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Preface

The Alpha System Reference Manual is divided into 3 Parts, 4 appendixes, and an
index. '

Each part or section of a part describes a major portion of the Alpha architecture.
Each contains its own Table of Contents. Additional sections will be incorporated as
development proceeds on the architecture.

The Alpha System Reference Manual is under ECO control. ECOs are approved only
by the Alpha-A committee.

The following table outlines the contents of the Alpha SRM:

Name Symbol Contents
Part One @ Common Architecture
This part describes the architecture that is common to and

Part Two Im Specific Operating System PALcode Architecture

(III) This part contains sections that describe how, the following
operating systems relate to the Alpha architecture:

Section Name and Contents Symbol
7" OpeAVMS Alpha Software Coan
DEC OSF/1 Alpha Software (III)

Part Three (IV) Platforms
This part describes an architected platform implementation.

Appendixes Because information in the appendixes can be shared by

o« winore than one-section,-they-are-greuped together at the end
of the manual.

Index N The index at the end of the manual is structured like
a master index. Index entries are called out by the
.appropriate symbol, (I), (I), and so forth, associated with
the corresponding part or section. Index entries for the
appendixes are called out by appendix name and page
number.

Digital Restricted




Common Architecture (l)

This part describes the common Alpha architecture and contains the following
chapters:

[ ]

Chapter 1, Introduction (I)

Chapter 2, Basic Architecture (I)

Chapter 3, Instruction Formats (I)

Chapter 4, Instruction Descriptions (I)

Chapter 5, System Architecture and Programming Implications (I)
Chapter 6, Common PAl.code Architecture (I)

Chapter 7, Console Subsystem Overview (I)

Chapter 8, Input/Output (I)




Contents

Common Architecture (I)

Chapter 1 Introduction (l)

1.1 The Alpha Approach to RISC Architecture ............ et e 1-1
12 DataFormatOverview........................ et 1-3
1.3 Instruction Format Overview .. ... ... ... .. ...ttt erreneeneonnnnnns 1-4
14 Instruction OVerview . ... ... ... ..ttt iteeeeneeaneoeeonenneanenns 1-5
1.5 Instruction Set Characteristics ........... ... . ittt ennnennns 1-6
1.6 Terminology and Conventions ... ............iuiiiieriuieneeenneeeennnnnans 1-7
1.6.1 Numbering . . ... i e et e e e e 1-7
16.2 Security Holes . ..........iu ittt et enneeaeaaneneaeenns 1-7
16.3 UNPREDICTABLE AndUNDEFINED ............c00iiiuinuneneeennnnenans 1-7
164 RangesandExtents ........... ... . ittt 1-8
165 ALIGNED and UNALIGNED ... ......c.iiuiinintiirneeeneeeeoaenaeannns 1-8
166 MustBeZero (MBZ) .. ... ...ttt iee et 1-9
167 ReadAsZero(RAZ)........... ... PP 1-9
168 ShouldBe Zero (SBZ).........ciiiiitiitttrerreneeereeeonnnnoannnnnns 1-9
169 Ignore (TGN ). . .ottt et i e e e e e 1-9
1.6.10 Implementation Dependent IMP) . ... ..... ... .. it ennnns 1-9
1.6.11 Figure Drawing Conventions ................... N 1-9
16.12 Macro Code Example Conventions . ........... .0ttt iiin e ennnnnns 1-9
L7 NRevision History . ... ... ..ttt ittt e eneenneannnan 1-10

Chapter 2 Basic Architecture (1)

21 Addressing .. ... e e e 2-1
22 DataTypes. . ... .ottt ettt [ 2-1
2.2 1 Byle .. e et e e 2-1
222  WOTd . .. e e e e e e 2-1
223 Longword . . ... ..o e e 2-2
224 QUAAWOTd . .. i e e e et e e e e e e 2-2
225  VAX Floating-Point Formats .. ...........cc.cituirirurenenennnenenenanns 2-3
2.25.1 o floating . .. ..ot i e e e e e 2-3
2252  G_foating. . .. ... s 2-5
2253 D floating. . . oot e e e e e 2-6




2.2.6 IEEE Floating-Point Formats ............ e e e e e 2-7

2.26.1 ST LT\ o V- S 2-8
2262 T floating . . ..ottt 2-10
2.2.7 Longword Integer Format in Floating-Point Unit .......................... 2-11-
2.2.8 Quadword Integer Format in Floating-Point Unit .. ........................ 2-12
2.2.9 Data Types with No Hardware Support . . . ........ ... ...ttt eennnn. 2-13

2.3 N\Revision History . ... ... ... i e e 2-14

Chapter 3 Instruction Formats (I)

3.1  Alpha Registers . .. ..ot ittt ittt ittt e 3-1
3.1.1 Program Counter ... ..... ... .. ... ittt i e 3-1
3.12 Integer RegiSters ... .. ..ottt ittt e et reeenann 3-1
3.1.3 Floating-Point Registers. . .. .. ... .. i i i 32
3.14 Lock Registers .. ... i i it e e ettt et 3-2
3.1.5 Optional Registers . ... ... oot ittt ettt ettt 3-2
3.1.5.1 Memory Prefetch Registers . ...... ... ... ... . i, 3-2
3.1.52 VAX Compatibility Register . . ...... .. ... . . . i 3-2
3.2  Notation . ... ... ...ttt ittt ettt e 3-2
3.2.1 Operand Notation . ...... ... ... . ittt iteeneetoeennaannn 33
3.2.2 Instruction Operand Notation ............ ... .. . ittt uinineeeennnn 34
3.2.3 ORI 0TS . . . it ittt e e e e e 3-5
3.24  Notation Conventions........... DS 3-8
3.3 Instruction Formats ... . ... ... .. .. ittt 3-8
3.3.1 Memory Instruction Format . . ... ... ... ... . it 3-9
3.3.11 Memory Format Instructions with a Function Code. . . .................... 3-9
3.3.1.2 Memory Format Jump Instructions . . . .......... ... ... ... .. . L. 3-10
3.3.2 Branch Instruction Format ......... ... ... ... .. . i, 3-10
3.3.3 Operate Instruction Format . . .. ... .. ... . . i 3-10
3.34 Floating-Point Operate Instruction Format ............... .. ... ... ... ... 3-11
3.34.1 Floating-Point Convert Instructions . . . ......... ... ... .. i ieunn. 3-12
3.3.5 PALcode Instruction Format .. ... P 3-12
34 \Revision History ... .. ... ittt ittt 3-14

Chapter 4 Instruction Descriptions (1)

4.1 Instruction Set Overview . .. ... ittt et e e 41
41.1 Subsetting Rules .. ........ .. ittt 42
41.11 Floating-Point Subsets . . ... ... ... . i e 4-2
412  Software Emulation Rules ... ... ... .. . . .. . i 4-2
4.1.3 Opcode Qualifiers . . ... ... . i i ittt i i e 4-3
42 Memory Integer Load/Store Instructions . ... ... ... ... ... .................. 44
421 Load Address . .. ...... ittt e e e 4-5
42.2 Load Memory Data into Integer Register. . . . ..... ... ... . ... ... ... ... 46
423 Load Unaligned Memory Data into Integer Register . ... .. e e 4-7

iv




424  Load Memory Data into Integer Register Locked . . . ........................ 4-8
425 Store Integer Register Data into Memory Conditional . ... ................... 4-11
42.6 Store Integer Register DataintoMemory ............ ... iiinirennnnnn 4-13
4.2.7 Store Unaligned Integer Register Datainto Memory ... ..................... 4-14
43 Control Instructions . .. ... ... ittt ittt 4-15
43.1 Conditional Branch . ... ... .. .. ... . e e 4-17
432 Unconditional Branch .. ... ... ... . e 4-19
4.3.3 JUID DS .. et e 4-20
44 Integer Arithmetic Instructions ... ... ... ... .. . . . it 4-22
441 Longword Add .. ... ... e e s 4-23
442 Scaled Longword Add . . .. ... ... ...t i e e e 4-24
44.3 Quadword Add . . ... .. .. e e 4-25
444 Scaled Quadword Add . ......... ... ... e e 4-26
445 Integer Signed Compare . ............c.tiiiiiitttiineeeeennnenenennnas 4-27
446 Integer Unsigned Compare . ............c.tiiiirinnrnenenonenonenennnns 4-28
447 LongwordMultiply............. ... ... .. ........ e e 4-29
448 Quadword Multiply ... ... ... . e e e 4-30
449  Unsigned Quadword Multiply High . ........ .. ... ... ... .. .. ... i, 4-31
4410 Longword Subtract. ... .. .. ..ottt e 4-32
4.4.11 Scaled Longword Subtract . ... ...... .. ... it i, 4-33
4412 Quadword Subtract ............ ..t ittt e 4-34
4413 Scaled Quadword Subtract........... ... . it i 4-35
4.5 Logical and Shift Instructions . ......... ... . ... . .. i i 4-36
45.1 Logical Functions . . .. ... ... .ttt it ittt 4-37
452 Conditional Move Integer. . ...... ... .0ttt itiiiiiiiiieeeeannnnnnn 4-38
453 Shift Logical. .. ... ... i e e et e 440
454 Shift Arithmetic . . ... ..ottt e 441
46 Byte-Manipulation Instructions . . ........... . . ittt reennnnns 4-42
46.1 Compare Byte . ........ ...ttt e titeieeeneaneeeanannnnn 444
462 ExtractByte........ ... ... . 446
46.3 Byte Insert . . .. o e e e e e, 4-50
464 Byte Mask . ... i e e e e e e e e, 4-52
465  Zero Bytes ... ... ... e e e e e 4-55
4.7 Floating-Point Instructions . ......... ... ... . . it 4-56
4.7.1  Floating Subsets and Floating Faults ............ ... ... ... ... ... .. ...... 4-56
472 Definitions . ... ... e e e e 4-57
4.7.3 03 ¢Ts%s b V- SO 4-58
4.74  Floating-Point Rounding Modes . . . .......... . ittt nennnnannn 4-59
475  Floating-Point Trapping Modes . ...........ttitnuininieannnnnn 4-60
4751 Imprecise /Software Completion TrapModes ... .......... ..., 4-62
4752 Invalid Operation Arithmetic Trap. ... .. ... ... .. it iinnnn. 4-63
4753 Division by Zero Arithmetic Trap. . ... ... ... ittt tnennnnn. 4-63
4754 Overflow Arithmetic Trap . ...... ... . i, 4-63
4755 Underflow Arithmetic Trap .. ........... ittt nnnnns 4-63
4.75.6 Inexact Result ArithmeticTrap ................. e 4-64
v

igital



4757 Integer Overflow Arithmetic Trap ......... ...ttt ennennnn 4-64
4.7.6  Floating-Point Single-Precision Operations ................ ...t iiere.... 4-64
4.7.7  FPCR Register and Dynamic RoundingMode ..................iiunnn.. 4-64
4.77.1 Accessing the FPCR . . ... ... .. ... ittt iiiinaanans 4-66
4.7.72 Default Values of the FPCR . . .. .. .. ... ..ttt iireneennn. 4-67
4.7.7.3 Saving and Restoringthe FPCR .. ...................... e 4-67
478 IEEEStandard ................... ... e e 4-67
4.8 Memory Format Floating-Point Instructions . .......... ... ... ... .. ... 4-68
48.1 Load F_floating . ... ... ...ttt ittt ittt iiiiiaeeeann 4-69
482 Load G_floating . ....... ... .. i e e 4-70
48.3 Load S_floating . ... ... .. ittt e ettt e e 4-71
484 Load T floating ... ... ... ... i i e 4-72
4.8.5 Store F_floating . .. .. ... e e i e i e 4-73
486 StoreG_floating ... .. ... ... ... . e P 4-74
4.8.7 StoreS_floating . ... ... .. e e e e 4-75
488 Store T_floating . ... ... ittt et i et 4-76
4.9 Branch Format Floating-Point Instructions . . . .......... ... .. i, 4-77
49.1 Conditional Branch ... ... ... ...ttt ittty 4-78
4.10 Floating-Point Operate Format Instructions . .............. ... ... .. vuu.... 4-80
4101  CoPY SigI. . i ii i e e et e e e 4-83
4.10.2 ConvertIntegertoInteger .......... ... .. ... ... .. i i 4-84
4.10.3 Floating-Point Conditional Move ... ..........c0iiuuiutiiiniineinnnnnn. 4-85
4.104 Move from/to Floating-Point Control Register .. ........................... 4-87
4105 VAXFloating Add ......... ...ttt e 4-88
4106 IEEE Floating Add. .. ..... ... iiiiitiiitteeneeeeoannanenonaneanenn 4-89
4.10.7 VAX Floating Compare. . . . ...ttt eiett e iteineaoeerennneeesennnnnas 4-91
4.10.8 IEEE Floating Compare . . .. ......oitintt it ininiineeteneeeeannnnnns 4-92
4109 Convert VAX FloatingtoInteger ........... ...t nnnnnnnns 4-94
4.10.10 Convert Integer to VAX Floating . ... .. .. ...t iiiiitiiinnnrenennnnneens 4-95
4.10.11 Convert VAX Floating to VAX Floating ..............iuiiiinineinnnnnnn 4-96
4.10.12 Convert IEEE Floating toInteger ............. ... .. . ittt nnnnnnnn 4-98
4.10.13 Convert Integer to IEEE Floating .. ... .. ...t nnnnannnns 4-99
4.10.14 Convert IEEE Floating to IEEE Floating. . . .. ...... ..ot iinnnnn. 4-100
4.10.15 VAX Floating Divide . ... ... ... coiuuutiiniiimii ittt nnnanns 4-102
4.10.16 IEEE Floating Divide......... ... 0.ttt 4-104
4.10.17 VAX Floating Multiply . .. ... . ..t ettt ienaees 4-106
4.10.18 IEEE Floating Multiply .. ..... ... ... it e it 4-107
4.10.19 VAX Floating Subtract . ............ e e e e 4-109
4.10.20 IEEE Floating Subtract ... ...... ... ..ttt S 44111
4.11 Miscellaneous Instructions. . ... ... ... ittt 4-113
4.11.1 Call Privileged Architecture Library .......... ... .. ... .. . i iiiierrr.. 4-114
4112 PrefetchData. ... ...ttt ittt daaeranannns 4-115
4113 MemoryBarrier .................¢ B P PP 4-117
4114 Read Process Cycle Counter. . ... ... ... .. ... ittt ieineenannns 4-118
4115 TrapBarrier.................. e e e 4-120

vi




4.12 VAX Compatibility Instructions . .. .. ...... ...ttt .. 4121
4.12.1 VAX Compatibility Instructions . .. ..... ... ... .. ... ..., 4-122
413 \REVISION HISTORY . ... .ttt tttetteeeeteeeeieeeeenennns 4-123

Chapter 5 System Architecture and Programming Implications (1)

5.1  Introduction ......... .. it e e e e 5-1
5.2 Physical Memory Behavior. . . ... .. ... . . . e e 5-1
5.2.1 Coherency of Memory ACCeSS . . . ... v it iieieier i nnnnnnnnnns 5-1
5.2.2 Granularity of Memory AcCCess . . .. ..ottt ittt it ittt etnnnaanennns 5-2
52.3 Width of Memory ACCeSS . ...ttt e ittt teteeseseeeeeenenens 52
52.4  Memory-Like Behavior. . .. ...... ... ... . ittt 5-3
5.3 Translation Buffers and Virtual Caches . . . . .......... ... ... ... ... ... ....... 5-3
54 Cachesand Write Buffers .............. ... . .. 0 it iniiniiiiinnannanann, 54
55 Data Sharing ... ... ... e e e e 5-5
5.5.1 Atomic Changeofa Single Datum . . ........ ... .. ... . it 5-5
552  Atomic Updateofa Single Datum ............... ... ... iiiiiinnnnn. 5-6
55.3  Atomic Update of Data Structures . . . ........... .ttt iniiinnnnnnnnn. 5-6
554 Ordering Considerations for Shared Data Structures ....................... 5-8
56 ‘Read/Write Ordering ..........c.ciuiiiiintteteeetianeeenneneennn 5-9
5.6.1  Alpha Shared Memory Model . . . ........ ... ... . ittt iiiiennannnn 5-9
5.6.1.1 Architectural Definition of Processor Issue Sequence. .. ................... 5-10
5.6.1.2 Definition of Processor Issue Order . .............. ... ... iiiierren.n. - 511
5.6.1.3 Definition of Memory Access Sequence. . ... ..vvvti it e tennneieeneneennnn 5-11
5.6.14 Definition of Location Access Order ... ...... ...ttt ennninnennnn. 5-12
5.6.1.5 Definition of Storage .. ...ttt e e e i e 5-12
5.6.1.6 Relationship Between Issue Order and Access Order...................... 5-12
5.6.1.7 Definition of Before ... ... ... ... ittt iniianans 5-12
5.6.1.8 Definition of After ... ... ... . . i i e 5-13
5.6.19 B0 Y=Y 0 4 V-3 SO 5-13
5.6.2 Litmus Tests .. ... .. . i i i i i i e e e 5-13
5.6.2.1 Litmus Test 1 (Impossible Sequence) . . ......... ... .0ttt nnnn.. 5-13
5.6.2.2 Litmus Test 2 (Impossible Sequence) . ........ ... ... ... 5-13
5.6.2.3 Litmus Test 3 (Impossible Sequence) . .. ....... ... ...t 5-14
5.6.24 Litmus Test 4 (Sequence Okay) ... ...t ittt enenenennn. 5-14
5.6.2.5 Litmus Test 5 (Sequence Okay) .. ...ttt iiennnn.. 5-14
5.6.2.6 Litmus Test 6 (Sequence Okay) ... ....... ... i nnnn.. - 5-14
5.6.2.7 Litmus Test 7 (Impossible Sequence) . . ...... ... . i iiiiiinnenenn. 5-15
5.6.2.8 Litmus Test 8 (Impossible Sequence) . . ........ .. ... .. ... .. ivinenn... 5-15
5.6.2.9 Litmus Test 9 (Impossible Sequence) .. ........ ... ... ... .t iuirenn.. 5-15
5.6.3 Implied Barriers....... e e 5-16
5.6.4  Implications for Software ............. e e e e e e e 5-16
5.64.1 Single-Processor Data Stream . . .......... .. i iiiiiiinnenennen.n. 5-16
5.6.4.2 Single-Processor Instruction Stream . ...................... P 5-16

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/0) ... 5-16

vii




5644 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/0) 5-17

5.6.4.5 Multiple-Processor Context Switch . .............. ... .. .0 tiirinernn.. 5-18
5.6.4.6 Multiple-Processor Send/Receive Interrupt .. ............. ... ... ........ 5-19
5.6.5 Implications for Hardware . . ... ... ... . ... .. it iiiiineneannns 5-20
5.7 Arithmetic Traps .. ... ...ttt ittt ittt ttnaeeeaenanaanns . 521
58 \REVISION HISTORY .......0iiiiiiiiiitt ittt aainnnnnanannnn 5-22
Chapter 6 Common PALcode Architecture (l)

6.1  PALCOAe . . ... . i e e e e et e 6-1
6.2 PALcode Instructionsand Functions .. .............0 it innnnnnnnn. 6-1
6.3 PALcode Environment .. ..........uittiitmnteeeeeemnnneneeneaeanaeannan 6-2
6.4 Special Functions Required for PALcode ... ......... .. .. 00t innnnnnnnn. 6-3
6.5 PAlcode Effectson System Code .. ........ ...ttt eriinnaneannn. 6-3
6.6 PALcode Replacement ... ..........c..iiiiuiineeeeenennnneennaneeenans 64
6.7 Required PALcode Instructions ............... .0ttt iierrennnnneaans 64
6.7.1 Drain Aborts .. ... . e e e e 6-6
6.7.2  Halt ... . e e e e e e e e e 6-7
6.7.3 Instruction Memory Barrier. .. ...... ...t i e e 6-8
6.8 Revision History. . ... ... ... . ittt ittt 6-9
Chapter 7 Console Subsystem Overview (l)

Chapter 8 Input/Output (1)

81 Introduction .......... ...ttt s 8-1
82 Local /O Space ACCESS . o v v v v vttt et ettt e e e e e 8-2
821 Read/Write Ordering . .... ... .ttt ittt eeeaaaeenns 8-2
8.3 Remote I/O SPace ACCESS . . .. o oottt et e 8-2
8.3.1 Mailbox Posting . . ... oo it i e e e e e e 8-3
8.3.2 Mailbox Pointer Register (MBPR) . ... ... ... . ittt 84
8.3.3 Mailbox Structure . ......... ...ttt e e 8-5
8.3.4  Mailbox Access Synchronization. . .. .......... ... ..t 8-6
8.3.5 Mailbox Read/Write Ordering. . . ... ... . ittt ettt i e 8-7
8.3.6 Remote I/O Space Access Granularity ............. ... ... ... ... ... 8-7
8.3.7 Remote I/O Space Read Accesses . . . ... .ttt 88
8.3.8 Remote I/0 Space Write Accesses. . . .. ..ottt it ieiei et 8-9
8.4 Direct Memory Accesss (DMA) . .. ...ttt ittt ettt et 8-10
8.4.1 Access Granularity . . ... ... o e e 8-10
842 Read/Write Ordering . ...... ...t ittt it 8-11
8.4.3 Device Address Translation . ... .........cou it ieneennnnnnannns 8-12
8.5 IMberrupts .. ... .. e e e e e 8-12
8.6 I/0O Bus-Specific Mailbox Usage . ... ..ot tir it 812
8.6.1 Mailbox Field Checking . ... ... ...ttt ittt 8-13

viii




8.6.2 CMD Field ... ... ottt ettt ettt e e 8-13
8.6.3 Special Commands . .. ... ...ttt e e i et 8-13
8.7 \Implementation Considerations . ......... ... ... . . i, 8-14
8.7.1 Mailbox Selection . .. ............... e et ettt e e e 814
8.72  Mailbox Pointer Register Flow Control Selection .. ......................... 8-15
8.7.3 Mailbox Starvation. . . ... ... .. ... ittt i e i e 8-16
8.74  Mailbox Structure Synchronization Properties............................. 8-16
8.7.5 I/ODevice Properties . . ... ... ittt i ittt ittt 8-17
8.7.6  Implications of Memory Accessesby Devices .. ............ ... ... ... 8-17
8.7.7 Intermupts . ... e e e e e 8-18
8.8 Targettable Interrupts .. ........ .. .. ittt 8-19
89 \Revision History: . . ... .. it ittt ittt eiaeaaanaananaes 8-20
Figures

1-1 Instruction Format Overview . .. ... ... ... ...ttt 14
2-1 Byte Format. .. ... ... ... ittt e e e 2-1
2-2 Word Format . .. ... ... i it e i it e e e 2-2
2-3 Longword Format. ... .. ...ttt 2-2
2-4 Quadword Format ... ... .. ... ..t iiiiittietieeetnetaneneeanannnenns 2-3
2-5 F floatingDatum . ............ ... i tiiiutiiireneannnn e 2-3
2-6 F_floating Register Format ............ .. ... 00ttt innernnennnennns 24
2-7 G_floatingDatum ... ... .. . . i s 2-5
2-8 G_floatingFormat ......................... B 2-5
2-9 D_floating Datum . . ... ... ... ittt ittt et e 2-6
2-10 D_floating Register Format . .............. ... .00ttt iiimieenrennenenns 2-6
2-11 S floating Datum . ... ... ... ... ittt i it i 2-8
2-12 S_floating Register Format ........ ... ... . i i 2-8
2-13 T floating Datum . . . ... ... . . i ittt ittt 2-10
2-14 T floating Register Format ............ ... ... .. i, 2-10
2-15 Longword Integer Datum . .............. P 2-11
2-16 Longword Integer Floating-Register Format ................................ 2-11
2-17 Quadword Integer Datum .. ...... ... ... .ttt ittt 2-12
2-18 Quadword Integer Floating-Register Format . ............... ... ... u... 2-12
3-1 Memory Instruction Format . . .. ... .. ... ... . i i i 3-9
3-2 Memory Instruction with Function Code Format . ............................ 3-9
3-3 Branch Instruction Format ............. ... ittt ennnn, 3-10
3—4 Operate Instruction Format . .. ......... .. ... .. i, 3-10
3-5 Floating-Point Operate Instruction Format ............... ... ... ... ........ 3-11
3-6 PALcode Instruction Format ............ ... . . . . i i 3-12
4-1 Floating-Point Control Register (FPCR) Format ............................. 4-65
8-1 Alpha System Overview . ... ... ... 0ittttttutnneeeneeeeeennnnannnnn 8-1
8-2 Mailbox Pointer Register Format . ... ... ... .. . ... .. i 84
8-3 Mailbox Data Structure Format . .. ...... ... .. ... . i 8-5




Tables

2-1
2-2
3-1
3-2
3-3
34
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
6-1
6-2
8-1
8-2

F_floating Load Exponent Mapping ................. et e e 24
S_floating Load Exponent Mapping . . ...ttt iietennnnnnennin 2-9
Operand Notation .......... ... ...ttt eneenntenneenns 3-3
Operand Value Notation. . .. ....... ... iiitttteennettnnneerenneneeeans 3-3
Expression Operand Notation . ............c.0iiuuunnennnnnaanannnns 3-3
OPETaAtOTS . . . it et i e e e e e e e e 3-5
Opcode Qualifiers . . .. ... ... it it ittt i 4-3
Memory Integer Load/Store Instructions . ......... ... ... ... .. i, 144
Control Instructions Summary . . .. ............cveere... e 4-16
Jump Instructions Branch Prediction ............. .. ... . . iiiiriiiane.. 4-21
Integer Arithmetic Instructions Summary .. .......... . ... ... . . ... 4-22
Logical and Shift Instructions Summary .. ...........c..0 ittt itieneennnnnns 4-36
Byte-Manipulation Instructions Summary . . .. ........ .. ... ... 442
Floating-Point Control Register (FPCR) Bit Descriptions. . .. ................... 4-65
Memory Format Floating-Point Instructions Summary ........................ 4-68
Floating-Point Branch Instructions Summary ............................... 4-77
Floating-Point Operate Instructions Summary ................. ..., 4-80
Miscellaneous Instructions Summary ........... ... ittt 4-113
VAX Compatibility Instructions Summary . . .. ......ciittiitiirerenereeeeens 4-121
Processor Issue Order ........ ... ittt iiiitnteeaneeeenneneeeeannns 5-11
Location Aceess Order . .. ... ..o itttitinni ittt eeennaaeaseennnans 5-12
PALcode Instructions that Require Recognition . ............................. 64
Required PALcode Instructions . ..........c..iiiiiitirunrereennoeneeennnns 6-5
Mailbox Pointer Register Format . . . ........ ... . it iierenns 84
Mailbox Data Structure Format . . .. ....... .. ittt iieaternnnnns 8-5

lestrictec




Chapter 1
Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture
Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and

all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory

operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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Alpha’s Approach to Byte Manipulation
The Alpha architecture does byte shifting and masking with normal 64-bit register-
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

* (Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

e Alpha’s approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

o 'Alpha’s approach can make it easier to pipeline multiple byte operations.

Alpha’s Approach to Arithmetic Traps

Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise—they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha’s Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/0 device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed

A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

* (Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

* There are prefetching hints for the memory system that can allow much higher
cache hit rates.
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* There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PAlLcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version of PALcode lets Alpha implementations run the full OpenVMS operating
system by mirroring many of the OpenVMS VAX features. The OpenVMS PALcode
instructions let Alpha run OpenVMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/1 operating
system by mirroring many of the RISC ULTRIX features. Other versions of PALcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

¢ Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

* Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview
Alpha is a load/store RISC architecture with the following data characteristics:

e All operations are done between 64-bit registers.
®* Memory is accessed via 64-bit virtual little-endian byte addresses.
~ ® There are 32 integer registers and 32 floating-point registers.

* Longword (32-bit) and quadword (64-bit) integers are supported.
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¢ Four floating-point data types are supported:
— VAX F_floating (32-bit)
— VAX G_floating (64-bit)
— IEEE single (32-bit)
— IEEE double (64-bit)

1.3 Instruction Format Overview
As shown in Figure 1-1, Alpha instructions are all 32 bits in length. As represented
in Figure 1-1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 26 25 2120 1615 5 4 0

Opcode Number PALcode Format
Opcode | RA Disp Branch Format
Opcode | RA RB Disp Memory Format
Opcode | RA RB Function T RC |Operate Format

¢ PAlLcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

* Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

* Load and store instructions move longwords or quadwords between register

Ra and memory, using Ra plus a signed 16-bit displacement as the memory
address.

* Operate instructions for floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

— Floating-point operations use Ra and Rb as source registers, and write the
result in register Re. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Re.

Integer operate instructions can use the Rb field and part of the function field

to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.
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1.4 Instruction Overview

PALcode Instructions

As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions

Load and store instructions move either 32-bit or 64-bit aligned quantities from
and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

. The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

integer Operate Instructions

The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

* Scaled add/subtract instructions for quick subscript calculation

¢ 128-bit multiply for division by a constant, and multiprecision arithmetic

* (Conditional move instructions for avoiding branch instructions
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* An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities. ’

In addition to the operations found in conventional RISC architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:
* All instructions are 32 bits long and have a regular format.

® There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

® There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

e All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

* All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

e All memory reference instructions are of the load/store type that move data
between registers and memory.

* There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

¢ Integer and logical instructions operate on quadwords.

* Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating “format compatibility,” in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

¢ A minimal number of VAX compatibility instructions are included.
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1.6 Terminology and Conventions
The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 104. :

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

o Affect the operation of another process without authorization from the operating
system;

e Amplify its privilege without authorization from the operating system; or

e Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecturre has been designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE And UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

¢ Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction

within implementations. Software can never depend on results specified as
UNPREDICTABLE.

e An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
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or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

® An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or niodify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

* Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

¢ UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a “..” and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
.6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in gize. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.
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If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.
1.6.6 Must Be Zero (MB2)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-

zero value. These fields may be used at some future time. If the processor encounters

a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.
1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SB2)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

~ Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

NOTE _
\A note on the manual format: At certain points
in the manual, comments on why certain decisions
were made, unresolved issues, etc., are between a pair
of backslashes. These comments provide additional
clarification and will be removed from externally
distributed editions.\

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
Section, Chapter 2, or are stylized code forms found in Appendix A.
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1.7 \Revision History
Revision 5.0, May 12, 1992
1. VMS —> OpenVMS
2. Converted to SDML
3. Removed reference to EVAX

Revision 4.0, March 29, 1991

1. Typos

2. Correct security holes text

3. Upgrade UNPREDICTABLE definition

4. Add Implementation Dependent definition

5. Add new section, Section 1.6.12, Macro Code Example Conventions
Revision 3.0, March 2, 1990

1. Strengthen UNPREDICTABLE definition

2. Add UNALIGNED definition

3. Add Security Hole definition

Revision 2.0, October 4, 1989
1. Change the read as zero, write ignored registers to R31 and F31

2. Update instruction Set Characteristics for new insert and merge byte instructions

Revision 1.0, May 23, 1989
1. Change MBZ and SBZ definitions

Revision 0.0, March 15, 1988

1. Initial version
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Chapter 2
Basic Architecture (I)

2.1 Addressing

The basic addressable unit in Alpha is the 8-bit byte. Virtual addresses are 64

bits long. An implementation may support a smaller virtual address space. The
minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte .

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

7 0

A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2. -
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"Figure 2-2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the extract, mask,
and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 . 0

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longword operands
that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its
address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2—4.
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Figure 2—4: Quadword Format

63 0

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two’s-complement integer with bits of increasing significance from 0 through 62

and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

NOTE
Alpha implementations will impose a significant perfor-
mance penalty when accessing quadword operands that
are not naturally aligned. (A naturally aligned quad-
word has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

2.2.5.1

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions.

F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

1514 7 6 ]
s| Exp. | Frac.Hi |A

Fraction Lo A+2

An F_ﬁoating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.
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Figure 2-6: F_floating Register Format

63 62 52 51 4544 2028 0

S Exp. Frac. Hi Fraction Lo 0 :Fx

The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping
Memory <14:7>  Register <62:52>

11111111 1000 1111111
1 xxxxxxx 1000 xxxxxxx (xxxxxxx not all 1’s)
0 xxxxXX%XX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and O through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents
of —127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take an
arithmetic exception. The value of an F_floating datum is in the approximate range
0.29*10%*-38..1.7*10**38. The precision of an F_floating datum is approximately
one part in 2**23, typically 7 decimal digits.
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NOTE
Alpha implementations will impose a significant. per-
formance penalty when accessing F_floating operands
that are not naturally aligned. (A naturally aligned F_
floating datum has zero as the low-order two bits of its
address.) ‘ ‘

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

1514 43 0
S Exp. Frac.Hi[:A
Fraction Midh :A+2
Fraction Midl :A+4
Fraction Lo :A+6

A G_ﬂoating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floating Format

63 62 52 51 48 47 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

A G_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all
fraction bits of 0. Exponent values of 1..2047 indicate true binary exponents of
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—1023..1023. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*10*%*~308..0.9*10**308. The precision of a G_floating datum
is approximately one part in 2*¥*52, typically 15 decimal digits.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing G_floating operands
that are not naturally aligned. (A naturally aligned G_
floating datum has zero as the low-order three bits of its
address.)

2.2.,5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-8: D_floating Datum

1514 76 0
s Exp. Frac.Hi |:A
Fraction Midh :A+2
Fraction Midl ‘A+4
Fraction Lo :A+6

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

63 62 5554 4847 32 31 1615 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D_floating datum is identical to an F_floating datum
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except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

NOTE

D_floating is not a fully supported data type; no
D_floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating “format compatibility” in which
binary files of D_floating numbers may be processed,
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

NOTE
Alpha implementations will impose a significant
performance penalty on access to D_floating operands
that are not naturally aligned. (A naturally aligned D_
floating datum has zero as the low-order three bits of its
address.)

2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSIVIEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P—the number of fraction bits

2. Emax—the maximum exponent

3. Emin—the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
a. S=0orl
b. E = any integer between Emin and Emax, inclusive
c. bm)=0orl

2. Two infinities—positive and negative

3. At least one Signaling NaN
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4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

. Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.

Figure 2-11: S_floating Datum

1514 7 6 0

Fraction Lo A

[72]

Exp. Frac. Hi |:A+2

An S floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 €2 52 51 45 44 20 28 0

) Exp. Frac. Hi Fraction Lo 0 Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2-2.
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Table 2-2: S_floating Load Exponent Mapping
Memory <30:23> Register <62:52>

11111111 11111111111

1 xomxxxx 1 000 xxxxxxx  (xxxxxxx not all 1’s)
0 xxxxxxxX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all 1’s differs from that of F_floating load, since for S_floating all 1’s is
an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an S_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>0, then V is NaN , regardless of S.

2. If E=255 and F=0, then V = (-1)**S x Infinity.

3. 0 <E <255, then V = (-1)**S x 2**(E-127) x (LF).
4. If E=0 and F<>0, then V = (-1)**S x 2**¥(-126) x (0.F).
5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing S_floating operands
that are not naturally aligned. (A naturally aligned S_
floating datum has zero as the low-order two bits of its
address.)

Basic Architecture (I) 2-9




2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from nght
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

1514 4 3 0
Fraction Lo A
Fraction Midl ‘A+2
Fraction Midh :A+4
s|  Exponent |Frac.Hi|:A+6

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floating Register Format

63 62 52 51 48 47 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>0, then V is NaN, regardless of S.

2. If E=2047 and F=0, then V = (-1)**S x Infinity.

3. If 0 <E < 2047, then V = (-1)**S x 2*%(E-1023) x (l.F).
4. IfE=0 and F<>0, then V = (=1)**S x 2**(-1022) x (0.F).
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5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating;point operations on T_floating numbers may take an arithmetic exception

for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing T_floating operands
that are not naturally aligned. (A naturally aligned T _
floating datum has zero as the low-order three bits of its
address.)

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-15.

Figure 2-15: Longword Integer Datum

1514 0

Integer Lo A

S Integer Hi A2

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-16.

Figure 2-16: Longword Integer Floating-Register Format

63 62 61 5058 45 44 2028 0

S| 1| xxx Integer Hi Integer Lo 0 :Fx

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer

operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62>, “I”, in Figure 2-16 is part of the Integer Hi field
in Figure 2-15 and represents the high-order bit of that field. Bits <58:45> of
Figure 2-16 are the remaining bits of the Integer Hi field of Figure 2-15.
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NOTE
Alpha implementations will impose a significant
performance penalty when accessing longwords that are
not naturally aligned. (A naturally aligned longword
datum has zero as the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-17.

Figure 2-17: Quadword Integer Datum

1514 0
Integer Lo A
Integer Midl (A+2
Integer Midh :A+4
S integer Hi :A+6

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-18.

Figure 2-18: Quadword Integer Floating-Register Format

63 62 48 47 32 31 1615 0

S Integer Hi Integer Midh Integer Midl integer Lo Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no

checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing quadwords that
are not naturally aligned. (A naturally aligned

quadword datum has zero as the low-order three bits
of its address.)
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2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware. \ See
the DEC STD 032: VAX Architecture Standard for detailed information on these
data types. \

® Octaword

* H_floating

* D_floating (except load/store and convert to/from G_floating)
¢ Variable-Length Bit Field

¢ Character String

® Trailing Numeric String

¢ Leading Separate Numeric String

¢ Packed Decimal String
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2.3 \Revision History
Revision 5.0, May 12, 1992
1. Converted to SDML

Revision 4.0, March 29, 1991

D_floating point support removed

Typos

Word definition made homologous to longword, quadword
Specify no checking on S_floating load, and T_floating load
Removed S_floating Format illustration and text

A o o

Clarified what is meant by a Vax floating point instruction

Revision 3.0, March 2, 1990
1. Cosmetic change to floating-point pictures

Revision 2.0, October 4, 1989
1. No change

Revislon 1.0, May 23, 1989

1. Change minimum virtual address size to 40 bits
2. Change Floating-point register format

3. Remove alignment warning on word data type

Revision 0.0, March 15, 1989

1. Initial version
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Chaptér 3
Instruction Formats (l)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per-
processor sets of these registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:
e STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

* LDx L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.2 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating-
point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.5.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation
Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and
the other expression operands.

Table 3-1: Operand Notation
Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Re An integer register operand in the Rc field of the instruction.

Fa A fioating-point register operand in the Ra field of the instruction.
Fb A floating-point register operand in the Rb field of the instruction.
Fe A floating-point register operand in the Rc field of the instruction.

Table 3-2: Operand Value Notation
Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation

Notation Meaning

IPR x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode
PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X
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3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<hame>

Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name

Meaning

disp
fnc
Ra
Rb
#b
Re
Fa
Fb
Fc

The displacement field of the instruction.

The PAL function field of the instruction.

An integer register operand in the Ra field of the instruction.

An integer register operand in the Rb field of the instruction.

An integer literal operand in the Rb field of the instruction.

An integer register operand in the Rc field of the instruction.

A floating-point register operand in the Ra field of the instruction.
A floating-point register operand in the Rb field of the instruction.
A floating-point register operand in the Re field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type Meaning

a

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.

For example:

“.al” means scale by 4 (longwords) to get byte units (used in branch
displacements); “.ab” means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.
The operand is read only.

The operand is both read and written.

3-4 Common Architecture (1)




Access Type Meaning

w The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type Meaning

Byte

F_floating

G_floating

Longword

Quadword

IEEE single floating (S_floating)

IEEE double floating (T_floating)

Word

The data type is specified by the instruction

Ngﬂ-m.g'—'aq"zc‘

3.2.3 Operators
The operators shown in Table 3—4 are used:

Table 3—4: Operators

Operator Meaning

! Comment delimiter

+ Addition

- Subtraction

* Signed multiplication

*U Unsigned multiplication

ok Exponentiation (left argument raised to right argument)
/ Division

— Replacement

11 Bit concatenation
{} Indicates explicit operator precedence
x) Contents of memory location whose address is x

x<m:n> Contents of bit field of x defined by bits n through m
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Table 34 (Cont.): Operators

Operator

Meaning

x<m> ,
ACCESS(z,y)

AND
ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(x,y)

CASE

DIV
LEFT_SHIFT(x,y)

LOAD_LOCKED

3-6 Common Architecture (1)
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M’th bit of x

Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

' Logical product

Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> «— x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action_2

argvaluen: action_n
[otherwise: default action]
ENDCASE

If the value of argument is argvaluel then action_l is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom ’otherwise’. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag.

Log to the base 2




Table 3-4 (Cont.): Operators

Operator Meaning

NOT Logical (ones) complement
OR Logical sum

xMODy x modulo y

Relational Operators

Operator Meaning

LT Less than signed
LTUO Less than unsigned
LE Less or equal signed
LEU Less or equal unsigned
EQ Equal signed and unsigned
NE Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed
GTU Greater unsigned
LBC Low bit clear
LBS Low bit set
MINU(x,y) Returns the smaller of x and y, with x and y interpreted as
unsigned integers :
PHYSICAL_ADDRESS Translation of a virtual address
PRIORITY_ENCODE Returns the bit position of most significant set bit, interpret-

ing its argument as a positive integer ( =int( 1g( x) ) ).
For example:
priority_encode( 255 ) = 7

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

SEXT(x) X is sign-extended to the required size.

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
the lock_flag.
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Table 3-4 (Cont.): Operators
Operator Meaning

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

XOR Logical difference
ZEXT(x) X is zero-extended to the required size.

3.2.4 Notation Conventions
The following conventions are used:
1. Only operands that appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other than that replacement (—) has the
lowest precedence. Explicit precedence is indicated by the use of “{}”.

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, “+” applied to G_floating operands means a G_floating
add, whereas “+” applied to quadword operands is an integer add. Similarly, “LT”
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

* Memory
* Branch
¢ Operate

* Floating-point Operate
e PAlcode

- All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of 31.

SOFTWARE NOTE
There are several instructions, each formatted as a
memory instruction, that do not use the Ra and/or Rb
fields. These instructions are: Memory Rarrier, Fetch,
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Fetch_M, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format

3.3.11

The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3—1: Memory Instruction Format

31 26 25 2120 1615 0

Opcode | Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va «— {Rbv + SEXT (Memory_disp) }
For LDAH the virtual address (va) is computed as follows:
va <+ {Rbv + SEXT (Memory disp*65536)}

Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 2625 2120 1615 0

Opcode | Ra Rb Function

The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.
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3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 26 25 2120 0

Opcode | Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va < PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

3-10

The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3—4 shows the two cases when bit <12> of
the instruction is 0 and 1.

Figure 3—-4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb [SBZ 0| Function Re

31 26 25 2120 131211 5 4 0

Opcode Ra LT 1] Function Re
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An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are three operand fields, Ra, Rb, and Rec.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav «— O

ELSE
Rav «— Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv +- ZEXT (inst<20:13>)

ELSE
IF inst<20:16> EQ 31 THEN
Rbv «— 0
ELSE
Rbv «— Rb
END
END

The Rec field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 2120 1615 5 4 0

Opcode Fa Fb Function Fe

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-
~ bit function field. Unused function encodings produce UNPREDICTABLE results,
as defined in Section 1.6.3.
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3.3.4.1

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav «— O

ELSE
Fav «— Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv «—~ 0

ELSE
Fbv < Fb

END

NOTE
Neither Fa nor Fb can be a literal in Floating-point
Operate instructions.

The Fc field specifies a destination operand.

Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.

The floating-point register to be used is specified by the Fa, Fb, and Fc fields all
pointing to the same floating-point register. If the Fa, Fb, and Fc fields do not all
point to the same floating-point register, then it is UNPREDICTABLE which register
is used.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3-6.

Figure 3-6: PALcode Instruction Format

31 26 25 0

Opcode PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.
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An opcode of zero and a PALcode function of zero specify the HALT instruction.
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3.4 \Revision History
Revision 5.0, May 12, 1992
Removed references to SP and PS
Added unsigned multiplication operator
Added description of Fa, Fb registers if unused
Converted to SDML
Added Memory Format with Function Code section
Moved Instruction Operand section from Chapter 4
Edited description of R31
Separated operand notation from operand value notation and simplified language

© ® N e ;s W N

Added comment and note to section 3.3 which specifies value assigned to unused
register fields of instructions

Revision 4.0, March 29, 1991

Typos

Upgrade description of R30 and implicit stack behavior of HW/PALcode
Upgrade definition of byte_zap, access, left_shift, and right_shift operators
Add definition of single bit field select operator, <n>

Rename arith_shift operator to arith_right_shift and upgrade definition
Make test a dyadic operator with explicit condition argument

Define the CASE pseudocode construct

Include Processor Status register in description of Alpha registers

© ® N & gk W N e

Add definitions of priority_encode and exponentiation (**) operators

10. Changed text describing R30

11. Changed two relational operator mnemonics

Revision 3.0, March 2, 1990

1. Under registers, add lock registers, IPRs, and optional registers

2. Define DIV, BYTE_ZAP, and PHYSICAL_ADDRESS; delete BYTE_SEL
3. Delete reference to R28

Revision 2.0, October 4, 1989

1. Add comment to section on PC that PC is not an Integer Register

2. Add comment that SP is R30

3-14 Common Architecture (l)




3. Change description of L field in operate Instruction format

Revision 1.0, May 23, 1989

1. Remove Rb reading as PC for Rb eq 0

2. Fix error in which bit is literal enable bit for operate format
3. Add Floating-point Operate format

Revision 0.0, March 15, 1989

1. Initial version
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Chapter 4
Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section
Integer load and store 4.2
Integer control 4.3
Integer arithmetic 44
Logical and shift 4.5
Byte manipulation 4.6
Floating-point load and store =~ 4.8
Floating-point control 4.9
Floating-point operate 4.10
Miscellaneous 411

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

The group name

The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

The operation of the instruction

Exceptions specific to the instruction

The instruction mnemonic and name of each instruction in the group
Qualifiers specific to the instructions in the group

A description of the instruction operation

Optional programming examples and optional notes on the instruction
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4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the 32 floating-point registers, the Floating-
point Control Register (FPCR) and the instructions to access it, floating-point
branch instructions, floating-point copy sign (CPYSx) instructions, floating-point
convert instructions, floating-point conditional move instruction (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE

A system that will not support floating-point operations
is still required to provide the 32 floating-point
registers, the Floating-point Control Register (FPCR)
and the instructions to access it, and the T_floating
memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point
emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.

4.1.2 Software Emulation Rules

General-purpose layered and application software that executes in User mode may
assume that certain loads (LDL, LLDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special-
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purpose dedicated applications need not provide emulation in User mode if emulation
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX formats, Add F_floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (/) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4-1. The opcodes for each qualifier
are listed in Appendix C.

Table 4-1: Opcode Qualifiers
Qualifier Meaning

Chopped rounding

Rounding mode dynamic
Round toward minus infinity
Inexact result enable
Software completion enable

Floating underflow enable

<g®w~2U9a

Integer overflow enable

The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.
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4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions
Mnemonic Operation

LDA Load Address
LDAH Load Address High

LDL Load Sign-Extended Longword
LDL_L Load Sign-Extended Longword Locked
LDQ Load Quadword

LDQL Load Quadword Locked
LDQU Load Quadword Unaligned

STL Store Longword
STL_C Store Longword Conditional
STQ Store Quadword

STQ_C Store Quadword Conditional
STQ.U Store Quadword Unaligned
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4.2.1 Load Address

Format:
LDAx Ra.wq,disp.ab(Rb.ab)

Operation:

Ra <« Rbv + SEXT(disp)
Ra «— Rbv + SEXT(disp*65536)

Exceptions:

None

Instruction mnemonics:

LDA Load Address
LDAH Load Address High

Qualifiers:

None

Description:

!Memory format

'LDA
'LDAH

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab) - IMemory format
Operation:

va + {Rbv + SEXT (disp)}

Ra +« SEXT((va)<31:0>) !LDL

Ra +« (va)<63:0> 1LDQ
Exceptions:

Access Violation
Alignment

Fault on Read
Translation Not Valid

Instruction mnemonics:

LDL Load Sign-Extended Longword from Memory to Register
LDQ Load Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory, sign-extended, and
written to register Ra. If the data is not naturally aligned, an alignment exception
is generated.
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:

.LDQ_U  Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va «— {{Rbv + SEXT(disp)} AND NOT 7}
Ra « (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Translation Not Valid

Instruction mnemonics:

LDQ_ U Load Unaligned Quadword from Memory to Register

Qualifiers:
None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.
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4.2.4 Load Memory Data into Integer Register Locked

Format:

LDx_L Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:

va +— {Rbv + SEXT (disp)}

lock flag <« 1
locked physical address « PHYSICAL ADDRESS (va)

Ra <+ SEXT((va)<31:0>) 'ILDL L
Ra +« (va)<63:0> 1LDQ L
Exceptions:

Access Violation
Alignment

Fault on Read
Translation Not Valid

Instruction mnemonics:

LDL_L Load Sign-Extended Longword from Memory to Register Locked
LDQL Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, sign-extended for LDL_
L, and written to register Ra.

When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked __physmal address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the
store occurs; otherwise, it does not occur, as described for the STx_C instructions.

If processor A’s lock_flag is set and processor B successfully does a store within A’s
locked range of physical addresses, then A’s lock_flag is cleared. A processor’s locked
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range is the aligned block of 2**N bytes that includes the locked_physical_address.
The 2**N value is implementation dependent. It is at least 8 (minimum lock range
is an aligned quadword) and is at most the page size for that 1mp1ementat1on
(maximum lock range is one physical page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL REI
instruction. It is UNPREDICTABLE whether or not a processor’s lock_flag is cleared
on any other CALL_PAL instruction. It is UNPREDICTABLE whether a processor’s
lock_flag is cleared by that processor’s executing a normal load or store instruction.
It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that processor’s
executing a taken branch (including BR, BSR, and Jumps); conditional branches that
fall through do not clear the lock_flag.

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an
atomic read-modify-write of a datum in shared memory if the branch falls through;
if the branch is taken, the store did not modify memory and the sequence may be
repeated until it succeeds.

Notes:

¢ LDx_L instructions do not check for write access; hence a matching STx_C may
take an access-violation or fault-on-write exception.

Executing a LDx L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
be followed by a conditional branch: on the fall-through path an STx_C is done,
whereas on the taken path no matching STx_C is done.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

¢ Software will not emulate unaligned LDx_L instructions.

e If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementations; hence, no useful program should do this.

¢ If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

* If a subsetted instruction (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementations,
because of the Illegal Instruction Trap; hence, no useful program should do this.

¢ Ifalarge number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations, because of a timer
interrupt always clearing the lock_flag before the sequence completes; hence, no
useful program should do this.
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¢ Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

IMPLEMENTATION NOTES
Implementations that impede the mobility of a cache
block on LDx_L, such as that which may occur in a Read
for Ownership cache coherency protocol, may release the
cache block and make the subsequent STx_C fail if a
branch-taken or memory instruction is executed on that
Processor.

All implementations should guarantee that at least
40 non-subsetted operate instructions can be executed
between timer interrupts.
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4.2.5 Store Integer Register Data into Memory Conditional

Format:

STx_C Ra.mgq,disp.ab(Rb.ab) ' IMemory format

Operation:

va <« {Rbv + SEXT(disp)}

IF lock flag EQ 1 THEN
(va)<31:0> «— Rav<31l:0> 1STL C
(va) «— Rav 18STQ_C
Ra «— lock_flag
lock_flag <~ 0

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL_C Store Longword from Register to Memory Conditional
STQ C Store Quadword from Register to Memory Conditional

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. If the lock_flag is set, the Ra operand is written to memory at this
address. (See the LDx_L description for conditions that clear the lock_flag.) The
lock_flag is returned in RA and then set to a zero.

Notes:
¢ Software will not emulate unaligned STx_C instructions.

e Each implementation must do the test and store atomically, so that if two
processors execute store conditionals within the same lock range, exactly one
of the stores succeeds.
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* The following sequence should not be used:

try again: LDQ L R1l,x
<modify R1>
STQ C Rl,x
BEQ Rl, try_again

That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha architecture. In the case where the STQ_C succeeds and the branch
will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case as shown in Section 5.5.2.

SOFTWARE NOTE
The address specified by a STx_C instruction need not
match that given in a preceding LDx_L. Specifying
unmatched addresses for those instructions requires an
MB in between to guarantee ordering.

IMPLEMENTATION NOTES
A STx_C must propagate to the point of coherency,
where it is guaranteed to prevent any other store from
changing the state of the lock bit, before its outcome can
be determined.

If an implementation could encounter a TB or cache miss
on the data reference of the STx_C in the sequence above
(as might occur in some shared I- and D-stream direct-
mapped TBs/caches), it must be able to resolve the miss
and complete the store without always failing.
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4.2.6 Store Integer Register Data into Memory

Format:

STx Ra.rq,disp.ab(Rb.ab) 'Memory format
Operation:

va +— {Rbv + SEXT (disp)}

(va)<31:0> «— Rav<31:0> !STL

(va) < Rav 'STQ
Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL Store Longword from Register to Memory
STQ Store Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The Ra operand is written to memory at this address. If the data is
not naturally aligned, an alignment exception is generated.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:
STQ_U Ra.rq,disp.ab(Rb.ab) ~ IMemory format

Operation:

va «— {{Rbv + SEXT(disp)} AND NOT 7}
(va)<63:0> «— Rav<63:0>

Exceptions:

Access Violation
Fault on Write
Translation Not Valid

Instruction mnemonics:

STQ U Store Unaligned Quadword from Register to Memory

Qualifiers:
None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.
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4.3 Cohtrol Instructions

Alpha provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSR/RET/JMP), there is a
substantial performance gain in forming a good guess of the expected target I-
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target
address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that
statically specifies the 16 low bits of the most likely target address. The PC-
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within the largest possible Alpha page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distinctions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken
/all-through hint. The instructions are summarized in Table 4-3.
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Table 4-3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero ‘
BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return
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4.3.1 Conditional Branch

Format:
Bxx Ra.rq,disp.al !Branch format
Operation:

{update PC}

va «— PC + {4*SEXT (disp)}

IF TEST(Rav, Condition_based on_Opcode) THEN
PC «— vwva

Exceptions:

None

Instruction mnemonics:

BEQ Branch if Register Equal to Zero
BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear
BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
BNE Branch if Register Not Equal to Zero
Qualifiers:
None
Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/~ 1M instructions.
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The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested. : ‘

Notes:

Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.
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4.3.2 Unconditional Branch

Format:
BxR Ra.wq,disp.al !Branch format

Operation:

{update PC}
Ra «— PC
PC «— PC + {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch
BSR Branch to Subroutine
Q{ualifiers:
None
I#escription:

The PC of the following instruction (the updated PC) is written to register Ra, and
then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
i left two bits (to address a longword boundary), sign-extended to 64 bits, and added
~ to the updated PC to form the target virtual address.

/ The unconditional branch instructions are PC-relative. The 21-bit signed
displacement gives a forward/backward branch distance of +/~ 1M instructions.

PC-relative addressability can be established by:

BR Rx,L1
Ll:

Notes:

¢ BR and BSR do identical operations. They only differ in hints to possible branch-
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:
mnemonic  Ra.wq,(Rb.ab),hint !Memory format

Opération:

{update PC}

va +— Rbv AND {NOT 3}
Ra +— PC

PC «— wva

Exceptions:

None

Instruction mnemonics:

JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different “opcodes” set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.
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These bits are intended to be used as shown in Table 4—4.

Table 4-4: Jump Instructions Branch Prediction

Predicted Prediction
disp<15:14> Meaning Target<15:0> Stack Action
00 JMP PC + {(4*disp<13:0>} -

01 JSR PC + {4*disp<13:0>} ' Push PC
10 RET Prediction stack Pop
11 JSR_COROUTINE Prediction stack Pop, push PC

The design in Table 4—4 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction.

An unconditional long jump can be performed by:
JMP R31, (Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

000046 Indicates non-procedure return

000144 Indicates procedure return
All other encodings are reserved to Digital.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, and signed and
unsigned compare operations. v

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary
Mnemonic Operation

ADD Add Quadword/Longword
S4ADD Scaled Add by 4
S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal
CMPLT Compare Signed Quadword Less Than
CMPLE Compare Signed Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than
CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword
UMULH  Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword
S4SUB Scaled Subtract by 4
S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH,; division by a variable can be done via a subroutine. See Appendix A.
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441 LongWord Add

Format:
ADDL Ra.rq,Rb.rq,Rc.wq !Operate format
ADDL Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

Rc «— SEXT( (Rav + Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Re.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.
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4.4.2 Scaled Longword Add

Format:

SxADDL Ra.rq,Rb.rq,Rc.wq !Operate format
SxADDL Ra.rq,#b.ib,Rc.wq IOperate format

Operation:

CASE
S4ADDL: Rc <« SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Rc < SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL  Scaled Add Longword by 4
SS8ADDL Scaled Add Longword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for SSADDL) and is added to register
Rb or a literal, and the sign-extended 32-bit sum is written to Re.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit sum.
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4.4.3 Quadword Add

Format:
ADDQ Ra.rq,Rb.rq,Rc.wq 10perate format
ADDQ Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

Rc + Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Re.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. After adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.
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4.4.4 Scaled Quadword Add

Format:
SxADDQ Ra.rq,Rb.rq,Rc.wq 1Operate format
SxADDQ Ra.rq,#b.ib,Rc.wq 1Operate format
Operation:
CASE

S4ADDQ: Rc +— LEFT_SHIFT(Rav,2) + Rbv
S8ADDQ: Rc «~ LEFT_SHIFT(Rav,3) + Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4
SSADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for SSADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Rec.

On overflow, the least significant 64 bits of the true result are written to the
destination register. '
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4.4.5 Integer Signed Compare

Format:
CMPxx Ra.rq,Rb.rq,Rc.wq 10perate format
CMPxx  Ra.rq,#b.ib,Rc.wq !Operate format
Operation:
IF Rav SIGNED_RELATION Rbv THEN
Rc «~ 1
ELSE
Rc «~ O
Exceptions:
None

Instruction mnemonics:

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal
CMPLT Compare Signed Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Re.

Notes:

¢ Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rc.wq IOperate format
CMPUxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

IF Rav UNSIGNED__RELATION Rbv THEN
Rc «— 1

ELSE
Re «~ O

Exceptions:

None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than

Qualifiers:
None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Re; otherwise, zero is written to Rec.
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4.4.7 Longword Multiply

Format:
MULL Ra.rq,Rb.rq,Rc.wq I0Operate format
MULL Ra.Rq,#b.ib,Rc.wq 10perate format
Operation:

Rc « SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Re.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.8 Quadword Multiply

Format:

MULQ Ra.rq,Rb.rq,Rc.wq
MULQ Ra.Rq,#b.ib,Rc.wq

Operation:

Rec <+ Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Re. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are

written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit

result when an overflow occurs.

4-30 Common Architecture (1)

10perate format
!Operate format

stribution



~—

4.4.9 Unsigned Quadword Mulitiply High

Format:
UMULH Ra.rq,Rb.rq,Rc.wq !Operate format
UMULH Ra.Rq,#b.ib,Rc.wq 1Operate format
Operation:

Rc <+ {Rav *U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Re.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows: '

Ra and Rb are unsigned: result of UMULH
Ra and Rb are signed: (result of UMULH) — Ra<63>*Rb — Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.10 Longword Subtract

Format:
SUBL Ra.rq,Rb.rq,Rc.wq !Operate format
SUBL Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc «— SEXT ((Rav = Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Re.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> — Rbv<31:0>.
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4.4.11 Scaled Longword Subtract

Format:

SxSUBL Ra.rq,Rb.rq,Rc.wq IOperate format
SxSUBL Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
S4SUBL: Rc « SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc « SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)
ENDCASE

Exceptions:

None

instruction mnemonics:

S4SUBL  Scaled Subtract Longword by 4
S8SUBL  Scaled Subtract Longword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or 8 (for SSSUBL), and the sign-extended 32-bit difference
is written to Re.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference.
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4.4.12 Quadword Subtract

Format:
SUBQ Ra.rq,Rb.rq,Rc.wq I0perate format
SUBQ Ra.rq,#b.ib,Rc.wq !0perate format
Operation:

Rc «— Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Rc. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.
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4.4.13 Scaled Quadword Subtract

Format:
SxSUBQ Ra.rq,Rb.rq,Rc.wq !Operate format
SxSUBQ Ra.rgq,#b.ib,Rec.wq !Operate format
Operation:
CASE

S4SUBQ: Rc + LEFT_SHIFT (Rav,2) - Rbv
S8SUBQ: Rc + LEFT_SHIFT(Rav,3) - Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ  Scaled Sybtract Quadword by 4
S8SUBQ Scaled Subtract Quadword by 8

Qualifiers:

None

Description: .

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to
Re. '
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4—6. '

Table 4-6: Logical and Shift Instructions Summary
Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement
BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical
SRA Shift Right Arithmetic
SRL Shift Right Logical

SOFTWARE NOTE
There is no arithmetic left shift instruction. Where an
arithmetic left shift would be used, a logical shift will
do. For multiplying by a small power of two in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.
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4.5.1 Logical Functions

Format:
mnemonic  Ra.rq,Rb.rq,Rc.wq !Operate format
mnemonic  Ra.rq,#b.ib,Rec.wq !Operate format

Operation:

Rc «— Rav AND Rbv ! AND
Rc +— Rav OR Rbv !'BIS
Rc +— Rav XOR Rbv ! XOR
Rc +— Rav AND {NOT Rbv} 'BIC
Rc +— Rav OR {NOT Rbv} ! ORNOT
Rc « Rav XOR {NOT Rbv} {EQV
Exceptions:
None

Instruction mnemonics:

AND Logical Product
BIC Logical Product with Complement
BIS Logical Sum (OR)
EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

Qualifiers:
None

Description:

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Rec.

The “NOT” function can be performed by doing an ORNOT with zero (Ra = R31).
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4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMOVxx Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

IF TEST (Rav, Condition_based_on_Opcode) THEN

Rc < Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ  CMOVE if Register Equal to Zero

CMOVGE CMOVE if Register Greater Than or Equal to Zero
CMOVGT CMOVE if Register Greater Than Zero
CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set

CMOVLE CMOVE if Register Less Than or Equal to Zero
CMOVLT CMOVE if Register Less Than Zero

CMOVNE CMOVE if .VRegister Not Equal to Zero

Qualifiers:
None
Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Rec.
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Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra, label
OR Rb, Rb, Rc
label:

For example, a branchless sequence for:
R1=MAX (R1,R2)

CMPLT R1,R2,R3 ! R3=1 if RI1<R2
CMOVNE R3,R2,R1 ! Move R2 to Rl if R1<R2
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4.5.3 Shift Logical

Format:

SxL Ra.rq,Rb.rq,Rc.wq !0Operate format

SxL Ra.rq,#b.ib,Rc.wq !0Operate format
Operation:

Rc «— LEFT_SHIFT (Rav, Rbv<5:0>) 1SLL

Rc + RIGHT_SHIFT (Rav, Rbv<5:0>) 'SRL
Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical
SRL Shift Right Logical

Qualifiers:

None

Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Rc. Zero bits are propagated into the
vacated bit positions.
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4.5.4 Shift Arithmetic

Format:
SRA Ra.rq,Rb.rq,Rc.wq !Operate format
SRA Ra.rb,#b.ib,Rc.wq !Operate format
Operation:

Rc +— ARITH RIGHT SHIFT (Rav, Rbv<5:0>)

Exceptions:

None
Instruction mnemonics:

SRA Shift Right Arithmetic
Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Re. The sign bit (Rav<63>) is propagated
into the vacated bit positions.
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4.6 Byte-Manipulation Instructions

Alpha provides instructions for operating on byte operands within registers.
These instructions allow full-width memory accesses in the load/store instructions
combined with powerful in-register byte manipulation.

The instructions are summarized in Table 4-7.

Table 4-7: Byte-Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
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Table 4-7 (Cont.): Byte-Manipulation instructions Summary
Mnemonic Operation

ZAP _ Zero Bytes
ZAPNOT Zero Bytes Not
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4.6.1 Compare Byte

Format:
CMPBGE Ra.rq,Rb.rq,Rc.wq !Operate format
CMPBGE Ra.rg,#b.ib,Rc.wq !Operate format
Operation:

FOR i FROM 0 TO 7

temp<8:0> «~ {0 || Rav<i*8+7:i*8>} +
{0] | NOT Rbv<i*8+7:i*8>} + 1
Re<i> +— temp<8>
END
Rc<63:8> «~ 0

Excentione:

— . -

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Rc. The
high 56 bits of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Re
corresponds to byte 1, and so forth. A result bit is set in Rc if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).
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Notes:

The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize Rl to aligned

LOOP :
DO R2, 0 (R1) ;
LDA R1, 8 (R1) ;
CMPBGE R31,R2,R3 ;
BEQ R3, LOOP ;

OW address of string>

Pick up 8 bytes

Increment string pointer

If NO bytes of zero, R3<7:0>=0
Loop if no terminator byte found
At this point, R3 can be used to
determine which byte terminated

To compare two character strings for greater/less:

<initialize Rl to aligned
<initialize R2 to aligned

LOOP :
1LDO R3, 0 (R1) ;
LDA R1, 8 (R1) ;
1DO R4, 0 (R2) ;
LDA R2, 8 (R2) H
XOR R3,R4,R5 ;
BEQ R5, LOOP ;
CMPBGE R31,R5,R5 ;

QW address of stringl>
QW address of string2>

Pick up 8 bytes of stringl
Increment stringl pointer
Pick up 8 bytes of string2
Increment string2 pointer
Test for all equal bytes
Loop if all equal

At this point, R5 can be used to
determine the first not-equal
byte position.

To range-check a string of characters in R1 for ‘0.9

LDQ R2,1it0s H

H
LDQ R3,1it9%s H

H
CMPBGE R2,R1,R4 ;
CMPBGE - R1,R3,R5 H
BNE R4, ERROR ;
BNE R5, ERROR H

Pick up 8 bytes of the character
BELOW ‘0" ////////'

Pick up 8 bytes of the character
ABOVE ‘9’ ARSI

Some R4<i>=1 if character is LT
Some R5<i>=1 if character is GT
Branch if some char too low
Branch if some char too high
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4.6.2 Extract Byte

Format:
EXTxx  Ra.rq,Rb.rq,Rc.wq !Operate format
EXTxx Ra.rq,#b.ib,Rc.wq I0Operate format
Operation:
CASE
EXTBL: byte_mask « 0000 00012
EXTWx: byte_mask «— 0000 0011y
EXTLx: byte_mask <~ 0000 1111y
EXTQx: byte_mask <« 1111 11113
ENDCASE
CASE
EXTxL:
byte_loc + Rbv<2:0>*8
temp — RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc + BYTE_ZAP (temp, NOT (byte mask) )
EXTxH: .
byte_loc + 64 - Rbv<2:0>*8
temp ~— LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc <« BYTE_ZAP (temp, NOT (byte_mask) )
ENDCASE
Exceptions:
None

Instruction mnemonics:

EXTBL Extract Byte Low
EXTWL  Extract Word Low
EXTLL  Extract Longword Low
EXTQL  Extract Quadword Low
EXTWH  Extract Word High
EXTLH  Extract Longword High
EXTQH  Extract Quadword High
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Qualifiers:

None

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Re. EXTxH shifts register Ra left
by O to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Rc. The number of bytes to shift is specified by Rbv<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:

The comments in the examples below assume that the effective address (ea) of
X(R11) is such that (ea mod 8) = 5, the value of the aligned quadword containing
X(R11) is CBAx xxxx, and the value of the aligned quadword containing X+7(R11) is
yyyH GFED.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

1DQ U R1,X(R11) ; Ignores va<2:0>, Rl = CBAX xXXXX
LDQ U R2,X+7 (R11) ; Ignores va<2:0>, R2 = yyyH GFED
LDA R3,X(R11) ; R3<2:0> = (X mod 8) =5

EXTQL R1,R3,R1 ; Rl = 0000 OCBa

EXTQH R2,R3,R2 ; R2 = HGFE D000

OR R2,R1,R1 ; Rl = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

1LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAxX xxxx
LDQ U R2,X+3 (R11) Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) R3<2:0> = (X mod 8) =5

Ne Ne Na Ve Se v

EXTLL R1,R3,R1 R1 = 0000 OCBa
EXTLH R2,R3,R2 R2 = 0000 D0OOO
OR R2,R1,R1 R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned
address X is:

IDQ U R1l,X (R11) ; Ignores va<2:0>, Rl = CBAx =xxxXX
LDQ U R2,X+3 (R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11l) ; R3<2:0> = (X mod 8) =5

EXTLL R1,R3,R1 ; R1 = 0000 OCBA
EXTLH R2,R3,R2 ; R2 = 0000 DOOO
OR R2,R1,R1 ; Rl = 0000 DCBA
SLL R1,#32,R1 ; Rl = DCBA 0000
SRA R1,#32,R1 ; Rl = ssss DCBA
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The intended sequence for loading and zero-extending a word from unaligned address

X is:
IDQ U R1,X(R11) ; Ignores va<2:0>, Rl = yBAx xXxXxxX
IDQ U R2,X+1 (R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDA R3,X (R11) ; R3<2:0> = (X mod 8) =5
EXTWL R1,R3,R1 ; Rl = 0000 00BA
EXTWH R2,R3,R2 ; R2 = 0000 0000
OR R2,R1,R1 ; Rl = 0000 00BA
The intended sequence for loading and sign-extending a word from unaligned address
Xis:
IbQ U R1,X(R11) ; Ignores va<2:0>, Rl = yBAx xxxx
1DQ U R2,X+1 (R11) ; Ignores va<2:0>, R2 = yBAX XXXX
LDA R3,X (R11) ; R3<2:0> = (X mod 8) =5
EXTWL R1,R3,R1 ; Rl = 0000 00BA
EXTWH R2,R3,R2 ; R2 = 0000 0000
OR R2,R1,R1 ; Rl = 0000 00BA
SLL R1, #48,R1 ; R1 = BAOO 0000
SRA R1,#48,R1 ; Rl = 5555 s5BA

The intended sequence for loading and zero-extending a byte from address X is:

LDQ U R1l,X (R11) ; Ignores va<2:0>, Rl = yyAx XXXX
LDA R3,X(R11) ; R3<2:0> = (X mod 8) =5
EXTBL R1,R3,R1 ; R1 = 0000 000a

The intended sequence for loading and sign-extending a byte from address X is:

LDQ U
LDA

R1,
R3,

X (R11)
X+1 (R11)

Ignores va<2:0>, Rl = yyAx XXXX
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based

Places the desired byte into byte 7
of Rl.final by left shifting
Rl.initial by ( 8 - R3<2:0> ) byte
positions -

Arithmetic Shift of byte 7 down
into byte 0,

EXTQH R1, R3, R1

SRA R1l, #56, Rl

Ne Ne Ve Ne Ve Ve Ne Ne we o

Optimized examples:

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the
known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault if R3 does
not contain a longword-aligned address.

The intended sequence for loading and zero-extending an aligned word from 10(R3)
is:

LDL R1, 8 (R3) ; Rl = ssss BAxx
; Faults if R3 is not longword aligned
EXTWL R1l,#2,R1 ; R1 = 0000 00BA
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The intended sequence for loading and sign-extending an aligned word from 10(R3)
is:

LDL R1l, 8 (R3) ; Rl = ssss BAxx
; Faults if R3 is not longword aligned
SRA R1l, #16,R1 ; Rl = ssss ssBA
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4.6.3 Byte Insert

Format:

INSxx Ra.rq,Rb.rq,Rec.wq !Operate format
INSxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE

INSBL: byte_mask « 0000 0000 0000 00012

INSWx: byte mask « 0000 0000 0000 0011>

INSLx: byte mask «— 0000 0000 0000 1111

INSQx: byte mask <« 0000 0000 1111 1111,
ENDCASE

byte mask «— LEFT_ SHIFT (byte mask, rbv<2:0>)
CASE

INSxL:
byte loc «— Rbv<2:0>*8
temp «~ LEFT_SHIFT(Rav, byte loc<5:0>)
Rc «~ BYTE_ZAP (temp, NOT(byte mask<7:0>})
INSxH:

byte loc «— 64 - Rbv<2:0>*8
temp < RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc « BYTE_ZAP (temp, NOT (byte_mask<1l5:8>))

ENDCASE

Exceptions:

None

Instruction mnemonics:

INSBL Insert Byte Low
INSWL  Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH  Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
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Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Rc. Register Rb<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.
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4.6.4 Byte Mask

Format:
MSKxx  Ra.rq,Rb.rq,Rc.wq !Operate format
MSKxx  Ra.rq,#b.ib,Rc.wq - lOperate format
Operation:
CASE

MSKBL: byte mask «— 0000 0000 0000 00012

MSKWx: byte mask +« 0000 0000 0000 00112

MSKLx: byte mask « 0000 0000 0000 11112

MSKQx: byte mask <~ 0000 0000 1111 1111y
ENDCASE

byte mask <« LEFT_SHIFT (byte mask, rbv<2:0>)
CASE

MSKxL:
Rc «— BYTE_ZAP (Rav, byte mask<7:0>)

MSKxH:
Rc «— BYTE_ZAP (Rav, byte mask<15:8>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

MSKBL  Mask Byte Low
MSKWL Mask Word Low
MSKLL  Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High

Qualifiers:

None
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Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result
in register Rc. Register Rb<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11)
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED,
and the value to be stored from R5 is hgfe dcba.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6,X (R11)
LDQ U  R2,X+7(R11)

R6<2:0> = (X mod 8)
Ignores va<2:0>, R2

5
vyyyH GFED
c

STQ U  R2,X+7(R11)
STQ U  R1,X(R11l)

Must store high then low for
degenerate case of aligned QW

IDQ U R1,X(R11) ; Ignores va<2:0>, R1 BAX XXXX
INSQH R5,R6,R4 ; R4 = 000h gfed
INSQL R5,R6,R3 ; R3 = cbal 0000
MSKQH R2,R6,R2 ; R2 = yyy0 0000
MSKQL R1,R6,R1 ; Rl = 000x xxxx
OR R2,R4,R2 ; R2 = yyyh gfed
OR R1,R3,R1 ; Rl = cbax xxxx
r

The intended sequence for storing an unaligned longword R5 at X is:

LDA R6,X (R11) R6<2:0> = (X mod 8) = 5
LDQ U R2,X+3(R11) Ignores va<2:0>, R2 = yyyy yyyD
LDQ U R1l,X(R11) Ignores va<2:0>, Rl = CBAX XXXX

INSLH R5,R6,R4 R4 = 0000 00Od
INSLL R5,R6,R3 R3 = cbal 0000
MSKLH R2,R6,R2 R2 = yyyy yyy0
MSKLL R1,R6,R1 Rl = 000x xxxx
OR R2,R4,R2 R2 = yyyy yyyd
OR R1,R3,R1 Rl = cbax xxxx

STQ_ U  R2,X+3(R11)
STQ_ U  R1,X(R11)

Must store high then low for
degenerate case of aligned

Ne Ne e Ve Ne Ne Ne Na “a N “e
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The intended sequence for storing an unaligned word R5 at X is:

LDA
LDQ U
LDQ_U
INSWH
INSWL
MSKWH
MSKWL
OR
OR
STQ U
STQ_U

R6,X (R11)
R2,X+1 (R11)
R1,X (R11)
R5,R6, R4
R5,R6,R3
R2,R6, R2
R1,R6,R1
R2,R4,R2
R1,R3,R1
R2,X+1 (R11)
R1,X (R11)

Ne Ne e Ve No Ne e We No “wo “o

R6<2:0> = (X mod 8) =5

Ignores va<2:0>, R2 = yBAx Xxxx
Ignores va<2:0>, Rl = yBAx xxxx
R4 = 0000 0000

R3 = Oba0 0000

R2 = yBAX XXXX

Rl = y00x xxxx

R2 = yBAx XXxX

Rl = ybax xxxx

Must store high then low for
degenerate case of aligned

The intended sequence for storing a byte R5 at X is:

LDA
LDQ U
INSBL
MSKBL
OR

STQ U

R6,X (R11)
R1,X (R11)
R5,R6,R3
R1,R6,R1
R1,R3,R1
R1,X(R11)
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R6<2:0> = (X mod 8) = 5

Ignores va<2:0>, Rl = yyAx XXXx
R3 = 00a0 0000
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4.6.5 Zero Bytes

Format:
ZAPx Ra.rq,Rb.rq,Rc.wq 1Operate format
ZAPx Ra.rq,#b.ib,Rc.wq !0Operate format
Operation:
CASE
ZAP:
Rc < BYTE_ZAP (Rav, rbv<7:0>)
ZAPNOT :
Rc — BYTE_ZAP (Rav, NOT rbv<7:0>)
ENDCASE
Exceptions:
None .

Instruction mnemonics:

ZAP Zero Bytes
ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Re. Register Rb<7:0> selects the bytes to be zeroed; bit 0 of Rbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four
data formats:

¢ F_floating (VAX single)

* G_floating (VAX double, 11-bit exponent)
e S floating (IEEE single)

¢ T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

_ NOTE

D_floating is a partially supported datatype; no D_
floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating “format compatibility,” in which
binary files of D_floating numbers may be processed
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F_ or G_floating zero result must materialize a true zero.

4.7.1 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).

The Floating-point Enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating registers.

If a floating instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations,
either, or none.
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Some floating-point instructions are common to the VAX and IEEE subsets, some
are VAX only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation including IEEE floating-point may subset the ability to perform
rounding to plus infinity and minus infinity. If not implemented, instructions
requesting these rounding modes take Illegal Instruction Trap.

4.7.2 Definitions
The following definitions apply to Alpha floating-point support.

true result

The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

representable result

a real number that can be represented exactly as a VAX or IEEE floating-point
number, with finite precision and bounded exponent range.

LSB

The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

Alpha finite number

A floating-point number with a definite, in-range value. Specifically, all numbers
in the inclusive ranges ~MAX..-MIN, zero, +MIN..+MAX, where MAX is the largest
non-infinite representable floating-point number and MIN is the smallest non-zero
representable normalized floating-point number.

For VAX floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-
point, finites do not include infinites, NaNs, or denormals, but do include minus zero.

Not-a-Number

An IEEE floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha, those with an initial fraction
bit of 1) and quiet NaNs (for Alpha, those with initial fraction bit of 0).

infinity
An IEEE floating-point bit pattern that represents plus or minus infinity.
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denormal

An IEEE floating-point bit pattern that represents a number whose magmtude lies
between zero and the smallest finite number.

dlrty zero

A VAX floating-point bit pattern that represents a zero value, but not in true-zero
form.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

4.7.3 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8 or 11 bits; and the fraction is 23,
52, or 55 bits. Some encodings represent special values:

Vax VAX IEEE IEEE
Sign Exponent Fraction Meaning Finite Meaning Finite
x All-1s Non-zero Finite Yes +/-NaN No
x All-1’s 0 Finite Yes +/-Infinity No
0 0 Non-zero Dirty zero No +Denormal No
1 0 Non-zero Resv. operand  No -Denormal No
0 0 0 True zero Yes +0 Yes
1 0 0 Resv. operand No -0 Yes
X Other x Finite Yes finite Yes

The values of MIN and MAX for each of the four floating-point data formats are:

Data Format MIN MAX

F_floating 2%*%_127 * 0.5 2*%127 * (1.0 — 2%*-24)
(0.294e-38) (1.70e38) ‘

G_floating 2*%%.1023 * 0.5 2*%¥1023 * (1.0 — 2**-53)
(0.56e-308) (0.899e308)

S_floating 2%%_726 * 1.0 2¥%127 * (2.0 — 2¥*_23)
(1.175e-38) (3.40e38)
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Data Format MIN . MAX

T_floating 2**-1022 * 1.0  2**1023 * (2.0 — 2**-52)
(2.225e-308) (1.798e308)

4.7.4 Floating-Point Rounding Modes

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes

For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
> MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN — 1/2 LSB
in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results > MAX + 1 LSB in magnitude
to an overflow; maps true results < MIN in magnitude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the
instruction. Rounding toward plus infinity can be obtained by setting the Floating-
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha IEEE arithmetic does rounding
before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in O (sometimes called unbiased rounding to even); maps true results
> MAX + 1/2 LSB in magnitude to an overﬁow, maps true results < MIN - 1/2 L.SB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results < +MIN - 1 LSB to an underflow; and maps negative true
results > ~MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results < +MIN to an underflow; and maps negative true results
> -MIN + 1 LSB to an underflow.
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Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results > MAX + 1 LSB in magnitude
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summarize the floating-point rounding modes:

VAX Rounding Mode Instruction Notation

Normal rounding (No modifier)
Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No modifier)

Thrmamiin wass=— Al /T

U.y Pt -SUTNAVEP A VISP RLVERNE 117 )

Plus infinity /D and ensure that FPCR<DYN> = ‘11’
Minus infinity ™

Chopped /C

4.7.5 Floating-Point Trapping Modes

4-60

There are six exceptions that can be generated by floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

¢ Invalid operation

¢ Division by zero

¢ Overflow

¢ Underflow, may be disabled

¢ Inexact result, may be disabled

¢ Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part 11, Operating Systems.

VAX Trapping Modes

For VAX floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow.

For VAX conversions from floating-point to integer, four trapping modes are provided.
They specify software completion and whether traps are enabled for integer overflow.
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IEEE Trapping Modes

For IEEE floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results.

For IEEE conversions from floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for

integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode Instruction Notation
Imprecise, underflow disabled (No meodifier)
Imprecise, underflow enabled g
Software, underflow disabled /S
Software, underflow enabled /SU
VAX Convert-to-Integer Trap Mode Instruction Notation
Imprecise, integer overflow disabled (No modifier)
Imprecise, integer overflow enabled N
Software, integer overflow disabled /S
Software, integer overflow enabled SV
IEEE Trap Mode Instruction Notation
Imprecise, unfl disabled, inexact disabled (No modifier)
Imprecise, unfl enabled, inexact disabled 48
Software, unfl enabled, inexact disabled /SU
Software, unfl enabled, inexact enabled /SUIL
IEEE Convert-to-Integer Trap Mode Instruction Notation
Imprecise, int.ovfl disabled, inexact disabled (No modifier)
Imprecise, int.ovfl enabled, inexact disabled N
Software, int.ovfl enabled, inexact disabled /SV

/SVI

Software, int.ovfl enabled, inexact enabled

estricted
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4.7.5.1 Imprecise /Software Completion Trap Modes

Floating-point instructions may be pipelined, and all exceptions are imprecise traps:

The trapping instruction may write an UNPREDICTABLE result value.

The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

The extent of the trap shadow is bounded only by a TRAPB instruction (or the -
implicit TRAPB within a CALL_PAL instruction).

Input operand values may have been overwritten in the trap shadow.

Result values may have been overwritten in the trap shadow.

An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

Additional traps may occur in the trap shadow.

In general, it is not feasible to fix up the result value or tc continue from the
trap.

This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the overflow/underflow range, or use
IEEE NaNs, software assistance is required to complete floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the following conditions must
hold:

1

On entry to the trap shadow, if any Alpha register or memory location contains
a value that is used as an operand value by some instruction in the trap shadow
(live on entry), then no instruction in the trap shadow may modify the register
or memory location.

Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

Within the trap shadow, no register may be used more than once as a destination
register.

The trap shadow may not include any branch instructions.

Each floating instruction to be completed must be so marked, by specifying the
/S software completion modifier.

The first condition allows a software trap handler to emulate the trigger instruction

with its original input operand values and then to reexecute the rest of the trap
shadow.

The second condition prevents memory accesses at unpredictable addresses.
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4.7.5.2

4.753

4.7.5.4

4.7.5.5

The remaining conditions make it possible for a software trap handler to find the
trigger instruction via a linear scan backwards from the trap PC.

NOTE

The /S modifier does not affect instruction operation
or trap behavior; it is an informational bit passed to
a software trap handler. It allows a trap handler to
test easily whether an instruction is intended to be
completed. (The /S bits of instructions signaling traps
are carried into the trap summary.) The handler may
then assume that the other conditions are met without
examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating-
point operations marked /S that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

invalid Operation Arithmetic Trap

An invalid operation arithmetic trap is signaled if any operand of a floating
arithmetic-operate instruction is non-finite. (CMPTxy is an exception to the rule
and operates normally with plus and minus infinity and does not trap in this case.)
This trap is always enabled. If this trap occurs, an UNPREDICTABLE value is
stored in the result register. IEEE-compliant system software must also supply an
invalid operation indication to the user for SQRT of a negative non-zero number,
0/0, x REM 0, and conversions to integer that take an integer overflow trap.)

Division by Zero Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero. This trap is always enabled. If this trap
occurs, an UNPREDICTABLE value is stored in the result register.

Overflow Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format. This trap is always enabled. If
this trap occurs, an UNPREDICTABLE value is stored in the result register.

Underflow Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been —0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.
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4.7.5.6 Inexact Result Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result. .

If an inexact result occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.

4.7.5.7 Integer Overflow Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range —2**63..2%¥*63~1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range —2*%31..2%*31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow iraps are enabied by the
instruction, an integer overflow arithmetic trap is signaled.

4.7.6 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating registers
in canonical form, as subsets of double-precision values, with 11-bit exponents
restricted to the corresponding single-precision range, and with the 29 low-order
fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single-

precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating registers are stored in bits <63:62,58:29>, with
bits <61:59> ignored and zeros in bits <28:0>.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its
function field (function code bits <7:6> = 11), the rounding mode to be used for the
instruction is derived from the FPCR register. The layout of the rounding mode bits
and their assignments matches exactly the format used in the 11-bit function field
of the floating-point operate instructions.

In addition, the FPCR gives a summary for each exception type of the exceptions
conditions detected by all IEEE floating-point operates thus far as well as an
overall summary bit that indicates whether any of these exception conditions has
. been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that
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the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX
floating-point subset set the FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one.
Once set to one, these exception bits are only cleared when software writes zero into
these bits by writing a new value into the FPCR.

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8.

Figure 4-1: Floating-Point Control Register (FPCR) Format

6362 60595857 56 555453 52 51 0

Simaz/| D |1]1lUODII
Ul'iaN | Y [ONINIVIZ|N RAZ/IGN
M N |VIE|F|FIEIV

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
(FPCR[57] | FPCR[56] | FPCR[55] | FPCR[54] | FPCR[53] | FPCR[52)).

6260 Reserved. Read As Zero; Ignored when written.

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by

an IEEE floating-point operate instruction when the instruction’s function field
specifies dynamic mode (/D). Assignments are:

DYN " IEEE Rounding Mode Selected
00 Chopped rounding mode
01 Minus infinity
10 Normal rounding
11 Plus infinity
57 Integer Overflow (I0V). An mteger arithmetic operatlon or a conversion from

floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

Instruction Descriptions () 4-65

Restricted Distribution




Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description

55 Underflow (UNF). A floating arithmetic or conversion operétion underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51-0 Reserved. Read As Zero; Ignored when written.

FPCR is read from and written to the floating-point registers by the MT_FPCR and
MF_FPCR instructions respectively, which are described in Section 4.7.7.1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.1.1.1). On implementations that do not support
floating-point, the instructions that access FPCR (MF_FPCR and MT_FPCR) take
an Illegal Instruction Trap.

SOFTWARE NOTE .
As noted in Section 4.1.1.1, support for FPCR is
required on a system that supports the OpenVMS Alpha
operating system even if that system does not support
floating-point.

4.7.7.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of
floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. A TRAPB must be issued both prior to and after accessing
the FPCR to ensure that the FPCR access is synchronized with the execution of
previous and subsequent floating-point instructions; otherwise synchronization is
not ensured.

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures
that only floating-point instructions issued after the second TRAPB are affected
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_
FPCR followed by another TRAPB ensures that the value read from the FPCR only

records the exception information for floating-point instructions issued prior to the
first TRAPB.

Consider the following example:
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ADDT/D

TRAPB ;1
MT_FPCR F1,F1,F1

TRAPB ;2
SUBT/D

Without the first TRAPB, it is possible in an implementation for the ADDT/D
to execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDT/D.

Without the second TRAPB, it is possible in an implementation for the MT_FPCR to
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by the MT_FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBT/D.

4.7.7.2 Default Values of the FPCR
Processor initialization leaves the value of FPCR UNPREDICTABLE.

SOFTWARE NOTE
Digital software should initialize FPCR<DYN> = 11
during program activation. Using this default, interval
arithmetic code can switch from plus to minus infinity

rounding with no penalty in performance by using /M
and /D qualifiers.

Program activation should clear all other fields of the
FPCR.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

SOFTWARE NOTE
The IEEE standard precludes saving and restoring the
FPCR across subroutine calls.

4.7.8 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985) is included by reference.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-9.

Table 4-9: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset
LDF Load F_floating VAX
LDG Load G_floating (Load D_floating) VAX
LDS Load S_floating (Load Longword Integer) Both
LDT Load T_floating (Load Quadword Integer) Both
STF Store F_floating VAX
STG Store G_floating (Store D_floating) VAX
STS Store S_floating (Store Longword Integer) Both
STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT (disp)}

Fa «+ (va)<15> || MAP_F((va)<1l4:7>) 1|
(va)<6:0> || (va)<31l:16> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDF Load F_floating

Qualifiers:

None

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-1.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory and the bytes are
reordered to conform to the F_floating register format. The result is then zero-
extended in the low-order longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG Fa.wg,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT (disp) }

Fa «— (va)<15:0> || (va)<31l:16> ||
(va)<47:32> || (va)<63:48>

Exceptions:

Access Violation
Fa T Aan Raoand

u‘\‘.l.v VaaL J-‘eau
Alignment
Translation Not Valid

Instruction mnemonics:

LDG Load G__ﬂoating (Load D_floating)

Qualifiers:

None

Description:

LDG fetches a G_ﬂoating (or D_floating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_floating register format (also conforming to the D_floating register
format), and the result is then written to register Fa.
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4.8.3 Load S_fioating

Format:

LDS Fa.ws,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT (disp)}

Fa «— (va)<31l> {1 MAP_S((va)<30:23>) ||
(va)<22:0> Il 0<28:0> :

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-forniat exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, is zero-extended in the
low-order longword, and then written to register Fa.

Notes:

¢ Longword integers in floating registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>.
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4.8.4 Load T_floating

Format:

LDT Fa.wt,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT (disp) }
Fa «— (va)<63:0>

Exceptions:

Access Violation
Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:
LDT fetches a quadword (integer or T_floating) from mémory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa.
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4.8.5 Store F_floating

Format:

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT (disp)}

(va)<31:0> « Fav<44:29> || Fav<63:62>|| Fav<58:45>
Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STF Store F_floating

Qualifiers:

None

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to F_floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.
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4.8.6 Stbre G_floating

Format:

STG Fa.rg,disp.ab(Rb.ab) ' !Membry format

Operation:

va +— {Rbv + SEXT(disp)}

(va)<63:0> « Fav<l5:0> || Fav<31l:16> ||
Fav<47:32> || Fav<63:48>

Exceptions:

Access Violation

Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)
Qualifiérs:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not
naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.
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4.8.7 Store S_floating

Format:

STS Fa.rs,disp.ab(Rb.ab) IMemory format

Operation:

va «— {Rbv + SEXT(disp)}
(va)<31:0> « Fav<63:62>| |Fav<58:29>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Iinstruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to S_floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.
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4.8.8 Store T_floating

Format:

STT Fa.rt,disp.ab(Rb.ab) ’ Memory format

Operation:

va +— {Rbv + SEXT (disp)}
(va)<63:0> «— Fav<63:0>

Exceptions:

Access Violation
Fault on Write

4
LALLE LTIV

Translation Not Valid

Instruction mnemonics:

STT Store T_floating (Store Quadword Integer)

Qualifiers:
None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format
instructions test the value of a floating-point register and conditionally change the
PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The floating-point branch operations are summarized in Table 4-10.

Table 4-10: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset
FBEQ Floating Branch Equal Both
FBGE Floating Branch Greater Than or Equal Both
FBGT Floating Branch Greater Than Both
FBLE Floating Branch Less Than or Equal Both
FBLT Floating Branch Less Than Both
FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Fdrmat:

FBxx Fa.rq,disp.al !Branch format

Operation:

{update PC}

va + PC + {4*SEXT(disp)}

IF TEST(Fav, Condition_based on_Opcode) THEN
PC + wva

Exceptions:

None

Instruction mnemonics:

FBEQ Floating Branch Equal

FBGE F‘loating Branch Greater Than or Equal
FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

Qualifiers:

None

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/~ 1M instructions.
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Notes:

* To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

¢ The largest negative integer (8000 0000 0000 0000,¢) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4-11.

Table 4-11: Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

it and FPCR Opernﬁnns

= 2 as L=

CPYS Copy Sign Both
CPYSE Copy Sign and Exponent Both
CPYSN Copy Sign Negate Both
CVTLQ Convert Longword to Quadword Both
CVTQL Convert Quadword to Longword Both
FCMOVxx Floating Conditional Move Both
MF_FPCR Move from Floating-point Control Register Both
MT_FPCR Move to Floating-point Control Register Both
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Arithmetic Operations

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S_floating IEEE
ADDT Add T floating IEEE
CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating IEEE
CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX
CVTQS Convert Quadword to S_floating IEEE
CVTQT Convert Quadword to T_floating IEEE
CVITQ Convert T floating to Quadword IEEE
CVTTS Convert T_floating to S_floating IEEE
DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S_floating IEEE
DIVT Divide T_floating IEEE
MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S_floating IEEE
MULT Multiply T floating IEEE
SUBF Subtract F_floating VAX
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Arithmetic Operations |

SUBG Subtract G_floating ' VAX
SUBS Subtract S_floating IEEE
SUBT Subtract T_floating IEEE
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4.10.1 Copy Sign

Format:

CPYSy Fa.rq,Fb.rq,Fc.wq IFloating-point Operate format

Operation:

CASE
CPYS: Fc +— Fav<63> || Fbv<62:0>
CPYSN: Fc «— NOT (Fav<63>) || Fbv<62:0>
CPYSE: Fc «— Fav<63:52> || Fbv<51:0>
ENDCASE

Exceptions:

None

Instruction mnemonics:

CPYS Copy Sign
CPYSE  Copy Sign and Exponent
CPYSN  Copy Sign Negate

Qualifiers:

None

Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fe.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fe.

No checking of the operands is performed.

Notes:

* Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31,Fx Fy. Floating-point negation can be done
using CPYSN Fx,Fx Fy. Floating values can be scaled to a known range by using
CPYSE.
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4.10.2 Convert Integer to Integer

Format:

CVTxy Fb.rq,Fc.wx IFloating-point Operate format

Operation:

CASE )
CVTQL: Fc + -Fbv<31:30> || 0<2:0> ||
Fbv<29:0> || 0<28:0>
CVTLQ: Fc + SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE
Exceptions:
P R M . M TTNAT 2
LOUEEED UVErlLow, LUV 1L onty

Instruction mnemonics:

CVTLQ Convert Longword to Quadword
CVTQL Convert Quadword to Longword

Qualifiers:

Trapping: Software (/S)
Integer Overflow Enable (/V) (CVTQL only)

Description:

The two’s-complement operand in register Fb is converted to a two’s-complement
result and written to register Fc.

The conversion from quadword to longword is a repositioning of the low 32 bits of
the operand, with zero fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range —2**31..2**31-1. If integer overflow occurs, the
truncated result is stored in Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.
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4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq IFloating-point Operate format

Operation:

IF TEST(Fav, Condition based_on Opcode) THEN

Fc «— Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ
FCMOVGE
FCMOVGT
FCMOVLE
FCMOVLT
FCMOVNE

Qualifiers:

None

Description:

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero
FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero
FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero

Register Fa is tested. If the specified relationship is true, register Fb is written to
register Fc; otherwise, the move is suppressed and register Fc is unchanged. The
test is based on the sign bit and whether the rest of the register is all zero bits, as
described for floating branches in Section 4.9.
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Notes
Except that it is likely in many melementatlons to be substantlally faster, the
instruction:

FCMOVxx Fa,Fb, Fc

is exactly equivalent to:

FByy Fa,label ; Yy = NOT xx
CPYS Fb,Fb,Fc
label:

For example, a branchless sequence for:
F1=MAX (F1,F2)
is:

CMPxLT F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T
FCMOVNE F3,F2,F1 ! Move F2 to Fl if F1l<F2
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4.10.4 Move from/to Floating-Point Control Register

Format:
Mx_FPCR Fa.rq,Fa.rq,Fa.wq !Floating-poi.nt Operate format
Operation:

CASE
MT FPCR: FPCR < Fav
MF_FPCR: Fa «— FPCR
ENDCASE

Exceptions:

None

Instruction mnemonics:

MF_FPCR Move from Floating-point Control Register
MT_FPCR Move to Floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fc fields all pointing to the same floating-point register.
If the Fa, Fb, and Fc fields do not all point to the same floating-point register, then
it is UNPREDICTABLE which register is used.

The use of these instructions and the FPCR are described in Section 4.7.7.
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4.10.5 VAX Floating Add

Format:

ADDx Fa.rx,Fb.rx Fc.wx IFloating-point Operate format
Operation:

Fc «— Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

ADDF Add F_floating
ADDG Add G_floating
Qualifiers:
Rounding: Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)
Description:

Register Fa is added to register Fb, and the sum is written to register Fec.

The sum is rounded or chopped to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs. See Section 4.7.5 for details of the stored result
on overflow or underflow.
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4.10.6 IEEE Floating Add

Format:

ADDx Fa.rx Fb.rx,Fe.wx Floating-point Operate format

Operation:

Fc «— Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

ADDS Add S_floating
ADDT Add T floating

Qualifiers:

Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)
Inexact Enable (/I)
Description:

Register Fa is added to register Fb, and the sum is written to register Fe.

The sum is rounded to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and mﬁmt1es trap)

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overﬂow, underflow, or inexact
result.
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4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq Floating-point Operate format

Operaﬂon:

IF Fav SIGNED_RELATION Fbv THEN
Fc « 4000 0000 0000 00001¢
ELSE
Fc « 0000 0000 0000 000014

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPGEQ Compare G_floating Equal
CMPGLE Compare G_floating Less Than or Equal
CMPGLT Comp;re G_floating Less Than
Qualifiers:
Trapping: Software (/S)
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (0.5) is written to register Fc; otherwise,
a true zero is written to Fe.

Comparisons are exact and never overflow or underflow. Three mutually exclusive
relations are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

Notes:

* Compare Less Than A B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.10.8 IEEE Floating Compare

Format:
CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Operate format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc «— 4000 0000 0000 000016
ELSE
Fc « 0000 0000 0000 00001¢

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPTEQ Compare T floating Equal
CMPTLE Compare T_floating Less Than or Equal
CMPTLT Compare T_floating Less Than

CMPTUN Compare T_floating Unordered

Qualifiers:

Trapping: Software (/S)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (2.0) is written to register Fc; otherwise,
a true zero is written to Fe.

Comparisons are exact and never overflow or underflow. Four mutually exclusive
relations are possible: less than, equal, greater than, and unordered. The unordered
relation is true if one or both operands are NaN. (This behavior must be provided
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero,
so +0 = -0.

An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones and a non-zero fraction (IEEE
NaNs). The contents of Fc are UNPREDICTABLE if this occurs.
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Comparisons with plus and minus infinity execute normally and do not take an
invalid operation trap. \ This was added to support fast path selection through
infinity testing in scientific codes.\

Notes:

¢ Compare Less Than A,B is the same as Compare Greatér Than B,A; Compare
Less Than or Equal A B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.10.9 Convert VAX Floating to Integer
- Format:
CVTGQ Fb.rx,Fc.wq | !Floating-point Operate format
Operation:

Fc «— {conversion of Fbv}

Exceptions:

Invalid Operation '
Integer Overflow

Instruction mnemonics:

CVTGQ Convert G_floating to Quadword
Qualifiers:
Rounding: Chopped (/C)
Trapping: Software (/S)
Integer Overflow Enable (/V)

Description:

The floating operand in register Fb is converted to a two’s-complement quadword
number and written to register Fc. The conversion aligns the operand fraction with
the binary point just to the right of bit zero, rounds as specified, and complements
the result if negative.

An invalid operation trap is signaled if the operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow.

4-94 Common Architecture (1)

igital Restricted Distribution



—

'4.10.10 Convert Integer to VAX Floating

Format:

CVTQy Fb.rq,Fc‘.wx IFloating-point Operate format

Operation:
Fc +— {conversion of Fbv<63:0>}
Exceptions:

None

Instruction mnemonics:

CVTQF Convert Quadword to F_ﬂoating
CVTQG Convert Quadword to G_floating
Qualifiers:

Rounding: Chopped (/C)

Description:

The two’s-complement quadword operand in register Fb is converted to a single-
or double-precision floating result and written to register Fc. The conversion
complements a number if negative, normalizes it, rounds to the target precision,
and packs the result with an appropriate sign and exponent field.
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4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy Fb.rx,Fc.wx | !Floating—point Operate format
Operation:

Fc +— {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

CVTDG Convert D_floating to G_ﬂoating
CVTGD Convert G_floating to D_floating
CVTGF Convert G_floating to F_floating

Qualifiers:

Rounding: Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fc.

An invalid operation trap is signaled if the operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dlrty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7 .5‘_for details of the stored result on overflow or underflow.

Notes:

* The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing
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three fraction bits. The conversion from G_floating to D_floating adds three low-
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow
/underflow.

The conversion from G_floating to F_floating rounds or chops to single precision,
then the 8-bit exponent range is checked for overflow/underflow.

No conversion from F_floating to G_floating is required, since F_floating values
are always stored in registers as equivalent G_floating values.
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4.10.12 Convert IEEE Floating to Integer

Format:

CVITQ  Fb.rx,Fe.wq !Floating-point Operate format
Operation:

Fc « {conversion of Fbv}
Exceptioﬁs:

Invalid Operation
Inexact Result
Integer Overflow

Instruction mnemonics:

CVTTQ Convert T_floating to Quadword

Qualifiers:

Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Integer Overflow Enable (/V)
Inexact Enable (/I)
Description:

The floating operand in register Fb is converted to a two’s-complement number and
written to register Fc. The conversion aligns the operand fraction with the binary
point just to the right of bit zero, rounds as specified, and complements the result if
negative.

An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow and inexact
result.
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4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy  Fb.rq,Fcwx !Floating-point Operate format

Operation:

Fc +— {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS Convert Quadword to S_floating
CvVTQT Convert Quadword to T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Inexact Enable (/I)

Description:

The two’s-complement operand in register Fb is converted to a single- or double-
precision floating result and written to register Fc. The conversion complements
a number if negative, normalizes it, rounds to the target precision, and packs the
result with an appropriate sign and exponent field.

See Section 4.7.5 for details of the stored result on inexact result.
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4.10.14 Convert IEEE Floating to IEEE Floating

Format: |

CVTTS Fb.rx,Fc.wx !Floating—point Operate format
Operation:

Fc — {conversion of Fbv}
Exceptions:

Invalid Operation
Overflow
Underflow

inexact Result

Instruction mnemonics:

CVTTS Convert T_floating to S_floating
Qualifiers:
Rounding: Dymamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)
Inexact Enable (/I)
Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fe.

An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underfiow, or inexact
result.
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Notes:

* No conversion from S_floating to T_floating is required, since S_floating values
are always stored in registers as equivalent T_floating values.
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4.10.15 VAX Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-pqint Operate format

Operation:

Fc «— Fav / Fbv

Exceptiohs:

Invalid Operation
Division by Zero
Overflow
Underflow

Instruction mnemonics:

DIVF Divide F_ﬂoating
DIVG Divide G_floating

Qualifiers:

Rounding: Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fe.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.
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* An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.

Instruction Descriptions (I) 4-103

Digital Restricted Distribution




4.10.16 IEEE Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc «— Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow

Inexact Result

Instruction mnemonics:

DIVS Divide S_floating
DIVT Divide T_floating
Qualifiers:

Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)
Inexact Enable (/I)

Description:

The dividend operand in register Fa is divided by the divisor operand in register ¥b,
and the quotient is written to register Fe.

The quotient is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.17 VAX Floating Multiply

Format:

MULx Fa.rx,F‘b.rx,Fc.wx Floating-point Operate format

Operation:

Fc «— Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

MULF Multiply F_floating
MULG Multiply G_floating

Qualifiers:

Rounding: Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fe.

The product is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.
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4.10.18 IEEE Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format
Operation:

Fc +— Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

MULS Multiply S_floating
MULT Multiply T _floating
Qualifiers:

Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)

Trapping: Software (/S)
Underflow Eenable (/U)
Inexact Enable (/T)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fe.

The product is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.19 VAX Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate format

Operation:

F¢c +— Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

SUBF Subtract F_floating
SUBG Subtract G_floating

Qualifiers:

Rounding: Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fec.

The difference is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision

' operation on canonical single-precision values produces a canonical single-precision
result.
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An invalid operation trap is signaled if either operand has exp=0 and is not a true zero (that
is, VAX reserved operands and dirty zeros trap). The contents of Fc are UNPREDICTABLE
if this occurs. .

See Section 4.7.5 for details of the stored result on overflow or underflow.
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~ 4.10.20 IEEE Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx IFloating-point Operate-format
Operation:

F¢c «— Fav - Fbv
Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

SUBS Subtract S_floating
SUBT Subtract T_floating
Qualifiers:
Rounding: Dynamic (/D)
Minus infinity (/M)
Chopped (/C)
Trapping: Software (/S)
Underflow Enable (/U)
Inexact Enable (/I)
Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fe.

The difference is rounded to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).
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The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4-12.

Table 4-12: Miscellaneous Instructions Summary
Mnemonic Operation

CALL_PAL  Call Privileged Architecture Library Routine

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent
MB: Memory Barrier

RPCC Read Process Cycle Counter
TRAPB Trap Barrier
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4.11.1 Call Privileged Architecture Library

Format:

CALL_PAL fncir [PAL format

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptionms.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

CALL_PAL Call Privileged Architecture Lil;rary

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are
guaranteed to complete without exceptions. If an exception occurs, the continuation
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_
PAL instruction causes a trap to PALcode.
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4.11.2 Prefetch Data

Format:

FETCHx O(Rb.ab) Memory format

Operation:

va +— {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH Prefetch Data
FETCH_M  Prefetch Data, Modify Intent

Qualifiers:

None

Description:

The virtual address is given by Rbv. This address is used to designate an aligned
512-byte block of data. An implementation may optionally attempt to move all or
part of this block (or a larger surrounding block) of data to a faster-access part of
the memory hierarchy, in anticipation of subsequent Load or Store instructions that
access that data.

The FETCH instruction is a hint to the implementation that may allow faster
execution. An implementation is free to ignore the hint. If prefetching is
done in an implementation, the order of fetch within the designated block is
UNPREDICTABLE.

“The FETCH_M instruction gives the additional hint that modifications (stores) to
some or all of the data block are anticipated.

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_
M) that uses the same address would fault, the prefetch request is ignored. It is
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx.
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IMPLEMENTATION NOTE
Implementations are encouraged to take the TB-miss
fault, then continue the prefetch.

The programming model for effective use of FETCH and FETCH_M is given in
Appendix A.

SOFTWARE NOTE
FETCH is intended to help software overlap memory
latencies on the order of 100 cycles. FETCH is unlikely
to help (or be implemented) for memory latencies on the
order of 10 cycles. Code scheduling should be used to
overlap such short latencies.
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4.11.3 Memory Barrier

Format:

MB !Memory format

Operation:

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations

are allowed to complete out of order on the issuing processor as observed by other

processors. The MB instruction allows memory accesses to be serialized on the

issuing processor as observed by other processors. See Chapter 5 for details on using
~ the MB instruction to serialize these accesses. Chapter 5 also details coordinating
© IEemory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the
progress of memory operations.
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4.11.4 Read Process Cycle Counter

Format:

RPCC Ra.wq !Memory format

Operation:

Ra «— {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Process Cycle Counter

Qualifiers:

None

Description:

Register Ra is written with the process cycle counter (PCC).

The low-order 32 bits of the process cycle counter is an unsigned 32-bit integer that
increments once per N CPU cycles, where N is an implementation-specific integer in
the range 1..16. The cycle counter frequency is the number of times the process cycle
counter gets incremented per second, rounded to a 64-bit integer. The integer count
wraps to O from a count of FFFF FFFF4. The counter wraps no more frequently than
1.5 times the implementation’s interval clock interrupt period (which is two thirds
of the interval clock interrupt frequency). The high-order 32 bits of the process cycle
counter are an offset that when added to the low-order 32 bits gives the cycle count
for this process.

The process cycle counter is suitable for timing intervals on the order of nanoseconds
and may be used for detailed performance characterization. It is required on all
implementations. PCC is required for every processor, and each processor in a
multiprocessor system has its own private, independent PCC.

\INTERNAL IMPLEMENTATION NOTE
An implementation-dependent mechanism must exist
that, when enabled, causes the RPCC instruction always
to return a zero in Ra. This mechanism must be usable
by privileged system software. \
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As an example, consider the following code that returns in RO the current cycle count
MOD 2**32.

RPCC RO ; Read the process cycle counter

SLL RO, #32, Rl ; line up the offset and count fields
ADDQ RO, R1l, RO ; do add

SRL RO, #32, RO ; zero extend the cycle count to 64 bits
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4.11.5 Trap Barrier

Format:

TRAPB Memory format

Operation:

{Stall instruction issuing until all prior instructions are
guaranteed to complete without incurring arithmetic traps.}

Exceptions:

None

Instruction mnemonics:

TRAPB Trap Barrier

Qualifiers:

None

Description:

The TRAPB instruction allows software to guarantee that in a pipelined
implementation, all previous arithmetic instructions will complete without incurring
any arithmetic traps before any instructions after the TRAPB are issued. For
example, TRAPB should be used before changing an exception handler to ensure
that all exceptions on previous instructions are processed in the current exception-
handling environment.
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4-13 for use in translated VAX code.
These instructions are not a permanent part of the architecture and will not be
available in some future implementations. They are intended to preserve customer
assumptions about VAX instruction atomicity in porting code from VAX to Alpha.

NOTE
\They will be removed, and not emulated, after the first
two full generations of Alpha implementations, that is,
about 1995. \

These instructions should be generated only by the VAX-to-Alpha software
translator; they should never be used in native Alpha code. Any native code that
uses them may cease to work.

Table 4-13: VAX Compatiblllty Instructions Summary
Mnemonic Operation

RC Read and Clear
RS Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

Rx Ra.wq IMemory format
Operation:

Ra « intr_flag

intr flag <« O !RC

intr_flag « 1 'RS
Exceptions:

None

Instruction mnemonics:

RC Read and Clear
RS Read and Set
Qualifiers:
None
Description:

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha
instructions between RS and RC (corresponding to a single VAX instruction) was

executed without interruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor

encounters a CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when -that
processor executes an LDx_L or STx_C instruction. A processor’s intr_flag is not
affected when that processor executes a normal load or store instruction.

A processor’s intr_flag is not affected when that processor executes a taken branch.

NOTE

These instructions are intended only for use by the VAX-
to-Alpha software translator; they should never be used

by native code.
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4.13 \REVISION HISTORY
Revision 5.0, May 12, 1992

1
2
3
4.
5
6

added eco #41 to LDx_C and format style change

. ’Changed DRAINT to TRPB

Converted to SDML
Modifed description of MULQ to spec. operands and result are signed

. Removed FCMOV and CVTLQ from instructions that set FPCR bits

Changed byte mask for INSxx and MSKxx instructions to 16 bit value

Revision 4.0, March 29, 1991

1.
2.
3.

o

© o 2@

11.

12.
13.
14.

15.

16.

Added Scaled Add and Subtract
Added FPCR register and accompanying text

Bits <13:0> of branch dlsplacement field in RET and JSR_COROUTINE reserved
to Digital software

Removed references to D_floating point

Clarified floating-point subset requlrements and added OpenVMS requirements

for FP regs and T_floating memory ops in implementation without floating-point

support

Make TEST a dyadic operator with explicit condition argument
F1x ADDQ to allow literal as second operand, not first

Add format type to Arithmetic and Logical and shift Instructions

Rename operator ARITH_SHIFT to ARITH_RIGHT_SHIf”I‘ and upgrade
description

. Add description of how to dérive upper 64 bits of product (using UMULH) to

MULQ description

Add requirement that F_, D_, and G_floating operate Instructions materialize a
true zero

Clarify expressions for MAX F_, D_, G, S_, and T_ values
Reorder special values table in floating-point encodings section

Modify MB description to indicate that MB works only on instructions from
issuing processor

Disambiguate between instances when floating disabled faults and illegal
instruction traps are taken

Clarify that low order bits are returned on integer overflow arithmetic conversion
traps
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4-124

17.

18.
19.
20.
21.

22.

23.

24.

25.
26.

27.
28.
29.

Add description to STx_C Instruction that clarifies implementation requirements
for execution of STxC Instruction

Correct decimal value given for MIN T_floating
Impose uniform usage of CASE pseudocode construct
Insert spaces into long hex and binary values to improve legibility

Added optimized sign-extended byte load code fragment to code examples in
Extract Byte Instruction description

Clarify use and significance of X+C notation in code examples for Extract Byte
Instruction

Clarify note describing how a Read For Ownership cache coherency protocol can

affect LDx_L/STx_C sequence

Change reference in Floating-Point Operate Format Instructions from ’floating-
point arithmetic operations’ to 'floating-point operate Instructions’

Rename RCC instruction to 'Read Process Cycle Counter’ and modify definition

Changed values of displacement bits <13:0> in ’Jump To Subroutine’ instruction
to indicate that all values from 0010 to 1111, are reserved to Digital

Removed text in Longword Add instruction that described carry detection
Specified overflow bits returned for Longword Mulutiply
Removed text in Longword Subtract instruction that described carry detection

Revision 3.0, March 2, 1990

© ® N ook W D

= e
N = O

[
(L)

Rename GOTO to BR, and JSRs to JMP, JSB, RET
Rename MSKxx to ZAPxx

Remove CVTFQ, and CMPFxx

Remove CVT float-to-longword; add CVTQL/LQ
Make non-canonical longword +-* well-defined
Rename memory-format JSR to BSR

Add VAX compatibility Instructions RC, RS

Add Fetch and Fetch_M

Add low bit set and clear ecmoves

. Remove Nudge
. Add longword lock Instructions
. Remove longword load address Instructions

. Add quadword load address high
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14. Rework the LDx/L description
15. Change EXTxx/INSxx back to V1.0 SRM EXTxx/INSxx/MRGxx
16. Change floating-point exception behavior back to V1.0 SRM behavior

Revision 2.0, October 4, 1989

Add TLE provided comment on emulation of Instructions
Change shift range from 0..64 to 0..63

Remove FASx, SWP, FREEZE, THAW Instructions

Add load lock and store conditional Instructions

Remove WAIT/WAITF Instructions

Change DRAIN to DRAINT and only drain for arithmetic traps
Add memory barrier and nudge Instructions

Rework Floating-point exceptions

Add cycle counter

© ® N A L N

Revision 1.0, May 23, 1989

Rework Floating-point to be unmoded

Remove subsetting of integer MUL

Remove integer DIV

Add Freeze and Thaw

Rename Lock/Unlock to SWP and FASx and remove long version of lock
Add conditional move

Add branch on low bit branches (BLBS/BLBC)

Add WAIT/WAITF Instructions

S T A o N o

Revision 0.0, March 15, 1989
1. Initial Version
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Chapter 5
System Architecture and Programming Implications

(1)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and
the system structure, of both uniprocessor and multiprocessor implementations.
Architectural implications considered in the following sections are:

¢ Physical memory behavior

¢ Caches and write buffers

* Translation buffers and virtual caches

¢ Data sharing

¢ Read/write ordering

* Stacks

¢ Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware

implementors need to take these issues into consideration.

5.2 Physical Memory Behavior

Alpha physical memory space is divided into four regions, based on the two most
significant, implemented, physical address bits. Each region’s behavior can be
described in terms of its coherency, granularity, width, and memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write
by a processor or I/O device (hereafter, called “processor”) becomes visible to all other
processors. No distinction is made between coherency of “memory space” and “I/O
space”.

Memory coherency may be provided in different ways for each of the four physical
address regions.

Possible per-region policies include, but are not restricted to:
1. No caching

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or I/O register).
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2. Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes
update the actual data location and either update or invalidate all copies.

3. Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies,
and writes use additional state to determine whether there are other copies to
invalidate or update.

Part of the coherency policy implemented for a given physical address region may
include restrictions on excess data transfers (performing more accesses to a location
than is necessary to acquire or change the location’s value), or may specify data
transfer widths (the granularity used to access a location).

Independent of coherency policy, a processor may use different hardware or different
hardware resource policies for caching or buffering different physical address

regions.
5.2.2 Granularity of Meimoiy Access

For each region, an implementation must support aligned quadword access and may
optionally support aligned longword access.

For a quadword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned quadwords produce the same
results regardless of the order of execution. Further, an access to an aligned
quadword must be done in a single atomic operation.

For a longword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned longwords produce the same
results regardless of the order of execution. Further, an access to an aligned
longword must be done in a single atomic operation, and an access to an aligned
quadword must also be done in a single atomic operation.

In this context, “atomic” means that if different processors do simultaneous reads
and writes of the same data, it must not be possible to observe a partial write of the
subject longword or quadword.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered,
and prefetched.

A processor may read more physical memory data (such as a full cache block) than
is actually accessed, writes may trigger reads, and writes may write back more data
than is actually updated. A processor may elide multiple reads and/or writes to the
same data.
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5.2.4 Memory-Like Behavior
A memory-like region obeys the following rules:

Each page frame in the region either exists in its entirety or does not exist in its
entirety; there are no holes within a page frame.

All locations that exist are read/write.

A write to a location followed by a read from that location returns precisely the
bits written; all bits act as memory.

A write to one location does not change any other location.
Reads have no side effects.

Longword access granularity is provided.

Instruction-fetch is supported.

Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

Unimplemented locations or bits may exist anywhere.
Some locations or bits may be read-only and others write-only.

Address ranges may overlap, such that a write to one location changes the bits
read from a different location.

Reads may have side effects, although this is strongly discouraged.
Longword granularity need not be supported.

Instruction-fetch need not be supported.

Load-locked and store-conditional need not be supported.

HARDWARE/SOFTWARE COORDINATION NOTE
The details of such behavior are outside the scope
of the Alpha architecture. Specific processor and
/0O device implementations may choose and document
whatever behavior they need. It is the responsibility of
system designers to impose enough consistency to allow
processors successfully to access matching non-memory
devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a a virtual instruction cache (virtual I-cache) or a
virtual data cache (virtual D-cache). A system may also choose to include either
a combined data and instruction Translation Buffer (TB) or separate data and
instruction TBs (DTB and ITB). The contents of these caches and/or translation

System Architecture and Programming Implications (I) 5-3

Restricted Distribution




buffers may become invalid, depending on what operating system activity is being
performed.

Whenever a nonsoftware field of a valid Page Table Entry (PTE) is modified, copies
of that PTE must be made coherent. PALcode mechanisms are available to clear all
TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a given
VA, or all entries with the Address Space Match (ASM) bit clear. Virtual D-cache
entries are made coherent whenever the corresponding DTB entry is requested to
be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries
can be made coherent via the CALL_PALL IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has
the address space match (ASM) bit clear (ASNs in use) and the valid bit set, then
entries can also effectively be made coherent by assigning a new, unused ASN to
the currently running process and not reusing the previous ASN before calling the
appropriate PALcode routine to invalidate the Translation Buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only
one processor is not always sufficient. An operating system must arrange to perform
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the above actions on cach processor that could possibly have copies of the PTE or

data for any affected page.
5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time
by making local copies of recently used memory contents (or those expected to be
used) or by buffering writes to complete at a later time. Caches and write buffers are
examples of these mechanisms. They must be implemented so that their existence
is transparent to software (except for timing, error reporting/control/recovery, and
modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations.
All processors must provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate writes. From the viewpoint
of another processor, buffered writes appear not to have happened yet. (Write
buffers must not delay writes indefinitely. See Section 5.6.1.9.)

2. Write-back caches must be able to detect a later write from another processor
and invalidate or update the cache contents.

3. A processor must guarantee that a data store to a location followed by a data
load from the same location must read the updated value.

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid
pages.

5. A processor must guarantee that all of its previous writes are visible to all other
processors before a HALT instruction completes. A processor must guarantee
that its caches are coherent with the rest of the system before continuing from
a HALT.
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6. If battery backup is supplied, a processor must guarantee that the memory
system remains coherent across a powerfail/recovery sequence. Data that was
written by the processor before the powerfail may not be lost, and any caches
must be in a valid state before (and if) normal instruction processing is continued
after power is restored.

7. Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that
creates or modifies the instruction stream must execute a CALL_PAL IMB before
trying to execute the new instructions.

For example, if two different virtual addresses, VA1 and VA2, map to the same
page frame, a store to VA1l modifies the virtual I-stream fetched via VA2.

However, the sequence:

1. Change the mapping of an I-stream page from valid to invalid, then

2. Copy the corresponding page frame to a new page frame, then

3. Change the original mapping to be valid and point to the new page frame
does not modify the virtual I-stream (this might happen in soft page faults).

8. Physical instruction caches are not required to notice modifications of the
physical I-stream (they need not be coherent with the rest of memory), except for
certain paging activity. (See Section 5.6.1.9.) Software that creates or modifies
the instruction stream must execute a CALL_PAL IMB before trying to execute
the new instructions.

In this context, to “modify the physical I-stream” means any Store to the same
physical address that is subsequently fetched as an instruction.

In this context, to “modify the virtual I-stream” means any Store to the same physical
address that is subsequently fetched as an instruction via some corresponding
(virtual address, ASN) pair, or to change the virtual-to-physical address mapping
so that different values are fetched.

5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change
of a shared aligned longword or quadword. (“Change” means that the new value is
not a function of the old value.) In particular, an ordinary STL or STQ instruction
can be used to change a variable that could be simultaneously accessed via an LDx_
L/STx_C sequence.
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5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic
update of a shared aligned longword or quadword. (“Update” means that the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instructions and branch fall-throughs may occur in the
sequence: '
try_again:

LDQ L R1,x

<modify R1>

STQ_ C Rl,x

BEQ Rl,no_store

no_store:
<code to check for excessive iterations>
BR try_again

THav_°

if this sequence runs with no exceptions or interrupts, and no other processor writes
to location x (more precisely, the locked range including x) between the LDQ_L and
STQ_C instructions, then the STQ_C shown in the example stores the modified value
in x and sets R1 to 1. If, however, the sequence encounters exceptions or interrupts
that eventually continue the sequence, or another processor writes to x, then the
STQ_C does not store and sets R1 to 0. In this case, the sequence is repeated via
the branches to no_store and try_again. This repetition continues until the reasons
for exceptions or interrupts are removed, and no interfering store is encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary
number of times, giving the same result values each time. A sufficient (but not
necessary) condition is that, within the sequence, the set of operand destinations
and the set of operand sources are disjoint.

NOTE v
A sufficiently long instruction sequence between LDQ_
L and STQ_C will never complete, because periodic
timer interrupts will always occur before the sequence

completes. The rules in Appendix A describe
sequences that will eventually complete in all Alpha
implementations.

This load-locked/store-conditional paradigm may be used whenever an atomic update
of a shared aligned quadword is desired, including getting the effect of atomic byte
writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned
longword or quadword), the programmer can acquire control of the data structure
by using an atomic update to set a software lock variable. Such a software lock can
be cleared with an ordinary store instruction.
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A software-critical section, therefore, may look like the sequence:

stq_c_loop:
spin_ loop:
"~ LDQ_L R1,lock_variable \

BLBS Rl,already_set \
OR R1l, #1,R2 > Set lock bit
STQ C R2,lock_variable /
BEQ R2,stq_c_fail /
MB
<critical section: updates various data structures>
MB

STQ R31, lock variable ; Clear lock bit

already_set:

<code to block or reschedule or test for too many iterations>
BR spin_loop

stq_c_fail:

<code to test for too many iterations>
BR stg_c_loop

This code has a number of subtleties:

1.

8.
9.
~ It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ C

If the lock_variable is already set, the spin loop is done without doing any stores.
This avoidance of stores improves memory subsystem performance and avoids
the deadlock described below.

If the lock_variable is actually being changed from 0 to 1, and the STQ_C fails
(due to an interrupt, or because another processor simultaneously changed lock_
variable), the entire process starts over by reading the lock_variable again.

Only the fall-through path of the BLBS does a STx_C; some implementations
may not allow a successful STx_C after a branch-taken.

Only register-to-register operate instructions are used to do the modify.

Both conditional branches are forward branches, so they are properly predicted
not to be taken (to match the common case of no contention for the lock).

The OR writes its result to a second register; this allows the OR and the BLBS
to be interchanged if that would give a faster instruction schedule.

Other operate instructions (from the critical section) may be scheduled into
the LDQ_L..STQ_C sequence, so long as they do not fault or trap, and they
give correct results if repeated; other memory or operate instructions may be
scheduled between the STQ_C and BEQ.

The MB instructions are discussed in Section 5.5.4.
An ordinary STQ instruction is used to clear the lock_variable.

sequence (to move the BLBS after the BEQ) because that sequence may repeatedly
change the software lock_variable from “locked” to “locked,” with each write causing
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extra access delays in all other caches that contain the lock_variable. In the extreme,
spin-waits that contain writes may deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not
changing) the lock_variable, then the writes on the first processor may cause the
STx_C of the modify on the second processor always to fail.

This deadlock situation is avoided by:
¢ Having only one processor do a store (no STx_C), or
* Having no write in the spin loop, or

* Doing a write only if the shared variable actually changes state (1 — 1 does not
change state).

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three
steps:

A nrcaamn cooadbess. ~ ol

1 ACJGUIre s ftware luun
2. Critical section—read/write shared data
3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha architecture allows
reads and writes to be reordered. While this may allow more implementation speed
and overlap, it can also create undesired side effects on shared data structures.
Normally, the critical section just described would have two instructions added to it:

<acquire software lock>

MB (memory barrier #1)

<critical section -- read/write shared data>
MB (memory barrier #2)

<clear software lock>

The first memory barrier prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data.

The second memory barrier prevents any reads or writes. (from within the critical
section) from being delayed past the clearing of the software lock; such delayed
accesses could interact with the next user of the shared data, defeating the purpose
of the software lock entirely. :

SOFTWARE NOTE
In the VAX architecture, many instructions provide non-
interruptable read-modify-write sequences to memory
variables. Most programmers never regard data sharing
as an issue.

In the Alpha architecture, programmers must pay more
attention to synchronizing access to shared data; for
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example, to AST routines. In the VAX a programmer
can use an ADDL2 to update a variable that is shared
between a “MAIN” routine and an AST routine, if
running on a single processor. In the Alpha architecture,
a programmer must deal with AST shared data by using
multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section does not apply to programs that run on a single processor and do not
write to the instruction stream. On a single processor, all memory accesses appear
to happen in the order specified by the programmer. This section deals entirely with
predictable read/write ordering across multiple processors.

The order of reads and writes done in an Alpha implementation may differ from that
specified by the programmer.

For any two memory references A and B, either A must occur before B in all Alpha
implementations, B must occur before A, or they are UNORDERED. In the last
case, software cannot depend upon one occurring first: the order may vary from
implementation to implementation, and even from run to run or moment to moment
on a single implementation.

If two references cannot be shown to be ordered by the rules given, they are
UNORDERED and implementations are free to do them in any order that is
convenient. Implementations may take advantage of this freedom to deliver
substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory
references on a single processor, then defines the (partial) ordering on this issue
sequence that all Alpha implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access
sequences at each shared memory location. The discussion defines the (partial)
ordering on the individual access sequences that all Alpha implementations are
required to maintain.

The net result is that for any code that executes on multiple processors, one can
determine which memory accesses are required to occur before others on all Alpha
implementations and hence can write useful shared-variable software.

Software writers can force one reference to occur before another by inserting a
memory barrier instruction (MB or IMB) between the references.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection of processors and shared coherent memories
that are accessible by all processors. (There may also be unshared memories, but
they are outside the scope of this section.)
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NOTE
\ Unshared example: On the PMI, some physical

addresses in I/O space access unshared processor-local
CSRs.\

A processor is an Alpha CPU or an I/O device (or anything else that gets added).
A shared memory is the primary storage place for one or more locations.

A location is an aligned quadword, specified by its physical address. Multiple virtual
addresses may map to the same physical address. Ordering considerations are based
only on the physical address.

IMPLEMENTATION NOTE
An implementation may allow a location to have
multiple physical addresses, but the rules for accesses
via mixtures of the addresses are implementation-
specific and outside the scope of this section. Accesses
via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are five
types of accesses:

Instruction fetch by processor i to location x, returning value a, denoted Pi:I(x,a).
Data read by processor i to location x, returning value a, denoted Pi:R(x,a).
Data write by processor i to location x, storing value a, denoted Pi:W(x,a).

Memory barrier instruction issued by processor i, denoted Pi:MB.

ok N

I-stream memory barrier instruction issued by processor i, denoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are
also called D-stream accesses. The first three types collectively are called read/write
accesses, denoted Pi:*(x,a). The last two types collectively are called barriers.

During actual execution in an Alpha system, each processor has a time-ordered issue
sequence of all the memory references presented by that processor (to all memory
locations), and each location has a time-ordered access sequence of all the accesses
presented to that location (from all processors).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a
hypothetical simple implementation that contains one processor and a single shared
memory, with no caches or buffers. This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a
single data read from memory for a Load instruction or a single data write to
memory for a Store instruction.
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5.6.1.2

5.6.13

3. Update: The PC for the processor is updated.
4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done
and the PC is updated to point to a PALcode fault handler. If the read/write step
gets a memory management fault, the read/write is not done and the PC is updated
to point to a PALcode fault handler.

All memory references are aligned quadwords. For the purpose of defining ordering,
aligned longword references are modeled as quadword references to the containing
aligned quadword.

Definition of Processor Issue Order

A partial ordering, called processor issue order, is imposed on the issue sequence
defined in Section 5.6.1.1.

For two accesses u and v issued by processor Pi, u is said to PRECEDE v IN ISSUE
ORDER (<) if u occurs earlier than v in the issue sequence for Pi, and either of the
following applies:

1. The access types are of the following issue order:

Table 5-1: Processor Issue Order
1st|/2nd— Pil(y,b) PiR(y,b) Pi:W(y,b) Pi:MB Pi:IMB

Pi:I(x,a) < if x=y <ifx=y < <
Pi:R(x,a) <ifx=y <ifx=y <« <
Pi:W(x,a) <ifx=y <ifx=y < <
Pi:MB < < < <
Pi:IMB < < < < <

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss, and v is
an I- or D-stream access using that PTE (see Section 5.6.2).

Issue order is thus a partial order imposed on the architecturally specified issue
sequence. Implementations are free to do memory accesses from a single processor
in any sequence that is consistent with this partial order.

Note that accesses to different locations are ordered only with respect to barriers
and TB fill. The table asymmetry for I-fetch allows writes to the I-stream to be
incoherent until an IMB is executed.

Definition of Memory Access Sequence

The access sequence for a location cannot be observed directly, nor fully
predicted before an actual execution, nor reproduced exactly from one execution
to another. Nonetheless, some useful ordering properties must hold in all Alpha
implementations.
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5.6.1.4

5.6.1.5

5.6.1.6

Definition of Location Access Order

A partial ordering, called location access order, is imposed on the memory access
sequence defined above.

For two accesses u and v to location x, u is said to PRECEDE v IN ACCESS ORDER
(<) if u occurs earlier than v in the access sequence for x, and at least one of them
is a write:

Table 5-2: Location Access Order

1st|/2nd— Pil(x,b) Pi:R(x,b) Pi:W(x,b)

Pil(x,a) <
Pi:R(x,a) <
PiWx,a) <« < <

Access order is thus a partial order imposed on the actual access sequence for a
given location. Each location has a separate access order. There is no direct ordering

[, P RS NP R N SR PUPUP P N I . A N P .
ICIALVIVLBILY UCLWECLL aClTBdeS W ULLITICLLL 1utallulls.

Note that reads and I-fetches are ordered only with respect to writes.

Definition of Storage

If u is Pi:W(x,a), and v is either Pj:I(x,B) or Pj:R(x,b), and u<v, and no w Pk:W(x,c)
exists such that u«w<v, then the value b returned by v is exactly the value a
written by u.

Conversely, if u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and b=a (and a is
distinguishable from values written by accesses other than u), then u«v and for any
other w Pk:W(x,c) either w<u or v<w.

The only way to communicate information between different processors is for one to
write a shared location and the other to read the shared location and receive the
newly written value. (In this context, the sending of an interrupt from processor
Pi to processor Pj is modeled as Pi writing to a location INTjj, and Pj reading from
INTyj.)

Relationship Between Issue Order and Access Order

If u is Pi:*(x,a), and v is Pi:*(x,b), one of which is a write, and u<v in the issue order
for processor Pi, then u<v in the access order for location x.

In other words, if two accesses to the same location are ordered on a given processor,
they are ordered in the same way at the location.

5.6.1.7 Definition of Before

For two accesses u and v, u is said to be BEFORE v («) if:

u<vor
uKvor
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there exists an access w such that:

(u<wand w < v) or
(u < wand w < V).

In other words, “before” is the transitive closure over issue order and access order.

5.6.1.8 Definition of After

If u < v, then v is said to be AFTER u.

At most one of u <« v and v < u is true.

5.6.1.9 Timeliness

Even in the absence of a barrier after the write, a write by one processor to a given
location may not be delayed indefinitely in the access order for that location.

5.6.2 Litmus Tests

5.6.2.1

Many issues about writing and reading shared data can be cast into questions about
whether a write is before or after a read. These questions can be answered by
rigorously applying the ordering rules described previously to demonstrate whether
the accesses in question are ordered at all.

Assume, in the litmus tests below, that initially all memory locations contain 1.

Litmus Test 1 (Impossible Sequence)

Pi Pj

[U11Pi:W(x,2) [V1] Pj:R(x,2)
[V2] Pj:R(x,1)

V1 reading 2 implies Ul « V1, By the definition of storage
V2 reading 1 implies V2 « Ul, by the definition of storage
V1 < V2, by the definition of issue order

The first two orderings imply that V2 « V1, whereas the last implies that V1 « V2.

Both implications cannot be true. Thus, once a processor reads a new value from a

location, it must never see an old value—time must not go backward. V2 must read
2.

5.6.2.2 Litmus Test 2 (Impossible Sequence)

Pi Pj

[U11Pi:W(x,2) [V1] Pj:W(x,3)
[V2] Pj:R(x,2)
[V3] Pj:R(x,3)

V2 reading 2 implies V1 <« Ul
V3 reading 3 implies Ul < V1

System Architecture and Programming Implications () 5-13

estricted |

istribution




Both implications cannot be true. Thus, once a processor reads a new value written

by Ul, any other writes that must precede the read must also precede Ul. V3 must
read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)
Pi Pj Pk
[U1]Pi:W(%,2) [V1] Pj:W(x,3) [W1] Pk:R(x,3)
[U2] Pi:R(x,3) [W2] Pk:R(x,2)

U2 reading 3 implies Ul « V1
W2 reading 2 implies V1 < Ul

Both implications cannot be true. Again, time cannot go backward. If U2 reads 3
then W2 must read 3. Alternately, if W2 reads 2, then U2 must read 2.

5.6.2.4 Litmus Test 4 (Sequence Okay)
Py Pi
[U1]Pi:W(x,2) [V1] Pj:R(y,2)
[U2] Pi:W(y,2) [V2] Pj:R(x,1)

There are no conflicts in this sequence. U2 < V1 and V2 <« Ul. Ul and U2 are not
ordered with respect to each cther. V1 and V2 are not ordered with respect to each
other. There is no conflicting implication that Ul <« V2.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Pi Pj
[U11Pi:W(x,2) [V1] Pj:R(y,2)
[V2] P;:MB

[U2] Pi:W(y,2) [V3] Pj:R(x,1)

There are no conflicts in this sequence. U2 < V1 <« V3 « Ul. There is no conflicting
implication that Ul « U2.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Pi Pj
[U1]Pi:W(x,2) [V1] Pj:R(y,2)
[U2] Pi:MB

[U3] Pi:W(y,2) [V2] Pj:R(x,1)

There are no conflicts in this sequence. V2 < Ul « U3 « V1. Thereis no conflicting
implication that V1 « V2.
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In scenarios 4, 5, and 6, writes to two different locations x and y are observed
(by another processor) to occur in the opposite order than that in which they were
performed. An update to y propagates quickly to Pj, but the update to x is delayed,
and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)
Pi Pj
[U1]1Pi:W(x,2) [V1] Pj:R(y,2)
[U2] Pi:MB (V2] Pj:-MB
[U3] PiW(y,2) [V3] Pj:R(x,1)

V1 reading 2 implies U3 «< V1
V3 reading 1 implies V3 « Ul
But, by transitivity, Ul <= U3 <= V1 < V3

Both cannot be true, so if V1 reads 2, then V3 must also read 2.
5.6.2.8 Litmus Test 8 (Impossible Sequence)

Pi Pj

[U1]Pi:W(x,2) [V1] Pj:W(y,2)

[U2] PiMB [V2] Pj:MB

[U3] Pi:R(y,1) [V3] Pj:R(x,1)

U3 reading 1 implies U3 « V1
V3 reading 1 implies V3 « Ul
But, by transitivity, Ul <= U3 «< V1 <= V3

Both cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.
5.6.2.9 Litmus Test 9 (Impossible Sequence)

Pi Pj

[U11Pi:W(x%,2) [V1] Pj:W(x,3)

[02] Pi:R(x,2) [V2] Pj:R(x,3)

[U3] Pi:R(%,3) [V3] Pj:R(x,2)

V3 reading 2 implies Ul < V3
V2 < V3 and V2 reading 3 implies V2 < Ul
V1 < V2 and V2 < Ul implies V1 < Ul

U3 reading 3 implies V1 « U3
U2 « U3 and U2 reading 2 implies U2 <= V1
Ul < U2 and U2 <« V1 implies Ul < V1
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Both V1 < Ul and Ul <« V1 cannot Be true. Time cannot go backwards. If V3 reads
2, then U3 must read 2. Alternatively, If U3 reads 3, then V3 must read 3.
5.6.3 Implied Barriers

In Alpha, there are no implied barriers. If an implied barrier is needed for
functionally correct access to shared data, it must be written as an explicit
instruction. (Software must explicitly include any needed MB or IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:
¢ Entry to PALcode

* Sending and receiving interrupts

* Returning from exceptions, interrupts, or machine checks

* Swapping context '

* Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some PAL
/cache implementations may have an implied IMB in the I-stream TB fill routine,
but this is transparent to the non-PAL programmer.

5.6.4 Implications for Software

Software must explicitly include MB or IMB instructions in the following
circumstances.

5.6.4.1 Single-Processor Data Stream

No barriers are ever needed. A read to physical address x will always return
the value written by the immediately preceding write to x in the processor issue
sequence.

5.6.4.2 Single-Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value
written by the immediately preceding write to x in the issue sequence. To make
the I-fetch reliably get the newly written instruction, an IMB is needed between the
write and the I-fetch.

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA 1/0)

_ The only way to communicate shared data reliably is to write the shared data on one
processor, then do an MB on that processor, then write a flag (equivalently, send an
interrupt) signaling the other processor that the shared data is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then do an
MB, then read or update the shared data.

Leaving out the first MB removes the assurance that the shared data is written
before the flag is.
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5.6.4.4

Leaving out the second MB removes the assurance that the shared data is read or
updated only after the flag is seen to change; in this case, an early read could see
an old value, and an early update could be overwritten.

This implies that after a CPU has prepared some data buffer to be read from memory
by a DMA T/O device (such as writing a buffer to disk), it must do an MB before
starting the I/0, and the I/O device after receiving the start signal must logically do
an MB before reading the data buffer.

This also implies that after a DMA I/O device has written some data to memory
(such as paging in a page from disk), the DMA device must logically do an MB
before posting a completion interrupt, and the interrupt handler software must do
an MB before the data is guaranteed to be visible to the interrupted processor. Other
processors must also do MBs before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to
some physical page frame, then an MB, then a previously invalid PTE is changed
to be a valid mapping of the physical page frame that was just written. In this
case, all processors that access using the newly valid PTE must guarantee to deliver
the newly written data after the TB miss, for both I-stream and D-stream accesses.
\This can perhaps be done in TB-miss PALcode.\

Multiple-Processor Instruction Stream (Including Single Processor with DMA 1/0)

The only way to update the I-stream reliably is to write the shared I-stream on one
processor, then do an IMB (MB if the writing processor is not going to execute the
new I-stream) on that processor, then write a flag (equivalently, send an interrupt)
signaling the other processor that the shared I-stream is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then do an
IMB, then fetch the shared I-stream.

Leaving out the first IMB(MB) removes the assurance that the shared I-stream is
written before the flag is.

Leaving out the second IMB removes the assurance that the shared I-stream is read
only after the flag is seen to change; in this case, an early read could see an old
value.

This implies that after a DMA I/O device has written some I-stream to memory (such
as paging in a page from disk), the DMA device must logically do an IMB(MB) before
posting a completion interrupt, and the interrupt handler software must do an IMB
before the I-stream is guaranteed to be visible to the interrupted processor. Other
processors must also do IMBs before they are guaranteed to see the new I-stream.

An important special case occurs when a write is done (perhaps by an I/O device)
to some physical page frame, then an IMB(MB), then a previously invalid PTE is
changed to be a valid mapping of the physical page frame that was just written. In
this case, all processors that access using the newly valid PTE must guarantee to
deliver the newly written I-stream after the TB miss.
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5.6.4.5 Multiple-Processor Context Switch

If a process migrates from executing on one processor to executing on another, the
context switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having
that context reloaded on another processor. In between, some shared mechanism
must be used to communicate that the context saved in memory by the first processor
is available to the second processor. This could be done by using an interrupt, by
using a flag bit associated with the saved context, or by using a shared-memory
multiprocessor data structure, as follows:

First Processor Second Processor

Save state of current process.

MB [1]
Pass ownership of process context =  Pick up ownership of process context
data structure memory. data structure memory.

MB [2]

Restore state of new process context data
structure memory.

Make I-stream coherent [3].

Make TB coherent [4].

Execute code for new process that
accesses memory that is not common to
all processes.

MB [1] ensures that the writes done to save the state of the current process happen
before the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen
after the ownership is picked up and hence are reliably the values written by the
processor saving the old state. Leaving this MB out makes the code fail if an old
value of the context remains in the second processor’s cache and invalidates from
the writes done on the first processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
tables that may have occurred on the first processor just before the save of the process
state. This must be done with a series of TB invalidate instructions to remove any
nonglobal page mapping for this process, or by assigning an ASN that is unused on
the second processor to the process. One of these actions must occur sometime before
starting execution of the code for the new process that accesses memory (instruction
or data) that is not common to all processes. A common method is to assign a new
ASN after gaining ownership of the new process and before loading its context, which
includes its ASN.
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The D-cache on the second processor must be made coherent with any write to the D-
stream that may have occurred on the first processor just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the
I-stream that may have occurred on the first processor just before the save of process
state. This can be done with an IMB PAL call sometime before the execution of any
code that is not common to all processes, More commonly, this can be done by forcing
a TB miss (via the new ASN or via TB invalidate instructions) and using the TB-
fill rule (see Section 5.6.4.3). This latter approach does not require any additional
instruction.

Combining all these considerations gives:

First Processor Second Processor

Pick up ownership of process
context data structure memory.
MB

Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.

MB :
Pass ownership of process context = Pickup ownership of new process context

data structure memory. data structure memory.

: MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of old process context
data structure memory.

Execute code for new process that
accesses memory that is not common to
all processes.

Note that on a single processor there is no need for the barriers.

5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second
processor, and that processor receives the interrupt, then accesses the shared data,
the sequence from Section 5.6.4.3 must be used:
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First Processor Second Processor

Write data

MB

Send int. =  Receive int.
MB
Access data

Leaving out the MB at the beginning of the interrupt-receipt routine makes the
code fail if an old value of the context remains in the second processor’s cache and
invalidates from the writes done on the first processor are not delivered soon enough.

5.6.5 Implications for Hardware

The coherency point for physical address x is the place in the memory subsystem at
which accesses to x are ordered. It may be at a main memory board, or at a cache
containing x exclusively, or at the point of winning a common bus arbitration.

The coherency point for x may move with time, as exclusive access to x migrates
between main memory and various caches.

MB and IMB force all preceding writes to at least reach their respective coherency
points. This does not mean that main-memory writes have been done, just that the
order of the eventual writes is committed. For example, on the XMI with retry, this
means getting the writes acknowledged as received with good parity at the inputs
to memory board queues; the actual RAM write happens later.

MB and IMB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale
data) or writes (that may otherwise write the cache, only to have the write effectively
overwritten by a late-delivered invalidate).

Implementations may allow reads of x to hit (by physical address) on pending writes
in a write buffer, even before the writes to x reach the coherency point for x. If this
is done, it is still true that no earlier value of x may subsequently be delivered to
the processor that took the hit on the write buffer value. -

Virtual data caches are allowed to deliver data before doing address translation, but
only if there cannot be a pending write under a synonym virtual address. Lack of a
write-buffer match on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value
whenever a PALcode routine is executed that affects the validity, fault-behavior,
protection behavior, or virtual-to-physical mapping specified for one or more pages.
Becoming coherent can be delayed until the next subsequent MB instruction or TB
fill (using the new mapping), if the implementation of the PALcode routine always
forces a subsequent TB fill.

5-20 Common Architecture (1)

Digital



5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently
and to forward results from one instruction to another. Thus, when an arithmetic
trap is detected, the PC may have advanced an arbitrarily large number of
instructions past the instruction T (calculating result R) whose execution triggered
the trap.

When the trap is detected, any or all of these subsequent instructions may run to
completion before the trap is actually taken. Instruction T and the set of instructions
subsequent to T that complete before the trap is taken are collectively called the trap
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the
first instruction past the trap shadow.

The instructions in the trap shadow of T may use the undefined result R of T, they
may generate additional traps, and they may completely change the PC (branches,
JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear no useful
relationship to the PC of the trigger instruction T, and the state visible to the
programmer may have been updated using the undefined result R. If an instruction
in the trap shadow of T uses R to calculate a subsequent register value, that register
value is undefined, even though there may be no trap associated with the subsequent
calculation. Similarly:

e If an instruction in the trap shadow of T stores R or any subsequent undefined
result, the stored value is undefined.

* If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of a conditional or calculated branch, the branch target is
undefined.

¢ If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of an address calculation, the memory address actually
accessed is undefined.

Software that is intended to bound how far the PC may advance before taking a trap,
or how far an undefined result may propagate, must insert TRAPB instructions at
appropriate points.

2

Software that is intended to continue from a trap by supplying a well-defined result
R within an arithmetic trap handler, can do so reliably by following the rules for
software completion code sequences given in Section 4.7.5.
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5.8 \REVISION HISTORY
Revision 5.0, May 12, 1992

1.

2
3.
4

Changed DRAINT to TRAPB
Converted to SDML
Generalized OS specific PALcode instructions

Generalized OS specific multiprocessor context switching

Revision 4.0, March 29, 1991

L
2.
3.

Added Litmus Test 9
Explain what an excess data transfer is

Correct typing error in code sequence example for modification of atomic data
structure

Add MB instructions to second illustrative example that specifies use of MB for
multiple processor context switch

Note that MB and IMB do not guarantee timeliness
Removed reference to byte when specifying granularity of data transfer widths

Made minor changes to correct use of capitals and remove repeated words in the
Litmus Test section

Revision 3.0, Mar 2, 1990

1
2.

Complete rewrite of data sharing

Complete rewrite of read/write ordering

Revision 2.0, October 4, 1989

1.

AT Sl

Total rewrite

Memory, buffer, I/O spaces removed; Physical memory regions added
SWP, FREEZE, and THAW removed; LDQ/L and STQ/C added

FAS removed; MB and NUDGE added

DRAIN and WAIT removed; DRAINT and /Semi-precise added

Revision 1.0, May 23, 1989

1.

First Review Distribution
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Chapter 6
Common PALcode Architecture (l)

- 6.1 PALcode

In a family of machines, both users and operating system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification.

These functions range from the binary encoding of the instruction and data to the
exception mechanisms and synchronization primitives. Some of these functions can
be implemented cost effectively in hardware, but others are impractical to implement
directly in hardware. These functions include low-level hardware support functions
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector
dispatch. They also include support for privileged and atomic operations that require
long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as
a problem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha is that microcode will not be necessary for practical
implementation. However, it is still desirable to provide an architected interface
to these functions that will be consistent across the entire family of machines. The
Privileged Architecture Library (PALcode) provides a mechanism to implement these
functions without resorting to a microcoded machine.

NOTE
\The hardware development groups provide and main-
tain the standard PALcode for a given implementation.
The PALcode may be in ROM or loaded into RAM from
some sort of a console load device. Many of the same
trade-offs exist for PALcode that exist for microcode
around patching, loading, and booting. Also, operating
systems are free to provide their own PALcode rather
than use the version provided by the hardware group.\

6.2 PALcode Instructions and Functions
PALcode is used to implement the following functions:
¢ Instructions that require complex sequencing as an atomic operation

¢ Instructions that require VAX-style interlocked memory access

¢ Privileged instructions
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* Memory management control (including translation buffer (TB) management)
* Context swapping

* Interrupt and exception dispatching

* Power-up initialization and booting

* Console functions

¢ Emulation of instructions with no hardware support.

The Alpha architecture lets these functions be implemented in standard machine
code that is resident in main memory. PALcode is written in standard machine
code with some implementation-specific extensions to provide access to low-level
hardware. This lets an Alpha implementation make various design trade-offs based
on the hardware technology being used to implement the machine. The PALcode
can abstract these differences and make them invisible to system software.

For example, in a MOS VLSI implementation, a small (32 entry) fully associative
TB can be the right match to the media, given that chip area is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing transparent TB miss service routines. The
operating system code would not need to know there were any differences.

Part II, Operating Systems describes the Digital-supplied Alpha Privileged
Architecture Library (PALcode) routines and environment. Other systems may use
the Digital-supplied PALcode library or architect and implement a different library of
routines. Alpha systems are required to support the replacement of Digital-defined
PALcode with an operating system-specific version.

NOTE
\ The register conventions used are based on the Alpha
calling standard Version 1.0. The PALcode library will
track the Alpha calling standard changes as long as that
is practical. \

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following
ways:

* Complete control of the machine state.
¢ Interrupts are disabled.
* Implementation-specific hardware functions are enabled, as described below.

® I-stream memory management traps are prevented (by disabling I-stream
mapping, mapping PALcode with a permanent TB entry, or by other
mechanisms). '
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Complete control of the machine state allows all functions of the machine to be
controlled. Disabling interrupts allows the system to provide multi-instruction
sequences as atomic operations. Enabling implementation-specific hardware
functions allows access to low-level system hardware. Preventing I-stream memory
management traps allows PALcode to implement memory management functions
such as translation buffer fill. -

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number
of additional functions are needed to implement the PALcode. There are five
opcodes reserved to implement PALcode functions: PALRESO, PALRES1, PALRES2,
PALRES3 and PALRES4. These instructions produce an Illegal Instruction Trap if
executed outside the PALcode environment.

¢ PAlcode needs a mechanism to save the current state of the machine and
dispatch into PALcode.

¢ PAlcode needs a set of instructions to access hardware control registers.

¢ PAlcode needs a hardware mechanism to transition the machine from the
PALcode environment to the non-PALcode environment. This mechanism loads
the PC, enables interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify
or improve performance of some PALcode functions. The following are some
examples:

* An Alpha implementation may include a read/write virtual function that allows
PAlLcode to perform mapped memory accesses using the mapping hardware
rather than providing the virtual-to-physical translation in PALcode routines.
PALcode may provide a special function to do physical reads and writes and
have the Alpha loads and stores continue to operate on virtual address in the
PALcode environment.

¢ An Alpha implementation may include hardware assists for various functions—
for example, saving the virtual address of a reference on a memory management
error rather than having to generate it by simulating the effective address
calculation in PALcode.

* An Alpha implementation may include private registers so it can function without
having to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may be resident
in main memory and maintain privileged data structures in main memory, the
operating system code that allocates physical memory cannot use all of physical
memory.

The amount of memory PALcode requires is small, so the loss to the system is
negligible.
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6.6 PALcode Replacement

Alpha systems are required to support the replacement of Digital-supplied PALcode
with an operating system-specific version. The following functions must be

 implemented in PALcode, not directly in hardware, to facilitate replacement with
different versions.

1. Translation Buffer fill. Different operating systems will want to replace the
Translation Buffer (TB) fill routines. The replacement routines will use different
data structures. The page tables documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the TB fill flow that
would change with a change in page tables may be placed in hardware, unless
it is placed in a manner that can be overridden by PALcode.

2. Process structure. Different operating systems might want to replace the process
context switch routines. The replacement routines will use different data
structures. The HWPCB or PCB documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the context switching
flows that would change with a change in process structure may be placed in
hardware.

PALcode must be written in a modular manner that facilitates easy replacement of
major subsections. The subsections that need to be simple to replace are:

* Translation Buffer fill
* Process structure and context switch
¢ Interrupt and exception frame format and routine dispatch

* Privileged PALcode instructions

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6—1 and Appendix C must be recognized by
mnemonic and opcode in all operating system implementations, but the effect of each
instruction is dependent on the implementation. The operation of these PAlLcode
instructions for Digital-supplied operating system implementations is described in
Part 11, Operating Systems.

Table 6-1: PALcode Instructions that Require Recognition
Mnemonic Name

BPT Breakpoint trap
BUGCHK Bugcheck trap
GENTRAP Generate trap
RDUNIQUE Read unique value
WRUNIQUE Write unique value
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The PALcode instructions listed in Table 62 and described in the following sections
must be supported by all Alpha implementations:

Table 6-2: Required PALcode Instructions

Mnemonic Type Operation

DRAINA Privileged Drain aborts

HALT Privileged Halt processor

IMB Unprivileged I-stream memory barrier
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6.7.1 Drain Aborts

Format:

CALL_PAL DRAINA !PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL DRAINA Drain Aborts

Description:

If aborts are deliberately generated and handled (such as non-existent-memory
aborts while sizing memory or searching for I/O devices), the DRAINA instruction
forces any outstanding aborts to be taken before continuing.

Aborts are necessarily implementation-dependent. DRAINA stalls instruction issue
at least until all previously-issued instructions have completed and any associated
aborts have been signaled. For operate instructions, this will usually mean stalling
until the result register has been written. For branch instructions, this will
usually mean stalling until the result register and PC have been written. For
load instructions, this will usually mean stalling until the result register has been
written. For store instructions, this will usually mean stalling until at least the first
level in a potentially multi-level memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed
portions of a cache block have been transferred error-free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate
target location of the store has received error-free data before continuing.
An implementation-specific technique must be used to guarantee the ultimate
completion of a write in implementations that have multi-level memory hierarchies
or store-and-forward bus adapters.
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6.7.2 Halt
Format:

CALL_PAL HALT {PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF

halt: {halt}
restart/halt: {restart/halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}

ENDCASE

Exceptions:

Privileged Instruction

Instruction mnemonics:
CALL_PAL HALT Halt Processor

Description:

The HALT instruction stops normal instruction processing, and depending on the
HALT action setting, the processor may either enter console mode or the restart
sequence. See Platform Section, Chapter 4.

NOTE
\The halt actions will be changed to match the boot and
console chapters when they are done. \
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6.7.3 Instruction Memory Barrier
Format:

CALL PAL. IMB !PALcode format

Operation:

{Make instruction stream coherent with Data stream}

Exceptions:

- None

Instruction mnemonics:

CALL_PAL IMB I-stream Memory Barrier

Description:

An IMB instruction must be executed after software or I/O devices write into the
instruction stream or modify the instruction stream virtual address mapping, and
before the new value is fetched as an instruction. An implementation may contain
an instruction cache that does not track either processor or I/O writes into the

instruction stream. The instruction cache and memory are made coherent by an
IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an
instruction from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

The cache coherency and sharing rules are described in Chapter 5.
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6.8 Revision History
Revision 5.0 May 12, 1992
1. Added list of recognition-required PALcode instructions
Added DRAINA to list of required PALcode instructions
Changed privileges enabled to complete control of the machine state
PALcode override for TB fill routines
Added HALT and IMB PALcode instructions

oUW N

Revision 4.1 May 12, 1992
1. Created the chapter from Sections 1.1 through 1.6 of the V4.n SRM
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Chapter 7
Console Subsystem Overview (l)

On an Alpha system, underlying control of the system platform hardware is provided
by a console. The console:

1. Initializes, tests, and prepares the system platform hardware for Alpha system
software.

2. Bootstraps (loads into memory and starts the execution of) system software.

Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software that simplify system software control of and
access to platform hardware.

5. Provides a means for a console operator to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform
hardware; however, the net effects are common to all systems.

The console interacts with system software once control of the system platform
hardware has been transferred to that software.

The console interacts with the console operator through a virtual display device or
console terminal. The console operator may be a human being or a management
application.
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Chapter 8
Input/Output (1)

8.1 Introduction

Conceptually, Alpha systems consist of processors, memory, processor-memory
interconnect (PMI), I/O buses, bridges, and I/O devices.

Figure 8-1 shows the Alpha system overview.

Figure 8-1: Alpha System Overview

Processor-Memory Interconnect

l I | A

I/OLSZ:'ice Processor Memory Local
Side
1
Hose > Bridge
Remote
Side
/0 Bus
! [ ’
Remote Remote
1/0 Device I/O Device

As shown in Figure 8-1, processors and memory are connected by the PMI.

A bridge connects a tightly coupled I/O bus to the system, either directly to the PMI
or through another tightly coupled I/O bus. A tightly coupled I/O bus is one whose
address space is accessible to the processor either directly or through an I/O mailbox.

A Bridge has at least a local side and a remote side, connected by a hose. The local
side is electrically closer to the PMI; the remote side is electrically further.

I/O devices can be connected to the PMI or to an /O bus. A local device connects to
the PMI; a remote device connects to an I/O bus.

The following sections discuss Alpha I/O operations:
® Accesses to local I/O space are discussed in Section 8.2.

® Accesses to remote I/O space are discussed in Section 8.3.
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* Reads and writes to processor memory-like regions initiated by I/O devices, or
“DMASs”, are discussed in Section 8.4.

® Processor interrupts requested by devices are discussed in Section 8.5.
* Bus-specific I/O accesses are discussed in Section 8.6.
* \ Some implementation-specific considerations are discussed in Section 8.7.

* Targettable interrupts are discussed in Section 8.8. \

8.2 Local I/O Space Access

Local I/O space locations may appear in either memory or non-memory-like regions.
Local I/O space locations which appear in memory regions may be cached subject to
the platform cache coherency scheme. See Chapter 5.

An Alpha platform need only support atomic quadword accesses. The
Alpha instruction architecture requires only quadword accesses. Processor
implementations may further restrict the access granularity of local I/O space. For
example, a given implementation could permit addressing of only cache blocks. To
support byte or word accesses to a local device, the device must be mapped into
a non-memory-like region with a sparse address space. The necessary mapping is
dependent on the implementation of the processor, cache, and PMI protocol. For
example, the four individual bytes of a longword device control register could be
mapped into the low order byte of each of four contiguous quadwords.

8.2.1 Read/Write Ordering

Access to local I/O space does not cause any implicit read/write ordering; explicit
barrier instructions must be used to ensure any desired ordering. Barrier
instructions must be used:

* After updating a memory-resident data structure and before writing a local I/O
space location to notify the device of the updates.

* Between multiple consecutive direct accesses to local I/0O space, e.g. device control
registers, if those accesses are expected to be ordered at the device.

Again, note that implementations may cache not only memory-resident data
structures, but also local I/O space locations.

8.3 Remote 1/0O Space Access

Remote I/0O space locations are accessed indirectly through a memory-resident
“mailbox” data structure. To post an access, the physical address of the mailbox is
written into a MailBox Pointer Register (MBPR) on a local bridge side. For remote
/O space writes, the command and data are posted in the mailbox, and status is
returned. For remote I/O space reads, the command is posted in the mailbox, and
status and data are returned.

An Alpha system may have any number of local bridge sides. Each local side may
provide connections for up to 256 hoses. Each hose may connect to a single remote
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side or may connect to multiple remote sides. A single remote side may connect to
one or more hoses. A bridge need not include a hose; the local and remote sides
may be implemented as a single entity. A local side or an entire bridge may be
incorporated into a processor board.

8.3.1 Mailbox Posting

A remote 1/0 space access is defined by the contents of the mailbox structure. A
remote I/O space access is invoked by writing the base physical address of the
mailbox structure into the appropriate bridge MailBox Pointer Register (MBPR).
Each I/O bus may be associated with one and only one MBPR. A single MBPR may
be associated with one or more remote I/0 buses and a single bridge may have
multiple MBPR registers. The MBPR appears in local I/O space.

The MBPR is accessed only with the STQ_C instruction. Flow control is achieved
by the associated (per-processor) lock_flag as follows:

post_mbx:

<derive PA of mailbox and load R1l>
<derive VA of MBPR and load RO>
STQ C R1,R0

BEQ Rl,wait_post mbx

wait_post_mbx:
<backoff delay>
BR post_mbx

If the STQ_C lock_flag is set, the mailbox has been posted to the bridge. If the
STQ_C lock_flag is clear, all MBPR resources are occupied; the MBPR write must be
retried. In multi-processor configurations, this use of the STQ_C instruction affects
only the local per-processor lock_flag. The state of the per-processor lock_flag of
other processors is unchanged.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The use above of the STQ_C instruction is specific to the
first Alpha implementations. \(EV-3 and EV-4)\ Future
implementations may use a different access mechanism.
\See Section 8.7.2.\

A given remote I/O space location is uniformly accessible to all processors in a multi-
processor configuration. A given hose, hence a given remote I/O bus, may be accessed
via an MBPR at the same physical address from any processor. A software thread
need have no knowledge of the specific processor on which it is executing.

A FIFO structure may be implemented behind each MBPR register to permit the

 posting of multiple outstanding mailbox operations. A set of processor-specific
request queues may be implemented behind each MBPR register to ensure fair access
to all processors. Any such FIFO or queue is invisible to software.
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Bridge implementations must protect against lockout and ensure fair MBPR access
to all processors in a multi-processor configuration. Multiple writes to an MBPR by
a single processor must not be able to cause the starvation or timeout of competing
writes to the same MBPR by other processors.

Multiple software threads executing at different IPLs on a single processor may
cause starvation or timeout of the lower IPL threads. IPL levels are inherently
unfair. \ See Section 8.7.3.\

Bridge implementations must guarantee forward progress on mailbox operations
regardless of direct memory access or interrupt load.

8.3.2 Mailbox Pointer Register (MBPR)
The MBPR format is shown in Figure 8-2 and described in Table 8-1.

‘Figure 8—-2: Malilbox Pointer Register Format

63 48 47 € 5 0

sSBZ Mailbox Address<47:6> SBZ

Table 8-1: Malilbox Pointer Register Format

Bit(s) Description

<5:0> ‘SBZ

<47:6> Physical address of the mailbox structure. The mailbox structure must be at
least 64-byte aligned.

<63:48> SBZ
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8.3.3 Mailbox Structure

The mailbox is a 64-byte, naturally aligned, data structure. The format is shown in
Figure 8-3 and described in Table 8-2.

Figure 8-3: Mallbox Data Structure Format

63 56 55 4849 4039 32 3130 20 210
SBZ HOSE SBZ MASK B CcMD A
RBADR :A+8
WDATA :A+16
UNPREDICTABLE (A+24
UNPREDICTABLE RDATA :A+32
Status R 8 :A+40
N
UNPREDICTABLE :A+48
UNPREDICTABLE :A+56
:A+64

Table 8-2: Mallbox Data Structure Format

Offset Bit(s) Name Description v
0 <29:0> CMD Remote bus command. Controls the actual remote bus
operation and can include fields such as address only,
address width, and data width. See Section 8.6.2.
<30> B Remote bridge access. If set, the command is a special
or diagnostic command directed to the remote side. See
Section 8.6.3.
<31> w Write access. If set, the remote bus operation is a write.
<39:32> MASK Disable Byte Mask. Disables bytes within the remote bus
address. Mask bit <i> set causes the byte to be disabled;
e.g. data byte <i> will NOT be written to the remote
address. See Section 8.6.2.
<47:40> SBZ
<55:48> HOSE  Hose. Specifies the remote bus to be accessed. Bridges may
directly connect to up to 256 remote buses per hose.
<63:56> SBZ
8 <63:0> RBADR Remote Bus Address. Contains the target address of the

device on the remote bus. See Section 8.6.2.
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Table 8-2 (Cont.): Mallbox Data Structure Format

Offset Bit(s) Name Description

16 <63:0> WDATA Write Data. For write commands, contains the data to be
written. For read commands, the field is not used by the
bridge.

24 <63:0> UNPREDICTABLE.

32 <31:0> RDATA Read Data.  For read commands, contains the data
returned. For write data commands, the field is
UNPREDICTABLE.

<63:32> UNPREDICTABLE,
40 <0> DON Done. Indicates that the ERR, STATUS, and RDATA fields

are valid; that the mailbox structure may be safely modified
by host software.

<l> ERR Error. If set, indicates that an error was encountered
and that the STATUS field contains additional information.
Valid only when DON is set. See Sections 8.3.7 and 8.3.8.

<63:2> STATUS Operation completion status. Contains information specific
to the bridge implementation. Valid only when DON is set.

The bridge specification must include a definition of this
field. See Sections 8.3.7 and 8.3.8.

48 <63:0> UNPREDICTABLE.
56 <63:0> UNPREDICTABLE.

8.3.4 Mailbox Access Synchronization

The ownership of the mailbox structure is exchanged between the posting software
and the servicing bridge. The first 3 quadwords must be initialized by the software
prior to posting the mailbox to the bridge. Once posted, the contents of the mailbox
are owned by the bridge and are UNPREDICTABLE until the DON bit is set by
the bridge. If the mailbox contents are altered by software prior to the DON
bit becoming set, the action of the bridge and the resulting mailbox contents are
UNPREDICTABLE. Once the DON bit has been set by the bridge, the mailbox
contents are again owned by the software and must not be altered by the bridge.
\ See Section 8.7.4.\

Software use of the DON bit for synchronization is encouraged. If the DON bit is set
in the mailbox at the time that the mailbox is posted, it is not possible to determine
when the mailbox structure may be safely altered nor is it possible to determine
when any returned information (RDATA or STATUS or ERR) becomes valid. Use of
a static, not dynamically altered, mailbox structure is recommended only for true
write-and-run of static data such as setting a “go” bit in a device control register.

Note that the DON bit set does NOT guarantee that a remote I/O space write has
actually completed at the device. The DON bit may be set by any intervening bridge.
See Section 8.3.8.
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The servicing bridge ignores the contents of the DON, ERR, and STATUS fields;
these fields are treated as write only.

8.3.5 Mailbox Read/Write Ordering

Mailbox accesses to a given remote bus are ordered by the MBPR and bus bridge.
After posting in the MBPR, the ordering must be retained by the bridge. The bridge
may reorder operations only across different hoses. Mailboxes targeted to different
buses connected to the same local bridge side may occur in a sequence different from
the posting order.

Mailbox operations are implicitly ordered when one and only one MBPR is used to
access a given remote I/O bus. In general, there is only one path to a given remote
I/0O bus via a unique hose and remote side. In such configurations, the hardware
must retain the ordering of mailbox accesses. In configurations in which there are
multiple paths, software should order mailbox operations by using one and only one
MBPR to access a given remote bus.

8.3.6 Remote I/0 Space Access Granularity
The granularity of remote I/O space accesses is not symmetric:

* Mailbox reads are defined to bytes, words, and longwords.
® Mailbox writes are defined to bytes, words, longwords and quadwords.

MailBox writes were optimized to permit efficient and atomic writes of a full 48-Bit
Alpha physical address.

Not all bus bridges will support all possible remote I/O space access granularities.
The supported granularity will be determined by the capabilities of the remote bus
and the remote bus side.

The MASK and RBADR fields are determined by the addressing and masking modes
of the remote I/O bus. Invalid MASK fields, or invalid combinations of MASK and
RBADR fields, will not cause ERR to be set. Error checking (if any) is done on
the remote (I/O bus) side of the bridge; the local (PMI) side of the bridge employs
disconnected writes. If error checking is done by the remote side of the bridge, the
error is reported by an error interrupt.

On mailbox write accesses, bridges (and chains of bridges) deliver the valid WDATA,
RBADR, and MASK information to the remote I/O device. The valid data may be
encapsulated, along with invalid data, into larger data packets; the invalid data may
simply be invalid fields from the WDATA quadword. For some remote I/O buses, the
RBADR and MASK fields may be truncated or otherwise mapped.

On mailbox read accesses, bridges (and chains of bridges) deliver the valid RBADR,
MASK, and command information to the remote I/0 device. - The bridge has no
knowledge of the intended size of the read data - this is known only to the requesting |
software and the device, which are assumed to agree. The valid data may be
encapsulated, along with invalid data, into larger data packets. Again, for some
remote I/O buses, the RBADR and MASK fields may be truncated or otherwise
mapped. ‘
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8.3.7 Remote 1/O Space Read Accesses

The bridge must return status and data for remote I/O space reads. When the
mailbox DON bit is set by the bridge, the operation has completed, and the ERR
and STATUS fields may be examined. If the ERR bit is not set, the requested
remote bus operation was successful and valid data was returned. If the ERR bit is
set, an error was encountered and the STATUS field contains information as to the

nature of the error.

Errors encountered on remote I/O space read accesses may also be reported by bridge
error interrupts. The bridge side which encounters the error requests the interrupt.
Thus, a non-existent hose error may be reported by the local (PMI) side of the bridge,
while a non-existent remote bus address error is reported by the remote (I/O bus)

side of the bridge.

Remote I/O space read accesses may be performed as follows:

remote_read:

<load Rm with VA of mailbox>

<ensure mailbox no longer in use by bridge>

<derive and load mailbox CMD, MASK,

STQ R31, 40 (Rm)
MB
post_mbx:

<derive PA of mailbox and load R1>

<derive VA of MBPR and load RO>

STQ_C R1,RO
BEQ Rl,wait_post_mbx

wait_mbxdone: :
LDQ RO, 40 (Rm)
BLBS RO, check err
<backoff delay>
BR wait_mbxdone

check_err: .
SRL RO, #1, RO
BLBS RO, read_err

MB
LDQ RO, 32(Rm)

read_err:
<handle error>

wait_post_mbx:
<backoff delay>
BR post_mbx

Notes:
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1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by the servicing bridge or is newly allocated.

2. The first barrier is required to ensure that the bridge will read the mailbox
contents as updated by the processor. Any pending processor writes to the
mailbox will have completed by the time that the load of the MBPR has
completed.

3. The second barrier is required to ensure that the processor will read the mailbox
contents as updated by the bridge. The returned data is accessed only after the
DON bit is observed to be set by the servicing bridge.

4. Software need not wait for the DON bit to become set.
5. The mailbox RDATA is valid only when DON is set and ERR is clear.

8.3.8 Remote /O Space Write Accesses

The bridge need not return status for remote I/O space writes. When the mailbox

DON bit is set by the bridge, the bridge has completed access to the mailbox

structure. The ERR bit and STATUS fields are testable. The actual write operation

need NOT have completed at the device and the ERR bit and STATUS fields can

indicate success (be cleared) even though success is not ensured. However, the ERR
" bit and STATUS fields, if set, do accurately report an error condition.

The actual completion of a remote I/O space write access can only be observed
indirectly. Either the appropriate device state must be read back, or the device must
update a memory-resident data structure and/or request an interrupt. Remote I/O
space read access(es) may be posted anytime after posting the write access. Because
mailbox operations to the same remote bus are guaranteed to be ordered, the read
is guaranteed to occur after the write.

Errors encountered on remote I/O space write accesses are reported by bridge error
interrupts. The bridge side which encounters the error requests the interrupt. Thus,
a non-existent hose error may be reported by the local (PMI) side of the bridge, while
a non-existent remote bus address error is reported by the remote (I/O bus) side of
the bridge.

Remote I/O space write accesses may be performed as follows:

remote write:

<load Rm with VA of mailbox>

<ensure mailbox no longer in use by bridge>

<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>
STQ R31, 40 (RM) ; Clear DON/ERR/STATUS

MB

post_mbx:
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<derive PA of mailbox and load R1>
<derive VA of MBPR and load RO>
STQ C R1,RO

BEQ Rl,wait_post_mbx

wait_post_mbx:

<backoff delay>
BR post_mbx

Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by the servicing bridge or is newly allocated.

2. The barrier is required to ensure that the bridge will read the mailbox contents
as updated by the processor. Any pending processor writes to the mailbox will
have completed by the time that the load of the MBPR has completed.

3. If the mailbox data is static, e.g. used to set a “go” bit in a device control
register, the mailbox may be posted without regard to the state of the DON
bit. Barriers are not required each time a static mailbox is posted, however a
barrier is required after the mailbox contents are initialized and prior to its first
use.

8.4 Direct Memory Accesss (DMA)

8.4.1 Access Granularity

A device or bridge side access to a memory-like region, or “DMA”, is taken to be
atomic when:

¢ It is not possible for a single device read DMA of a data structure which is
updated by a single processor write to observe a partial update of that structure.

¢ Tt is not possible for a processor reading a data structure which is updated by a
single device write DMA to observe a partial update of that structure.

A processor treats any memory-resident data structures which are shared with
an I/O device as though the structures were shared with another processor. The
processor must follow the guidelines given in Common Architecture, Chapter 5.
Specifically, barrier instructions must be used:

1. After updating a shared memory-resident data structure and before setting an
associated flag indicating that the data structure is valid.

2. After observing a newly updated flag, and prior to accessing the associated shared
memory-resident data structure.

The atomic DMA size guaranteed to a local device is a function of the PMI protocol.
The minimum size is an aligned hexword. Locally connected devices must obey the
PMI protocol and may participate in the memory cache coherency policy. See the
guidelines in Common Architecture, Chapter 5.
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The atomic DMA size guaranteed to a remote device is a function of the remote 1/0
bus protocol. Remote devices are guaranteed atomic access to aligned hexwords or
the remote I/O bus transfer burst size, whichever is smaller. It is the responsibility
of the local bridge side to ensure the atomicity of the device DMA.

Larger atomic DMA granularity permits optimization of device control protocols.
When a data structure and the associated flag are contained within a single aligned
hexword, the device can update both simultaneously with a single write DMA.
Similarly, the device may access both the data structure and the associated flag with
a single read DMA. If the flag is valid, the data structure contains valid information;
an additional read DMA is not necessary to obtain the valid data.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The hexword write DMA size was chosen as the smallest
cache block size of the first Alpha implementations
\(Cobra and Flamingo)\ .

8.4.2 Read/Write Ordering

DMAs may be divided into the “control” stream and the “data” stream. These
streams differ in their ordering properties.

* Control stream accesses are guaranteed to be ordered. An implicit barrier occurs
before and after each access. Control stream ordering must be preserved by all
bridges between a given remote I/O device and processor memory.

®* Data stream DMAs may be arbitrarily reordered if permitted by the protocol of
that I/O bus. No implicit barriers are associated with this stream.

A device may use control stream DMAs to ensure ordering of the data stream DMAs
and of interrupt requests as seen by a processor or other device sharing the same
memory-resident structures. Data stream DMAs must not be reordered with respect
to control stream DMAs. Interrupt requests must not be reordered with respect to
control stream DMAs.

Control stream DMAs must be used:

¢ As the last DMA issued to update a memory-resident data structure before
requesting a processor interrupt to notify the processor of the update. This DMA
ensures that any previously issued data stream DMAs become visible to the
processor prior to the interrupt.

* Toupdate any pointer or other linkage between memory-resident data structures.
Consider a status buffer which is located by a status ring pointer. The status
buffer may be updated with either a control or data stream DMA. The ring pointer
must be updated with a control stream DMA which is issued after the last DMA
used to update the status buffer.

A Bridge must preserve the ordering of control stream DMAs regardless of whether
. the accesses are reads or writes.
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The division of direct memory accesses into the control stream and the data stream is
the responsibility of the device. I/O bus protocols which do not permit the separation
of control and data stream DMAs must preserve the ordering of all DMAs and
interrupt requests; all DMAs are considered to be control stream DMAs. Similarly,
hose protocols which do not permit the separation of control and data stream DMAs
must preserve the ordering of all DMAs and interrupt requests.

Bridge implementations must guarantee forward progress on all DMA operations.

8.4.3 Device Address Translation

I/O devices use only physical addresses; devices must not access page tables for
the purpose of address translation. Devices are independent of any virtual memory
translation scheme and processor page size.

8.5 Interrupts

An interrupt request from an I/O device consists of an interrupt priority level and
an interrupt vector. Device interrupt requests are defined to be priorities 20 to 23.
The interrupt vector identifies the appropriate interrupt service routine; the starting
address of the interrupt service routine is obtained by using the vector as an offset
from the base of the System Control Block (SCB).

All bridge implementations must maintain both the temporal order and relative
priority of device interrupts. A bridge must not expedite a lower priority request if
a higher priority request has been received. With one exception, a bridge must not
reorder two interrupt requests at the same priority level. A bridge is permitted to
expedite delivery of a fatal bridge error interrupt; this interrupt must be at IPL 23
and may take precedence over any IPL 23 device interrupts. ‘

A bridge may prefetch the interrupt vector from an I/O device to reduce the processor
overhead associated with interrupt dispatch. Vector prefetch reduces the processor
latency necessary to dispatch to the interrupt service routine by reducing the delay
associated with the delivery of the interrupt vector to the processor.

When a bridge delivers an interrupt from an I/O device, any pending control stream
DMA writes issued by the device must have become visible to the processors. Note
that due to the ordering of control stream DMAs, any data stream DMAs writes
prior to the last pending control stream DMA must also have become visible to the
processors.

In multi-processor configurations, interrupts may be directed to a subset of the
processors in the configuration. Such targetting is implementation specific. \See
Section 8.8.\

8.6 1/0 Bus-Specific Mailbox Usage

\Send mail to EAGLE1:ALPHA_SRM to register a new Alpha system or bridge
side.\
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8.6.1 Mailbox Field Checking

Bridge sides check only implemented functions. It is the responsibility of the posting
software to ensure that the mailbox data structure fields are valid and that the
structure is posted correctly.

1. Local sides need not check the MASK, B, CMD, RBADR, or WDATA fields.
2. Local sides which connect to a single hose need not check the HOSE field.

3. Local sides need not pass the HOSE or W fields to the remote bridge side.
4

. Remote bridge sides which do not implement masking need not check the MASK
field.

5. There is no consistency checking between the W and CMD fields. If the W
bit is set and the CMD field indicates a read, the result is UNPREDICTABLE.
Similarly, if the W bit is clear and the CMD field indicates a write, the result is
UNPREDICTABLE.

6. Remote bridge sides check only implemented CMD and RBADR bits.

'8.6.2 CMD Field
The CMD field consists of two subfields:
* A remote I/O bus specific subfield.

This subfield is common to all Alpha systems and contains the controls for a given
remote bus. The common subfield must be backward compatible; all systems
which connect to a given I/O bus share this subfield.

* A system-specific subfield.

This subfield is specific to each Alpha system and contains the controls for a
given bridge implementation or system-specific diagnostic functions.

The size of each is specific to the remote I/O bus. The bridge specification must
include the definitions of all valid commands. This partition promotes software
portability. A given device driver uses the same CMD for a given type of device
access, regardless of the platform. Diagnostic software can also interpret the
common field without regard to the platform on which the mailbox was posted.

8.6.3 Special Commands

The special “WHO_ARE_YOU” command (W=0, B=1, CMD=0) is common to all
bridge implementations. WHO_ARE_YOU is used to determine the type of remote
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command
and RBADR of 0, the remote bridge side returns a unique remote bus side identifier.
All other commands are specific to the type of remote bus and independent of the
bridge implementation.
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8.7 \Implementation Considerations
8.7.1 Mailbox Selection

The choice of direct or mailbox access (local or remote I/O space) should be made
after consideration of the following:

The processor overhead associated with waiting for the return data.

The occupancy of the processor-memory interconnect during the access to an I/0
location on an I/0 bus.

The performance of the device.
The complexity of the logic required to implement.
The software impact.

The direct access method, with or without associated address mapping registers, is
subject to the following problems on Alpha systems:

1.

Access Delay.

The I/O bus and device are typically much slower than the processor-memory
interconnect and the processor.

Access Granularity.

The Alpha instruction set supports only aligned quadword and longword accesses.
Many I/O devices and buses require accesses that span less than four bytes; full
longword accesses can generate undesired side effects.

Address Granularity.

Alpha processors may have caches leading to designs which perform reads and
writes to naturally aligned cache blocks. The length of a cache block is usually
greater than a quadword. For memory accesses, the processor need never issue
the lower address bits. Additional hardware costs would be incurred to enable
the processor to access arbitrarily aligned longwords.

Physical Address Size

Many 1/0 buses now have address spaces that exceed the Alpha address space.
High performance systems need multiples of such buses. It is no longer feasible
to compress or fold the I/O bus address space into a portion of the processor /O
space.

The mailbox access method addresses the above problems, but has other
disadvantages. Foremost are:

Much software has been written to perform direct (mapped) access.

Such software must be modified to use mailbox access. Mapped I/O accesses will
be compiled to longword or quadword accesses, since an Alpha compiler cannot
know that any particular access is to remote I/O space. Furthermore, the LDx
accesses may be reordered from the data usage. As such, it is not simply possible
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to formulate an exception-based mechanism to transparently trap and handle I/O
space accesses. The exception handler would have to have detailed knowledge of
the device accessed to be able to resolve the appropriate access granularity.

¢ A mailbox operation access may require more memory accesses and processor.
instructions than a direct access.

The significance of this factor depends on the relative access latencies of remote
I/0 space and memory. If the remote I/O space access latency is significantly
longer, the effective overhead of a mailbox access will be no more than a direct
access. If the remote I/0 space access latency is on the order of the memory
access latency, the mailbox access overhead may be significant.

For devices which require very fast or very frequent I/O space accesses, e.g.
frame buffers, mailbox accesses can be expected to give unacceptable system
performance. Additional hardware such as a companion DMA engine or attached
local processor must be coupled to the device.

To promote portability, software should be written to accommodate a bridge. It is
recommended that ALL I/O location reads and writes are made through subroutines.
Parameters to these routines should include all the fields necessary to use a mailbox,
see Section 8.3.3.

8.7.2 Mailbox Pointer Register Flow Control Selection

Each Mailbox Pointer (MBPR) register represents a resource to the processor. Either
that resource must appear to be infinite, or a flow control mechanism is necessary.

The MBPR resources appear to be infinite when, barring hardware errors, posting
a mailbox access is guaranteed to succeed. A sufficiently deep FIFO structure
implemented behind the MBPR register could appear infinite. The depth of the
FIFO will be a function of the number of I/O devices to be supported and the access
characteristics of those devices. A hardware mechanism for backoff-retry access to
the MBPR incorporated in the PMI protocol could also provide such a guarantee.

A flow control mechanism for MBPR register accesses must be atomic. The MBPR is
accessed by code threads which execute at multiple IPLs. A single software MBPR
ownership flag would lead to priority inversion and/or deadlock. A higher IPL code
thread executing on one processor will block if the flag is owned by a lower IPL code
thread executing on a different processor.

The MBPR register access flow control mechanism should not add significant
overhead to critical code paths. Performing MBPR accesses only at IPL 31 or via
dedicated PALcode can have significant system performance implications. Statically
allocating some number of MBPR resources (FIFO entries) per IPL and/or per
processor requires that the software thread determine the IPL/processor execution
environment. Note that such static allocation schemes are not guaranteed to be
portable between Alpha systems.

The first Alpha implementations use a single STQ_C instruction and the
associated lock_flag to implement MBPR register access flow control. This is an
implementation choice and not architected. Subsequent implementations may select
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other mechanisms, partlcularly since this use of STQ_C may have performance
implications.

IMPLEMENTATION NOTE
As an example, consider a processor with virtual caches.
Virtual address translation would be required on all
STQ_C instructions to differentiate the MBPR accesses
from the memory accesses; the translation overhead
would slow all STQ_C instructions.

8.7.3 Mailbox Starvation

The MBPR register represents a shared system resource. Software which issues
mailbox accesses should use that resource in a manner which guards against
starvation or access lockout.

Consider two software threads each issuing repeated mailbox accesses. There are
three cases of interest:

1. Each thread is executing on a unique processor in a multi-processor configuration.
The bridge hardware implementation will provide fair MBPR access to each
thread. Neither thread can cause the starvation of the other.

2. Both threads are scheduled for execution at non-elevated IPL (IPL 0) on the
same processor in a multi-processor configuration or on the only processor in
a uni-processor configuration. The operating system software scheduling policy
may provide fair MBPR access to each thread, or may allow either thread to
cause the starvation of the other.

3. \Both threads are scheduled for execution on the same processor in a multi-
processor configuration or on the only processor in a uni-processor configuration
and at least one of the threads is scheduled for execution at elevated IPL
(IPL > 0). The thread which executes at the highest IPL can cause starvation
of the thread executing at the lower IPL level. If both threads are scheduled to
execute at the same IPL, either thread can cause starvation of the other.

Software threads which execute at high IPL for extended periods can have severe

system performance implications. Remote I/O space accesses are inherently slow

with respect to processor speeds; remote I/O accesses can easily take in excess of

1000 instructions. Software which spins at high IPL waiting for the DON bit or

repeatedly posting mailbox accesses may execute for extended periods and cause
* blockage of other event delivery.

8.7.4 Mailbox Structure Synchronization Properties

As explained in Section 8.3.4, the software and the servicing bridge may synchronize
‘their accesses to the mailbox structure by using the DON bit.

Bus bridge implementations may overwrite the full mailbox structure when setting
the DON bit. The brldge may ) perform a full 64-byte write to the mailbox structure

T A

rather than a single quadword write or 32-byte write. If the bridge writes into the

8-16 Common Architecture (1)

Digital Restricted




first hexword, the original mailbox contents must be restored; the bridge must not
cause the contents of the first hexword to be altered.

Software must not alter the mailbox contents at any time after writing the MBPR
and prior to observing the DON bit set. ‘Any such changes may or may not be
observed by the bridge. Any such changes may or may not be overwritten by the
bridge. The resulting remote bus access and the resulting mailbox contents are
UNPREDICTABLE.

Software may chose to ignore the DON bit if the contents of the mailbox structure
are truly static. Software may post the same mailbox repeatedly. Bridge
implementations must be able to correctly access the same mailbox in the event
of back-to-back MBPR writes with the same mailbox address. Note that in this
case, the contents of the DON, ERR, and STATUS fields are UNPREDICTABLE.

8.7.5 1/0 Device Properties

Devices should be designed such that register accesses in the main code path can
be retried with minimum knowledge of the nature of the device or the side effects of
the access. Read accesses should not be used to signal a device to poll a command
queue, increment a counter or pointer, or initiate an I/O operation. This permits the

. software error recovery from transient errors to occur outside the main execution
thread of the device driver.

Device designs are strongly encouraged NOT to require reads from device registers
during normal operation. Such reads can easily take in excess of 1000 instruction
cycles and become a major performance impact in a very high speed system.

Device designs are strongly encouraged NOT to require multiple back-to-back writes
to device registers during normal operation. Such writes can lead to congestion at
the MBPR, thus causing at least the issuing processor to wait. Such congestion can
become a major performance impact in a very high speed system.

The mailbox protocol does not provide any indication that a write has actually
completed at the device. Device designs which use writes to registers to initiate
device actions are strongly encouraged to include a mechanism in the control protocol
to detect a lost signal or otherwise simply recover from a delayed notification.

8.7.6 Implications of Memory Accesses by Devices

Devices access memory for the exchange of command, status, and data with the
processor. Repeated processor accesses to non-cached locations, even if the location
is resident on the processor-memory interconnect, may have a negative performance
impact in a very high speed system. Such accesses should be replaced with cacheable
(e.g. memory) accesses wherever possible.

Bridges and local devices may incorporate physical memory buffers and participate
in the cache coherency policy. A bridge implementation which includes a cache may
not permit hits under misses for control stream DMA reads. Such reordering would
prohibit a device from issuing two back-to-back control stream DMA reads to access
a single data structure since the cache hit could contain outdated data.
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The dominant component of delay in a read DMA request by a remote I/O device
may be the memory access latency rather than the data transmission time. Fewer,
larger, memory accesses are preferable to many small accesses. Also, write control
stream DMAs to less than a full cache block may consume PMI resources if the
bridge must do a read-modify-write.

The device control protocol data structures should be compact and naturally aligned.
Note that this may require some memory-to-memory-copies by the processor. Small
memory reads which must be serialized should be minimized; a common cause of
such reads is when the device chases a collection of pointers.

Device control protocols must NOT make use of memory interlocks. Devices are not
guaranteed emulation of the VAX interlocked instructions such as INSQTI/REMQTI.
Use of functionality equivalent to LDx_L/STx_C need not be supported by bridges
and is not recommended for remote devices.

8.7.7 Interrupts

A device interrupt allows a device or bﬁdge to signal processors for various reasons,
often including the following:

* Device solicitations for new I/O operations.
e Operation completion.

* Availability of operation status.

¢ Error occurrences. v

¢ Non-host-originated software-relevant changes in device or bridge state or
identity.

Device port protocols are strongly encouraged to minimize the use of interrupts, since
interrupts have an expensive, and increasing, performance impact. The performance
impact is due to many factors. Interrupts cause processor pipeline breaks and
the execution of diverse short code threads which lower the effective cache and
translation buffer hit rate. Instruction execution is slowed during the time required
to obtain the hardware interrupt vector.

Interrupts in an Alpha system may target one or more processors. While multiple
processors may respond, only one will actually transfer control to the interrupt
service routine.

Conceptually, for a device on an I/O bus, the interrupt protocol is:

1. The device issues an interrupt request to the I/O module. The request specifies
at least an interrupt level, corresponding to IPL 20 to 23.

2. The bridge may prefetch the interrupt vector. This reduces the latency associated
with the delivery to the responding processor.

3. The bridge issues an interrupt request to some subset of the processors in the
system. If the PMI protocol permits, the vector may be forwarded with the

K N R I — : . 3
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4. When the IPL of an interrupted processor is lower than that of one or more
outstanding interrupts, the processor will obtain a hardware interrupt vector
if it does not already have one. The first processor to request a vector from a
bridge or device will obtain the next pending vector. The “next pending” vector
is determined by the IPL and time sequence order in which interrupts became
pending at the bridge or device. The bridge or device does not reorder interrupts
with the exception of a fatal bridge error interrupt; the latter occurs only at IPL
23.

5. The processor obtaining the hardware interrupt vector uses it as an offset from
the base of the System Control Block. The System Control Block element contains
the software interrupt vector, which is the starting address of the interrupt
service routine. The software interrupt vector is referred to as the interrupt
vector in Part II, Operating Systems. The processor transfers control to this
address.

As a minimum, there should be no more than one interrupt on average for each
operation carried out by the device.

8.8 Targettable Interrupts

In multi-processor configurations, interrupts may be directed, or targetted, to a
subset of the processors in the configuration. The targetted subset may include
one or more of the processors. Different interrupt sources, e.g. bridges, hoses, or
devices, may be targetted to a different subset. Such targetting is implementation
specific.

Implementations which target interrupts must include mechanisms for handling the
precedence of the bridge or device error interrupt. When interrupts can be taken by
one of many processors, an error interrupt may be taken by one processor while a
success interrupt is taken by another processor. If the event which generated the
error interrupt is related to the event which generated the success interrupt, the
error interrupt must be fully serviced before the success interrupt can be serviced.

As an example, consider a device which issues a control stream DMA write, then
requests a completion (success) interrupt. If a bridge incurs an error on that DMA,
the bridge may discard the DMA data and request an error interrupt. If the two
interrupts are serviced simultaneously on two different processors, the software
thread servicing the success interrupt may take incorrect action based on faulty
(stale) data. The error condition must be evaluated prior to permitting the success
code thread to execute.
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8.9 \Revision History:
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Common Section
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Made all ’unpredictable’ to ' UNPREDICTABLE’
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Removed all revision history prior to Rev 4.0, 29 March 1991

Revision 4.1, August 12, 1991

1
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Revision 4.0, March 29, 1991
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A
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OpenVMS Alpha Software (ll)

This section describes how the OpenVMS operating system relates to the Alpha architecture
and contains the following chapters:

¢ Chapter 1, Introduction to OpenVMS Alpha (II)

* Chapter 2, OpenVMS PALcode Instruction Descriptions (II)

¢ Chapter 3, OpenVMS Memory Management (II)

¢ Chapter 4, OpenVMS Process Structure (II)

* Chapter 5, OpenVMS Internal Processor Registers, (II)

¢ Chapter 6, OpenVMS Exceptions, Interrupts, and Machine Checks (IT)
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| | , Chapter 1
Introduction to OpenVMS Alpha (ll)

The goals of this design are to provide a hardware implementation independent
interface between OpenVMS and the hardware. Further, the design provides the
needed abstractions to minimize the impact between OpenVMS and the different
hardware implementations. Finally, the design must contain only that overhead
necessary to satisfy those requirements, while still supporting high-performance
systems.

1.1 Register Usage

Besides those registers described in Part I, Common Architecture, OpenVMS defines
the registers described in the following sections.

1.1.1 Processor Status

The Processor Status (PS) is a special register that contains the current status of the
processor. It can be read by the CALL_PAL RD_PS instruction. The software field
(PS<SW>) can be written by the CALL_PAL WR_PS_SW routine. See Chapter 6 for
a description of the PS register. )

1.1.2 Stack Pointer (SP)
Integer register R30 is the Stack Pointer (SP).

The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit
operand. During such operations, the address value in R30, interpreted as an
unsigned 64-bit integer, decreases (predecrements) when items are pushed onto the
stack, and increases (postincrements) when they are popped from the stack. After
pushing (writing) an item to the stack, SP points to that item.

1.1.3 Internal Processor Registers (IPRs)

The IPRs provide an architected mapping to internal hardware or provide other
specialized uses. They are available only to privileged software through PALcode
routines and allow OpenVMS to interrogate or modify system state. The IPRs are
described in Chapter 5.
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1.2 \Revision History
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| Chapter 2
OpenVMS PALcode Instruction Descriptions (ll)

This chapter describes the PALcode instructions that are implemented for the
OpenVMS Alpha environment. The PALcode instructions are a set of unprivileged
and privileged CALL_PAL instructions that are used to match specific operating
system requirements to the underlying hardware implementation.

For example, privileged PALcode instructions switch the hardware context
of a process structure. Unprivileged PALcode instructions implement the
uninterruptable queue operations. Also, PALcode instructions provide standard
interrupt and exception reporting mechanisms that are independent of the
underlying hardware implementation.

Table 2-1 lists all the unprivileged and privileged OpenVMS PALcode instructions
and the section in this chapter in which they are described.

Table 2-1: OpenVMS PALcode Instructions
Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section
AMOVRM Atomic move register/memory Section 2.4
AMOVRR Atomic move register/register Section 2.4
BPT Breakpoint Section 2.1
BUGCHK Bugcheck Section 2.1
CHME Change mode to executive Section 2.1
CHMK Change mode to kernel Section 2.1
CHMS Change mode to supervisor Section 2.1
CHMU Change mode to user Section 2.1
GENTRAP Generate software trap Section 2.1
IMB I-stream memory barrier Common Architecture, Chap-
ter 6

INSQxxx Insert in specified queue Section 2.3
PROBER Probe read access Section 2.1
PROBEW . Probe write access . Section 2.1
RD_PS Read processor status Section 2.1
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Table 21 (Cont.): OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section

READ_UNQ Read unique context Section 2.5

REI Return from exception or interrupt Section 2.1

REMQxxx Remove from specified queue Section 2.3

RSCC Read system cycle counter Section 2.1

SWASTEN Swap AST enable Section 2.1

WRITE_UNQ  Write unique context Section 2.5

WR_PS_SW Write processor status software field Section 2.1

Priirileged OpenVMS PALcode Instructions

Mnemonic Operation Section

CFLUSH Cache flush Section 2.6

DRAINA Drain aborts Common Architecture, Chap-
ter 6

HALT Halt processor Common Architecture, Chap-
ter 6

LDQP Load quadword physical Section 2.6

MFPR Move from processor register Section 2.6

MTPR Move to processor register Section 2.6

STQP Store quadword physical Section 2.6
Section 2.6

SWPCTX

Swap privileged context
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2.1 Unprivileged General OpenVMS PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections
2.3, 2.4, and 2.5, provide support for the underlying OpenVMS Alpha model.

' Table 2-2: Unprivileged General OpenVMS PALcode Instruction Summary

Mnemonic Operation
BPT \ Breakpoint
BUGCHK Bugcheck
CHME Change mode to executive
CHMK Change mode to kernel
CHMS Change mode to supervisor
'CHMU Change mode to user
GENTRAP Generate software trap
IMB I-stream memory barrier
See Common Architecture, Chapter 6
PROBER Probe read access
PROBEW Probe write access
RD_PS Read processor status
REI Return from exception or interrupt
RSCC Read system cycle counter
SWASTEN Swap AST enable
WR_PS_SW  Write processor status software field
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'2.1.1 Breakpoint

Format:

CALL_PAL BPT : ' IPALcode format

Operation:

{initiate BPT exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL BPT Breakpoint

Description:

The BPT instruction is provided for program debugging. It switches to Kernel mode
and pushes R2..R7, the apdated PC, and PS on the Kernel stack. It then dispatches
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1.
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2.1.2 Bugcheck

Format:

CALL_PAL BUGCHK !PALcode format

Operation:

{initiate BUGCHK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL BUGCHK  Bugcheck

Description:

The BUGCHK instruction is provided for error reporting. It switches to Kernel mode
and pushes R2..R7, the updated PC, and PS on the Kernel stack. It then dispatches
to the address in the Bugcheck SCB vector. See Section 6.3.3.2.2.
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2.1.3 Change Mode Executive

Format:

CALL_PAL. CHME IPALcode format

Operation:

tmpl +— MINU( 1, PS<CM>)
{initiate CHME exception with new _mode=tmpl}

| Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHME Change Mode to Executive

Description:

The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHME instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHME.
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2.1.4 Change Mode to Kernel

Format:

CALL_PAL CHMK . IPALcode format
Operation:

{initiate CHMK exception with new mode=kernel}
Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMK Change Mode to Kernel

Description:

The CHMK instruction lets a process change its mode to kernel in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack.
The saved PC addresses the instruction following the CHMK instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch reglsters The
contents of these registers are not preserved across a CHMK.
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~ 2.1.5 Change Mode Supervisor

Format:

"CALL_PAL CHMS !PALcode format

Operation:

tmpl <« MINU( 2, PS<CM>)
{initiate CHMS exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMS Change Mode to Supervisor

Description:

The CHMS instruction-‘lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHMS instruction.

2-8 OpenVMS Alpha Software (Il




2.1.6 Change Mode User

Format:

CALL_PALL. CHMU IPALcode format

Operation:

{initiate CHMU exception with new_mode=PS<CM>}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMU Change Mode to User
Description:
The CHMU instruction lets a process call a routine via the change mode mechanism.

R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the
instruction following the CHMU instruction.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.
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2.1.7 Generate Software Trap'

- Format: ,
CALL PAL GENTRAP IPALcode format

~ Operation:

{initiate GENTRAP exception with new_mode=kernel}
! R16 contains the value encoding of the software trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL PAL GENTRAP Generate Software Trap

"Description:

The GENTRAP instruction is provided for reporting runtime software conditions. It
switches to Kernel mode, and pushes R2...R7, the updated PC and PS on the Kernel
stack. It then dispatches to the address in the GENTRAP SCB Vector. See Section
Section 6.6.

The value in R16 identifies the particular software condition that has occurred. The
encoding for the software trap values is given in the software calling standard for
the system.
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2.1 .8 Probe Memory Access

Format:

CALL_PAL PROBE IPALcode format

Operation:

!
!
!
!
!
!

R16 contains the base address
R17 contains the signed offset
R18 contains the access mode
RO receives the completion status
«— 1 if success
+— 0 if failure

first « R16
last « {(R16+R17}

IF R18<1:0> GTU PS<CM> THEN

probe mode «+ R18<1:0>

ELSE

probe_mode «— PS<CM>)

IF ACCESS(first, probe_mode) AND ACCESS (last, probe_mode) THEN

RO « 1
ELSE
RO «— O
Exceptions:
Translation Not Valid

Instruction Mnemonics:

CALL_PAL PROBER Probe for Read Access
CALL_PAL PROBEW  Probe for Write Access

Description:

The PROBE instruction checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in between are

not checked.

System software must check all pages between the two bytes if they are to be
accessed. If both bytes are accessible, PROBE returns the value 1 in RO; otherwise,
PROBE returns 0. The Fault On Read and Fault On Write PTE bits are not checked.
A Translation Not Valid exception is signaled only if the the mapping structures can
not be accessed. A Translation Not Valid exception is signaled only if the first or

second level PTE is invalid.
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The protection is checked against the less privileged of the modes specified by
R18<1:0> and the Current Mode (PS<CM>). See Section 6.2 for access mode
encodings. : ’ '

PROBE is only intended to check a single datum for accessibility. It does not check
all intervening pages because this could result in exces