

DIGITAL facility, Marlboro, Massachusetts

CORPORATE PROFILE
Digital Equipment Corporation designs, manufactures, sells and ser­
vices computers and associated peripheral equipment, and related
software and supplies. The Company's products are used world-wide
in a wide variety of applications and programs, including sCientific
research, computation, communications, education, data analysis, in­
dustrial control, timesharing, commercial data processing, word proc­
essing, health care"instrumentation, engineering and simulation.

processor handbook

Digital Equipment Corporation makes no representation that the in­
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip­
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and ·should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi­
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, lAS, MASSBUS, OMNIBUS

PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX,- VMS, VT
are trademarks of

Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing

using an in-house text:processing system.

Copyright~ 1981 Digital Equipment Corporation.
All Rights Reserved.

PRINTED IN USA EB-19402-20

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 UNIBUS 10

CHAPTER 3 ADDRESSING MODES 22

CHAPTER 4 INSTRUCTION SET 42

CHAPTER 5 PROGRAMMING TECHNIQUES 92

CHAPTER 6 MEMORY MANAGEMENT 134

CHAPTER 7 PDP-11/04,11/34A 170

CHAPTER 8 PDP-11/24 182

CHAPTER 9 PDP-11/44 216

CHAPTER 10 PDP-11/70 260

CHAPTER 11 PDP-11 FLOATING POINT 306

CHAPTER 12 COMMERCIAL INSTRUCTION SET 344

APPENDIX A UNIBUS ADDRESSES A-1

APPENDIX B INSTRUCTION TIMING B-1

APPENDIX C FLOATING POINT TIMING C-1

APPENDIX D CONVERSION TABLE 0-1

INDEX•................... ; ...•.•...•.••..•..•. lndex-1

iii

iv

PREFACE

With 1980 marking the 10th anniversary of the PDP-11 processor, the
PDP-11 has become the largest selling minicomputer ever made. Over
170,000 are currently in use worldwide.

During the past decade, the PDP-11 family has experienced the most
extensive development and the greatest range in growth of any
preceding PDP family. To cap this significant decade of achievement,
the family has been enhanced with several new software products and
the introduction of the first fourth-generation mid-range CPU, the
PDP-11/44, in early 1980. This system, which gives customers twice
the performance of the PDP-11 134a, also provides an easy migration
path to the larger, more powerful PDP-11170.

This year - 1981 - DIGITAL is proud to announce another new PDP-
11 fourth generation member - the PDP-11/24. This processor offers
several unique features, including an extended 22-bit memory ad­
dressing capability, making it the lowest-cost systems oriented CPU
from DIGITAL that can address up to a full megabyte of memory. The
PDP-11/24 provides performance and functionality similar to the
PDP-11/34A, and its floating point and commercial instruction sets
allow programming compatibility with the PDP-11 144.

Common to all PDP-11 family members is compatibility, which is in­
herent in the design of the processors themselves. Programs can be
developed on the smallest PDP-11 family member, the PDP-11/03,
and with only slight modifications, run on any other PDP-11 system.
Peripherals, such as video terminals and line printers, are equally
upward and downward compatible in their ability to interface with
PDP-11 family members.

This handbook is uniquely divided into four separate processor chap­
ters which discuss the individual and integral features pertinent to the
operation of each CPU. It does not attempt to delve into the degree of
technicality found in the user documentation delivered with the sys­
tem.

A complete and current PDP-11 and microcomputer Instruction Set
description accompanies this handbook. It is easily identified and im­
mediately accessed by the implementation of a black page tab which
runs vertically along the right-hand border of the handbook. Other
useful handbook features include chapters on addressing modes,
programming techniques, UNIBUS, floating pOint, and commercial in­
struction sets, which collectively highlight PDP-11 processor capabili­
ties. An extensively updated chapter on memory management has
also been included with this publication. The appendices provide the

v

most current, accurate, and complete support data and timing to in­
sure the consistency of reference.

At the time this handbook was published, the PDP-11/24 processor
instruction set and floating point timings were incomplete. Therefore,
. they have not been included in this handbook. The next PDP-11 Proc­
essor Handbook will furnish these timings.

vi

vii

viii

CHAPTER 1

INTRODUCTION

DIGITAL's PDP-11 processor family is one of the broadest computer
product lines in the computer industry. This family consists of micro­
computers, minicomputers, system computers, and a powerful multi­
function computer-all supported by operating systems, common
peripherals and application software.

The processors specifically discussed in this handbook are:

• PDP-11/04
• PDP-11/24
• PDP-11/34A
• PDP-11/44

• PDP-11170

With DIGITAL'S announcement in 1970 of the first PDP-11, the PDP-
11/20, a unique, conceptual change in the computer industry oc­
curred. The PDP-11/20 became the first minicomputer that could in­
terface all system elements-processor, memory and peripherals-to
a single, bidirectional, asynchronous bus, called the UNIBUS.

The UNIBUS provides system-to-system compatibility and is a high­
speed communications path which links system components and peri­
pheral devises, allowing them to communicate directly without central
processor intervention. The UNIBUS, (discussed in detail in chapter
2), and its unique capabilities have provided the flexibility and growth
options for the PDP-11 family members discussed in this handbook.
Figure 1 illustrates the major categories of PDP-11 processors. Figure
1-2 depicts the block structure of the PDP-11. Figure 1-3 represents
the enhancement of performance/functionality versus price with the
advent and subsequent development of each succeeding PDP-11
generation. Figure 1-4 compares some of the supported options avail­
able for each PDP-11 word processor.

MICROCOMPUTERS

11103
11123

LSI-ll BUS

Chapter 1 -Introduction

MINICOMPUTERS
FOR MULTI-TASK
AND DEDICATED
APPLICATIONS

11104
11124
11/34A

UNIBUS

MEDIUM-SCALE
COMPUTERS

11144
11170
VAX-111750

UNIBUS
MASSBUS

HIGH
PERFORMANCE
WIDE-WORD

VAX-ll/780

UNIBUS
MASSBUS
SBl

UPWARD COMPATIBLE >
'---------

Figure 1-1 Major Categories of PDP-11 Processors

Beyond the UNIBUS commonality, each PDP-11 processor has
features and capabilities uniquely suited for various applications_
Some functionally similar features have been accomplished with dif­
ferent implementations_ Therefore, there is some repetition of infor­
mation in the chapters describing the individual processor members
of the PDP-11 family. It is often necessary to discuss each separately
because what may appear to be very subtle differences in operations
may actually be key to a certain processor's uniqueness.

PROGRAMMING THE POP-11
Information is provided in this handbook about the assembly language
parameters, processes, and techniques involved in programming the
PDP-11. DIGITAL publishes tutorial software documentation that pro­
vides detailed information about using the PDP-11 instruction set to
develop programs. There are also well-developed courses for custom­
ers given by DIGITAL's Education Services group.

The material presented on the PDP-11 instruction set, addressing
modes and programming techniques is intended, with the examples
included, to illustrate the range of and possibilities for program devel­
opment. A companion book, the PDP-11 Software Handbook, ex­
plains the operating systems and associated software which run on
the PDP-11 family of processors. Table 1-1 illustrates these software
products.

2

c.l

PROceSSOR STATUS REGISTER

ARITHMETIC
AND

LOGICAL
UNIT

CENTRAL PROCESSOR

Figure 1-2 PDP-11 Block Structure

EIGHT GENERAL­
PURPOSE REGISTERS

RO
RI
R2
R3
R4
RS

R6 j-STACK POINTER
"iVl-I'IlOGR'AM COUNTER

i
~
.....

5"
a
~ a
0-::s

CPU

Chapter 1 -Introduction

2nd GENERATION

3rd GENERATION

lst GENERATION 4th GENERATION

PERFORMANCEI FUNCTIONAL ITY

Figure 1-3 PDP-11 Performance/Functionality vs. Price

PDP

11/04

11/24

11/34A

11/44

11/70

BUS
SUPPORT

UNIBUS

UNIBUS

UNIBUS

UNIBUS

UNI8US
MASSBUS

SYSTEM OPTIONS

USABLE
MEMORY

SUPPORTED

56KB

1MB

248KB

1MB

4MB

FLOATING
POINT

PROCESSOR

N/A

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

COMMERCIAL
INSTRUCTION

SET

N/A

OPTIONAL

N/A

OPTIONAL

N/A

CACHE
MEMORY

N/A

N/A

2K8
OPTIONAL

aKB

2KB
'/

Figure 1-4 PDP-11 Supported Options Comparison

4

Name

RT-11
and CTS-300

DSM-11

RSTS/E
and CTS-500

RSX-11M

RSX-11M­
PLUS

RSX-11S

Chapter 1 - Introduction

Table 1-1 PDP-11 Operating Systems

Description

Real-Time Operating System for PDP-11 Proces­
sors.

A small, single-user foreground/background system
that can support a real-time application job's execu­
tion in the foreground and an interactive or batch
program development job in the background.

DIGITAL Standard MUMPS Operating System for
PDP-11 Processors.

A small- to large-size timesharing system that offers
a unique fast access data storage and retrieval sys­
tem for large data base processing; originally de­
signed for medical record management and now
available for similar data base applications.

Resource-Sharing Timesharing System/Extended
Operating System for PDP-11 Processors.

A moderate- to large-size timesharing system that
can support up to 63 concurrent jobs, including in­
teractive terminal user jobs, detached jobs, and
batch processing.

Real-Time System Executive Operating System for
PDP-11 Processors.

A small- to moderate-sized real-time multiprogram­
ming system that can be generated for a wide range
of application environments-from small, dedicated
systems to large, multipurpose real-time application
and program development systems.

Real-Time System Executive Operating System­
PLUS for High-end PDP-11 Processors.

A large real-time system meant to take advantage of
the enhanced hardware features and larger memory
available on the PDP-11/44 and PDP-11170 proces­
sors. RSX-11M-PLUS is a superset of RSX-11M.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small, execute-only member of the RSX-11 tamily
for dedicated real-time multiprogramming applica-

5

Name

lAS

Chapter 1 - Introduction

Description

tions (requires a host RSX-11 M, RSX-11 M-PLUS,
lAS or VAXIVMS system).

Interactive Application System for POP-11 Proces­
sors.

A large multiuser timesharing system, allowing real­
time application execution concurrent with time­
shared interactive and batch processing.

In each chapter describing the operating systems, the PDP-11 Soft­
ware Handbook includes: a general description of the requirements
for the system, the monitor/executive characteristics, the file struc­
tures and data handling facilities, the user interfaces, the programmed
monitor services, the system utilities, and the language processors
supported.

PERIPHERALS
DIGITAL manufactures a full range of peripheral equipment designed
to meet specific needs as well as to maintain PDP-11 family
compatibility. 110 and storage devices range from cassette tape de­
vices through high-volume disk packs, and from the DECwrlter to the
intelligent terminals which provide both hard copy and video display.
There is a complete spectrum of peripheral devices available to com­
plement the software, and to provide the complete answer to customer
needs in all market areas-business, education, industry, laboratory,
and engineering.

The Peripherals Handbook and the Terminals and Communications
Handbook describe in detail the optional equipment available for use
with the PDP-11 family members.

SPECIALIZED SYSTEMS
DIGITAL's Computer Special Systems (CSS) and OEM (Original
Equipment Manufacturers) groups can provide the exact hardware
and software combination to fill any customer need. Software Services
provides software consultation services for customers who have spe­
cialized application software needs.

PACKAGED SYSTEMS
DIGITAL's Packaged Systems program offers you the opportunity to
purchase a well-defined, pretested, hardware/software system, rather
than purchasing the options separately. Packaged systems are fully
equipped PDP-11 configurations including operating system, disk sto­
rage and loading device. Entry level systems consist of the correct

6

Chapter 1 - Introduction

minimum set of options defined in the Software Product Description
(SPD) as necessary to run the operating system. Medium and high
performance systems have expanded configurations that in some cas­
es substantially exceed minimum SPD requirements. Packaged sys­
tems are available for all of DIGITAL's major operating systems. The
introductory family of systems represents the combined effort of the
product lines and of central engineering to offer the best set of sys­
tems to meet customer application needs. Packaged systems are
priced less than the sum of the Individual options. Figure 1-5 illustrates
the PDP-11 CPUs which are currently supported by operating systems
and available as packaged systems. Those CPUs which are supported
by operating systems only, and others that are not supported byoper­
ating systems are also shown in figure 1-5, below.

CPU

os

CJ
~ -

04 24 34A 44

CPU NOT SUPPORTED BY OPERATING SYSTEM

CPU SUPPORTED BY OPERATING SYSTEM

CPU SUPPO RTED BY OPERATING SYSTEM AND
AVAILABLE AS PACKAGED SYSTEM.

Figure 1-5 Packaged Systems

7

70

Chapter 1 - Introduction

DOCUMENTATION
DIGITAL offers several levels of documentation describing PDP-11
software and hardware. The PDP-11 Handbook series, which includes
the Peripherals Handbook, the Terminals and Communications Hand­
book, and the Software Handbook, presents an introductory technical
level of PDP-11 family information. The hardware user documentation
and software tutorial documentation which accompany the delivery of
a PDP-11 computer system offer the most detailed levels of informa­
tion. There are also several books published qommercially which dis­
cuss the PDP-11 {amily. Specific topics such as microprogramming
are also covered extensively in commercially available books. If you
have a specific documentation need, discuss the issue with a DIGITAL
sales representative, who will guide you to the appropriate literature.

NUMERICAL NOTATION
Three number systems are used in this handbook: octal, base eight;
binary, baSe two; and decimal, base ten. Octal is used .for address
locations, contents of addresses, and instruction operation codes. Bi­
nary is used for descriptions of words and decimal for normal
quantitative references. Refer to Appendix C for a conversion table
including these three number systems.

8

9

10

CHAPTER 2

UNIBUS

The UNIBUS is an outstanding design feature that makes pos~ible the
strengths and flexibilities of the PDP-11 family members discussed in
this book. DIGITAL's unique data bus, the UNIBUS, provides the hard­
ware and software backbone of the PDP-11/04, PDP-11/24, PDP-
11/34A, PDP-11/44 and PDP-11170 processors. The UNIBUS was the
first data bus in the history of the minicomputer industry to enable
devices to send, receive, or exchange data without processor inter­
vention and without intermediate buffering in memory.

PDP-11 ARCHITECTURE AND THE UNIBUS
PDP-11 architecture takes advantage of the UNIBUS in its method of
addressing peripheral devices. Memory elements, such as the main
core memory, or any read-only or solid state memories, have ascend­
ing addresses starting at zero, while registers that store I/O data or the
status of individual peripheral devices have addresses in the highest
8K bytes of addressing space.

There are tens of thousands of memory addresses, but only two-one
for data, one for control-for some peripheral devices, and up to half a
dozen for more complicated equipment like magnetic tapes or disks.

The PDP-11 UNIBUS consists of 56 signal lines, to which all devices,
including the processor, are connected in parallel.

51 lines are bidirectional and 5 are unidirectional.

Communication between any two devices on the bus is in a
master/slave relationship. During any bus operation, one device, the
bus master, controls the bus when communicating with another device
on the bus, called the slave. For example, the processor, as master,
can fetch an instruction from the memory, which is always a slave; or
the disk, as master, can transfer data to the memory, as slave. Mas­
ter/slave relationships ~re dynamic: the processor, for example, may
pass bus control to a disk, then the disk may become master and
communicate with slave memory.

When two or more devices try to obtain control of the bus simulta­
neously, priority circuits decide between them. Devices have unique
priority levels, fixed at system installation. A unit with a high priority
level obviously always takes precedence over one with a low priority
level; in the case of units with equal priority levels, the one electrically
closest to the processor on the bus takes precedence over those fur­
ther away.

11

.....
N

I
I BUS I ADDRESS REG.

~

I
PROCESSOR I
BUS TIMING

I

I PROCESSOR I
DATA PATHS

t

BUS
PRIORITY

CONTROL
PROCESSOR

~

.-
....

UNIBUS

~ ,

1 r
BUFFER

REGISTER

~ ADDRESS ~ SELECTOR

CORE
MEMORY

MEMORY

Figure 2-1 UNIBUS

, ~ ~

, ~
ADDRESS

SELECTOR DEVICE
INTERRUPT REGISTER

CONTROL

DEVICE LOGIC

PERIPHERAL DEVICES

i
CD ...
I\)

I

~
~

Chapter 2 - UNIBUS

Suppose the processor has control of the bus when three devices, all
of higher priority than the processor, request bus control. If the re­
questing ~evices are of different priority, the processor will grant use
of the bus to the one with the highest priority. If they are all of the same
priority, all three signals come to the processor along the same bus
line, so that it sees only one request signal. Its reply granting priority
travels down the bus to the nearest requesting device, passing
through any intervening non requesting devices. The requesting de­
vice takes control of the bus, executes a single bus cycle of a few
hundred nanoseconds, and relinquishes the bus. (Some devices will
take the bus for more than one bus cycle.) Then the request grant
sequence occurs again, this time going to the second device down the
line, which has been waiting its turn. When all higher-priority requests
has been granted, control of the bus returns to the lowest-priority
device, usually the processor.

The processor usually has lowest priority because in general it can
stop whatever it is dOing without creating serious consequences. Peri­
pheral devices may be involved with some kind of mechanical motion,
or may be connected to a real-time process, either of which requires
immediate attention to a request, to avoid data loss.

The priority arbitration takes place asynchronously in parallel with
data transfer. Every device on the bus except memory is capable of
becoming a bus master.

BUS COMMUNICATION
Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete, the transfer. This simplifies the device interface because
timing is no longer critical. The maximum transfer rate on the UNIBUS
is one 16-bit word every 400 ns, or about 2.5 million 16-bit words per
second. However, the typical transfer rate including average bus de­
lays, is 1 million'16-bit words per second.

USING THE BUS
A device uses the bus if it needs to:

• Request the processor. As a reSUlt, the processor stops what it is
doing, enters an interrupt service routine, and services the device .

• Transfer a word or byte of data to or from another device, (usually
memory), without involving the processor, an NPR (nonprocessor
request) transfer. Such functions are performed by direct memory
access devices such as disks or tape units.

Whenever two devices communicate, it is called a bus cycle: Only one
word or byte can be transferred per bus cycle. An instruction cycle

13

'Chapter 2 - UNIBUS

involves one or more bus cycles. Fetching an instruction involves a
bus cycle; storing a result in memory or a device register involves
another bus cycle.

BUS CONTROL
There are two ways of requesting bus control: non processor requests
(NPRs) or bus requests (BRs).

An NPR is issued when a device wishes to perform a data transaction.
An NPR device does not use the CPU once the running program has
set up parameters of buffer address, disk sector selection and byte
count; therefore, the CPU can relinquish bus control while an instruc­
tion is being executed.

A BR is issued when a device needs to Interrupt the CPU for service.
An interrupt is not serviced until the processor has finished executing
its current instruction.

Bus Requ~sts
• DEVICE makes a bus request by asserting a BA.
• BUS ARBITRATOR recognizes the request by issuing a Bus Grant

(BG). This bus grant Is issued only If the priority of the device Is
greater than the priority currently assigned to the processor.

• DEVICE acknowledges the bus grant and inhibits further grants by
asserting Selection Acknowledge (SACK). The device also clears
BA.

• BUS ARBITRATOR receives SACK and clears BG.
• DEVICE asserts Bus Busy (BBSY) and clears SACK.
• DEVICE asserts Bus Interrupt (INTR) and its vector address.

• CPU responds

Nonprocessor Requests
• DEVICE makes a non processor request by asserting NPR.

• BUS ARBITRATOR recognizes the request by issuing a
nonprocessor grant or NPG.

• DEVICE acknowledges the grant and inhibits further grants by as-
serting SACK; device also clears NPA.

• BUS ARBITRATOR receives SACK and clears NPG.
• DEVICE asserts Bus Busy (BBSY) and clears SACK.

• DEVICE starts its data transfer.

BUS BUSY SIGNAL
Once a device's bus request has been honored, It becomes bus mas­
ter after the current bus master relinquishes control.

14

Chapter 2 - UNIBUS

• Current bus master relinquishes bus control by clearing bus busy
(BBSY) .

• New device assumes bus control by setting BBSY.

INTERRUPTS
Interrupt handling is automatic in the PDP-11. No device polling is
required to determine which service routine to execute. A device can
interrupt the CPU only if it has gained bus control via a BA. The
DEVICE requests an interrupt by asserting INTR along with an inter­
rupt vector. The vector directs the CPU to a memory location previ­
ously loaded by the running program with the starting address of an
interrupt service routine (ISR). ("I need to interrupt.") The CPU
accepts the interrupt vector an asserts SSYN (Slave SYNC) to indicate
the vector has been accepted. ("I have your interrupt.") The DEVICE
releases the bus to the CPU by clearing INTR, removing the vector,
and clearing BBSY. ("I'm giving control of the bus back to you.") The
CPU acknowledges by clearing SSYN (Slave SYNC), stores the infor­
mation it needs to return to the interrupted program (a hardware stack
located in memory is used for this purpose), and enters the interrupt
handling sequence. ("Thank you, I'm starting to service your inter­
rupt.") When the interrupt operation is completed, the CPU removes
the information that was stored on the stack and resumes the program
at the point where it was interrupted. A more detailed description of
the operations required to service an interrupt follows:

1. Processor relinquishes control of the bus, priorities permitting.
2. When a master gains control, it sends the processor an interrupt

request and a unique memory address which contains the ad­
dress of the device's service routine, called the interrupt vector
address. Immediately following this pointer address is a word (lo­
cated at vector address + 2) which is to be used as the new
processor status (PS) word.

3. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are pushed onto the current stack.
The service routine is then entered when the contents of the
vector address are moved to the PC and program execution re­
sumes-at the address of the interrupt service routine (ISR) load­
ed previously as a vector by the running program

4. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt in­
struction, described in Chapter 4, which pops the two top words
from the current processor stack and uses them to load the PC
and PS registers.

15

Chapter 2 - UNIBUS

A device routine can be interrupted by a higher priority bus request
any time after the new PC and PS have been loaded. If such an inter­
rupt occurs, the PC and PS of the service routine are automatically
stored in the temporary registers and then pushed onto the new
current stack, and the new device routine is entered. This is known as
"nesting.'"

Interrupt Servicing
Every hardware device capable of interrupting the processor has a
unique pair of locations (two words) reserved for its interrupt vector in
low memory .. The first word contains the location of the device's ser­
vice routine, and the second, the processor status word that is to be
used by the service routine. The program is responsible for loading
the address of the ISR into this low memory address before interrupt
time occurs. Through proper use of the PS, the programmer can
switch the operational mode of the processor, and modify the proces­
sor's priority level to mask out lower level interrupts.

PRIORITY CONTROL
The PDP-11 priority system determines which device obtains the bus.
Each PDP-11 device is assigned a specific .location in the priority
structure. Priority arbitration logic determines which device obtains
the bus according to its position in the priority structure. The priority
structure is 2-dimensional; i.e., there are vertical prl~rlty levels and
horizontal priorities at each level. There are five vertical priority levels.

Devices that gain bus control with one of the bus request lines (BR7,
BR6, BR5, BR4) can take full advantage of the power of the processor
by requesting an interrupt. The entire Instruction set is then available
for manipulating data and status registers. When a device servicing
program Is being run, the task being performed by the processor is
interrupted, and the device service routine is initiated. After the device
request has been satisfied, the processor retur.ns to its former task.
Note that interrupt requests can be made only if bus control has been
gained through a BR priority level.

Bus Request Level
There are two lines associated with each BR level. The bus request is
made on a BR line (BR7, BR61 BR5, or BR4). The bus grant is made on
the corresponding grant line (BG7"BG6, BG5, or BG4). BR levels BR3
through BRO are used only by the software; devices are not assigned
to these ,BR levels. Unlike NPRs, a BR can be handled only between
instruction cycles. The BR levels are used for interrupts so that the
device can obtain service from the CPU. A request made at any BR
level requires processor intervention.

16

Chapter 2 - UNIBUS

Priority Levels
Because there are only five vertical priority levels, NPR, BR7, BR6,
BR5 and BR4, it is often necessary to connect more than one device to
a single level. When a number of devices are connected to the same
level, the situation is referred to a horizontal priority. If more than one
device makes a request at the same level, then the device electrically
closest to the CPU has the highest priority.

co
PllOI:ITY

DEV'CE
REOUEST

LINE

---NPIt---i~---i-'-----i~--------- -
~ ~ ~

_8A7---~----'----~~'----------- -----

~ ~
_8R6 ---i----=r-.----------------S
~ ~

_.R, -[5--------0, -[f]t-----, -------.-[f]~

-.o. -[f]--HS. -[f]-p -----.-dJ~[±J
INCREASING PRIORITY

Figure 2-2 Priority Control

The grant line for the NPR level is connected to all devices on that level
in a "daisy chain" arrangement. When an NPG is issued, it first goes to
the device electrically closest to the CPU. If that device did not make
the request, it permits the NPG to travel to the next device. Whenever
the NPG reaches a device that has made a request, that device cap­
tures the grant, and prevents it from passing to any subsequent device
in the chain.

BR chaining is identical to NPR chaining in function. However, each
BR level has its own BG chain. Thus, the grant chain for BR7 is the
BG7line which is chained through all devices at the BR7 level.

17

Chapter 2 - UNIBUS

PRIORITY ASSIGNMENTS
When assigning priorities to a device, three factors must be consid­
ered: operating speed, ease of data recovery, and service require­
ments.

Data from a fast device may be available for only a short time period.
Therefore, highest priorities are usually assigned to fast devices to
prevent loss of data and to prevent the bus from being tied up by
slower devices.

If data from a device are lost, recovery may be automatic, may require
manual intervention, or may not be possible. Therefore, highest
priorities are assigned to devices whose data cannot be recovered,
while lowest priorities are reserved for devices with automatic data
recovery features ..

CPU Priority Level
In addition to device priority levels, the CPU has a programmable
priority. The CPU can be set to anyone of eight priority levels. Priority
is not fixed; it can be raised or lowered by software. The CPU priority is
elevated from level 4 to .level 6 when the CPU stops servicing a BR4
device and starts servicing a BR6 device. This programmable priority
feature (the second vector word) permits masking of bus requests.
The CPU can hold off servicing lower priority devices until more criti­
cal functions are completed. For example, when CPU priority is set to
level 6, all bus requests on the same and lower levels are ignored (in
this case, all requests appearing on BR4, BRS, and BR6).

DATA TRANSACTIONS
There are four types of data transactions:

• DATO-a data word is transferred out of the master and into its
slave.

• DATOB-a data byte is transferred out of the master and into its
slave.

• DATI-a data word is tr~nsferred from the slave to the master. The
master may select the low or high byte if only a data byte is desired.

• DATIP-used with destructive readout devices such as core memo­
ry. It is similar to a DATI except that data are not rewritten (restored)
into the addressed memory location (data are restored during a
DATI) unless followed by DATO or DATOB to the same location.

EXECUTION OF DATA TRANSACTIONS
Before a device can perform a data transaction, it must:

• Obtain control of the bus via an NPR.

18

Chapter 2 - UNIBUS

• Select (address) the slave device it wishes to communicate with.
Each device on the bus has a unique address.

• Tell the slave what type of data transaction is to be performed.
• Wait for a response from the slave indicating the slave is present

and ready.

Data transactions between a master and a slave device are synchron­
ized by master sync (MSYNC) and slave sync (SSYN) signals. Below is
an example of how these signals are used during a typical DATI trans­
action:
1. Master selects the slave by addressing it, specifies the type of

data transaction, and requests data by asserting MSYN. ("Give
me data.")

2. Slave gathers the data and asserts SSYN when the data are
available. ("Here it is.")

3. Master drops MSYN after it accepts the data. ("Thank you, I have
the data.")

4. Slave removes data from the lines and acknowledges the master
by dropping SSYN. ("You're welcome.")

Signal

NPR

NPG

BR7
through
BR4

BG7
through
BG4

SACK

Name

Non­
proc­
essor
Request

Non­
proc­
essor
Grant

Bus
Request

Bus
Grant

Selection
Acknow­
ledge

Table 2-1

Source

AnyOMA
device

CPU

Any
device

Memory

Next bus
master

Bus Control

Dest.

UNIBUS
Controi
LOGIC

Next bus
master

UNIBUS
Control
LOGiC

Next bus
master

UNIBUS
Control
LOGiC

19

Timing

Asyn-
chronous

Asyn-
chronous

Func­
tion

Highest
priority
bus re­
quest

Transfers
bus
control

Asyn- Requests
chronous bus

control

After in- Transfers
struction bus

Re­
sponseto
NPGor
BG

control

Acknow­
ledges
grant and
inhibits
further
grants

Chapter 2 - UNIBUS

Signal Name Source Dest. Timing Func-
tion

BBSY Bus Busy Master All de- Asserted Asserts
vices by bus control of

master the bus

INTR Interrupt Master UNIBUS If control Transfers
Control has been bus
LOGIC gained by control to

a BR (not handling
NPR), routine
INTRas- inthe
serted af- proces-
ter BBSY sor

20

•

21

22

CHAPTER 3

ADDRESSING MODES

In the PDP-11 family, all operand addressing is accomplished through
the eight general purpose registers. To specify the location of data
(operand address) one of eight registers is selected with an accompa­
nying addressing mode. Each instruction specifies the:

• Function to be performed (operation code)
• General purpose register to be used when locating the source oper­

and and/or destination operand

• Addressing mode, which specifies how the selected registers are to
be used

The instruction format and addressing techniques available to the pro­
grammer are of particular importance. This combination of address­
ing modes and the instruction set provides the PDP-11 family with a
unique number of capabilities. The PDP-11 is designed to handle
structured data efficiently and with flexibility. The general purpose
registers implement these functions in the following ways, by acting:

• As accumulators: holding the data to be manipulated
• As pointers: the contents of the register are the address of the oper­

and, rather than the operand itself

• .As index registers: the contents of the register are added to an
additional word of the instruction to produce the address of the
operand; this capability allows easy access to variable entries in a
list

Using registers for both data manipulation and address calculation
results in a variable length instruction format. If registers alone are
used to specify the data source, only one memory word is required to
hold the instruction. In certain modes, two or three words may be
utilized to hold the basic instruction components. Special addressing
mode combinations enable temporary data storage for convenient
dynamic handling of frequently accessed data. This is known as stack
addressing. For a discussion about using the stack, please refer to the
Programming Techniques chapter in this handbook. Register 6 is al­
ways used as the hardware stack pointer, or SP. Register 7 is used by
the processor as its program counter (PC). Thus, the register arrange­
ment to be considered in conjunction with instructions and with ad­
dressing modes is: registers 0-5 are general purpose registers,
register 6 is the hardware stack pOinter, and register 7 is the program
counter. See the Instruction Set chapter for an explanation of the full
instruction set and instruction formats.

23

Chapter 3 - Addressing Modes

To illustrate the use of the various addressing modes clearly, the fol­
lowing instructions are used in this chapter:

Mnemonic Description Octal Code

CLR

CLRB

INC

INCB

COM

COMB

Clear (Zero the specified desti- 005000
nation)

Clear Byte (Zero the byte in the 105000
specified destination)

Increment (Add 1 to contents of 005200
destination)

Increment Byte (Add 1 to the 105200
contents of destination byte)

Complement (Replace the con- 0051 DO
tents of the destination by their
logical1's complem~nt; each 0
bit is set and each 1 bit is
cleared)

Complement Byte (Replace the 1051 DO
contents of the destination byte
by their logical1's complement;
each 0 bit is set and each 1 bit is
cleared)

ADD Add (Add source operand to 06SS00
destination operand and store
the result at destination ad-
dress)

DO = destination field (6 bits)
SS = source field (6 bits)
() = contents of
Single- and double-operand instructions use the following format.
The instruction format for the first word of all single-operand instruc­
tions (such as clear, increment, test) is:

15 6 5 o
MODE Rn

~--------- ---------') \ .. --------'
OP CODE--------I, 1
DESTINATION FIELD------------------'

• SPECIFIES DIRECT OR INDIRECT ADDRESS
•• SPECIFIES HOW REGISTER WILL BE USED

••• SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Single-Operand Instruction Format

24

Chapter 3 - Addressing Modes

The instruction format for the first word of the double-operand instruc­
tion is:

15 12 11 9 6

OP CODE MODE Rn MODE

,'---'.--'.----'~ ~---~) \. ..
SOURCE FIELD r .-
DESTINATION FIELD _________________ -JJ

• DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
•• SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

••• SPECIFIES A GENERAL REGISTER

Double-Operand Instruction Format

2 a
Rn

Bits 5:3 of the source or destination fields specify the binary code of
the addressing mode chosen. Bits 2:0 specify the general register to
be used.

The four basic addressing modes are:

• Register
• Autoincrement
• Autodecrement

• Index
In a register mode, the content of the selected register is taken as the
operand. In autodecrement mode, after the register has been modi­
fied, it contains the address of the operand. In autoincrement mode, at
the start of the instruction execution, the register contains the address
of the operand, and after the instruction is executed, the address of
the next higher word or byte memory location. In index mode, the
register is added to the displacement, X, to produce the address of the
operand.

When bit 3 of the source/destination field is set, indirect addressing is
specified and the four basic modes become deferred modes.

Prefacing the register operand(s) with an u@" sign or placing the
register in parentheses indicates to the MACRO-11 assembler that
deferred (or indirect) addressing mode is being used.

The indirect addressing modes are:

• Register deferred
• Autoincrement deferred
• Autodecrement deferred

• Index deferred

Program counter (register 7) addressing modes are:

• Immediate

• Absolute

25

Chapter 3 - Addressing Modes

• Relative
• Relative deferred

The addressing modes are explained and shown in examples in the
following, pages. They are summarized, in text and in graphic
representation, at the end of the chapter.

REGISTER MODE MODE 0 Rn
Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis­
ters can be used as simple accumulators. The operand is contained in
the selected register (low-order byte for byte operations). Assembler
syntax requires that a general register be defined as follows:

RO = %0
R1 = %1
R2 =%2

% indicates register definition.

Register Mode Example

Symbolic Instruction
Octal Code

INCR3 005203

Represented as:

Description

Add 1 to the contents
of R3.

R0
~-~

R1

I 0 0 0 0 1 0 1 0 1 , 0 I 0 , 0 j 0 I 0 ,1 1 I!>!,:LE~!_
1..:\ 1:::'"5 ~~~~~-~~~~6:::-)..l..\--;:5--'--:4:-'-""""3 ..l..-,""'2:'~~~20) REGISTER

OP CODE (tNC(0052})~ f
DESTINATION FIELO-----------'

. R2

R3

R4

Register Mode Example

Symbolic

ADD R2,R4

Instruction
Octal Code

060204

26

R5

R6(SP}

R7 (PC)

Description

Add the contents of
R2 to the contents of
R4, replacing the ori­
ginal contents of R4
with the sum.

Chapter 3 - Addressing Modes

Represented as:

B£FORE A:FTER

R21 000002 "21 000002

R41 000004 "41 000006

REGISTER DEFERRED MODE MODE 1 (Rn)
In register deferred mode, the address of the operand is stored in a
general purpose register. The address contained in the general pur­
pose register directs the CPU to the operand. The operand is located
outside the CPU, either in memory, or in an 1/0 register.

This mode is used for sequential lists, indirect pointers in data struc­
tures, top of stack manipulations, and jump tables.

Register Deferred Mode Example

Symbolic

CLR(R5)

Represented as:

BEFORE
ADDRESS SPACE

,.7. ~ ___ ~
1700 . 000100

Instruction
Octal Code

005015

REGISTER

05 1 001700

AUTOINCREMENT MODE

AFTER

Description

The contents of the
location specified in
R5 are cleared.

ADORESS SPACE REGISTER

"7.~ ___ ~
1700 . 000000

05 I 001700

MODE 2 (Rn)+
In autoincrement mode, the register contains the address of the oper­
and; the address is automatically incremented after the operand is
retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of oper­
ands stored in consecutive locations. When an instruction calls for
mode 2, the address stored in the register is incremented each time
the instruction is executed. It is incremented by 1 if you are using byte
instructions, by 2 if you are using word instructions. However, R6 and
R7 are always incremented by 2.

27

Chapter 3 - Addressing Modes

Autoincrement Mode Example

Symbolic Instruction
Octal Code

CLR (R5)+ 005025

Represented as:

AFTER

Description

Contents of R5 are
used as the address
of the operand. Clear
selected operand and
then increment the
contents of R5 by 2.

BEFORE
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

200~ 005025 <5 I 030000 I 20000 I 005025 <5 r 030002
::::;::::;'"

30000 11111. 30000

30002 30002
1-------1

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+
In autoincrement deferred mode, the register contains a pointer to an
address. The u+" indicates that the pOinter in Rn is incremented by 2
(for both word and byte operations) after the address is located. Mode
2, autoincrement, is used only to access operands that are stored in
consecutive locations. Mode 3, autoincrement deferred, is used to
access lists of operands stored anywhere in the system; i.e., the oper­
ands do not have to reside in adjoining locations. Mode 2 is used to
step through a table of operands, mode 3 is used to step through a
table of addresses.

Autoincrement Deferred Example

Symbolic Instruction
Octal Code

INC@(R2)+ 005232

28

Description

Contents of R2 are
used as the address
of the address of the
operand. The oper­
and is increased by 1,
contents of R2 are in­
cremented by 2.

Chapter 3 - Addressing Modes

Represented as:
BEFORE

ADDRESS SPACE

1010~
I012~

103QO 1-------1
10302 '--___ --'

REGISTER

02
'---~---'

AUTODECREMENT MODE

AFTER

ADDRESS SPACE

1010~
I012~

1030 0 1---'--'-'-'-'-'----1
10302 '---_--'--'----'

REGISTER

02 L.! _0_'0_3_02_--,

MODE 4 -(Rn)
In autodecrement mode, the register contains an address that is auto­
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step­
ping through a list of words or bytes in reverse order. The address is
decremented by 1 for bytes, by 2 for words. However, R6 and R7 are
always decremented by 2.

Autodecrement Mode Example

Symbolic Instruction
Octal Code

INCB -(RO) 105240

Represented as:

BEFORE
ADDRESS SPACE REGISTERS

AFTER:

Description

The contents of RO
are decremented by
1, then used as the
address of the oper­
and. The operand
byte is increased by
1.

ADDRESS SPACE REGISTER

1000 ! 005240 RO I 017776 1000 I 005240 RO L! _0_'7,7_74_-,

====:::;-----}
17774

1------1
17776 ,---....:..::..:..:c:..,----, 17776

AUTODECREMENT DEFERRED MODE MODE 5 @-(Rn)
In autodecrement deferred mode, the register contains a pointer. The
pointer is first decremented by 2 (for both word and byte operations),
then the new pointer is used to retrieve an address stored outside the
CPU. This mode is similar to autoincrement deferred, but allows step­
ping through a table of addresses in reverse order. Each address then
redirects the CPU to an operand. Note that the operands do not have
to reside in consecutive locations.

29

Chapter 3 - Addressing Modes

Autodecrement Deferred Mode Example

Symbolic Instruction
Octal Code

COM@-(RO) 005150

Represented as:

BER)RE
~ESSSPACE REGISTER

10100 1 012345

'0'02 t. ==~~==j
R0 Ll _0_' 0~71~6---J

10774 ~---,O..;.;I 0:.;.:100~-l
10776 L. ___ -I

INDEX MODE

AFTER

Description

The contents of RO
are decremented by 2
and then used as the
address of the ad­
dress of the operand.
The operand is 1's
complemented.

ADDRESS SPACE REGISTER

'0'00 L_'_65_43_2_1 R01 0'0774

,o,~ ~I'
'07741 0'0100 .
10776 L. ___ -I

MODE 6 X(Rn)
In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the
register, base address following the current instruction).

Index Mode Example

Symbolic

CLR200(R4)

Instruction
Octal Code

005064
000200

30

Description

The address of the
operand is deter­
mined by adding 200
to the contents of R4.
The location is then
cleared.

Chapter 3 - A ddressing Modes

Represented as:
BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

R41 001000 1020

1022 1---==::---1
R41 001000 1020

1022 1--::-___ ::---1

1024
1--===-;

1024 '--___J

1200~

INDEX DEFERRED MODE MODE 7 @X(Rn)
In index deferred mode, a base address is added to an index word.
The result is a pointer to an address, rather than the actual address.
This mode is similar to mode 6, except that it produces a pointer to an
address. The content of that address then redirects the CPU to the
desired operand. Mode 7 provides for the random access of operands
using a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction
Octal Code

ADD @1000(R2),R1

Represented as:

BEFORE
ADDRESS SPACE

1020

1022 1--::----::---1
1024

1------/

067201
001000

REGISTER

Rl I 001234

R2 I 000100

1050 I 000002 I
11~0 001050 1000

~+100
1100

31

Description

1000 and the con­
tents of R2 are
summed to produce
the address of the ad­
dress of the source
operand, the contents
of which are added to
the contents of R 1.
The result is stored in
R1.

AFTER
ADDRESS SPACE REGISTER

1020 RI I 001236

1022
R21 000100

1024

1050 I 000002

1100 I 001050

Chapter 3 - Addressing Modes

USE OF THE PC AS A GENERAL REGISTER
Register 7 is both a general purpose register and the program counter
on the PDP-11. When the CPU uses the PC to access a word from
memory, the PC is automatically incremented by two to contain the
address of the next word of the instruction being executed or the
address of the next instruction to be executed. When the program
uses the PC to access byte data, the PC is still incremented by two.

The PC can be used with all the PDP-11 addressing modes if you use
machine language only. There is no symbol in MACRO-11 for all PC
addressing modes so it will not accept all modes. There are four
modes in which the PC can provide advantages for handling position­
independent code and for handling unstructured data. These modes
refer to the PC and are termed immediate, absolute (or immediate
deferred), relative, and relative deferred.

PC IMMEDIATE MODE MODE 2 #n
Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper­
ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction

ADD#10,RO

Octal Code

062700
000010

32

Description

The value 10 is locat­
ed in the second word
ofthe instruction and
is added to the con­
tents of RO. Just be­
fore this instruction is
fetched and
executed, the PC
pOints to the first
word of the instruc­
tion. The processor
fetches the first word
and increments the
PC by two. The
source operand
mode is 27 (autoin­
crement the PC).
Thus, the PC is used
as a pOinter to fetch

Chapter 3 - A ddressing Modes

Represented as:

BEfORE

ADDRESS SPACE REGISTER

1020

1022

1020 1--_0_6_27_0o_-;, R0 1 _0_0_00_20_--,

1022 000010 ""'PC

1024 1------; 1024

the operand (the sec­
ond word of the in­
struction) before be­
ing incremented by
two to point to the
next instruction.

AFTER

ADDRESS SPACE REGISTER

062700 R01 000030

000010
...-----PC

PC ABSOLUTE MODE MODE 3 @#A
This mode is the equivalent of immediate deferred or autoincrement
deferred mode using the PC. The contents of the location following the
instruction are taken as the address of the operand. Immediate data
are interpreted as an absolute address (i.e., an address that remains
constant no matter where in memory the assembled instruction is
executed).

PC Absolute Mode Example

Symbolic Instruction Description
Octal Code

CLR@#1100

Represented as:
BEFORE

ADDRESS SPACE

20
1--------,-:---;

22
1---.,------;

PC RELATIVE MODE

005037
001100

PC

20

Clears the contents of
location 1100.

AFTER

ADDRESS SPACE

22 I-----:-::~:---;

24
1------;

1100 ~_o_o_oo_o_0--t
1102

'-------I

MODE 6
This mode is index mode 6 using the PC. The operand's address is
calculated by adding the word that follows the instructipn (called an
"offset") to the updated contents of the PC.

PC+2 directs the CPU to the offset that follows the instruction. PC+4
is summed with this offset to produce the effective address of the
operand. PC+4 also represents the address of the next instruction in
the program.

33

A

Chapter 3 - Addressing Modes

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, when
the instruction is relocated, the operand remains the same relative
distance away.
The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for writ- .
ing position-independent code.

PC Relative Mode Example

Symbolic

INCA

Represented as..:
BEFORE

ADDRESS SPACE

Instruction
Octal Code

005267
000054

1020 1--...:00.:.:5.=26"-.7 _I'.
1022 000054

I-------j
t024

1------1
1026 I-----l

PC

1024

l1~tl~6

PC RELATIVE DEFERRED MODE

Description

To increment location
A, contents of memo­
ry location in the sec­
ond word of the in­
struction are added
to PC to produce ad­
dress A. Contents of
A are increased by 1.

AFTER
ADDRESS SPACE

1020 0005267

1022 000054

1024 _PC

1026
I-------j

II 00 I 000001

MODE 7 @A
This mode is index deferred (mode 7), using the PC. A pOinter to an
operand's address is calculated by adding an offset (which follows the
instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one
additional level of addressing to obtain the operand. The sum of the
offset and updated PC (PC+4) serves as a pOinter to an address.
When the address is retrieved, it can be used to locate the operand.

PC Relative Deferred Mode Example

Symbolic

CLR@A

Instruction
Octal Code

005077
000020

34

Description

Adds the second
word of the instruc-

Chapter 3 - A ddressing Modes

Represented as:
BEFORE

ADDRESS SPACE

:~:~ 1--"-'"'-'--'---;
t------t

1024 1-=----1

tion to PC to produce
the address of the ad­
dress of the operand.
Clears operand.

AFTER

ADDRESS SPACE

:~:~I--=..:c.c:....--i
t-----j

10241-___ -i

10441 010100

10100 I 000000

SUMMARY OF ADDRESSING MODES

Basic Addressing Modes
Binary Mode Name
Code

000 o

010 2

100 4

Register

Autoincre­
ment

Autodecre­
ment

Symbolic

Rn

(Rn)+

-(Rn)

35

Function

Register contains
operand.

Register is used
as a pOinter to
sequential data,
then increment­
ed. RO-R5 are in­
cremented by 1
for byte and 2 for
word instruction.
R6-R7 are always
incremented by
2.

Register is de­
cremented and
then used as a
pOinter to se­
quential data.
RO-R5 are decre­
mented by 1 for
byte and by 2 for
word instruc­
tions. R6-R7 are
always decre­
mented by2.

Chapter 3 - Addressing Modes

110 6 Index X(Rn)

Indirect Addressing Modes
Binary Mode Name Symbolic
Code

001 Register @Rnor
Deferred (Rn)

011 3 Autoincre- @(Rn)+
ment Deferred

101 5 Autodecre- @-(Rn)
ment Deferred

36

Value X is added
to (Rn) to pro­
duce address of
operand. Neither
X nor (Rn) is
modified. X, the
index value, is al­
ways found in the
next memory lo­
cation and incre­
ments the PC.

Function

Register contains
the address of
the operand.

Register is first
used as a pOinter
to a word con-
taining the
address of the
operand, then in-
cremented (al-
ways by 2, even
for byte instr.uc-
tions).

Register is
decremented (al-
ways by 2, even
for byte instruc-
tions) and then
used as a pOinter
to a word con-
taining the ad-
dress of the op-
erand.

111 7

Chapter 3 - A ddressing Modes

Index @X(Rn)
Deferred

Value X (the in­
dex is always
found in the next
memory location
and increments
the PC by 2) and
(Rn) are added
and the sum is
used as a pOinter
to a word con­
taining the
address of the
operand. Neither
X nor (Rn) is
modified.

When used with the PC, these modes are termed immediate, absolute
(or immediate deferred), re.ative, and relative deferred.

PC Register Addressing Modes
Binary Mode Name
Code

010 2

011 3

110 6

111 7

Immediate

Absolute

Relative

Relative De­
ferred

Symbolic

#n

@#A

A

@A

37

Function

Operand is con­
tained in the in­
struction.

Absolute
address is con­
tained in the in­
struction.

Address of A,
relative to the
instruction, is
contained in the
instruction.

Address of A,
relative to the in­
struction, is con­
tained In the in­
struction.
Operand is con­
tained In A.

Chapter 3 - Addressing Modes

GRAPHIC SUMMARY OF PDP·11 ADDRESSING MODES

General Register Addressing Modes
R is a general register, 0 to 7.
(R) is the contents of that register.

Mode 0 Register

I INSTRUCTION 1----1

Mode 1 Register deferred

R

I INSTRUCTION ~ ADDRESS

Mode 2 Autoincrement
I

OPRR

B
OPERAND

OPR (R)

1----1 OPERAND

OPR (R)+

R.contains
operand.

Rcontains
address.

R contains ad­
dress, then incre­
ment (R). Note
that R6 and R7
are always incre­
mented by 2.

2 FOR WORD.
+1 FOR BYTE

Mode 3 Autoincrement
deferred

OPR
@(R)+

R contains ad,.
dress of address,
then increment
(R) by 2.

ADDRESS

38

Mode 4

Mode 5

Chapter 3 - A ddressing Modes

Autodecrement

Autodecrement
deferred

R

OPR -(R)

OPR@­
(R)

Decrement (R),
then R contains
address. Note
that R6 and R7
are always de­
cremented by 2.

Decrement (R) by
2, then R con­
tains address of
address.

I INSTRUCTION ~ ADDRESS ADDRESS ~ OPERAND

Mode 6

Mode 7

Index

PC~: : INSTR~CTION .~ ADDRESS

Index deferred

R

OPRX(R) (R)+X is ad­
dress. X is con­
tained in the
word following
the instruction.

~r-O-PE-RA-ND---'

OPR
@X(R)

(R)+X is address
of address. X is
contained in the
word following
the instruction.

ADDRESS ~ ADDRESS [---1 OPERAND

39

Chapter 3 - Addressing Modes

Program Counter Addressing Modes
Register = 7

Mode 2 Immediate OPR #n

Mode 3

Mode 6

Mode 7

PC I INSTRUCTION I
PC+2/ __ --'

Absolute OPR@#A

PC I INSTRUCTION I
PC+2 I A ~ OPERAND

Relative OPRA

PC I INSTRUCTION I

Relative deferred OPR@A

PC I INSTRUCTION I
PC+2 -_

40

Literal operand n
is contained in
the word follow­
ing the instruc­
tion.

Address A is
contained in the
word following
the instruction.

PC+4 + X is ad­
dress. PC+4 is
updated PC.

PC+4 + X is ad­
dress of address.
PC+4 is updated
PC.

41

42

CHAPTER 4

INSTRUCTION SET

The PDP-11 instruction set offers a wide selection of operations and
addressing modes. To save memory space and to simplify the im­
plementation of control and communications applications, the PDP-11
instructions allow byte and word addressing in both single- and dou­
ble-operand formats. By using the double-operand Instructions, you
can perform several operations with a single instruction. For example,
ADD A,B adds the contents of location A to location B, storing the
.result in location B. Traditional computers would implement this in­
struction this way:

LDAA
ADDB
STRB

The PDP-11 instruction set also contains a full set of conditional
branches which eliminate excessive use of jump instructions. PDP-11
instructions fall into one of seven categories:
• Single-Operand-the first part of the word, called the "opcode,"

specifies the operation; the second part provides information for
locating the operand.

• Double-Operand-the first part of the word specifies the operation
to be performed; the remaining two parts provide information for
locating two operands.

• Branch - the first part of the word specifies the operation to be
performed; the second part indicates where the action is to take
place in the program.

• Jump and Subroutine - these instructions have an opcode and
address part, and in the case of JSR, a register for linkage.

• Trap - these instructions contain an opcode only. In TRAP and
EMT, the low-order byte may be used for function dispatching.

• Miscellaneous - HALT, WAIT, and Memory Management.
• Condition Code - these instructions set or clear the condition

codes.

SINGLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
CLR(B)
COM(B)

clear
1's complement

43

INC(B)
DEC(B)
NEG(B)
TST(B)
NOP

Shift & Rotate
ASR(B)
ASL(B)
ROR(B)
ROL(B)
SWAB

Multiple Precision
ADC(B)
SBC(B)
SXT

Instruction Format

15

Chapter 4 -Instruction Set

Increment
decrement
2's complement (negate)
test
no operation

arithmetic shift right
arithmetic shift left
rotate right
rotate left
swap bytes

add carry
subtract carry
sign extend

I\. ••

OP CODE----------'T r
DESTINATION FIELD -----------------'

• SPECIFIES DIRECT OR INDIRECT ADDRESS
•• SPECIFIES HOW REGISTER WILL BE USED

••• SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single-Operand Instruction Format

The instruction format for single-operand instructions is:

• Bit 15 indicates word or byte operation.

o
Rn

• Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

• Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener­
al register field. These two fields are referred to as the destination
field.

DOUBLE·OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B)
ADD
SUB

move source to destination
add source to destination
subtract source from destination

44

Logical

CMP(B)
ASH
ASHC
MUL
DIV

BIT(B)
BIC(B)
BIS(B)
XOR

Chapter 4 - Instruction Set

compare source to destination
shift arithmetically
arithmetic shift combined
multiply
divide

bit test
bit clear
bit set
exclusive OR

Instruction Format

15 12 11 9 6 5

OP CODE MODE Rn MODE
, ,

\ ___ ._. __ ~ ___ .J) \ ••

SOURCE fiELD _________ -'4 f
DESTINATION FIELD --------------------'-

• DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
•• SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

••• SPECIFIES A GENERAL REGISTER

Figure 4-2 Double-Operand Instruction Format

o
Rn ...

The format of most double-operand instructions, though similar to that
of single-operand instructions, has two fields for locating operands.
One field is called the source field, the other is called the destination
field. Each field is further divided into addressing mode and selected
register. Each field is completely independent. The mode and register
used by one field may be completely different than the mode and
register used by another field.

• Bit 15 indicates word or byte operation except when used with op­
code 6, in which case it indicates an ADD or SUBtract instruction.

• Bits 14-12 indicate the opcode, which specifies the operation to be
done.

• Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the source
field.

• Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener­
al register field. These two fields are referred to as the destination
field.

45

Chapter 4 - Instruction Set

• Some double-operand instructions (ASH, ASHe, MUL, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
opcode. Bits 8-6 specify the destination register. Bits 5-0 contain the
source field. XOR has a similar format, except that the source is in a
register specified by bits 8-6, and the destination field is specified by
bits 5-0.

Byte Instructions
Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
orSUBB.

BRANCH INSTRUCTIONS
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BVe branch if overflow is clear
BVS branch if overflow is set
Bee branch if carry is clear
BeS branch if carry is set

Signed Conditional Branch
BGE branch if greater than or

BLT
BGT
BLE

equal (to zero)
branch if less than (zero)
branch if greater than (zero)
branch if less than or
equal (to zero)

SOB subtract one and branch (if not = 0)

Unsigned Conditional Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

Instruction Format

• The high byte (bits 15-8) of the instruction is an opcode specifying
the conditions to be tested.

• The low byte (bits 7-0) of the instruction is the signed offset value in

46

Chapter 4 - Instruction Set

15 o

'-----------.,~-----'} ,'-----~ ~----~

OP CODE-----------'f T
BYTE OFFSET ------------------'-

Figure 4-3 Branch Instruction Format

words that determines the new program location if the branch is
taken. Thus, program control can be transferred within a range of
-128 to + 127 words from the updated PC.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic
JMP
JSR
RTS
MARK

Instruction Format

JSR Format

15

Instruction
jump
jump to subroutine
return from subroutine
facilitates stack clean-up
procedures

, Rn, I MODE I
OP CODE--------J } '---I , ~i
liNKAGE POINTER------------'
DESTINATION FIELD-----------------'

Figure 4-4 JSR Instruction Format

• Bits 15-9 are always octal 004, the opcode for JSR.

Rn

• Bits 8-6 specify the link register. Any general purpose register may
be used in the link, except R6 (SP).

• Bits 5-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

• Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is R5, any register except R5 can be used for one destination
field.

47

Chapter 4 - Instruction Set

RTS Format

IS o
Rn

~------------~y~---------------~

~~~g: PoiNTER t 

Figure 4-5 RTS Instruction Format 

The RTS (return from subroutine) instruction uses the link to return 
(;ontrol to the main program once the subroutine is finished. 

• Bits 15-3 always contain octal 00020, which is the opcode for RTS. 

• Bits 2-0 specify anyone of the general purpose registers. 

• The register specified by bits 2-0 must be the same register used as 
the link between the JSR causing the jump and the RTS returning 
control. 

TRAPS AND INTERRUPTS 
Mnemonic 
EMT 
TRAP 
BPT 
lOT 
CSM 
RTI 
RTT 

Instruction 
emulator trap 
trap 
breakpoint trap 
input/output trap 
call to supervisor mode 
return from interrupt 
return from interrupt 

The three ways to leave a main program are: 

• Software exit - the program specifies a jump to some subroutine 

• Trap exit - internal hardware on a special instruction forces a jump 
to an error handling routine 

• Interrupt exit - external hardware forces a jump to an interrupt 
service routine 

In each case, a jump to another program occurs. Once the latter pro­
gram has been executed, control is returned to the proper point in the 
main program. 

MISCELLANEOUS INSTRUCTIONS 
Mnemonic 
HALT 
WAIT 
RESET 
MTPD 

Instruction 
halt 
wait for interrupt 
reset UNIBUS 
move to previous data space 

48 



Chapter 4 -Instruction Set 

MTPI move to previous instruction space 
MFPD move from previous data space 
MFPI move from previous instruction space 
MTPS move byte to processor status word 
MFPS move byte from processor status word 
MFPT move from processor type 

Note that on the PDP-11170, the four instructions for referencing the 
previous address space (MTPD, MTPI, MFPD, MFPI) use the General 
Register set indicated by PSW < 11> when they are executed. 

CONDITION CODE OPERATION 
Mnemonic 
CLC,CLV,CLZ,CLN,CCC 
SEC,SEV,SEZ,SEN,SCC 

The four condition code bits are: 

Instruction 
clear 
set 

• N, indicating a negative condition when set to 1 
• Z, indicating a zero condition when set to 1 
• V, indicating an overflow condition when setto 1 
• C, indicating a carry condition when set to 1 

These four bits are part of the processor status word (PS). The result 
of any single-operand or double-operand instruction affects one or 
more of the four condition code bits. A new set of condition codes is 
usually created after execution of each instruction. Some condition 
codes are not affected by the execution of, certain instructions. The 
CPU may be asked to check the condition codes after execution of an 
instruction. The condition codes are used by the various instructions 
to check software conditions. 

Z bit - Whenever the CPU sees that the result of an instruction is zero, 
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a 
number of ways of obtaining a zero result: 

• Adding two numbers equal in magnitude but different in sign 

• Comparing two numbers of equal value 
• Using the CLR or BIC instruction 

N blt,- The CPU looks only at the sign bit of the result. If the sign bit is 
set, indicating a negative value, the CPU sets the N bit. If the sign bit is 
clear, indicating a positive value, then the CPU clears the N bit. 

C bit - The CPU sets the C b.it automatically when the result of an 
instruction has caused a carry out of the most significant bit of the 
result. Otherwise, the C bit is cleared. During rotate instructions (ROL 
and ROR), the C bit forms a buffer between the most significant bit and 
the least significant bit of the word. A carry of 1 sets the C bit while a 

49 



Chapter 4 - Instruction Set 

carry of 0 clears the C bit. However. there are exceptions. For 
example: 

• SUB and CMP set the C bit when there Is no carry 

• INC and DEC do not affect the C bit 
• COM always sets the C bit. TST always clears the C bit 

V bit - The V bit is set to indicate that an overflow condition exists. An 
overflow means that the result of an instruction is too large to be 
placed in the destination. The hardware uses one of two methods to 
check for an overflow condition. 

One way is for the CPU to test for a change of sign. 

• When using single-operand Instructions. such as INC. DEC. or NEG. 
a change of sign indicates an overflow condition. 

• When using double-operand instructions. such as ADD. SUB. or 
CMP. in which both the source and destination have like signs. a 
change of sign in the result indicates an overflow condition. 

Another method used by the CPU Is to test the N bit and C bit when 
dealing with shift and rotate instructions. 

• If only the N bit is set. an overflow exists. 

• If only the C bit is set. an overflow exists. 
• If both the Nand C bits are set. there is no overflow condition. 

More than one condition code can be set by a particular instruction. 
For example. both a carry and an overflow condition may exist after 
instruction execution. 

CONDITION CODE OPERATORS 

o o 

Figure 4-6 Condition Code Operators' Format 

Instruction Format 
The format of the condition code operators is: 

• Bits 15-5 - the opcode 
• Bit 4 - the "operator" which indicates set or clear with the values 1 

and 0 respectively. If set. any selected bit is set; if clear. any selected 
bit is cleared. 

• Bits 3-0 - the mask field. Each of these bits corresponds to one of 
the four condition code bits. When one of these bits is set. then the 

50 



Chapter 4 - Instruction Set 

corresponding condition code bit is set or cleared depending on the 
state of the "operator" (bit 4). 

EXAMPLES 
The following examples and explanations illustrate the use of the vari­
ous types of instructions in a program. 

Single-Operand Instruction Example 
This routine uses a tally to control a loop, which clears out a specific 
block of memory. The routine has been set up to clear 308 byte loca­
tions beginning at memory address 600. 

INIT: MOV #600,RO 
MOV#30,R1 

LOOP: CLRB (RO)+ 
DECR1 
BNELOOP 
HALT 

Program Description 
• The CLRB (RO)+ instruction clears the content of the location speci­

fied by RO and increments RO. 

• RO is the pOinter. 
• Because the autoincrement addressing mode is used, the pointer 

automatically moves to the next memory location after execution of 
the CLRB instruction. 

• Register R1 indicates the number of locations to be cleared and is, 
therefore, a counter. Counting is performed by the DEC R1 instruc­
tion. Each time a location is cleared, it is counted by decrementing 
R1. 

• The Branch if Not Zero, BNE, instruction checks for done. If the 
counter is not zero, the program branches back to clear another 
location. If the counter is zero, indicating done, then the program 
halts. 

Double·Operand Instruction Example 
This routine moves characters to be printed from location 600 into a 
print buffer area in memory. 

INIT: 

START: 

MOV#600, RO 
MOV #prtbuf, R1 
MOV#76, R2 

MOVB (RO)+, (R1)+ 

;set up source address 
;set up destination address 
;set up loop count 

;move one character 
;and increment 
;both source and 

51 



Chapter 4 - Instruction Set 

DECR2 
BNESTART 
HALT 

Program Description 

;destinatlon addresses 
;decrement count by one 
;Ioop back If 
;decremented counter is not 
;equal to zero 

• MOV is the instruction normally used to set up the initial conditions. 
Here, the first MOV places the starting address (600) into RO, which 
will be used as a pointer. The second MOV places the starting 
address of the print buffer into R1. The third MOV sets up R2 as a 
counter by loading th,e desired number of locations (76) to be print­
ed. 

• The MOVB instruction moves a byte of data to the printer buffer. The 
data come from the location specified by RD. The pOinters RO and 
R1 are then incremented to point to the next sequential location. 

• The counter (R2) is then decremented to indicate one byte has been 
transferred. 

• The program then checks the loops for done with the BNE instruc­
tion. If the counter has not reached zero, indicating more transfers 
must take place, then the BNE causes a branch back to START and 
the program continues. 

• When the counter (R2) reaches zero, indicating all data have been 
transferred, the branch does not occur and the program halts. 

Branch Instruction Example 

NOTE 
Branch instruction offsets are limited to the range of 
+1778 to -2008 words~ 

A payroll program has set up a series of words to identify each em­
ployee by his badge number. The high byte of the word contains the 
employee's badge number, the low byte contains an octal number 
ranging from 0 to 13 which represents his salary. These numbers 
represent steps within three wage classes to identify which employees 
are paid weekly, monthly, or quarterly. It is time to make out weekly 
paychecks. Unfortunately, employee information has been stored in a 
random order. The problem is to extract the names of only those 
employees who receive a weekly paycheck. Employee payroll num­
bers are assigned as follows: 0 to 3 - Wage Class I (weekly), 4 to 7 -
Wage Class II (monthly), 10 to 13 - Wage Class 11\ (quarterly). 

52 



Chapter 4 - Instruction Set 

600 is the starting address of memory block containing the employee 
payroll information. 1264 is the final address of this data area. The 
following program searches through the data area and finds all 
numbers representing Wage Class I, and, each time an appropriate 
number is found, stores the employee's badge number (just the high 
byte) on a Last-in/First-out stack which begins at location 4000. 

INIT: MOV #600, RO 
MOV #4000, R1 

START: CMPB(RO)+,#3 

BHI CONT 

STACK: MOVB (RO),-(R1) 

CONT: INCRO 

CMP #1264, RO 

BHISSTART 

Program Description 
• RO becomes the address pOinter, R1 the stack pOinter. 
• Compare the contents of the first low byte with the number 3 and go 

to the first high byte. 

• If the number is more than 3, branch to continue. 
• If no branch occurs, it indicates that the number is 3 or less. There­

fore, move the high byte containing the employee's number onto the 
stack as indicated by stack pOinter R1. 

• RO is advanced to the next low byte. 
• If the last address has not been examined (1264), this instruction 

produces a result equal to or greater than zero. 

• If the result is equal to or greater than zero, examine the next memo­
ry location. 

INSTRUCTION SET 
The PDP-11 instruction set is presented in the following section. For 
ease of reference, the instructions are listed alphabetically. 

SPECIAL SYMBOLS 
You will find that a number of special symbols are used to describe 

53 



Chapter 4 -Instruction Set 

certain features of individual instructions. The commonly used sym­
bols are explained below. 

Symbol Meaning 

MN Maintenance instruction 

SO 

DO 

PC 

MS 

CC 

(x) 

src 

dst 

tmp 

-
(SP)+ 

-(SP) 

A 

v 

Reg or R 

Rv1 

R, Rv1 

B 

M.P.I. 

M.N.I. 

Single-operand instruction 

Double-operand instruction 

Program control instruction 

Miscellaneous instruction 

Condition Code 

Contents of memory location whose address is x 

Source address 

Destination address 

Contents of temporary internal register 

Becomes, or moves into. For example, (dst) - (src) 
means that the source becomes the destination or 
that the source moves into the destination location. 

Popped or removed from the hardware stack 

Pushed or added to the hardware stack 

Logical AND 

Logical inclusive OR (either one or both) 

Logical exclusive OR (either one, but not both) 

Logical NOT 

Contents of register 

Contents of register R if an odd-numbered register is 
specified. Contents of the register following R if R is 
an even-numbered register 

32-bit quantity. obtained by concatenating Rand Rv1 

Byte 

Most Positive Integer-077777 (word) or 177 (byte) 

Most Negative Integer-100000 (word) or 200 (byte) 

NOTE 
Condition code bits are considered to be cleared 
unless they are specifically listed as set. 

54 



Chapter 4 - Instruction Set 

SUMMARY OF PDP-11 INSTRUCTION SET 

Basic PDP-11 Instruction Set 
ADC BIT COM ROL 

ADCB BITB COMB ROLB 

ADD BlE DEC ROR 

ASL BLO DECB RORB 

ASlB BLOS EMT RTI 

ASR BLT HALT RTS 

ASRB BMI INC RTT 

BCC BNE INCB SBC 

BCS BPl lOT SBCB 

BEQ BPT JMP SCC,SEN, 
SEZ, 
SEV,SEC 

BGE BR JSR SOB 

BGT BVC MARK SUB 

BHI BVS MOV SXT 

BHIS ClR MOVB SWAB 

BIC ClRB NEG TRAP 

BICB CCC, CLN, NEGBB TST 
CLZ, 
CLV,CLC 

BIS CMP NOP TSTB 

BISB CMPB RESET XOR 

WAIT 
The basic PDP-11 instructions are standard on: 

• LSI-11 
• lSI-11/2 

• PDP-11/03 

• PDP-11/23 

• PDP-11/24 

• PDP-11/34A 

• PDP-11/44 

• PDP-11170 

55 



Chapter 4 - Instruction Set 

The PDP-11/04 implements all basic instructions except for MARK, 
RH, SOB, SXT, and XOR. 

Extended Integer Instructions (EIS) 
ASH 
ASHe 
DIV 
MUL 

EIS is standard on: 

• PDP-11/23 
• PDP-11/24 
• PDP-11/34A 

• PDP-11/44 

• PDP-11170 

EIS is also available as an option on: 

• LSI-11 
• LSI-11/2 
• PDP-11/03 

MFPD, MFPI, MTPD, MTPI 
Available on PDP-11/23, PDP-11/24, PDP-11/34A, PDP-11/44, PDP-
11/70. 

MFPS 
Available on LSI-11, LSI-11/2, PDP-11/03, PDP-11/23, PDP-11/24, 
PDP-11/34A. 

SPL 
Available only on PDP-11/44, PDP-11170. 

CSM 
Available on PDP-11/44 only. 

MFPT 
Available on PDP-11/23, PDP-11/24, PDP-11/44. 

56 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

opposite sign. 
C: set if there is a carry 

from the most sig-
nificant bit of the (") 

;:,-

result. II> 
'tI 
ib ... 
""-ASH DO 072RSS R - R shifted ar- N: set if result < 0 The contents of the register are I 01 Arithmetic ithmetically NN Z: set if result = 0 shifted right or left the number of 5" 00 

'" Shift places to right or V: set if sign of register times specified by the shift count ::::-c:: 
left where NN = changed during (Le., bits <5:0> of the source op- 0 g. 
(src) <5:0> shift. Cleared if NN erand). The shift count is taken as :3 

= O. the low order 6 bits of the source en 
~ 

C: loaded from last bit operand. This number ranges from 
shifted out of regis- -32 to +31. Negative is a right shift 
ter. Cleared if NN = and positive is a left shift. 
O. 

ASHC DO 073RSS tmp-R, Rv1 N: set if result < 0 The contents of the specified regis-
Arithmetic tmp -tmp shift- Z: set if result = 0 ter R and the register Rv1 are treat-
Shift ed NN bits V: set if sign bit ed as a single 32-bit operand, and 
Combined R-tmp<31: changes during the are shifted by the number of bits 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonic! 
Instruction Type OPCode Operation Condition Codes Description 

Shift Left Z: set if the result = 0 status word is loaded from the 
V: loaded with the ex- high-order bit of the destination. 

clusive OR of the N ASL performs a signed multiplica-
bit and C bit (as set tion of the destination by 2 with C) 

by the completion of overflow indication. For example, 
;:,-
III 

1:) 

the shift operation). -1 shifted left yields -2, +2 shift- CD ... 
C: loaded with the ed left yields +4, and -3 shifted .... 

high-order bit of the left yields -6. I 
0) S-o destination. C'n 

~ c:: 
0 

ASR SO 0062DD (dst) - (dst) N: set if the high-order Shifts all bits of the destination g. 
ASRB SO 1062DD shifted one place bit of the result is set right one place. The high-order bit 

:;) 

Ci) 

Arithmetic to the right (result < 0) is replicated. The C bit is loaded ! 

Shift Right Z: set if the result = 0 from the low-order bit of the desti-
V: loaded from the ex- nation. ASR performs signed divi-

clusive OR of the N sion of the destination by 2, round-
bit and C bit (as set ed to minus infinity. -1 shifted 
by the completion of right remains -1, +5 shifted right 
the shift operation). yields +2, -5 shifted right yields 

C: loaded from iow- -3. 
order bit of the des-
tination 





Table 4.1 PDP-11 Instruction Set, cont. 

Mnemonic! 
Instruction Type OPCode Operation Condition Codes Description 

BGT PC 003000 PC-PC+ N: unaffected Causes a branch if Z is clear and N 
Branch if PLUS 8- (2 X offset) if Z: unaffected equals V. Thus, BGT never branch-
Greater bit offset Zv(N vV) = 0 V: unaffected es following an operation that add- (') 

than C: unaffected ed two negative numbers, even if 
:;,-
III 
"tI 

overflow occurred. In particular, CD ... 
BGT never causes a branch if it fol- ..... 
lows a CMP instruction operating I 

en S I\) on a negative source and a positive C/) 

destination (even if overflow oc- 2" 
(') 

curred). Further, BGT always g. 
causes a branch when it follows a 

:::. 
(I) 

CMP instruction operating on a ~ 

positive source and negative desti-
nation. BGT does not cause a 
branch if the result of the previous 
operation was 0 (without overflow). 

BHI PC 101000 PC-PC+ N: unaffected Causes a branch if the previous 
Branch if PLUS 8- (2 X offset) if Z: unaffected operation causes neither a carry 
Higher bit offset C = OandZ = 0 V: unaffected nor a 0 result. This will happen in 

C: unaffected comparision (CMP) operations as 





m 
~ 

Mnemonic! 
Instruction 

BlE 
Branch if 
less 
than or 
Equal to 

Type 

PC 

Table 4-1 PDP-11 Instruction Set, cont. 

OPCode Operation Condition Codes 

C: unaffected 

003400 PC-PC + N: unaffected 
PLUS 8- (2 X offset) if Z: unaffected 
bit offset Zv(N vV) = 1 V: unaffected 

C: unaffected 

Description 

source nor destination operands 
are affected. The BIT instruction 
may be used to test whether any of 
the corresponding bits that are set 
in the destination are clear in the 
source. 

Causes a branch if Z is set or if N 
does not equal V. Thus, BlE al­
ways branches following an opera­
tion that added two negative num­
bers, even if overflow occurred. In 
particular, BlE always causes a 
branch if it follows a CMP instruc­
tion operating on a negative source 
and a positive destination (even if 
overflow occurred). Further, BlE 
never causes a branch when it fol­
lows a CMP instruction operating 
on a positive source and negative 
destination. BlE always causes a 

Q 
III 
"lJ 
<b ... 
"'" I 
~ 
2" o g. 
::;, 
C/) 

~ 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

ther, BL T never causes a branch 
when if follows a CMP instruction 
operating on a positive source and 

() 
negative destination. BL T does not ::J-

III 

cause a branch if the result of the "0 
CD 

previous operation was 0 (without ..... 
~ 

overflow). I 
0> 
0> 

BMI PC 100400 PC-PC+ N: unaffected Tests the state of the N bit and 
S-
CI) 
::;-

Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if N is set. Used to c:: 
C"l 

Minus bit offset N=1 V: unaffected test the sign (most significant bit) a: :::. 
C: unaffected of the result of the previous opera- (I,) 

tion. ~ 

BNE PC 001000 PC-PC+ N: unaffected Tests the state of the Z bit and 
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if the Z bit is clear. 
Not Equal bit offset Z=O V: unaffected BNE is the complementary opera-

C: unaffected tion to BEQ. It is used to test 
inequality following a CMP, to test 
that some bits set in the destination 
were also set in the source, follow-
ing a BIT, and generally, to test that 





Table 4·1 PDP·11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

BVS PC 102400 PC-PC+ N: unaffected Tests the state of V bit and causes 
Branch if PLUS 8· (2 X offset) if l: unaffected a branch if the V bit is set. BVS is 
V bit Set bit offset V=1 V: unaffected used to detect arith metic overflow (') 

:::.. 
C: unaffected in the previous operation. 

III 
13 
CD .., 

CLR SO 0050DD (dst) -0 N: cleared Contents of specified destination 
.... 
I 

en CLRB 1050DD l: set are replaced with zeros. S-O) en 
Clear V: cleared 2 

C: cleared (") 

g. 
:::s 

C CC 000240 Clear condition code bits. Selectable combinations of these bits may be CI) 

!a 
Clear PLUS 4- cleared together. Condition code bits corresponding to bits in the condition 
Selected bit mask code operator (bits 0-3) are modified. Clears the bit specified by the mask; i.e., 
Condition bit 0, 1, 2, or 3. Bit 4 is a o. 
Code Operation: 
Bits PSW <3:0> - PSW <3:0> A[ -mask <3:0> 1 

CCC CC 00257 N,l, V, C-O 
Clear all 
Condition 





Table 4·1 PDP·11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

row into the most operation is (src) -(dst). not (dst) 
significant bit, i.e., if - (src). 
(src)+ -(dst)+ 1 was 
less than 216. 

C) 
::3" 
II> 
"tI 

COM SO 0051DD (dst) - - (dst) N: set if most signifi· Replaces the contents of the desti· CD .... 
COMB 10510D cant bit of result = 1 nation address by their logical "'"' I 

...... Comple- Z: set if result = 0 complements (each bit equal to 0 ::;-
0 (I) 

ment V: cleared set and each bit equal to 1 ~ c:: 
C: set cleared). 0 g. 

::3 

CSM PC 0070DD IfMMR3<3> = N: unaffected CSM may be executed in User or C/) 

~ 
Call to 1 and current Z: unaffected Supervisor Mode. but is an illegal 
Supervisor mode ¢ Kernel V: unaffected instruction in Kernel mode. CSM 
Mode then: C: unaffected copies the current stack pOinter to 
(Available begin the Supervisor Mode (SP). switch-
on PDP- Supervisor SP - es to Supervisor Mode. stacks 
11/44 only) current mode three words on the Supervisor 

SP; stack, (the PSW with the Condition 
temp <15:4>- Codes cleared, the PC. and the ar-
PSW <15:4>; gument word addressed by the op-





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Descri ption 

V: set if (src) = 0 or if 
quotient cannot be 
represented as a 
16-bit 2's comple- C') 

:3-
ment number. R, Q) 

1:) 

Rv1 are unpredicta- CD .... 
ble if V is set and C ~ 

is clear . I ....... :;-I\) 
C: set if divide by 0 is en 

~ 
attempted c: 

() 

g. 
;:, 

EMT PC 104000 -(SP)-PS N: loaded from trap All operation codes from 104000 to en 
~ 

Emulator to -(SP)-PC vector 104377 are EMT instructions and 
Trap 104377 PC-(30) Z: loaded from trap may be used to transmit informa-

PS -(32) vector tion to the emulating routine (e.g., 
V: loaded from trap function to be performed). The trap 

vector vector for EMT is at address 30. 
C: loaded from trap The new PC is taken from the word 

vector at address 30; the new central 
processor status word (PS) is tak-
en from the word at address 32. 





...... 
-"" 

Mnemonic/ 
Instruction 

JMP 
Jump 

Type 

PC 

Table 4-1 PDP-11 Instruction Set, coni. 

OPCode Operation 

000100 PC-dst 

Condition Codes 

C: loaded from trap 
vector 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

Description 

is transmitted in the low byte. 

JMP provides more flexible pro­
gram branching than provided with 
the branch instruction. It is not lim­
ited to + 177 8 and - 2008 as are 
branch instructions: JMP does 
generate a second word, which 
makes it slower than branch in­
structions. Control may be trans­
ferred to any location in memory 
(no range limitation) and can be 
accomplished with the full flexibili­
ty of the addressing modes with 
the exception of register mode o. 
Execution of a jump with mode 0 
will cause an illegal instruction 
condition and a trap through loca­
tion 4. (Program control cannot be 
transferred to a register.) Register 

~ 
"tI 
Q)" .... 

"" I 
~ 
~ g. 
::l 

~ 





" O'l 

Mnemonic! 
Instruction Type 

Table 4-1 PDP-11 Instruction Set, cant. 

OPCode Operation 

subroutine ad­
dress) 

Condition Codes Description 

saved in a re-entrant manner on 
the R6 stack, execution of a sub­
routine may be interrupted, and 
the same subroutine re-entered 
and executed by an interrupt ser­
vice routine. Execution of the initial 
subroutine can then be resumed 
when other requests are satisfied. 
This process (called nesting) can 
proceed to any level. 

JSR PC, dst is a special case of the 
PDP-11 subroutine call suitable for 
subroutine calls that transmit par­
ameters through the general pur­
pose registers. JSR, with the PC as 
the linkage register, saves the use 
of an extra register. 

Note: If the register specified in the 
first operand register is autoincre­
mented or autodecremented in the 
second operand (dst) evaluation, 

~ 
~ 
~ ... 
I 
~ 
~ 
g. 
:::1 
CIl 
~ 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonicl 
Instruction Type OPCode Operation Condition Codes Description 

PDP-
11/03,and 
PDP-
11/04) 0 ::r 

III 
't) 

MFPS MS 106700 (dst) - PS<7:0> N: set if PS bit 7 = 1 The 8-bit contents of the PS are CD ., 
Move Byte dst lower 8 bits Z: set if PS <7:0> = 0 moved to the effective destination. ~ 

I ...... from PSW V: cleared If destination is mode 0, PS bit 7 is :r co 
(Not avail- C: not affected sign extended through the upper I'll 

:::-c:: 
able on byte of the register. The destina- 0 

PDP- tion operand is treated as a byte a-
:l 

11/04, address. CI) 

~ 
PDP-
11/44,and 
PDP-
11/70) 

MFPT MS 000007 RO<7:0>- N: unaffected No source operands are used. The 
Move From processor model Z: unaffected MFPT instructions returns in the 

. Processor code 'V: unaffected low byte of RO a processor model 
(Available on RO<15:8> - C: unaffected code (1 on the PDP-11 144,3 on the 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonicl 
Instruction Type OPCode Operation Condition Codes Description 

Previous V: cleared bits <15:14> and stores that word 
Data space C: unaffected into an address in previous space 
MTPI determined by PS bits <13:12>. 
Move To The destination address is com- o 

:::J-

Previous puted using the current registers 
III 
"0 

Instruction and memory map. CD ., 
.Q,. 

space (Not MTPD is identical to MTPI on the I 
<Xl available PDP-11 124 and PDP-11 134A, and S-o 

'" on LSI-11, on the PDP-11 144 and PDP-11/70 ~ 
t:: 

LSI-11/2, when D-space is disabled. 0 g. 
PDP- :3 

11/03, (I) 

~ 
and 
PDP-
11/04) 

MTPS MS 1064SS PS - (src) N: set according to The eight bits of the effective oper-
Move Byte effective src oper- and replace the current contents of 
ToPSW and 0-3 the PS <7:0>. The source operand 
(Available Z: same as above address is treated as a byte ad-
on PDP- V: same as above dress. Note that PS bit 4 cannot be 





00 
N 

Mnemonic/ 
Instruction 

RESET 

ROL 
ROLB 
Rotate Left 

Type 

MS 

SO 

Table 4-1 PDP-11 Instruction Set, cont. 

OPCode Operation 

000005 

006100 
106100 

(dst) - (dst) 
rotate left one 
place 

Condition Codes 

C: unaffected 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

N: set if the high-order 
bit of the result word 
is set (result < 0). 

Z: set if all bits of the 
result = a 

V: loaded with the ex­
clusive OR of the N 
bit and C bit (as set 
by the completion of 
the rotate opera­
tion). 

C: set if the high-order 
bit of the destination 
was set prior to in­
struction execution. 

Description 

Sends INIT on the UNIBUS for 10 
ms. All devices on the unit are re­
set to their state at power-up. i 

CD .... 
"'" I Rotates all bits of the destination _ 

left one place. The high-order bit is ~ 
loaded into the C bit of the status § 
word and the previous contents of 
the C bit are loaded into the low-
order bit of the destination. 

g. 
:J 

~ 





Table 4·1 PDP·11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

RTS PC 00020R PC -(reg) N: unaffected Loads contents of register into PC 
Return (reg) - (SP)+ Z: unaffected and pops the top element of the R6 
from V: unaffected stack into the specified register. 
Subroutine C: unaffected Return from a non-re-entrant sub- 0 :;,-

routine is made through the same III 
'tl 

register that was used in its call. Q;' 

"" Thus, a subroutine called with a .... 
CD JSR PC,dst exits with an RTS PC, 

I 
~ S-

and a subroutine called with a JSR <II 

2" RS,dst may pick up parameters (') 

with addressing modes (RS)+, g. 
:::l 

X(RS), or @X(RS) and finally exit, (/) 

with an RTS RS. ~ 

RTT MS 000006 PC-(SP)+ N: loaded from current This is the same as the RTl instruc-
Return PS -(SP)+ R6stack tion (used to exit from an interrupt 
from Z: loaded from current or trap service routine), the PC and 
Interrupt R6stack PS are restored (popped) from the 

V: loaded from current processor stack; if the RTI sets the 
R6stack T bit in the PS, a trace trap will oc-

C: loaded from current cur prior to executing the next in-
R6 stack struction) except that it inhibits a 





Table 4-1 PDP-11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

Condition Operation: 
Codes PSW <3:0> - PSW <3:0> v mask <3:0> 

SCC CC 000277 N,Z, V, C-1 () 
:::r-

Setal! 
III 
"l:l 

Condition 
CD 
'"' .e.. 

Codes I 
00 
0) 5" 

SEC CC 000261 C-1 
C'I) 

2 
SetC (') 

g. 
:::. 

SEN CC 000270 N-1 CIl 
~ 

SetN 

SEV CC 000262 V-1 
Set V 

SEZ CC 000264 Z-1 
SetZ 

SOB PC 077ROO R-R-1 N: unaffected The register is decremented. If it is 





Tabl~ 4-1 PDP-11 Instruction Set, cont. 

Mnemonic/ 
Instruction Type OPCode Operation Condition Codes Description 

(dst)+ ~ (src)+ 1 arithmetic overflow dress. The original contents of the 
as a result of the op- destination are lost. The contents 
eration, i.e., if the of the source are not affected. In 
operands were of double precision arithmetic, the C 

C) 
:::J-
III 

opposite signs and bit, when set, indicates a borrow. "lJ 
CD 

the sign of the .... 
""-

source is the same I 
co as the sign of the S" co en 

result. :::-c:: 
C: set if there is a bor- n g-

row into the most :::. 

significant bit of the 
CIl 
~ 

result, i.e., if (dst) + 
~ (src)+1 was less 
than 2'6. 

SWAB SO 000300 tmp -(dst) N: set if high-order bit Exchanges high-order byte and 

Swap Bytes <7:0> of low-order byte low-order byte of the destination 

(dst) <7:0> - (bit 7) of result is set word (destination must be a word 
(dst) <15:8> Z: set if low-order byte address). 
(dst) <15:8>- of result = 0 





<0 o 

Mnemonic/ 
Instruction 

WAIT 
Wait for 
Interrupt 

Type 

MS 

Table 4-1 PDP-11 Instruction Set, cont. 

OPCode Operation 

000001 

Condition Codes 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

Description 

Provides a way for the processor to 
relinquish use of the bus while it 
waits for an external interrupt. Hav­
ing been given a WAIT command, 
the processor will not compete for 
the bus by fetching instructions or 
operands from memory. This per­
mits higher transfer rates between 
device and memory, since no 
processor-induced latencies will 
be encountered by bus requests 
from the device. In WAIT, as in all 
instructions, the PC points to the 
next instruction following the WAIT 
operation. Thus, when an interrupt 
causes the PC and PS to be 
pushed onto the stack, the address 
of the next instruction following the 
WAIT is saved. The exit from the 
interrupt routine (Le., execution of 

~ 
~ 
CD ... ... 
I 
~ 
2 
(") 

g. 
:::s 
(I) 

~ 





92 



CHAPTER 5 

PROGRAMMING TECHNIQUES 

The PDP-11 processors offer you a great deal of programming flexibil­
ity and power. The combination of the instruction set, the addressing 
modes, and the programming techniques makes it possible to develop 
new softWare or to utilize old programs effectively. The programming 
techniques in this chapter show methods which exploit the unique 
capabilities of the PDP-11 processors. The techniques specifically dis­
cussed are: position-independent coding (PIC), stacks, subroutines, 
interrupts, reentrancy, coroutines, recursion, processor traps, and 
conversion. 

POSITION-INDEPENDENT CODE 
The output of a MACRO-11 assembly is a relocatable object module. 
The task builder or linker binds one or more modules together to 
create an executable task image. Once built, a task can generally be 
loaded and executed only at the address specified at link time. This is 
because the linker has had to modify some instructions to reflect the 
memory locations in which the program is to run. Such a body of code 
is considered position dependent (Le., dependent on the virtual ad­
dresses to which it was bound). 

All PDP-11 processors offer addressing modes that make it possible 
to write instructions that are not dependent on the virtual addresses to 
which they are bound. A body of such code is termed position-inde­
pendent and can be loaded and executed at any virtual address. Posi­
tion-ind.ependent code can improve system efficiency, both in the use 
of virtual address space and in the conservation of physical memory. 

In multiprogramming systems like lAS and RSX-11M, it is important 
that many tasks be able to share a single physical copy of common 
code; for example, a library routine. To make the optimum use of a 
task's virtual address space, shared code should be position-indepen­
dent. Code that is not position independent can also be shared, but it 
must appear in the same locations in every task using it. This restricts 
the placement of such code by the task builder and can result in the 
loss of virtual addressing space. 

The construction of position-independent code is closely linked to the 
proper use of PDP-11 addressing modes. The remainder of this 
explanation assumes that you are familiar with the addressing modes 
described in Chapter 3. 

All addressing modes involving only register references are position 
independent. These modes are: 

93 



Chapter 5-Programming Techniques 

R 
(R) 
(R)+ 
@(R)+ 
-(R) 
@-(R) 

register mode 
register deferred mode 
autoincrement mode 
autoincrement deferred mode 
autodecrement mode 
autodecrement deferred mode 

When using these addressing modes, you are guaranteed position 
independence, providing that the contents of the registers have been 
supplied independent of a particular memory location. 

The relative addressing modes are position-independent when a relo­
eatable address is referenced from a relocatable instruction. These 
modes are as follows: 

A PC relative mode 
@A PC relative deferred mode 

Relative modes are not position-independent when an absolute ad­
dress (that is, a non-relocatable address) is referenced from a reloca­
table instruction. In this case, absolute addressing (i.e., @#A) may be 
employed to make the reference position-independent. 

Index modes can be either position-independent or position-depen­
dent, according to their use in the program. These modes are as 
follows: 

X(R) 
@X(R) 

index mode 
index deferred mode 

If the base, X, is an absolute value (e.g., a control block offset), the 
reference is position-independent. For example: 

MOV 2(SP),RO ;POSITION INDEPENDENT 
N=4 

MOV N(SP),RO ;POSITION INDEPENDENT 

If, however, X is a relocatable address, the reference is position 
dependent. For example: 

CLR ADDR(R1) ;POSITION DEPENDENT 

Immediate mode can be either position independent or not, according 
to its use. Immediate mode references are formatted as follows: 

#N immediate mode 

When an absolute expression defines the value of N, the code-is posi­
tion-independent. When a relocatable expression defines N, the code 
is position-dependent. That is, immediate mode references are posi­
tion independent only when N is an absolute value. 

94 



Chapter 5-Programming Techniques 

Absolute mode addressing is position-independent only in those cas­
es where an absolute virtual location is being referenced. Absolute 
mode addressing references are formatted as follows: 

@#A absolute mode 

An example of a position-independent absolute reference is a refer­
ence to the directive status word ($DSW) from a relocatable 
instruction. For example: 

MOV 

EXAMPLES 

@#$DSW,RO ;RETRIEVE DIRECTIVE 
;STATUS 

The RSX-11 library routine, PWRUP, is a FORTRAN-callable subrou­
tine to establish or remove a user power failure AST (Asynchronous 
System Trap) entry point address. Imbedded within the routine is the 
actual AST entry point which saves all registers, effects a call to the 
user-specified entry point, restores all registers on return, and exe­
cutes an AST exit directive. The following examples are excerpts from 
this routine. The first example has been modified to illustrate position­
dependent references. The second example is the position-indepen­
dent version. 

Position-Dependent Code 
PWRUP: 

CLR -(SP) ;ASSUME SUCCESS 
CALL .X.PAA ;PUSH (SAVE) 

;ARGUMENT ADDRESSES 
;ONTOSTACK 

.wORD 1.,$DSW ;CLEAR DSW,AND 
;SET R1 =R2=SP 

MOV $OTSV,R4 ;GET OTS IMPURE 
;AREA POINTER 

MOV (SP)+,R2 ;GET AST ENTRY 
;POINT ADDRESS 

BNE 10$ ;IF NONE SPECIFIED, 
;SPECIFY NO POWER 

CLR -(SP) ;RECOVERY AST SERVICE 
BR 20$ 

10$: 
MOV R2,F.PF(R4) ;SET AST ENTRY POINT 
MOV #BA,-(SP) ;PUSH AST SERVICE 

;ADDRESS 

95 



20$: 

BA: 

CALL 
.BYTE 

MOV 
MOV 
MOV 

Chapter 5-Programming Techniques 

. X.EXT 
109.,2. 

RO,-(SP) 
R1,-(SP) 
R2,-(SP) 

, 
;ISSUE DIRECTIVE, EXIT . 

;PUSH (SAVE) RO 
;PUSH (SAVE) R1 
;PUSH (SAVE) R2 

Position-Independent Code 
PWRUP: 

CLR -(SP) ;ASSUME SUCCESS 
CALL .X.PAA ;PUSH ARGUMENT 

;ADDRESSES ONTO 
;STACK 

.WORD 1.,$DSW ;CLEAR DSW, AND 
;SET R1 =R2=SP. 

MOV @#$OTSV,R4 ;GET OTS IMPURE 
;AREA POINTER 

MOV (SP)+,R2 ;GET AST ENTRY 
;POINT ADDRESS 

BNE 10$ ;IF NONE SPECIFIED, 
;SPECIFY NO POWER 

CLR -(SPJ ;RECOVERY AST SERVICE 
BR 20$ 

10$: , 
MOV R2,F.PF(R4) ;SET AST ENTRY POINT 
MOV PC,-(SP) ;PUSH CURRENT LOCATION 
ADD #BA-.,(SP) ;COMPUTE ACTUAL 

;LOCATION 
;OFAST 

20$: 
CALL . X.EXT ;ISSUE DIRECTIVE, EXIT . 
BYTE 109.,2. 

, 
;ACTUAL AST SERVICE ROUTINE: 

1) SAVE REGISTERS 
2) EFFECT A CALL TO SPECIFIED SUBROUTINE 
3) RESTORE REGISTERS 
4) ISSUE AST EXIT DIRECTIVE 

96 



BA: MOV 
MOV 
MOV 

Chapter 5-Programming Techniques 

RO,-(SP) 
R1,-(SP) 
R2,-(SP) 

;PUSH (SAVE) RO 
;PUSH (SAVE) R1 
;PUSH (SAVE) R2 

The position-dependent version of the subroutine contains a relative 
reference to an absolute symbol ($OTSV) and a literal reference to a 
relocatable symbol (BA). Both references are bound by the task build­
er to fixed memory locations. Therefore, the routine will not execute 
properly as part of a resident library if its location in virtual memory is 
not the same as the location specified at link time. 

In the position-independent version, the reference to $OTSV has been 
changed to an absolute reference. In addition, the necessary code has 
been added to compute the virtual location of BA based upon the 
value of the program counter. In this case, the value is obtained by 
adding the value of the program counter to the fixed displacement 
between the current location and the specified symbol. Thus, 
execution of the modified routine is not affected by its location in the 
image's virtual address space. 

STACKS 
The stack is part of the basic design architecture of the PDP-11. It is an 
area of memory set aside by the programmer or by the operating 
system for temporary storage and linkage. It is handled on a LIFO 
(Iast-in/first-out) basis, where items are retrieved in the reverse of the 
order in which they were stored. On a PDP-11 processor, a stack 
starts at the highest location reserved for it and expands linearly 
downward to a lower address as items are added to the stack. 

You do not need to keep track of the actual locations into which data is 
being stacked. This is done automatically through a stack pointer. To 
keep track of the last item added to the stack, a general register 
always contains the memory address when the last item is stored in 
the stack. Any register except register 7 (the PC) may be used as a 
stack pOinter under program control; however, instructions associated 
with subroutine linkage and interrupt service automatically use regis­
ter 6 as a hardware stack pointer. For this reason, R6 is frequently 
referred to as the system SP. Stacks may be maintained in either full 
word or byte units. This is true for a stack pointed to by any register 
except R6, which must be organized in full word units only. Byte 
stacks, Figure 5-1, require instructions capable of operating on bytes 
rather than full words. 

97 



007100 

007076 

007074 

007072 

007070 

007066 

007064 

007100 

007077 

007076 

007075 

Chapter 5-Programming Techniques 

WORO STACK 

ITEM .1 

ITEM .2 

ITEM .3 

ITEM ",4 ~ ___ --I- SP I 007072 

BYTE STACK 

ITEM ., 
ITEM #2 

ITEM #3 

ITEM #4 - SP .... 1 __ 00_7_07_5_ ...... 

Figure 5-1 Word and Byte Stacks 

Items are added to a stack using the autodecrement addressing 
mode. Adding items to the stack is called PUSHing, and is accom­
plished by the following instructions: 

MOV Source,-(SP) ;MOV Contents of Source Word 
;onto the stack 

MOVB Source,-(SP) 
or 

;MOVB Source Byte onto 
;the stack 

Data is thus PUSHed onto the stack. 

Removing data from the stack is called a POP (popping from the 
staCk). This operation is accomplished using the autoincrement mode: 

MOV (SP)+, Destination ;MOV Destination Word 
;off the stack 

MOVB (SP)+, Destination 
or 

;MOVB Destination Byte 
;off the stack 

After an item has been popped, its stack location is considered free 
and available for other use. The stack pointer points to the last used 
location, implying that the next lower location is free. Thus, a stack 
may represent a pool of temporary storage locations. 

98 



Chapter 5-Programming Techniques 

HIGHMEMORY~ ~ -SP f . E0 ..... sP 
~CI( 

AREA 

LOW MEMORY 
1. AN EMPTY STACK 2.PUSHING A DATUM 

AREA ONTO THE STACK 

~GI 
Et . 

~ E2 "-SP 

4. ANOTHER PUSH 

~
E3 

E0 

Et -sp 

7. POP 

~p 
~45P 
5. POP 

~ .r==tsp 

3. PUSHING ANOTHER 
DATUM ONlO THE 
STACKS 

~1iI 
Et 

~ E3 _SP 

6. PUSH 

Fi~ure 5-2 Illustration of Push and Pop Operations 

Uses for the stack 

• Often one of the general purpose registers must be used in a sub­
routine or interrupt service routine and then returned to its original 
value. The stack can be used to store the contents of the registers 
involved. 

• The stack is used in storing linkage information between a subrou­
tine and its calling program. The JSR instruction, used in calling a 
subroutine, requires the specification of a linkage register along 
with the entry address of the subroutine. The content of this linkage 
register is stored on the stack, so as not to be lost, and the return 
address is moved from the PC to thelinkage register. This provides 
a pointer back to the calling program so that successive arguments 
may be transmitted easily to the subroutine. 

• If no arguments need be passed by stacking them after the JSR 
instruction, the PC may be used as the linkage register. In this case, 
the result of the JSR is to' move the return address in the calling 
program from the PC onto the stack and replace it with the entry 
address of the called subroutine. 

• In many cases, the operations performed by the subroutine can be 
,applied directly to the data located on or pointed to by a stack 
without the need ever actually to move the data into the subroutine 
area. 

99 



Chapter 5-Programming Techniques 

;CALLING PROGRAM 
MOV SP,R1 
JSR PC,SUBR 

;SUBROUTINE 
ADD (R1)+,(R1) 

;R1IS USED AS THE STACK 
;POINTER HERE 

;ADD ITEM #1 to #2,PLACE 
;RESUL T IN ITEM #2, 
;R1 POINTS TO 
;ITEM#2NOW 

Because the hardware already uses general purpose register RS to 
point to a stack for saving and restoring PC and processor status word 
(PS) information, it is convenient to use this same stack to save and 
restore immediate results and to transmit arguments to and from sub­
routines. Using RS in this manner permits extreme flexibility in nesting 
subroutines and interrupt service routines. 

Since arguments may be obtained from the stack by using some form 
of register indexed addressing, it is sometimes useful to save a 
temporary copy of RS in some other register which has been saved at 
the beginning of a subroutine. If RS is saved in RS at the beginning of 
the subroutine, RS may be used to index the arguments while RS is 
free to be incremented and decremented in the course of being used 
as a stack poin1er. If RS had been used directly as the base for index­
ing and not "copied," it might be difficult to keep track of the position 
in the argument list, since the base of the stack would change with 
every autoincrementldecrement which occurs. 

However, if the contents of RS (SP) are saved in RS before any argu­
ments are pushed onto the stack, the position relative to RS would ( 
remain constant. 

Return from a subroutine also involves the stack, as the return instruc­
tion, RTS, must retrieve information stored there by the JSR. 

When a subroutine returns, it is necessary to "clean up" the stack by 
eliminating or skipping over the subroutine arguments. One way this 
can be done is by insisting that the subroutine keep the number of 
arguments as its first stack item. Returns from subroutines then in­
volve calculating the amount by which to reset the stack pointer, 
resetting the stack pointer, then storing the original conterits of the 
register used as the copy of the stack pointer . 
• Stack storage is used in trap and interrupt linkage. The program 

counter and the processor status word 9f the executing program are 
pushed on the stack. 

100 



Chapter 5-Programming Techniques 

• When using the system stack, nesting of subroutines, interrupts, 
and traps to any level can occur until the stack overflows its legal 
limits. 

• The stack method is also available for temporary storage of any kind 
of data. It may be used as a LIFO list for storing inputs, intermediate 
results, etc. 

As an example of stack use consider this situation: a subroutine 
(SUBR) wants to use registers 1 and 2, but these registers must be 
returned to the calling program with their contents unchanged. The 
subroutine could be written as follows: 

Assembler 
Address Octal Code Syntax Comments 

076322 010167 SUBR: MOV R1,TEMP1 ;save R1 
076324 000074 .. 
076326 010267 MOV R2,TEMP2 ;save R2 
076330 000072 .. 

076410 016701 MOV TEMP1,R1 ;restore R1 
076412 000006 .. 
076414 0167902 MOV TEMP2,R2 ;restore R2 
076416 000004 .. 
076420 000297 RTSPC 
076422 000000 TEMP1: 0 
076424 000000 TEMP2:0 

• Index Constants 

OR: Using the Stack 
R3 has been previously set to point to the end of an unused block of 
memory. 

Assembler 
Address Octal Code Syntax Comments 

010020 010143 SUBR: MOV R1,-(R3) ;push R1 
010022 010243 MOV R2,-(R3) ;push R2 

101 



010130 
010132 
010134 

Chapter 5-Programming Techniques 

012302 
012301 
000207 

MOV (R3)+,R2 
MOV (R3)+,R1 
RTSPC 

Note: In this case R3 was used as a stack pOinter. 

;pop R2 
;pop R1 

The second routine uses four fewer words of instruction code and two 
words of temporary "stack" storage. Another routine could use the 
same stack space at some later point. Thus, the ability to share tempo­
rary storage in the form of a stack is a way to save on memory use. 

As another example of stack use, consider the task of managing an 
input buffer from a terminal. As characters come in, you may wish to 
delete characters from the line; this is accomplished very easily by 
maintaining a byte stack containing the input characters. Whenever a 
backspace is received, a character is "popped" off the stack and elimi­
nated from consideration. In this example, you have the choice of 
"popping" characters to be eliminated by using either the MOVB 
(MOVE BYTE) or INC (INCREMENT) instructions. 

001011 

001010 

001007 

001006 

001005 

001004 

001003 

001002 

001001 

c c 
u u 

S INC R3 S 

T T 

0 0 

M M 

E E 

R R 

Z 001001 """] 

Figure 5-3 Byte Stack Used as a Character Buffer 

NOTE 
In this case the increment instruction (INC) is prefer­
able to MOVB, since it accomplishes the task of eli­
minating the unwanted character from the stack by 
readjusting the stack pointer without the need for a 
destination location. Also, the stack pointer (SP) 
used in this example cannot be the system stack 
pointer (RS) because RS may point only to word 
(even) locations. 

102 

001002 



Chapter 5-Programming Techniques 

DELETING ITEMS FROM A STACK 
To delete one item: 

INC SP or TSTB(SP)+ for a byte stack 

To delete two items: 

ADD#2,SP or TST(SP)+ for word stack 

To delete fifty items from a word stack: 

ADD#100.,SP 

SUBROUTINE LINKAGE 
The contents of the linkage register are saved on the system stack 
when a JSR is executed. The effect is the same as if a MOV reg,-(RS) 
had been performed. Following the JSR instruction, the same register 
is loaded with the memory address (the contents of the current PC), 
and a jump is made to the entry location specified. 

The JSR figure, Figure 5-4, gives the before and after conditions when 
executing the subroutine instructions JSR R5,10S4. 

BEFORE 

(R5)- 000132 
(RS)- 00 1776 

(PC)-(R7)-00'000 

002000 nnnnn n 

00'776 t-----I .. sP 

00'774 

00'772 
t-----I 

AFTER 

(R5): 00.1004 
(RS)-00'774 

(PC)-(R7)'00'064 

.--~:::::---, 002000 n n n n n n 

001776 I 001776 mmmmmm 

001774 

00'772 

000132 ..... sp 

1------/ 

Figure 5-4 JSR 

001174 

Because the PDP-11 hardware already uses general purpose register 
RS to point to a stack for saving and restoring PC and PS (processor 
status word) information, it is convenient to use this same stack to 
save and restore intermediate results and to transmit arguments to 
and from subroutines. Using RS this way permits nesting subroutines 
and interrupt service routines. 

Return from a Subroutine 
An RTS instruction provides for a return from the subroutine to the 
calling program. The RTS instruction must specify the same register 
as the one the JSR instruction used in the subroutine call. When the 
RTS is executed, the register specified is moved to the PC, and the top 
of the stack to be placed in the register specified. Thus, an RTS PC has 
the effect of returning to the address specified on the top of the stack. 

103 



Chapter 5-Programming Techniques 

Subroutine Advantages 
There are several advantages to the PDP-11 subroutine calling pro­
cedure, effected by the JSR instruction. 

• Arguments can be passed quickly between the calling program and 
the subroutine. 

• If there are no arguments, or the arguments are in a general register 
or on the stack, the JSR PC,DST mode can be used so that none of 
the general purpose registers are used for linkage. 

• Many JSRs can be executed without the need to provide any saving 
procedure for the linkage information, since all linkage information 
is automatically pushed onto the stack in sequential order. Returns 
can be made by automatically popping this information from the 
stack in the order opposite to the JSRs. 

Such linkage address bookkeeping is called automatic "nesting" of 
subroutine calls. This feature enables you to construct fast, efficient 
linkages in a simple, flexible manner. It also· permits a routine to call 
itself in those cases where this is meaningful. 

INTERRUPTS 
An interrupt is similar to a subroutine call, except that it is initiated by 
the hardware rather than by the software. An interrupt can occur after 
the execution of an instruction. 

Interrupt-driven techniques are used to reduce CPU waiting time. In 
direct program data tran·sfer, the CPU loops to check the state of the 
DONE/READY flag (bit 7) in the peripheral interface. Using interrupts, 
the system actually ignores the peripheral, running its own low-priority 
program until the peripheral initiates service by setting the DONE bit. 
The interrupt enable bit in the control status register must have been 
set at some prior point. The CPU completes the instruction being 
executed and then is interrupted and vectors to an interrupt service 
routine. The service routine will transfer the data and may perform 
calculations with it. After the interrupt service routine has been com­
pleted, the computer resumes the program that was interrupted by the 
peripheral's high-priority request. 

With interrupt service routines, linkage information is passed so that a 
return to the main program can be made. More information is neces­
sary for an interrupt sequence than for a subroutine call because of 
the random nature of interrupts. The complete machine state of the 
program immediately prior to the occurrence of the interrupt must be 
preserved in order to return to the program without any noticeable 
effects. This information is stored in the processor status word (PS). 

104 



Chapter 5-Programming Techniques 

Upon interrupt, the contents of the program counter (PC) (address of 
next instruction) and the PS are automatically pushed onto the R6 
system stack. The effect is the same as if: 

MOV PS,-(SP) ;Push PS 
MOV PC,-(SP) ;Push PC 

had been executed. 

The new contents of the PC and PS are loaded from two preassigned 
consecutive memory locations which are called "vector addresses." 
The first word contains the interrupt service routine entry address (the 
~ddress of the service routine program sequence), and the second 
word contains the new PS which will determine the machine status, 
including the operational mode and register set to be used by the 
interrupt service routine. The contents of the vector address are set 
under program control. 

After the interrupt service routine has been completed, an RTI (return 
from interrupt) is performed. The top two words of the stack are auto­
matically "popped" and placed in the PC and PS respectively, thus 
resuming the interrupted program. 

Nesting 
Interrupts can be nested in much the same manner that subroutines 
are nested. In fact, it is possible to nest any arbitrary mixture of 
subroutines and interrupts without any confusion. By using the RTI 
and RTS instructions, respectively, the proper returns are automatic. 

1. Process 0 is running; SP is 
pointing to location PO. 

2. Interrupt stops process 0 
with PC = PCO, and status = 
PSO; starts process 1. 

3. Process 1 uses stack for 
temporary storage (TEO, 
TE1). 

105 

PO§ pso 

sP~ pco 

PO 
l---ps-o---1 

pco 

TEO 

$P--. TE1 

0'--__ --' 



Chapter 5-Programming Techniques 

4. Process 1 interrupted with 
PC = PC1 and status = PS1; 
process 2 is started. 

5. Process 2 is rupning and 
does a JSR R7,A to subrou~ 
tine A with PC = PC2. 

6. Subroutine A is running and 
uses stack for temporary 
storage. 

7. Subroutine A releases the 
temporary storage holding 
TA1 and TA2. 

106 

PO 

o 

PO 

o 

PO 

o 

PO 

o 

PSO 

PC 0 

TEO 

TE t 

PS t 

PC t 

PSO 

pco 

TEO 

TEt 

PS t 

PCt 

PC2 

PSO 

PCO 

TEO 

TEt 

PSt 

PCt 

PC2 

TAt 

TA2 

PSO 

pco 
TEO· 

TEt 

PSt 

PCt 

PC2 



Chapter 5-Programmlng Techniques 

8. Subroutine A returns control 
to process 2 with an RTS R7; 
PC is reset to PC2. 

9. Process 2 completes with an 
RTI instructions (dismisses 
interrupt) PC is reset to PC1 
and status is reset to PS 1; 
process 1 resumes. 

10. Process 1 releases the tem­
porary storage holding TEO 
and TE1. 

11. Process 1 completes its op­
eration with an RTI, PC is re­
set to PCO, and status is re­
set to PSO. 

PO 

PSO 

pco 
TEO 

TEt 

PSt 

PCt 

a 

PO 

pso 
pco 
TEO 

SP- TEt 

a 

PO~ pso 

sP: pco 

Nested Interrupt Service Routines and Subroutines 

Note that the area of interrupt service programming is intimately in­
volved with the concept of CPU and device priority levels. 

107 



Chapter 5-Programming Techniques 

REENTRANCY 
Other advantages of the PDP-11 stack organization are obvious in 
programming systems that are engaged in concurrent handling of 
several tasks. Multi-task program environments range from simple 
single-user applications which manage a mixture of I/O interrupt ser­
vice and background data processing, as in RT -11, to large complex 
multi-programming systems that manage an intricate mixture of exe­
cutive and multi-user programming situations, as in RSX-11. In all 
these situations, using the stack as a programming technique pro­
vides flexibility and time/memory economy by allowing many tasks to 
use a single copy of the same routine with a simple straightforward 
way of keeping track of complex program linkages. 

The ability to share a single copy of a program among users or among 
tasks is called reentrancy. Reentrant program routines differ from 
ordinary subroutines in that it is not necessary for reentrant routines to 
finish processing a given task before they can be used by another 
task. Multiple tasks can exist at any time in varying stages of comple­
tion in the same routine. Thus the following situation may occur. 

(ART) 

PDP-11 Approach 

Programs 1, 2, and 3 can share 
Subroutine A. 

MEMORY 

PROGRAMIA PROGRAM 2 SUBROUTINE A 
PROGRAM 3 

(ART) 

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each 
program. 

MEMORY 

PROGRAM t Ul A~ 

PROGRAM 2 SUBROUTINE _~ 

PROGRAM 3 ~~BROUTINE A><: 

Figure 5-6 Reentrant Routines 
Reentrant Code 
Reentrant routines must be written in pure code, code that is not self­
modifying and consists entirely of instructions and constants. 

Pure code (any code that consists exclusively of instructions and con­
stants) may be used when writing any routine, even if the completed 
routine is not to be reenterable. The va,lue of using pure code when­
ever possible is that the resulting code: 

• is generally considered easier to debug 
• can be kept in read-only memory (is read-only protected) 

108 



Chapter 5-Programming Techniques 

Using reentrant code, control of a routine can be shared as follows: 

Figure 5-7 Sharing Control of a Routine 

• Task A requests processing by Reentrant Routine Q. 

• Task A temporarily relinquishes control of Reentrant Routine Q be-
fore it completes processing. 

• Task B starts processing the same copy of Reentrant Routine Q. 

• Task B completes processing by Reentrant Routine Q. 

• Task A regains use of Reentrant Routine Q and resumes where it 
stopped. 

Writing Reentrant Code 
In an operating system environment, when one task is executing and is 
interrupted to allow another task to run, a context switch occurs which 
causes the processor status word and current contents of the general 
purpose registers (GPRs) to be saved and replaced by the appropriate 
values for the task being entered. Therefore, reentrant code should 
use the GPRs and the stack for any counters, pOinters, or data that 
must be modified or manipulated in the routine. 

The context switch occurs whenever a new task is allowed to execute. 
It causes all of the GPRs, the PS, and often other task-related informa­
tion to be saved in an impure area, then reloads these registers and 
locations with the appropriate data for the task being entered. Notice 
that one consequence of this is that a new stack pointer value is 
loaded into R6, therefore causing a new area to be used as the stack 
when the second task is entered. 

The following should be observed when writing reentrant code: 

• All data should be in or pOinted to by one of the general purpose 
registers. 

• A stack can be used for temporary storage of data or pointers to 
impure areas within the task space. The pOinter to such a stack 
would be stored in a GPR. 

109 



Chapter 5-Programming Techniques 

• Parameter addresses should be used by indexing and indirect 
reference rather than by putting them into instructions within the 
code . 

• When temporary storage is accessed within the progam, it should 
be by indexed addresses, which can be set by the calling task in 
order to handle any possible recursion. 

Use of Reentrant Code 
Reentrant code is used whenever more than one task may reference 
the same code without requiring that each task complete processing 
with the code before the next may use it. 

COROUTINES 
In some programming situations it happens that several program seg­
ments or routines are highly interactive. Control is passed back and 
forth between the routines, each going through a period of suspension 
before being resumed. Since the routines maintain a symmetric rela­
tionship with each other, they are called coroutlnes. 

Coroutines are two program sections, neither subordinate to the oth­
er, which can call each other. The nature of the call is "I have proc­
essed all I can for now, so you can execute until you are ready to stop, 
then I will continue." 

The coroutine call and return are identical, each being a jump to 
subroutine instruction with the destination address being on top of the 
stack and the PC serving as the linkage register, i.e., 

JSR PC,@(R6)+ 

Coroutine Calls 
The coding of coroutine calls is made simple by the PDP-11 stack 
feature. Initially, the entry address of the coroutine is placed on the 
stack and from that point the 

JSR PC,@(R6)+ 

instruction is used for both the call and the return statements. The 
result of this JSR instruction is to exchange the contents of the PC and 
the top element of the stack, and so permit the two routines to swap 
control and resume operation where each was terminated by the 
previous swap. 

110 



Chapter 5-Programming Techniques 

For example: 

Routine A Stack 

MOV #LOC, -(SP)LOC -SP 

JSR PC,@(SP)+ PCO -SP 
(PCa) 

Routine B 

LOC: 

Comments 
LOC is pushed 
onto the stack 
to prepare for 
the corou­
tine call. 

When the call 
is executed, 
the PC from 
routine A is 
pushed on the 
stack and exe­
cution contin­
uesatLOC. 

JSR PC,@(SP)+ Routine B can 
(PC1) return control 

to routine A 
by another 
coroutine call. 
pca is popped 
from the stack 
and execution 
resumes in 
routine A just 
after the call 
to Routine B, 
i.e., at pca. 
PC1 is saved 
on the stack 
for a later 
return to 
Routine B. 

Figure 5-8 Coroutine Example 

Notice that the coroutine linkage cleans up the stack with each transfer 
of control. 

111 



Chapter 5-Programming Techniques 

Coroutines Versus Subroutines 
• A subroutine can be considered to be subordinate to the main or 

calling routin~, but a coroutine is considered to be on the same 
level, as each coroutine calls the other when it has completed cur­
rent processing . 

• A subroutine executes, when called, to the end of its code. When 
called again, the same code will execute before returning. A corou­
tine executes from the point after the last call of the other coroutine., 
Therefore, the same code will not be executed each time the corou­
tine is called. For example, 

COROUTINES MAIN PROGRAMS SUBROUTINES 

A B 

"' J",,., .j 
j >"" " ... '''', 

"" ec.@ '''', j 
~JSR PC.@ (SP)+ 

1 ~lstLOC: 
JSR Rn. LOC 

RTS 

Figure 5-9 Coroutines vs. Subroutines 

• The call and return statements for coroutines are the same: 

JSR PC,@(SP)+ 

This one instruction also cleans up the stack with each call. 

The last coroutine call will leave an address on the stack that must 
be popped if no further calls are to be made. 

• Each coroutine call returns to the coroutine code at the point after 
the last exit with no need for a specific entry point label, as would be 
required with subroutines. 

Using Coroutlnes 
• Coroutines should be used whenever two tasks must be coordinat­

ed in their execution without obscuring the basic structure of the 
program. For example, in decoding a line of assembly language 

112 



Chapter 5-Programming Techniques 

code, the results at anyone position might indicate the next process 
to be entered. Where a label is detected, it must be processed. If no 
label is present, the operator must be located, etc . 

• Coroutines should be employed to add clarity to the process being 
performed, to ease in the debugging phase, etc. 

Examples 
An assembler must perform a lexicographic scan of each assembly 
language statement during pass one of the assembly process. The 
various steps in such a scan should be separated from the main 
program flow to add to the program clarity and to aid in debugging by 
isolating many details. Subroutines would not be satisfactory here, as 
too much information would have to be passed to the subroutine each 
time it was called. This subroutine would be too isolated. Coroutines 
could be effectively used here with one routine being the assembly­
pass~one routine and the other extracting one item at a time from the 
current input line. 

ROUTINE A ROUTINE B 

r-----------~END 

Figure 5-10 Coroutine Path 

Coroutines can be utilized in I/O processing. The example shows co­
routines used in double-buffered I/O using lOX. The flow of events 
might be described as: 

Write 01 
Read 11 concurrently 
Process 12 

113 



Chapter 5-Programmlng Techniques 

then 
Write 02 
Read 12 
Process 11 

concurrently 

Routine #1 is operating, it then 
executes: 

MOV #PC2,-(R6) 
JSR PC,@(R6)+ 

with the following results: 
1. PC2 is popped from the 

stack and the SP autoincre­
mented. 

2. SP is autodecremented and 
the old PC (i.e. PC1) is 
pushed. 

3. Control is transferred to the 
location PC2 
(i.e. Routine #2). 

Routine #2 is operating, it then 
executes: 

JSR PC,@(R6)+ 
with the result that PC2 is 
exchanged for PC1 on the 
stack and control is 
transferred back to Routine #1. 

.-----''----, PC2 

Figure 5-11 Coroutine Interaction 

RECURSION 
An interesting aspect of a stack facility, other than its providing for 
automatic handling of nested subroutines and interrupts, is that a 
program may call on itself as a sub-routine just as it can call on any 
other routine. Each new call causes the return linkage to be placed on 
the stack, which, as It is a last-in/first-out queue, sets up a natural 
unraveling to each routine just after the point of departure. 

Typical flow for a recursive routine. might be something like this: 

114 



Chapter 5-Programmlng Techniques 

Figure 5-12 Recursive Routine Flow 

The main program calls function one, SUB 1, which calls function two, 
SUB 2, which recurses once before returning. 

Example: 

DNCF: 

1$ 

BEQ 1$ 
JSRR5,DNCF 

RTSR5 

;TO EXIT RECURSIVE LOOP 
;RECURSE 

;RETURN TO 1$ FOR 
;EACH CALL, THEN TO 
;MAIN PROGRAM 

The routine DNCF calls itself until the variable tested becomes equal 
to zero, then it exits to 1$ where the RTS instruction is executed, 
returning to the 1$ once for each recursive call and one final time to 
return to the main program. 

In general, recursion techniques will lead to slower programs than the 
corresponding interactive techniques, but the recursion will give 
shorter programs in memory- space used. Both the brevity and clarity 
produced by recursion are important in assembly language programs. 

Uses of Recursion 
Recursion can be used in any routine in which the same process is 
required several times. For example, a function to be integrated may 
contain another function to be integrated, i.e., to solve for XM 

115 



Chapter 5-Programming Techniques 

where: 

and: 

x 

XM = 1 + f F(X) 

o 

o 
F(X) = f G(X) 

)( 

Another use for a recursive function could be in calculating a factorial 
function because 

FACT(N) = FACT(N-1) * N 

Recursion should terminate when N = 1. 

The macro processor within MACRO-11, for example, is itself recur­
sive, as it can process nested macro definitions and calls. For exam­
ple, within a macro definition, other macros can be called. When a 
macro call is encountered within definition, the processor must work 
recursively, i.e., to process one macro before it is finished with anoth­
er, then to continue with the previous one. The stack is used for a 
separate storage area for the variables associated with each call to the 
procedure. 

As long as nested definitions of macros are available, it is possible for 
a macro to call itself. How~ver, unless conditionals are used to termi­
nate this expansion, an infinite loop could be generated. 

PROCESSOR TRAPS 
There are a series of errors and programming conditions which will 
cause the central processor to trap to a set of fixed locations. These 
include power failure, odd addressing errors, stack errors, time out 
errors, memory parity errors, memory management violations, float­
ing point processor exception traps, use of reserved instructions, use 
of the T bit in the processor status word, and use of the lOT, EMT, and 
TRAP instructions. 

Power Failure 
Whenever AC power drops below 95 volts for 115V power (190 volts 
for 230V) or outside a limit of 47 to 73 Hz, as measured by dc voltage, 
the power-fail sequence is initiated. The central processor automati­
cally traps to location 24 and the power-fail program has 2 msec. to 
save all volatile information (data in registers), and to condition peri­
pherals for power failure. 

116 



Chapter 5-Programmlng Techniques 

When power is restored, the processor traps to location 24 and exe­
cutes the power-up routine to restore the machine to its state prior to 
power failure. 

Odd Addressing Errors 
This error occurs whenever a program attempts to execute a word 
instruction on an odd address (in the middle of a word boundary). The 
instruction is aborted and the CPU traps through location 4. 

Time-out Errors 
These errors occur when a master synchronization pulse is placed on 
the UNIBUS and there is no slave pulse within a certain length of time. 
This error usually occurs in attempts to address non-existent memory 
or peripherals. The typical UNIBUS time-out is 10 microseconds. 

The offending instruction is aborted and the processor traps through 
location 4. 

Reserved Instructions 
There is a set of illegal and reserved instructions which cause the 
processor to trap through location 10. 

Vector Address and Trap Errors 

000 (reserved) 
004 CPU errors 
010 Illegal and reserved instructions 
014 BPT, breakpoint trap 
020 lOT, input/output trap 
024 Powerfail 
030 EMT, emulator trap 
034 TRAP instruction 

TRAP INSTRUCTIONS 
Trap instructions provide for calls to emulators, I/O monitors, 
debugging packages, and user-defined interpreters. A trap is effec­
tively an interrupt generated by software. When a trap occurs, the 
contents of the current program counter (PC) and program status 
word (PS) are pushed onto the processor stack and replaced by the 
contents of a 2-word trap vector containing a new PC and new PS. The 
return sequence from a trap involves executing an RTI or RTT instruc­
tion which restores the old PC and old PS by popping them from the 
stack. Trap vectors are located at permanently assigned fixed ad­
dresses. 

The EMT (trap emulator) and TRAP instructions do not use the low­
order byte of the word in their machine language representation. This 

117 



Chapter 5-Programming Techniques 

allows user information to be transferred in the low-order byte. The 
new value of the PC loaded from the vector address of the TRAP or 
EMT instructions is typically the starting address of a routine to access 
and interpret this information. Such a routine is called a trap handler. 

The trap handler must accomplish several tasks. It must save and 
restore all necessary GPRs, interpret the low byte of the trap instruc­
tion and call the indicated routine, serve as an interface between the 
calling program and this routine by handling any data that need be 
passed between them, and, finally, cause the return to the main 
routine. 

Uses of Trap Handlers 
The trap handler can be useful as a patching technique. Jumping out 
to a patch area is often difficult because a 2-word jump must be 
performed. However, the 1-word TRAP instruction may be used to 
dispatch to patch areas. A sufficient number of slots for patching 
should first be reserved in the dispatch table of the trap handler. The 
jump can then be accomplished by placing the address of the patch 
area into the table and inserting the proper TRAP instruction where 
the patch is to be made. 

The trap handler can be used in a program to dispatch execution to 
anyone of several routines. Macros may be defined to cause the 
proper expansion of a call to one of these routines. For example, 

.MACRO SUB2 ARG 
MOVARG,RO 
TRAP +1 
.ENDM 

When expanded, this macro sets up the one argument required by the 
routine in RO and then causes the trap instruction with the number 1 in 
the lower byte. The trap handler should be written so that it recognizes 
a 1 as a call to SUB2. Notice that ARG here is being transmitted to 
SUB2 from the calling program. It may be data required by the routine 
or it may be a pointer to a longer list of arguments. 

In an operating system environment like RT -11, the EMT instruction is 
- used to call system or monitor routines from a user program. The 

monitor of an operating system necessarily contains coding for many 
functions, Le., 1/0, file manipulation, etc. This coding is made accessi­
ble to the program through a series of macro calls, which expand into 
EMT instructions with low bytes indicating the desired routine, or 

. group of routines to which the desired routine belongs. Often· a GPR is 
designated to be used to pass an identification code to further indicate 
to the trap handler which routine is desired. For example, the macro 
expansion for a resume execution cOmmand in RT -11 is as follows: 

118 



Chapter 5-Programming Techniques 

.MACRO .RSUM 
CM3,2 . 
. ENDM 

and CM3 is defined as 

.IIFNB 

.MACRO CM3 CHAN, CODE 
MOV #CODE *400,RO 
CHAN,BISB CHAN,RO 
EMT374 
.ENDM 

Notice the EMT low byte is 374. This is interpreted by the EMT handler 
to indicate a group of routines. Then the contents of RO (high byte) are 
tested by the handler to identify exactly which routine within the group 
is being requested, in this case routine number 2. (The CM3 call of the 
RSUM is set up to pass the identification code.) 

Summary of PDP-11 Processor Trap Vectors: 
VECTOR ADDRESS FUNCTION SERVED 

4 

10 

14 
20 
24 
30 
34 

114 

244 
250 

Illegal instructions (JSR, JMP 
for mode 0) 
Bus errors (odd address error, 
timeout) 
Stack limit (Red Zone, Yellow 
Zone) 
Illegal internal address 
Microbreak 

Reserved instruction 
XFC with UCS disabled 
SPL, MTPS, MFPS 
FADD, FSUB, FMUL, FDIV 
HALT in user mode 

Trace (T bit) 
lOT 
Power fail 
EMT 
TRAP 
Cache parity error 
UNIBUS memory parity error 
UCS parity error 

Floating point exception 
Memory management (KT) abort 

119 



Chapter 5-Programming Techniques 

CONVERSION ROUTINES 
Almost all assembly language programs require the translation of data 
or results from one form to another. Coding that performs such a 
transformation will be called a conversion routine in this handbook. 
Several commonly used conversion routines are included in the fol­
lowing pages. 

Almost all assembly language programs involve some type of conver­
sion routines, octal to ASCII, octal to decimal, and decimal to ASCII 
being a few of the most widely used. 

Arithmetic multiply and divide routines are fundamental to many con­
version routines. 

Division is typically approached in one of two ways. 
1. The division can be accomplished through a combination of ro­

tates and subtractions. 

Examples: 
Assume the following code and register data; to make the 
example easier, also assume a 3-bit word. 

DIV: MOV #3, -(SP) 
CLR -(SP) 

1$ ASL (SP) 
ASLR1 
ROLRO 
CMPRO,R3 
BLT2$ 
SUB R3,RO 
INC (SP) 

2$ DEC 2 (SP) 
BNE$1 

Therefore, to divide 7 by 2: 

RO=OOO 
R1 =111 
R3=010 
C bit=O 

STACK 
011 
000 

;SET UP DIGITCOUNTER 
;CLEAR RESULT 

;RO CONTAINS REMAINDER 
;INCREMENT RESULT 
;DECREMENT COUNTER 

remainder 
seven-multiplicand 
two-multiplier 

counter 
quotient 

Following through the coding, the quotient, remainder, and div­
idend aU shift left, manipulating the most significant digit first, etc. 

120 



Chapter 5-Programming Techniques 

At the conclusion of the routine: 

RO=001 
R1=000 
R3=010 

STACK 
000 
011 

remainder 

counter 
quotient 

1. A second method of division occurs by repeated subtraction of 
the powers of the divisor, keeping a count of the number of sub­
tractions at each level. 

Example: 
To divide 221 10 by 10, first try to subtract powers of 10 until a non­
negative value is obtained, counting the number of subtractions of 
each power. 

221 
-1000 

negative so go to next lower power, count for 103 = O. 
221 

-100 

121 countfor 102 = 1. 
-100 

21 count = 2 
-100 

negative, so reduce power countfor 102 = 2 
21 

-10 

11 count for 101 = 1. 

11 
-10 

1 count=2 
-10 

negative, so count for 101 = 2. 

121 



Chapter 5-Programmlng Techniques 

No lower power, so remainder is 1. 

Answer = 02210, remainder 1. 

,Multiplication can be done through a combination of rotates and addi­
tions or through repetitive additions. 

Example: 
Assume the following code and a 3-bit word. 

ADD 

CLR RO ;HIGH HALF OF ANSWER 
MOV #3,CNT ;SET UP COUNTER 
MOV R1,MUL T; ;MUL TIPLICAND 

MORE: 

NOW: 

MULT: 
CNT: 

RORR2 
BCCNOW 
ADD MUL T,RO ;IF INDICATED, 

;MUL TIPLICAND 
RORRO 
RORR1 
DECCNT 
BNEMORE 
o 
o 

The following conditions exist for 6 times 3: 

RO = 000 - high order half of result 
R1 = 110 - multiplicand 
R3 = 011 - multiplier 

After the routine is executed: 

RO = 010 - high order half of result 
R1 = 010 -low order half of result 
R2 = 100 
CNT =0 
MULT=110 

Example: 
Multiplication of RO by 50s (101000). 

MUL50: MOV RO,-(SP) 
ASLRO 
ASLRO 
ADD (SP)+,RO 
ASLRO 

122 



Chapter 5-Programmlng Techniques 

If RO contains 7: 

RO = 111 

After execution; 

RO = 100011000 
(7*508 = 4308) 

ASCII CONVERSIONS 

ASLRO 
ASLRO 
RETURN 

The conversion of ASCII characters to the internal representation of a 
number as well as the conversion of an internal number to ASCII in I/O 
operations presents a challenge. The following routine takes the 16-bit 
word in R1 and stores the corresponding six ASCII characters in the 
buffer addressed by R2. 

OUT: MOV 
LOOP: MOV 

BIC 
ADD 
MOVB 
ASR 
ASR 
ASR 
DEC 
BNE 
BIC 
ADD 
MOVB 
RTS 

#5,RO 
Rt,-(SP) 
#177770,@SP 
#'O,@SP 
(SP)+,-(R2) 
R1 
R1 
R1 
RO 
LOOP 
#177776,R1 
#'0,R1 
R5,-(R2) 
PC 

PROGRAMMING EXAMPLES 

;LOOPCOUNT 
;COPY WORD INTO STACK 
;ONEOCTAL VALUE 
;CONVERT TO ASCII 
;STORE IN BUFFER 
;SHIFT 
;RIGHT 
;THREE 
;TEST IF DONE 
;NO, DO IT AGAIN 
;GET LAST BIT 
;CONVERT TO ASCII 
;STORE IN BUFFER 
;DONE,RETURN 

The programming examples on the following pages show how the 
PDP-11 instruction set, the addressing modes, and the programming 
techniques can be used to solve some simple problems. The format 
used is either PAL-11 or MACRO-11. 

123 



Program Program 
Address Contents Label OpCode Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBTRACT CONTENTS OF LOCS 700-710 
;FROM CONTENTS OF LOCS 1000-1010 

000000 RO=%O ~ 
000001 R1=%1 II) 

"I) 

000002 R2=%2 Ci!' 
~ 

000003 R3=%3 UI 
I 

000004 R4=%4 "tI 

000005 R5=%5 a 
..... IQ 

I\) 000006 SP=%6 iil 
"'" :3 

000007 PC=%7 :3 
5' 

IQ 

000500 .=500 ~ 
000500 012706 START: MOV #.,SP ;INIT STACK POINTER 

0 
~ 
:::s 

000500 .cs' c: 
000504 012701 MOV #700,R1 Q) 

C'I> 

000700 
000510 012702 MOV #712,R2 

000712 
000514 012703 MOV #1000,R3 

001000 
000520 012704 MOV #1012,R4 

001012 



Program Program 
Address Contents Label OpCode Operand Comments 

000524 005000 CLR RO 
000526 005005 CLR R5 

000530 062105 SUM1: ADD (R1)+,R5 ;ST ART ADDING 
000532 020102 CMP R1,R2 ;FINISHED ADDING? C) 

000534 001375 BNE SUM1 ;IF NOT BRANCH BACK :::J-
III 
"tI 

000536 062300 SUM2: ADD (R3)+,RO ;ST ART ADDING ii ., 
000540 020304 CMP R3,R4 ;FINISHED ADDING? 01 

I 000542 001375 BNE SUM2 ;IF NOT BRANCH BACK "tJ a 
CQ .... 

N 000544 160500 DIFF: SUB R5,RO ;SUBTRACT RESULTS iil 
0'1 3 

3 
000546 000000 HALT ;THA T'S ALL FOLKS 5· 

CQ 

c;} 
000700 .=700 g. 

000700 
;:, 

000001 .wORD 1, 2, 3, 4, 5 .a. 
000702 000002 c:: 

CD 

'" 000704 000003 
000706 000004 
000710 000005 

001000 .=1000 
001000 000004 .wORD 4,5,6, 7, 8 
001002 000005 



..... 
I\) 
en 

Program 
Address 

001004 
001006 
001010 

Program 
Contents Label 

000006 
000007 
000010 

000500 

OpCode Operand Comments 

A-30 
END 

i 
" ~ 
C11 
I 

~ 
:3 
:3 :So 

IQ 

q] 

~ 
.a' 
~ 



START: 

CHECK: 

NEXT: 

VALUES: 

Chapter 5-Programming Techniques 

;PROGRAM TO COUNT NEGATIVE NUMBERS 
;INATABLE 
;20. SIGNED WORDS 
;BEGINNING AT LOC VALUES 
;COUNT HOW MANY ARE NEGATIVE IN RO 

RO=%O 
R1=%1 
R2=%2 
SP=%6 
PC=%7 

.=500 

MOV#.,SP 
MOV #VALUES,R1 
MOV #VALUES+40.,R2 
CLRRO 

TST (R1)+ 
BPLNEXT 
INCRO 

CMPR1,R2 
BNECHECK 
HALT 

.BLK20. 
o 
.END 

;SET UP STACK 
;SET UP POINTER 
;SET UP COUNTER 

;TEST NUMBER 
;POSITIVE? 
;NO. INCREMENT 
;COUNTER 
;YES, FINISHED? 
;NO, GO BACK 
;YES,STOP 

;PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCORES 
;LlST OF 16. QUIZ SCORES 
;BEGINNING AT LOC SCORES 
;KNOWN AVERAGE IN LOC AVRAGE 
;COUNT IN RO SCORES ABOVE AVERAGE 

RO=%O 
R1=%1 
R2=%2 
R3=%3 
SP=%6 
PC=%7 

127 



START: 

Chapter 5-Programming Techniques 

.=500 

MOV#.,SP 
MOV#16.,R1 
MOV #SCORES, R2 
MOV #AVRAGE,R3 
ClRRO 

;SET UP STACK 
;SET UP COUNTER 
;SET UP POINTER 

CHECK: CMP (R2)+, (R3) 
BlENO 

;COMPARESCORE AND AVRAGE 
;lESS THAN OR EQUAL 
;TOAVRAGE? 

INCRO 
NO: DECR1 

BNECHECK 
HALT 

AVERAGE: 65. 

;NO,COUNT 
;YES, DECREMENT COUNTER· 
;FINISHED? NO, CHECK 
;YES,STOP 

SCORES: 25.,70.,100.,60.,80.,80.,40. 
55.,75.,100.,65.,90.,70.,65.,70 . 

. END 

;PROGRAMMING EXAMPLE 
;ACCEPT (IMMEDIATE ECHO) AND 
;STORE 20. CHARS 
;FROM THE KEYBOARD, OUTPUT CR & IF 
;ECHO ENTIRE STRING FROM STORAGE 

RO=%O 
R1=%1 
SP=%6 
CR=15 
IF=12 
TKS=177560 
TKB=TKS+2 
TPS=TKB+2 
TPB=TPS+2 

.TITlEECHO 

.=1000 

128 



Chapter 5-Programming Techniques 

START: MOV #.,SP ;INITIALIZE STACK POINTER 
MOV #SAVE+2,RO ;SA OF BUFFER 

;BEYOND CR & LF 
MOV #20.,R1 :CHARACTER COUNT 

IN: TSTB @#TKS ;CHAR IN BUFFER? 
BPL IN ;IF NOT BRANCH BACK 

;ANDWAIT 
ECHO: TSTB @#TPS ;CHECK TELEPRINTER 

;READY STATUS 
BPL ECHO 
MOVB @#TKB,@#TPB ;ECHO CHARACTER 
MOVB @#TKB,(RO)+ ;STORE CHARACTER AWAY 
DEC R1 
BNE IN ;FINISHED INPUTTING? 

MOV #SAVE,RO ;SA OF BUFFER INCLUDING 
;CR&LF 

MOV #22.,R1 ;COUNTER OF BUFFER 
;INCLUDING CR & LF 

OUT: TSTB @#TPS ;CHECK TELEPRINTER 
;READY STATUS 

BPL OUT 
MOVB (RO)+,@#TPB ;OUTPUT CHARACTER 
DEC R1 
BNE OUT ;FINISHED OUTPUTTING? 
HALT 

SAVE: .BYTE CR,LF 
.=.+20 . 

. END 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO INPUT TEN VALUES 

INPUT: MOV #BUFFER,RO ;SETUPSAOF 
;STORAGE BUFFER 

MOV #-10.,R1 ;SET UP COUNTER 
IN: TSTB@#TKS ;TEST KYBD READY STATUS 

BPLIN 
OUT: TSTB@#TPS ;TEST TTO READY STATUS 

129 



SORT: 
NEXT: 

LOOP: 

LT: 

GT: 

INSERT: 

COUNT: 
LlNE1: 
I'LL! 

LlNE2: 
BUFFER: 

Chapter 5-Programming Techniques 

BPLOUT 
MOVB @#TKB,@#TPB;ECHO CHARACTER 
MOVB @#TKB,(RO)+ ;STORE CHARACTER 
INC R1 ;INC COUNTER 
BNEIN 
RTSPC ;EXIT 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO SORT TEN VALUES 

MOV #-10.,R4 
MOV COUNT,R3 
MOV #BUFFER+9.,RO 
ADDR3,RO 
MOVB (RO)+,R1 
CMPB (RO)+,R1 
BGEGT 
MOVB -(RO),R2 
MOVB R1,(RO)+ 
MOVR2,R1 
INCR3 
BNELOOP 
MOVB R1,BUFFER+10.(R4) 
INCR4 
INC COUNT 
BNENEXT 
MOV #-9.,COUNT ;RESTORE LOCATION COUNT 
RTS PC ;EXIT 

.WORD-9. 

.ASCII/INPUT ANY TEN SINGLE DIGIT VALUES (0-9); 

.ASCII/SORT AND OUTPUT THEM IN/ 

.ASCII/SMALLEST TO LARGEST ORDER.! 

.=.+10. 

.END INITSP ;FINISHED!I! 

;PROGRAMMING EXAMPLE 
;SUBROUTINE EXAMPLE 
;INPUT TEN VALUES, SORT, AND 
;OUTPUT THEM IN SMALLEST TO LARGEST ORDER 

130 



Chapter 5-Programming Techniques 

RO=%O 
R1=%1 
R2=%2 
R3=%3 
R4=%4 
R5=%5 
SP=%6 
PC=%7 
TKS= 177560 (address of teletype control status register) 
TKB=TKS+2 - (teletype data buffer register) 
TPS=TKB+2 (teletype output control and status registers) 
TPB=TPS+2 - (teletype output data buffer) 

=3000 

INITSP: MOV #.,SP 
JSRPC,CRLF 
JSR R5, OUTPUT 
LlNE1 
69. 
JSRPC,CRLF 
JSR R5,OUTPUT 
LlNE2 
26. 
JSRPC,CRLF 
JSR PC,INPUT 
JSRPC,SORT 
JSRPC,CRLF 
JSR R5,OUTPUT 
BUFFER 
10. 
JSRPC,CRLF 
HALT 

;INITIALIZE STACK POINTER 
;GO TO CRLF SUBROUTINE 
;GO TO OUTPUT SUBROUTINE 
;SA OF LINE 1 BUFFER 
;NUMBER OF OUTPUTS 
;GO TO CRLF SUBROUTINE 
;GO TO OUTPUT SUBROUTINE 
;SA OF LINE 2 BUFFER 
;NUMBER OF OUTPUTS 
;GO TO CRLF SUBROUTINE 
;GO TO INPUT SUBROUTINE 
;GO TO SORT SUBROUTINE 
;GO TO CRLF SUBROUTINE 
;GO TO OUTPUT SUBROUTINE 
;INPUT BUFFER AREA 
;NUMBER OF OUTPUTS 

;THEEND!!! 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO OUTPUT A CR & LF 

CRLF: TSTB @#TPS ;TEST TTO READY STATUS 
BPLCRLF 
MOVB #15,@#TPB ;OUTPUT CARRIAGE RETURN 

LNFD: TSTB @#TPS ;TEST TTO READY STATUS 
BPL LNFD 
MOVB#12,@#TPB ;OUTPUT LINE FEED 
RTSPC ;EXIT 

131 



Chapter 5-Programming Techniques 

;SUBROUTINE TO OUTPUT A 
;VARIABLE LENGTH MESSAGE 

OUTPUT: MOV (R5)+ ,RO ;PICK UP SA OF DATA BLOCK 
MOV (R5)+,R1 ;PICK UP NUMBER OF OUTPUTS 
NEG R1 ;NEGATE IT 

AGAIN: TSTB @#TPS ;TEST TTO READY STATUS 
BPLAGAIN 
MOVB (RO)+,@#TPB ;OUTPUT CHARACTER 
INC R1 ;BUMP COUNTER 
BNEAGAIN 
RTSR5 

LOOPING TECHNIQUES 
PROGRAM SEGMENTS BELOW USED TO CLEAR 

A 50.WORD TABLE 

1. AUTOINCREMENT (POINTER ADDRESS IN GPR) 

LOOP: 

RO=%O 
MOV#TBL,RO 
CLR(RO)+ 
CMP RO,#TBL+100. 
BNELOOP 

2. AUTODECREMENT (POINTER AND LIMIT VALUES IN GPR) 

RO=%O 

LOOP: 

R1=%1 
MOV#TBL,RO 
MOV#TBL+100.,R1 
CLR - (R1) 
CMPR1,RO 
BNELOOP 

3. COUNTER (DECREMENTING A GPR CONTAINING COUNT) 

RO=%O 

LOOP: 

R1=%1 
MOV#TBL,RO 
MOV#50.,R1 
CLR (RO)+ 
DECR1 
BNELOOP 

132 



Chapter 5-Programming Techniques 

4. INDEX REGISTER MODIFICATION (INDEXED MODE; MODIFY­
ING INDEX VALUE) 

LOOP: 

RO=%O 
CLRRO 
CLRTBL(RO) 
ADD#2,RO 
CMP RO,#100. 
BNELOOP 

5. FASTER INDEX REGISTER MODIFICATION (STORING VALUES 
IN GPR) 

LOOP: 

RO=%O 
R1=%1 
R2=%2 
MOV#2,R1 
MOV #1 OO.,R2 
CLRRO 
CLRTBL(HO) 
ADDR1,RO 
CMP RO,R2 
BNELOOP 

6. ADDRESS MODIFICATION (INDEXED MODE; MODIFYING BASE 
ADDRESS) 

LOOP: 

RO=%O 
MOV#TBL,RO 
CLRO (RO) 
ADD #2,LOOP+2 
CMP LOOP+2,#100. 
BNELOOP 

133 



134 



INTRODUCTION 

CHAPTER 6 

MEMORY MANAGEMENT 

During the execution of user programs, various system resources are 
required at different times. There is only one CPU, and only one pro­
gram can fetch and execute instructions at one time; however, other 
operations such as I/O may occur simultaneously. Frequently, a pro­
gram may use the CPU for only a short amount of processing time and 
then wait for system resources to become available (e.g., memory, 
peripherals, etc.) or for feedback from concurrently active programs. 
During this processor idle time, another program could make use of 
the CPU. This concept is known as multiprogramming. Therefore, to 
most efficiently utilize the speed and power of the PDP-11 system, it is 
essential that several programs reside in main memory simultaneous­
ly. 

The task of the executive (monitor or supervisory program) is to con­
trol the execution of the various user programs, manage the allocation 
of memory and peripheral device resources, and safeguard the 
integrity of the system by careful control of each user program. 

CONCEPTS 
Before describing the memory management schemes incorporated by 
the family of PDP-11 processors, it is important to review several relat­
ed concepts. 

Virtual Address Space 
Virtual address space is that set of addresses restricting the size of a 
user's program. For instance, a program written for a PDP-11 
processor is restricted to a 16-bit address space. The PC (Program 
Counter) is a 16-bit register. Therefore, each user program can 
reference only the range of addresses between 0 and 177777 octal. 
This range of 32K Words or 64K Bytes (200000 octal bytes) is known 
as the program's virtual address space. Each program's virtual 
address space begins with address 0 and can extend upward to a 
maximum of 64K Bytes. Figure 6-1 illustrates several user programs 
and their associated virtual address space. 

135 



Chapter 6 - Memory Management 

_ VIRTUAL 32M: El I.C.320) 

TASK 1 

_ VIRTUAL' 
I'C'O) 

_ VIRTUAL 32K EJ I.C,32K) 

TASK 2 

_ VIRTUAL' 
I'C' 0) 

_ VIRTUAL 32K EJ I'C' 32K) 

---- - TASK N 

_ VIRTUAL. 
I'C '0) 

Figure 6-1 Program Virtual Address Space 

Physical Address Space 
Physical address space is a contiguous series of word addressable 
hardware locations used to define main memory and peripheral de­
vice registers. Three magnitudes of physical address space are uti­
lized by the PDP-11 family of processors; 16-bit, 1B-bit, and 22-bit. 
The 16-bit space yields a total of 64K Bytes and the 1B-bit space yields 
a total of 256K Bytes. Since devices on the UNIBUS are addressable 
via an 1B-bit address, it is clear, that in both of the above cases (16-
and 1B-bit), main memory may be physically attached to the UNIBUS. 
The 22-bit space yields a total of 4096K Bytes. In this case however, 
the physical address range (22 bits) exceeds that of the UNIBUS (1B 
bits); and main memory mustbe located on a separate memory bus. 

Peripheral Device Register Addressing 
Up to this point, virtual and phYSical address space have been viewed 
as the series of locations available to the programmer as program 
space. However, some provisions must be made to address peripher­
al device registers; a function necessary in performing I/O operations. 
The top BK Bytes of physical address space have been assigned the 
addresses of peripheral device registers. Therefore, any reference to 
an address contained within the top BK Bytes of virtual address space 
causes a reference to the corresponding address within the I/O page 
(top BK Bytes) of the particular physical address space. The diagram 
in Figure 6-2 illustrates physical address space including main memo­
ry and UNIBUS peripheral device register (1/0 page) space. 

The diagram in Figure 6-2 will be explained more fully during the 
discussion of 16-, 1B-, and 22-bit mapping of processor addresses. 

Address Relocation 
Very often a program is loaded into main memory at a starting address 
other than zero. This situation occurs when more than one program is 
loaded into main memory. When anyone program is executing, it is 
accessed by the processor as if it were located in the set of main 
memory addresses beginning at zero. When the processor accesses 
program location 0 (PC = 0), a constant called the base address, is 
added to the virtual address in the PC by the memory management 

136 



Chapter 6 - Memory Management 

I/O SPACE 

PHYSICAL 
MEMORY 

PHYSICAL SPACE 

110 PAGE 4K 

EXECUTIVE 

Figure 6-2 

-- - - - VIRTUAL 2SK (PC o2SK) ~ 
VIRTUAL 32K (PC o32K) 

I/O 4K 

- - - - VI RTUAL 0 (PC 0 0 ) 

',------,VIRTUAL 32K (PC o32K) 

~77T771 VIRTUAL 2SK (PC o2SK) 

--
I.L...<CL-LLLJ VIRTUAL 0 (PCoO) 

Physical Address Space 

hardware. Thus, the relocated or actual memory address of program 
location 0 is accessed. This process is known as address relocation or 
address translation. This same base address is added to all 
references while the same program is executing. A different base ad­
dress is used for each program in main memory. (The previous two 
statements however, assume that the executing program resides in a 
contiguous area of main memory. Later in this chapter we will see that 
a program can also be loaded into main memory in non-contiguous 
segments known as pages. When this situation occurs, each individual 
page is assigned a different relocation constant.) 

To illustrate this point, lets look at a simplified memory relocation 
example. In Figure 6-3, Program A starting address 0 is relocated by a 
constant to provide physical address 6400s' If the next processor virtu­
al address is 2, the relocation constant will then cause physical ad­
dress 6402s, which is the second item of Program A, to be accessed. 
However, when Program B is executing, the relocation constant is 
changed to 100000s' Then Program B virtual addresses are relocated 
by the relocation constant 100000s ' 

MEMORY MANAGEMENT 
Memory management is the hardware that translates (relocates) the 
program's 16-bit virtual address into either an 18-bit or 22-bit (proces­
sor dependent) physical address. The hardware consists of an adder, 
a number of registers that perform the actual address translation, and 
an overall internal system protection scheme. 

137 



PDP-ll 
PROCESSOR 

PC'V.A.' (0) 

Chapter 6 - Memory Management 

MEMORY 
MANAGEMENT 
UNIT 

~~D~J~f~T 
A'0064 
8'1000 

100000 

L--------.006400 

PHYSICAL 
MEMORY 

~ 

PROGRAM 8 

PROGRAM A 

000000 '------' 

Figure 6-3 Simplified Memory Relocation Example 

The basic function of memory management is to perform memory 
relocation and provide extended memory addressing capability for 
systems with greater than 28K words of physical memory. In order to 
perform this basic function, however, the memory management 
system utilizes a series of Active Page Registers (APRs). The APRs are 
actually a set of hardware relocation registers that permit several 
user's programs, each starting at virtual address 0, to simultaneously 
reside in physical memory. 

In the PDP-11 system, a program is mapped (relocated) in pages. A 
page can consist of from 1 to 128 blocks. Each block is 32 words in 
length. Thus the maximum length of a page is 4096 (128 x 32) words, 
and the maximum number of pages in the program is 8 (4096 words·x 
8 = 32K). Memory management contains 8 APRs for mapping virtual 
pages into physical memory. Using all of the eight available active 
pages registers in a set, a maximum program length of 32,768 words 
can be accommodated. Each. of the eight pages can be relocated 
anywhere in physical memory, as long as each relocated page begins 
on a boundary that is a multiple of 32 words. However, for pages that 
are smaller than 4K words, only the memory actually allocated to the 
page may be accessed. 

The relocation example shown in Figure 6-4 illustrates several pOints 
about memory relocation. These points are: 

138 



Chapter 6 - Memory Management 

1. Although the program appears to be in contiguous address space 
to the processor, the 32K-word virtual address space is actually 
scattered through several separate areas of physical memory. As 
long as the total available physical memory space is adequate, a 
program can be loaded. The physical memory space need not be 
contiguous. 

2. Pages may be relocated to higher or lower physical addresses, 
with respect to their virtual address ranges. In the example of 
Figure 6-4, page 1 is relocated to a higher range of physical ad­
dresses, page 4 is relocated to a lower range, and page 3 is not 
relocated at all (even though its relocation constant is non-zero). 

3. All of the pages shown in the example start on 32-word bounda­
ries. 

4. Each page is relocated independently. There is no reason why two 
or more pages could not be relocated to the same physic;al mem~ 
ory space. Using more than one page address register in the set 
to access the same space would be one way of providing different 
memory access rights to the same data, depending upon which 
part of a program was referencing that data. In the example 
shown in Figure 6-4, note the relocation constant assigned to 
pages 4 and 6. As a result, virtual addresses within both address 
ranges access the same physical addresses in memory, using 
separate page address registers. 

MEMORY 
PROCESSOR MANAGEMENT PHYSICAL MEMORY 

VIRTUAL ADDRESS 
RANGES APR, RELOCATION PHYSICAL MEMORY 

CONSTANT RANGES 

PCl160000 -17 7776) 1500XX 400000 - 417776 

PCII40000-157776) 0200XX 320000 - 337776 

PCI120000-137776) 1000XX 250000 - 267776 

PCll00000-117776) 0200XX 150000 - 167776 

PC 1060000-077776) 0600XX 100000 - 117776 

PCI040000-057776) 2500X X 06000 - 077776 

PCI020000-037776) 3200XX 02000 - 037776 

PCI000000-017776) 0 4000XX 

Figure 6-4 Relocation of a 32K Word Program into 124K Word 
Physical Memory 

139 



Chapter 6 - Memory Management 

NOTE 
The manipulation of Instruction and Data space (I 
and D space) is an advanced programming tech­
nique that effectively doubles the user's virtual ad­
dress range from 32K to 64K words. The concept of I 
and D space will be discussed in this chapter. 

An important function of memory management is to keep track of and 
to control memory allocation as well as monitor memory access viola­
tion attempts. The reason for this statistical and control hardware is to 
pass system parameters to an intelligent software program to effec­
tively manage physical memory resources. This intelligent software is 
known as the Kernel, monitor, executive, operating system, etc. 

A key goal of the memory management scheme is to protect the 
operating system software from the user community as well as to 
protect individual programs from one another. PDP-11 memory man­
agement provides the hardware facilities to implement all of the fol­
lowing types of memory protection: 

• User programs must not be allowed to expand beyond allocated 
space, unless authorized by the system 

• Users must be prevented from modifying common subroutines and 
algorithms that are resident for all users 

• Users must be prevented from gaining control of or modify.ing the 
operating system software 

• Users must be prevented from accessing or modifying memory oc­
cupied by other users 

Memory management divides memory into individual sections called 
pages. Each page has a protection or access key associated with it 
that defines the type of access allowed on that particular page. For 
example, a page can be labeled memory resident Read/Write, memo­
ry resident Read-only, or non-resident. To more fully understand 
these access control types, lets look at the memory requirements of a 
typical application program. If the application program can be con­
tained within three pages of virtual space (24KB), then only three 
pages of main memory need be allocated by memory management as 
resident for that program, all other pages are assigned non-resident 
status. Therefore, the non-resident access key can be used to allocate 
physical memory efficiently. If the kernel contains an area that could 
be of use to a user but must be non-modifiable, then that area is 
designated as read-only. However, there might be a data base or a 
common data area in the users space that must be updated constant-

140 



Chapter 6 - Memory Management 

Iy, i.e., a data base of digital data or AID conversion data. In this case, 
the data base or common data area must be designated as read-write. 

Kernel, Supervisor, and User Mode 
The PDP-11 processor family offers either two or three (dependent 
upon processor model) modes of execution, Kernel, Supervisor, and 
User. Their use is to enhance the memory protection scheme and to 
increase the flexibility and functionality of timesharing and multi-pro­
gramming environments. 

Kernel mode is the most privileged of the three modes and allows 
execution of any instruction. In an operating system featuring multi­
programming, the ultimate control of the system is implemented in 
code that executes in kernel mode. Typically, this includes; control of 
physical 1/0 operations, job scheduling and resource management. 
Memory management mapping and protection allows these executive 
elements to be protected from inadvertant or malicious tampering by 
programs executing in the less privileged processor modes. If the 1/0 
page is only mapped in kernel mode, then only the kernel has access 
to the memory management registers to re-map or modify the protec­
tion. This is because the memory management registers themselves 
exist in the 110 page. 

In order for a user program to have sensitive functions performed in its 
behalf, a request must be made of the executive program, typically in 
the form of a software trap that vectors the processor into kernel 
mode. Thus the executive code remains in control and can verify that 
the function requested is consistent with the operation of the system 
asawhole. 

The supervisor mode is the next most privileged mode, and may be 
used to provide for the mapping and execution of programs shareable 
by users but still requiring protection from them. This might include 
command interpreters, logical 1/0 processors, or runtime systems. 

User mode is the least privileged mode and prohibits the execution of 
instructions such as HALT and RESET as does Supervisor mode. A 
multi-programming operating system will typically restrict execution of 
user programs to user mode to prevent a single user from having a 
negative effect on the system as a whole. The user's virtual address 
space is set up such that the only areas of memory that can be written 
are those that belong to that user. Areas shared among users are 
protected as read-only, execute-only, or for both read and execute 
access. 

Interrupt Conditions Under Memory Management Control 
The memory management unit relocates all addresses. ThlllS, when it 

141 



Chapter 6 - Memory Management 

is enabled, all trap, abort, and interrupt vectors are considered to be in 
Kernel mode virtual address space. When a vectored transfer occurs, 
control is transferred according to a new Program Counter (PC) and 
Processor Status Word (PSW) contained in a two word vector relocat­
ed through the Kernel page address register set. Relocation of trap 
addresses means that the hardware is capable of recovering from a 
failure in the first physical bank of memmory. 

When a trap, abort, or interrupt occurs, the "push" of the old PC and 
old PSW is to the User/Supervisor/Kernel R6 stack specified by CPU 
mode bits 15, 14 of the new PS in the vector. (00 = Kernel, 01 = 
Supervisor, 11 = User.) The CPU mode bits also determine the new 
page address register set. Thus, it is possible for a Kernel mode 
program to have complete control over service assignments for all 
interrupt conditions, since the interrupt vector is located in Kernel 
space. The Kernel program may assign the service of some of these 
conditions to a Supervisor or User mode program by simply setting 
the CPU mode bits of the new PSW in the vector to return control to 
the appropriate mode. 

Instruction and Data Space 
The memory management unit in some processor models can relo­
cate data and instruction references with separate base address val­
ues; thus, it is possible to have a user program of 64K words consist­
ing of 32K of pure instructions or procedure code and 32K of data; all 
within a program's virtual address range. 

The user can enable the I and 0 space mode of operation (under 
program control) by setting the appropriate bit in memory manage­
ment register 3. (Memory management registers will be explained at 
the end of this chapter.) 

Eight I space APRs accommodate up to 32K instruction words and 
eight 0 space APRs accommodate up to 32K data words. By using the 
separate I and 0 space APRs, a maximum 64K word program capacity 
is possible. The following rules apply to any separate I and 0 space 
programs: 
1. I space can contain only instructions, immediate operands (Mode 

2, Register 7), absolute addresses (Mode 3, Register 7), and index 
words (Modes 6 and 7). This res1riction is reflected in Table 6-1. 

2. The stack page must be mapped into both I and 0 space if the 
Mark instruction Is used (standard PDP-11 subroutine calling 
sequence), because it is executed off the stack. 

3. I space-only pages cannot contain subroutine parameters, which 
are data. fherefore, any page that contains standard PDP-11 call-

142 



Chapter 6 - Memory Management 

ing sequences for example cannot be mapped into an I space 
page. 

4. The trap catcher technique of putting .+2 in the trap vector (TV) 
followed by a Halt must be mapped into both I and D space. 

Table 6-1 illustrates the separation of I and D references for all ad­
dress modes and all registers. Note that all registers (RO-R7) are In 
both spaces. 

ACTIVE PAGE REGISTERS (APRS) 
The memory management unit uses two or more sets of eight 32-bit 
Active Page Registers (APRs). An APR is actually a pair of 16-bit 
registers: a Page Address Register (PAR), and a Page Descriptor 
Register (PDR). These registers are always used as a pair and contain 
all the information needed to describe and locate the currently active 
memory pages. 

One set of APRs is dedicated for Instruction space, and one for Data 
space for each supported mode of operation. Figure 6-5 illustrates the 
selection of an APR (PAR/PDR) register set. The Current Mode bits, 
<15:14>, of the PSW select the mode of execution. (Once again, 
some members of the PDP-11 family do not utilize Supervisor mode.) 
When the memory management unit is turned on, the upper three bits, 
<15:13>, of the virtual address generated by the processor (PC) are 
used to select one of the 8 PAR/PDR relocation register sets. And 
finally, bits <2:0> of Memory Management Status Register 3 are used 
to select I space only, or the combined use of I and D space for each 
memory management mode independently. (If I space alone is select­
ed, then both instructions and data reside in I space.) 

Page Address Register (PAR) 
The page address register (PAR), illustrated in Figure 6-6, contains the 
page address field (PAF) specifing the starting (base) address of the 
page as a block number in physical memory. The PDP-11/34A PAF 
contains 12 bits while the PDP-11/24, 11/44, and 11170 PAF contains 
16 bits. 

The PAR may be thought of as a relocation register containing a relo­
cation constant, or as a base register containing a base address. Ei­
ther interpretation indicates the basic importance of the PAR as a 
relocation tool. 

Page Descriptor Register (PDR) 
The Page Descriptor Register (PDR), illustrated in Figure 6-7, contains 
information relative to page expansion, page length, and access con­
trol. 

143 



Mode 
000 
001 

010 

011 

100 

101 

110 

111 

Chapter 6 - Memory Management 

Table 6-1 Addressing Mode I and D References 

Register Name 
X Register 
X Register Deferred 

0-6 Autoincrement 

7 Immediate 

0-6 

7 

0-6 

Autoincrement 
Deferred 

Absolute 

Autodecrement 

INSTRUCTION I space 
INSTRUCTION I space 
DATA Dspace 
INSTRUCTION I space 
DATA Dspace 
INSTRUCTION I space 
IMMEDIATE DATA I space 

INSTRUCTION 
INDIRECT 
DATA 
INSTRUCTION 
ABSOLUTE 
ADDRESS 
DATA 
INSTRUCTION 
DATA 

I space 
Dspace 
Dspace 
I space 

I space 
Dspace 
I space 
Dspace 

7 
0-6 

DO NOT USE THIS CONSTRUCTION 

7 
X 

X 

Autodecrement 
Deferred INSTRUCTION 

INDIRECT 
DATA 

I space 
Dspace 
Dspace 

DO NOT USE THIS CONSTRUCTION 
Index INSTRUCTION I space 

INDEX I space 
DATA Dspace 

Index Deferred INSTRUCTION I space 
INDEX I space 
INDIRECT D space 
DATA D space 

Note that when D space is not enabled for a mode by setting the 
proper bit in SR3, all memory references are relocated and protected 
by the I space set of PAR/PDR registers. 

144 



KERNEL 

000 PAR PDR 

001 

010 

011 

100 

101 

110 

111 L-.L..-'--L--I 

1 

1 

1 

000 
00 

010 

011 

100 

10 

110 
11 

PAR PDR 

Chapter 6 - Memory Management 

SUPERVISOR 

PAR PDR 

PAR PDR 

15 14 

PSW 15.14 

00 KERNEL 
o 1 SUPERVISOR 
10 ILLEGAL 
11 USER 

USER 

PAR PDR 

PAR PDR 

I SPACE 

D SPACE 

LSELECTED BY V.A. 15: 13 

Figure 6-5 (PAR/PDR) Register Set 

~11 PAGE ADDRESS FIELD (PAF) 

PAR 18-BIT RELOCATION FORMAT 

PAGE ADDRESS FIELD (PAF) 

PAR 22-BIT RELOCATION FORMAT 

Figure 6-6 The Page Address Register 

145 

2 1 0 

\1 III 
MMR3 2:0 

o 

o 



Chapter 6 - Memory Management 

~14 
PAGE LENGTH FIELD (PLF) 

Figure 6-7 The Page Descriptor Register 

Access Control Field (ACF) - Bits <2:0> of the PDR, contains the­
access rights to this particular page. The access codes (keys) specify 
the manner in which a page may be accessed and whether or not a 
given access should result in a trap or an abort of the current 
operation. A memory reference which causes an abort is not complet­
ed, whereas a reference causing a trap is completed. When a memory 
reference causes a trap to occur, the trap does not occur until the 
entire instruction has been completed. Aborts are used to eaten miss­
ing page faults and prevent illegal access.' 

In the context of access control, the term write is used to indicate the 
action of any instruction which modifies the contents of any address­
able word. Write is synonymous with what is usually called a store or 
modify in many computer systems. 

The modes of access control are as follows: 

000 

001 

010 

011 

100 

101 

110 

111 

non-resident 

read-only 

read-only 

unused 

read/write 

read/write 

read/write 

unused 

abort all accesses 

abort on write attempt, memory 
management trap on read 

abort on write attempt 

abort all accesses - reserved 
for future use 

memory management trap 
upon completion of a read or 
write 

memory management trap 
upon completion of a write 

no system trap/abort action 

abort all accesses....;.. reserved 
for future use 

It should be noted that the use of I space provides a further form of 
protection, execute only. 

146 



Chapter 6 - Memory Management 

Expansion Direction (ED) - During the execution of a program, addi­
tional memory space is frequently required by a page. Bit <3> of the 
PDR indicates in which direction the page expands. A logic zero in this 
bit (ED = 0) indicates that the page expands upward from relative zero 
(page base address). A logic 1 in this bit (ED = 1) indicates that the 
page expands downward toward relative zero (page base address). 
When expansion is upward, the page length is increased by adding 
blocks with higher relative addresses. Upward expansion is usually 
specified for program or data pages so that more program or table 
space can be made available. Figure 6-8 illustrates an example of 
upward page expansion. 

When expansion is downward,the page length is increased by adding 
blocks with lower relative addresses. Downward expansion is speci­
fied forstack pages so that more stack space can be added. Figure 6-
9 illustrates an example of downward page expansion. 

Access Information Bits - Bit <6> of the PDR, the Writen Into (W) 
bit, indicates whether the page has been written into since it was 
loaded in memory. A logical 1 in bit <6> indicates a modified page. 
The W bit is automatically cleared when the PAR or PDR of that page is 
written into. 

In disk swapping and memory overlay applications, the W bit can be 
used to determine which pages in memory have been modified by a 
user. Those that have been written into must be saved in their current 
form. Those that have not been modified (logical 0 in bit <6» need 
not be saved and can be overlayed with new pages if necessary. 

Bit <7> of the PDR, the Attention (A) bit, indicates whether any mem­
ory page accesses caused memory management trap conditions to be 
true. A logical 1 in bit <7> indicates a memory management trap 
condition. Trap conditions are specified by the ACF bits of the PDR. 
The following conditions will set the A bit; 
1. ACF = 001 and read reference 
2. ACF = 100 and read or write reference 
3. ACF = 101 and write reference 

The A bit (PDP-11170) is used in the process of gathering memory 
management statistics for the purpose of optimizing memory use. The 
A bit is automatically cleared when the PAR or PDR of the page is 
written into. 

147 



Chapter 6 - Memory Management 

PAR PDR 

1000 001 111 000 I 10 010100100000 no I 

PAF' Ol~_-------ll 1 '-'I 
PLF, 51,' .IIO'NO. OF BLOCKS _ 

ED' 0 ' UPWARD EXPANSION 

ACFo6,READ/WRITE 

NOTE: 
TO SPECIFY A BLOCK LENGTH OF 42 FOIVAN UPWARD EXPANDABLE 
PAGE WRITE HIGHEST AUTHORIZED BLOCK NO. DIRECTLY NTO HIGH 
BYTE OF PDR. BIT ISIS NOT USED BECAUSE THE HIGHEST ALlOWAIlE 
BlOCK NUMBER IS 177, 

1 
ADDRESS RANGE 
OF POTENTiAl PAGE 
EXPANSION BY 
CHANGING THE PLF 

02.176 
BLOCK 51, 

02.100 

017276 
AUTHORIZED PAGE BLOCK 2 
LENGTH' 4210 IlOCKS 017200 

~~:.~r·'" I-_B_LO_C_K..:~..;.17,-,1..:7.:.6; 017100 

017076 
BlOCK 0 

017000 

ANY BLOCK NUMBER 
GREATER THAN .110 (51, ) 

(VA < 12:06 ~ 51, I 
Will CAUSE A PAGE 
LENGTH ABORT 

BASE ADORES S 
OF PAGE 

Figure 6-8 Upward Page Expansion 

148 



Chapter 6 - Memory Management 

L ACTIVE PAGE REGISTER CONTENTS---l 

I PAR PDR 

I 000001111 000 I 101010110 0000 1 110 I c-...;=JD PAF' 0170----.J I 
PL F' 1268 = 8610 

ED' 1 • DOWNWARD EXPANSION 

TO SPECIFY PAGE LENGTH FOR A DOWNWARD EXPANDA8l.E PAGE 
WRITE COMPLEMENT OF 8LOCKS REQUIRED INTO HIGH 8YTE OF PDR. 

IN THIS EXAMPLE. A 42-BlOCK PAGE IS REQUIRED. 
PL F IS DERIVED AS FOllOWS: 
4210,528: TWO'S COMPLEMENT'1268 

T 036716 } FIRST BlOCK OF 
BLOCK 1778 DOWNWARD 

1-_-;0=3:;::6;-:700~ EXPANDABLE PAGE 
036676 

BLOCK 1768 
036600 

AUTHORIZED 
PAGE LENGTH' 
42 10810CKS 

ADDRESS RANGE 

036576 
BLOCK 1758 

036500 

031676 
BLOCK 1268 

031600 

OF POTENTIAL PAGE ............ ~~""':" 

:em 
A BLOCK NUMBER 
REFERENCE LESS 
THAN 1268 
WA<12:06> LESS ~HAN 12681 
WILL CAUSE A PAGE 
LENGTH ABORT. 

BASE ADDRESS 
-OF PAGE 

Figure 6-9 Downward Page Expansion 

149 



Chapter 6 - Memory Management 

PHYSICAL ADDRESS CONSTRUCTION 
When the memory management unit is turned off, the 16-bit virtual 
address generated by the processor is interpreted as a direct physical 
address (PA). Therefore, the total physical address space accessible 
to a system without memory management is 28K of main memory and 
4K of I/O. However, when the memory management unit is enabled, 
the nonnal 16-bit virtual address generated by the processor is no 
longer interpreted as a- direct physical address, but as a virtual ad­
dress containing information to be used in constructing a new physical 
address. The information contained in the virtual address is combined 
with relocation information contained in the PAR to yield a physical 
address. Via the MMU; memory is dynamically allocated in pages. The 
starting physical address for each page is an integral multiple of 32 
words, each page contains a maximum of 4,096 words. 

Virtual Bus Address (VBA) and APRs 
As stated in the last paragraph, the basic information needed to con­
struct a physical address is derived from the virtual address and the 
appropriate PAR. The VA is illustrated in Figure 6-10. 

15 
APF 13 112 

o 

Df 

~~_N_E_AA_G_E_Fl_EL_D ____________ ~~~ __ D_1S_P_LA_C_EM_EW __ F_lE_LD ____________ ~J 

INTERPRETATION OF VBA 

Figure 6-10 Interpretation of a Virtual Address with Memory 
Management enabled 

The 16-bit virtual address is interpreted as having the following two 
fields: 
• The Active Page Field (APF). The APF is a 3-bitfield, <15:13>, used 

to determine which of 8 active page registers (PARO-PAR7) will be 
used to form the physical address . 

• The Displacement Field (OF). The OF is a 13-bit field, <12:0>, con­
taining an address relative to the beginning of a page. This permits 
page lengths up to 4K words. The displacement field is further sub­
divided into two fields as illustrated in Figure 6-11. 

12 6 5 o 
BN DIB 

BLOCK -NUMBER DISPLACEMENT IN BLOCK j 

,~---------------~~--------------------~ 
DISPLACEMENT FIELD 

Figure 6-11 Interpretation of Displacement Field 

150 



Chapter 6 - Memory Management 

The displacement field (OF) consists of: 

• The physical memory Block Number (BN). This 7-bitfield, <12:06>, 
is interpreted as the block number (0-127) within the current page . 

• The Displacement in the Block (018). This 6-bit field, <5:0>, con­
tains the displacement within the block (0-31 words) refered to by 
the block number (BN). 

The remaining information needed to construct the physical address, 
i.e., the relocation constant (base address), comes from the PAR. As 
illustrated in Figure 6-6, the PAR contains a field known as the page 
~ddress field (PAF). It is this field that specifies the starting address or 
relocation constant of the currently active memory page. 

Before illustrating specific 18- and 22-bit relocation examples, let's 
summarize the procedure for constructing any physical address. The 
logical sequence involved is as follows: 
1. Select a set of APRs, depending on the space being referenced (I 

or D). ((Refer to Figure 6-5.) 
2. The APF of the VBA is used to select a PAR (PARO-PAR7). (Refer 

to Figure 6-10). 
3. The PAF of the selected PAR contains the starting address of the 

currently active page as a block number in physical memory. 
(Refer to Figure 6-6.) 

4. The Block Number (BN) from the VBA is added to the PAF to yield 
the number of the physical block in memory which will contain the 
PA being constructed. 

5. The Displacement in Block (DIB) from the Displacement Field (OF) 
of the VBA is joined to the physical block number to yield the 
physical address. 

This sequence is illustrated in Figure 6-12. 

At this point, lets look at several virtual to physical address transla­
tions. In the first example, a 16-bit virtual address will be translated 
into an 18-bit physical address. The address to be relocated is 
1577468 virtual. In order to perform this example however, we must 
make one assumption; that the PAF of the PAR already contains a 
main memory relocation constant. In this example, the relocation con­
stant is 54608 , The actual flow of translation is illustrated in Figure 6-
13. 

In the next example, a 16-bit virtual address will be translated into a 
22-bit physical address. In this case, the address to be relocated is 

151 



Chapter 6 - Memory Management 

15 13 12 06 OS 00 
VIRTUAL 
ADDRESS I A P F I I I 

'---.,.-I~~ 
r-I _____ ----ll r= PlUS .J 

SELECTS ,..-_____ ~~~ _______ ____., 

l ~H8 BIT RELOCATION ' 
15-22 BIT RELOCATION 00 

PAF I 
I 

Y 

PAR I 
c\ =============::::::l 
r17 -18 BIT PA 
21 -22 BIT PA 

EQUALS 

* , 
PHYSICAL I 
ADDRESS L, ________________ ~ ___ _.J 

Figure 6-12 Virtual to Physical Address Translation 

16-BIT VIRTUAL ADDRESS 15 13 12 6 5 o 
FROM: PROCESSOR I BLOCK I WORD 
EXAMPLE: 1877468'------1 APF I NUMBER (BN) I NUMBER(WN) 

~--~~~~~~----~~ 
APf SELECTS PAGE ADDRESS '---.,.-I '-----y-----I ~ 

,~~_~R~ro~I~ST~E~R~(PA~R~) __ ~1 I 
VA<12:06> 

PAGE ADDRESS FIELD EXAMPLE: 1778 

~ " PAF <17:06> • 11 1 1 1 1 1 1 I 
BASE ADDRES~r-P:_G_:_l -1-0-L-0-l-l-0-0-0--;0 I 

\ ) 

VA <06:00> 
IS NOT 

CHANGED 

I FULL ADDER I 

18-BIT 1C:7--===;;;;~;::===----"6' ~ 
PHYSICAL ADDRESS 11 0 1 1 1 0 1 0 1 1 1 1 ill 0 0 1 1 0 I 
EXAMPLE:5637468 L _________ ---', ____ -----', 

I PA < 17:06> I VA < 06 :00> I 
TO UNIBUS A ADDRESS DRIVERS 

Figure 6-13 16-Bit Virtual to 18-Bit Physical Address Translation 

1577468, Once again, to p,erform the translation, we will assume that 
the PAF of the PAR already contains a main memory relocation con­
stant. In this example, the value in the PAF is 1354608' (Please note 
that the only difference between the 18- and 22-bit examples is the 
length of the PAF. Refer to Figure 6-6.) The actual flow of translation is 
illustrated in Figure 6-14. 

152 



Chapter 6 - Memory Management 

15 13 12 6 5 0 

V1RTIJAL BUS ADDRESS: 157 746 11 11 0 1. 1 1 1 1 1 1 1 11 0 0 ,1 1 0 I 

22-BIT 
RELOCATED 
ADDRESS: 
13 565 746 

'-....--I~ 
APF BLOCK NUMBER 

~ ACTIVE 
PAGE FIELD 
SELECTS + 
PAF= PAGE 
BASE 
ADDRESS 

PAR 6 :13 5460 

15 6 5 0 

J 1 

I 
o 1 1 1 0 1 1 00 1 1 0 o 0 0 I 

" ~ II 

DISPLACEMENT 
IN BLOCK 

1 ~ , 

iT! 
"21 ~---------.,~ 0 

\ ) '----..,-------
BASE ADDRESS OF BLOCK DISPLACEMENT 

IN BLOCK(DIB) 

Figure 6-14 16-Bit Virtual to 22-Bit Physical Address Translation 

MAPPING 
Mapping is the process of converting the virtual address generated by 
the program to a physical memory address, or to a UNIBUS address, 
or the process of converting a UNIBUS address to a physical memory 
address. The virtual address is mapped by the memory management 
hardware and the UNIBUS address is mapped by the UNIBUS map 
hardware. Memory management and the UNIBUS map are separate 
pieces of hardware; one may be enabled independently of the other. 
(Note here, that only processors supporting a 22-bit physical address 
space use the UNIBUS map.) Before introducing specific mapping 
diagrams, let's look at a functional block diagram of each of the proc­
essors described within this handbook, the physical address space 
supported by each. 

Figure 6-15 illustrates the PDP-11/04 processor. This processor does 
not contain either a memory management unit nor a UNIBUS map. 
This CPU can access a maximum of 28K words of main memory and 
the 4K word I/O page. 

The physical address space supported by the PDP-11/04 is illustrated 
in Figure 6-16. Main memory is physically attached to the UNIBUS. 

153 



Chapter 6 - Memory Management 

r-----------, 
I I 
I 
I 
I 
I 

CPU 

I 
18-BIT UNIBUS 

I MAIN I 
MEMORY I 

I 28K MAX. I I L ___________ J 

OVERALL BLOCK DIAGRAM OF PDP -11/04 

Figure 6-15 Overall Block Diagram of the PDP-11/04 

32K ,..-------, 

) CPU & PERIPHERAL 
DEVICE REGISTER SPACE 

28K 1-------1 
4K I/O 

MAXIMUM 
28K 

MAIN 
MEMORY 

OK '----------' 

Figure 6-16 PDP-11/04 Physical Address Space 

Figure 6-17 illustrates the PDP-11/34A processor. This processor 
contains a memory management unit that, when enabled, translates 
the user's 16-bit virtual addresses into 18-bit UNIBUS (physical) ad­
dresses. With memory management enabled, the PDP-11/34A has the 
ability to access a maximum of 124K words of main memory in addi­
tion to the 4K word 110 page. 

The physical address space supported by the PDP-11/34A is illustrat­
ed in Figure 6-18. Main memory is physically attached to the UNIBUS. 

This next section describes memory management for the PDP-11/24, 
11/44, and the 11170 processors. These processors contain both 
memory management hardware and a UNIBUS map (PDP-11/24 op­
tion). Although processor architecture is slightly different for each 
CPU, memory management functionality is the same regardless of 
CPU. Figure 6-19 illustrates a typical PDP-11170 processor simplified 
block diagram. The memory management hardware translates the 
user's 16-bit virtual addresses into 22-bit physical addresses. The UN-

154 



Chapter 6 - Memory Management 

r-----------, 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I I 
L _________ ~ 

Figure 6-17 Overall Block Diagram of the PDP-11/34A 

128K ,-----------, 

) CPU & PERIPHERAL 
DEVICE REGISTER SPACE 

114K f-------1 
4K 110 PAGE 

MAXIMUM 
128K 
MAIN 

MEMORY 

OK '---------' 

Figure 6-18 PDP-11/34A Physical Address Space 

IBUS map performs the address conversion that allows devices on the 
UNIBUS to communicate with physical memory by means of Non­
Processor Requests (NPRs), i.e., Direct Memory Access (DMA) trans­
fers. 18-bit UNIBUS addresses are converted to 22-bit physical ad­
dresses via the UNIBUS map hardware. 

The physical address space supported by the PDP-11/24, -11/44, and 
-11170 CPUs is illustrated in Figure 6-20. 

Referring to Figure 6-20, the following points can be observed: 

1. UNIBUS references include 128K physical addresses, 17000000 
- 17 777 777, which correspond to UNIBUS addresses 000 000 -
777 777. The UNIBUS reference in turn includes the following: 
a. The Peripheral Page, which is reserved for UNIBUS device 

registers; it consists of 4K physical addresses, 17760000 - 17 
777777 (UNIBUS addresses 760 000 - 777 777). 

155 



Chapter 6 - Memory Management 

r-- -------------, 
I I 
I ~~~ 
I MA~~~~YENT 
I 
I 
I 
I 
I 

110 BUS 

I 
I 
I 
I ____________ J 

Figure 6-19 Overall Block Diagram of the PDP-11170 

(17) 77.7777 

(17) 760000 
(17) 757777 

1171 000 000 

16 777 777 

SYSTEM SIZE 
BOUNDARY 

00 000 000 

} 4K I/O PAGE 

} 124K UNIBUS 
SPACE 

} 
NON·EXISTANT 
MEMORY (NXM) 

} 
MEMORY 
SPACE 

Figure 6-20 PDP-11/24, -11/44, and -11170 Physical Address Space 

b. The remaining 124K physical addresses, 17 000 000 -17 757 
777 (UNIBUS addresses 000 000 - 757 777) may be used by 
UNIBUS devices to access memory. 

2. Memory reference includes physical addresses from 00 000 000 
through the system size boundary, which is the highest address 
available in the system main memory. There may be no discon­
tinuity in main memory, i.e., available memory locations must be 
numbered sequentially-from 00 000 000 through the system size 
boundary. The highest possible address is 16777777. Maximum 
possible memory is 1920K words (221_217 = 1,966,080, or 
2048K -128K = 1920K). 

156 



Chapter 6 - Memory Management 

3. Non-Existent Memory or NXM includes the Physical addresses 
from the system size boundary plus 1 - 16777777. 

Another approach to understanding the 22-bit relocation scheme is to 
look at the address space bus configuration illustrated in Figure 6-21. 

777 777 7 60 000' PER IPHERAL PAGE 

UNIBUS 

757777 -000 000 777777- 000000 

" V 

18· BIT 
18·BIT UN I BUS 
ADDRESS 

UNIBUS 
ADDRESS 

I}, 777 "777 

116 777 777 

11 
(171777 II. MaRY 

UNIBUS MAP 1~1~~~ ~~~ M~NAGEMENT 

00 000000 ,I 22 -BIT 00000000 00000 000 

MEMORY 
22-BIT MEMORY 1 }-BITS ADDRESS ADDRESS 

177 777 
16 777 777 1 PROCESSOR 00000 000 

CACHE MEMORY 
AND 000 000 

MAIN MEMORY 

Figure 6-21 22-bit Address Space Bus Configuration 

16-BIT 
VIRTUAL 
ADDRESS 

All PDP-11 s generate virtual addresses in the range of 000 000 - 177 
777. However, in order to access the UNIBUS, which requires an 18-bit 
address or main memory requiring a 22-bit address, the virtual ad­
dress must be relocated. In the same manner, UNIBUS devices gener­
ate an 18-bit address, which must be expanded to 22-bits in order to 
access main memory. By observing Figure 6-21, it is seen that the 
memory management unit translates a 16-bit virtual address into a 22-
bit physical address. It was also seen from Figure 6-20, that addresses 
between the range of 00 000 000 through 16777 777 referenced main 
memory and addresses between the range of 17 000 000 through 17 
777777 referenced UNIBUS space. Therefore all addresses within the 
range of 00 000000 and 16777 777 are directed to cache and main 
memory. All other addresses (those between 17 000 000 and 17 777 
777) are directed to the UNIBUS. UNIBUS addresses are those 22-bit 
addresses whose most significant 4 bits are all set to 1. Therefore, 
after the hardware strips off the most significant 4 bits (178), we are left 
with the familiar 18-bit (128K word) UNIBUS space (000 000 -777 777). 

The UNIBUS map performs a function very similar to that of the mem­
ory management hardware, it expands presently existing UNIBUS ad-

157 



Chapter 6 - Memory Management 

dresses to 22-bit physical addresses. This function is also known as 
mapping. The UNIBUS map accepts UNIBUS addresses in the range 
of 000 000 - 757 777 and relocates them within the physical address 
space of 00 000 000 - 16 777 777. (Note in this case that only the 
UNIBUS addresses are relocated and that the upper 4K I/O page is 
not touched.) 

At this point, let's look at several specific memory management 
mapping structures regarding 16-bit, 18-bit, and 22-bit physical ad­
dress spaces. 

16-Bit Physical Address Space 
Figure 6-22 illustrates the 16-bit mapping scheme for processors such 
as the PDP-11 /04 and -11 /34A. This illustration shows fixed relocation 
mapping from virtual to physical addresses. The lowest 28K otvirtual 
addresses are treated as corresponding to the same lower 28K of 
physical addresses. With the PDP-11/24, -11/44, and -11170 in 16-bit 
mode, the lower 28K of virtual addresses address main memory (not 
attached to the UNIBUS). The top 4K virtual addresses however al­
ways cause UNIBUS cycles to address the top 4K physical addresses 
no matter what size the physical address space might be. In this exam­
ple, the top 4K virtual addresses reference physical addresses 124K -
128K. 

177777 

176000 

000000 

I/O PAGE (8Kb) 

r.-_4.;.;.K .;;...11.;;...0 ---r-- - - - - - - - - - - -i-------i 

28K WORD 
V IRTUAL SPACE 

28K WORD 
MAXIMUM 
AVAILABLE 
MAIN MEMORY 

i ;;-~T -;;R~~A-;;"1 r ,;;:: ;;-T - - - -1 
I VIRTUAL ADDRESS ~: ----------: UNIBUS ADDRESS I 
L ___ ~ __ ...J L ______ --1 

777777 
776000 

175777 

000000 

Figure 6-22 16-Bit Mapping within 18-Bit Physical Address Space 

158 



Chapter 6 - Memory Management 

18-Bit Physical Address Space 
Figure 6-23 illustrates the 18-bit mapping scheme for processors such 
as the PDP-11 134A with memory constraints of 124K words. Figure 6-
23 depicts the fact that with memory management enabled, the user's 
virtual address space of 28K words can be relocated anywhere in 
available main memory (in 4K word pages-if necessary, refer back to 
Figure 6-4 and the discussion entitled MEMORY MANAGEMENT). 
However, if memory management hardware is not enabled, (under 
program control), the resulting mapping structure is identical to Figure 
6-22. With the PDP-11/24, -11/44, and -11/70 in 18-bit memory man­
agement mode, the lower 28K of virtual addresses address main 
memory (not attached to the UNIBUS) using relocation. 

177777 

176000 

a a 0000 

4K I/O 

28K WORD 
VIRTUAL SPACE 

110 PAGE (8Kb) 

124K wORD 
MAXIMUM 
AVA lLABLE 
MAIN MEMORY 

r-------i r- - - -----, 
( 16- BIT PROGRAM (MEMORY I 18- B IT I 
I VIRTUAL ADDRESS ,---MANAGEMENT-----:( UNIBUS ADDRESS ( 
L ______ -.1 '-- _____ -.1 

777777 
776000 

175777 

000000 

Figure 6-23 18-Bit Mapping within 18-Bit Physical Address Space 

22-Bit Physical Address Space 
The next series of figures illustrates 16-bit, 18-bit, and 22-bit mapping 
structures within a 22-bit physical address space. If the PDP-11 124, -
11/44 or -11/70 system contains only 124K words of main memory, 
then the 16-bit mapping scheme (memory management disabled) is 
illustrated in Figure 6-24. And if 18-bit memory management is en­
abled, the mapping scheme is illustrated in Figure 6-25. The 22-bit 
mapping structure is illustrated in Figure 6-26. The solid arrow lines in 
Figure 6-26 represent a one-to-one correspondence between physical 
address and physical location. 

159 



177 777 

160 000 

157 777 

28K WORD 
VIRTUAL 
SPACE 

000000 

VIRTUAL 
ADDRESS 

Chapter 6 - Memory Management 

17777777 

4K 

17760000 

00 157777 

00000000 

PHYSICAL 
ADDRESS 
(22) 

17 777 777 

17 760000 

17757777 

17000000 

16777 777 

03777777 1920K 

00157777 

28K WORD 
PHYSICAL 
SPACE 

00000000 

PHYSICAL 
SPACE 
(22) 

Figure 6-24 16-Bit Mapping Structure for 22-Bit Physical Address 
Space 

The UNIBUS Map 
The UNIBUS map is the interface to memory from the UNIBUS. The 
UNIBUS map can be in either of two operational modes; relocation 
enabled or relocation disabled. If the UNIBUS map relocation is not 
enabled, an incoming 18-bit UNIBUS address has 4 leading zeros (bits 
<21: 18> )added for referencing a 22-bit physical address. The lower 
18-bits of the UNIBUS address are identical to the 18-bit physical 
address, i.e., no other translation is performed. 

However, when the UNIBUS map is enabled, the UNIBUS map utilizes 
a total of 31 mapping registers for address relocation. Similar to the 
memory management scheme, each map register is composed of a 
double 16-bit PDP-11 word (in consecutive locations) that holds the 
22-bit base address (right justified). 

160 



177777 

000000 

VIRTUAL 
ADDRESS 

Chapter 6 - Memory Management 

MEM MGT 
I 
I 

1 

I 
1 

I 
I 

-I 
I 

17777777 

4K 

17 760000 

00757777 

124K 

00000000 

- PHYSICAL 
ADDRESS 

• 

17777777 

17 760000 

17577 777 

17000000 

16777 777 

00000 000 
'----...-----J 
_ PHYSICAL 

SPACE 

1920K 

Figure 6-25 18-Bit Mapping Structure for 22-Bit Physical Address 
Space 

If UNIBUS map relocation is enabled, the 5 high order bits of the 
UNIBUS address are used to select one of the 31 mapping registers. 
The low order 13-bits of the incoming address are used as an offset 
from the base address contained in the 22-bit mapping register. To 
form the physical address, the 13 low order bits of the UNIBUS ad­
dress are added to 22 bits of the selected mapping register to produce 
the 22-bit physical address. The lowest order bit of all mapping regis­
ters is always a zero, since relocation is always on word boundaries. 
The functionality of the UNIBUS map is illustrated in Figure 6-27. Fig­
ure 6-28 illustrates the construction of a physical address from a 
UNIBUS address. 

FAULT RECOVERY (STATUS) REGISTERS 
Aborts and traps generated by the Memory Management hardware 

161 



Chapter 6 - Memory Management 

----UNIBUS MAP ON 
••• •• UNIBUS MAP OFF 

ONE-TO-ONE 
-CORRESPONDENCE 

I 
I 
I 
I 
I 
I 
I 
I 

MEM.I MGT. 

177776 

28K WORD 
VIRTUAL 
ADDRESS 

I 
I 
I 
I 

17777 776 
4K 

17760000 

17757 776 

124K 

17000000 
16 777 776 

./ ......... 

. , " .... '------"" 

17777 776 

17760000 

17757776 

• ~:~~~~~~ :-r 

'~I- ----
00757776 

1920 

000000 

VIRTUAL 
ADDRESS 

I .. 00000000 l-l~ 

---___ :-: --__ =~;m~~L -----_0 ~~~~~CAL 
(22- BITS) 

Figure 6-26 22-Bit Mapping Structure for 22-Bit Physical Address 
Space 

are vectored through Kernel virtual location 250_ Memory Manage­
ment registers #0, #1, ·and #3, are used to differentiate an abort from a 
trap, determine why the abort or trap occured and allow for easy 
program restarting. Note that an abort or trap to a location which is 
itself an invalid address will cause another abort or trap. Thus the 
Kernel program must insure that Kernel Virtual Address 250 is 
mapped into a valid addresS, otherwise a loop will occur which will 
require console intervention. 

Memory Management Register #0 (MMRO) 
MMRO contains error flags, the page number whose reference caused 
the abort, and various other status flags. This register is illustrated in 
Figure 6-29. 

162 



ADDRESS 
GENERATED 
BY A OMA 
DEVICE OR 
THE 
PROCESSOR 

Chapter 6 - Memory Management 

77777b 
4K lIO 
7bOOOO 

h 
757776 

000000 ~ 
UNIBUS 

MAP ENABLED 

MAP DISABLED 

17777776 

00760000 
00757776 

PHYSICAL 
MEMORY 
SPACE 

T IT 

Figure 6-27 UNIBUS Map Functionality 

2 W 

17 13 12 01 00 

UNIBUS I I I I 
ADDRESS-I,-==::::::-::::}1========::::::===71 ,,-------,,' , 

BA 17:13 SELECTS I 
lONE OF 32 MAP ------'. ! _ REGISTERS 

o 121 
~ I 

378 ii, 

I ~ 

21 01 

122-BIT PHYSICAL ADDRESS) 

• UNIBUS MAP RELOCATION ALLOWS A UNIBUS TO REFERENCE 
ANY PHYSICAL MEMORY ADDRESS 

• UNIBUS MAP REl.OCATION IS ENABLED IF MMR3 <05>'1 

o 

Figure 6-28 UNIBUS Map Physical Address Construction 

163 



Chapter 6 - Memory Management 

Setting bit <0> of this register enables address relocation and error 
detection. This means that the bits in MMRO become meaningful. 

Bits <15:12> are the error flags. They may be considered to be in a 
priority queue in that flags to the right are less significant and should 
be ignored. That is, a non-resident fault-service routine would ignore 
length, access control, and memory management flags. A page length 
service routine would ignore access control and memory management 
faults, etc. 

Bits <15:13>, when set (error conditions), cause Memory Manage­
ment to freeze the contents of bits <7:1> and Memory Management 
Registers #1, and #2. This has been done to facilitate error recovery. 

These bits may also be written under program control. No abort will 
occur, but the contents of the Memory Management registers will be 
locked up as in an abort. 

15 14 13 12 " 10 9 8 7 6 5 4 3 2 0 

IIII~ 
ABORT-NON 
ABORT-PA 
LENGTH ER 

ABORT-RE 
ACCESS VIOL 
TRAP-MEMOR 
NOT USED 
NOT USEO 
ENABLE M 
MAINTENA 
INSTRUCTI 
PAGE MOO 
PAGE ADDR 
PAGE NUM 
ENABLE RE 

:-gJ ROR) 

AD ONLY) 
ATION 

Y MANAGEMENT 

EMORY MANAGEMENT TRAP 
NCE MODE 
ON COMPLETED 
E 
ESS SPACE I/O 
BER 
LOCATION 

'----..,..--J ~ 

Figure 6-29 Memory Management Register #0 (MMRO) 

Abort-Non-Resident Bit 15 - Bit <15> is the Abort Non-Resident 
bit. It is set by attempting to access a page with an Access Control 
Field (ACF) key equal to 0, 3, or 7. It is also set by attempting to use 
Memory Relocation with a pr.ocessor mode of 2 (undefinedl invalid 
mode). 

Abort-Page Length Bit 14 - Bit <14> is the Abort Page Length bit. 
It is set by attempting to access a location in a page with a block 
number (Virtual Address bits <12:6» that is outside the_aJ'~aauthor­
ized by the Page Length Field of the Page Descriptor Register for that 
page. Bits <15:14> may be set simultaneously by the same access 

164 



Chapter 6 - Memory Management 

attempt. Bit <14> is also set by attempting to use Memory Relocation 
with a processor mode of 2. 

Abort-Read Only Bit 13 - Bit <13> is the Abort Read Only bit. It is 
set by attempting to write in a read-only page. Read-only pages have 
access keys of 1 or 2. 

Trap-Memory Management Bit 12 (PDP-11/70 only) - Bit 12 is the 
Trap Memory Management bit. It is set whenever a Memory Manage­
ment trap condition occurs; that is, a read operation which references 
a page with an Access Control Field of 1 or 4, or a write operation to a 
page with an ACF key of 4 or 5. 

Bits 11,10- - Bits <11:10> are spare and are always read asO, and 
should never be written. They are unused, and are reserved for future 
use. 

Enable Memory Management Traps Bit 9 (PDP·11/70 only) 
Bit <9> is the Enable Memory Management Traps Bit. It is set or 
cleared by doing a direct write into MMRO. If bit <9> is 0, no Memory 
Management traps will occur. The A and W bits will, however, continue 
to log Memory Management Trap conditions. When bit <9> is set to 1, 
the next Memory Management trap condition will cause a trap, vec­
tored through Kernel Virtual Address 250. 

NOTE 
If an instruction which sets bit <9> to 0 (disable 
Memory Management Trap) causes a Memory 
Management trap condition in any of its memory 
references prior to and including the one actually 
changing MMRO, the trap will occur at the end of the 
instruction. 

Maintenance/Destination Mode Bit 8 (not used by PDP·11/24) 
Bit <8> specifies that only destination mode references will be relo­
cated using Memory Management. This mode is used only for mainte­
nance purposes. 

Instruction Completed Bit 7 (PDP.11 /70 only) 
Bit <7> indicates that the current instruction has been completed. It 
will be set to zero during T bit, Parity, Odd Address, and Timeout traps 
and interrupts. This provides error handling with a way of determining 
whether the last instruction will have to be repeated in the course of an 
error recovery attempt. Bit <7> is read-only (it cannot be written). It is 
initialized to a 1. Note that EMT, TRAP, BPT, and lOT do not set bit 
<7>. 

165 



Chapter 6 - Memory Management 

Procesor Mode Bits 6·5 
Bits <6:5> indicate the CPU mode associated with the page causing 
the abort (Kernel = 00, Supervisor = 01, User = 1-1, illegal mode = 
10). If an illegal mode is specified, bits 15:14> will be set. 

Page Address Space Bit 4 (PDP·11/44 and 11/70) 
Bit <4> indicates the type of address space (lor D) the unit was in 
when a fault occured (0 = I Space, 1 = 0 Space). It is used in conjunc· 
tion with bits <3:1 >, Page Number. 

Enable Relocation Bit 0 
Bit <0> is the Enable Relocation bit. When it is set to 1, all addresses 
are relocated by the unit . When bit <0> is set to 0, the Memory 
Management Unit is inoperative and addresses are not relocated or 
protected. 

Memory Management Register #1 (MMR1)(PDP·11/44 and 11/70) 
MMR1 records any autoincrementldecrement of the general purpose 
registers, including explicit references through the PC. MMR1 is 
cleared at the beginning of each instruction fetch. Whenever a general 
purpose register is either autoincremented or autodecremented, the 
register number and the amount by which the register was modified 
(in 2's complement notation) is written into MMR1. 

The information contained in MMR1 is necessary to accomplish an 
effective recovery from an error resulting in an abort. The low order 
byte is written first and it is not possible for a POP·11 instruction to 
autoincrementldecrement more than two general purpose registers 
per instruction before an abort·causing reference. Register numbers 
are recorded MOD 8; thus it is up to the software to determine which 
set of registers (User/Supervisor/Kernel-General Set O/General Set 
1) was modified, by determining the CPU and Register modes as con· 
tained in the PS at the time of the abortThe 6·bit displacement of R6 
(SP) that can be caused by the MARK instruction cannot occur if the 
instruction is aborted. MMR1 is illustrated in Figure 6·30. 

15 

AMOUNT CHANGED 
(2's COMPLEMENT) 

II 10 B 7 

REGISTER AMJUNT CHANGED 
NUMBER (2'S COMPLEMENT) 

3 2 

REGISTER 
NUMBER 

o 

Figure 6·30 Memory Management Register #1 (M MR1) 

166 



Chapter 6 - Memory Management 

NOTE 
For the PDP-11 /24, this register is not mechanized. 
When explicitly addressed, it reads out as a word 
containing all zeros, but cannot be written into. This 
register is included for compatibility with PDP-11 
software. 

Memory Management Register #2 (MMR2) 
MMr2 is loaded with the 16-bit Virtual Address (VA) at the beginning of 
each instruction fetch, or with the address Trap Vector at the begin­
ning of an interrupt, T Bit trap, Parity, Odd Address, and Timeout 
aborts and parity traps. Note that MMR2 does not get the Trap Vector 
on EMT, TRAP, BPT, and lOT instructions. MMR2 is read-only; it can­
not be written. MMR2 is the Virtual Address Program Counter. 

Memory Management Register # 3 (M MR3)(PDP-11/44 and 11/70) 
Memory Management Register #3 (MMR3) enables or disables the use 
of the. 0 space PARs and PDRs, 22-bit mapping and UNIBUS map­
ping. When 0 space is disabled, all references use the I space regis­
ters; when 0 space is enabled, both the I space and 0 space registers 
are used. Bit <0> refers to the User's registers, bit < 1> to the 
Supervisor's and bit <2> to the Kernel's. When the appropriate bits 
are set, 0 space is enabled; when clear, it is disabled. Bit <3> is used 
to enable the change to Supervisor mode (CSM) instruction in the 
11/44. It is reserved for future use. Bit <4> enables 22-bit mapping. If 
Memory Management is not enabled, bit <4> is ignored and 16-bit 
mapping is used. 

If bit <4> is clear and Memory Management is enabled (bit <0> of 
MMRO is set), the computer uses 18-bit mapping. If bit <4> is set and 
Memory Management is enabled, the computer uses 22-bit mapping. 
Bit <5> is set to enable relocation in the UNIBUS map; the bit is 
cleared to disable relocation. Bits <15:6> are unused. On initializa­
tion, this register is set to 0 and only I space is in use. MMR3 is 
illustrated in Figure 6-31. 

15 6 3 0 

ENABLE UNIBUS MAP f r 
ENABLE 22 -BIT MAPPING 
KERNEL - _ 
SUPERVISOR 
USER 

Figure 6-31 Memory Management Register #3 (MMR3) 

167 



Bit 

5 

4 

2 

o 

Chapter 6 - Memory Management 

State 

o 

o 

Operation 

UNIBUS Map relocation dis­
abled 

UNIBUS Map relocation en­
abled 

NOTE 

if bit <0> of MMRO is set 

Enable 18-bit mapping 

Enable 22-bit mapping 

Enable Kernel D Space 

Enable Supervisor D Space 

Enable User D Space 

The PDP-11 /24 utilizes only bits <4:5>. 

Instruction Back-Up/Restart Recovery 
The process of backing-up and restarting a partially completed in­
struction involves: 

1. Performing the appropriate memory management tasks to 
alleviate the cause of the abort (e.g., loading a missing page). 

2. Restoring the general purpose registers indicated in MMR1 to 
their original contents at the start of the instruction by subtracting 
the modify value specified in MMR1. 

3. Restoring the PC to the abort time PC by loading R7 with the 
content of MMR2, which contains the value of the Virtual PC at the 
time the abort generating instruction was fetched. 

Note that this back-up/restart procedure assumes that the general 
purpose register used in the program segment will not be used by the 
abort recovery routine. This is automatically the case if the recovery 
program uses a different general register set (available on the PDP-
11/70 only). 

Clearing Status Registers Following Trap/abort 
At the end of a fault service routine, bits <15:12> of MMRO must be 
cleared (set to 0) to resume error checking. On the next memory 
refere("ce following the clearing of these bits, the various registers will 
resume monitoring the status of the addressing operations. MMR2 will 
be loaded with the next instruction address, MMR1 will store register 

168 



Chapter 6 - Memory Management 

change information and MMRO will log Memory Management status 
information. 

Multiple Faults 
Once an abort has occured, any subsequent errors that occur will not 
affect the state of the machine. The information saved in MMRO 
through MMR2 will always refer to the first abort detected. However, 
when multiple traps occur, the information saved will refer to the most 
recent trap that occured. 

In the case that an abort occurs after a trap, but in the same instruc­
tion, only one stack operation will occur; and the PC and PS at the time 
of the abort will be saved. 

169 



170 



CHAPTER 7 

PDP-11/04, PDP-11/34A 

The PDP-11/04 and PDP-11/34A have similar architecture, capabili­
ties and features. The PDP-11/04 is a cost-effective version of the 
high-performance PDP-11/34A processor. 

The PDP-11/04 is optimized for compactness; the entire CPU logic is 
confined to one circuit board. This allows extra chassis space for 
system expansion. By offering up to 56K bytes of core or MaS memo­
ry, the PDP-11/04 offers such flexibility that you can tailor both pack­
age and price to each application. It is offered in minimum hardware 
configurations which allow room to grow. 

The PDP-11/34A contains hardware multiply/divide instructions, 
Memory Management, an enhanced data path and the capability of 
adding hardware Floating Point and Cache Memory options. These 
extra features are each contained on one module. The PDP-11/34A is 
physically similar to the PDP-11/04. Yet it has 2112 times the power of 
the PDP-11/04. It also has memory expansion to 248K bytes, setting a 
standard of upward compatibility for PDP-11/04-based systems. 

FEATURES 
The features common to the PDP-11/04 and PDP-11/34A include: 

• Self-test diagnostic routines which are automatically executed every 
time the processor is powered up, the console emulator routine is 
initiated, or the bootstrap routine is initiated. These allow system 
faults to be detected early to avoid catastrophic failure during the 
running of the application program. 

• Operator front panel with built-in CPU console emulator allows con­
trol from any ASCII terminal without the need for the conventional 
front panel with display lights and switches. 

• Automatic bootstrap loader allows system restart from a variety of 
peripheral devices without manual switch toggling or keypad opera­
tions. 

• MaS memory, with parity memory optional, expandable from a min­
imum of 16K bytes on the PDP-11/04 and 32K bytes on the PDP-
11/34A to as much as 56K bytes on the PDP-11/04, and 248K bytes 
on the PDP-11/34A. This choice gives exceptional configuring flexi­
bility, and allows tailoring of memory size to precisely fit application 
requirements. 

• Slot-independent backplane with power and space available for 
significant expansion within the 5%" or 10W' chassis. This provides 

171 



Chapter 7 - PDP-11104, PDP-11134 

easier system configuring than the single mounting chassis most 
systems have. 

In addition, the PDP-11 /34A includes these features: 
• Integral extended instruction set (EIS) that provides hardware fixed­

point arithmetic. This significantly improves performance when 
compared to equivalent software implementations. 

• Hardware Floating Point option allows ten times the performance of 
software implementations of floating point functions. 

• Cache Memory option can mean up to 60 percent system perform­
ance improvement (application dependent). 

MEMORY 
The PDP-11/04 and the PDP-11/34A are available with MOS or core 
memory. MOS memories are available with partially depopulated 
boards for smaller capacities. Since the PDP-11/04 does not have 
Memory Management, it cannot use memories larger than 64K bytes. 

All memories are available with parity to enhance system integrity. 
Parity is generated and checked on all references between the CPU 
and memory,and any parity errors are flagged for resolution under 
program control. Odd parity is used, with one parity bit per 8-bit byte, 
for a total of 18 bits per word. 

The control and status register of the parity logic captures the high­
order address bits of a memory location with a parity error. 

Memory Capacity 
The PDP-11/04 has 16 address lines, which provide 64K unique byte 
addresses. The upper 8K addresses are reserved for UNIBUS I/O 
device registers, which allow 56K memory addresses. The PDP-
11/34A, however, includes Memory Management, which extends the 
addressing to 18 bits allowing for 248K bytes for memory plus 8K for 
I/O. (See Chapter 6.) 

Memory Management 
Memory Management is a hardware feature in the PDP-11/34A. It 
serves two functions: it extends memory addresses to 18 bits (248K 
bytes), and provides protection and relocation features for multiuser 
applications. The processor can be operated in either of two modes: 
Kernel and User. In Kernel mode, the program has complete control 
and can execute all instructions. Monitors and executive programs 
would be executed in this mode. In User mode, the program is pre­
vented from executing certain instructions that could modify the Ker­
nel program, halt the computer, gain access outside the assigned 
memory, or issue a restart. 

172 



Chapter 7 - PDP-11 /04, PDP-11/34 

Battery Backup 
Since MOS memory is volatile, meaning it depends on electricity to 
store information, a power loss or shutdown would erase its contents. 
To prevent this loss from occurring, a battery backup unit (BBU) has 
been designed to temporarily preserve the contents in memory. The 
BBU is an auxiliary power unit. It is charged by main ac power when 
the computer system is operating normally. Under normal operation, 
the battery backup has no effect on MOS memory. When power is 
interrupted, voltage sensing circuitry within the battery backup auto­
matically causes the MOS to be refreshed by this auxiliary source, 
allowing for retention of memory contents. 

The MOS memories available on the PDP-11/04 and PDP-11/34A are: 

Size Access Cycle Refresh 
(Bytes) Time Time 

(nsec) (nsec) 

MS11-JP 32K 550 700 700 nsec 
(18-bit) every 24 

~sec 

MS11-LB 128K 360 for DATI 450 560 nsec 
(18-bit) 95 for DATO every 12.5 

~sec 

MS11-LD 256K 360 for DATI 450 560 nsec 
(18-bit) 95 for DATO every 12.5 

~sec 

Cache Memory 
Cache memory is an option available on the PDP-11/34A. 

Cache memory reduces the cycle time for accessing frequently used 
main memory addresses by storing the contents of these addresses in 
a small, high-speed memory attached directly to the CPU. This archi­
tecture bypasses the UNIBUS, thus eliminating the access and 
transmission times associated with the UNIBUS. A cache system uses 
a small quantity of fast memory, plus associated logic, to provide 
faster system speed. 

The cache option on the PDP-11/34A uses a 2K-byte direct mapping 
approach. Without operator or programming intervention, it copies 
the contents of every memory location fetched from the main memory, 
unless it has already been copied. When this address is called again 
(as is very likely, because of the repetitive nature of most programs) 
the cache memory registers a cache "hit," places the memory con­
tents on the CPU's internal data bus, and aborts the UNIBUS transfer 
to main memory. 

173 



Chapter 7 - PDP-11 /04, PDP-11/34 

FLOATING POINT OPTION 
The Floating Point Processor is a hardware option that enables the 
PDP-11/34A central processor to execute floating point arithmetic op­
erations. It performs high-speed numerical data handling much faster 
and more effectively than software floating point routines. Floating 
point representation permits a greater range of number values than is 
possible with the conventional integer mode, and system speed is 
increased by the elimination of complex arithmetic coding routines 
that consume valuable CPU time. The option features both single- and 
double-precision (32- or 64-bit) capability and floating point modes. 

The floating point processor operates using the same address modes 
and Memory Management facilities as the central processor. Floating 
Point Processor instructions can reference the floating point accumu­
lators, the central processor's general registers, or any location in 
memory. The floating point processor operates In serial with CPU 
operations. 

Floating Point Instruction Set Features 
• 46 additional instructions, compatible with the floating pOint instruc­

tion set available on the PDP-11 /23, PDP-11 /44 and PDP-11 /70 
• 32-bit (single-precision) and 64-bit (double-precision) data modes 
• Addressing modes compatible with existing PDP-11 addressing 

modes 
• Special instructions that can improve input/output routines and 

mathematical subroutines 
• Allows execution of in-line code (i.e., floating point instructions and 

other Instructions can appear in any sequence desired) 

• Multiple accumulators for ease of data handling 
• Can convert 32- or 64-bit floating point numbers to 16- or 32-bit 

integers during the Store instructions 
• Can convert 32-bit floating pOint numbers to 64-bit floating point 

numbers and vice-versa dl:lring the Load or Store instructions 
• Is a required option when using the FORTRAN IV PLUS compiler 

CONSOLES 
Either of two consoles are a~ailable for the PDP-11/04 and PDP-
11/34A. They are the Operator's console and the Programmer's con­
sole. 

The Operator's console (KY11-LA) contains only three switches, pro­
viding control of Power ON/OFF, Initialization and Boot, and 
Halt/Continue. 

174 



Chapter 7 - PDP-11104, PDP-11/~4 

Power 

CONTI 
HALT 

BOOTI 
INIT 

OFF 

ON 

STNDY 

CONT 
HALT 

INIT 

DC power to the computer is off. 

Power is applied to the computer (and the 
system). 

Standby; no dc power to the computer, but 
dc power is applied to MOS memory (to re­
tain data). In the 5V4" box, the fans remain 
on. 

The program is allowed to continue. 
The program is halted. 

The switch is spring-returned to the BOOT 
position. When the switch is depressed to 
INITialize and then returned to BOOT, the 
operation depends on the setting of the 
CONT IHAL T switch. 

If the switch is set to HALT, then only the 
processor is initialized and no "UNIBUS IN­
IT" is generated. Upon lifting the CONTI 
HALT switch, the M9312 routine is execut­
ed, allowing examination of system peri­
pherals without clearing their contents with 
"UNIBUS IN IT." 

If the switch is set to CONT, then initializa­
tion and execution of the M9312 program 
begins. 

Details of the sequence of operations which occur upon booting are 
described in this chapter under the Boot Module section. 

Console Emulation 
A ROM-resident virtual console routine permits control of the 
processor from any ASCII terminal. This routine emulates the func­
tions traditionally performed by the "lights and switches" on the pro­
grammer's console. 

Summary of Console Emulator Functions 

LOAD ADDR Loads into the system the address to be 
manipulated 

EXAMINE 

DEPOSIT 

Allows the operator to examine the contents 
of the address that was loaded 

Allows-the operator to write into the address 
that was loaded andlor examined 

175 



Chapter 7 - PDP-11104, PDP-11134 

STA~T Initializes the system and starts execution of 
the program at the address loaded 

BOOT Allows the booting of a device specified by a 
two-character code and optional unit num­
ber 

Entry into the Console Emulator 
There are four ways of entering the console emulator: 

• Move the power switch to the ON position 
• Depress the BOOT switch 
• Enter automatically on return from a power failure 

• Load the address manually 

After the console emulator routine has started and the basic CPU 
diagnostics have all run successfully, a series of numbers represent­
ing the contents of RO, R4, SP and PC will be printed on the terminal. 
This sequence will be followed by an @ on the next line. 

Example-a typical printout on power up: 

XXXXXXXX XXXXXXXX xxxxxxxx 
(RO) (R4) (R6 or Stack 

Pointer) 

@ (Prompt Character) 

NOTE 

XXXXXXXX 
(R70r 
Program 
Counter) 

X signifies an octal numeral (0-7). Whenever there is 
a power-up routine, or the BOOT switch is released 
from the INIT position, the current program counter 
(PC) will be stored. The stored value is printed out as 
above (noted as the PC). 

Detailed instructions for the console emulator can be found in user 
instruction documents, the PDP-11/34 User's Guide and the associat­
ed hardware manual. 

Both the BOOT read-only m-emory and the Console Emulator read­
only memory are contained in the Boot Module (M9312) described in 
this chapter. 

The Programmer's console (KY11-LB) contains a 20-key keypad 
which is functionally divided into two distinct modes: Console Mode 
and Maintenance Mode. 

176 



Chapter 7 - PDP-11104, PDP-11134 

In Console Mode, facilities exist for displaying and addressing data, 
for depositing data and examining the contents of the UNIBUS ad­
dresses including processor registers, and for single-stepping the 
processor one instruction cycle at a time. This is a useful aid for pro­
gram development. Note that the Operator's console also contains 
these features through the use of the Console Emulator and an ASCII 
terminal. (This console emulator feature is still available with the Pro­
grammer's console.) 

In Maintenance Mode, the above facilities are locked out. Instead, 
features useful for system error diagnostics are provided. In this 
mode, the Programmer's console enables the CPU's microcode to be 
single-stepped one clock cycle at a time and allows the UNIBUS ad­
dresses and their contents to be displayed or printed. Note that this 
feature is not available with an Operator's console. 

Boot Module (M9312) 
The Boot Module provides the following four functions: 

• It contains diagnostic routines in ROM for verifying computer opera­
tion 

• It contains the several bootstrap loader programs in ROM for start­
ing up the system 

• It contains the console emulator routine in ROM for issuing console 
commands from the terminal 

• It provides termination resistors for the UNIBUS 

Diagnostics 
The M9312 contains diagnostics to check both the processor and 
memory in a GO/NOGO mode. Execution of the diagnostics occurs 
automatically but may be disapled by switches on the module. 

Bootstrap Loader 
The M9312 contains independent programs that can bootstrap pro­
grams into memory from a selected peripheral device. Through front 
panel control or following power-up, the computer can execute a 
bootstrap directly, without manual keying of the initial program. The 
M9312 contains four sockets for peripheral bootstrap loader pro­
grams encoded in ROMs. The choice of ROMs is determined by the 
system configuration. 

After execution of the CPU diagnostics, the M9312 turns control of the 
system over to the user at the console terminal. The system prints out 
status' information and is ready to accept simple user commands for 
checking and modifying information within the computer, starting a 
program already in memory, or executing a device bootstrap. 

177 



Chapter 7 - PDP-11104, PDP-11134 

BACKPLANE CONFIGURATIONS 

The processor backplane consists of a double system unit (SU) 
comprising nine hex slots. All PDP-11/04 and PDP-11/34A systems 
contain the CPU, M9312 Bootstrap/Terminator, and M9302 Termina­
tor (or a UNIBUS jumper to the next SU). Figures 7-1 and 7-2 illustrate 
the implementation of MS 11-JP or MS 11-FP memory on the PDP-
11/04 backplane. M7850 parity control is included when MS11~JP 
memory (32 Kb MOS) is used as shown in Figure 7-3. MS11-LB (128 
Kb MOS) or MS11-LD (256 Kb MOS) has parity control included on the 
board (Figure 7-4). 

CPU 

2 MSll-JP(32Kb) OR MSll-FP(II>Kb) 

3 M9312 TERM/BOOT I 
4 

5 

I> EXPANSION SlC S 

7 

8 

9 M9302 TERM I 
A 8 C o 

Figure 7-1 PDP-11/04 Processor Backplane Configuration 
with MS11-JP or MS11-FP Memory 

2 

I> 

7 

9 

CPU 

MSll-JP(32Kb) 

MSll- JP (32Kb) 

M9312 TERM/BOOT I 
EXPANSION SlO 5 

M9302 TERM I 
A B C o 

Figure 7-2 PDP-11/04 Processor Configuration 
with MS11-JP Memory 

178 



4 

6 

7 

9 

4 

6 

9 

Chapter 7 - PDP-11 /04, PDP-11/34 

CPU 

M9312 TERM/ BOOT I QUAD SPC 

M 7850 PARITY I QUAD SPC 

MSIl-JP (32 Kb) 

r 
EXPANSION SLOTS 

M9302 TERM I 
A C D 

Fig ure 7-3 PDP-11/34A Backplane Configuration 
with MS11-JP Memory 

CPU 

M9312 TERM/SOOT I QUAD SPC 

MSll- LB(l28 Kb) OR MSIHD(2S6 Kb) 

EXPANSION SLOTS 

M9302 TERM I 
A C o E 

Figure 7-4 PDP-11/34A Backplane Configuration 
with MS 11-L Memory 

179 



Chapter 7 - PDP-11 /04, PDP-11/34 

Additional memory or quad and hex SPC options (DL 11-W, RX21 
controller, etc.) may be added to the processor backplane as space 
allows. 

The 51f4-inch chassis has space for one 9-slot backplane (2 SUs). The 
10%-inch chassis has space for two 9-slot backplanes and one 4-slot 
backplane (5 SUs). Expansion space is obtained by adding expander 
backplanes and/or expansion boxes. 

SPECIFICATIONS 
PDP-11/04 and PDP-11/34A 

Environment 
Operating Temperature: 

Relative Humidity: 

Mechanical 
5V4-inch Chassis 

Weight: 20 kg (45Ibs.) 
Height: 13.3 cm (5.25 in.) 
Width: 48.3 cm (19 in.) 
Depth: 63.5 cm (25 in.) 

180 

5°_50° C, (41°-122° F) 

10% or less to 95%; with maxi­
mum wet bulb of 32° C (90° F), 
maximum dew pOint of 2° C 
(36° F) 

101f2-lnch Chassis 

50 kg (110 Ibs.) 
26.7 cm (10.5 in.) 
48.3 cm (19 in.) 
63.5 cm (25 in.) 



181 



w 
U 

'" a.. 

2nd GENERATION 
3rd GENERATION 

1st GENERATION 4th GENERATION 

11145 11/70 

11104 11/24 

PERFORMANCEI FUNCT IONALITY 

PDP-11/24 PRODUCT POSITION 

182 



CHAPTER 8 

PDP-11/24 

The PDP-11/24 joins the PDP-11/44 as a new member of the fourth 
generation PDP-11 processor family. Designed as a low-cost, single­
Hex module UNIBUS processor, the PDP-11/24 provides perform­
ance and functionality similar to the PDP-11/34A, but at lower cost. An 
extended 22-bit memory addressing capability makes the PDP-11/24 
the lowest cost systems-oriented CPU from DIGITAL that can address 
up to a full megabyte of memory. The PDP-11/24 floating point unit 
and commercial instruction set provide programming compatibility 
with the PDP-11/44. 

FEATURES 
Integral to the PDP-11/24 central processor unit are these hardware 
features and expansion capabilities: 

• Real-time clock which provides KW11-L compatible line-frequency 
clock 

• DL 11-W capability provides a serial port (SLU1) for the console 
terminal 

• Ability to access up to 248Kb (1 million optional) of main memory (1 
byte = 8 bits) provides ample memory space for application pro­
grams 

• Second general purpose serial line (SLU2), which may be used to 
interface with TU58 Dec tape Illor any ASCII device 

• Extended Instruction Set (EIS). for better integer arithmetic through­
put 

• Memory management for relocation and protection in mUltiuser, 
multitask environments 

• ASCII console with which the user can operate the computer without 
requiring access to the front panel 

• 256 Kbyte Parity MOS main memory modules provide high-density, 
low-cost memories 

• Optional Floating Point Unit with advanced features, operating with 
32-bit and 64-bit numbers for better FORTRAN or BASIC through­
put 

• Optional Commercial Instruction Set for improved COBOL through­
put 

183 



Chapter 8 - PDP-11 124 

RELIABILITY, AVAILABILITY, MAINTAINABILITY (RAMP) 
RAMP is a special program designed to provide Reliability, Availability 
and Maintainability for the PDP-11 processor family. Reliability means 
minimizing failures. Availability and Maintainability mean planning for 
ease of maintenance and spending less time isolating faults and 
making repairs. 

The PDP-11/24 contains these RAMP features: 
• Self-diagnostic bootstrap module to test the viability of the instruc­

tion set processor, memory, and console terminal interface 
• Error logging to provide maximum diagnostic information to the 

user and Field Service 
• Improved electrical integrity including implementation of Serial Line 

Unit Static and front panel Filters, insulated key switch and 15 Kv 
static immunity 

• Optional Battery Backup Unit (BBUl to retain memory data during 
power outages 

SYSTEM ARCHITECTURE 
The PDP-11 /24 is a minicomputer designed for multi-task and dedi­
cated applications. A block diagram of the computer is shown in Fig­
ure8-1. 

The central processor performs all arithmetic and logical operations 
required in the system. Memory Management is standard with the 
basic computer, allowing expanded memory addressing, relocation, 
and protection. The UNIBUS map, which translates UNIBUS 
addresses to physical memory address, is an optional feature for the 
PDP-11/24. The UNIBUS remains the primary control path in the PDP-
11/24 system. Memory addresses are passed on a separate 22-bit 
wide bus. This bus provides reduced memory access times. It is con­
ceptually identical with previous PDP-11 systems; the memory in the 
system still appears to be on the UNIBUS to all UNIBUS devices, 
through the UNIBUS map. 

CENTRAL PROCESSOR 
The PDP-11 /24 processor is the arbitration unit for UNIBUS control. It 
regulates bus requests and transfers control of the bus to the request 
device with the highest priority. 

The central processor contains arithmetic and control logic for a wide 
range of operations. These include fixed point arithmetic with hard­
ware multiply and divide, extenSive test and branch operations, and 
other control operations. It also provides room for the addition of the 
Floating Point Unit, C6mmerciallnstruction Set, and UNIBUS options. 

184 



Chapter 8 - PDP-11124 

11/24 BLOCK DIAGRAM 

BUS 
INTERFACE 

• -NOT REQUIRED IF MAP MODULE INSTALLED 

r----' 
i CIS I 
I OPTION I 
I I 
L. ___ .J 

MEMORY BUS 

Figure 8-1 PDP-11/24 Block Diagram 

The machine operates in two modes: Kernel and User. When the ma­
chine is in Kernel mode, a program has complete control of the ma­
chine; when the machine is in User mode, the processor is inhibited 
from executing certain instructions and can be denied direct access to 
the peripherals on the system. This hardware feature can be used to 
provide complete executive protection in a multiprogramming envi­
ronment. 

The PDP-11/24 processor is implemented using three chips. Two 
MOS/LSI chips, data and control, implement the basic processor. The 
memory management unit (MMU), the third chip, provides a PDP-
11/34 software-compatible memory management scheme. 

The data chip (DC302) performs all arithmetic and logical functions, 
handles data and address transfers with the external world, ancl coor­
dinates most interchip communication. The control chip (DC303) does 
microprogram sequencing for PDP-11 instruction decoding and con-

185 



Chapter 8 - PDP-11 124 

tains· the control store ROM. The data and control chips are both 
contained in one 40-pin package. The MMU chip (DC304) contains the 
registers for 18 or 22-bit memory addressing 'and also includes the 
FP11 floating point registers and accumulators. 

Data Chip 
The data chip contains the PDP-11 general registers, the processor 
status word (PS), several working registers, the arithmetic and logic 
unit (ALU), and conditional branching logic. The data chip does the 
following. 
1. Performs all arithmetic and logical functions. 
2. Handles all data and address transfers on the systems bus (ex­

cept relocation, which is handled by the MMU). 
3. Generates most of the signals used for interchlp communication 

and external system control. 

Control Chip 
The control chip contains the microprogram sequence logic and 552 
words of microprogram storage in programmable logic arrays (PLA) 
and read-only memory (ROM) arrays. 

During the course of a normal microinstruction cycle, the control chip 
accesses the appropriate microinstruction in the PLA and ROM, sends 
it along the microinstruction bus (MIB) to the data and MMU chips for 
execution, and then generates the address for the next microinstruc­
tion to be accessed. The next address is constructed from either a 
next address field associated with the current microinstruction or, if a 
microprogrammed branch is to be executed, the target address con­
tained within the microinstruction itself. The control chip operation is 
pipelined for better performance so that the next microinstruction is 
being accessed while the current one is being executed. The next 
address is then used in conjunction with various internal status and 
external service Inputs to determine the microprogram sequence. The 
control chip accesses only its local storage. Additional control chips 
can be cascaded with external buffering to provide additional 
microstore. 

Chip Select (CSEL) - CSEL Is an open collector line which is routed 
to all MOS chips on the board except the MMU. The active control chip 
holds the line low. If a nonexistent control chip Is selected by the 
mirocode; the line is pulled high. This causes a control chip error and 
a trap to location 108 , 

186 



r-l/CHIP CARRIER t.J "" ,"C'",C' 

BOTTOM VIEW 
(CHIP CARRIER) 

PAD I LOCATORS 
FOR MOTHERBOARD 

Chapter 8 - PDP-11124 

CHIP CARRIER 
PIN) LOCATOR 

__ DATA CHIP 
CARRIER 

____ CONTROL CHIP 

CARRIER 

MOTHERBOARD 

PIN 20 

PIN 40 ~r:a~~~~~1-R-J+\-j*lI-lI-jJ---- ~ CHIP 

PAD I LOCATORS 
FOR MOTHERBOARD 

PIN t 

MMUChip 

CAPACITORS 

DATA AND CONTROL CHIP 

PDP-11/24 Data and Control Chip 

The MMU chip serves two purposes: it provides the memory manage­
ment function, and provides storage for the FP11 floatng point accu­
mulators and status registers. This chip provides dual mode (user and 
kernel) address reloaction of 18 or 22 bits. Sixteen-bit virtual 
addresses are received from the data chip via the data address lines 
(DAL), relocated to the appropriate 18- or 22-bit physical address, and 
then sent on the DAL to replace the original virtual address for 
transmission to the external system bus. The MMU chip contains the 
status registers and active page registers (PAR/PDR register pairs), as 
well as access protection and error detection capability. The MMU 
chip also provides the thirty-six 16-bit registers needed for operand 
storage, scratch pad areas, and status information storage during flo­
ating point operations. 

The MMU chip is controlled information received on the MIS from both 
the data chip and the control chip, and by several discrete control 
inputs. 

REGISTERS 
The central processor contains nine registers which can be used as 
accumulators, index registers or stack pOinters for temporary storage 

187 



Chapter 8 - PDP-11 124 

of data. Six of these registers, RO-R5, are general registers which 
increase the speed of real-time data handling and faCilitate multipro­
gramming. They can be used as accumulators or Index registers for a 
real-time task or device. Another register, R7, is the PDP-11/24's pro­
gram counter (PC). It is normally used for addressing purposes, not as 
an accumulator for arithmetic operations. This register contains the 
address of the next instruction to be executed. Two other registers 
(R6), are Processor Stack Pointers (SP). They maintain their 
respective hardware stacks, Kernel and User. Additional registers are 
reserved for internal machine use. Chapter 3 on addressing describes 
the functions and operations of the registers in more detail. 

Stacks are used for nesting programs, creating re-entrant coding and 
temporary storage when a Last-ln/First-Out structure is designed. For 
more information on programming uses of stacks, please refer to 
Chapter 5. 

KERNAl 
STACK POINTER 

I R6 I 

RO 

R1 

R2 

R3 

R4 

R5 

GENERAL 
REGISTER 
SET 

USER 
STACK POINTER 

I R6 I 

Figure 8-2 The General Registers 

Processor Status Word 

15 14 13 12 11 

I , I , I RSVD 

~ 
CURRENT MODE.J ! 
PREVIOUS MODE 
CIS INSTRUCTION 5USPENSIONI---------' 

PRIORITY 

Figure 8-3 Processor Status Word 

The Procesl?or Status Word, located at 17 777 776, contains informa­
tion on the current status of the PDP-11. This information includes 

188 



Chapter 8 - PDP-11 124 

current processor priority; current and previous operational modes; 
condition codes describing the results of the last instruction; an indi­
cator for detecting the execution of an instruction to be trapped during 
program debugging; and an indicator that is used to show that a CIS 
instruction was suspended by an interrupt. 

Modes 
Mode information includes the present mode, either User or Kernel 
(bits 15, 14), and the mode the machine was in prior to the last inter­
rupt or trap (bits 13, 12). 

The two modes permit a fully protected environment for a multi-pro­
gramming system by providing the user with two distinct sets of 
Processor Stacks and Memory Management Registers for memory 
mapping. 

When in User mode, a program is inhibited from executing a HALT 
instruction and the processor will trap through location 4 if an attempt 
is made to execute this instruction. Furthermore, the processor will 
ignore the RESET instruction, and execute No Operation. In Kernel 
mode, the processor will execute all instructions. 

A program operating in Kernel mode can map users' programs any­
where in memory and thus explicitly protect key areas (including de­
vice registers and the Processor Status Word) from the User operating 
environment. 

Processor Priority 
The central processor operates at any of eight levels of priority, 0-7. 
When the CPU is operating at level 7, an external device cannot inter­
rupt it with a request for service. The central processor must be oper­
ating at a lower priority than the priority of the external device's 
request in order for the interruption to take effect. The current priority 
is maintained in the Processor Status Word (bits 5-7). The eight proc­
essor levels provide an effective interrupt mask, which can be dynami­
cally altered. 

Condition Codes 
The condition codes contain information on the result of the last CPU 
operation. They include: a carry bit (C), which is set by the previous 
operation if the operation caused a carry out of its most significant oit; 
a negative bit (N), set if the result of the previous operation was nega­
tive; a zero bit (2), set if the result of the previous operation waS zero; 
and an overflow bit (V), set if the result of the previous operation 
resulted in an arithmetic overflow. 

189 



Chapter 8 - PDP-11 124 

Trace Trap 
The trace trap bit (T) can be set or cleared under program control. 
When set, a processor trap will occur through Location 14 after the 
execution of the instruction is completed, and a new Processor Status 
Word will be loaded. This bit Is especially useful for debugging pro­
grams as it provides an efficient method of installing breakpoints. 

Interrupt and trap instructions both automatically cause the previous 
Processor Status Word and Program Counter to be saved and 
replaced by the new values corresponding to those required by the 
routine servicing the interrupt or trap. The user can thus cause the 
central processor to automatically switch modes (context switching), 
alter the CPU's priority, or disable the Trace Trap Bit whenever a trap 
or interrupt occurs. 

Stack Limit 
The PDP-11/24 has a Kernel Stack Overflow Boundary at location 400. 

Once the Kernel stack goes below this boundary, the processor will 
complete the current instruction and then trap to location 4 (Stack 
Overflow). 

MEMORY SYSTEM 
Since MOS memory is volatile, meaning it depends on electricfty_ to 
store information, a power loss or shutdown would cause data loss. To 
prevent this loss from occurring, a Battery Backup Unit (BBU) has 
been designed to temporarily preserve the contents in memory. This 
unit is available as an option on the PDP-11/24. 

Generally, the incidence of ac line power loss varies inversely with the 
severity of loss. That is, there are an extremely small number of com­
plete failures of ac power, and a relatively larger number of short-term 
failures or drops in voltage. Battery backup units are not intended to 
preserve data overnight or over weekends, but rather to overcome 
infrequent, short-term failures of ac power. 

Memory Management 
The Memory Management hardware is standard with the PDP-11/24 
computer. This hardware relocation and protection facility can convert 
the 16-bit program virtual addresses to 22-bit addresses. The unit may 
be enabled or disabled under program control. There is a small speed 
advantage when in the 16-bit mode. 

UNIBUS Map 
The optional UNIBUS map responds as memory on the UNIBUS. It is 
the hardware relocation facility for converting the 18-bit UNIBUS ad-

190 



Chapter 8 - PDP-11 124 

dresses to 22-bit addresses. The relocation mapping may be enabled 
or disabled under program control. 

PDP-11/24 BACKPLANE EXAMPLE 

The PDP-11 /24 backplane consists of nine slots. Slot 1 is reserved for 
the M7133 CPU module. Slot 2 can contain MS11-L memory or the 
UNIBUS MAP module. Additional memory can be configured in Slots 
3-6. (In the 5.25 in. box, the total number of MS11-L memory modules 
cannot exceed three). The UNIBUS MAP is required for configurations 
with more than 256 kb of memory. Slot 9 contains either the M9312 
bootstrap/terminator, the M9302 terminator (if the UNIBUS MAP op­
tion is inatalled), or the UNIBUS Cable. 

A 

4 

5 

6 

? 

8 

9 

B C D 

CPU IM?133) 

MSll-LB 1128Kb), MSll-LDI256Kb) 
/<lOS MEMORY OR M?134 MAP OPTION 

HEX MEMORY 

HEX MEMORY 

HEX MEMORY 

HEX MEMORY 

HEX MUD 

HEX MUD 

UN IBUS QUAD 
TERM/ BOOT 

EXPANSION 
SLOTS 

The PDP-11/24 uses MS11-LB (128kb) or MS11-LD (256 kb) MOS 
parity memory. These have the following characteristics: 

Access Cycle 
Size Time Time 
(Bytes) (nsec) (nsec) Refresh 

560 nsec 
MS11-LB 360 for DATI every 
(18 Bit) 128K 95forDATO 450 12.5/Lsec 

560 nsec 
MS11-LD 360 for DATI every 
(18 Bit) 256K 95forDATO 450 12.5/Lsec 

191 



Chapter 8 - PDP-11124 

ASCII CONSOLE 
The PDP-11/24 serial console is a standard feature which replaces the 
'~lights and switches" programmer's console of earlier processors with 
logic that interprets ASCII characters to perform equivalent panel 
functions. 

Physically, the I/O port used for the serial console function is shared 
with the standard system terminal (also called the "system console"), 
and is mode (or state) switch able by typing ASCII' characters on the 
system terminal (the LA120 or equivalent which serves as the system 
console/programmer console). 

In this section, "Console State" defines the serial console mode of 
operation in which the processor is halted and ASCII commands are 
interpreted and result In the programmer's console functions (load, 
examine, continue, etc.) being performed. The term "Program 
I/O State" will be used to refer to that state in which the processor. is 
running and the LA120 functions as the standard system terminal, or 
the system console. 

NOTE 
The console state can be entered only when the key 
switch is in the LOCAL position. 

Console State 
The processor is halted and the console state entered by pressing the 
BREAK key on the console terminal, or by placing the front panel 
HALT/CONTINUE/BOOT switch in the HALT position. The console 
state is also entered when the CPU executes the HALT Instruction, 
provided Kernal mode HALTS are enabled. It can be accessed when 
the front panel key switch is in the LOCAL position. The BREAK is not 
passed to a running program, and console state is entered after print­
ing the current output character, if any. While in the Console state, all 
input characters are interpreted as programmer's console commands. 

The Console state is exited to the Program 110 state by typing a specif­
ic console command such as PROCEED or GO, or by Booting the 
processor. 

Program 1/0 State 
The Program 110 state is entered from the console state by typing the 
PROCEED or GO commands. Any ASCII character may be output by 
the program, and any ASCII character, may be input to the program. 
Any abnormal input character which causes a framing error, I.e., 
BREAK, will cause the processor to halt andre-enter the console state. 
Character echoing is the responsibility of the CPU software in Pro­
gram 110 state. 

192 



Chapter 8 - PDP-11 124 

The Program I/O state is exited to the Console state by typing the 
Console Break character, or by placing the HALT/CONTINUE/BOOT 
Switch in the HALT position. 

Console defaults 
Address defaults: 

Data defaults: 

CONSOLEODT 

An 18-bit octal physical address is always 
assumed. Leading zeroes need not be 
typed. 

All transfers are 16-bit octal word transfers. 
Leading zeroes need not be typed. 

The processor's microcode operates the serial line interface in half­
duplex mode. Program I/O techniques are used rather than interrupts. 
When the console ODT microcode is busy printing characters using 
the transmit side of the interface, the microcode is not monitoring the 
receive side for incoming characters. Any characters coming in at this 
time are lost. The interface may post overrun errors, but the micro­
code does not check for any error bit in the interface. Therefore users 
should not type ahead to ODT because those characters are not re­
cognized. In addition, if another processor is at the other end of the 
interface, it must obey half-duplex operation. No input characters 
should be sent until console ODT has finished outputting. 
Console ODT Entry Conditions 
1. Execution of HALT instruction in kernel mode, provided the HALT 

TRAP jumper is not installed. 
2. Setting the 'HALT/CONTINUE/BOOT' switch to the HALT position 

while the CPU is running. 

3. ODT is entered upon power-up if the HALT/CONTINUE/BOOT 
switch is in the HALT position and the keyswitch is in the LOCAL 
position. 

4. Depressing 'BREAK' on the console terminal while the keyswitch 
is in the 'LOCAL' position. 

Console ODT Input Sequence 
Upon ent!ly to console ODT, the RBUF register is read using a DATI 
and the character present in the buffer is ignored. This is done so that 
erroneous characters or user program characters are not interpreted 
by console ODT as a command,especially when a program is halted. 
The input sequence for console ODT is as follows: 
1. Read and ignore character in RBUF. 
2. Output a <CR><LF> to terminal. 
3. Output contents of PC (program counter R7) in six digits to termi­

nal. 

193 



Chapter 8 - PDP-11 124 

4. Output a <CR><LF> to terminal. 

5. Output the prompt character, @, to terminal. 

6. Enter a wait loop for terminal input. The Done flag, bit 7 in RCSR, 
is tested using a DATI. If it is 0, the test continues. 

7. If RCSR bit 7 is a 1, then low byte of RBUF is read using a DATI. 

Console OOT Output Sequence 
The output sequence for ODT is as follows: 

1. Test XCSR byte 7 (Done flag) using a DATI and if a 0, continue 
testing. 

2. If XCSR bit 7 is 1, write character to low byte of XBUF using a 
DATO (high byte is ignored by interface). 

CONSOLE OOT COMMAND SET 
The console ODT command set, listed below, is described in thefol­
lowing paragraphs. The commands are a subset of ODT -11 and use 
the same command characters. Console ODT has ten internal states. 
For each state only specific characters are recognized as valid inputs; 
other inputs invoke a "?" response. These states decrease the liveli­
hood that an incorrect command will be permitted to damage user 
data. 

Command 

Slash 

Carriage Return 

Line Feed 

Internal Register 
Designator 

Processor Status 
Word Designator 

Go 

Console OOT Commands 

Symbol 

I 

<CR> 

<LF> 

$or R 

S 

G 

194 

Use 

Prints the contents 
of a specified loca­
tion. 

Closes an open 
location. 

Closes an open lo­
cation and then 
opens the next con­
tiguous location. 

Opens a specific 
processor reg ister. 

Opens the 
PS-must follow $ 
or R command. 

Starts program 
execution. 



Chapter 8 - PDP-11 124 

Proceed P 

Binary Oump Control-S 

Toggle Halt H 

Resumes execution 
of a program. 

Manufacturing use 
only. 

Allows the proces­
sor to be single-
stepped. 

The parity bit (bit 7) on all input characters is ignored (i.e., not 
stripped) by console OOT, and if the input character is echoed, the 
state of the parity bit is copied to the output buffer (XBUF). Output 
characters internally generated (e.g., <CR» by OOT have the parity 
bit equal to O. All commands are echoed except for <LF>. Where 
applicable, uppercase and lowercase command characters are recog­
nized (with the exception of 'H', which must be uppercase). 

In order to describe the use of a command, other commands are 
mentioned before they have been defined. For the novice user, these 
paragraphs should be scanned first for familiarization and then reread 
for detail. The word "location," as used in this paragraph, refers to a 
bus address, processor register, or processor status word (PS). 

NOTE 
In the following examples, the user's entry is in bold 
faced (dark) type, while the response from the proc­
essor is not. 

I(ASCII 057) Slash 
This command is used to open a bus address, processor register, or 
processor status word and is normally preceded by other characters 
which specify a location. In response to I, console OOT prints the 
contents of the location (i.e., six characters) and then a space (ASCII 
40). After printing is complete, console OOT waits for either new data 
for that location or a valid close command. The space character is 
issued so that the location's contents and possible new contents en­
tered by the user are legible on the terminal. 

Example: @001000/012525<SPACE> 

where: 

@ 

001000 

= console OOT prompt character. 

= octal location in the bus 
address space desired by the user 
(leading Os are not required). 

195 



012525 

Chapter 8 - PDP-11 124 

= command to open and print contents of 
location. 

= contents of octal location 1000. 

<SPACE> = space character generated by console 
OOT. 

The I command can be used without a location specifier to verify the 
data just entered into a. previously opened location. The I is recog­
nized only if it is entered immediately after a prompt character. A I 
issued immediately after the processor enters OOT mode causes a 
?<CR><LF> to be printed because a location has not yet been 
opened. 

Example: @1000/012525<SPACE> 1234 <CR><CR><LF> 
@/001234<SPACE> 

where: 

first line = new data of 1234 entered into 
location 1000 and location 
closed with <CR> 

second line = a I was entered without a location 
specifier and the previous location 
was opened to reveal that the new 
con tents were correctly entered 
into memory. 

<CR>(ASCII15) Carriage Return 
This command is used to clOse an open location. If a location's con­
tents are to be changed, the user should precede the <CR> with the 
new data. If no change is desired, <CR> closes the location without 
altering its contents. 

Example: @R1/004321<SPACE> <CR> <CR><LF> 
@ 

Processor register R1 was opened and no change was desired so the 
user issued <CR>. In response to the <CR>, console OOT printed 
<CR> <LF>@. 

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF> 
@ 

196 



Chapter 8 - PDP-11124 

In this case the user desired to change R1, so new data, 1234, were 
entered before issuing the <CR>. Console OOT deposited the new 
data in the open location and then printed <CR><LF>@. 

Console OOT echoes the <CR> entered by the user and then prints 
an additional <CR>, followed by a <LF>, and @. 

<LF> (ASCII 12) Line Feed 
This command is used to close an open location and then open the 
next contiguous location. Bus addresses and processor registers are 
incremented by 2 and 1 respectively. If the PS is open when a <LF> is 
issued, it is closed and a <CR><LF>@ is printed; no new location is 
opened. If the open location's contents are to be changed, the new 
data should precede the <LF>. If no data are entered, the location is 
closed without being altered. 

Example: @R2J123456<SPACE> <LF> <CR><LF> 
R3/054321 <SPACE> 

In this case, the user entered <LF> with no data preceding it. In 
response, console OOT closed R2 and then opened R3. When a user 
has the last register, R7, open, and issues <LF>, console OOT opens 
the beginning register, RO. When the user has the last bus address 
open of a 32K-word segment and Issues <LF>, console OOT opens 
the first location of that same segment. If the user wishes to cross the 
32K-word boundary, he must re-enter the address for the desired 
32K-word segment (I.e., console OOT Is module 32K-word). This oper­
ation is the same as that found on all other POP-11 consoles. 

Example: @R7/000000<SPACE> <LF> <CR><LF> 
RO/123456<SPACE> 

or 

@577776/000001<SPACE> <LF> <CR><LF> 
400000/125252<SPACE> 

Unlike other commands, console OOT does not echo the <LF>. In­
stead it prints <CR>, then <LF> so the printing terminals opeate 
properly. In order to make this easier to decode, console OOT does 
not echo ASCII 0, 2, or 10, either, but responds to these three charac~ 
ters with ?<CR><LF>@. 

$ (ASCII 044) or R (ASCII 122) Internal Register Designator 
Either character when followed by a register number, 0 to 7, or PS 
designator, S, will open that specific processor register. 

The $ character is recognized to be compatible with OOT-11. The R 
character was introduced for the convenience of one key stroke and 
because it is representative of what It does. 

197 



Example: 

Chapter 8 - PDP-11 124 

@$O/000123<SPACE> 

or 

@R7/000123<SPACE> <LF> 
RO/054321 <SPACE> 

If more than one character is typed (digit or S) after the R or $, console 
ODT uses the last character as the register designator. There is an 
exception, however: if the last three digits equal 077 or 477, ODT 
interprets it to mean the PS rather than R7. 

S (ASCII 123) Processor Status Word 
This designator is for opening the PS (processor status word) and 
must be employed after the user has entered an R or $ register desig­
nator. 

Example: @RSl100377<SPACE> 0 <CR> <CR><LF> 
@,o00020<SPACE> 

Note the trace bit (bit 4) of the PS cannot be modified by the user. This 
is done so that PDP-11 program debug utilities (e.g., ODT-11), which 
use the T bit for single-stepping, are not accidentally harmed by the 
user. 

If'the user issues a <LF> while the PS is open, the PS Is closed and 
ODT prints a <CR> <LF>@. No new location is opened in this case. 

G (ASCII 1 07) Go 
This command is used to start program execution at a location en­
tered immediately before the G. This function is equivalent to the 
LOAD ADDRESS and START switch sequence on other PDP-11 con­
soles. 

Example: @200G<NULL><NULL> 

The console ODT sequence for a G, after echoing the command char­
acter, is as follows: 
1. Print two nulls (ASCII 0) so the bus initialization that follows does 

not flush the G character from the double.buffered UART chip in 
the serial line interface. 

2. Load R7 (PC) with the entered data. If no data are entered, 0 Is 
used. (In the above example, R7 is set equal to 200 and that Is 
where program execution begins.) 

3. The PS and floating point status register contained in the MMU 
are cleared to O. 

4. The bus is initialized. 

198 



Chapter 8 - PDP-11 124 

5. The service state is entered by the processor. If there Is anything 
to be serviced, it is processed. If the HALT signal is asserted, the 
processor re-enters the console OOT state. This feature Is used to 
initialize a system without starting a program (R7 is altered). If the 
user wants to single-step a program, it can be executed by issuing 
a G and then successive P commands, all done with the HALT 
signal asserted, (either by the HALT switch or via the 'H' 
command). 

P (ASCII 120) Proceed 
This command is used to resume execution of a program and corres­
ponds to the CONTINUE switch on other POP-11 consoles. No pro­
grammer-visible machine state is altered using this command. 

Example: @P 

The POP-11 processor is started immediately after the transmission of 
fhe P to the terminal console has begun. If a RESET instruction is 
executed while the P is transmitting, the echo of the P may be lost. 

Program execution resumes at the address pOinted to by R7. After the 
P is echoed, the console OOT state is left and the processor immedi­
ately fetches the next instruction. If the HALT signal is asserted, it is 
recognized at the end of the instruction (during the service state) and 
the processor enters the console OOT state. Upon entry, the content of 
the PC (R7) is printed. In this fashion, a user can single-instruction 
step through a program and get a PC "trace" displayed on his termi­
nal. 

Control·S (ASCII 23) Binary Dump 
This command is used for manufacturing test purposes and IS not a 
normal user command. It is described here to explain the machine's 
response if accidentally invoked. It is intended to more efficiently dis­
playa portion of memory compared to using the I and <LF> 
commands. The protocol is as follows: 
1. After a prompt character, console OOT receives a control-S com­

mand and echoes it. 

2. The host system at the other end of the serial line must !!lend two 
8-bit bytes which console OOT interprets as a 16-bit starting ad­
dress. These two bytes are not echoed. 

The first byte specifies starting address < 15:8> and the second 
byte specifies starting address <7:0>. Bus address bits <H:16> 
are always forced to be 0; the dump command is restricted to the 
first 32K words of address space. 

3. After the second address byte has been received, console OOT 

199 



Chapter 8 - PDP-11 124 

outputs 10 bytes to the serial line starting at the address previous­
ly specified. When the output is finished, console ODT prints 
<CR><LF>@. 

If a user accidentally enters this command, it is recommended, in 
order to exit from the command, that two @ characters (ASCII 100) be 
entered as a starting address. After the binary dump, an @ prompt 
character is printed. 

H(ASCII11 O)Toggle HALT Flip-Flop 
Programs are often debugged by single-instruction stepping them. In 
the PDP-11/24, this may be accomplished by setting the HALT IBOOT 
switch to the HALT position and using the "P" command to single­
instruction-cycle the PDP-11/24. The same result as setting the HALT 
switch may be realized by typing "H". An internal flip-flop is set, 
simulating the action of the HALT switch. "P" will now single-cycle the 
PDP-11/24. After the debugging execution is completed, "H" must be 
typed once more. This will clear the internal flip-flop, and the next "P" 
will cause the PDP-11/24 to run at full speed. 

ADDRESS SPECIFICATION 
All addresses must be entered by users with all 18 bits specified, 
regardless of whether the MMU is present or not. For example, if a 
user desires to open the RCSR of Serial Line Unit 1, the user must 
enter 777560, not 177560. Eighteen-bit addresses must also be used 
to access memory greater than 32K words. Leading zeroes need not 
be typed. 

Processor I/O Addresses 
Certain processor and MMU registers have I/O addresses assigned to 
them for programming purposes. If referenced in console ODT, the PS 
responds to its bus address, 777776. Processor registers RO through 
R7 do not respond to bus addresses 777700 through 777707 if refer­
enced in console ODT (Le., time-out occurs). 

The MMU contains status registers and PAR/PDR pairs. Any of these 
registers can be accessed from console ODT by entering its bus ad­
dress. 

Example: @777572/000001 <SPACE> 

In this case, memory management status register 0 is opened and the 
memory management enable is seen to be set. The internal display 
register (777570) can not be accessed with ODT because the register 
is Write-only. 

200 



Chapter 8 - PDP-11 124 

Stack Pointer Selection 
Accessing Kernel and User stack pointer registers is accomplished in 
the following way: Whenever R6 is referenced in ODT, it accesses the 
stack pointer specified by the PS current mode bits (PS<15:14». 
This is done for convenience. If a program operating in Kernel mode 
(PS<15:14>=00) is halted and R6 is opened, the Kernel stack pOinter 
is accessed. 

Similarly, if a program is operating in User mode, R6 accesses the 
user stack pOinter. If a specific stack pointer is desired, PS<15:14> 
must be set by the user to the appropriate value and then the R6 
command can be used. If an operating program has been halted, the 
original value of PS<15:14> must be restored in order to continue 
execution. 

Example: PS = 140000 
@R6/123456<SPACE> 

The user mode stack pointer has been opened. 

@RS/140000<SPACE> 0 <CR> <CR><LF> (switch 
to Kernel mode) 
@R6/123456<SPACE> <CR> <CR><LF> (read the 
Kernel Stack POinter) 

@RS/OOOOOO<SPACE> 140000<CR> <CR><LF> 
(return to User mode) 

@P 

In this case, the Kernel mode stack pOinter was desired. The PS was 
opened and PS<15:14> was set to 00 (Kernel mode). Then R6 (Kernel 
Stack Pointer) was examined and closed. The original value of PS<15: 
14> was restored and then the program was continued using the P 
command. 

If PS< 15:14> is set to 01, another unique register exists in the proces­
sor, but is reserved for future DIGITAL use. 

The floating point accumulators, which are also in the MMU chip, 
cannot be accessed from console ODT. Only floating point instructions 
can access these registers. 

Entering Octal Digits 
When the user is specifying an address of data, console ODT will use 
the last six octal digits if more than six have been entered. The user 
need not enter leading Os for either address or data; console ODT 
forces Os as the default. If an odd address is entered, the low-order bit 
is ignored and a full 16-bit word is displayed. 

201 



Chapter 8 - PDP-11124 

ODT Time-Out 
If the user specifies a nonexistent address, console OOT responds to 
the error by printing ?<CR><LF>@. 

Invalid Characters 
Console OOT will recognize, with the exception of "H", uppercase and 
lowercase characters as commmands. Any -character that console 
OOT does not recognize during a particular sequence is, echoed (with 
the exception of ASCII 0, 2, 10, or 12 as noted earlier) and -console 
OOT prints a ?<CR><'LF>@.Console ODT has ten internal states, 
each of which has its own set of valid input characters. When in a 
particular state, only commands specific to that state are valid. This 
was done to lower the probability of a user unintentionally destroying a 
program by pressing the wrong key. 

TERMINAL SERIAL LINE UNIT REGISTERS (SLU 1) 

Receiver Status Register (TERM RCSR) 17 777 560 

15 

RECEIVER DONEIRCVR DONE1-, -------~ 
RECEIVER INTERRUPT ENABLEIRCVR INT ENB1-------' 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read-only) 
Name: RECEIVER DONE 
Function: Set when an entire character has been received and is 
ready for transfer to the UNIBUS. Cleared by addressing (READ or 
WRITE) RBUF or by INIT. Starts an Interrupt sequence when RECEIV­
ER INTERRUPT ENABLE (bit 6) is also set. 

Bit: 6 (Read/write) 
Name: RECEIVER INTERRUPT ENABLE 
Function: Cleared by INIT. Starts an interrupt sequence when RE­
CEIVER DONE is set. 

Bit: 5:0 
Function: Unused 

202 



Chapter 8 - PDP-11 124 

Receiver Data Buffer (TERM RBUF) 17 777 562 

111 I ~------~~~--------~ 
ERROR I OVERRUN 
FRAME ERROR 
RECEIVE PARITY ERROR 
RECEIVED DATA BITS-----------------------------'-

Bit: 15 (Read-only) 
Name: ERROR 
Function: Logical OR of OVERRUN ERROR, FRAMING ERROR and 
PARITY ERROR. Cleared by removing the error conditions. ERROR is 
not tied to the interrupt logic, but RECEIVER DONE is. 

Bit: 14 (Read-only) 
Name: OVERRUN 
Function: Set if previously received character is not read (RECEIVER 
DONE not reset) before the present character is received. This 
indicates that the previous character(s) have been lost. 

Bit: 13 (Read-only) 
Name: FRAMING ERROR 
Function: Set if the character read has no valid stop bit. Also used to 
detect break. 

Bit: 12 (Read-only) 
Name: RECEIVE PARITY ERROR 
Function: Set if received parity does not agree with the expected 
parity. Always 0 if no parity is selected. 

NOTE: Error conditions remain present until the next character is 
received, at which time the error bits are updated. INIT does not 
necessarily clear the error bits. 

Bit: 11:8 
Function: Unused 

203 



Chapter 8 - PDP-11 124 

Bit: 7:0 (Read-only) 
Name: RECEIVED DATA 
Function: These bits contain the character just read. If less than eight 
bits are selected, the buffer will be right-justified with the unused bits 
read as Os. Not cleared by INIT. 

Transmitter Status Register (TERM XCSR) 17777 564 

15 

TRANSMITTER READY (XMT RDYI--------Jf 
TRANSMITTER INTERRUPT ENAaLE (XMT INT ENBI--------' 
MAINTENANCE (MAINTI------------'-------' 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read-only) 
Name: TRANSMITTER READY 
Function: Set by INIT. Cleared when XBUF is loaded; set when XBUF 
can accept another character. When set, it will start an interrupt se­
quence if TRANSMITTER INTERRUPT ENABLE is also set. 

Bit: 6 (Read/write) 
Name: TRANSMITTER INTERRUPT ENABLE 
Function: Cleared by INIT. When set it will start an Interrupt se­
quence if TRANSMITTER READY is also set. 

Bit: 5:3 
Function: Unused 

Bit: 2 (Read/write) 
Name: MAINTENANCE 
Function: Cleared by INIT. When set, It disables the external serial 
line input to the RECEIVER and selects instead the serial output of the 
TRANSMITTER. This allows diagnostic programs to exercise the serial 
line. 

Bit: 1:0 
Function: Unused 

Transmitter Data Buffer (TERM XBUF) 17 777 566 

204 



Chapter 8 - PDP-11 124 

15 

TRANSMITTER DATA BUFFER--------------' 

Bit: 15:8 
Function: Unused 

Bit: 7:0 (Write-only) 
Name: TRANSMITTER DATA BUFFER 
Function: If less than eight bits are selected, then the character must 
be right-justified. The character to be transmitted is written into this 
register. 

SECOND SERIAL LINE UNIT REGISTERS (SLU 2) 

Receiver Control/Status Register (RCSR) 17 776 500 

15 6 

RECEIVER DONE (RCVR DONE) ! t 
RECEIVER INTERRUPT ENASlE(RCVR INT ENS) ==-----.J 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read-only) 
Name: RECEIVER DONE 
Function: Set when a complete character is contained in the 
RBUF. Cleared when the RBUF is addressed or when an INI­
TIALIZE operation occurs. Initiates the interrupt sequence when 
the RECEIVER INTERRUPT ENABLE (bit 6) is set. 

Bit: 6 (Read/Write) 
Name: RECEIVER INTERRUPT ENABLE 

o 

Function: Set by program to allow the interrupt sequence to be initi­
ated by the RECEIVER DONE bit, 7. 

Bit: 5:0 
Function: Unused 

205 



Chapter 8 - PDP-11 124 

Receiver Buffer Register (RBUF) 17 776 502 

11 

ERRORJ WJ "I OVERRUN ERROR 
FRAMING· ERROR 
PARITY ERROR _ 
RECEIVER DATA BITS---------------' 

Bit: 15 (Read-only) 
Name: ERROR 
Function: Set when the,OR ERROR (bit 14), FR ERROR(bit 13) or 
the PAR ERROR (bit 12) is set. Cleared by the reception of new 
and correct data. 

Bit: 14 (Read-only) 
Name: OVERRUN ERROR 
Function: Set if the character in the RBUF has not been read before 
another character is received. Cleared by an INITIALIZE operation or 
when the RBUF is emptied. 

Bit: 13 (Read-only) 
Name: FRAMING ERROR 
Function: Set when the character read in RBUF does not have a valid 
stop bites). Cleared when a valid character is received. This bit may 
indicate an error in transmission or the reception of a BREAK charac­
ter. 

Bit: 12 (Read-only) 
Name: PARITY ERROR 
Function: Set when the parity of the character read in the RBUF is 
incorrect relative to the parity mode selected. Cleared when the parity 
of the next character is validated. 

Bit: 11:8 
Function: Unused 

Bit: 7:0 (Read-ol')ly) 
Name: RECEIVED DATA 
Function: These bits are the data character received from the SLU 2. 

206 



Chapter 8 - PDP-11124 

Transmitter Control/Status Register (XCSR) 17 776504 

15 

TRANSMITTER READY( XMIT ROY} -------' r 
TRANSMITTER INTERRUPT ENABLE ( XMIT INT ENB)-------' 
BREAK BIT (BREAK) 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read-only) 
Name: TRANSMITTER READY 
Function: Set when the XBUF is ready to accept a character or 
when an initialize operation occurs. Setting the bit indicates an inter­
rupt sequence if the TRANSMITTER INTERRUPT ENABLE (bit 6) 
is set. Cleared when a character is written into the XBUF. 

Bit: 6 (Read/write) 
Name: TRANSMITTER INTERRUPT ENABLE 
Function: Set by program. Enables the interrupt sequence to be initi­
ated if the TRANSMITTER READY (bit 7) is set. Cleared by the 
program. 

Bit: 5:1 
Function: Unused 

Bit: 0 (Read/write) 
Name: BREAK 
Function: Set by the program. Causes a space to be continuously 
transmitted to the SLU2. If maintained long enough, the SLU at the 'far' 
end will detect a framing error and interpret this as 'BREAK'. Cleared 
by the program. 

Transmitter Data Buffer Register (XBUF) 17 776 506 

76543210 

1 007 1 DOb I 005 1 004100310021001 1000 I 
I.. ) 

T TRANSMITTER DATA BITS ---------------' 

Bit: 15:8 
Function: Unused 

Bit: 7:0 (Write-only) 

207 



Chapter 8 - PDP-11 124 

Name: TRANSMITTER DATA 
Function: These bits are the data character to be transferred to the 
SLU2. 

Clock Status Register (LKS) 17 777 546 

7 6 

IMON-IINT I ITOR ENB 

LINE CLOCK MONITOR~;;;:;:=======-.-l 
LINE CLOCK INTERRUPT ENABLE 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read/clear) 
Name: LINE CLOCK MONITOR 
Function: Set only by the line frequency clock signal and cleared 
only by the program or the Line Clock Interrupt sequence. Set by INIT. 

Bit: 6 (Read/write) 
Name: LINE CLOCK INTERRUPT ENABLE 
Function: Cleared by INIT. When set, starts an Interrupt sequence if 
LINE CLOCK MONITOR is also set. 

Bit: 5:0 
Function: Unused 

ADDRESS AND VECTOR ASSIGNMENTS 
Integral to the PDP-11 /24 CPU are two serial line ports and a real-time 
clock. The serial line units follow the same address and vector assign­
ments as the KL 11, DL 11-A, B, C, D and W. The addresses and vectors 
are fixed for all three devices. 

Console 
(SLU #1) 

(SLU #2) 

Line Clock 

Address 

17777 560 
17777 562 
17777564 
17777566 

17 776500 
17776502 
17 776504 
17 776 506 

17 777 546 

Vector 

60/64 

300/304 

100 

208 

Priority 

BR4 

BR4 

BR6 



Chapter 8 - PDP-11124 

TIMING CONSIDERATIONS 

Receiver 
The RECEIVER DONE flag sets when the UART has assembled a full 
character, which occurs at the middle of the first stop bit. 

Since the UART is double buffered, data remain valid until the next 
character is received and assembled. This allows one full character 
time for servicing the RECEIVER DONE flag. 

NOTE 
The UART (Universal Asynchronous 
Receiver/Transmitter) is an asynchronous subsys­
tem. The transmitter accepts parallel characters and 
converts them to a serial asynchronous output. The 
receiver accepts asynchronous serial characters 
and converts them to a parallel output. 

Transmitter 
The UART's transmitter section is also double buffered. After initializa­
tion, the TRANSMITTER READY flag is set. When the buffer is loaded 
with the first character, the flag clears but sets again within a fraction 
of a bit time. A second character can then be loaded, clearing the flag 
again. The flag then remains clear for nearly a full character time. 

Break Generation 
Setting the break bit causes the transmission of a continuous space. 
Since the TRANSMITTER READY flag continues to function normally, 
the duration of break can be timed by the "pseudo-transmission" of a 
number of characters. However, since the transmitter is double buff­
ered, a null character (all zeros) should precede transmission of break 
to insure the previous character clears the line. Likewise, the last 
"pseudo-transmitted" character under break should be null. 

REGISTERS 

CPU Error Register 17777766 

IS 

POWER FAILURE BIT ------------------~-' 

This register is available only when the optional UNIBUS map is in­
stalled. The CPU Error Register contains one bit, bit O. This bit, when 

209 



Chapter 8 - PDP-11 124 

set, indicates that one or more power supply voltages have exceeded 
their tolerance. This bit is set when voltage error occurs and is cleared' 
either by RESET or by writing a zero to the bit. 

Bit: 0 Name: CPU Power failure 
Function: (see explanation above) 

Processor Status Word 17 77 776 

15 14 13 12 11 

I , I , I R5VD 

~ 
CURRENT MODE.-J t 
PREVIOUS MODE 
CIS INSTRUCTION SUSPENSION-----~ 

4 2 0 

PRIORITY 

The Processor Status Word contains information on the current status 
of the CPU. This information includes current processor priority; cur­
rent and previous operational modes; the condition codes describing 
the results of the last instruction; an indicator for detecting the execu­
tion of an instruction to be tr$pped during program debugging; and an 
indicator to determine whether a commercial instruction was in pro­
gress. 

Processor Traps 
These are a series of errors and programming conditions which will 
cause the central processor to trap to a set of fixed locations. These 
include Power Failure, Stack Errors, Timeout Errors (Non-existent 
Memory References), Memory Errors, Memory Management Viola­
tions, Floating Point Processor Exception Traps, use of Reserved In­
structions, use of the T bit In the Processor Status Word, and use of 
the lOT, EMT, BPT, and TRAP instructions. 

Power Failure 
Whenever ac power drops below 90 volts for 120V power (180 volts for 
240V) or outside a limit of 47 to 63 Hz, as measured by dc power, the 
powerfail sequence Is initiated. The central processor automatically 
traps through location 24 and the user's powerfail program has ap­
proximately 5 msec to save all-volatile information (data in registers; 
1/0 status, etc.), and to condition peripherals for power failure. 

I, 

If battery backup Is present, and batteries are not depleted when 
power is restored, the processor again traps to location 24 andexe­
cutes the user's power-up Kernel routine to restore the machine to its 
state prior to power failure. If batteries are not present, a boot· to ' 
default device is executed. 

210 



Chapter 8 - PDP-11 124 

Time-Out Error 
This error occurs when a MSYN pulse is placed on the UNIBUS and 
there is no SSYN pulse within 20 /Lsec. This error usually occurs in 
attempts to address non-existent memory or peripherals. 

The instruction is aborted and the processor traps through location 4. 

Reserved Instruction 
There is a set of illegal and reserved opcodes which cause the 
processor to trap through location 10. An example would be an at­
tempt to execute a floating-point instruction when no floating-point 
processor is present. 

Trap Handling 
Appendix A includes a list of the reserved Trap Vector locations and 
System Error Definitions which cause processor traps. When a trap 
occurs, the processor follows the same procedure for traps as it does 
for interrupts (saving the PC and PS on the new Processor Stack, etc.). 

In cases where multiple traps and interrupts occur concurrently, the 
processor will service the conditions according to the priority se­
quence illustrated. 

Trap Priorities 
1. DCLO(Powerup) 
2. Reserved Instruction Trap 
3. Memory Management Fault 
4. Bus Error Traps 
5. Memory Parity Errors 
6. Trace Trap 
7. Stack Overflow Trap 
8. Power Fail Trap 
9. Bus Request (BR) level 7 
10. Line Clock (Highest B6 Device) 
11. BR6 
12. BR5 
13. BR4 
14. HALT 
15. WAIT LOOP 

Stack Limit Violations 
When instructions cause the Kernel RS to exceed (go lower than) 
4008 , a Stack Violation occurs. Operations that cause a Stack Viola-

211 



Chapter 8 - PDP-11 i24 

tion are completed, then a bus error trap is effected (Trap to 4). The 
error trap, which itself uses the stack, executes without causing an 
additional violation. 

PDP-11/24 CPU and 1/0 Device Registers and Addresses 
Address Register 

17777 776 

17777 766 

17777 707 -17 777 700 

17777 656 -17 777 640 

17 777 616 -17 777 600 

17777 576 

17 777 574 

17777 572 

17777 570 

17777 566 -17 777 560 

17 776 500 - 17 776 506 

17 772 516 

17772356 -17 772340 

17772316 -17 772 300 

17 770 372 - 17 770 200 

SPECIFICATIONS 

Packaging 

Processor Status Word (PSW) 

CPU Error (Optional with UNI­
BUS map) 

CPU General Register (not 
accessible by address) 

User Instruction PAR, 
Reg. 0-7 

User Instruction PDR, 
Reg. 0-7 

MM Status Register 2 (SR2) 

MM Status Register 1 (SR1) 

MM Status Register 0 (SRO) 

Display Register 

Console Terminal SLU 

SLU2 

MM Status Register 3 (SR3) 

Kernel Instruction PAR, 
Reg. 0-7 

Kernel Instruction PDR, 
Reg. 0-7 

UNIBUS MAP Registers 
(optional with UNIBUS map) 

A basic PDP-11 /24 consists of either a 5.25 in or a 10.5 in box with a 9-
slot backplane, power supply, CPU, 128 Kbyte or 256 Kbyte memory. 

There are prewlred areas within the backplane for expansion with 
optional equipment. 

212 



Chapter 8 - PDP-11 124 

Component Parts 
The basic PDP-11/24 system contains: 

• Standard Equipment 

PDP-11/24 CPU 
Memory Management 
Bootstrap Loader 
Line Frequency Clock 
Second Serial Line Interface 
Terminal Interface 
128 Kbyte or 256 Kbyte Parity MOS Memory 
BA 11-L or BA 11-A Box with Power Supply 

• Prewired Expansion Space for Optional Equipment 
Floating Point Unit 
SPC Slots for Peripherals, up to 6 Hex and 1 Quad (depending on 
the memory configuration). 
768 Kbyte Parity MOS Memory (up to 1,024 Kbytes maximum) 
4 system units of open space in BA 11-A Box 

OTHER SPECIFICATIONS 

ACPower 
5W'Box: 

101;2" Box: 

The Mounting Box 

Size 
5W'Box: 

10W' Box: 

104-127 Vrms, 47-63 Hz, 1 phase power, 5 
amps rms maximum @ 120 Vac 

208-258 Vrms, 47-63 Hz, 1 phase power, 2.5 
amps rms maximum @ 240 Vac 

90-128 Vrms, 47-63 Hz, 1 phase power, 16 
amps rms maximum @ 120 Vac 

180-256 Vrms, 47-63 Hz, 1 phase power, 9 
amps rms maximum @ 240 Vac 

Cabinet is 13.5 em high x 48 em wide x 69 
em deep (5.25" x 19" x 25") 

Cabinet is 26.3 em high x 42.4 em wide x 
66 em deep (10.35" x 16.62" x 26") 

213 



Chapter 8 - PDP-11 124 

Weight 
5%,'Box: 

10%" Box: 

Operating Environment 

20 Kg (45 Ibs.) 

32 Kg (70 Ibs.) 

The 5%" and 10%" CPU boxes have the same operating and nonoper­
ating environment specifications. 

Temperature: 5°C to 50°C (41°F to 122°F) 

Humidity: 10% to 95% with max. wet bulb of 32°C 
(89.6°F) and minimum dew point of 2°C 
(36°F) 

Altitude: To 2.4 Km (8000 ft.) noncondensing. 

Nonoperating Environment 
Temperature: -40°C to 80°C (-40° to 176°F) 

Humidity: To 95% (noncondensing) 

Altitude: To 9.1 Km (30,000 ft.) 

214 



215 



216 



THE MID-RANGE MINICOMPUTER STANDARD 

CHAPTER 9 

PDP·11/44 

The PDP-11/44, a fourth generation mid-range PDP-11, offers high 
levels of functionality and performance for a machine in its price 
range. Many large, high-performance features such as a high-speed 
central processor, support of one megabyte memory and large 8,192 
byte high-speed cache memory are standard on the PDP-11/44. Avail­
able options include the Floating Point Processor, Commercial In­
struction Set Processor and the Battery Backup Unit. The PDP-11144 
provides more system up-time since it is designed to meet a rigorous 
Reliability, Availability and Maintainability Program (RAMP). 

FEATURES 
Integral to the PDP-11/44 central processor unit are these hardware 
features and expansion capabilities: 

• Cache memory organization to provide very fast program execution 
speed and high system throughput 

• Extended Instruction Set (EIS) for faster integer arithmetic execu­
tion 

• Memory management for relocation and protection in mUltiuser, 
multitask environments 

• Intelligent ASCII console with which the user can operate the com­
puter without requiring access to the front panel 

• TU58 cartridge tape interface port to make it easier to load softwl:\"re 
patches or Field Service diagnostic programs 

• Ability to access up to 1 million bytes of main memory (1 byte = 8 
bits) provides ample memory space for application programs 

• Real-time clock which provides KW11-L compatible line-frequency 
clock 

• 256 Kbyte EGC MOS main memory modules provide high-density, 
low-cost memories with error correcting codes to insure better 
memory reliability 

• Integral DL 11-W serial line unit capability 

• Optional remote diagnosis 
• Optional KE44A Commercial Instruction Set for faster COBOL exe­

cution 

• Optional FP11-F Floating Point Processor with advanced features, 
operating with 32-bit and 64-bit numbers for faster FORTRAN or 
BASIC execution 

217 



Chapter 9 - PDP-11144 

• Optional battery backup unit for data integrity during most power 
outages 

SYSTEM ARCHITECTURE 
The PDP-11/44 is a medium scale general-purpose computer which 
uses an enhanced, upwardly compatible version of the basic PDP-11 
architecture. A block diagram is shown in Figure 9-1. 

Memory Management is standard with the basic computer, allowing 
expanded memory addressing, relocation, and protection. Also stan­
dard is a UNIBUS Map which translates 18-bit UNIBUS addresses to 
22-bit physical memory addresses. The cache contains 8,192 bytes of 
fast, static MOS memory that buffers the processor data from main 
memory. 

The PDP-11/44 system has an expanded internal implementation of 
the PDP-11 architecture for greatly improved system throughput. All 
memory is on its own high-data-rate bus. The processor has a direct 
connection to the cache memory system for very high-speed memory 
access. 

The UNIBUS remains the primary control path in the PDP-11/44 sys­
tem. It is conceptually identical with previous PDP-11 systems; the 
memory in the system still appears to be on the UNIBUS to all UNIBUS 
devices, through the UNIBUS map. This expanded internal imp-Iemen­
tation of the PDP-11 architecture is generally compatible with earlier 
PDP-11170 programs. 

CENTRAL PROCESSOR 
The PDP-11/44 processor acts as the arbitration unit for UNIBUS 
control by regulating bus requests and transferring control of the bus 
to the requesting device with the highest priority. 

The central processor contains arithmetic and control logic for a wide 
range of operations. These include fixed point arithmetic with hard­
ware multiply and divide, extensive test and branch operations, and 
other control operations. It also provides room for the addition of the 
Floating Point Processor, Commercial Instruction Set, and UNIBUS 
options. 

The machine operates in three modes: Kernel, Supervisor, and User. 
When the machine is in Kernel mode, a program has complete control 
of the machine; when the machine is in any other mode, the processor 
is inhibited from executing certain instructions and can deny direct 
access to the peripherals on the system. This hardware feature can be 
used to provide complete executive protection in a multiprogramming 
envi ron ment. 

218 



I\) ...... 
<0 

fUi OPTIONS - - -

I 
I 
I 
I 

----, 
I 
I 

CENTRAl 
PROCESSOR 
AND 
MEMORY 
MANAGEMENT 

I 
I 
I 
I 
I 
I 
I 
I 

I 
l}NIBUS 

L _________ _ I 
--~ 

Figure 9-1 PDP-11/44 Block Diagram 

9 
{: 
iD ., 
co 
I 
~ 
"P --t 



Chapter 9 - PDP-11 /44 

The central processor contains 10 general registers which can be 
used as accumulators, index registers, or as stack pOinters. Stacks 
are extremely useful for nesting programs, creating re-entrant coding, 
and as temporary storage where a Last-ln/First-Out structure is desir­
able. One of the general registers is used as the PDP-11/44's program 
counter. Three others are used as Processor Stack Pointers, one for 
each operational mode. 

The CPU performs all of the computer's computation and logic opera­
tions in a parallel binary mode through step-by-step execution of indi­
vidual instructions. 

General Registers 
The general registers can be used in many ways, the uses varying with 
requirements. The general reg~isters can be used as accumulators, 
index registers, autoincrement registers, autodecrement registers, or 
as stack pOinters for temporary storage of data. Chapter 3 on 
Addressing describes these uses of the general registers in more de­
tail. Arithmetic operations can be from one general register to another, 
from one memory location or device register to another, or between 
memory or a device register and a general register. 

KERNEL 
STACK POINTER 

R6 

R0 

RI 

R2 

R3 

R4 

R5 

SUPERVISOR 
STACK POINTER 

'I R6 

GENERAL 
REGISTER 
SET 

Figure 9-2 The General Registers 

USER 
STACK POINTER 

R6 

R7 is used as the machine's program counter (PC) and contains the 
address of the next instruction to be executed. It is a general register 
normally used only for addressing purposes and not as an accumula­
tor for arithmetic operations. 

220 



Chapter 9 - PDP-11 144 

The R6 register is normally used as the Processor Stack Pointer indi­
cating the last entry in the appropriate stack. (For information on the 
programming uses of stacks, please refer to Chapter 5.) The three 
stacks are called the Kernel Stack; the Supervisor Stack, and the User 
Stack. When the central processor is operating in Kernel mode, it uses 
the Kernel Stack; in Supervisor mode, the Supervisor stack; and in 
User mode, the User Stack. When an interrupt or trap occurs, the 
PDP-11/44 automatically saves its current status on the Kernel Stack 
selected by the service routine. This stack-based architecture facili­
tates re-entrant programming. 

The remaining six registers are RO-R5. 

Registers can be used to increase the speed of real-time data handling 
or facilitate multiprogramming. The six general registers could each 
be used as an accumulator or index register for a real-time task or 
device. 

Processor Status Word 

15 14 13 12 11 9 

I , I , I ~VD 
~ 

CURRENT MODE--1 t 
PREVIOUS MODE -----'-
CIS INSTRUCTION SUSPENSION--------' 

5 3 0 

PRIORITY T I N I z I v I C I 

Figure 9-3 Processor Status Word 

The Processor Status Word, at location 17 777 776, contains 
information on the current status of the PDP-11. This information in­
cludes current processor priority; current and previous operational 
modes; the condition codes describing the results of the last instruc­
tion; and an indicator for detecting the execution of an instruction to 
be trapped during program debugging. 

Bit 8, when set, indicates that a commercial instruction is in process. 
Since commercial instructions can be suspended (interrupted), this bit 
will be pushed onto the stack with the rest of the Processor Status 
Word so that when control is returned to the routine, the commercial 
instruction can continue where it left off. Bit 8 may be used in future 
non-CIS instructions. 

Modes 
Mode information includes the present mode, either User, Supervisor, 
or Kernel (bits 15, 14), and the mode the machine was in prior to the 
last interrupt or trap (bits 13,12). 

221 



Chapter 9 - PDP-11144 

The three modes permit a fully protected environment for a multi­
programming system by providing the user with three distinct sets of 
Processor Stacks and Memory Management Registers for memory 
mapping. 

In all modes, except Kernel, a program is inhibited from executing a 
HALT instruction, and the processor will trap through location 4 if an 
attempt is made to execute this instruction. Furthermore, the proces­
sor will ignore the RESET and SPL (Set Priority Level) instructions, 
and will execute No Operation. In Kernel mode, the processor will 
execute all instructions. 

A program operating in Kernel mode can map users' programs any­
where in memory and thus explicitly protect key areas (including the 
device's registers and the Processor Status Word) from the User 
operating environment. 

Processor Priority 
The central processor operates at any of eight levels of priority, 0-7. 
When the CPU is operating at level 7, an external device cannot inter­
rupt it with a request for service. The central processor must be oper­
ating at a lower priority than the priority of the ext~rnal device's re­
quest in order for the interruption to take effect. The current priority is 
maintained in the Processor Status Word (bits 5-7). The eight proces­
sor levels provide an effective interrupt mask, which can be 
dynamically altered through use of the Set Priority Level instruction 
described in Chapter 4 (which can only be used by the Kernel mode). 
This instruction allows a Kernel mode program to alter the central 
processor's priority without affecting the rest of the Processor Status 
Word. 

Condition Codes 
The condition codes contain Information on the result of the last CPU 
operation. They include: Ii carry bit (C), which is set by the previous 
operation if the operation caused a carry out of its most significant bit; 
a negative bit (N), set if the result of the previous operation was nega­
tive; a zero bit (Z), set if the result of the previous operation was zero; 
and an overflow bit (V), set if the result of the previous operation 
resulted in an arithmetic overflOW. 

Trace Trap 
The trace trap bit (T) can be set or cleared under program control. 
When set, a processor trap will occur through location 14 on comple­
tion of instruction execution and a new Processor Status Word and 
program control will be loaded. This bit is especially useful for debug-

222 



Chapter 9 - PDP-11 144 

ging programs as it provides an efficient method of installing break­
pOints. 

Interrupt and trap instructions both automatically cause the previous 
Processor Status Word and Program Counter to be saved and 
replaced by the new values corresponding to those required by the 
routine servicing the interrupt or trap. The user can thus cause the 
central processor to automatically switch modes (context switching), 
alter the CPU's priority, or disable the Trace Trap Bit whenever a trap 
or interrupt occurs. 

Stack Limit 
The PDP-11 /44 has a Kernel Stack Overflow Boundary at location 400. 

Once the Kernel stack exceeds this boundary, the processor will com­
plete the current instruction and then trap to location 4 (Stack Over­
flow). 

MEMORY SYSTEM 

MOS Memory with ECC 
ECC (error correcting code) is a technique for checking the contents 
of memory to detect errors and correct them before sending them to 
the processor. The process of checking is accomplished by combining 
the bits in a number of unique ways so that parity, or syndrome, bits 
are generated for each unique combination and stored along with the 
data bits in the same word as the data. The memory word length is 
extended to store these unique bits. When memory is read, the data 
word is checked against the syndrome bits stored with the word. If 
they match, the word is sent on to the processor. If they do not match, 
an error exists and the mismatch of the syndrome bits determines 
which data bit is in error. The bit in error is then corrected and sent on 
to the processor. The error correcting code which is employed in MOS 
memory will detect and correct single-bit errors in a word, and detect 
double-bit errors in a word. Where a double-bit error is detected, the 
processor is notified, as happens with a parity error. 

ECC provides maximum system benefits when used in a storage sys­
tem which fails in a random single-bit mode rather than in blocks or 
large segments. Single-bit error (or failure) is the predominant failure 
mode for MOS memory. 

ECC memory provides fault tolerance with the result that. multiple 
single-bit failures can be present in a memory system without measur­
able degradation in either performance or reliability. 

MOS memory is volatile. It depends on electricity to store information. 
Since a power loss or shutdown would cause data loss, battery backup 

223 



Chapter 9 - PDP-11 /44 

units (BBU) are designed to temporarily preserve contents in memory. 
These units are available as options on the PDP-11/44. 

Generally, the incidence of ac line power loss varies inversely with the 
severity of loss. That is, there are an extremely small number of 
complete failures of ac power, and a relatively larger number of short­
term failures or drops in voltage. No economically feasible battery 
b~ckup unit can store sufficient energy to accommodate a complete 
ac power failure for more than several minutes. 

Battery backup units are not intended to preserve data overnight or 
over weekends, but rather to prevent data loss during infrequent, 
short-term failures of ac power. 

Memory Management 
The Memory Management hardware is standard with the PDP-11/44 
computer. It is a hardware relocation and protection facility that can 
convert the 16-bit program virtual addresses to 22-bit addresses. The 
unit may be enabled or disabled under program control. There is a 
small speed advantage when in the 16-bit mode. 

UNIBUS Map 
The UNIBUS map is the hardware relocation facility for converting the 
18-bit UNIBUS addresses to 22-bit addresses. The relocation map­
ping may be enabled or disabled under program control. 

CACHE MEMORY 

PDP-11/44 Cache Specification and DeSign Description 
An overall block diagram of the PDP-11/44 is shown in Figure 9-1. 
Functionally, main memory and the cache can be. treated as a single 
unit of memory. 

Introduction 
The PDP-11/44 cache memory is integral to the PDP-11/44 processor 
and is deSigned to increase the CPU performance by decreasing the 
CPU-to-memory read access time. It is a 8, 192-byte high speed RAM 
memory, organized as a direct mapped cache with write-through. 

Physical Description 
The PDP-11/44 cache memory interfaces to the processor through the 
processor backplane. Two user-accessible switches (S1 and S2) en­
able the cache to be shllt off by causing a forced-miss condition in 
either upper or lower cache address space. Software bits for enabling 
or disabling cache are also provided in the MMU registers, discussed 
later in this chapter. 

224 



Chapter 9 - PDP-11144 

General System Architecture 
The cache operates as an associative memory in parallel with the main 
memory, and is connected to the CPU by the high-speed internal data 
path in the PDP-11/44 ("PAX Data Bus"). This high-speed data path is 
separate from the internal data path that is shared by the floating point 
and commercial instruction set options ("AMUX data bus"). The cache 
is logically connected to the PAX address and memory address buses, 
but is isolated from them by a set of independent receivers. When 
memory DATI or DATIP transfers are initiated by the CPU, the cache is 
strobed 100 ns later to determine if it is a valid hit with no errors. If the 
access is a cache hit, the processor clock is immediately restarted. 
This clocks in the cache data which ends the transfer from the CPU. If 
the strobe resulted in a read miss, then main memory MSYN is assert­
ed and the access is to main memory with the cache performing an 
automatic write-through to update itself. During DATa and DATOB 
transfers, a write is performed to main memory with the cache updat­
ing itself if that location is presently cached. DMA, DATa or DATOB 
transfers from the UNIBUS are monitored by the cache and result in 
invalidation of cached locations. Only CPU transfers to main memory 
are cached. Any memory appearing on the UNIBUS will not be 
cached. 

CPU DMA 
Hit Miss Hit Miss 

Read Cached Update Nothing Nothing 

Read Nothing or Nothing Nothing Nothing 
Bypass Invalidate 

Write Invalidate Invalidate Nothing Nothing 
Bypass 

Write Update Nothing Invalidate Nothing 

Figure 9-4 Cache Response Matrix 

The response of the cache to a CPU read bypass hit is jumper selecta­
ble. In its normal configuration, jumper W1 (M7097 module) is in and 
jumper W2 is removed to allow a forced miss only to occur fOT a CPU 
read hit bypass. If the PDP-11/44 and the KK11-B cache are to be 
used in a multiported memory system, jumper W1 is removed and 
jumper W2 is inserted, to allow a CPU read hit with bypass to cause an 

225 



Chapter 9 - PDP-11144 

invalidation to occur to that location. This allows the software to clean 
potentially stale cache data that might arise in a multiported memory 
system. 

Cache Memory Organization 
The cache memory array consists of 30 4,096 X 1 RAM chips, ar­
ranged as follows: 

TAG 

VALID 

DATA 

4096 
WORDS 

8 8 
~1~1 

>- >-
BYTE 1 ~ BYTE 2 

... .. 
i i 

Consists of nine tag store bits plus one bit of parity. 

Consists of two bits, one of which is currently active, 
allowing the other billo be cleared concurrently. By 
having two bits, a fast flush may be accomplished by 
switching to the set which has been previously 
cleared. 

Consists of two 8-bit bytes plus a parity bit for each 
byte. 

I/O PAGE REGISTERS 
The following I/O page registers are implemented on the PDP-11/44 
cache. All bits are cleared by processor INIT, but not a CPU RESET 
instruction. 

15 o 
CACHE DATA. 

Figure 9-5 17 777 754 Cache Data Register (CDR) 

Bit: 15:0 (Read-only) 
Name: Cache Data Register Bits 
Function: These bits are loaded from the 16-bit data array section of 
the cache RAM on every read access to main memory space, except 
the top 256K bytes, which are reserved for the UNIBUS address space. 
This register can be used with the Hit on Destination Only bit to aid the 
cache diagnostics in identifying failures in the data section of the 
cache array. 

226 



Chapter 9 - POP-11 /44 

7 6 5 4 o 
NOT USED NOT USED 

Figure 9-6 17777 744 Cache Memory Error Register (CMER) 

Bit: 15 Name: Cache Memory Parity Error (CMPE) 
Function: Set if a cache parity error is detected while the cache pari­
ty abort, bit 7, is set, or ita memory parity error occurs. If set, cache 
will force a miss. Cleared by any write to the CME Register or by 
console.INIT. This bit must be cleared before the Disable Cache Parity 
Interrupt (DC PI) is cleared. If the cache detects a parity error in itself, 
the LED mounted on the right side of the board will be on. 

Bit: 7 Name: Parity Error High Byte (PEHI) 

Bit: 6 Name: Parity Error Low Byte (PELO) 

Bit: 5 Name: Tag Parity Error (TPE) 
Function: These bits are set individually when a parity error occurs in 
the high data byte, low data byte or tag field, respectively, if the cycle is 
aborted (Cache Parity Abort bit is set). If the cycle is not aborted, all 
three bits, 5, 6 and 7, are set upon any cache parity error occurrence 
as an aid to system software compatibility. Cleared by any write to the 
CMPE register or by console INIT. 

Figure 9-7 17 777 746 Cache Control Register (CCR) 

Bit: 13 (Read-only) 
Name: Valid Store in Use (VSIU) 
Function: This bit indicates which set of valid store bits is currently 
being used to determine the validity of the contents of the tag store 
memory. It is complemented each time that the cache is flushed. 

When set, valid bit set B is in use. 
When clear, bit set A is in use. 

Bit: 12 (Read-only) 
Name: Valid Clear in Progress (VCIP) 
Function: This is set to indicate that the cache is currently in the 
process of clearing a valid store set. The clear cycle occurs on power­
up and when the flush cache bit is set. 

227 



Chapter 9 - PDP-11144 

NOTE: The hardware clear cycle takes approximately 800 micro­
seconds. While a valid store set is being cleared the other set is in use, 
allowing the cache to continue functioning. 

Bit: 10 (Read/write) 
Name: Write Wrong Parity Tag (WWPT) 
Function: This bit when set causes tag parity bits to be written with 
wrong parity on CPU read misses and write hits. A parity error will thus 
occur on the next access to that location. 

Bit: 9 (Read/write) 
Name: Unconditional Cache Bypass (UCB) 
Function: When this bit is set all references to memory by the CPU 
will be forced to go to main memory. Read or write hits will result in 
invalidation of those locations in the cache and misses will not change 
the contents. 

Bit: 8 (Write-only) 
Name: Flush Cache (FC) 
Function: This bit will always read as O. Writing a 1 into it will cause 
the entire contents of the cache to be declared invalid. Writing a 0 into 
this bit will have no effect. 

Bit: 7 (Read/write) 
Name: Parity Error Abort (PEA) 
Function: This bit controls the response of the cache to a parity 
error. When set, a cache parity error will cause a forced miss and an 
abort to occur (asserts UNIBUS signal PB L). When cleared, this bit 
inhibits the abort and enables an interrupt to parity error vector 114. 
All cache parity errors result in forced misses. 

Bit: 6 (Read/write) 
Name: Write Wrong Parity Data (WWPD) 
Function: This bit when set causes high and low parity bytes to be 
written with wrong parity on all update cycles (CPU read misses and 
write hits). This will cause a cache parity error to occur on the next 
access to that location. 

Bit: 3 (Read/write) 
Name: Force Miss High (FMHI) 
Function: This bit when set causes forced misses to occur on CPU 
reads of addresses where address bit 12 is a 1. This bit can also be set 
by moving the toggle switch S1 to the right side of the board. The bit 
cannot be cleared via the toggle switch. 

Bit: 2 (Read/write) 
Name: Force Miss Low (FMLO) 
Function: This bit when set causes forced misses to occur on CPU 

228 



Chapter 9 - PDP-11 /44 

reads of addresses where address bit 12 is a O. This bit can also be set 
by moving the toggle switch S2 to the right side of the board. The bit 
cannot be cleared via the toggle switch. 

NOTE: Setting bits 3 and 2 will cause all CPU reads to be misses. 

Bit: 0 (Read/write) 
Name: Disable Cache Parity Interrupt (DCPI) 
Function: This bit when set overrides the cleared condition of the 
Parity Error Abort bit, disabling the interrupt to location 114. The 
Cache Memory Parity Error bit must be cleared before Disable Cache 
Parity Interrupt (DCPI) is cleared. 

Bit 7 Bit o Result of Cache Parity Error 

o 
o 
1 

o 
1 
X 

Interrupt to 114 and force miss 
Force miss only 
Abort and force miss 

Figure 9-8 17 777 750 Cache Maintenance Register (CMR) 

Bit: 15:10 (Write-only) 
Name: Address Match Bits <21:16> 
Function: This register is used to set bits 21: 16 of the address match 
register, which provides a scope sync pulse to a user-accessible test 
point when the memory address lines (21 :0) match the address match 
register (21 :0). This feature is useful for troubleshooting the cache and 
PDP-11/44 system. 

Bit: 15 Name: Compare 1 H 

Bit: 14 Name: Compare 2 H 

Bit: 13 Name: Compare 3 H 

Bit: 12 Name: ValidH 

Bit: 11 Name: High Parity bit H 

Bit: 10 Name: Low Parity bit H 

229 



Chapter 9 - PDP·11144 

Bit: 9 Name: Tag Parity bit H 

Bit: 8 Name: Hit L 
Function: 

These bits are key pOints in the cache that the diagnostic can use to 
help !ocalize errors. This register is loaded on any read to main memo­
ry. Like the cache data register, these bits can be used with the Hit on 
Destination Only bit to aid the cache diagnostic in tracing cache fail­
ures. 

Bit: 4 ,Name: Enable Stop Action 
Function: Tt\is bit can be set to allow the cache to stop the CPU clock 
upon detection of a cache parity error or address match condition. 

Bit: 3 (Read/write) 
Name: Address Matched (AM) 
Function: This bit is set when the 22-bit address match register is 
equal to the 22-bit cache address. The bit being set is indicated by the 
left LSD mounted on top of the board. 

Bit: 2 Name: Enable Halt Action 
Function: This bit can be set to allow the cache to halt the CPU upon 
detection of a cache parity error or address match condition. 

Bit: 1 (Read/write) 
Name: Hit on Destination Only (HODO) 
Function: When set, this bit causes the cache to be enabled only 
during the destination memory access of an instruction. Read hits and 
updates will only happen during the final destination access. This fea­
ture is a very powerful tool for cache diagnostics. When cleared, this 
bit has no effect on the cache. This bit should be used with caution, as 
it can cause stale data in the cache. 

Bit: 0 (Read/write) 
Name: Tag Data from Address Match Register (TDAR) 
Function: When set, this bit enables the tag field of the cache to be 
written with data from bits 8:0 of the address match register. Once this 
bit is set, it will cause all cache writes to clear the valid bit in these 
locations. This feature allows the cache diagnostics to identify failures 
in the tag field of the cache array. 

15 

TAG ADDRESS HIT REGISTER 

ADDRESS MATCH 

Figure 9-9 17777 752 Cache Hit Register (CHR) 

230 

o 



Chapter 9 - PDP-11144 

Bit: 15:0 (Write-only) 
Name: Address Match Bits 
Function: This register is used to set bits 15:0 of the address match 
register, which provides a scope sync pulse to a user-accessible test 
point when the memory address lines (21 :0) match the address match 
register (21 :0). It is used in conjunction with bits <15:10> of the Cache 
Maintenance Register. This feature is useful for troubleshooting the 
cache and PDP-11/44 system. 

Bit: 15:7 (Read-only) 

Function:- Tag Address bits contain the nine bits of the tag store 
memory of the last access by the CPU to main memory (except the top 
256 Kbytes). When used with the Hit on Destination Only and Tag Data 
from Address Match register bits, this field will allow the cache diag­
nostics to read any tag field of any location in the array. 

Bit: 5:0 (Read-only) 
Name: Hit Register 
Function: This six-bit field shows the number of cache hits (read and 
write hits) on the last six CPU accesses to non-I/O page memory. The 
bits flow from LSB to MSB of the field with a 1 indicating a hit and a 0 
indicating a miss. 

OTHER PDP-11/44 PROCESSOR EQUIPMENT 

Floating Point Processor 
The PDP-11/44 Floating Point Processor fits integrally into the central 
processor. It provides a supplemental instruction set for performing 
single- and double-precision floating point arithmetic operations and 
floating-integer conversion in parallel with the CPU. The Floating Point 
Processor provides both speed and accuracy in arithmetic 
computations. It provides 7 decimal digit accuracy in single-word cal­
culations and 17 decimal digit accuracy in double-word calculations. 
For a detailed discussion on the PDP-11/44 Floating Point Processor, 
refer to the Floating Point chapter, Chapter 11. 

Backplane 
Figure 9-10, below, is an example of the PDP-11/44 CA Backplane. In 
this diagram, the standard and optional hardware features, described 
in the "Features" section of this chapter, are seen in their correspond­
ing 14-Hex slots on the backplane. 

231 



6 

9 

10 

11 

12 

13 

14 

CIM 

M9302 

Chapter 9 - PDP-11144 

I RESERVED FOR KE44-A 

RESERVED FOR FPll- A 

[ ,,~~ NOC~.=". MEMORY MANAGEMENT, 
CPU UNIBUS MAP, ASC II CONSOLE, 

2 SERIAL LINE UNITS, LINE 
FREQUENCY CLOCK, 
BOOTSTRAP lOADER 

256 KB ECC MOS MEMORY (MSli-MB) 

RESERVED FOR MSll-MS 

RESERVED FOR MSll-MB 

RESERVED FOR MS11- MB 

HEX SLOT 

I QUAD SLOT 

Figure 9-10 PDP-11/44 Backplane Configuration 

ASCII CONSOLE 

2 

3 

The PDP-11/44 serial console is a standard feature which replaces the 
"lights and switches" programmer's console of earlier processors with 
logic that interprets ASCII characters to perform equivalent panel 
functions. 

Physically, the I/O port used for the serial console function is shared 
with the standard system terminal (also called the "system console"), 
and is mode (or state) switchable by typing ASCII characters on the 
system-terminal (the LA120 or equivalent which serves as the system 
console/programmer console). 

In this section, "Console State" defines the serial console mode of 
operation in which ASCII commands are interpreted and result in the 
programmer's console functions (deposit, examine, halt, continue, 
etc.) being performed. The term "Program I/O State" will be used to 
refer to that state in which the LA 120 functions as the standard system 
terminal, or the system console. 

NOTE 
The console state can be entered only when the_ key 
switch is not in the local disable position. 

232 



Chapter 9 - PDP-11 144 

Console State 
The Console state is entered by typing a reserved input character, 
Control P (ASCII tP <020> or <220». This is also called the Console 
Break character. The console state is also entered when the CPU 
halts. It can be entered only when the front panel key switch is in the 
local position. The reserved character is not passed to a running pro­
gram, and console state is entered after printing the current output 
character, if any. While in the Console state, all input characters are 
interpreted by the console logic as commands to the CPU control 
interface. The console performs all character echOing while in the 
Console state. 

A program running in the processor is inhibited by the console logic 
from sending or receiving any characters. This is accomplished by 
inhibiting the "ready" and "done" bits from being set. (See NOTE). The 
Console state is exited to the Program I/O state by typing a specific 
console command such as CONTINUE, START or BOOT. If there is no 
console command in execution, a front panel CONTINUE will cause 
exit from the Console state. Turning the front panel keyswitch to the 
local disable position will cause exit, and the beginning of a power­
down sequence will also cause exit from the console state. 

NOTE 
When in console state, if a program just sends out­
put to the printer without testing status bits, the char­
acters will be printed if the logic happens to be 
ready. 

Program 1/0 State 
The Program I/O state is entered from the Console state by typing the 
CONTINUE command. A running program will then resume any in­
put/output that might have been interrupted by the Console Break 
character. Any ASCII character may be output by the program, and 
any ASCII character, except the Console Break character, may be 
input to the program. Character echoing is the responsibility of the 
CPU software in Program I/O state. 

The Program I/O state is exited to the Console state by typing the 
Console Break character, or by CPU execution of a HALT. 

CONSOLE COMMAND SYNTAX AND SEMANTICS 
<> Angle brackets are used to denote category 

names. For example, the category name 
<ADDRESS> may be used to represent 
any valid address, instead of actually listing 

233 



[ ] 

<SP> 

<COUNT> 

<ADDRESS> 

<DATA> 

<QUALIFIER> 

<INPUT­
PROMPT> 

<CR> 

<LF> 

<DEVICE-NAME> 

Console defaults: 
Address defaults: 

Data defaults: 

Chapter 9 - PDP-11 144 

all the strings of characters that can repre­
sent an address. 

Brackets surrounding part of an expression 
indicate the part of the expression which 
does not have to be typed, since it is option­
al. 

Represents one space. 

Represents a numeric count in octal. 

Represents an address argument in octal or 
a mnemonic in some cases. (See Address 
Mnemonics Section). 

Represents a numeric argument in octal. 

A command modifier (switch). 

Represents the console's input prompt 
string "»>". 

Carriage return. 

Line feed. 

Represents an alphabetic or optionally al­
phanumeric argument (in octal). Used with 
the Boot command. 

A physical 22-bit address is always 
assumed in octal 

All transfers are 16-bit word transfers in 
octal 

Control Characters and Special Characters 
This section lists the control characters and special characters recog­
nized by the console, and describes their functions. All control charac­
ters, with the exception of tP, are optional. 

CONTROL C (tC) Causes the suspension of all repetitive console 
operations such as: 
1. Successive operations as a result of a IN 

qualifier. 
2. Repeated command executions as a result 

of a REPEAT command. 

234 



CONTROL 0 
(to) 

CONTROL p (tP) 

CONTROL U (fU) 

CONTROL S (fS) 

CONTROlQ 
(tQ) 

Chapter 9 - PDP-11 144 

Suppresses/enables console terminal output 
(toggle). Console terminal output is always en­
abled at the next console input prompt. 

Enters Console state (if key switch is not in local 
disable position). Characters typed are now field­
ed by the console. If the console was already in 
Console mode another console <INPUT­
PROMPT> is typed. 

When this is typed before a line terminator, it 
causes the deletion of all characters typed since 
the last line terminator. The console echoes: 
tU<CR><lF> 

Will stop execution of current command and 
character transmission until either a to or a tc is 
received. A system power failure will cause the ts 
action to be cleared and an exit from Console 
state. 

Will cause execution of current command and 
character transmission to continue. If no com­
mand or character transmission is in process, 
there is no response to this command. Transmis­
sion of characters, if any, continues. 

NOTE 
Typing the ts command on many intelligent termi­
nals, including the LA 120, will cause output to stop 
until a to command is typed or an ac line power 
interuption occurs on the terminal. No action at the 
front panel will change this condition, including turn­
ing CPU power off and on at the keyswitch. This is 
because the terminal responds to renewed system 
output by sending ts to stop it. Only typing the to 
command will inform the terminal that you desire 
output to continue. 

CARRIAGE RE­
TURN <CR> 

QUALIFIERS 

Terminates a console command line. 

The following is a list of allowable qualifiers and their descriptions: 

/G Specifies general register addressing. This is a 
shorthand method to get to the general registers. 

235 



IN 

1M 

· Chapter 9 - PDP-11144 

The user need only type an E or 0 (examine or 
deposit) followed by the IG qualifier, and then, 
instead of a full 22-bit address, simply enter the 
register number (e.g. 0, 1, 2, 3 ... ). 
Example: E/G<SP>7<CR> will examine R7 
as compared to: E<SP> 17777707<CR> 

The IN qualifier is provided to permit examine 
and deposit commands to operate on multiple 
sequential addresses. The syntax of the IN quali­
fier is: 
IN[:<COUNT>]. The [:<COUNT>] argument 
specifies the number of executions of the com­
mand to be performed. The default value for no [: 
<COUNT>] specified is two. 

The 1M qualifier allows the operator to examine 
various data and control paths in the PDP-11/44, 
and, in one special case, allows the operator to 
change (deposit to) the CPU's MPC (Micro Pro­
gram CQunter). 

Example: E/M<SP>O<CR> will examine the da­
ta that are on the data bus internal to the floating 
point option. A list of machine-dependent ad­
dresses follows: 

Read 
or 

Address = Data Examined Write 
0 Floating Point Data R 
1 = CISMPC R 
2 = CIS Data R 
3 CPU Data R 
4 CPUMPC R/W 
5 Cache Data R 
6 CPU Error Register R 
7 MFM Data R 
10 UNIBUS Data R 
11 MFM Signal Register- R 

• The MFM Signal register has been added as an enhancement to subsequent 
M7096 modules (CS revision D or later). 

ICB Cache bypass. Allows a user to force memory 
transfers even though cache is turned on and nor­
mally results in a cache hit. 

236 



ITB 

IE 

IA 

Chapter 9 - PDP-11 144 

Take bus. A maintenance feature which allows the 
console to perform bu's transfers even though the 
bus may be hung. 

Extensive test. Used only with Test command. 
(See Test command description for more infor­
mation.) 

Extensive test followed by execution of continue 
command. Used only with Test command. (See 
Test command description for more information.) 

CONSOLE COMMANDS 
ADDER A<CR> 

This command prints the 16-bit result of the cur­
rent address pointer and the last data examined 
plus two. This command can be used to calculate 
the effective address for an instruction using 
mode 6, register 7 or mode 7, register 7. 

Note: This command has been added as an enhancement to subse­
quent M7096 modules (CS revision 0 or later). CS revision 0 M7096 
modules contain console microprocessor software which implements 
this command. 

BOOT 

CONTINUE 

B[<SP><DEVICE-NAME>j<CR> 

<DEVICE-NAME> is of the following format: DOn 
where DO is a two-letter device mnemonic (such 
as DT for DECtape), and n is the octal unit num­
ber. The unit number will default to zero if no 
number is typed. 

If no <DEVICE-NAME> is given with the BOOT 
command, the console will perform the boot se­
quence for the default system device. This is the 
equivalent of using the front panel BOOT switch. 

The BOOT command is executed only if the CPU 
is halted. Otherwise, an error message is generat­
ed. Console state is exited before boot execution 
is continued. 

C<CR> 

The CPU begins instruction execution at the ad­
dress currently contained in the CPU program 
counter (PC) or continues execution if already 
running. CPU initialization is not performed. Addi-

237 



DEPOSIT 

Chapter 9 - PDP-11144 

tionally, the console enters Program I/O state 
(see Console State and Program I/O State sec­
tions) at the same time as issuing the CONTINUE 
to the CPU. This command may be used to return 
the console to Program I/O state even if the CPU 
was already running. 

D[ <QUALIFIER-LIST> ]<SP> <ADDRESS> 
<SP><DATA><CR> 

1M, IN, IG, ITB 

Deposits <DATA> into the <ADDRESS> speci­
fied. The address space used will depend upon 
the qualifiers specified with the command (Le., 
general registers if IG, or machine-dependent 
register if 1M, or the default physical address, if 
no qualifiers are specified). 

<ADDRESS> is a one- to eight-digit octal num­
ber (see note). Nonspecified upper bits are set to 
zero. Alternately, the address may be specified by 
one of the address mnemonics described below. 

<DATA> is a one- to six-digit, 16-bit, octal num­
ber, and as with the address, nonspecified upper 
bits are set to zero. 

The response to the DEPOSIT command is 
<CR><LF> <INPUT-PROMPT> after execution 
of the command is completed. Deposits are legal 
only when the CPU is halted. Otherwise, an error 
message is generated. 

NOTE 
When the 1M (machine-depen­
dent register) qualifier is used, 
the value of <ADDRESS> can 
only be 4 (this is the only ma­
chine-dependent register which 
is writeable). 

When the IG (general register) 
qualifier is used, the value of 
<ADDRESS> may not exceed 
17 octal. 

238 



Chapter 9 - PDP-11 144 

Address Mnemonics: 
SW Deposits to the Switch Register. 

+ 

@ 

EXAMINE 

Deposits to the location immediately following the 
last location referenced. 

Deposits to the location immediately preceding 
the last location referenced. 

Deposits to the location last referenced. 

Deposits to a physical address represented by 
the last data examined or deposited. Memory 
management is not used. Physical address bits 
16-21 are set to zero. 

E[ <QUALIFIER­
LlST>]<SP><ADDRESS><CR> 

1M, IN, IG, ICB, ITB 

Examine the contents of the specified <AD­
DRESS>. 

<ADDRESS> is a one- to eight-digit octal num­
ber (see note) with nonspecified upper address 
bits set to O. Alternately, the address may be 
specified by one of the address mnemonics de­
scribed below. 

The response to the EXAMINE command is 
<CR><LF>ADDRESS><SP><DATA> 
<CR><LF><INPUT-PROMPT>. The EXAMINE 
command is legal whether or not the CPU is run­
ning. The CPU is temporarily halted to perform 
the transfer if it is running. 

NOTE 
When the 1M (machine-depen­
dent register) qualifier is speci­
fied, the value of <ADDRESS> 
may not exceed 11 octal. 

When the IG (general register) 
qualifier is specified, the value 
of <ADDRESS> may not 
exceed 17 octal. 

239 



Chapter 9 - PDP-11 144 

Address Mnemonics: 
SW Examines the Switch Register. 

+ 

* 

@ 

FILL 

HALT 

INITIALIZE 

MICROSTEP 

Examines the location immediately following the 
last location referenced. 

Examines the location immediately preceding the 
last location referenced. 

Examines the location last referenced. 

Examines the physical address represented by 
the last data examined or deposited. Memory 
management is not used. Physical address bits 
16-21 are set to zero. 

F[<SP><COUNT>]<CR> 

Until a power failure has occurred, the console 
will send <COUNT> (in system radix) null char­
acters after each <CR> <LF> before any further 
transmission. A power failure will clear 
<COUNT>. Also, neither entering/exiting Con­
sole state nor execution of any other console 
command (Including Test) affects <COUNT>. 
F<CR> sets fill to zero. 

H<CR> 

The CPU will stop instruction execution after 
completing the instruction in progress. 

Upon halting the CPU, the console will display the 
physical address and contents of the PC. 

I<CR> 

A UNIBUS and processor intialize is executed for 
150 ms. The response is <CR><LF><INPUT­
PROMPT> after command execution is complet­
ed. 

The INITIALIZE command is executed only if the 
CPU is halted. Otherwise, an error message is 
generated. 

M[ <SP> <COUNT> ]<CR> 

The CPU is allowed to execute the number of 
microinstructions indicated by <COUNT>. If no 
<COUNT> is specified, one instruction is per­
formed, and the console enters SPACE-BAR-

240 



NEXT 

SPACE-BAR­
STEP 
FEATURE 

REPEAT 

START 

Chapter 9 - PDP-11 144 

STEP mode. (See below.) The console enters 
Program 1/0 state immediately before issuing the 
step, and re-enters Console state as soon as the 
step completes. The macroinstruction may be 
completed by typing N<CR>. 

The MICROSTEP command is executed only if 
the CPU is halted. Otherwise, an error message is 
generated. 

N[ <SP> <COUNT>] <CR> 

The CPU is allowed to execute the number of MA­
CRO instructions indicated by <COUNT>. If no 
<COUNT> is specified, one instruction is execut­
ed, and the console enters SPACE-BAR-STEP 
mode. 

The console enters Program 1/0 state immediate­
ly before issuing the step, and re-enters Console 
state as soon as the step is completed. 

Each time a NEXT or MICROSTEP command is 
given, the step(s) islare executed and SPACE­
BAR-STEP mode is entered. Each depression of 
the SPACE-BAR will cause a single step of the 
microcycle or instruction. 

To exit SPACE-BAR-STEP mode, type any char­
acter except SPACE. 

R<SP><CONSOLECOMMAND> 

This causes the console to repeatedly execute the 
<CONSOLE COMMAND> specified, until execu­
tion is terminated by a Control-C (tC). Any valid 
console command may be specified for <CON­
SOLE COMMAND> except the REPEAT, BINARY 
LOAD, FILL, TEST, and ADDER. The BOOT, 
HALT, CONTINUE and START commands are ex­
ecuted only once, since they result in an exit from 
the Console state. 

S[<SP><ADDRESS>]<CR> 

The START command performs the equivalent of 
the following sequence of console commands: 

1. A system INITIALIZE is performed. 

2. <ADDRESS> is deposited into the CPU Pro-

241 



TEST 

BINARY LOAD 

Chapter 9 - PDP-11 144 

gram Counter (PC). If no address is speci­
fied, no address is loaded. 

3. A CONTINUE is issued to begin CPU execu­
tion. 

T[/E or /A]<CR> 

The console subsystem will execute a self-test, to 
check its own integrity. TEST may be executed 
while the CPU is running. Internal microprocessor 
program store data and RAM addressing/data 
are checked. 

The /E qualifier results in extensive console test­
ing, modifying main memory. TEST/EXTENSIVE .. 
may be executed only when the CPU is halted. 

The / A qualifier is used optionally by diagnostic 
CZDLD <revision> to run the T/E command fol­
lowed by a Continue command, automatically. 
The T / A command may be started with or without 
the CPU halted, but always continues the CPU 
after execution of the command is done. 

X<SP><ADDRESS><SP><COUNT><CR> 
<CHECKSUM> 

This command instructs the console to prepare to 
load or unload <COUNT> binary data bytes 
starting from location <ADDRESS>. Only an 
even byte <COUNT> may be used. 

A count with bit 15 set indicates that the data are 
to be sent to the requester (Binary Unload). The 
remaining bits in the count field are considered 
an unsigned, positive number indicating the num­
ber of bytes to load or unload. 

All checksums used by this command are calculated by performing a 
2's complement addition of each character into a register initially set to 
zero, with exceptions noted below. If no errors occurred, the low eight 
bits of the register should be zero after the checksum has been re­
ceived and added into it. 

Once a <CR> has been received, the console will stop echoing input 
bytes. A byte of binary data must follow the command after the re­
quester has received the <LF> character from the console. This byte 
of data is a 2's complement byte checksum of the ASCII characters 

242 



Chapter 9 - PDP-11144 

which made up the command string (including the <CR», and will not 
be loaded into memory. <COUNT> will not be decremented. 

If the checksum is correct, the console will respond with the input 
prompt, but remain in binary mode (echo suppressed) and either send 
data to the requester or be prepared to receive data. 

If the checksum calculation detects an error, the console will respond 
within one second with an error message, re-enable echo of received 
characters, issue its input prompt and await another command. This 
will prevent inadvertent operator entry into a mode where the console 
is accepting the next several thousand input characters as data with 
no escape sequence possible from the keyboard. 

Binary Loading 
A binary string of data of length <COUNT>1 should be sent once the 
requester receives the input prompt, indicating that the console has 
accepted the command. The console will deposit all but the last byte 
(the checksum, which is not included in <count» into the specified 
address space. As the console is receiving the data, it is also adding 
the bytes together to form another checksum. This sum starts at zero 
with M7096 modules CS rev. D and later. Earlier revisions start with 
the command string checksum value, instead of zero. 

Once the <COUNT> is exhausted, the final byte transmitted to the 
console will be the block checksum of all the data. The console will 
compute the checksum as above, and respond within one second with 
an error message if an error is detected. In any case, the console will 
re-enable echo, issue an input prompt, and await the next command. 

Binary Unload 
As in the load command, the console processes the command and 
checks the checksum. If the checksum is correct, the console re­
sponds with a normal input prompt, followed by a string of bytes which 
is the binary data requested. As each byte is sent, it is added to the 
checksum. This sum starts at zero with M7096 modules CS rev. D and 
later. Earlier revision!> start with the command string checksum value, 
instead of zero. At the end of the transmission, the 2's complement of 
the checksum is sent. The console then re-enables echo, issues an 
input prompt, and awaits the next command. 

If the original checksum fails, the console will respond with an error 
message. It will then issue an input prompt and await the next 
command. If the data checksum indicates an error, the device driving 
the console must take any action. 

243 



Chapter 9 - PDP-11 144 

TERMINAL SERIAL LINE UNIT REGISTERS 
All unused or write-only bits are zero when examined. 

Receiver Control Status Register (TERM RCSR) 17 777 560 

15 6 5 

RECEIVER'DONE(RCVR DONE)----------' 
RECEIVER INTERRUPT ENABLE(RCVR INT ENB),------' 

Bit: 15:8 
Function: Unused 

Bit: 7 (Read-only) 
Name: RECEIVER DONE 

o 

Function: Set during the Program I/O state only when an entire char­
acter has been received and is ready for transfer to the CPU. Cleared 
by INIT or addressing (read-only) RBUF. Starts an interrupt sequence 
when set, if RECEIVER INTERRUPT ENABLE is also set. 

Bit: 6 (Read/write) 
Name: RECEIVER INTERRUPT ENABLE 
Function: Cleared by INIT. When set, an interrupt sequence will start 
on BR4 each time RECEIVER DONE is set. 

Bit: 5:0 
Function: Unused 

Receiver Data Buffer (TERM RBUF) 17 777 562 

1514131211109765.3210 

~~~1 J I 1 FRAME BlROR 
RECEIVE PARITY ERROR
RECEIVED DATA BITS---------------'

Bit: 15 (Read-only)
Name: ERROR
Function: Logical OR of OVERRUN ERROR, FRAMING ERROR and
PARITY ERROR. ERROR is not tied to the interrupt logic, but RECEIV­
ERDONEis.

Bit: 14 (Read-only)
Name: OVERRUN ERROR

244

Chapter 9 - PDP-11144

Function: Set if previously received character is not read (RECEIVER
DONE not cleared) before another character is received.

Bit: 13 (Read-only)
Name: FRAMING ERROR
Function: Set if the character received has no valid stop bit(s). Also
~sed to detect a "break" character.

Bit: 12 (Read-only)
Name: PARITY ERROR
Function: Set if received parity does not agree with the expected
parity. Always cleared if no parity is selected.

NOTE: Error bits remain set until the next character is received, at
which time the error bits are updated. INIT does not clear the console
terminal error bits. However, a power-up sequence does clear them.
Error bits may be disabled via a jumper removal on the M7096 mod­
ule.

Bit: 11:8
Function: Unused

Bit: 7:0 (Read-only)
Name: RECEIVED DATA
Function: These bits contain the character just received. If less than
eight bits are selected, the buffer will be right-justified with the unused
bits read as O. Not cleared by INIT.

Transmitter Control Status Register (TERM XCSR) 17 777 564

15

TRANSMITTER READY f J f 1 1
TRANSMITTER INTERRUPT ENABLE -------
SYSTEM REMOTE MODE ____________ ---l.
CONSOLE MODE
REMOTE DIAGNOSTIC BITS ENABLE --------------'
MAINTENANCE
BREAK --------------------------'

Bit: 15:8
Function: Unused

Bit: 7 (Read-only)
Name: TRANSMITTER READY
Function: Set during the Program 1/0 state only by INIT or when
XBUF can accept another character. Cleared when a character is writ­
ten into the XBUF. Starts an interrupt sequence if TRANSMITTER
INTERRUPT ENABLE is also set.

245

Chapter 9 - PDP-11144

Bit: 6 (Read/write)
Name: TRANSMITTER INTERRUPT ENABLE
Function: Cleared by INIT. When set, an interrupt sequence will start
on BR4 each time TRANSMITTER READY is set.

Bit: 5 (Read-only)
Name: SYSTEM REMOTE MODE
Function: Set when CPU is operating in the remote diagnostic mode.

Bit: 4 (Read-only)
Name: CONSOLE MODE
Function: Set to indicate that the CPU is operating in the Console
state or mode.

Bit: 3 (Read-only)
Name: REMOTE DIAGNOSTIC BITS ENABLE
Function: Set by turning on switch #2 of E79 on the M7096 module.
When set, the status of bits 4 and 5 are entered into this register. When
cleared (switch off), all three bits will be zero.

Bit: 2 (Read/write)
Name: MAINTENANCE
Function: Cleared by INIT. When set, it disables the serial line input
to the RECEIVER and sends the serial output of the TRANSMITTER
into the serial input of the RECEIVER. Forces receiver to run at trans­
mitter speed.

Bit: 1
Function: Unused

Bit: 0 (Read/write)
Name: BREAK
Function: Cleared by INIT. When set, a continuou$ space is transmit­
ted, equivalent to sending a null character with no stop bits (framing
error). May be disabled with a jumper removal on the M7096 module.

Transmitter Data Buffer (TERM XBUF) 17 777 566

15 14 13 12 " 10 9

Bit: 15:8
Function: Unused

Bit: 7:0 (Write-only)
Name: TRANSMITTER DATA BUFFER
Function: If less than eight bits are jumper selected, the character
must be right-justified.

246

Chapter 9 - PDP-11 144

TU58 SERIAL LINE UNIT REGISTERS

TU58 Receiver Control/Status Register (TU58 RCSR)

15 6

TU58 RECEIVER DONE (TU58 RCVR DONE) . t t
TU58 RECEIVER INTERRUPT ENABLE(TU58 RCVR INT ENS) ~

Bit: 15:8
Function: Unused

Bit: 7 (Read-only)
Name: TU58 RECEIVER DONE

o

Function: Set when an entire character has been received and is
ready for transfer to the CPU. Cleared by INIT or addressing (read­
only) RBUF. Starts an interrupt sequence when set if TU58 RECEIVER
INTERRUPT ENABLE is also set.

Bit: 6 (Read/write)
Name: TU58 RECEIVER INTERRUPT ENABLE
Function: Cleared by INIT. When set, an interrupt sequence will start
on BR4 each time TU58 RECEIVER DONE is set.

Bit: 5:0
Function: Unused

TU58 Receiver Data Buffer (TU58 RBUF)

11

TU58 ERRORJ UjJ ~1
TU58 OVERRUN ERROR
TU58 FRAMING-ERROR
TU58 PARITY ERROR
TU58 RECEIVER DATA BITS ---------------'

Bit: 15 (Read-only)
Name: TU58 ERROR
Function: Logical OR of TU58 OVERRUN ERROR, TU58 FRAMING
ERROR and TU58 PARITY ERROR. TU58 ERROR is not tied to the
interrupt logic, but TU58 RECEIVER DONE is cleared by INIT. Bits 12
through 15 may be disabled and cleared via a jumper removal on the
M7096 module.

Bit: 14 (Read-only)
Name: TU58 OVERRUN ERROR

247

Chapter 9 - PDP-11144

Function: Set if previously received character is not read (TU58 RE­
CEIVER DONE not cleared) before another character is received.
Cleared by INIT or reading before receiving another character.

Bit: 13 (Read-only)
Name: TU58 FRAMING ERROR
Function: Set if character received has no valid stop bit(s). Cleared
by INIT or when a valid character is received. This bit indicates an
error in transmission or the reception of a "break" character.

Bit: 12 (Read-only)
Name: TU58 PARITY ERROR
Function: Set if received parity does not agree with expected parity.
Cleared by INIT or when the parity of the next character is valid. Al­
ways cleared if no parity is selected.

Bit: 11:8
Function: Unused

Bit: 7:0 (Read-only)
Name: TU58 RECEIVED DATA
Function: These bits contain the character just received. If less than
eight bits are selected, the buffer will be right-justified with the unused
bits read as zero. Not cleared byiNIT.

TU5S Transmitter Control/Status Register (TU5S XCSR)

IS 6

TUS8 TRANSMITTER READY(TU58 XMIT ROY) 1 t
TUS8 TRANSMITTER INTERRUPT ENABLE(TUS8 XMIT INTENB)~
TUS8 MAINTENANCE BIT(TUS8 MAINTl---------------'

o

TUS8 BREAK BIT(TUS8 BREAK)-------------,------'

Bit: 15:8
Function: Unused

Bit: 7 (Read-only)
Name: TU58 TRANSMITTER READY
Function: Set by INIT or when the TU58 XBUF can accept another
character. Starts an interrupt sequence when set if TU58 TRANSMIT­
TER INTERRUPT ENABLE is also set. Cleared when a character is
written into the XBUF.

Bit: 6 (Read/Write)
Name: TU58 TRANSMITTER INTERRUPT ENABLE
Function: Cleared byiNIT. When set, an interrupt sequence will start
on BR4 each time T,US8 TRANSMITTER READY is set. Cleared by the
program or by the Initialize sequence.

248

Chapter 9 - PDP-11 144

Bit: 5:3
Function: Unused.

Bit: 2 (Read/write)
Name: TU58 MAINTENANCE
Function: Cleared by INIT. When set, it disables the serial line input
to the receiver and sends the serial output of the transmitter into the
serial input of the receiver. Forces receiver to run at transmitter speed.

Bit: 1
Function: Unused

Bit: 0 (Read/write)
Name: TU58 BREAK
Function: Cleared by INIT. When set, a continous space is transmit­
ted equivalent to sending a null character with no stop bits (framing
error). May be disabled with a jumper removal on the M7096 module.

TU58 Transmitter Data Buffer (TU58 XBUF)

76543210

1007.10061 005 1 004 1 DOl 1002 1 001 1000 1
\)

TU5S TRANSMITTER DATA BITS------------..JT

Bit: 15:8
Function: Unused

Bit: 7:0 (Write-only)
Name: TU58 TRANSMITTER DATA
Function: If less than eight bits are selected, the character must be
right-justified.

Line Clock Status Register (LKS) 17777 546

15 14 13 12 11 10 9

LINE CLOCK MONITOR---------I, 1
LINE CLOCK INTERRUPT ENABLE--------'-

Bit: 15:8
Function: Unused

Bit: 7 (Read/write, clear only)
Name: LINE CLOCK MONITOR

o

Function: Set by INIT or by the line frequency clock signal, LTC.
Cleared only by the program.

249

Chapter 9 - PDP-11144

Bit: 6 (Read/write)
Name: LINE CLOCK INTERRUPT ENABLE
Function: Cleared by INIT. When set, starts an interrupt sequence
each time LINE CLOCK MONITOR is set.

Bit: 5:0
Function: Unused

ADDRESS AND VECTOR ASSIGNMENTS
Integral to the PDP-11 /44 CPU are the above two serial line units and a
real-time clock. The serial line units and clock follow the same address
and vector assignments as the KL 11, DL 11-A, B, C, D and W. SLU #1 is
for the system console and has fixed addresses and vectors. SLU #2,
normally used for the TU58, has switch-selectable contiguous ad­
dresses and vectors. The real-time clock has a fixed address and
vector.

Console
(SLU #1)

TU58
(SLU #2)

Line Clock

Address Vector

17 777 560
17 777 562 60
17777 564
17777566 64

177YXXXO
17 7YX XX2 XXO
177YXXX4
17 7YX XX6 XX4
WhereY=6or
7 and X=0-7
(Vector)

17 777 546 100

NOTE

Priority

BR4
(fixed)

BR4
(fixed)

BR4
(fixed)

BR4
(fixed)

BR6
(fixed)

Recommended address and vector assignments for
SLU #2 when used for a TU58 are:-

Address: 17 776500
Vector: 300
(These are the base values used to set switches.)

250

Chapter 9 - PDP-11 144

SERIAL LINE UNIT TIMING CONSIDERATIONS

Receiver
The RECEIVER DONE bit sets when the UART has assembled a full
character, which occurs approximately at the middle of the first stop
bit. Since the.UART is double buffered, data remain valid until the next
character is received and assembled. This allows one full character
time for servicing the RECEIVER DONE bit or interrupt caused by it.

NOTE
The UART (Universal Asyncl'!ronous Receiverl
Transmitter) is an asynchronous subsystem. The
transmitter accepts parallel characters and converts
them to serial asynchronous output. The receiver ac­
cepts asynchronous serial characters and converts
them to parallel output.

Transmitter
The UART's transmitter section is also double buffered. After initializa­
tion, the TRANSMITTER READY bit is set. When the buffer is loaded
with the first character, the bit clears but sets again within a fraction of
a character transmission time period. A second character can then be
loaded, clearing the bit again. This time it remains clear until the first
character and its stop bit(s) have been transmitted (about one charac­
tertime).

Break Generation
Setting the break bit causes the transmission of a continuous space.
Since the TRANSMITTER READY bit continues to function normally,
the duration of break can be timed by the "pseudo-transmission" of a
number of characters. However, since the transmitter is double buff­
ered, a null character (all zeros) should precede transmission of break
to insure that the previous character completes transmission.
Likewise, the last "pseudo-transmitted" character under break should
be null.

REGISTERS
The following CPU registers are accessed by program or console con­
trol.

CPU Error Register 177777e6

251

Chapter 9- PDP-11144

15 14 13 12 11 10 9 6 4 o

1~~l~1 Cl ~~KTEI BE I PE IAClOIDCLOII[LLI~gg~~g~~lUBU~~~~~iISTOvIINTRI~~'i:1
• • '" '" '" '" '" HALT ERR U TMOU. '" FAIL

DATA TR
Cl
CACfiE
KTE
BUS ER
PARITY
AC LO
DC LO
ILL EGA
ODD A
MEMOR
UNIBUS
PROCES
STACK
INTERR
CIM PO

-'!Jj II RESTART

ROR
ERROR

L HALT
DDRESS ERROR
Y TIME-OUT
TIME-OUT

SOR INITIALIZE
OVERFLOW
UPT
WER FAILURE

•• SOFTWARE TRANSPARENT

I

This register identifies the source of the abort or trap that used the
vector at location 4. Bits 7:4, Bit 2 and Bit 0 are cleared when the CPU
error register is written. When set, Bit 9 indicates to software that a
software powerdown is in progress. The remaining bits are software
transparent and are accessible only when the console has control.
They serve to provide diagnostic visibility into the processor.

Bit: 15 Name: DATA TRANSFER
Function: Monitors the DATA TRAN line of the processor. When
clear, this bit indicates the processor is initiating a data transfer on the
UNIBUS.

Bit: 14 Name: C1
Function: Set when the control signal Bus C1 is asserted, indicating
a DATO or DATOB transfer is being performed.

Bit: 13 Name: CACHE RESTART
Function: Set when the cache has generated the signal necessary to
restart the processor clock.

Bit: 12 Name: KTE
Function: Set when a memory management error (nonresident, page
length or read-only abort) has occurred.

Bit: 11 Name: BUS ERROR
Function: Set when processor has attempted to access nonexistent
memory, odd address during-word reference, or if there was no re­
sponse on the UNIBUS within approximately 20 ILS.

Bit: 10 Name: PARITY ERROR
Function: Set when processor has received a memory parity error.

Bit: 9 Name: AC LO
Function: Set when UNIBUS AC LO is asserted. To software, when

252

Chapter 9 - PDP-11 144

this bit is set, a powerdown is in progress. This signal is not latched
and therefore Bit 9 is not affected by a processor INIT.

Bit: 8 Name: DC LO
Function: Set when UNIBUS DC LO is asserted. This signal is not
latched and therefore Bit 8 is not affected by a processor INIT.

Bit: 7 Name: ILLEGAL HALT
Function: Set when a HALT instruction is attempted when the proc­
essor is in User or Supervisor mode.

B":6 Name: ODD ADDRESS ERROR
Function: Set when the program attempts a word reference on an
odd address.

Bit: 5 Name: MEMORY TIME-OUT
Function: Set when program attempts to read a word from a nonex­
istent memory location. This does not include UNIBUS addresses.

Bit: 4 Name: UNIBUS TIME-OUT
Function: Set when there is no response on the UNIBUS within ap­
proximately 20 j.LS.

Bit: 3 Name: PROCESSOR INITIALIZE
Function: Set when processor initialize signal is asserted.

Bit: 2 Name: STACK OVERFLOW
Function: Set when the Kernel hardware stack is less than 400 octal.

Bit: 1 Name: INTERRUPT
Function: Set when the PAX interrupt line is asserted.

Bit: 0 Name: CIM Power Failure
Function: Set when dc power to the machine has exceeded voltage
tolerance limits for a period of 1.5 j.LS or greater.

Processor Status Word 17 77 776 (PSW)

The Processor Status Word contains information on the current status
of the CPU. This information includes current processor priority;
current and previous operational modes; the condition codes describ­
ing the results of the last instruction; an indicator for detecting the
execution of an instruction to be trapped during program debugging;

253

Chapter 9 - PDP-11144

and ali indicator to determine whether a commercial instruction was in
progress.

Processor Traps
These are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Nonexistent Memory References, Parity Errors, Memory Man­
agement Violations, Floating Point Processor Exception Traps, use of
Reserved Instructions; use of the T bit in the Processor Status Word,
and use of the lOT, EMT, and TRAP instructions.

Power Failure
Whenever ac power drops below 90 volts for 120V power (180 volts for
240V) or outside a limit of 47 to 63 Hz, as measured by dc power, the
powerfail sequence is initiated. The central processor automatically
traps to location 24 and the user's powerfail Kernel program has 5 ms
to save all volatile information (data in registers).

If battery backup is present, and the batteries are not depleted when
power is restored, the processor traps to location 24 and executes the
user's power-up routine to restore the machine to its state prior to
power failure. If batteries are not present, a boot to default device is
executed.

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word
instruction on an odd address between word boundaries. The instruc­
tion is aborted and the CPU traps through location 4.

Time-Out Error
This error occurs when a MSYN pulse is placed on the UNIBUS and
there is no SSYN pulse within 20 !Ls. This error usually occurs in
attempts to address nonexistent memory or peripherals.

The instruction is aborted and the processor traps through location 4.

Nonexistent Memory Errors
This error occurs when a program attempts to reference a nonexistent
memory location. The cycle is aborted and the processor traps
through vector 4.

Reserved Instruction
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10.

254

Chapter 9 - PDP-11144

Trap Handling
Appendix A includes a list of the reserved Trap Vector locations and
System Error Definitions which cause processor traps. When a trap
occurs, the processor follows the same procedure for traps as it does
for interrupts (saving the PC and PS on the new Processor Stack, etc.).

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence illustrat­
ed.

Trap Priorities
1. HALT (Instruction, Switch, or Command)

2. Memory Management Fault

3. Memory Parity Errors

4. Bus Error Traps
5. Floating Point Traps

6. TRAP Instruction

7. Trace Trap

8. Stack Overflow Trap

9. Power Fail Trap

10. Console Bus Request (Console Operation)

11. Program Interrupt Request (PIR) level 7

12. Bus Request (BR) level 7

13. PIR6

14. BR6

15. PIR5

16. BR5

17. PIR4

18. BR4

19. PIR3

20. PIR2

21. PIR 1

22. WAIT LOOP

Stack Limit Violations
When instructions cause a stack address to go lower than 400 octal, a
Stack Violation occurs. The Qperation that caused the Stack Violation
is completed, then a bus error trap is effected (Trap to 4). The error
trap, which itself uses the stack, executes without causing an addition­
al violation.

255

Chapter 9 - PDP-11144

Program Interrupt Requests
A request is booked by setting one of Bits 15 through 9 (for PIR 7 - PIR
1) in the Program Interrupt Register at location 17777772. The hard­
ware sets Bits 7:5 and 3:1 to the encoded value of the highest PIR bit
set. This Program Interrupt Active (PIA) should be used to set the
Processor Level and also index through a table of interrupt vectors for
the seven software priority levels. Figure 9-11 below shows the layout
of the PIR Register.

9 8 7 5 4 3 1 0

Figure 9-11 Program Interrupt Request Register

When the PIR is granted, the Processor will trap to location 240 and
pick up the PC in 240 and the PSW in 242. It is the interrupt service
routine's responsibility to queue requests within a priority level and to
clear the PIR bit before the interrupt is dismissed.

The actual interrupt dispatch program should look like this:

MOVB PIR,PS ;places Bits 7:5 in PSW

MOV R5,-(SP)
MOVPIR,R5
BIC #177761,R5
JMP @OISPAT(R5)

;Priority Level Bits
;save R5 on the stack

;Gets Bits 3:1
;use to index through table
;which requires 15 core
;Iocations

PDP-11/44 CPU and I/O Device Registers and Addresses
Address Register

17 777 776 Processor Status Word (PSW)

17777772

17777766

17777707 -17 777 700

17 777 676 - 17 777660

17777 656 -17 777 640

17777636 -17 777 620

17777 616 -17 777 600

256

Program Interrupt Request
(PIRQ)

CPU Error

CPU General Registers

User Data PAR, Reg. 0-7

User Instruction PAR, Reg. 0-7

User Data PDR, Reg. 0-7

User Instruction POR, Reg. 0-7

Chapter 9 - PDP-11 144

Address

17777 576

17777574

17777 572

17777 570

17777 566 -17 777 560

17777 776 -17 760 000
(switch-selectable)

17 777 516

17772376 -17 772 360

17 772 356 - 17 772 340

17772336 -17 772 320

17772316 - 17772300

17772276 -17772260

17772256 -17 772 240

17772236 -17 772 220

17772216 -17 772 200

17770372 - ~7 770 200

SPECIFICATIONS

Packaging

Register

MM Status Register 2 (SR2)

MM Status Register 1 (SR1)

MM Status Register 0 (SRO)

Switch Register

Console Terminal SLU

TU58. DECtape SLU
(Normally 17 776 500)

MM Status Register 3 (SR3)

Kernel Data PAR, Reg. 0-7

Kernel Instruction PAR, Reg. 0-7

Kernel Data PDR, Reg. 0-7

Kernel Instruction PDR, Reg. 0-7

Supervisor Data PAR, Reg. 0-7

Supervisor Instruction PAR, Reg.
0-7

Supervisor Data PDR, Reg. 0-7

Supervisor Instruction PDR, Reg.
0-7

UNIBUS MAP Registers

A basic PDP-11/44 consists of a 10.5" box with a 14-slot backplane,
power supply, CPU, 256 Kbyte memory, and two cabinets.

There are prewired areas within the backplane for expansion with
optional equipment.

Component Parts
The basic PDP-11/44 system includes:
• Standard Equipment

PDP-11/44 CPU
Memory Management
Bootstrap Loader
Line Frequency Clock

257

Chapter 9 - PDP-11 144

Serial Bus Interface for TU58
Terminal Interface
8 Kbyte Cache Memory
256 Kbyte ECC MOS Memory
BA 11-A Box with Power Supply

• Prewlred Expan~lon Space for Optional Equipment

Floating Point Processor
Commercial Instruction Set
2 SPC Slots for Peripherals, 1 Hex, 1 Quad
768 Kbyte ECC MOS Memory (up to 1,024 Kbytes maximum)
3 SU Open Space in CPU Box

INPUT POWER SPECIFICATIONS
ACPower
90-128 Vrms, 47-63 Hz, 1 phase power, 19 amps rms maximum
@ 120Vac
180-256 Vrms, 47-63 Hz, 1 phase power, 9.5 amps rms maximum
@240Vac

THE MOUNTING BOX
Size
Each cabinet is 26.4 cm high X 42.2 cm wide X 66.0 cm deep (10.4" X
16.6" X 26")
Weight
CPU Box: 40.5 kg (90 Ibs.)

Operating Environment
Temperature:

Humidity:

Altitude:

Nonoperating Environment
Temperature:

Humidity:

Altitude:

258

10% to 95% with max. wet bulb of
32°C (89.6°F) and minimum dew
point of 2°C (36°F)

To 2.4 km (8000 ft.) noncondens­
ing

-40°C to 80°C (-40°F to 176°F)

To 95% noncondensing

To 9.1 km (30,000 ft.)

259

260

CHAPTER 10

PDP-11/70

The PDP-11170 is the most powerful computer in the PDP-11 family. It
is designed to operate in large, sophisticated, high-performance sys­
tems, and can be used as a powerful computational tool for high­
speed, real-time applications and for large multiuser, multitasking,
timeshared applications requiring larg& amounts of addressable
memory space. This systems-level PDP-11170 uniquely applies the
power of 32-bit internal architecture to demanding, multifunction com­
puting requirements.

FEATURES
Integral to the PDP-11170 central processor unit are these hardware
features and expansion capabilities:

• Cache memory organization to provide very fasfprogram execution
speed and high system throughput

• Memory management for relocation and protection in multiuser,
multitask environments

• Ability to access up to 3.9 million bytes of main memory (1 byte = 8
bits)

• Optional high-speed, mass storage controllers as an integral part of
the CPU, to provide dedicated paths to high performance storage
devices

• Optional Floating Point processor with advanced features, operating
with 32-bit and 64-bit numbers

SYSTEM ARCHITECTURE
The PDP-11170 is a medium scale general purpose computer using an
enhanced, upwardly-compatible version of the basiC PDP-11 architec­
ture. A block diagram of the computer is shown in Figure 10-1.

The central processor performs all arithmetic and logical 'operations
required in the system. Memory Management is standard with the
basic computer, allowing expanded memory addressing, relocation,
and protection. Also standard is a UNIBUS Map which translates UNI­
BUS addresses to physical memory addresses. The cache contains
2,048 bytes of fast, bipolar memory that buffers the data from main
(core or MOS) memory.

Also within the CPU assembly are prewired areas for a floating point
processor, and up to four high-speed I/O controllers.

261

_ = INDICATES 32-8tT DATA SUS

·=OPTIONAl

Chapter 10 - PDP-11170

Figure 10-1 PDP-11170 Block Diagram

The PDP-11170 system has an expanded Internal implementation of
the PDP-11 architecture for greatly improved system throughput. The
memory is on its own high data rate bus. The internal high-speed I/O
controllers for mass storage devices have direct connections through
the cache to memory for transferring data (using the cache only for
timing purposes). The processor has a direct connection to the cache
memory system for very high-speed memory access.

The UNIBUS remains the primary control path in the PDP-11170 sys­
tem. It is conceptually identical with other PDP-11 systems; the
memory in the system still appears to be on the UNIBUS to all UNIBUS
devices. Control and status information to and from the high speed I/O
controllers is transferred over the UNIBUS. This expanded internal
implementation of the PDP-11 architecture has no effect on PDP-
11170 programming.

RELIABILITY, AVAILABILITY, MAINTAINABILITY
(RAMP) FEATURES
As the largest system computer of the PDP-11 family. the PDP-11/70
has extensive RAMP features and hardware. Reliability means minim­
izing failures. Availability and maintainability mean planning for ease
of maintenance and spending minimum time isolating faults and mak­
ing repairs.

262

Chapter 10 - PDP-11 170

In summary, the PDP-11170 contains these RAMP features:
• Use of a self-diagnostic bootstrap module to test the viability of the

instruction set and memory

• Extensive use of ECC memory and parity checking on addresses
and internal data transfers

• Extensive use of error detection/correction by both hardware and
software (cache, main memory, RP04s)

• Error logging to provide maximum diagnostic information to the
user and Field Service

• Availability of user-mode diagnostics
• Availability of a wide range of subsystems
• Availability of function-level stand-alone diagnostics

CENTRAL PROCESSOR
The PDP-11/70 CPU performs all arithmetic and logical operations
required in the system. It also acts as the arbitration unit for UNIBUS
control by regulating bus requests and transferring control of the bus
to the requesting device with the highest priority.

The central processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic
with hardware multiply and divide, extensive test and branch opera­
tions, and other control operations. It also provides room for the addi­
tion of the high-speed Floating Point Processor, and high-speed
controllers.

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel mode, a program has complete control
of the machine. When the machine is in any other mode, the processor
is inhibited from executing certain instructions and can be denied
direct access to the peripherals on the system. This hardware feature
can be used to provide complete executive protection in a multipro­
gramming environment.

The central processor contains 16 general registers which can be
used as accumulators, index registers, or as stack pOinters. Stacks
are extremely useful for nesting programs, creating re-entrant coding,
and as temporary storage when a Last-In/First-Out structure is desira­
ble. One of the general registers is used as the PDP-11170's program
counter. Three others are used as Processor Stack Pointers, one for
each operational mode.

The CPU performs all computation and logic operations in a parallel
binary mode through step-by-step execution of individual instructions.

263

Chapter 10- PDP-11170

General Registers
The general registers can be used for many purposes, but usage
varies with requirements. The general registers can be used as accu­
mulators, index registers, autoincrement registers, autodecrement
registers, or as stack pOinters for temporary storage of data. Chapter 3
on Addressing describes these uses of the general registers in more
detail. Arithmetic operations can be from one general register to
another, from one memory or device register to another, or between a
memory or a device register and a general register.

GENERAL
REGISTER
SET I

KERNEL
STACK POINTER

R6

R0

Rl

R2

R3

R4

R5

SUPERVISOR
STACK POINTER

RS

R0

RI

R2

R3

R4

R5

GENERAL
REGISTER
SET 0

USER
STACK POINTER

R6

Figure 10-2 The General Registers·

R7 is used as the machine's program counter (PC) and contains the
address of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumula­
tor for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer (SP)
indicating the last entry in the appropriate stack, a common tempor!1ry
storage area with Last-ln/First-Out characteristics. (For information on
the programming use of stacks, please refer to Chapter 5.) The three
stacks are called the Kernel Stack, the Supervisor Stack and the User
Stack. When the central processor is operating in Kernel mode, it uses
the Kernel Stack; in Supervisor mode, the Supervisor Stack; and in
User mode, the User Stack. When an interrupt or trap occurs, the
PDP-11170 automatically saves Its'current status on the Processor
Stack selected by the service routine. This stack-based architecture
facilitates re-entrant programming.

264

Chapter 10- PDP-11170

The remaining 12 registers are divided into two sets of unrestricted
registers, RO-RS. The current register set in operation is determined
by the Processor Status Word.

The two sets of registers can be used to increase the speed of real­
time data handling or facilitate multiprogramming. The six registers in
General Register Set 0 could each be used as an accumulator andlor
index register for a real-time task or device, or as general registers for
a Kernel or Supervisor mode program. General Register Set 1 could
be used by the remaining programs or User mode programs. The
Supervisor can therefore protect its general registers and stacks from
User programs, or other parts of the Supervisor.

Processor Status Word

I NOT USED

~1110 8

OJRRENT MODE~ r
PREVIOUS MODE*'-------'-

g~~E~t~, rE:;:G::=IS-=-:TE::.:R ___ ----'

*MODE:00=KERNEL
01 =SUPERVISOR
" =USER

PRIORITY

7 5 4 3 2 0

Figure 10-3 Processor Status Word

The Processor Status Word, at location 17 777 776, contains informa­
tion on the current status of the PDP-11/70. This information includes
the register set currently in use; current processor priority; current and
previous operational modes; the condition codes describing the re­
sults of the last instruction; and an indicator for detecting the execu­
tion of an instruction to be trapped during program debugging.

Modes - Mode information includes the present mode, either User,
Supervisor or Kernel (bits 15, 14); the mode the machine was in prior
to the last interrupt or trap (bits 13, 12); and which register set
(General Register Set 0 or 1) is currently being used (bit 11).

The three modes permit a fully protected environment for a multipro­
gramming system by providing the user with three distinct sets of
Processor Stacks and Memory Management Registers for memory
mapping. In all modes except Kernel, a program is inhibited from
executing a HALT instruction and the processor will trap through loca­
tion 4 if an attempt is made to execute this instruction. Furthermore, in

265

Chapter 10 - PDP-11 170

other than Kernel mode, the processor will ignore the RESET and SPL
(Set Priority Level) instructions. In Kernel mode, the processor will
execute all instructions.

A program operating in Kernel mode can map users' programs any­
where in main memory and thus explicitly protect key areas (including
the device registers and the Processor Status Word) from the User
operating environment.

Processor Priority - The central processor operates at any of eight
levels of priority, 0-7. When the CPU is operating at level 7, an external
device cannot interrupt it with a request for service. The central proc­
essor must be operating at a lower priority than the priority of the
external device's request for the interruption to take place. The current
priority is maintained in the Processor Status Word (bits 5-7). The
eight processor levels provide an effective interrupt mask, which can
be dynamically altered through use of the Set Priority Level (SPL)
instruction (described in Chapter 4). The SPL instruction can only be
used in Kernel mode. This instruction allows a Kernel mode program
~o alter the central processor's priority without affecting the rest of the
Processor Status Word.

Condition Codes - The condition codes contain information on the
result of the last CPU operation. They include: a carry bit (C), set by the
previous operation if the operation caused a carry out of its most
significant bit; a negative bit (N), set if the result of the previous
operation was negative; a zero bit (Z), set if the result of the previous
operation was zero; and an overflow bit (V), set if the result of the
previous operation resulted in arithmetic overflow.

Trap - The trap bit (T) can be set or cleared under program control.
When set, the processor trap will occur through location 14 on com­
pletion of instruction execution and a new Processor Status Word will
be loaded. This bit is especially useful for debugging programs, as it
provides an efficient method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previ.ous
Processor Status Word and Program Counter to be saved andr'e­
placed by new values corresponding to those required by the routine
servicing the interrupt or trap. The user can thus cause the central
processor to automatically switch modes (context switching), switch
registers sets, alter the CPU's priority, or disable the Trap Bit when­
ever a trap or interrupt occurs.

Stack Limit Register
All PDP-11 s have a Stack Overflow Boundary at location 4008 , The
Kernel Stack Boundary, in the PDP-11170, is a variable boundary set
through.the Stack Limit Register found in location 17 777 774.

266

Chapter 10 - PDP-11 170

Once the Kernel stack exceeds its boundary, the processor will com­
plete the current instruction and then trap to location 4 (Yellow, or
Warning Stack Violation). If, for some reason, the program persists
beyond the 16-word grace limit, the processor will abort the offending
instruction, set the stack pointer (R6) to 4 and trap to location 4 (Red,
or Fatal Stack Violation). A description of these traps is contained in
AppendixA.

Error Correcting Code and Parity
EGG and Parity are used extensively in the PDP-11170 to ensure the
integrity of information. Parity for both data and addresses is
generated on transfers to memory and is checked on all transfers from
memory. Registers are provided within the GPU to provide information
on the location of EGG errors, types of errors, and otlier relevant
information so that software can respond to the situation, take correc­
tive action, and log the occurrence of errors.

MEMORY SYSTEM

Address Space
The PDP-11170 uses 22 bits for addressing physical memory. This
represents a total of 222 (over 4 million) byte locations.

Of the over 4 million byte locations possible with the 22-bit address,
the top 256K are used to reference the UNIBUS rather than physical
memory. Maximum main memory is therefore 222 - 218, or a total of
3,932,160 bytes.

Three separate address spaces are used with the PDP-11 170. Main
memory uses 22-bit addresses, the UNIBUS uses an 18-bit address,
and the computer program uses a 16-bit virtual address. The informa­
tion is summarized below:

16 bits
18 bits
22 bits

program virtual space
UNIBUS space
physical memory space

Memory Management

Bytes
216 = 64K
218 = 256K
4 million

The Memory Management hardware is standard on the PDP-11/70
computer. This hardware relocation and protection facility can convert
the 16-bit program virtual addresses to 22-bit addresses. The unit may
be enabled and disabled under program control. There is no increase
in access time when the Memory Management unit is enabled.

UNIBUS Map
The UNIBUS Map responds as memory on the UNIBUS. It is the hard­
ware relocation facility for converting the 18-bit UNIBUS addresses to

267

Chapter 10 - PDP-11170

. 22-bit addresses. The relocation mapping may be enabled or disabled
under program control.

Cache
The cache memory is a very high-speed memory that buffers data
between the processor and main memory. The cache is completely
transparent to all programs; programs are treated as if there were one
continu.ous bank of memory.

Whenever a request is made to fetch data from memory, the cache
circuitry checks to see if that data are already In the cache. If they are,
then they are fetched from there and no main memory read is re­
quired. If the data are not already in cache memory, four bytes are
fetched from main memory and stored in the cache, with the
requested word or byte being passed directly to the CPU.

When a CPU request is made to write data into memory, it is written
both to the cache and to main memory to Insure that both stores are
always updated immediately.

The key to the effectiveness of PDP-11170's cache memory is its size.
Because it holds 2,048 bytes at any given point in time, the PDP-11170
cache already contains the next needed data a very high percentage
of the time.

Detailed descriptions of cache memory and the other parts of memory
appear later in this chapter.

Error Correcting Code (ECC)
The error correcting code, which Is employed in MOS memory, will
detect and correct single-bit errors in a word, as well as detect double­
bit errors in a word. Where a double-bit error is detected, the proces­
sor is notified, as happens with a parity error. The process of checking
is accomplished by combining the bits in a number of unique ways, so
that.parity, or check bits, are generated for each unique combination
and stored along with the data bits. The memory word length is ex­
tended to store these unique bits. When memory is read, the data
word is again checked, and check bits are regenerated and compared
with the check bits stored with the word. If they match, the word is sent
on to the processor. If they do not match, an error exists, and the
syndrome bits are created and decoded to determine which data bit is
in error. The bit in error is then corrected and sent on to the processor.

ECC provides the maximum system benefits when used In a storage
system which fails in a random single-bit mode rather than in blocks or
large segments. Single-bit error (or failure) is the predominant failure
mode for MOS memory.

268

Chapter 10 - PDP-11170

ECC memory provides fault tolerance with the result that multiple
single-bit failures can be present in a memory system without measur­
able degradation in either performance or reliability.

Battery Backup
Since MOS memory is volatile, meaning it depends on electricity to
store information, a power loss or power shutdown would cause data
loss. To prevent this loss from occurring, a Battery Backup Unit (BBU)
has been designed to temporarily preserve the contents in memory.
The Battery Backup unit is standard on the PDP-11170.

Generally, the incidence of ac line power loss varies inversely with the
severity of loss. That is, there are an extremely small number of com­
plete failures of ac power, and a relatively larger number of short-term
failures or drops in voltage. No economically feasible Battery Backup
Unit can store sufficient energy to accomodate a complete ac power
failure for more than several minutes.

Battery backup units are not intended to preserve data overnight or
over weekends, but rather to overcome infrequent, very short-term
failures of ac power.

Memory Options
To accommodate the need for MOS memory expansion or core
memory replacement with MOS on the PDP-11170, DIGITAL offers
these three sets of option configurations:

• MOS memory expansion to MOS PDP-11 170s
• MOS memory expansion to core PDP-11170s
• MOS memory to replace core in Core PDP-11170s

MOS Memory Expansion to MOS - When expanding an MK11-B
memory box with MK11-C memory arrays (newer memories), an am­
ple number of slots must exist in the memory box, and all 16 slots may
be utilized to realize a maximum capacity of 3.8 Mb. When expanding
an MK11-C memory box with an MK11-C memory array, only 14 of the
16 slots may be filled with MK11-C memory, for a total of 3.5 Mb of
interleaved memory. Mixing the MK11-B and MK11-C memory arrays
in the same box results in the memory acquiring MK11-C characteris­
tics. Memory array modules MK11-CE and MK11-CF are offered in
pairs to maintain interleaving configurations. (See listing below for a
brief description and capacity definition.) The Battery Backup Unit
(BBU) is standard on all three PDP-11 170 memory configurations.

The H960 cabinet will hold two MK11-C MOS memory boxes. If more
than two MOS memory boxes are required, an additional cabinet will
be needed to accommodate space for the additonal memory box. The

269

Chapter 10- PDP-11170

cabinet option is MK11-CC/CD (see below). Available memory box
options are the MK11-CAICB and the MK11-CG/CH, listed below.

Option Capacity Brief Description

MK11-CAICB 512 Kb MOS/ECCw/Box

MK11-CC/CD 512 Kb MK11-CAICB

MK11-CE 512Kb

MK11-CF 1 Mb

MK11~CG/CH 1 Mb

w/Cablnet (H960)

MOS Memory Expan­
sion

MOS Memory Expan­
sion

MOS/ECC w/Box

MaS Memory Expansion to CORE - To provide MOS memory ex­
pansion to an existing CORE PDP-11170 system, a MOS box option is
required. This MOS memory box may be added to an existing cabinet
that contains a maximum of one CORE memory box. MOS and CORE
memory modules cannot be mixed within the same box. The option
which contains the necessary hardware to expand a CORE CPU with
MOS memory is the MK11-FAlFB. This option has 512 Kb capacity.

MaS Replacing CORE - The MK11-UA MOS replacing CORE kit
contains the hardware that must be installed in the H960 memory
cabinet of a CORE PDP-11170, so that a MOS memory box can be
mounted in that cabinet. Since no memory is included with this option,
an MK11-C memory box option must be purchased in conjunction
with the MK11-UA, in order to provide a total replacement option to
the CORE memory box. (See below.) This kit services the H960 cabi­
net only.

Option

MK11-CA/CB
and MK11-UA

MK11-CG/CH
and MK11-UA

Capacity

512 Kb

1 Mb

OTHER CPU EQUIPMENT

Floating Point Processor

Brief Description

MOS/ECC w/Box
and core to MOS Re­
configuration Kit

MOS/ECC w/Box
and core to MOS Re­
configuration Kit

The PDP-11170 Floating Point Processor fits integrally into the central
processor. It provides a supplemental instruction set for performing
single- and double-precision floating point arithmetic operations and

270

Chapter 10 - PDP-11 170

floating-integer conversion in parallel with the CPU. The floating point
processor provides speed and accuracy in arithmetic computations. It
provides 7 decimal digit accuracy in single-word calculations and 17
decimal digit accuracy in double-word calculations.

Floating point calculations take place in the FPP's six 64-bit accumula­
tors. The 46 floating point instructions include hardware conversion
from single- or double-precision floating point to single- or double­
precision integers. There is a detailed description in Chapter 11.

High-Speed Mass Storage
The PDP-11/70 busing structure is optimized for high-speed device
transfers. As many as four such devices can be plugged directly into
the processor with a dedicated 32-bit bus feeding through to the main
memory.

SYSTEM INTERACTION
High-speed Nonprocessor Request (NPR) devices use separate dedi­
cated buses to the individual high-speed 1/0 controllers. From the
controllers there is a single four-byte wide bus that interfaces to the
cache. The order of priorities in the system is:
1. UNIBUS (via UNIBUS Map)
2. High-speed 1/0 controllers (A through D)

3. CPU

Control information and lower speed data transfers are carried out
through the UNIBUS.

A device will request the UNIBUS for one of two purposes:
1. To make an NPR transfer of data (direct data transfers such as

DMA)

2. To interrupt program execution and force the processor to branch
to a service routine

There are two sources of interrupts, hardware and software.

Hardware Interrupt Requests
A hardware interrupt occurs when a device wishes to indicate to the
program, or the central processor, that a condition has occurred (such
as transfer completed, end of tape, etc.). The interrupt can occur on
anyone of the four Bus Request levels and the processor responds to
the interrupt through a service routine.

Program Interrupt Requests
Hardware interrupt servicing is often a two-level process. The first
level is directly associated with the device's hardware interrupt and

271

Chapter 10- PDP-11170

consists of retrieving the data. The second is a software task that
manipulates the raw information. The second process can be run at a
lower priority than the first, because the PDP-11170 provides the user
with the means of scheduling his software servicing through seven
levels of Program Interrupt Requests. The Program Interrupt Request
Register is located at address 17777772. An Interrupt is generated by
the programmer setting a bit on the high-order byte of this register.

SPECIFICATIONS

PACKAGING
A basic PDP-11170 consists of two H960 cabinets (see Figure 10-4), or
a double-width corporate cabinet (see Figure 10-5).

H960 Cabinet
1. A CPU cabinet which contains the processor, CPU-related equip­

ment and interface eqUipment.
2. A Memory Cabinet which contains the first 512K bytes of ECC

MOS memory, with expansion capability to 3,932,100 bytes within
the memory box. Another H960 memory cabinet located next to it
can house an additional 2,048K bytes of core or MOS memory.

MOS MEM CABINET

~:LL<:LL<(LL.(LL.LLLLLLj BATTERY BACK-UP UNIT

11/70 CPU

BATTERY BACK-UP UNIT

MEMORY EXPANSION

MKll
MEMORY BOX

(4 MBI

Figure 1 0-4 PDP-11170 Equipment in H960 Cabinets

Corporate Cablnet*
1. A CPU cabinet which contains the processor, CPU-related equip­

ment, interface eqUipment, and the first 512K bytes of ECC MOS
memory (with expansion capability to 3,932,100 bytes within the
memory box).

2. Another memory corporate cabinet located next to it can house
memory for interleaving between memory boxes.

272

Chapter 10- PDP-11170

762mm
(~.,. _____ 1181 mm r ----h ~146.5in)----..,j1

lFr====~===::m

1536mm
(60.5 in)

1111111110

II

"1 111 11111111111

Figure 10-5 PDP-11/70 Equipment in Corporate Cabinet

An 'LA 120 DECwriter III console terminal is included with the PDP-
11170 system. There are prewired areas within the mounting assem­
blies for expansion with optional equipment.

• NOTE: By using the 256K byte memory arrays, the entire PDP-11170 main
memory is contained in a single BA 11-K box.

COMPONENT PARTS
The basic PDP-11170 system has:

Standard Equipment

• PDP-11170CPU
• Memory Management
• Bootstrap loader
• DECwriter (LA 120)
• Terminal interface (DL 11-W) with integral line clock

273

Chapter 10- PDP-11170

• 2K byte cache memory
• 512K byte MOS ECC
• CPU cabinet
• Memory cabinet

Prewlred Expansion Space for Optional Equipment
• Floating Point Processor
• Four high-speed I/O controllers

• Four SPC slots for peripherals
• 128 Kbyte parity core or MOS (within 1 st memory expansion frame)

OTHER SPECIFICATIONS
ACPower
120/208 Vac ±10%, 47 to 63 Hz, 3 phase power
240/400 Vac ±10%, 47 to 63 Hz, 3 phase power

Basic CPU cabinet (maximum
current on
each of 2 phases)
Memory, each BA11-K Box
(maximum current on 1 phase)

Size

120 Vac

15A

12A

240Vac

7.5A

6A

Each H960 cabinet is 1829 mm high X 533 mm wide X 762 mm deep
(72 in. X 21 in. X 30 in.)
Each double-width corporate cabinet is 1536 mm X 1181 mm wide
762 mm deep (60.5 in. X 46.5 in. X 30 in.)

Weight (H960 cabinet)
CPU cabinet: 227 kg (500 Ibs.)

Memory cabinet:

Memory expansion frame:

Operating Environment
Temperature:

Humidity:

Altitude:

274

114 kg (including 1st 512 Kbytes)
(500Ibs.)

67.5 kg (each additional 512
Kbytes) (150 Ibs.)

15CO to 32Co (59P to 90FO)

~O% to 80% with max. wet bulb
28°C (82°F) and minimum dew
point 2°C (36°F)

to 2.4 km (8000 ft.)

Chapter 10- PDP-11170

Nonoperating Environment
Temperature:

Humidity:

-40°C to 66°C (-40°F to 151°F)

Ot095%

Altitude:

PROCESSOR CONTROL

REGISTERS

to 9.1 km (30,000 ft.)

The following five CPU registers are not accessible from the UNIBUS.
They are accessed by program or console control.

CPU Error Register 17 777 766

~ 8 I 0 - 111-
ILLEGAL HALT~~~~~~~~~~~~~~~~~rLlrJl ODD ADDRESS ERROR
NON-EXISTENT MEMORY ICACHE)
UNIBUS TIME -OUT -
YELLOW ZONE STACK LIMIT
RED ZONE STACK LIMIT

This register identifies the source of the abort or trap that used the
-vector at location 4.

Bit: 7 Name: Illegal HALT
Function: Set when trying to execute a HALT instruction when the
CPU is in User or Supervisor mode (not Kernel).

Bit: 6 Name: Odd Address Error
Function: Set when a program attempts to do a word reference to an
odd address.

Bit: 5 Name: Nonexistent Memory
Function: Set when the CPU attempts to read a word from a location
higher than indicated by the System Size register. This does not in­
clude UNIBUS addresses.

Bit: 4 Name: UNIBUS Timeout
Function: Set when there is no response on the UNIBUS within ap­
proximately 10 ~sec.

Bit: 3 Name: Yellow Zone Stack Limit
Function: Set when a yellow zone trap occurs.

Bit: 2 Name: Red Zone Stack Limit
Function: Set when a red zone trap occurs.

275

Chapter 10 - PDP-11 170

Lower Size Register 17177 760
This read-only register specifies the memory size of the system. It is
defined to indicate the last addressable block of 32 words in memory
(bit 0 is equivalent to bit 6 of the Physical Address).

Upper Size Register 17 777 762
This register is an extension of the system size, which is reserved for
future use. It is read-only and its contents are always read as zero.

System I/O Register 17 777 764
This read-only register contains information uniquely identifying each
system.

Microprogram Break Register 17 77 770
This register is used for maintenance purposes only. It is used with
maintenance equipment to provide synchronization and testing facili­
ties.

Processor Status Word 17 777 776
The Processor Status Word contains information on the current status
of the CPU. This information includes the register set currently in use;
current processor priority; current and previous operational modes;
the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Nonexistent Memory References, Memory Parity Errors, Mem­
ory Management Violations, Floating Point Processor Exception
Traps, use of Reserved Instructions, use of the T bit in the Processor
Status Word, and use of the lOT, EMT, and TRAP instructions.

Power Failure
Whenever ac power drops below 95 volts for 110V power (190 volts for
240V) or outside a limit of 47 to 63 Hz, as measured by dc power, the
power fail sequence is initiated. The central processor automatically
traps to location 24 and the power fail program has 2 msec. to save all
volatile information (data in registers), and to condition peripherals for
power failure.

When power is restored, the processor traps to location 24 and exe­
cutes the power-up routine to restore the machine to its state prior to
power failure.

276

•

Chapter 10 - PDP-11170

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-Out Error
This error occurs when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 10 ~sec. This error
usually occurs in attempts to address nonexistent memory or peri­
pherals.

The offending instruction is aborted and the processor traps through
location 4.

Nonexistent Memory Errors
This error occurs when a program attempts to reference a memory
address that is larger than that indicated by the system size register.
The cycle is aborted and the processor traps through location 4.

Reserved Instruction
There is a set of illegal and reserved instructions which causes the
processor to trap through location 10. The set is fully described in the
Programming Techniques Chapter (Chapter 5).

Trap Handling
Chapter 5 includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap
occurs, the processor follows the same procedure for traps as it does
for interrupts (saving the PC and PS on the new Processor Stack, etc.).

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence illustrat­
ed.

Trap Priorities

• Parity error
• Memory Management violation

• Stack Limit Yellow
• Power Failure (power down)

• Floating Point exception trap

• Program Interrupt Request (PIR) level 7

• Bus Request (BR) level 7

• PIR6

• BR6
• PIR5

277

Chapter 10 - PDP-11170

• BR5
• PIR4

• BR4
• PIR3
• PIR2
• PIR 1
• Tracetrap

STACK LIMIT
The Stack Limit allows program control of the lower limit for permis­
sible stack addresses. This limit may be varied in increments of 4008

bytes (2008 words), up to a maximum address of 177 400 (almost the
top of a 64 Kb memory).

The normal boundary for stack addresses is 400. The Stack Limit
option allows this lower limit to be raised, providing more address
space for interrupt vectors or other data that should not be destroyed
by the program.

There is a Stack Limit Register, with the following format:

15 7 0 -
The Stack Limit Register can be addressed as a word at location 17
777774, or as a byte at location 17 777 775. The register is accessible
to the processor and console, but not to any bus device.

The eight bits, 15 through 8, contain the stack limit information. These
bits are cleared by System Reset, Console Start, or the RESET
instruction. The lower eight bits are not used. Bit 8 corresponds to a
value of 4008 or 25610 ,

Stack Limit Violations
When instructions cause a stack address to exceed (go lower than) a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow.zone (grace area) of 32 bytes below the
Stack Limit which provides a warning to the program so that corrective
steps can be taken. Operations that cause a Yellow Zone Violation are
completed, then a bus error trap is effected. The error trap, which
itself uses the stack, executes without causing an additional violation,
unless the stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd Stack or Nonexistent
Stack are the other Fatal Stack Errors.) When detected, the operation

278

Chapter 10 - PDP-11170

causing the error is aborted, the stack is repositioned to address 4,
and a bus error occurs. The old PC and PS are pushed into locations 0
and 2, and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses
The contents of the Stack Limit Register (SL) are compared to the
stack address to determine if a violation has occurred. The least sig­
nificant bit of the register (bit 8) has a value of 4008, The determination
of the violation zones is as follows:

Yellow Zone = (SL) + (340-377)8 execute, then trap
Red Zone S (SL) + (337)8 abort, then trap to location 4

If the Stack Limit Register contents were zero:

Yellow Zone = 340 through 377
Red Zone = 000 through 337

PROGRAM INTERRUPT REQUESTS
A request is booked by setting one of the bits 15 through 9 (for PIR
7-PIR 1) in the Program Interrupt Register at location 17 777 772. The
hardware sets bits 7-5 and 3-1 to the encoded value of the highest PIR
bit set. This Program Interrupt Active (PIA) should be used to set the
Processor Level and also index through a table of interrupt vectors for
the seven software priority levels. The figure below shows the layout of
the PIR Register.

9 7 5' J I 0

Program Interrupt Request Register

When the PIR is granted, the Processor will trap to location 240 and
pick up the PC in 240 and the PSW in 242. It is the interrupt service
routine's responsibility to queue requests within a priority level and to
clear the PIR bit before the interrupt is dismissed.

The actual interrupt dispatch program should look like:

MOVB PIR, PS ;places Bits 5-7 in PSW Priority
;Level Bits

MOV R5,-(SP) ;save R5 on the stack

279

MOVPIR,R5
BIC #177761,R5
JMP@DISPAT(R5)

Chapter 10 - PDP-11170

;Gets Bits 1-3
;useto index through table
; which requires 15 core locations.

r- ------- - - - - - - -l

I
I
I
I
I
I L __ _

'---MAIN
,----.1.......1....---, MEMORY

BUS

UNIBUS

Figure 10-6 Block Diagram of PDP-11 170

CACHE MEMORY
An overall block diagram of the PDP-11 170 is shown in Figure 10-6.
From a functional standpoint, main memory and the cache can be
treated as a single unit of memory.

The PDP-11/70 Cache
The architecture of the cache chosen for the PDP-11170 is described
in this section. It represents a carefully developed approach, backed
by extenSive program simulations to determine hit statistics. The size
of the cache memory is 1,024 words (2,048 bytes), organized as a two­
way set associative cache with two-word blocks. There are two groups
in the cache; each group contains 256 blocks of data, and each block
contains two PDP-11 words (see Figures 10-7 and 10-8). Each block
also has a tag field, which Gontains Information to construct the ad­
dress in main memory where the original copy of this data block re­
sides. The data from main memory can be stored within the cache in
one index position determined by its physical address. Refer to Figure
10-9 for the organization of the 22-bit physical address. The 8-bit
index field (bits 2 to 9) determines which element of the array will
contain the data (it can be in either Group 0 or Group 1).

280

Chapter 10- PDP-11170

I.~OOPO .1. ~OUP 1------1°1
DATA MEMQ!!Y

I
~

\ ~ ,
TAG WORD I WORD 2 TAG WORD I WORD 2

I I I
I I I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I
I I I

I I
I

I I
BYTE I BYTE BYTE I BYTE BLOCK Of DATA

ADDRESS MEMORY

'---...---J
I

Figure 10-7 Cache Memory (2,048 Bytes)

--i81h 10-12 BITS---I BI'rS ~ 18 8ITS---..... +1.0----IB BITs----ooI.1

WORD 1 WORD 2

BYTE 8YTE BYTE BYTE

t-fo---TAGS----I

Figure 10-8 Block of Data plus Tags

1-1.----------- 22 BITS

21 10

1
256 INDeX
POSITIONS

¥

'1
TAG INDEX 1 I I

BLOCK ADDRESS ----------o..j t
WORD IN BLOCK-.J
BYTE-----'

Figure 10-9 PhysicalAddress

The elements of the cache must store not only the data, but also the
address identification. Since the index position itself implies part of
the address, only the high address field (called tag field) must be
stored. The combination of the tag plus index gives the address of the

281

Chapter 10- PDP-11170

two-word block in main memory. The lowest two bits in the physical
address select the particular word in the block, and the byte (if need­
ed).

There are two places in the cache where any block of data can go; a
particular index position in either Group 0 to Group 1. Random selec­
tion determines into which group the information is placed,
overwriting the previous data. Another bit is needed within the cache
to determine if the block has been loaded with data. When power is
first applied, the cache data are invalid, and the valid bit for each data
block is cleared. When a particular block location is updated, the
associated valid bit is set to indicate good data.

Figure 10-8 shows the organization for a single block of data within a
set. Note that data have byte parity, and that the nondata part, called
"tags," contains a 12-bit high order address field, plus a valid bit and
two parity bits.

General Operation
The system always looks for data in the fast cache memory first. If it is
there (a hit), execution proceeds at the fastest rate. If the information is
not there (a miss), and the operation was a read, a two-word block of
data is transferred from main memory to the cache. If there is a miss
while trying to write, cache is not updated. Main memory and the
cache are both updated on write hits.

The operation of hits or misses is summarized in Table 10-1.

Table 10-1 Operation on Hit or Miss

What Happens In

CACHE MAIN MEMORY

READ
hit no change no change
miss updated no change

WRITE
hit updated updated
miss no change updated

When power is first applied (power-up), all of the valid bits are cleared.
If power is suddenly lost, cache data may become invalid, but main
memory, with nonvolatile pore or battery-backed-up MOS, will have a
correct copy of all the data.

282

Chapter 10 - PDP-11 170

With a typical program, writes occur only 10% of the time. Reads occur
90% of the time. Read hits will average 80% to 95% of all cycles with a
typical program.

PARITY

System Reliability
Parity is used extensively in the main memory of the PDP-11170 to
ensure the integrity of data storage and transfer, and to enhance the
reliability of system operation. All of memory (cache and main memo­
ry) has byte parity. Parity is generated and checked on all transfers
between core or MOS and cache, again between cache and the CPU,
between high-speed mass storage devices and their controllers, and
again between the controllers and main memory. A software routine
can be used to log the occurrence of parity errors, to handle recovery
from errors, and to provide information on system reliability and per­
formance.

Parity In the System
Main memory stores one parity bit for each 8-bit byte in core, or an
equivalent function in check bits for ECC MOS memory. Refer to Fig­
ure 10-10. The cache also stores byte parity for data, and it stores two
parity bits for the address and control information (tag storage) asso­
ciated with each 2-word block of data.

I

~ CPU I UNIBUS

I I S DATA
ADDRESS (P)

I DATAfPI I MAP

I
ADDRE

I HIGH - SPEED I HIGH-SPEED I ADDREsS(pli DATA(P)I DATA (P)
110

CACHE
I CONTROL I I/O BUS

DATA &CONTROL(P)

ADDRESS DATA(P)
&

CON TROl(P)

I DATA(P) I

MAIN CONTROl

Figure 10-10 Parity (P) in the PDP-11170 System

283

Chapter 10- PDP-11170

The bus between main memory and the cache contains parity on the
data and address and control lines. The high-speed 110 controllers
check and generate parity for data transfers to main memory, and they
have the capability of handling address errors that are flagged by the
control in the cache memory.

System Handling of Parity Errors
Extensive capabilities have been designed into the PDP-11170 to allow
recovery from parity errors, and to allow operation in a degraded
mode if a section of the memory system is not operating properly. This
type of operation is possible under program control by using the built­
in control registers.

If part or all of the cache memory is malfunctioning, it is possible to
bypass half or all of the cache. Misses can be forced within the cache,
such that all read data are brought from main memory. Operation will
be slower, but the system will yield correct results. If part of main
memory is not working, the Memory Management unit can be used to
map around it. If data found in the cache do not have correct parity,
the memory system automatically tries the copy in main memory, to
allow program execution to proceed.

Details of how to perform this programming are explained in the next
section on the CPU and memory control registers.

Aborts and Traps
Two actions can take place after detection of a parity error. The cycle
can be aborted. Then the computer transfers control through the
vector at location 114 to an error handling routine. The other action is
that the instruction is completed, but then the computer traps (also
through location 114). In the first case it was not possible to complete
the cycle, whereas in the second case, it was. This second type of
parity error usually (but not always) causes the trap before the next
instruction is fetched. Refer to Table 10-2.

Table 10-2 Response to Parity Errors

Parity Error
Detected

CPU cycle, data er­
ror, read from main
memory

UNIBUS cycle: data
error, read from main
memory

Condition for
Abort

Error in requested
word

284

Condition for
Trap

Error in the other
word

Error in either word

CPU cycle, address
error, reference to
main memory

UNIBUS cycle
address error
reference to main
memory

CPU or UNIBUS cy­
cle, data or address
error,
reference to cache

High-speed I/O cycle,
data or address error,
ref to main memory

Chapter 10- PDP-11170

All reads and writes

All reads and writes

All reads

(no CPU aborts or traps occur;
high-speed
I/O controllers
handle their parity errors)

• When a parity error is detected on data going to the UNIBUS, the parity error
signal is asserted.

System Response to Parity Errors
Data are read from main memory to the cache in two-word blocks. If
the read cycle was caused by the CPU, and a parity error is detected in
the requested word, an abort occurs. If it was in the other word, a trap
occurs. On UNIBUS cycles, a trap is caused if there is a read error in
either word.

When an address parity error is detected on any read or wlCite to main
memory, an abort is caused for both CPU and UNIBUS cycles.

When any fast data memory or address memory parity error is detect­
ed on any read from the cache, a trap occurs. On a fast data memory
parity error, the CPU will try to get the data from main memory, and
also overwrite the same cache location with the new (correct) word Just
fetched. On an address memory parity error, the CPU will go to main
memory for the data, and will correct (overwrite) the tag storage in the
cache.

Data transfers for the high-speed mass storage devices take place
with main memory. No data are stored in the cache. Parity errors are
handled by the device controllers; no CPU aborts or traps occur, and
no cache status registers are affected.

Table 10-2 summarizes the system response.

CACHE REGISTERS
The registers described in this section provide information about pari-

285

Chapter 10 - PDP-11 170

ty errors, memory status and CPU status. These hardware registers
have program addresses in the top 4K words of physical address
space (Peripheral Page).

Register Address

Low Error Address 17 777 740

High Error Address 17777 742

Memory System Error 17777 744

Control 17 777 746

Maintenance 17 777 750

Hit/Miss 17777752

Some bit positions of the registers are not used (not implemented with
hardware) and are indicated by cross-hatching. These bits are always
read as zeros by the program. Most of the bits can be read or written
under program control. The above six registers are located on the
cache control board of the 11/70.

Low Error Address Register 17 777 740

15

ICNI _55 116 IITS) IlSl1

This register contains the lowest 16 bits of the 22-bit address of the
first error. The least significant bit is bit O. The high order bits are
contained in the High Error Address Register.

All the bits are read-only. The bits are undetermined after a Power-Up.
They are not affected by a Console Start or RESET instruction.

High Error Address Register 17 777 742

15 14 13 6 o OClE_
HIGH ADDRESS

286

Chapter 10 - PDP-11170

Bit: 15:14 Name: Cycle Type
Function: These bits are used to encode the type of memory cycle
which was being requested when the parity error occurred.

Bit 15 Bit 14 Cycle Type
o 0 Data In (read)
o 1 Data In Pause
1 0 Data Out
1 1 Data Out Byte

Bit: 5:0 Name: Address
Function: These bits contain the highest six bits of the 22-bit address
of the first error. Register Bit 5 corresponds to the physical address Bit
22.

All the bits are read-only. The bits are undetermined after a power-up.
They are not affected by a Console Start or RESET instruction.

Memory System Error Register 17 77 744

IS 14 13 12

CPU ABORT
CPU ABORT
UNIBUS PAR
UNIBUS MU
CPU ERROR
UNIBUS ERR
CPU UNlau
ERROR IN M
DATA MEMO
DATA MEMO
ADDRESS M
ADDRESS M
MAIN MEM
MAIN MEM
MAIN MEM
MAIN MEM

~ORJ 1 J
ITY ERROR

lTlPlE PARITY ERROR

OR
S ABORT
AINTENANCE

RY GROUP I
RY GROUP 0

EMORY GROUP I
EMORY GROUP 0

QRY 000 WORD
ORY EVEN WORD
ORY ADDRESS PAR ITY ERROR
ORY TlMEOUT

J

Bit: 15 Name: CPU Abort

10

)
1

o
DATA ERRORS

,

1 I
Function: Set if an error occurs which caused the cache to abort a
processor cycle.

Bit: 14 Name: CPU Abort After Error
Function: Set if an abort occurs with the Error Address Register
locked by a previous error.

Bit: 13 Name: UNIBUS Parity Error
Function: Set if an error occurs which resulted in the UNIBUS Map
asserting the parity error signal on the UNIBUS.

Bit: 12 Name: UNIBUS Multiple Parity Error
Function: Set if an error occurs which caused the parity error to be
asserted on the UNIBUS with the Error Address Register locked by a
previous error.

287

Chapter 10 - PDP-11170

Bit: 11 Name: CPU Error
Function: Set if any memory error occurs during a cache CPU cycle.

Bit: 10 Name: UNIBUS Error
Function: Set if any memory errors occur during a cache cycle from
the UNIBUS.

Bit: 9 Name: CPU UNIBUS Abort
Function: Set if the processor traps to vector 114 because of UNI­
BUS parity error on a DATI or DATIP memory cycle.

Bit: 8 Name: Error in Maintenance
Function: Set if an error occurs when any bit in the Maintenance
Register is set. The Maintenance Register will then be cleared.

Bit: 7:6 Name: Data Memory
Function: These bits are set if a parity error is detected in the fast
data memory in the cache. Bit 7 is set if there is an error in Group 1; bit
6 for Group O.

Bit: 5:4 Name: Address Memory
Function: These bits are set if a parity error is detected in the ad­
dress memory in the cache. Bit 5 is set if there is an error in Group 1;
bit 4 for Group O.

Bit: 3:2 Name: Main Memory
Function: These bits are set if a parity error is detected on data from
main memory. Bit 3 is set if there is an error in either byte of the odd
word: bit 2 for the even word. (Main memory always transfers two
words at a time.) An abort occurs if the error is in the word needed by a
CPU reference. A trap occurs if the error is in the other word, or if it is a
UNIBUS reference.

Bit: 1 Name: Main Memory Address Parity Error
Function: Set if there is a parity error detected on the address and
control lines on the main memory bus.

Bit: 0 Name: Main Memory Timeout
Function: Set if there is no response from main memory. For CPU
cycles, this error causes an abort. When a UNIBUS device requests a
nonexistent location, this bit will set, cause a timeout on the UNIBUS,
and then cause the CPU to trap to vector 114.

The bits are cleared on power .. up or by Console Start. They are unaf­
fected by a RESET instruction.

When writing to the Memory System Error Register, a bit is unchanged
if a 0 is written to that bit, and it is cleared if a 1 is written to that bit.
Thus, the register is cleared by writing the same data back to the
register. This guarantees that if additional error bits were set between
the read and the write, they will not be inadvertently cleared.

288

Chapter 10 - PDP-11170

Control Register 17 777 746

o - I I I I I
FORCE REPLACEMENT GROUP 0 -
FORCE MISS GROUP 1
FORCE MISS GROUP 0
FORCE REPLACEMENT ~~U~Pl~~~~~~~~~~~~~t=tJr J
DISABLE UNIBUS,T '.:RA::P=================~~ DISABLE TRAPS-

Bit: 5:4 Name: Force Replacement
Function: Setting these bits forces data replacement within a Group
in the cache by main memory data on a read miss. Bit 5 selects Group
1 for replacement; bit 4 selects Group O.

Bit: 3:2 Name: Force Miss
Function: Setting these bits forces misses on reads to the cache. Bit
3 forces misses on Group 1; bit 2 forces misses on Group O. Setting
both bits forces all cycles to main memory.

Bit: 1 Name: Disable UNIBUS Trap
Function: Set to disable traps to vector 114 when the parity error
signal is placed on the UNIBUS.

Bit: 0 Name: Disable Traps
Function: Set to disable traps from non-fatal errors.

Bits 5 through 0 are read/write. The bits are cleared on power-up or by
Console Start.

The PDP-11 /70 can run in a degraded mode if problems are detected
in the cache. If Group 0 of the cache is malfunctioning, it is possible to
force all operations through Group 1. If bits 2 and 5 of the Control
Register are set, and bits 3 and 4 are clear, the CPU will not be able to
read data from Group 0, and all main memory data replacements will
occur within Group 1. In this manner, half the cache will be operating.
But system throughput will not decrease by 50%, since the statistics of
read hit probability will still provide reasonably fast operation.

If Group 1 is malfunctioning, bits 3 and 4 should be set, and bits 2 and
5 cleared, so that only Group 0 is operating. If all of the cache is
malfunctioning, bits 2 and 3 should be set. The cache will be by­
passed, and all references will be to main memory.

Bits 1 and 0 can be set to disable trapping; more memory cycles will
be performed, but overall system operation will produce correct
results.

289

Chapter 10 - PDP-11 170

Maintenance Register 17 777 750

15 12 11 8 7 4 3 1 0

I" ~
MAIN MEMORY PARITY~ L--..-----'l
FAST ADDRESS PARRIlIT"!.:Y ======~ ____ ~
fASTOATA PARITY-
MfMORYMARGINS-------------------'

Bit: 15:12 Name: Main Memory Parity
F",nction: Setting these bits causes the four parity bits to be 1 s.
There is one bit per byte; there are four bytes in the data block.
Bit Set Byte
15 odd word, high byte
14 odd word, low byte
13 even word, high byte
12 even word, low byte

Bit: 11:8 Name: Fast Address Parity
Function: Setting these bits causes the four parity bits for fast ad­
dress memory to be wrong. Bits 11 and 10 affect Group 1; bits 9 and 8
affect Group o.
Bit: 7:4 Name: Fast Data Parity
Function: Setting these bits causes the four parity bits to be 1 s.
Bit Set Byte
7 Group 1, high byte
6 Group 1, low byte
5 Group 0, high byte
4 Group 0, low byte

Bit: 3:1 Name: Memory Margins
Function: These bits are encoded to do maintenance checks on
main memory.

Bit3 Bit2 Bit 1 CORE MaS

0 0 0 Normal operation Normal operation
0 0 1 Check wrong address Check wrong address

parity parity
0 1 0 Early strobe margin Early strobe margin
0 1 1 Late strobe margin Late strobe margin
1 0 0 Low current margin Low current margin
1 0 1 High current margin High current margin
1 1 0 (reserved) (reserved)
1 1 1 (reserved) (reserved)

290

Chapter 10- PDP-11170

All of main memory is margined simultaneously.

Hit/Miss Register 17 777 752

- _flOW

This register indicates whether the six most recent references by the
CPU were hits or misses. A 1 indicates a read hit; a 0 indicates a read
miss or a write. The lower numbered bits are for the more recent
cycles.

All the bits are read-only. The bits are undetermined after a power-up.
They are not affected by a RESET instruction.

HIGH-SPEED CONTROLLERS

Mounting Space
The PDP-11170 CPU assembly provides dedicated, prewired space
for up to four high-speed I/O controllers. Refer to Figure 10-11. DC
power for the controllers is derived from the cabinet power supply.

Interfacing
Each group of mass storage peripherals communicates with its high­
speed controller through a separate high-speed 1/0 bus. This 1/0 bus
consists of a set of 56 signals for data, control, status, and parity. High
transfer rate is achieved by using synchronous block transfer of data
simultaneously with asynchronous control information. The controller
contains an eight-word data buffer.

Data are transferred in a Direct Memory Access (DMA) mode. An
internal 32-bit wide data bus transfers four bytes in parallel between
memory and the high-speed controllers. The Priority Arbitration logic
within the cache memory controls the timing of data transfers; but the
cache itself is not used for storage. Data transfers are between main
memory and the mass storage peripheral. The cache is not affected,
except that on a write hit from the 1/0 bus to memory, the valid bit is
cleared for that particular two-word block within the cache. In this way,
the affected areas of the cache are flagged as having incorrect data,
but main memory always contains the correct, updated information.

The UNIBUS plays a subordinate role with respect to the high-speed
controllers. The UNIBUS is used:
1. To supply control and status information
2. To generate an interrupt request (by the controller)

291

Chapter 10- PDP-11170

Figure 10-11 PDP-11170 Block Diagram

The UNIBUS is not used for data transfer.

The registers within the controller (which can be read and written
directly) are addressed from the UNIBUS. In a typical DMA transfer,
the registers would first be loaded with the following data:
1. Number of words to be transferred
2. Starting address in memory for data transfers
3. Control information specifying the device and type of operation

Increased Data Transfer Rate
The architecture of the PDP-11170 allows overlapping of some opera­
tions, providing faster program execution speed. CPU and UNIBUS
read hits with the cache memory are overlapped with mass storage
device reads from main memory. It is possible to overlap the read
cycles of several mass storage devices.

Parity
Parity is generated and checked in the system for data and address
.and control information, to ensure the integrity of the information
transferred. The RHCS3 register in the controller is used to indicate
the occurrence of parity errors during memory transfers.

REGISTERS
The controller contains six local registers, plus part of one more which
is shared with the mass-storage device. Other registers needed by the
particular mass storage system and device are contained In the device
itself. Appendix B contains information about the mass storage device

292

Chapter 10 - PDP-11170

registers. For a detailed description of the mass storage device regis­
ters, please refer to the PERIPHERALS Handbook.

Controller Registers

RHCS1 Control and Status 1 (partial)

RHWC

RHBA

RHBAE

RHCS2

RHCS3

RHDB

Word Count

Bus Address (Main Memory Bus)

Bus Address Extension (Main Memory Bus)

Control and Status 2

Control and Status 3

Data Buffer (Maintenance)

CONSOLE OPERATION
The PDP-11 /70 console allows direct control of the computer system.
It contains a power switch for the CPU, which is also usually used as
the Master Switch for the system. The console is used for starting,
stopping, resetting, and debugging. Lights and switches provide the
facilities for monitoring operation, system control, and maintenance.
Debugging and detailed tracing of operations can be accomplished by
having the computer execute single instructions or single cycles. Con­
tents of all locations can be examined, and data can be entered manu­
ally from the console switches.

GENERAL
The PDP-11 /70 Operator's Console provides the following facilities:
a) Power Switch (with a key lock)
b) ADDRESS Register Display (22 bits)
c) DATA Register Display (16 bits), plus Parity Bit Low Byte and

Parity !;lit High Byte
d) Switch Register (22 switches)

e) Error Lights
ADRS ERR (Address Error)
PAR ERR (Parity Error)

f) Processor State Lights (7 indicators)
RUN
PAUSE
MASTER
USER
SUPERVISOR

293

Chapter 10 - PDP-11 170

KERNEL
DATA

g) Mapping Lights
16BIT
18BIT
22 BIT

h) ADDRESS Display Select Switch (8 positions)
USER I
USERD
SUPER I (Virtual)
SUPER D
KERNEL I
KERNELD
PROG PHY (Program Physical)
CONS PHY (Console Physical)

i) DATA Display Select Switch (4 positions)
DATA PATHS
BUS REGISTER
}lADRS FPP/CPU
DISPLAY REGISTER

j) Lamp Test Switch
k) Control Switches

LOADADRS
EXAM (Examine)
DEP (Deposit)
CONT (Continue)
ENABLE/HAL T
S INST /S BUS CYCLE (Single Instruction/Single Bus Cycle)
START

STARTING AND STOPPING

Starting
Once power is on, execution can be started by placing the EN­
ABLE/HALT switch in the ENABLE position, putting the starting ad­
dress in the Switch Register, and depressing the LOAD ADRS switch.
Verify in the Address Display Lights that the address was entered
correctly, then depress the START switch. The computer system will
be cleared and will then start running. Once execution has begun,
depressing the START switch again has no effect.

If the system needs to be initialized but execution is not wanted, the
START switch should be depressed while the HALT/ENABLE switch is
in the HALT position.

294

Chapter 10 - PDP-11170

Stopping
Set the ENABLE/HALT switch to the HALT position. The computer will
stop execution, but the contents of all memory locations will be
retained. The switch can then be set to the ENABLE position with no
effect on the system.

NOTE
NPRs are still serviced after HALT from the console if
S BUS CYCLE is disabled.

Continuing
After the computer has been stopped, execution can be resumed from
the point at which it was halted by using the CONT (Continue) Switch.
The function of the CONT Switch depends on the position of the EN­
ABLE/HALT Switch:

ENABLE (up) CPU resumes normal execution.

HALT (down) The mode is used for debugging purposes
and forces execution of a single instruction
or a single bus cycle.

REFERENCING MEMORY

Unmapped References
When performing unmapped memory references from the console,
the Address Select Switch must be set to CONS PHY. This means that
the 22-bit address entered in the Switch Register should be the physi­
cal address desired. To examine a memory location, depress the
LOAD ADRS switch and then the EXAM switch. The address refer­
enced will appear in the Address Display Lights. The DATA Select
switch should be selecting DATA PATHS, and the contents of that
location are displayed in the Data Display Lights. To deposit informa­
tion into a memory location, depress the LOAD ADRS switch, then
enter the desired data in the Switch Register and raise the DEP switch.
The DATA Select switch should be in the DATA PATHS position, and
the deposited information will appear in the DATA Display Lights.

Mapped References
Sometimes, when software is running with Memory Management en­
abled, the physical addresses generated are not known. This makes
examining and depositing memory locations more difficult. For this
reason, the six positions, KERNEL I through USER D, of the ADDRESS
Select switch are provided. When doing a memory reference .. the low­
order 16 bits of the Switch Register are considered to be a Virtual
Address and are relocated by Memory Management using the set of
PAR/PDRs indicated by the ADDRESS Select switch.

295

Chapter 10 - PDP-11170

To examine a memory location, depress the LOAD ADRSswltch and
the EXAM switch. The DATA Select switch should be selecting DATA
PATHS, and the contents of that location are displayed in the DATA
Display Lights. To deposit Information into a memory location, de­
press the LOAD ADRS switch, then enter the desired data in the
Switch Register and raise the DEP switch. The Data Select Switch
should be in the DATA PATHS position, and the deposited information
will appear in the DATA Display Lights.

The PROG PHY (Program Physical) position of the ADDRESS Select
switch is used as a debugging tool. After an examine or deposit has
bee.n performed on a virtual address, changing the ADDRESS Select
switch to select PROG PHY will display the Physical Address generat­
ed by Memory Management in the Address Display l:ights. Using the
PROG PHY position in any other way will produce meaningless results.

NOTE
An EXAM or DEP operation which causes an ad­
dressing error (ADRS ERR or PAR ERR) w.ill be
aborted and must be corrected by performing a new
LOAD ADRS operation with a valid address.

STEP OPERATIONS
Performing more than one EXAM operation in a row or more than one
DEP operation in a row results in a STEP operation. Depressing the
EXAM switch after previous examination of a location displays the
contents of the next location in memory. Raising the DEP switch after a
previous deposit into a memory location causes the current contents
of the Switch Register to be deposited into the next location in memo­
ry.

In each case, the Address Display is updated by two to hold the value
of the now current address. This allows consecutive EXAM operations
and consecutive DEP operations without the use of the LoAD ADRS
switch. An EXAM-STEP or DEP-STEP operation will not cross a 32
Kword memory block boundary.

NOTE
The EXAM and DEP switches are coupled to enable
an EXAM-DEP-EXAM sequence to be carried out
on a location without having to do extra LOAD ADRS
operations. The following example deposits values
into consecutive memory locations.

296

Chapter 10 - PDP-11170

Operation
(Activate Switch)
LOADADRS
EXAM
DEP
EXAM
EXAM (result is

EXAM-STEP)
DEP
EXAM

GENERAL REGISTERS

Location shown In
ADDRESS Display
X
X
X
X
X+2

X+2
X+2

The General Registers can be examined and deposited using the EX­
AM and DEP switches provided the previous LOAD ADRS operation
loaded the Address Display with a "register address."

Address Register
17 777 700 Register 0 (Set 0)

17777705
17777706
17 777 707
17777710

17 777 715
17777 716
17777717

Register 5 (Set 0)
Register 6, Kernel Mode
Program Counter
Register 0 (Set 1)

Register 5 (Set 1)
Register 6, Supervisor Mode
Register 6, User Mode

Examining and depositing into General Register Addresses is inde­
pendent of the ADDRESS Select switch. It is not possible to be
mapped to a General Register.

297

Chapter 10 - PDP-11170

EXAM-STEP and DEP-STEP operations can be performed on the
General Registers, similar to those for memory locations, except that:

a) ADDRESS Display is incremented by one (instead of two)

b) The STEP after address 17 777 717 is 17777700, such that the
addresses are looped

c) It is not possible to STEP up to the first General Register (17 777
700) from 17 777 676

SINGLE INSTRUCTION/SINGLE BUS CYCLE
Once the machine is halted, a useful debugging tool is being able to
execute code a small segment at a time. The S INST/S BUS CYCLE
(Single Instruction/Single Bus Cycle) switch provides that capability.
The ENABLE/HALT switch must be in the HALT position. To start
execution of a segment, depress the CO NT switch. How much is exe­
cuted is a function of the S INST /S BUS CYCLE switch.

Position
SINST

S BUS CYCLE

Depressing the CONT Switch will result in
the execution of one instruction. This
means that the machine state can be deter­
mined after each instruction. Examining
and depositing into memory locations is a
method of accomplishing this. The contents
of the OAT A Display Lights are not neces­
sarily meaningful.

For this mode to have any meaning, the OA­
T A Select switch should be selecting the
BUS REG (Bus Register). Depressing the
CONT Switch will cause execution until the
end of the next bus cycle. The Address Dis­
play Lights will then contain the address of
the location at which the bus cycle was per­
forming. (Virtual or Physical, depending on
the position of the ADDRESS Select switch).
The DATA Display Lights, on a read opera­
tion, will contain the data that were read
(this could be an instruction or data). During
a write operation, the lights will contain the
data just written (except during a stack op­
eration or Floating Point Instruction).

Examine and deposit operations cannot be
used in this mode. Depressing the LOAD
ADRS, EXAM, or DEP switch will not cause

298

Chapter 10 - PDP-11 170

anything to happen. If an examine or depo­
sit operation is desired, the S INST IS BUS
CYCLE switch should be changed to select
S INST and the CO NT switch should be de­
pressed once. (This will cause execution
until the end of the current instruction.) The
system will then be ready to perform an ex­
amine or deposit.

FUNCTIONS OF SWITCHES & INDICATORS

Power Switch
OFF

POWER

LOCK

Control Switches

Power to the processor is OFF.

Power to the processor is ON, and all con­
sole switches function normally.

Power to the processor is ON, but the seven
control switches LOAD ADRS through
START are disabled. All other switches are
functional.

When a LOAD ADRS switch is depressed, the contents of the Switch
Register are loaded into the ADDRESS Display. The address dis­
played in the Address Display Lights is a function of the position of the
ADDRESS Select switch.

EXAM (Examine)
Depressing the EXAM switch causes the contents of the current loca­
tion specified in the Address Display to be displayed in the DATA
Display Register when the DATA Select switch is in the DATA PATHS
position. The address in the Address Display will be mapped or un­
mapped depending on the position of the ADDRESS Select switch.
The location displayed in the Address Display Lights is also a function
of that switch.

DEP (Deposit)
Raising the DEP switch causes the current contents of the Switch
Register to be deposited into the address specified by the current
contents of the Address Display.

The address in the Address Display will be mapped or unmapped
depending on the position of the ADDRESS Select switch. The location
displayed in the Address Display Lights is also a functioll of that
switch.

299

Chapter 10 - PDP-11170

CONT (Continue)
Depressing the CO NT switch causes the CPU to resume execution.
The CONT switch has no effect when the CPU is In RUN state.

ENABLE/HALT
The ENABLE/HALT switch is a two-position switch used to stop ma­
chine execution and to enable the system to run.

S INST/S BUS CYCLE (Single Instruction/Single Bus Cycle)
The S INST /S BUS CYCLE switch affects only the operation of the
CONT switch. It controls whether the machine stops after instructions
or bus cycles. This switch has no effect on any switches when the
ENABLE/HALT switch is set to ENABLE.

START
The functions of the START switch depend on the setting of the EN­
ABLE/HALT switch as follows:

ENABLE
HALT

Starts execution
Clears the computer system

Switch Register
The switches are used to manually load data or an address into the
processor, as determined by the control switches and the ADDRESS
Select switch.

Note that bits 0 to 15 of the current setting of the Switch Register may
be read under program control from a read-only register at address
17777 570.

Lamp Test
The Lamp Test switch (which is not labeled) is located between the
Switch Register and the LOAD ADRS switch. It is used for mainte­
nance purposes. When the Lamp Test switch is raised, all console
indicator lights should go on. An indicator which does not light is
defective and should be replaced.

Address Select Switch

VIRTUAL (six-position for User,
Supervisor, and Kernel)

CONS PHY (Console Physical)

300

Uses a 16-blt virtual address
where bits 16 to 21 are always
OFF

Uses a 22-bit physical address to
perform console operations (e.g.,
LOAD ADRS, EXAM, and DEP)

Chapter 10- PDP-11 170

PROG PHY (Program Physical) Displays the 22-bit physical ad­
dress of the current bus cycle
that was generated by the Memo­
ry Management Unit

Address Display
The ADDRESS Display lights are used to show the address of data
being examined or just deposited. The address is interpreted as a
Virtual or Physical Address as determined by the ADDRESS Select
switch.

Data Select Switch

DATA PATHS

BUS REG

JlADRS FPP/CPU

DISPLAY REGISTER

Data Display

The normal display mode, shows examined
or deposited data

The internal CPU register used for bus cy­
cles

The ROM address, FPP control micropro­
gram (bits 15 to 8) and the CPU control mi­
croprogram (bits 7 to 0)

The contents of the Display Register; this
has an address of 17 777 570

The Data Display lights are used to show the 16-bit word data just
examined or deposited, or other data within the CPU. The PARITY
HIGH & LOW lights indicate the parity bit for the respective bytes on
read operations; on write operations the bits are off. The interpretation
of the data is determined by the DATA Select switch.

Status Indicator Lights
ERROR INDICATORS

PAR ERR

ADRS ERR

Lights to indicate a parity error during a
reference to memory.

Lights to indicate any of the following ad­
dressing errors:
a) Reference to nonexistent memory
b) Access control violation
c) Reference to unassigned memory

pages

301

PROCESSOR STATE

RUN

PAUSE

MASTER

MODE

USER

SUPER
(Supervisor)

KERNEL

DATA

ADDRESS

16BIT

18BIT

22 BIT

Chapter 10 - PDP-11170

The CPU is executing program instructions.
If the instruction being executed is a WAIT
instruction, the RUN light will be on. The
CPU will proceed from the WAIT on receipt
of an external interrupt, or on console inter­
vention.

The CPU is inactive because the current in­
struction execution has been completed as
far as possible without more data from the
UNIBUS or memory, or the CPU is waiting
to regain control of the the UNIBUS (UNI­
BUS mastership).

The CPU is in control of the UNIBUS (UNI­
BUS Master only when it needs the
UNIBUS). The CPU relinquishes control of
the UNIBUS during DMA and NPR data
transfers.

The CPU is executing program instructions
in User mode.

The CPU is executing program instructions
in Supervisor mode.

The CPU is executing program instructions
in Kernel mode.

If on, the last memory reference was to D
address space in the current CPU mode. If
off, the last memory reference was to I ad­
dress space in the current mode.

Lights when the CPU is using 16-bit
mapping.

Lights when the CPU is using 18-bit
mapping.

Lights when the CPU is using 22-bit
mapping.

302

Chapter 10- PDP-11170

M9301-YC, YH/M9312 BOOTSTRAP LOADER

Features
• Contains bootstrap routines for a wide range of storage media

• Allows bootstrapping of any drive unit on a particular controller

• Runs diagnostic programs to test the basic CPU, cache, and main
memory

• Allows booting to selected physical memory segments in 32K incre­
ments

• Switch-selectable default loading device

Description
The M9312 is a dedicated diagnostic bootstrap loader for use with the
PDP-11170. It contains a ROM organized as 512 16-bit words which
are separated into hardware verification programs and bootstrap rou­
tines. They are double-height extended modules which occupy rows E
and F of slot one in the PDP-11 170 CPU.

Diagnostics (M9312)
The M9312 provides basic diagnostic tests for the CPU, memory, and
cache when used with PDP-11/60 and PDP-11/70 computers. All di­
agnostic tests reside in ROM (read-only memory) locations 765 000
through 765 776 (console emulator routine is eliminated). These
diagnostics test the basic CPU including the branches, the registers,
all addressing modes, and many of the instructions in the PDP-11
repertoire. Memory from virtual address 1000 to the highest available
address up to 28K will also be checked. After main memory has been
verified, with the cache off, the cache memory will be tested to verify
that hits occur properly. Main memory will be scanned again to ensure
that the cache is working properly throughout the 28K of memory to be
used in the boot operation. If one of the cache memory tests fails, the
operator can attempt to boot the system anyway by pressing CONTIN­
UE. This will cause the program to force misses in both groups of the
cache before going to the bootstrap section of the program. The fol­
lowing is a list of M9312 diagnostic tests.

TEST 1 This test verifies the unconditional branch

TEST2

TEST3

TEST4

TEST5

Test ClR, MODE 0, and BMI, BVS, BHI,
BlT, BlOS

Test DEC, MODE 0, and BPl, BEQ, BGE,
BlE

Test ROR, MODE 0, and BVC, BHIS, BNE

Test register data path

303

TEST 6

TEST 7

TEST 10

TEST 11

TEST 12

TEST 13

TEST 14

TEST 15

TEST 16

TEST 17

Chapter 10 - PDP-11 170

Test ROl, BCe, Bl T

Test ADD, INC, COM and BCS, BlE

Test ROR, DEC, BIS, ADD, and BlO

Test COM, BIC, and BGT, BlE

Test SWAB, CMP, BIT, and BNE, BGT

Test MOVB, SOB, ClR, TST and BPl, BNG

Test JSR, RTS, RTI, and JMP

Test main memory from virtual 1 000 to last
address; cache memory diagnostic tests

Test cache data memory

Test memory with the data cache on

DIAGNOSTICS (M9301·YC, ·YH)
The diagnostic portion of the program will test the basic CPU, includ·
ing the branches, the registers, all addressing modes, and most of the
instructions in the PDp·11 repertoire. It will then set the stack pOinter
to Kernel D-space PAR 7. It will also turn on, if requested, Memory
Management and the UNIBUS map, and will check memory from virtu­
al address 1000 to 157776. After main memory has been verified, with
the cache off, the cache memory will be tested to verify that hits occur
properly. Main memory will be scanned again to ensure that the cache
is working properly throughout the 28K of memory to be used in the
boot operation.

If one of the cache memory tests fails, the operator can attempt to boot
the system anyway by pressing CONTINUE. This will cause the pro­
gram to force misses in both groups of the cache before going to the
bootstrap section of the program. A listing of the M930-YC, -YH diag­
nostic tests follows.

TEST 1

TEST 2

TEST 3

TEST4

TEST 5

TEST 6

This test verifies the unconditional branch

Test ClR, MODE 0, and BMI, BVS, BHI,
BlOS

Test DEC, MODE 0, and BPl, BEQ, BGE,
BGT:BlE

Test ROR, MODE 0, and BVC, BHIS, BHI,
BNE

Test BHI, Bl T, and BlOS

Test BlE, and BGT

304

TEST 7

TEST 10

TEST 11

TEST 12

TEST 13

TEST 14

TEST 15

TEST 16

TEST 17

TEST 20

TEST 21

TEST 22

TEST 23

TEST 24

TEST 25

TEST 26

TEST 27

ERROR RECOVERY

Chapter 10 - PDP-11170

Test register data path and modes 2, 3, 6

Test ROL, BCC, BL T, and MODE 6

Test ADD, INC, COM, and BCS, BLE

Test ROR, BIS, ADD, and BLO, BGE

Test DEC and BLOS, BL T

Test COM, BIC, and BGT, BGE, BLE

Test ADC, CMP, BIT, and BNE, BGT, BEQ

Test MOVB, SOB, CLR, TST and BPL, BNE

Test ASR, ASL

Test ASH and SWAB

Test 16 Kernel PARs

Test and load KIPDRs

Test JSR, RTS, RTI, and JMP

Load and turn on Memory Management
and the UNIBUS map

Test main memory from virtual 1000 to 28K

Test cache data memory

Test virtual 28K with cache on

If the processor halts in one of the two cache tests, the error is recov­
erable. By pressing CONTINUE, the program will either attempt to
finish the test (if at either 17 773 644 or 17 773 736) or force misses in
both groups of the cache and attempt to boot the system monitor with
the cache fully disabled (if at 17773654, 17773746, or 17 773 764).
The run time for this program is approximately three seconds.

305

306

INTRODUCTION

CHAPTER 11

PDP·11 FLOATING POINT

The PDP-11 processor family has two sets of floating point instruc­
tions:
1. The FIS (Floating Instruction Set) option, consisting of four in­

structions (FADD, FSUB, FMUL, FDlV) that operate on single­
precision floating point formats, is available on the LSI-11 and
LSI-11/2. Please refer to the Microcomputer Handbook for a de­
scription of FIS.

2. The FP11 instruction set supports both single- and double-pre­
cision floating point arithmetic. It is available as a microcode
option, KEF11-AA, for the PDP-11/23 and PDP-11/24. It is also
available as a hardware option on the PDP-11/34 (FP11-A), PDP-
11/44 (FP11-F) and PDP-11170 (FP11-C). In this discussion, the
term floating pOint processor (FPP) wtll..be used to refer to the
hardware or microcode implementation of the FP11 instruction
set.

A floating point processor is much faster and more effective for high­
speed numerical data handling than software floating pOint routines.
Users who program in FORTRAN, BASIC and APL find that the FPP
gives them the speed and capability that they require for data and
number manipulation.

FPPs perform all floating point arithmetic operations and convert data
between integer and floating point formats.

Features of the floating point processors are:

• 17-digit precision in 64-bit mode, 8 in 32-bit mode
• Overlapped operation with the central processor (FP11-C)

• High-speed operation
• Single- and double-precision (32- or 64-bit) floating point modes

• Flexible addressing modes
• Six 64-bit floating point accumulators

• Error recovery aids

ARCHITECTURE
The floating point processors contain scratch registers, a floating ex­
ception address pointer (FEA), a program counter, a set of status and
error registers, and six general-purpose accumulators, ACO-AC5.
(Please refer to Figure 11-1.)

307

Chapter 11 - Floating Point

The accumulators are 32 or 64 bits long, depending on the instruction
and FPP status. In a 32-bit instruction, only the leftmost 32 bits are
used.

The six floating point accumulators are used in numeric calculations
and in interaccumulator data transfers. The first four accumulators
(ACO-AC3) are also used for all data transfers between the FPP and
the general registers, or memory.

r----~~----------I

I~ I
I 32 BIT I
I A~R I 110 BUS
I AC0 I
I AC1 I
I AC2 I C-E NT-RA-L...,

I ~ ~~~
I AC4 I----!--------I ARI1~~ETIC

LOGICAL I AC5 UNIT

I
I
I
I
I FLOAT ING POINT PROCESSOR I L- __________ -. _____ ~

MEMORY

Figure 11-1 Conceptual Structure of the Floating Point Processor

OPERATION
A floating point processor functions as an integral part of the central
processor. It operates using similar address modes and the same
memory management facilities provided by the memory management
option. FPP instructions can reference the floating point accumula­
tors, the central processor's general registers, or any location in mem­
ory.
When an FPP instruction is fetched from memory, the FPP will execute
that instruction in parallel with the CPU as the CPU continues its in­
struction sequence. The CPU is delayed a very short period of time
during the FPP instruction fetch operation, and then is free to proceed
independently of the FPP. The interaction between the two processors
is automatic, permitting a program to take full advantage of the paral­
lel operation of the two processors, by the intermixing of FPP and CPU
instructions. This is all accomplished by the hardware of the
processors. When an FPP instruction is encountered in a program, the
CPU first initiates floating point handshaking and calculates the ad­
dress of the operand. It then checks the status of the FPP.lf the FPP is

308

Chapter 11 - Floating Point

busy, the CPU waits until it receives a DONE signal before continuing
execution of the program. For example:

ADDLP:

LDD(R3)+,AC3

LDD(R3)+,ACO

MULD AC3,ACO

ADDD ACO,AC1

SOB R5,ADDLP

STCDI AC1 ,(R4)

;Pick up constant operand
;and place it in AC3

;Load ACO with next value
;in table

;and multiply by constant
;inAC3

;and add the result into
;AC1

;check to see whether done

;done, convert double
;to integer and store.

In this example, the FPP executes the first three instructions. After the
ADD is fetched into the FPP, the CPU will execute the SOB, calculate
the effective address of the STCDI instruction, and then wait for the
FPP to be done with the ADDD before continuing past the STCDI
instruction. Autoincrement and autodecrement addressing automati­
cally adds or subtracts the correct amount to the contents of the regis­
ter, depending on the modes represented by the instruction.

FLOATING POINT DATA FORMATS
Mathematically, a floating point number may be defined as having the
form (2**K)*f, where K is an integer and f is a fraction. For a nonvan­
ishing number, K and f are uniquely determined by imposing the
condition % :S f < 1. The fractional part, f, of the number is then said to
be normalized. For the number 0, f must be assigned the value 0, and
the value of K is indeterminate.

The FP11 floating point data formats are derived from this mathemati­
cal representation for floating point numbers. Two types of floating
point data are provided. In single-precision, or floating mode, the data
are 32 bits long. In double-precision, or double mode, the data are 64
bits long. Sign magnitude notation is used.

Nonvanishing Floating Point Numbers
The fractional part, f, is assumed to be normalized, so that its most
significant bit must be 1. This 1 is the hidden bit; it is not stored
explicitly in the data word, but the microcode restores it before carry­
ing out arithmetic operations. The floating and double modes respec­
tively reserve 23 and 55 bits for f. These bits, with the hidden bit, imply
effective fractions of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 128

309

Chapter 11 - Floating Point

(2068) notation (Le., K + 2008), giving a biased exponent. Thus, expo­
nents from -128 to + 127 are represented by 0 to 3778, or 0 to 25510 •

For reasons listed below, a biased exponent of 0 (true exponent of
-2008), is reserved for floating point O. Thus, exponents are restricted
to the range -127 to +127 inclusive (-1778 to +1778) or, in excess
2008 notation, 1 to 3778.

The remaining bit of the floating point word is the sign bit. The number
is negative if the sign bit, is a 1.

Floating Point Zero
Because of the hidden bit, the fractional part is not available to
distinguish between 0 and nonvanishing numbers whose fractional
part is exactly Y2. Therefore, the FP11 reserves a biased exponent of 0
for this purpose, and any floating point number with a biased expo­
nent of 0 either traps or is treated as if it were an exact 0 in arithmetic
operations. An exact or clean 0 is represented by a word whose bits
are all Os. A dirty 0 is a floating point number with a biased exponent of
o and a nonzero fractional part. An arithmetic operation for which the
resulting true exponent exceeds 2778 is regarded as producing a float­
ing overflow; if the true exponent is less than -1778, the operation is
regarded as producing a floating underflow. A biased exponent of 0
can thus arise from arithmetic operations as a special case of overflow
(true exponent = -2008). Only eight bits are reserved for the biased
exponent. The fractional part of results obtained from such overflow
and underflow is correct.

The Undefined Variable
The undefined variable is defined as any bit pattern with a sign bit of 1
and a biased exponent of O. The term undefined variable is used, for

_ historical reasons, to indica,e that these bit patterns are not assigned a
corresponding floating point arithmetic value. Note that the undefined
variable is frequently referred to as -0 elsewhere in this specification.

A design objective of the FP11 was to assure that the undefined vari­
able would not be stored as the result of any floating point operation in
a program run with the overflow and underflow interrupts disabled.
This objective is achieved by storing an exact 0 on overflow and un­
derflow, if the corresponding interrupt is disabled. This feature,
together with an ability to detect reference to the undefined variable
implemented by the FIUV bit l'Dentioned later, is intended to provide
the user with a debugging aid. If -0 occurs, it did not result from a
previous floating pOint arithmetic instruction.

Floating Point Data
Floating point data are stored in words of memory as illustrated in
Figures 11-2 and 11-3.

310

Chapter 11 - Floating Point

The FP11 provides for conversion of floating point to integer format
and vice versa. The processor recognizes single-precision integer (I)
and double-precision integer long (L) numbers, which are stored in
standard 2's complement form.

F FORMAT, FLOATING POINT SINGLE PRECISION

00

'2 LI __ ~ __ L-~ __ ~ __ L-~ __ F_RLA_CT_'O~N_<_'5~OL> __ ~~ __ -L __ ~ __ L-~ __ ~

Figure 11-2 Single-Precision Format

o FORMAT, FLOATING POINT DOUBLE PRECISION
15 00

'6LI __ ~ __ L-~ __ ~ __ L-~ __ F_RLAC_T_'O~N_<_'5_'~L-~ __ ~ __ ~~ __ -L __ ~-J
15 00

'4LI __ ~ __ L-~ __ ~ __ ~~ __ F_RLA_CT_'O~N_<_3'_'L6_>~ __ ~ __ ~~L--L __ ~~
15 00

'2LI __ ~ __ L-~ __ ~ __ ~~ __ F_RLA_CT_'O~N_<_47_'3L2_>~ __ -L __ ~~L--L __ ~~
IS 07 06 00

M'MORY ·0 IL---S---LI __ -L __ -,--~ ___ EXJ..P __ -'-__ L-~ __ --L.. __ ~---'L-F_R..L.AC_T_'..J54,-'4_8/_< ~~ __ -'

S' SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON VANISHING NUMBERS.

FRACTION - 23 BITS IN F FORMAT, 55 BITS IN 0 FORMAT t ONE HIDDEN
BIT {NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT

Figure 11-3 Double-Precision Format

FLOATING POINT STATUS REGISTER (FPS)
This register provides mode and interrupt control for the floating point
unit and conditions resulting from the execution of the previous in­
struction.

For the purposes of discussion, a set bit = 1 and a reset bit = O. Three
bits of the FPS register control the modes of operation .

• Single/Double: floating point numbers can be either single- or dou­
ble-precision .

• Short/Long: integer numbers can be 16 bits or 32 bits.

311

Chapter 11 - Floating Point

• Chop/Round: the result of a floating point operation can be either
chopped or rounded. The term "chop" is used instead of "truncate"
in order to avoid confusion with truncation of series used in approxi­
mations for function subroutines .

• Normal/Maintenance: A special maintenance mode is available on
the FP11-C.

I FORMAT, INTEGER SINGLE PRECISION
00

NUMBER <15:0>

L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00

MEMORY'O 1L.-,--L.I _ _'_----'"----'-_-'-----' __ NU M_B_ER <_30_'.J..6>_-'--_L.-....J.._-'-----'"----'----'

'5 00

.2~1 _ _'_--'_--'-_~--' _ _'__NU M_B_ER.J..<_'5_0~> _ _'__.L._--' _ _'__L.---L.~
WHERE 5 '" SIGN OF NUMBER

NUMBER'" 15 BITS IN I FORMAT, 31 BITS IN l FORMAT.

Figure 11-4 2'sCompiement Format

RESERVEO RESERVED

Figure 11-5 Floating Point Status Register

The FPS register contains an error flag and four condition codes (five
bits): carry, overflow, zero, and negative, which are equivalent to the
CPU condition codes.

The floating pOint processor recognizes seven floating point excep­
tions:

• Detection of the presence of the undefined variable in memory
• Floating overflow
• Floating underflow
• Failure of floating to integer conversion

• Maintenance trap (FP11-C only)
• Attempt to divide by zero
• Illegal floating opcode

312

Chapter 11 - Floating Point

For the first five of these exceptions, bits in the FPS register are
available to enable or disable interrupts individually. An interrupt on
the occurrence of either of the last two exceptions can be disabled
only by setting a bit which disables interrupts on all seven of the
exceptions as a group.

Of the 14 bits described above, five, the error flag and condition
codes, are set by the FPP as part of the output of a floating point
instruction. Any of the mode and interrupt control bits (except the
FP11-C FMM bit) may be set by the user; the LDFS instruction is
available for this purpose. These 14 bits are stored in the FPS register
as follows.

FPS Register Bits
Bit: 15 Name: Floating Error (FER)
Function: The FER bit is set by a floating point instruction if:

• Division by zero occurs
• Illegal opcode occurs
• Any of the remaining errors occur and the corresponding interrupt

is enabled

This action is independent of the FlO bit status.

Also note that the FPP never resets the FER bit. Once the FER bit is set
by the FPP, it can be cleared only by an LDFPS instruction (the RESET
instruction does not clear the FER bit). This means that the FER bit is
up to date only if the most recent floating pOint instruction produced a
floating point exception.

Bit: 14 Name: Interrupt Disable (FlO)
Function: If the FlO is set, all floating point interrupts are disabled.

The FlO bit is primarily a maintenance feature. It should normally be
clear. In particular, it must be clear if one wishes to assure that storage
of -0 by the FPP is always accompanied by an interrupt.

Throughout the rest of this chapter, it is assumed that the FlO bit is
clear in all discussions involving overflow, underflow, occurrence of
-0, and integer conversion errors.

Bit: 13
Function: Reserved for future DIGITAL use.

Bit: 12
Function: Reserved for future DIGITAL use.

Bit: 11 Name: Interrupt on Undefined Variable (FIUV)
Function: An interrupt occurs if FIUV is set and a -0 is obtained from
memory as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG,

313

Chapter 11 - Floating Point

ABS,TST, or any LOAD instruction. The interrupt occurs before exe­
cution except on NEG, ABS, and TST, for which it occurs after execu­
tion. When FIUV is reset, -0 can be loaded and used in any FPP
operation. Note that the interrupt is not activated by the presence of
-0 in an AC operand of an arithmetic instruction; in particular, trap on
-0 never occurs in mode O.

The FPP will not store a result of -0 without a simultaneous interrupt.

Bit: 10 Name: Interrupt on Underflow (FlU)
Function: When the FlU bit is set, floating underflow will cause an
interrupt. The fractional part of the result of the operation causing the
interrupt will be correct. The biased exponent will be too large by 4008 ,

except for the special case of 0, which is correct. An exception is
discussed later in the detailed description of the LDEXP instruction.

If the FlU bit is reset and if underflow occurs, no interrupt occurs and
the result is set to exact O.

Bit: 9 Name: Interrupt on Overflow (FIV)
Function: When the FIV bit is set, floating overflow will cause an
interrupt. The fractional part of the result of the operation causing the
overflow will be correct. The biased exponent will be too small by 4008 ,

If the FIV is reset and overflow occurs, there is no interrupt. The FPP
returns exact O.

Special cases of overflow are discussed in the detailed descriptions of
the MOD and LDEXP instructions.

Bit: 8 Name: Interrupt on Integer Conversion Error.(FIC)
Function: When the FIC bit is set and conversion to integer instruc­
tion fails, an interrupt will occur. If the interrupt occurs, the destination
is set to 0, and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as
detailed above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits
than can fit in the· short or long integer word specified by the FL bit (bit
6).

Bit: 7 Name: Floating Double-Precision Mode (FD)
Function: The FD bit determines the precision that is used for float­
ing point calculations. When set, double-precision is assumed; when
reset, single-precision is used.

Bit: 6 Name: Floating Long Integer Mode (FL)
Function: The FL bit is active in conversion between integer and
floating pOint format. When set, the integer format assumed is double­
precision 2's complement (i.e., 32 bits). When reset, the integer format

314

Chapter 11 - Floating Point

is assumed to be single-precision 2's complement (Le., 16 bits).

Bit: 5 Name: Floating Chop Mode (FT)
Function: When the FT bit is set, the result of any arithmetic
operation is chopped (or truncated). When reset, the result is round­
ed.

Bit: 4 Name: Floating Maintenance Mode (FMM)
Function: FP11-C only. When set, the FPP is in maintenance mode.
The FMM bit can be set only in Kernel mode.

Bit: 3 Name: Floating Negative (FN)
Function: FN is set if the result of the last floating point operation was
negative, otherwise it is reset.

Bit: 2 Name: Floating Zero (FZ)
Function: :=Z is set if the result of the last floating point operation was
0, otherwise it is reset.

Bit: 1 Name: Floating Overflow (FV)
Function: FV is set if the last floating point operation resulted in an
exponent overflow, otherwise it is reset.

Bit: 0 Name: Floating Carry (FC)
Function: FC is set if the last operation resulted in a carry of the most
significant bit. This can only occur in floating or double to integer
conversion.

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating point ex­
ceptions (location 244). The six possible errors are coded in the four­
bit floating exception code (FEC) register as follows:

2 Floating opcode error
4 Floating divide by zero
6 Floating or double to integer conversion error
8 Floating overflow
10 Floating underflow
12 Floating undefined variable
14 Maintenance trap (FP11-C only)

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register.

The FEC and FEA registers are updated when one of the following
occurs:

• Divide by zero

• "'ega' opcode
• Any of the other five exceptions with the corresponding interrupt

enabled

315

Chapter 11 - Floating Point

If one of the five exceptions occurs with the corresponding interrupt
disabled, the FEC and FEA are not updated. Inhibition of interrupts by
the FlO bit does not inhibit updating of the FEC and FEA, if an excep­
tion occurs. The FEC and FEA are not updated i1no exception occurs.
This means that the STST (Store Status) instruction will return current
information only if the most recent floating point instruction produced
an exception. Unlike the FPS register, no instructions are provided for
storage into theFEC and FEA registers.

FLOATING POINT OPTION INSTRUCTION ADDRESSING
Floating point option instructions use the same type of addressing as
the central processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except mode O. In mode 0 the operand is located in the
designated floating point accumulator, rather than in a central proces­
sor general register. The modes of addressing are as follows:

o = FP11 accumulator
1 = Deferred
2 = Autoinqrement
3 = Autoincrement deferred
4 = Autodecrement
5 = Autodecrement deferred
6 = Indexed
7 = Indexed deferred

Autoincrement and autodecrement operate on increments and
decrements of four for F format and eig ht for 0 format.

In mode 0, the user can make use of all six FP11 accumulators (ACO­
AC5) as source or destination. Specifying FP11 accumulators AC6 or
AC7 will result in an illegal opcode trap. In all other modes, which
involve transfer of data to or from memory or the general registers, the
user is restricted to the first four FP11 accumulators (ACO-AC3). When
reading or writing a floating point number from or to memory, the low
memory word contains the most significant word of the floating poi~t
number and the high memory word the least significant word.

ACCURACY
The descriptions of the individual instructions include the accuracy at
which they operate. An instruction or operation is regarded as "exact"
if the result is identical to an infinite precision calculation involving the
same operands. The a priori accuracy of the operands is thus ignored.
All arithmetic instructions treat an-operand whose biased exponent is

316

Chapter 11 - Floating Point

o as an exact 0 (unless FIUV is enabled and the operand is -0, in
which case an interrupt occurs). For all arithmetic operations, except
DIV, a 0 operand implies that the instruction is exact. The same holds
for DIV if the 0 operand is the dividend. But if the divisor is 0, division is
undefined and an interrupt occurs.

For nonvanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for floating mode or double
mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a
chopped or rounded result identical to the corresponding infinite pre­
cision operation chopped or rounded to the specified word length.
With two guard bits, a chopped result has an error bound of one least
significant bit (LSB). A rounded result has an error bound of % LSB.
Ttiese error bounds are realized by the KEF11-AA for all instructions,
and for most instructions by the FP11-A, FP11-C, and FP11-F. The
FP11-A, FP11-C, and FP11-F have an error bound greater than % LSB
for ADD and SUB. For the addition of operands of opposite sign or for
the subtraction of operands of the same sign in rounded double preci­
sion, the error bound is 3/4 LSB (FP11-C), or 33/64 LSB (FP11-A and
FP11-F) which is Slightly larger than the % LSB error bound for all
other rounded operations.

The error bound for the FP11-C differs from the FP11-A and FP11-F,
since the FP11-C carries three guard bits while the FP11-A and FP11-
F carry seven guard bits.

In this handbook, an arithmetic result is called exact if no nonvanish­
ing bits would be lost by chopping. The first bit lost in chopping Is
referred to as the rounding bit. The value of a rounded result is related
to the chopped result as follows:

• If the rounding bit is 1, the rounded result is the chopped result
incremented by one LSB

• If the rounding bit is 0, the rounded and chopped results are identi-
cal

It follows that:

• If the result is exact, rounded value = chopped value = exact value
• If the result is not exact, its magnitude

is always decreased by chopping

- is decreased by rounding if the rounding bit is 0
- is increased by rounding if the rounding bit is 1

Occurrence of floating point overflow and underflow is an·error
condition: the result of the calculation cannot be stored correctly be­
cause the exponent is too large to fit into the eight bits reserved for it.

317

Chapter 11 - Floating Point

However, the internal hardware has produced the correct answer. For
the case of underflow, replacement of the correct answer by ° is a
reasonable resolution of the problem for many applications. This is
done by the FPP if the underflow interrupt is disabled. The error in­
curred by this action is an absolute rather than a relative error; it is
bounded (in absolute value) by 2-128• There is no such simple resolu­
tion for the case of overflow. The action taken, if the overflow interrupt
is disabled, is described under FIV (bit 9).

The FIV and FlU bits provide you with an opportunity to implement
your own correction of an overflow or underflow condition. If such a
condition occurs and the corresponding interrupt is enabled, the
microcode stores the fractional part and the low eight bits of the bi­
ased exponent. The interrupt will take place, and you can identify the
cause by examining the FIV (floating overflow) bit or the FEC (floating
exception) register. For the standard arithmetic operations ADD, SUB,
MUL, and DIV, the biased exponent returned by the instruction bears
the following relation to the correct exponent generated by the micro­
code:

• On overflow, it is too small by 4008

• On underflow, if the biased exponent is 0, it is correct; if it is not 0, it
is too large by 4008

Thus, with the interrupt enabled, enough information is available to
determine the correct answer. You may, for example, rescale your
variables (via STEXP and LDEXP) to continue a calculation. The accu­
racy of the fractional part is unaffected by the occurrence of underflow
or overflow.

FLOATING POINT INSTRUCTIONS
Each instruction that manipulates a floating point number can operate
on either single- or double-precision numbers, depending on the state
of FD mode bit. Similarly, there is a mode bit FL that determines
whether 32-bit integers or 16-bit integers are used in conversion
between integer and floating point representation. FSRC and FDST
use floating point addressing modes; SRC and DST use CPU address­
ing modes.

In the descriptions of the floating point instructions, the operations of
the KEF11-AA, FP11-A, FP11-F, and FP11-C are identical, except
where explicitly stated otherwise.

318

Chapter 11 - Floating Point

DOUBLE OPERAND ADDRESSING

15 12 11 08 07 06 05 00

DC FOC AC FSRC,FDST,SAC,DST

SINGLE OPERAND ADDRESSING

15 12 11 06 05 00

DC FOC FSRC, FDST, SAC, DST

ac '" oeCODE '" 17
Foe", FLOATING QPCODE
AC" FLOATING POINT ACCUMULATOR (ACQ·AC3)
FSRC AND FDST USE fPP ADDRESSING MODES
SPC AND DST USE CPU ADDRESSING MODES

Figure 11-6 Single- and Double-Operand Addressing

Floating Point Instruction Format
Mnemonic Description

OC Opcode = 17

FOC

AC

fsrc

fdst

XL

XLL

XUL

JL

ABS[(X)]

EXP[(X)]

<

Floating Opcode

Contents of accumulator, as specified by
AC field of instruction

Address of floating pOint source operand

Address of floating point destination
operand

Fraction

Largest fraction that can be represented:
1 -2**(-24), FD=O, single precision
1 -2**(-56), FD= 1; double precision

Smallest number that is not identically zero:
2**(-128)

Largest number that can be represented:
2**(127) *XL

Largest integer that can be represented:
2**(15)-1 if FL=O, 2**(31)-1 if FL=1

Absolute value of contents of memory
location X

Biased exponent of contents of memory
location X

Less than

319

Chapter 11 - Floating Point

:S Less than or equal to

> Greater than

~ Greater than or equal to

¢ Not equal to

LSB Least significant bit

The accumulators are 32 or 64 bits long, depending on the instruction
and FPP status. In a 32-bit instruction, only the leftmost 32 bits are
used.

The six floating pOint accumulators are used in numeric calculations
and in interaccumulator data transfers. The first four accumulators
(ACO-AC3) are also used for all data transfers between the FPP and
the general registers, or memory.

ABSF
ABSD
Make Absolute Floating/Double 1706 FDST

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

06 05

ABSF FDST

If (fdst) < 0, (fdst) - -(fdst).

If EXP[(fdst)] = 0, (fdst) - exact o.
For all other cases, (fdst) - (fdst).

FC-O
FV-O
FZ - 1 if (fdst) = 0, else FZ - 0
FN-O

FDST

Set the contents of fdst to its absolute value.

00

If FIUV is enabled, trap on -0 occurs after execution.

Overflow and underflow cannot occur.

These instructions are exact.

320

Special
Comment:

ADDF
ADDD

Chapter 11 - Floating Point

If a -0 is present in memory and the FIUV bit is
enabled, then an exact 0 is stored in memory. The
condition codes reflect an exact 0 (FZ -1).

Add Floating/Double 172(AC)FSRC

15

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

12 11 08 01 06 05 00

o I AC FSRC

ADDF FSRC,AC

Let SUM = AC + (fsrc). If underflow occurs and FlU
is not enabled, AC - exact O.

If overflow occurs and FIV is not enabled, AC -
exactO.

For all other cases, AC - SUM.

FC-O
FV - 1 if overflow occurs, else FV - 0
FZ - 1 if AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

Add the contents of fsrc to the contents of AC. The
addition is carried out in single or double precision
and is rounded or chopped according to the values
of the FD and FT bits in the FPS register. The result is
stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on -0 in fsrc occurs before
execution.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor­
rectly stored. The' ~xponent part is too small by 4008

for overflow. It is too large by 4008 for underflow,
except for the special case of 0, which is correct.

321

Accuracy:

Special
Comment:

CFCC

Chapter 11 - Floating Point

Errors due to o'lerflow and underflow are described
above. If neither occurs, then for oppositely signed
operands with an exponent difference of 0 or 1 j the
answer returned is exact if a loss of significance of
one or more bits can occur. Note that these are the
only cases for which loss of significance of more
than one bit can occur. For all other cases the result
is inexact with error bounds of:
1. 1 LSB in chopping mode with either single or

double precision.
2. % LSB in rounding mode with either single (all

FP11 sand KEF11-AA) or double precision (for
KEF11-AA); 0/4 LSB (FP11-C) or 33/64 LSB
(FP11-A an~ -F) in rounding mode with double
precision.

The undefined variable -0 can occur only in con­
junction with overflow or underflow. It will be stored
in AC only if the corresponding interrupt is enabled.

Copy Floating Condition Codes 170000

Format:

Operation:

Description:

CLRF
CLRD

12 11

1 I 0 I 0

CFCC

C-FC
V-FV
Z-FZ
N-FN

Copy the FPP condition codes into the CPU's condi­
tion codes.

Clear Floating/Double 1704 FDST

00

FDST

322

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

CMPF
CMPD

Chapter 11 - Floating Point

CLRF FDST

(fdst) - exact 0

FC-O
FV-O
FZ-1
FN-O

Set (fdst) to o. Set FZ condition code, clear other
condition code bits.

No interrupts will occur.

Overflow and underflow cannot occur.

The instructions are exact.

Compare Floating/Double 173(AC+4)FSRC

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Special
Comment:

CMPF FSRC,AC

(fsrc) -AC

FC-O
FV-O
FZ - 1 if (fsrc) = 0, else FZ - 0
FN - 1 if (fsrc) < 0, else FN - 0

00

FSRC

Compare the contents of (fsrc) with the accumulator.
Set the appropriate floating point condition codes.
The accumulator and (fsrc) are left unchanged
except as noted below.

If FIUV is enabled, trap on -0 occurs before execu­
tion.

These instructions are exact.

An operand which has a biased exponent of 0 is
treated as if it were an exact O. In this case, where
both operands are 0, the FPP will store an exact 0 in
AC.

323

DIVF
DIVD

Chapter 11 - Floating Point

Divide Floating/Double 174(AC+4)FSRC

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

08 07 06 05 00

FSAC

D1VF FSRC,AC

If EXP[(fsrc)] = 0, AC - AC and the instruction is
aborted.

If EXP [AC] = 0, AC -
exactO.

For all other cases, let QUaT = AC/(fsrc).

If underflow occurs and FlU is not enabled, AC­
exact O.

If overflow occurs and FIV is not enabled, AC - ex­
act O.

For all other cases, AC - QUaT.

FC-O
FV -1 if overflow occurs, else FV - 0
FZ - 1 if AC = 0, else FZ - 0
FN -1 if AC < 0, else FN - 0

If either operand has a biased exponent of 0, it is
treated as an exact O. For fsrc this would imply divi­
sion by 0; in this case the instruction is aborted, the
FEC register is set to 4 and an interrupt occurs. Oth­
erwise the quotient is developed to single or
double precision with two guard bits for correct
rounding. The quotient is rounded and chopped ac­
cording to the values of the FD and FT bits in the FPS
register. The result is stored in the AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on -0 in (fsrc) occurs before
execution.

If (fsrc) = 0, interrupt traps on attempt to divide by O.

324

Accuracy:

Special
Comment:

LDCDF
LDCFD

Chapter 11 - Floating Point

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor­
rectly stored. The exponent part is too small by 4008

for overflow. It is too large by 4008 for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described
above. If none of these occur, the error in the quo­
tient will be bounded by 1 LSB in chopping mode
and by V2 LSB in rounding mode.

The undefined varIable -0 can occur only in
conjunction with overflow and underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

Load and Convert from Double to Floating
and from Floating to Double 177(AC+4)FSRC

I :5 I 1

Format:

Operation:

Condition
Codes:

DescrIption:

12 11 08 07 06 05 00

1 I 1 I AC FSRC

LDCDF FSRC,AC

If EXP[(fsrc)] = 0, AC - exact o.
If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, AC - exact O.

In all other cases, AC - Cxy[(fsrc)], where Cxy spec­
ifies conversion from floating mode x to floating
modey.

x = D, Y = F if FD = 0 (Single) LDCDF
x = F, Y = D if FD = 1 (double) LDCFD

FC-O
FV -1 if conversion produces overflow, el~e FV - 0
FZ - 1 if AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

If the current mode is floating mode (FD = 0), the
source is assumed to be a double-precision number
and is converted to single precision. If the floating
chop bit (FT) is set, the number is chopped, other­
wise the number is rounded.

325

Interrupts:

Accuracy:

LDCIF LDCLF
LDCID LDCLD

Chapter 11 - Floating Point

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision number
and is loaded left-justified into AC. The lower half of
AC is cleared.

If FIUV is enabled, the trap on -0 occurs before
execution. However, the condition codes will reflect
a fetch of -0 regardless of the FIUV bit.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding with
LDCDF causes overflow. AC - overflowed result.
This result must be +0 or -0.

Underflow cannot occur.

LDCFD is an exact instruction. Except for overflow,
described above, LDCDF incurs an error bounded
by 1 LSB in chopping mode and by % LSB in round­
ing mode.

Load and Convert Integer or Long Integer
to Floating or Double Precision 177(AC)SRC

15

11 I 1

Format:

Operation:

Condition
Codes:

Description:

08 07 06 05 00

1 I 0 I AC SRC

LDCIF SRC,AC

AC - Cjx[(src)), where Cjx specifies conversion
from integer mode j to floating mode y.

j = I if FL = 0, j = L if FL = 1
x = F if FD = 0, x = D if FD = 1

FC-O
FV-O
FZ - 1 if AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

Conversion is performed on the contents of SRC
from a 2's complement integer with precision j to a
floating point number of precision x. Note that j and x
are determined by the state of the mode bits FL and
FD.

If a 32-bit integer is specified (L mode) and SRC has
an addressing mode of 0 or immediate addressing
mode is specified, the 16 bits of the source register

326

Interrupts:

Accuracy:

LDEXP
Load Exponent

15

Format:

Operation:

Condition
Codes:

Description:

Chapter 11 - Floating Point

are left-justified and the remaining 16 bits loaded
with Os before conversion.

In the case of LDCLF, the fractional part of the float­
ing point representation is chopped or rounded to 24
bits according to the state of FT (1 = chop, 0 =
round).

None; (SRC) is not floating point, so trap on -0 can­
not occur.

LDCIF, LDCID, and LDCLD are exact instructions.
The error incurred by LDCLF is bounded by 1 LSB in
chopping mode and by 1h LSB in rounding mode.

176(AC+4)SRC

12 11 OB 07 06 05 00

SRC

LDEXP SRC,AR

If -2008 < (src) < 2008, EXP[ACI- SRC +2008 and
the rest of AC is unchanged.

If (src) > 1778 and FIV is enabled,
EXP[ACI-[(src) + 20081<7:0> on the FP11-A,-F
and KEF11-AA.

EXP[ACI- (src)<6:0> on the FP11-C.

If (src) > 1778 and FIV is disabled, AC - exact O.

If (src) < -1778 and FlU is enabled,
EXP[ACI- [(src) + 20081 <7:0> on the FP11-A, -F
and KEF11-AA.

EXP[ACI- (src)<6:0> on the FP11-C.

If (src) < -1778 and FlU is disabled, AC - exact O.

FC-O
FV -1 if (SRC) > 1778, else FV-O
FZ -1 if (AC) = 0, else FZ-C
FN - 1 if (AC) < 0, else FN - 0

Change AC so that its unbiased exponent = (src).
That is, convert (src) from 2's complement to excess

327

Interrupts:

Accuracy:

LDF
LDD

Chapter 11 - Floating Point

2008 notation and insert it in the EXP field of AC. This
is a meaningful operation only if ABS[(src)] S 1778.

If (src) > 1778, the result is treated as overflow. If
(src) < -1778, the result is treated as underflow.
Note that the KEF11-AA does not treat these abnor­
mal conditions as the FP11-C do, but it does treat
them as the FP11-A and FP11-F do.

No trap on -0 in AC occurs, even if FIUV is enabled.

If (src) > 1778 and FIV is enabled, trap on overflow
will occur.

If (src) < -17711 and FlU is enabled, trap on under­
flow will occur.

Errors due to overflow and underflow are described
above. If EXP[AC] = 0 and (src) ¢ -200, AC
changes from a floating point number treated as 0 by
all floating arithmetic operations to a nonzero num­
ber. This is because the insertion of the "hidden" bit
in the microcode implementation of arithmetic in­
structions is triggered by a nonvanishing value of
EXP.

For all other cases, LDEXP implements exactly the
transformation of a floating pOint number (2**K) * f
into (2**(src)) * f where % S ABS(f) < 1.

Load Floating/Double 172(AC+4)FSRC

Format:

Operation:

Condition
Codes:

. Description:

12 t1

LDFFSRC,AC

AC -(fsrc)

FC-O
FV-O

08 07 06 05

FZ - 1 if AC = 0, else FZ - 0
FN-1 ifAC < O,elseFN-O

00

'SRC

Load single- or double-precision number into AC.

328

Interrupts:

Accuracy:

Special
Comment:

LDFPS

Chapter 11 - Floating Point

If FIUV is enabled, trap on -0 occurs before AC is
loaded. However, the condition codes will reflect a
fetch -0 regardless of the FIUV bit.

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit use of -0 in a subsequent
floating point instruction if FIUV is not enabled and
(fsrc) = -0.

Load FPP Program Status 1701 SRC

15

Format:

Operation:

Description:

Special
Comment:

MODF
MODO

12 "

LDFPSSRC

FPS -(src)

06 05

SRC

Load FPP status register from (src).

00

Bits 13, 12, and 4 should not be used for the user's
own purposes, since these bits are not recoverable
by the STFPS instruction. Bit 4 may be set in Kernel
mode if the FPP implements maintenance mode.

Multiply ahd Separate Integer
and Fraction Floating/Double 171(AC+4)FSRC

Format:

Description
and
Operation:

00

FSRC

MODF FSRC,AC

This instruction generates the product of its two
floating point operands, separates the product into
integer and fractional parts, and then stores one or
both parts as floating point numbers.

329

Chapter 11 - Floating Point

Let PROD = AC * (fsrc) so that in
Floating point: ABS [PROD] = (2**K) * f

where
1h:S f < 1 and
EXP[PROD] = (200 + K) pctal

Fixed point binary: PROD = N + 9 with
N = .INT[PROD] = the integer part of PROD
and
g = PROD - INT[PROD] = the fractional part
of PROD with 0 :S g < 1

Both Nand 9 have the same sign as PROD. They are
returned as follows:

If AC is an even-numbered accumulator (0 or
2), N is stored in AC+1 (1 or 3), and g is stored
inAC.

If AC is an odd-numbered accumulator, N is
not stored and g is stored in AC.

The two statements above can be combined as fol­
lows:

N is returned to ACv1 and g is returned to AC,
where v means OR.

Five special cases occur, as indicated in the follow­
ing formal description with L = 24 for floating mode
and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, ACv1 -
N, chopped to L bits, AC - exact O.

Note that EXP[N] is too small by 4008 and that
-'-0 can get stored in ACv1.

If FIV is not enabled, ACv1 - exact 0, AC -
exact 0, and -0 will never be stored.

2. If 2**L :S ABS[PROD] and no overflow, ACv1 -
N, chopped to L bits, AC - exact O.

The sign and EXP of N are correct, but low-order
bit information is lost.

3. If 1:S ABS[PROD] < 2**L, ACv1 - N, AC - g

The integer part N is exact. The fractional part g
is normalized, and chopped or rounded in ac­
cordance with FT. Rounding may cause a return
of ± unity for the fractional part. For L = 24, the

330

Condition
Codes:

Interrupts:

Accuracy:

Applications:

Chapter 11 - Floating Point

error in g is bounded by 1 LSB in chopping
mode and by % LSB in rounding mode. For L =
56, the error in g increases from the above limits
as ABS[N] increases above 2**L because only
59 bits (64 bits for KEF11-AA) of PROD are gen­
erated.

If 2**p S ABS[N] < 2**(p**1), with p > 2 (7 for
KEF11-AA) the low-order p-2 (p-7 for KEF11-
AA) bits of g may be in error.

4. If ABS[PROD] < 1 and no underflow, ACv1 -
exact 0 and AC - g.

There is no error in the integer part. The error in
the fractional part is bounded by 1 LSB in chop­
ping mode and % LSB in rounding mode.
Rounding may cause a return of ± unity for the
fractional part.

5. If PROD underflows and FlU is enabled, ACv1 -
exact 0 and AC - g.

Errors are as in case 4, except that EXP[AC] will
be too large by 4008 (if EXP = 0, it is correct).
Interrupt will occur and -0 can be stored in AC.

If FlU is not enabled, ACv1 - exact 0 and AC -
exactO.

For this case the error in the fractional part is
less than 2**(-128).

FC-O
FV - 1 if PROD overflows, else FV - 0
FZ - If AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

If FIUV is enabled, trap on -0 in FSRC occurs before
execution.

Overflow and underflow are discussed above.

Discussed above.

1. Binary to decimal conversion of a proper "frac­
tion. The following algorithm, using MOD, will
generate decimal digits D(1), D(2) ... from left to
right.

331

MULF
MULD

Chapter 11 - Floating Point

Initialize:

While X ¢ ado
Begin PROD - X * 10;

1-1+1;
D (I) -INT(PROD);
X - PROD-INT(PROD);
End;

1-0;
X-numberto
be converted;
ABS[X] < 1;

This algorithm is exact. It is case 3 in the de­
scription because the number of nonvanishing
bits in the fractional part of PROD never
exceeds L, and hence neither chopping nor
rounding can introduce error.

2. To reduce the argument of a trigonometric func­
tion.

ARG * 2/PI = N + g. The low two bits of N identi.:
fy the quadrant, and g is the argument reduced
to the first quadrant. The accuracy of N+g is
limited to L bits because of the factor 2/PI. The
accuracy of the reduced argument thus de­
pends on the size of N.

3. To evaluate the exponential function e**x,
obtain x * (log e base 2) = N + g, then e**x =
(2**N) * (e**(g*ln 2».

The reduced argument is g * In2 < 1 and the
factor 2**N is an exact power of 2, which may be
scaled in at the end via STEXP, ADD N to EXP
and LDEXP. The accuracy of N + g is limited to L
bits because of the factor (log e base 2). The
accuracy of the reduced argument thus de­
pends on the size of N.

Multiply Floating/Double 171 (AC)FSRC

00

FSRC

332

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Special
Comment:

Chapter 11 - Floating Point

MULF FSRC,AC

Let PROD = AC • (fsrc).

If underflow occurs and FlU is not enabled, AC -
exactO.

If overflow occurs and FIV is not enabled, AC -
exactO.

For all other cases, AC - PROD.

FC-O
FV -1 if overflow occurs, else FV - 0
FZ - 1 if AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

If the biased exponent of either operand is 0, (AC) -
exact O. For all other cases, PROD is generated to 48
(32 for KEF11-AA) bits for floating mode and 59 (64
for KEF11-AA) bits for double mode. The product is
rounded or chopped according to the value of the FT
bit, and is stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on -0 in (fsrc) occurs before
execution.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor­
rectly stored. The exponent part is too small by 4008

for overflow. It is too large by 4008 for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described
above. If neither occurs, the error incurred is bound­
ed by 1 LSB in chopping mode and % LSB in round­
ing mode.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

333

NEGF
NEGD

Chapter 11 - Floating Point

Negate Floating/Double 1707 FDST

'5

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Special
Comment:

SETF

r2 11 06 05 00

FDST

NEGF -(fdst)

(fdst) - -(fdst) if EXP [(fdst)] ¢ 0, else (fdst) - exact
O.

FC-O
FV-O
FZ -1 if (fdst) = 0, else FZ - 0
FN - 1 if (fdst) < 0, else FN - 0

Negate single- or double-precision number, store
result in same location (fdst).

If FIUV is enabled, trap on -0 occurs after execution.

Overflow and underflow cannot occur.

These instructions are exact.

If a -0 is present in memory and the FIUV bit is
enabled, then the FPP stores an exact 0 in memory.
The condition codes reflect an exact 0 (FZ - 1).

Set Floating Mode 170001

Format:

Operation:

Description:

12 11

SETF

FD-O

Set the FPP to single-precision mode.

334

Chapter 11 - Floating Point

SETD
Set Floating Double Mode

Format:

Operation:

Description:

SETI

SETD

FD-1

Set the FPP to double-precision mode.

Set Integer Mode

'5 12 11

Format: SETI

Operation: Fl-O

Description: Set the FPP for short integer data.

SETL

Set long Integer Mode

Format:

Operation:

Description:

SETl

Fl-1

Set the FPP for long integer data.

335

170011

177002

177012

STCFD
STCDF

Chapter 11 - Floating Point

Store and Convert from Floating to Double
and from Double to Floating 176(AC)FDST

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

:2 I :' I 1 I 0 I ~ I 07 AC 06 05

00

FDST

STCFD AC,FDST

If AC = 0, (fdst) - exact o.
If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, (fdst) - exact o.
In all other cases, (fdst) - Cxy[AC1, where Cxy spec­
ifies conversion from floating mode x to floating
modey.

x = F, Y = 0 if FD = 0 (single) STCFD
x = 0, y = F if FD = 1 (double) STCDF

FC-O
FV -1 if conversion produces overflow, else FV - 0
FZ - 1 if AC = 0, else FZ - 0
FN -1 if AC < 0, else FN - 0

If the current mode is single precision, the accumu­
lator is stored left-justified in FDST and the lower
half is cleared.

If the current mode is double precision, the contents
of the accumulator are converted to single precision,
chopped or rounded depending on the state of FT,
and stored in FDST.

Trap on -0 will not occur even if FIUV is enabled
because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding with
STCDF causes overflow. (FDST) - overflowed re­
sult. This must be +0 or -0.

STCFD is an exact instruction. Except for overflow,
described above, STCDF incurs an error bounded
by 1 LSB in chopping mode and by % LSB in round­
ing mode.

336

STF
STD

Chapter 11 - Floating Point

Store Floating/Double 174(AC)FDST

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Special
Comment:

STCFI STCDI
STCFl STCDl

12 11

STFAC,FDST

(fdst) -AC

FC-FC
FV-FV
FZ-FZ
FN-FN

08 07 06 05

o I AC

DC

FQST

Store single- or double-precision number from AC.

These instructions do not interrupt if FIUV is en­
abled, because the -0, if present, is in AC, not in
memory.

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit storage of a -0 in memory
from AC. There are two conditions in which -0 can
be stored in AC of the FPP. One occurs when under­
flow or overflow is present and the corresponding
interrupt is enabled. A second occurs when an LDF,
LDD, LDCDF, or LDCFD instruction is executed and
the FIUV bit is disabled.

Store and Convert from Floating or Double
to Integer or Long Integer 175(AC+4)DST

Format:

Operation:

12 11 08 07 06 05 00

1 I AC DST

STCFI AC,DST

(dst) -Cxj[AC] if -JL-1 < CXj[AC] < JL+1, else

337

Condition
Codes:

Description:

Interrupts:

·Special
Comment:

Chapter 11 - Floating Point

(dst) - 0, where Cjx specifies conversion from float­
ing mode x to integer mode j.

j = I if FL = 0, j = L if FL = 1
x = F if FD = 0, x = D if FD = 1

JL is the largest integer

2 15_1 for FL = 0
231 _1 for FL = 1

C, FC - 0 if -JL-1 < Cxj[AC] < JL+1, else C, FC
-1
V,FV-O
Z, FZ -1 if (dst) = 0, else Z, FZ-O
N, FN -1 if (dst) < 0, else N, FN-O

Conversion is performed from a floating point repre­
sentation of the data in the accumulator to an integer
representation.

If the conversion is to a 32-bit word (L mode) and an
addressing mode of 0 or immediate addressing
mode is specified, only the most significant 16 bits
are stored in the destination register.

If the operation is out of the integer range selected
by FL, FC is set to 1 and the contents of the dst are
set to O.

Numbers to be converted are always. chopped (rath­
er than rounded) before conversion. This is true
even when the chop mode bit FT is cleared in the
FPS register.

These instructions do not interrupt if FIUV is en­
abled, because the -0, if present, is in AC, not in
memory.

If FIC is enabled, trap on conversion failure will oc­
cur.

These instructions store the integer part of the float­
ing point operand, which may not be the integer
most closely approximating the operand. They are
exact if the integer part is within the range implied by
FL.

338

STEXP
Store Exponent

Format:

Operation:

.Condition
Codes:

Description:

Interrupts:

Accuracy:

STFPS

Chapter 11 - Floating Point

08 07 06 05

o I AC

STEXP AC,OST

(dst) - EXP[AC] -2008

C,FC-O
V,FV-O

OST

Z, FZ -1 if (dst) = 0, else Z, FZ-O
N, FN -1 if (dst) < 0, else N, FN-O

175(AC)OST

00

Convert AC's exponent from excess 2008 notation to
2's complement and store the result in dst.

This instruction will not trap on -0.

Overflow and underflow cannot occur.

This instruction is exact.

Store FPP Program Status 17020ST

Format:

Operation:

Description:

Special
Comment:

STFPS OST

(dst) -FPS

06 05

Store FPP's status register in dst.

00

OST

Bits 13, 12, and 4 (if Maintenance Mode is not imple­
mented) are loaded with O. All other bits are the cor­
responding bits in the FPSs.

339

STST
Store FPP Status

Format:

Operation:

Description:

SUBF
SUBD

Chapter 11- Floating Point

STSTDST

(dst) -FEC
(dst + 2) - FEA

DST
!

Store the FEC and FEA in dst and dst+2.

NOTE

1703 DST

00

1. If the destination mode specifies a general
register or immediate addressing, only the FEC
is saved.

2. The information in these registers is current only
if the most recently executed floating point in­
struction caused a floating point exception.

Subtract Floating/Double 173(AC)FSRC

IS

Format:

Operation:

Condition
Codes:

12 11 08 07 06 05 00

o I AC FSRC

SUBF FSRC,AC

Let DIFF = AC - (fsrc).

If underflow occurs and FlU is not enabled, AC -
exactO.

If overflow occurs and FIV is not enabled, AC­
exactO.

For all cases, AC - DIFF.

FC-O
FV -1 if overflow occurs, else FV - 0

340

Description:

Interrupts:

Accuracy:

Special
Comment:

Chapter 11 - Floating Point

FZ - 1 if AC = 0, else FZ - 0
FN - 1 if AC < 0, else FN - 0

Subtract the contents of fsrc from the contents of
AC. The subtraction is carried out in single or double
precision and is rounded or chopped according to
the values of the FD and FT bits in the FPS register.
The result is stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in
AC.

If FIUV is enabled, trap on -0 in fsrc occurs before
execution.

If overflow or underflow occurs and if the corres­
ponding interrupt is enabled, the trap occurs with
the faulty result in AC. The fractional parts are cor­
rectly stored. The exponent part is too small by 4008

for overflow. It is too large by 4008 for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described
above. If neither occurs, then for like signed oper­
ands with an exponent difference of 0 or 1, the
answer returned is exact if a loss of significance of
one or more bits can occur. Note that these are the
only cases for which loss of significance of more
than one bit can occur. For all other cases, the result
is inexact with error bounds of:

1. 1 LSB in chopping mode with either single or
double precision

2. % LSB in rounding mode with either single (all
FP-11 sand KEF11-AA) or double precision
(KEF11-AA only); % LSB (FP11-C) and 33/64
LSB (FP11-A and FP11-F) in rounding mode
with double precision.

The undefined variable -0 can occur only in con­
junction with overflow or underflow. It will be stored
in AC only if the corresponding interrupt is enabled.

341

TSTF
TSTD

Chapter 11 - Floating Point

Test Floating/Double 1705 FDST

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

12 11

TSTFFDST

(fdst)

FC-O
FV-O

06 05

FZ - 1 if (fdst) = 0, else FZ - 0
FN - 1 if (fdst) < 0, else FN - 0

00

FDST

Set the FP11 condition codes according to the con­
tents of fdst.

If FIUV is set, trap on -0 occurs after execution.

Overflow and underflow cannot occur.

These instructions are exact.

342

343

344

CHAPTER 12

COMMERCIAL INSTRUCTION SET

Commercial Instruction Set
The PDP-11 Commercial Instruction set (CIS11) is applicable to both
the PDP-11/44 and PDP-11/24 processors, and consists of the follow­
ing extended instruction groups:

07602X
07603X
07604X
07605X
07606X
07607X
07613X
07614X
07615X
07617X

Commercial Load 2 Descriptors
Character String Move
Character String Search
Numeric String
Commercial Load 3 Descriptors
Packed String
Character String Move (in-line)
Character String Search (in-line)
Numeric String (in-line)
Packed String (in-line)

These include instructions which operate on character strings and on
decima.1 numbers. Each generic type of instruction is provided in two
forms. The essential difference between the two forms is the manner
in which operands are delivered to the instruction. The first form is the
"register" form, where operands are implicitly obtained from the gen­
eral registers. The second form is the "in-line" form, where operands
or word address pOinters to operands follow the opcode word in the
instruction stream. The mnemonic for the in-line form is the mnemonic
for the register form suffixed with the letter "I." The condition codes
are set identically for both forms. The in-line forms minimize register
modification.

Instructions are also provided which efficiently load operands into the
general registers.

UNPREDICTABLE Conditions
"UNPREDICTABLE" means that the outcome is indeterminate and
non repeatable. Either the result of an instruction or the effect of an
instruction can be UNPREDICTABLE. When the results of an instruc­
tion are UNPREDICTABLE, the condition codes and destination oper­
ands (but not their descriptors) will contain UNPREDICTABLE values;
destinations may not even contain valid results. When the effect of an
instruction is UNPREDICTABLE, the entire user or process state, and
not only the portion typically used by the instruction, will be UNPRED­
ICTABLE. In a machine with multiple modes and address spaces, an

345

Chapter 12 - Commercial Instruction Set

UNPREDICTABLE operation in a less privileged mode will not affect
the state of a. more privileged mode, nor will it result in accesses to
memory from user mode which are outside the mapped limits of the
user's program.

Note that architectural constrai.nts exist on UNPREDICTABLE effects.
In particular, an UNPREDICTABLE effect which manifests itself as a
trap must meet all the requirements for the particular trap.

Character Data Types
There are three different character data types. The "character" is a
single byte, and is an abbreviated string of length 1. The "character
string" is a contiguous group of bytes in memory. The third is a "char­
acter set."

The character is an 8-bit byte:

o

ALI __________ c_"a_r ________ ~

The character is used as an operand by CIS11 instructions. When it
appears in a general register, the character is in the low-order half; the
high-order half of the register must be zero. When it appears in the
instruction stream, the character is in the low-order half of a word; the
high-order half of the word must be zero. If the high-order half of a
word which contains a character is nonzero, the effect of the
instruction which uses it will be UNPREDICTABLE.

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by its most
significant character (lowest address). The highest address is the least
significant character. It is specified by a two-word descriptor with the
attributes of length and lowest address. The length is an unsigned
binary integer which represents the number of characters in the string
and may range from 0 to 65,535. A character string with zero length is
said to be vacant: Its address is ignored. A character string with non­
zero length is said to be occupied.

The character string descriptor is used as an operand by CIS11 in­
structions. It appe~rs in two consecutive general registers, or in two
consecutive words in memory pointed to by a word in the instruction
stream. The following figure shows the descriptor for a character
string of length "n" starting at address "A" in memory:

346

Chapter 12 - Commercial Instruction Set

15 o
R,

RIC+ 1

,.. I
OR p.,+2 A

The following figure shows the character string in memory:

7 0

A I MOST SIG CHAR

A+l

A+n-l LEAST SIG CHAR

A "character set" is a subset of the 256 possible characters that can be
encoded in a byte. It is specified by a descriptor which consists of the
address of a 256-byte table and an 8-bit mask. The address is of the
zeroeth byte in the table. Each byte in the table specifies up to eight
orthogonal character subsets of which the corresponding character is
a member. The mask selects which combinations of these orthogonal
subsets constitute the entire character set. In effect, each bit in the
mask corresponds to one of eight orthogonal subsets that may be
encoded by the table. The mask specifies the union of the selected
subsets into the character set. Typical sets would be: uppercase,
lowercase, nonzero digits, end of line, etc.

Operationally, a character (char) is considered to be in the character
set if the evaluation of (M[table.adr+char] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is zero.
Each byte in the table indicates which combination of up to eight
orthogonal character subsets (i.e., one for each of the eight bit vectors
00000001 2 000000102 000001002 000010002 000100002 001000002

010000002 and 100000002) the corresponding character is a member.
The mask specifies which union of the eight orthogonal character
subsets constitute the total character set. For example, if the eight-bit
vector 00000001 2 appearing in the table corresponds to the character
subset of all uppercase alphabetic characters, 000000102 appearing in

347

R.

Chapter 12 - Commercial Instruction Set

the table corresponds to the character subset of all lowercase al­
phabetic characters, and 000001002 appearing in the table corres­
ponds to the decimal digits, then using the mask 00000011 2 with this
table specifies the character set of all alphabetic characters, and using
the mask 00000111 2 specifies the character set of all alphanumeric
characters.

The character set descriptor is used as an operand by CIS11 intruc­
tions. It appears in two consecutive general registers, or in two conse­
cutive words in memory pOinted to by a word in the instruction stream.
If the high-order half of the first descriptor word is nonzero, the effect
of an instruction which uses a character set""';ill be UNPREDICTABLE.

15 7

0 mask
OR

Rx+l
." I
.plr+2 TABLE ADDRESS

Character String Instructions
The character string operations conveniently provide most of the
common, as well as time-consuming, functions that are encountered
in commercial data and text processing applications.

Instructions are provided to move and to search character strings.

Character String Move Instructions

MOVC(I)

MOVRC(I)

MOVTC(I)

Move character

Move reverse justified character

Move translated character

Character String Search Instructions

LOCC(I) Locate character

SKPC(I) Skip character

SCANC(I) Scan character

SPANC(I) Span character

CMPC(I) Compare character

MATC(I) Match character

348

0

Chapter 12 - Commercial Instruction Set

The character string move instructions use character string descrip­
tors as operands. These descriptors specify a source and a destina­
tion character string. The contents of the source are moved to the
destination with alignment at either the most significant character as in
MOVC(I) and MOVTC(I), or the least signficant character as in
MOVRC(I). If the source is longer than the destination, characters are
truncated from the side opposite that of the alignment; if the destina­
tion is longer than the source, the destination is completed with fill
characters on the side opposite that of the alignment. The MOVTC(I)
instructions move a translated source string to a destination string.

The character string search instructions use a character string de­
scriptor as one operand. The other operand is 'either a character, a
character string descriptor, or a character set descriptor. These in­
structions are used to examine the source string to find the presence
or absence of characters. The source string is processed from most
significant to least significant character.

Conceptually, these instructions may be divided into three classes:

1. Character String Searches - CMPC(I) compares two character
strings. The condition codes are set according to the comparison
of the corresponding most significant unequal characters.
MATC(I) finds an object string within a source string. This is the
"instring" function that languages and text processing systems
provide.

2. Character Searches - LOCC(I) finds the first occurrence of a
given character in a string. SKPC(I) skips to the first nonoccur­
rence of a given character in a string.

3. Character Set Searches - In these instructions, a string is exam­
ined until a member of a character set is either found as a
SCANC(I), or not found as in SPANC(I). This aids the search for
one of several delimiters such as "I", ",", CR, LF, FF, etc., or the
passing of combinations of characters such as blanks, tabs, etc.
LOCC(I) and SKPC(I) are optimizations of SCANC(I) and
SPANC(I) in which the set consists of a single character.

The setting of condition codes reflects the results of the character
string operations. For character string moves, the condition codes
indicate whether the source and destination strings were of equal
length, the source was shorter than the destination such that fill char­
acters were used, or the source was longer than the destination such
that characters were truncated. This is accomplished by setting the
condition codes on the result of arithmetically comparing the initial
source and destination lengths. For CMPC(I), the condition codes are
the result of arithmetically comparing the most significant correspond-

349

Chapter 12 - Commercial Instruction Set

ing pair of unequal characters. Fo(the other search instructions, they
show whether or not the operand strings were completely examined.

The condition codes for some character string search instructions
may be interpreted according to the notion of success or failure. Suc­
cess is the accomplishment of the instruction's task; failure is the
inability to accomplish the task. Since the condition codes are set
based on the results of the instruction, there is an indirect correspon­
dence between these settings and success or failure. This
correspondence is invariant within an instruction, but it is not the same
for all search instructions. Therefore, different branch instructions
must be used to test the operation of each instruction. They are
summarized in the following table:

Instruction
LOCC(I)
SCANC(I)
CMPC(I)
MATC(I)

Success
BNE
BNE
BEQ
BNE

Failure
BEQ
BEQ
BNE
BEQ

The "register form" of character string instructions implicitly finds op­
erands in the general registers. These operands include character,
character string descriptor, character set descriptor, and translation
table address. If an instruction does not use a register, its contents will
be undisturbed. RO-R1 generally contain a source character string
descriptor; R2-R3 generally contain a second source character string
descriptor, or the destination string descriptor. The low-order half of
R4 is used as an explicit character. R4-R5 is used to contain a charac­
ter set descriptor. R5 contains the starting address of a 256-byte table
which is used for character translation.

When move instructions terminate, RO contains the number of un­
moved source characters, and R1, R2, and R3 are cleared. For search
instructions, the registers are updated to represent descriptors for the
resulting strings.

The "in-line form" of character string instructions finds operands; or
pointers to operands, in the instruction stream immediately following
the opcode word. Operands which appear directly in the instruction
stream include characters and translation table addresses. Descrip­
tors are represented in the instruction stream by a single word whose
contents are interpreted as a word address pOinter to the two-word
descriptor. These descriptors specify character strings and character
sets. Some instructions return a character string descriptor in RO-R1.

In general, all character string instructio.ns are unaffected by the
overlapping of source or destination strings. The result of the move
instructions is equivalent to having read the entire source string before

350

Chapter 12 - Commercial Instruction Set

storing characters in the destination. If the destination string of the
MOVTC(I) instructions overlaps the translation table, the characters
stored in the destination string will be UNPREDICTABLE.

Decimal String Data Types
Two classes of decimal string data types-numeric strings and packed
strings-are defined. Both have similar arithmetic and operational
properties; they primarily differ in the representation of signs and the
placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned,
trailing overpunch, leading overpunched, trailing separate and leading
separate. The packed string data types are signed packed and un­
signed packed. Instructions which operate on numeric strings permit
each numeric string operand to be separately specified; similarly,
packed string instructions permit each packed string operand to be
separately specified. Thus, within each of the two classes of decimal
strings, the operands of an instruction may be of any data type within
the appropriate class.

Decimal strings exist in memory as contiguous bytes which begin and
end on a byte boundary. They represent numbers consisting of 0 to
31 10 digits, in either sign-magnitude or absolute-value form. Sign­
magnitude strings (SIGNED) may be positive or negative; absolute­
value strings (UNSIGNED) represent the absolute value of the magni­
tude. Decimal numbers are whole integer values with an implied deci­
mal radix point immediately beyond the least significant digit; they
may be conceptually extended with zero digits beyond the most signif­
icant digit.

A four-bit binary coded decimal representation is used for most digits
in decimal strings. A four-bit half byte is called a "nibble" and may be
used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the binary nibble contents
associated with each decimal digit:

digit nibble digit nibble
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Each decimal string datl;1 type may have several representations.
These representations permit a certain latitude when accepting
source operands. Decimal string data types have a PREFERRED re­
presentation, which is a valid source representation and which is used

351

Chapter 12 - Commercial Instruction Set

to construct the destination string. Additional ALTERNATE represen­
tations are provided for some decimal data types when accepting
source operands.

Decimal strings used as source operands will not be checked for val­
idity. Instructions will produce UNPREDICTABLE results if a decimal
string used as a source operand contains an invalid digit encoding,
invalid sign designator, or, in the case of overpunched numbers, an
invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude are
unique, regardless of sign. Thus, both positive and negative zero have
identical interpretations.

Conceptually, decimal string instructions first determine the correct
result, and then store the decimal string representation of the correct
result in the destination string. A result of zero magnitude is consid­
ered to be positively signed. If the destination string can contain more
digits than are significant in the result, the excess most significant
destination string digits have zero digits stored in them. If the destina­
tion string cannot contain all significant digits of the result, the excess
most significant result digits are not stored; the instruction will indicate
decimal overflow. Note that negative zero is stored in the destination
string as a side effect of decimal overflow where the sign of the result
is negative and the destination is not large enough to contain any
nonzero digits of the result.

If the destination string has zero length, no resulting digits will be
stored. The sign of the result will be stored in separate and packed
strings, but not in zoned and overpunched strings. Decimal overflow
will indicate a nonzero result.

Decimal String Descriptors
Decimal strings are represented by a two-word descriptor. The de­
scriptor contains the length, data type, and address of the string. It
appears in two consecutive general registers (register form of instruc­
tions), or in two consecutive words in memory pointed to by a word in
the instruction stream (in-line form of instructions). The unused bits
are reserved by the architecture and must be O. The effect of an in­
struction using a descriptor will be unpredictable if any nonzero re­
served field in the descriptor contains nonzero values or a reserved
data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

length <4:0> Number of digits specified as an unsigned binary
integer

352

R.

Rx+l

data type
<14:12>

Second Word

Chapter 12 - Commercial Instruction Set

Specifies which decimal data type representation is
used

address Specifies the address of the byte which contains the
<15:0> most significant digit of the decimal string

The following figure shows the descriptor for a decimal string of data
type. "T" whose length is "L" digits and whose most significant digit is
at address "A":

15 14 12 11 5 o

... I 0

OR pt.+2

o

A

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned
001 unsigned zoned
010 trailing overpunch
011 leading overpunch
100 trailing separate
101 leading separate
110 -reserved to DIGITAL
111 -reserved to DIGITAL

The encodings (in binary) for the PACKED string data type field are:

000 -reserved to DIGITAL
001 -reserved to DIGITAL
010 -reserved to DIGITAL
011 -reserved to DIGITAL
100 -reserved to DIGITAL
101 -reserved to DIGITAL
110 signed packed
111 unsigned packed

Packed Strings
Packed strings can store two decimal digits in each byte. The least
significant (highest addressed) byte contains the sign of the number in
bits <3:0> and the least significant digit in bits <7:4>.

353

Chapter 12 - Commercial Instruction Set

Signed Packed Strings - The preferred positive sign designator is
11002; alternate positive sign designators are 10102, 11102 and 11112'
The preferrred negative sign designator is 1101 2; the alternate
negative sign designator is 1011 2, Source strings will properly accept
both the preferred and alternate designators; destination strings will
be stored with the preferred designator.

Unsigned Packed Strings....,... The.unsigned sign designator is 11112'

PACKED SIGN NIBBLE:

sign
nibble

positive
negative
unsigned

preferred
designator

11002
1101 2
11112

alternate
designators

10102,11102,11112
1011 2

For other than the least significant byte, bytes contain two consecutive
digits-the one of lower significance in bits <3:0> and the one of
higher significance in bits <7:4>~ For numbers whose length is odd,
the most significant digit is in bits <7:4> of the lowest addressed
bytes. Numbers with an even length have their most significant digit in
bits <3:0> of the lowest addressed byte; bits <7:4> of this byte must
be zero for source strings, and are cleared to 00002 for destination
strings. Numbers with a length of one occupy a single byte and contain
their digit in bits <7:4>. The number of bytes which represent a
packed string is [length/2] + 1 (integer division where the fractional
portion of the quotient is discarded).

The following is a packed string with an odd number of digits:

7 0

A I m.d

A+l

A+(LENGTH/2) I.d sign

354

Chapter 12 - Commercial Instruction Set

The following is a packed string with an even number of digits:

7 4 o

A LI _____ O ______ L-____ m_.d ____ ~

A+I

A+ (LENGTH/2j I.d sign

A zero length packed string occupies a single byte of storage; bits
<7:4> of this byte must be zero for source strings, and are cleared to
00002 for destination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the result for destina­
tion strings. When used as a source, zero length strings represent
operands with zero magnitude. When used as a destination, they can
only reflect a result of zero magnitude without indicating overflow. The
following is a zero length packed string:

7 3 o

A IL _____ O ____ ~~ ___ ._ig_n ____ ~

A valid packed string is characterized by:
1. A length from 0 to 31 10 digits.
2. Every digit nibble is in the range 00002 to 1001 2,

3. For even length sources, bits <7:4> of the lowest addressed byte
are 00002 ,

4. Signed packed strings-sign nibble is either 10102 , 1011 2 , 11002 ,

1101 2 , 11102 0r 1111 2 ,

5. Unsigned packed strings-sign nibble is 1111 2 ,

Zoned Strings
Zoned strings represent one decimal digit in each byte. Each byte is
divided into two portions-the high-order nibble (bits <7:4» and the
low-order nibble (bits <3:0». The low-order nibble contains the value
of the corresponding decimal digit.

Signed Zoned Strings - When used as a source string, the high­
order nibble of the least significant byte contains the sign of the num-

355

Chapter 12 - Commercial Instruction Set

7 4 o

A LI __________ ~ ____ m_.d ____ ~

A+l

A+n-l sign I.d I 'SIGN' IS PRESENT ONLY
SIGNED ZONED STRINGS

~--------~----------~

ber; the high-order nibbles of all other bytes are ignored, Destination
strings are stored with the sign in the high-order nibble of the least
significant byte, and 0011 2 in the high-order nibble of all other bytes,
0011 2 in the high-order nibble corresponds to the ASCII encoding for
numeric digits, The positive sign designator is 0011 2 ; the negative sign
designator is 0111 2•

Unsigned Zoned Strings - When used as a source string, the high­
order nibbles of all bytes are ignored, Destination strings are stored
with 0011 2 in the high-order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
the length of the decimal number.

A zero length zoned string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magnitude
(the sign of the operation is lost). An attempt to store a nonzero result
will be indicated by setting overflow.

A valid zoned string is characterized by:

1. A length from 0 to 31'0 digits,
2. The low-order nibbles of each byte are in the range 00002 to

1001 2 •

3. Signed zoned strings-The high order nibble of the least signifi-
cant byte is either 0011 2 Qr 0111 2 •

Overpunch Strings
Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least
significant digit; leading overpunch strings combine the encoding of
the sign and the most significant digit. Bytes other than the byte in
which the sign is encoded are divided into two portions-the high-

356

Chapter 12 - Commercial Instruction Set

order nibble (bits <7:4» and the low-order nibble (bits <3:0». The
low-order nibble contains the value of the corresponding decimal dig­
it. When used as a source string, the high-order nibble of all bytes
which do not contain the sign are ignored. Destination strings are
stored with 0011 2 in the high-order nibble of all bytes which do not
contain the sign. 0011 2 in the high-order nibble corresponds to the
ASCII encoding for numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate designators; destina­
tion strings will store the preferred deSignator. The preferred designa­
tors correspond to the ASCII graphics "A" to "R," "I," and "I." The
alternate deSignators correspond to the ASCII graphics "0" to "9," "[,"
"? ," "]," U!" and ":".

OVERPUNCH SIGN/DIGIT BYTE:

overpunch
sign/digit

+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
-0
-1
-2
-3
-4
-5
-6
-7
-8
-9

preferred
designator

01111011 2

01000001 2

010000102

01000011 2

010001002

01000101 2

010001102

01000111 2

010010002

01001001 2

01111101 2

010010102

01001011 2

010011002

01001101 2

010011102

01001111 2

010100002

01010001 2

010100102

alternate
designators

001100002 ,01011011 2 ,00111111 2

00110001 2

001100102

00110011 2

001101002

00110101 2

001101102

00110111 2

001110002

00111001 2

01011101 2 ,00100001 2 ,001110102

The number of bytes needed to contain an overpunch string is
identical to the length of the decimal number.

The following is a trailing overpunch string:

357

Chapter 12 - Commercial Instruction Set

7 4 o

A 1~ __________ ~ ____ mS_d ____ ~

A+l

sign and Isd

The following is a leading overpunch string:

7 4 3 o

A ~I _________ si_9n_a_nd_m_sd ________ ~

A+l

A+n-l I.d

A zero length overpunch string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magnitude
(the sign of the operation is lost). An attempt to store a nonzero result
will be indicated by setting overflow.

A valid overpunch string is characterized by:

1. A length from 0 to 31'0 digits.
2. The low-order nibble of each digit byte is in the range 00002 to

1001 2 •

3. The encoded sign/digit by-te contains values from the above table
of preferred and alternate overpunch sign/digit values.

Separate Strings
Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leadi~g separate strings encot:ie the sign in a

358

Chapter 12 - Commercial Instruction Set

byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign is encoded are divided into two por­
tions-the high-order nibble (bits <7:4» and the low-order nibble
(bits <3:0». The low order nibble contains the value of the corres­
ponding decimal digit.

When used as a source string, the high-order nibbles of all digit bytes
are ignored. Destination strings are stored with 0011 2 in the high-order
nibble of all digit bytes. 0011 2 in the high-order nibble corresponds to
the ASCII encoding for numeric digits. The preferred positive sign
designator is 00101011 2 and the alternate positive sign designator is
001000002 • The negative sign designator is 00101101 2 • These designa­
tors correspond to the ASCII encoding for "+," "space," and "-."

SEPARATE SIGN BYTE:

sign
byte

positive
negative

preferred
designator

00101011 2

00101101 2

alternate
designator

001000002

The number of bytes needed to contain a leading or trailing separate
string is identical to (length+1).

The following is a trailing separate string:

7 4 o

A I~ __________ ~ ____ m_'d ____ ~

A+I

A+n-l I.d

A+n sign

359

Chapter 12 - Commercial Instruction Set

7 4 o
A-I sign

A I~ ________________ m_'d ____ ~

A+l

A+n~l l.d

A zero length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero length strings provide
operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow; the
sign of the result is stored.

The following is a zero length trailing separate string:

7 o
A sign

The following is a zero length leading separate string:

7 o
A-I sign

A valid separate string is characterized by:

1. A length from 0 to 31 10 digits.
2. The low-order nibble of each digit byte is in the range 00002 to

1001 2,

3. The sign byte is either 001000002,00101011 2 or 00101101 2,

Long Integer
Long integers are 32-bit binary 2's complement numbers organized as
two words in consecutive registers or in memory-no descriptor is

360

Chapter 12 - Commercial Instruction Set

used. One word contains the high-order 15 bits. The sign is in bit
<15>; bit <14> is the most significant. The other word contains the
low-order 16 bits with bit <0> the least significant. The range of num­
bers that can be represented is -2,147,483,648 to +2,147,483,647.

The register form of decimal convert instructions uses a restricted
form of long integer with the number in the general register pair R2-
R3:

15 14 o

::1 ~ _s-L ___________________ H~-IG-~----------------------~

The in-line form of decimal convert instructions reference the long
integer by a word address pOinter which is part of the instruction
stream:

15 14 o
pI, LOW

HIGH pl,+2 5 I
L-~ __ ~

Note that these two representations of long integers differ. There is no
single representation of long integer among EAE, EIS, FPP and
software. The "register form" was selected to be compatible with EIS;
the "in-line form" was selected to be compatible with current standard
software usage.

Decimal String Instructions
The decimal string instruction groups aid manipulation of decimal
data. Several numeric (byte) and packed decimal data types are sup­
ported. Instructions are provided for basic arithmetic operations, as
well as for compare, shift, and convert functions.

Instructions
Each arithmetic, shift and compare instruction operates on a single
class of data type. Both numeric and packed string instructions are
provided for most operations. Convert instructions have a source op­
erand of one data type and a destination operand of another data type.
Decimal string instructions specify to which class each of their decimal
string operands belong. The data type supplied as part of each oper-

361

Chapter 12 - COmmercial Instruction Set

and's descriptor may be any valid data type of the class. This permits a
general mixing of data types within numeric and packed classes.

The data types on which an instruction operates are designated by the
last leUer(s) of the opcode mnemonic. uN" denotes numeric strings,
uP" denotes. packed strings, and "L" denotes long binary integers.

The arithmetic instructions are ADDN(I), ADDP(I), SUBN(I), SUBP(I),
MULP(I) and DIVP(I). ASHN(I) and ASHP(I) shift a decimal string by a
specified number of digit positions (either direction) with optional
rounding, and store the result In the destination string. Thus, they
effectively multiply or divide by a power of ten. If the shift count is zero,
these shift instructions can be used simply to move decimal strings
(destinations are stored with preferred representation). Move negated
may be accomplished by using SUBN(I) or SUBP(I). Arithmetic com­
parison instructions, CMPN(I) and CMPP(I), are provided to examine
the relative difference between two decimal strings.

CVTNL(I) and CVTPL(I) convert a decimal string to a long (32-bit) 2's
complement integer. CVTLN(I) and CVTLP(I) convert a long integer to
a decimal string. CVTNP(I) and CVTPN(I) convert between numeric
and packed decimal strings.

The instructions are:

Numeric String Instructions

ADDN(I) Add numeric
SUBN(I) Subtract numeric
ASHN(I) Arithmetic shift numeric
CMPN(I) Compare numeric

Packed String Instructions

ADDP(I) Add packed
SUBP(I) Subtract packed
MULP(I) Multiply packed
DIVP(I) Divide packed
ASHP(I) Arithmetic shift packed
CMPP(I) Compare packed

Convert Instructions

CVTNL
CVTLN
CVTPL
CVTLP
CVTNP
CVTPN

Convert numeric to long
Convert long to numeric
Convert packed to long
Convert long to packed
Convert numeric to packed
Convert packed to numeric

362

Chapter 12 - Commercial Instruction Set

Condition Codes
For instructions which store a value in a destination string, the Nand Z
bits reflect the value stored. The N bit indicates a negative destination;
the Z bit indicates a destination having zero magnitude. A destination
string with zero magnitude is considered to be positive (even if a
negative zero was stored as a consequence of decimal overflow).
Thus, the setting of Nand Z are mutually exclusive.

The V bit will indicate whether the destination string accurately repre­
sents the result of the instruction. It is also set if division by zero was
attempted. If the V bit is set, the destination string will represent the
least significant portion of the result (truncated). If the V bit is cleared,
the destination represents the true result.

For DIVP(I), C indicates division by zero. Otherwise, C is always
cleared.

For comparisions using the CMPN(I) and CMPP(I) instructions, the N
and Z bits reflect the signed relationship between the source strings.
The signed branch instructions can test the result. V and Care
cleared.

For instructions which return a long integer value, N reflects the sign of
the 2's complement integer, and Z indicates whether it was zero. V
indicates whether the long integer could not contain all significant
digits and sign of the result. CVTNL(I) and CVTPL(I) also use C to
represent a borrow from a more significant portion of the long binary
result. Otherwise, C is cleared.

Operand Delivery
The "register form" of decimal string instructions implicitly finds the
operands in the general registers. These operands include decimal
string descriptors, long binary integers, and shift descriptor words. If
an instruction does not use a register, its contents will be undisturbed.
RO-R1 generally contain the first source descriptor, R2-R3 generally
contain the second source descriptor, and R4-R5 generally contain
the destination descriptor. ASHN and ASHP use R4 to contain a shift
descriptor word. CVTLN, CVTLP, CVTNL and CVTPL use RO-R1 to
contain a decimal string descriptor, and R2-R3 for the long integer.
When an instruction is completed, the source descriptor registers are
cleared.

The "in-line form" of decimal string instructions finds the operands, or
pointers to descriptors, in the instruction stream immediately. following
the opcode word. Operands which appear directly in the instruction
stream are shift descriptor words. Operands which are represented in
the instruction stream by a pOinter containing the word address of the

363

Chapter 12 - Commercial Instruction Set

descriptor are decimal string descriptors and long binary integers. No
in-line form of decimal string instructions modify RO-R6.

Data Overlap
The operation of decimal string instructions is unaffected by any over­
lap of the source operands provided that each source operand is a
valid representation of the specified data type.

The overlap of the destination string and any of the source strings will,
in general, produce l,.INPREDICTABLE results. However, ADDN(I),
ADDP(I), SUBN(I) and SUBP(I) will permit the destination string to
overlap either or both source strings only if all corresponding digits of
the strings are in coincident bytes in memory. This facilitates two­
address arithmetic.

Commercial Load Descriptor Instructions
The commercial load descriptor instructions augment the character
and decimal string instructions by efficiently loading the general regis­
ters with string descriptors. Two forms of instructions are provided.
The L2Dr instructions load two string descriptors into the general
registers. The first descriptor is loaded into RO-R1 and the second
descriptor is loaded into R2~R3. This instruction supports equallel\lgth
character string move, equal length character string compare, charac­
ter string matching, and decimal string compare.

The second form, the L3Dr instructions, take three descriptors. The
first is loaded intoRO-R1, the second into R2-R3, and the third into R4-
R5. The instruction supports three-address arithmetic.

The condition codes are not affected.

Words containing the addresses of the descriptors (two for L2Dr and
three for L3Dr) are in consecutive locations in memory. The descriptor
addresses are found by applying the addressing mode @(Rr)+ once
for each descriptor. The value of r is encoded as the low order three
bits of the instruction's opcode. If 0 :S r :S 5, then r can be thought of ~s
the base address of a small table in memory, where each entry in the
table contains the address of a descriptor. If r = 6, then the instruc­
tions effectively pop the addresses of d~scriptors off of the stack. If r =
7, then the descriptor addresses are contiguous with the instruction's
opcode word.

The string descriptors are two words long. The address of the descrip­
tor is that of the low-order word. It is loaded into the corresponding
even register. The high-order word of the descriptor is loaded into the
corresponding odd register. Note that although these instructions are
described in terms of string descriptors, they are applicable for other

364

Chapter 12 - Commercial Instruction Set

instances where two consecutive words in memory referenced by a
pOinter are to be copied into even-odd general register pairs.

The instructions are:

L2DO Load 2 descriptors using @(RO)+
L2D1 Load 2 descriptors using @(R1)+
L2D2 Load 2 descriptors using @(R2)+
L2D3 Load 2 descriptors using @(R3)+
L2D4 Load 2 descriptors using @(R4)+
L2D5 Load 2 descriptors using @(R5)+
L2D6 Load 2 descriptors using @(R6)+
L2D7 Load 2 descriptors using @(R7)+

L3DO Load 3 descriptors using @(RO)+
L3D1 Load 3 descriptors using @(R1)+
L3D2 Load 3 descriptors using @(R2)+
L3D3 Load 3 descriptors using @(R3)+
L3D4 Load 3 descriptors using @(R4)+
L3D5 Load 3 descriptors using @(R5)+
L3D6 Load 3 descriptors using @(R6)+
L3D7 Load 3 descriptors using @(R7)+

INSTRUCTION SUSPENSION
the intent of defining instruction suspendability is to establish a
means for providing reasonable interrupt latency and does not pre­
sume to endow CIS 11 instructions with an ability to recover from trap
conditions from which sequences of basic instructions cannot recover.

Suspension-events refer primarily to events which occur asynchro­
nously to the instruction's execution; these are specifically the inter­
rupts generated by I/O peripheral devices, power-fail traps, and float­
ing point processor exceptions. Secondarily, suspension-events can
refer also to those synchronous trap events which occur only for
information notification purposes and do not imply that the integrity of
the instruction's execution is in jeopardy. Such suspension events
include "yellow zone" traps.

Potentially suspend able instructions have a defined architectural me­
chanism, (PS<S> as described below), by which they can be sus­
pended in mid-execution to allow the processor to service suspen­
sion-events and then subsequently to be resumed from the point
where they had been suspended.

The presence of suspension-events may cause certain CIS11 instruc­
tions to be suspended on some processors. If the instruction is sus-

365

Chapter 12 - Commercial Instruction Set

pended, PS<8> will be set, R7 will be backed up to address the
opcode word, and the suspension-event will be serviced. When the
instruction is resumed, PS<8> indicates that execution of the instruc­
tion has previously begun.

In order to make these instructions suspend able on all processors, the
instruction state is part of the user state which is saved by interrupt
handling routines. This includes the general registers, condition codes
and memory. This state is processor dependent when suspended.
Software should not attempt to interpret or modify this state; it must
only be saved and restored. Up to 64'0 words of internal instruction
state may also have been pushed onto the stack. This state must not
be modified by software. The instruction will remove this state from the
stack when it is resumed.

If PS<8> is set prior to executing a potentially suspendable instruc­
tion, the effect of the instruction is UNPREDICTABLE.

At the normal completion of an potentially suspend able instruction,
PS<8> will be cleared.

The name of the bit PS<8> will be "Instruction Suspension" with the
corresponding mnemonic "IS."

All suspend able instructions use PS <8> to indicate instruction
suspension. If, when a potentially suspend able instruction is executed,
PS<8> is clear, it means that the instruction is being commenced; if it
is set, it means that the instruction is being resumed. PS<8> is
cleared when:

1. A suspended instruction successfully completes.
2. The processor powers up.
3. A new PS is fetched from vector location with PS<8> clear.
4. RTI or RTT is executed with new PS<8> clear.
5. It is explicitly cleared by an instruction.

PS<8> is set when:
1. A potentially suspend able instruction is interrupted and wishes to

be suspended.
2. A new PS is fetched from vector location with PS<8> set.
3. RTI or RTT is executed with PS<8> set.
4. It is explicitly set by an instruction.

The setting of this bit will have no effect on instructions which are not
potentially suspend able; such instructions will not implicitly modify
this bit.

When an instruction is suspended, the following state may contain

366

Chapter 12 - Commercial Instruction Set

information vital to the resumption of the instruction. The information
must be preserved and restored prior to restarting the suspended
instruction. This information may vary from one execution of the in­
struction to another.

1. General registers RO through R5.

2. Condition code bits (PS <3:0».

3. Up to 6410 words on the stack of the context in which the sus-
pended instruction was executing.

4. Any destinations used by the instruction.

Stack Utilization
CIS11 instructions may use the R6 stack for temporary "scratch" state
storage.

The maximum number of additional words which an extended instruc­
tion may claim on the R6 stack is 64 10 , The reason for imposing a limit
is to ensure that system software can adequately provide for worst­
case stack allocation requirements. In addition to the above restric­
tion, the normal PDP-11 stack-limit mechanism remains in effect for
extended instructions just as it does for any other instruction.

If insufficient stack space exists, the instruction will terminate by a
memory management abort in such a way that if additional stack
space is allocated, the instruction will successfully restart.

NOTATION

dst
src1
src2
dscr

Purpose:

Operation:

Condition
Codes:

destination string
source string 1
source string 2
descriptor

ADDN/ADDP/ADDNI/ADDPI

Add Decimal

dst -- src2 + src1

N: set if dst < 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the
. result; cleared otherwise

C: cleared

367

Chapter 12 - Commercial Instruction Set

Opcodes: ADDN
ADDP
ADDNI
ADDPI

076050
076070
076150
076170

Description: Src1 is added to src2, and the result is stored in the
destination string. The condition codes reflect the value stored in the
destination string, and whether all significant digits were stored.

Register Form-A DON and ADDP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

RO

Rl

R2

R3

R4

R5

15

I-

I-

o

srel. dser

src2·dscr

dst. dscr

When the instruction is completed, the source descriptor registers are
cleared.

RO

Rl

R2

R3

R4

R5

15

I-

0

0

0

0

dst.dscr

tn-line Form-ADDNt and ADOPt

o

Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of

368

Chapter 12 - Commercial Instruction Set

the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. Source strings may overlap the destination string only if all cor­
responding digits of the strings are in coincident bytes in memory.

ASHN/ASHP/ASHNI/ASHPI

Purpose: Arithmetic Shift Decimal

Operation: dst - src * (10 ** shift count)

Condition N: set if dst'< 0; cleared otherwise
Codes: Z: set it dst = 0; cleared otherwise

Opcodes:

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

c: cleared

ASHN
ASHP
ASHNI
ASH PI

076056
076076
076156
076176

Description: The decimal number specified by the source descriptor
is arithmetically shifted and stored in the area specified by the destina­
tion descriptor. The shifted result is aligned with the least significant
digit position in the destination string. The shift count is a 2's
complement byte whose value ranges from -128'0 to +127'0' If the
shift count is positive, a shift in the direction of least to most significant
digits is performed. A negative shift count performs a shift from most
to least significant digit. Thus, the shift count is the power of ten by
which the source is multiplied; negative powers of ten effectively di­
vide. Zero digits are supplied for vacated digit positions. A zero shift
count will move the source to the destination. The condition codes
reflect the value stored in the destination string, and whether all signif­
icant digits were stored.

A negative shift count invokes a rounding operation. The result is
constructed by shifting the source the specified number of digit posi­
tions. The rounding digit is then added to the most significant digit
which was shifted out. If this sum is less than 10'0 the shifted result is
stored in the destination string. If the sum is 10'0 or greater, the magni­
tude of the shifted result is increased by 1 and then stored in the
destination string. If no rounding is desired, the rounding digit should
be zero.

369

Chapter 12 - Commercial Instruction Set

The shift count and rounding digit are represented in a single word
referred to as the shift descriptor. Bits <15:12> of this word must be
zero.

15 12 11 8 7 o
o rnd.dg, shift. ent

Register Form-ASHN and ASHP
When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in RO-R1, the
destination descriptor is placed in R2-R3, and the shift descriptor is
placed in R4.

15 0

RO
src. dscr

Rl

R2

i- dst. dscr
R3

R4 shift. dscr

When the instruction is completed, the source descriptor registers and
shift descriptor register are cleared.

15 0

RO 0

Rl 0

R2

dst. dscr
RJ - .

R4 0

In-line Form-ASHNI and ASHPI .
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word decimal string source
descriptor, a word address pOinter to a two-word decimal string desti-

370

Chapter 12 - Commercia/Instruction Set

nation descriptor, and a shift descriptor word. RO-R6 are unchanged
when the instruction is completed.

Notes:

1. If bits <15:12> of the shift descriptor word are not zero, the effect
of the instruction is unpredictable.

2. If bits <11 :8> of the shift descriptor are not a valid decimal digit,
the results of the instruction are unpredictable.

3. Any overlap of the source and destination strings will produce
unpredictable results.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CMPC/CMPCI

Compare Character

Src1 is compared with src2 (src1-src2)

The condition codes are based on the arithmetic com­
parison of the most significant pair of unequal src1 and
src2 characters (src1.byte-src2.byte)
N: set if result < 0; cleared otherwise
Z: set if result = 0: cleared otherwise
V: set if there was arithmetic overflow, that is,

src1.byte<7> and src2.byte<7> were different,
and src2.byte<7> was the same as bit <7> of
(src1.byte-src2.byte); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

CMPC
CMPCI

076044
076144

Description: Each character of src1 is compared with the corres­
ponding character of src2 by examining the character strings from
most significant to least significant characters. If the character strings
are of unequal length, the shorter character string is conceptually
extended to the length of the longer character string with fill charac­
ters beyond its least significant character. The instruction terminates
when the first corresponding unequal characters are found or when
both character strings are exhausted. The condition codes reflect the
last comparison, permitting the unsigned branch instructions to test
the result.

371

Chapter 12 - Commercial Instruction Set

Register Form-CMPC
When the instruction starts, the operands must have been placed in
the general registers. The first source character string descriptor is
placed in RO-R1, the second source character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:0>, and R4<15:
8> must be zero.

15 7 o
RO

f- src 1. dscr -
RI

R2

f-- src2 dser -
R3

R4 0 I f;ll

The instruction terminates with substring descriptors in RO-R1 and R2-
R3 which represent the portion of each source character string begin­
ning with the most significant corresponding unequal characters. RO­
R1 contain a descriptor for the unequal portion of the original src1
string; R2-R3 contain a descriptor for the unequal portion of the
original src2 string. A vacant character string descriptor indicates that
the entire source character string was equal to the corresponding
portion of the other source character string, including extension by the
fill character; its address is one greater than that of the least significant
character of the character string.

15 o
RO

sub. sre 1. dser -.
RI

R2

I- sub. src2. dser -
R3

R4 0 I f;ll

In-line Form-CMPCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string src1 descriptor,

372

Chapter 12 - Commercial Instruction Set

a word address pOinter to a two-word character string src2 descriptor,
and a word whose low-order half contains the fill character and whose
high-order half must be zero. RO-R6 are unchanged when the instruc­
tion is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source character strings.

2. If the src1 character string is vacant, the fill character will be
compared with src2. If the src2 character string is vacant, the fill
character will be compared with src1. If both character strings are
vacant, the condition codes will indicate equality.

3. CMPC-If an initial source character string descriptor is vacant,
the resulting substring descriptor is the same as the original char­
acter string descriptor.

4. A test for success is BEQ; a test for failure is BNE.

5. When the instruction terminates, the condition codes will beset as
if a CMPB instruction operated on the most significant unequal
characters. If both strings are initially vacant or are identical, the
condition codes will be set as if the last characters to be com­
pared were identical. This results in equality with N cleared, Z set,
V cleared, and C cleared.

6. Both CMPC and CMPCI update the condition codes. CMPC re­
turns substring descriptors.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CMPN/CMPP/CMPNI/CMPPI

Compare Decimal

Src1 is compared with src2 (src1-src2)

N: set if src1 < src2; cleared otherwise

Z: set if src1 = src2; cleared otherwise

V: cleared

C: cleared

CMPN
CMPP
CMPNI
CMPPI

373

076052
076072
076152
076172

Chapter 12 - Commercial Instruction Set

Description: Src1 is arithmetically compared with src2. The
condition codes reflect the comparison. The signed branch instruction
can be used to test the result.

Register Form-CMPN and CMPP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
and the second source descriptor is placed in R2-R3.

15 0

RO

scrl. dser -
Rl

R2
src2. dser

R3

When the instruction is completed, the source descriptor registers are
cleared.

15 o
RO o

Rl o

R2 o

R3 o

In-line Form-CMPNI and CMPPI
Each word address painter which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-RB
are unchanged when the ins.truction is completed.

Note:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each source string is a valid re-
presentation of the specified data type. .

374

Purpose:

Operation:

Condition
Codes:

Opcodes:

Chapter 12 - Commercial Instruction Set

CVTLN/CVTLP/CVTLNI/CVTLPI

Convert Long to Decimal

decimal string -long integer

N: set if dst < 0; cleared otherwise
Z: set if dst = 0; cleared otherwise
V: set if dst cannot contain all significant digits of the

result; cleared otherwise
C: cleared

CVTLN
CVTLP
CVTLNI
CVTLPI

076057
076077
076157
076177

Description: The source long integer is converted to a decimal
string. The condition codes reflect the result stored in the destination
decimal string. and whether all significant digits were stored.

Register Form-CVTLN and CVTLP
When the instruction starts. the operands must have been placed in
the general registers. The destination descriptor is placed in RO-R1.
and the source long integer is placed in R2-R3.

15 0

RO
dst. dscr

Rl

R2
src. long

R3

When the instruction is completed. the source long integer registers
are cleared.

375

Chapter 12 - Commercial Instruction Set

15 o
RO

'- dst. dscr -
RI

R2 0

R3 0

In-line Form-CVTLNI and CVTLPI
The words which follow the opcode word in the instruction stream are
a word address pOinter to a two-word decimal string descriptor, and a
word address pOinter to a two-word long integer source. RO-R6 are
unchanged when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high­
order portion in R2, and the low-order portion in R3.

2. In-line forms use a long integer oriented with the low-order por­
tion in src.long, and the sign and high-order portion in src.long +
2.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CVTNL/CVTPL/CVTNLI/CVTPLI

Convert Decimal to Long

long integer - decimal string

The condition codes are based on the long integer des­
tination and on the sign of the source decimal string.
N: set if long.integer < 0; cleared otherwise
Z: set if long.integer = 0; cleared otherwise
V: set if long.integer dst cannot correctly represent

the 2's complement form of the result; cleared oth­
erwise

C: set if src < 0 and long. integer .,. 0; cleared other­
wise

CVTNL
CVTPL
CVTNLI
CVTPLI

376

076053
076073
076153
076173

Chapter 12 - Commercial Instruction Set

Description: The source decimal string is converted to a long
integer. The condition codes reflect the result of the operation, and
whether significant digits were not converted.

Register Form-CVTNL and CVTPL
When the instruction starts, the operands must have been placed in
the general registers. The source decimal string descriptor is placed in
RO-R1.

:f scr. d scr

When the instruction is completed, the source decimal string descrip­
tors are clear"ed, and the destination long integer is returned in R2-R3.

15 o
RO 0

RI 0

R2

- dst . long

R3

In-line Form-CVTNU and CVTPU
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word decimal string source descrip­
tor, and a word address pOinter to a two-word long integer destination.
RO-R6 are unchanged when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high­
order portion in R2, and the low-order portion in R3.

2. In-line forms use a long integer oriented with the low-order por­
tion in dst.long, and the sign and high-order portion in dstlong +
2.

3. If the V bit is set, the contents of the long integer destination are
the least significant 32 bits of the result.

4. A source whose value is +231 can be represented as a 32-bit
binary integer. However, since the destination is a 2's complement

377

Chapter 12 - Commercial Instruction Set

long integer, the resulting condition codes will be: N set, Z
cleared, V set, and C cleared.

CVTNP/CVTPN/CVTNPI/CVTPNI

Purpose: Convert Decimal

Operation: CVTNP/CVTNPI packed string - numeric
string

Condition
Codes:

Opcodes:

CVTPN/CVTPNI numeric string - packed
string

N: set if dst < 0; cleared otherwise
Z: set if dst = 0; cleared otherwise
V: set if dst cannot contain all significant digits of the

result; cleared otherwise
C: cleared

CVTNP
CVTPN
CVTNPI
CVTPNI

076055
076054
076155
076154

Description: These instructions convert between numeric and
packed decimal strings. The source decimal string is converted and
moved to the destination string. The condition codes reflect the result
of the operation, and whether all significant digits were stored.

Register Form-CVTNP and CVTPN
When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in RO-R1 and
the destination descriptor is placed in R2-R3.

15 0

RO
sfC .oser -

R1

R2

dst. dscr -
R3

378

Chapter 12 - Commercial Instruction Set

When the instruction is completed, the source descriptor registers are
cleared.

15 o
RO 0

Rl 0

R2

dst. dscr -
R3

In-line Form-CVTNPI and CVTPNI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:

1. The results of the instruction are unpredictable if the source and
destination strings overlap.

2. These instructions use both a numeric and a packed decimal
string descriptor.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Divide Decimal

dst - src2/src1

N: set if dst < 0; cleared otherwise
Z: set if dst = 0; cleared otherwise

DIVP/DIVPI

V: set if dst cannot contain all significant digits of the
result or if src1 = 0; cleared otherwise

C: set if src1 = 0; cleared otherwise

DIVP
DIVPI

076075
076175

Description: Src2 is divided by src1, and the quotient (fraction trun­
cated) is stored in the destination string. The condition codes reflect
the value stored in the destination string, and whether all significant
digits were stored.

379

Chapter 12 - Commercial Instruction Set

Register Form-DIVP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1, .
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

IS o
RO

srd. dscr
RI

R2

5rc2. dser -
R3

R4

dst. dser -
R5

When the instruction is completed, the source descriptor registers are
cleared.

IS o
RO 0

RI 0

R2 0

R3 0

R4

t- dst. dscr

R5

In-line Form...:...DIVPI
Each word address pOinter which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each. source string is a valid re­
presentation of the specified data type.

380

Chapter 12 - Commercial Instruction Set

2. The results of the instruction are UNPREDICTABLE if the source
and destination strings overlap.

3. Division by zero will set the V and C bits. The destination string,
and the Nand Z condition code bits will be UNPREDICTABLE.

4. No numeric string divide instruction is provided.

Purpose:

Operation:

Condition
Codes:

Opcodes:

LOCC/LOCCI

Locate Character

Search source character string for a character

The condition codes are based on the final contents of
RO.

N: set if RO<15> set; cleared otherwise
Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

LOCC
LOCCI

076040
076140

Description: The source character string is searched from most sig­
nificant to least significant character until the first occurrence of the
search character. A character string descriptor is returned in RO-R1
which represents the portion of the source character string beginning
with the located character. If the source character string contains only
characters not equal to the search character, the instructions return a
vacant character string descriptor with an address one greater than
that of the least significant character of the source charaCter string.
The condition codes reflect the resulting value in RO.

Register Form-LOCC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the search character is placed in R4<7:0>, and R4<15:8>
must be zero.

381

Chapter 12 - Commercia/Instruction Set

7

src. dscr

R4LI ___________ O ____________ L-_________ c_h_a' __________ ~

When the instruction is completed, RO-R1 contain a character set
descriptor which represents the substring of the source character
string beginning with the located character.

7

sub. src . dscr

R41L_ __________ O __________ ~L_ _________ c_ha_' __________ ~

In-line Form-LOCCI
The words which follow the opcode word in the instruction stream are
a word address pOinter to a two-wore: :::haracter string source descrip­
tor, and a word whose low-order half contains the search character
and whose high-order half must be zero. When the instruction is com­
pleted, RO-R1 contain a character string descriptor which represents
the substring of the source character string beginning with the located
character. R2-R6 are unchanged.

7

sub. uc . dscr

Notes:
1. If the initial source character string descriptor is vacant, the in­

struction terminates with the condition codes indicating no match

382

Chapter 12 - Commercial Instruction Set

was found. The original source character string descriptor is re­
turned in RO-R1.

2. A test for success is BNE; a test for failure is BEQ.

3. The condition codes will be set as if this instruction were followed
byTST RO.

Purpose: Load Two Descriptors

Operation: Load word pairs into RO-R1 and R2-R3

Condition N: not affected
Codes: Z: not affected

V: not affected
C: not affected

Opcodes: L2DR 07602r

L2DR

Description: This instruction augments the character and decimal
string instructions by efficiently loading string descriptors into the
general registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta"
is loaded into R2-R3. The address of the descriptors is determined by
the addressing mode @(Rr)+ where r is the low-order three bits of the
opcode word. The address of the descriptor "alpha" is derived by
applying this addressing mode once; the address of the descriptor
"beta" is derived by applying this addressing mode a second time. The
addressing mode autoincrements the indicated register by two. The
addressing mode computation is not affected by the descriptors which
are loaded into the general registers. The words which contain the
addresses of the descriptors are in consecutive words in memory; the
descriptions themselves may be anywhere in memory. The condition
codes are not affected.

When the instruction is completed, the "alpha" descriptor i.s in RO-R1
and the "beta" descriptor is in R2-R3.

383

15

RO

RI

R2

-
RJ

Purpose:

Operation:

Condition
Codes:

Opcodes:

Chapter 12 - Commercial Instruction Set

alpha. dscr

beta. dscr

Load Three Descriptors

Load word pairs into RO-R1, R2-R3, and R4-R5

N: not affected
Z: not affected
V: not affected
C: not affected

L3DR 07606r

o

-

-

L3DR

Description: This instruction augments the character and decimal
string instructions by efficiently loading string descriptors into the gen­
eral registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta"
is loaded into R2-R3; a third descriptor "gamma" is loaded into R4-R5.
The address of the descriptors is determined by the addressing mode
@(Rr)+ where r is the low-order three bits of theopcode word. The
address of the descriptor "alpha" is derived by applying this address­
ing mode once. The address of the descriptor "beta" is derived by
applying this addressing mode a second time. The address of the
descriptor "gamma" is derived by applying this addressing mode a
third time. The addressing mode autoincrements the indicated regis­
ter by two. The addressing mode computation Is not affected by the
descriptors which are loaded into the general registers. The words
which contain the addresses of the descriptors are in consecutive
words in memory; the descriptors themselves may be anywhere in
memory. The condition codes are not affected.

When the instruction is completed, the "alpha" descriptor is in RO-Ri,
t.he "beta" descriptor is in R2-R3 and the "gamma" descriptor is in R4-
R5.

384

15

RO

RI

R2

RJ

R4

R5

Purpose:

Operation:

Condition
Codes:

Opcodes:

Chapter 12 - Commercial Instruction Set

o

alpha. dscr

beta. dscr -

gamma. d.ser

MATC/MATCI

Match Character

Search source character string for object character
string

The condition codes are based on the final contents of
RO.
N: set if RO<15> set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

MATC
MATCI

076045
076145

Description: The source character string is searched from most sig­
nificant to least significant character for the first occurrence of the
entire object character string. A character string descriptor is returned
in RO-R1 which represents the portion of the original source character
string from the most significant character which completely matches
the object character string to the end of the source character string. If
the object character string did not completely match any portion of the
source character string, the character descriptor returned in RO-R1 is
vacant with an address one greater than the least significant character
in the source string. The condition codes reflect the resulting value in
RO. If the Z bit is cleared, the entire object was successfully matched
with the source character string; if the Z bit is set, the match failed.

385

Chapter 12 - Commercial Instruction Set

Register Form-MA TC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, and the object character string descriptor is placed in R2-
R3.

15 0

RO
src . dser -

RI

R2
obi. dser -

R3

The instruction terminates with a character substring descriptor re­
turned in RO-R1 which represents the portion of the original source
character string beginning with the most significant character to com­
petely match the object character string.

15 0

RO
sub. sre. dser -

Rl

R2

~ obj . dser -
R3

In-line Form-MA TCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word address pointer to a two-word character string object
descriptor. The instruction terminates with a character substring
descriptor returned in RO-R1 which represents the portion of the origi­
nal source character string beginning with the most significant charac­
ter to completely match the object character string. R2-R6 are un­
changed when the instruction is completed.

15 7 0

=r
sub. sre . dser j

386

Chapter 12 - Commercial Instruction Set

Notes:
1. The operation of this instruction is unaffected by any overlap of

the source and object character strings.

2. A vacant object character string matches any nonvacant source
character string. A vacant source character string will not match
any object character string. If the initial source character string
descriptor is vacant, the instruction terminates with the condition
codes indicating no match was found. The original source charac­
ter string descriptor is returned in RO-R1.

3. If the length of the object character string is greater than that of
the source character string, no match is found; RO-R1 and the
condition codes will be updated.

4. A test for success is BNE; a test for failure is BEQ.
5. The condition codes will be set as if this instruction were followed

byTST RO.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Move Character

dst-src

MOVC/MOVCI

The condition codes are based on the arithmetic
comparison of the initial character string lengths (result
= src.len-dst.len).

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow, that is,

src.len<15> and dst.len<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVC
MOVCI

076030
076130

Description: The character string specified by the source descriptor
is moved into the area specified by the destination descriptor. It is
aligned by the most significant character. The condition oodes reflect

387

Chapter 12 - Commercial Instruction Set

an arithmetic comparison of the original source and destination
lengths. If the source string is shorter than the destination string, the
fill character is used to complete the least significant part of the desti­
nation string. This is indicated by the C bit set. If the source string is
longer than the destination string, the least significant characters of
the source string are not moved. This is indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all
characters are moved with neither truncation nor filling. This is indicat­
ed by the Z bit set. The unsigned branch instructions may test the
result of the instruction.

Register Form-MO VC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destination character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, and R4<15:8> must be
zero.

15 7 o
RO

src dscr

Rl

R2

dst. dscr
R3

R4 0 I 1;11

When the instruction is completed, RO contains the number of un­
moved source string characters, and R1 through R3 are cleared.

15 o
RO maxIO,src.len-dst. len}

Rl 0

R2 0

R3 0

R4 0 I IHI

In-line Form-MOVel
The words which follow the opcode word in the instruction stream are

388

Chapter 12 - Commercial Instruction Set

a word address pointer to a two-word character st~ing source descrip­
tor, a word address pointer to a two-word character string destination
descriptor, and a word whose low-order half contains the fill character
and whose high-order half must be zero. RO-R6 are unchanged when
the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the source string is vacant, the fill character will be propagated
through the destination string. If the destination string is vacant,
no characters will be moved. The condition codes will be updated.
MOVC will update the general registers.

3. MOVC - When the instruction terminates, RO is zero only if Z or C
is set.

4. The condition codes will be set as if this instruction were preceded
by CMP src.len, dst.len.

Purpose:

Operation:

Condition
Codes:

Opcodes:

MOVRC/MOVRCI

Move Reverse Justified Character

dst +- reverse justified src

The condition codes are based on the arithmetic com­
parison of the initial character string lengths (result =
src.len -dst.len).
N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow, that is,

src..len<15> and dst.len<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVRC
MOVRCI

389

076031
076131

Chapter 12 - Commercial Instruction Set

Description: The character string specified by the source descriptor
is moved into the area specified by the destination descriptor. It is
aligned by the least significant character. The condition codes reflect
an arithmetic comparison of the original source and destination
lengths. If the source string is shorter than the destination string, the
fill character is used to complete the most significant part of the desti­
nation string. This is indicated by the C bit set. If the source string is
longer than the destination string, the most significant characters of
the source string are not moved. This is indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all
characters are moved with neither truncation nor filling. This is indicat­
ed by the Z bit set. The unsigned branch instructions may test the
result of the instruction.

Register Form-MOVRC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destination character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, and R4<15:8> must be
zero.

15 o
RO

f- sre dscr

RI

R2

dst dscr
R3

R4 0 1 fill

When the instruction is completed, RO contains the number of un­
moved source string characters, and R1 through R3 are cleared.

15 o
RO max{O,trc. ten-dst. lonl

RI 0

R2 0

R3 0

R4 0 I fill

390

Chapter 12 - Commercial Instruction Set

In-line Form-MOVRCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, a word address pointer to a two-word character string destination
descriptor, and a word whose low-order half contains the fill character
and whose high-order half must be zero. RO-R6 are unchanged when
the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the source string is vacant, the fill character will be propagated
through the destination string. If the destination string is vacant,
no characters will be moved. Condition codes will be updated.
MOVRC will update the general registers.

3. MOVRC-When the instruction terminates, RO is zero only if Z or
C are set.

4. The condition codes will be set as if this instruction were preceded
by CMP src.len, dsUen.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Move Translated Character

dst +- translated src

MOVTC/MOVTCI

The condition codes are based on the arithmetic
comparison of the initial character string lengths (result
= src.len-dsUen).
N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow, that is,

src.len<15> and dsUen<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVTC
MOVTCI

391

076032
076132

C'hapter 12 - Commercial Instruction Set

Description: The character string specified by the source descriptor
is translated and moved into the area specified by the destination
descriptor. It is aligned by the most significant character. Translation
is accomplished by using each source character as an 8-bit positive
integer index into a 256-byte table, the address of which is an operand
of the instruction. The byte at the indexed location in the table is stored
in the destination string. The condition codes reflect an arithmetic
comparison of the original source and destination lengths.

If the source string is shorter than the destination string, the untrans­
lated fill character is used to complete the least significant part of the
destination string. This is indicated by the C bit set. If the source string
is longer than the destination string, the least significant characters of
the source string are not moved. This fs indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all
characters are translated and moved with neither truncation nor filling.
This is indicated by the Z bit set. The unsigned branch instructions
may test the result of the instruction.

Register Form-MOVTC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destinati9n character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, R4<15:8> must be zero,
and the translation table address is placed in R5.

15 7 o
RO

src . dscr -
R1

R2

dst. dscr -
R3

R4 0 I fill

R5 table. ad,

When the instruction is completed, RO contains the number of un­
moved source string characters, and R 1 through R3 are cleared.

In:line Form-MOVTCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, a word address pOinter to a two-word character string destination

392

Chapter 12 - Commercial Instruction Set

15 S 7 o
RO maJl(O. src .Ien - dst. len)

RI 0

R2 0

R3 0

R4 0 I fill

R5 table. cdr

descriptor, a word whose low-order half contains the fill character and
whose high-order half must be zero, and a word containing the
address of the translation table. RO-R6 are unchanged when the in­
struction is completed.

Notes:
1. The operation of this instruction is unaffected by any overlap of

the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the destination string overlaps the translation table in any way,
the results of the instruction will be UNPREDICTABLE.

3. If the source string is vacant, the untranslated fill character will be
propagated through the destination string. If the destination string
is vacant, no characters will be moved. Condition codes will be
updated. MOVTC will update the general registers.

4. MOVTC-When the instruction terminates, RO is zero only if Z or
C are set.

5. The condition codes will be set as if this instruction were preceded
by CMP src.len, dst.len.

6. Th.e effect of the instruction is UNPREDICTABLE if the entire 256-
byte translation table is not in readable memory.

MULP/MULPI

Purpose: Multiply Decimal

Operation: dst - src2 * src1

Condition N: set if dst < 0; cleared otherwise

393

Codes:

Opcodes:

Chapter 12 - Commercial Instruction Set

Z: set if dst = 0; cleared otherwise
V: set if dst cannot contain all significant digits of the

result; cleared otherwise
C: cleared

MULP
MULPI

076074
076174

Description: Src1 and src2 are multiplied, and the result is stored in
the destination string. The condition codes reflect the value stored in
the destination string, and whether all significant digits were stored.

Register Form-MULP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

15 o
RO

srd. dscr

Rl

R2
src2. dscr -

R3

R4

f- dst. dscr -
R5

When the instruction is completed, the source descriptor registers are
cleared.

15 o

RO 0

Rl 0

R2 0

R3 0

R4

dst. dscr -
5

394

Chapter 12 - Commercial Instruction Set

In-line Form-MULPI
Each word address pOinter which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. The results of the instruction are UNPREDICTABLE if the source
and destination strings overlap.

3. No numeric string multiply instruction is provided.

Purpose:

Operation:

Condition
Codes:

Opcodes:

SCANC/SCANCI

Scan Character

Search source character string for a member of the
character set

The condition codes are based on the final contents of
RO.
N: set if RO<15> set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

SCANC
SCANCI

076042
076142

Description: The source character string is searched from most sig­
nificant to least significant character until the first occurrence of a
character which is a member of the character set. A character string
descriptor is returned in RO-R1 which represents the portion of the
source character string beginning with the located member of the
character set. If the source character string contains only characters
which are not in the character set, the instructions return a vacant
character string descriptor with an address one greater than that of
the least significant character of the source character string. The
condition codes reflect the resulting value in RO.

395

Chapter 12 - Commercial Instruction Set

Register Form-SCANC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, and the character set descriptor is placed in R4-R5.

:f o

sre . dscr

RR4S ,----[___ -------'J L ... d.er]

When the instruction is completed, RO-R1 contain a character string
descriptor which represents the substring of the source character
string beginning with the most significant character which is a member
of the character set.

o

sub. sre . dser

RR4S[L_~ _~ ___ -------'l L so •. dscr]

In-line Form-SCANCI
The words which follow the opcode word in the instruction stream are
a word address pOinter to a two-word character string source descrip­
tor, and a word address pOinter to a two-word character set descrip­
tor. When the instruction is completed, RO-R1 contain a character
string descriptor which represents the substring of the source charac­
ter string beginning with the most significant character which is a
member of the character set. R2-R6 are unchanged.

396

Chapter 12 - Commercial Instruction Set

sub. src . dscr

Notes:
1. If the initial source character string descriptor is vacant, the in­

struction terminates with the condition codes indicating that no
characters in the set were found. The original source character
string descriptor is returned in RO-R1.

2. The source character string and character set table may overlap
in anyway.

3. A test for success is BNE; a test for failure is BEQ.
4. The condition codes will be set as if this instruction were followed

byTST RO.
5. The effect of the instruction is UNPREDICTABLE if the entire 256-

byte character set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

SKPC/SKPCI

Skip Character

Search source character string until a character other
than the search character is found

The condition codes are based on the final contents of
RO.
N: set if RO<1S> set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

SKPC
SKPCI

076041
076141

Description: The source characer string is searched from most
significant to least significant character until the first occurrence of a
character which is not the search character. A character string de­
scriptor is returned in RO-R1 which represents the portion of the
source character string beginning which the most significant character

397

Chapter 12 - Commercial Instruction Set

which was not equal to the search character. If the source character
string contains only characters equal to the search character, the in­
struction returns a vacant character string descriptor with an address
one greater than that of the least significant character of the source
character string. The condition codes reflect the resulting value in RO.

Register Form-SKPC
When the instruction starts, the operands must have been placed in
the general registers. The source character string decriptor is placed
in RO-R1, the search character is placed in R4<7:0>, and R4<15:8>
must be zero.

src. dscr

R41~ __________ O __________ ~~ _________ C_ha_r __________ ~

When the instruction is completed, RO-R1 contain a character string
descriptor which represents the substring of the source character
string beginning with the most significant character which was not
equal to the search character.

7

:f sub. src . dscr

R4IL ___________ O __________ ~L-_________ c_ha_r __________ ~

In-line Form-SKPCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word whose low-order half contains the search character
and whose high-order half must be zero. When the instruction is com­
pleted, RO-R1 contain a character string descriptor which represents
the substring of the source character string beginning with the most
significant character which was not equal to the search character. R2-
R6 are unchanged.

398

Chapter 12 - Commercial Instruction Set

Notes:

1. If the initial source character string descriptor is vacant, the in­
struction terminates with the condition codes indicating the char­
acter string only contained search characters. The original source
character string descriptor is returned in RO-R1.

2. The condition codes will be set as if this instruction were followed
byTST RO.

Purpose:

Operation:

Condition
Codes:

Opcodes:

sub. src . dscr

SPANC/SPANCI

Span Character

Search source character string for a character which is
not a member of the character set.

The condition codes are based on the final contents of
RO.
N: set if RO<15> set; cleared otherwise

Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

SPANC
SPANCI

076043
076143

Description: The source character string is searched from most
significant to least significant character until the first occurrence of
character which is not a member of the character set. A character
string descriptor is returned in RO-R1 which represents the portion of
the source character string beginning with the character which is not a
member of the character set. If the source character string contains
only characters which are in the character set, the instruction returns a
vacant character string descriptor with an address one greater than
that of the least significant character of the source character string.
The condition codes reflect the resulting value in RO.

399

Chapter 12 - Commercial Instruction Set

Register Form-SPANC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, and the character set descriptor is placed in R4-R5.

~ °

RROI
L,-----___ -----Il L src.dscr]

R

R4

S,-----L _~_-----IJ [...... _ sot. dscr]

When the instruction is completed, RO-R1 contain a character string
descriptor which represents the substring of the source character
string beginning with the most significant character which is not a
member of the character set.

°
sub. sre . dser

RR5

4

,-----L ___ -----IJ L sat.dscr]

In-line Form-SPANCI
The words which follow the opcode word in the instruction stream are
a word address pOinter to a two-word character string source descrip­
tor, and a word address pointer to a two-word character set descrip­
tor. When the instruction is completed, RO-R1 contain a character
string descriptor which represents the substring of the source charac­
ter string beginning with the most significant character which is not a
member of the character set. R2-R6 are unchanged.

15 7 0

:r sub. sre . dser j
400

Chapter 12 - Commercial Instruction Set

Notes:
1. If the initial source character string descriptor is vacant, the in­

struction terminates with the condition codes indicating that only
characters in the set were found. The original source character
string descriptor is returned in RO-R1.

2. The source character string and character set table may overlap
in anyway.

3. The condition codes will be set as if this instruction were followed
byTST RO.

4. The effect of the instruction is UNPREDICTABLE if the entire 256-
byte character set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Subtract Decimal

dst - src2-src1

SUBN/SUBP/SUBN I/SUBPI

N: set if dst <0; cleared otherwise

Z: set if dst = 0; cleared otherwise
V: set if dst cannot contain all significant digits of the

result; cleared otherwise
C: cleared

SUBN
SUBP
SUBNI
SUBPI

076051
076071
076151
076171

Description: Src1 is subtracted from src2, and the result is stored in
the destination string. The condition codes reflect the value stored in
the destination string, and whether all significant digits were stored.

Register Form-SUBN and SUBP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

401

Chapter 12 - Commercial Instruction Set

15 o
RO

srd. dser
Rl

R2

src2. dser -
R3

R4

dst. dser -
R5

When the instruction is completed, the source descriptor registers are
cleared.

15 o

RO 0

Rl 0

R2 0

R3 0

R4

!-- dst. dser

R5

In-line Form-SUBNI and SUBPI
Each word address pOinter which follows the opcode word in the
instruction stream refers to a two-word decimal string descriptor. RO­
RS are unchanged when the instruction is completed.

Notes:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. Source strings may overlap the destination string only if all cor­
responding digits of the strings are in coincident bytes in memory.

402

APPENDIX A

UNIBUS I/O PAGE DEVICE
ADDRESSES AND VECTOR ASSIGNMENTS

Size in Number of
Device Address Words Devices

AA11 776750 8 1 (first unit)
AA11 776400 8 4 (extra units)
AD01 776770 4 1
ADF11 770460 8 1
AFC11 772570 4 1
AR11 770400 8 1
BM792-YA 773000 32 1
BM792-YB 773100 32 1
BM792-YC 773200 32 1
BM792-YH 773300 32 1
BM873-YA 773000 128 1
BM873-YB 773000 256 1
BM873-YC 773000 256 1
CD11 777160 4 1
CM11 777160 4 1
CR11 777160 4 1
Customer 764000 1024 1
DC11 774000 4 32
DC14-D 777360 8 1
Diagnostics 760000 4 1
DL11-A 777560 4 1 (console)
DL11-A 776500 4 16
DL11-B 777560 4 1 (console)
bL11-B 776500 4 16
DL11-C 775610 4 31
DL11-D 775610 4 31
DL11-E 775610 4 31
DL11-W 777546 1 1 (line clock, first

unit only)
DL11-W 777560 4 1 (console)
DL11-W 716500 4 16
DM11 775000 4 16
DM11-BB 770500 4 16 (modem control

forDM11)
DN11-AA 775200 4 16

A-1

Appendix A - UNIBUS Addresses

Size in Number of
Device Address Words Devices

DN11-DA 775200 1 64
DP11 774400 4 -32 (assigned

backwards)
DR11-A/C 767600 4 -16 (assigned

backwards)
DR11-B(1) 772410 4
DR11-B(2) 772430 4
DS11 775400 67 1
DT11 777420 1 8
DV11 775000 16 4
DX11 776200 16 2
Floating CSRs 760010 1020 1
FP11 772160 8 1
GT40 772000 4 4
ICR/ICS11 771000 256 1
IP11/1P300 771000 128 2
KE11 777300 8 2
KG11 770700 4 8
KL 11 776500 4 16
KL 11 777560 4 1 (console)
KT11 772200 64 1
KT11-SR3 772516 1 1
KU116-AA 777540 1 1
KW11-L 777546 1 1
KW11-P 772540 4 1
KW11-W 772400 4 1
LP11 777514 2 1 (LPO)
LP11 764004 2 1 (LP1)
LP11 764014 2 (LP2)
LP11 764024 2 (LP3)
LP11 764034 2 (LP4)
LP11 764044 2 (LP5)
LP11 764054 2 (LP6)
LP11 764064 2 1 (LP7)
LP20 775400 32 2
LPA11-K 770460 8 1
LPS11 770400 16 1
LS11 777514 2 1
LV11 777514 2 1
M792 773000 32 8

A-2

Appendix A - UNIBUS Addresses

Size in Number of
Device Address Words Devices

M9301-XX 765000 256
M9301-XX 773000 256
MM11-LP 772100 1 16
MR11-DB 773100 64 1
MS11-K 772100 1 16
MS11-LP 772100 1 16
NCV11 772760 8 1
OST 772500 6 1
PA61 Lreaders 772600 32 1 (2perPA611)
PA611_punches 772700 32 1 (2perPA611)
PC11 777550 4 1
PDP-11/04 777570 68 1
PD"P-11/05 777570 68 1
PDP-11/10 777570 68 1
PDP-11/15 777570 68 1
PDP-11/20 777570 68 1
PDP-11/24 777570 68 1
PDP-11134A 777570 68 1
PDP-11/35 777570 68 1
PDP-11/40 777570 68 1
PDP-11/44 777570 68 1
PDP-11/45 777570 68 1
PDP-11/55 777570 68 1
PDP-11/60 777570 68 1
PDP-11170 777570 68 1
PR11 777550 4 1
RC11 777440 8 1
Reserved 770100 32 1
Reserved 770440 8 1
Reserved 772150 4 1
Reserved 772420 4 1
Reserved 772514 1 1
Reserved 772550 8 1
Reserved 775606 1 1
Reserved 777000 56 1
Reserved 777200 32 1
Reserved 777510 2 1
Reserved 777520 4 1
Reserved 777540 3 1
RF11 777460 8 1

A-3

Appendix A - UNIBUS Addresses

Size in Number of
Device Address Words Devices

RH70/1Lait 776300 32 (Alternate
RS/RP/RM/T J)

RK611 777440 16 1
RK11 777400 8 1
RU1 774400 4 1
RM03/04/05 776700 22 1 (RH70/RH11)
RP04/05/06 776700 22 1 (RH70/RH11)
RP11 776700 16 1 (RH70/RH11)
RS04 772040 16 1 (RH70/RH11)
RX11/RX211 777170 4 1
TA11/DIP11-A 777500 4 1
TC11 777340 8 1
Testers 770000 32 1
TM11/TMB11 772520 8 1
TR79 764000 4 1
TS11 772520 2 4
TU16/45177 772440 16 1 (RH70/RH11)
TU58 776500 4 4
UDC-Units 771000 1 256
UDC11 771774 2 1
UET 772140 4 1
Unibus-Map 770200 64 1
VSV11 772000 4 4
VT48 772000 16 1
VTV01 772600 112 2
XV11 777530 4 1

PDP-11 INTERRUPT AND TRAP VECTORS
000 PDP-11 Reserved
004 PDP-11 CPU Errors (Illegal instructions, Bus Errors,

Stack Limit, Illegal Internal Address, Microbreak)
010 PDP-11 Reserved Instructions
014 PDP-11 Breakpoint/Trace traps
020 PDP-11 lOT Trap
024 PDP-11 Power Fail
030 PDP-11 EMT Trap
034 PDP-11 TRAP Trap
040 Reserved for System Software

A-4

Appendix A - UNIBUS Addresses

044 Reserved for System Software
050 Reserved for System Software
054 Reserved for System Software
060 DL11(1),KL11(1)
064 DL11(1),KL11(1)
070 PC11, paper tape reader
074 PC11, paper tape punch
100 KW11-L, line clock
104 KW11-P, programmable clock
110 Reserved for System Software
1.14 CPU
120 XY11, Plotter
124 DR 11-B, DMA interface
130 AD01, AID subsystem
134 AFC11, analog subsystem
140 AA11,display
144 AA11, RSTS/E(crash-dump)
150 alternate RS/RP/RM/T J
154 UNUSED - Reserved for Digital
160 RL~1,disk

164 UNUSED - Reserved for Digital
170 LP/LS/LV11 (#1), USER RESERVED
174 LP/LS/LV11 (#2), USER RESERVED
200 LP/LS/LV11 (#0), LP20 (1), lineprinter
204 RF11, RS03/04 (RH11 IRH70), MASSBUS fixed head disk
210 LP20(2), RC11, RK611/RK711
214 TC11, DECtape
220 RK11, disk
224 TM11, TS11, TU16/45, TE16, TU77, MASSBUS

Magnetic tape
230 CD11,CM11,CR11
234 ICS/ICR11, IP11/1P300, UDC11
240 PDP-11-PIRQ
244 Floating POint exception
250 Memory Management error
254 RM02/03/50 (RH11/RH70), RP04/5/6 (RH11/RH70), RP11
260 DIP11, TA11
264 RX11, floppy disk
270 LP/LS/LV11 (#3), USER RESERVED
274 LP/LS/LV11 (#4), USER RESERVED
300 Floating Vectors

A-5

Appendix A - UNIBUS Addresses

FLOATING VECTORS
There is a floating vector convention used for communications and
other devices that interface with the PDP-11. These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It can be seen that
the first vector address, 300, is assigned to the first DC11 in the sys­
tem. If another DC11 is used, it would then be assigned vector address
310, etc. When the vector addresses have been assigned for all the
DC11 s (up to a maximum of 32), addresses are then assigned conse­
cutively to each unit of the next highest-ranked device (KL 11 or DP11
or DM11, etc.), then to the other devices in accordance with the priori­
ty ranking.

Priority Ranking for Floating Vectors

(starting at 300 and proceeding upwards)

Decimal Octal
Size Modulus

Rank Option (words) (address)

1 DC11 4 10
1 TU58 4 10 (See Note 1)
2 KL 11 (extra) 4 10
2 DL 11-A(extra) 4 10
2 DL 11-B(extra) 4 10
3 DP11 4 10
4 DM11-A 4 10
5 DN11 2 4
6 DM11-BB 2 4
7 DH11 modem control 2 4
8 DR11-A 4 10
9 DR11-C 4 10

10 PA611 (reader+punch) 8 10
11 LPD11 4 10
12 DT11 4 10
13 DX11 4 10
14 DL11-C 4 10
14 DL11-D 4 10
14 DL11-E 4 10
15 DJ11 4 10

A-6

Appendix A - UNIBUS Addresses

Decimal Octal
Size Modulus

Rank Option (words) (address)

16 DH11 4 10
17 GT40 8 10
17 VSV11 8 10
18 LPS11 12 10
19 DQ11 4 10
20 KW11-W 4 10
21 DU11 4 10
22 DUP11 4 10
23 DV11 +modem control 6 10
24 LK11-A 4 10
25 DWUN 4 10
26 DMC11 4 10
26 DMR11 4 10 (DMC before DMR)
27 DZ11 4 10
28 KMC11 4 10
29 LPP11 4 10
30 VMV21 4 10
31 VMV31 4 10
32 VTV01 4 10
33 DWR70 4 10
34 RL11/RLV11 2 4 (after the first)
35 RX02 2 4
36 TS11 2 4 (after the first)
37 LPA11-K 4 10
38 IP11/1P300 2 4
39 KW11-C 4 10
40 RX11 2 4 (after the first)
41 DR11-W 2 4
42 DR11-8 2 4 (after the first)

1 There is no standard configuration for systems with both DC11 and TU58.

A-7

Appendix A - UNIBUS Addresses

FLOATING CSR ADDRESS DEVICES
There is a floating address convention used for communications and
other devices interfacing with the PDP-11. These addresses are as­
signed in order starting at 760 010 and proceeding upwards to 763
776. Floating addresses are assigned in the following sequence:

Decimal Octal
Size Modulus

Rank Option (words) (address)

1 DJ11 4 10
2 DH11 8 20
3 D011 4 10
4 DU11 4 10
5 DUP11 4 10
6 LK11A 4 10
7 DMC11/DMR11 4 10 (DMC before DMR)
8 DZ11 1 and DZV11 4 10
9 KMC11 4 10

10 LPP11 4 10
11 VMV21 4 10
12 VMV31 8 20
13 DWR70 4 10
14 RL11 and RLV11 4 10 (extra only)
15 LPA11-K 8 20 (extra only)
16 KW11-C 4 10
17 Reserved 4 10
18 RX11 4 10 (extra only)
19 DR11-W 4 10
20 DR11-B 4 10 (after second)

1 DZ11 E and OZll F are dual OZlls and are treated by the algorithm as two
OZlls.

DEVICE ADDRESSES

776000 I
Diagnostics

760006

760010 (Start of floating addresses)

763776 (Top of floating addresses)

A-8

Appendix A - UNIBUS Addresses

764000 TR79

7640041
LP11(#0-7)

764066
Customer

7650001
M9301

765776

7676001
DR11-AlC

767776

7700001
Testers

770076

7701001
Reserved

770176

7702001
UNIBUS Map

770376

770400 !
AR11

770416 LPS11

770436

7704401
Reserved

770456

7704601
ADF11/LPA11-K

770476

7705001 #1
DM11-BB

770676 #16

A-9

7707001

770776

771000!

771776

771774!

771776

7720001

772036

7720401

772076

772100!

772136

772140!

772146

7721501

772156

77216°1

772176

772200!

772216

7722201

772236

Appendix A - UNIBUS Addresses

#1
KG11

#8

ICRIICS11
UDC Functional 1/0 Units

IP11/1P300

ICR/ICS11
UDC11

GT40 (#1-#4)
VSV11 (#1-#4)
VT48

RS04

IP11/1P300

UNIBUS Memory Parity

UNIBUS Tester

Reserved

FP11 Registers

MM11-LP #1

MS11-LP #16

Supervisor Instruction Descriptor PDR, reg 0-7

Supervisor Data Descriptor PDR, reg 0-7

A-10

Appendix A - UNIBUS Addresses

7722401
Supervisor Instruction PDR, reg 0-7

772256

7722601
Supervisor Data PAR, reg 0-7

772276

7723001
Kernel Instruction PDR, reg 0-7

772316

7723201
Kernel Data PDR, reg 0-7

772336

7723401
Kernel Instruction PAR, reg 0-7

772356

7723601
Kernel Data PAR, reg 0-7

772376

7724001
KW11-W

772406

7724101
DR11-B(#1)

772416

7724201
Reserved

772426

7724301
DR11-B (#2)

772436

772440!
TU16/45177

772476

A-11

Appendix A - UNIBUS Addresses

772500f
OST

772512

772514 Reserved

772516 Memory Mgt. reg (MMR3)

772520 1
TM11/TMB11/TS11

772536

77254°1
KW11-P

772546

77255°1
Reserved

772566

77257°1
AFC11

772576

772600f
PA611 Typeset Readers

772676

77270°1
PA611 Typeset Punches VTV01

772776

77276°1
NCV11

772776

773476

A-12

Appendix A - UNIBUS Addresses

7730001
BM792-YA

773076
BM873-YA

7731001 BM873-YB
MR11-DB BM873-YC

773276 M792
773376 M9301-XX
773776

774000 I #1
DC11,

774376 #32

7744001 #1
RL 11

774406 DP11,

774776 #32

7750001 #1
DM11, DV11,#1-#4

775176 #16

775200 I #1
DN11-AAlDN11-DA

775376 #16

7754001
LP20 I

775576 D811
775604

775606 Reserved

775610 I #1
DL 11-C, -D, -E

776176 #31

7762001
DX11

776276

A-13

7763001

7763761

7764001

776476

776500j

776676

776700

776736
776752

776750 !
776766

776770 1

7767761

777 0001

7771561

777160 I
7771661

7771701

7771761

7772001

777 276

Appendix A - UNIBUS Addresses

alternate RH70/RH11

#2
AA11,

#5

KL11, #1

TU58
DL 11-A, -B, -W #16

RP11

I
AA11, #1

AD01

Reserved

CM11, CD11
CR11

RX11/RX211

Reserved

RM03/04/05,
RP04/05/06

A-14

Appendix A - UNIBUS Addresses

777300 I
KE11, #2

777336

777 3401
TC11

777356

777360 !
DC14-D

777 376

777 400!
RK11

777 416

777420 !
DT11

777436

777 440 1
RC11

777 456
RK611

7774601
RF11

777 476

777 500!
TA11/DIP11-A

777 506

7775101
Reserved

777512

777514 !
LP11/LS11/LV11

777516

777 5201
Reserved

777 526

A-15

777 5301

777536

7705401

777544

777 546

7775501

777556

777 560

777 566

777570

777 572
777574
777 576

7776001

777616

7776201

777 636

777 6401

777656

7776601

777 676

Appendix A - UNIBUS Addresses

XY11

KV116-AA

DL 11-W/KW11-L, line clock

PC11/PR11

DL 11-A/DL 11-8
Console Terminal

DL 11-W/KL 11

Console Switch & Display Register

(MMRO)
Memory Mgt. reg (M M R 1)

(MMR2)

User Instruction PDR, reg 0-7

User Data PDR, reg 0-7

User Instruction PAR, reg 0-7

User Data PAR, reg 0-7

A-16

777 700
777 701
777 702
777 703
777 704
777705
777706
777 707

777 710
777 711
777 712
777 713
777 714
777715
777 716
777717

777 740
777742
777744
777 746

777 750
777 752
777 754
777 756

777 760

777762
777764
777 766

777770
777 772
777774
777776

Appendix A - UNIBUS Addresses

RO
R1

General registers. R2
SetO R3

R4
R5

Kernel R6 (SP)
R7 (PC)

RO
R1

General registers R2
Set 1 R3

R4
R5

Supervisor R6(SP)
User R6 (SP)

Low Error Address (PDP-11170)
High Error Address (PDP-11170)
Memory System Error (PDP-11 170)
Cache Control

Maintenance
Hit/Miss

Lower Size I (PDP-11170)
System Size

Upper Size (PDP-11170)
System liD (PDP-11170)
CPU Error

Microprogram Break (PDP-11/70)
Program Interrupt Request (PIR)
Stack Limit (SL) (PDP-11/70)
Processor Status Word (PS)

NOTE
All presently unused UNIBUS addresses are re­
served by Digital.

A-17

APPENDIX B

INSTRUCTION TIMING

PDP-ll/04 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself
and the modes of addressing used_ In the most general case, the In­
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time_

Instr Time = Basic Time + SRC Time + DST Time

Double Operand instructions require all 3 of these Times, Single Oper­
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary ± 10%.

Double Operand

Instruction

ADD, SUB, BIC, BIS
CMP, BIT
MOV

Single Operand

BASIC TIMES

CLR, COM, INC, DEC, NEG, ADC, SBS
ROR, ROL, ASR, ASL
TST
SWAB
All Branches (branch true)
All Branches (branch false)

Jump Instructions
JMP
JSR

Control, Trap, and Miscellaneous Instructions
RTS
RTI, RTT
Set N,Z,V,C
Clear N,Z,V,C
HALT
WAIT
RESET

lOT, EMT, TRAP, BPT

8-1

Basic Time w sec)

MOS Parity MOS

3.17 3.33
2.91 3.07
2.91 3.07

2.65 2.81
2.91 3.07
2.39 2.55
2.91 3.07
2.65 2.81
1.87 2.03

0.91 0.88
3.27 3.27

4.11 4.43
5.31 5.79
2.39 2.55
2.39 2.55
1.46 1.62
2.13 2.29
100 ms 100 ms

7.95 8.49

Appendix B - Instruction Timing

ADDRESSING TIMES

ADDRESSING FORMAT

SRC Time*

Time (",sec)

DST Time>l<*

Mode Description Symbolic
I Parity

MOS MOS
I Parity

MOS MOS

0
1

2
3

4

5

6
7

REGISTER R 0 0 0 0
REGISTER @R or (R) 0.94 1.10 1.48 1.67
DEFERRED

AUTO-INCREMENT (RH 1.20 1.36 1.76 1.95
AUTO-INCREMENT @(RH 2.66 2.98 3.20 3.55
DEFERRED
AUTO- -(R) 1.20 1.36 1.76 1.95
DECREMENT
AUTO- @-(R) 2_66 2.98 3.20 3.55
DECREMENT
DEFERRED
INDEX X(R) 2.92 3.24 3.46 3.81
INDEX @X(R) 4_38 4.86 4.92 5.43
DEFERRED

>I< For Source time, add the following for odd byte addressing: 0.52
(",sec)

** For Destination time, modify as follows:
a) Add for odd byte addressing with a non-modifying instruction:

0.52 (",sec)
b) Add for odd byte addressing with a modifying instruction modes

1-7: 1.04 (",sec)
c) Subtract for all non-modifying instructions except Mode 0:

MOS: 0.54 Parity MOS: 0.57 (",sec)
d) Add for MOVE instructions Mode 1-7: 0.26 (",sec)
e) Subtract for JMP and JSR instructions, modes 3, 5, 6, 7: 0.52

(",sec)

B-2

Appendix B - Instruction Timing

B.2 PDP·11/34A CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary ± 10%.

BASIC INSTRUCTION SET TIMING

Double Operand

Instr Time = SRC Time + DST Time + EF Time

Single Operand

Instr Time = DST Time + EF Time

Branch, Jump, Control, Trap, & Misc

Instr Time = EF Time

NOTES
1) The times specified apply to both word and

byte instructions whether odd or even byte.
2) Timing is given without regard for NPR or

BR servicing.
3) If the memory management is enabled exe·

cution times increase by 0.12 ",sec for each
memory cycle used.

4) All timing is based on memory with the fol·
lowing performance characteristics:

Memory Access
Time

MOS (MSll·JP) .635

Cycle
Time

.775

• Instruction timings with MOS MS11·L memory for the PDP·11/34A
were not available at the time of publication. These timings will be
available in the next PDp·11 Processor Handbook. Instruction times
with MS 11-L memory are approximately 15% faster than with MS 11-
J memory.

8-3

Appendix B - Instruction Timing

I. SOURCE ADDRESS TIME

Source Memory MOS
Instruction Mode Cycles (MSll·JP)

Double Operand

II. DESTINATION TIME

o
1
2
3
4
5
6
7

Destination
Instruction Mode

0
Modifying Single 1

Operand 2
and 3

Modifying Double 4
Operand 5

(Except MOV, SWAB, 6
ROR, ROL ASR ASL) 7

0
1
2

MOV 3
4
5
6
7

0
1
2

MTPS 3
4
5
6
7

o
1
1
2
1
2
2
3

Memory
Cycles

0
2
2
3
2
3
3
4

0
1
1
2
1
2
2
3

0
1
1
2
1
2
2
3

8·4

0.00 ",sec
1.26
1.46
2.62
1.41
2.82
2.82
4.18

MOS

0.00
1.74
L89
3.15
L89
3.25
3.35
4.66

0.00
0.93
0.93
2.29
1.13
2.34
2.49
3.75

0.00
0.95
1.26
2.51
1.26
2.51
2.69
4.20

Appendix B - Instruction Timing

Destination Memory
Mode Cycles MOS

MFPS

o
1
2
3
4
5
6
7

III. EXECUTE, FETCH TIME

DOUBLE OPERAND

Memory
Instruction Cycles

ADD, SUB, CMP, BIT, 1
BIC, BIS, XOR

MOV 1

SINGLE OPERAND

CLR, COM, INC, DEC, 1
ADC, SBC, TST

SWAB, NEG 1
ROR, ROL, ASR, ASL 1
MTPS 2
MFPS 2

o
1
1
2
1
2
2
3

MOS

2.16

1.96

1.96

2.16
2.31
3.12
2.12

EIS INSTRUCTIONS (use with DST times)

MUL 1 *8.95
DIV (overflow) 1 2.91

12.61
ASH 1 **4.31
ASHC 1 **4.31

MEMORY MANAGEMENT INSTRUCTIONS

MFPI (D)
MTPI (D)

2
2

3.14
3.34

0.00
0.64
0.64
2.08
0.82
2.08
2.26
3.51

* Add 200ns for each bit transition in serial data from LSB to MSB
* * Add 200ns per shift

8-5

Appendix B - Instruction Timing

Destination Memory
Instruction Mode Cycles MOS

0 0 0.00
1 2 1.54

SWAB, ROR, ROl, 2 2 1.69
ASR,ASl 3 3 2.95

4 2 1.74
5 3 3.05
6 3 3.15
7 4 4.46

0 0 0.00
1 1 1.26

Non-Modifying 2 1 1.41
Single Operand and 3 2 2.67
Double Operand 4 1 1.46

5 2 2.77
6 2 2.87
7 3 4.18

0 0 0.00
1 1 1.24
2 1 1·.44

MFPI (D) 3 2 2.45
MTPI (D) 4 1 1.44

5 2 2.45
6 2 2.65
7 3 3.96

BRANCH INSTRUCTIONS

Memory
Instruction Cycles MOS

BR, BNE, BEQ, (Branch) 1 2.31
BPl, BMI, BVC, BVS, BCC,
BCS, BGE, Bl T, BGT,
BlE, BHI, BlOS,
BHIS, BLO

(No Branch) 1 1.76

SOB (Branch) 1 2.51
(No Branch) 1 2.11

8-6

Appendix B - Instruction Timing

JUMP INSTRUCTIONS

JMP

JSR

Instruction

RTS
MARK
RTI, RTT
Set or Clear C,V,N,Z
HALT
WAIT
RESET
lOT, EMT, TRAP, BPT

LATENCY

Destination
Mode

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Memory
Cycles

2
2
3
1
1
1
1
5

Memory
Cycles MOS

1 1.96
1 2.31
2 3.37
1 2.16
2 3.32
2 3.32
3 4.78

2 3.44
2 3.59
3 4.65
2 3.44
3 4.65
3 4.85
4 6.06

MOS

3.57
4.52
4.98
2.16
1.81
1.81

100 msec
7.7

Interrupts (BR requests) are acknowledged at the end of the current in·
struction. For a typical instruction, with an instruction execution time of
4 .usec, the average time to request acknowledgement would be 2 .usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 7.7 .usec for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 ~sec, max.

8-7

Appendix B - Instruction Timing

NOTES

1. Add 0.84 ILseconds when in rounding mode (FT = 0).

2. Add 0.24 ILseconds per shift to align binary points and 0.24 ILseconds
per shift for normalization. The number of alignment shifts is equal
to the exponent difference for exponent differences bounded as fol­
lows:

1 slEXP (AC)-EXP (FSRC)ls 24 single precision
1 S I EXP (AC)-EXP (FSRC)I s 56 d'ouble precision

The number of shifts required for normalization is equivalent to the
number of leading zeroes of the result.

3. Add .24 ILseconds times the exponent of the product if the exponent
of the product is:

1 S EXP (PRODUCT) s 24 single· precision
1 S EXP (PRODUCT) s 56 double· precision

Add 0.24 ILseconds per shift for normalization of the fra'ctional result.
The number of shifts required for normalization is equivalent to the
number of leading zeroes in the fractional result.

4. Add 0.24 ILseconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num­
ber of shifts required to normalize is equivalent to the number of
leading zeroes; for negative integers, the number of shifts required
for normalization is equivalent to the number of leading ones.

5. Add 0,24 ILseconds per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the ex­
ponent when converting to long integer for exponents bounded as
follows:

1 S EXP (AC) s 15 short integer
1 S EXP (AC) S 31 long integer

B.3 PDP-11/44 CENTRAL PROCESSOR

Timing for the instructions assumes the following conditions:
1. Ti mes specified are typical and may vary by ± 1 0%. They apply to

both byte and word instructions, whether odd or even byte.
2; Timing is given without regard to NPR or BR servicing and as­

sumes that no service states are used except where explicitly
forced by the microstructures.

3. Cache times assume 100% hits. Non-cache times assume 0% hits.
4. If memory management is used, add 0.09 JLsec per memory to the

instruction time.
5. The memory timing is assumed to be the following:

MS11-M DATI (P) 490 ns taa
DATO (B) 230 ns taa

6. All times are expressed in JLsec.

B-8

Appendix B - Instruction Timing

MOV, CMP, BIT, BIS, BIC, ADD, SUB

REGISTER TO REGISTER
INSTRUCTION TIMES

INST

MOV (0,0)
ADD, BIS, BIC (0 0)
CMP, BIT, SUB

UNCACHED
TIME

1.23
1.41

SM"
CACHED

TIME

.60

.78

OM"
#MEM
CYCLE

For the following instructions, use time indicated for any combination
other than register to register.

To figure time, add SRC time from" the first table to DST time from the
second table for the appropriate instruction.

SRC MODE TIMES FOR ALL INSTRUCTIONS LISTED
(INCLUDING FETCH)

UNCACHED CACHED #MEM
SRCMODE TIME TIME CYCLE

0 1.23 .64 1

1 1.92 .66 2

2 2.10 .84 2

3 2.97 1.08 3

4 2.10 .84 2

5 2.97 1.08 3

6 3.15 1.26 3

7 4.02 1.50 4

MOV DST MODE TIMES
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 .18 .18 0

.77 .77 0

B-9

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
DSTMODE TIME TIME CYCLE

2 .77 .77 0

3 1.82 1.19 1

4 .95 .95 0

5 1.82 1.19

6 2.00 1.37

7 2.87 1.60 2

ADD, BIS, BIC
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 .36 .36 0

1 1.46 .83 1

2 1.64 1.01 1

3 2.51 1.25 2

4 1.64 1.01

5 2.51 1.25 2

6 2.69 1.43 2

7 3.56 1.67 3

CMP, BIT
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 .36 .36 0

1.05 .42

8-10

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
INST TIME TIME CYCLE

2 1.23 .60 1

3 2.10 .84 2

4 1.23 .60

5 2.10 .84 2

6 2.28 1.02 2

7 3.15 1.26 3

SUB
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 .18 .18 0

1.46 .83

2 1.64 1.01

3 2.51 1.25 2

4 1.64 1.01

5 2.51 1.25 2

6 2.69 1.43 2

7 3.56 1.67 3

For the following instructions, use time indicated directly.

XOR, NEG
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE
0 1.59 .96

1 2.69 1.43 2

8-11

Appendix B - Instruction Timing

UNCACHED
SRCMODE TIME

2 2.89

3 3.74

4 2.87

5 3.74

6 3.92

7 4.79

CLR, COM, INC, DEC, SBL, ADL, SXT

DSTMODE

0

1

2

3

4

5

6

7

TST

DSTMODE

o

UNCACHED
TIME

1.23

2.51

2.69

3.56

2.69

3.56

3.74

4.61

UNCACHED
TIME

1.23

8-12

CACHED
TIME

1.61

1.85

1.61

1.85

2.03

2.27

CACHED
TIME

.60

1.25

1.43

1.67

1.43

1.67

1.85

2.09

CACHED
TIME

.60

#MEM
CYCLE

2

3

2

3

3

4

#MEM
CYCLE

2

2

3

2

3

3

4

#MEM
CYCLE

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
DSTMODE TIME TIME CYCLE

2.60 .84 2

2 2.28 1.02 2

3 3.15 1.26 3

4 2.28 1.02 2

5 3.15 1.26 3

6 3.33 1.44 3

7 4.20 1.68 4

ROL, ROR, ASR, ASL
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 1.59 .96 1

2.69 1.43 2

2 2.87 1.61 2

3 3.74 1.85 3

4 2.87 1.61 2

5 3.74 1.85 ~

6 3.92 2.03 3

7 4.79 2.27 4

SWAB
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 1.41 .78 1

8-13

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
DSTMODE TIME TIME CYCLE

1 2.51 1.25 2

2 2.69 1.43 2

3 3.56 1.67 3

4 2.69 1.43 2

5 3.56 1.67 3

6 3.74 1.85 3

7 4.61 2.09 4

MFPI(D)
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 2.18 1.55 1

3.23 1.97 2

2 3.41 2.15 2

3 4.10 2.21 3

4 3.41 2.15 2

5 4.10 2.21 3

6 4.28 2.39 4

7 5.15 2.64 4

MTPI(D)
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 2.64 1.38 2

8-14

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
DST MODE TIME TIME CYCLE

3.59 2.26 2

2 3.27 2.51 2

3 4.46 2.57 3

4 3.27 2.51 2

5 4.46 2.57 3

6 4.64 2.75 3

7 5.51 2.99 4

JMP
UNCACHED CACHED #MEM

DST MODE TIME TIME CYCLE

1.23 .60

2 1.59 .96

3 2.28 1.02 2

4 1.41 .78

5 2.28 1.02 2

6 2.28 1.02 2

7 3.33 1.44 3

JSR
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

2.47 1.91

2 2.65 2.09 1

6-15

Appendix B - Instruction Timing

UNCACHED CACHED #MEM
DSTMODE TIME TIME CYCLE

3 3.34 2.15 2

4 2.47 1.91 1

5 3.34 2.15 2

6 3.52 2.40 2

7 4.39 2.57 3

CALL TO SUPERVISOR MODE
UNCACHED CACHED #MEM

DSTMODE TIME TIME CYCLE

0 7.46 6.20 2

1 8.15 6.44 3

2 8.33 6.45 3

3 9.20 6.68 4

4 8.33 6.44 3

5 9.20 6.68 4

6 9.38 6.86 4

7 10.25 7.10 5

BRANCHES
TYPE #MEM
BNE, ETC. UNCACHED CACHED CYCLE

FAILED 1.05 .42

PASSED 1.59 .96 1

SOB NO BRANCH 1.41 .78 1

BRANCH 1.77 1.14

B-16

Appendix B - Instruction Timing

TRAP, SUBROUTINES
#MEM

UNCACHED CACHED CYCLE

TRAP INST. 5.68 3.93 3

RTS 2.46 1.20 2

RTI, RTT NOT KERNEL 3.61 1.92 3

KERNEL 4.35 2.46 3

MISCELLANEOUS
#MEM

UNCACHED CACHED

SET, CLR CC's 1.41 .78 (1)

WAIT (LOOP) 1.53 .90 (1)

(EXIT) 5.56 3.67 (3)

RESET (NOP) 1.23 .60

90~s In Kernel Mode

MARK 3.36 2.10 2

MFPT 1.41 .78

SPL 2.85 2.22

EIS
ASH OM 0 3.93 1 3.30 ADD 180 ns.

1 4.62 2 3.36 FOR TRANS.
2 4.80 2 3.54 FOR RIGHT SHIFTS
3 5.67 2 3.78 SUBTRACT600ns.
4 4.80 2 3.36
5 5.60 3 3.78
6 5.78 3 3.89
7 6.65 4 4.13

B-17

Appendix B - Instruction Timing

ASHCDM 0 3.51 1 2.88 ADD 180ns.
1 4.20 2 2.94 FOR TRANS.
2 4.38 2 3.12
3 5.25 3 3.36
4 4.38 2 3.12
5 5.25 3 3.36
6 5.43 3 3.54
7 6.30 4 3.78

MUlDM 0 6.63 1 6.00 ADD 180 ns. PER
1 7.32 2 6.06 BIT TRANSITION
2 7.50 2 6.24
3 8.37 3 6.48
4 7.50 2 6.24
5 8.37 3 6.48
6 8.55 3 6.66
7 9.42 4 6.90

DIV OM 0 11.01 1 10.28
1 11.07 2 10.44
2 11.88 2 10.62
3 12.75 3 10.86
4 11.88 1 10.62
5 12.75 3 10.86
6 12.93 3 11.04
7 13.08 4 11.28

8.4 PDP-ll/70 CENTRAL PROCESSOR

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, and an Execute, Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instwctions require only some of these times, and are so
noted. Times are typical; processor timing, with core memory, may'vary
+15% to -10%.

BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time + DST Time
(but including MOVB) + EF Time
MOV Instruction: Instr Time = SRC Time + EF Time
(word only)

B-18

Appendix B -Instruction Timing

Single Operand
all instructions: Instr Time = DST Time + EF Time or

Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

USING THE CHART TIMES
To compute a particular instruction time, first find the instruction "EF"
Time. Select the proper EF Time for the SRC and DST modes. Observe
all "NOTES" to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the appropriate amounts to correct EF
number.

USING THE CHART TIMES
The times given in the chart for Cache "hits"; that is, all the read cycles
are assumed to be in the Cache. The number of read cycles in each
subset of the instruction is also included so that timing can be calcu·
lated for a specific case of hits and misses, or timing can be calculated
based on an average hit rate.
a) Specific hits and misses

Add 1.02 /Lsec for each read cycle which is a miss instead of a hit.

b) Average hit rate
If PH is the percent of reads that are hits, add 1.02 X (1 - PH) X
(Number of read cycles) to the instruction timing.

For example, an ADD A,B instruction using Mode 6 (indexed) address
modes:

1) All Hits:

SRC time = 0.60 /Lsec
DSTtime = 0.60 /Lsec
EF time = 1.35/Lsec

TOTAL = 2.55/Lsec

2) 4 Hits, 1 Miss
Total = 2.55 + 1.02

= 3.57 /Lsec

3) Read hit rate of 90%

2 read cycles
2 read cycles
1 read cycle

5 read cycles

Total = 2.55 + (1.02) (.1) (5)
= 3.06 /Lsec

NOTES

1. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same time, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NRP or BR serving. Core memory
is assumed to be iocated within the first 128K memory unit.

8-19

Appendix B -Instruction Timing

3. Times are not affected if Memory Management is enabled.

4. All times are in microseconds.

SOURCE ADDRESS TIME

Instruction

Double
Operand

Source
Mode

0
1
2
3
4
5
6
7

DESTINATION ADDRESS TIME

DST
Instruction Mode

0

Single Operand
1
2

and Double Oper- 3
and (except MOV, 4
MTPI, MTPD, JMP, 5
JRS 6

7

Read
Memory

SRC Time Cycles

.00 0

.30 1

.30 1

.75 2

.45 1

.90 2

.60 2
1.05 3

Read
Memory

DST Time (A) Cycles

.00 0

.30 1

.30 1

.75 2

.45 1

.90 2

.60 2
1.05 3

NOTE (A): Add .15 !-,sec for odd byte instructions, except DST Mode O.

8-20

Appendix B - Instruction Timing

EXECUTE, FETCH TIME

Double Operand

Instruction EF Time

(SRC
Mode 0)

(Use with (DST
SRC Time Mode 0)
and DST Time)

ADD, SUB, .30
BIC, BIS MOVB (D)

CMP, BIT .30
(D)

XOR .30
(D)

Read
Mem
eyc

1

1

1

EF Time EF Time

(SRC (SRe
Mode 1-7) Mode 0-7)
(DST Read (DST Mode 1-7)
Mode 0) Mem

Cyc

.45 2 1.20
(D) (C)

.45 1 .45
(D) (C)

.30 1 1.20
(D)

NOTE (e): Add 0.15 "sec if SRC is Rl to R7 and DST is R6 or R7.
NOTE (D): Add 0.3 "sec if DST is R7.

EF Time EF Time
Instruction DST DST (SRC (SRC
(Use with SRe Time) Mode Register Mode = 0) Mode = 1-7)

0 0-6 .30 .45
0 7 .60 .75
1 0-7 1.20 1.20
2 0-7 1.20 1.20

MOV 3 0-7 1.65 1.65
4 0-7 1.35 1.35
5 0-7 1.80 1.80
6 0-7 1.50 1.65
7 0-7 1.95 2.10

Single Operand

EF TIME EF Time
Instruction (DST Memory (DST
(Use with DST Time) Mode = 0) Cycles Mode 1 to 7)

CLR, COM, INC, DEC, .30 1 1.20
ADC, SBC, ROL, (J)
ASL, SWAB, SXT

NEG .75 1 1.50

TST .30 1 .45
(J)

ROR, ASR .30 1 1.20
(J) (H)

ASH, ASHC .75 1 .90
(I) (I)

8-21

Read
Mem
Cyc

1

1

1

Read
Memory
Cycles

1
1
1
1
2
1
2
2
3

Read
Memory
Cycles

1

1

1

1

1

_ .. -

·Appendix B - Instruction Timing

NOTE (H): Add 0.15 !,sec if odd byte.
NOTE (I): Add 0.15 !,sec per shift.
NOTE (J): Add 0.30 !,sec if DST is R7.

Instruction
(Use with SRC Times) EF Time

MUL
DIV

by zero
shortest
longest

Instruction

MFPI
MFPD

Instruction

MTPI
MTPD

Branch Instructions

Instruction

BR. BNE. BEQ.
BPL. BMI. BVC.
BVS. BCC. BCS.
BGE. BL T. BGT.
BLE. BHI. BLOS.
BHIS. BLO

SOB

EF Time

1.50
1.50

DST
Mode

0
1
2
3
4
5
6
7

Instr Time
(Branch)

.60

.60

3.30

.90
7.05
8.55

Read
Memory
Cycles

1
1

Instruction Time

.90
1.65
1.65
2.10
1.80
2.25
2.10
2.55

Instr Time
(No Branch)

.30

.75

8-22

Read
Memory
Cycles

1

1
1
1

use
with
SRC
times

Read
Memory
Cycles

1
2
2
3
2
3
3
4

Read
Memory
Cycles

1

1

Appendix B - Instruction Timing

Jump Instructions

DST
In$truction Mode Instr Time

1 .90
2 .90
3 1.20

JMP 4 .90
5 1.35
6 1.05
7 1.50

1 1.95
2 1.95
3 2.25

JSR 4 1.95
5 2.40
6 2.10
7 2.55

Control, Trap & Miscellaneous Instructions

Instruction

RTS
MARK
RTI, RTT

SET N, Z, V. C
CLR, N, Z, V, C

HALT
WAIT

WAIT Loop
for a BR is
.3 ILsec.

RESET
lOT, EMT,
TRAP, BRT
SPL
INTERRUPT

First Device

EFFECTIVE MEMORY CYCLE TIME

Instr Time

1.05
.90

1.50

.60

1.05
.45

lOms
3.30

.60
2.31

Read
Memory
Cycles

1
1
2
1
2
2
3

1
1
2
1
2
2
3

Read
Memory
Cycles

2
2
3

1

0
0

1
3

1
2

The overall effective cycle time of the CPU can be calculated from the
following formula:

TCm = PR X [(PH X TCH) + (1 - PH) TCM] + (1 - PR) TCw

8-23

Appendix B - Instruction Timing

Where TCE = Effective cycle time
TCH = Cycle time for a read hit = 0.30 p'sec
TClI = Cycle time for a read miss = 1.32 p'sec
TCw = Cycle time for a write = 0.75 p'sec
Pa = Percent of cycles that are reads
PH = Percent of reads that are hits

Thus, for an average PDP·11/70 program which has a read rate of 91 %
and a read hit rate of 93%, the effective cycle time is:

TCE = .91 X [(.93 X .30) + (.07 X 1.32)] + (.09 X .75) = .41 p'sec

8-24

APPENDIXC

FLOATING POINT TIMING

FLOATING POINT PROCESSOR TIMING
The timing and the processes for determining the timing of the floating
pOint instruction vary with each processor. The following sections ex­
plain specifically the instruction time and the calculation methods for
FP11-A, FP11-C, and FP11-F. Timings for the KEF11-AA (PDP-11/24)
were not available at the time of publication. Also, the FP11-A (PDP-
11/34a) timings utilizing MOS MS11-L memory were not available.
Both timing sets will be available in the next PDP-11 processor hand­
book.

The following table summarizes the floating point execution time of the
FP11-A, FP11-E,and FP11-F.

Table C -1 Comparison of Floating Point Processor Instruction
Timing (sec)

Operation 11/34A 11/70 11/44
(register-to-reglster) FP11-A FP11-C FP11·F
Single Precision
Add/Subtract 8.91 1.65 8.91
Multiply 16.2 3.27 16.2
Divide 16.2 4.29 16.2
Double Precision
Add/Subtract 8.91 1.68 8.91
Multiply 25.36 5.43 25.36
Divide 35.36 6.73 35.36

C-1

Appendix C - Floating Point Timing

FLOATING POINT INSTRUCTION TIMING: FP11-A

Instruction Execution Time
The execution time of an FP11-A floating point instruction is depen­
dent on the following conditions:

• type of instruction
• type of addressing mode specified

• type of memory
• memory management facility enabled or disabled

Additionally, the execution time of certain instructions, such as ADD, is
dependent on the data.

Table C -2 provides the basic instruction times for mode O. Tables C-
3 through C-7 show the additional time required for instructions other
than mode O. For example, to calculate the execution time of a MULF
(single-precision multiply) for mode 3 (autoincrement deferred) with
the result to be rounded:

1. Refer to Table C -2 which gives MULF, mode 0, execution time of
13.4 JLsec.

2. Refer to Note 1 as specified in the notes column of Table C-2.
Note 1 specifies an additional 0.84 JLsec is to be added if rounding
mode is specified. This yields 14.24 JLsec.

3. The modes 1-7 column of Table C -2 refers to Table C-3 to deter­
mine the additional time required for mode 1 through 7 instruc­
tions. In this example, mode 3 specifies an additional 3 JLsec for
single precision yielding 17.34 JLsec.

All timing information is in microseconds unless otherwise noted.
Times are typical; processor timing can vary ± 1 0%.

NOTE
Add .13 JLsec for each memory cycle if MS11-JP
MOS memory is utilized. Add .12 ILsec for each DATI
memory cycle if memory management is enabled.

C-2

Appendix C - Floating Point Timing

Table C-2 FP11-A Instruction Execution Times

Mode 0
(Reg.

Instr. to Reg.) Notes Modes 1 thru 7

LDF 4.0
LDD 4.0
LDCFD 5.8
LDCDF 5.8
CMPF 5.5
CMPD 5.5
DIVF 13.3 1 Use Table C-3
DIVD 20.6 1 to determine
ADDF 7.5 1,2 memory-to-register times
ADDD 7.5 1,2 for these instructions
SUBF 7.9 1,2
SUBD 7.9 1,2
MULF 13.4 1
MULD 20.7 1
MODF 17.4 1,3
MODD 24.7 1,3

STF 2.4
STD 2.4 Use Table C-4
STCDF 5.2 to determine
STCFD 5.2 memory-to-register times
CLRF 2.6 for these instructions
CLRD 2.6

ABSF 3.5
ABSD 3.5 Use Table C-5
NEGF 3.6 to determine
NEGD 3.6 memory-to-memory times
TSTF 3.6 for these instructions
TSTD 3.6

LDFPS 2.5
LDEXP 4.4 Use Table C-6

C~3

Appendix C - Floating Point Timing

Mode 0
(Reg.

Instr. to Reg.) Notes Modes 1 thru 7

lDCIF 7.5 1,4 to determine
lDCID 7.5 1,4 memory-to-register times
lDClF 7.5 1,4 for these instructions
lDClD 7.5 1,4

STFPS 2.8
STST 2.6 Use Table ·C-7
STEXP 3.4 to determine
lSTCFI 4.5 5 register-to-memory times
STCDI 4.5 5 for these instructions
STCFl 4.5 5
STCDl 4.5 5

The.following instructions do not reference memory
CFCC ~O

SETF ~2
SETD 2.2 Execution times
SETI 2.2 are as shown
SETl ~2

Table C-3 Floating Source Fetch Time

Memory Cycles Time(lls)

Addressing
Mode

1
2
2 Immediate
3
4
5
6
7

Single
Precision

2
2
1
3
2
3
3
4

C-4

Double
Precision

4
4
1
5
4
5
5
6

Single Double
Precision Precision

2.00 4.20
2.20 4.40
1.00 1.00
3.00 5.20
2.20 4.40
3.00 5.20
3.20 5.40
4.20 6.40

Appendix C - Floating Point Timing

Table C -4 Floating Destination Store Time

Memory Cycles Time(lls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 1.38 2.94
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 2.38 3.94
4 2 4 1.56 3.12
5 3 5 2.38 3.94
6 3 5 2.56 4.12
7 4 6 3.56 5.12

Table C-5 Floating Destination Fetch And Store Time

Memory Cycles Time(lls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 2 1.42 1.42
2 2 2 1.60 1.60
2 Immediate 2 2 1.60 1.60
3 3 3 2.42 2.42
4 2 2 1.60 1.60
5 3 3 2.60 2.60
6 3 3 2.60 2.60
7 4 4 3.60 3.60

C-5

Appendix C - Floating Point Timing

Table C-6 Source Fetch Time .

Memory Cycles Time(#ls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 1 2 1.00 1.18
2 1 2 1.18 1.36
2 Immediate 1 1 1.18 1.18
3 2 3 2.00 2.18
4 1 2 1.18 1.36
5 2 3 2.00 2.18
6 2 3 2.18 2.36
7 3 4 3.18 3.36

Table C-7 Destination Store Time

Memory Cycles Time(#ls)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 1.60 2.38
4 1 2 0.96 1.68
5 2 3 1.60 2.38
6 2 3 1.78 2.56
7 3 4 2.78 3.56

NOTES:
• Add 0.84 #lsec when in rounding mode (FT = 0) .
• Add 0.24 #lsec per shift to align binary pOints and 0.24 #lsec per shift

for normalization. The number of alignment shifts is equal to the
exponent difference for exponent differences bounded as follows:

1 S IEXP (AC) - EXP (FSRC~ S 24 single precision
1 S IEXP (AC) - EXP (FSRC~ S 56 double precision

C-6

Appendix C - Floating Point Timing

The number of shifts required for normalization is equivalent to the
number of leading zeros of the result.

• Add .24 Jlsec times the exponent of the product if the exponent of
the product is:

1:S EXP (PRODUCT) :S 24 single precision
1 S EXP (PRODUCT) S 56 double precision

Add 0.24 Jlsec per shift for normalization of the fractional result. The
number of shifts required for normalization is equivalent to the num­
ber of leading zeros in the fractional result.

• Add 0.24 Jlsec per shift for normalization of the integer being con­
verted to a floating point number. For positive integers, the number
of shifts required to normalize is equivalent to the number of leading
zeros; for negative integers, the number of shifts required for nor­
malization is equivalent to the number of leading ones.

• Add 0.24 Jlsec per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the expo­
nent when converting to long integer for exponents bounded as
follows:

1 S EXP (AC) :S 15 short integer
1 :S EXP (AC) :S 31 long integer

FLOATING POINT INSTRUCTION TIMING: FP11-C
Floating point instruction times are calculated in a manner similar to
the calculation of CPU instruction timing. Since the FP11-C is a sepa­
rate processor operating in parallel with the main pro<;Jessor, however,
the calculation of floating point instruction times must take this parallel
processing or overlap into account. The following is a description of
the method used to calculate the effective floating point instruction
execution times.

TERM

Instruction Decode
Preinteraction Time

DEFINITION

CPU time required to decode a
floating point instruction opcode
and to store the general register
referred to in the floating point in­
struction in a temporary floating
point register (FPR). This time is
fixed at 450 ns.

C-7

Appendix C - Floating Point Timing

TERM

Address Calculation Time

Wait Time

(Load Class Instructions)

(Store Class Instructions)

ResyncTime

C-8

DEFINITION

CPU time required to calculate
the address of the operand. This
time is dependent on the ad­
dressing mode specified. Refer to
Table C-8.

CPU time spent waiting for com­
pletion by the floating point proc­
essor of a previous floating point
instruction, in the case of load
class Instructions. For store class
instructions, the wait time is the
sum of time during which the
floating point completes a previ­
ous floating point instruction and
floating point execution time for
the store class instruction. Wait
time is calculated as follows:

Wait time = [floating point execu­
tion time (previous FP instruc­
tion)) - [disengage and fetch
time (previous FP instruction)) -
[CPU execution time for interpos­
ing non-floating point instruction]
- [preinteraction time] - [ad­
dress calculation time]. If the re­
sult is S 0, the wait time is zero.

Wait time = [floating point execu­
tion time (previous floating point
instruction)] - [CPU execution
time for interposing non-FP in­
struction] - [disengage and fetch
time (previous FP instruction)) -
[preinteraction] + [floating pOint
execution time] - [address cal­
culation time]. If the result is S 0,
the wait time is zero.

If the CPU must wait for the float­
ing point processor (i.e., wait time
= 0), an additional 450 ns must
be added to the effective execu-

Appendix C - Floating Point Timing

TERM

Interaction Time

Argument Transfer Time

Disengage and Fetch Time

Floating Point Execution Time

Effective Execution Time

C-9

DEFINITION

tion time of the instruction. If wait
time = 0, then resync time =0.

CPU time required actually to
initiate floating point processor
operation.

CPU time required to fetch and
transfer to the floating point proc­
essor the required operand. This
time is 300 ns X the number of
16-bit words read from memory
(load class floating point instruc­
tions), or 1200 ns X the number
of 16-bit words written to memory
(store class instructions).

CPU time required to fetch the
next instruction from memory.
This time is 300 ns.

Time required by the floating
point processor to complete a
floating point instruction once it
has received all arguments (load
class instructions). Execution
times are contaIned in Tables C-
2through C-7.

Total CPU time required to exe­
cute a floating point instruction.

Effective Execution Time =
Preinteraction + Address Calcu­
lation + Wait Time + Resync
Time + Interaction Time + Argu­
ment Transfer + Disengage and
Fetch.

Appendix C - Floating Point Timing

Table C-S Address Calculation Times

Address
Mode Calculation Time

nsec

0 0
1 300
2 300
3 600
4 300
5 750
6 600
7 1050

Table C-9 FP11-C Execution Times

Instruction Minimum Maximum Typical
nsec nsec

LDF 360 360
LDD 360 360
ADDF 900 2520 950
ADDD 900 4140 980
SUBF 900 1980 1130
SUBD 900 4140 1160
MULF 1800 3440 2520
MULD 3060 6220 4680
DIVF 1920 6720 3540
DIVD 3120 14400 6000
MODF 2880 5990
MODO 3780 9770
LDCFD 420 420
LDCDF 540 540
STF* 0
STD· 0

CMPF 540 1080
CMPD 540 1080
STCFD* 720 720 720
STCDF* 540 720 540

LDCIF 1260 1440 1440
LDCID 1260 1440 1440

C-10

Appendix C - Floating Point Timing

Instruction Minimum Maximum Typical
nsec nsec

LDCLF 1260 1980
LDCLD 1260 1980
LDEXP 540 900

STCFI* 1260 1620
STCFL* 1260 2160
STCDI* 1260 1620
STCDL* 1260 2160
STEXP* 360 360

MO NotMO
CLRD 180 2150
CLRD 180 14350
NEGF 360 2400
NEGD 360 2400
ABSF 360 2400
ABSD 360 2400
TSTF 180 180
TSTD 180 180
LDFP5 180 0
STFP5* 0
5TST* 0
CFCC 0
SETF 180
SETD 180
SETI 180
SETL 180

• Store Class Instructions

Load class instructions are those which do not deposit results in a
memory location.
Execution of a load class floating point instruction by the floating point
occurs in parallel with CPU operation and can be overlapped. Figure
C -2 gives a simplified picture of how a load class floating point in­
struction is executed.
Store class instructions are those which store a result from the floating
point into a memory location. Execution of a store class instruction by
the floating point processor must occur before the result can be
stored, hence parallel processing cannot occur for store class floating
pOint instructions.

C-l1

Appendix C - Floating Point Timing

CPU

TI Load Class Instruction
is fetched. This occurs

I during previous
Effective
Execution Time
starts here------r

No Floating Point
intervention ye\

Floating Point
must respond
(i.e., it must be
finished with
prior instruction
byhere--­
or CPU will wait

CPU is finished
with FPP; FPP
will now execute
instructions ~
en its own~

Effective ~
Execution Time
ends here

I instruction execution.

Instruction is decoded.

Contents of CPU General
Register are transferred
to temporary FPP Reg­
ister.

Address of operand
is calculated.

CPU starts FPP execut­
ing this instruction (i.e.,
interacts with FPP).

CPU passes arguments
to FPP

Fetch next instruction.

FPP
T

FPP is idle.

FPP interacts with CPU.

FPP accepts arguments
from CPU.

FPP

executes

instruction.

~Floating Point is fin·
ished and ready to
accept next instruc­
tion.

Figure C -2 Load Class Floating Point Instruction

C-12

Appendix C - Floating Point Timing

CPU

Effective
Execution Time
starts here---

FPP must
respond or

Store Class Instruction
is fetched. This occurs
during previous instruc·
tion execution.

Instruction is decoded.

Contents of CPU
General Register are
stored in Temporary
FPP Register.

Address at which result
to be stored is calcu·
lated.

CPU will wait--I CPU waits for FPP to
I complete execution .

..L
I Since CPU entered Wait
I State, an additional 450

ns Resync overhead is
encountered.

FPP
T
I
I
I
I
I FPP is idle.

I

I
I
I

FPP begins execution­
does not respond until
execution is complete.

<-FPP responds.

CPU interacts with FPP. FPP interacts with CPU.

CPU stores FPP passes

result result to

in Memory. CPU to

store in

Memory.

CPU fetches I
Effective next instruction. I FPP is idle.
Execution Time J..
ends here-

Figure C-3 Store Class Floating Instruction

C-13

Appendix C - Floating Point Timing

Figures C -2 and C -3 shOw how timing associated with a typical load
class and store class instruction is derived.

Figure C -4 shows how effective execution times for actual floating
point instructions in a program are calculated. Note that effective exe­
cution times are dependent on previous floating pOint instructions.

Referencing Figure C-4, a sample calculation of effective time would
be:
For MULF (RO), AC1, effective execution time is the summation of the
following:

Preinteraction Time
Address Calculation Time (Mode 1 from Table C-8)
Wait Time (Since FPP is idle, Wait = 0)
Resync Time (Since Wait = 0, Resync = 0)
Interaction Time

450 ns
300ns

Ons
o ns

300ns
Argument Transfer Time (Transfer 2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time 300 ns

Effective Execution Time 1950

For LDF X(R3),ACLO (Ref. Figure C -4), first we calculate Wait Time:
Wait Time = [Floating Point Execution

(previous FP instruction)(MULF))
- [Disengage and Fetch Time
(previous FPT instruction)]
- [Execution time of interposing
nonFPT instruction (SOB))
- [Preinteraction Time]
- [Address Calculation (Mode 6 from
Table C-8))

Since calculation resulted in a negative
number, Wait Time = O .

1800 ns

- 300ns

-750ns
- 450ns

- 600ns

- 300ns

... so effective execution time is the summation of the following:
Preinteraction Time
Address Calculation Time (Mode 6 from Table C -8)
Wait Time (From above calculation)
Resync Time (Since Wait Time = 0, Resync = 0)
Interaction Time
Argument Transfer Time (2 words @ 300 ns/word)
Disengage and Fetch Time

Effective Execution Time

C-14

450ns
600ns

Ons
Ons

300ns
600ns
300ns

2250 ns

Appendix C - Floating Point Timing

CPU TIME

MULF(RO)' ACI

PRE INTERACTION

ADDRESS CALCULATION

>-
INTERACTION

EFfECTIVE EXECUTION: 1950 Mec

ARGUMENT TRANSFER

DISENGAGE & FETCH

SOB Rl

(NON FLOATING POINT INSTRUCTION)

LOF X(R31, ACO

EFFECTIVE EXECUTiON~2250 nsec

PRE INTERACTION

ADDRESS CALCULATION r
INTERACTION {

,"0,",", ',,",ceo {

________ +--__ ~ _______ DISfN~AGE & FETCH {

ADDF AC2, AC 1

PRE INTERACTION

EFFECTIVE EXECUTlON~I050nsec

j
INTERACTION

DISENGAGE & FETCH

IR DECODE

SET UP
TEMP
FPT REG

ADDRESS
CALC
(MODE 1)

INTERACTION

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT IN ST.

EXECUTIVE
& FETCH
NEXT INST

IR DECODE

SET UP
TEMP
FPT REG

ADDRESS
CALC
(MODE 6)

INTERACTION

ARGUMENT
TRANSFER

DISENGAGE
& FETCH
NEXT INST

IR DECODE

SET UP
TEMP
FPT REG

INTERACTION

DISENGAGE
& FETCH
NEXT INST.

Calculation of Effective Execution Times
for Load Class Instructions (FP11-C)

C-15

FPP TIME

T
FLOATING
POINT
EXECUTION
(MUlF)

1
~

FLOATING
POINT
EXECUTION
(LOF)

iT

T
FLOATING
POINT
EXECUTION
(ADDF)

~

Appendix C - Floating Point Timing

FLOATING POINT INSTRUCTION TIMING: FP11-F

Instruction Execution Time
The execution time of an FP11-F floating point instruction is depen­
dent on the following conditions:

• type of instruction
• type of addressing mode specified

• type of memory
• memory management facility enabled or disabled

Additionally, the execution time of certain instructions, such as ADD, is
dependent on the data.

Table C-10 provides the basic instruction times for mode O. Tables
C~11 through C-15 show the additional time required for instructions

other than mode O. For example, to calculate the execution time of a
MULF (single-precision multiply) for mode 3 (autoincrement deferred)
with the result to be rounded:
1. Refer to Table C-1 0 which gives MULF, mode 0, execution time of

12.4#lsec.
2. Refer to Note 1 as specified in the notes column of Table C -10.

Note 1 specifies an additional 0.84 #lsec is to be added if rounding
mode is specified. This yields 13.24 #lsec.

3. The Modes 1 through 7 column of Table C -1 0 refers to Table C-
11 to determine the additional time required for mode 1 through 7
instructions. In this example, mode 3 specifies an additional 3
#lsec for single precision yielding 16.24 #lsec.

All timing information is in microseconds unless otherwise noted.
Times are typical; processor timing can vary ±10%. All instructions
assume 100% cache hits.

NOTE
Add .090 #lsec for each DATI memory cycle if memory
management is enabled.
Add .630 #lsec for each DATI memory cycle if a
cache miss is encountered.

C-16

Appendix C - Floating Point Timing

Table C-10 FP11-F Instruction Execution Times

Mode 0
(Reg.

Instr. to Reg.) Notes Modes 1 thru 7

LDF 3.0
LDD 3.0
LDCFD 4.8 1
LDCDF 4.8 1
CMPF 4.5
CMPD 4.5
DIVF 12.3 1 UseTable C-11
DIVD 19.6 1 to determine
ADDF 6.5 1,2 memory-to-register times
ADDD 6.5 1,2 for these instructions
SUBF 6.9 1,2
SUBD 6.9 1,2
MULF 12.4 1
MULD 19.7 1
MODF 16.4 1,3
MODD 23.7 1,3

STF 1.4
STD 1.4 Use Table C-12
STCDF 4.2 to determine
STCFD 4.2 memory-to-register times
CLAF 1.6 for these instructions
CLAD 1.6

ABSF 2.5
ABSD 2.5 Use Table C-13
NEGF 2.6 to determine
NEGD 2.6 memory-to-memory times
TSTF 2.6 for these instructions
TSTD 2.6

LDFPS 1.5
LDEXP 3.4 Use Table C-14
LDCIF 6.5 1,4 to determine
LDCID 6.5 1,4 memory-to-register times
LDCLF 6.5 1,4 for these instructions
LDCLD 6.5 1,4

C-17

Appendix C - FloatingPoint Timing

Mode 0
(Reg.

Instr. to Reg.)

STFPS 1.8
STST 1.6
STEXP 2.4
STCFI 3.5
STCDI 3.5
STCFl 3.5
STCDl 3.5

Notes Modes 1 thru 7

Use Table C-15
to determine

5 register-to-memory times
5 for these instructions
5
5

The following instructions do not reference memory

CFCC 1.0
SETF 1.2
SETD 1.2 Execution times
SETI 1.2 are as shown.
SETl 1.2

Table C-11 Floating Source Fetch Time

Memory Cycles Time (p.s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 0.60 1.4
2 2 4 0.80 1.6
2 Immediate 1 1 0.30 0.3
3 3 5 0.90 1.7
4 2 4 0.80 1.6
5 3 5 0.90 1.7
6 3 5 1.10 1.9
7 4 6 1.40 2.2

C-18

Appendix C - Floating Point Timing

Table C·12 Floating Destination Store Time

Memory Cycles Time (~s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 1.38 2.94
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 1.68 3.24
4 2 4 1.56 3.12
5 3 5 1.68 3.24
6 3 5 1.86 3.42
7 4 6 2.16 3.72

Table C·13 Floating Destination Fetch And Store Time

Memory Cycles Time(~s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 2 0.72 0.72
2 2 2 0.90 0.90
2 Immediate 2 2 0.80 0.80
3 3 3 1.02 1.02
4 2 2 0.90 0.90
5 3 3 1.20 1.20
6 3 3 1.20 1.20
7 4 4 1.50 1.50

C-19

Appendix C - Floating Point Timing

Table C-14 Source Fetch Time

Memory Cycles Time (foLS)

Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 2 0.30 0.70
2 2 0.48 1.28
2 Immediate 1 1 0.48 0.48
3 2 3 0.60 1.0
4 1 2 0.48 1.28
5 2 3 0.60 1.0
6 2 3 0.78 1.18
7 3 4 1.08 1.48

Table C-1S Destination Store Time

Memory Cycles Time (foLS)

Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 0.60 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 0.96 0.96
3 2 3 0.90 1.68
4 1 2 0.96 1.68
5 2 3 0.90 1.68
6 2 3 1.08 1.86
7 3 4 1.38 2.16

NOTES:
1. Add 0.84 foLsec when in rounding mode (FT = 0).

2. Add 0.24 foLsec per shift to align binary points and 0.24 foLsec per
shift for normalization. The number of alignment shifts is equal to
the exponent difference for exponent differences bounded as fol­
lows:

1 ~ EXP(AC) - EXP(FSRC) ~ 24, single precision
1 ~ EXP(AC) - EXP(FSRC) ~ 56, double precision

C-20

Appendix C - Floating Point Timing

The number of shifts required for normalization is equivalent to
the number of leading zeros of the result.

3. Add 0.24 ~sec times the exponent of the product if the exponent
of the product is:

1 :::;; EXP(PRODUCT) :::;; 24, single precision
1 :::;; EXP(PRODUCT) :::;; 56, double precision

Add 0.24 ~sec per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to
the number of leading zeros in the fractional result.

4. Add 0.24 ~sec per shift for normalization of the integer being
converted to a floating point number. For positive integers, the
number of shifts required to normalize is equivalent to the number
of leading zeros; for negative integers, the number of shifts re­
quired for normalization is equivalent to the number of leading
ones.

5. Add 0.24 ~sec per shift to convert the fraction and exponent to
integer form, where the number of shifts is equivalent to 16 minus
the exponent when converting to short integer, or 32 minus the
exponent when converting to long integer for exponents bounded
as follows:

1 :::;; EXP(AC) :::;; 15, short integer
1 :::;; EXP(AC) :::;; 31, long integer

C-21

Decimal Octal

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
26 32
27 33
28 34
29 35
30 36
31 37
32 40
33 41
34 42
35 43

D-1

APPENDIX D

CONVERSION TABLE

Binary

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

100000
100001
100010
100011

Appendix D - Conversion Table

Decimal Octal Binary

36 44 100100
37 45 100101
38 46 100110
39 47 100111
40 50 101000
41 51 101001
42 52 101010
43 53 101011
44 54 101100
45 55 101101
46 56 101110
47 57 101111
48 60 110000
49 61 110001
50 62 110010
51 63 110011
52 64 110100
53 65 110101
54 66 110110
55 67 110111
56 70 111000
57 71 111001
58 72 111010
59 73 111011
60 74 111100
61 75 111101
62 76 111110
63 77 111111
64 100 1000000
65 101 1000001
66 102 1000010
67 103 1000011
68 104 1000100
69 105 1000101
70 106 1000110
71 107 1000111
72 110 1001000
73 111 1001001
74 112 1001010
75 113 1001011
76 114 1001100
77 115 1001101

0-2

Appendix D - Conversion Table

Decimal Octal Binary

78 116 1001110
79 117 1001111
80 120 1010000
81 121 1010001
82 122 1010010
83 123 1010011
84 124 1010100
85 125 1010101
86 126 1010110
87 127 1010111
88 130 1011000
89 131 1011001
90 132 1011010
91 133 1011011
92 134 1011100
93 135 1011101
94 136 1011110
95 137 1011111
96 140 1100000
97 141 1100001
98 142 1100010
99 143 1100011

100 144 1100100
101 145 1100101
102 146 1100110
103 147 1100111
104 150 1101000
105 151 1101001
106 152 1101010
107 153 1101011
108 154 1101100
109 155 1101101
110 156 1101110
111 157 1101111
112 160 1110000
113 161 1110001
114 162 1110010
115 163 1110011
116 164 1110100
117 165 1110101
118 166 1110110
119 167 1110111

0-3

Appendix D - Conversion Table

Decimal Octal Binary

120 170 1111000
121 171 1111001
122 172 1111010
123 173 1111011
124 174 1111100
125 175 1111101
126 176 1111110
127 177 1111111
128 200 10000000

0-4

aborts
clearing status registers after 168
to 169
Fault Recovery Registers and 161
to 162
Memory Management Register #0
and 164 to 165
parity and 284 to 285

ABSD floating point instruction 320
to 321

ABSF floating point instruction 320
to 321

absolute addressing mode 25,33,
37.,40

position-independent coding
and 95

absolute-value string data 351

access control field (ACF) 146

accesS information bits 147

accumulators 23
in Floating Point Processor 307,
308,316,320

accuracy, of floating point 316 to
318

ACF (access control field) 146

Active Page Field (APF) 150

Active Page Registers (APRs) 138,
142 to 147

virtual bus address and 150 to
152

ADCB instruction 57

ADC instruction 57

AD DO floating point instruction 321
to 322

ADDER console command 237

ADDF floating point instruction 321
to 322

ADD instruction 24, 51 to 58

ADDN(I) commercial
instruction 367 to 369

INDEX

ADDP(I) commercial instruction 367
to 369

address display lights 301

addresses
assignments of 208,250
of 1/0 device registers 212, 256 to
257
mapping of 153 to 161
odd addressing errors in 117
physical address construction
and 150 to 152
physical address space and 136
relocation of 136 to 139
specification of 200 to 202
stack limit 279
UNIBUS and 11
vitural address space and 135
see also vector address

addressing, by floating point
instructions 315

addressing modes 23 to 40
for floating point 316
position-independent coding
and 93 to 94

address registers, in Floating Point
Processor 315 to 316

address select switch 300 to 301

address space
in PDP-11170 processors 267
virtual 135,150
see also physical address space

APF (Active Page Field) 150

APRs see Active Page Registers

I A qualifier 237

architecture
of Floating Point Processor 307 to
308
of PDP-11/24 systems 184
of PDP-11/44 systems 218,225 to
226
of PDP-11/70 cache 280 to 282
of PDP-11/70 systems 261 to 262
UNIBUS and 11 to 13

INDEX 1

Index

ASCII consoles
for PDP-11/24 processors 192 to
193
for PDP-11/44 processors 232 to
233

ASCII conversions 123

ASHC instruction 58 to 59

ASH instruction 58

ASHN(I) commercial
instruction 362, 369 to 371

ASHP(I) commercial
instruction 362, 369 to 371

ASLB instruction 59 to 60

ASL instruction 59 to 60

ASRB instruction 60

ASR instruction 60

assembler language
conversion routines for 120
see also MACRO-11 assem bier
language

autodecrement addressing
mode 25,29,35,39

stacking and 98

autodecrement deferred addressing
mode 25, 28 to 29, 36, 39

autoincrement addressing
mode 25, 27 to 28, 35, 38

autoincrement deferred addressing
mode 25, 29 to 30, 36, 38

availability see reliability,
availability, and maintainability
program

backing up 168

backpianes
on PDP-11/04 and PDP-11/34A
processors 171 to 172, 178 to 180
on PDP-11/24 processors 191
on PDP-11/44 processors 224,
231

base addresses 136,137

battery backups

in PDP-11/04 and PDP-11/34A
processors 173
in PDP-11/24 processors 190,
210
in PDP-11/44 processors 223 to
224,254
in PDP-11/70 processors 269

BBSY (Bus Busy) signal 14 to 15

BCC instruction 61

BCS instruction 61

BEQ instruction 61

BGE instruction 61

BGs (bus grants) 14

BGT instruction -62

BHI instruction 62 to 63

BHIS instruction 63

BICB instruction 63

BIC instruction 63

binary dump ODT command 199 to
200

BINARY LOAD console
command 242

binary loading 243

binary number system 8

binary unloading 243

BISB instruction 63

BIS instruction 63

BITB instruction 63 to 64

BIT instruction 63 to 64

BLE instruction 64 to 65

Block Number (BN) 151

BLO instruction 65

BLOS instruction . 65

BL T instruction 65 to 66

BMI instruction 66

BN (Block Number) 151

BNE instruction 66 to 67

BOOT console command 237

BOOT console emulator
function 176

INDEX2

boot module (M9312) 177

bootstrap loaders
on PDP-11/04 and PDP-11/34A
processors 171, 177

Index

on PDP-11/70 processors 303 to
304

BPl instruction 67

BPT instruction 67

branch instructions 43,46 to 47,52
to 53, 350

break generation 209,251

BR instruction 67

BRs (bus requests) 14

bus arbitrators 14

Bus Busy signal (BBSY) 14 to 15

bus cycles 13 to 14

buses
communications on 13
control of 14
I/O 291
see a/so UNIBUS

bus gra:nts (BGs) 14

bus request levels 16

bus requests (BRs) 14

BVC instruction 67

BVS instruction 68

cabinets 272 to 273

cache data register (CDR) 226 to
229

cache hit register (CHR) 230 to 231

cache maintainance register
(CMR) 229 to 230

cache registers 285 to 291

caches
on PDP-11 /34A processors 172,
173
on PDP-11/44 processors 224 to
226
on PDP-11170 processors 261,
268, 280 to 283

calls, to coroutines 110 to 111

CARRIAGE RETURN «CR»
command 235, 242

CARRIAGE RETURN «CR»
command 196to 197

C bit 49 to 50

ICB qualifier 236

CCC instruction 68

CDR (cache data register) 226 to
229

central processing units see CPUs

CFCC floating point instruction 322

character data types 346 to 348

characters 346 to 348

character searches 349

character sets 346 to 348

character set searches 349

character strings 346 to 347
instruction used with 348 to 351

check bits (parity bits) 268

chip select (CSEl) 186

chopping, in floating point 317

chop/round floating point
modes 312

CHR (cache hit register) 230 to 231

C instruction 68

CIS11 (Commercial Instruction
Set) 345 to 402

ClC instruction 69

clearing of status registers 168 to
169

ClN instruction 69

clock status register (lKS) 208,249
to 250

ClRB instruction 24, 68

ClRD floating point instruction 322
to 323

ClRF floating point instruction 322
to 323

INDEX 3

Index

ClR instruction 24, 68

ClV instruction 69

ClZ instruction 69

CMPB instruction 24,69 to 70

CMPC(I) commercial
instruction 349 to 350, 371 to 373

CMPD floating point instruction 323

CM PF floating point instruction 323

CM P instruction 69 to 70

CMPN(I) commercial
il'1struction 362,363,373 to 374

CMPP(I) commercial
instruction 362,363,373 to 374

CMR (cache maintenance
register) 229 to 230

COMB instruction 71

COM instruction 24, 70

commands
console 233 to 243
console ODT command set 194 to
200

Commercial Instruction Set
(CIS11) 345t0402

commercial load descriptor
instructions 364 to 365

communications, on UNIBUS 11 to
13

Computer Special Systems (CSS) 6

condition code instructions 43, 49
to 51

condition codes
character string operations
and 349 to 350
decimal string instructions
and 363
in PDP-11/24 processors 189 to
190
in PDP-11/44 processors 222
in PDP-11170 processors 266

Console Break character 233

console commands 233 to 243

console emulation 175 to 176

console emulator functions 175 to
176

Console Mode 177

console ODT 193 to 194
address specification in 200 to
202

console ODT command set 194 to
200

consoles
for PDP-11/04 and PDP-11/34A
processors 174 to 177
for PDP-11/24 processors 192 to
193
for PDP-11/44 processors 232 to
233
for PDP-11170 processors 293 to
295

console state 192, 232, 233

CONTINUE console command 237
to 238

continue (CaNT) switch 300

continuing, on PDP-11170
processors 295

Control C (tC) command 234

control characters 234 to 235

control chip (DC303) 185 to 186

controller registers 292 to 293

controllers, in PDP-11/70
processors 262,271,291 to 292

Control a (to) command 235

Control P (tP) command 233,235

Control a (to) command 235

control register 289

Control S (tS) command 235

Control S ODTcommand 199 to
200

control switches 299

Control U (N) command 235

conversion routines 120 to 123

convert instructions 362

core memories 270

INDEX 4

Index

coroutines 110 to 114

corporate cabinets 272 to 273

CPU error register
in PDP-11/24 processors 209 to
210
in PDP-11/44processors 251 to
253
in PDP-11 170 processors 275

CPU registers
in PDP-11 124 processors 212
in PDP-11/44 processors 256 to
257

CPUs (central processing units)
bus priority of 13, 18
Floating Point Processors in 308
to 309
PDP-11/04and PDP-11/34A 171
to 180
PDP-11/24 184 to 187
PDP-11 144 217 to 258
PDP-11/70 261 to 305
processor traps and 116 to 117
UNIBUS interrupts and 15

CSEL (chip select) 186

CSM instruction 70 to 71

CSS (Computer Special Systems) 6

CVTLN(I) commercial
instruction 375 to 376

CVTLP(I) commercial
instruction 375 to 376

CVTNL(I) commercial
instruction 362, 363, 376 to 378

CVTNP(I) commercial
instruction 378 to 379

CVTPL(I) commercial
instruction 362,363,376 to 378

CVTPN(I) commercial
instruction 378 to 379

data
character, type of 346 to 348
decimal, types of 351 to 361
floating pOint 310 to 311
memory management and 142 to
143

in PDP-11 170 cache 280 to 282

data chip (DC302) 185,186

data display lights 301

data formats, for floating point 309
to 311

data overlap 364

data select switch 301

data transactions, on UNIBUS 18 to
19

data transfers 292

DATI data transactions 18,19

DATIP data transactions 18

DA TOB data transactions 18

DATO data transactions 18

DC303 control chip 185 to 186

DC302 data chip 185,186

DC304 memory management
chip 186, 187

DECB instruction 71

decimal number system 8

decimal string data types 351 to 361

decimal string descriptors 352 to
353

decimal string instructions 361 to
364

DEC instruction 71

deferred addressing modes 25,36
to 37

DEPOSIT console command 238 to
239

DEPOSIT console emulator
function 175

deposit (DEP) switch 299

DF (Displacement Field) 150 to 151

diagnostics
M9312 for 303 to 304
M9301-YC, -YHfor 304 to 305
on PDP-11/04and PDP-11/34A
processors 171,177

DIN (Displacement in the Block) 151

INDEX5

Index

Direct Memory Access (DMA) 156,
291

Displacement in the Block (DIN) 151

Displacement Field (OF) 150 to 151

DIVD floating point instruction 324
to 325

DIVF floating point instruction 324
to 325

DIV instruction 71 ~o 72

division 120to 122

DIVP(I) commercial instruction 363,
379 to 381

DMA (Direct Memory Access) 156,
291

documentation 8

dollar sign~$) ODT command 197
to 198

DONE/READY flag 104

double-operand instructions 43 to
46,51 to 52

ECC, see error correcting code

ED (expansion direction) 147

EIS (Extended Integer
Instructions) 56, 172

EMTinstruction 72 to 73, 117, 118

ENABLE/HALT switch 294, 295,
300

environment
for PDP-11 /04 and PDP-11 /34A
processors 180
for PDP-11/24 processors 214
for PDP-11 /44 processors 258
for PDP-11170 processors 274 to
275

/E qualifier 237

error correcting code (ECC)
parity and 283
in PDP-11 /44 processors 223 to
224
in PDP-11 /70 processors 267 to
269

error flags, in Memory Management
Register#O 162,164

errors
in Floating Point Processors 315,
317 to 318
parity 284 to 285
in PDP-11/44 processors 254
in PDP-11170 processors 277 to
279
processor traps and 116 to 117
recovery from 305
status indicator lights for 301 to
302
time-out 211

EXAMINE console command 239 to
240

EXAMINE console emulator
function 175

examine (EXAM) switch 299

exceptions, in Floating Point
Processor 312t0316

executive programs 135, 141

exits
from console state 233
from main programs 48

expansion direction (ED) 147

Extended Integer Instructions
(EIS) 56, 172

Fault Recovery (Status)
registers 161 to 169

faults, multiple 169

FEA (floating exception address
register) 307,315 to 316

FEC (floating exception code
register) 315t0316,318

FILL console command 240

FIS (Floating Instruction Set) 307

flags, in Memory Management
Register#O 162,164

floating exception address register
(FEA) 307,315\0316

INDEX6·

Index

floating exception code 315 to 316

floating exception code register
(FEC) 315 to 316, 318

Floating Instruction Set (FIS) 307

Floating Point Processor (FPP; POP-
11 floating point) 307 to 342

on POP-11 /34A processors 172,
174
onPOP-11/44processors 231
on POP-11170 processors 263,
270 to 271

floating point status register
(FPS) 311 to 315

formats
for addressing mode
instructions 25
for branch instructions 46 to 47
for condition code operators 50
to 51
for double-operand
instructions 45
for floating point 309 to 311
for floating point instructions 319
to 320
for jump and subroutine
instructions 47 to 48
for single-operand instructons 44

FF11 instruction set 307,318 to 342
accuracy in 317

FPP, see Floating Point Processor

FPS (floating point status
register) 311 t0315

front panels 171

general purpose registers 23
commercial instructions and 350
commercial load descriptor
instructions and 364 to 365
Memory Management Register #1
and 166
in POP-11/44 processors 220 to
221
in POP-11170 processors 263 to
265, 297 to 298

Program Counter as 32
reentrant code and 109
stacks and 99 to 100
see a/so registers

G DDT command 198 to 199

GO DDT command 198 to 199

/G qualifier 235 to 236

HALT console command 240

HALT instruction 73

HALT DDT command 200

hardware, Floating Point Processor
as 307

hardware interrupt requests 271

H960 cabinets 272

hidden bit 309

high error address register 286 to
287

high-speed I/O controllers 262,
271,291 to 292

high-speed mass storage 271

hit/miss register 291

H PDT command 200

immediate addressing mode 25,32
to 33, 37, 40

position-independent coding
and 94

INCB instruction 24, 73

INC instruction 24,73

index addressing modes 25, 30 to
31,36,39

position-independent coding
and 94

index deferred addressing
mode 25,31,37,39

index registers 23

indicators, on POP-11170
processors 299 to 302

indirect addressing modes 25, 36 to
37

INDEX 7

Index

INITIALIZE console command 240

"in-line" form (Commercial
Instruction Set) 345, 350, 363 to 364

instruction cycles 13 to 14

instructions and instruction sets 43
to 91

for addressing modes 24
back-up/restart recovery for 168
Commercial Instruction Set 345
to 402
for Floating Point Processor 174,
307,308,316 to 342
memory management and 142 to
143
reserved 211, 254, 277
trap 117to 119

instruction suspension 365 to 367

interfaces
for high-speed I/O
controllers 291 to 292
UNIBUS map as 160 to 161

internal register designators (ODT
commands) 197 to 198

interrupt exits 48

interrupts 104 to 107
in Floating Point Processor 310,
315
instructions for 48
memory management and 141 to
142
in PDP-11 /70 processors 271 to
272
on UNIBUS 15 to 16

interrupt service routines (ISRs) 15,
104

interrupt servicing 16

invalid characters, in console
ODT 202

I/O addresses 200

I/O bus 291

I/O controllers, in PDP-11 /70
processors 262, 271, 291 to 292

I/O device registers
in PDP-11/24 processors 212

in PDP-11/44 processors 256 to
257

I/O page registers 226 to 231

lOT instruction 73 to 74

ISRs (interrupt service routines) 15,
104

JMP instruction 74 to 75

JSR instruction 75 to 77, 99
in coroutine calls 110
format for 47
subroutine linkage and 103,104

jump and subroutine
instructions 43,47 to 48

KEF11-AA (FP11 Instruction
set) 307,317

kernel mode 141, 142
in PDP-11 /04 and PDP-11 /34A
processors 172
in PDP-11 /24 processors 185,
189,201
inPDP-11/44processors 218,
221,222
in PDP-11 /70 processors 263,
266

kernel program 140

Kernel Stack 264

KY11-LA (oerator's console) 174 to
176

KY11-LB (programmer's
console) 176 to 177

lamp test switch 300

LDCDF floating point
instruction 325 to 326

LDCFD floating point
Instruction 325 to 326

LDCID floating point instruction 326
to 327

LDCIF floating point instruction 326
to 327

INDEX8

Index

LDCLD floating point
instruction 326 to 327

LDCLFfloating point instruction 326
to 327

LDD floating point instruction 328 to
329

LDEXP floating point
instruction 327 to 328

LDF floating point instruction 328 to
329

LDFPS floating point
instruction 329

L2Dr commercial load descriptor
instruction 354 to 365, 383 to 384

L3Dr commercial load descriptor
instruction 364 to 365, 384 to 385

leading overpunch numeric string
data 351

leading separate numeric string
data 351

line clock status register (LKS) 208,
249 to 250

line feed «LF» ODT
command 197

linkage 99
of coroutines 111
of subroutines 103 to 104

LKS (clock status register) 208,249
to 250

LOAD ADDR console emulator
function 175

loaders, bootstrap 171, 177, 303 to
304

LOCC(I) commercial
instruction 349,350,381 to 383

long integer data 360 to 361

looping 132to 133

low error address register 286

lower size register 276

MACRO-11 assembler language
recursion in 116

register operands and 25
relocatable object modules as
output of 93

maintainability, see reliability,
availability, and maintainability
program

Maintenance Mode 177

maintenance register 290 to 291

mapped memory references 295 to
296

mapping 153 to 161
memory referencing and 295 to
296

MARK instruction 77

masks 347

master/slave communications 11,
13

master sync (MSYNC) signal 19

MATC(I) commercial
instruction 349, 350, 385 to 387

M9312 bootstrap loader 177,303 to
304

memories
addresses in 11
in PDP-11 /04 and PDP-11 /34A
processors 172 to 173
in PDP-11 /24 processors 190 to
191
inPDP-11/44systems 223t0224
in PDP-11 /70 systems 267 to 270
referencing of 295 to 296

memory box options 269 to 270

memory management 135 to 169
in PDP-11 /04 and PDP-11 /34A
processors 172
in PDP-11 /24 proce"ssors 190 to
191
in PDP-11 /44 processors 281,
244
in POP-11170 processors 261,
267

memory management chip
(DC304) 186,187

INDEX 9

Index

Memory Management Register #0
(MMRO) 162t0166

Memory Management Register #1
(MMR1) 166to 167

Memory Mangement Register #2
(MMR2) 167

Memory Management Register #3
(MMR3) 167t0168

memory management unit (MMU)
parity and 284
physical address construction
and 150
processor 1/0 addressing of
registers in 200

memory system error register 287
to 288

MFPD instruction 77 to 78

MFPS instruction 78

MFPT instruction 78 to 79

microprogram break register 276

MICROSTEP console
command 240 to 241

miscellaneous instructions 43,48 to
49

MK11-S memory boxes 269

MK11-CE memory array
modules 269

MK11-CF memory array
modules 269

MK11-C memory arrays 269

MMRO (Memory Management
Register #0) 162 to 166

MMR1 (Memory Management
Register #1) 166 to 167

MMR2 (Memory Management
Register #2) 167

MMR3 (Memory Management
Register #3) 167 to 168

MMU, see memory management
unit

MODO floating point instruction 293
to 332

modes
for addressing, in floating
point 316
of operation for Floating Point
Processor 311 to 312
in PDP-11 104 and PDP-11 134A
processors 172
in PDP-11 124 processors 185,
189,201
in PDP-11/44 processors 221 to
222
in PDP-11170 processors 263,
265 to 266
see also addressing modes

MODF floating point instruction 329
to 332

MOS memories 190, 223 to 224,
268 to 270

mounting boxes
for PDP-11 124 processors 213 to
214
for PDP-11 144 processors 258

MOVS instruction 79

MOVC(I) commercial
instruction 349, 387 to 389

MOV instruction 79

MOVRC(I) commercial
instruction 349,389 to 391

MOVTC(I) commercial
instruction 349,351,391 to 393

1M qualifier 236

MSYNC (master sync) signal 19

MTPD instruction 79 to 80

MTPS instruction 80 to 81

MULD floating point instruction 332
to 333

MULF floating point instruction 332
to 333

MUL instruction 81

MULP(I) commercial
instruction 393 to 395

multiple-user environments,
reentrant programs in 108

INDEX 10

Index

multiple faults 169

multiplication 122 to 123

multiprogramming 135,141
in PDP-11170 systems 265

M9301-YC boostrap loader 303 to
304

N bit 49

NEGB instruction 81

NEGD floating point instruction 334

NEGF floating point instruction 334

NEG instruction 81

nesting
of bus interrupts 16
of interrupts 105 to 107
recursion for 115 to 116

NEXT console command 241

nibbles 351

nonexistent memory errors 254,
277

nonprocessor requests (NPRs) 13,
14

in PDP-11170 systems 271
priority level of 17
used bY UNIBUS map 155

nonvanishing floating point
numbers 309 to 310

NOP instruction 81

normal/maintenance floating pOint
modes 312

notation, numerical 8

NPRs, see nonprocessor requests

IN qualifier 236

numbers, in floating point 309 to
310

numerical notation 8

numeric string data 351
instructions for 362

octal number system 8
entering addresses in 201

odd addressing errors 117,254,
277

ODT 193 to 194
address specification in 200 to
202
command set for 194t0200

ODT time-out 202

OEMs (original equipment
manufacturers) 6

operand delivery 363 to 364

operator's console (KY11-LA) 17 4
to 176

original equipment manufacturers
(OEMs) 6

overflows, in floating point 317,318

overpunch string data 356 to 358

packaged systems 6 to 7

packaging
of PDP-11 124 processors 212
of PDP-11/44 processors 257
for PDP-11170 processors 272 to
273

packed string data 351,353 to 355
instructions for 362

page address field (PAF) 151,152

Page Address Register (PAR) 143,
151

Page Descriptor Register (PDR) 143
to 147

pages 138, 140

PAR (Page Address Register) 143,
151

parity 267,283 to 285
in high-speed I/O controllers 292

parity bits 268
in console ODT 195

patching, trap handlers for 118

PC see Program Counter

PC absolute mode 25, 33, 37

PC immediate mode 25, 32 to 33, 37

INDEX 11

Index

PC relative deferred mode 26, 34 to
35,37

PC relative mode 26, 33 to 34, 37

PDP-11family 1t02
UNIBUS and architecture of 11 to
13

PDP-11 floating point, see Floating
Point Processor

PDP-11/04 processors 171 to 180
mapping on 153,158

PDP-11/24 processors 183 to 214
mapping on 154 to 157, 159
Memory Management Register #1
in 167

PDP-11/34A processors 171 to 180
mapping on 154,158,159

PDP-11/44 processors 217 to 258
Commercial Instruction Set
on 345
mapping on 154 to 157, 159

PDP-11 170 processors 261 to 305
mapping on 154t0157,159

PDR (Page Descriptor Register) 143
to 147

peripheral device register
addressing 136

peripherals 6
bus priority of 13

physical address space 136
16-bit, mapping in 158
18-bit, mapping in 159
22-bit, mapping in 159
construction of 150 to 152

PIC (position-independent
coding) 93 to 97

PIR (program interrupt request)
register 256, 279

P ODT command 199

pointers 23

POPping stacks 98

position-dependent code 95 to 96

position-independent coding
(PIC) 93 to 97

power, starting and stopping 294 to
295

power failures
cache memory and 282
in PDP-11 124 processors 210
in PDP-11 144 processors 254
in PDP-11/70 processors 269,
277
processor traps for 116 to 117

power specifications
for PDP-11 124 processors 213
for PDP-11 144 processors 258
for PDP-11 170 processors 274

power switch 299

Priority Arbitration iogic 291

priority levels
in PDP-11 124 processors 189
in PDP-11 144 processors 222
in PDP-11 170 processors 266,
271
for traps 211, 255, 277 to 278
on UNIBUS 11 to 13, 16 to 18

proceed ODTcommand 199

processor control registers 275 to
276

processor 1/0 addresses 200

processors, see CPUs

Processor Stack POinters, see Stack
Pointers

Processor Status Word (PS; PSW)
bus interrupts and 15,16
condition code bits on 49 to 51
interrupts and 104, 105
memory management and 142
ODT command for 198
in PDP-11 124 processors 188 to
189,210
in PDP-11 124 processors 221,
222, 253 to 254
in PDP-11 170 processors 265 to
266,276
reentrant code and 109
trap instruction and 117

processor traps 116 to 117

INDEX12

Index

in PDP-11/24 processors 210
inPDP-11/44processors 254
in PDP-11/70 processors 276 to
278

Program Counter (PC) 23, 32, 99
bus interrupts and 15, 16
in coroutine calls 110
interrupts and 105
memory management and 142
in PDP-11/24 processors 188
in PDP-11/44 processors 220
in PDP-11/70 processors 264
trap instructions and 117, 118

program counter addressing
modes 25 to 26, 32 to 35, 37

program interrupt request register
(PIR) 256,279

program interrupt requests 256,
271 to 272, 279 to 280

program I/O state
in PDP-11/24 processors 192 to
193
inPDP-11/44processors 233

programmer's console (KY11-
LB) 176t0177

programming 93 to 133
on PDP-11 family systems 2 to 6

programs
address relocation of 136 to 139
exits from 48
multiprogramming and 135

protection of memory, memory
management for 140

PS, see Processor Status Word

PSW, see Processor Status Word

pure code 108

PUSHing stacks 98

qualifiers 235 to 237

RAMP see reliability, availability, and
maintainability program

RBUF, see receiver data buffer
register

receiver control/status register
(RCSR) 205

TERM RCSR 202, 244
TU58 RCSR 247

receiver data buffer register
(RBUF) 193,206

TERM RBUF 203 to 204,244 to
245
TU58 RBUF 247 to 248

RECEIVER DONE flag 209

receivers, timings for 209,251

recovery from errors 305

recursion 114 to 116

Red Zone Violations 278 to 279

reentrancy 108 to 110

register addressing mode 25, 26,
35,38

register deferred addressing
mode 25,27,36,38

"register" form (Commercial
Instruction Set) 345, 350, 363

registers
Active Page Registers 138,142 to
148
address specification for 200 to
201
cache 285 to 291
Fault Recovery 161 to 169
in Floating Point Processors 307,
311 t0316
general purpose 23
ODT designators for 197 to 198
in PDP-11/24 processors 187 to
190,209 to 212
in PDP-11/44 processors 220 to
221,226 to 231,251 to 257
in PDP-11170 processors 263 to
267,275 to 276,279,292 to 293,
297 to 298
peripheral device register
addressing of 136
second serial line unit 205 to 208
terminal serial line 202 to 205,
244 to 246
TU58 serial line unit 247 to 250

INDEX13

see also general purpose
registers

Index

relative addressing modes 26, 33 to
34,37,40

position-independent coding
and 94

relative deferred addressing
mode 26, 34 to 35, 37, 40

reliability, availability, and
maintainability program (RAMP)

of PDP-11/24 processors 184
of PDP-11176 processors 262 to
263,283

relocation, address 136 to 139
in UNIBUS map 160 to 161

REPEAT console command 241

reserved instructions 117, 211, 254,
277

RESET instruction 82

RODTcommand 197t0198

ROLB instruction 82

ROL instruction 82

RORB instruction 83

ROR instruction 83

rounding bit 317

RTI instruction 83
for nesting 105

RTS instruction 84
formattor 48, 103
for nesting 105

RTT instruction 84 to 85

SACK 14

SBCB instruction 85

SBC instruction 85

SCANC(I) commercial
instruction 349, 350, 395 to 397

SCC instruction 86

searches, commercial instructions
for 349

SEC instruction 86

second serial line unit registers 205
to 208

SEN instruction 86

separate string data 358 to 360

serial line unit registers 247 to 250

serial line unit timing 251

SETD floating point instruction 335

SETF floating pOint instruction 334

SETI floating point instruction 335

SETL floating pOint instruction 335

SEV instruction 86

SEZ Instruction 86

shortllong floating point modes 311

signed packed string data 354

signed zoned numeric string
data 351, 355 to 356

sign-magnitude string data 351

single/double floating point
modes 311

single instruction/single bus
cycle 298 to 300

S instruction 85

single-operand instructions 43 to
44,51

SKPC(I) commercial
instruction 349, 397 to 399

slash (/) ODT command 195 to 196

slave sync (SSYN) signal 15,19

SOB instruction 86, 87

S ODT command 198

software
for floating point 307
for memory management 140

software exits 48

Software Services 6

software traps 141

SP, see Stack Pointers

SPACE-BAR-STEP FEATURE
console command 241

INDEX14

Index

SPANC(I) commercial
instruction 349,399 to 401

special characters 234 to 235

specialized systems 6

special symbols 53 to 54

specifications
for PDP-ll /04 and PDP-ll /34A
processors 180
for PDP-l1/24 processors 212 to
214
for PDP-ll /44 processors 257 to
258
for PDP-ll /70 processors 272 to
275

SPl instruction 87

SSYN (slave sync) signal 15, 19

stack addressing 23

stack limit register (Sl) 266 to 267,
278,279

Stack Pointers (SP) 23,97,98
address specification of 201
in PDP-l1 /24 processors 188
in PDP-11/44 processors 221
in PDP-l1 /70 processors 264
subroutines and 100

stacks 97 to 103
Commercial Instruction Set
and 367
limit violations of 211 to 212, 255
overflow boundary for 190, 266 to
267, 278 to 279
in PDP-l1/44 processors 221,
223
in PDP-l1 /70 processors 263,
264
reentrant code and 109

ST ART console command 241 to
242

ST ART console emulator
function 176

starting, on PDP-l1 /70
processors 294

START switch 300

status indicator lights 301 to 302

Status (Fault Recovery)
Registers 161 to 169

STCDF floating point
instruction 336

STCDI floating pOint instruction 337
to 338

STCDl floating pont instruction 337
to 338

STCFD floating point
instruction 336

STCFI floating point instruction 337
to 338

STCFl floating point instruction 337
to 338

STD instruction 337

step operations 296 to 297

STEXP floating point
instruction 339

STF instruction 337

STFPS floating pOint instruction 339

stopping, on PDP-11170
processors 295

STST floating point instruction 316,
340

SUBD floating pOint instruction 340
to 341

SUBF floating point instruction 340
to 341

SUB instruction 87 to 88

SUBN(I) commercial
instruction 362,401 to 402

SUBP(I) commercial
instruction 362,401 to 402

subroutine instructions 43,47 to 48

subroutines
coroutines and 112, 113
linkage for 103to 104
recursion in 114to 115
stacks and 99 to 100

supervisor mode 141
in PDP-l1 /44 processors 221,
222

INDEX 15

Index

In PDP-11170 processors 263

Supervisor Stack 264

suspension of instructions 365 to
367

swapping, of coroutines 110

switches, on PDP-11170
processors 299 to 302

switch register 300

SXT instruction 88 to 89

symbols 53 to 54

system 110 register 276

system terminals (consoles) 192,
232

tags 282

ITB qualifier 237

terminal serial line unit registers
in PDP-11/24 processors 202 to
205
in PDP-11/44 processors 244 to
246

TERM RBUF (receiver data buffer)
register 203 to 204, 244 to 245

TERM RCSR (receiver control/status)
register 202, 205, 244

TERM XBUF (transmitter data buffer)
register 204 to 205,246

TERM XCSR (transmitter
control/status) register 204, 245 to
246

TEST console command 242

time-out errors 117,211,254,277

timing
in PDP-11/24 processors 209
in PDP~11/44 processors 251

trace traps 190, 222 to 223

trailing overpunch numeric string
data 351

trailing separate numeric string
data 351

transmitter control/status register
. (XCSR) 207

TERM XCSR 204, 245 to 246
TU58 XCSR 248 to 249

transmitter data buffer register
(XBUF) 207 to 208

TERM XBUF 204 to 205, 246
TU58 XBUF 249

TRANSMITTER READY flag 209

transmitters, timings for 209,251

transmitter status register see
transmitter control/status register

trap error 117

trap exits 48

trap handlers 118 to 119

trap handling
in PDP-11/24 processors 211
in PDP-11/44 processors 255
in PDP-11170 processors 277

TRAP instruction 89,117,118

trap Instructions 43, 48, 117 to 119

traps
clearing status registers after 168
to 169
Fault Recovery Registers and 161
to 162
Memory Management Register #0
and 165
parity and 284 to 285
in PDP-11/70 processors 266,
276 to 278
priorities for 211
processor 116t0117,210,254
relocation of address of 142
software 141
trace 190, 222 to 223

TSTB instruction 89

TSTD floating point instruction 342

TSTF floating point instruction 342

TST instruction 89

TU58 receiver controllstatus register
(TU58 RCSR) 247

TU58 receiver data buffer register
(TU58 RBUF) 247 to 248

INDEX 16

Index

TU5S serial line unit registers 247 to
250

TU58 transmitter control/status
register (TU58 XCSR) 248 to 249

TU58 transmitter data buffer register
(TU58 XBUF) 249

UART (Universal Asynchronous
Receiver/Transmitter) 209,251

undefined variable 310

underflows, in floating point 317 to
318

UNIBUS 1,11 to 20
cache bypass of 173
high-speed I/O controllers
and 291 to 292
mapping of addresses for 153,
157to 158
in PDP-11 /24 systems 184
in PDP-11/44 systems 218
in PDP-11 170 systems 262
time-out errors in 117

UNIBUS map 153to 155, 157to
158,160 to 161

in PDP-11/24 processors 184,
191
in PDP-11/44 processors 218,
224
in PDP-11170 processors 261,
267 to 268

Universal Asynchronous
Receiver/Transmitter (UART) 209,
251

unmapped memory references 295

UNPREDICTABLE conditions 345
to 346

unsigned packed string data 354 to
355

unsigned zoned numeric string
data 351,356

upper size register 276

uSer mode 141
in PDP-11 /04 and PDP-11 /34A
processors 172

in PDP-11 /24 processors 185,
189,201
in PDP-11 /44 processors 221,
222
in PDP-11 170 processors 263

User Stack 264

VBA (virtual bus address) 150 to
152

V bit 50

vector addresses 105
assignments of 208, 250
memory management control
of 142
trap errors and 117, 119

violations, of stack limits 211 to 212,
255, 278 to 279

virtual address Sl'1ace 135
physical address construction
and 150

virtual bus address (VBA) 150 to
152

volatile information
in MOS memories 190
in power failures 116

WAIT instruction 90 to 91

XBUF see transmitter data buffer
register

XCSR see transmitter
control/status register

XOR instruction 91

Yellow Zone Violations 278,279

YH/M9312 bootstrap loader 303 to
304

Z bit 49

zero, in floating pOint 310

zoned string data 355·to 356

INDEX 17

NOTES

PDP-11 PROCESSOR HANDBOOK
1981

. READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to im­
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, complete-

ness, organization, etc.) ___________________ _

What features are most useful? ________________ _

Does the publication satisfy your needs? _____________ _

What errors have you found? _________________ _

Additional comments ____________________ _

Name

Title

Company Dept.

Address

City State Zip

(staple here)

(staple here)

- - - - - - - - - - - - (please fold here)- - - - - - - - - - - -__ cc.--- V --

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
NEW PRODUCTS MARKETING
PK3-1/M92
MAYNARD, MASS. 01754

No Postage

Necessary

if Mailed in the

United States

HANDBOOK SERIES
Microcomputers and Memories
Microcomputer Interfaces
PDP-11 Processor
PDP-11 Software
Peripherals
Terminals and Communications
VAX Architecture
VAX Software
VAX Hardware

