, 281 



power failure restarts, 70 

PPSN's (Public Packet Switching 
Networks; PACKETNETS), 345-
346 

primary keys, 250, 259 

print spooling, 71, 106, 234 

PRINT statement, in DATATRIEVE-
11, 282 

Print Utility, 92 

priority 
in event-driven task 

scheduling, 69-70 
in foreground/background 

systems, 18 
in multiprogramming systems, 19 
for print spooling, 71 
in timesharing, 46 

privacy, see security 

private disks, 59 

privileged commands, 41 

privileged users, 49-50 

privileges, in RSTS/E, 55-57 

Procedure Division 
in COBOL DML, 296 
in DIBOL-11, 221 

procedures, in DATATRIEVE-11, 283 

processes, in 
MicroPower/Pascal, 119 

processing methods, 17-19 

processors 
for Micro/Pascal, 118, 123 
see also CPUs 

Programmed development, 129-131 
in CTS-300, 91-92 

programmed development 
utilities, 17, 43, 130-131 
in RSX-11 operating systems, 71-

72 

programmed requests, 42 

programmed system services, 42 

Programmer Access Code 
(PAC), 104 

Index 

programming, 1 
in CTS-300, 91-93 
database management and, 272 
in Data Manipulation 

Languages, 299-302 
in DIBOL-11, 221 
in DSM, 104-105 
languages for, 127-131 
Micro Power /Pascal for, 117-124 
in RSX-11 operating systems, 72 

programming languages, see 
languages 

programs 
in BASIC, 176-177, 179-180 
in Data Manipulation 

Languages, 300-302 
in DECUS library, 349 
in foreground/background 

systems, 18 
general system utility, 57-59 
in PDP-11 MACRO, 133-141 
privileged, 56-57 
RMS files and, 261-264 
in RT-11, 83-86 
system program code for, 55 

program sectioning directives, 139-
141 

program sharing, 265 

protection 
of data, in DATATRIEVE-11, 284 
for files, 35-37 
in RSX-11 operating systems, 65, 

69 
see also security 

protocol emulators, 329, 336-345 

.PSECT directive, 139-141 

pseudo keyboards, 53 

PSI (Packetnet System 
Interfaces), 329, 345-346 

PST (Permanent Symbol 
Table), 134-135 

public disks, 59 

Public Packet Switching Networks 
(PPSN's; PACKETNETS), 345-346 

399 



Q-busprocessors, 117-118, 123 

QUE program, 58-59 

Queue Package, 86 

queues 
for batch processing, 67 
print, spooling for, 71 

Index 

for processor time, in RSX-11, 69-
70 

QUILL (query/report writer 
program), 97-98 

QUOLST program, 57 

random access by key, 32 

random access mode, 254-255 

RDCP (Remote Data 
Communications Package), 94 

realtime tasks, 69 
hardware interfaces for, 76 

record access streams, 266 

record cells, 249 

record 1/0 operations, 232-233 

Record Management Services 
(RMS), 227-228, 247-267 
available with RSTS/E, 47, 60-61 
available with RSX-11 operating 

systems, 74 
BASIC-PLUS-2 and, 181 
DATATRIEVE-11 and, 280-281, 

284 
included in operating systems, 3 
SORT utility with, 236 

records, 227, 247 
BASIC manipulation of, 181 
characteristics of, in DBMS-

11, 288-289 
defined in DBMS-11, 287 
logical, 21-22 
operations on, in RMS files, 261 
physical, 21 
RMS formats for, 60, 256-258 
RMS processing environment 

for, 266-267 
sets of, 289-292 

400 

Record Selection Expressions 
(RSE), 281 

record's file address (RFA) access 
mode, 255 
record operations using, 261 

Record Sort (SORTA), 242 

record structures, 278 

record transfer modes, 264, 267 

recovery, in DBMS-11, 293-294 

REFORMAT utility, 199 

relative file organization, 248-249 
random access to, 254 
record operations oh, 262 
sequential access to, 253 

relative record numbers, 249 

relocatable image files, 25 

RELOC utility, 120 

Remote Data Communications 
Package (RDCP), 94 

remote job entry (RJE) 
emulators, 342-343 

remote resource access, 334 

repeat blocks, 138 

reports, 92 
DAT ATRIEVE-11 generation 

of, 278, 282 

requests 
in DATATRIEVE-11, 281-282 
programmed, 42 

resource program (RESORC), 83 

resources 
remote access to, using 
DECnet, 334 
of RSTS/E, 47-48 

restarts 
automatic, 54 
after power failures, 70 

RFA (record's file address) access 
mode, 255 
record operations using, 261 

RFRMT utility, 205 



RJE (remote job entry) 
emulators, 342-343 

RMS, see Record Management 
Services 

rollback, in DBMS-11, 294 

rollforward, in DBMS-11, 294 

routing nodes, 330 

RSE (Record Selection 
Expressions), 281 

RSTS/E (operating system), 2, 18-
19, 45-63 

BASIC-PLUS on, 182 
file protection on, 36 
FORTRAN IV on, 162 
INDENT on, 325-326 
keyboard monitors on, 40 
system function calls in, 42 

RSX-11 family (operating 
systems), 65-76 
executive directives in, 42 
File Control Services on, 228, 231 
file protection on, 36-37 
FORTRAN IV on, 162-163 
mapping by, 28-29 
Monitor Console Routine on, 41 
multiprogramming on, 19 

RSX-11 M (operating system), 2, 18, 
66,68-76 

programmed file control services 
in, 42 

RSX-11 M-PLUS (operating 
system), 2, 18, 65-76 

RSX-11 M/SNA Protocol 
Emulator, 339-342 

RSX-11S (operating system), 3, 66-
67 

downline loading on, 335 
executive on, 16 

RT-11 (operating system), 3, 17-18, 
79-88 Application Runtime 
Supervisor 

on, 320 
binary files in, 23-25 

Index 

401 

Concise Command Language 
on, 41-42 

CTS-300 and, 91 
directories supported on, 33-35 
file protection on, 35 
FORTRAN IV on, 156, 161-162 
keyboard monitor on, 40 
MicroPower/Pascal and, 118, 121-

123 
programmed requests on, 42 
User Service Routine on, 27 

RT-11 AUTOPATCH, 87-88 

RT-11 BATCH, 85-86 

run mode, 49-50 

RUNOFF program, 59 

runtime macros, 235 

runtime modules, in DBMS-11, 294 

save-image libraries (SIL), 52 

save image patch program 
(SIPP), 84 

scaled arithmetic, 53 

scheduling 
in CTS-300, 92 
of processor time, in RSX-11, 69-

70 
in RSTS/E, 48 

Schema Data Description Language 
(Schema DDL), 287-288, 292 

schemas, 271, 287 

screen formatters, 305-306, 315-326 

SOP (Sequential Disk 
Processor), 106 

security 
in database management 

and, 272-273 
in DATATRIEVE-11, 284 
in multiuser operating systems, 18 
in RSTS/E, 45 
see also protection 

segmented keys, 259 

semaphors (in 



MicroPower/Pascal), 119 

sequential access mode, 30, 232, 
252-254 

record operations using, 261 

Sequential Disk Processor 
(SOP), 106 

sequential file organization, 248 
record operations on, 261 
sequential access to, 252-253 

sets (in DBMS-11 ), 287, 289-292 

shadowed disk support, 68 

SIL (save-image library), 52 

simple keys, 259 

single-job monitor (SJ), 79-80, 87, 
161 

single-user operating systems, 17 

SIPP (save image patch 
program), 84 

SJ (single-job monitor), 79-80, 87, 
161 

SLP (source language patch 
program), 75, 85 

SNA (protocol emulator), 339-342 

software disk caching, 50, 54 

SORTA (Address Routing Sort), 243 

SORTI (Index Sort), 243 

Sort/Merge utility, 93 

SORTR (Record Sort), 242 

SORTS subroutine package, 241 

SORTT (Tag Sort), 242-243 

SORT utility, 228, 236-243 

source code, 128, 133 

source compare program 
(SRCCOM), 82 

special service programs, 58-59 

special terminal commands 38-39 

special variables, in MUMPS, 114-
115 

specification files, 238-241 

Index 

specification statements, 153-154 

spooling, 71 
in DSM, 106 
in FCS, 234 

SRCCOM (source compare 
program), 82 

Standard MUMPS (language), 109-
115 

statement modifiers, 180 

statements 
in BASIC, 172-174, 178, 180, 185 
in Data Manipulation 

Languages, 295-296 
in DIBOL-11, 222-224 
in FORTRAN, 147, 149-154 
in PDP-11 MACR0-11, 134 

storage, data, 22-26 

STORE statement, 281 

stream format records, 258 

strings, 171, 179 

structured programs, 179 

sugprograms 
in BASIC, 180 
in FORTRAN, 154 

subroutines, in BASIC, 179-180 

Subschema DDL, 288 

subschemas, 271, 273 
Data Manipulation Languages 
and, 296, 299-300 
object modules for, 294 

subscripted variables, 108 

swap files 48 

Symbolic Debugger, in 
MicroPower/Pascal, 121-122 

Symbolic Interactive Debugger, in 
COBOL, 197-198, 203-204 

symbols, in PDP-11 MACRO, 134-
136 

synchronizing, in 
MicroPower/Pascal, 119 

synchronous record operations, 266-
267 

402 



Index 

sysgen (system generation), 19-20 
in RSTS/E, 51, 53 

SYSLIB (System Subroutine 
Library), 86-87, 161 

SYSTAT program, 57 

system accounting facilities, on 
RSTS/E, 46, 55 

system code, 51-52 

system devices, monitors on, 16 

system disks, 59 

system function calls, 42, 62-63 

system generation (sysgen), 19-20 
in RSTS/E, 51, 53 

system information programs, 57-58 

System Jobs Feature, 86 

system management commands, 50 

system management utilities, 17, 43, 
55 

system managers 
cache size determined by, 54 
passwords and, 48 
system generation by, 20, 53 
system management utility 
programs used by, 55 
task priority assigned by, 69 
UCI and PAC, in DSM, provided 

by, 104, 108 
user's job area determined by, 49 
UIC assigned by, 36 

system program code, 51, 55 

system program commands, 38 

system services, 42 

Systems Network Architecture 
(SNA), 339-342 

System Subroutine Library 
(SYSLIB), 86-87, 161 

system utilities, 16-17, 42-43 
in RT-11, 81-83 

system-wide logical names, 53 

tables, in DATATRIEVE-11, 284 

403 

Tag Sort (SORTT), 242-243 

taskbuilder (TKB), 58, 73 
in FORTRAN IV, 162-163 

tasks 
downline loading of, 335 
multiprogramming of, 68 
priority for, in event-driven task 

scheduling, 69 

task-to-task communications 333 

terminal format files, 181-182 

terminals 
communications between, using 
DECnet, 335 
DECFORM on, 321-322 
DSM and, 101-106 
EDT editor used on, 309-310 
FMS on, 315-317 
INDENT on, 326 
multiple terminal service for, 53 
.Network Command, 332 
screen formatters for, 305-306 
special terminals commands 

on, 38-39 

text editors, 305 
available with RSTS/E, 47 
available with RSX-11 operating 

systems, 73 
available with RT-11, 79, 85 
EDT 309-313 

threaded code, 177 

tied terminals, 104 

timesharing operating systems, 19 
RSTS/E, 45-50 

timeslicing, 19 

TKB taskbuilder, 58,73 

transfer modes, 22-25 

transportability, of BASIC, 182 

TTYSET program, 57-58 " 

UCI (User Class Identifier 
Code), 104, 108 

UFO (User File Directory), 35 



Index 

UIC (User Identification Codes), 35-
36, 284 

UNIVAC protocol emulators, 343-344 

universal libraires, 73 

updates 
of data, DATATRIEVE-11 for, 277-

278 
of files, DECFORM for, 325 

upline dumping, 335 

User Class Identifier Code 
(UCI), 104, 108 

user command language, 50-51 

user-defined functions, 175 

user-defined symbols, 135 

User File Directory (UFO), 35 

User Identification Codes (UIC), 35-
36, 284 

user interfaces, 38-42 
in DSM-11, 104 
in RSTS/E, 50-51 

User Service Routine (USA), 27 

User Symbol Table (UST), 134-135 

User Work Area (UWA), 300 

user-written subprograms, 154 

USA (User Service Routine), 27 

UST (User Symbol Table), 134-135 

utilities 
available with COBOL-81, 199 
available with CTS-300, 92-93 
available with DSM, 109 
available with PDP-11 COBOL, 205 
available with RSX-11 operating 

systems, 72-75 
available with RT-11, 81-86 
in DBMS-11, 293-295 
editors, 305 
EDT editor, 309-313 
file management, 228, 231-244 
general system, 57-59 
in MicroPower/Pascal, 119-121 
program development, 130-131 
screen formatters, 305-306; 315-

316 

404 

system, 42-43 
system management, 55 

UWA (User Work Area), 300 

validation parameters, 280 

variable length record format, 257 

variables 
in BASIC, 171-172, 178 
in DSM, 107-108 

variable-with-fixed-control (VFC) 
record format, 257-258 

VAX-11 COBOL, 193-194 

VERIFY utility, 228, 244 

VFC (variable-with-fixed control) 
record format, 257-258 

VIA record location mode, 289 

video terminals 
DECFORM on, 321-322 
EDT editor used on, 309-310 
FMS on, 315-317 
INDENT on, 326 
screen formatters for, 305-306 

view domains, 283-284 

virtual array files, 182 

virtual arrays, 61, 175 

virtual block numbers, 28, 259 

virtual blocks, 232, 258-259, 263 

volumes 
directories for, 33-35 
logical, 22 
physical, 21 
protection for, 37 

VT52 terminals 
DECFORM on, 321 
EDT editor on, 309-31 O 

VT100 terminals, 306 
DECFORM on, 321 
EDT editor on, 309-310 
FMS on, 315-317 
INDENT on, 326 



wildcard convention (asterisk 
convention), 37-38 

word processing 
DECtype-300 for, 96-97 
on RSTS/E, 45 

words, 21 

X.25, 345-346 

XEC (Extended Emulator Control 
Mode), 341 

Index 

405 

XM (extended memory monitor), 80, 
118,121, 123 

XMTSD (Extended Memory Time­
Shared DIBOL), 92 

ZAP task patch, 75 

Z-commands, 112-113 

$Z-functions, 114 

$Z special variables, 114-115 



NOTES 

406 



PDP-11 SOFTWARE HANDBOOK 
1982-83 

READER'S COMMENTS 

Your comments and suggestions will help us in our continuous effort to im­
prove the quality and usefulness of our handbooks. 

What is your general reaction to this handbook? (format, accuracy, complete-

ness, organization, etc.)--------------------

What features are most useful? ________________ _ 

Does the publication satisfy your needs?--------------

What errors have you found? _________________ _ 

Additional comments---------------------

Name 

Title 

Company Dept. 

Address 

City State Zip 

(staple here) 



(staple here) 

- - - - - - - - - - - - (please fold here) - - - - - - - - - - - -

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
NEW PRODUCTS MARKETING 
PK3-1/M92 
MAYNARD, MASS. 01754 

No Postage 

Necessary 

if Mailed in the 

United States 



HANDBOOK SERIES 

Microcomputers and Memories 
Microcomputer Interfaces 
PDP-11 Processor 
PDP-11 Software 
Peripherals 
Terminals and Communications 
VAX Architecture 
VAX Software 
VAX Hardware 



digital 

DIGITAL EQUIPMENT CORPORATION . Corporale Headquarters : Maynard , MA 
01754 Tel (617) 897-51 11 - SALES AND SERVICE OFFICES: UNITED STATES ­
ALABAMA , Birmingham. Hunlsvolle ARIZONA . Phoenix, Tucson ARKANSAS . Lollie 
Rock CALIFORNIA . Cosia Mesa. El Segundo , Los Angeles . Oakland . Sacramento , 
San Diego . San Francisco . Monrovia . Pasadene . Santa Barbara . Santa Clara , Santa 
Monica. Sherman Oaks . Sunnyvale COLORADO. Colorado Springs . Denver CON· 
NECTICUT . Faortreld . Menden DELAWARE. Newark . Wilmington FLORIDA . Jack· 
sonv1lle . Melbourne , M1am1 , Orlando . Pensacola . Tampa GEORGIA Atlanta 
HAWAII . Honolu lu IDAHO. Boose ILLINOIS. Chicago . Peoria INDIANA , Indianapolis 
IOWA . Bettendorf KENTUCKY , Louis ville LOUISIANA. Baton Rouge . New Orleans 
MAINE . Porlland MARYLAND. Ballimore . Odenlon MASSACHUSETTS, Boslon . Bur 
lrngton. Springfield , Wallham MICHIGAN . Detroil. Kalamazoo MINNESOTA , Min· 
neapolis MISSOURI , Kansas Cily . St. Lours NEBRASKA. Omaha NEVADA Las Ve· 
gas . Reno NEW HAMPSHIRE. Manchester NEW JERSEY. Cherry Hiii. Parsippany , 
Pr incelon. Somerset NEW MEXICO. Albuquerque . Los Alamos NEW YORK . Albany , 
Buffalo , Long Island . New York Cily . Rochester. Syracuse . Westchester NORTH 
CAROLINA , Chapel Hill . Charlotte OHIO. Cincinnati . Cleveland . Columbus . Daylon 
OKLAHOMA . Tulsa OREGON , Eugene , Porlland PENNSYLVANIA. Allentown . Har 
rosburg . Pholadelphoa , Pittsburgh RHODE ISLAND. Providence SOUTH CAROLINA, 
Columbia , Greenville TENNESSEE. Knoxville , Memphis , Nashville TEXAS. Austin , 
Dallas . El Paso . Houslon. San Antonio UTAH. Salt Lake City VERMONT. Burlington 
VIRGINIA , Arlington , Lynchburg , Norfolk , Richmond WASHINGTON . Seatlle , 
Spokane WASHINGTON D.C WEST VIRGINIA . Charleston WISCONSIN , Madison, 
Milwaukee INTERNATIONAL - EUROPEAN AREA HEADQUARTERS: Geneva , Tel : 
{41 ] (22)-93-33-11 INTERNATIONAL AREA HEADQUARTERS: Acton , MA 01754, 
U.S A . Tel · (617) 263-6000 ARGENTINA. Buenos Aires AUSTRALIA , Adela ide. Bris· 
bane . Canberra . Darwin , Hobart . Melbourne, Newcastle. Perth . Sydney . Townsvllle 
AUSTRIA . Vienna BELGIUM Brussels BRAZIL , Rio de Janeiro . Sao Paulo CANADA, 
Calgary . Edmonton. Hamilton. Halifax , Kingston , London . Montreal . Ottawa , Que· 
bec Coty . Regina . Toronto . Vancouver. Victoroa , Winnipeg CHILE. Santiago COLOM­
BIA . Bogota DENMARK, Copenhagen EGYPT, Cairo ENGLAND. Basingstoke , Blrm· 
ingham . Br istol , Ealing . Epsom . Leeds . Leicester , London . Manchester , 
Newmarket . Reading . Welwyn FINLAND, Helsinki FRANCE . Bordeaux . Lille . Lyon , 
Marseille . Paris , Puleaux , Suasbourg HONG KONG INOIA, Bangalore , Bombay , 
Calcutta . Hyderabad. New Delhi IRELANO. Dublin ISRAEL. Tel Aviv ITALY, Milan , 
Rome . Turon JAPAN, Fuki1uka , Nagoya. Osaka , Tokyo , Yokohama KOREA, Seoul 
KUWAIT. Safat MEXICO. Me. ico City , Monterrey NETHERLANDS, Amsterdam. The 
Hague. Utrechl NEW ZEALAND, Auckland . Christchurch . Wellington NIGERIA , La· 
gos NORTHERN IRELANO. Bellas! NORWAY. Oslo. PERU. Lima PUERTO RICO. San 
Juan SAUDI ARABIA . Jeddah SCOTLAND. Edinburgh REPUBLIC OF SINGAPORE, 
SPAIN , Barcelona . Madrod SWEDEN. Gothenburg , Malmoe . Stockholm SWITZER· 
LANO . Geneva . Zuroch TAIWAN. Taipe i TRINIDAD, Port of Spain VENEZUELA . Cara· 
cas WEST GERMANY . Berlin , Cologne . Frankfurt . Hamburg . Hannover , Munich , 
Nuremberg , Sluttgarl YUGOSLAVIA , Belgrade , Ljubljana , Zagreb 


