- [pcp

' pr‘ocié‘ss_or handbook

upy.Jo

(o)

\

L

5
U .
Q‘
. =

T

|

v

2y

o)

!

1861

8

DIGITAL facility, Marlboro, Massachusetts

CORPORATE PROFILE

Digital Equipment Corporation designs, manufactures, sells and ser-
vices computers and associated peripheral equipment, and related
software and supplies. The Company’s products are used world-wide
in a wide variety of applications and programs, including scientific
research, computation, communications, education, data analysis, in-
dustrial control, timesharing, commercial data processing, word proc-
essing, health care, instrumentation, engineering and simulation.

processor handbook

pdp11/04/24/340/44/70

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment -
Corporation. Digital Equipment Corporation assumes no responsi-
‘bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced, and typeset

by DIGITAL’s New Products Marketing
using an in-house text-processing system.

Copyright© 1981 Digital Equipment Corporation.
All Rights Reserved.

PRINTED IN USA EB-19402-20

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTIONoooii 1
UNIBUS i, 10
ADDRESSINGMODES 22
INSTRUCTIONSEToinnet. 42
PROGRAMMING TECHNIQUES................ 92
MEMORY MANAGEMENT.................... 134
PDP-11/04,11/34A 170
PDP-11/24l 182
PDP-11/44l 216
PDP-11/70 260
PDP-11 FLOATINGPOINT.................... 306
COMMERCIAL INSTRUCTION SET 344
UNIBUS ADDRESSES........................ A-1
INSTRUCTIONTIMING B-1
FLOATING POINTTIMING C-1
CONVERSIONTABLE D-1
.. Index-1

PREFACE

With 1980 marking the 10th anniversary of the PDP-11 processor, the
PDP-11 has become the largest selling minicomputer ever made. Over
170,000 are currently in use worldwide.

During the past decade, the PDP-11 family has experienced the most
extensive development and the greatest range in growth of any
preceding PDP family. To cap this significant decade of achievement,
the family has been enhanced with several new software products and
the introduction of the first fourth-generation mid-range CPU, the
PDP-11/44, in early 1980. This system, which gives customers twice
the performance of the PDP-11/34a, also provides an easy migration
path to the larger, more powerful PDP-11/70.

This year — 1981 — DIGITAL is proud to announce another new PDP-
11 fourth generation member — the PDP-11/24. This processor offers
several unique features, including an extended 22-bit memory ad-
dressing capability, making it the lowest-cost systems oriented CPU
from DIGITAL that can address up to a full megabyte of memory. The
PDP-11/24 provides performance and functionality similar to the
PDP-11/34A, and its floating point and commercial instruction sets
allow programming compatibility with the PDP-11/44.

Common to all PDP-11 family members is compatibility, which is in-
herent in the design of the processors themselves. Programs can be
developed on the smallest PDP-11 family member, the PDP-11/03,
and with only slight modifications, run on any other PDP-11 system.
Peripherals, such as video terminals and line printers, are equally
upward and downward compatible in their ability to interface with
PDP-11 family members.

This handbook is uniquely divided into four separate processor chap-
ters which discuss the individual and integral features pertinent to the
operation of each CPU. It does not attempt to delve into the degree of
technicality found in the user documentation delivered with the sys-
tem.

A complete and current PDP-11 and microcomputer Instruction Set
description accompanies this handbook. It is easily identified and im-
mediately accessed by the implementation of a black page tab which
runs vertically along the right-hand border of the handbook. Other
useful handbook features include chapters on addressing modes,
programming techniques, UNIBUS, floating point, and commercial in-
struction sets, which collectively highlight PDP-11 processor capabili-
ties. An extensively updated chapter on memory management has
also been included with this publication. The appendices provide the

v

most current, accurate, and complete support data and timing to in-
sure the consistency of reference. :

At the time this handbook was published, the PDP-11/24 processor
instruction set and floating point timings were incomplete. Therefore,
.they have not been included in this handbook. The next PDP-11 Proc-
essor Handbook will furnish these timings.

vi

vii

CHAPTER 1
INTRODUCTION

DIGITAL’s PDP-11 processor family is one of the broadest computer
product lines in the computer industry. This family consists of micro-
computers, minicomputers, system computers, and a powerful multi-
function computer—all supported by operating systems, common
peripherals and application software.

The processors specifically discussed in this handbook are:
e PDP-11/04

® PDP-11/24

e PDP-11/34A

® PDP-11/44

e PDP-11/70

With DIGITAL’S announcement in 1970 of the first PDP-11, the PDP-
11/20, a unique, conceptual change in the computer industry oc-
curred. The PDP-11/20 became the first minicomputer that could in-
terface all system elements—processor, memory and peripherals—to
a single, bidirectional, asynchronous bus, called the UNIBUS.

The UNIBUS provides system-to-system compatibility and is a high-
speed communications path which links system components and peri-
pheral devises, allowing them to communicate directly without central
processor intervention. The UNIBUS, (discussed in detail in chapter
2), and its unique capabilities have provided the flexibility and growth
options for the PDP-11 family members discussed in this handbook.
Figure 1 illustrates the major categories of PDP-11 processors. Figure
1-2 depicts the block structure of the PDP-11. Figure 1-3 represents
the enhancement of performance/functionality versus price with the
advent and subsequent development of each succeeding PDP-11
generation. Figure 1-4 compares some of the supported options avail-
able for each PDP-11 word processor.

1

Chapter 1 — Introduction

HIGH
PERFORMANCE
Fw ﬁ%ﬁ%&s MEDIUM-SCALE WIDE-WORD
AND DEDICATED COMPUTERS VAX-11/780
APPLICATIONS Taa
MICROCOMPUTERS 1704 1170
17703 mg:A VAX-11/750
123 UNIBUS
UNIBUS MASSBUS
LSI-11 BUS UNIBUS MASSBUS SBI

r UPWARD COMPATIBLE >

Figure 1-1 Major Categories of PDP-11 Processors

Beyond the UNIBUS commonality, each PDP-11 processor has
features and capabilities uniquely suited for various applications.
Some functionally similar features have been accomplished with dif-
ferent implementations. Therefore, there is some repetition of infor-
mation in the chapters describing the individual processor members
of the PDP-11 family. It is often necessary to discuss each separately
because what may appear to be very subtle differences in operations
may actually be key to a certain processor’s uniqueness.

PROGRAMMING THE PDP-11

Information is provided in this handbook about the assembly language
parameters, processes, and techniques involved in programming the
PDP-11. DIGITAL publishes tutorial software documentation that pro-
vides detailed information about using the PDP-11 instruction set to
develop programs. There are also well-developed courses for custom-
ers given by DIGITAL'’s Education Services group.

The material presented on the PDP-11 instruction set, addressing
modes and programming techniques is intended, with the examples
included, fo illustrate the range of and possibilities for program devel-
opment. A companion book, the PDP-11 Software Handbook, ex-
plains the operating systems and associated software which run on
the PDP-11 family of processors. Table 1-1 illustrates these software
products.

INPUT
DEVICE

MEMORY

OPTIONS

LINE
PRINTER

DISK

OTHER
DEVICES

UNIBUS

PROCESSOR STATUS REGISTER

[owoery | T 1]

4 7 54 3 21

0

EIGHT GENERAL -
PURPOSE REGISTERS

RO
R1

ARITHMETIC
AND

LOGICAL
UNIT

e R3

R2

R4

RS

CENTRAL PROCESSOR

R6 _[<—STACK POINTER
R7 |[=-PROGRAM COUNTER

Figure 1-2 PDP-11 Block Structure

uononpoayul — | 183deyd

PRICE

st GENERATION

Chapter 1 — Introduction -

2nd GENERATION
3rd GENERATION

4th GENERATION

CPU

PERFORMANCE/FUNCTIONALITY

Figure 1-3 PDP-11 Performance/Functionality vs. Price

SYSTEM OPTIONS

USABLE FLOATING COMMERCIAL
BUS MEMORY POINT INSTRUCTION CACHE
PDP SUPPORT SUPPORTED PROCESSOR SET MEMORY
11/04 UNIBUS 56KB N/A N/A N/A
1/24 UNIBUS 1MB OPTIONAL OPTIONAL N/A
11/34A UNIBUS 248KB OPTIONAL N/A 2KB
OPTIONAL

1n/44 UNIBUS M8 OPTIONAL OPTIONAL 8KkB
170 UNIBUS)

MASSBUS ame OPTIONAL N/A 2B

Figure 1-4 'PDP-11 Supported Options Comparison

4

Chapter 1 — Introduction

Table 1-1 PDP-11 Operating Systems

Name Description

RT-11 Real-Time Operating System for PDP-11 Proces-
and CTS-300 sors.

A small, single-user foreground/background system
that can support a real-time application job’s execu-
tion in the foreground and an interactive or batch
program development job in the background.

DSM-11 DIGITAL Standard MUMPS Operating System for
PDP-11 Processors.

A small- to large-size timesharing system that offers
a unique fast access data storage and retrieval sys-
tem for large data base processing; originally de-
signed for medical record management and now
available for similar data base applications.

RSTS/E Resource-Sharing Timesharing System/Extended
and CTS-500 Operating System for PDP-11 Processors.

A moderate- to large-size timesharing system that
can support up to 63 concurrent jobs, including in-
teractive terminal user jobs, detached jobs, and
batch processing.

RSX-11M Real-Time System Executive Operating System for
PDP-11 Processors.

A small- to moderate-sized real-time multiprogram-
ming system that can be generated for a wide range
of application environments—from small, dedicated
systems to large, multipurpose real-time application
and program development systems.

RSX-11M- Real-Time System Executive Operating System-
PLUS PLUS for High-end PDP-11 Processors.

A large real-time system meant to take advantage of
the enhanced hardware features and larger memory
available on the PDP-11/44 and PDP-11/70 proces-
sors. RSX-11M-PLUS is a superset of RSX-11M.

RSX-11S Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small, execute-only member of the RSX-11 tamily
for dedicated real-time multiprogramming applica-

5

Chapter 1 — Introduction

Name Description

tions (requires a host RSX-11M, RSX-11M-PLUS,
IAS or VAX/VMS system).

IAS ~ Interactive Application System for PDP-11 Proces-
sors.

A large multiuser timesharing system, allowing real-
time application execution concurrent with time-
shared interactive and batch processing.

In each chapter describing the operating systems, the PDP-11 Soft-
ware Handbook includes: a general description of the requirements
for the system, the monitor/executive characteristics, the file struc-
tures and data handling facilities, the user interfaces, the programmed
monitor services, the system utilities, and the language processors
supported.

PERIPHERALS

DIGITAL manufactures a full range of peripheral equipment designed
to meet specific needs as well as to maintain PDP-11 family
compatibility. 1/0 and storage devices range from cassette tape de-
vices through high-volume disk packs, and from the DECwriter to the
intelligent terminals which provide both hard copy and video display.
There is a complete spectrum of peripheral devices available to com-
plement the software, and to provide the complete answer to customer
needs in all market areas—business, education, industry, laboratory,
and engineering.

The Peripherals Handbook and the Terminals and Communications
Handbook describe in detail the optional equipment available for use
with the PDP-11 family members.

SPECIALIZED SYSTEMS

DIGITAL’'s Computer Special Systems (CSS) and OEM (Original
Equipment Manufacturers) groups can provide the exact hardware
and software combination to fill any customer need. Software Services
provides software consultation services for customers who have spe-
cialized application software needs.

PACKAGED SYSTEMS

DIGITAL's Packaged Systems program offers you the opportunity to
purchase a well-defined, pretested, hardware/software system, rather
than purchasing the options separately. Packaged systems are fully
equipped PDP-11 configurations including operating system, disk sto-
rage and loading device. Entry level systems consist of the correct

6

Chapter 1 — Introduction

minimum set of options defined in the Software Product Description
(SPD) as necessary to run the operating system. Medium and high
performance systems have expanded configurations that in some cas-
es substantially exceed minimum SPD requirements. Packaged sys-
tems are available for all of DIGITAL’s major operating systems. The
introductory family of systems represents the combined effort of the
product lines and of central engineering to offer the best set of sys-
tems to meet customer application needs. Packaged systems are
priced less than the sum of the individual options. Figure 1-5 illustrates
the PDP-11 CPUs which are currently supported by operating systems
and available as packaged systems. Those CPUs which are supported
by operating systems only, and others that are not supported by oper-
ating systems are also shown in figure 1-5, below.

CPU

04 24 34A 44 70
oS

(SPD VERS!

N

(VERSION 038)

DsSmM-1
(VERSION 2.0)

RSX-11M
VERSION 3.2)

RSX-11M
PLUS
(VERSION10)

IAS
VERSION 3.0)

\\
\

RSTS-E
[VERSION 7.0)

[C] cPu NOT SUPPORTED BY OPERATING SYSTEM
P77 CPU SUPPORTED BY OPERATING SYSTEM

M CPU SUPPORTED BY OPERATING SYSTEM AND
AVAILABLE AS PACKAGED SYSTEM.

Figure 1-5 Packaged Systems
7

Chapter 1 — Introduction

DOCUMENTATION _
DIGITAL offers several levels of documentation describing PDP-11
software and hardware. The PDP-11 Handbook series, which includes
the Peripherals Handbook, the Terminals and Communications Hand-
book, and the Software Handbook, presents an introductory technical
level of PDP-11 family information. The hardware user documentation
and software tutorial documentation which accompany the delivery of
a PDP-11 computer system offer the most detailed levels of informa-
tion. There are also several books published commercially which dis-
cuss the PDP-11 family. Specific topics such as microprogramming
are also covered extensively in commercially available books. If you
have a specific documentation need, discuss the issue with a DIGITAL
sales representative, who will guide you to the appropriate literature.

NUMERICAL NOTATION

Three number systems are used in this handbook: octal, base eight;
binary, base two; and decimal, base ten. Octal is used for address
locations, contents of addresses, and instruction operation codes. Bi-
nary is used for descriptions of words and decimal for normal
quantitative references. Refer to Appendix C for a conversion table
including these three number systems.

CHAPTER 2
UNIBUS

The UNIBUS is an outstanding design feature that makes posgiblethe
strengths and flexibilities of the PDP-11 family members discussed in
this book. DIGITAL’s unique data bus, the UNIBUS, provides the hard-
ware and software backbone of .the PDP-11/04, PDP-11/24, PDP-
11/34A, PDP-11/44 and PDP-11/70 processors. The UNIBUS was the
first data bus in the history of the minicomputer industry to enable
devices to send, receive, or exchange data without processor inter-
vention and without intermediate buffering in memory.

PDP-11 ARCHITECTURE AND THE UNIBUS

PDP-11 architecture takes advantage of the UNIBUS in its method of
addressing peripheral devices. Memory elements, such as the main
core memory, or any read-only or solid state memories, have ascend-
ing addresses starting at zero, while registers that store I/0 data or the
status of individual peripheral devices have addresses in the highest
8K bytes of addressing space.

There are tens of thousands of memory addresses, but only two—one
for data, one for control—for some peripheral devices, and up to half a
dozen for more complicated equipment like magnetic tapes or disks.

The PDP-11 UNIBUS consists of 56 signal lines, to which all devices,
including the processor, are connected in parallel.

51 lines are bidirectional and 5 are unidirectional.

Communication between any two devices on the bus is in a
master/slave relationship. During any bus operation, one device, the
bus master, controls the bus when communicating with another device
on the bus, called the slave. For example, the processor, as master,
can fetch an instruction from the memory, which is always a slave; or
the disk, as master, can transfer data to the memory, as slave. Mas-
ter/slave relationships are dynamic: the processor, for example, may
pass bus control to a disk, then the disk may become master and
communicate with slave memory.

When two or more devices try to obtain control of the bus simulta-
neously, priority circuits decide between them. Devices have unique
priority levels, fixed at system installation. A unit with a high priority
level obviously always takes precedence over one with a low priority
level; in the case of units with equal priority levels, the one electrically
closest to the processor on the bus takes precedence over those fur-
ther away.

11

cl

’_ﬂ

BUS
ADDRESS REG.

{

PROCESSOR
BUS TIMING

l._—J

PROCESSOR
DATA PATHS

- BU
PRIORITY
CONTROL

PROCESSOR

UNIBUS

BUFFER
REGISTER

ADDRESS
SELECTOR

CORE
MEMORY

MEMORY

ADDRESS
SELECTOR DEVICE

INTERRUPT | REGISTER
CONTROL

DEVICELOGIC

PERIPHERAL DEVICES

Figure 2-1 UNIBUS

SngiNn — g 181deyd

Chapter 2 — UNIBUS

Suppose the processor has control of the bus when three devices, all
of higher priority than the processor, request bus control. If the re-
questing devices are of different priority, the processor will grant use
of the bus to the one with the highest priority. If they are all of the same
priority, all three signals come to the processor along the same bus
line, so that it sees only one request signal. Its reply granting priority
travels down the bus to the nearest requesting device, passing
through any intervening nonrequesting devices. The requesting de-
vice takes control of the bus, executes a single bus cycle of a few
hundred nanoseconds, and relinquishes the bus. (Some devices will
take the bus for more than one bus cycle.) Then the request grant
sequence occurs again, this time going to the second device down the
line, which has been waiting its turn. When all higher-priority requests
has been granted, control of the bus returns to the lowest-priority
device, usually the processor.

The processor usually has lowest priority because in general it can
stop whatever it is doing without creating serious consequences. Peri-
pheral devices may be involved with some kind of mechanical motion,
or may be connected to a real-time process, either of which requires
immediate attention to a request, to avoid data loss.

The priority arbitration takes place asynchronously in parallel with
data transfer. Every device on the bus except memory is capable of
becoming a bus master.

BUS COMMUNICATION

Communication is interlocked, so that each control signal issued by
the master must be acknowledged by a response from the slave to
complete. the transfer. This simplifies the device interface because
timing is no longer critical. The maximum transfer rate on the UNIBUS
is one 16-bit word every 400 ns, or about 2.5 million 16-bit words per
second. However, the typical transfer rate including average bus de-
lays, is 1 million 16-bit words per second.

USING THE BUS

A device uses the bus if it needs to:

® Request the processor. As a result, the processor stops what it is
doing, enters an interrupt service routine, and services the device.

e Transfer a word or byte of data to or from another device, (usually
memory), without involving the processor, an NPR (nonprocessor
request) transfer. Such functions are performed by direct memory
access devices such as disks or tape units.

Whenever two devices communicate, it is called a bus cycle. Only one
word or byte can be transferred per bus cycle. An instruction cycle

13

‘Chapter 2 — UNIBUS

involves one or more bus cycles. Fetching an instruction involves a
bus cycle; storing a result in memory or a device register involves
another bus cycle.

BUS CONTROL
There are two ways of requesting bus control: nonprocessor requests
(NPRs) or bus requests (BRs).

An NPR is issued when a device wishes to perform a data transaction.
An NPR device does not use the CPU once the running program has
set up parameters of buffer address, disk sector selection and byte
count; therefore, the CPU can relinquish bus control while an instruc-
tion is being executed.

A BR is issued when a device needs to interrupt the CPU for service.
An interrupt is not serviced until the processor has finished executing
its current instruction.

Bus Requests
e DEVICE makes a bus request by asserting a BR.

~ & BUS ARBITRATOR recognizes the request by issuing a Bus Grant
(BG). This bus grant is issued only if the priority of the device is
greater than the priority currently assigned to the processor.

e DEVICE acknowledges the bus grant and inhibits further grants by
asserting Selection Acknowledge (SACK). The device also clears
BR.

o BUS ARBITRATOR receives SACK and clears BG.

e DEVICE asserts Bus Busy (BBSY) and clears SACK.

o DEVICE asserts Bus Interrupt (INTR) and its vector address.
e CPUresponds

Nonprocessor Requests
e DEVICE makes a nonprocessor request by asserting NPR.

e BUS ARBITRATOR recognizes the request by issuing a
nonprocessor grant or NPG.

e DEVICE acknowledges the grant and inhibits further grants by as-
serting SACK; device also clears NPR.

e BUS ARBITRATOR receives SACK and clears NPG.
® DEVICE asserts Bus Busy (BBSY) and clears SACK.
o DEVICE starts its data transfer.

BUS BUSY SIGNAL
Once a device’s bus request has been honored, it becomes bus mas-
ter after the current bus master relinquishes control.

14

Chapter 2 — UNIBUS

e Current bus master relinquishes bus control by clearing bus busy
(BBSY).

e New device assumes bus control by setting BBSY.

INTERRUPTS

Interrupt handling is automatic in the PDP-11. No device polling is
required to determine which service routine to execute. A device can
interrupt the CPU only if it has gained bus control via a BR. The
DEVICE requests an interrupt by asserting INTR along with an inter-
rupt vector. The vector directs the CPU to a memory location previ-
ously loaded by the running program with the starting address of an
interrupt service routine (ISR). (‘| need to interrupt.”) The CPU
accepts the interrupt vector an asserts SSYN (Slave SYNC) to indicate
the vector has been accepted. (“I have your interrupt.”) The DEVICE
releases the bus to the CPU by clearing INTR, removing the vector,
and clearing BBSY. (“I'm giving control of the bus back to you.”) The
CPU acknowledges by clearing SSYN (Slave SYNC), stores the infor-
mation it needs to return to the interrupted program (a hardware stack
located in memory is used for this purpose), and enters the interrupt
handling sequence. (“Thank you, I'm starting to service your inter-
rupt.”) When the interrupt operation is completed, the CPU removes
the information that was stored on the stack and resumes the program
at the point where it was interrupted. A more detailed description of
the operations required to service an interrupt follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
request and a unique memory address which contains the ad-
dress of the device’s service routine, called the interrupt vector
address. Immediately following this pointer address is a word (lo-
cated at vector address + 2) which is to be used as the new
processor status (PS) word.

3. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are pushed onto the current stack.
The service routine is then entered when the contents of the
vector address are moved to the PC and program execution re-
sumes—at the address of the interrupt service routine (ISR) load-
ed previously as a vector by the running program

4. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt in-
struction, described in Chapter 4, which pops the two top words
from the current processor stack and uses them to load the PC
and PS registers.

15

Chapter 2 — UNIBUS

A device routine can be interrupted by a higher priority bus request
any time after the new PC and PS have been loaded. If such an inter-
rupt occurs, the PC and PS of the service routine are automatically
stored in the temporary registers and then pushed onto the new
current stack, and the new device routine is entered. This is known as
“nesting.” :

Interrupt Servicing

Every hardware device capable of interrupting the processor has a
unique pair of locations (two words) reserved for its interrupt vector in
low memory..The first word contains the location of the device’s ser-
vice routine, and the second, the processor status word that is to be
used by the service routine. The program is responsible for loading
the address of the ISR into this low memory address before interrupt
time occurs. Through proper use of the PS, the programmer can
switch the operational mode of the processor, and modify the proces-
sor’s priority level to mask out lower level interrupts.

PRIORITY CONTROL

The PDP-11 priority system detérmines which device obtains the bus.
Each PDP-11 device is assigned a specific location in the priority
structure. Priority arbitration logic determines which device obtains
the bus according to its position in the priority structure. The priority
structure is 2-dimensional; i.e., there are vertical priority levels and
horizontal priorities at each level. There are five vertical priority levels.

Devices that gain bus control with one of the bus request lines (BR7,
BR6, BR5, BR4) can take full advantage of the power of the processor
by requesting an interrupt. The entire instruction set is then available
for manipulating data and status registers. When a device servicing
program is being run, the task being performed by the processor is
interrupted, and the device service routine is initiated. After the device
request has been satisfied, the processor returns to its former task.
Note that interrupt requests can be made only if bus control has been
gained through a BR priority level.

Bus Request Level

There are two lines associated with each BR level. The bus request is
made on a BR line (BR7, BR6, BR5, or BR4). The bus grant is made on
the corresponding grant line (BG7,.BG6, BG5, or BG4). BR levels BR3
through BRO are used only by the software; devices are not assigned
to these BR levels. Unlike NPRs, a BR can be handled only between
instruction cycles. The BR levels are used for interrupts so that the
device can obtain service from the CPU. A request made at any BR
level requires processor intervention.

16

Chapter 2 — UNIBUS

Priority Levels

Because there are only five vertical priority levels, NPR, BR7, BR6,
BR5 and BR4, it is often necessary to connect more than one device to
a single level. When a number of devices are connected to the same
level, the situation is referred to a horizontal priority. if more than one
device makes a request at the same level, then the device electrically
closest to the CPU has the highest priority.

4 u
PRIORITY

--——BR7

-+——BRS

[I S
H

IS
—
o
—J
o
S
—
o
&

T T 1 I
o]] [[

INCREASING _ PRIORITY

S
—
—

o teew

Figure 2-2 Priority Control

The grant line for the NPR level is connected to all devices on that level
in a “daisy chain” arrangement. When an NPG is issued, it first goes to
the device electrically closest to the CPU. If that device did not make
the request, it permits the NPG to travel to the next device. Whenever
the NPG reaches a device that has made a request, that device cap-
tures the grant, and prevents it from passing to any subsequent device
ip the chain.

BR chaining is identical to NPR chaining in function. However, each
BR level has its own BG chain. Thus, the grant chain for BR7 is the
BG?7 line which is chained through all devices at the BR7 level.

17

Chapter 2 — UNIBUS

PRIORITY ASSIGNMENTS

When assigning priorities to a device, three factors must be consid-
ered: operating speed, ease of data recovery, and service require-
ments.

Data from a fast device may be available for only a short time period.
Therefore, highest priorities are usually assigned to fast devices to
prevent loss of data and to prevent the bus from being tied up by
slower devices.

If data from a device are lost, recovery may be automatic, may require
manual intervention, or may not be possible. Therefore, highest
priorities are assigned to devices whose data cannot be recovered,
while lowest priorities are reserved for devices with automatic data
recovery features.

CPU Priority Level

In addition to device priority levels, the CPU has a programmable
priority. The CPU can be set to any one of eight priority levels. Priority
is not fixed; it can be raised or lowered by software. The CPU priority is
elevated from level 4 to level 6 when the CPU stops servicing a BR4
device and starts servicing a BR6 device. This programmable priority
feature (the second vector word) permits masking of bus requests.
The CPU can hold off servicing lower priority devices until more criti-
cal functions are completed. For example, when CPU priority is set to
level 6, all bus requests on the same and lower levels are ignored (in
this case, all requests appearing on BR4, BR5, and BR6).

DATA TRANSACTIONS
There are four types of data transactions:

e DATO—a data word is transferred out of the master and into its
slave.

e DATOB—a data byte is transferred out of the master and into its
slave.

o DATI—a data word is transferred from the slave to the master. The
master may select the low or high byte if only a data byte is desired.

e DATIP—used with déstructive readout devices such as core memo-
ry. It is similar to a DATI except that data are not rewritten (restored)
into the addressed memory location (data are restored during a
DATI) unless followed by DATO or DATOB to the same location.

EXECUTION OF DATA TRANSACTIONS
Before a device can perform a data transaction, it must:

e Obtain control of the bus via an NPR.

18

Chapter 2 — UNIBUS

® Select (address) the slave device it wishes to communicate with.
Each device on the bus has a unique address.

e Tell the slave what type of data transaction is to be performed.

® Wait for a response from the slave indicating the slave is present

and ready.

Data transactions between a master and a slave device are synchron-

ized by master sync (MSYNC) and slave sync (SSYN) signals. Below is

an example of how these signals are used during a typical DATI trans-
action:

1. Master selects the slave by addressing it, specifies the type of
data transaction, and requests data by asserting MSYN. (“Give
me data.”)

2. Slave gathers the data and asserts SSYN when the data are
available. (“Hereitis.”)

3. Master drops MSYN after it accepts the data. (“Thank you, | have
the data.”)

4. Slave removes data from the lines and acknowledges the master
by dropping SSYN. (“You're welcome.”)

Table 2-1 Bus Control

Signal Name Source Dest. Timing Func-
tion
NPR Non- Any DMA UNIBUS Asyn- Highest
proc- device Control chronous priority
essor LOGIC bus re-
Request quest
NPG Non- CPU Next bus Asyn- Transfers
proc- master chronous bus
essor control
Grant
BR7 Bus Any UNIBUS Asyn- Requests
through Request device Control chronous bus
BR4 LOGIC control
BG7 Bus Memory Next bus After in- Transfers
through Grant master struction bus
BG4 control
SACK Selection Nextbus UNIBUS Re- Acknow-
Acknow- master Control sponseto ledges
ledge LOGIC NPG or grant and
BG inhibits
further
grants

19

Chapter 2 — UNIBUS

Signal Name Source Dest.

BBSY Bus Busy Master All de-
vices

INTR Interrupt Master UNIBUS
Control
LOGIC

20

Timing

Asserted
by bus
master

If control
has been
gained by
a BR (not
NPR),
INTR as-
serted af-
ter BBSY

Func-
tion

Asserts
control of
the bus

Transfers
bus
control to
handling
routine
inthe
proces-
sor

21

CHAPTER 3
ADDRESSING MODES

In the PDP-11 family, all operand addressing is accomplished through
the eight general purpose registers. To specify the location of data
(operand address) one of eight registers is selected with an accompa-
nying addressing mode. Each instruction specifies the:

e Function to be performed (operation code)
e General purpose register to be used when locating the source oper-
and and/or destination operand

e Addressing mode, which specifies how the selected registers are to
be used

The instruction format and addressing techniques available to the pro-
grammer are of particular importance. This combination of address-
ing modes and the instruction set provides the PDP-11 family with a
unique number of capabilities. The PDP-11 is designed to handle
structured data efficiently and with flexibility. The general purpose
registers implement these functions in the following ways, by acting:

e As accumulators: holding the data to be manipulated

® As pointers: the contents of the register are the address of the oper-
and, rather than the operand itself

® As index registers: the contents of the register are added to an
additional word of the instruction to produce the address of the
operand; this capability allows easy access to variable entries in a
list
Using registers for both data manipulation and address calculation
results in a variable length instruction format. If registers alone are
used to specify the data source, only one memory word is required to
hold the instruction. In certain modes, two or three words may be
utilized to hold the basic instruction components. Special addressing
mode combinations enable temporary data storage for convenient
dynamic handling of frequently accessed data. This is known as stack
addressing. For a discussion about using the stack, please refer to the
Programming Techniques chapter in this handbook. Register 6 is al-
ways used as the hardware stack pointer, or SP. Register 7 is used by
the processor as its program counter (PC). Thus, the register arrange-
ment to be considered in conjunction with instructions and with ad-
dressing modes is: registers 0-5 are general purpose registers,
register 6 is the hardware stack pointer, and register 7 is the program
counter. See the Instruction Set chapter for an explanation of the full
instruction set and instruction formats.

23

Chapter 3 — Addressing Modes

" To illustrate the use of the various addressing modes clearly, the fol-
lowing instructions are used in this chapter:

Mnemonic Description Octal Code

CLR Clear (Zero the specified desti- 0050DD
nation)

CLRB Clear Byte (Zero the byte in the 1050DD
specified destination)

INC Increment (Add 1to contents of 0052DD
destination)

INCB Increment Byte (Add 1 to the 1052DD
contents of destination byte)

COM Complement (Replace the con- 0051DD

tents of the destination by their
logical 1’s complement; each 0
bitis set and each 1 bitis
cleared)

comMB Complement Byte (Replace the 1051DD
contents of the destination byte
by their logical 1’'s complement;
each 0 bit is set and each 1 bitis
cleared)

ADD Add (Add source operand to 06SSDD
destination operand and store
the result at destination ad-
dress)
DD = destination field (6 bits)
SS = source field (6 bits)
() = contents of
Single- and double-operand instructions use the following format.
The instruction format for the first word of all single-operand instruc-
tions (such as clear, increment, test) is:

15) S 3 2 0

r | MODE l Rn

I
N J o . s P

OP CODE I
DESTINATION FIELD

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Single-Operand Instruction Format

24

Chapter 3 — Addressing Modes

The instruction format for the first word of the double-operand instruc-
tionis:
15 12 1

9
OP CODE l MODE l Rn I MODE | Rn J
" s L - n "
SOURCE FIELD 4

DESTINATION FIELD 1

* DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
¥ ** SPECIFIES A GENERAL REGISTER

Double-Operand Instruction Format

Bits 5:3 of the source or destination fields specify the binary code of
the addressing mode chosen. Bits 2:0 specify the general register to
be used.

The four basic addressing modes are:

® Register

® Autoincrement

® Autodecrement

e Index

In a register mode, the content of the selected register is taken as the
operand. In autodecrement mode, after the register has been modi-
fied, it contains the address of the operand. In autoincrement mode, at
the start of the instruction execution, the register contains the address
of the operand, and after the instruction is executed, the address of
the next higher word or byte memory location. In index mode, the
register is added to the displacement, X, to produce the address of the
operand.

When bit 3 of the source/destination field is set, indirect addressing is
specified and the four basic modes become deferred modes.

Prefacing the register operand(s) with an “@” sign or placing the
register in parentheses indicates to the MACRO-11 assembler that
deferred (or indirect) addressing mode is being used.

The indirect addressing modes are:

® Register deferred

e Autoincrement deferred

e Autodecrement deferred

® Index deferred

Program counter (register 7) addressing modes are:

® Immediate

® Absolute

25

Chapter 3 — Addressing Modes

e Relative
o Relative deferred

‘The addressing modes are explained and shown in examples in the
following . pages. They are summarized, in text and in graphic
representation, at the end of the chapter.

REGISTER MODE MODE 0 Rn
Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis-
ters can be used as simple accumulators. The operand is contained in
the selected register (low-order byte for byte operations). Assembler
syntax requires that a general register be defined as follows:

RO = %0
R1 = %1
R2 = %2

% indicates register definition.

Register Mode Example

Symbolic Instruction Description
Octal Code
INC R3 005203 Add 1 to the contents
of R3.

Represented as:

RO
R1
R2
[000010101000:0011%%?%. "3
5 6,5 4 3 2 9 R4
OP CODE (INC(OQE}Z))———T J RS
DESTINATION FIELD R6 (SP)
R7 (PC)
Register Mode Example
Symbolic Instruction Description
Octal Code
ADD R2,R4 060204 Add the contents of
R2 to the contents of

R4, replacing the ori-
ginal contents of R4
with the sum.

26

Chapter 3 — Addressing Modes

Represented as:

BEFORE AFTER
re [000002 | re[— oooooz |
ra [000004 | Ra[ooooos |

REGISTER DEFERRED MODE MODE 1 (Rn)

In register deferred mode, the address of the operand is stored in a
general purpose register. The address contained in the general pur-
pose register directs the CPU to the operand. The operand is located
outside the CPU, either in memory, or in an I/0 register.

This mode is used for sequential lists, indirect pointers in data struc-
tures, top of stack manipulations, and jump tables.

Register Deferred Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5) 005015 The contents of the
: location specified in
R5 are cleared.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1676 [] RS [001700] re7e |] rs | 001700]
1700 000100 1700 000000
AUTOINCREMENT MODE MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the oper-
and; the address is automatically incremented after the operand is
retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of oper-
ands stored in consecutive locations. When an instruction calls for
mode 2, the address stored in the register is incremented each time
the instruction is executed. It is incremented by 1 if you are using byte
instructions, by 2 if you are using word instructions. However, R6 and
R7 are always incremented by 2.

27

Chapter 3 — Addressing Modes

Autoincrement Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5)+ 005025 Contents of R5 are

used as the address
of the operand. Clear
selected operand and
then increment the

contents of R5 by 2.

Represented as:

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oosozs | ®s | 030000 | 20000 ooso2s | rs[oszo002 |
30000 e 30000 000000
30002 051367 30002 051367
AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+

In autoincrement deferred mode, the register contains a pointer to an
address. The “+” indicates that the pointer in Rn is incremented by 2
(for both word and byte operations) after the address is located. Mode
2, autoincrement, is used only to access operands that are stored in
consecutive locations. Mode 3, autoincrement deferred, is used to
access lists of operands stored anywhere in the system; i.e., the oper-
ands do not have to reside in adjoining locations. Mode 2 is used to
step through a table of operands, mode 3 is used to step through a
table of addresses.

Autoincrement Deferred Example

Symbolic Instruction Description
Octal Code
INC @(R2)+ 005232 Contents of R2 are
used as the address
of the address of the

operand. The oper-
and is increased by 1,
contents of R2 are in-
cremented by 2.

28

Chapter 3 — Addressing Modes

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

k2 [010300 k2 [010302]
1010 000025 1010 000026
1012 1012
»T
10300 001010 10300 001010
10302 175623 10302 175623
AUTODECREMENT MODE MODE 4 —(Rn)

In autodecrement mode, the register contains an address that is auto-
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step-
ping through a list of words or bytes in reverse order. The address is
decremented by 1 for bytes, by 2 for words. However, R6 and R7 are
always decremented by 2.

Autodecrement Mode Example

Symbolic Instruction Description
Octal Code
INCB —(R0) 105240 The contents of RO

are decremented by
1, then used as the
address of the oper-
and. The operand
byte is increased by
1.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000 [005240 | ro [owr77e] 000 | oos2e0 | Ro [017774]
17774 000000 17774 000001

7776 105324 17776 105324
AUTODECREMENT DEFERRED MODE MODE 5 @—(Rn)

In autodecrement deferred mode, the register contains a pointer. The
pointer is first decremented by 2 (for both word and byte operations),
then the new pointer is used to retrieve an address stored outside the
CPU. This mode is similar to autoincrement deferred, but allows step-
ping through a table of addresses in reverse order. Each address then
redirects the CPU to an operand. Note that the operands do not have
to reside in consecutive locations.

29

Chapter 3 — Addressing Modes

Autodecrement Deferred Mode Example

Symbolic Instruction Description
Octal Code
COM @—(R0) 005150 The contents of RO

are decremented by 2
and then used as the
address of the ad-
dress of the operand.
The operandis 1's
complemented.

Represented as:

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 ro [otorre] 10100 165432 ro [otorra]
10102 10102
10774 010100 10774 010100
10776 10776
INDEX MODE MODE 6 X(Rn)

In index mode, a base address is added to an index word to produce
the effective-address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the
register, base address following the current instruction).

Index Mode Example

Symbolic Instruction Description
Octal Code
CLR 200(R4) 005064 The address of the
000200 operand is deter-
mined by adding 200
to the contents of R4.
The location is then
cleared.

30

Chapter 3 — Addressing Modes

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 R4 [001000 J 1020 005064 R4 r 001000 J

1022 000200 1022 000200

1024 1299 1024

T
pd [1200

1200 177777 1200 000000

1202
INDEX DEFERRED MODE MODE 7 @X(Rn)

In index deferred mode, a base address is added to an index word.
Theresult is a pointer to an address, rather than the actual address.
This mode is similar to mode 6, except that it produces a pointer to an
address. The content of that address then redirects the CPU to the
desired operand. Mode 7 provides for the random access of operands
using a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction Description
Octal Code
ADD @1000(R2),R1 067201 1000 and the con-
001000 tents of R2 are
summed to produce
the address of the ad-
dress of the source

operand, the contents
of which are added to

the contents of R1.
The resultis stored in
R1.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 ri [oo1z34] 1020 067201 ri [ootese |
b T | I
1024 1024
1050 000002 1050 000002
1100 001050 1000 1100 001050
+100
1100

31

Chapter 3 — Addressing Modes

USE OF THE PC AS A GENERAL REGISTER

Register 7 is both a general purpose register and the program counter
on the PDP-11. When the CPU uses the PC to access a word from
memory, the PC is automatically incremented by two to contain the
address of the next word of the instruction being executed or the
address of the next instruction to be executed. When the program
uses the PC to access byte data, the PC is still incremented by two.

The PC can be used with all the PDP-11 addressing modes if you use
machine language only. There is no symbol in MACRO-11 for all PC
addressing modes so it will not accept all modes. There are four
modes in which the PC can provide advantages for handling position-
independent code and for handling unstructured data. These modes
refer to the PC and are termed immediate, absolute (or immediate
deferred), relative, and relative deferred.

PC IMMEDIATE MODE MODE 2 #n
Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper-

ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction Description
Octal Code
ADD #10,R0 062700 The value 10 is locat-
000010 ed in the second word
of the instruction and
is added to the con-

tents of RO. Just be-
fore this instruction is
fetched and
executed, the PC
points to the first
word of the instruc-
tion. The processor
fetches the first word
and increments the
PC by two. The
source operand
mode is 27 (autoin-
crement the PC).
Thus, the PC is used
as a pointer to fetch

32

Chapter 3 — Addressing Modes

the operand (the sec-
ond word of the in-
struction) before be-
ing incremented by
two to point to the
next instruction.

Represented as:

BEEORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 ro| oooozo | 1020 062700 ro [oooozo |
1022 000010 \ 1022 000010
PC pC
1024 1024 .
PC ABSOLUTE MODE MODE 3 Q#A

This mode is the equivalent of immediate deferred or autoincrement
deferred mode using the PC. The contents of the location following the
instruction are taken as the address of the operand. Immediate data
are interpreted as an absolute address (i.e., an address that remains
constant no matter where in memory the assembled instruction is
executed).

PC Absolute Mode Example
Symbolic Instruction Description
Octal Code
CLR @#1100 005037 Clears the contents of
001100 location 1100.
Represented as:
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 20 005037
22 001100 \PC 22 001100 PC
24 /
1100 177777 1100 000000
1102 1102
PC RELATIVE MODE MODE 6 A

This mode is index mode 6 using the PC. The operand’s address is
calculated by adding the word that follows the instruction (called an
“offset”) to the updated contents of the PC.

PC+2 directs the CPU to the offset that follows the instruction. PC+4
is summed with this offset to produce the effective address of the
operand. PC+4 also represents the address of the next instruction in
the program.

33

Chapter 3 — Addressing Modes

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, when
the instruction is relocated, the operand remains the same relative
distance away.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for writ-
ing position-independent code.

PC Relative Mode Example

Symbolic Instruction Description
Octal Code

INCA 005267 To increment location
000054 A, contents of memo-

ry location in the sec-

ond word of the in-

struction are added

to PC to produce ad-

dress A. Contents of

A are increased by 1.
Represented as:

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054
1024 PC 1024 +~—PC
1026 1026

+54
HQO_OO/ " e =

PC RELATIVE DEFERRED MODE MODE 7 Q@A
This mode is index deferred (mode 7), using the PC. A pointer to an
operand’s address is calculated by adding an offset (which follows the
instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one
additional level of addressing to obtain the operand. The sum of the
offset and updated PC (PC+4) serves as a pointer to an address.
When the address is retrieved, it can be used to locate the operand.

PC Relative Deferred Mode Example

Symbolic Instruction Description
Octal Code

CLR @A 005077 Adds the second
000020 word of the instruc-

34

Chapter 3 — Addressing Modes

tion to PC to produce

the address of the ad-

dress of the operand.

Clears operand.
Represented as:

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005077 o 1020 005077
1022 000020 PC 1022 000020 PC
1024 1024 .
1044 010100 Joz 1044 010100
1044
10100 100001 10100 000000

SUMMARY OF ADDRESSING MODES
Basic Addressing Modes

Binary Mode Name Symbolic Function
Code
000 0 Register Rn Register contains
operand.
010 2 Autoincre- (Rn)+ Register is used
ment as a pointer to

sequential data,
then increment-
ed. RO-R5 are in-
cremented by 1
for byte and 2 for
word instruction.
R6-R7 are always
incremented by

2.
100 4 Autodecre- —(Rn) Register is de-
ment cremented and

thenused as a
pointer to se-
quential data.
RO-R5 are decre-
mented by 1 for
byte and by 2 for
word instruc-
tions. R6-R7 are
always decre-
mented by 2.

35

Chapter 3 — Addressing Modes

110 6 Index X(Rn)

Indirect Addressing Modes

Binary Mode Name Symbolic

Code

001 1 Register @Rnor
Deferred (Rn)

011 3 Autoincre- @(Rn)+
ment Deferred

101 5 Autodecre- @—(Rn)

ment Deferred

36

Value X is added
to (Rn) to pro-
duce address of
operand. Neither
X nor (Rn) is
modified. X, the
index value, is al-
ways found in the
next memory lo-
cation and incre-
ments the PC.

Function

Register contains
the address of
the operand.

Register is first
used as a pointer
to a word con-
taining the
address of the
operand, then in-
cremented (al-
ways by 2, even
for byte instruc-
tions).

Register is
decremented (al-
ways by 2, even
for byte instruc-
tions) and then
used as a pointer
to a word con-
taining the ad-
dress of the op-
erand.

Chapter 3 — Addressing Modes

111 7 Index @X(Rn) Value X (the in-
Deferred dex is always

found in the next
memory location
and increments
the PC by 2) and
(Rn) are added
and thesum is
used as a pointer
to a word con-
taining the
address of the
operand. Neither
X nor (Rn) is
modified.

When used with the PC, these modes are termed immediate, absolute

(or immediate deferred), refative, and relative deferred.

PC Register Addressing Modes

Binary Mode Name Symbolic Function

Code

010 2 Immediate #n Operand is con-
tained in the in-
struction.

011 3 Absolute Q#A Absolute

address is con-
tained in the in-
struction.

110 6 Relative A Address of A,
relative to the
instruction, is
contained in the

instruction.
111 7 Relative De- Q@A Address of A,
ferred relative to the in-

struction, is con-
tained in the in-
struction.
Operand is con-
tained in A.

37

Chapter 3 — Addressing Modes

GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes
Ris a general register,0to 7.
(R) is the contents of that register.

Mode 0 Register OPRR R contains
operand.
[mstrucTion f—nuf OPE:ANDJ
Mode 1 Register deferred OPR (R) R contains
address.
LINSTRUCTION—}—'—-" ADDgESS }——- operano |
Mode 2 Autoincrement OPR (R)+ R contains ad-

dress, then incre-
ment (R). Note
that R6 and R7
are always incre-
mented by 2.

R

[msTRucTion }— " aDDRESS }T—-l OPERAND |
2 FOR_WORD,
+1FOR BYTE

Mode 3 Autoincrement OPR R contains ad-
deferred @(R)+ dress of address,
then increment
(R) by 2.

R
| nstruction | apbress |—q—of apoRESs |+ operanp |

38

Chapter 3 — Addressing Modes

Mode 4 Autodecrement OPR —(R) Decrement (R),
then R contains
address. Note
that R6 and R7
are always de-
cremented by 2.

R
INSTRUCTION ADDRESS -2 FOR WORD, [orerano]
I -1 FOR BYTE OPERAND

Mode 5 Autodecrement OPR@- Decrement (R) by
deferred (R) 2,then R con-
tains address of
address.

R
| wstruction }———~ " anoress |—] -2 —l—T—-| aporess |—— operano |
T

Mode 6 Index OPR X(R) (R)+Xis ad-
dress. X is con-
tained in the
word following
the instruction.

R
pc [nstruction |——— aooress

PC+2 | X l 0
Mode 7 Index deferred OPR (R)+Xis address
@X(R) of address. X is

contained in the
word following
the instruction.

R
pc [InstrucTioN]I aDDRESS
ADDRESS H OPERAND,]
PC+2 | X F

39

Chapter 3 — Addressing Modes

Program Counter Addressing Modes
Register = 7

Mode 2 Immediate OPR #n Literal operand n
is contained in
the word follow-
ing the instruc-
tion.

e
e[2]

Mode 3 Absolute OPR @#A Address A is
contained in the
word following
the instruction.

"
per2 [A | oreranp |

Mode 6 Relative OPRA PC+4 + Xisad-
dress. PC+4is
updated PC.

re
PC+2
—] ()
reva I
L
Mode 7 Relative deferred OPR @A PC+4 + Xis ad-

PC | INSTRUCTION

PC+2

dress of address.
PC+4 is updated
PC.

PC+4 | NEXT INSTR
L

40

AL aooress }—{ operanp |

41

42

CHAPTER 4
INSTRUCTION SET

The PDP-11 instruction set offers a wide selection of operations and
addressing modes. To save memory space and to simplify the im-
plementation of control and communications applications, the PDP-11
instructions allow byte and word addressing in both single- and dou-
ble-operand formats. By using the double-operand instructions, you
can perform several operations with a single instruction. For example,
ADD A,B adds the contents of location A to location B, storing the
result in location B. Traditional computers would implement this in-
struction this way:

LDA A
ADDB
STRB

The PDP-11 instruction set also contains a full set of conditional
branches which eliminate excessive use of jump instructions. PDP-11
instructions fall into one of seven categories:

e Single-Operand—the first part of the word, called the “opcode,”
specifies the operation; the second part provides information for
locating the operand.

® Double-Operand—the first part of the word specifies the operation
to be performed; the remaining two parts provide information for
locating two operands.

® Branch — the first part of the word specifies the operation to be
performed; the second part indicates where the action is to take
place in the program.

e Jump and Subroutine — these instructions have an opcode and
address part, and in the case of JSR, a register for linkage.

® Trap — these instructions contain an opcode only. In TRAP and
EMT, the low-order byte may be used for function dispatching.

® Miscellaneous — HALT, WAIT, and Memory Management.

e Condition Code — these instructions set or clear the condition
codes.

SINGLE-OPERAND INSTRUCTIONS
Mnemonic Instruction
General
CLR(B) clear
COM(B) 1’'s complement

43

Chapter 4 — Instruction Set

INC(B) increment
DEC(B) decrement
NEG(B) 2's complement (negate)
TST(B) test
NOP no operation
Shift & Rotate
ASR(B) arithmetic shift right
ASL(B) arithmetic shift left
ROR(B) rotate right
ROL(B) rotate left
SWAB swap bytes

Multiple Precision
ADC(B) add carry
SBC(B) subtract carry
SXT sign extend

Instruction Format

A : ' ! : ! : : _J ** * ‘--.]

S
OP CODE T }

DESTINATION FIELD

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single-Operand Instruction Format

The instruction format for single-operand instructions is:

® Bit 15 indicates word or byte operation.

e Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

e Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

DOUBLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B) move source to destination
ADD add source to destination
SuB subtract source from destination

44

Chapter 4 — Instruction Set

CMP(B) compare source to destination
ASH shift arithmetically
ASHC arithmetic shift combined
MUL multiply
DIV divide
Logical
BIT(B) bit test
BIC(B) bit clear
BIS(B) bit set
XOR exclusive OR

Instruction Format

15 12 N 9 8 6 5 3 2 0

L OP CODE | MODE j Rn | MODE l Rn]
* * * ¥ .I. - A‘... J .l‘ - ““. _J
SOURCE FIELD 4 T
DESTINATION FIELD

* DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Figure 4-2 Double-Operand Instruction Format

The format of most double-operand instructions, though similar to that

of single-operand instructions, has two fields for locating operands.

One field is called the source field, the other is called the destination

field. Each field is further divided into addressing mode and selected

register. Each field is completely independent. The mode and register
used by one field may be completely different than the mode and
register used by another field.

e Bit 15 indicates word or byte operation except when used with op-
code 6, in which case it indicates an ADD or SUBtract instruction.

e Bits 14-12 indicate the opcode, which specifies the operation to be
done.

e Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the source
field.

o Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

45

Chapter 4 — Instruction Set

e Some double-operand instructions (ASH, ASHC, MUL, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
opcode. Bits 8-6 specify the destination register. Bits 5-0 contain the
source field. XOR has a similar format, except that the sourceisina
register specified by bits 8-6, and the destination field is specified by
bits 5-0.

Byte Instructions

Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
or SUBB.

BRANCH INSTRUCTIONS
Mnemonic Instruction
Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BvVC branch if overflow is clear
BVS branch if overflow is set
BCC branch if carry is clear
BCS branch if carry is set
Signed Conditional Branch
BGE branch if greater than or
equal (to zero)
BLT branch if less than (zero)
BGT branch if greater than (zero)
BLE branch if less than or
equal (to zero)
SOB subtract one and branch (if not = 0)
Unsigned Conditional Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

Instruction Format

e The high byte (bits 15-8) of the instruction is an opcode specifying
the conditions to be tested.

e The low byte (bits 7-0) of the instruction is the signed offset value in
46

Chapter 4 — Instruction Set

A
OP CODE ——-———-—} T

BYTE OFFSET

Figure 4-3 Branch Instruction Format

words that determines the new program location if the branch is
taken. Thus, program control can be transferred within a range of
—128 to +127 words from the updated PC.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic Instruction

JMP jump

JSR jump to subroutine

RTS return from subroutine

MARK facilitates stack clean-up
procedures

Instruction Format

JSR Format
15 9 8 6 5 3 2 0
[I Rn l MODE l Rn J
AN " - : * - \ N - AN ' J
or copf—————— ¥ f T
LINKAGE POINTER

DESTINATION FIELD
Figure 4-4 JSR Instruction Format

e Bits 15-9 are always octal 004, the opcode for JSR.

o Bits 8-6 specify the link register. Any general purpose register may
be used in the link, except R6 (SP).

e Bits 5-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

o Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is R5, any register except R5 can be used for one destination
field.

47

Chapter 4 — Instruction Set

RTS Format
15 3 2 o]
N
e R R
OP CODE - t
LINKAGE POINTER

Figure 4-5 RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

e Bits 15-3 always contain octal 00020, which is the opcode for RTS.
e Bits 2-0 specify any one of the general purpose registers.

e The register specified by bits 2-0 must be the same register used as
the link between the JSR causing the jump and the RTS returning
control.

TRAPS AND INTERRUPTS
Mnemonic Instruction

EMT emulator trap

TRAP trap

BPT breakpoint trap

10T input/output trap

CSM call to supervisor mode
RTI return from interrupt
RTT return from interrupt

The three ways to leave a main program are:
e Software exit — the program specifies a jump to some subroutine

e Trap exit — internal hardware on a special instruction forces a jump
to an error handling routine

e Interrupt exit — external hardware forces a jump to an interrupt
service routine

In each case, a jump to another program occurs. Once the latter pro-
gram has been executed, control is returned to the proper pointin the
main program.

MISCELLANEOUS INSTRUCTIONS
Mnemonic Instruction

HALT halt

WAIT wait for interrupt

RESET reset UNIBUS

MTPD move to previous data space

48

Chapter 4 — Instruction Set

MTPI move to previous instruction space
MFPD move from previous data space

MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from processor status word
MFPT move from processor type

Note that on the PDP-11/70, the four instructions for referencing the
previous address space (MTPD, MTPI, MFPD, MFPI) use the General
Register set indicated by PSW<11> when they are executed.

CONDITION CODE OPERATION

Mnemonic Instruction
CLC,CLV, CLZ, CLN,CCC clear
SEC, SEV, SEZ, SEN, SCC set

The four condition code bits are:

e N, indicating a negative condition when set to 1
e Z,indicating a zero condition when set to 1

e V, indicating an overflow condition when set to 1
e C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single-operand or double-operand instruction affects one or
more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the various instructions
to check software conditions.

Z bit — Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero result:

e Adding two numbers equal in magnitude but different in sign

o Comparing two numbers of equal value

e Using the CLR or BIC instruction

N bit— The CPU looks only at the sign bit of the result. If the sign bit is
set, indicating a negative value, the CPU sets the N bit. If the sign bitis
clear, indicating a positive value, then the CPU clears the N bit.

C bit — The CPU sets the C bit automatically when the result of an
instruction has caused a carry out of the most significant bit of the
result. Otherwise, the C bit is cleared. During rotate instructions (ROL
and ROR), the C bit forms a buffer between the most significant bit and
the least significant bit of the word. A carry of 1 sets the C bit while a

49

Chapter 4 — Instruction Set

carry of 0 clears the C bit. However, there are exceptions. For
example:

e SUB and CMP set the C bit when there is no carry

o INC and DEC do not affect the C bit

o COM always sets the C bit, TST always clears the C bit

V bit — The V bit is set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be
placed in the destination. The hardware uses one of two methods to
check for an overflow condition.

One way is for the CPU to test for a change of sign.

e When using single-operand instructions, such as INC, DEC, or NEG,
a change of sign indicates an overflow condition.

e When using double-operand instructions, such as ADD, SUB, or
CMP, in which both the source and destination have like signs, a
change of sign in the result indicates an overflow condition.

Another method used by the CPU is to test the N bit and C bit when
dealing with shift and rotate instructions.

e |f only the N bit is set, an overflow exists.

o |f only the C bit is set, an overflow exists.

o |If both the N and C bits are set, there is no overflow condition.

More than one condition code can be set by a particular instruction.

For example, both a carry and an overflow condition may exist after
instruction execution.

CONDITION CODE OPERATORS

oo ooy el e

Figure 4-6 Condition Code Operators’ Format

Instruction Format

The format of the condition code operators is:

® Bits 15-5 — the opcode

¢ Bit 4 — the “operator” which indicates set or clear with the values 1

and 0 respectively. If set, any selected bit is set; if clear, any selected
bit is cleared.

e Bits 3-0 — the mask field. Each of these bits corresponds to one of
the four condition code bits. When one of these bits is set, then the

50

Chapter 4 — Instruction Set

corresponding condition code bit is set or cleared depending on the
state of the “operator” (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the vari-
ous types of instructions in a program.

Single-Operand Instruction Example

This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 30, byte loca-
tions beginning at memory address 600.

INIT: MOV #600,R0
MOV #30,R1

LOOP: CLRB (R0)+
DEC R1
BNE LOOP
HALT

Program Description

e The CLRB (R0)+ instruction clears the content of the location speci-
fied by RO and increments RO.

e RO is the pointer.

e Because the autoincrement addressing mode is used, the pointer
automatically moves to the next memory location after execution of
the CLRB instruction.

e Register R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC R1 instruc-
tion. Each time a location is cleared, it is counted by decrementing
R1.

e The Branch if Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to clear another
location. If the counter is zero, indicating done, then the program
halts.

Double-Operand Instruction Example
This routine moves characters to be printed from location 600 into a
print buffer area in memory.

INIT: MOV #600, RO ;set up source address
MOV #prtbuf, R1 ;set up destination address
MOV #76, R2 ;set up loop count

START: MOVB (R0)+, (R1)+ ;move one character
;and increment
;both source and

51

Chapter 4 — Instruction Set

;destination addresses

DEC R2 ;decrement count by one
BNE START ;loop back if
HALT ;decremented counter is not

;equal to zero

Program Description

e MOV is the instruction normally used to set up the initial conditions.
Here, the first MOV places the starting address (600) into RO, which
will be used as a pointer. The second MOV places the starting
address of the print buffer into R1. The third MOV sets up R2 as a
counter by loading the desired number of locations (76) to be print-
ed.

o The MOVB instruction moves a byte of data to the printer buffer. The
data come from the location specified by RO. The pointers RO and
R1 are then incremented to point to the next sequential location.

e The counter (R2) is then decremented to indicate one byte has been
transferred.

e The program then checks the loops for done with the BNE instruc-
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

e When the counter (R2) reaches zero, indicating all data have been
transferred, the branch does not occur and the program halts.

Branch Instruction Example

NOTE
Branch instruction offsets are limited to the range of
+177, to —200, words.

A payroll program has set up a series of words to identify each em-
ployee by his badge number. The high byte of the word contains the
employee’s badge number, the low byte contains an octal number
ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
are paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unfortunately, employee information has been stored in a
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num-
bers are assigned as follows: 0 to 3 — Wage Class | (weekly), 4to 7 —
Wage Class Il (monthly), 10 to 13 — Wage Class lil (quarterly).

52

Chapter 4 — Instruction Set

600 is the starting address of memory block containing the employee
payroll information. 1264 is the final address of this data area. The
following program searches through the data area and finds all
numbers representing Wage Class |, and, each time an appropriate
number is found, stores the employee’s badge number (just the high
byte) on a Last-in/First-out stack which begins at location 4000.

INIT: MOV #600, RO
MOV #4000, R1

START: CMPB(R0)+,#3

BHI CONT
STACK: MOVB (R0),—(R1)
CONT: INC RO

CMP #1264, RO

BHIS START

Program Description
e RO becomes the address pointer, R1 the stack pointer.

e Compare the contents of the first low byte with the number 3 and go
to the first high byte.

e If the number is more than 3, branch to continue.

e If no branch occurs, it indicates that the number is 3 or less. There-
fore, move the high byte containing the employee’s number onto the
stack as indicated by stack pointer R1.

e RO is advanced to the next low byte.

o |f the last address has not been examined (1264), this instruction
produces a result equal to or greater than zero.

e If the result is equal to or greater than zero, examine the next memo-
ry location.

INSTRUCTION SET
The PDP-11 instruction set is presented in the following section. For
ease of reference, the instructions are listed alphabetically.

SPECIAL SYMBOLS
You will find that a number of special symbols are used to describe

53

Chapter 4 — Instruction Set

certain features of individual instructions. The commonly used sym-
bols are explained below.

Symbol
MN
SO
DO
PC
MS
cC
(x)
src
dst
tmp

(SP)+
—(SP)

RegorR
Rvi

R, Rv1

M.P.1.
M.N.L

Meaning

Maintenance instruction
Single-operand instruction
Double-operand instruction

Program control instruction
Miscellaneous instruction

Condition Code

Contents of memory location whose address is x
Source address

Destination address

Contents of temporary internal register

Becomes, or moves into. For example, (dst) <« (src)
means that the source becomes the destination or
that the source moves into the destination location.

Popped or removed from the hardware stack
Pushed or added to the hardware stack
Logical AND

Logical inclusive OR (either one or both)
Logical exclusive OR (either one, but not both)
Logical NOT

Contents of register

Contents of register R if an odd-numbered register is
specified. Contents of the register following Rif R is
an even-numbered register

32-bit quantity.obtained by concatenating R and Rv1

Byte

Most Positive Integer—077777 (word) or 177 (byte)

Most Negative Integer—100000 (word) or 200 (byte)
NOTE

Condition code bits are considered to be cleared
unless they are specifically listed as set.

54

Chapter 4 — Instruction Set

SUMMARY OF PDP-11 INSTRUCTION SET
Basic PDP-11 Instruction Set

ADC BIT COM
ADCB BITB comB
ADD BLE DEC
ASL BLO DECB
ASLB BLOS EMT
ASR BLT HALT
ASRB BMI INC
BCC BNE INCB
BCS BPL 10T
BEQ BPT JMP
BGE BR JSR
BGT BVC MARK
BHI BVS MOV
BHIS CLR MOVB
BIC CLRB NEG
BICB CCC, CLN, NEGBB

CLz,

CLv,CLC
BIS CMP NOP
BISB CMPB RESET

The basic PDP-11 instructions are standard on:

e LSI-11

e LSI-11/2

e PDP-11/03
e PDP-11/23
e PDP-11/24
e PDP-11/34A
e PDP-11/44
e PDP-11/70

55

ROL
ROLB
ROR
RORB
RTI
RTS
RTT
SBC
SBCB

SCC, SEN,
SEZ,
SEV, SEC

SOB
SuB
SXT
SWAB
TRAP
TST

TSTB
XOR
WAIT

Chapter 4 — Instruction Set

The PDP-11/04 implements all basic instructions except for MARK,
RTT, SOB, SXT, and XOR.

Extended Integer Instructions (EIS)
ASH

ASHC

Div

MUL

EIS is standard on:

e PDP-11/23

e PDP-11/24

e PDP-11/34A

e PDP-11/44

e PDP-11/70

EIS is also available as an option on:
e LSI-11

e LSi-11/2

e PDP-11/03

MFPD, MFPI, MTPD, MTPI
Available on PDP-11/23, PDP-11/24, PDP-11/34A, PDP-11/44, PDP-
11/70.

MFPS
Available on LSI-11, LSI-11/2, PDP-11/03, PDP-11/23, PDP-11/24,
PDP-11/34A,

SPL
Available only on PDP-11/44, PDP-11/70.

csMm
Available on PDP-11/44 only.

MFPT
Available on PDP-11/23, PDP-11/24, PDP-11/44.

56

8G

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
opposite sign.
C: setif thereis a carry
from the most sig-
nificant bit of the
result.
ASH DO 072RSS R < Rshiftedar- N:setifresult <0 The contents of the register are
Arithmetic ithmetically NN Z: setifresult =0 shifted right or left the number of
Shift placestorightor V: setif sign of register times specified by the shift count
left where NN = changed during (i.e., bits <5:0> of the source op-
(src) <5:0> shift. Cleared if NN erand). The shift count is taken as
=0. the low order 6 bits of the source
C: loaded from last bit operand. This number ranges from
shifted out of regis- —32to +31. Negative is a right shift
ter. Cleared if NN = and positive is a left shift.
0.
ASHC DO 073RSS tmp <R, Rv1 N: setifresult <0 The contents of the specified regis-
Arithmetic tmp <« tmp shift- Z: setifresult=0 ter R and the register Rv1 are treat-
Shift ed NN bits V: setif sign bit ed as a single 32-bit operand, and
Combined R «<tmp<31: changes during the are shifted by the number of bits

188 uononssul — 183deyd

09

Table 4-1 PDP-11 Instruction Set, cont.

Condition Codes

Description

Mnemonic/

Instruction Type OPCode Operation
Shift Left
ASR SO 0062DD (dst) < (dst)
ASRB SO 1062DD shifted one place
Arithmetic to the right
Shift Right

z:
V:

setif theresult = 0
loaded with the ex-
clusive OR of the N
bit and C bit (as set
by the completion of
the shift operation).

: loaded with the

high-order bit of the
destination.

: set if the high-order

bit of the result is set
(result < 0)

: setiftheresult =0
: loaded from the ex-

clusive OR of the N
bit and C bit (as set
by the completion of
the shift operation).

: loaded from iow-

order bit of the des-
tination

status word is loaded from the
high-order bit of the destination.
ASL performs a signed multiplica-
tion of the destination by 2 with
overflow indication. For example,
—1 shifted left yields —2, +2 shift-
ed left yields +4, and —3 shifted
left yields —6.

Shifts all bits of the destination
right one place. The high-order bit
is replicated. The C bit is loaded
from the low-order bit of the desti-
nation. ASR performs signed divi-
sion of the destination by 2, round-
ed to minus infinity. —1 shifted
right remains —1, +5 shifted right
yields +2, —5 shifted right yields
-3.

188 uononssul — g se3deyH

29

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

BGT PC 003000 PC «<PC + N: unaffected Causes a branch if Zis clear and N

Branch if PLUS 8- (2 X offset) if Z: unaffected equals V. Thus, BGT never branch-

Greater bitoffset Zv(NvV)=0 V: unaffected es following an operation that add-

than C: unaffected ed two negative numbers, even if
overflow occurred. In particular,
BGT never causes a branch if it fol-
lows a CMP instruction operating
on a negative source and a positive
destination (even if overflow oc-
curred). Further, BGT always
causes a branch when it follows a
CMP instruction operating on a
positive source and negative desti-
nation. BGT does not cause a
branch if the result of the previous
operation was 0 (without overflow).

BHI PC 101000 PC<«PC + N: unaffected Causes a branch if the previous

Branch if PLUS 8- (2 X offset) if Z: unaffected operation causes neither a carry

Higher bitoffset C=0andZ=0 V: unaffected nor a 0 result. This will happen in

C: unaffected comparision (CMP) operations as

188 uononnsu| — p se)deyn

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
C: unaffected source nor destination operands
are affected. The BIT instruction
may be used to test whether any of
the corresponding bits that are set
in the destination are clear in the
source.
BLE PC 003400 PC<«PC + N: unaffected Causes abranchif Zissetorif N
Branch if PLUS 8- (2 X offset) if Z: unaffected does not equal V. Thus, BLE al-
Less bitoffset Zv(NvV)=1 V: unaffected ways branches following an opera-
than or C: unaffected tion that added two negative num-
Equalto bers, even if overflow occurred. In

particular, BLE always causes a
branch if it follows a CMP instruc-
tion operating on a negative source
and a positive destination (even if
overflow occurred). Further, BLE
never causes a branch when it fol-
lows a CMP instruction operating
on a positive source and negative
destination. BLE always causes a

18S uononysu| — 18)deyd

99

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPGode Operation Condition Codes Description
ther, BLT never causes a branch
when if follows a CMP instruction
operating on a positive source and
negative destination. BLT does not
cause a branch if the result of the
previous operation was 0 (without
overflow).
BMI PC 100400 PC <« PC + N: unaffected Tests the state of the N bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if N is set. Used to
Minus bitoffset N =1 V: unaffected test the sign (most significant bit)
C: unaffected of the result of the previous opera-
tion.
BNE PC 001000 PC <« PC + N: unaffected Tests the state of the Z bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if the Z bit is clear.
Not Equal bitoffset Z=0 V: unaffected BNE is the complementary opera-
C: unaffected tion to BEQ. It is used to test

inequality following a CMP, to test
that some bits set in the destination
were also set in the source, follow-
ing a BIT, and generally, to test that

188 uononnsu| — p seydeyd

89

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/

Instruction Type OPCode Operation Condition Codes Description
BVS PC 102400 PC <« PC + N: unaffected Tests the state of V bit and causes
Branch if PLUS 8- (2 X offset) if Z: unaffected abranchifthe V bitis set. BVS is
V bit Set bitoffset V=1 V: unaffected used to detect arithmetic overflow
' C: unaffected in the previous operation.
CLR SO 0050DD (dst) <0 N: cleared Contents of specified destination
CLRB 1050DD Z: set are replaced with zeros.
Clear V: cleared
C: cleared
C CcC 000240 Clear condition code bits. Selectable combinations of these bits may be
Clear PLUS 4- cleared together. Condition code bits corresponding to bits in the condition
Selected bitmask code operator (bits 0-3) are modified. Clears the bit specified by the mask; i.e.,
Condition bit0, 1,2, 0or 3. Bit4isaO0.
Code Operation:
Bits PSW <3:0> <« PSW <3:0>A[~mask <3:0>]
CcCC CC 00257 N,Z,V,C<«0
Clear all

Condition

188 uononsu| — Jeydeyd

0.

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
row into the most operation is (src) —(dst), not (dst)
significant bit, i.e.,if - (src).
(src)+ ~(dst)+1 was
less than 2'¢,
COM SO 0051DD (dst) « ~ (dst) N: set if most signifi- Replaces the contents of the desti-
CcOomMB 1051DD cantbitofresult =1 nation address by their logical
Comple- Z: setifresult =0 complements (each bit equal to 0
ment V: cleared set and each bit equal to 1
C: set cleared).
CSM PC 0070DD IfMMR3<3> = N: unaffected CSM may be executed in User or
Call to 1 and current Z: unaffected Supervisor Mode, but is an illegal
Supervisor mode # Kernel V: unaffected instruction in Kernel mode. CSM
Mode then: C: unaffected copies the current stack pointer to
(Available be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>