
dig i ta I .

Alpha System Reference Manual

Version 5

DIGITAL RESTRICTED DISTRIBUTION

Doc. #50161

Alpha System Reference Manual

Version 5

This document describes the Alpha architecture.

This information. shall not be disclosed to non-Digital personnel or generally distributed
· · . within DigitaLDistribution is restricted to persons authorized and designated by the Alpha

Program Office., This document shall not be left unattended, and when not in use shall be
stored in a locked storage container.

DlgHal Equipment Corporation
Maynard, Massachusetts

Digital Restricted Distribution

May 1992

Digital believes that the information in this publication is accurate as of its publication date; such
information is subject to change without notice. Digital is not responsible for any inadvertent errors.

Copyright ©1992 Digital Equipment Corporation
All rights reserved. Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation: DEC, Open VMS, PDP-11, VAX, VMS,
... ULTRIX, and the;.DIGITAL logo.

Cray is a registered trademark of Cray Research, Inc. IBM is a registered trademark of International
Business Machines Corporation. OSF/l is a registered trademark of Operi Software Foundation, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

This document was prepared using VAX DOCUMENT, Version 2.0.

Digital Restricted Distribution

Preface

The A/,pha System Reference Manual is divided into 3 Parts, 4 appendixes, and an
index. ·

Each part_ or section of a part describes a major portion of the Alpha architecture.
Each contains its own Table of Contents. Additional sections will be incorporated as
development proceeds on the architecture.

The A/,pha System Reference Manual is under ECO control. ECOs are approved only
by the Alpha-A committee.

The following table outlines the contents of the Alpha SRM:

Name

Part One

Part Two

Symbol Contents

(I)

(II)

(III)

Common Architecture
This part describes the architecture that is common to and

.!:teqaited.i>y.::aH implementations.

Specific Operating System PALcode Architecture

This part contains sections that describe how, the following
operating systems relate to the Alpha architecture:

Section Name and Contents Symbol

"· ··'·"'· ··· OpeiiVMS'A1.plia:<SOftware

DEC OSF/1 Alpha Software

(ll)

(III)

Part Three (IV) Platforms

Appendixes

Index

This part describes an architected platform implementation.

Because information in the appendixes can be shared by
·.,mor-e . .ih.an.nne.&ectwzi,Abey ai"~Ui)QQ~getAer at the end

of the manual.

The index at the end of the manual is structured like
a master index. Index entries are called out by the

.·. appropriate symbol, (I), (II), and so forth, associated with
the corresponding part or section. Index entries for the
appendixes are called out by appendix name and page
number.

ill

Digital Restricted Distribution

Common Architecture {I)
This part describes the common Alpha architecture and contains the following
chapters:

• Chapter 1, Introduction (I)

• Chapter 2, Basic Architecture (I)

• Chapter 3, Instruction Formats (I)

• Chapter 4, Instruction Descriptions (I)

• Chapter 5, System Architecture and Programming Implications (I)

• Chapter 6, Common PALcode Architecture (I)

• Chapter 7, Console Subsystem Overview (I)

• Chapter 8, Input/Output (I)

Digital Restricted Distribution

Contents

Common Architecture (I)

Chapter 1 Introduction (I)

1.1
1.2
1.3
1.4
1.5
1.6
,l.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9
1.6.10
1.6.11
1.6.12
1.7

The Alpha Approach to RISC Architecture
Data Format Overview .. .
Instruction Format Overview
Instruction Overview
Instruction Set Characteristics
Terminology and Conventions .. .

Num.bering
Security Holes .. .
UNPREDICTABLE And UNDEFINED
Ranges and Extents .. .
ALIGNED and lJNALIGNED .. .
Must Be Zero (MBZ)
Read As Zero (RAZ) t ••••••••••••••••••••••••••

Should Be Zero (SBZ)
Ignore (IGN) .. .
Implementation Dependent (IMP)
Figure Drawing Conventions
Macro Code Example Conventions

\Revision Histocy

Chapter 2 Basic Architecture (I)

1-1
1-3
1-4
1-5
1-6
1-7
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-9

1-10

2.1 Addressing.. 2-1
2.2 Data 'l'ypes .. ·. 2-1
2.2.1 Byte . 2-1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.5.1
2.2.5.2
2.2.5.3

Word
Longword ... ,
Quadword
VAX. Floating-Point ·Formats .. .

F _floating .. .
G_floating .. '·
D_floating .. .

Digital Restricted Distribution

2-1
2-2
2-2
2-3
2-3
2-5
2-6

iii

IEEE Floating-Point Formats ·
S_Floating
T_floating .. .

Longword Integer Format in Floating-Point Unit
Quadword Integer Format in Floating-Point Unit
Data Types with No Hardware Support

2.2.6
2.2.6.1
2.2.6.2
2.2.7
2.2.8
2.2.9
2.3 \Revision History

Chapter 3 Instruction Formats (I)

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5

Alpha Registers
Program Counter .. .
Integer Registers
Floating-Point Registers
Lock Registers .. .
Optional Registers

3.1.5.1 Memory Prefetch Registers .. .
3.1.5.2 VAX Compatibility Register .. .
3.2 Notation
3.2.1 Operand Notation

Instruction Operand Notation .. .
Operators .. .
Notation Conventions :

3.2.2
3.2.3
3.2.4
3.3 Instruction Formats .. .
3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.3
3.3.4
3.3.4.1
3.3.5
3.4

Memory Instruction Form.at .. .
Memory Format Instructions with a Function Code
Memory Format Jump Instructions

Branch Instruction Format .. .
Operate Instruction Form.at .. .
Floating-Point Operate Instruction Format

Floating-Point Convert Instructions
PALcode Instruction Form.at

\Revision History

Chapter 4 Instruction Descriptions (I)

2-7
2-8

2-10
2-11·
2-12
2-13
2-14

3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-3
3-4
3-5
3-8
3-8
3-9
3-9

3-10
3-10
3-10
3-11
3-12
3-12
3-14

4.1 Instruction Set Overview . 4-1
4.1.1 Subsetting Rules . 4-2
4.1.1.1 Floating-Point Subsets . 4-2
4.1.2 Software Emulation Rules . 4-2
4.1.3 Opcode Qualifiers ~ 4-3
4.2
4.2.1
4.2.2
4.2.3

iv

Memory Int.eger Load./Store Instructions
Load Address .. ·~·
Load Memory Data into Integer Register
Load Unaligned Memory Data into Integer Register

Digital Restricted Distribution

4-5
4-S
4-7

4.2.4 Load Memory Data into Integer Register Locked........................... 4-8
4.2.5 Store Integer Register Data into Memory Conditional . 4-11
4.2.6 Store Integer Register Data into Memory . 4-13
4.2. 7 Store Unaligned Integer Register Data into Memory . 4-14
4.3 Control Instructions . 4-15
4.3.1 Conditional Branch . 4-17
4.3.2 Unconditional Branch . 4-19
4.3.3 Jwnps ... ·. 4-20
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5

Integer Arithmetic Instructions 4-22
4-23
4-24
4-25
4-26

Longword Add .. .
Scaled Longword Add
Quadword Add .. .
Scaled Quadword Add .. .
Integer Signed Compare . 4-27
Integer Unsigned Compare . 4-28
Longword Multiply ,. 4-29
Quadword Multiply . 4-30
Unsigned Quadword Multiply High . 4-31
Longword Subtract : . 4-32
Scaled Longword Subtract . 4-33
Quadword Subtract . 4-34
Scaled Quadword Subtract.. 4-35

Logical and Shift Instructions . 4-36
Logical Functions... 4-37
Conditional Move Integer . 4-38
Shift Logical . 4--40
Shift .Arithmetic. 4--41

Byte-Manipulation Instructions . 4-42
Compare Byte . 4--44

Extract Byte . 4--46
Byte Insert . 4-50
Byte Mask .. 4-52
Zero Bytes . 4-55

Floating-Point Instructions . 4-56
Floating Subsets and Floating Faults . 4-56

4.7.5.1
4.7.5.2
4.7.5.3
4.7.5.4
4.7.5.5
4.7.5.6

Definitions . 4-57
Encodings . 4-58
Floating-Point Rounding Modes.. 4-59
Floating-Point Trapping Modes . 4-60

Imprecise /Software Completion Trap Modes . 4-62
Invalid Operation .Arithmetic Trap . 4-63
Division by Zero Arithmetic Trap . 4-63
Overflow Arithmetic Trap . 4-63
Underflow Arithmetic Trap . 4-63
Inexact Result Arithmetic Trap , . , . 4-64

v

Digital Restricted Distribution

4.7.5.7
4.7.6
4.7.7
4.7.7.1
4.7.7.2

Integer Overflow Arithmetic Trap
Floating-Point Single-Precision Operations .. .
FPCR Register and Dynamic Rounding Mode

Accessing the FPCR .. .
Default Values of the FPCR .. .

4-64
4-64
4-64
4-66
4-67

4.7.7.3 Saving and Restoring the FPCR 4-67
4.7.8 IEEE Standard ·........................ 4-67
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.9
4.9.1

Memory Format Floating-Point Instructions
Load F _floating
Load G_floating
Load S_floating
Load T_floating
Store F _floating
Store G_floating ... ·
Store S_floa ting ..
Store T_floating

Branch Format Floating-Point Instructions
Conditional Branch .. .

4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78

4.10 Floating-Point Operate Format Instructions . 4-80
4.10.1 Copy Sign. 4--83
4.10.2 Convert Integer to Integer . 4-84
4.10.3 Floating-Point Conditional Move . 4-85
4.10.4 Move from/to Floating-Point Control Register . 4--87
4.10.5 VAX Floating Add . 4-88
4.10.6 IEEE Floating Add. 4-89
4.10.7 VAX Floating Compare... 4-91
4.10.8 IEEE Floating Compare.. 4-92
4.10.9 Convert VAX Floating to Integer . 4-94
4.10.10 Convert Integer to VAX Floating . 4-95
4.10.11 Convert VAX Floating to VAX Floating • . 4-96
4.10.12 Convert IEEE Floating to Integer . 4-98
4.10.13 Convert Integer to IEEE Floating . 4-99
4.10.14 Convert IEEE Floating to IEEE Floating 4-100
4.10.15 VAX Floating Divide . 4-102
4.10.1.6 IEEE Floating Divide. 4-104
4.10.17 VAX Floating Multiply ... 4-106
4.10.18 IEEE Floating Multiply .. 4-107
4.10.19 VAX Floating Subtract ~ 4-109
4.10.20 IEEE Floating Subtract ... ~ 4-111
4.11 Miscellaneous Instructions .. 4-113
4.11.1 Call Privileged Architecture Library . 4-114
4.11.2 Prefetch Data .. 4-115
4.11.3 Memory Barrier ~ 4-117
4.11.4 Read Process Cycle Counter ... 4-118
4.11.5 Trap Barrier ". 4-120

vi

Digital Restricted Distribution

4.12 VAX Compatibility Instructions . 4-121
4.12.1 VAX Compatibility Instructions . 4-122
4.13 \REVISION HISTORY .. 4-123

Chapter 5 System Architecture and Programming Implications (I)

5.1 Introduction . 5-1
5.2 Physical Memory Behavior
5.2.1 Coherency of Memory Access
5.2.2 Granularity of Memory Access .. .
5.2.3 Width of Memory Access .. .

Memory-Like Behavior .. . 5.2.4
5.3 Translation Buffers and Virtual Caches
5.4
5.5
5.5.l
5.5.2
5.5.3
5.5.4
5.6
5.6.1

Caches and Write Buffers
Data Sharing

Atomic Change of a Single Datum
Atomic Update of a Single Datum
Atomic Update of Data Structures
Ordering Considerations for Shared Data Structures

·Read/Write Ordering

5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.1.5
5.6.1.6
5.6.1.7
5.6.1.8
5.6.1.9
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.2.8
5.6.2.9
5.6.3
5.6.4
5.6.4.1
5.6.4.2
5.6.4.3

Alpha Shared Memory Model
Architectural Definition of Processor Issue Sequence
Definition of Processor Issue Order
Definition of Memory Access Sequence
Definition of Location Access Order
Definition of Storage
Relationship Between Issue Order and Access Order
Definition of Before
Definition of After
Timeliness

Litmus Tests
Litmus Test 1 (Impossible Sequence)
Litmus Test 2 (Impossible Sequence)
Litmus Test 3 (Impossible Sequence)
Litmus Test 4 (Sequence Okay)
Litmus Test 5 (Sequence Okay)
Litmus Test 6 (Sequence Okay)
Litmus Test 7 (Impossible Sequence)
Litmus Test 8 (Impossible Sequence)
Litmus Test 9 (Impossible Sequence)

Implied Barriers ' .. .
Implications for Software .. .

Single-Processor Data Stream
Single-Processor Instruction Stream
Multiple-Processor Data Stream (Including Single Processor with DMA 1/0) .. .

Digital Restricted Distribution

5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-5
5-5
5-6
5-6
5-8
5-9
5-9

5-10
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-16

vii

5.6.4.4
5.6.4.5
5.6.4.6
5.6.5

Multiple-Processor Instruction Stream (Including Single Processor with DMA 1/0) 5-17
Multiple-Processor Context Switch . 5-18
Multiple-Processor Send/Receive Interrupt . 5-19

5.7
5.8

Implications for Hardware
Arithmetic 1'raps .. _.
\REVISION HISTORY

Chapter 6 Common PALcode Architecture (I)

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.8

PALcode
PALcode Instructions and Functions
PALcode Environment .. .
Special Functions Required for PALcode
PALcode Effects on System Code .. .
PALcode Replacement .. .
Required PALcode Instructions

Drain Aborts
Halt .. .
Instruction Memory Barrier .. .

Revision History

Chapter 7 Console Subsystem Overview (I)

Chapter 8 Input/Output (I)

8.1
8.2
8.2.1
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.4
8.4.1
8.4.2
8.4.3
8.5
8.6
8.6.1

viii

Introduction .. .
Local 1/0 Space Access .. .

Read/Write Ordering
Remote 1/0 Space Access .. .

Mailbox Posting
Mailbox Pointer Register (MBPR)
Mailbox Structure
Mailbox Access Synchronization
Mailbox Read/Write Ordering
Remote 1/0 Space Access Granularity
Remote 1/0 Space Read Accesses
Remote 1/0 Space Write Accesses

Direct Memory Accesss (DMA) .. .
Access Granularity
Read/Write Ordering
Device Address 1'ranslation .. .

Interrupts ..
1/0 Bus-Specific Mailbox Usage

Mailbox Fieid Checking -. .- .

Digital Restricted Distribution

5-20
5-21
5-22

6-1
6-1
6-2
6-3
6-3
6-4
6-4
6-6
6-7
6-8
6-9

8-1
8-2
8-2
8-2
8-3
8-4
8-5
8-6
8-7
8-7
8-8
8-9

8-10
8-10
8-11
8-12
8-12
8-12
8-13

8.6.2
8.6.3
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.8
8.9

CMD Field
Special Commands

\Implementation Considerations .. .
Mailbox Selection ;
Mailbox Pointer Register Flow Control Selection
Mailbox Starvation
Mailbox Structure Synchronization Properties
1/0 Device Properties .
Implications of Memory Accesses by Devices
Interru.pts

Targettable lnterru.pts .
\Revision History: .

Figures

8-13
8-13
8-14
8-14
8-15
8-16
8-16
8-17
8-17
8-18
8-19
8-20

1-1 Instruction Format Overview . 1-4
2-1 Byte Format... 2-1
2-2 Word Format . 2-2
2-3 Longword Format. 2-2
2-4 Quadword Format . 2-3
2-5 F _floating Datum . 2-3
2-6 F _floating Register Format . 2-4
2-7 G_floating Datum . 2-5
2-8 G_floating Format . 2-5
2-9 D_floating Datum . 2-6
2-10 D_floating Register Format . 2-6
2-11 S_floating Datum . 2-8
2-12 S_floating Register Format . 2-8
2-13 T_floating Datum . 2-10
2-14 T_floating Register Format . 2-10
2-15 Longword Integer Datum . 2-11
2-16 Longword Integer Floating-Register Format . 2-11
2-17 Quadword Integer Datum . 2-12
2-18 Quadword Integer Floating-Register Format . 2-12
3-1 Memory Instruction Format... 3-9
3-2 Memory Instruction with Function Code Format............................. 3-9
3-3 Branch Instruction Format . 3-10
3-4 Operate Instruction Format . 3-10
3-5 Floating-Point Operate Instruction Format . 3-11
3-6 PALcode Instruction Format . 3-12
4-1 Floating-Point Control Register (FPCR) Format . 4-65
8-1 Alpha System Overview.. 8-1
8-2 Mailbox Pointer Register Format . 8-4
8-3 Mailbox Data Structure Format . 8-5

Ix

Digital Restricted Distribution

Tables

2-1
2-2
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
6-1
6-2
~1

~2

x

F _floating Load Exponent Mapping
S_fioating Load Exponent Mapping
Operand Notation
Operand Value Notation
Expression Operand Notation .. .
Operators .. .
Opcode Qualifiers .
Memory Integer Load/Store Instructions
Control Instructions Summary .. .
Jump Instructions Branch Prediction
Integer Arithmetic Instructions Summary
Logical and Shift Instructions Summary
Byte-Manipulation Instructions Summary
Floating-Point Control Register (FPCR) Bit Descriptions
Memory Format Floating-Point Instructions Summary
Floating-Point Branch Instructions Summary
Floating-Point Operate Instructions Summary
Miscellaneous Instructions Summary
VAX Compatibility Instructions Summary
Processor Issue Order ·
Location Access Order .. .
PALcode Instructions that Require Recognition
Required PALcode Instructions
Mailbox Pointer Register Format .. .
Mailbox Data Structure Format

Digital Restricted Distribution

2-4
2-9
3-3
3-3
3-3
3-5
4-3
4-4

4-16
4-21
4-22
4-36
4-42
4-65
4-68
4-77
4-80

4-113
4-121

5-11
5-12
6-4
6-5
8-4
~5

Chapter 1

. Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the Open VMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture
Alpha Is a True 64-Blt Architecture
Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and
all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory
operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load­
delay slots, and no branch-delay slots.

Introduction (I) 1-1

Digital Restricted Distribution

Alpha's Approach to Byte Manlpulatlon
The Alpha architecture does byte shifting and masking with normal 64-bit register­
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

• Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

• Alpha's approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

• Alpha's approach can make it easier to pipeline multiple byte operations.

Alpha's Approach to Arithmetic Traps
Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise--they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha's Approach to Multiprocessor Shared Memory
As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

• Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

• There are prefetching hints for the memory system that can allow much higher
cache hit rates.

1-2 Common Architecture (I)

Digital Restricted Distribution

• There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode-Alpha's Very Flexlble Privileged Software Library
A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version of PALcode lets Alpha implementations run the full Open VMS operating
system by mirroring many of the Open VMS VAX features. The Open VMS PALcode
instructions let Alpha run Open VMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/1 operating
system by mirroring many of the RISC ULTRIX features. Other versions of PALcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages
Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

• Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

• Alpha does not,contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview

Alpha is a load/store RISC architecture with the following data characteristics:

• All operations are done between 64-bit registers.

• Memory is accessed via 64-bit virtual little-endian byte addresses.

• There are 32 integer registers and 32 floating-point registers.

• Longword (32-bit) and quadword (64-bit) integers are supported.

Introduction (I) 1-3

Digital Restricted Distribution

• Four floating-point data types are supported:

VAX F _floating (32-bit)

VAX G_floating (64-bit)

IEEE single (32-bit)

IEEE double (64-bit)

1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha instructions are all 32 bits in length. As represented
in Figure 1-1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 26 25 21 20 16 15 5 4 0

Opcode

Opcode RA

Opcode RA RB

Opcode RA RB

Number

Disp

Disp

Function l RC

PALcode Format

Branch Format

Memory Format

Operate Format

• PALcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

• Load and store instructions move longwords or quadwords between register
Ra and memory, using Ra plus a signed 16-bit displacement as the memory
address.

• Operate instructions for :floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

Floating-point operations use Ra and Rb as source registers, and write the
result in register Re. There is an 11-bit extended opcode in the function field.

Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Re.

Integer operate instructions can use the Rb field and part of the function field
to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

1-4 Common Architecture (I)

Digital Restricted Distribution

1.4 Instruction Overview

PALcode Instructions
As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions
Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions
Load and store instructions move either 32-bit or 64-bit aligned quantities from
and to memory. Memory addresses are fiat 64-bit virtual addresses, with no
segmentation.

The VAX. :floating-point load/store instructions swap words to give a consistent
register format for :floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit :floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions

Introduction (I) 1-5

Digital Restricted Distribution

• · An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQN and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions
The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
:floating-point and integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:

• All instructions are 32 bits lo~g and have a regular format.

• There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

• There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

• All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

• All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

• All memory reference instructions are of the load/store type that move data
between registers and memory.

• There are no branch condition codes. Branch instructions test an integer or
:floating-point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.

• Floating-point instructions operate on G_floating, F _floating, IEEE double, and
IEEE single operands. D_floating "format compatibility," in which binary files
of D _floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

• A minimal number of VAX compatibility instructions are included.

1-6 Common Architecture (I)

Digital Restricted Distribution

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 1016.

1.6.2 Security Holes
A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

• Affect the operation of another process without authorization from the operating
system;

• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecture has been designed to contain no architectural security holes.
Hardware (processots, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE And UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands

Introduction (I) 1-7.

Digital Restricted Distribution

or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

• UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a " .. " and are inclusive. For
example, a range of integers 0 . .4 includes the integers 0, 1, 2, 3, and 4.

~xtents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED
In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. .An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros.· Thus, an aligned 64-byte stack frame has a
memory address that is a multiple. of 64.

1-8 Common Architecture (I)

Digital Restricted Distribution

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non­
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6. 7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)
Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation­
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

NOTE
\A note on the manual format: At certain points
in the manual, comments on why certain decisions
were made, unresolved issues, etc., are between a pair
of backslashes. These comments provide additional
clarification and will be removed from externally
distributed editions.\

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or Open VMS
Section, Chapter 2, or are stylized code forms found in Appendix A.

Introduction (I) 1-9

Digital Restricted Distribution

1.7 \Revision History

Revision 5.0, May 12, 1992

1. VMS -> Open VMS

2. Converted to SDML

3. Removed reference to EVAX

Revision 4.0, March 29, 1991

1. Typos

2. Correct security holes text

3. Upgrade UNPREDICTABLE definition

4. Add Implementation Dependent definition

5. Add new section, Section 1.6.12, Macro Code Example Conventions

Revision 3.0, March 2, 1990

1. Strengthen UNPREDICTABLE definition

2. Add UNALIGNED definition

3. Add Security Hole definitio .. n

Revision 2.0, October 4, 1989

1. Change the read as zero, write ignored registers to R31 and F31

2. Update instruction Set Characteristics for new insert and merge byte instructions

Revision 1.0, May 23, 1989

1. Change MBZ and SBZ definitions

Revision 0.0, March 15, 1988

1. Initial version

1-10 Common Architecture (I)

Digital Restricted Distribution

2.1 Addressing

Chapter 2

Basic Architecture (I)

The basic addressable unit in Alpha is the 8-bit byte. Virtual addresses are 64
bits long. An implementation may support a smaller virtual address space. The
minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte
A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

7 0

D=A
A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract, mask, insert, and zap instructions.

2.2.2 Word
A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2.

Basic Architecture (I) 2-1

Digital Restricted Distribution

Figure 2-2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the extract, mask,
and insert instructions.

2.2.3 Longword
A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

I ---______ l:A

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted.arithmetically, a longword is a two's-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

2.2.4 Quadword

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longword operands
that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its
address.)

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2-4.

2-2 Common Architecture (I)

Digital Restricted Distribution

Figure 2-4: Quadword Format

63 0

:A

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two's-complement integer with bits of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

NOTE
Alpha implementations will impose a significant perfor­
mance penalty when accessing quadword operands that
are not naturally aligned. (A naturally aligned quad­
word has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX :floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The :floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range­
checking is done by the load and store instructions.

2.2.5.1 F _floating

An F _floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F _floating Datum

1514 7 6 0

S 1 Exp. J Frac. Hi :A

Fraction Lo :A+2

An F _:fioating operand occupies 64 bits in a :floating register, left-justified in the
64-bit register, as shown in Figure 2-6.

Basic Architecture (I) 2-3

Digital Restricted Distribution

Figure 2-6: F _floating Register Format

63 62 52 51 4544 2928 0

H __ exp_. ___ I F_rac_. Hi_l _Fra-ctio_n Lo ______ o __ ____,,:Fx

The F _floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F _floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F _floating Load Exponent Mapping
Memory <14:7> Register <62:52>

1 1111111 1 000 1111111

1 xxxxxxx

0 :xxxxxxx

0 0000000

1 000 xxxxxxx (xxxxxxx not all l's)

0 111 xxxxxxx (xxxx:xxx not all O's)

0 000 0000000

This mapping preserves both normal values and exceptional values.

The F _floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F _floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F _floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with. the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F _floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents
of -127 .. 127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take an
arithmetic exception. The value of an F _floating datum is in the approximate range
0.29*10**-38 .. 1.7*10**38. The precision of an F _floating datum is approximately
one part in 2**23, typically 7 decimal digits.

2-4 Common Architecture (I)

Digital Restricted Distribution

2.2.5.2 G_floatlng

NOTE
Alpha implementations will impose a significant. per­
formance penalty when accessing F _:floating operands
that are not naturally aligned. (A naturally aligned F _
:floating datum has zero as the low-order two bits of its
address.)

A G_:floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floatlng Datum

15 14 4 3 0

sl Exp. [rac.Hi :A

Fraction Midh :A+2

Fraction Midi :A+4

Fraction Lo :A+6

A G_:floating operand occupies 64 bits in a :floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floatlng Format

6362 5251 4847 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

A G_:floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_:floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
204 7. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_:floating datum has a value of 0.

If the result of a :floating-point instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all
fraction bits of 0. Exponent values of 1..204 7 indicate true binary exponents of

Basic Architecture {I) 2-5

Digital Restricted Distribution

-1023 .. 1023. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*10**-308 .. 0.9*10**308. The precision of a G_:floating datum
is approximately one part in 2**52, typically 15 decimal digits.

2.2.5.3 D _floating

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing G_:floating operands
that are not naturally aligned. (A naturally aligned G_
:floating datum has zero as the low-order three bits of its
address.)

A D_:floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-9: D _floating Datum

1514 7 6 0

sJ Exp. J Frac.Hi :A

Fraction Midh :A+2

Fraction Midi :A+4

Fr~ction Lo :A+6

A D_:floating operand occupies 64 bits in a :floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floatlng Register Format

6362 5554 4847 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

The reordering of bits required for a D _:floating load or store are identical to those
required for a G_:floating load or store. The G_:floating load and store instructions
are therefore used for loading or storing D _:floating data.

A D _:floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D _floating datum is identical to an F _floating datum

2-6 Common Architecture (I)

Digital Restricted Distribution

except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_:B.oating as F _floating. The precision of a D_:B.oating datum is approximately
one part in 2**55, typically 16 decimal digits.

NOTE
D_:B.oating is not a fully supported data type; no
D_:B.oating arithmetic operations are provided in the
architecture. For backward compatibility, exact D _
floating arithmetic may be provided via software
emulation. D _:B.oating "format compatibility" in which
binary files of D _:B.oating numbers may be processed,
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D _:B.oating.

NOTE
Alpha implementations will impose a significant
performance penalty on access to D _:B.oating operands
that are not naturally aligned. (A naturally aligned D_
:B.oating datum has zero as the low-order three bits of its
address.)

2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary :B.oating-point arithmetic, ANSI/IEEE 754-1985,
defines four :B.oating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P-the number of fraction bits

2. Emax-the maximum exponent

3. Emin-the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-l)**S x 2**E x b(0).b(l)b(2) .. b(P-1) where:

a. S = 0 or 1

b. E = any integer between Emin and Emax, inclusive

c. b(n) = 0 or 1

2. Two infinities-positive and negative

3. At least one Signaling NaN

Basic Architecture (I) 2-7

Digital Restricted Distribution

4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE :floating-point bit
pattern that represents something other than a number. NaN s come in two forms:
Signaling NaN s and Quiet NaN s. Signaling NaN s are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaN s pr.ovide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaN s signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaN s propagate through almost every operation without generating an arithmetic
exception .

. Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.

Figure 2-11: S_floatlng Datum

1514 7 6 0

Fraction Lo :A

sl Exp. 1 Frac. Hi :A+2

An S_:floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

6362 52 51 45 44 29 28 0

l..._._sl _Exp_. --'--I F_rac_. Hi _.__I _Fra-ctio_n Lo _ __.__ ___ o __ _____.I :Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_:floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2-2.

2-8 Common Architecture (I)

Digital Restricted Distribution

Table 2-2: S_floating Load Exponent Mapping

Memory <30:23> Register <62:52>

11111111

1 xxxxxxx

0 xxxxxxx

0 0000000

1 111 1111111

1 000 xxxxxxx (xxxxxxx not all l's)

0 111 xxxxxxx (xxxxxxx not all O's)

0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all l's differs from that of F _floating load, since for S_:floating all l's is
an exceptional value and for F _floating all l's is a normal value.

The S_:floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_:floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_:floating result.

An S_:floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an S_:floating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>O, then Vis NaN, regardless of S.

2. If E=255 and F=O, then V = (-l)**S x Infinity.

3. If 0 < E < 255, then V = (-l)**S x 2**(E-127) x (l.F).

4. If E=O and F<>O, then V = (-l)**S x 2**(-126) x (0.F).

5. If E=O and F=O, then V = (-l)**S x 0 (zero).

Floating-point operations on S_:floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing S_:floating operands
that are not naturally aligned. (A naturally aligned S_
:floating datum has zero as the low-order two bits of its
address.)

Basic Architecture (I) 2-9

Digital Restricted Distribution

2.2.6.2 T _floattng

An IEEE double-precision, or T_:floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

1514 4 3 0

Fraction Lo :A

Fraction Midi :A+2

Fraction Midh :A+4

sJ Exponent JFrac.Hi :A+G

A T_:Boating operand occupies 64 bits in a :Boating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floatlng Register Format

63 62 52 51 4847 32 31 1615 0

s Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

The T_:Boating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_:Boating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_:Boating result.

A T_:Boating datum is specified by its address A, the address of the byte containing
bit 0. The form of a T_:Boating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_:Boating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

l. If E=2047 and F<>O, then Vis NaN, regardless of 8.

2. If E=2047 and F=O, then V = (-1)**8 x Infinity.

3. If 0 < E < 2047, then V = (-1)**8 x 2**(E-1023) x (l.F).

4. If E=O and F<>O, then V = (-1)**8 x 2**(-1022) x (0.F).

2-10 Common Architecture (I)

Digital Restricted Distribution.

5. If E=O and F=O, then V = (-l)**S x 0 (zero).

Floating-point operations on T_fioating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing T_floating operands
that are not naturally aligned. (A naturally aligned T_
:floating datum has zero as the low-order three bits of its
address.)

2.2. 7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-15.

Figure 2-15: Longword Integer Datum

1514 0

Integer Lo :A

s} Integer Hi :A+2

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-16.

Figure 2-16: Longword Integer Floating-Register Format

63 62 61 59 58 4544 2928 0

l~+....._lxx__...xl_lnt-ege-rH_i ___.....__ln-teg-erL_o _.....__ ___ o __ ___.l:Fx

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the :floating registers.
The register bits <61:59> are set by the S~fioating load exponent mapping. They are
ignored by S_fioating store. They are also ignored in operands of a longword integer
operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62>, "I", in Figure 2-16 is part of the Integer Hi field
in Figure 2-15 and represents the high-order bit of that field. Bits <58:45> of
Figure 2-16 are the remaining bits of the Integer Hi field of Figure 2-15.

Basic Architecture (I) 2-11

Digital Restricted Distribution

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longwords that are
not naturally aligned. (A naturally aligned longword
datum has zero as the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-17.

Figure 2-17: Quadword Integer Datum

1514 0

Integer Lo :A

Integer Midi :A+2

Integer Midh :A+4

sl Integer Hi :A+6

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-18.

Figure 2-18: Quadword Integer f1oatlng-Reglster Format

63 62 4847 32 31 1615 0

s Integer Hi Integer Midh Integer Midi Integer Lo :Fx

There is no explicit quadword load or store instruction; the T _floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T _floating load instruction performs no bit reordering on input. The T _floating
store instruction performs no bit reordering on output. This instruction does no
checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing quadwords that
are not naturally aligned. (A naturally aligned
quadword datum has ,zero as the low-order three bits
of its address.)

2-12 Common Architecture (I)

Digital Restricted Distribution

2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware. \ See
the DEC STD 032: VAX Architecture Standard for detailed information on these
data types. \

• Octaword

• H_fioating

• D_fioating (except load/store and convert to/from G_fioating)

• Variable-Length Bit Field

• Character String

• Trailing Numeric String

• Leading Separate Numeric String

• Packed Decimal String

Basic Architecture (I) 2-13

Digital Restricted Distribution

2.3 \R_evision History

Revision 5.0, May 12, 1992

1. Converted to SDML

Revision 4.0, ,March 29, 1991

1. D_floating point support removed

2. Typos

3. Word definition made homologous to longword, quadword

4. Specify no checking on S_floating load, and T_floating load

5. Removed S_floating Format illustration and text

6. Clarified what is meant by a Vax floating point instruction

Revision 3.0, March 2, 1990

1. Cosmetic change to floating-point pictures

Revision 2.0, October 4, 1989

1. No change

Revision 1.0, May 23, 1989

1. Change minimum virtual address size to 40 bits

2. Change Floating-point register format

3. Remove alignment warning on word data type

Revision 0.0, March 15, 1989

1. Initial version

\

2-14 Common Architecture (I)

Digital Restricted Distribution

3.1 Alpha Registers

Chapter 3

Instruction Formats (I)

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per­
processor sets of these registers.

3.1.1 Program Counter
The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:

• STx_ C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_fiag, this instruction causes the lock_fiag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_fiag and
locked_physical_address to become UNPREDICTABLE.

Instruction Formats (I) 3-1

Digital Restricted Distribution

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4. 7 .2 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63 :0> of the destination floating­
point register.

3.1.4 Lock Registers
There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.5.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.

3-2 Common Architecture (I)

Digital Restricted Distribution

3.2.1 Operand Notation

Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and
the other expression. operands.

Table 3-1: Operand Notation
Notation Meaning

Ra An integer register operand in the Ra field of the instruction ..

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Re An integer register operand in the Re field of the instructio~.

Fa A :floating-point register operand in the Ra field of the instruction.

Fb A :floating-point register operand in the Rb field of the instruction.

Fe A :floating-point register operand in the Re field of the instruction.

Table 3-2: Operand Value Notation
Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation

Notation

IPR_x

IPR_SP[mode]

PC

Rn

Fn

X[m]

Meaning

Contents of Internal Processor Register x

Contents of the per-mode stack pointer selected by mode

Updated PC value

Contents of integer register n

Contents of floating-point register n

Element m of array X

Instruction Formats (I) 3-3

Digital Restricted Distribution

3.2.2 Instruction Operand Notation
The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<name>
Specifies the instruction field (Ra, Rb, Re, or disp) and register type of the operand
(integer or :floating). It can be one of the following:

Name Meaning

disp The displacement field of the instruction.

fnc The PAL function field of the instruction.

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Re An integer register operand in the Re field of the instruction.

Fa A :floating-point register operand in the Ra field of the instruction.

Fb A :floating-point register operand in the Rb field of the instruction.

Fe A :floating-point register operand in the Re field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type

a

i

r

m

Meaning

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.
For example:
".al" means scale by 4 (longwords) to get byte units (used in branch
displacements); ".ab" _means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.

The operand is read only.

The operand is both read and written.

3-4 Common Architecture (I)

Digital Restricted Distribution

Access Type Meaning

w The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type

b

f

g

1

q

s

t

w

x

3.2.3 Operators

Meaning

Byte

F_floating

G_floating

Longword

Quadword

IEEE single floating (S_floating)

IEEE double floating (T _floating)

Word

The data type is specified by the instruction

The operators shown in Table 3-4 are used:

Table 3-4: Operators

Operator

+

*
*U

**
I

I I

{}

(x)

x<m:n>

Meaning

Comment delimiter

Addition

Subtraction

Signed multiplication

Unsigned multiplication

Exponentiation (left argument raised to right argument)

Division

Replacement

Bit concatenation

Indicates explicit operator precedence

Contents of memory location whose address is x

Contents of bit field of x defined by bits n through m

Instruction Formats (I) 3-5

Digital Restricted Distribution

Table 3-4 (Cont.): Operators
Operator Meaning

x<m> M'th bit of x

ACCESS(x,y) Accessibility of the location whose address is x ~ing the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

AND Logical product

ARITH_RIGHT_SHIFT(x,y) Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

BYTE_ZAP(x,y) X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> +-+ x<8n+7:8n>. This correspondence
also exists between y and the result.

CASE

DIV

LEFT_SHIFT(x,y)

LOAD_LOCKED

lg

3-6 Common Architecture (I)

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action-2

argvaluen: action n
[otherwise: default_action]

END CASE

If the value of argument is argvaluel then action_l is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom 'otherwise'. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per­
processor locked_physical_address register and sets the per­
processor lock_flag.

Log to the base 2

Digital Restricted Distribution

Table 3-4 (Cont.): Operators
Operator

NOT

OR

xMODy

Relational Operators

MINU(x,y)

PHYSICAL_ADDRESS

PRIORITY_ENCODE

RIGHT_SlllFT(x,y)

SEXT(x)

STORE_ CONDITIONAL

Meaning

Logical (ones) complement

Logical sum

x modulo y

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned

NE Not equal signed and unsigned

GE Greater or equal signed

GEU Greater or equal unsigned

GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit set

Retum.s the smaller of x and y, with x and y interpreted as
unsigned integers

Translation of a virtual address

Retum.s the bit position of most significant set bit, interpret­
ing its argument as a positive integer (= int(lg(x))).

For example:

priority_encode(255) = 7

Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_fl.ag is set, then do the indicated store and clear
the lock_fl.ag.

Instruction Formats (I) 3-7

Digital Restricted Distribution

Table 3-4 (Cont.): Operators
Operator

TEST(x,cond)

XOR

ZEXT(x)

3.2.4 Notation Conventions

Meaning

The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and :floating test conditions are drawn from the preceding list
of relational operators.

Logical difference

X is zero-extended to the required size.

The following conventions are used:

1. Only operands that appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other than that replacement <~) has the
lowest precedence. Explicit precedence is indicated by the use of"{}".

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example,"+" applied to G_floating operands means a G_floating
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT"
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats
,-,

There are five basic Alpha instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of31.

SOFTWARE NOTE
There are several instructions, each formatted as a
memory instruction, that do not use the Ra and/or Rb
fields. These instructions a:re: Memory Barrier, Fetch,

3-8 Common Architecture (I)

Digital Restricted Distribution

Fetch_M, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3-1 : Memory Instruction Format

31 2625 2120 1615

I Opcode I Ra I Rb I Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va +- {Rbv + SEXT(Mernory_disp)}

For LDAH the virtual address (va) is computed as follows:

va +- {Rbv + SEXT(Mernory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 2625 2120 1615 0

I Opcode I Ra I Rb I Function

The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.

Instruction Formats (I) 3-9

Digital Restricted Distribution

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3--3.

Figure 3-3: Branch Instruction Format

31 26 25 2120 0

Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va ~ PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and . two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3-4 shows the two cases when bit <12> of
the instruction is 0 and 1.

Figure 3-4: Operate Instruction Format

31 2625 2120 1615131211 5 4 0

Opcode Ra Rb SBZO Function Re

31 26 25 2120 131211 5 4 0

LIT

3-10 Common Architecture (I)

Digital Restricted Distribution

An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are three operand fields, Ra, Rb, and Re.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav -+---- 0

ELSE
Rav -+---- Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20: 13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
ope~and is formed as follows:

IF inst<12> EQ 1 THEN
Rbv -+---- ZEXT(inst<20:13>)

ELSE

END

IF inst<20:16> EQ 31 THEN
Rbv -+---- 0

ELSE
Rbv -+---- Rb

END

The Re field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructfons that perform fioating­
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 2625 2120 1615 5 4 0

I Opcode I Fa I Fb I Function

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-
bit function field. Unused function encodings produce UNPREDICTABLE results,
as defined in Section 1.6.3.

Instruction Formats (I) 3-11

Digital Restricted Distribution

There are three operand fields, Fa, Fb, and Fe. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav +- 0

ELSE
Fav +- Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed. as
follows:

IF inst<20:16> EQ 31 THEN
Fbv +- 0

ELSE
Fbv +- Fb

END

NOTE
Neither Fa nor Fb can be a literal in Floating-point
Operate instructions.

The Fe field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.

The floating-point register to be used is specified by the Fa, Fb, and Fe fields all
pointing to the same floating-point register. If the Fa, Fb, and Fe fields do not all
point to the same floating-point register, then it is UNPREDICTABLE which register
is used.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3.....:6.

Agure 3-6: PALcode Instruction Format

31 26 25 0

PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.

3-12 Common Architecture (I)

Digital Restricted Distribution

An opcode of zero and a PALcode function of zero specify the HALT instruCtion.

Instruction Formats (I) 3-13

Digital Restricted Distribution

3.4 \Revision History
Revision 5.0, May 12, 1992

1. Removed references to SP and PS

2. Added unsigned multiplication operator

3. Added description of Fa, Fb registers if unused

4. Converted to SDML

5. Added Memory Format with Function Code section

6. Moved Instruction Operand section from Chapter 4

7. Edited description of R31

8. Separated operand notation from operand value notation and simplified language

9. Added comment and note to section 3.3 which specifies value assigned to unused
register fields of instructions

Revision 4.0, March 29, 1991

1. Typos

2. Upgrade description of R30 and implicit stack behavior of HW/PALcode

3. Upgrade definition of byte_'Zap, access, left_shift, and right_shift operators

4. Add definition of single bit field select operator, <n>

5. Rename arith_shift operator to arith_right_shift and upgrade definition

6. Make test a dyadic operator with explicit condition argument

7. Define the CASE pseudocode construct

8. Include Processor Status register in description of Alpha registers

9. Add definitions of priority_encode and exponentiation(**) operators

10. Changed text describing R30

11. Changed two relational operator mnemonics

Revision 3.0, March 2, 1990

1. Under registers, add lock registers, IPRs, and optional registers

2. Define Div, BYTE_ZAP, and PHYSICAL_ADDRESS; delete BYTE_SEL

3. Delete reference to R28

Revision 2.0, October 4, 1989

1. Add comment to section on PC that PC is not an Integer Register

2. Add comment that SP is R30

3-14 Common Architecture (I)

Digital Restricted Distribution

\

3. Change description of L field in operate Instruction format

Revision 1.0, May 23, 1989

1. Remove Rb .reading as PC for Rb eq 0

2. Fix error in which bit is literal enable bit for operate format

3. Add Floating-point Operate format

Revision 0.0, March 15, 1989

1. Initial version

Instruction Formats (I) 3-15

Digital Restricted Distribution

Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section

Integer load and store 4.2
Integer control 4.3
Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6
Floating-point load and store 4.8
Floating-point control 4.9

Floating-point operate 4.10
Miscellaneous 4.11

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

• Qualifiers specific to the instructions· in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction

Instruction Descriptions (I) 4-1

Digital Restricted Distribution

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the 32 floating-point registers, the Floating­
point Control Register (FPCR) and the instructions to access it, floating-point
branch instructions, floating-point copy sign (CPYSx) instructions, floating-point
convert instructions, floating-point conditional move instruction (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE
A system that will not support floating-point operations
is still required to provide the 32 floating-point
registers, the Floating-point Control Register (FPCR)
and the instructions to access it, and the T _floating
memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point
emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F _ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.

4.1.2 Software Emulation Rules

General-purpose layered and application software that executes in User mode may
assume that certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special-

4-2 Common Architecture (I)

Digital Restricted Distribution

purpose dedicated applications need not provide emulation in User mode if emulation
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX formats, Add F _floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (/) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4-1. The opcodes for each qualifier
are listed in Appendix C.

Table 4-1: Opcode Qualifiers

Qualifier Meaning

c Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

s Software completion enable

u Floating underflow enable

v Integer overflow enable

The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.

Instruction Descriptions (I) 4-3

Digital Restricted Distribution

4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions
Mnemonic Operation

LDA

LDAH

LDL

LDL_L

LDQ

LDQ_L

LDQ_U

STL
STL_C

STQ

STQ_C

STQ_U

Load Address

Load Address High

Load Sign-Extended Longword

Load Sign-Extended Longword Locked

Load Quadword

Load Quadword Locked

Load Quadword Unaligned

Store Longword

Store Longword Conditional

Store Quadword

Store Quadword Conditional

Store Quadword Unaligned

4-4 Common Architecture (I)

Digital Restricted Distribution

4.2.1 Load Address

Format:

LDAx Ra.wq,disp.ab(Rb.ab)

Operation:

Ra ~ Rbv + SEXT(disp)

Ra ~ Rbv + SEXT(disp*65536)

Exceptions:

None

Instruction mnemonics:

LDA

LDAH

Qualifiers:

None

Description:

Load Address

Load Address High

!Memory format

!LDA

!LDAH

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-eJttended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.

Instruction Descriptions (I) 4-5

Digital Restricted Distribution

4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab)

Operation:

va +-- {Rbv + SEXT(disp)}

Ra +-- SEXT ((va) <31: 0>)
Ra +-- (va)<63:0>

Exceptions:

Access Violation

Alignment

Fault on Read

Translation Not Valid

Instruction mnemonics:

!Memory format

!LDL
!LDQ

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched fro.m memory, sign-extended, and
written to register Ra. If the data is not naturally aligned, an alignment exception
is generated.

4-6 Common Architecture (I)

Digital Restricted Distribution

4.2.3 ·Load Unaligned Memory Data into Integer Register

Format:

. LDQ_U Ra.wq,disp.ab(Rb.ab)

Operation:

va ~ {{Rbv + SEXT(disp)} AND NOT 7}

Ra ~ (va)<63:0>

Exceptions:

Access Violation

Fault on Read

Translation Not Valid

Instruction mnemonics:

!Memory format

LDQ_U Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.

Instruction Descriptions (I) 4-7

Digital Restricted Distribution

4.2.4 Load Memory Data into Integer Register Locked

Format:

LDx_L Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va ~ {Rbv + SEXT(disp)}

lock_flag ~ 1
locked_physical_address ~
Ra ~ SEXT ({va) <31: 0>)
Ra ~ (va)<63:0>

Exceptions:

Access Violation

Alignment

Fault on Read

Translation Not Valid

Instruction mnemonics:

PHYSICAL_ADDRESS{va)
!LDL L
!LDQ_L

LDL_L

LDQ_L

Load Sign-Extended Longword from Memory to Register Locked

Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, sign-extended for LDL_
L, and written to register Ra.

When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the
store occurs; otherwise, it does not occur, as described for the STx_ C instructions.

Ii processor as lock_fiag is set and processor B successfully does a store within Ks
locked range of physical addresses, then Ks lock_flag is cleared. A processor's locked

4-8 Common Architecture (I)

Digital Restricted Distribution

range is the aligned block of 2**N bytes that includes the locked_physical_address.
The 2**N value is implementation dependent. It is at least 8 (minimum lock range
is an aligned quadword) and is at most the page size for that implementation
(maxim.um lock range is one physical page).

A processor's lock_fiag is also cleared if that processor encounters a CALL_PAL REI
instruction. It is UNPREDICTABLE whether or not a processor's lock_fiag is cleared
on any other CALL_PAL instruction. It is UNPREDICTABLE whether a processor's
lock_fiag is cleared by that processor's executing a normal load or store instruction.
It is UNPREDICTABLE whether a processor's lock_fiag is cleared by that processor's
executing a taken branch (including BR, BSR, and Jumps); conditional branches that
fall through do not clear the lock_fiag.

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an
atomic read-modify-write of a datum in shared memory if the branch falls through;
if the branch is taken, the store did not modify memory and the sequence may be
repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_ C may
take an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_ C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
be followed by a conditional branch: on the fall-through path an STx_C is done,
whereas on the taken path no matching STx_ C is done.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_:flag.

• Software will not emulate unaligned LDx_L instructions.

• If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementations; hence, no useful program should do this.

• If a branch is taken between the LDx_L and the STx_ C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOV:xx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementations,
because of the Illegal Instruction Trap; hence, no useful program should do this.

• If a large number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations, because of a timer
interrupt always clearing thelock_fiag before the sequence completes; hence, no
useful program should do this.

Instruction Descriptions (I) 4-9

Digital Restricted Distribution

• Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

IMPLEMENTATION NOTES
Implementations that impede the mobility of a cache
block on LDx_L, such as that which may occur in a Read
for Ownership cache coherency protocol, may release the
cache block and make the subsequent STx_ C fail if a
branch-taken or memory instruction is executed on that
processor.

All implementations should guarantee that at least
40 non-subsetted operate instructions can be executed
between timer interrupts.

4-10 Common Architecture 0)

Digital Restricted Distribution

4.2.5 Store Integer Register Data into Memory Conditional

Format:·

STx_C Ra.mq,disp.ab(Rb.ab)

Operation:

va ...- {Rbv + SEXT(disp)}

IF lock_flag EQ 1 THEN
(va)<31:0> ~ Rav<31:0>
(va) ...- Rav

Ra ...- lock_flag
lock_flag ~ 0

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

· !Memory format

!STL C
!STQ_C

STL_C

STQ_C

Store Longword from Register to Memory Conditional

Store Quadword from Register to Memory Conditional

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. If the lock_flag is set, the Ra operand is written to memory at this
address. (See the LDx_L description for conditions that clear the lock_:flag.) The
lock_:flag is returned in RA and then set to a zero.

Notes:

• Software will not emulate unaligned STx_ C instructions.

• Each implementation must do the test and store atomically, so that if two
processors execute store conditionals within the same lock range, exactly one
of the stores succeeds.

Instruction Descriptions (I) 4-11

Digital Restricted Distribution

• The following sequence should not be used:

try_again: LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl, try_again

That sequence penalizes performance when the STQ_ C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha architecture. In the case where the STQ_C succeeds and the branch
will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case as shown in Section 5.5.2.

SOFTWARE NOTE
The address specified by a STx_C instruction need not
match that given in a preceding LDx_L. Specifying
unmatched addresses for those instructions requires an
MB in between to guarantee ordering.

IMPLEMENTATION NOTES
A STx_C must propagate to the point of coherency,
where it is guaranteed to prevent any other store from
changing the state of the lock bit, before its outcome can
be determined.

If an implementation could encounter a TB or cache miss
on the data reference of the STx_ C in the sequence above
(as might occur in some shared I- and D-stream direct­
mapped TBs/caches), it must be able to resolve the miss
and complete the store without always failing.

4-12 Common Architecture (I)

Digital Restricted Distribution

4.2.6 Store Integer Register Data into Memory

Format:

STx Ra.rq,disp.ab(Rb.ab)

Operation:

va +-- { Rbv + SEXT (disp) }
(va) <31: 0> +-- Rav<31: 0>
(va) +-- Rav

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

!Memory format

!STL
!STQ

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The Ra operand is written to memory at this address. If the data is
.not naturally aligned, an alignment exception is generated.

Instruction Descriptions (I) 4-13

Digital Restricted Distribution

4.2.7 Store Unaligned Integer Register Data into Memory

Format:

STQ_U Ra.rq,disp.ab(Rb.ab)

Operation:

va +- {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> +- Rav<63:0>

Exceptions:

Access Violation

Fault on Write

Translation Not Valid

Instruction mnemonics:

!Memory format

STQ_U Store Unaligned Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.

4-14 Common Architecture (I)

Digital Restricted Distribution

4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSRIRET/JMP), there is a
substantial performance gain in forming a good guess of the expected target I­
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target
address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that
statically specifies the 16 low- bits of the most likely target address. The PC­
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within the largest possible Alpha page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distin~ions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign· of the target displacement is used as a taken
/fall-through hint. The instructions are summarized in Table 4--3.

Instruction Descriptions (I) 4-15

Digital Restricted Distribution

Table 4-3: Control Instructions Summary
Mnemonic

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

BR

BSR

JMP

JSR

Operation

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero

Unconditional Branch

Branch to Subroutine

Jump

Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

4-16 Common Architecture (I)

Digital· Restricted Distribution

4.3.1 Conditional Branch

Format:

Bxx Ra.rq,disp.al !Branch format

Operation:

{update PC}
va +--- PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN

PC +--- va

Exceptions:

None

Instruction mnemonics:

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

Qualifiers:

None

Description:

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero

Register Ra is tested. If the specified· relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions· are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/- lM instructions.

Instruction Descriptions (I) 4-17

Digital Restricted Distribution

The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested.

Notes:

• Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.

4-18 Common Architecture (I)

Digital Restricted Distribution

4.3.2 Unconditional Branch

Format:

BxR Ra. wq,disp.al

Operation:

{update PC}
Ra +-- PC
PC +-- PC+ {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch

BSR Branch to Subroutine

Qualifiers:
I

None

'escription:

!Branch format

The PC of the following instruction (the updated PC) is written to register Ra, and
.then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
, left two bits (to address a longword boundary), sign-extended to 64 bits, and added

to the updated PC to form the target virtual address.

1 The unconditional branch· instructions are PC-relative. The 21-bit signed
displacement gives a forward/backward branch distance of +/- lM instructions.

PC-relative addressability can be established by:

BR Rx,Ll
Ll:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch­
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).

Instruction Descriptions (I) 4-19

Digital Restricted Distribution

4.3.3 Jumps

Format:

mnemonic Ra.wq,(Rb.ab),hint

Operation:

{update PC}
va ~ Rbv AND {NOT 3}
Ra~ PC
PC~ va

Exceptions:

None

Instruction mnemonics:

JMP

JSR

RET

Jump

Jump to Subroutine

Return from Subroutine

!Memory format

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different "opcodes" set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.

4-20 Common Architecture (I)

Digital Restricted Distribution

These bits are intended to be used as shown in Table 4-4.

Table 4-4: Jump Instructions Branch Prediction
Predicted

disp<15:14> Meaning Target<15:0>

00 JMP PC+ {4*disp<13:0>}

01 JSR PC+ {4*disp<13:0>}

10 RET Prediction stack

11 JSR_ COROUTINE Prediction stack

Prediction
Stack Action

Push PC

Pop

Pop, push PC

The design in Table 4-4 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction. ·

An unconditional long jump can be performed by:

JMP R31, (Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<l5:14> equals '10' (RET) or '11' (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

000016

000116

Indicates non-procedure return

Indicates procedure return

All other encodings are reserved to Digital.

Instruction Descriptions (I) 4-21

Digital Restricted Distribution

4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, and signed and
unsigned compare operations.

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary
Mnemonic Operation

ADD

S4ADD

SBADD

CMPEQ

CMPLT

CMPLE

CMPULT

CM PULE

MUL

UMULH

SUB

S4SUB

SSSUB

Add Quadword/Longword

Scaled Add by 4

Scaled Add by 8

Compare Signed Quadword Equal

Compare Signed Quadword Less Than

Compare Signed Quadword Less Than or Equal

Compare Unsigned Quadword Less Than

Compare Unsigned Quadword Less Than or Equal

Multiply Quadword/Longword

Multiply Quadword Unsigned High

Subtract Quadword/Longword

Scaled Subtract by 4

Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH; division by a variable can be done via a subroutine. See Appendix A.

4-22 Common Architecture (I)

Digital Restricted Distribution

4.4.1 Longword Add

Format:

ADDL
ADDL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

Re +-- SEXT((Rav + Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Re.

The high order 32 bits of Ra and Rb are ignored. Re is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.

Instruction Descriptions (I) 4-23

Digital Restricted Distribution

4.4.2 Scaled Longword Add

Format:

SxADDL Ra.rq,Rb.rq,Rc.wq

SxADDL Ra.rq,#b.ib,Rc.wq

Operation:

CASE

!Operate form.at

!Operate format

S4ADDL: Re -- SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Re -- SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)

END CASE

Exceptions:

None

Instruction mnemonics:

S4ADDL Scaled Add Longword by 4

SSADDL Scaled Add Longword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for SSADDL) and is added to register
Rb or a literal, and the sign-extended 32-bit sum is written to Re.

The high 32 bits of Ra and Rb are ignored. Re is a proper sign extension of the
truncated 32-bit sum.

4-24 Common Architecture (I)

Digital Restricted Distribution

4.4.3 Quadword Add

Format:

ADDQ
ADDQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

Re -+--- Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Re.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. After adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.

Instruction Descriptions (I) 4-25

Digital Restricted Distribution

4.4.4 Scaled Quadword Add

Format:

SxADDQ Ra.rq,Rb.rq,Rc.wq

SxADDQ Ra.rq,#b.ib,Rc.wq

Operation:

CASE

!Operate format

!Operate format

S4ADDQ: Re +- LEFT_SHIFT(Rav,2) + Rbv
S8ADDQ: Re +- LEFT_SHIFT(Rav,3) + Rbv

END CASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4

SSADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Re.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

4-26 Common Architecture (I)

Digital Restricted Distribution

4.4.5 Integer Signed Compare

Format:

CMPxx

CMPxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

IF Rav SIGNED RELATION Rbv THEN
Re +- 1

ELSE
Re +- 0

Exceptions:

None

Instruction mnemonics:

!Operate format

!Operate format

CMPEQ Compare Signed Quadword Equal

CMPLE Compare Signed Quadword Less Than or Equal

CMPLT Compare Signed Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Re; otherwise, zero is written to Re.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

Instruction Descriptions (I) 4-27

Digital Restricted Distribution

4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rc.wq

CMPUxx Ra.rq,#b.ib,Rc.wq

Operation:

IF Rav UNSIGNED RELATION Rbv THEN
Re ~ 1

ELSE
Re ~ 0

Exceptions:

None

Instruction mnemonics:

!Operate format

!Operate format

CMPULE Compare Unsigned Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Re; otherwise, zero is written to Re.

4-28 Common Architecture (I)

Digital Restricted Distribution

4.4. 7 Longword Multiply

Format:

MULL
MULL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

Re +- SEXT ((Rav * Rbv) <31: 0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Re.

The high 32 bits of Ra and Rb are ignored. Re is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64•bit product.

Instruction Descriptions (I) 4-29

Digital Restricted Distribution

4.4.8 Quadword Multiply

Format:

MULQ

MULQ

Operation:

Ra.rq,Rb.rq,Rc. wq

Ra.Rq,#b.ib,Rc.wq

Re +-- Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Re. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are
written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit
result when an overflow occurs.

4-30 Common Architecture (I)

Digital Restricted Distribution

4.4.9 Unsigned Quadword Multiply High

Format:

UMULH Ra.rq,Rb.rq,Rc.wq

UMULH Ra.Rq,#b.ib,Rc.wq

Operation:

Re +--- {Rav *U Rbv}<l27:64>

Exceptions:

None

Instruction mnemonics:

!Operate format

!Operate format

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Re.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows:

Ra and Rb are unsigned: result of UMULH

Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.

Instruction Descriptions (I) 4-31

Digital Restricted Distribution

4.4.10 Longword Subtract

Format:

SUBL
SUBL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

Re +-- SEXT ((Rav - Rbv) <31: 0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Rb or a literal·is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Re.

The high 32 bits of Ra and Rb are ignored. Re is a PI'.'Oper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> - Rbv<31:0>.

4-32 Common Architecture (I)

Digital Restricted Distribution

4.4.11 Scaled Longword Subtract

Format:

SxSUBL Ra.rq,Rb.rq,Rc.wq

SxSUBL Ra.rq,#b.ib,Rc.wq

Operation:

CASE

!Operate form.at

!Operate format

S4SUBL: Re~ SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Re~ SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)

END CASE

Exceptions:

None

Instruction mnemonics:

S4SUBL Scaled Subtract Longword by 4

S8SUBL Scaled Subtract Longword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference
is written to Re.

The high 32 bits of Ra and Rb are ignored. Re is a proper sign extension of the
truncated 32-bit difference.

Instruction Descriptions (I) 4-33

Digital Restricted Distribution

4.4.12 Quadword Subtract

Format:

SUBQ

SUBQ

Operation:

Ra.rq,Rb.rq,Rc. wq

Ra.rq,#b.ib,Rc.wq

Re +- Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (N)

Description:

!Operate format

!Operate format

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Re. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.

4-34 Common Architecture (I)

Digital Restricted Distribution

4.4.13 Scaled Quadword Subtract

Format:

SxSUBQ Ra.rq,Rb.rq,Rc.wq

SxSUBQ Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Operation:

CASE
S4SUBQ: Re ~ LEFT SHIFT(Rav,2) - Rbv
S8SUBQ: Re ~ LEFT=SHIFT(Rav,3) - Rbv

END CASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ Scaled S?btract Quadword by 4

SSSUBQ Scaled Subtract Quadword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for SSSUBQ), and the 64-bit difference is written to
Re.

Instruction Descriptions (I) 4-35

Digital Restricted Distribution

4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4-6. ·

Table 4-6: Logical and Shift Instructions Summary

Mnemonic Operation

AND

BIC

BIS

EQV

ORN OT

XOR

CMOVxx

SLL

SRA

SRL

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference

Conditional Move Integer

Shift Left Logical

Shift Right Arithmetic

Shift Right Logical

SOFTWARE NOTE
There is no arithmetic left shift instruction. Where an
arithmetic left shift would be used, a logical shift will
do. For multiplying by a small power of two_ in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit :field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.

4-36 Common Architecture (I)

Digital Restricted Distribution

4.5.1 Logical Functions

Format:

mnemonic Ra.rq,Rb.rq,Rc.wq

mnemonic Ra.rq,#b.ib,Rc. wq

Operation:

Re
Re
Re

+-

+-

+-

Rav AND Rbv
Rav OR Rbv
Rav XOR Rbv

Re +-

Re +-

Re +-

Rav AND {NOT Rbv}
Rav OR {NOT Rbv}
Rav XOR {NOT Rbv}

Exceptions:

None

Instruction mnemonics:

AND

BIC

BIS

EQV
ORN OT

XOR

Qualifiers:

None

Description:

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference

!Operate format

!Operate format

!AND
!BIS
!XOR
!BIC
!ORNOT
!EQV

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Re.

The "NOT" function can be performed by doing an ORNOT with zero (Ra= R31).

Instruction Descriptions (I) 4-37

Digital Restricted Distribution

4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq

CMOVxx Ra.rq,#b.ib,Rc.wq

!Operate form.at

!Operate format

Operation:

IF TEST(Rav, Condition_based_on_Opcode) THEN

Re +- Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ

CMOVGE

CMOVGT

CMOVLBC

CMOVLBS

CMOVLE

CMOVLT

CMOVNE

Qualifiers:

None

Description:

CMOVE if Register Equal to Zero

CMOVE if Register Greater Than or Equal to Zero

CMOVE if Register Greater Than Zero

CMOVE if Register Low Bit Clear

CMOVE if Register Low Bit Set

CMOVE if Register Less Than or Equal to Zero

CMOVE if Register Less Than Zero

CMOVE if Register Not Equal to Zero

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Re.

4-38 Common Architecture (I)

Digital Restricted Distribution

Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

label:

BNE Ra,label
OR Rb,Rb,Rc

For example, a branchless sequence for:

is:

Rl=MAX (Rl,1R2)

CMPLT Rl,R2,R3
CMOVNE R3,R2,Rl

R3=1 if Rl<R2
Move R2 to Rl if Rl<R2

Instruction Descriptions (I) 4-39

Digital Restricted Distribution

4.5.3 Shift Logical

Format:

SxL

SxL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc. wq

!Operate format

!Operate format

Re +-- LEFT_SHIFT(Rav, Rbv<5:0>) !SLL
Re +-- RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical

SRL Shift Right Logical

Qualifiers:

None

Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Re. Zero bits are propagated into the
vacated bit positions.

4-40 Common Architecture {I)

Digital Restricted Distribution

4.5.4 Shift Arithmetic

Format:

SRA

SRA

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rb,#b.ib,Rc.wq

!Operate format

!Operate format

Re +-- ARITH_RIGHT_SHIFT(Rav, Rbv<5:0>)

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Re. The sign bit (Rav<63>) is propagated
into the vacated bit positions.

Instruction Descriptions (I) 4-41

Digital Restricted Distribution

4.6 Byte-Manipulation Instructions

Alpha provides instructions for operating on byte operands within registers.
These instructions· allow full-width memory accesses in the load/store instructions
combined with powerful in-register byte manipulation.

The instructions are summarized in Table 4-7.

Table 4-7: Byte-Manipulation Instructions Summary
Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract. Qnadwo!"d Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INS BL Insert Byte Low

INSWL Insert Word Low

INS LL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MS KWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

4-42 Common Architecture (I)

Digital Restricted Distribution

Table 4-7 (Cont.): Byte-Manlpulatlon Instructions Summary
Mnemonic

ZAP

ZAP NOT

Operation

Zero Bytes

Zero Bytes Not

Instruction Descriptions (I) 4-43

Digital Restricted Distribution

4.6.1 Compare Byte

Format:

CMPBGE Ra.rq,Rb.rq,Rc.wq

CMPBGE Ra.rq,#b.ib,Rc.wq

Operation:

FOR i FROM 0 TO 7

!Operate format

!Operate format

temp<8:0> +- {0 I I Rav<i*8+7:i*8>} +
{01 I NOT Rbv<i*8+7:i*8>} + 1

Rc<i> +- temp<8>
END
Rc<63: 8> +- 0

S:Y~QntinnQ• ___ .._.. .,...r"

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Re. The
high 56 bits of Re are set to zero. Bit 0 of Re corresponds to byte 0, bit 1 of Re
corresponds to byte 1, and so forth. A result bit is set in Re if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).

4-44 Common Architecture (I)

Digital Restricted Distribution

Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

LOOP:
<initialize Rl to aligned QW address of string>

LDQ
LDA
CMPBGE
BEQ

R2, 0 (Rl)
Rl, 8 (Rl)
R31,R2,R3
R3,LOOP

Pick up 8 bytes
Increment string pointer
If NO bytes of zero, R3<7:0>=0
Loop if no terminator byte found
At this point, R3 can be used to
determine which byte terminated

To compare two character strings for greater/less:

LOOP:

<initialize Rl to aligned QW address of stringl>
<initialize R2 to aligned QW address of string2>

LDQ
LDA
LDQ
LDA
XOR
BEQ
CMPBGE

R3, 0 (Rl)
Rl, 8 (Rl)
R4,0(R2)
R2, 8 (R2)
R3,R4,R5
R5,LOOP
R31,R5,R5

Pick up 8 bytes of stringl
Increment stringl pointer
Pick up 8 bytes of string2
Increment string2 pointer
Test for all equal bytes
Loop if all equal

At this point, RS can be used to
determine the first not-equal
byte position.

To range-check a string of characters in Rl for '0' .. '9':

LDQ R2,lit0s Pick up 8 bytes of the character
BELOW '0' '////////'

LDQ R3,lit9s Pick up 8 bytes of the character
ABOVE '9' ' ,

CMPBGE R2,Rl,R4 Some R4<i>=l if character is LT
CMPBGE · Rl,R3,R5 Some RS<i>=l if character is GT
BNE R4,ERROR Branch if some char too low
BNE R5,ERROR Branch if some char too high

'0'
'9'

Instruction Descriptions (I) 4-45

Digital Restricted Distribution

4.6.2 Extract Byte

Format:

EXTxx

EXTxx

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc. wq

Operation:

CASE

EXTBL: byte_mask ~ 0000 00012
EXTWx: byte_mask ~ 0000 00112
EXTLx: byte_mask ~ 0000 11112
EXTQx: byte_mask ~ 1111 11112

END CASE

CASE

EXTxL~

!Operate format

!Operate format

byte loe ~ · Rbv<2:0>*8
temp-~ RIGHT SHIFT(Rav, byte loe<S:O>)
Re~ BYTE_ZAP(temp, NOT(byte=mask)

EXTxH:

END CASE

Exceptions:

None

byte_loe ~ 64 - Rbv<2:0>*8
temp ~ LEFT_SHIFT(Rav, byte_loe<S:O>)
Re~ BYTE_ZAP(temp, NOT(byte_mask))

Instruction mnemonics:

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

4-46 Common Architecture (I)

Digital Restricted Distribution

Qualifiers:

None

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Re. EXTxH shifts register Ra left
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Re. The number of bytes to shift is specified by Rbv<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:
The comments in the examples below assume that the effective address (ea) of
X(Rll) is such that (ea mod 8) = 5, the value of the aligned quadword containing
X(Rll) is CBAx xxxx, and the value of the aligned quadword containing X+7(Rll) is
yyyHGFED.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(Rll) is:

LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl == CBAx xxxx
LDQ_U R2,X+7(Rll) Ignores va<2:0>, R2 == yyyH GFED
LDA R3, X (Rll) R3<2:0> == (X mod 8) == 5
EXTQL Rl,R3,Rl Rl 0000 OCBA
EXTQH R2,R3,R2 R2 == HGFE DOOO
OR R2,Rl,Rl Rl == HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

LDQ_U Rl, X (Rll) Ignores va<2:0>, Rl CBAx xxxx
LDQ_U R2,X+3(Rll) Ignores va<2:0>, R2 yyyy yyyD
LDA R3, X (Rll) R3<2:0> == (X mod 8) 5
EXT LL Rl,R3,Rl Rl 0000 OCBA
EXTLH R2,R3,R2 R2 == 0000 DOOO
OR R2,Rl,Rl Rl == 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned
address X is:

LDQ_U Rl,X(Rll)
LDQ_U R2,X+3(Rll)
LDA R3, X (Rll)
EXTLL Rl,R3,Rl
EXTLH R2,R3,R2
OR R2,Rl,Rl
SLL Rl,#32,Rl
SRA Rl,#32,Rl

Ignores va<2:0>, Rl
Ignores va<2:0>, R2
R3<2: 0> == (X mod 8)
Rl 0000 OCBA
R2 == 0000 DOOO
Rl == 0000 DCBA
Rl == DCBA 0000
Rl == ssss DCBA

CBAx xxxx
yyyy yyyD
5

Instruction Descriptions (I) 4-47

Digital Restricted Distribution

The intended sequence for loading and zero-extending a word from unaligned address
Xis:

LDQ_U Rl, X (Rll) Ignores va<2:0>, Rl yBAx xxxx
LDQ_U R2,X+l(Rll) Ignores va<2:0>, R2 yBAx xx xx
LDA R3, X (Rll) R3<2:0> = (X mod 8) 5
EXTWL Rl,R3,Rl Rl 0000 OOBA
EXTWH R2,R3,R2 R2 = 0000 0000
OR R2,Rl,Rl Rl = 0000 OOBA

The intended sequence for loading and sign-extending a word from unaligned address
Xis:

LDQ_U Rl, X (Rll) Ignores va<2:0>, Rl yBAx xx xx
LDQ_U R2,X+l (Rll) Ignores va<2:0>, R2 yBAx xxxx
LDA R3, X (Rll) R3<2:0> = (X mod 8) 5
EXTWL Rl, R3, Rl Rl 0000 OOBA
EXTWH R2,R3,R2 R2 0000 0000
OR R2,Rl,Rl Rl 0000 OOBA
SLL Rl,#48,Rl Rl BAOO 0000
SP""'?\ .. 'O, .JI.A Q 'C, Rl ssss --n"" ... ,..-, "Jf-ZV/ .&.'\.• o o.u.n.

The intended sequence for loading and zero-extending a byte from address X is:

LDQ_U Rl,X(Rll)
LDA R3,X(Rll)
EXTBL Rl,R3,Rl

Ignores va<2:0>, Rl
R3<2:0> = (X mod 8)
Rl = 0000 OOOA

yy~ xxxx
5

The intended sequence for loading and sign-extending a byte from address X is:

LDQ_U Rl, X(Rll)
LDA R3, X+l(Rll)

EXTQH Rl, R3, Rl

SRA Rl, #56, Rl

Optimized examples:

Ignores va<2:0>, Rl = yyAx xxxx
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based
Places the desired byte into byte 7
of Rl.final by left shifting
Rl.initial by (8 - R3<2:0>) byte
positions
Arithmetic Shift of byte 7 down
into byte 0,

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the
known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault if R3 does
not contain a longword-aligned address.

The intended sequence for loading and zero-extending an aligned word from 10(R3)
is:

LDL Rl,8(R3) Rl = ssss BAxx
Faults if R3 is not longword aligned

EXTWL Rl,#2,Rl Rl = 0000 OOBA

4-48 Common Architecture (I)

Digital Restricted Distribution

The intended sequence for loading and sign-extending an aligned word from 10(R3)
is:

LDL Rl,8(R3)

SRA Rl,#16,Rl

Rl = ssss BAxx
Faults if R3 is not longword aligned
Rl = ssss ssBA

Instruction Descriptions (I) 4-49

Digital Restricted Distribution

4.6.3 Byte Insert

Format:

INS:xx

INS:xx

Operation:

CASE
INSBL:
INSWx:
INSLx:
INSQx:

END CASE

Ra.rq,Rb.rq,Rc. wq

Ra.rq,#b.ib,Rc.wq

byte_mask +- 0000
byte_mask +- 0000
byte_mask +- 0000
byte_mask +- 0000

!Operate format

· !Operate format

0000 0000 00012
0000 0000 00112
0000 0000 11112
0000 1111 11112

byte_mask +- LEFT_SHIFT(byte_mask, rbv<2:0>)

CASE

INSxL:
byte_loe +- Rbv<2:0>*8
temp +- LEFT_SHIFT(Rav, byte_loe<S:O>)
Re+- BYTE_ZAP(temp, NOT(byte_mask<7:0>))

INSxH:

END CASE

Exceptions:

None

byte_loe +- 64 - Rbv<2:0>*8
temp +- RIGHT_SHIFT(Rav, byte_loe<S:O>)
Re+- BYTE_ZAP(temp, NOT(byte_mask<15:8>))

Instruction mnemonics:

INS BL Insert Byte Low

INSWL Insert Word Low

INS LL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

4-50 Common Architecture (I)

Digital Restricted Distribution

Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Re. Register Rb<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.

Instruction Descriptions (I) 4-51

Digital Restricted Distribution

4.6.4 Byte Mask

Format:

MSKxx

MSKxx

Operation:

CASE

MSKBL:
MSKWx:
MSKLx:
MSKQx:

END CASE

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc. wq

byte_mask ~ 0000
byte_mask ~ 0000
byte_mask ~ 0000
byte_mask ~ 0000

0000
0000
0000
0000

!Operate format

!Operate format

0000 00012
0000 00112
0000 11112
1111 11112

byte_mask ~ LEFT_SHIFT(byte_mask, rbv<2:0>)

CASE

MSKxL:
Re~ BYTE_ZAP(Rav, byte_mask<7:0>)

MSKxH:
Re~ BYTE_ZAP(Rav, byte_mask<15:8>)

END CASE

Exceptions:

None

Instruction mnemonics:

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MS KWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

Qualifiers:

None

4-52 Common Architecture (I)

Digital Restricted Distribution

Description:

MSKxL and MSK:x:H set selected bytes of register Ra to zero, storing the result
in register Re. Register Rb<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:
The comments in the examples below assume that the effective address (ea) ofX(Rll)
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(Rll) is
CBAx xxxx, the value of the aligned quadword containing X+7(Rll) is yyyH GFED,
and the value to be stored from R5 is hgfe dcba.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(Rll) is:

LDA R6, X (Rll) R6<2:0> = (X mod 8) 5
LDQ_U R2,X+7(Rll) Ignores va<2:0>, R2 yyyH GFED
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xx xx
INSQH R5,R6,R4 R4 OOOh gfed
INSQL R5,R6,R3 R3 = cbaO 0000
MSKQH R2,R6,R2 R2 = yyyO 0000
MSKQL Rl,R6,Rl Rl = OOOx xx xx
OR R2,R4,R2 R2 = yyyh gf ed
OR Rl,R3,Rl Rl = cbax xxxx
STQ_U R2 , X + 7 (Rl 1) Must store high then low for
STQ_U Rl, X (Rll) degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

LDA R6, X (Rll) R6<2:0> = (X mod 8) 5
LDQ_U R2, X+3 (Rll) Ignores va<2: 0>, R2 yyyy yyyD
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xx xx
INSLH R5~R6,R4 R4 0000 OOOd
INS LL R5,R6,R3 R3 = cbaO 0000
MSKLH R2,R6,R2 R2 = yyyy yyyO
MSKLL Rl,R6,Rl Rl = OOOx xx xx
OR R2,R4,R2 R2 = yyyy yyyd
OR Rl,R3,Rl Rl = cbax xxxx
STQ_U R2,X+3 (Rll) Must store high then low for
STQ_U Rl,X(Rll) degenerate case of aligned

Instruction Descriptions (I) 4-53

Digital Restricted Distribution

The intended sequence for storing an unaligned wo~d R5 at X is:

LDA R6,X(Rll) R6<2:0> == (X mod 8) 5
LDQ_U R2,X+l(Rll) Ignores va<2:0>, R2 yBAx xxxx
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl yBAx xxxx
INSWH R5,R6,R4 R4 0000 0000
INSWL R5,R6,R3 R3 ObaO 0000
MS KWH R2,R6,R2 R2 yBAx xx xx
MSKWL Rl,R6,Rl Rl yOOx xxxx
OR R2,R4,R2 R2 yBAx xxxx
OR Rl,R3,Rl Rl ybax xxxx
STQ_U R2,X+l(Rll) Must store high then low for
STQ_U Rl,X(Rll) degenerate case of aligned

The intended sequence for storing a byte R5 at X is:

LDA R6,X(Rll) R6<2:0> == (X mod 8) 5
LDQ_U Rl, X (Rll) Ignores va<2:0>, Rl yyAx xxxx
INS BL R5,R6,R3 R3 OOaO 0000
MSKBL Rl,R6,Rl Rl yyOx xxxx
OR R1;R3;Rl Rl "'""":::a"'V" V'V'~V'

~ J --- --·--·

STQ_U Rl,X(Rll)

4-54 Common Architecture (I)

Digital Restricted Distribution

4.6.5 Zero Bytes

Format:

ZAPx

ZAPx

Operation:

CASE

ZAP:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

Re~ BYTE_ZAP(Rav, rbv<7:0>)

ZAPNOT:

!Operate form.at

!Operate form.at

Re~ BYTE_ZAP(Rav, NOT rbv<7:0>)
END CASE

Exceptions:

None,

Instruction mnemonics:

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Re. Register Rb<7 :0> selects the bytes to be zeroed; bit 0 of Rbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.

Instruction Descriptions (I) 4-55

Digital Restricted Distribution

4. 7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four
data formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating­
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

NOTE
D_floating is a partially supported datatype; no D_
floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D _floating "format compatibility," in which
binary files of D_floating numbers may be processed
but without the last 3 bits of . fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D _floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F _ or G_floating zero result must materialize a true zero.

4.7.1 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).

The Floating-point Enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating registers.

If a floating instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations,
either, or none.

4-56 Common Architecture (I)

~

Digital Restricted Distribution

Some :floating-point instructions are common to the VAX. and IEEE subsets, some
are VAX. only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation including IEEE :floating-point may subset the ability to perform
rounding to plus infinity and minus infinity. If not implemented, instructions
requesting these rounding modes take Illegal Instruction Trap.

4. 7.2 Definitions

The following definitions apply to Alpha :floating-point support.

true result
The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

representable result
a real number that can be represented exactly as a VAX. or IEEE :floating-point
number, with finite precision and bounded exponent range.

LSB
The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

true zero
The value +O, represented as exactly 64 zeros in a :floating-point register.

Alpha finite number
A :floating-point"0 number with a definite, in-range value. Specifically, all numbers
in the inclusive ranges-MAX..-MIN, zero, +MIN .. +MAX, where MAX is the largest
non-infinite representable :floating-point number and MIN is the smallest non-zero
representable normalized :floating-point number.

For VAX. :floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX. interpretation of dirty zeros as finite). For IEEE floating­
point, finites do not include infinites, NaN s, or denormals, but do include minus zero.

Not-a-Number
An IEEE :floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha, those with an initial fraction
bit of 1) and quiet NaNs (for Alpha, those with initial fraction bit of 0).

Infinity
An IEEE :floating-point bit pattern that represents plus or minus infinity.

Instruction Descriptions (I) 4-57

Digital Restricted Distribution

denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

dlny zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero
form.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

4.7.3 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8 or 11 bits; and the fraction is 23,
52, or 55 bits. Some encodings represent special values:

Vax
Sign Exponent Fraction Meaning

x

x

0

1

0

1

x

All-l's

All-l's

0

0

0

0

Other

Non-zero Finite

0 Finite

Non-zero Dirty zero

Non-zero Resv. operand

0 True zero

0 Resv. operand

x Finite

VAX IEEE
Finite Meaning

Yes

Yes

No

No

Yes

No

Yes

+/-NaN

+/-Infinity

+Denormal

-Denormal

+O
-0

finite

IEEE
Finite

No

No

No

No

Yes

Yes

Yes

The values of MIN and MAX for each of the four floating-point data formats are:

Data Format MIN MAX

F_floating 2**-127 * 0.5 2**127 * (1.0 - 2**-24)
(0.294e-38) (1.70e38)

G_floating 2**-1023 * 0.5 2**1023 * (1.0 - 2**-53)
(0.56e-308) (0.899e308)

S_floating 2**-126 * 1.0 2**127 * (2.0 - 2**-23)
(1.175e-38) (3.40e38)

4-58 Common Architecture (I)

Digital Restricted Distribution

Data Format

T_:floating

MIN

2**-1022 * 1.0
(2.225e-308)

4. 7 .4 Floating-Point Rounding Modes

MAX

2**1023 * (2.0 - 2**-52)
(1. 798e308)

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes
For VAX :floating-point operations, two rounding modes are provided and are
specified in each instruction: normal·(biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
~ MAX + 112 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results~ MAX+ 1 LSB in magnitude
to an overflow; maps true results< MIN in magnitude to an underflow.

IEEE Rounding Modes
For IEEE :floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the
instruction. Rounding toward plus infinity can be obtained by setting the Floating­
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha IEEE arithmetic does rounding
before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in 0 (sometimes called unbiased rounding to even); maps true results
~ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results ~+MIN - 1 LSB to an underflow; and maps negative true
results> -MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results <+MIN to an underflow; and maps negative true results
~-MIN+ 1 LSB to an underflow.

Instruction Descriptions (I) 4-59

Digital Restricted Distribution

Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ~ MAX + 1 LSB in magnitude
to an overflow; and maps non-zero true results< MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4. 7. 7.

The following tables summarize the :floating-point rounding modes:

VAX Rounding Mode

Normal rounding

Chopped

IEEE Rounding Mode

Normal rounding

Plus infinity

Minus infinity

Chopped

Instruction Notation

(No modifier)

IC

Instruction Notation

(No modifier)
rn.

I J.J

ID and ensure that FPCR<DYN> = '11'

/M

IC

4. 7 .5 Floating-Point Trapping Modes

There are six exceptions that can be generated by :floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow, may be disabled

• Inexact result, may be disabled

• Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part II, Operating Systems.

VAX Trapping Modes
For VAX :floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow.

For VAX conversions from :floating-point to integer, four trapping modes are provided.
They specify software completion and ·whether traps are enabled for integer overflow.

4-60 Common Architecture (I)

Digital Restricted Distribution

IEEE Trapping Modes
For IEEE :floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results.

For IEEE conversions from :floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for
integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode

Imprecise, underflow disabled

Imprecise, underflow enabled

Software, underflow disabled

Software, underflow enabled

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled

Imprecise, integer overflow enabled

Software, integer overflow disabled

Software, integer overflow enabled

IBEE Trap Mode

Imprecise, unfi disabled, inexact disabled

Imprecise, unfi enabled, inexact disabled

Software, unfi enabled, inexact disabled

Software, unfi enabled, inexact enabled

mEE Convert-to-Integer Trap Mode

Imprecise, int.ovfi disabled, inexact disabled

Imprecise, int.ovfi enabled, inexact disabled

Software, int.ovfi enabled, inexact disabled

Software, int.ovfi enabled, inexact enabled

Instruction Notation

(No modifier)

IU

IS

/SU

Instruction Notation

(No modifier)

N

IS

/SV

Instruction Notation

(No modifier)

IU

/SU

/SUI

Instruction Notation

(No modifier)

N

/SV

/SVI

Instruction Descriptions {I) 4-61

Digital Restricted Distribution

4.7.5.1 Imprecise /Software Completion Trap Modes

Floating-point instructions may be pipelined, and all exceptions are imprecise traps:

• The trapping instruction may write an UNPREDICTABLE result value.

• The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

• The extent of the trap shadow is bounded only by a TRAPB instruction (or the
implicit TRAPB within a CALL_PAL instruction).

• Input operand values may have been overwritten in the trap shadow.

• Result values may have been overwritten in the trap shadow.

• An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

• Additional traps may occur in the trap shadow.

• In general, it is not feasible to fix up the result value or to continue from the
trap.

This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the over:flow/under:flow range, or use
IEEE NaN s, software assistance is required to complete :floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the following conditions must
hold:

1. On entry to the trap shadow, if any Alpha register or memory location contains
a value that is used as an operand value by some instruction in the trap shadow
(live on entry), then no instruction in the trap shadow may modify the register
or memory location.

2. Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

3. Within the trap shadow, no register may be used more than once as a destination
register.

4. The trap shadow may not include any branch instructions.

5. Each :floating instruction to be completed must be so marked, by specifying the
IS software completion modifier.

The first condition allows a software trap handler to emulate the trigger instruction
with its original input operand values and then to reexecute the rest of the trap
shadow.

The second condition prevents memory accesses at unpredictable addresses.

4-62 Common Architecture (I)

Digital Restricted Distribution

The remaining conditions make it possible for a software trap handler to find the
trigger instruction via a linear scan backwards from the trap PC.

NOTE
The IS modifier does not affect instruction operation
or trap behavior; it is an informational bit passed to
a software trap handler. It allows a trap handler to
test easily whether an instruction is intended to be
completed. (The IS bits of instructions signaling traps
are carried into the trap summary.) The handler may
then assume that the other conditions are met without
examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating­
point operations marked IS that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

4.7.5.2 Invalid Operation Arithmetic Trap

An invalid operation arithmetic trap is signaled if any operand of a floating
arithmetic-operate instruction is non-finite. (CMPTxy is an exception to the rule
and operates normally with plus and minus infinity and does not trap in this case.)
This trap is always enabled. If this trap occurs, an UNPREDICTABLE value is
stored in the result register. (I~EE-compliant system software must also supply an
invalid operation indication to the user for SQRT of a negative non-zero number,
010, x REM 0, and conversions to integer that take an integer overflow trap.)

4. 7.5.3 Division by zero Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero. This trap is always enabled. If this trap
occurs, an UNPREDICTABLE value is stored in the result register.

4.7.5.4 Overflow Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format. This trap is always enabled. If
this trap occurs, an UNPREDICTABLE value is stored in the result register.

4. 7.5.5 Underflow Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been --0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.

Instruction Descriptions (I) 4-63

Digital Restricted Distribution

4.7.5.6 Inexact Result Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result.

If an inexact result· occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.

4.7.5.7 Integer Overflow Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range -2**63 .. 2**63-1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range -2**31..2**31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the
instruction, an integer overflow arithmetic trap is signaled.

4. 7 .6 Floating-Point Single-Precision Operations

Single-precision values (F _floating or S_floating) are stored in the floating registers
in canonical form, as subsets of double-precision values, with 11-bit exponents
restricted to the corresponding single-precision range, and with the 29 low-order
fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single­
precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating registers are stored in bits <63:62,58:29>, with
bits <61:59> ignored and zeros in bits <28:0>.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (ID) in its
function field (function code bits <7:6> = 11), the rounding mode to be used for the
instruction is derived from the FPCR register. The layout of the rounding mode bits
and their assignments matches exactly the format used in the 11-bit function field
of the floating-point operate instructions.

In addition, the FPCR gives a summary for each exception type of the exceptions
conditions detected by all IEEE floating-point operates thus far as well as an
overall summary bit that indicates whether any of these exception conditions has
been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore; even
though trapping may be disabled for a certain exceptional condition, the fact that

4-64 Common Architecture (I)

Digital Restricted Distribution

the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX
floating-point subset set the FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one.
Once set to one, these exception bits are only cleared when software writes zero into
these bits by writing a new value into the FPCR.

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8.

Figure 4-1: Floating-Point Control Register (FPCR) Format

63 62 60 59 58 57 56 55 54 53 52 51 0

S RAZJ D I I uo DI
U IGN y ON NV ZN RAZJIGN
M N VE FF EV

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions
Bit

63

62-60

59-58

Description

Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
(FPCR[57] I FPCR[56] I FPCR[55] I FPCR[54] I FPCR[53] I FPCR[52]).

Reserved. Read As Zero; Ignored when written.

Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction's function field
specifies dynamic mode (ID). Assignments are:

DYN , IBEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result CINE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

Instruction Descriptions (I) 4-65

Digital Restricted Distribution

Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description

55 Underflow (UNF). A :floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A :floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a :floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a :floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51-0 Reserved. Read As Zero; Ignored when written.

FPCR is read from aµd written to the floating-point registers by the MT _FPCR and
MF _FPCR instructions respectively, which are described in Section 4. 7. 7 .1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.1.1.1). On implementations that do not support
floating-point, the instructions that access FPCR (MF _FPCR and MT_FPCR) take
an Illegal Instruction Trap.

SOFTWARE NOTE
As noted in Section 4.1.1.1, support for FPCR is
required on a system that supports the Open VMS Alpha
operating system even if that system does not support
floating-point.

4.7.7.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of
floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. A TRAPB must be issued both prior to and after accessing
the FPCR to ensure that the FPCR access is synchronized with the execution of
previous and subsequent floating-point instructions; otherwise synchronization is
not ensured.

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures
that only floating-point instructions issued after the second TRAPB are affected
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_
FPCR followed by another TRAPB ensures that the value read from the FPCR only
records the exception information for floating-point instructions issued prior to the
first TRAPB.

Consider the following exam pie:

4-66 Common Architecture (I)

Digital Restricted Distribution

ADDT/D
TRAPB ;l
MT_FPCR Fl,Fl,Fl
TRAPB ;2
SUBT/D

Without the first TRAPB, it is possible in an implementation for the-ADDT/D
to execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDT/D.

Without the second TRAPB, it is possible in an implementation for the MT _FPCR to
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by the MT_FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBT/D.

4.7.7.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

SOFTWARE NOTE
Digital software should initialize FPCR<DYN > = 11
during program activation. Using this default, interval
arithmetic co~ can switch from plus to minus infinity
rounding with no penalty in performance by using fM

and ID qualifiers.

Program activation should clear all other fields of the
FPCR.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

SOFTWARE NOTE
The IEEE standard precludes saving and restoring the
FPCR across subroutine calls.

4.7.8 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985) is included by reference.

Instruction Descriptions (I) 4-67

Digital Restricted Distribution

4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the :Boating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-9.

Table 4-9: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF Load F _floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F _floating 'tTAV
·~~a.

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both

4-68 Common Architecture (I)

Digital Restricted Distribution

4.8.1 Load F _floating

Format:

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Operation:

va +-- {Rbv + SEXT(disp)}

Fa +-- (va) <15> I I MAP_F ((va) <14: 7>) 11
(va) <6: 0> I I (va) <31: 16> I I 0<28: 0>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDF Load F _floating

Qualifiers:

None

Description:

LDF fetches an F _floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-1.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory and the bytes are
reordered to conform to the F _floating register format. The result is then zero­
extended in the low-order longword and writt~n to register Fa.

Instruction Descriptions (I) 4-69

Digital Restricted Distribution

4.8.2 Load G_floating

Format:

LDG Fa. wg,disp.ab(Rb.ab)

Operation:

va -- {Rbv + SEXT(disp)}

Fa -- (va) <15: 0> I I (va) <31: 16> I I
(va) <4 7: 32> I I (va) <63: 48>

Exceptions:

Access Violation

Alignment

Translation Not Valid

Instruction mnemonics:

!Memory format

LDG Load G_fioating (Load D_fioating)

Qualifiers:

None

Description:

LDG fetches a G_fioating (or D_fioating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_fioating register format (also conforming to the D_fioating register
format), and the result is then written to register Fa.

4-70 Common Architecture (I)

Digital Restricted Distribution

4.8.3 Load S_floating

Format:

LDS Fa. ws,disp.ab(Rb.ab) !Memory format

Operation:

va +--- {Rbv + SEXT(disp)}

Fa +--- (va) <31> I I MAP_ S ({va) <30: 23>) I I
(va)<22:0> I I 0<28:0>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, is zero-extended in the
low-order longword, and then written to register Fa.

Notes:

• Longword integers in floating registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>.

Instruction Descriptions (I) 4-71

Digital Restricted Distribution

4.8.4 Load T_floating

Format:

LDT Fa. wt,disp.ab(Rb.ab)

Operation:

va -. {Rbv + SEXT(disp)}

Fa -. (va)<63:0>

Exceptions:

Access Violation

Fault on Read

Translation Not Valid

Instruction mnemonics:

!Memory format

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T _floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa.

4-72 Common Architecture (I)

Digital Restricted Distribution

4.8.5 Store F _floating·

Format:

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Operation:

va +--- {Rbv + SEXT(disp)}

(va)<31:0> +--- Fav<44:29> I I Fav<63:62>1 I Fav<58:45>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STF Store F _floating

Qualifiers:

None

Description:

STF stores an F _floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
~e reordered to conform to F _floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.

Instruction Descriptions (I) 4-73

Digital Restricted Distribution

4.8.6 Store G_floating

Format:

STG Fa.rg,disp.ab(Rb.ab) !Memory format

Operation:

va +- {Rbv + SEXT(disp)}

(va)<63:0> +- Fav<15:0> I I Fav<31:16> I I
Fav<47:32> I I Fav<63:48>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STG Store G_fioating (Store D_fioating)

Qualifiers:

None

Description:

STG stores a G_fioating (or D_fioating) datum from Fa to memory. If the data is not
naturally aligned, a~ alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_fioating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.

4-74 Common Architecture (I)

Digital Restricted Distribution

4.8. 7 Store S _floating

Format:

STS Fa.rs,disp.ab(Rb.ab)

Operation:

va +- {Rbv + SEXT (disp) }

(va)<31:0> +- Fav<63:62>11Fav<58:29>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

!Memory format

STS Store S_:floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_:floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to S_:floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.

Instruction Descriptions (I) 4-75

Digital Restricted Distribution

4.8.8 Store T _floating

Format:

STT Fa.rt,disp.ab(Rb .ab)

Operation:

va +-- {Rbv + SEXT(disp)}

(va)<63:0> +-- Fav<63:0>

Exceptions:

Access Violation -

Fault on Write
A 1.:---~-.._
~.1.5.u..u..1.c.1..1."

Translation Not Valid

Instruction mnemonics:

!Memory format

STT Store T_:floating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_:floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.

4-76 Common Architecture (I)

Digital Restricted Distribution

4.9 Branch Format Floating-Point Instructions

Alpha provides six :floating conditional branch instructions. These branch-format
instructions test the value of a :floating-point register and conditionally change the
PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The :floating-point branch operations are summarized in Table 4-10.

Table 4-10: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both

Instruction Descriptions (I) 4-n

Digital Restricted Distribution

4.9.1 Conditional Branch

Format:

FBxx Fa.rq,disp.al !Branch format

Operation:

{update PC}
va +--- PC + {4*SEXT(disp)}
IF TEST(Fav, Condition_based_on_Opcode) THEN

PC +--- va

Exceptions:

None

Instruction mnemonics:

FBEQ

FBGE

FBGT

FBLE

FBLT

FBNE

Qualifiers:

None

Description:

Floating Branch Equal

Floating Branch Greater Than or Equal

Floating Branch Greater Than

Floating Branch Less Than or Equal

Floating Branch Less Than

Floating Branch Not Equal

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of+/- IM instructions.

4-78 Common Architecture (I)

Digital Restricted Distribution

Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.

Instruction Descriptions (I) 4-79

Digital Restricted Distribution

4.1 O Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4-11.

Table 4-11: Floatlng-Polnt.Qperate Instructions Summary
Mnemonic Operation Subset

Bit and FPCR Ope!"ations

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both

4-80 Common Architecture (I)

Digital Restricted Distribution

Table 4-11 (Cont.): Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Arithmetic Operations

ADDF Add F _floating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F _floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F _floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide. F _floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

MULF Multiply F _floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

SUBF Subtract F _floating VAX

Instruction Descriptions (I) ~1

Digital Restricted Distribution .

Table 4-11 (Cont.): Floating-Point Operate Instructions Summary
Mnemonic Operation

Arithmetic· Operations

SUBG

SUBS

SUBT

Subtract G_floating

Subtract S_:ftoating

Subtract T_:ftoating

4-82 Common Architecture (I)

Subset

VAX

IEEE

IEEE

Digital Restricted Distribution

4.10.1 Copy Sign

Format:

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate fo_rmat

Operation:

CASE
CPYS: Fe ~ Fav<63> I I Fbv<62:0>
CPYSN: Fe ~ NOT(Fav<63>) I I Fbv<62:0>
CPYSE: Fe ~ Fav<63:52> I I Fbv<51:0>

END CASE

Exceptions:

None

Instruction mnemonics:

CPYS

CPYSE

CPYSN

Qualifiers:

None

Description:

Copy Sign

Copy Sign ahd Exponent

Copy Sign Negate

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fe.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fe.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31,Fx,Fy. Floating-point negation can be done
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using
CPYSE.

Instruction Descriptions (I) ~3

Digital Restricted Distribution

4.10.2 Convert Integer to Integer

Format:

CVTxy Fb.rq,Fc.wx !Floating-point Operate format

Operation:

CASE
CVTQL: Fe - Fbv<31:30> I I 0<2:0> I I

Fbv<29:0> I I 0<28:0>

CVTLQ: Fe - SEXT(Fbv<63:62> II Fbv<58:29>)
END CASE

Exceptions:

Integer Overflow, GVTQL only

Instruction mnemonics:

CVTLQ

CVTQL

Qualifiers:

Trapping:

Description:

Convert Longword to Quadword

Convert Quadword to Longword

Software (/8)

Integer Overflow Enable (N) (CVTQL only)

The two's-complement operand in register Fb is converted to a two's-complement
result and written to register Fe.

The conversion from quadword to longword is a repositioning of the low 32 bits of
the operand, with zero :fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range -2**31 .. 2**31-1. If integer overflow occurs, the
truncated result is stored in Fe, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.

4-84 Common Architecture (I)

Digital Restricted Distribution

4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

Operation:

IF TEST(Fav, Condition_based_on_Opcode) THEN

Fe ~ Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ FCMOVE if Register Equal to Zero

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero

FCMOVGT FCMOVE if Register Greater Than Zero

FCMOVLE FCMOVE if Register Less Than or Equal to Zero

FCMOVLT FCMOVE if Register Less Than Zero

FCMOVNE FCMOVE if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Fa is tested. If the specified relationship is true, register Fb is written to
register Fe; otherwise, the move is suppressed and register Fe is unchanged. The
test is based on the sign bit and whether the rest of the register is all zero bits, as
described for floating branches in Section 4.9.

Instruction Descriptions (I) 4-85

Digital Restricted Distribution

Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

label:

FByy Fa,label
CPYS Fb,Fb,Fc

yy == NOT xx

For example, a branchless sequence for:

is:

Fl=MAX(Fl,F2)

CMPxLT Fl,F2,F3
FCMOVNE F3,F2,Fl

4-86 Common Architecture (I)

F3==one if Fl<F2; x==F/G/S/T
Move F2 to Fl if Fl<F2

Digital Restricted Distribution

4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq,Fa.rq,Fa.wq

Operation:

CASE
MT FPCR: FPCR +- Fav
MF FPCR: Fa +- FPCR

END CASE

Exceptions:

None

Instruction mnemonics:

!Floating-point Operate format

MF _FPCR Move from Floating-point Control Register

MT_FPCR Move to floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF _FPCR) or written
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fe fields all pointing to the same floating-point register.
If the Fa, Fb, and Fe fields do not all point to the same floating-point register, then
it is UNPREDICTABLE which register is used.

The use of these instructions and the FPCR are described in Section 4. 7. 7.

Instruction Descriptions (I) ~7

Digital Restricted Distribution

4.10.5 VAX Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe ~ Fav + Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

ADDF

ADDG

Qualifiers:

Rounding:

Trapping:

Description:

Add F _floating

Add G_floating

Chopped {IC)

Software {IS)

Underflow Enable (/U)

!Floating-point Operate format

Register Fa is added to register Fb, and the sum is written to register Fe.

The sum is rounded or chopped to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs. See Section 4.7.5 for details of the stored result
on overflow or underflow.

4-88 Common Architecture (I)

Digital Restricted Distribution

4.10.6 IEEE Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe ..-- Fav + Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

ADDS

ADDT

Qualifiers:

Rounding:

Trapping:

Description:

Add S_floating

Add T_floating

Dynamic (ID)

Minus infinity (!M)

Chopped (IC)

Software (IS)

Underflow Enable (/U)

Inexact Enable (/I)

!Floating-point Operate format

Register Fa is added to register Fb, and the sum is written to register Fe.

The sum is rounded to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.

Instruction Descriptions (I) 4-89

Digital Restricted Distribution

An invalid operation trap is signaled if either operand has exp::O and a ·non.;zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fe are UNPREDICTABLE if this occurs.

See Section 4. 7 .5 for details of the stored result on overfiow, underfiow, or inexact
result.

4-90 Common Architecture (I)

Digital Restricted Distribution

4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq

Operation:

IF Fav SIGNED RELATION Fbv THEN
Fe +- 4000 0000 0000 000016

ELSE
Fe +- 0000 0000 0000 000016

Exceptions:

Invalid Operation

Instruction mnemonics:

Compare G_:B.oating Equal

!Floating-point Operate _format

CMPGEQ

CMPGLE

CMPGLT

Compare G_floating Less Than or Equal
' Compare G_:B.oating Less Than

Qualifiers:

Trapping: Software (IS)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero :B.oating value (0.5) is written to register Fe; otherwise,
a true zero is written to Fe.

Comparisons are exact and never overflow or under:B.ow. Three mutually exclusive
relations are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX. reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

Instruction Descriptions (I) 4-91

Digital Restricted Distribution

4.10.8 IEEE Floating Compare

Format:

CMPTyy Fa.rx,Fb.rx,Fc.wq

Operation:

IF Fav SIGNED RELATION Fbv THEN
Fe +-- 4000 0000 0000 000016

ELSE
Fe +-- 0000 0000 0000 000016

Exceptions:

Invalid Operation

Instruction mnemonics:

Compare T_fioating Equal

!Floating-point Operate format

CMPl'EQ

CMPl'LE

CMPl'LT

CMPl'UN

Compare T_fioating Less Than or Equal

Compare T_fioating Less Than

Compare T_fioating Unordered

Qualifiers:

Trapping: Software {IS)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero :Boating value (2.0) is written to register Fe; otherwise,
a true zero is written to Fe.

Comparisons are exact and never overflow or underflow. Four mutually exclusive
relations are possible: less than, equal, greater than, and unordered. The unordered
relation is true if one or both operands are NaN. (This behavior must be provided
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero,
so +O = -0.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones and a non-zero fraction (IEEE
NaNs). The contents of Fe are UNPREDICTABLE if this occurs.

4-92 Common Architecture (I)

Digital Restricted Distribution

Comparisons with plus and minus infinity execute normally and do not take an
invalid operation trap. \ This was added to support fast path selection through
infinity testing in scientific codes.\

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

Instruction Descriptions (I) 4-93

Digital Restricted Distribution

4.10.9 Convert VAX Floating to Integer

Format:

CVTGQ Fb.rx,Fc.wq

Operation:

Fe ~ {conversion of Fbv}

Exceptions:

Invalid Operation

Integer Overflow

Instruction mnemonics:

!Floating-point Operate format

CVTGQ Convert G_:B.oating to Quadword

Qualifiers:

Rounding:

Trapping:

Description:

Chopped (/C)

Software (18)

Integer Overflow Enable (N)

The floating operand in register Fb is converted to a two's-complement quadword
number and written to register Fe. The conversion aligns the operand fraction with
the binary point just to the right of bit zero, rounds as specified, and complements
the result if negative.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow.

4-94 Common Architecture (I)

Digital Restricted Distribution

4.10.10 Convert Integer to VAX Floating

Format:

CVTQy Fb.rq,Fe.wx !Floating-point Operate format

Operation:

Fe +- {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

CVTQF

CVTQG

Convert Quadword to F _floating

Convert Quadword to G_floating

Qualifiers:

Rounding: Chopped (/C)

Description:

The two's-complement quadword operand in register Fb is converted to a single­
or double-precision· floating result and written to register Fe. The conversion
complements a number if negative, normalizes it, rounds to the target precision,
and packs the result with an appropriate sign and exponent field.

Instruction Descriptions {I) 4-95

Digital Restricted Distribution

4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy Fb.rx,Fc.wx

Operation:

Fe .--- {conversion of FbvJ

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

!Floating-point Operate format

CVTDG

CVTGD

CVTGF

Convert D_floating to G_floating

Convert G_floating to D_floating

Convert G_floating to F _floating

Qualifiers:

Rounding:

Trapping:

Description:

Chopped (/C)

Software (IS)

Underflow Enable (/U)

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fe.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.

Notes:

• The only arithmetic operations on D _floating values- are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing

4-96 Common Architecture (I)

Digital Restricted Distribution

three fraction bits. The conversion from G_floating to D_floating adds three low­
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow
/underflow. ·

• The conversion from G_floating to F _floating rounds or chops to single precision,
then the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F _floating to G_floating is required, since F _floating values
are always stored in registers as equivalent G_floating values.

Instruction Descriptions (I) 4-97

Digital Restricted Distribution

4.10.12 Convert IEEE Floating to Integer

Format:

CV'ITQ Fb.r:x:,Fc. wq

Operation:

Fe +-- {conversion of Fbv}

Exceptions:

Invalid Operation

Inexact Result

Integer Overflow

Instruction mnemonics:

!Floating-point Operate format

CVTTQ Convert T_:floating to Quadword

Qualifiers:

Rounding:

Trapping:

Description:

Dynamic (ID)

Minus infinity (IM)

Chopped (/C)

Software (IS)

Integer Overflow Enable (N)

Inexact Enable (/I)

The :floating operand in register Fb is converted to a two's-complement number and
written to register Fe. The conversion aligns the operand fraction with the binary
point just to the right of bit zero, rounds as specified, and complements the result if
negative.

An invalid operation trap is signaled if either operand has ex.p=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of'Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow and inexact
result.

4-98 Common Architecture (I)

Digital Restricted Distribution

4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

Operation:

Fe ~ {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS
CVTQT

Convert Quadword to S_:B.oating

Convert Quadword to T_:B.oating

Qualifiers:

Rounding:

Trapping:

Description:

Dynamic (ID)

Minus infinity (/M)

Chopped (IC)

Software (/8)

Inexact Enable (II)

The two's-complement operand in register Fb is . converted to a single- or double­
precision floating result and written to register Fe. The conversion complements
a number if negative, normalizes it, rounds to the target precision, and packs the
result with an appropriate sign and exponent field.

See Section 4.7.5 for details of the stored result on inexact result.

Instruction Descriptions (I) 4-99

Digital Restricted Distribution

4.10.14 Convert IEEE Floating to IEEE Floating

Format:

CVTTS Fb.rx,Fc.wx

Operation:

Fe +- {conversion of Fbv}

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Resuit

Instruction mnemonics:

!Floating-point Operate format

CVTTS Convert T_floating to S_floating

Qualifiers:

Rounding:

Trapping:

Description:

Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Software (IS)

Underflow Enable (/U)

Inexact Enable (/I)

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fe.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of-Fe are UNPREDICTABLE if this occurs.

See Section 4. 7.5 for details of the stored result on overflow, underflow; or inexact
result.

4-100 Common Architecture (I)

Digital Restricted Distribution

Notes:

• No conversion from S_floating to T_floating is required, since S_floating values
are always stored in registers as equivalent T_floating values.

Instruction Descriptions (I) 4-101

Digital Restricted Distribution

4.10.15 VAX Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +- Fav I Fbv

Exceptions:

Invalid Operation

Division by Zero

Overflow

Underflow

Instruction mnemonics:

DIVF

DIVG

Qualifiers:

Rounding:

Trapping:

Description:

Divide F _floating

Divide G_floating

Chopped (/C)

Software (/$)

Underflow Enable (/U)

!floating-point Operate format

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fe.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

4-102 Common Architecture (I)

Digital Restricted Distribution

An invalid operation trap is signaled if either operand has exp=O and is not .a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fe are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.

Instruction Descriptions (I) 4-103

Digital Restricted Distribution

4.10.16 IEEE Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +- Fav I Fbv

Exceptions:

Invalid Operation

Division by Zero

Overflow

Underflow

Inexact Result

Instruction mnemonics:

DIVS

DIVT

Qualifiers:

Rounding:

Trapping:

Description:

Divide S_floating

Divide T _floating

Dynamic (ID)

Minus infinity (JM)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

!Floating-point Operate format

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fe.

The quotient is rounded to the specified precision, and then the' corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.

4-104 Common Architecture (I)

Digital Restricted Distribution

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fe are UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fe are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.

Instruction Descriptions (I) 4-105

Digital Restricted Distribution

4.10.17 VAX Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +-- Fav * Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

MULF

MULG

Qualifiers:

Rounding:

Trapping:

Description:

Multiply F _:floating

Multiply G_:fioating

Chopped {/C)

Software (IS)

Underflow Enable {/U)

!Floating-point Operate format

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fe.

The product is rounded or chopped to the specified precision, and then the
corresponding range is checked for over:fiow/under:fiow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fe are
UNPREDICTABLE if this occurs.

See Section 4. 7 .5 for details of the stored result on overflow or underflow.

4-106 Common Architecture (I)

Digital Restricted Distribution

4.10.18 IEEE Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +-- Fav * Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

MULS
MULT

Qualifiers:

Rounding:

Trapping:

Description:

Multiply S_floating

Multiply T_floating

Dynamic (ID)

Minus infinity (/M)

Chopped (IC)

Software (IS)

Underflow Eenable (IU)

Inexact Enable (/I)

!Floating-point Operate format

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fe.

The product is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.

Instruction Descriptions (I) 4-107

Digital Restricted Distribution

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap); or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fe are UNPREDICTABLE if this occurs.

See Section 4. 7 .5 for details of the stored result on overflow, underflow, or inexact
result.

4-108 Common Architecture (I)

Digital Restricted Distribution

4.10.19 VAX Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +- Fav - Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

SUBF

SUBG

Qualifiers:

Rounding:

Trapping:

Description:

Subtract F _:floating

Subtract G_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U)

!Floating-point Operate format

The subtrahend operand in register Fb is subtracted. from the minuend operand in
register Fa, and the difference is written to register Fe.

The difference is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

Instruction Descriptions (I) 4-109

Digital Restricted Distribution

An invalid operation trap is signaled if either operand has exp=O and is not a true zero (that
is, VAX reserved operands and dirty zeros trap). The contents of Fe are UNPREDICTABLE
if this occrirs.

See Section 4.7.5 for details of the stored result on overflow or underflow.

4-110 Common Architecture (I)

Digital Restricted Distribution

4.10.20 IEEE Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx

Operation:

Fe +- Fav - Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

SUBS

SUBT

Qualifiers:

Rounding:

Trapping:

Description:

Subtract S_floating

Subtract T _floating

Dynamic (ID)

Minus infinity (IM)

Chopped (IC)

Software (IS)

Underflow Enable (/U)

Inexact Enable (/I)

!Floating-point Operate-format

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fe.

The difference is rounded to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

Instruction Descriptions (I) 4-111

Digital Restricted Distribution ,

The contents of Fe are UNPREDICTABLE if this occurs.

See Section 4. 7 .5 for details of the stored result on overflow, underflow, or inexact
result.

4-112 Common Architecture (I)

Digital Restricted Distribution

4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Tabl~ 4-12.

Table 4-12: Miscellaneous Instructions Summary
Mnemonic

CALL_PAL

FETCH

FETCH_M

MB

RPCC

TRAPB

Operation

Call Privileged Architecture Library Routine

Prefetch Data

Prefetch Data, Modify Intent

Memory Barrier

Read Process Cycle Counter

Trap Barrier

Instruction· Descriptions (I) 4-113

Digital Restricted Distribution

4.11.1 Call Privileged Architecture Library

Format:

CALL_PAL fnc.ir

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

!PAL format

CALL_PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are
guaranteed to complete without exceptions. If an exception occurs, the continuation
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_
PAL instruction causes a trap to PALcode.

4-114 Common Architecture (I)

Digital Restricted Distribution

4.11.2 Prefetch Data

Format:

FETCHx O(Rb.ab) !Memory format

Operation:

va +- {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

Qualifiers:

None

Description:

The virtual address is given by Rbv. This address is used to designate an aligned
512-byte block of data. An implementation may optionally attempt to move all or
part of this block (or a larger surrounding block) of data to a faster-access part of
the memory hierarchy, in anticipation of subsequent Load or Store instructions that
access that data.

The FETCH instruction is a hint to the implementation that may allow faster
execution. An implementation is free to ignore the hint. If prefetching is
done in an implementation, the order of fetch within the designated block is
UNPREDICTABLE.

~The FETCH_M instruction gives the additional hint that modifications (stores) to
some or all of the data block are anticipated.

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_
M) that uses the same address would fault, the prefetch request is ignored. It is
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx.

Instruction Descriptions (I) 4-115

Digital Restricted Distribution

IMPLEMENTATION NOTE
Implementations are encouraged to take the TB-miss
fault, then continue the prefetch.

The program.ming model for effective use of FETCH and FETCH_M is given in
Appendix A.

SOFTWARE NOTE
FETCH is intended to help software overlap memory
latencies on the order of 100 cycles. FETCH' is unlikely
to help (or be implemented) for memory latencies on the
order of 10 cycles. Code scheduling should be used to
overlap such short latencies.

4-116 Common Architecture (I)

Digital Restricted Distribution

4.11.3 Memory Barrier

Format:

MB !Memory format

Operation:

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations
are allowed to complete out of order on the issuing processor as observed by other
processors. The MB instruction allows memory accesses to be serialized on the
issuing processor as observed by other processors. See Chapter 5 for details on using
the MB instruction to serialize these accesses. Chapter 5 also details coordinating
memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the
progress of memory operations.

Instruction ·oescriptions (I) 4-117

Digital Restricted Distribution

4.11.4 Read Process Cycle Counter

Format:

RPCC Ra.wq !Memory format

Operation:

Ra +-- {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Process Cycle Counter

Qualifiers:

None

Description:

Register Ra is written with the process cycle counter (PCC).

The low-order 32 bits of the process cycle counter is an unsigned 32-hit integer that
increments once per N CPU cycles, where N is an implementation-specific integer in
the range 1 .. 16. The cycle counter frequency is the number of times the process cycle
counter gets incremented per second, rounded to a 64-bit integer. The integer count
wraps to 0 from a count ofFFFF FFFF16• The counter wraps no more frequently than
1.5 times the implementation's interval clock interrupt period (which is two thirds
of the interval clock interrupt frequency). The high-order 32 bits of the process cycle
counter are an offset that when added to the low-order 32 bits gives the cycle count
for this process.

The process cycle counter is suitable for timing intervals on the order of nanoseconds
and may be used for detailed performance characterization. It is required on all
implementations. PCC is required for every processor, and each processor in a
multiprocessor system has its own private, independent PCC.

\INTERNAL IMPLEMENTATION NOTE
An implementation-dependent mechanism must exist
that, when enabled, causes the RPCC instruction always
to return a zero in Ra. This mechanism must be usable
by privileged system software. \

4-118 Common Architecture (I)

Digital Restricted Distribution

As an example, consider the following code that returns in RO the current cycle count
MOD 2**32.

RPCC
SLL
ADDQ
SRL

RO
RO, 432, Rl
RO, Rl, RO
RO, 432, RO

Read the process cycle counter
line up the off set and count fields
do add
zero extend the cycle count to ~4 bits

Instruction Descriptions (I) 4-119

Digital Restricted Distribution

4.11.5 Trap Barrier

Format:

TRAPB !Memory format

Operation:

{Stall instruction issuing until all prior instructions are
guaranteed to complete without incurring arithmetic traps.}

Exceptions:

None

Instruction mnemonics:

Trap Barrier

Qualifiers:

None

Description:

The TRAPB instruction allows · software to guarantee that in a pipelined
implementation, all previous arithmetic instructions will complete without incurring
any arithmetic traps before any instructions after the TRAPB are issued. :For
example, TRAPB should be used before changing an exception handler to ensure
that all exceptions on previous instructions are processed in the current exception­
handling environment.

4-120 Common Architecture (I)

Digital Restricted Distribution

4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4-13 for use in translated VAX code.
These instructions are not a permanent part of the architecture and will not be
available in some future implementations. They are intended to preserve customer
assumptions about VAX instruction atomicity in porting code from VAX to Alpha.

NOTE
\They will be removed, and not emulated, after the first
two full generations of Alpha implementations, that is,
about 1995. \

These instructions should be generated only by the VAX-to-Alpha software
translator; they should never be. used in native Alpha code. Any native code that
uses them may cease to work.

Table 4-13: VAX Compatlblllty lnstr.uctlons Summary
Mnemonic Operation

RC Read and Clear

RS Read and Set

Instruction Descriptions {I) 4-121

Digital Restricted Distribution

4.12.1 VAX Compatibility Instructions

Format:

Rx Ra.wq

Operation:

Ra .-- intr flag
intr_flag ;::. 0
intr_flag ~ 1

Exceptions:

None

Instruction mnemonics:

RC Read and Clear

RS Read and Set

Qualifiers:

None

Description:

!Memory fomiat

!RC
!RS

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha
instructions between RS and RC (corresponding to a single VAX instruction) was
executed without interruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor
encounters a CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor's intr_flag is affected when ,that
processor executes an LDx_L or ST:x_C instruction. A processor's intr_flag is not
affected when that processor executes a normal load or store instruction.

A processor's intr_flag is not affected when that processor executes a taken branch.

NOTE
These instructions are intended only for use by the VAX­
to-Alpha software translator;, they should never be used
by native code.

4-122 Common Architecture (I)

Digital Restricted Distribution

4.13 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. added eco #41 to LDx_C and format style change

2. Changed DRAINT to TRPB

3. Converted to SDML

4. Modifed description of MULQ to spec. operands and result are signed

5. Removed FCMOV and CVTLQ from instructions that set FPCR bits

6. Changed byte mask for INS:x:x and MSK:x:x instructions to 16 bit value

Revision 4.0, March 29, 1991

1. Added Scaled Add and Subtract

2. Added FPCR register and accompanying text

3. Bits <13:0> of branch displacement field in RET and JSR_ COROUTINE reserved
to Digital software

4. Removed references to D_floating point

5. Clarified floating-point subset requirements and added Open VMS requirements
for FP regs and T_floatiJig memory ops in implementation without floating-point
support

6. Make TEST a dyadic operator with explicit condition argument

7. Fix ADDQ to allow literal as second operand, not first

8. Add format type to Arithmetic and Logical and shift Instructions

9. Rename operator ARITH_SHIFT to ARITH_RIGHT_SHIFT and upgrade
description

10. Add description of how to derive upper 64 bits of product (using UMULH) to
MULQ description

11. Add requirement that F _, D _, and G_floating operate Instructions materialize a
true zero

12. Clarify expressions for MAX F _, D_, G_, S_, and T_ values

13. Reorder special valu~s table in floating-point encodings section

14. Modify MB description to indicate that MB works only on instructions from
issuing processor

15. Disambiguate between instances when floating disabled faults and illegal
instruction traps are taken

16. Clarify that low order bits are returned on integer overflow arithmetic conversion
traps

Instruction Descriptions (I) 4-123

Digital Restricted Distribution

17. Add description to STx_C Instruction that clarifies implementation requirements
for execution of STxC Instruction

18. Correct decimal value given for MIN T _:Boating

19. Impose uniform usage of CASE pseudocode construct

20. Insert spaces into long hex and binary values to improve legibility

21. Added optimized sign-extended byte load code fragment to code examples in
Extract Byte Instruction description

22. Clarify use and significance of X+C notation in code examples for Extract Byte
Instruction

23. Clarify note describing how a Read For Ownership cache coherency protocol can
affect LDx_IJSTx_ C sequence

24. Change reference in Floating-Point Operate Format Instructions from 'floating­
point arithmetic operations' to 'floating-point operate Instructions'

25. Rename RCC instruction to 'Read Process Cycle Counter' and modify definition

26. Changed values of displacement bits <13:0> in 'Jump To Subroutine' instruction
to indicate that all values from 0010 to 111116 are reserved to Digital

27. Removed text in Longword Add instruction that described carry detection

28. Specified overflow bits returned for Longword Mulutiply

29. Removed text in Longword Subtract instruction that described carry detection

Revision 3.0, March 2, 1990

1. Rename GOTO to BR, and JSRs to JMP, JSB, RET

2. Rename MSKxx to ZAPxx:

3. Remove CVTFQ, and CMPFxx

4. Remove CVT float-to-longword; add CVTQL/LQ

5. Make non-canonical longword+-* well-defined

6. Rename memory-format JSR to BSR

7. Add VAX compatibility Instructions RC, RS

8. Add Fetch and Fetch_M

9. Add low bit set and clear cmoves

10. Remove Nudge

11. Add longword· lock Instructions

12. Remove longword load address Instructions

13. Add quad\11rord load address high

4-124 Common Architecture (I)

Digital Restricted Distribution

14. Rework the LDx/L description

15. Change EXTxx/INSxx back to Vl.O SRM EXTxx/INSx.x/MRGxx

16. Change floating-point exception behavior back to Vl.O SRM behavior

Revision 2.0, October 4, 1989

1. Add TLE provided comment on emulation of Instructions

2. Change shift range from 0 .. 64 to 0 .. 63

3. Remove FASx, SWP, FREEZE, THAW Instructions

4. Add load lock and store conditional Instructions

5. Remove WAIT/WAITF Instructions

6. Change DRAIN to DRAINT and only drain for arithmetic traps

7. Add memory barrier and nudge Instructions

8. Rework Floating-point exceptions

9. Add cycle counter

Revision 1.0, May 23, 1989

1. Rework Floating-point to be unmoded

2. Remove subsetting of integer MUL

3. Remove integer DIV

4. Add Freeze and Thaw

5. Rename Lock/Unlock to SWP and FASx and remove long version of lock

6. Add conditional move

7. Add branch on low bit branches (BLBS/BLBC)

8. Add WAIT/WAITF Instructions

Revision 0.0, March 15, 1989

1. Initial Version

Instruction Descriptions (I) 4-125

Digital Restricted Distribution

Chapter 5

System Architecture and Programming Implications
(I)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and
the system structure, of both uniprocessor and multiprocessor implementations.
Architectural implications considered in the following sections are:

• Physical memory behavior

• Caches and write buffers

• Translation buffers and virtual caches

• Data sharing

• Read/write ordering

• Stacks

• Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware
implementors need to take these issues into consideration.

5.2 Physical Memory Behavior

Alpha physical memory space is divided into. four regions, based on the two most
significant, implemented, physical address bits. Each region's behavior can be
described in terms of its coherency, granularity, width, and memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write
by a processor or I/O device (hereafter, called "processor") becomes visible to all other
processors. No distinction is made between coherency of "memory space" and "1/0
space".

Memory coherency may be provided in different ways, for each of the four physical
address regions.

Possible per-region policies include, but are not restricted to:

1. No caching

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or 1/0 register).

System Architecture and Programming Implications (I) 5-1

Digital Restricted Distribution

2. Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes
update the actual data location and either update or invalidate all copies.

3. Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies,
and writes use additional state to determine whether there are other copies to
invalidate or update.

Part of the coherency policy implemented for a given physical address region may
include restrictions on excess data transfers (performing more accesses to a location
than is necessary to acquire or change the location's value), or may specify data
transfer widths (the granularity used to access a location).

Independent of coherency policy, a processor may use different hardware or different
hardware resource policies for caching or buffering different physical address
regions.

J::. "' "' ~ 1 : ~ _______ .. -----
""'•'-•'" ~I GllUIGI IL)' UI IVIC:l llUI)' l"\\i\it:~~

For each region, an implementation must support aligned quadword access and may
optionally support aligned longword access.

For a quadword access region, accesses to physical memory must be implemented
such that independent accessEls to adjacent aligned quadwords produce the same
results regardless of the order of execution. Further, an access to an aligned
quadword must be done in a single atomic operation.

For a longword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned longwords produce the same
results regardless of the order of execution. Further, an access to an aligned
longword must be done in a single atomic operation, and an access to an aligned
quadword must also be done in a single atomic operation.

In this context, "atomic" means that if different processors do simultaneous reads
and writes of the same data, it must not be possible to observe a partial write of the
subject longword or quadword.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered,
and prefetched.

A processor may read more physical memory data (such as a full cache block) than
is actually accessed, writes may trigger reads, and writes may write back more data
than is actually updated. A processor may elide multiple reads and/or writes to the
same data.

~2 Common Architecture (I)

Digital Restricted Distribution

5.2.4 Memory-Like Behavior
A memory-like region obeys the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its
entirety; there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the
bits written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.

• Address ranges may overlap, such that a write to one location changes the bits
read from a different location.

• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

HARDWARE/SOFTWARE COORDINATION NOTE
The details of such behavior are outside the scope
of the Alpha architecture. Specific processor and
I/O device implementations may choose and document
whatever behavior they need. It is the responsibility of
system designers to impose enough consistency to allow
processors successfully to access matching non-memory
devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a a virtual instruction cache (virtual I-cache) or a
virtual data cache (virtual D-cache). A system may also choose to include either
a combined data and instruction Translation Buffer (TB) or separate data and
instruction TBs (DTB and ITB). The contents of these caches and/or translation

System Architecture and Programming Implications (I) 5-3

Digital Restricted Distribution

buffers may become invalid, depending on what operating system activity is being
performed.

Whenever a nonsoftware field of a valid Page Table Entry (PTE) is modified, copies
of that PTE must be made coherent. PALcode mechanisms are available to clear all
TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a given
VA, or all entries with the Address Space Match (ASM) bit clear. Virtual D-cache
entries are made coherent whenever the corresponding DTB entry is requested to
be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries
can be made coherent via the CALL_PALL IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has
the address space match (ASM) bit clear (ASN s in use) and the valid bit set, then
entries can also effectively be made coherent by assigning a new, unused ASN to
the currently running process and not reusing the previous ASN before calling the
appropriate PALcode routine to invalidate the Translation Buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only
one processor is not always sufficient. An operating system must arrange to perform
+l...o '-Ohn"'"'°' '-'"+.;,..,....,. ,..,... nn.nh .,,...,....,.,.....,.,....,,.,..,.. +l....,,+ ,.,.,. •• 1.:1 ..,.,.,.,...,....;i.1 l.. ,. .,.,,....,..;,,.,.. ,,...,C +'I..,,... D'l'lil ,.._
........ .., u.uv•'-' u."'".a.v.u.o V.L&. ~a..,.1..1. y.1.v..,,,;;;oov.1. \l.L.LQ.\I ..,..,11.4.LU. yvoo.1.u.1.J' .L.L«V'!;; '-'V}'.L'IJO V.L 11.L.L'IJ .L ..L~ V.L

data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time
by making local copies of recently used memory contents (or those expected to be
used) or by buffering writes to complete at a later time. Caches and write buffers are
examples of these mechanisms. They must be implemented so that their existence
is transparent to software (except for timing, error reporting/control/recovery, and
modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations.
All processors must provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate writes. From the viewpoint
of another processor, buffered writes appear not to have happened yet. (Write
buffers must not delay writes indefinitely. See Section 5.6.1.9.)

2. Write-back caches must be able to detect a later write from another processor
and invalidate or update the cache contents.

3. A processor must guarantee that a data store to a location followed by a data
load from the same location must read the updated value.

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid
pages.

5. A processor must guarantee that all of its previous writes are visible to all other
processors before a HALT instruction completes. A processor must guarantee
that its caches are coherent with the rest of the system before continuing from
a HALT.

S-4 Common Architecture (I)

Digital Restricted Distribution

6. If battery backup is supplied, a processor. must guarantee that the memory
system remains coherent across a powerfail/recovery sequence. Data that was
written by the processor before the powerfail may not be lost, and any caches
must be in a valid state before (and if) normal instruction processing is continued
after power is restored.

7. Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that
creates or modifies the instruction stream must execute a CALL_PAL IMB before
trying to execute the new instructions.

For example, if two different virtual addresses, VAl and VA2, map to the same
page frame, a store to VAl modifies the virtual I-stream fetched via VA2.

However, the sequence:

1. Change the mapping of an I-stream page from valid to invalid, then

2. Copy the corresponding page frame to a new page frame, then

3. Change the original mapping to be valid and point to the new page frame

does not modify the virtual I-stream (this might happen in soft page faults).

8. Physical instruction caches are not required to notice modifications of the
physical I-stream (they need not be coherent with the rest of memory), except for
certain paging activity. (See Section 5.6.1.9.) Software that creates or modifies
the instruction stream must execute a CALL_PAL IMB before trying to execute
the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same
physical address that is subsequently fetched as an instruction.

In this context, to "modify the virtual I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction via some corresponding
(virtual address, ASN) pair, or to change the virtual-to-physical address mapping
so that different values are fetched.

5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum
The ordinary STL and STQ instructions can be used to perform an atomic change
of a shared aligned longword or quadword. ("Change" means that the new value is
not a function of the old value.) In particular, an ordinary STL or STQ instruction
can be used to change a variable that could be simultaneously accessed via an LDx_
I/STx_C sequence.

System Architecture and Programming Implications (I) >-5

Digital Restricted Distribution

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic
update of a shared aligned longword or quadword. ("Update" means that the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instructions and branch fall-throughs may occur in the
sequence:

try_again:
LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl,no_store

no store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes
to location x (more precisely, the locked range including x) between the LDQ_L and
STQ_ C instructions, then the STQ_ C shown in the example stores the modified value
in x and sets Rl to 1. If, however, the sequence encounters exceptions or interrupts
that eventually continue the .sequence, or another processor writes to x, then the
STQ_C does not store and sets Rl to 0. In this case, the sequence is repeated via
the branches to no_store and try _again. This repetition continues until the reasons
for exceptions or interrupts are removed, and no interfering store is encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary
number of times, giving the same result values each time. A sufficient (but not
necessary) condition is that, within the sequence, the set of operand destinations
and the set of operand sources are disjoint.

NOTE
A sufficiently long instruction sequence between LDQ_
L and STQ_C will never complete, because periodic
timer interrupts will always occur before the sequence
completes. The rules in Appendix A describe
sequences that will eventually complete in all Alpha
implementations.

This load-locked/store-conditional paradigm may be used whenever an atomic update
of a shared aligned quadword is desired, including getting the effect of atomic byte
writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned
longword or quadword), the programmer can acquire control of the data structure
by using an atomic update to set a software iock variable. Such a software lock can
be cleared with an ordinary store instruction.

5-6 Common Architecture {I)

Digital Restricted Distribution

A software-critical section, therefore, may look like the sequence:

stq_c_loop:
spin_loop:

LDQ_L
BLBS
OR
STQ_C
BEQ

MB

Rl,lock_variable
Rl,already_set
Rl,#1,R2
R2,lock_variable
R2,stq_c_fail

\
\

I

> Set lock bit
I

<critical section: updates various data structures>
MB

STQ R31,lock_variable ; Clear lock bit

already_set:
<code to block or reschedule or test for too many iterations>
BR spin_loop

stq_c_fail:
<code to test for too many iterations>
BR stq_c_loop

This code has a number of subtleties:

1. If the lock_ variable is already set, the spin loop is done without doing any stores.
This avoidance of stores improves memory subsystem performance and avoids
the deadlock described below.

2. If the lock_ variable is actually being changed from 0 to 1, and the STQ_C fails
(due to an interrupt, or because another processor simultaneously changed lock_
variable), the entire process starts over by reading the lock_ variable again.

3. Only the fall-through path of the BLBS does a STx_C; some implementations
may not allow a successful STx_ C after a branch-taken.

4. Only register-to-register operate instructions are used to do the modify.

5. Both conditional branches are forward branches, so they are properly predicted
not to be taken (to match the common case of no contention for the lock).

6. The OR writes its result to a second register; this allows the OR and the BLBS
to be interchanged if that would give a faster instruction schedule.

7. Other operate instructions (from the critical section) may be scheduled into
the LDQ_L .. STQ_ C sequence, so long as they do not fault or trap, and they
give correct results if repeated; other memory or operate instructions may be
scheduled between the STQ_C and BEQ.

8. The MB instructions are discussed in Section 5.5.4.

9. An ordinary STQ instruction is used to clear the lock_ variable._

It would be a performance mistake to spin-wait by repeating the full LDQ_L .. STQ_ C
sequence (to move the BLBS after the BEQ) because that sequence may repeatedly
change the software lock_ variable from "locked" to "locked," with each write causing

System Architecture and Programming Implications (I) 5-7

Digital Restricted Distribution

extra access delays in all other caches that contain the lock_ variable. In the extreme,
spin-waits that contain writes may deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not
changing) the lock_ variable, then the writes on the first processor may cause the
STx_ C of the modify on the second processor always to fail.

This deadlock situation is avoided by:

• Having only one processor do a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a write only if the shared variable actually changes state (1 --t 1 does not
change state).

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three
steps:

1. Acquire software lock

2. Critical section-read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha architecture allows
reads and writes to be reordered. While this may allow more implementation speed
and overlap, it can also create undesired side effects on shared data structures.
Normally, the critical section just described would have two instructions added to it:

<acquire soft ware lock> .
MB (memory barrier #1)
<critical section -- read/write shared data>
MB (memory barrier #2)
<clear software lock>

The first memory barrier prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data.

The second memory barrier prevents any reads or writes. (from within the critical
section) from being delayed past the clearing of the software lock; such ·delayed
accesses could interact with the next user of the shared data, defeating the purpose
of the software lock entirely.

SOFTWARE NOTE
In the VAX architecture, many instructions provide non­
interruptable read-modify-write sequences to memory
variables. Most programmers never regard data sharing
as an issue.

In the Alpha architecture, progranuners must pay more
attention to synchroniz~g _access to shared data; for

5-8 Common Architecture (I)

Digital Restricted Distribution

example, to AST routines. In the VAX, a programmer
can use an ADDL2 to update a variable that is shared
between a "MAIN" routine and an AST routine, if
running on a single processor. In the Alpha architecture,
a programmer must deal with AST shared data by using
multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section does not apply to programs that run on a single processor and do not
write to the instruction stream. On a single processor, all memory accesses appear
to happen in the order specified by the programmer. This section deals entirely with
predictable read/write ordering across multiple processors.

The order of reads and writes done in an Alpha implementation may differ from that
specified by the programmer.

For any two memory references A and B, either A must occur before B in all Alpha
implementations, B must occur before A, or they are UNORDERED. In the last
case, software cannot depend upon one occurring first: the order may vary from
implementation to implementation, and even from run to run or moment to moment
on a single implementation.

If two references cannot be shown to be ordered by the rules given, they are
UNORDERED and implementations are free to do them in any order that is
convenient. Implementations may take advantage of this freedom to deliver
substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory
references on a single processor, then defines the (partial) ordering on this issue
sequence that all Alpha implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access
sequences at each shared memory location. The discussion defines the (partial)
ordering on the individual access sequences that all Alpha implementations are
required to maintain.

The net result is that for any code that executes on multiple processors, one can
determine which memory accesses are required to occur before others on all Alpha
implementations and hence can write useful shared-variable software.

Software writers can force one reference to occur before another by inserting a
memory barrier instruction (MB or IMB) between the references.

5.6.1' Alpha Shared Memory Model

An Alpha system consists of a collection of processors and shared coherent memories
that are accessible by all processors. (There may also be unshared memories, but
they are outside the scope of this section.)

System Architecture and Programming Implications (I) 5-9

Digital Restricted Distribution

NOTE
\ Unshared example: On the PMI, some physical
addresses in 1/0 space access unshared processor-local
CSRs.\

A processor is an Alpha CPU or an 1/0 device (or anything else that gets added).

A shared memory is the primary storage place for one or more locations.

A location is an aligned quadword, specified by its physical address. Multiple virtual
addresses may map to the same physical address. Ordering considerations are based
only on the physical address.

IMPLEMENTATION NOTE
An implementation may allow a location to have
multiple physical addresses, but the rules for accesses
via mixtures of the addresses are implementation­
specific and outside the scope of this section. Accesses
via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are five
types of accesses:

1. Instruction fetch by proces&or i to location x, returning value a, denoted Pi:l(x,a).

2. Data read by processor i to location x, returning value a, denoted Pi:R(x,a).

3. Data write by processor i to location x, storing value a, denoted Pi: W(x,a).

4. Memory barrier instruction issued by processor i, denoted Pi:MB.

5. I-stream memory barrier instruction issued by processor i, denoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are
also called D-stream accesses. The first three types collectively are called read/write
accesses, denoted Pi:*(x,a). The last two types collectively are called barriers.

During actual execution in an Alpha system, each processor has a time-ordered issue
sequence of all the memory references presented by that processor (to all memory
locations), and each location has a time-ordered access sequence of all the accesses
presented to that location (from all processors).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a
hypothetical simple implementation that contains one processor and a single shared
memory, with no caches or buffers. This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a
single data read from memory for a Load instruction or a single data write to
memory for a Store instruction.

5-10 Common Architecture (I)

Digital Restricted Distribution

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done
and the PC is updated to point to a PALcode fault handler. If the read/write step
gets a memory management fault, the read/write is not done and the PC is updated
to point to a PALcode fault handler.

All memory references are aligned quadwords. For the purpose of defining ordering,
aligned longword references are modeled as quadword references to the containing
aligned quadword.

5.6.1.2 Definition of Processor Issue Order

A partial ordering, called processor issue order, is imposed on the issue sequence
defined in Section 5.6.1.1.

For two accesses u and v issued by processor Pi, u is said to PRECEDE v IN ISSUE
ORDER (<) if u occurs earlier than v in the issue sequence for Pi, and either of the
following applies:

1. The access types are of the following issue order:

Table 5-1 : Processor Issue Order

lst!/2nd~ Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:IMB

Pi:l(x,a) < if x=y < ifx=y < <
Pi:R(x,a) < ifx=y < ifx=y < <
Pi:W(x,a) < ifx=y < ifx=y < <
Pi:MB < < < <
Pi:IMB < < < < <

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss, and v is
an I- or D-stream access using that PTE (see Section ~.6.2).

Issue order is thus a partial order imposed on the architecturally specified issue
sequence. Implementations are free to do memory accesses from a single processor
in any sequence that is consistent with this partial order.

Note that accesses to different locations are ordered only with respect to barriers
and TB fill. The table asymmetry for I-fetch allows writes to the I-stream to be
incoherent until an IMB is executed.

5.6.1.3 Definition of Memory Access Sequence

The access sequence for a location cannot be observed directly, nor fully
predicted before an . actual execution, nor reproduced exactly from one execution
to another. Nonetheless, some useful ordering properties must hold in all Alpha
implementations.

System Architecture and Programming Implications (I) 5-11

Digital Restricted Distribution

5.6.1.4 Definition of Location Access Order

A partial ordering, called location access order, is imposed on the memory access
sequence defined above.

For two accesses u and v to location x, u is said to PRECEDE v IN ACCESS ORDER
(«) if u occurs earlier than v in the access sequence for x, and at least one of them
is a write:

Table 5-2: Location Access Order
lstl/2nd~ Pi:I(x,b) Pi:R(x,b) Pi:W(x,b)

Pi:l(x,a)
Pi:R(x,a)
Pi:W(x,a) «

Access order is thus a partial order imposed on the actual access sequence for a
given location. Each location has a separate access order. There is no direct ordering
--1-L!---'I...!- '1...-L------ -------- L- ..l!.L'L'----L 1---L!--­
.n::.U:lltJ.UJ..U:SJ..Ll.I:' Ut::ltwce.u Cl\;\;t::l::U:St::ts ltU UJ.J.J.t::J."t::lllt J.U\;ClltJ.U.Llts.

Note that reads and I-fetches are ordered only with respect to writes.

5.6.1.5 Definition of Storage

If u is Pi:W(x,a), and v is either Pj:l(x,b) or Pj:R(x,b), and u«v, and no w Pk:W(x,c)
exists such that u«w«v, then the value b returned by v is exactly the value a
written by u.

Conversely, if u is Pi:W(x,a), and v is either Pj:l(x,b) or Pj:R(x,b), and b=a (and a is
distinguishable from values written by accesses other than u), then u«v and for any
other w Pk:W(x,c) either w«u or v«w.

. ~/

The only way to communicate information between different processors is for one to
write a shared location and the other to read the shared location and receive the
newly written value. (In this context, the sending of an interrupt from processor
Pi to processor Pj is·.modeled as Pi writing to a location INTij, and Pj reading from
INTij.)

5.6.1.6 Relatlonshlp Between Issue Order and Access Order

If u is Pi:*(x,a), and v is Pi:*(x,b), one of which is a write, and u<v in the issue order
(or processor Pi, then u«v in the access order for location x.

In other words, if two accesses to the same location are ordered on a given processor,
they are ordered in the same way at the location.

5.6.1.7 Definition of Before

For two accesses u and v, u is said to b~ BEFORE v (<=)if:

u <vor
u « v or

5-12 Common Architecture {I)

Digital Restricted Distribution

there exists an access w such that:

(u < w and w <= v) or
(u ¢:wand w <= v).

In other words, "before" is the transitive closure over issue order and access order.

5.6.1.8 Definition of After

If u <= v, then vis said to be AFTER u.

At most one of u <= v and v <= u is true.

5.6.1.9 Timeliness

Even in the absence of a barrier after the write, a write by one processor to a given
location may not be delayed indefinitely in the access order for that location.

5.6.2 Litmus Tests
Many issues about writing and reading shared data can be cast into questions about
whether a write is before or after a read. These questions can be answered by
rigorously applying the ordering rules described previously to demonstrate whether
the accesses in question are ordered at all.

Assume, in the litmus tests below, that initially all memory locations contain 1.

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:R(x,2)

[V2] Pj :R(x, 1)

Vl reading 2 implies Ul ¢: Vl, by the definition of storage
V2 reading 1 implies V2 ¢: Ul, by the definition of storage
Vl < V2, by the definition of issue order

The first two orderings imply that V2 <= Vl, whereas the last implies that Vl <= V2.

Both implications cannot be true. Thus, once a processor reads a new value from a
location, it must never see an old value-time must not go backward. V2 must read
2.

5.6.2.2 Litmus Test 2 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:W(x,3)

[V2] Pj:R(x,2)

[V3] Pj:R(x,3)

V2 reading 2 implies Vl <= Ul
V3 reading 3 implies Ul <= Vl

System Architecture and Programming Implications (I) ~13

Digital Restricted Distribution

Both implications cannot be true. Thus, once a processor reads a new value written
by Ul, any other writes that must precede the read must also precede Ul. V3 must
read 2.

5.6.2.3 Litmus Test 3 (lmposslble Sequence)

Pi Pj Pk

[Ul] Pi:W(x,2) [Vl] Pj:W(x,3) [Wl] Pk:R(x,3)

[U2] Pi:R(x,3) [W2] Pk:R(x,2)

U2 reading 3 implies Ul <= Vl
W2 reading 2 implies Vl <= Ul

Both implications cannot be true. Again, time cannot go backward. If U2 reads 3
then W2 must read 3. Alternately, if W2 reads 2, then U2 must read 2.

5.6.2.4 Litmus Test 4 (Sequence Okay)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:R(y,2)

[U2] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= Vl and V2 <= Ul. Ul and U2 are not
ordered with respect to each other. Vl and V2 are not ordered with respect to each
other. There is no conflicting implication that Ul <= V2.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:R(y,2)

[V2] Pj:MB

[U2] Pi:W(y,2) [V3] Pj:R(x,1)

There are no conflicts in this sequence. U2 <= Vl <= V3 <= Ul. There is no conflicting
implication that Ul <= U2.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:R(y,2)

[U2] Pi:MB

[U3] Pi:W(y,2) [V2] Pj:R(x,1)

There are no conflicts in this sequence. V2 <= Ul <= U3 <= Vl. There is no conflicting
implication that Vl <= V2.

5-14 Common Architecture (I)

Digital Restricted Distribution

In scenarios 4, 5, and 6, writes to two different locations x and y are observed
(by another processor) to occur in the opposite order than that in which they were
performed. An update toy propagates quickly to Pj, but the update to x is delayed,
and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj :R(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:W(y,2) [V3] Pj:R(x,1)

Vl reading 2 implies U3 <== Vl
V3 reading 1 implies V3 <= Ul
But, by transitivity, Ul <== U3 <== Vl <== V3

Both cannot be true, so if Vl reads 2, then V3 must also read 2.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:W(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:R(y,1) [V3] Pj:R(x,1)

U3 reading 1 implies U3 <= Vl
V3 reading 1 implies V3 <== Ul
But, by transitivity, Ul <== U3 <== Vl <= V3

Both cannot be true, so ifU3 reads 1, then V3 must read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:W(x,3)

[U2] Pi:R(x,2) [V2] Pj:R(x,3)

[U3] Pi:R(x,3) [V3] Pj:R(x,2)

V3 reading 2 implies Ul <== V3
V2 <= V3 and V2 reading 3 implies V2 <= Ul
Vl <== V2 and V2 <== Ul implies Vl <= Ul

U3 reading 3 implies Vl <== U3
U2 <== U3 and U2 reading 2 implies U2 <= Vl
Ul <== U2 and U2 <== Vl implies Ul <== Vl

System Architecture and Programming Implications (I) 5-15

Digital Restricted Distribution

Both Vl <= Ul and Ul <= Vl cannot be true. Time cannot go backwards. If V3 reads
2, then U3 must read 2. Alternatively, If U3 reads 3, then V3 must read 3.

5.6.3 Implied Barriers
In Alpha, there are no implied barriers. If an implied barrier is needed for
functionally correct access to shared data, it must be written as an explicit
instruction. (Software m~st explicitly include any needed MB or IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some PAL
icache impiementations may have an implied IMB in the I-stream TB fill routine,
but this is transparent to the non-PAL programmer.

5.6.4 Implications for Software

Software must explicitly include MB or IMB instructions in the following
circumstances.

5.6.4.1 Slngle-Processor Data Stream

No barriers are ever needed. A read to physical address x will always return
the value written by the immediately preceding write to x in the processor issue
sequence.

5.6.4.2 Slngle-Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value
written by the inlmediately preceding write to x in the issue sequence. To make
the I-fetch reliably get the newly written instruction, an IMB is needed between the
write and the I-fetch.

5.6.4.3 Multiple-Processor Data Stream {Including Slngle Processor with OMA 1/0)

. The only way to communicate shared data reliably is to write the shared data on one
processor, then do an MB on that processor, then write a flag (equivalently, send an
interrupt) signaling the other processor that the shared data is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then do an
MB, then read or update the shared data.

Leaving out the first MB removes the assurance that the shared data is written
before the flag is.

5-16 Common Architecture (I)

Digital Restricted Distribution

Leaving out the second MB removes the assurance that the shared data is read or
updated only after the :flag is seen to change; in this case, an early read could see
an old value, and an early update could be overwritten.

This implies that after a CPU has prepared some data buffer to be read from memory
by a DMA I/O device (such as writing a buffer to disk), it must do an MB before
starting the I/O, and the I/O device after receiving the start signal must logically do
an MB before reading the data buffer.

This also implies that after a DMA I/O device has written some data to memory
(such as paging in a page from disk), the DMA device must logically do an MB
before posting a completion interrupt, and the interrupt handler software must do
an MB before the data is guaranteed to be visible to the interrupted processor. Other
processors must also do MBs before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to
some physical page frame, then an MB, then a previously invalid PTE is changed
to be a valid mapping of the physical page frame that was just written. In this
case, all processors that access using the newly valid PTE must guarantee to deliver
the newly written data after the TB miss, for both I-stream and D-stream accesses.
\This can perhaps be done in TB-miss PALcode. \

5.6.4.4 ·Multiple-Processor Instruction Stream (lncludlng Slngle Processor with OMA 110)

The only way to update the I-stream reliably is to write the shared I-stream on one
processor, then do an IMB (MB if the writing processor is not going to execute the
new I-stream) on that processor, then write a :flag (equivalently, send an interrupt)
signaling the other processor that the shared I-stream is ready. Each receiving
processor must read the new :flag (equivalently, receive the interrupt), then do an
IMB, then fetch the shared I-stream.

Leaving out the .first IMB(MB) removes the assurance that the shared I-stream is
written before the flag is.

Leaving out the second IMB removes the assurance that the shared I-stream is read
only afier the flag is seen to change; in this case, an early read could see an old
value.

This implies that after a DMA I/O device has written some I-stream to memory (such
as paging in a page from disk), the DMA device must logically do an IMB(MB) before
posting a completion interrupt, and the interrupt handler software must do an IMB
before the I-stream is guaranteed to be visible to the interrupted processor. Other
processors must also do IMBs before they are guaranteed to see the new I-stream.

An important special case occurs when a write is done (perhaps by an I/O device)
to some physical page frame, then an IMB(MB), then a previously invalid PTE is
changed to be a valid mapping of the physical page frame that was just written. In
this case, all processors that access using the newly valid PTE must guarantee to
deliver the newly written I-stream after the TB miss.

System Architecture and Programming Implications (I) 5-17

Digital Restricted Distribution

5.6.4.5 Multlple·Processor Context Switch

If a process migrates from executing on one processor to executing on another, the
context switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually }_laving
that context reloaded on another processor. In between, some shared mechanism
must be used to communicate that the context saved in memory by the first processor
is available to the second processor. This could be done by using an interrupt, by
using a flag bit associated with the saved context, or by using a shared-memory
multiprocessor data structure, as follows:

First Processor

Save state of current process.
MB [1]
Pass ownership of process context =>
data structure memory.

Second Processor

Pick up ownership of process context
data structure memory.
MB [2]
Restore state of new process context data
structure memory.
Make I-stream coherent [3].
Make TB coherent [4].

Execute code for new process that
accesses memory that is not common to
all processes.

MB [1] ensures that the writes done to save the state of the current process happen
before the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen
after the ownership is picked up and hence are reliably the values written by the
processor saving the old state. Leaving this MB out makes the code fail if an old
value of the context remains in the second processor's cache and invalidates from
the writes done on the first processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
tables that may have occurred on the first processor just before the save of the process
state. This must be done with a series of TB invalidate instructions to remove any
nonglobal page mapping for this process, or by assigning an ASN that is unused on
the second processor to the process. One of these actions must occur sometime before
starting execution of the code for the new process that accesses memory (instruction
or data) that is not common to all processes. A common method is to assign a new
ASN after gaining ownership of the new process and before loading its context, which
includes its ASN.

5-18 Common Architecture (I)

Digital Restricted Distribution

The D-cache on the second processor must be made coherent with any write to the D­
stream that may have occurred on the first processor just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the
I-stream that may have occurred on the first processor just before the save of process
state. This can be done with an IMB PAL call sometime before the execution of any
code that is not common to all processes, More commonly, this can be done by forcing
a TB miss (via the new ASN or via TB invalidate instructions) and using the TB­
fill rule (see Section 5.6.4.3). This latter approach does not require any additional
instruction.

Combining all these considerations gives:

First Processor

Pick up ownership of process
context data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of process context =>
data structure memory.

Second Processor

Pickup ownership of new process context
data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of old process context
data structure memory.

Execute code for new process that
accesses memory that is not common to
all processes.

Note that on a single processor there is no need for the barriers.

5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second
processor, and that processor receives the interrupt, then accesses the shared data,
the sequence from Section 5.6.4.3 must be used:

System Architecture and Programming Implications (I) 5--19

Digital Restricted Distribution

First Processor

Write data
MB
Send int. =>

Second Processor

Receive int.
MB
Access data

Leaving out the MB at the beginning of the interrupt-receipt routine makes the
code fail if an old value of the context remains in the second processor's cache and
invalidates from the writes done on the first processor are not delivered soon enough.

5.6.5 Implications for Hardware
The coherency point for physical address x is the place in the memory subsystem at
which accesses to x are ordered. It may be at a main memory board, or at a cache
containing x exclusively, or at the point of winning a common bus arbitration.

The coherency point for x may move with time, as exclusive access to x migrates
between main memory and various caches.

MB and IMB force all preceding writes to at least reach their respective coherency
points. This does not mean that main-memory writes have been done, just that the
order of the eventual writes is committed. For example, on the XMI with retry, this
means getting the writes acknowledged as received with good parity at the inp'Q.ts
to memory board queues; the actual RAM write happens later.

MB and IMB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale
data) or writes (that may otherwise write the cache, only to have the write effectively
overwritten by a late-delivered invalidate).

Implementations may allow reads of x to hit (by physical address) on pending writes
in a write buffer, even before the writes to x reach the coherency point for x. If this
is done, it is still true that no earlier value of x may subsequently be delivered to
the processor that took the hit on the write buffer value. ·

Virtual data caches are allowed to deliver data before doing address translation, but
only if there cannot be a pending write under a synonym virtual address. Lack of a
write-buffer match on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value
whenever a PALcode routine is executed that affects the validity, fault· behavior,
protection behavior, or virtual-to-physi~al mapping specified for one or more pages.
Becoming coherent can be delayed until the next subsequent MB instruction or TB
fill (using the new mapping), if the implementation of the PALcode routine always
forces a subsequent TB fill.

S-20 Common Architecture (I)

Digital Restricted Distribution

5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently
and to forward results from one instruction to another. Thus, when an arithmetic
trap is detected, the PC may have advanced an arbitrarily large number of
instructions past the instruction T (calculating result R) whose execution triggered
the trap.

When the trap is detected, any or all of these subsequent instructions may run to
completion before the trap is actually taken. Instruction T and the set of instructions
subsequent to T that complete before the trap is taken are collectively called the trap
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the
first instruction past the trap shadow.

The instructions in the trap shadow of T may use the undefined result R of T, they
may generate additional traps, and they may completely change the PC (branches,
JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear .no useful
relationship to the PC of the trigger instruction T, and the state visible to the
programmer may have been updated using the undefined result R. If an instruction
in the trap shadow of T uses R to calculate a subsequent register value, that register
value is undefined, even though there may be no trap associated with the subsequent
calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent undefined
result, the stored value is undefined.

• If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of a conditional or calculated branch, the branch target is
undefined.

• If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of an address calculation, the memory address actually
accessed is undefined.

Software that is intended to bound how far the PC may advance before taking a trap,
or how far an undefined result may propagate, must insert TRAPB instructions at
appropriate points.

Software that is intended to continue from a trap by supplying a well-defined result
R within an arithmetic trap handler, can do so reliably by following the rules for
software completion code sequences given in Section 4.7.5.

System Architecture and Programming Implications (I) 5-21

Digital Restricted Distribution

5.8 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Changed DRAINT to TRAPB

2. Converted to SDML

3. Generalized OS specific PALcode instructions

4. Generalized OS specific multiprocessor context switching

Revision 4.0, March 29, 1991

1. Added Litmus Test 9

2. Explain what an excess data transfer is

3. Correct typing error in code sequence example for modification of atomic data
structure

4. Add MB instructions to second illustrative example that specifies use of MB for
multiple processor context switch

5. Note that MB and IMB do not guarantee timeliness

6. Removed reference to byte when specifying granularity of data transfer widths

7. Made minor changes to correct use of capitals and remove repeated words in the
Litmus Test section

Revision 3.0, Mar 2, 1990

1. Complete rewrite of data sharing

2. Complete rewrite of read/write ordering

Revision 2.0, October 4, 1989

1. Total rewrite

2. Memory, buffer, 1/0 spaces removed; Physical memory regions added

3. SWP, FREEZE, and THAW removed; LDQ/L and STQ/C added

4. FAS removed; MB and NUDGE added

5. DRAIN and WAIT removed; DRAINT and /Semi-precise added

Revision 1.0, May 23, 1989

1. First Review Distribution

5-22 Common Architecture (I)

Digital Restricted Distribution

6.1 PALcode

Chapter 6

Common PALcode Architecture (I)

In a family of machines, both users and operating system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification.

These functions range from the binary encoding of the instruction and data to the
exception mechanisms and synchronization primitives. Some of these functions can
be implemented cost effectively in hardware, but others are impractical to implement
directly in hardware. These functions include low-level hardware support functions
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector
dispatch. They also include support for privileged and atomic operations that require
long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as
a problem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha is that microcode will not be necessary for practical
implementation. However, it is still desirable to provide an architected interface
to these functions that will be consistent across the entire family of machines. The
Privileged Architecture Library (PALcode) provides a mechanism to implement these
functions without resorting to a microcoded machine.

NOTE
\The hardware development groups provide and main­
tain the standard PALcode for a given implementation.
The PALcode may be in ROM or loaded into RAM from
some sort of a console load device. Many of the same
trade-offs exist for PALcode that exist for microcode
around patching, loading, and booting. Also, operating
systems are free to provide their own PALcode rather
than use the version provided by the hardware group.\

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation

• Instructions that require VAX-style interlocked memory access

• Privileged instructions

Common PALcode Architecture (I) 6-1

Digital Restricted Distribution

•
•
•

Memory management control (including translation buffer (TB) management)

Context swap:ping

Interrupt and exception dispatching

• Power-up initialization and booting

• Console functions

• Emulation of instructions with no hardware support.

The Alpha architecture lets these functions be implemented in standard machine
code that is resident in main memory. PALcode is written in standard machine
code with some implementation-specific extensions to provide access to low-level
hardware. This lets an Alpha implementation make various design trade-offs based
on the hardware technology being used to implement the machine. The PALcode
can abstract these differences and make them invisible to system software.

For example, in a MOS VLSI implementation, a small (32 entry) fully associative
TB can be the right match to the media, given that chip area is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing transparent TB miss service routines. The
operating system code would not need to know there were any differences.

Part II, Operating Systems describes the Digital-supplied Alpha Privileged
Architecture Library (PALcode) routines and environment. Other systems may use
the Digital-supplied PALcode library or architect and implement a different library of
routines. Alpha systems are required to support the replacement of Digital-defined
PALcode with an operating ~ystem-speci:fic version.

NOTE
\ The register conventions used are based on the Alpha
calling standard Version 1.0. The PALcode library will
track the Alpha calling standard changes as long as that
is practical. \

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following
ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream
mapping, mapping PALcod~ with a permanent TB entry, or by other
mechanisms).

6-2 Common Architecture (I)

Digital Restricted Distribution

Complete control of the machine state allows all functions of the machine to be
controlled. Disabling interrupts allows the system to provide multi-instruction
sequences as atomic operations. Enabling implementation-specific hardware
functions allows access to low-level system hardware. Preventing I-stream memory
management traps allows PALcode to implement memory management functions
such as translation buffer filL '

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number
of additional functions are needed to implement the PALcode. There are five
opcodes reserved to implement PALcode functions: PALRESO, PALRESl, PALRES2,
PALRES3 and PALRES4. These instructions produce an Illegal Instruction Trap if
executed outside the PALcode environment.

• PALcode needs a mechanism to save the current state of the machine and
dispatch into PALcode.

• PALcode needs a set of instructions to access hardware control registers.

• PALcode needs a hardware mechanism to transition the machine from the
PALcode environment to the non-PALcode environment. This mechanism loads
the PC, enables interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify
or improve performance of some PALcode functions. The following are some
examples:

• An Alpha implementation may include a read/write virtual function that allows
PALcode to perform mapped memory accesses using the mapping hardware
rather than providing the virtual-to-physical translation in PALcode routines.
PALcode may provide a special function to do physical reads and writes and
have the Alpha loads and stores continue to operate on virtual address in the
PALcode environment.

• An Alpha implementation may include hardware assists for various functions­
for example, saving the virtual address of a reference on a memory management
error rather than having to generate it by simulating the effective address
calculation in PALcode.

• An Alpha implementation may include private registers so it can function without
having to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may be resident
in main memory and maintain privileged data structures in main memory, the
operating system code that allocates physical memory cannot use all of physical
memory.

The amount of memory PALcode requires is small, so the loss to the system is
negligible.

Common PALcode Architecture (I) 6-3

Digital Restricted Distribution

6.6 PALcode Replacement

Alpha systems are required to support the replacement of Digital-supplied PALcode
with an operating system-specific version. The following functions must be

' implemented in PALcode, not directly in hardware, to facilitate replacement with
different versions.

1. Translation Buffer fill. Different operating systems will want to replace the
Translation Buffer (TB) fill routines. The replacement routines will use different
data structures. The.page tables documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the TB fill flow that
would change with a change iri page tables may be placed in hardware, unless
it is placed in a manner that can be overridden by PALcode.

2. Process structure. Different operating systems might want to replace the process
context switch routines. The replacement routines will use different data
structures. The HWPCB or PCB documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the context switching
flows that would change with a change in process structure may be placed in.
hardware.

PALcode must be written in a modular manner that facilitates easy replacement of
major subsections. The subsections that need to be simple to replace are:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6-1 and Appendix C must be recognized by
mnemonic and opcode in all operating system implementations, but the effect of each
instruction is dependent on the implementation. The operation of these PALcode
instructions for Digital-supplied operating system implementations is described in
Part II, Operating Systems.

Table 6-1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT Breakpoint trap

BUGCHK Bugcheck trap

GENTRAP Generate trap

RDUNIQUE Read unique value

WRUNIQUE Write unique value

6-4 Common Architecture (I)

Digital Restricted Distribution

The PALcode instructions listed in Table 6-2 and described in the following sections
must be supported by all Alpha implementations:

Table 6-2: Required PALcode Instructions
Mnemonic Type Operation

Drain aborts

Halt processor

DRAIN A

HALT

IMB

Privileged

Privileged

Unprivileged I-stream memory barrier

Common PALcode Architecture (I) 6-5

Digital Restricted Distribution

6.7.1 Drain Aborts

Format:

CALL_PAL DRAINA

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL DRAINA Drain Aborts

Description:

!PALcode format

If aborts are deliberately generated and handled (such as non-existent-memory
aborts while sizing memory or searching for 110 devices), the DRAINA instruction
forces any outstanding aborts to be taken before continuing.

Aborts are necessarily implementation-dependent. DRAINA stalls instruction issue
at least until all previously-issued instructions have completed and any associated
aborts have been signaled. For operate instructions, this will usually mean stalling
until the result register has been written. For branch instructions, this will
usually mean stalling until the result register and PC have been written. .For
load instructions, this will usually mean stalling until the result register has been
written. For store instructions, this will usually mean stalling until at least the first
level in a potentially multi-level memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed
portions of a cache block have been tr~sferred error-free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate
target location of the store has received error-free data before continuing.
An implementation-specific technique must be used to guarantee the ultimate
completion of a write in implementations that have multi-level memory hierarchies
or store-and-forward bus adapters.

6-6 Common Architecture (1)

Digital Restricted Distribution

6.7.2 Halt

Format:

CALL_PAL HALT

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF
halt:
restart/halt:
restart/boot/halt:
boot/halt:

END CASE

Exceptions:

Privileged Instruction

Instruction mnemonics:

{halt}
{rest?trt/halt}
{restart/boot/halt}
{boot/halt}

CALL_PAL HALT Halt Processor

Description:

!PALcode format

The HALT instruction stops normal instruction processing, and depending on the
HALT action setting, the processor may either enter console mode or the restart
sequence. See Platform Section, Chapter 4.

NOTE
\The halt actions will be changed to match the boot and
console chapters when they are done. \

Common PALcode Architecture (I) 6-7

Digital Restricted Distribution

6. 7.3 Instruction Memory Barrier

Format:

CALL_PAL IMB

Operation:

!PALcode format

{Make instruction stream coherent with Data stream}

Exceptions:

None

Instruction mnemonics:

CALL_PAL IMB I-stream Memory Barrier

Description:

An IMB instruction must be executed after software or 110 devices write into the
instruction stream or modify the instruction stream virtual address mapping, and
before the new value is fetched as an instruction. An implementation may contain
an instruction cache that does not track either processor or 1/0 writes into the
instruction stream. The instruction cache and memory are made coherent by an
IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an
instruction from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

The cache coherency and sharing rules are described in Chapter 5.

6-8 Common Architecture (I)

Digital Restricted Distribution

6.8 Revision History

Revision 5.0 May 12, 1992

1. Added list of recognition-required PALcode instructions

2. Added DRAINA to list of required PALcode instructions

3. Changed privileges enabled to complete control of the machine state

4. PALcode override for TB fill routines

5. Added HALT and IMB PALcode instructions

Revision 4.1 May 12, 1992

1. Created the chapter from Sections 1.1 through 1.6 of the V 4.n SRM

Common PALcode Architecture (I) 6-9

Digital Restricted Distribution

Chapter 7

Console Subsystem Overview (I)

On an Alpha system, underlying control of the system platform hardware is provided
by a console. The console:

1. Initializes, tests, and prepares the system platform hardware for Alpha system
software.

2. Bootstraps (loads into memory and starts the execution of) system software.

3. Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software that simplify system software control of and
access to platform hardware.

5. Provides a means for a console operator to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform
hardware; however, the net effects are common to all systems.

The console interacts with system software once control of the system platform
hardware has been transferred to that software.

The console interacts with the console operator through a virtual display device or
console terminal. The console operator may be a human being or a management
application.

Console Subsystem Overview (I) 7-1

Digital Restricted Distribution

8.1 Introduction

Chapter 8

Input/Output (I)

Conceptually, Alpha systems consist of processors, memory, processor-memory
interconnect (PMI), I/O buses, bridges, and I/O devices.

Figure 8-1 shows the Alpha system overview.

Figure 8-1: Alpha System Overview

Processor-Memory Interconnect

I I
T

Local
Processor Memory Local 110 Device

Side

T
Hose

l
Bridge

Remote
Side

.1

1/0 Bus l
Remote Remote

1/0 Device 1/0 Device

As shown in Figure 8-1, processors and memory are connected by the PMI.

A bridge connects a tightly coupled I/O bus to the system, either directly to the PMI
or through another tightly coupled 1/0 bus. A tightly coupled I/O bus is one whose
address space is accessible to the· processor either directly or through an 1/0 mailbox.

A bridge has at least a local side and a remote side, connected by a hose. The local
side is electrically closer to the PMI; the remote side is electrically further.

1/0 devices can be connected to the PMI or to an 110 bus. A local device connects to
the PMI; a remote device connects to an I/O bus.

The following sections discuss Alpha 110 operations:

• Accesses to local 1/0 space are discussed in Section 8.2.

• Accesses to remote 1/0 space are discussed in Section 8.3.

Input/Output (I) 8-1

Digital Restricted Distribution

• Reads and writes to processor memory-like regions initiated by 1/0 devices, or
"DMAs", are discussed in Section 8.4.

• Processor interrupts requested by devices are discussed in Section 8.5.

• Bus-specific 1/0 accesses are discussed in Section 8.6.

• \ Some implementation-specific considerations are discussed in Sectit>n 8. 7.

• Targettable interrupts are discussed in Section 8.8. \

8.2 Local 110 Space Access

Local 1/0 space locations may appear in either memory or non-memory-like regions.
Local 1/0 space locations which appear in memory regions may be cached subject to
the platform cache coherency scheme. See Chapter 5.

An Alpha platform need only support atomic quadword accesses. The
Alpha instruction architecture requires only quadword accesses. Processor
implementations may further restrict the access granularity of local 110 space. For
example, a given implementation could permit addressing of only cache blocks. To
support byte or word accesses to a local device, the device must be mapped into
a non-memory-like region with a sparse address space. The necessary mapping is
dependent on the implementation of the processor, cache, and PMI protocol. For
example, the four individual bytes of a longword device control register could be
mapped into the low order byte of each of four contiguous quadwords.

8.2.1 Read/Write Ordering

Access to local 1/0 space does not cause any implicit read/write ordering; explicit
barrier instructions must be used to ensure any desired ordering. Barrier
instructions must be used:

• After updating a memory-resident data structure and before writing a local 1/0
space location to notify the device of the updates.

• Between multiple consecutive direct accesses to local 1/0 space, e.g. device control
registers, if those accesses are expected to be ordered at the device.

Again, note that implementations may cache not only memory-resident data
structures, but also local 1/0 space locations.

8.3 Remote 110 Space Access

Remote 1/0 space locations are accessed indirectly through a memory-resident
"mailbox" data structure. To post an access, the physical address of the mailbox is
written into a MailBox Pointer Register (MBPR) on a local bridge side. For remote
1/0 space writes, the command and data are posted in the mailbox, and status is
returned. For remote 1/0 space reads, the command is posted in the mailbox, and
status and data are returned .

.An Alpha system may have any number of loc~ 1 bridge sides. Each local side may
provide connections for up to 256 hoses. Each hose may connect to a single remote

8-2 Common Architecture (I)

Digital Restricted Distribution

side or may connect to multiple remote sides. A single remote side may connect to
one or more hoses. A bridge need not include a hose; the local and remote sides
may be implemented as a single entity. A· local side or an entire bridge may be
incorporated into a processor board.

8.3.1 Mailbox Posting

A remote 1/0 space access is defined by the contents of the mailbox structure. A
remote 1/0 space access is invoked by writing the base physical address of the
mailbox structure into the appropriate bridge MailBox Pointer Register (MBPR).
Each 1/0 bus may be associated with one and only one MBPR. A single MBPR may
be associated with one or more remote I/O buses and a single bridge may have
multiple MBPR registers. The MBPR appears in local 1/0 space.

The MBPR is accessed only with the STQ_ C instruction. Flow control is achieved
by the associated (per-processor) lock_flag as follows:

post_mbx:

<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ_C Rl,RO
BEQ Rl,wait_post_mbx

wait_post_mbx:
<backof f delay>
BR post_mbx

If the STQ_ C lock_flag is set, the mailbox has been posted to the bridge. If the
STQ_C lock_flag is clear, all MBPR resources are occupied; the MBPR write must be
retried. In multi-processor configurations, this use of the STQ_ C instruction affects
only the local per-processor lock_flag. The state of the per-processor lock_flag of
other processors is unchanged.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The use above of the STQ_ C instruction is specific to the
first Alpha implementations. \ (EV-3 and EV-4) \ Future
implementations may use a different access mechanism.
\See Section 8. 7 .2. \

A given remote I/O space location is uniformly accessible to all processors in a multi­
processor configuration. A given hose, hence a given remote 110 bus, may be accessed
via an MBPR at the same physical address from any processor. A software thread
need have no knowledge of the specific processor on which it is executing.

A FIFO structure may be implemented behind each MBPR register to permit the
posting of multiple outstanding mailbox operations. A set of processor-specific
request queues may be implemented behind each MBPR register to ensure fair access
to all processors. Any such FIFO or queue is invisible to software.

Input/Output (I) 8-3

Digital Restricted Distribution

Bridge implementations must protect against lockout and ensure fair MBPR access
to all processors in a multi-processor configuration. Multiple writes to an MBPR by
a single processor must not be able to cause the starvation or timeout of competing
writes to the same MBPR by other processors.

Multiple software threads executing at different IPLs on a single processor may
cause starvation or timeout of the lower IPL threads. IPL levels are inherently
unfair. \See Section 8.7.3.\

Bridge implementations must guarantee forward progress on mailbox operations
regardless of direct memory access or interrupt load.

8.3.2 Mailbox Pointer Register (MBPR)

The MBPR format is shown in Figure 8-2 and described in Table 8-1.

Figure 8-2: Mailbox Pointer Register Format

63 4847 6 5 0

SBZ Mailbox Address<47:6> SBZ

Table 8-1: Mailbox Pointer Register Format
Bit(s) Description

SBZ <5:0>

<47:6> Physical address of the mailbox structure. The mailbox structure must be at
least 64-byte aligned.

<63:48> SBZ

8-4 Common Architecture (I)

Digital Restricted Distribution

8.3.3 Mailbox Structure
The mailbox is a 64-byte, naturally aligned, data structure. The format is .shown in
Figure 8-3 and described in Table 8-2.

Figure 8-3: Mailbox Data Structure Format

63 56 55 4849 4039 32 313029

SBZ l HOSE l SBZ I MASK E0l
RBADR

WDATA

UNPREDICTABLE

UNPREDICTABLE I
Status

UNPREDICTABLE

UNPREDICTABLE

Table 8-2: Mailbox Data Structure Format

2 1 0

CMD

RDA TA

ED
RO
RN

:A

:A+8

:A+16

:A+24

:A+32

:A+40

:A+48

:A+56

:A+64

Offset Bit(s) Name Description

0 <29:0> CMD Remote bus command. Controls the actual remote bus
operation and can include fields such as address only,
address width, and data width. See Section 8.6.2.

8

<31>

<39:32>

B Remote bridge access. If set, the command is a special
or diagnostic command directed to the remote side. See
Section 8.6.3.

W Write access. If set, the remote bus operation is a write.

MASK Disable Byte Mask. Disables bytes within the remote bus
address. Mask bit <i> set causes the byte to be disabled;
e.g. data byte <i> will NOT be written to the remote
address. See Section 8.6.2.

<47:40> SBZ

<55:48> HOSE Hose. Specifies the remote bus to be accessed. Bridges may
directly connect to up to 256 remote buses per hose.

<63:56> SBZ

<63:0> RBADR Remote Bus Address. Contains the target address of the
device on the remote bus. See Section 8.6.2.

Input/Output (I) 8-5

Digital Restricted Distribution

Table 8-2 (Cont.): Mailbox Data Structure Format
Offset Bit(s)

16

24

32

40

48

56

<63:0>

<63:0>

<31:0>

<63:32>

<0>

<63:2>

<63:0>

<63:0>

Name Description

WDATA Write Data. For write commands, contains the data to be
written. For read commands, the field is not used by the
bridge.

UNPREDICTABLE.

RDATA Read Data. For read commands, contains the data

DON

ERR

returned. For write data commands, the field is
UNPREDICTABLE.

UNPREDICTABLE.

Done. Indicates that the ERR, STATUS, and RDATA fields
are valid; that the mailbox structure may be safely modified
by host software.

Error. If set, indicates that an error was encountered
and that the STATUS field contains additional information.
Valid only when DON is set. See Sections 8.3. 7 and 8.3.8.

STATUS Operation completion status. Contains information specific
to the bridge implementation. Valid only when DON is set.

The bridge specification must include a definition of this
field. See Sections 8.3.7 and 8.3.8.

UNPREDICTABLE.

UNPREDICTABLE.

8.3.4 Mailbox Access Synchronization
The ownership of the mailbox structure is exchanged between the posting software
and the servicing bridge. The first 3 quadwords must be initialized by the software
prior to posting the mailbox to the bridge. Once posted, the contents of the mailbox
are owned by the bridge and are UNPREDICTABLE until the DON bit is set by
the bridge. If the mailbox contents are altered by software prior to the DON
bit becoming set, the action of the bridge and the resulting mailbox contents are
UNPREDICTABLE. Once the DON bit has been set by the bridge, the mailbox
contents are again owned by the software and must not be altered by the bridge.
\See Section 8. 7.4. \

Software use of the DON bit for synchronization is encouraged. If the DON bit is set
in the mailbox at the time that the mailbox is posted, it is not possible to determine
when the mailbox structure may be safely altered nor is it possible to determine
when any returned information (RDATA or STATUS or ERR) becomes valid. Use of
a static, not dynamically altered, mailbox structure is recommended only for true
write-and-run of static data such as setting a "go" bit in a device control register.

Note that the DON bit set does NOT guarantee that a remote 1/0 space write has
actually completed at the device. The DON bit may be set by any intervening bridge.
See Section 8.3.8.

8-6 Common Architecture (I)

Digital Restricted Distribution

The servicing bridge ignores the contents of the DON, ERR, and STATUS fields;
these fields are treated as write only. ·

8.3.5 Mailbox Read/Write Ordering

Mailbox accesses to a given remote bus are ordered by the MBPR and bus bridge.
After posting in the MBPR, the ordering must be retained by the bridge. The bridge
may reorder operations only across different hoses. Mailboxes targeted to different
buses connected to the same local bridge side may occur in a sequence different from
the posting order.

Mailbox operations are implicitly ordered when one and only one MBPR is used to
access a given remote 110 bus. In general, there is only one path to a given remote
1/0 bus vi.a a unique hose and remote side. In such configurations, the hardware
must retain the ordering of mailbox accesses. In configurations in which there are
multiple paths, software should order mailbox operations by using one and only one
MBPR to access a given remote bus.

8.3.6 Remote 1/0 Space Access Granularity

The granularity of remote 1/0 space accesses is not symmetric:

• Mailbox reads are defined to bytes, words, and longwords.

• Mailbox writes are defined to bytes, words, longwords and quadwords.

Mailbox writes were optimized to permit efficient and atomic writes of a full 48-bit
Alpha physical address.

Not all bus bridges will support all possible remote 1/0 space access granularities.
The supported granularity will be determined by the capabilities of the remote bus
and the remote bus side.

The MASK and RBADR fields are determined by the addressing and masking modes
of the remote 1/0 bus. Invalid MASK fields, or invalid combinations of MASK and
RBADR fields, will not cause ERR to be set. Error checking (if any) is done on
the remote (1/0 bus) side of the bridge; the local (PMI) side of the bridge employs
disconnected writes. If error checking is done by the remote side of the bridge, the
error is reported by an error interrupt.

On mailbox write accesses, bridges (and chains of bridges) deliver the valid WDATA,
RBADR, and MASK information to the remote I/O device. The valid data may be
encapsulated, along with invalid data, into larger data packets; the invalid data may
simply be invalid fields from the WDATA quadword. For some remote 110 buses, the
RBADR and MASK fields may be truncated or otherwise mapped.

On mailbox read accesses, bridges (and chains dfbridges) deliver the valid RBADR,
MASK, and command information to the remote I/O device., The bridge has no
knowledge of the intended size of the read data -this is known only.to the requesting
software and the ·device, which are assumed to agree. The valid data may be
encapsulated, along with invalid data, into larger data packets. Again, for some
remote 1/0 buses, the RBADR and MASK fields may be truncated or otherwise
mapped.

Input/Output (I) 8-7

Digital Restricted Distribution

8.3. 7 Remote 1/0 Space Read Accesses

The bridge must return status and data for remote I/O space reads. When the
mailbox DON bit is set by the bridge, the operation has completed, and the ERR
and STATUS fields may be examined. If the ERR bit is not set, the requested
remote bus operation was successful and valid data was returned. If the ERR bit is
set, an error was encountered and the STATUS field contains information as to the
nature of the error.

Errors encountered on remote 1/0 space read accesses may also be reported by bridge
error interrupts. The bridge side which encounters the error requests the interrupt.
Thus, a non-existent hose error may be reported by the local (PMI) side of the bridge,
while a non-existent remote bus address error is reported by the remote {1/0 bus)
side of the bridge.

Remote 1/0 space read accesses may be performed as follows:

remote read:

<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>

STQ

MB

post_mbx:

R31, 40 (Rm) ; Clear DON/ERR/STATUS fields

<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ C Rl,RO
BEQ- Rl,wait_post_mbx

wait mbxdone:
LDQ RO, 40(Rm)
BLBS RO, check_err
<backof f delay>
BR wait mbxdone

check_err: ..
SRL RO, fl, RO
BLBS RO, read err

MB

LDQ RO, 32 (Rm)

read err:
<handle error>

wait_post_mbx:

Notes:

<backof f delay>
BR post_mbx

8-8 Common Architecture (I)

Fetch STATUS/DON
Branch on DON set

Fetch RDATA

Digital Restricted Distribution

1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by ~e servicing bridge or is newly allocated.

2. The first barrier is required to ensure that the bridge will read the mailbox
contents as updated by the processor. Any pending processor writes to the
mailbox will have completed by the time that the load of the MBPR has
completed.

3. The second barrier is required to ensure that the processor will read the mailbox
contents as updated by the bridge. The returned data is accessed only after the
DON bit is observed to be set by the servicing bridge.

4. Software need not wait for the DON bit to become set.

5. The mailbox RDATA is valid only when DON is set and ERR is clear.

8.3.8 Remote 1/0 Space Write Accesses

The bridge need not return status for remote 110 space writes. When the mailbox
DON bit is set by the bridge, the bridge has completed access to the mailbox
structure. The ERR bit and STATUS fields are testable. The actual write operation
need NOT have completed at the device and the ERR bit and STATUS fields can
indicate success (be cleared) even though success is not ensured. However, the ERR

· bit and STATUS fields, if set, do accurately report an error condition.

The actual completion of a remote 110 space write access can only be observed
indirectly. Either the appropriate device state must be read back, or the device must
update a memory-resident data structure and/or request an interrupt. Remote 110
space read access(es) may be posted anytime after posting the write access. Because
mailbox operations to the same remote bus are guaranteed to be ordered, the read
is guaranteed to occur after the write.

Errors encountered on remote 110 space write accesses are reported by bridge error
interrupts. The bridge side which encounters the error requests the interrupt. Thus,
a non-existent hose error may be reported by the local (PM!) side of the bridge, while
a non-existent remote bus address error is reported by the remote (110 bus) side of
the bridge.

Remote 110 space write accesses may be performed as follows:

remote write:

<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>
STQ R31, 40(RM) ; Clear DON/ERR/STATUS

MB

post_mbx:

Input/Output (I) 8-9

Digital Restricted Distribution

<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ_C Rl,RO
BEQ Rl,wait_post_mbx

wait_post_mbx:

<backof f delay>
BR post_mbx

Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by the servicing bridge or is newly allocated.

2. The barrier is required to ensure that the bridge will read the mailbox contents
as updated by the processor. Any pending processor writes to the mailbox will
have completed by the time that the load of the MBPR has completed.

3. If the mailbox data is static, e.g. used to set a "go" bit in a device control
register, the mailbox may be posted without regard to the state of the DON
bit. Barriers are not required each time a static mailbox is posted, however a
barrier is required after the mailbox contents are initialized and prior to its first
use.

8.4 Direct Memory Accesss (OMA)

8.4.1 Access Granularity

A device or bridge side access to a memory-like region, or "DMA", is taken to be
atomic when:

• It is not possible for a single device read DMA of a data structure which is
updated by a single processor write to observe a partial update of that structure.

• It is not possible for a processor reading a data structure which is updated by a
single device write DMA to observe a partial update of that structure.

A processor treats any memory-resident data structures which are shared with
an 1/0 device as though the structures were shared with another processor. The
processor must follow the guidelines given in Common Architecture, Chapter 5.
Specifically, barrier instructions must be used:

1. After updating a shared memory-resident data structure and before setting an
associated flag indicating that the data structure is valid.

2. After observing a newly updated flag, and prior to accessing the associated shared
memory-resident data structure.

The atomic DMA size guaranteed to a local device is a function of the PMI protocol.
The minimum size is an aligned hexword. Locally connected devices must obey the
PMI protocol .And may participate 1n the memory cache coherency policy. See the
guidelines in Common Architecture, Chapter 5.

8-10 Common Architecture (I)

Digital Restricted Distribution

The atomic DMA size guaranteed to a remote device is a function of the remote I/O
bus protocol. Remote devices are guaranteed atomic access to aligned hexwords or
the remote I/O bus transfer burst size, whichever is smaller. It is the responsibility
of the local bridge side to ensure the atomicity of the device DMA.

Larger atomic DMA granularity permits optimization of device control protocols.
When a data structure and the associated flag are contained within a single aligned
hexword, the device can update both simultaneously with a single write DMA.
Similarly, the device may access both the data structure and the associated flag with
a single read DMA. If the flag is valid, the data structure contains valid information;
an additional read DMA is not necessary to obtain the valid data.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The hexword write DMA size was chosen as the smallest
cache block size of the first Alpha implementations
\ (Cobra and Flamingo)\ .

8.4.2 Read/Write Ordering

DMAs may be divided into the "control" stream and the "data" stream. These
streams differ in their ordering properties.

• Control stream accesses are guaranteed to be ordered. An implicit barrier occurs
before and after each access. Control stream ordering must be preserved by all
bridges between a given remote I/O device and processor memory.

• Data stream DMAs may be arbitrarily reordered if permitted by the protocol of
that I/O bus. No implicit barriers are associated with this stream.

A device may use control stream DMAs to ensure ordering of the data stream DMAs
and of interrupt requests as seen by a processor or other device sharing the same
memory-resident structures. Data stream DMAs must not be reordered with respect
to control stream DMAs. Interrupt requests must not be reordered with respect to
control stream DMAs.

Control stream DMA.s must be used:

• As the last DMA issued to update a memory-resident data structure before
requesting a processor interrupt to notify the processor of the update. This DMA
ensures that any previously issued data stream DMAs become visible to the
processor prior to the interrupt.

• To update any pointer or other linkage between memory-resident data structures.
Consider a status buffer which is located by a status ring pointer. The status
buffer may be updated with either a control or data stream DMA. The ring pointer
must be updated with a control stream DMA which is issued after the last DMA
used to update ~he status buffer.

A bridge must preserve the ordering of control stream DMAs regardless of whether
the accesses are reads or writes.

Input/Output (I) 8-11

Digital Restricted Distribution

The division of direct memory accesses into the control stream and the data stream is
the responsibility of the device. 1/0 bus protocols which do not permit the separation
of control and. data stream DMAs must preserve the ordering of all DMA.s and
interrupt requests; all DMA.s are considered to be control stream DMAs. Similarly,
hose protocols which do not permit the separation of control and data stream DMAs
must preserve the ordering of all DMAs and interrupt requests.

Bridge implementations must guarantee forward progress on all DMA operations.

8.4.3 Device Address Translation

1/0 devices use only physical addresses; devices must not access page tables for
the purpose of address translation. Devices are independent of any virtual memory
translation scheme. and processor page size.

8.5 Interrupts

An interrupt request from an 1/0 device consists of an interrupt priority level and
an interrupt vector. Device interrupt requests are defined to be priorities 20 to 23.
The interrupt vector identifies the appropriate interrupt service routine; the starting
address of the interrupt service routine is obtained by using the vector as an offset
from the base of the·System Control Block (SCB).

All bridge implementations must maintain both the temporal order and relative
priority of device interrupts. A bridge must not expedite a lower priority request if
a higher priority request has been received. With one exception, a bridge must not
reorder two interrupt requests at the same priority level. A bridge is permitted to
expedite delivery of a fatal bridge error interrupt; this interrupt must be at IPL 23
and may take precedence over any IPL 23 device interrupts.

A bridge may prefetch the interrupt vector from an 1/0 device to reduce the processor
overhead associated with interrupt dispatch. Vector prefetch reduces the processor
latency necessary to dispatch to the interrupt service routine by reducing the delay
associated with the delivery of the interrupt vector to the processor.

When a bridge delivers an interrupt from an 110 device, any pending control stream.
DMA writes issued by the device must have become visible to the processors. Note
that due to the ordering of control stream DMA.s, any data stream DMA.s writes
prior to the last pending control stream DMA must also have become visible to the
processors.

In multi-processor configurations, interrupts may be directed to a subset of the
processors in the configuration. Such targetting is implementation specific. \See
Section 8.8. \

8.6 110 Bus-Specific Mailbox Usage

\Send mail to EAGLEl::ALPHA_SRM to register a new Alpha system or bridge
side.\

8-12 Common Architecture (I)

Digital Restricted Distribution

8.6.1 Mailbox Field Checking

Bridge sides check only implemented functions. It is the responsibility of the posting
software to ensure· that the mailbox data structure fields are valid and that the
structure is posted correctly.

1. Local sides need not check the MASK, B, CMD, RBADR, or WDATA fields.

2. Local sides which connect to a single hose need not check the HOSE field.

3. Local sides need not pass the HOSE or W fields to the remote bridge side.

4. Remote bridge sides which do not implement masking need not check the MASK
field.

5. There is no consistency checking between the W and CMD fields. If the W
bit is set and the CMD field indicates a read, the result is UNPREDICTABLE.
Similarly, if the W bit is clear and the CMD field indicates a write, the result is
UNPREDICTABLE.

6. Remote bridge sides check only implemented CMD and RBADR bits.

-8.6.2 CMD Field

The CMD field consists of two subfields:

• A remote 110 bus specific subfield.

This subfield is common to all Alpha systems and contains the controls for a given
remote bus. The common subfield must be backward compatible; all systems
which connect to a given 1/0 bus share this subfield. -

• A system-specific subfield.

This subfield is specific to each Alpha system and contains the controls for a
given bridge implementation or system-specific diagnostic functions.

The size of each is specific to the remote 1/0 bus. The bridge specification must
include the definitions of all valid commands. This partition promotes software
portability. A given device driver uses the same CMD for a given type of device
access, regardless of the platform. Diagnostic software can also interpret the
common field without regard to the platform on which the mailbox was posted.

8.6.3 Special Commands

The special "WHO_ARE_YOU" command (W=O, B=l, CMD=O) is common to all
bridge implementations. WHO _ARE_ YOU is used to determine the type of remote
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command
and RBADR of 0, the remote bridge side returns a unique remote bus side identifier.
All other commands are specific to the type of remote bus and independent of the
bridge implementation.

Input/Output (I) 8-13

Digital Restricted Distribution

8.7 \Implementation Considerations

8. 7.1 Mailbox Selection

The choice of direct or mailbox access (local or remote I/O space) should be made
after consideration of the following:

• The processor overhead associated with waiting for the return data.

• The occupancy of the processor-memory interconnect during the access to an I/O
location on an I/O bus.

• The performance of the device.

• The complexity of the logic required to implement.

• The software impact.

The direct access method, with or without associated address mapping registers, is
subject to the following problems on Alpha systems:

1. Access Delay.

The I/O bus and device are typically much slower than the processor-memory
interconnect and the processor.

2. Access Granularity.

The Alpha instruction set supports only aligned quadword and longword accesses.
Many I/O devices and buses require accesses that span less than four bytes; full
longword accesses can generate undesired side effects.

3. Address Granularity.

Alpha processors may have caches leading to designs which perform reads and
writes to naturally aligned cache blocks. The length of a cache block is usually
greater than a quadword. For~memory accesses, the processor need never issue
the lower address bits. Additional hardware costs would be incurred to enable
the processor to access arbitrarily aligned longwords.

4. Physical Address Size

Many I/O buses now have address spaces that exceed the Alpha address space.
High performance systems need multiples of such buses. It is no longer feasible
to compress or fold the I/O bus address space into a portion of the processor I/O
space.

The mailbox access method addresses the above problems, but has other
disadvantages. Foremost are:

• Much software has been written to perform direct (mapped) access.

Such software must be modified to use mailbox access. Mapped 1/0 accesses will
be compiled to longword or quadword accesses, since an Alpha compiler cannot
know that any particular access is to remote I/O space. Furthermore, the LDx
accesses may be reordered from the data usage. As such, it is not simply possible

8-14 Common Architecture (I)

Digital Restricted Distribution

to formulate an exception-based mechanism to transparently trap and handle I/O
space accesses. The exception handler would have to have detailed knowledge of
the device accessed to be able to resolve the appropriate access granularity.

• A mailbox operation access may require more memory accesses and processor
instructions than a direct access.

The significance of this factor depends on the relative access latencies of remote
1/0 space and memory. If the remote 110 space access latency is significantly
longer, ·the effective overhead of a mailbox access will be no more than a direct
access. If the remote I/O space access latency is on the order of the memory
access latency, the mailbox access overhead may be significant.

For devices which require very fast or very frequent 1/0 space accesses, e.g.
frame buffers, mailbox accesses can be expected to give unacceptable system
performance. Additional hardware such as a companion DMA engine or attached
local processor must be coupled to the device.

To promote portability, software should be written to accommodate a bridge. It is
recommended that ALL 1/0 location reads and writes are made through subroutines.
Parameters to these routines should include all the fields necessary to use a mailbox,
see Section 8.3.3.

8.7.2 Mailbox Pointer Register Flow Control Selection

Each Mailbox Pointer (MBPR) register represents a resource to the processor. Either
that resource must appear to be infinite, or a flow control mechanism is necessary.

The MBPR resources appear to be infinite when, barring hardware errors, posting
a mailbox access is guaranteed to succeed. A sufficiently deep FIFO structure
implemented behind the MBPR register could appear infinite. The depth of the
FIFO will be a function of the number of 1/0 devices to be supported and the access
characteristics of those devices. A hardware mechanism for backoff-retry access to
the MBPR incorporated in the PMI protocol could also provide such a guarantee.

A flow control mechanism for MBPR register accesses must be atomic. The MBPR is
accessed by code threads which execute at multiple IPLs. A single software MBPR
ownership flag would lead to priority inversion and/or deadlock. A higher IPL code
thread executing on one processor will block if the flag is owned by a lower IPL code
thread executing on a different processor.

The MBPR register access flow control mechanism should not add significant
overhead to critical code paths. Performing MBPR accesses only at IPL 31 or via
dedicated PALcode can have significant system performance implications. Statically
allocating some number of MBPR resources (FIFO entries) per IPL and/or per
processor requires that the software thread determine the IPL/processor execution
environment. Note that such static allocation schemes are not guaranteed to be
portable between Alpha systems.

The first Alpha implementations use a single STQ_C instruction and the
associated lock_flag to· implement MBPR register access flow control. This is an
implementation choice and not architected. Subsequent implementations may select

Input/Output (I) 8-15

Digital Restricted Distribution

other mechanisms, particularly ·since this use of STQ_ C may have performance
implications.

IMPLEMENTATION NOTE
As an example, consider a processor with virtual caches.
Virtual address translation would be required on all
STQ_ C instructions to differentiate the MBPR accesses
from the memory accesses; the translation overhead
would slow all STQ_ C instructions.

8. 7 .3 Mailbox Starvation

The MBPR register represents a shared system resource. Software which issues
mailbox accesses should use that resource in a manner which guards against
starvation or access lockout.

Consider two software threads each issuing repeated mailbox accesses. There are
three cases of interest:

1. Each thread is executing on a unique processor in a multi-processor configuration.
The bridge hardware implementation will provide fair MBPR access to each
thread. Neither thread can cause the starvation of the other.

2. Both threads are scheduled for execution at non-elevated IPL (IPL 0) on the
same processor in a multi-processor configuration or on the only processor in
a uni-processor configuration. The operating system software scheduling policy
may provide fair MBPR access to each thread, or may allow either thread to
cause the starvation of the other.

3. \Both threads are scheduled for execution on the same processor in a multi­
processor configuration or on the only processor in a uni-processor configuration
and at least one of the threads is scheduled for execution at elevated IPL
(IPL> 0). The thread which executes at the highest IPL can cause starvation
of the thread executing at the lower IPL level. If both threads are scheduled to
execute at the same IPL, either thread can cause starvation of the other.

Software threads which execute at high IPL for extended periods can have severe
system performance implications. Remote I/O space accesses are inherently slow
with respect to processor speeds; remote I/O accesses can easily take in excess of
1000 instructions. Software which spins at high IPL- waiting for the DON bit or
repeatedly posting mailbox accesses may execute for extended periods and cause
blockage of other event delivery.

8. 7.4 Mailbox Structure Synchronizatio~ Properties

As explained in Section 8.3.4, the software and the servicing bridge may _synchronize
. their accesses to the mailbox structure by using the DON bit.

Bus bridge implementations may overwrite the full mailbox structure when setting
the DON bit. The bridge may perform a full 64-byte write to the mailbox structure
rather than a single quadword write·.or 32-byte write. If the bridge writes into the

8-16 Common Architecture (I)

Digital Restricted Distribution

first hex:word, the original mailbox contents must be restored; the bridge must not
cause the contents of the first hex:word to be altered.

Software must not alter the mailbox contents at any time after writing the MBPR
and prior to observing the DON bit set. ·Any such changes may or may not be
observed by the bridge. Any such changes may or may not be overwritten by the
bridge. The resulting remote bus access and the resulting mailbox contents are
UNPREDICTABLE.

Software may chose to ignore the DON bit if the contents of the mailbox structure
are truly static. Software may post the same mailbox repeatedly. Bridge
implementations must be able to correctly access the same mailbox in the event
of back-to-back MBPR writes with the same mailbox address. Note that in this
case, the contents of the DON, ERR, and STATUS fields are UNPREDICTABLE.

8. 7.5 1/0 Device Properties
Devices should be designed such that register accesses in the main code path can
be retried with minimum knowledge of the nature of the device or the side effects of
the access. Read accesses should not be used to signal a device to poll a command
queue, increment a counter or pointer, or initiate an I/O operation. This permits the
software error recovery from transient errors to occur outside the main execution
thread of the device driver.

Device designs are strongly encouraged NOT to require reads from device registers
during normal operation. Such reads can easily take in excess of 1000 instruction
cycles and become a major performance impact in a very high speed system.

Device designs are strongly encouraged NOT to require multiple back-to-back writes
to device registers during normal operation. Such writes can lead to congestion at
the MBPR, thus causing at least the issuing processor to wait. Such congestion can
become a major performance impact in a very high speed system.

The mailbox protocol does not provide any indication that a write. has actually
completed at the device. Device designs which use writes to registers to initiate
device actions are strongly encouraged to include a mechanism in the control protocol
to detect a lost signal or otherwise simply recover from a delayed notification.

8.7.6 Implications of Memory Accesses by Devices
Devices access memory for the exchange of command, status, and data with the
processor. Repeated processor accesses to non-cached locations, even if the location
is resident on the processor-memory interconnect, may have a negative performance
impact in a very high speed system. Such accesses should be replaced with cacheable
(e.g. memory) accesses wherever possible.

Bridges and local devices may incorporate physical memory buffers and participate
in the cache coherency policy. A bridge implementation which includes a cache may
not permit hits under misses for control stream DMA reads. Such reordering would
prohibit a device from issuing two back-to-back control stream DMA reads to access
a single data structure since the cache hit could contain outdated data.

Input/Output (I) 8-17

Digital Restricted Distribution

The dominant component of delay in a read DMA request by a remote 1/0 device
may be the memory access latency rather than the data transmission time. Fewer,
larger, memory accesses are preferable to many small accesses. Also, write control
stream DMAs to less than a full cache block may consume PMI resources if the
bridge must do a read-modify-write.

The device control protocol data structures should be compact and naturally aligned.
Note that this may require some memory-to-memory-copies by the processor. Small
memory reads which must be serialized should be minimized; a common cause of
such reads is when the device chases a collection of pointers.

Device control protocols must NOT make use of memory interlocks. Devices are not
gUaranteed emulation of the VAX interlocked instructions such as INSQTI/REMQTI.
Use of functionality equivalent to LDx_USTx_C need not be supported by bridges
and is not recommended for remote devices.

8.7.7 Interrupts
A device interrupt allows a device or bridge to signal processors for various reasons;
often including the following:

• Device solicitations for new 1/0 operations.

• Operation completion.

• Availability of operation status.

• Error occurrences.

• Non-host-originated software-relevant changes in device or bridge state or
identity.

Device port protocols are strongly encouraged to minimize the use of interrupts, since
interrupts have an expensive, and increasing, performance impact. The performance
impact is due to many factors. Interrupts cause processor pipeline breaks and
the execution of diverse short code threads which lower the effective cache and
translation buffer hit rate. Instruction execution is slowed during the time required
to obtain the hardware interrupt vector.

Interrupts in an Alpha system may target one or more processors. While multiple
processors may respond, only one will actually transfer control to the interrupt
service routine.

Conceptually, for a device on an 1/0 bus, the interrupt protocol is:

1. The device issues an interrupt request to the 1/0 module. The request specifies
at least an interrupt level, corresponding to IPL 20 to 23.

2. The bridge may prefetch the interrupt vector. This reduces the latency associated
with the delivery to the responding processor.

3. The bridge issues an interrupt request to some subset of the processors in the
system. If the PMI protocol permits, the vector may be forwarded with the
interrupt request. The interrupt is now outstanding.

8-18 Common Architecture (I)

Digital Restricted Distribution

4. When the IPL of an interrupted processor is lower than that of one or more
outstanding interrupts, the processor will obtain a hardware interrupt vector
if it does not already have one. The first processor to request a vector from a
bridge or device will obtain the next pending vector. The "next pending" vector
is determined by the IPL and time sequence order in which interrupts became
pending at the bridge or device. The bridge or device does not reorder interrupts
with the exception of a fatal bridge error interrupt; the latter occurs only at IPL
23.

5. The processor obtaining the hardware interrupt vector uses it as an offset from
the base of the System Control Block. The System Control Block element contains
the software interrupt vector, which is the starting address of the interrupt
service routine. The software interrupt vector is referred to as the interrupt
vector in Part II, Operating Systems. The processor transfers control to this
address.

As a minimum, there should be no more than one interrupt on average for each
operation carried out by the device.

8.8 Targettable Interrupts

In multi-processor configurations, interrupts may be directed, or targetted, to a
subset of the processors in the configuration. The targetted subset may include
one or more of the processors. Different interrupt sources, e.g. bridges, hoses, or
devices, may be targetted to a different subset. Such targetting is implementation
specific.

Implementations which target interrupts must include mechanisms for handling the
precedence of the bridge or device error interrupt. When interrupts can be taken by
one of many processors, an error interrupt may be taken by one processor while a
success interrupt is taken by another processor. If the event which generated the
error interrupt is related to the event which generated the success interrupt, the
error interrupt must be fully serviced before the success interrupt can be serviced.

As an example, consider a device which issues a control stream DMA write, then
requests a completion (success) interrupt. If a bridge incurs an error on that DMA,
the bridge may discard the DMA data and request an error interrupt. If the two
interrupts are serviced simultaneously on two different processors, the software
thread servicing the success interrupt may take incorrect action based on faulty
(stale) data. The error condition must be evaluated prior to permitting the success
code thread to execute.

Input/Output (I) 8-19

Digital Restricted Distribution

8.9 \Revision History:

\

Revision 5.0, May 12, 1992

1. Changed 'widget' to 'device'

2. Split chapter such that Sections 1.1 through the text part of 1.6.3 are now
external Chapter 8 of the Common Section, Table 1-3 and all text/tables through
1.6.3.2 (Future bus+ ...) are placed in Appendix D, and 1. 7 (Implementation
Considerations) to end of chapter are internal (backslash) Chapter 8 of the
Common Section

3. Changed hex IPLs to decimal

4. Made specified internal references external

5. Added ECO #22

6. Converted to SDML

7. Made all 'unpredictable' to 'UNPREDICTABLE'

8. Changed SLL to SRL under 'check error:' in remote read psuedocode

9. Removed all revision history prior to Rev 4.0, 29 March 1991

Revision 4.1, August 12, 1991

1. Renumbered Chapter to #11 with inclusion of Console ECO #15

Revision 4.0, March 29, 1991

1. Inclusion in REV 4.0 of the SRM numbering to assume SRM version values

8-20 Common Architecture (I)

Digital Restricted Distribution

OpenVMS Alpha Software (II)

This section describes how the Open VMS operating system relates to the Alpha architecture
and contains the following chapters:

• Chapter 1, Introduction to Open VMS Alpha (II)

• Chapter 2, Open VMS P.ALcode Instruction Descriptions (II)

• Chapter 3, Open VMS Memory Management (II)

• Chapter 4, Open VMS Process Structure (II)

• Chapter 5, Open VMS Internal Processor Registers, (II)

• Chapter 6, Open VMS Exceptions, Interrupts, and Machine Checks (II)

Digital Restricted Distribution

Contents

Chapter 1 Introduction to OpenVMS Alpha (II)

1.1·
1.1.1
1.1.2
1.1.3
1.2

Register Usage
Processor Status
Stack Pointer (SP)
Internal Processor Registers (IPRs)

\Revision History .

Chapter 2 OpenVMS PALcode Instruction Descriptions (II)

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2~1.12

2.1.13
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10

Unprivileged General OpenVMS PALcode Instructions
Breakpoint
Bugcheck .. .
Change Mode Executive
Change Mode to Kernel
Change Mode Supervisor- ~
Change Mode User•...
Generate Software '.rrap
Probe Memory Access ~
Read Processor Status .. .
Return from Exception or Interrupt
Read System Cycle Counter .. .
Swap AST Enable
Write Processor Status Software Field

Open VMS Alpha Queue Data Types
Absolute Longword Queues .. .
Self-Relative Longword Queues
Absolute Quadword Queues .. .
Self-Relative Quadword Queues

Unprivileged Open VMS Queue PALcode Instructions
Insert Entry into Longword Queue at Head Interlocked
Insert Entry into Longword Queue at Head Interlocked Resident
Insert Entry into Quadword Queue at Head Interlocked
Insert Entry into Quadword Queue at Head Interlocked Resident
Insert Entry into Longword Queue at Tail Interlocked-
Insert Entry into Longword Queue at Tail Interlocked Resident
Insert Entry into Quadword Queue at Tail Interlocked
Insert Entry into Quadword Queue at Tail Interlocked Resident
Insert Entry into Longword Queue
Insert Entry into Quadword Queue

Digital Restricted Distribution

1-1
1-1
1-1
1-1
1-2

2-3.

2-4
2-5
2-6
2-7
2-8
2-9

2-10
2-11
2-13
2-14
2-17
2-19
2-20
2-21
2-21
2-21
2-25
2-26
2-30
2-31
2-33
2-35
2-37
2-39
2-42
2-44
2-46
2-48
2-50

Ill

2.3.11
2.3.12
2.3.13
2.3.14
2.3.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.4
2.4.1
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.7

Remove Entry from Longword Queue at Head Interlocked
Remove Entry from Longword Queue at Head Interlocked Resident
Remove Entry from Quadword Queue at Head Interlocked
Remove Entry from Quadword Queue at Head Interlocked Resident
Remove Entry from Longword Queue at Tail Interlocked•.......
Remove Entry from Longword Queue at Tail Interlocked Resident
Remove Entry from Quadword Queue at Tail Interlocked
Remove Entry from Quadword Queue at Tail Interlocked Resident
Remove Entry from Longword Queue
Remove Entry from Quadword Queue

Unprivileged VAX Compatibility PALcode Instructions
Atomic Move Operation

Unprivileged PALcode Thread Instructions
Read Unique Context
Write Unique. Context .. .

Privileged PALcode Instructions .. .
Cache Flush .. .
Load Quadword Physical .. .
Move From Processor Register .. .
Move to Processor Register .. .
Store Quadword Physical .. .
Swap Privileged Context .. .

\REVISION HISTORY

Chapter 3 OpenVMS Memory Management {II)

3.1
3.2
3.2.1
3.3
3.4
3.5
3.5.1
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.8
3.9

Introduction .. .
'Virtual Address Space .. .

'Virtual Address Form.at
Physical Address Space
Memory Management Control -.
Page Table Entries

Changes to Page Table Entries
Memory Protection

Processor Access Modes
Protection Code
Access Violation Fault .. .

Address 'I'ransla ti on ..
Physical Access for Page Table Entries :
'Virtual Access for Page Table Entries .. .

'I'ranslation Buffer .. , .. .
Address Space Numbers

2-52
2-55
2-57
2-60·
2-62
2-65
2-67
2-70
2-72
2-74
2-76
2-77
2-81
2-82
2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-93

3-1
3-1
3-2
3-3
3-3
3-3
3-6
3-7
3-8
3-8
3-8
3-8
3-9

3-10
3-11
3-12

3.10 . Memory Management Faults . 3-13
3.11 \REVISION HISTORY . 3-15

Iv

Digital Restricted Distribution

Chapter 4 OpenVMS Process Structure (II)

4.1 Process Definition . 4-1
4.2 Hardware Privileged Process Context . 4-2
4.3 Asynchronous System Traps (AST) . 4-3
4.4 Process Context Switching . 4-4
4.5 \REVISION HISTORY . 4-5

Chapter 5 OpenVMS Internal Processor Registers, (II)

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11

Internal Processor Registers .
Stack Pointer Internal Processor Registers
IPR Sum.maey .. .

Address Space Number (ASN) .. .
AST Enable CASTEN)
AST Summary Register (ASTSR)
Data Alignment Trap Fixup CDATFX)
Floating Enable (FEN) .. .
Interprocessor Interrupt Request (IPIR)
Interrupt Priority Level (IPL) .. .
Machine Check Error Summary Register (MCES)
Performance Monitoring Register (PERFMON)
Privileged Context Block Base (PCBB)
Processor Base Register (PRBR)

5.3.12.
5.3.13

Page Table Base Register (PTBR)
System Control Block Base (SCBB)

5.3.14
5.3.15
5.3.16
5.3.17
5.3.18

Software Interrupt Request Register (SIRR)
Software Interrupt Summaey Register (SISR)
Translation Buffer Check (TBCHK)
Translation Buffer Invalidate All (TBIA)
Translation Buffer Invalidate All Process (TBIAP)

5-1
5-1
5-2
5-4
5-5
5-7
5-9

5-10
"5-11
5-12
5-13
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-24
5-25

5.3.19 Translation BufferJnvalidate Single (TBISx) : 5-26
5.3.20 Executive Stack Pointer (ESP) . 5-27
5.3.21 Superviso~ Stack Pointer (SSP) . 5-28
5.3.22 User Stack Pointer (USP) 5-29
5.3.23 Virtual Page Table Base (VPTB) . 5-30
5.3.24 Who-Am.-1 (WIIAMI) . 5-31
5.4 \REVISION HISTORY . 5-32

Chapter 6 OpenVMS Exceptions, Interrupts, and Machine Checks (II)

6.1
6.1.1
6.1.2
6.2
6.2.1

Introduction ·
Contrast Between Exceptions, Interrupts, and Machine Checks
Exceptions, Interrupts, and Machine Ch~cks Summaey

Processor State and Exception/Interrupt/Machine Check Stack Frame
Processor Status

Digital Restricted Distribution

6-1
6-2
6-2
6-5
6-5

v

6.2.2 Program Counter .. .
6.2.3 Processor Interrupt Priority Level (IPL)
6.2.4 Protection Modes
6.2.5 Processor .Stacks
6.2.6 Stack Frames ·
6.3 Exceptions
6.3.1 Faults .. .
6.3.1.l
6.3.1.2
6.3.1.3
6.3.-1.4
6.3.1.5
6.3.1.6
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6
6.3.2.7
6.3.2.8
6.3.3
6.3.3.1
6.3.3.2
6.3.3.2.1
6.3.3.2.2
6.3.3.2.3
6.3.3.2.4

Floating Disabled Fault ~ .. .
Access Control Violation (ACV) Fault
Translation Not Valid (TNV)
Fault On Read (FOR)
Fault On Write (FOW)
Fault On Execute (FOE) .. .

Arithmetic Traps ~
Exception Summary Parameter
Register Write Mask
Invalid Operation (INV) Trap ·
Division by Zero (DZE) Trap
Overflow (OVF) Trap ·· ~
Underflow (UNF) Trap .. .
Inexact Result (INE) Trap
Integer Overflow (IOV) Trap

Synchronous Traps
Data Alignment Trap
Other Synchronous Traps .. .

Breakpoint 'l'rap
Bugcheck Trap .. .
Illegal Instruction Trap•....
Illegal Operand Trap

6.3.3.2.5 Generate Software Trap
6.3.3.2.6 Change Mode to Kernel Trap
6.3.3.2. 7 Change Mode to Executive Trap
6.3.3.2.8 Change Mode to Supervisor Trap
6.3.3.2.9 Change Mode to User Trap
6.4 Interrupts
6.4.1 Software Interrupts - IPLs 1 to 15
6.4.1.1 Software Interrupt Summary Register ;
6.4.1.2 Software Interrupt Request Register
6.4.2 Asynchronous System Trap - IPL 2
6.4.3 Passive Release Interrupts-IPLs 20 to 23 ~ .. .
6.4.4 1/0 Device Interrupts - IPLs 20 to 23
6.4.5 Interval Clock Interrupt - IPL 22
6.4.5.1 Interprocessor Interrupt - IPL 22
6.4.5.1.1 Interprocessor Interrupt Request Register
6.4.6 Performance Monitor Interrupts-:-IPL 29

vi

Digital Restricted Distribution

6-6
6-7
6-7
6-7
6-7
6-8
6-9

6-10
6-10
6-10
6-10
6-11
6-11
6-12
6-13
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-17
6-17
6-19
6-19
6-19
6-20
6-20
6-20
6-20
6-21
6-21
6-21

I
I

~

6.4. 7 Powerfail Interrupt - IPL 30 . 6-21
6.5 Machine Checks . 6-22
6.5.1 Software Response •................. 6-24
6.5.2 Logout Areas . 6-25
6.6 System Control Block . - 6-26
6.6.1 SCB entries for faults ·. 6-27
6.6.2 SCB Entries for Arithmetic Traps . 6-27
6.6.3 SCB Entries for Asynchronous System Traps (ASTs)........................ 6-27
6.6.4 SCB Entries for Data Alignment Traps . 6-28
6.6.5 SCB Entries for other Synchronous Traps . 6-28
6.6.6 SCB Entries for Processor Software Interrupts . 6-29
6.6. 7 SCB Entries for Processor Hardware Interrupts . 6-29
6.6.8 SCB Entries for 1/0 Device Interrupts . 6-30
6.6.9 SCB Entries for Machine Checks . 6-30
6.7 P~code Support . 6-31
6.7.1 Stack Writability . 6-31
6. 7.2 Stack Residency . 6-31
6.7.3 Stack Alignment . 6-31
6.7.4 Initiate Exception or Interrupt or Machine Check.......................... 6-31
6.7.5 Initiate Exception or Interrupt or Machine Check Model................... . . 6-32
6. 7 .6 P~code Interrupt Arbitration . 6-34
6.7.6.1 Writing the AST Summary ~gister . 6-34
6.7.6.2 Writing the AST Enable Register..................................... 6-35
6.7.6.3 Writing the IPL Register . 6-35
6.7.6.4 Writing the Software Interrupt Request Register . 6-35
6.7.6.5 Return from Exception or Interrupt................................... 6-35
6. 7.6.6 Swap AST Enable . 6-36
6. 7. 7 Processor State Transition Table . 6-36
6.8 \REVISION HISTORY . 6-38

Figures

2-1 Empty Absolute Longword Queue . 2-22
2-2 Absolute Longword Queue with One Entry . 2-22
2-3 Absolute Longword Queue with Two Entries................................ 2-23
2-4 Absolute Longword Queue with Three Entries . 2-23
2-5 Absolute Longword Queue with Three Entries after Removing the Second Entry 2-24
2-6 Empty Self-Relative Longword Queue . 2-24
2-7 Self-Relative Longword Queue with One Entry.............................. 2-24
2-8 Self-Relative Longword Queue with Two Entries . 2-25
2-9 Self-Relative Longword Queue with Three Entries . 2-25
2-10 Empty Absolute Quadword Queue . 2-27
2-11 Absolute Quadword Queue with One Entry................................. 2-27
2-12 Absolute Quadword Queue with Two Entries . 2-27
2-13 Absolute Quadword Queue with Three Entries . 2-28

vii

Digital Restricted Distribution

2-14 Absolute Quadword Queue with Three Entries After Removing the Second Entry . . . 2-28
2-15 Empty Self-Relative Quadword Queue..................................... 2-28
2-16 Absolute Quadword Queue with One Entry................................. 2-29
2-17 Self-Relative Quadword Queue with Two Entries . 2-29
2-18 Self-Relative Quadword Queue with Three Entries . 2-29
3-1 Virtual Address Format . 3-2
3-2 Page Table Entry . 3-3
4-1 Hardware Privileged Context Block ~ . 4-2
5-1 Address Space Number Register (ASN) . 5-4
5-2 · AST Enable Register (ASTEN) . 5-5
5-3 AST Summary Register (ASTSR)... 5-7
5-4 Data Alignment Trap Fixup (DATFX) . 5-9
5-5 Floating Enable (FEN) Register ·.·................................ 5-10
5-6 Interprocessor Interrupt Request Register (IPIR) . 5-11
5-7 Interrupt Priority Level (IPL) . 5-12
5-8 Machine Check Error Summary Register (MCES)............................ 5-13
5-9 Performance Monitoring Register (PERFMON) . 5-15
5-10 Privileged Context Block Base Register (PCBB) . 5-16
5-11 Processor Base Register (PRBR) . 5-17
5-12 Page Table Base Register (PrBR) . 5-18
5-13 System Control Block Base Register (SCBB) . 5-19
5-14 Software Interrupt Request Register (SIRR) . 5-20
5-15 Software Interrupt Summary Register (SISR) . 5-21
5-16 Translation Buffer Check Register (TBCHK)................................ 5-22
5-17 Translation Buffer Invalidate All Register (TBIA) . 5-24
5-18 Translation Buffer Invalidate All Process Register (TBIAP) . 5-25
5-19 Translation Buffer Invalidate Single (TBIS) . 5-26
5-20 Executive Stack Pointer (ESP) . 5-27
5-21 Supervisor Stack Pointer (SSP) ·. 5-28 ·
5-22 User Stack Pointer (USP) . 5-29
5-23 Virtual Page.Table Base Register (VPTB) . 5-30
5-24 Who-Am-I Register (WHAMI) . 5-31
6-1 Current Processor Status (PS Register) . 6-5
6-2 Saved Processor Status (PS on Stack) . 6-5
6-3 Program Counter (PC) ... ·. . . . 6-7
6--4 Stack Frame . 6--8
6-5 Exception Summary . 6-13
6-6 Corrected Error and Machine Check Logout Frame . 6-25

viii

Digital Restricted Distribution

Tables

2-1 Open VMS PALcode Instructions . 2-1
2-2 Unprivileged General OpenVMS PALcode Instruction Summary................. 2-3
2-3 VAX Queue Palcode Instruction Summary . 2-30
2-4 Unprivileged PALcode Thread Instructions . 2-81
2-5 PALcode Privileged Instructions Summary . 2-84
3-1 Virtual Address Options . 3-2
3-2 Page Table Entry . 3-4
5-1 Internal Processor Register (IPR) Summary . 5-2
5-2 Internal Processor Register (IPR) Access Summary . 5-3
6-1 Exceptions, Interrupts, and Machine Checks Summary........................ 6-3
6-2 Processor Status Register Summary . 6-6
.6-3 Exception Summary . 6-13
6-4 Corrected Error and Machine Check Logout Frame Fields . 6-25
6-5 SCB Entries for Faults . 6-27
6-6 SCB Entries for Arithmetic Traps . 6-27
6-7 SCB Entries for Asynchronous System Traps . 6-27
6-8 SCB Entries for Data Alignment Trap . 6-28
6-9 SCB Entries for Other Synchronous Traps. 6-28
6-10 Entries for Processor Software Interrupts . 6-29
6-11 SCB Entries for Processor Hardware Interrupts . 6-30
6-12 SCB Entries for Machine Checks... 6-30
6-13 Processor State Transitions . 6-37

Ix

Digital Restricted Distribution

Chapter 1

Introduction to OpenVMS Alpha '(II)

The goals of this design are to provide a hardware implementation independent
interface between Open VMS and the hardware. Further, the design provides the
needed abstractions to minimize the impact between Open VMS and the different
hardware implementations. Finally, the design must contain only that overhead
necessary to satisfy those requirements, while still supporting high-performance
systems.

1.1 Register Usage

Besides those registers described in Part I, Common Architecture, Open VMS defines
the registers described in the following sections.

1.1.1 Processor Status
The Processor Status (PS) is a special register that contains the current status of the
processor. It can be read by the CALL_PAL RD_PS instruction. The software field
(PS<SW>) can be written by the CALL_PAL WR_PS_SW routine. See Chapter 6 for
a description of the PS register.)

1.1.2 Stack Pointer (SP)

Integer register R30 is the Stack Pointer (SP).

The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit
operand. During such operations, the address value in R30, ·interpreted as an
unsigned 64-bit integer, decreases (predecrements) when items are pushed onto the
stack, and increases (postincrements) when they are popped from the stack. After
pushing (writing) an item to the stack, SP points to that item.

1.1.3 Internal Processor Registers (IPRs)
The IPRs provide an architected mapping to internal hardware or provide other
specialized uses. They are available only to privileged software through PALcode
routines and allow Open VMS to interrogate or modify system state. The IPRs are
described in Chapter 5.

Introduction to OpenVMS Alpha (II) 1-1

Digital Restricted Distribution

1.2 \Revision. History
Revision 1.0, May 12, 1992

• Created for SRM Version 5

• First review distribution

\

1-2 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Chapter 2

OpenVMS PALcode Instruction Descriptions (II)

This chapter describes the PALcode instructions that are implemented for the
Open VMS Alpha environment. The PALcode instructions are a set of unprivileged
and privileged CALL_PAL instructions that are used to match specific operating
system requirements to the underlying hardware implementation.

For example, privileged PALcode instructions switch the hardware context
of a process structure. Unprivileged PALcode instructions implement the
uninterruptable queue operations. Also, PALcode instructions provide standard
interrupt and exception reporting mechanisms that are independent of the
underlying hardware implementation.

Table 2-1 lists all the unprivileged and privileged Open VMS PALcode instructions
and the section in this chapter in which they are described.

Table 2-1: OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation

AMOVRM Atomic move register/memory

AMOVRR Atomic move register/register

BPT Breakpoint

BUGCHK Bugcheck

CHME Change mode to executive

CHMK Change mode to kernel

CHMS Change mode to supervisor

CHMU Change mode to user

GENTRAP Generate software trap

IMB I-stream memory barrier

INSQxxx Insert in specified queue

PROBER Probe read access

PRO BEW Probe write access

RD_PS Read processor status

Section

Section 2.4

Section 2.4

Section 2.1

Section 2.1

Section 2.1

Section 2.1

Section 2.1

Section 2.1

Section 2.1

Common Architecture, Chap­
ter 6

Section 2.3

Section 2.1

Section 2.1

Section 2.1

OpenVMS PALcode Instruction Descriptions (II) 2-1

Digital Restricted Distribution

Table 2-1 {Cont.): OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic

READ_UNQ

REI

REMQxxx

RSCC

SWASTEN

WRITE_UNQ

WR_PS_SW

Operation

Read unique context

Return from exception or interrupt

Remove from specified queue

Read system cycle counter

Swap AST enable

Write unique context

Write processor status software field

Privileged Open VMS PALcode Instructions

Mnemonic Operation

CFLUSH Cache flush

DRAIN A Drain aborts

HALT Halt processor

LDQP Load quadword physical

MFPR Move from processor register

MTPR Move to processor register

STQP Store quadword physical

SWPCTX Swap privileged context

2-2 OpenVMS Alpha Software (II)

Section

Section 2.5

Section 2.1

Section 2.3

Section 2.1

Section 2.1

Section 2.5

Section 2.1

Section

Section 2.6

CommonArchitecture, Chap­
ter 6

CommonArchitecture, Chap­
ter 6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

Digital Restricted Distribution

2.1 Unprivileged General OpenVMS PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections
2.3, 2.4, and 2.5, provide support for the underlying OpenVMS Alpha model.

Table 2-2: Unprlvlleged General OpenVMS PALcode Instruction Summary
Mnemonic

BPT
BUGCHK

C1™E

C1™K

C1™S

C1™U

GENTRAP

IMB

PROBER

PRO BEW

RD_PS

REI

RSCC

SWASTEN

WR_PS_SW

Operation

Breakpoint

Bugcheck

Change mode to executive

Change mode to kernel

Change mode to supervisor

Change mode to user

Generate software trap

I-stream memory barrier

See Common Architecture, Chapter 6

Probe read access

Probe write access

Read processor status

Return from exception or interrupt

Read system cycle counter

Swap AST enable

Write processor status software field

OpenVMS PALcode Instruction Descriptions (II) 2-3

Digital Restricted Distribution

2.1.1 Breakpoint

Format:

CALL_PAL BPT !PALcode format

Operation:

{initiate BPT exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL BPT Breakpoint

Description:

The BPT instruction is provided for program debugging. It switches to Kernel mode
and pushes R2 .. R7, the t1pdated PC, and PS on the Kernel stack. It then dispatches
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1.

2-4 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.2 Bugcheck

Format:

CALL_PAL BUGCHK !PALcode format

Operation:

{initiate BUGCHK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL BUGCHK Bugcheck

Description:

The BUGCHK instruction is provided for e!"l"or reporting. It switches to Kernel mode
and pushes R2 .. R7, the updated PC, and PS on the Kernel stack. It then dispatches
to the address in the Bugcheck SCB vector. See Section 6.3.3.2.2.

OpenVMS PALcode Instruction Descriptions (II) 2-5

Digital Restricted Distribution

2.1.3 Change Mode Executive

Format:

CALL_PAL CHME !PALcode format

Operation:

tmpl +- MINU(1, PS<CM>)
{initiate CHME exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHME Change Mode to Executive

Description:

The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2 .. R7, PC and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHME instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHME.

2-6 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.4 Change Mode to Kernel

Format:

CALL_PAL CHMK !PALcode format

Operation:

{initiate CHMK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMK Change Mode to Kernel

Description:

The CHMK instruction lets a process change its mode to kernel in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is lo~ded. R2 .. R7, PC, and PS are pushed onto the kernel stack.
The saved PC addresses the instruction following the CHMK instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHMK.

OpenVMS PALcode Instruction Descriptions (II) 2-7

Digital Restricted Distribution

2.1.5 Change Mode Supervisor

Format:

CALL_PAL CHMS !PALcode forip.at

Operation:

tmpl +-- MINU(2, PS<CM>)
{initiate CHMS exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMS Change Mode to Supervisor

Description:

The CHMS instruction ·lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2 .. R7, PC, and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHMS instruction.

2-8 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.6 Change Mode User

Format:

CALL_PAL CHMU !PALcode format

Operation:

{initiate CHMU exception with new_mode=PS<CM>}

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL CHMU Change Mode to User

Description:

The CHMU instruction lets a process call a routine via the change mode mechanism.

R2 .. R7, PC, and PS are pushed onto the current stack. The saved PC addresses the
instruction following the CHMU instruction.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.

OpenVMS PALcode Instruction Descriptions (II) 2-9

Digital Restricted Distribution

2.1. 7 Generate Software Trap -

Format:

CALL_PAL GENTRAP !PALcode format

Operation:

{initiate GENTRAP exception with new mode=kernel}
! R16 contains the value encoding of~the software trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction Mnemonics:

CALL_PAL GENTRAP Generate Software Trap

-Description:

The GENTRAP instruction is provided for reporting runtime software conditions. It
switches to Kernel mode, and pushes R2 ... R7, the updated PC and PS on the Kernel
stack. It then dispatches to the address in the GENTRAP SCB Vector. See Section
Section 6.6.

The value in R16 identifies the particular software condition that has occurred. The
encoding for the software trap values is given in the software calling standard for
the system.

2-10 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.8 Probe Memory Access

Format:

CALL_PAL PROBE

Operation:

R16 contains the base address
Rl7 contains the signed offset
R18 contains the access mode
RO receives the completion status

'4- 1 if success
'4- 0 if failure

first '4- R16
last '4- {Rl6+R17}

IF R18<1:0> GTU PS<CM> THEN
probe_mode '4- Rl8<1:0>

ELSE
probe_mode '4- PS<CM>)

!PALcode format

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN
RO -4- 1

ELSE
RO -4- 0

Exceptions:

Translation Not Valid

Instruction Mnemonics:

CALL_PAL PROBER

CALL_PAL PROBEW

Description:

Probe for Read Access

Probe for Write Access

The PROBE instruction checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in between are
not checked.

System software must check all pages between the two bytes if they are to be
accessed. If both bytes are accessible, PROBE returns the value 1 in RO; otherwise,
PROBE returns 0. The Fault On Read and Fault On Write PTE bits are not checked.
A Translation Not Valid exception is signaled only if the the mapping structures can
not be accessed. A Translation Not Valid .exception is signaled only if the first or
second level PTE is invalid.

OpenVMS PALcode Instruction Descriptions (II) 2-11

Digital Restricted Distribution

The protection is checked against the less privileged of the modes specified by
R18<1:0> and the Current Mode (PS<CM>). See Section 6.2 for access mode
encodings.

PROBE is only intended to check a· single datum for accessibility. It does not check
all intervening pages because this could result in excessive interrupt latency. ·

2-12 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.9 Read Processor Status

Format:

CALL_PAL RD_PS !PALcode format

Operation:

RO ..-- PS

Exceptions:

None

Instruction Mnemonics:

CALL_PAL RD_PS Read Processor Status

Description:

The RD_PS instruction returns the Processor Status (PS) in register RO. The
Processor Status is described in Section 6.2. The PS<SP _ALIGN> :field is always
a zero on a RD_PS.

OpenVMS PALcode Instruction Descriptions (II) 2-13

Digital Restricted Distribution

2.1.10 Return from Exception or Interrupt

Format:

CALL_PAL REI !PALcode format

Operation:

! See Chapter 6
for information on interrupted registers

IF SP<5:0> NE 0 THEN
{illegal operand

tmpl - (SP)
tmp2 - (SP+8)
tmp3 - (SP+l6)
tmp4 - (SP+24)
tmp5 - (SP+32)
tmp6 - (SP+40)
tmp7 - (SP+48)
tmp8 - (SP+56)

ps chk - tmp8
ps - chk<cm> - 0
ps-chk<sp align> - 0
ps - chk<sw> - 0
intr_flag - 0
{ clear lock_flag}

Get saved R2
Get saved R3
Get saved R4
Get saved RS
Get saved R6
Get saved R7
Get new PC
Get new PS

Copy new ps
Clear cm field
Clear sp_align field
Clear Software Field
Clear except/inter/mcheck flag

! If current mode is not kernel check the new ps is valid.
IF {ps<cm> NE 0} AND

{{tmp8<cm> LT ps<cm>} OR {ps_chk NE 0}} THEN
BEGIN
{illegal operand}

END

sp +- {sp + 8*8} OR tmp8<sp align>
IF {internal registers for stack pointers} THEN

CASE ps<cm> BEGIN
[0]: ipr ksp +- sp
[1]: ipr=esp +- sp
[2] : ipr_ssp +- sp
[3] : ipr_usp +- sp

END CASE
CASE tmp8<cm> BEGIN

[0]: sp +- ipr ksp
[1]: sp +- ipr=esp
[2]: sp +- ipr_ssp
[3] : sp +- ipr_usp

END CASE
ELSE

(pcbb + 8*ps<cm>) - sp
sp +- (pcbb + 8*tmp8<cm>)

END IF

2-14 OpenVMS Alpha Software (II)

Digital Restricted Distribution

R2 '4- tmpl
R3 '4- tmp2
R4 '4- tmp3
RS '4- tmp4
R6 '4- tmp5
R7 '4- tmp6
PC '4- tmp7
PS '4- tmp8 <12:00>

{Initiate interrupts or AST interrupts that are now pending}

Exceptions:

Access Violation

Fault on Read

Illegal Operand

Kernel Stack Not Valid Halt

Translation Not Valid

Instruction Mnemonics:

CALL_PAL REI Return from Exception or Interrupt

Description:

The REI instruction pops the PS, PC, and saved R2 ... R7 from the current stack and
holds them in temporary registers.

_The new PS is checked for validity and consistency. If it is invalid or inconsistent,
an illegal operand exception occurs; otherwise the operation continues. A kernel
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED
results.

The current stack pointer is then saved and a new stack pointer is selected according
to the new PS<CM> field. R2 through R7 are restored using the saved values held in
the temporary registers. A check is made to determine if an AST or other interrupt
is pending (see Section 6.7.6).

If the enabling conditions are present for an interrupt or AST interrupt at the
completion of this instruction, the interrupt or AST interrupt occurs before the next
instruction.

OpenVMS PALcode Instruction Descriptions (II) 2-15

Digital Restricted Distribution

When an REI· is issued, the current stack must be writable from the current mode or an
Access Violation may occur.

IMPLEMENTATION NOTE
This is necessary so that an implementation can choose
to clear the lock_:flag by doing a STx_ C to above the top­
of-stack after popping PS, PC, and saved R2 .. R7 off the
the current stack.

2-16 OpenVMS Alpha Software (11)

Digital Restricted Distribution

2.1.11 Read System Cycle Counter

Format:

CALL_PAL RSCC !PALcode format

Operation:

RO +- {System Cycle Counter}

Exceptions:

None

Instruction Mnemonics:

CALL_PAL RSCC Read System Cycle Counter

Description:

The RSCC instruction writes register RO with the value of the system cycle counter.
This counter is an unsigned 64-bit integer that increments at the same rate as the
process cycle counter. The cycle counter frequency, which is the number of times
the system cycle counter gets incremented per second rounded to a 64-bit integer, is
given in the HWRPB. \ (See Plq,tform Section, Chapter 3). \

The system cycle counter is suitable for timing a general range of intervals to within
10% error and may be used for detailed performance characterization. It is required
on all implementations. sec is required for every processor, and each processor in
a multiprocessor system has its own private, independent sec.

Notes:

1. Processor initialization starts the SCC at 0.

2. sec is required for every processor and each processor in a multiprocessor system
has its own private, independent sec.

3. SCC is monotonically increasing. On the same processor, the values returned
by two successive reads of sec must either be equal or the value of the second
must be greater (unsigned) than the first.

4. SCC ticks are never lost so long as the SCC is accessed at least once per each PCC
overflow period (2**32 PCC increments) during periods when the hardware clock
interrupt remains blocked. The hardware clock interrupt is blocked whenever
the IPL is at or above CLOCK_IPL or whenever the processor enters console 1/0
mode from program I/O mode.

OpenVMS PALcode Instruction Descriptions (II) 2-17

Digital Restricted Distribution

5. The 64-bit SCC may be constructed from the 32-bit PCC hardware counter~nd
a 32-bit PALcode software counter. As part of the hardware clock interrupt
processing, PALcocte-increments the software counter whenever a PCC wrap is
detected. Thus, SCC ticks may be lost only when PALcode fails to detect PCC
wraps. In a machine where the PCC is incremented at a 1 nsec rate, this may
occur when hardware clock interrupts are blocked for greater than 4 seconds.

6. An implementation-dependent mechanism must exist to, when enabled, cause
the RSCC instruction, as implemented by standard PALcode, to always return
a zero in RO. This mechanism must be usable by privileged system software. A
similar mechanism must exist for RPCC. Implementations are allowed to have
just a single mechanism which when enabled causes both RSCC and RPCC to
return zero.

2-18 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.1.12 Swap AST Enable

Format:

CALL_PAL SWASTEN

Operation:

RO ~ ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> ~ Rl6<0>

{check for pending ASTs}

Exceptions:

None

Instruction Mnemonics:

!PALcode format

CALL_PAL SWASTEN Swap AST Enable for Current Mode

Description:

The SWASTEN instruction swaps the AST enable bit for the current mode. The
new state for the enable bit is supplied in register R16<0> and previous state of the
enable bit is returned, zero extended, in RO.

A check is made to determine if an AST interrupt is pending (see Section 6.7.6.6).

If the enabling conditions are present for an AST interrupt at the completion of this
instruction, the AST occurs before the next instruction.

OpenVMS PALcode Instruction Descriptions (II) 2-19

Dlgltal Restricted Distribution

2.1.13 Write Processor Status Software Field

Format:

CALL_PAL WR_PS_SW !PALcode format

Operation:

PS<SW> ~ Rl6<1:0>

Exceptions:

None

Instruction Mnemonics:

CALL_PAL WR_PS_SW Write Processor Status Software Field

Description:

The WR_PS_SW instruction writes the Processor Status software field (PS<SW>)
with the low order two bits ofR16. The Processor Status is described in Section 6.2.

2-20 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.2 OpenVMS Alpha Queue Data Types

The following sections describe the queue data types that are manipulated by the
OpenVMS queue PALcode. Section 2.3 describes the PALcode instructions that
perform the manipulation.

2.2.1 Absolute Longword Queues

A longword queue is a circular, doubly linked list. A longword queue entry is specified
by its address. Each longword queue entry is linked to the next with a pair of
longwords. A queue is classified by the type of link it uses. Absolute longword
queues use absolute addresses as links.

The first (lowest addressed) longword is the forward link; it specifies the address of
the succeeding longword queue entry. The second (highest addressed) longword is
the backward link; it specifies the address of the preceding longword queue entry.

A longword queue is specified by a longword queue header which is identical to a
pair of longword queue linkage longwords. The forward link of the header is the
address of the entry termed the head of the longword queue. The backward link of
the header is the address of the entry termed the tail of the longword queue. The
forward link of the tail points to the header.

An empty longword queue is specified by its header at address H, as shown in
Figure 2-1 If an entry at address Bis inserted into an empty longword queue (at
either the head or tail), the longword queue shown in Figure 2-2 results. Figures
2-3, 2-4, and 2-5, respectively, illustrate the results of subsequent insertion of an
entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.2 Self-Relative Longword Queues

Self-relative longword queues use displacements from longword queue entries as
links. Longword queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link; it is a displacement of the succeeding longword
queue entry from the present entry. The second longword (highest addressed) is the
backward link; :lt is the displacement of the preceding longword queue entry from
the present entry. A longword queue is specified by a longword queue header, which
also consists of two longword links.

An empty longword queue is specified by its header at address H. Since the longword
queue is empty, the self-relative links are zero, as shown in Figure 2-6.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

OpenVMS PALcode Instruction Descriptions (II) 2-21

Digital Restricted Distribution

If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, then
it is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-7, 2-8, and 2-9, respectively, illustrate the results of subsequent insertion
of an entry at address B at the head, insertion of an entry at address A at the tail,
and insertion of an entry at address C at the tail.

Figures 2-9, 2-8, and 2-7 (in that order) illustrate the effect of removal at the tail
and removal at the head.

Figure 2-1: Empty Absolute Longword Queue

31 0

Ii----:-----tl::+4
Figure 2-2: Absolute Longword Queue with One Entry

31 0

-1----:-----11::+4
I-----:----1::+4

2-22 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Figure 2~: Absolute Longword Queue with 1\lvo Entries

31 0

I
A

1::+4 B

I
B

1::+4 H

I
H

1::+4 A

Figure 2-4: Absolute Longword Queue with Three Entries

31 0

I
A

1::+4 c

I
B

1::+4 H

I
c

1::+4 A

I
H

1::+4 B

OpenVMS PALcode Instruction Descriptions (II) 2-23

Digital Restricted Distribution

Figure 2-5: Absolute Longword Queue with Three Entries after Removing the Second
Entry

31 0

I
A

1::+4 c

I
c

1::+4 H

I
H

1::+4 A

Figure 2-6: Empty Self-Relative Longword Queue

31 0

I
0

1::+4 0

Figure 2-7: Self-Relative Longword Queue with One Entry

31 0

I
B-H

1::+4 B-H

I
H-B

1::+4 H-B

2-24 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Figure 2-8: Self-Relative Longword Queue with 1\No Entries

31 0

I
A-H

1::+4 B-H

I
B-A

1::+4 H-A

I
H-B

1::+4 A-B

Figure 2-9: Self-Relative Longword Queue with Three Entries

31 0

I
A-H

1::+4 C-H

I
B-A

1::+4 H-A

I
C-B

1::+4 A-B

I
H-C

1::+4 B-C

2.2.3 Absolute Quadword Queues
A quadword queue is a circular, doubly linked list. A quadword queue entry is
specified by its address. Each quadword queue entry is linked to the next with
a pair of quadwords. A queue is classified by the type of link it uses. Absolute
quadword queues use absolute addresses as links.

The first (lowest addressed) quadword is the forward link; it specifies the address of
the succeeding quadword queue entry. The second (highest addressed) quadword is
the backward link; it specifies the address of the preceding quadword queue entry.

A quadword queue is specified by a quadword queue header which is identical to a
pair of quadword queue linkage quadwords. The forward link of the header is the
address of the entry termed the hea~ of the quadword queue. The backward link of
the ·header is the address of the entry termed the tail of the quadword queue. The
forward link of the tail points to the header.

OpenVMS PALcode lnstructi~n Descriptions (II) 2-25

Digital Restricted Distribution

An empty quadword queue is specified by its header at address H, as shown in
Figure 2-10. If an entry at address Bis inserted into an empty quadword queue (at
either the head or tail), the quadword queue shown in Figure 2-11 results. Figures
2-12, 2-13, and 2-14, respectively, illustrate the results of subsequent insertion of
an entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.4 Self-Relative Quadword Queues

Self-relative quadword queues use displacements from quadword queue entries
as links. Quadword queue entries are linked by a pair of quadwords. The
first quadword (lowest addressed) is the forward link; it is a displacement of the
succeeding quadword queue entry· from the present entry. The second quadword
(highest addressed) is the backward link; it is the displacement of the preceding
quadword queue entry from the present entry. A quadword queue is specified by a
quadword queue header, which also consists of two quadword links.

An empty quadword queue is specified by its header at address H. Since the
quadword queue is empty, the self-relative links are zero, as shown in Figure 2-15.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set; then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, then
it is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-16, 2-17, and 2-18, respectively, illustrate the results of subsequent
insertion of an entry at address B at the head, insertion of an entry at address
A at the tail, and insertion of an entry at address C at the tail.

Figures 2-18, 2-17, and 2-16, (in that order) illustrate the effect of removal at the
tail and removal at the head.

2-26 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Figure 2-10: Empty Absolute Quadword Queue

63 0

Figure 2-11: Absolute Quadword Queue with One Entry

63 0

B

1::+8 B

H

1::+8 H

Figure 2-12: Absolute Quadword Queue with Two Entries

63 0

A

1::+8 B

B

1::8 H

H

1::8 A

OpenVMS PALcode Instruction Descriptions (II) 2-27

Digital Restricted Distribution

Figure 2-13: Absolute Quadword Queue with Three Entries

63 0

--------------:----------------11::+8
t----------------:-----------'--------11::+8
t----------------:-----------------11::+8

Figure 2-14: Absolute Quadword Queue with Three Entries After Removing the Second Entry

63 0

A 1::+8 c

c 1::+8 H

H 1::8 A

Figure 2-15: Empty Self-Relative Quadword Queue

63 0

It----------:-----------41::+8

2-28 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Figure 2-16: Absolute Quadword Queue with One Entry

63 0

B-H

l::a B-H

H-B

1::8 H-B

Figure 2-17: Self-Relative Quadword Queue with Two Entries

63 0

A-H

1::+8 B-H

B-A

1::8 H-A

H-B

1::8 A-B

Figure 2-18: Self-Relative Quadword Queue with Three Entries

63 0

A-H

1::+8 C-H

B-A

1::8 H-A

C-B

1::8 A-B

H-C

j::+8 B-C

OpenVMS PALcode Instruction Descriptions (II) 2-29

Digital Restricted Distribution

2.3 Unprivileged OpenVMS Queue PALcode Instructions

The following unprivileged PALcode instructions perform atomic modification of the
queue data types that are described in Section 2.2.

Table 2-3: VAX Queue Palcode Instruction Summary
Mnemonic

INSQHIL

INSQHILR

INSQHIQ

INSQHIQR

INSQTIL

INSQTILR

INSQTIQ

INSQTIQR

INSQUEL

INSQUEQ

REMQHIL

REMQHILR

REMQHIQ

REMQHIQR

REMQTIL

REMQTILR

REMQTIQ

REMQTIQR

REMQUEL

REMQUEQ

Operation

Insert into longword queue at head, interlocked

Insert into longword queue at head, interlocked, resident

Insert into quadword queue at head, interlocked

Insert into quadword queue at head, interlocked, resident

Insert into longword queue at tail, interlocked

Insert into longword queue at tail, interlocked, resident

Insert into quadword queue at tail, interlocked

Insert into quadword queue at tail, interlocked, resident

Insert into longword queue

Insert into quadword queue

Remove from longword queue at head, interlocked

Remove from longword queue at head, interlocked, resident

Remove from quadword queue at head, interlocked

Remove from quadword queue at head, interlocked, resident

Remove from longword queue at tail, interlocked

Remove from longword queue at tail, interlocked, resident

Remove from quadword queue at tail, interlocked

Remove from quadword queue at tail, interlocked, resident

Remove from longword queue

Remove from quadword queue

2-30 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

CALL_PAL INSQHIL !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE 0} OR {R17<2:0> NE 0} OR {R16 EQ R17} OR
{SEXT(R16<31:0>) NE R16} OR {SEXT(R17<31:0>) NE R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount}
REPEAT

Implementation-specific

LOAD_LOCKED (tmpO +- (R16))
IF tmpO<O> EQ 1 THEN

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +- -1, {return}

done +- STORE CONDITIONAL
N+- N-1

((Rl 6) +- { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB
tmpl +- SEXT(tmp0<31:0>)
IF {tmpl<2:1> NE 0} THEN BEGIN

BEGIN
(R16) +- tmpO
{illegal operand exception}

END

Check alignment
Release secondary interlock.

Check if following addresses can be written
without causing a memory management exception:

entry
header + tmpl

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock.

(R16) +- tmpO
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-31

Digital Restricted Distribution

! All accesses can be done so enqueue the entry

tmp2 +- SEXT({R16 - R17}<31:0>)
(R17)<31:0> +- tmpl + tmp2 Forward link
(R17 + 4)<31:0> +- tmp2 Backward link
(R16 + tmpl + 4)<31:0> +- -tmpl - tmp2 Successor back link

MB

(Rl6)<31:0> +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

CALL_PAL INSQHIL

Description:

Forward link of header
Release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Head Interlocked

If the secondary interlock is clear, INSQHIL inserts the entry specified in Rl 7 into
the self-relative queue following the header specified in ~16.

-

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked.to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion, the
processor validates that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is left in a consistent state (see
Chapters 3 and 6). If the instruction fails to acquire the secondary interlock after
''N" retry attempts, then (in the absence of exceptions) R< 0> is set to a -1. The
value "N" is implementation dependent. \ The selected initial value of N is 20. \

2-32 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHILR !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry

' RO receives status:
-1 if the secondary interlock was set

0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD _LOCKED { tmpO +-- { Rl 6))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +-- -1, {return}

done +-- STORE CONDITIONAL
N+- N-1

{ {R16) +-- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +-- -1, {return}

MB

tmpl +-- SEXT{tmp0<31;0>)
tmp2 +-- SEXT{{R16 - R17}<31:0>)
(R17)<31:0> +-- tmpl + tmp2
(Rl 7 + 4) <31: 0> +-- tmp2

Retry exceeded

(R16 + tmpl + 4)<31:0> +-- -tmpl - tmp2

Enqueue the entry
Forward link of entry.
Backward link of entry.
Successor back link

MB
(R16)<31:0> +-- -tmp2

IF tmpl EQ 0 THEN
RO +-- 1

ELSE
RO +-- 0

END

Exceptions:

Illegal Operand

Forward link of header
! Release the lock

Queue was empty

Queue was not empty

OpenVMS PALcode Instruction Descriptions (II) 2-33

Digital Restricted Distribution

Instruction Mnemonics:

CALL_PAL INSQHILR Insert Entry into Longword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHILR inserts the entry specified in Rl 7 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a-1. The value "N" is implementation dependent. \The
selected initial value of N is 20. \

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

2-34 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

CALL_PAL INSQHIQ !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry

·! RO receives status:
-1 if the secondary interlock was set

0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

F {R16<3:0> NE 0} OR {R17<3:0> NE 0} OR {R16 EQ R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amountt
REPEAT

Implementation-specific

LOAD _LOCKED (tmp 0 ~ (Rl 6))
IF tmpO<O> EQ 1 THEN

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO ~ -1, {return}

done ~ STORE CONDITIONAL
N ~ N - 1

((R16) ~ {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

IF {tmp1<3:1> NE 0} THEN BEGIN
BEGIN

Check Alignment
Release secondary interlock

(R16) ~ tmpl
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + tmpl

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) ~ tmpl
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-35

Digital Restricted Distribution

! All accesses can be done so enqueue the entry
tmp2 +- R16 - Rl7
(R17) +- tmpl + tmp2 Forward link
(R17 + 8) +- tmp2 Backward link
(R16 + tmpl + 8) +- -tmpl - tmp2 Successor back link

MB

(R16) +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

CALL_PAL INSQHIQ

Description:

Forward link of header
Release the lock.

Queue was empty

Queue was not empty

Insert into Quadword Queue at Head Interlocked

If the secondary interlock is clear, INSQHIQ inserts the entry specified in Rl 7 into
the self-relative queue following the header specified in Rl6.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion, the
processor validates that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is left in a consistent state (see
Chapters 3 and 6). If the instruction fails to acquire the secondary interlock ·after
''N" retry attempts, then (in the absence of exceptions) R< 0> is set to a -1. The
value "N" is implementation dependent. \ The selected initial value of N is 20. \

2-36 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHIQR !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 if
1 if

the
the

entry was
entry was

not empty before adding this entry
empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO +-- (R16))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +-- -1, {return}

done +-- STORE CONDITIONAL
N+-- N-1

((Rl 6) +-- { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +-- -1, {return}

MB

tmp2 +-- R16 - R17
(Rl 7) +-- tmpl + tmp2
(Rl 7 + 8) +-- tmp2
(R16 + tmpl + 8) +-- -tmpl - tmp2

MB
(R16) +-- . -tmp2

IF tmpl EQ 0 THEN
RO +-- 1

ELSE
RO +-- 0

END

Exceptions:

Illegal Operand

Retry exceeded

Enqueue the entry
Forward link of entry.
Backward link of entry.
Successor back link

Forward link of header,
Release the lock

Queue was empty

Queue was not empty

OpenVMS PALcode Instruction Descriptions (II) 2-37

Digital Restricted Distribution

Instruction Mnemonics:

CALL_PAL INSQHIQR Insert Entry into Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHIQR inserts the entry specified in Rl 7 into
the self_relative queue following the header specified in Rl6.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after ''N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value ''N'' is implementation dependent. \ The
selected initial value of N is 20. \

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

2-38 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIL !PALcode format

Operation:

!. Rl6 contains the address of the queue header
Rl7 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE 0} OR {Rl7<2:0> NE 0} OR {Rl6 EQ Rl7} OR
{SEXT(Rl6<31:0>) NE Rl6} OR {SEXT(Rl7<31:0>) NE Rl6} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount}
REPEAT

LOAD LOCKED (tmpO +-- (Rl6))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +-- -1, {return}

done +-- STORE CONDITIONAL
N +-- N - 1

((Rl6) +-- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +-- -1, {return}

MB

tmpl +-­

tmp2 +--

SEXT(tmp0<31:0>)
SEXT(tmp0<63:32>)

Retry exceeded

IF {tmpl<2:1> NE 0} OR {tmp2<2:0> NE 0} THEN ! Check Alignment
BEGIN Release secondary interlock

(Rl6) +-- tmpO
{illegal operand exception}

END

OpenVMS PALcode Instruction Descriptions (II) 2-39

Digital Restricted Distribution

Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 4)

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock

(R16) -+-- tmpO
{initiate memory management fault}

END

All Accesses can be done so enqueue entry
tmp3 -+-- SEXT({R16 - Rl7}<31:0>)
(R17)<31:0>-+-- tmp3 Forward link
(Rl7 + 4)<31:0>-+-- tmp2 + tmp3 Backward link
IF {tmp2 NE 0} THEN Forward link of predecessor

(Rl6+tmp2)<31:0> -+-- -tmp3 - tmp2
ELSE

tmpl -+-- SEXT({-tmp3 - tmp2}<31:0>)
(Rl6+4)<31:0> -+-- -tmp3 ! Backward link of header

MB

(Rl6)<31:0> -+-- tmpl
IF tmpl EQ -tmp3 THEN

RO -+-- 1
ELSE

RO-+-- 0
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

CALL_PAL INSQTIL

Description:

Forward link, release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Tail Interlocked

If the secondary interlock is clear, INSQTIL inserts the entry specified in Rl 7 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail oi the same
queue by another process, in a multiprocessor environment. Before performing any

2-40 OpenVMS Alpha Software (II)

Digital Restricted Distribution

part of the operation, the processor validates that the insertion can be completed.
This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after ''N" retry attempts, then (in the absence of exceptions) R<
0> is set to a-1. The value ''N" is implementation dependent. \The selected initial
value of N is 20.\

OpenVMS PALcode Instruction Descriptions {II) 2-41

Digital Restricted Distribution

2.3.6 Insert Entry into Longword Queue at Tail Interlocked. Resident

Format:

CALL_PAL INSQTILR !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD LOCKED (tmpO +- (R16))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +-- -1, {return}

done +- STORE CONDITIONAL
N +-- N - 1

((Rl 6) +-- { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +-- -1, {return}

MB

tmpl +-- SEXT(tmp0<31:0>)
tmp2 +- SEXT(tmp0<63:32>)
tmp3 +-- SEXT({R16 - R17}<31:0>)
(Rl7)<31:0> +-- tmp3
(Rl7 + 4)<31:0> +-- tmp2 + tmp3
IF {tmp2 NE 0} THEN

(Rl6+tmp2)<31:0> +-- -tmp3 - tmp2
ELSE

Retry exceeded

Forward link
Backward link
Forward link of predecessor

tmpl +- <- SEXT({-tmp3 - tmp2}<31:0>)

(R16+4)<31:0> +-- -tmp3 ! Backward link of header

MB

(Rl6) <31: 0> +- tmpl

IF tmpl EQ -tmp3 THEN
RO +-- 1

ELSE
RO +-- 0

END

2-42 OpenVMS Alpha Software (11)

! Forward link
! Release the lock

Queue was empty

Queue was not empty

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL INSQTILR Insert Entry into Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTILR inserts the entry specified in Rl 7 into
the self-relative queue preceding the header specified in Rl6.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a-1. The value "N" is implementation dependent. \The
selected initial value of N is 20. \

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an. unpredictable state and an illegal operand fault may be reported.

OpenVMS PALcode Instruction Descriptions (11) 2-43

Digital Restricted Distribution

2.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIQ !PALcode format

Operation:

Rl6 contains the address of the queue header
Rl7 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

IF {Rl6<3:0> NE 0} OR {Rl7<3:0> NE 0} OR {R16 EQ Rl7} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount}
REPEAT

Implementation-specific

LOAD_LOCKED (tmpO ~ (Rl6))
IF tmpO<O> EQ 1 THEN

! Acquire hardware interlock.
! Try to set secondary interlock.

Already set RO ~ -1, {return}
done ~ STORE CONDITIONAL
N ~ N - 1

((Rl 6) ~ { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

tmp2 ~ (R16+8)
IF {tmpl<3:1> NE 0} OR {tmp2<3:0> NE 0} ~THEN ! Check Alignment.

BEGIN ! Release secondary interlock.
(Rl6) ~ tmpl
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 8)

IF {all memory accesses can NOT be·completed} THEN
BEGIN ! Release secondary interlock.

(Rl6) ~ tmpl
{initiate memory management fault}

END

2-44 OpenVMS Alpha Software (II)

Digital Restricted Distribution

! All accesses can be done so enqueue the entry
tmp3 - R16 - R17
(R17) - tmp3 ! Forward link
(R17 + 8) - tmp2 + tmp3 ! Backward link
IF {tmp2 NE 0} THEN ! Forward link of predecessor

(R16+tmp2) - -tmp3 - tmp2
ELSE

tmpl - {-tmp3 - tmp2}
(R16+8) - -tmp3

MB

(R16) - tmpl

IF tmpl EQ -tmp3 THEN
RO - 1

ELSE
RO - 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

Backward link of header

Forward link
Release the lock

Queue was empty

Queue was not empty

CALL_PAL INSQTIQ Insert into Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIQ inserts the entry specified in Rl 7 into
the self-relative queue preceding the header specified in Rl6.

If the entry inserted was the first one in the queue, RO is set to a 1 else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the insertion can be completed.
This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after "N" retry attempts, then (in the absence of exceptions) R<
0> is set to a-1. The value "N" is implementation dependent. \ The selected initial
value of N is 20.\

OpenVMS PALcode Instruction Descriptions (II) 2-45

Digital Restricted Distribution

2.3.8 Insert Entry into Quadword Queue at Tall Interlocked Resident

Format:

CALL_PAL INSQTIQR !PALcode format

Operation:

!' Rl6 contains the address of the queue header
Rl7 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
0 i.f the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO +-- (Rl6))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +-- -1, {return}

done +-- STORE CONDITIONAL
N +-- N - 1

((R16) +-- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +-- -1, {return} Retry exceeded

MB

tmp2 +-- (R16+8)
tmp3 +-- Rl6 - Rl7
(Rl 7) +-- tmp3
(Rl 7 + 8) +-- tmp2 + tmp3
IF {tmp2 NE 0} THEN

(R16+tmp2) +-- -tmp3 - tmp2
ELSE

tmpl +­

(Rl6+8) +-

MB

{-tmp3 - tmp2}
-tmp3

(Rl6) +-- tmpl
IF tmpl EQ -tmp3 THEN

RO +-- 1
ELSE

RO +-- 0
END

2-46 OpenVMS Alpha Software (II)

! Forward link
! Backward link

Forward link of predecessor

Backward link of header

Forward link and release the lock

Queue was empty

Queue was not empty

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL INSQTIQR Insert Entry into Quadword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTIQR inserts the entry specified in R17 into
the self_relative queue preceding the header specified in Rl6.

If the entry inserted was the first one in the queue, RO is set to a 1 else it is set to
a 0. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value "N" is implementation dependent. \ The
selected initial value of N is 20. \

This instruction requires that the queue be memory resident and that the queue
header and elements are odaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

OpenVMS PALcode Instruction Descriptions (II) 2-47

Digital Restricted Distribution

2.3.9 Insert Entry into Longword Queue

Format:

CALL_PAL INSQUEL !PALcode format

Operation:

R16 contains the address of the predecessor entry
or the 32 bit address of the 32 bit address of the
predecessor entry for INSQUEL/D

R17 contains the address of the new entry
RO receives status:

0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 +- SEXT((R16)<31:0>) ! Address of predecessor
ELSE

tmp2 +- R16

IF {all memory accesses can be completed} THEN
BEGIN

tmp<31: O> +- SEXT ((tmp2) <31: 0>)
(R17)<31:0> +- tmp
(R17 + 4)<31:0> +- tmp2
(SEXT ((tmp2) <31: 0>) + 4) <31: 0> +-

(tmp2) <31: 0> +- Rl 7
IF tmp EQ tmp2 THEN

RO +- 1
ELSE

RO +- 0
END

ELSE
BEGIN
{initiate fault}

END
END

Excepti~ns:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

2-48 OpenVMS Alpha Software (II)

Get Forward Link
Set forward link
Backward link

Rl7
Backward link of Successor

! Forward link of Predecessor

Digital Restricted Distribution

Instruction Mnemonics:

CALL_PAL INSQUEL Insert Entry into Longword Queue

CALL_PAL INSQUEL/D Insert Entry into Longword Queue Deferred

Description:

INSQUEL inserts the entry specified in Rl 7 into the absolute queue following the
entry specified by the predecessor addressed by Rl6. INSQUEUD performs the
same operation on the entry specified by the contents of the longword addressed by
Rl6.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in
RO; otherwise a 0 is returned in RO. The insertion is a non-interruptible operation.
Before performing any part of the insertion, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-49

Digital Restricted Distribution

2.3.10 Insert Entry into Quadword Queue

Format:

CALL_PAL INSQUEQ !PALcode format

Operation:

Rl6 contains the address of the predecessor entry
or the address of the address of the
predecessor entry for INSQUEQ/D

Rl7 contains the address of the new entry
RO receives status:

0 if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned

IF opcode EQ INSQUEQ/D THEN
IF {rl6<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
tmp2 +- (Rl6)

ELSE
tmp2 +- Rl6

END

! Address of predecessor

IF {tmp2<3:0> NE 0} OR {Rl7<3:0> NE 0} THEN
BEGIN

{illegal operand exception}
END

IF {all memory accesses can be completed} THEN
BEGIN

tmp +- (tmp2) ! Get forward link of entry
IF {tmp<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(Rl 7) +- tmp
(Rl 7 + 8) +- tmp2
(tmp + 8) +- Rl 7
(tmp2) +- Rl 7
IF tmp EQ tmp2 THEN

RO +- 1
ELSE

RO +- 0
END

ELSE
BEGIN
{initiate fault}

END
END

2-50 OpenVMS Alpha Software (II)

Set forward link of entry
Backward link of entry
Backward link of successor
Forward link of predecessor

Digital Restricted Distribution

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction Mnemonics:

CALL_PAL INSQUEQ Insert Entry into Quadword Queue

CALL_PAL INSQUEQ/D Insert Entry into Quadword Queue Deferred

Description:

INSQUEQ inserts the entry specified in Rl 7 into the absolute queue following the
entry specified by the predecessor addressed by Rl6. INSQUEQ/D performs the
same operation on the entry specified by the contents of the quadword addressed by
R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned
in RO; otherwise a 0 is returned in RO. The insertion is a non-interruptible
operation. Before performing any part of the insertion, the processor validates that
the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO
is unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.

OpenVMS PALcode Instruction Descriptions (II) 2....:51

Digital Restricted Distribution

2.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

CALL_PAL REMQHIL !PALcode format

Operation:

Rl6 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

F {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount}
REPEAT

Implementation-specific

LOAD_LOCKED (tmpO +- (R16))
IF tmpO<O> EQ 1 THEN

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +- -1, {return}

done +- STORE CONDITIONAL
N +- N - 1

((Rl 6) +- { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmp0<31:0>)
IF tmpl<2:0> NE 0 THEN Check Alignment

BEGIN
(Rl 6) +- tmpO
{illegal operand exception}

END

Release secondary interlock

Check if the following can be done without
causing a memory management ex~eption:
read contents of header + tmpl {if tmpl NE 0}
write into header+ tmpl + (header +tmpl) {if tmpl NE 0}

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) +- tmpO
{initiate memory management fault}

END

2-52 OpenVMS Alpha Software (II)

Digital Restricted Distribution

tmp2 +- SEXT ({R16 + tmpl }<31: 0>)
IF {tmpl EQL 0} THEN

tmp3 +- R16
ELSE

tmp3 +- SEXT ({tmp2 + SEXT ((tmp2) <31: 0>) })

IF tmp3<2:0> NE 0 THEN
BEGIN

(R16) +- tmpO
{illegal operand exception}

END

(tmp3 + 4) <31: 0> +- R16 - tmp3

MB

(R16) <31: 0> +- tmp3 - Rl6

IF tmpl EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2

ELSE
RO +- 1

END
END
Rl +- tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

Check Alignment
! Release secondar,y interlock

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

CALL_PAL REMQHIL Remove from Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, REMQHIL removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned

OpenVMS PALcode Instruction Descriptions (II) 2-53

Digital Restricted Distribution

in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6.

2-54 OpenVMS Alpha Software (ti)

Digital Restricted Distribution

2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHILR !PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if' entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO +- (R16))
IF tmpO<O> EQ 1 THEN

Implementation-specific

! Acquire hardware interlock.
! Try to set secondary interlock.

Already set RO +- -1, {return}
done +- STORE CONDITIONAL
N +- N - 1

((R16) +- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return}

MB

tmpl +- SEXT(tmp0<31:0>)
tmp2 +- SEXT({Rl6 + tmp1}<31:0>)
IF {tmpl EQL 0} THEN

tmp3 +- R16
ELSE

Retry exceeded

tmp3 +- SEXT ({tmp2 + SEXT ((tmp2) <31: 0>) })
END

(tmp3 + 4) <31: 0> +- R16 - tmp3

MB.
(R16)<31:0> +- tmp3 - Rl6

IF tmpl EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2

ELSE

END
END

RO +- 1

Rl +- tmp2

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

OpenVMS PALcode Instruction Descriptions (II) 2-55

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL REMQHILR Remove Entry from Lon,gword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHILR removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starling queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

2-56 OpenVMS Alpha Software (11)

Digital Restricted Distribution

2.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

CALL_PAL REMQHIQ !PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

Check header alignment
IF {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount}
REPEAT

LOAD LOCKED (tmpO +- (R16))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +- -1, {return}

done +- STORE CONDITIONAL
N +- N - 1

((R16) +- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

IF tmp1<3:0>
BEGIN

(R16) +­

{illegal
END

NE 0 THEN Check Alignment
Release secondary interlock

tmpl
operand exception}

Check if the following can be done without
causing a memory management exception:
read contents of header + tmpl {if tmpl NE 0}
write into header + tmpl + (header + tmpl) {if tmpl NE 0}

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock

(R16) +- tmpO
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-57

Digital Restricted Distribution

tmp2 +- R16 + tmpl
IF {tmpl EQL 0} THEN

tmp3 +- R16
ELSE

tmp3 +- tmp2 + (tmp2)

IF tmp3<3:0> NE 0 THEN
BEGIN

(R16) +- tmpl

! Check Alignment
! Release secondary interlock ·

{illegal operand exception}
END

(tmp3 + 8) +- R16 - tmp3

MB

(R16) +- tmp3 - R16

IF tmpl EQ 0 THEN

! Backward link of successor

Forward link of header
Release lock

RO +- 0 Queue was empty
ELSE

BEGIN
IF {tmp3 - Rl6} EQ 0 THEN

RO +- 2 Queue now empty
ELSE

END
END

RO +- 1

Rl +- tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

Queue not empty

Address of removed entry

CALL_PAL REMQHIQ Remove from Quadword Queue at Head Interlocked

Description:

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned

2-58 OpenVMS Alpha Software (II)

Digital Restricted Distribution

in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-59

Digital Restricted Distribution

2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHIQR !PALcode format

Operation:

Rl6 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO +- (Rl6))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO +- -1, {return}

done +- STORE_CONDITION~L

N+- N-1
((Rl 6) +- { TMP 0 OR Rl })

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return}

MB

tmp2 +- R16 + tmpl
IF {tmpl EQL 0} THEN

tmp3 +- Rl6
ELSE

tmp3 +- tmp2 + (tmp2)
END
(tmp3 + 8) +-- R16 - tmp3

MB

(R16) +- tmp3 - R16

IF tmpl EQ 0 THEN
RO +- 0

ELSE
IF {tmp3 - Rl6} EQ 0 THEN

RO +- 2
ELSE

RO +- 1
END
Rl +- tmp2

2-60 OpenVMS Alpha Software (II)

Retry exceeded

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL REMQHIQR Remove Entry from Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value of N is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

OpenVMS PALcode Instruction Descriptions (II) 2-61

Digital Restricted Distribution

2.3.15 Remove Entry from Longword Queue at·Tail Interlocked

Format:

CALL_PAL REMQTIL !PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

IF {R16<2:0> NE 0} OR {SEXT(R16<31:0>) NE R16} THEN
BEGIN

{illegal operand exception}
END

N <- {retry amount}
REPEAT - •

Implementation-specific

LOAD LOCKED (tmpO +- (Rl 6))
IF tmpO<O> EQ 1 THEN

Acquire hardware interlock.
! Try to set secondary interlock.
! Already set RO +- -1, {return}

done +- STORE CONDITIONAL
N+- N-1

((R16) +- {TMPO OR Rl})

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmp0<31:0>)
tmp5 +- SEXT(tmp0<63:32>)
IF tmp5<2:0> NE 0 THEN

BEGIN
(R16) +- tmpO

! Check alignment
! Release secondary interlock

{illegal operand exception}
END

!Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 4) {if tmpl NE 0}
write into header + (header + 4)

+ (header+ 4 + (header+ 4)) {if tmpl NE 0}
IF {all memory accesses can NOT be completed} THEN

BEGIN Release secondary interlock
(R16) +- tmpO
{initiate memory management fault}

END

2-62 OpenVMS Alpha Software (II)

Digital Restricted Distribution

addr - SEXT({Rl6 + tmp5}<31:0>)
tmp2 - SEXT({addr + SEXT((addr+4)<31:0>) }<31:0>
IF tmp2<2:0> NE 0 THEN Check alignment

BEGIN ! Release secondary interlock
(Rl6) - tmpO
{illegal operand exception}

END

(R16 + 4)<31:0> - tmp2 - R16
IF {tmp2 EQL Rl6} THEN

(Rl6)<31:0> - 0
ELSE

BEGIN
(tmp2)<31:0> - R16 - tmp2

MB
(R16) <31: O> - tmpl

END
IF tmpl EQ 0 THEN

RO - 0
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO - 2
ELSE

RO - 1
END

Rl - addr

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

Backward link of header

Forward link, release lock

Forward link of predecessor

Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

CALL~PAL REMQTIL Remove from Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIL removes from the self-relative queue
the entry preceding the header, pointed to by Rl6, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned

OpenVMS PALcode Instruction Descriptions (II) 2-63

Digital Restricted Distribution

in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

2--64 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTILR !PALcode format

Operation:

Rl6 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD_LOCKED (tmpO - (R16))
IF tmpO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
Try to set secondary interlock.
Already set RO - -1, {return}

done - STORE CONDITIONAL ((Rl6) - {TMPO OR Rl})
N - N - 1

UNTIL {done EQ 1} OR {N EQ 0}
IF done NEQ 1, RO - -1, {return}

MB

tmpl +- SEXT(tmp0<31:0>)
tmpS +- SEXT(tmp0<63:32>)
addr - SEXT({R16 + tmp5}<31:0>)

Retry exceeded

tmp2 +- SEXT({addr + SEXT((addr+4)<31:0>) }<31:0>
(R16 + 4)<31:0> - tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> - 0 Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> - R16 - tmp2

MB
(R16)<31:0> - tmpl

END
IF tmpl EQ 0 THEN

RO - 0
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO - 2

ELSE

END
END

RO+- 1

Rl - addr

Forward link of predecessor

Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

OpenVMS PALcode Instruction Descriptions (II) 2-65

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL REMQTILR Remove Entry from Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, REMQTILR removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value of N is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
c~ecks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

2-66 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIQ !PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

Check header alignment
F {R16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount}
REPEAT

Implementation-specific

LOAD_LOCKED (tmpO ~ (R16))
IF tmpO<O> EQ 1 THEN

! Acquire hardware interlock.
! Try to set secondary interlock.

Already set RO +- -1, {return}
done +- STORE CONDITIONAL
N +- N - 1

((R16) +- { TMPO OR Rl})

UNTIL {done EQ l} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpS ~ (R16+8)
IF tmp5<3:0> NE 0 THEN

BEGIN
(Rl6) ~ tmpl

Check Alignment
Release secondary interlock

{illegal operand exception}
END

Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 8) {if tmpl NE 0}
write into header + (header + 8).
+ (header+ 8 + (header+ 8)){if tmpl NE 0}

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock

(R16) +- tmpl
{initiate memory management fault}

END

OpenVMS PALcode Instruction Descriptions (II) 2-67

Digital Restricted Distribution

addr +- R16 + tmp5
tmp2 +- addr + (addr + 8)
IF tmp2<3:0> NE 0 THEN

BEGIN
(R16) +- tmpl

! Check alignment
! Release secondary interlock

{illegal operand exception}
END

(Rl6 + 8) +- tmp2 - R16
IF {tmp2 EQL Rl6} THEN

(R16) +- 0
ELSE

END

BEGIN
(tmp2) +- Rl6 - tmp2

MB
(Rl6) +- tmpl

END

IF tmpl EQ 0 THEN

Backward link of header

Forward link, release lock

Forward link of predecessor

Release lock

RO +- 0 Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO +- 2 Queue now empty
ELSE

END
END

RO +- 1

Rl +- addr

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

Queue not empty

Address of removed entry

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

2-68 OpenVMS Alpha Software (II)

Digital Restricted Distribution

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-69

Digital Restricted Distribution

2.3.18 Remove Entry from Quadword Queue at Tail Interlocked. Resident

Format:

CALL_PAL REMQTIQR !PALcode format

Operation:

Rl6 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
0 if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount}
REPEAT

LOAD LOCKED (tmpO +- (Rl6))
IF t;pO<O> EQ 1 THEN

Implementation-specific

Acquire hardware interlock.
! Try to set secondary interlock.
! Already set RO +- -1, {return}

done +- STORE CONDITIONAL
N +- N - 1

((Rl 6} +- { TMP 0 OR Rl })

UNTIL {done EQ l} OR {N EQ 0}
IF done NEQ 1, RO +- -1, {return}

MB

tmp5 +- (Rl6+8)
addr +- Rl6 + tmp5
tmp2 +- addr + (addr + 8)
(Rl6 + 8) +- tmp2 - Rl6
IF {tmp2 EQL Rl6} THEN

(Rl6) +- 0
ELSE

BEGIN
(tmp2) +- Rl6 - tmp2

MB
(Rl6) +- tmpl

END
END
IF tmpl EQ 0 THEN

RO +- 0
ELSE

IF {tmp2 - Rl6}
RO +- 2

ELSE
RO +- 1

END
Rl +- addr

2-70 OpenVMS Alpha Software (II)

EQ 0 THEN

Retry exceeded

Backward link of header

Forward link, release lock

Forward link of predecessor

Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

Digital Restricted Distribution

Exceptions:

Illegal Operand

Instruction Mnemonics:

CALL_PAL REMQTIQR Remove Entry from Quadword Queue
at Tail Interlocked Resident

Description:-

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent. \ The selected initial value ofN is 20.\

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue_
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

OpenVMS PALcode Instruction Descriptions (II) 2-71

Digital Restricted Distribution

2.3.19 Remove Entry from Longword Queue

Format:

CALL_PAL REMQUEL !PALcode format

Operation:

Rl6 contains the address of the entry to remove
or the address of the 32 bit address of the
entry for REMQUEL/D

RO receives status:
-1 if the queue was empty

0 if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

Rl receives the address of the removed entry

Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

Rl +--- SEXT ((R16) <31: 0>)
ELSE

Rl +--- SEXT(R16<31:0>)

IF {all memory accesses can be completed} THEN
BEGIN
tmpl +--- (R1)<31:0>
((R1+4)<31:0>)<31:0> +--- tmpl
tmp2 +--- (R1+4)<31:0>
((R1)<31:0>+4)<31:0> +--- tmp2

RO +--- 1
IF {tmpl EQ tmp2} THEN

RO +--- 0
IF {Rl EQ tmp2} THEN

RO +--- -1
END

ELSE
BEGIN
{initiate fault}

END
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

2-72 OpenVMS Alpha Software (II)

Forward Link of Predecessor

Backward Link of Successor

Queue not empty

Queue now empty

Queue was empty

Digital Restricted Distribution

Instruction Mnemonics:

CALL_PAL REMQUEL Remove Entry from Longword Queue

CALL_PAL REMQUEUD Remove Entry from Longword Queue Deferred

Description:

REMQUEL removes the entry addressed by R16 from the longword absolute queue.
The address of the removed entry is returned in Rl. REMQUEUD performs the
same operation on the queue entry addressed by the longword addressed by R16.

In either case, if there was no entry in the queue to be removed, RO is set to -1. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to 0. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to 1. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6).

OpenVMS PALcode Instruction Descriptions (II) 2-73

Digital Restricted Distribution

2.3.20 Remove Entry from Quadword Queue

Format:

CALL_PAL REMQUEQ !PALcode format

Operation:

R16 contains the address of the entry to remove
or address of address of entry for REMQUEQ/D

RO receives status:
-1 if the queue was empty

0 if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

Rl receives the address of the removed entry
Must have write access to header and queue entries
Header and entries must be octaword aligned

IF opcode EQ REMQUEQ/D THEN
IF {r16<3:0> NE 0} THEN

BEGIN
{illegal operand exception}

END
Rl +- (R16)

ELSE
Rl +- R16

IF {R1<3:0> NE 0} THEN
BEGIN

! Check alignment

{illegal operand exception}
END

IF {all memory accesses can be completed} THEN
BEGIN

tmpl +- (Rl) ! Forward link of Predecessor
IF {tmp1<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
tmp2 +- (R1+8) ! Find predecessor
IF {tmp2<3:0> NE 0} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(tmp2) +- tmpl Update Forward link of predecessor
((Rl) +8) +- tmp2

RO +- 1 Queue not empty
IF {tmpl EQ tmp2} THEN

RO +- 0 Queue now empty
IF {Rl EQ tmp2} THEN

RO +- -1 Queue was empty
END

ELSE

END

BEGIN
{initiate fault}

END

2-74 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction Mnemonics:

CALL_PAL REMQUEQ Remove Entry from Quadword Queue

CALL_PAL REMQUEQ/D Remove Entry from Quadword Queue Deferred

Description:

REMQUEQ removes the queue entry addressed by RI6 from the quadword absolute
queue. The address of the removed entry is returned in RI. REMQUEL/D performs
the same operation on the queue entry addressed by the quadword addressed by
RI6.

In either case, if there was no entry in the queue to be removed, RO is set to -I. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to 0. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to I. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO and RI
are unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.

OpenVMS PALcode Instruction Descriptions (II) 2-75

Digital Restricted Distribution

2.4 Unprivileged VAX Compatibility PALcode Instructions

The Alpha architecture provides the following PALcode instructions for use in
translated VAX code. These instructions are not a permanent part of the architecture
and will not be available in some future implementations. They are provided to help
customers preserve VAX instruction atomicity assumptions in porting code from VAX
to Alpha. These calls should be user mode. They must not be used by any code other
than that generated by the VEST software translator and its supporting runtime
code (TIE). r

\ When they are removed from the architecture, it would be good if they trapped in
a way that they could be functionally software emulated many years in the future,
even if the atomicity is not retained in the software emulation. This would allow
very old translated images to run in 1998 and beyond, but perhaps restricted to a
single processor and some restriction around AST delivery.

They may be removed and not emulated after the first two full generations of Alpha
implementations, that is, about 1995. \

2~76 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.4.1 Atomic Move Operation

Format:

AMOVRR !PALcode form.at

!PALcode form.at AMOVRM

Operation:

R16 contains
R17 contains
R18 contains
R19 contains
R20 contains
R21 contains

CASE

the
the
the
the
the
the

first source
first destination address
first length
second source
second destination address
second length

AMOVRR:
IF intr_flag EQ 0 THEN

R18 +- 0
{return}

END

intr_flag - 0
(R17) +- R16 length specified by R18<1:0>
(R20) +- R19 length specified by R21<1:0>
IF {both moves successful} THEN

Rl8 +- 1
ELSE

Rl8 +- 0
END

AMOVRM:

END CASE

IF intr_flag EQ 0 THEN
R18 +- 0
{return}

END

intr flag - 0
(R17) +- R16 length specified by Rl8<1:0>
IF R21<5:0> NE 0 THEN

BEGIN
IF Rl9<1:0> NE 00 OR R20<1:0> NE 00

{Illegal operand exception}
ELSE

(R20) +- (R19) ! length specified b~ R21<5:0>
END

IF {both moves successful} THEN
Rl8 +- 1

ELSE
Rl8 +- 0

END

OpenVMS PALcode Instruction Descriptions (II) 2-77

Digital Restricted Distribution

Exceptions:

AMOVRR: Access Violation

Fault On Write

Translation Not Valid

AMOVRM: Access Violation

Fault On Read

Fault On Write

Illegal Operand

Translation Not Valid

Instruction Mnemonics:

CALL_PAL AMOVRR Atomic Move Register/Register

CALL_PAL AMOVRM Atomic Move Register/Memory

Description:

NOTE
The CALL_i>AL AMOVxx instructions are only for the
support of translated VAX code. They will disappear
from the architecture at some time in the future. They
must be used only in translated VAX code and its
support routines (TIE).

CALL_PAL AMOVRR
The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register
stores to arbitrary byte addresses. Either both stores are done or neither store is
done. R18 is set to one if both stores are done, and zero otherwise. The two source
registers are R16 and R19. The two destination byte addresses are in Rl 7 and R20.
The two lengths are specified in R18<1:0> and R21<1:0>. The length encoding is:
00 - store byte, 01 - store word, 10 - store longword, 11 - store quadword. The low
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of
the source registers are ignored. The unused bits of the length registers (R18<63:2>
and R21<63:2>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_:flag is clear then the instruction
sets R18 to zero and exits, doing no stores. Otherwise, intr_fiag is cleared and the
PALcode routine proceeds. This is the same per-processor intr_:flag used by the RS
and RC instructions.

The AMOVRR memory addresses may be unaligned. If either store would result in
a Translation Not Valid fault, Fault on Write, or Access Violation fault, neither store
is done and the corresponding fault is taken. If both stores would result ;n faults, it
is UNPREDICTABLE which one is taken.

2-78 OpenVMS Alpha Software (II)

Digital Restricted Distribution

I

~

NOTE
A fault does not set R18, since the instruction has not
been completed.

If both stores can be completed without faulting, they are both attempted
using multiprocessor-safe LDQ_L .. STQ_C sequences. If all the sequences store
successfully with no interruption, the PALcode routine completes with R18 set to
one. Otherwise, the PALcode routine completes with R18 set to zero. In addition,
R16, Rl7, R19, R20 and R21 are UNPREDICTABLE upon return from the PALcode
routine, even if an exception has occurred.

If the destinations overlap, the stores must appear be done in the order specified.

CALL_PAL AMOVRM
The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register
store to an arbitrary byte address, plus an atomic memory-to-memory move of 0
to 63 aligned longwords. Either the store and the move are both done in their
entirety or neither is done. R18 is set to one if both are done, and zero otherwise.

The first source register is R16, the first destination address is in Rl 7, and the first
length is in R18. These three are specified exactly as in AMOVRR.

The second source address is in R19, the second destination address is in R20,
and the second length is in R21<5:0>. The length is a longword length, in the
range 0 to 63 longwords (0 to 252 bytes). The unused bytes of the source register
R16 are ignored. The unused bits of the length registers registers (R18<63:2> and
R21<63:6>) should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction
sets R18 to zero and exits, doing no stores. Otherwise, intr_:flag is cleared and the
PALcode routine proceeds. This is the same per-processor intr_flag used by the RS
and RC instructions.

The memory address in R17 may be unaligned.

If the length for the move is zero, no move is done, no _memory accesses are made
via R19 and R20, and no fault checking of these addresses is done. In this case, the
move is always considered to have succeeded in determining the setting of R18.

If the length in R21 is non-zero, the two addresses in R19 and R20 must be aligned
longword addresses, otherwise an Illegal Operand exception is taken.

If either the store or the move would result in a Translation Not Valid, Fault on Read,
Fault on Write, or Access Violation fault, neither is done and the corresponding fault
is taken. If both would result in faults, it is UNPREDICTABLE which one is taken.

NOTE
A fault does not set R18, since the instruction has not
been completed.

If both the store and the move can be completed without faulting, they are both
attempted, using multiprocessor-safe LDQ_L .. STQ_C sequences for the store. If

OpenVMS PALcode Instruction Descriptions (II) 2-79

Digital Restricted Distribution

all the operations store successfully with no interruption, the PALcode routine
completes with RlS set to one. Otherwise, the PALcode routine completes with
RlS set to zero. In addition, R16, R17, R19, R20 and R21 are UNPREDICTABLE
upon return from the PALcode routine, even if an exception has occurred.

If the memory fields overlap, the store must appear be done first, followed by the
move. The ordering of the reads and writes of the move is unspecified. Thus, if the
move destination overlaps the move source, the move results are UNPREDICTABLE.

These instructions contain no implicit MB.

Notes:

• Typical use iof these instructions would be a sequence starting with CALL_PAL
RS and ending with CALL_PAL AMOV:xx, Bxx R18,label. The failure path from
the conditional branch would eventually go back to the RS instruction. When
such a sequence succeeds, it has done everything from the RS up to and including
the CALL_PAL AMOV:xx completely with no interrupts or exceptions.

• The CALL_PAL AMOV:xx instruction is typically be followed by a conditional
branch on RlS. If the CALL_PAL AMOV:xx is likely to succeed, the conditional
branch should be a FORWARD branch on failure (BEQ R18,forward_label)
or backward branch on success (BNE R18, backward_label), to match the
architected branch-prediction rule.

2-80 OpenVMS Alpha Software (II)

Digital Restricted Distribution

.2.s Unprivileged PALcode Thread Instructions

The PALcode thread instructions provide support for multithread implementations,
which require that a given thread be able to generate a reproducable unique value in
a "timely" fashion. This value can then be used to index into a structure or otherwise
generate further thread unique data.

The two instructions in Table 2-4 are provided to read and write a process unique
value from the process's hardware context.

Table 2-4:. Unprlvlleged PALcode Thread Instructions
Mnemonic Operation

RE.AD_UNQ Read unique context

WRITE_UNQ Write unique Context

The process unique value is stored in the HWPCB at [HWPCB+ 72] when the process
is not active. When the process is active, the process unique value can be cached in
hardware internal storage or resident in the HWPCB only.

OpenVMS PALcode Instruction Descriptions (II) 2-81

Digital Restricted Distribution

2.5.1 Read Unique Context

Format:

CALL_PAL READ_UNQ !PALcode format

Operation:

IF {internal storage for process unique context} THEN
RO +- {process unique context}

ELSE
RO +- (HWPCB+72)

Exceptions:

None

Instruction Mnemonics:

CALL_PAL READ_UNQ Read Unique Context

Description:

The READ_UNQ instruction causes the hardware process (thread) unique context
value to be placed in RO. If this value has not previously been written using a CALL_
PAL WRITE_UNQ or stored into the quadword in the HWPCB at [HWPCB+72]
while the thread was inactive then the result returned in RO is UNPREDICTABLE.
Implementations can cache this unique context value while the hardware process is
active. The unique context may be thought of as a "slow register". Typically, this
value will be used by software to establish a unique context for a given thread of
execution.

2-82 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.5.2 Write Unique Context

Format:

CALL_PAL WRITE_UNQ !PALcode format

Operation:

!R16 contains value to be written to the hardware process
unique context

IF {internal storage for process unique context} THEN
{process unique context} +- Rl6

ELSE
(HWPCB+72) +- R16

Exceptions:

None

Instruction Mnemonics:

CALL_PAL WRITE_UNQ Write Unique Context

Description:

The WRITE_UNQ instruction causes the value of R16 to be stored in internal
storage for hardware process (thread) unique context, if implemented, or in the
HWPCB at [HWPCB+72], if the internal storage is not implemented. When the
process is context switched, SWPCTX ensures this value is stored in the HWPCB
at [HWPCB+ 72]. Implementations can cache this unique context value in internal
storage while the hardware process is active. The unique context may be thought
of as a "slow register". Typically, this value will be used by software to· establish a
unique context for a given thread of execution.

OpenVMS PALcode Instruction Descriptions (H) 2-83

Digital Restricted Distribution

2.6 Privileged PALcode Instructions

Privileged instructions can be called in Kernel mode only; otherwise, a privileged
instruction exception occurs. The following privileged instructions are provided:

Table 2-5: PALcode Prlvlleged Instructions Summary
Mnemonic Operation

CFLUSH Cache flush

DRAINA Drain aborts

HALT

LDQP

MFPR

MTPR

STQP

SWPCTX

See Common Architecture, Chapter 6

Halt processor

See Common Architecture, Chapter 6

Load quadword physical

Move from processor register

Move to processor register

Store quadword. physical

Swap privileged context

2-84 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.6.1 Cache Flush

Format:

CALL_PAL CFLUSH

Operation:

! R16 contains the Page Frame Number (PFN)
of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL CFLUSH Cache Flush

Description:

!PALcode format

The CFLUSH instruction may be used to flush an entire physical page specified by
the PFN in R16 from any data caches associated with the current processor. All
processors must implement this instruction.

On processors which implement a backup power option which maintains only the
contents of memory in the event of a powerfail, this instruction is used by the
powerfail interrupt handler to force data written by the handler to the battery backed
up main memory. After a CFLUSH, the first subsequent load (on the same processor)
to an arbitrary address in the target page is either fetched from physical memory or
from the data cache of another processor.

Note that in some multiprocessor systems, CFLUSH is not sufficient to ensure that
the data are actually written to memory and not exchanged between processor
caches. Additional platform-specific cooperation between the powerfail interrupt
handlers executing on each processor may be required.

On systems which implement other backup power options (including none), CFLUSH
may return without affecting the data cache contents.

To order CFLUSH properly with respect to preceding writes, an MB instruction is
needed before the CFLUSH; to order CFLUSH properly with respect to subsequent
reads, an MB instruction is needed after the CFLUSH.

OpenVMS PALcode Instruction Descriptions (II) 2-85

Digital Restricted Distribution

2~6.2 Load Quadword Physical

Format:

CALL_PAL LDQP !PALcode· format

Operation:

! R16 contains the quadword aligned physical address
! RO receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

RO ~ (R16) {physical access}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL LDQP Load Quadword Physical

Description:

The LDQP in~truction fetches and writes to RO the quadword aligned memory
operand, whose physical address is in Rl6.

If the operand address in Rl 6 is not quadword aligned, the result is
uNPREDICTABLE.

2-86 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.6.3 Move From Processor Register

Format:

CALL_PAL MFPR_IPR_N ame !PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand
{RO +- result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL MFPR_xxx Move from Processor Register xxx

Description:

The MFPR_xxx instruction reads the internal processor register specified by the
PALcode function field and writes it to RO.

Registers Rl, R16, and Rl 7 contain unpredictable results after an MFPR.

See Chapter 5 for a description of each IPR.

OpenVMS PALcode Instruction Descriptions {11) 2-87

Digital Restricted Distribution

2.6.4 Move to Processor Register

Format:

CALL_PAL MTPR_IPR_N ame !PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand

{RO ~ result of IPR specific function}
{IPR ~ result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL MTPR_xxx Move to Processor Register xxx

Description:

The MTPR_xxx instruction . writes the IPR-specific source operands in integer
registers R16 and Rl 7 (Rl 7 reserved for future use) to the internal processor register
specified by the PALcode function field. The effect of loading a processor register is
guaranteed to· be active on the next instruction.

Registers Rl, R16, and Rl 7 contain unpredictable results after an MTPR. The MTPR
may return results in RO. If the specific IPR being accessed does not return results
in RO, then RO contains an unpredictable result after an MTPR.

See Chapter 5 for a description of each IPR.

2-88 OpenVMS Alpha Software· (11)

Digital Restricted Distribution

(

2.6.5 Store Quadword Physical

Format:

CALL_PAL STQP !PALcode format

Operation:

! R16 contains the quadword aligned physical address
! R17 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

(R16) +- · R17 {physical access}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

CALL_PAL STQP Store Quadword Physical

Description:

The STQP instruction writes the quadword contents of Rl 7 to the memory location
whose physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is
UNPREDICTABLE.

OpenVMS PALcode Instruction Descriptions (II) 2~9

Digital Restricted Distribution

2.6.6 Swap Privileged Context

Format:

CALL_PAL SWPCTX !PALcode format

Operation:

R16 contains the physical address of the new HWPCB.

check HWPCB alignment

IF Rl6<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE 0} THEN
{privileged instruction exception}

! Store old HWPCB contents

(IPR_PCBB + HWPCB_KSP) +- SP
IF {internal registers for stack pointers} THEN

BEGIN
(IPR_PCBB + HWPCB_ESP) +- IPR ESP
(IPR_PCBB + HWPCB_SSP) +- IPR SSP
(IPR_PCBB + HWPCB_USP) +- IPR USP

END

IF {internal registers for ASTxx} THEN
BEGIN

(IPR_PCBB + HWPCB_ASTSR) +­

(IPR_PCBB + HWPCB_ASTEN) +-

END
tmpl +- PCC
tmp2 +- ZEXT(tmpl<31:0>)
tmp3 +- ZEXT(tmpl<63:32>)

IPR ASTSR
IPR ASTEN

(IPR_PCBB + HWPCB_PCC) +- {tmp2 + tmp3}<31:0>
IF {internal storage for process unique value} THEN

BEGIN
(IPR_PCBB + HWPCB_UNQ) +- process unique value

END

Load new HWPCB contents

IPR PCBB +- Rl 6

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}

IF {ASNs not implemented in TB} THEN
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN

{invalidate trans. buffer entries with PTE<ASM> EQ 0}
ELSE

IPR ASN +- (IPR_PCBB + HWPCB....;.ASN)

2-90 OpenVMS Alpha Software (II)

Digital Restricted Distribution

SP - (IPR PCBB + HWPCB KSP)
IF {internal registers for stack pointers} THEN

BEGIN
IPR ESP - (IPR_PCBB + HWPCB_ESP)
IPR SSP - (IPR_PCBB + HWPCB_SSP)
IPR USP - (IPR_PCBB + HWPCB_USP)

END

IPR PTBR - (IPR_PCBB + HWPCB_PTBR)

IF {internal registers for ASTxx} THEN
BEGIN

IPR ASTSR - (IPR_PCBB + HWPCB_ASTSR)
IPR AS TEN - (IPR _PCBB + HWPCB _ ASTEN)

END

IPR FEN - (IPR_PCBB + HWPCB_FEN)
tmp4 - ZEXT((IPR PCBB + HWPCB PCC)<31:0>)
tmp4 - tmp4 - tmp2 -
PCC<63:32> - tmp4<31:0>

IF {internal storage for process unique value} THEN
BEGIN

process unique value - (IPR_PCBB + HWPCB_UNQ)
END

IF {internal storage for Data Alignment trap setting} THEN
BEGIN

DAT - (IPR_PCBB + HWPCB_DAT)
END

Exceptions:

Reserved Operand

Privileged Instruction

Instruction Mnemonics:

CALL_PAL SWPCTX

Description:

Swap Privileged Context

The SWPCTX instruction returns ownership of the current Hardware Privileged
Context Block (HWPCB) to the operating system and passes ownership of the new
HWPCB.to the processor. The HWPCB. is described in Chapter 4.

SWPCTX saves the privileged context from the internal processor registers into the
HWPCB specified by the physical address in the PCBB internal processor register.
It then loads the privileged context from the new HWPCB specified by the physical
address in Rl6. Note that the actual sequence of the save and restore operation is
not specified so any overlap of the current and new HWPCB storage areas produces
UNDEFINED results.

OpenVMS PALcode lnstrµction Descriptions (II) 2-91

Digital Restricted Distribution

The privileged context includes the four stack pointers, the Page Table Base Register
(PI'BR), the Address Space Number (ASN), the AST enable and summary registers,
the Floating .. point enable register (FEN), the Performance monitor (PME) register,
the Data alignment trap (DAT) register, and the process cycle counter (PCC).
However, PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether
or not ASN ·is saved. These values cannot be changed for a running process. The
process integer and floating registers are saved and restored by the operating system.
See Figure 4-1 for the HWPCB format.

Any change to the current HWPCB while the processor has ownership results in
UNDEFINED operation. All the values in the current HWPCB can be read through
IPRs.

If the HWPCB is read while ownership resides with the· processor, it is
UNPREDICTABLE whether the original or an updated value of a field is read. The
processor is free to update an HWPCB field at any time. The decision as to whether
or not a field is updated is made individually for each field.

If the enabling conditions are present for an interrupt at the completion of this
instruction, the interrupt occurs before the next instruction.

PALcode sets up the PCBB at boot time to point to the HWPCB storage area in the
Hardware Restart Parameter Block (HWRPB). \ See Platform Section, Chapter 3.
\

The operation is UNDEFINED if SWPCTX accesses a non-memory region.

A reference to non .. existent memory causes a Machine Check. Unimplemented
physical address bits are SBZ. The operation is UNDEFINED if any of these bits
are set.

NOTE
Processors may keep a copy of each of the per-process
stack pointers in internal registers. In those processors,
SWPCTX stores the internal registers into the HWPCB.
Processors that do not keep a copy of the stack pointers
in internal registers, keep only the stack pointer for
the current access mode in SP and switch this with
the HWPCB contents whenever the current access mode
changes.

2-92 OpenVMS Alpha Software (II)

Digital Restricted Distribution

2.7 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Changed attempt to acquire secondary lock to retry value

2. Modified RSCC and CFLUSH descriptions

3. Removed DRAINA to common PAL chapter

4. Added ECO #29 GENTRAP

5. Added ECO #27 (octaword aligned queues)

6. Added secondary interlock information

7. Added ECO #31 & #44 (AMOVxx PALcode instructions)

8. Added forma,t editing for instructions

9. Added resident Queue Instructions ECO #28

10. IMB and HALT moved to Common PALcode Section

11. Removed priv inst tests from RSCC (an unpriv instruction)

12. Clean up the format for instructions

13. Converted to SDML

14. Added ECO #21, #23, #26

15. Identify queue type, for Queue instructions

16. Modified REI pseudocode

17. Integrate references for Console ECO #15

Revision 4.0, March 29, 1991

1. Put in ECO for PAL Thread Instructions

2. Put in eco requiring current stack be writable for REI instruction

3. Put in eco requiring REMQUE:x/D to return address of removed entry in Rl

4. Typos

5. Correct cross reference to section 'Replacement of standard PALcode'

6. Impose uniform usage of CASE pseudocode construct

7. Clarify use of Rl 7 and RO or MTPR instruction

8. Specify R16 and Rl 7 as integer registers for MTPR instruction

9. Replace occurrences of 'Reserved Operand Exception' with 'Illegal PALcode
Operand Trap'

10. Clarify that subsettable unprivileged PAL Instructions can individually either be
implemented or cause an Illegal Instruction Trap

OpenVMS PALcode Instruction Descriptions (II) 2-93

Digital Restricted Distribution

\

11. Change references from 'interrupt' to 'AST' in SWASTEN description, and to
'interrupt or AST' in REI description

12. Add Privileged Instruction exception to those experienced by CFLUSH and
DRAIN A

13. Correct inconsistent titles for INSQHIQ and INSQTIQ Instructions

14. 1\veak MFPR_IPR operation definition

15. Add 'Read System Cycle Counter' PALcode description

Revision 3.0, March 2, 1990

1. Fix Bug in ID version of REMQUEx and INSQUEx

2. Add stack :fixup to REI

3. Add Memory Barrier to interlocked queues

4. Add section on replacement of PALcode

5. Add Cfiush

6. Rework !FLUSH to IMB

7. Remove PAST

8. Define which PAL may be subsetted

Revision 2.0, October 4, 1989

1. Remove test and set/clear interlocked

2. Add deferred addressing to the absolute queues

3: Add drain aborts (DRAINA)

4. Add poll AST (PAST)

5. Remove read/write of inexact exception enable

6. Add CC and FEN to SWPCTX

7. Rework interlocked queues for LDQ/L and STQ/C

Revision 1.0, May 23, 1989

1. First Full Version

Revision 0.0, March 15, 1989

1. Initial Version

2-94 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Chapter 3

OpenVMS Memory Management (II)

3.1 Introduction

Memory management consists of the hardware and software which control the
allocation and use of physical memory. Typically, in a multiprogramming system,
several processes may reside in physical memory at the same time; see Chapter 4.
Open VMS Alpha uses memory protection and multiple address spaces to ensure that
one process will not affect either other processes or the operating system.

To improve further software reliability, four hierarchical access modes provide
memory access control. They are, from most to least privileged: kernel, executive,
supervisor, and user. Protection is specified at the individual page level, where a
page may be inaccessible, read-only, or read/write for each of the four access modes.
Accessible pages can be restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. However, before
these virtual addresses can be used to access memory, they must be translated into
physical addresses. Memory management software maintains tables of mapping
information (page tables) that keep track of where each virtual page is located in
physical memory. The processor utilizes this mapping information when it translates
virtual addresses to physical addresses.

Therefore, memory management provides both me~ory protection and memory
mapping mechanisms. The Open VMS Alpha memory management architecture is
designed to meet several goals:

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller than the
virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table overhead.

• Contribute to software reliability.

• Provide independent read and write access protection.

3.2 Virtual Address Space

A virtual address is a 64-bit unsigned integer specifying a byte location within the
virtual address space. Implementations subset the address space supported to one
of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal virtual

OpenVMS Memory Management (II) 3-1

Digital Restricted Distribution

address size supported is 43 bits. If an implementation supports less than 64-
bit virtual addresses it must check that all the VA<63:VA_SIZE> bits are equal
to VA<VA_SIZE-1>. This gives two disjoint ranges for valid virtual addresses.
For example, for a 43-bit virtual address space valid virtual addresses ranges
are 0 .. 3FF FFFF FFFF16 and FFFF FCOO 0000 000016 .. FFFF FFFF FFFF FFFF16.

Accesses to virtual addresses outside of the valid virtual address ranges for an
implementation cause an access violation exception.

The virtual address space is broken into pages, which are the units of relocation,
sharing, and protection. The page size ranges from SK bytes to 64K bytes.
System software should, therefore, allocate regions with differing protection on 64-
Kbyte virtual address boundaries to ensure image compatibility across all Alpha
implementations.

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables, and saves the inactive parts of the
virtual address space on external storage media.

3.2.1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand
in memory. The virtual address consists of three level-number fields, and a byte_
within_page field.

Figure 3-1: Virtual Address Format

63 0

Sext(Level1 <Level Size-1 >) Level1 Level2 Level3 byte _within_page

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are SK bytes, 16K bytes,
32K bytes, and 64K bytes. Each level-number field contains o~n bits, where n is, for
example, 9 with an SK-byte page size. The level-number fields are the same size for
a given implementation.

The level number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide.
Thus, as the page size grows the virtual and physical address size also grows.

Table 3-1: Virtual Address Options
Page Byte Level Virtual Physical
Size Offset Size Address Address
(bytes) (bits) (bits) (bits) (bits)

BK 13 10 43 45

3-2 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Table 3-1 (Cont.): Virtual Address Options
Page Byte Level Virtual Physical
Size Offset Size Address Address
(bytes) (bits) (bits) (bits) (bits).

16K 14 11 47 46

32K 15 12 51 47

64K 16 13 55 48

3.3 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to implement a
smaller physical address space by not implementing some number of high order
bits. The two most significant implemented physical address bits select a caching
policy or implementation dependent type of address space. Implementations will use
these bits as appropriate for their systems. For example, in a workstation with a 30-
bit physical address space, bit <29> might select between memory and non-memory
like regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.4 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled and
use the privileged CALL_PAL LDQP and STQP instructions to access data stored in
physical addresses.

3.5 Page Table Entries

The processor uses a quadword Page Table Entry (PTE) to translate virtual addresses
to physical addresses. A PTE contains hardware and software control information
and the physical Page Frame Number.

Figure 3-2: Page Table Entry

63 32 31 16151413121110 g 8 7 6 5 4 3 2 1 0

~ed us EK us EKR AF FF
PFN r IE 1•. , .. 1•• RR RR S GH so 0 ov

are E E E EE EE v ME IW R
"" ...

OpenVMS Memory Management (II) 3-3

Digital Restricted Distribution

Fields in the page table entry are interpreted as shown in Table 3-2.

Table 3-2: Page Table Entry

Bits Description

0 Valid (V)

Indicates the validity of the the PFN field. When Vis set the PFN field is valid for
use by hardware. When V is clear, the PFN field is reserved for use by software.
The V bit does not affect the validity of PrE<15:1> bits.

1 Fault On Read (FOR)

When set, a Fault On Read exception occurs on an attempt to read any location in
the page.

2 Fault On Write (FOW)

When set, a Fault On Write exception occurs on an attempt to write any location
in the page.

3 Fault On Execute (FOE)

When set, a Fault On Execute exception occurs on an attempt to execute an
instruction in the page.

4 Address Space Match (ASM)

When set, this PTE matches all Address Space Numbers. For a given VA,
ASM must be set consistently in all processes, otherwise the address mapping
is UNPREDICTABLE.

3-4 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Table 3-2 (Cont.): Page Table Entry
Bits Description

6:5 Granularity hint (GH)

Software may set these bits to a non-zero value to supply a hint to translation
buffer implementations that a block of pages can be treated as a single larger
page:

1. The block is an aligned group of 8**N pages, where N is the value of PTE<6:5>,
e.g. a group of 1, 8, 64, or 512 pages starting at a virtual address with page_
size+ 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned both
virtually and physically. Within the block, the low 3*N bits of the PFNs
describe the identity mapping and the high 32-3*N PFN bits are all equal.

3. Within the block, all P'rEs have the same values for bits <15:0>, i.e. protection,
fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry, instead
of 8, 64, or 512 separate TB entries.

Note that it is UNPREDICTABLE which PI'E values within the block are used if
the granularity bits are set inconsistently.

PROGRAMMING NOTE
A granularity hint might be appropri­
ate for a large memory structure such
as a frame buffer or nonpaged pool that
in fact is mapped into contiguous vir­
tual pages with identical protection, fault,
and valid bits.

7 Reserved for future use by DIGITAL.

PROGRAMMING NOTE
The reserved bit will be used by future
hardware systems and should not be
used by software even if P'I'E<V> is
clear.

8 Kernel Read Enable (KRE)

This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in kernel mode, an Access Violation occurs.
This bit is valid even when V=O.

9 Executive Read Enable (ERE)

This bit enables reads from executive mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in executive mode, an Access Violation occurs.
This bit is valid even when V=O.

OpenVMS Memory Management (II) 3-5

Digital Restricted Distribution

Table 3-2 (Cont.): Page Table Entry
Bits Description

10 Supervisor Read Enable (SRE)

This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in supervisor mode, an Access Violation occurs.
This bit is valid even when V=O.

11 User Read Enable (URE)

This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid
even when V=O.

12 Kernel Write Enable (KWE)

This bit enables writes from kernel mode. If this bit is a 0 and a STORE is
attempted while in kernel mode, an Access Violation occurs. This bit is valid even
when V=O.

13 Executive Write Enable (EWE)

This bit enables writes from executive mode. If this bit is a 0 and a STORE is
attempted while in executive mode, an Access Violation occurs. This bit is valid
even when V=O.

14 Supervisor Write Enable (SWE)

This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is
attempted while in supervisor mode, an Access Violation occurs. This bit is valid
even when V=O.

15 User Write Enable (UWE)

31:16

63:32

This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted
while in user mode, an Aceess Violation occurs. This bit is valid even when V=O.

Reserved for software.

NOTE
If a write enable bit is set and
the corresponding read enable bit is
not, the operation of the processor is
UNDEFINED.

Page Frame Number (PFN)

The PFN field always points to a page boundary. If V is set, the PFN is
concatenated with the byte_ within_page bits of the virtual address to obtain the
physical address; see Section 3. 7. If V is clear, this field may be used by software.

3.5.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions.
For example, the operating system m~y set or clear the valid bit, change the PFN
field as pages are moved to and from external storage media, or modify the software
bits. The processor hardware never changes PTEs.

3-6 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Software must guarant.ee that each PTE is always consistent within itself. Changing
a PTE one field at a time may give incorrect system operation, e.g., setting PTE<V>
with one instruction before establishing PTE<l?FN > with another. Execution of an
interrupt service routine between the two instructions could use an address that
would map using the inconsistent PTE. Software can solve this problem by building
a complete new PTE in a register and then moving the new PTE to the page table
using a Store Quadword instruction (STQ).

Multiprocessing makes the problem more complicated. Another processor could be
reading (or even changing) the same PTE that the first processor is changing. Such
concurrent access must produce consistent results. Software must use some form of
software synchronization to modify PTEs that are already valid. Once a processor
has modified a valid PTE, it is possible that other processors in a multiprocessor
system may have old copies of that PTE in their Translation Buffer. Software must
inform other processors of changes to PTEs.

Software may write new values into invalid PTEs using quadword store instructions
(i.e., STQ). Hardware must ensure that aligned quadword reads and writes are
atomic operations. The following procedure must be used to change any of the PTE
bits <15:0> of a shared valid PTE (PTE<O>=l) such that an access that was allowed
before the change is not allowed after the change.

1. The PTE<O> is cleared without changing any of the PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA
used in the TBIS must assume that the PTE Granularity hint bits are zero.

3. After all processors have done the TBIS, the new PTE may be written changing
any or all fields.

PROGRAMMING NOTE
The procedure above allows the QUEUE instructions
that have probed to check that all can complete, to
service a TB miss. The QUEUE instruction will use the
PTE even though the V bit is clear, if during its initial
probe flow the V bit was set.

3.6 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed.

The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to index page tables.

• The intended access type (read data, write data, or instruction fetch).

• The current access mode from the Processor Status.

OpenVMS Memory Management (II) 3-7

Digital Restricted Distribution

If the access is allowed and the address can be mapped (the Page Table Entry
is valid), the result is the physical address corresponding to the specified virtual
address.

For protection checks, the intended access is read for data loads ·and instruction
fetch, and write for data stores.

If an operand is an address operand, then no reference is made to memory. Hence,
the page need not be accessible nor map to a physical page.

3.6.1 Processor Access Modes

There are four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a nmning process is stored in the Current Mode bits of the
Processor Status (PS); see Section 6.2.

3.6.2 Protection Code
Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. Associated
with each page is a protection code that describes the accessibility of the page for
each processor mode. The code allows a choice of read or write protection for each
processor mode.

• Each mode's access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE; see Table 3-2.

The Open VMS Alpha architecture allows a page to be designated as execute only by
setting the read enable bit for the access mode and by setting the fault on read and
write bits in the PTE.

3.6.3 Access Violation Fault
An Access Violation fault occurs if an illegal access is attempted, as determined by
the current processor mode and the page's protection field.

3.7 Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead)
th.rough a mapping to a linear region of the virtual address space. All
implementations must support the virtuai access method and are expected to use it
as the primary access method to enhance performance.

3-8 OpenVMS Alpha Software (II)

Digital Restricted Distribution

The following sections describe both access methods.

3. 7.1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a three-level page
table structure. The Page Table Base Register (PTBR) contains the physical Page
Frame Number of the highest level (Level 1) page table. Bits <levell> of the virtual
address are used to index into the first level page table to obtain the physical page
frame number of the base of the second level (Level 2) page table. Bits <level2> of
the virtual address are used to index into the second level page table t.o obtain the
physical page frame number of the base of the third level (Level 3) page table. Bits
<level3> of the virtual address are used to index the third level page table to obtain
the physical Page Frame Number (PFN) of the page being referenced. The PFN is
concatenated with virtual address bits <byte_ within_page> to obtain the physical
address of the location being accessed.

If part of any page table resides in I/O space, or in nonexistent memory, the operation
of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first­
level or second-level PTE is invalid, an Access Violation occurs if the PTE<l{RE>
equals zero. An Access Violation on a first-level or second-level PTE implies that all
lower-level page tables mapped by that PTE do not exist.

PROGRAMMING NOTE
This mapping scheme does not require multiple
contiguous physical pages. There are no length
registers. With a page size of BK bytes, 3 pages (24K
bytes) map SM bytes of virtual address space; 1026
pages (approximately SM bytes) map an 8-Gbyte address
space; and 1,049,601 pages (approximately 8G bytes)
map the entire 8T byte 2**43 byte address space.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63:VA SIZE>) NEQ SEXT(VA<VA SIZE-1>} THEN
{initiate Access Violation fault} -

! Read Physical

levell_Pte +- ({PTBR * page_size} + {8 * VA<levell_number>})

IF levell pte<V> EQ 0 THEN
IF levell_Pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

level2 _Pte +-

({ levell _Pte<PFN> * page_size} + {8 * VA<level2_number>})

OpenVMS Memory Management (II) 3-9

Digital Restricted Distribution

IF level2_pte<V> EQ 0 THEN
IF level2 pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

level3 _pte +-

({level2_pte<PFN> * page_size} + {8 * VA<level3_number>})

IF {{{level3_pte<UWE> EQ 0} AND {write
{{level3_pte<URE> EQ 0} AND {read
{{level3 pte<SWE> EQ 0} AND {write
{{level3=pte<SRE> EQ 0} AND {read
{{level3_pte<EWE> EQ 0} AND {write
{{level3_pte<ERE> EQ 0} AND {read
{{level3_pte<KWE> EQ 0} AND {write
{{level3_pte<KRE> EQ 0} AND {read

THEN
{initiate Access Violation fault}

ELSE
IF level3_pte<V> EQ 0 THEN

access}
access}
access}
access}
access}
access}
access}
access}

{initiate Translation Not Valid fault}

IF {level3_pte<FOW> EQ 1} AND { write access}
{initiate Fault On Write fault}

IF {level3_pte<FOR> EQ 1} AND { read access}
{initiate Fault On Read fault}

IF {level3_pte<FOE> EQ 1} AND { execute access}
{initiate Fault On Execute fault}

AND {PS<CM>
AND {PS<CM>
AND {PS<CM>
AND {PS<CM>
AND {PS<CM>
AND {PS<CM>
AND {PS<CM>
AND {PS<CM>

THEN

THEN

THEN

Physical Address +-

{ level3 _pte<PFN> * page_size} OR VA<byte_within_page>

3. 7.2 Virtual Access for Page Table Entries

EQ 3}} OR
EQ 3}} OR
EQ 2}} OR
EQ 2}} OR
EQ 1}} OR
EQ 1}} OR
EQ 0}} OR
EQ 0}}}

To reduce the overhead associated with the address translation in a three-level page
table structure, the page tables are mapped into a linear region of the virtual address
space. The virtqal address of the base of the page table-structure is set on a system
wide basis and is contained in the VPTB IPR.

When a native mode DTB or ITB Miss occurs, the TBMISS flows attempt to load
the level three page table entry using a single virtual mode load instruction.

The algorithm involving the manipulation of the missing VA is:

tmp +- left_shift(VA, {64 - {{lg(PageSize) *4} -9 }})
tmp +-

right_shift(tmp, {64 -. {{lg(PageSize)*4} -9} + lg(PageSize) -3})
tmp +- VPTB OR tmp
tmp<2 : 0> +- 0

At this point, tmp contains the VA-0fthe level 3 page table entry. A LDQ from that
VA will result in the acquistion of the PTE needed to satisfy the initial TBMISS
condition.

3-10 OpenVMS Alpha Software (II)

Digital Restricted Distribution

However, in the PALcode environment, if a TBMISS occurs during an attempt
to fetch the level3 PTE, then it is necessary to use the longer sequence of three
dependent loads described in Section 3. 7.

Chapter 5 contains the description of the VPTB IPR used to contain the virtual
address of the base of the page table structure.

The mapping of the page tables necessary for the correct function of the algorithm
is done as follows:

1. Select a 2<3*lg(page_size/S)>+3) byte-aligned region (an address with 3*lg(page_size
/8)+3 low order zeros) in the virtual address space. This value will be written
into the VPTB register.

2. Create a levell PTE to map the page tables as follows:

Levell PTE ~ 0 ! Init all fields to 0
Levell PTE<63:32> ~ PFN of Levell Pagetable

! Set PFN to PFN of levell pagetable
Levell PTE<8> ~ 1 ! Kernel Read Enable (KRE)
Levell PTE<O> ~ 1 ! Valid bit

3. Write the created levell PTE into the Levell page table entry that corresponds
to the VPTB value.

·4. Set all Levell and Level2 Valid PTEs to allow kernel read access.

5. Write the VPTB register with the selected base value.

NOTE
No validity checks need be made on the value stored
in the VPTB in a running system. Therefore, if the
VPTB contains an invalid address, the operation is
UNDEFINED.

3.8 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states.

When the process context is changed, a new value is loaded into the Address
Space Number (ASN) internal processor register with a Swap Privileged Context
instruction (CALL_PAL SWPCTX); see Section 2.6 and Chapter 4. This causes
address translations for pages with PTE<ASM> clear to be invalidated on a processor
that does not implement address space numbers. Additionally, when the software
changes any part (except for the Software field) of a valid Page Table Entry, it must
also move a virtual address within the corresponding page to the Translation Buffer
Invalidate Single (TBIS) internal processor register with the MTPR instruction; see
Chapter 5.

OpenVMS Memory Management (II) 3-11

Digital Restricted Distribution

IMPLEMENTATION NOTE
Some implementations may invalidate the entire
Translation Buffer on an MTPR to TBIS. In general,
implementations may invalidate more than the required
translations in the TB.

The entire Translation Buffer can be invalidated by doing a write to Translation
Buffer Invalidate All register (CALL_PAL MTPR_TBIA), and all ASM=O entries can
be invalidated by doing a write to Translation Buffer Invalidate All Process register
(CALL_PAL MTPR_TBIAP); see Chapter 5.

The Translation Buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate Translation Buffer entries when making changes for PTEs
that are already invalid.

The TBCHK internal processor register is available for interrogating the presence
of a valid translation in the Translation Buffer; see Chapter 5.

IMPLEMENTATION NOTE
Hardware implementors should be aware that a single,
direct mapped TB has a potential problem when a load
/store instruction and its data map to the .same TB
location. If TB misses are handled in PALcode, there
could be an endless loop unless the instruction is held
in an instruction buffer or a translated physical PC is
maintained l>y the hardware.

3.9 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
translations for process specific addresses when a context switch occurs. The
supported ASN range is O .. MAX_ASN. \ MAX_ASN is provided in the HWRPB
MAX_ASN field; see Platform Section, Chapter 3 for a detailed description of the
HWRPB. \

NOTE
If an ASN outside of the range O .. MAX_ASN is
assigned to a process, the operation of the processor is
UNDEFINED.

The address space number for the current process is loaded by software in the
Address Space Number (ASN) internal processor register with a Swap Privileged
Context instruction. ASN s are processor specific and the hardware makes no attempt
to maintain coherency across multiple processors. In a multiprocessor system,
software is responsible for ensuring the consistency of TB entries for processes that
might be rescheduled on different processors.

3-12 OpenVMS Alpha Software (II)

Digital Restricted Distribution

\ Systems that support ASNs should have MAX_ASN in the range I3 .. 65535. The
number of ASN s should be determined by the market a system is targeting. \

PROGRAMMING NOTE
System software should not assume that the number
of ASNs is a power of two. This allows, for example,
hardware to use N TB tag bits to encode (2**N)-3 ASN
values, one value for ASM= I PrEs, and one for invalid.

There are several possible ways of using ASN s. There
are several complications in a multiprocessor system.
Consider the case where a process that executed on
processor-I is rescheduled on processor-2. If a page
is deleted or its protection is changed, the TB in
processor- I has stale data. One solution would be to
send an interprocessor interrupt to all the processors on
which this process could have run and cause them to
invalidate the changed PTE. This results in significant
overhead in a system with several processors. Another
solution would be to have software invalidate all TB
entries for a process on a new processor before it can
begin execution, if the process executed on another
processor during its previous execution. This ensures
the deletion of possibly stale TB entries on the new
processor. A third solution would assign a new ASN
whenever a process is run on a processor that is not the
same as the last processor on which it ran.

3.10 Memory Management Faults

Five types of faults are associated with memory access and protection:

• Access Control Violation (ACV)

Taken when the protection field of the third-level PTE that maps the data
indicates that the intended page reference would be illegal in the specified access
mode. An Access Control Violation fault is also taken if the KRE bit is zero in
an invalid first or second level PTE.

• Fault On Read (FOR)

Occurs when a read is attempted with PrE<FOR> set.

• Fault On Write (FOW)

Occurs when a write is attempted with PrE<FOW> set.

• Fault On Execute (FOE)

Occurs when instruction execution is attempted with PTE<FOE> set.

OpenVMS Memory Management (II) 3-13

Digital Restricted Distribution

• Translation Not Valid (TNV)

Taken when a read or write reference is attempted through an invalid PTE in a
first-, second-, or third-level page table.

See Chapter 6 for a detailed description of these faults.

Note that these five faults have distinct vectors in the System Control Block. The
Access Violation (ACV) fault takes precedence over the faults TNY, FOR, FOW, and
FOE. The Translation Not Valid (TNV) fault takes precedence over the faults FOR,
FOW, and FOE.

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue
instructions, in which case the order that the exceptions are taken is
UNPREDICTABLE; see Section 2.1.

3-14 OpenVMS Alpha Software (II)

Digital Restricted Distribution

3.11 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Added spacing to code_examples

2. Term level replaces seg in address translation sect

3. Added ECO #17, address translation performance enhancements

4. Converted to SDML

5. Integrate references for Console ECO #15

Revision 4.0, March 29, 1991

1. Typos

2. Clarify reference to TNV and FOx as mutually exclusive

3. Expand on reference to simultaneous occurrence of FOR and FOW in section
'Memory Management Faults'

Revision 3.0, Mar 2, 1990

1. Change ASN to variable size

2. Remove Huge pages and add Granularity hint

3. Add rule on changing PTEs from valid to invalid

Revision 2.0, October 4, 1989

1. Remove references to buffer space

2. Add note that PTE<6:7> are not to be used by software

3. Change name of large pages to huge pages.

4. Add implementation dependent use of high order PFN bits to specify caching
policy.

Revision 1.0, May 23, 1989

1. First review distribution.

OpenVMS Memory Management (II) 3-15

Digital Restricted Distribution

Chapter 4

OpenVMS Process Structure (II)

4.1 Process Definition

A process is the basic entity that is scheduled for execution by the processor. A
process represents a single thread of execution and consists of an address space and
both hardware and software context.

The hardware context of a process is defined by:

• 31 Integer registers and 31 Floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• 4 stack pointers

• Asynchronous System Trap Enable and summary registers (ASTEN, ASTSR)

• Process Page Table Base Register (PTBR)

• Address Space Number (ASN)

• Floating Enable Register (FEN)

• Process Cycle counter (PCC)

• Process Unique value

• Data Alignment Trap (DAT)

• Performance Monitoring Enable Register (PME)

The software context of a process is defined by operating system software and is
system dependent.

A process may share the same address space with other processes or have an address
space of its own. There is, however, no separate address space for system software,
and therefore, the operating system must be mapped into the address space of each
process; see Chapter 3.

In order for a process to execute, its hardware context must be loaded into the integer
registers, Floating-point registers, and internal processor registers. While a process
is executing, its hardware context is continuously updated. When a process is not
being executed, its hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed by loading
the hardware context for a new process, is termed context switching. Context

OpenVMS Process Structure (II) 4-1

Digital Restricted Distribution

switching occurs as one process after another is scheduled by the operating system
for execution.

4.2 Hardware Privileged Process Context

The hardware context of a process is defined· by a privileged part which is context
switched with the Swap Privileged Context instruction (SWPCTX.) (see Section 2.6),
and a non-privileged part which is context switched by operating system software.

When a process is not executing, its privileged context is stored in a 128 byte
naturally aligned memory structure called the Hardware Privileged Context Block
(HWPCB).

Figure 4-1: Hardware Privileged Context Block

63 62 61 32 31 1615 8 7 4 3 1 0

Kernel Stack Pointer (KSP)

Executive Stack Pointer (ESP)

Supervisor Stack Pointer (SSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

I ASN

AST AST
SR EN

DP F
AM E
TE N

I Process Cycle Counter (PCC)

Process Unique Value

PALcode Scratch Area of 6 Quadwords

:HWPCB

:+8

:+16

:+24

:+32

:+40

:+48

:+56

:+64

:+72

:+80

The Hardware Privileged Context Block (HWPCB) for the current process is specified
by the Privileged Context Block Base register (PCBB); see Chapter 5.

The Swap Privileged Context instruction (SWPCTX.) saves the privileged context of
the current process into the HWPCB specified by PCBB, loads a new value into
PCBB, and then loads the privileged context of the new process into the appropriate
hardware registers.

The new value loaded into PCBB, as well as the contents of the Privileged Context
Block, must satisfy certain constraints or an UNDEFINED operation results:

4-2 OpenVMS Alpha Software (II)

Digital Restricted Distribution

1. The physical address loaded into PCBB must be 128 byte aligned and describes
sixteen contiguous quadwords that are in a memory-like region; see Common
Architecture, Chapter 5.

2. The value of PTBR must be the Page Frame Number of an existent page that is
in a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged
part of the hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to operating
system software and passes ownership of the new HWPCB from the operating system
to the processor. Any attempt to write a HWPCB while ownership resides with the
processor has UNDEFINED results. If the HWPCB is read while ownership resides
with the processor, it is UNPREDICTABLE whether the original or an updated value
of a field is read. The processor is free to update an HWPCB field at any time. The
decision as to whether or not a field is updated is made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The FEN bit reflects the setting of the FEN IPR.

The DAT bit controls whether data alignment traps that are fixed up in PALcode
are reported to the operating system. If the bit is clear, the trap is reported. If the
bit is set, after the :fixup, return is to the user. See Section 6.6.

Setting the PME bit alerts any performance hardware or software in the system to
monitor the performance of this process.

The Process Unique value is that value used in support of multithread
implementations. The value is stored in the HWPCB when the process is not active.
When the process is active, the value may be cached in hardware internal storage
or kept in the HWPCB only.

4.3 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of events that
are not synchronized with its execution but which must be dealt with in the context
of the process with minimum delay.

Asynchronous System Traps (ASTs) interrupt process execution and are controlled by
the AST Enable (ASTEN) and AST Summary (ASTSR) internal processor registers;
see Chapter 5. ·

The AST Enable register (ASTEN) contains an enable bit for each of the four
processor access modes. When the bit corresponding to an access mode is set,
ASTs for that mode are enabled. The AST enable bit for an access mode may be
changed by executing a Swap AST Enable instruction (SWASTEN; see Section 2.6),
or by executing a Move To Processor Register instruction specifying ASTEN (MTPR
ASTEN; see Chapter 5).

OpenVMS Process Structure (II) 4-3

Digital Restricted Distribution

The AST Summary Register (ASTSR) contains a pending bit for each of the four
processor access modes. When the bit corresponding to an access mode is set, an
AST is pending for that mode.

Kernel mode software may request an AST for a particular access mode by executing
a Move To Processor Register instruction specifying ASTSR (MTPR ASTSR); see
Chapter 5).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is less than 2, and there is an AST pending and enabled
for an access mode that is less than or equal to PS<CM> (i.e. an equal or more
privileged access mode), an AST is initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are not allowed
to interrupt execution in a more privileged access mode.

4.4 Process Context Switching

Process context switching occurs as one process after another is scheduled for
execution by operating system software. Context switching requires the hardware
context of one process to be saved in memory followed by the loading of the hardware
context for another process into the hardware registers.

The privileged hardware context is swapped with the CALL_PAL Swap Privileged
Context instruction (SWPCTX.). Other hardware context must be saved and restored
by operating system software.

The sequence in which process context is changed is important since the SWPCTX.
instruction changes the environment in which the context switching software itself
is executing. Also, although not enforced by hardware, it is advisable to execute
the actual context switching software in an environment which cannot be context
switched (i.e. at an IPL high enough that rescheduling cannot occur).

The SWPCTX. instruction is the only method provided for loading certain internal
processor registers. The SWPCTX. instruction always saves the privileged context of
the old process and loads the privileged context of a new process. Therefore, a valid
HWPCB must be available to save the privileged context of the old process as well
as load the privileged context of the new process. \

At system initialization, a valid HWPCB is constructed in the Hardware Restart
Parameter Block (HWRPB) for the primary processor; see Platform Section, Chapter
3. Thereafter, it is the responsibility of operating system software to ensure a valid
HWPCB when executing a SWPCTX. instruction. \

4-4 OpenVMS Alpha Software (II)

Digital Restricted Distribution

4.5 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Corrected PME description, added process unique value description

2. Added PME, DAT and process unique value to Process definition

3. Added PME bit as per ECO #43

4. Corrected DAT bit description as per ECO #40

5. Added DAT bit and FEN bit description

6. Converted to SDML

7. Added ECO #18, #21

8. Changed 'CC' to 'PCC' in HWPCB

9. Integrate references for Console ECO #15

Revision 4.0, March 29, 1991

1. Remove references to ASTs as 'interrupts', substituting 'exception' where
appropriate

Revision 3.0, Mar 2, 1990

1. Lower number of PAL scratch words from 23 to 7

2. Make ASN field be ignored on systems that do not implement ASNs

3. Change ASTRR to ASTSR

4. Change alignment of HWPCB

Revision 2.0, October 4, 1989

1. Add FEN, CC, and PAL scratch areas to HWPCB

Revision 1.0, May 23, 1989

1. First review distribution.

15comment>(edited ll-may-92)

OpenVMS Process Structure (II) 4-5

Digital Restricted Distribution

Chapter 5

OpenVMS Internal Processor Registers, (II)

5.1 Internal Processor Registers

This chapter describes the OpenVMS Alpha Internal Processor Registers (IPRs).
These registers are read and written with Move From Processor Register (MFPR)
and Move To Processor Register (MTPR) instructions; see Section 2.6.

These instructions accept an input operand in R16 and return a result, if any, in
RO. Registers Rl, R16, and Rl 7 are UNPREDICTABLE after a CALL_PAL MxPR
routines. If a CALL_PAL MxPR routine does not return a result in RO, then RO is
also UNPREDICTABLE on return.

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a
combined operation by performing an MTPR instruction.

Internal Processor Registers may or may not be implemented as actual hardware
registers. An implementation may choose any combination of PALcode and hardware
to produce the architecturally specified function.

Internal Processor Registers are only accessible from Kernel mode.

5.2 Stack Pointer Internal Processor Registers

The stack pointers for User, Supervisor, and Executive stacks are accessible as IPRs
through the CALL_PAL MTPR and MFPR instructions. An implementation may
retain some or all of these stack pointers only in the HWPCB. In this case, MTPR and
MFPR for these registers must access the corresponding PCB locations. However,
implementations that have these stack pointers in internal hardware registers are
not required to access the corresponding HWPCB locations for MTPR and MFPR.
The HWPCB locations get updated when a SWPCTX instruction is executed.

An implementation may also choose to keep the Kernel Stack Pointer (KSP) in an
internal hardware register (labelled IPR_KSP); however, this register is not directly
accessible through MTPR and MFPR instructions. Because access to the KSP
requires Kernel mode, the actual KSP is the current mode stack pointer (R30); thus
access to KSP is provided through R30 and no MTPR or MFPR access is required.
PALcode routines can directly access IPR_KSP as needed.

At System Initialization, the value of the KSP is taken from the initial HWPCB (see
Chapter 4).

OpenVMS Internal Processor Registers, (II) 5-1

Digital Restricted Distribution

5.3 IPR Summary

Table 5-1: Internal Processor Register (IPR) Summary

Input Output Context
Register Name MnemonicAccess1 R16 RO Switched

Address Space Number ASN R number yes

AST Enable ASTEN RJW* mask mask yes

AST Summary Register ASTSR RJW* mask mask yes

Data Align Trap Fixup DATFX w value yes

Floating-point Enable FEN RJW value value yes

Interprocessor Int. Request IPffi w number no

Interrupt Priority Level IPL RJW* value value no

Machine Check Error Summary MCES RJW value value no

Performance Monitor PERFMON W* IMP IMP no

Privileged Context Block Base PCBB R address no

Processor Base Register PRBR RJW value value no

Page Table Base Register PTBR R frame yes

System Control Block Base SCBB RJW frame frame no

Software Int. Request Register smR w level no

Software Int. Summary Register SISR R mask no

TB Check TBCHK R number status no

TB Invalid. All TBIA w no

TB Invalid. All Process TBIAP w no

TB Invalid. Single TBIS w address no

TB Invalid. Single Data TBISD w address no

TB Invalid. Single Instruct. TBISI w address no

Kernel Stack Pointer KSP None yes

Exec Stack Pointer ESP RJW address address yes

Supervisor Stack Pointer SSP RJW address address yes

User Stack Pointer USP RJW address address yes

Virtual Page Table Base VPTB RJW address address no

Who-Am-I WHAM I R number no

1 Access symbols are defined in Table 5-2

5-2 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Table 5-2: Internal Processor Register (IPR) Access Summary
Access
Type Meaning

R Access by MFPR only.

W Access by MTPR only.

R/W Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR; see Section 5.1 for details.

R/W* Access by MFPR or MTPR. Read and Write access accomplished by MTPR; see Section 5.1 for details.

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.

OpenVMS Internal Processor Registers, (II) 5-3

Digital Restricted Distribution

5.3.1 Address Space Number (ASN)

Access:

Read

Operation:

IF {ASN are implemented} THEN
RO -+--- ZEXT(ASN)

ELSE
RO -+--- 0

Value at System Initialization:

Zero

Format:

Figure 5-1: Address Space Number Register (ASN)

63

Address Space Number

RO

Description:

0

Address Space Numbers (ASNs) are used to further qualify Translation Buffer
references; see Chapter 3. If ASNs are implemented, the current ASN may be read
by executing an MFPR instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process to execute
is loaded using the Swap Privileged Context (SWPCTX) instruction; see Chapters 2
and4.

The ASN register is an implicit operand to the· CALL_PAL MFPR_IPR, TBCHK,
and TBISx PALcode instructions, in which it is used to qualify the virtual address
supplied in R16.

5-4 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.2 AST Enable {ASTEN)

Access:

Read

Write*

Operation:

RO +-- ZEXT (ASTEN<3:0>) ! Read (MFPR)
RO +-- ZEXT(ASTEN<3:0>) ! Write* (MTPR)
ASTEN<3:0> +-- {{ASTEN<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-2: AST Enable Register (ASTEN)

63 8 7 6 5 4 3 2 1 0

IGN

Format of RO

63 4 3 2 1 0

RAZ

Description:

The AST Enable Register records the AST enable state for each of the modes:
Kernel (KEN), Executive (EEN), Supervisor (SEN) and User (UEN). By writing R16
appropriately and then executing an MTPR instruction specifying ASTEN, the value
of ASTEN may be simultaneously read and modified. R16 contains bit masks used
to determine the new value of ASTEN:

• Bits R16<0> and R16<4> control the new state of Kernel enable.

• Bits R16<1> and R16<5> control the new state of Executive enable.

OpenVMS Internal Processor Registers, (II) 5-5

Digital Restricted Distribution

• Bits R16<2> and R16<6> control the new state of Supervisor enable.

• Bits R16<3> and R16<7> control the new state of User enable.

An MFPR to ASTEN reads the current value of the ASTEN and returns this value
in RO.

An MTPR to ASTEN begins by reading the current value of ASTEN and returning
this value in RO. The current value of ASTEN is then ANDed with bits R16<3:0>;
these bits preserve (if set to '1') or clear (if equal to '0') the current state of their
corresponding enable modes. The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on (if set to 'l') or do not affect (if equal to
'0') their corresponding enable modes. The resulting value is then written to the
ASTEN.

NOTE
All AST enables can be cleared by loading a zero into
R16 and executing an MTPR instruction'. specifying
ASTEN. To enable an AST for a given mode, load R16
with a mask that has bits <3:0> set and one of the bits
<7:4> corresponding to the AST mode to be set. Then
execute an MTPR instruction specifying ASTEN.

\ ASTEN is not present in the VAX architecture. It was added to the Alpha
architecture to allow software (especially nonprivileged software) to enable and
disable ASTs efficiently for the current mode via the SWASTEN instruction. It is
anticipated that, with multitasking, it will become extremely important to be able
to enable and disable ASTs in an efficient manner in shareable runtime support
routines.\

As processes are scheduled for execution, the state of the AST enables for the
next process to execute is loaded using the Swap Privileged Context (SWPCTX)
instruction. The Swap AST Enable (SWASTEN) instruction can be used to change
the enable state for the current access mode; See Chapters 2 and 4.

5-6 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.3 AST Summary Register (ASTSR)

Access:

Read

Write*

Operation:

RO +- ZEXT(ASTSR<3:0>) ! Read (MFPR)
RO +- ZEXT(ASTSR<3:0>) ! Write* (MTPR)
ASTSR<3 ·: 0> +- { { ASTSR<3 : 0> AND Rl 6<3 : 0>} OR Rl 6<7 : 4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-3: AST Summary Register (ASTSR)

63 8 7 6 5 4 3 2 1 0

R16

63

RO

Description:
\

IGN

4 3 2 1 0

RAZ

The AST Summary Register records the AST pending state for each of the modes:
Kernel (KPD), Executive (EPD), Supervisor (SPD), and User (UPD).

By writing R16 appropriately and then executing an MTPR instruction specifying
ASTSR, the value of ASTSR may be simultaneously read and modified. R16 contains
bit masks used to determine the new value of ASTSR:

• Bits R16<0> and R16<4> control the new state of Kernel pending.

OpenVMS Internal Processor Registers, (II) 5-7

Digital Restricted Distribution

• Bits R16<1> and R16<5> control the new state of Executive pending.

• Bits R16<2> and R16<6> control the new state of Supervisor pending.

• Bits R16<3> and R16<7> control the new state of User pending.

An MFPR reads the current value of ASTSR and returns this value in RO.

An MTPR to ASTSR begins by reading the current· value of ASTSR and returning
this value in RO. The current value of ASTSR is then ANDed with bits R16<3:0>;
these bits preserve (if set to '1') or clear (if equal to '0') the current state of their
corresponding pending modes. .The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on (if set to '1') or do not affect (if equal to
'0') their corresponding pending modes. The resulting value is then written to the
ASTSR.

NOTE
All AST requests can be cleared by loading a zero in R16
and executing an MTPR instruction specifying ASTSR.
To request an AST for a given mode, load R16 with a
mask that has bits <3 :0> set and one of the bits <7 :4>
corresponding to the AST mode to be set. Then execute
an MTPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for the next process
to execute is loaded ~ing the Swap Privileged Context (SWPCTX.) instruction; see
Chapters 2 and 4.

When the processor IPL is less than 2, and proper enabling conditions are present,
an AST interrupt is initiated at IPL 2 and the corresponding access mode bit in
ASTSR is cleared; see Section 6. 7. 6.

5-8 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Write

Operation:

DATFX +- Rl 6<0>
(HWPCB+56)<63> +- DATFX

Value at System Initialization:

Zero

Format:

Figure 5-4: Data Alignment Trap Flxup (DATFX)

63

Description:

2 1 0

Data Alignment traps are fixed up in PALcode and are reported to the operating
system under the control of the DAT bit. If the bit is zero, the trap is reported.
For the LDx_L and STx_ C instructions, no furup is possible and an illegal operand
exception is generated. For the description of the data alignment traps, see
Section 6.6.

OpenVMS Internal Processor Registers, (II) 5-9

Digital Restricted Distribution

5.3.5 Floating Enable (FEN)

Access:

Read/Write

Operation:

RO +- ZEXT (FEN)

FEN +- Rl 6<0>
(HWPCB+56)<0> +- FEN

Value at System Initialization:

Zero

Format:

Figure 5-5: Floating Enable (FEN) Register

63

Description:

Read

Write
Update PCB on Write

2 1 0

I~ I
The Floating-point unit can be disabled. If the Floating Enable Register (FEN) is
zero, all instructions that have floating registers as operands cause a Floating-point
disabled fault; see Section 6.3.1.1.

5-10 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.6 Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:

IPIR ,.__ R16

Value at System Initialization:

Not applicable

Format:

Figure &-6: Interprocessor Interrupt Request Register (IPIR)

63 0

Processor Number

R16

Description:

An interprocessor interrupt can be requested on a specified processor by writing
that processor's number into the IPIR register through an MTPR instruction. The
interrupt request is recorded on the target processor and is initiated when proper
enabling conditions are present.

PROGRAMMING NOTE
The interrupt need not be initiated before the next
instruction is executed on the requesting processor, even
if the requesting processor is also the target processor
for the request.

For additional information on interprocessor interrupts, see Section 6.4.5.1.

OpenVMS Internal Processor Registers, (II) 5-11

Digital Restricted Distribution

5.3. 7 Interrupt Priority Level (IPL)

Access:

Read/Write*

Operation:

RO +- ZEXT(PS<IPL>) Read
RO +- ZEXT (PS<IPL>) Write*
PS~IPL> +- Rl6<4:0> Write
{check for pending ASTs or interrupts}

Value at System Initialization:

31

Format:

Figure ~7: Interrupt Priority Level (IPL)

63 5 4 0

SBZ

Description:

·An MFPR IPL returns the current interrupt priority level in RO. An MTPR IPL
returns the current interrupt priority level in RO and sets the interrupt priority
level to the value in Rl6. If proper enabling conditions are present, an interrupt or
AST is initiated prior to issuing the next instruction; see Sections 6.4.1 and 6.7.6.
R16<63:5> are defined as RAZ/SBZ. Therefore, the presence of non-zero bits upon
write in R16<63:5> may cause UNDEFINED results.

~12 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.8 Machine Check Error Summary Register (MCES)

Access:

Read/Write

Operation:

RO - ZEXT (MCES)

IF {R16<0> EQ 1} THEN MCES<O> - 0
IF {R16<1> EQ 1} THEN MCES<l> - 0
IF {R16<2> EQ 1} THEN MCES<2> - 0
MCES<3> - R16<3>
MCES<4> - R16<4>

Value at System Initialization:

Zero

Format:

Read

Write

Figure 5-8: Machine Check Error Summary Register (MCES)

63 32 31

IMP Reserved

Description:

The use of the MCES IPR is described in Section 6.5.

5 4 3 2 1 0

MCES<O> is set by the hardware or PALcode when a processor or system machine
check occurs. MCES<l> is set by the hardware or PALcode when a system
correctable error occurs. MCE8<2> is set by the hardware or PALcode when a
processor correctable error occurs. Writing a 1 to any of these three bits clears that
bit.

MCES<O> is cleared by the operating system machine check error handler and
used by the hardware or PALcode to detect double machine checks. MCES<l>
and MCE8<2> are cleared by the operating system system or processor system
correctable error handlers; these bits are used to indicate that the associated
correctable error logout area may be reused by hardware or PALcode. In the event

OpenVMS Internal Processor Registers, (II) 5-13

Digital Restricted Distribution

of double correctable errors, PALcode does not overwrite the logout area and does
not force the processor to enter console I/O mode; see Section 6.5.1.

MCES<4:3> are used to disable reporting of correctable errors. When set, the error is
corrected, but no system correctable error interrupt or processor correctable machine
check is generated.

Implementation dependent (IMP) bits may be used to report implementation specific
errors.

5-14 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.9 Performance Monitoring Register (PERFMON)

Access:

Write*

Operation:

R<l6> contains implementation specific input values
R<O> may return implementation specific values
Operations and actions taken are implementation specific

Value at System Initialization:

Implementation Dependent

Format:

Figure 5-9: Performance Monitoring Register (PERFMON)

63

IMP

Description:

The arguments and actions of this performance monitoring function are platform
and chip dependent. The functions, when defined for an implementation, are to be
registered in Appendix E.

R<16> contains implementation dependent input values. Implementation specific
values may be returned in R<O>.

OpenVMS Internal Processor Registers, (II) 5-15

Digital Restricted Distribution

5.3.10 Privileged Context Block Base (PCBB)

Access:

Read

Operation:

RO -. ZEXT(PCBB)

Value at System Initialization:

Address of processor's bootstrap HWPCB

Format:

Figure 5-10: Privileged Context Block Base Register (PCBB)

63 48 47

RAZ Physical Address

RO

Description:

The Privileged Context Block Base Register contains the physical address of the
privileged context block for the current process. It may be read by executing an
MFPR instruction specifying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX.) instruction; see
Chapters 2 and 4.

5-16 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.11 Processor Base Register (PRBR)

Access:

Read!Write

Operation:

RO - PRBR Read

PRBR <- Rl6 Write

Value at System Initialization:

UNPREDICTABLE

Format:

Figure 5-11: Processor Base Register (PRBR)

63 0

Operating System-Dependent Value

Description:

In a multiprocessor system, it is desirable for the operating system to be able to
locate a processor-specific data structure in a simple and straightforward manner.
The Processor Base Register provides a quadword of operating system-dependent
state that can be read and written via MFPR and MTPR instructions that specify
PRBR.

OpenVMS Internal Processor Registers, (II) 5-17

Digital Restricted Distribution

5.3.12 Page Table Base Register (PTBR)

Access:

Read

Operation:

RO - PTBR

Value at System Initialization:

Value in the bootstrap HWPCB

Format:

Figure ~12: Page Table Base Register (PTBR)

63 32 31

RAZ Page Frame Number

RO

Description:

The Page Table Base Register contains the page frame number of the first-level page
table for the current process. It may be read by executing an MFPR instruction
specifying PTBR; see Chapter 3.

As processes are scheduled for execution, the PTBR for the next process to execute
is loaded using the Swap Privileged Context (SWPCTX) instruction; see Chapters 2
and 4.

~ 18 Open VMS Alpha Software (11)

Digital Restricted Distribution

5.3.13 System Control Block Base (SCBB)

Access:

Read/Write

Operation:

RO ~ ZEXT(SCBB)

SCBB ~ R16

Value at System Initialization:

UNPREDICTABLE

Format:

Read

Write

Figure 5-13: System Control Block Base Register (SCBB)

63 32 31

IGN/RAZ P~ge Frame Number

Description:

0

The System Control Block Base Register holds the Page Frame Number (PFN) of
the System Control Block, which is used to dispatch exceptions and interrupts, and
may be read and written by executing MFPR and MTPR instructions that specify
SCBB; see Section 6.6.

When SCBB is written, the specified physical address must be the PFN of a page
which is neither in I/O space nor non-existent memory, or UNDEFINED operation
will result.

-OpenVMS Internal Processor Registers, (II) 5-19

Digital Restricted Distribution

5.3.14 Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

IF Rl6<3:0> NE 0 THEN
SISR<R16<3:0>> ~ 1

Value at System Initialization:

Not applicable

Format:

Figure 5-14: Software Interrupt Request Register (SIRR)

63

IGN

R16

Description:

4 3 0

A software interrupt may be requested for a particular Interrupt Priority Level
(IPL) by executing an MTPR instruction specifying SIRR. Software interrupts may
be requested at levels 0 through 15 (requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt level in the
Software Interrupt Summary Register (SISR).

If proper enabling conditions are present, a software interrupt is initiated prior to
issuing the next instruction; see Sections 6.4.1 and 6.7.6.

5-20 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.15 Software Interrupt Summary Register (SISR)

Access:

Read

Operation:

RO ~ ZEXT(SISR<l5:0>)

Value at System Initialization:

Zero

Format:

Figure 5-15: Software Interrupt Summary Register (SISR)

63 16151413121110 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I IR
RAZ RR RR RR RR RR RR RR RA

FE DC BA 9 8 7 6 54 3 2 1 z
RO

Description:

The Software Interrupt Summary Register records the interrupt pending state for
each of the interrupt levels 1 th.rough 15. The current interrupt pending state may
be read by executing an MFPR instruction specifying SISR.

MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and
sets the corresponding pending bit in SISR.

When the processor IPL falls below the level of a pending request, an interrupt is
initiated and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6.

OpenVMS Internal Processor Registers, (II) 5-21

Digital Restricted Distribution

5.3.16 Translation Buffer Check (TBCHK)

Access:

Read

Operation:

RO - 0
IF {implemented} THEN

RO<O> .+- {entry in TB for VA in R16}
ELSE

R0<63> .+- 1

Value at System Initialization:

Correct results are always returned

Format:

Figure 5-16: Translation Buffer Check Register (TBCHK)

63

R16
63 62

RO

Description:

Virtual Address

RAZ

0

2 1 0

The Translation Buffer Check Register provides the capability to determine if
a virtual address is present in the Translation Buffer by executing an MFPR
instruction specifying TBCHK; see· Chapter 3.

The virtual address to be checked is specified in R16 and may be any address within
the desired page. If ASN s are implemented, only those Translation Buffer entries
which are associated with the current value of the ASN IPR will be checked for the
virtual address. The value read contains an indication of whether the function is
implemented and whether the virtual address is present in the Translation Buffer.

5-22 OpenVMS Alpha Software (II)

Digital Restricted Distribution

If the function is not implemented, a value is returned with bit <63> set and bit <0>
clear. Otherwise, a value is returned with bit <63> clear, and with bit <0> indicating
whether the virtual address is present in (1) or absent from (0) the Translation
Buffer.

The TBCHK Register can be used by system software for working set management.

OpenVMS Internal Processor Registers, (II) ~23

Digital Restricted Distribution

5.3.17 Translation Buffer Invalidate All (TBIA)

Access:

Write

Operation:

{Invalidate all TB entries}

Value at System Initialization:

Not applicable

Format:

Figure 5-17: Translation Buffer Invalidate All. Register (TBIA)

63 0

Unused

R16

Description:

The Translation Buffer Invalidate All Register provides the capability to invalidate
all entries in the Translation Buffer by executing an MTPR instruction specifying
TBIA; see Chapter 3.

5-24 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.18 Translation Buffer Invalidate All Process (TBIAP)

Access:

Write

Operation:

{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Not applicable

Format:

Figure 5-18: Translation Buffer Invalidate All Process Register (TBIAP)

63 0

Unused

R16

Description:

The Translation Buffer Invalidate All Process Register provides the capability to
invalidate all entries in the Translation Buffer that do not have the ASM bit set by
executing an MTPR instruction specifying TBIAP; see Chapter 3.

Notes:
More entries may be invalidated by this operation.
implementations may flush the entire TB on a TBIAP.

For example some

OpenVMS Internal Processor Registers, (U) 5-25

Digital Restricted Distribution

5.3.19 Translation Buffer Invalidate Single {TBISx)

Access:

Write

Operation:

TBIS:
{Invalidate single Data TB entry using Rl6}
{Invalidate single Instruction TB entry using R16}

TBISD:
{Invalidate single Data TB entry using R16}

TBISI:
{Invalidate single Instruction TB entry using Rl6}

Value at System Initialization:

Not applicable

Format:

Figure 5-19: Translation Buffer Invalidate Single (TBIS)

63

Virtual Address

R16

Description:

0

The Translation Buffer Invalidate Single Registers provide the capability to
invalidate a single entry in the Instruction Translation Buffer (TBISI), the Data
Translation Buffer (TBISD), or both translation buffers (TBIS). The virtual address
to be invalidated is passed in R16 and may be any address within the desired page.

Notes:
More than the single entry may be invalidated by this operation. For example
some implementations may :flush the entire TB on a TBIS. As a result, if the
specified address does not match any entry in the Translation Buffer, then it is
implementation-dependent whether the state of the Translation Buffer is affected
by the operation.

5-26 OpenVMS Alpha Software (II)

·Digital Restricted Distribution

5.3.20 Executive Stack Pointer (ESP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN Read
RO ~ ESP

ELSE
RO ~ (IPR_PCBB + HWPCB_ESP)

IF {internal registers for stack pointers} THEN
ESP ~ R16

ELSE
(IPR_PCBB + HWPCB_ESP) ~ R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-20:· Executive Stack Pointer (ESP)

63

Stack Address

Description:

Write

0

This register . allows the stack pointer for Executive mode (ESP) to be read and
written via MFPR and MTPR instructions that specify ESP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX.) instruction; see
Section 2.6 and Chapter 4.

OpenVMS Internal Processor Registers, (II) 5-27

Digital Restricted Distribution

5.3.21 Supervisor Stack Pointer (SSP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN Read
RO +- SSP

ELSE
RO +- (IPR_PCBB + HWPCB_SSP)

IF {internal registers for stack pointers} THEN
SSP +- R16

ELSE
(IPR_PCBB + HWPCB_SSP) +- R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-21 : Supervisor Stack Pointer (SSP)

63

Write

0

-'~----------~--------------S-ta-ck_A_d_d_re-ss __________________________ __.

Description:

This register allows the stack pointer for Supervisor mode (SSP) to be read and
written via MFPR and MTPR instructions that specify SSP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapter 4.

5-28 Open VMS Alpha Software (11)

Digital Restricted Distribution

5.3.22 User Stack Pointer (USP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN Read
RO +- USP

ELSE
RO +- (IPR_PCBB + HWPCB_USP)

IF {internal registers for stack pointers} THEN
USP +- R16

ELSE
(IPR_PCBB + HWPCB_USP) +- R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-22: User Stack Pointer (USP)

63

Stack Address

Description:

Write

0

This register allows the stack pointer for User mode (USP) to be read and written
via MFPR and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the two stack pointers for the next process
to execute are loaded using the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapter 4. ·

OpenVMS Internal Processor Registers, (II) 5-29

Digital Restricted Distribution

5.3.23 Virtual Page Table Base (VPTB)

Access:

Read/Write

Operation:

RO +- VPTB

VPTB +- Rl6

Value at System Initialization:

Read

Write

Initialized by the console in the bootstrap address space.

Format:

Figure 5-23: Virtual Page Table Base Register (VPTB)

63

VA of Page Table Structure

RO

Description:

0

The Virtual Page Table Base Register contains the virtual address of the base of
the entire three-level Page table structure. It may be read by executing an MFPR
instruction specifying VPTB. It is written at system initialization using an MTPR
instruction specifying VPTB. See Section 3.7.2 \ and Platform Section, Chapter 4 \
for initialization considerations.

5-30 OpenVMS Alpha Software (II)

Digital Restricted Distribution

5.3.24 Who-Am-I (WHAMI)

Access:

Read

Operation:

RO +- WHAMI

Value at System Initialization:

Processor number

Format:

Figure 5-24: Who-Am-I Register (WHAMI)

63 0

Processor Number

RO

Description:

The Who-Am-I Register provides the capability to read the current processor number
by executing an MFPR instruction specifying WHAMI. The processor number
returned is in the range 0 to the number of processors minus one that can be
configured in the system. Processor number FFFF FFFF FFFF FFFF 16 is reserved.

The current processor number is useful in a multiprocessing system to index
arrays that store per processor information. Such information is operating system
dependent.

OpenVMS Internal Processor Registers, (II) 5-31

Digital Restricted Distribution

5.4 \REVISION HISTORY

Revision 5.0, May 12, 1992 -

1. Added changes to MCES for ECO #45

2. Added Perfmon ipr description and entry in summary table

3. Added DATFX related ecos #30, #40

4. Added bit field to FEN reference to PCBB as a result of datfx ecos

5. Added VPTB register

6. Rewrite of MCES description

7. Converted to SDML

8. Added ECO #16, #17, #20, #23, #24

9. Integrate references for Console ECO #15

Revision 4.0, March 29, 1991

1. MTPR IPL returns old IPL in RO

2. Typos

3. Change MCES IGN/RAZ field to IMP

4. Describe how to cl~ar and set mode enable bits with MTPR

5. Change text for ASTSR description to indicate future action for mode set

6. Change ASTEN and ASTSR to access type Read/Write

7. Modify (subtly) note under IPIR to avoid confusion about timing relation between
processors

8. Clarify what value to· load into IPIR to select a particular target

9. Change 'Value at System Initialization' from 'UNDEFINED' to 'UNPREDICTABLE'
for PRBR and SCBB

10. Note effect of writing TBIS with an address that does not match any TB entry

11. Note that ASN is an implicit operand to a MFPR TBCHK instruction

12. Emphasise distinction between SIRR and sISR

13. Reworked IPR table to show which IPRs are context-switched and which are not.

14. Remove references to ASTs as 'interrupts', substituting 'exception' where
appropriate

15. Insert spaces into long hex and binary values to improve legibility

16. Clarify obscure use of MTPR to both read and write certain IPRs

17. Illustrate R16 bits used to 'gate' ASTEN and ASTSR contents into RO

5-32 OpenVMS Alpha Software (II)

Digital Restricted Distribution

\

18. Add pointer in the IPIR IPR section pointing to Interprocessor Interrupt material
in Chapter 6

19. Add Kernel Stack Pointer as an internal processor register

20. Modify definition of Absolute Time register and BB_ WATCH entity.

21. Changed IPR Summary Table and added R/W* description

22. Specified all systems that supportVAX or ULTRIX must have a BB_ WATCH

23. Clarified value written to IPIR to select a processor

Revision 3.0, March 2, 1990

1. Remove ASTRR and make ASTEN/ASTSR read/write

2. Add TBIAP

3. Remove ASN from TBix and TBCHK

4. Remove Rl 7 as input to MxPR's

5. Reserve processor number FFFF FFFF FFFF FFFF16

Revision 2.0, October 4, 1989

1. Remove ICIE, IPIE, ISP, KSP, SID, SSN, and TOY

2. Add AT and FEN

3. Change range of WIIAMI

4. Remove stack alignment comments

5. Change registers used to match calling standard

Revision 1.0, March 15, 1989

1. First review distribution.

OpenVMS Internal Processor Registers, (II) 5-33

Digital Restricted Distribution

Chapter 6

OpenVMS Exceptions, Interrupts, and Machine
Checks (II)

6.1 Introduction

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an
exceptional event occurs, an Alpha processor forces a change in control flow from
that indicated by the current instruction stream. The notification process for such
events is of one of three types:

• Exceptions

These events are relevant primarily to the currently executing process and
normally invoke software in the context of the current process. The three types
of exceptions are faults, arithmetic traps, and synchronous traps. Exceptions are
described in Section 6.3.

• Interrupts

These events are primarily relevant to other processes, or to the system as a
whole, and are typically serviced in a system-wide context.

Some interrupts are of such urgency that they require high-priority service, while
others must be synchronized with independent events. To meet these needs, each
processor has priority logic that grants interrupt service to the highest priority
event at any point in time. Interrupts are described in Section 6.4.

• Machine Checks ..

These events are generally the result of serious hardware failure. The registers
and memory are potentially in an indeterminate state such that the instruction
execution cannot necessarily be correctly restarted,· completed, simulated, or
undone. Machine checks are described in Section 6.5.

For all such events, the change in flow of control involves changing the Program
Counter (PC), possibly changing the execution mode (current mode) and/or interrupt
priority level (IPL) in the Processor Status (PS), and saving the old values of the
PC and PS. The old values are saved on the target stack as part of an Exception,
Interrupt, or Machine Check Stack Frame. Collectively, those elements are described
in Section 6.2. ·

The service routines that handle exceptions, interrupts, and machine checks are
specified by entry points in the System Control Block (SCB), described in Section 6.6.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-1

Digital Restricted Distribution

Return from an exception, interrupt, or machine check, is done via the CALL_PAL
REI instruction. As part of its work, CALL_PAL REI restores the saved values of
PC and PS and pops them off the stack.

6.1.1 Contrast Between Exceptions, Interrupts, and Machine Checks

Generally, exceptions, interrupts, and machine checks are similar. However, there
are four important differences:

1. An exception condition is caused by the execution of an instruction. An interrupt
is caused by some activity in the system that may be independent of any
instruction. A machine check is associated with a hardware error condition.

2. The IPL of the processor is not changed when the processor initiates an exception.
The IPL is always raised when an interrupt is initiated. The IPL is always
raised when a machine check is initiated, and for all machine checks other than
system correctable, is raised to 31 (highest priority level). (For system correctable
machine checks, the IPL is raised to 20.)

3. Exceptions are always initiated immediately, no matter what the processor IPL
is. Interrupts are deferred until the processor IPL drops below the IPL of the
requesting source. Machine checks can be initiated immediately or deferred,
depending on error conditions.

4. Some exceptions can be selectively disabled by selecting instructions that do
not check for exception conditions. If an exception condition occurs in such an
instruction, the condition is totally ignored and no state is saved to signal that
condition at a later time.

If an interrupt request occurs while the processor IPL is equal to or greater than
that of the interrupting source, the condition will eventually initiate an interrupt
if the interrupt request is still present and the processor IPL is lowered below
that of the interrupting source.

Machine checks cannot be disabled. Machine checks can be initiated immediately
or deferred, depending on the error condition. Also, they can be deliberately
generated by software.

6.1.2 Exceptions, Interrupts, and Machine Checks Summary

The table below summarizes the actions taken on an exception, interrupt, or machine
check. The remaining sections in this chapter describe these in greater detail.

• The "SavedPC" column describes what is saved in the "PC" field of the exception
or interrupt or machine check stack frame. Here,

1. "Current" indicates the PC of the instruction at which the exception or
interrupt or machine check was taken, while

2. ''Next" indicates the PC of the successor instruction.

• The ''NewMode" column specifies the mode and stack that the exception or
interrupt or machine check routine will start with. For change mode traps,
"MostPrv" indicates the more privileged of the current and new modes.

6-2 OpenVMS Alpha Software (II)

Digital Restricted Distribution

• The "R2" column specifies the value with which R2 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB vector quadword, "SCBv", is loaded into R2 for all interrupts and
exceptions and machine checks.

• The "R3" column specifies the value with which R3 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB parameter quadword, "SCBp", is loaded into R3 for all interrupts and
exceptions and machine checks.

• The "R4" column specifies the value with which R4 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R4" column is blank the value in R4 is UNPREDICTABLE on entry to an
interrupt or exception. Here,

1. ''VA" indicates the exact virtual address which triggered a memory
management fault or data alignment trap.

2. "Mask" indicates the Register Write Mask.

3. "LAOff' indicates the offset from the base of the logout area in the HWRPB;
see Section 6.5.2.

• The "R5" column specifies the value with which R5 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R5" column is blank the value in R5 is UNPREDICTABLE on entry to an
interrupt or exception or machine check. Here,

1. "MMF" indicates the Memory Management Flags.

2. "Exe" indicates the Exception Summary parameter.

3. "RW" indicates Read/Load =0 Write/Store =1 for data align traps

Table 6-1: Exceptions, Interrupts, and Machine Checks Summary
SavedPC NewMode R2 R3 R4 R5

Exceptions - Faults

Floating Disabled Fault Current Kernel SCBv SCBp

Memory Management Faults

Access Control Violation Current Kernel SCBv SCBp VA MMF

Translation Not Valid Current Kernel SCBv SCBp VA MMF

Fault on Read Current Kernel SCBv SCBp VA MMF

Fa ult on Write Current Kernel SCBv SCBp VA MMF

Fault on Execute Current Kernel SCBv SCBp VA MMF

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-3

Digital Restricted Distribution

Table 6-1 (Cont.): Exceptions, Interrupts, and Machine Checks Summary
SavedPC NewModeR.2 R3 R4 R5

Exceptions - Arithmetic Traps

Arithmetic Traps Next Kernel SCBv SCBp Mask Exe

Exceptions - Synchronous Traps

Breakpoint Trap Next Kernel SCBv SCBp

Bugcheck Trap Next Kernel SCBv SCBp

Change Mode to KIE/SIU Next MostPrv SCBv SCBp

Illegal Instruction Next Kernel SCBv SCBp

Illegal Operand Next Kernel SCBv SCBp

Data Alignment Trap Next Kernel SCBv SCBp VA RW

Interrupts

Asynch System Trap (4) Current Kernel SCBv SCBp

Interval Clock Current Kernel SCBv SCBp

Interprocessor Interrupt Current Kernel SCBv SCBp

Software Interrupts Current Kernel SCBv SCBp

Performance Current Kernel SCBv SCBp IMP IMP
monitor

Passive Release Current Kernel SCBv SCBp

Powerfail Current Kernel SCBv SCBp

I/O Device Current Kernel SCBv SCBp

Machine Checks

Processor Correctable Current Kernel SCBv SCBp LA Off

System Correctable Current Kernel SCBv SCBp LA Off

System Current Kernel SCBv SCBp LA Off

Processor Current Kernel SCBv SCBp LA Off

6-4 OpenVMS Alpha Software (II)

Digital Restricted Distribution

6.2 Processor State and Exception/Interrupt/Machine Check Stack
Frame

Processor state consists of a quadword of privileged information called the Processor
Status (PS) and a quadword containing the ProgTam Counter (PC), which is the
virtual address of the next instruction.

When an exception, interrupt, or machine check is initiated, the current processor
state during the exception, interrupt, or machine check must be preserved. This is
accomplished by automatically pushing the PS and the PC on the target stack.

Subsequently, instruction execution can be continued at the point of the exception,
interrupt, or machine check by executing a CALL_PAL REI instruction; see
Chapter 2.

Process context such as memory mapping information is not saved or restored on
each exception, interrupt, or machine check. Instead, it is saved and restored when
process context switching is performed. Other processor status is changed even less
frequently; see Chapter 4.

6.2.1 Processor Status

The PS can be explicitly read with the CALL_PAL RD_PS instruction. The PS<SW>
field can be explicitly written with the CALL_PAL WR_PS_SW instruction. See
Section 2.1.

The terms current PS and saved PS are used to distinguish between this status
information when it is stored internal to the processor and when copies of it are
materialized in memory.

Figure 6-1: Current Processor Status (PS Register)

63 13 12 8 7 6 5 4 3 2 1 0

MBZ

Figure 6-2: Saved Processor Status (PS on Stack)

63 62 56 55 1312 8 7 6 5 4 3 2 1 0

MBZ

OpenVMS Exceptions, Interrupts, and Machine Checks {II) 6-5

Digital Restricted Distribution

Table 6-2: Processor Status Register Summary
Bits Description

1:0 Reserved for Software (SW). These bits are reserved for software use and can be
read and written at any time by the software, regardless of the cUITent mode. The
value of these bits is ignored by the hardware. The software field is set to zero at
the initiation of either an exception or an interrupt.

2 Interrupt pending (IP). Set when an interrupt (software or hardware but NOT AST)
is initiated; indicates an interrupt is in progress.

4:3 Current mode (CM). The access mode of the cUITently executing process as follows:

0 - Kernel

1 - Executive

2 - Supervisor

3 - User

6:5 Reserved to Digital, MBZ.

7 Virtual machine monitor (VMM) - When set, the processor is executing in a virtual
machine monitor. When clear, the processor is running in either real or virtual
machine mode.

PROGRAMMING NOTE
This bit is only meaningful when
running with PALcode that implements
virtual machine capabilities.

12:8 Interrupt priority level (IPL) - The cUITent processor priority, in the range 0 to 31.

55: 13 Reserved to Digital, MBZ.

61:56 Stack alignment (SP _ALIGN) - The previous stack byte alignment within a 64 byte
aligned area, in the range 0 to 63. This field is set in the saved PS during the act
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to
restore the previous stack byte alignment.

63:62 Reserved to Digitial, MBZ.

At bootstrap, the initial value of PS is set to 1F0016 • Previous stack alignment is
zero, IPL is 31, VMM is clear, CM is Kernel, and the SW and IP fields are zero.

6.2.2 Program Counter

The PC is a 64-bit virtual address. All instructions are aligned on longword
boundaries and, therefore, hardware can assume zero for the two low-order PC bits.

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All
branching instructions also load a new value into the PC.

6-6 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Figure 6-3: Program Counter (PC)

63 2 1 0

Instruction Virtual Address <63:2>

6.2.3 Processor Interrupt Priority Level {IPL)

Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels
(numbered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications
and most operating system software run at IPL 0, which may be thought of as process
level. Higher numbered interrupt levels have higher priority; i.e., any request at an
interrupt level higher than the processor's current IPL will interrupt immediately,
but requests at lower or equal levels are deferred.

Interrupt levels 0 to 15 exist solely for use by software. No hardware event can
request an interrupt on these levels. Conversely, interrupt levels 16 to 31 exist
solely for use by hardware. Serious system failures, such as a machine check abort,
however, raise the IPL to the highest level (31), to minimize processor interruption
until the problem is corrected, and execute in Kernel mode on the Kernel stack.

6.2.4 Protection Modes

Each processor has four protection modes. The modes are Kernel, Executive,
Supervisor, and User. Per-page memory protection varies as a function of mode (for
example, a page can be made read-only in User mode, but read-write in Supervisor,
Executive, or Kernel mode).

For each process, there is a separate stack associated with each mode. Corruption
of one stack does not affect use of the other stacks.

Some instructions, termed privileged instructions, may only be executed in Kernel
mode.

6.2.5 Processor Stacks
Each processor has four stacks. There are four process-specific stacks associated
with the four modes of the current process. At any given time, only one of these
stacks is actively used as the current stack.

6.2.6 Stack Frames

When an exception, interrupt, or machine check occurs, a stack frame is pushed
on the target stack. Regardless of the type of event notification, this stack frame
consists of a 64 byte-aligned structure ·containing the saved contents of registers
R2 .. R7, the Program Counter (PC), and the Processor Status (PS). Registers R2 and
R3 are then loaded with vector and parameter from the SCB for the exception,
interrupt, or machine check. Registers R4 and R5 may be loaded with data
pertaining to the exception, interrupt, or machine check. The specific data loaded is
described below in conjunction with each exception, interrupt, or machine check; if

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-7

Digital Restricted Distribution

no specific data is specified, the contents ofR4 and R5 are UNPREDICTABLE. After
the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value saved is that of the instruction encountering the
exception in the case . of faults, that of the next instruction in the case of traps
and interrupts, and, on a best-effort basis, and that of the next instruction in the
case of machine checks. Return from an exception, interrupt, or machine check is
done via the CALL_PAL REI instruction, which restores the saved values of PC, PS,
and R2 .. R7, thus re-executing the instruction in the case of faults, and proceeding
to the next instruction in the case of traps, interrupts, and machine checks.

Figure 6-4: Stack Frame

63 0

R2 :SP

R3 :+08

R4 :+16

RS :+24

RS :+32

R7 :+40

Program Counter (PC) :+48

Processor Status (PS) :+56

6.3 Exceptions

Exception service routines execute in response to exception conditions caused by
software. Most exception service routines execute in Kernel mode, on the Kernel
stack; all exception service routines execute _at the current processor IPL. Change
Mode exception routines for CHMU/CHMS/CHME execute in the more privileged
of the current mode or the target mode (U/S/E), on the matching stack. Exception
service routines are usually coded to avoid exceptions; however, nested exceptions
can occur.

There are three types of exceptions:

• A fault is an exception condition that occurs during an instruction and leaves
the registers and memory in a consistent state such that elimination of the fault
condition and subsequent re-execution of the instruction will give correct results.
Faults are not guaranteed to leave the machine in exactly the same state it was
in immediately prior to the fault, but rather in a state such that the instruction
can be correctly executed if the fault condition is removed. The PC saved in the
exception stack frame is the address of the faulting instruction. A CALL_PAL
REI instruction to this PC will reexecute the faulting instruction.

6-8 OpenVMS Alpha Software (II)

Digital Restricted Distribution

• An arithmetic trap is an exception condition that occurs at the completion of
the operation that caused the exception. Since several instructions may be
in various stages of execution at any point in time, it is possible for multiple
arithmetic traps to occur simultaneously. The PC that is saved in the exception
frame on traps is that of the next instruction that would have been issued if the
trapping condition(s) had not occurred. This is not necessarily the address of the
instruction immediately following the one(s) encountering the trap condition, and
intervening instructions may have changed operands or other state used by the
instruction{s) encountering the trap condition{s). A CALL_PAL REI instruction
to this PC will not reexecute the trapping instruction(s), nor will it reexecute
any intervening instructions; it will simply continue execution from the point at
which the trap was taken.

In general, it is difficult to :fixup results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated :fixup code. This is accomplished by following
a set of code-generation restrictions in code that could cause arithmetic traps
which are to be completed by a software trap handler {see Common Architecture,
Chapter 4), including specifying the IS software completion modifier in each such
instruction.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
SWC is set, a trap handler may find the trigger instruction by scanning backward
from the trap PC until each register in the register write mask has been an
instruction destination. The trigger instruction is the first instruction in I-stream
order to get a trap within a trap shadow (see Common Architecture, Chapter 4
for definition of trap shadow). If the SWC bit is clear, no :fixup is possible (the
trigger instruction may have been followed by a taken branch, so the trap PC
cannot be used to find it).

• A synchronous trap is an exception condition that occurs at the completion of
the operation that caused the exception (or, ifthe operation can only be partially
carried out, at the completion of that part of the operation), and no subsequent
instruction is issued before the trap occurs.

Synchronous traps are divided into data alignment traps and all other
synchronous traps.

6.3.1 Faults
The six types of faults signal that an instruction or its operands are in some way
illegal. These faults are all initiated in Kernel mode and push an exception stack
frame onto the stack. Upon entry to the exception routine, the saved PC (in the
exception stack frame) is the virtual address of the faulting instruction.

The six faults include the Floating Disable Fault described in the next subsection
and five memory management faults.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-9

Digital Restricted Distribution

Memory management faults occur when a virtual address translation encounters an
exception condition. This can occur as the result of instruction fetch or during a load
or store operation.

Immediately following a memory management fault, register R4 contains the exact
virtual address encountering the fault condition.

The register R5 contains the "MM Flag'' quadword.

"MM Flag'' is set as follows:

0000 0000 0000 000016 for a faulting data read

0000 0000 0000 000116 for a faulting I-fetch operation

8000 0000 0000 000016 for a faulting write operation

The faulting instruction is the instruction whose fetch faulted, or the load, store, or
PALcode instruction that encountered the fault condition.

Chapter 3 describes the memory management architecture of Alpha in more detail.

6.3.1.1 Floating Disabled Fault

A Floating Disabled Fault is an exception that occurs when an attempt is made to
execute a floating-point instruction and the floating enable (FEN) bit in the HWPCB
is not set.

6.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory management fault indicating that an attempted access
to a virtual address was not allowed in the current mode.

ACV faults usually indicate program errors, but in some cases, such as automatic
stack expansion, can mean implicit operating system functions.

ACV faults take precedence over Translation Not Valid, Fault on Read, Fault on
Write, and Fault on Execute faults.

ACV faults take precedence over Translation Not Valid faults so that a malicious
user could not degrade system performance by causing spurious page faults to pages
for which no access is allowed.

6.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory management fault that indicates that an attempted access
was made to a virtual address whose Page Table Entry (PTE) was not valid.

Software may use TNV faults to implement virtual memory capabilities.

6.3.1.4 Fault On Read (FOR)

An FOR fault is a memory management fault that indicates that an attempted data
read access was made to a virtual address whose Page Table Entry (PTE) had the
Fault on Read bit set.

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.

6-10 OpenVMS Alpha Software (II)

Digital Restricted Distribution

IMPLEME.NTATION NOTE
This allows an implementation only to invalidate entries
from the Data-stream Translation Buffer on Fault On
Read faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOR. fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOR fault
on a page after clearing the. page's PTE<FOR> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOR
fault and then an additional FOR fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOR faults to implement watchpoints, to collect page usage
statistics, and to implement execute-only pages.

6.3.1.5 Fault On Write (FOW)

A FOW fault is a memory management fault that indicates that an attempted data
write access was made to a virtual address whose Page Table Entry (PTE) had the
Fault On Write bit set.

As a part of initiating the FOW fault, the processor invalidates the Translation
Buffer entry that caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementation only to invalidate entries
from the Data-stream Translation Buffer on Fault On
Write faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOW fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOW fault
on a page after clearing the page's PTE<FOW> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOW
fault and then an additional FOW fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOW faults to maintain modified page information, to implement
copy on write and watchpoint capabilities, and to collect page usage statistics.

6.3.1.6 Fault On Execute (FOE)

An FOE fault is a memory management fault indicating that an attempted
instruction stream access was made to a virtual address whose Page Table Entry
(PTE) had the Fault On Execute bit set.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-11

Digital Restricted Distribution

As a part of initiating the FOE fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementation only to invalidate entries
from the Instruction-stream Translation Buffer on Fault
On Execute faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOE fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOE fault
on a page after clearing the page's PTE<FOE> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOE
fault and then an additional FOE fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOE faults to implement access mode changes and protected entry
to Kernel mode, to collect page usage statistics, and to detect programming errors
that try to execute data.

6.3.2 Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of performing an
arithmetic or conversion operation.

If integer register R31 or floating register F31 is specified as the destination of an
operation that can cause an arithmetic trap, it is UNPREDICTABLE whether the
trap will actually occur, even if the operation would definitely produce an exceptional
result.

Arithmetic traps are initiated in Kernel mode and push the exception stack frame
on the Kernel stack. The Register Write Mask is saved in R4, and the Exception
Summary parameter is saved in R5. These are described below.

When an arithmetic exception condition is detected, several instructions may be
in various stages of execution. These instructions are allowed to complete before
the arithmetic trap can be initiated. Some of these instructions may themselves
cause further arithmetic traps. Thus it is possible for several arithmetic traps to be
reported simultaneously.

It is also possible for the result of an instruction that causes an arithmetic trap to
be used as an operand in a subsequent instruction before the trap is taken. If this
would produce undesired behavior, software is responsible for inserting appropriate
TRAPB instructions to cause the trap to be recognized before the result is used.

Integer exceptional results (integer overflow) can be forwarded to the address
calculation for load and store instructions, to the address calculation for jump
instructions, as the source data for a store instruction, or as the source data for a
conditional branch instruction. This can result in the generation oian inappropriate
address, the storing of exceptional results in memory, or an unintended branch.

6-12 OpenVMS Alpha Software (II)

Digital Restricted Distribution

If this would produce undesired behavior, software is responsible for inserting
appropriate TRAPB instructions to cause the trap to be recognized before the result
is used.

6.3.2.1 Exception Summary Parameter

The Exception Summary parameter records the various types of arithmetic traps
that can occur together. These types of traps are described in subsections below.

Figure 6-5: Exception Summary

63 7 6 5 4 3 2 1 0

Zero

Table 6-3: Exception Summary

Bit Description

0 Software Completion (SWC)

Is set when all of the other arithmetic exception bits were set by :floating-operate.
instructions with the IS software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 6.3 for rules about using the SWC bit in a trap handler.

1 Invalid Operation (INV)

An attempt was made to perform a :floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

2 Division by Zero (DZE)
I

An attempt was made to perform a :floating divide operation with a divisor of zero.

3 Overflow (OVF)

A :floating arithmetic or conversion operation overflowed the destination exponent.

4 Underflow (UNF)

A :floating arithmetic or conversion operation underflowed the destination exponent.

5 Inexact Result (INE)

A :floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer Overflow (IOV)

An integer arithmetic operation or a conversion from :floating to integer overflowed the
destination precision.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-13

Digital Restricted Distribution

6.3.2.2 Register Write Mask

The Register Write Mask parameter records all registers that were targets of
instructions that set the bits in the exception summary register. There is a one­
to-one correspondence between bits in the Register Write Mask quadword and the
register numbers. The quadword records, starting at bit 0 and proceeding right
to left, which of the registers RO through R31, then FO through F31, received an
exceptional result.

NOTE
For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF
bit is set in the exception summary, and the F3 bit is
set in the register mask, even though the overflowed
sum in F3 can be overwritten with an in-range product
by the time the trap is taken. (This code violates the
destination reuse rule for software completion. See
Common Architecture, Chapter 4 for the destination
reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

6.3.2.3 lnvalld Operation (INV) Trap

An INV trap is reported for most floating-point operate instructions with an input
operand that is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity,
or IEEE denormal.

Floating INV traps are always enabled. If this trap occurs, the result register is
written with an UNPREDICTABLE value.

6.3.2.4 Division by Zero (DZE) Trap

ADZE trap is reported when a finite number is divided by zero. Floating DZE
traps are always enabled. If this trap occurs, the result register is written with an
UNPREDICTABLE value.

6.3.2.5 Overflow (OVF) Trap

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating OVF traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

6--14 OpenVMS Alpha Software (II)

Digital Restricted Distribution

6.3.2.6 Underflow (UNF) Trap

A UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating UNF trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

6.3.2.7 Inexact Result (INE) Trap

An INE trap is reported if the rounded result of an IEEE operation is not exact.
INE trap enable can be specified in each IEEE :floating-point operate instruction.
The unchanged result value is stored in all cases.

6.3.2.8 Integer Overflow (IOV) Trap

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. IOV trap enable can be specified in each arithmetic integer
operate instruction and each :floating-point convert-to-integer instruction. If integer
overflow occurs, the result register is written with the truncated true result.

6.3.3 Synchronous Traps

A synchronous trap is an exception condition that occurs at the completion of the
operation that caused the exception (or, if the operation can only be partially carried
out, at the completion of that part of the operation), but no successor instruction is
allowed to start. All traps that are not arithmetic traps are synchronous traps.

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK,
CHMU, CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the
exception stack frame is the address of the instruction immediately following the one
causing the trap condition. A CALL_PAL REI instruction to this PC will continue
without reexecuting the trapping instruction. The following subsections describe the
synchronous traps in detail.

6.3.3.1 Data Alignment Trap

All data must be naturally aligned or an alignment trap may be generated. Natural
alignment means that data bytes are on byte boundaries, data words are on word
boundaries, data longwords are on longword boundaries, and data quadwords are
on quadword boundaries.

A Data Alignment trap is generated by the hardware when an attempt is made to
load or store a longword or quadword to/from a register using an address that does
not have the natural alignment of the particular data reference.

Data alignment traps are fixed up by the PALcode and are optionally reported to the
operating system under the control of the DAT bit. If the bit is zero, the trap will
be reported. If the bit is set, after the alignment is corrected, control is returned to
the user. In either case, if the PALcode detects a LDx_L or STx_ C instruction, no
correction is possible and an illegal operand exception is generated.

The system software is notified via the generation of a Kernel mode exception
through the Unaligned_Access SCB vector (28016) The virtual address of the

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-15

Digital Restricted Distribution

unaligned data being accessed is stored in R4. R5 indicates whether the operation
was a read or a write (0 =read/load 1 =write/store).

PALcode may write partial results to memory without probing to make sure all
writes will succeed when dealing with unaligned store operations.

If a memory management exception condition occurs while reading or writing part
of the unaligned data, the appropriate memory management fault is generated.

Software should avoid data misalignment whenever possible since the emulation
performance penalty may be as large as 100 to 1.

The Data Alignment trap control bit is included in the HWPCB at offset +56 bit 63.
In order to change this bit for the currently executing process, the DATFX IPR may
be written via a CALL_PAL MTPR_DATFX instruction. This operation will also
update the value in the HWPCB.

6.3.3.2 Other Synchronous Traps

With the traps described in this subsection, the SCB vector quadword is saved in
R2 and the SCB parameter quadword is saved in R3. The change mode traps are
initiated in the more privileged of the current mode and the target mode, while the
other traps are initiated in Kernel mode.

6.3.3.2.1 Breakpoint Trap

A Breakpoint trap is an exception that occurs when a CALL_PAL BPI' instruction
is executed; see Chapter 2. Breakpoint traps are intended for use by debuggers and
can be used to place breakpoints in a program.

Breakpoint traps are initiated in Kernel mode so that system debuggers can capture
breakpoint traps that occur while the user is executing system code.

6.3.3.2.2 Bugcheck Trap

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK
instruction is executed; see Chapter 2. Bugchecks are used to log errors detected by
software.

6.3.3.2.3 Illegal Instruction Trap

An Illegal instruction Trap is an exception that occurs when an attempt is made
to execute an instruction whose opcode is reserved to Digital, is a subsetted opcode
that requires emulation on the host implementation, or is a privileged instruction
and the current mode is not Kernel.

6.3.3.2.4 Illegal Operand Trap

An Illegal Operand Trap occurs when an attempt is made to execute PALcode with
operand values that are illegal or reserved for future use by Digital.

Illegal operands include:

• An invalid combination of bits in the PS restored by the CALL_PAL REI
instruction.

6-16 OpenVMS Alpha Software (II)

Digital Restricted Distribution

• An unaligned operand passed to PALcode.

6.3.3.2.5 Generate Software Trap

A Generate Software Trap is an exception that occurs when a CALL_PAL GENTRAP
instruction is executed; see Chapter 2. The intended use is for low-level compiler­
generated code that detects conditions such as divide-by-zero, range errors, subscript
bounds and negative string lengths.

6.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK
instruction is executed; see Chapter 2. Change Mode to Kernel traps are initiated
in Kernel mode and push the exception frame on the Kernel stack.

6.3.3.2. 7 Change Mode to Executive Trap

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL
CHME instruction is executed; see Chapter 2. Change Mode to Executive traps are
initiated in the more privileged of the current mode and Executive mode, and push
the exception frame on the target stack.

6.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL
CHMS instruction is executed; see Chapter 2. Change Mode to Supervisor traps are
initiated in the more privileged of the current mode and Supervisor mode, and push
the exception frame on the target stack.

6.3.3.2.9 Change Mode to User Trap

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU
instruction is executed; see Chapter 2. Change Mode to User traps are initiated
in the more privileged of the current mode and User mode, and push the exception
frame on the target stack.

6.4 Interrupts

The processor arbitrates interrupt requests according to priority. When the priority
of an interrupt request is higher than the current processor IPL, the processor will
raise the IPL and service the interrupt request. The interrupt service routine is
entered at the IPL of the interrupting source, in Kernel mode, and on the Kernel
stack. Interrupt requests can come from I/O devices, memory controllers, other
processors, or the processor itself.

The priority level of one processor does not affect the priority level of other
processors. Thus, in a multiprocessor system, interrupt levels alone cannot be used
to synchronize access to shared resources.

Synchronization with other processors in a multiprocessor system involves a
combination of raising the IPL and-executing an interlocking instruction sequence.
Raising the IPL prevents the synchronization sequence itself from being interrupted
on a single processor while the interlock sequence guarantees mutual exclusion
with other processors. Alternately, one processor can issue explicit interprocessor

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-17

Digital Restricted Distribution

interrupts (and wait for acknowledgment) to put other processors in a known
software state, thus achieving mutual exclusion.

In some implementations, several instructions may be in various stages of execution
simultaneously. Before the processor can service an interrupt request, all active
instructions must be allowed to complete without exception. Thus, when an
exception occurs in a currently active instruction, the exception is initiated and
the exception stack frame built immediately before the interrupt is initiated and its
stack frame built.

The following events will cause an interrupt:

• Software interrupts - IPL 1to15.

• Asynchronous System Traps - IPL 2.

• Passive Release interrupts - IPL 20 to 23.

• 1/0 Device interrupts - IPL 20 to 23.

• Interval Clock interrupt - IPL 22.

• Interprocessor interrupt - IPL 22.

• Performance Monitor interrupt - IPL 29

• Powerfail interrupt - IPL 30.

Interrupts are initiated in Kernel mode and push the interrupt stack frame of eight
quadwords onto the Kernel stack. The PC saved in the interrupt stack frame is
the virtual address of the first instruction not executed after the interrupt condition
was recognized. A CALL_PAL REI instruction to the saved PC/PS will continue
execution at the point of interrupt.

Each interrupt source has a separate vector location (offset) within the System
Control Block (SCB); see Section 6.6. With the exception of 1/0 device interrupts,
each of the above events has a unique fixed vector. 1/0 device interrupts occupy a
range of vectors that can be both statically and dynamically assigned. Upon entry to
the interrupt service routine, R2 contains the SCB vector quadword and R3 contains
the SCB parameter quadword. For Corrected Error interrupts, R4 optionally locates
additional information; see Section 6.5.2.

In order to reduce interrupt overhead, no memory mapping information is changed
when an interrupt occurs. Therefore, the instructions, data, and the contents of the
interrupt vector for the interrupt service routine must be present in every process
at the same virtual address.

Interrupt service routines should follow the discipline of not lowering IPL below
their initial level. Lowering IPL in this way could result in an interrupt at an
intermediate level which would cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain instruction
sequences that must synchronize with possible interrupt conditions (such as
powerfail). This can be accompiished by specifying the desired IPL and executing

6-18 OpenVMS Alpha Software (II)

Digital Restricted Distribution

a CALL_PAL MTPR_IPL instruction or by executing a CALL_PAL REI instruction
that restores a PS that contains the desired IPL; see Chapter 2.

6.4.1 Software Interrupts • IPLs 1 to 15
6.4.1.1 Software Interrupt Summary Register

The architecture provides fifteen priority interrupt levels for use by software -Oevel
0 is also available for use by software but interrupts can never occur at this level).
The Software Interrupt Summary Register (SISR) stores a mask of pending software
interrupts. Bit positions in this mask which contain a 1 correspond to the levels on
which software interrupts are pending.

When the processor IPL drops below that of the highest requested software interrupt,
a software interrupt is initiated and the corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register which may be read by Kernel
mode software by executing a CALL_PAL MFPR_SISR instruction; see Section 5.3.

6.4.1.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only internal processor
register used for making software interrupt requests.

Kernel mode software may request a software interrupt at a particular level by
executing a CALL_PAL MTPR_SIRR instruction; see Section 5.3.

If the requested interrupt level is greater than the current IPL, the interrupt will
occur before the execution of the next instruction. If, however, the requested level is
equal to or less than the current processor IPL, the interrupt request will be recorded
in the Software Interrupt Summary Register (SISR) and deferred until the processor
IPL drops to the appropriate level.

Note that no indication is given if there is already a request at the specified level.
Therefore, the respective interrupt service routine must not assume that there is a
one-to-one correspondence between interrupts requested and interrupts generated.
A valid protocol for generating this correspondence is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the respective software interrupt level.

2. The requester uses CALL_PAL MTPR_SIRR to request an interrupt at the
appropriate level.

3. When enabling conditions arise, processor HW clears the appropriate SISR bit
as part of initiating the software interrupt.

4. The interrupt service routine attempts to remove a control block from the request
queue. If there are no control blocks in the queue, the interrupt is dismissed with
a CALL_PAL REI instruction.

5. If a valid control block is removed from the queue, the requested service is
performed and Step 3 is repeated.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-19

Digital Restricted Distribution

6.4.2 Asynchronous System Trap - IPL 2
Asynchronous System Traps (ASTs) are a means of notifying a process of events that
are not synchronized with its execution, but which must be dealt with in the context
of the process. An AST is initiated in Kernel mode at IPL 2 when the current mode
is less privileged than or equal to a mode for which an AST is pending and not
disabled, with PS<IPL> less than 2; see Sections 6.7.6 and 4.3.

There are four separate per-mode SCB vectors, one for each of Kernel, Executive,
Supervisor, and User modes.

On encountering an AST, the interrupt stack frame is pushed on the Kernel stack;
the value of the PC saved in this stack frame is the address of the next instruction
to have been executed if the interrupt had not occurred. The SCB vector quadword
is saved in R2 and the SCB parameter quadword in R3.

6.4.3 Passive Release I nterrupts-IPLs 20 to 23
Passive releases occur when the source of an interrupt granted by a processor cannot
be determined. This can happen when the requesting 110 device determines that it
no longer requires an interrupt after requesting one, or when a previously requested
interrupt has already been serviced by another processor· in some multiprocessor
configurations. The interrupt handler for passive releases executes at the priority
level of the interrupt request.

6.4.4 1/0 Device Interrupts - IPLs 20 to 23
The architecture provides four priority levels for use by 1/0 devices. 1/0 device
interrupts are requested when the device encounters a completion, attention, or
error condition and the respective interrupt is enabled. \ See Platform Section,
Chapter 3 for more information. \

6.4.5 Interval Clock Interrupt - IPL 22
The Interval Clock requests an interrupt periodically.

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB
contains the number of interval clock interrupts per second that occur in an actual
Alpha implementation, scaled up by 4096, and rounded to a 64-bit integer. \ (See
Platform Section, Chapter 3.) \

The accuracy of the interval clock must be at least 50 parts per million (ppm).

HARDWARE/SOFTWARE NOTE
For example, an interval of 819.2 usec derived from a 10
MHz Ethernet clock and a 13-bit counter is acceptable.

To guarantee software progress, the interval clock
interrupt should be no more frequent than the time it
takes to do 500 main memory accesses. Over the life of
the architecture, this interval may well decrease much
more slowly than CPU cycle time decreases.

6-20 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Other constraints may apply to Secure Kernel systems.

6.4.5.1 Interprocessor Interrupt· IPL 22

Interprocessor interrupts are provided to enable operating system software running
on one processor to interrupt activity on another processor and cause operating
system dependent actions to be performed.

6.4.5.1.1 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal
processor register used for making a request to interrupt a specific processor.

Kernel mode software may request to interrupt a particular processor by executing
a CALL_PAL MTPR_IPIR instruction; see Section 5.3.

If the specified processor is the same as the current processor and the current IPL is
less than 22, then the interrupt may be delayed and not initiated before the execution
of the next instruction.

Note that, like software interrupts, no indication is given as to whether there is
already an interprocessor interrupt pending when one is requested. Therefore,
the interprocessor interrupt service routine must not assume there is a one-to-one
correspondence between interrupts requested and interrupts generated. A valid
protocol similar to the one for software interrupts for generating this correspondence
is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the target processor.

2. The requester uses CALL_PAL MTPR_IPIR to request an interprocessor
interrupt on the target processor.

3. The interprocessor interrupt service routine on the target processor attempts to
remove a control block from its request queue. If there are no control blocks
remaining, the interrupt is dismissed with a CALL_PAL REI instruction.

4. If a valid control block is removed from the queue, the specified action is
performed and Step 3 is repeated.

6.4.6 Performance Monitor Interrupts-IPL 29
These interrupts provide some of the support for processor or system performance
measurements. The implementation is processor or system specific.

6.4.7 Powerfail Interrupt· IPL 30
If the system power supply backup option permits powerfail recovery, a Powerfail
interrupt is generated to each processor when power is about to fail. \ See Platform
Section, Chapter 4 for a description of powerfail recovery requirements, and for
a description of the interactions between system software and the console during
system restarts. \

In systems in which the backup option maintains only the contents of memory and
keeps system time with the BB_ WATCH, the power supply requests a .powerfail

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6--21

Digital Restricted Distribution

interrupt ~o permit volatile system state to be saved. Prior to dispatching to the
powerfail interrupt service routine, PALcode is responsible for saving all system
state which is not visible to system software. Such state includes, but is not limited
to, processor internal registers and PALcode temporary variables.

PALcode is also responsible for saving the contents of any writeback caches
or buffers, including the powerfail interrupt stack frame. System software is
responsible for saving all other system state. Such state includes, but is not limited
to, processor registers and writeback cache contents. State can be saved by forcing
all written data to a backed-up part of the memory subsystem; software may use
the CALL_PAL CFLUSH instruction.

The Powerfail interrupt will not be initiated until the processor IPL drops below
30. Thus, critical code sequences can block the power-down sequence by raising the
IPL to 31. Software, however, must take extra care not to lock out the power-down
sequence for an extended period of time. \The time interval is platform specific.\

Explicit state is not provided by the architecture for software to directly determine
whether there were outstanding interrupts when powerfail occurred. It is the
responsibility of software to leave sufficient information in memory so that it may
determine the proper action on power-up.

6.5 Machine Checks

A Machine Check, or mcheck, indicates that a hardware error condition was detected
and may or may not be successfully corrected by hardware or PALcode. Such
error conditions can occur either synchronously or asynchronously with respect to
instruction execution. There are four types:

1. System Machine Check (IPL 31)

These machine checks are generated by error conditions which are detected
asynchronously to processor execution but are not successfully corrected by
hardware or PALcode. Examples of system machine check conditions include
protocol errors on the processor-memory-interconnect and unrecoverable memory
errors.

System machine checks are always maskable and deferred until processor IPL
drops below IPL 31.

2. Processor Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and not successfully corrected by hardware or PALcode. Examples of processor
machine check conditions include processor internal cache errors, translation
buffer parity errors, or read access to a non-existent local I/O space location
(NXM).

Processor machine checks may be nonmaskable or maskable. If nonmaskable,
they are initiated immediately, even if the processor IPL is 31. If maskable, they
are deferred until processor IPL drops below IPL 31.

3. System Correctable Machine Check (IPL 20)

6-22 OpenVMS Alpha Software (II)

Digital Restricted Distribution

These machine checks are generated by error conditions that are detected
asynchronously to processor execution and are successfully corrected by
hardware or PALcode. Examples of system correctable machine check conditions
include single bit errors within the memory subsystem.

System correctable machine checks are always maskable and deferred until
processor IPL drops below IPL 20.

4 .. Processor Correctable Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and successfully corrected by hardware or PALcode. Examples of processor
correctable machine check conditions include corrected processor internal cache
errors and corrected translation buffer tab errors.

Processor correctable machine checks may be nonmaskable or maskable. If
nonmaskable, they are initiated immediately, even if the processor IPL is 31.
If maskable, they are deferred until processor IPL drops below IPL 31.

Machine Checks are initiated in Kernel mode, on the Kernel stack, and cannot be
disabled.

Correctable machine checks permit the pattern and frequency of certain errors to be
captured. The delivery of these machine checks to system software can be disabled
by setting IPR MCES<4:3>, as described in Chapter 5. Note that setting IPR
MCE8<4:3> does not disable the generation of the machine check or the correction of
the error, but rather suppresses the reporting of that correction to system software.

The PC in the machine check stack frame is that of the next instruction that would
have issued if the machine check condition had not occurred. This is not necessarily
the address of the instruction immediately following the one encountering the error,
and intervening instructions may have changed operands or other state used by the
instruction encountering the error condition. A CALL_PAL REI instruction to this
PC will simply continue execution from the point at which the machine check was
taken.

NOTE
On machine checks, a meaningful PC is delivered on a
best-effort basis. The machine state, processor registers,
memory, and I/O devices may be indeterminate.

Machine checks may be deliberately generated by software, such as by probing non­
existent-memory during memory sizing or searching for local I/O devices. In such
a case, the DRAINA PALcode instruction can be called to force any outstanding
machine checks to be taken before continuing.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-23

Digital Restricted Distribution

6.5.1 Software Response

The reaction of system software to machine checks is specific to the characteristics
of the processor, platform, and system software. System software must determine if
operation should be discontinued on an implementation-specific basis.

To assist system software, PALcode provides a retry flag in the machine check logout
frame (see Figure 6-6. If set, the state of the processor and platform hardware has
not been compromised; system software operation should be able to continue.

If the retry flag is clear, the state of the processor is either unknown or is known to
have been updated during partial execution of one or more instructions. System
software operation can continue only after system software determines that the
hardware state change permits and/or takes corrective action.

PALcode should take appropriate implementation-specific actions prior to setting
the retry flag. PALcode should also attempt to ensure that each encountered error
condition generates only one machine check.

IMPLEMENTATION NOTE
An important example of using the retry flag is read
NXM.

Also, a read NXM should not generate both a Processor
Machine Check and a System Machine Check.

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check
Error Summary (MCES) register prior to initiating a system or processor machine
check. System software must clear that flag to dismiss the machine check If a second
uncorrectable machine check hardware error condition is detected while the flag is
set, or if PALcode cannot deliver the machine check, PALcode forces the processor to
enter console I/O mode, and subsequent actions, such as processor restart, are taken
by the console. The REASON FOR HALT code is "double error abort encountered".
\ See Platform Section, Chapter 4. \

Similiarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in
the Machine Check Error Summary (MCES) register prior to initiating a system
correctable error interrupt or processor correctable machine check. System software
must clear that flag to dismiss the condition and permit the reuse of the logout area.
If a second correctable hardware error condition is detected while the flag is set, the
error is corrected, but not reported. PALcode does not overwrite the logout area and
the processor remains in program I/O mode.

6-24 OpenVMS·Alpha Software (II)

Digital Restricted Distribution

6.5.2 Logout Areas
When a hardware error condition is encountered, PALcode optionally builds a logout
frame prior to passing control to the machine check service routine. \ The logout
frame is built in the Logout Area located by the processor's per-CPU slot in the
HWRPB; see Platform Section, Chapter 3. \

Figure 6-6: Corrected Error and Machine Check Logout Frame

63 62 61 32 31 0

Rlsl SBZ Frame Size :FRAME

System Off set CPU Offset :+8

PALcode-Specific Information :+16

CPU-Specific Information :+CPU Offset

System-Specific Information :+SYS Offset

:+FRAME_ SIZE

Table 6-4: Corrected Error and Machine Check Logout Frame Fields
Offset

FRAME

+04

+08

Description

FRAME SIZE - Size in bytes of the logout frame including the FRAME SIZE
longword.

FRAME FLAGS - Informational flags.

Bit Description

31 RETRY FLAG - Indicates whether execution can be resumed
after dismissing this machine check. Set on Corrected Error
interrupts; may be set on Machine Checks.

30 SECOND ERROR FLAG - Indicates that a second correctable
error was encountered. Set on Corrected Error interrupts
when a correctable error was encountered while the relevant
correctable error bit (PCE or SCE) is set in the MCES register.
Clear on Machine Checks.

29-0 SBZ.

CPU OFFSET - Offset in bytes from the base of the logout frame to the
cpu-specific information. If 16 the frame contains no PALcode-specific
information. If CPU OFFSET is equal to SYS OFFSET, the frame contains
no cpu-specific information.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-25

Digital Restricted Distribution

Table 6-4 (Cont.): Corrected Error and Machine Check Logout Frame Fields
Offset Description

+12 SYS OFFSET - Offset in bytes from the base of the logout frame to the
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the
frame contains no system-specific information.

+16 PALCODE INFORMATION - PALcode-specific logout information.

+CPU OFFSET CPU INFORMATION - Cpu-specific logout information.

+SYS OFFSET SYS INFORMATION - System platform-specific logout information.

The logout frame is optional; the service routine uses R4 to locate the frame, if
any. Upon entry to the service routine, R4 contains the byte offset of the logout
frame from the base of the logout area. If no frame was built, R4 contains -1
(FFFF FFFF FFFF FFFF16).

6.6 System Control Block

The System Control Block (SCB) specifies the entry points for exception, interrupt,
and machine check service routines. The block is from SK to 32K bytes long, must
be page aligned, and must be physically contiguous. The PFN is specified by the
value of the System Control Block Base (SCBB) internal register.

The SCB consists of from 512 to 2048 entries, each 16 bytes long. The first 8 bytes
of an entry, the vector, specify the virtual address of the service routine associated
with that entry. The second 8 bytes, the parameter, are an arbitrary quadword value
to be passed to the service routine.

The SCB entries are.grouped into those for:

1. Faults

2. Arithmetic traps

3. Asynchronous system traps

4. Data alignment trap

5. Other synchronous traps

6. Processor software interrupts

7. Processor hardware interrupts

8. 1/0 device interrupts

9. Machine checks

The first 512 entries (offsets 0000 through 1FF016) contain all architecturally defined
and any statically allocated entries. All remaining SCB entries, if any, are used
only for those I/O device interrupt vectors that are assigned dynamically by system
soft\11:;are. It is the responsibility of that software to ensure the consistency of the
assigned vector and the SCB entry.

6-26 Open VMS Alpha Software (11)

Digital Restricted Distribution

6.6.1 see entries for faults

The exception handler for a fault executes with the IPL unchanged, in Kernel mode,
on the Kernel stack.

Table 6-5: SCB Entries for Faults
Byte
offset16 Entry name

000 -unused-

010 Floating disabled fault

020-070 -unused-

080 Access Control Violation fault

090 Translation Not Valid fault

OAO Fault on Read fault

OBO Fault on Write fault

oco Fault on Execute fault

OAO-OFO -unused-

6.6.2 see Entries for Arithmetic Traps

The exception handler for an arithmetic trap executes with the IPL unchanged, in
Kernel mode, on the Kernel stack.

Table 6-6: SCB Entries for Arithmetic Traps
Byte
offset16 Entry name

200 Arithmetic Trap

210-230 -unused-

6.6.3 see Entries for Asynchronous System Traps (ASTs)

The interrupt handler for an asynchronous system trap executes at IPL 2, in Kernel
mode, on the Kernel stack.

Table 6-7: SCB Entries for Asynchronous System Traps
Byte
offset16 Entry name

240 Kernel Mode AST

250 Executive Mode AST

260 Supervisor Mode AST

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-27

Digital Restricted Distribution

Table 6-7 {Cont.): SCB Entries for Asynchronous System Traps

Byte
offset16 Entry name

270 User Mode AST

6.6.4 see Entries for Data Alignment Traps
The exception handler for a data alignment trap executes with the IPL unchanged
in Kernel mode, on the Kernel Stack.

Table 6-8: SCB Entries for Data Alignment Trap

Byte
offset16 Entry name

280 Unaligned_Access

290-3FO -unused-

6.6.5 see Entries for other Synchronous Traps
The exception handler for a synchronous trap, other than those described above,
executes with the IPL unchanged, in the mode and on the stack indicated below.
"MostPriv" indicates that the handler executes in either the original mode or the
new mode, whichever is the most privileged.

Table 6-9: SCB Entries for Other Synchronous Traps

Byte
Offset16 Entry Name Mode

400

410

420

430

440

450

460

470

480

490

4AO

4BO

Breakpoint Trap

Bug Check Trap

Illegal Instruction Trap

Illegal Operand Trap

Generate Software Trap

-unused-

-unused-

-unused-

Change Mode to Kernel

Change Mode to Executive

Change Mode to Supervisor

Change Mode to User

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

MostPriv

MostPriv

Current

6-28 OpenVMS Alpha Software (II)

Digital Restricted Distribution

Table 6-9 (Cont.): SCB Entries for Other Synchronous Traps
Byte
Offset1s Entry Name Mode

4C0-4FO -reserved for Digital-

6.6.6 see Entries for Processor Software Interrupts

The exception handler for a processor software interrupt executes at the target IPL,
in Kernel mode, on the Kernel stack.

Table 6-10: Entries for Processor Software Interrupts

Byte
Offset16 Entry Name Target IPL10

500 -unused-

510 Software interrupt level 1 1

520 Software interrupt level 2 2

530 Software interrupt level 3 3

540 Software interrupt level 4 4

550 Software interrupt level 5 5

560 Software interrupt level 6 6

570 Software interrupt level 7 7

580 Software interrupt level 8 8

590 Software interrupt level 9 9

5AO Software interrupt level 10 10

5BO Software interrupt level 11 11

5CO Software interrupt level 12 12

5DO Software interrupt level 13 13

SEO Software interrupt level 14 14

5FO Software interrupt level 15 15

6.6. 7 SCe Entries for Processor Hardware Interrupts

The interrupt handler for a processor hardware interrupt executes at the target IPL,
in Kernel mode, on the Kernel stack.

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-29

Digital Restricted Distribution

Table 6-11 : see Entries for Processor Hardware Interrupts
Byte
Offset16 Entry name Target IPL10

600 Interval clock interrupt 22

610 Interprocessor interrupt 22

640 Powerfail interrupt 30

650 Performance monitor 29

680-6EO Reserved - processor specific

6FO Passive Release 20-23

Processor-specific SCB entries include those used by console devices (if any) or other
peripherals dedicated to system support functions.

6.6.8 SCB Entries for 1/0 Device Interrupts

The interrupt handler for an I/O device interrupt executes at the target IPL, in
Kernel mode, on the Kernel stack. SCB entries for offsets of 80016 through 7FF016
are reserved for I/O device interrupts.

6.6.9 SCB Entries for Machine Checks

The handler for machine checks executes in Kernel mode, on the Kernel stack. The
handler for system correctable machine checks executes at IPL 20; the handler for
all other machine checks executes at IPL 31.

Table 6-12: SCe Entries for Machine Checks
Byte
Offset16 Entry Name

620 System correct. machine check

630 Processor correct. machine check

660 System machine check

670 Processor machine check

6-30 OpenVMS Alpha Software (II)

Target IPL10

20

31

31

31

Digital Restricted Distribution

6.7 PALcode Support

6. 7 .1 Stack Writability

In response to various exceptions, interrupts, and machine checks, PALcode pushes
information on the Kernel stack. PALcode may write this information without
first probing to ensure that all such writes to the Kernel stack will succeed. If a
memory management exception occurs while pushing information, PALcode forces
the processor to enter console I/O mode, and subsequent actions, . such as processor
restart, are taken by the console. The REASON FOR HALT code is "processor halted
due to kernel-stack-not-valid". \ See Platform Section, Chapter 4. \

6. 7.2 Stack Residency

The User, Supervisor, and Executive stacks for the current process do not need to be
resident. Software running in Kernel mode can bring in or allocate stack pages as
TNV faults occur. However, since this activity is taking place in Kernel mode, the
Kernel stack must be fully resident.

The faults TNV, ACV, FOR, and FOW, occurring on Kernel mode references to the
Kernel stack, are considered serious system failures from which recovery is not
possible. If any of these faults occur, PALcode forces the processor to enter console I/O
mode, and subsequent actions, such as processor restart, are taken by the console.
The REASON FOR HALT code is "processor halted due to kernel-stack-not-valid".
\ See Platform Section, Chapter 4. \

6.7.3 Stack Alignment

Stacks may have arbitrary byte alignment, but performance may suffer if at least
octaword alignment is not maintained by software.

PALcode creates stack frames in response to exceptions and interrupts. Before doing
so, the target stack is aligned to a 64-byte boundary by setting the six low bits of the
target SP to 0000002• The previous value of these bits is stored in the SP _ALIGN
field of the saved PS in memory, for use by a CALL_PAL REI instruction.

Software-constructed stack frames must be 64 byte aligned and have SP _ALIGN
properly set; otherwise, a CALL_PAL REI instruction will take an illegal operand
trap.

6.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions and interrupts and machine checks are initiated by PALcode with
interrupts disabled. When an exception, interrupt, or machine check, is initiated,
the associated SCB vector is read to determine the address of the service routine.
PALcode then attempts to push the PC, PS, and R2 .. R7 onto the target stack. When
an interrupt (software or hardware but not AST) is initiated, PS<lP> is set to 1 to
indicate an interrupt is in progress. Additional parameters may be passed in R4
and R5 on exceptions and machine checks.

During the attempt to push this information, the exceptions (faults) TNV, ACV, and
FOW can occur:

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-31

Digital Restricted Distribution

• If any of those faults occur when the target stack is User, Supervisor, or
Executive, then the fault is taken on the Kernel stack.

• If any of those faults occur when the target stack is the Kernel stack, PALcode
forces the processor to enter console 110 mode, and subsequent actions, such as
processor restart, are taken by the console. The REASON FOR HALT code is
"processor halted due to kernel-stack-not-valid". \See Platform Section, Chapter
4. \

6. 7 .5 Initiate Exception or Interrupt or Machine Check Model
check for exception or interrupt or mcheck:

IF-NOT-{ready_to=initiate_exception OR
ready to initiate interrupt OR
ready=to=initiate=mcheck} THEN

BEGIN
{fetch next instruction}
{decode and execute instruction}

END
ELSE

BEGIN
{wait for instructions in progress to complete}

! clear interrupt pending
tmp +-- 0

IF {unrnaskable mcheck pending} THEN
BEGIN

{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<O> = 1} THEN

{enter console}
ELSE IF {uncorrectable} THEN

new mode +-- Kernel
new_ipl +-- 31

! set mcheck error flag
MCES<O> +-- 1

ELSE IF {reporting enabled} THEN
new mode +-- Kernel

END
END

new_ipl +-- 31
MCES<2> +-- 1

ELSE IF {data alignment trap} THEN
new mode +-- Kernel

ELSE IF {synchronous trap} THEN
CASE {opcode} OF

{back up implementation specific state if necessary}
CHME: new mode +-- min(PS<CM>,Executive)
CH.MS: new mode +-- min(PS<CM>,Supervisor)
CHMU: new mode +- min(PS<CM>,User)
otherwise: new mode +- Kernel

END CASE

6-32 OpenVMS Alpha Software (11)

Digital Restricted Distribution

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN

{back up implementation specific state if necessary}
IF {MCES<O> = 1} THEN

{enter console}
ELSE

END
END

ELSE

new mode +­

new:=ipl +­

MCES<O> +-

Kernel
31

1 ! set mcheck error flag

new mode +- Kernel

END

IPR_SP[PS<CM>] +- SP
new_sp +- IPR_SP[new_mode]

IF {exception pending} THEN
BEGIN

{back up implementation specific state if necessary}
new_ipl +- PS<IPL>

END

ELSE IF {interrupt pending} THEN
new_ipl +- {interrupt source IPL}
tmp +- 1 ! set interrupt pending

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN

new_ipl +- 20
MCES<l> +- 1

END

save_align +- new_sp<S:O>
new_sp<S:O> +- 0

PUSH(PS OR LEFT_SHIFT(save_align,56), old_pc, new_mode)
PUSH(R7, R6, new_mode)
PUSH(RS, R4, new mode)
PUSH(R3, R2, new:=mode)

PS<SW> +- 0
PS<CM> +- new mode
PS<IP> +- tmp
PS<IPL> +- new_ipl
SP +- new_sp

IF {memory management fault} THEN
R4 +- VA
RS +- MMF

END

IF {data alignment trap} THEN
R4 +- VA

RS +- { 0 if read/load 1 if write/store }
END

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-33

Digital Restricted Distribution

END

IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}

END

R4 ._. logout_area_offset
ELSE

R4 +-- -1
END

IF {arithmetic Trap} THEN

END

R4 +-- register write mask
RS +-- exception summary

IF {software interrupt} THEN
SISR +-- SISR AND NOT{ 2**{ PRIORITY_ENCODE(SISR) } }

END

vector +-- {exception or interrupt or mcheck SCB offset}

R2 +-- (SCBB + vector)
R3 +-- (SCBB + vector + 8)
PC +-- R2

GOTO check_for_exception_or_interrupt_or_mcheck

PROCEDURE PUSH(first, last, mode)
BEGIN

IF ACCESS(new_sp - 16, mode) THEN
BEGIN

(new_sp - 8) +-- first
(new_sp - 16) +-- last
new_sp +-- new_sp - 16
RETURN

END
ELSE

END
END

{initiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}

6. 7 .6 PALcode Interrupt Arbitration

The following sections describe the logic for the interrupt conditions produced by the
specified operation.

6.7.6.1 Writing the AST Summary Register

Writing the ASTSR internal processor register (see Section 5.3) requests an AST for
any of the four processor modes. This may request an AST on a formerly inactive
level and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTSR<3:0> +-- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6-34 OpenVMS Alpha Software (II)

Digital Restricted Distribution

6.7.6.2 Writing the AST Enable Register

Writing the ASTEN internal processor register (see Section 5.3) enables ASTs for
any of the four processor modes. This may enable an AST on a formerly inactive
level and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTEN<3:0> ~ {ASTEN<3:0> AND R16<3:0>} OR Rl6<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6.7.6.3 Writing the IPL Register

Writing the IPL internal processor register (see Section 5 .3) changes the current
IPL. This may enable an AST or software interrupt on a formerly ·inactive level and
thus cause an AST or software interrupt.

The logic required to check for this condition is:

PS<IPL> ~ R16<4:0>

! check for software interrupt at level 2 .. 15

IF {RIGHT_SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE 0} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<l> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL 1}

6. 7.6.4 Writing the Software Interrupt Request Register

Writing the SIRR internal processor register (see Section 5.3) requests a software
interrupt at one of the fifteen software interrupt levels. This may cause a formerly
inactive level to cause a software interrupt.

The logic required to check for this condition is:

SISR<level> ~ 1
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

6.7.6.5 Return from Exception or Interrupt

The CALL_PAL REI instruction (see Chapter 2) writes both the Current Mode and
IPL fields of the PS; see Section 6.2. This may enable a formerly disabled AST or
software interrupt to occur.

The logic required to check for this condition is:

PS ~ New PS

! check for software interrupt at level 2 .. 15

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-35

Digital Restricted Distribution

IF {RIGHT_SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE 0} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

tmp +- NOT LEFT SHIFT(lllO(bin), PS<CM>)
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE 0} AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<l> AND {PS<IPL> EQ 0} THEN
{initiate software interrupt at IPL l}

6.7.6.6 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing the ASTEN
internal processor register (see Section 5.3). This may enable a formerly disabled
AST to cause an AST interrupt.

The logic required to check for this condition is:

RO +- ZEXT(ASTEN<PS<CM>>)
ASTEN<PS<CM>> +- Rl6<0>

IF ASTEN<PS<CM>> AND ASTSR<PS<CM>> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

6. 7. 7 Processor State Transition Table
Table 6-13 shows the operations that can produce a state transition and the specific
transition produced. For example, if a processor's initial state is Supervisor mode, it
is not possible for the processor to transition to a program halt condition. A processor
can only transition to program halt from Kernel mode.

In Table 6-13:

• REI increases mode or lowers IPL.

• MTPR changes IPL, or is a CALL_PAL MTPR_ASTSR or CALL_PAL MTPR_ASTEN
instruction that causes an interrupt request.

• Exe is a state change caused by an exception.

• Int is a state change caused by an interrupt.

• Mcheck is a state change caused by a machine check.

6-36 OpenVMS Alpha Software (JI)

Digital Restricted Distribution

Table 6-13: Processor State Transitions
Initial State: Final State:

Program
User Super. Exec. Kernel Halt

User CHMU CHMS CHME CHMK Not
REI Exe Possible

Int
Mcheck
SWASTEN

Supervisor REI CHMS CHME CHMK Not
REI Exe Possible

Int
Meheek
SWASTEN

Executive REI REI CHME CHMK Not Possible
REI Exe

Int
Meheek
SWASTEN

Kernel REI REI REI CHMK HALT
REI
Int
Exe
Meheek
MTPR
SWASTEN

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-37

Digital Restricted Distribution

6.8 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Removed intr_fiag and lock_:Bag from· initiate excep inter mcheck model

2. Added eco #45--correctable errors (machine checks), performance monitor, and
passive release information

3. Conditionalized references to platform section

4. Widget-> device

5. Reordered and combined sections to consolidate information

6. Added eco #30, #44 (DATFX) also eco #29 (GENTRAP)

7. Corrected init exception model for eco 25 PS(IP) bit and eco 23 (timer)

8. DRAINT to TRAPB

9. Converted to SDML

10. Added ECO #18, #23 (removed AT references), #25

11. Integrate references for Console ECO #15

Revision 4.0, March 29, 1991

1. On Memory Management Faults, R4 now contains the exact faulting address

2. Removed references to D_:Boat

3. Typos

4. Note reason for unaligned load locked and store conditional vectors

5. Correct reference from AST Request Register to AST Summary Register

6. Correct pointer to location of physical address of error logout area from R2 to R4
in Processor Machine Check Abort section

7. Correct two references from Corrected Error logout area to Machine Check logout
area

8. Change name of 'instruction issue model' to 'initiate exception or interrupt model'

9. Swap order of data alignment trap and synchronous trap code fragments in
initiate exception or interrupt model

10. Correct which bits are loaded (=<4:0>) from R16 into IPR IPL by MTPR IPL

11. Add REI* and CHMx to each entry along the main diagonal of the Processor
State Transition table

12. Describe machine check logout area as reserved for PALcode and console use

13. Add R2 .. R7 to values restored by REI in 'Stack Frames' text

6-38 OpenVMS Alpha Software (II)

Digital Restricted Distribution

14. Modify logic statement for Swap AST Enable so that it reflects CALL_PAL
SWASTEN instruction action

15. Remove references to ASTs as 'interrupts', substituting 'exception' where
appropriate

16. Move and modify reference to ASTs in last bullet item of section Exceptions to
section Asynchronous System Trap

17. Define meaning of 'trigger instruction' in text of arithmetic trap description

18. Change values defined in R5 for memory management faults to full quadword
values

19. Modify initiate exception or interrupt model to show bit corresponding to software
interrupt being dispatched to is cleared before the dispatch

20. Modified tense of description of saved PC for arithmetic trap from 'would have
issued' to 'would have been issued'

21. Move power-fail text at end of section Interprocessor Interrupt Request Register
to end of subtext of section Interrupts

22. Clarify reference to 'RA' in initiate exception or interrupt pseudocode

23. Change 'vector+--- {exception .. }' to 'vector+- {exception or interrupt .. }' in initiate
exception or interrupt pseudocode

· 24. Note that there are four per-mode SCB vectors for ASTs

25. Add entry for Software Interrupts to table Exceptions and Interrupts Summary

26. Restrict the class of instructions that are described as taking Invalid Operation
traps on non-finite values

27. Clarify that, following a memory management fault, R4 contains an address
within the implementation-dependent-sized page that contains the faulting
address

28. Reorganize the sections on synchronous traps (starting around current
section $$section(synchr_trap)) to eliminate references to ASTs under Other
Synchronous Traps category

29. Elaborate Interval Clock Interrupt description

30. Changed Load and Store D to Gin SCB entries table for Alignment Traps

31. Moved 'perf. monitor' from Asynchronous Traps to Hardware Interrupts

Revision 3.0, March 2, 1990

1. Get PS/PC in correct order in stack frames

2. Restructure stack frames and R2 .. R7

3. Increase stack frame alignment to 64 byte

4. · Restructure SCB

OpenVMS Exceptions, Interrupts, and Machine Checks (II) 6-39

Digital Restricted Distribution

\

5. Change some faults to synchronous traps

6. Redo and simplify arithmetic traps

7-. Rework AST delivery to match VAX

8. Specify writeback cache behavior at powerfail

9. Remove IPL from Processor State Transition Table

10. Remove Privileged instruction Trap

Revision 2.0, October 4, 1989

1. Remove interrupt stack

2. Remove kernel stack not valid abort

3. Remove stack alignment requirement, add PS<SP~ALIGN>

4. Remove ICIE and IPIE interrupt enables

5. Remove FREEZE of PC

6. Remove references to WAIT

7. Add DRAINT and DRAINA

8. Delete operand faults

9. Make data alignment fault stay in current mode

10. Simplify floating exceptions

Revision 1.0, May 23, 1989

1. First review distribution.

6-40 OpenVMS Alpha Software (II)

Digital Restricted Distribution

DEC OSF/1 Alpha Software (Ill)

This section describes how DEC OSF/1 operating system relates to the Alpha architecture,
and includes the following chapters:

• Chapter 1, Introduction to DEC OSF/1 Alpha (Ill)

• Chapter 2, OSF/1 PALcode Instruction Descriptions (Ill)

• Chapter 3, OSF/1 Memory Management (Ill)

• Chapter 4, OSF/1 Process Structure (Ill)

• Chapter 5, OSF/1 Exceptions and Interrupts (Ill)

Digital Restricted Distribution

Contents

Chapter 1 Introduction to DEC OSF/1 Alpha (Ill)

1.1 Programming Mod.el... 1-2
1.1.1 Cod.e Flow Constants . 1-2
1.1.2 Machine State, Terms _................. 1-2
1.1.3 Cod.e Flow Terms -. 1--4
1.2 \Revision History . 1--4

Chapter 2 OSF/1 PALcode Instruction Descriptions (Ill)

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.3

Unprivileged PALcod.e Instructions
Breakpoint Trap
Bugcheck Trap .. .
System Call .. .
Generate '1."rap .. .
Read Unique Value .. .
Write Unique Value .. .

Privileged OSF/1 PALcode Instructions
Read Processor Status .. .
Read User Stack Pointer .. .
Read System Value .. .
Return From System Call
Return From 'l"rap, Fault or Interrupt
Swap Process Context .. .
Swap IPL .. .
TB Invalidate
Wlio Am I .. .
Write System Entry Address
Write Floating-Point Enable
Write Kernel Global Pointer .. .
Write User Stack Pointer .. .
Write System Value .. .
Write Virtual Page Table Pointer

\Revision History

Digital Restricted Distribution

2-1
2-2
2-3
2--4
2-5
2-6
2-7
2-8
2-9

2-10
2-11
2-12
2-13
2-14
2-16
2-17
2-18
2-19
2-21
2-22
2-23
2-24
2-25
2-26

HI

Chapter 3 OSF/1 Memory M~nagement (Ill)

3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.5.1

Introduction .·
Virtual Address Spaces · ~ ·

Segment SegO and Segl Virtual Address Format
Kseg Virtual Address Format _.

Physical Address Space
Memory Management Control .. .
Page Table Entries

Changes to Page Table Entries

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-5

3.6 Memory Protection.. 3-6
3.6.1 Processor Access Modes . 3-6
3.6.2 Protection Code . 3-6
3.6.3 Access-Violation Faults ~ 3-6
3.7 Address Translation for SegO and Segl ·....... 3-6
3.7.1 Physical Access for SegO and Segl PTEs . 3-6
3.7.2 Virtual Access for SegO or Segl PrEs . 3-.7
3.8 Translation Buffer . 3-8
3.9 Address Space Numbers. 3-8
3.10 Memory-Management Faults . 3-9
3.11 \Revision History . 3-11

Chapter 4 OSF/1 Process Structure (Ill)

4.1 Process Definition . 4-1
4.2 Process Control Block (PCB) . 4-1
4.3 \Revision History . 4-3

Chapter 5 OSF/1 Exceptions and Interrupts (Ill)

5.1 Introduction .. .
5.1.1 Exceptions
5.1.2 Interrupts
5.2 Processor Status
5.3 Stack Frames
5.4 System Entry Addresses .. .
5.4.1 System Entry Arithmetic Trap (entArith)
5.4.1.1

. 5.4.1.2
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.5
5.5.1

Iv

Exception Summary Register
Exception Register Write Mask

System Entry Instruction Fault (entlF)
System Entry Hardware Interrupts (entlnt)
System Entry MM Fault (entMM)
System Entry Call System (entSys)
System Entry Unaligned Access (entUna)

P,AT.code Support .. · .. · · ·.
Stack Writeability and Alignment

Digital Restricted Distribution

5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-6
5-6
5-6
5-7
5-8
5-8
I!"' n
0-0

5-8

~

5.6 \Revision History 5-9

Figures

3-1 Virtual Address Format . 3-2
3-2 Kseg Virtual Address Format . 3-3
3-3 Page Table Entry (PTE) :..................... 3-3
4-1 Process Control Block (PCB) . 4-2
5-1 Stack Frame Layout. 5-3
5-2 Exception Summary Register . 5-4
5-3 Logout Area . 5-7

Tables

1-1 DEC OSF/1 Alpha Register Usage . 1-1
1-2 Code Flow Constants . 1-2
1-3 Machine State Terms.. 1-2
1--4 Code Flow Terms . 1--4
2-1 Unprivileged OSF/1 PALcode Instructions.................................. 2-1
2-2 Privileged OSF/1 PALcode Instructions . 2-8
3-1 Virtual Address Space Segments . 3-1
3-2 Virtual Address Options . 3-2
3-3 Page Table Entry (PTE) Bit Summary . 3--4
3--4 Memory-Management Fault Type Codes . 3-9
5-1 Processor Status Summary . 5-2
5-2 Entry Point Address Registers . 5-3
5-3 Exception Summary Register Bit Definitions . 5-4
5-4 System Entry Hardware Interrupts . 5-6

v

Digital Restricted Distribution

Chapter 1

Introduction to DEC OSF/1 Alpha (Ill)

The goals of this design are to provide a hardware implementation independent
interface between the hardware and DEC OSF/1 Alpha. The interface needs to
provide the needed abstractions to minimize the impact of different hardware
implementations on the operating system. The interface also needs to be low in
overhead to support high-performance systems. Lastly the interface needs to only
support the features used by DEC OSF/1 Alpha.

The register usage in this interface is based on the current calling standard used by
DEC OSF/1 Alpha. If the calling standard changes, this interface will be changed
to reflect that. The current calling standard register usage is shown in Table 1-1.

Table 1-1: DEC OSF/1 Alpha Register Usage

Register
Name

rO

rl..r8

r9 .. r14

r15

r16 .. r21

r22 .. r25

r26

r27

r28

r29

r30

r31

Software Use and
Name linkage

vO Used for expression evaluations and to hold integer function
results.

t0 .. t7 Temporary registers; not preserved across procedure calls.

s0 .. s5 Saved registers; their values must be preserved across
procedure calls.

FP or s6 . Frame pointer or a saved register.

a0 .. a5 Argument registers; used to pass the first 6 integer type
arguments; their values are not preserved across procedure
calls.

t8 .. tll

ra

pv or t12

at

GP

SP

zero

Temporary registers; not preserved across procedure calls.

Contains the return address; used for expression evaluation.

Procedure value or a temporary register.

Assembler temporary register; not preserved across procedure
calls.

Global pointer.

Stack pointer.

Always has the value 0.

Introduction to DEC OSF/1 Alpha (Ill) 1-1

Digital Restricted Distribution

1.1 Programming Model

The programming model of the machine is the combination of the state visible either
directly via instructions, or indirectly via actions of the machine. The following four
tables define constants; state variables, terms, and subroutines used in the. rest of
the document.

1.1.1 Code Flow Constants

Table 1-2: Code Flow Constants
Term

IPL= 2:0

max:CPU

mode= 3

pageSize

vaSize

Meaning and value

The range 2:0 used in the PS to access the IPL field of the PS
(PS<IPL>).

The maximum number of processors in a given system.

Used as a subscript in PS to select current mode (PS<mode>).

Size of a page in an implementation in bytes.

Size of virtual address in bits in a given implementation.

1.1.2 Machine State Terms

Table 1-3: Machine State Terms
Term

ASN

entArith<63:0>

entlF<63:0>

entlnt<63:0>

entMM<63:0>

Meaning

An implementation-dependent size register to hold the current
address space number (ASN). The size and existence of ASN is an
implementation choice.

The arithmetic trap entry address register. The entArith is an
internal processor register that holds the dispatch address on an
arithmetic trap. There can be a hardware register for the ent.Arith
or the PALcode can use private scratch memory.

The instruction fault entry address register. The entIF is an internal
processor register that holds the dispatch address on an instruction
fault. There can be a hardware register for the entlF or the PALcode
can use private scratch memory.

The interrupt entry address register. The entlnt is an internal
processor register that holds the dispatch address on an interrupt.
There can be a hardware register for the entlnt or the PALcode can
use private scratch memory.

The memory-management fault entry address register. The entMM
is an internal processor register that holds the dispatch address on
a memory-management fault. There can be a hardware register for
the entMM or the PALcode can use private scratch memory.

1-2 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Table 1-3 (Cont.): Machine State Terms
Term

entSys<63:0>

entUna<63:0>

instruction<31:0>

intr_flag

KGP<63:0>

KSP<63:0>

lock_flag<O>

PCB

PCBB<63:0>

PTBR<63:0>

Meaning

The system call entry address register. The entSys is an internal
proc~ssor register that holds the dispatch address on an callsys
instruction. There can be a hardware register for the entSys or the

· ·PALcode can use private scratch memory.

The unaligned fault entry address register. The entUna is an internal
processor register that holds the dispatch address on an unaligned
fault. There can be a hardware register for the entUna or the PALcode
can use private scratch memory.

The floating-point enable register. The FEN is a one-bit register that
is used to enable or disable floating-point instructions. If a floating­
point instruction is executed with FEN equal to zero, a FEN fault is
initiated.

The current instruction being executed. This is a fake register used
in the flows to CASE on different instructions.

A per-processor state bit. The intr_flag bit is cleared if that processor
executes an rti or retsys instruction.

The kernel global pointer. The KGP is an internal processor register
that holds the kernel global pointer that is loaded into R15, the GP,
when an exception is initiated. There can be a hardware register for
the KGP or the PALcode can use private scratch memory.

The kernel stack pointer. The KSP is an internal processor register
that holds the kernel stack pointer while in user mode. There can be
a hardware register for the KSP or the storage space in the PCB can
be used.

A one-bit register that is used by the load locked and store conditional
instructions.

The program counter. The PC is a pointer to the next instruction in
the flows. The low-order two bits of the PC always read as zero and
writes to them are ignored.

The process control block. The PCB holds the state of the process.

The process control block base address register. The PCBB holds the
address of the PCB for the current process.

The processor status. The PS is a four-bit register that stores the
current mode in bit <3> and stores the three-bit IPL in bits <2:0>.
The mode is 0 for kernel and 1 for user.

The page table base register. The PTBR contains the physical page
frame nwnber (PFN) of the highest level (level 1) page table.

Introduction to DEC OSF/1 Alpha (Ill) 1-3

Digital Restricted Distribution

Table 1-3 (Cont.): Machine State Terms
Term

sysvalue<63:0>

unique<63:0>

USP<63:0>

VPTPTR<63:0>

whami<63:0>

Meaning

Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must
be quadword aligned whenever PALcode reads or writes it. If the
PALcode accesses the kernel stack and the stack is not . aligned, a
kernel-stack-not-valid halt is initiated. Although PALcode does not
access the user stack, that stack should also be at least quadword
aligned for best performance.

The system value register. The sysvalue holds the per-processor
unique value. There can be a hardware register for the sysvalue
register or the storage space in the PALcode scratch memory can be
used.

The sysvalue register can only be accessed by kernel mode code and
there is one sysvalue register per CPU.

The process unique value register. The unique register holds the
per-process unique value. There can be a hardware register for the
unique register or the storage space in the PCB can be used.

The unique register can be accessed by both user and kernel code and
there is one unique register per process.

The user stack pointer. The USP is an internal processor register
that holds the user stack pointer while in kernel mode. There can be
a hardware register for the USP or the storage space in the PCB can
be used.

The virtual page table pointer. The VPTPTR holds the virtual address
of the first level page table.

The processor number of the current processor. This number is in the
range O .. maxCPU-1.

1.1.3 Code Flow Terms

Table 1-4: Code Flow Terms
Term

op Dec

Meaning

An attempt was made to execute a reserved instruction or execute a
privileged instruction in user mode.

1.2 \Revision History
Revision 1.0, May 12, 1992

• First review distribution

\

1-4 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Chapter 2

OSF/1 PALcode Instruction Descriptions (Ill)

2.1 Unprivileged PALcode Instructions

Table 2-1 lists the OSF/1 PALcode unprivileged instruction mnemonics, names, and
the environment from which they can be called:

Table 2-1: Unprivileged OSF/1 PALcode Instructions

Mnemonic Name

bpt Breakpoint trap

bugchk Bugcheck trap

callsys System call

gentrap Generate trap

imb I-Stream memory barrier

rdunique Read unique

wrunique Write unique

Calling environment

Kernel and user modes

Kernel and user modes

User mode

Kernel and user modes

Kernel and user modes
Described in Common Architecture, Chap­
ter 6

Kernel and user modes

Kernel and user modes

OSF/1 PALcode Instruction Descriptions (Ill) 2-1

Digital Restricted Distribution

2.1.1 Breakpoint Trap

Format:

bpt

Operation:

temp +- PS
if (ps<mode> NE 0) then

·USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2

aO +- 0
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Mnemonics:

bpt Breakpoint trap

Description:

! PALcode format

Mode is user so switch to kernel

The break.point trap (bpt) instruction switches mode to kernel, builds a stackfram.e
on the kernel stack, loads the GP with the KGP, loads a value of 0 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+OS)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the bpt instruction are the same in the
Open VMS and the OSF/1 PALcode.

2-2 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.1.2 Bugcheck Trap

Format:

bugchk.

·Operation:

temp +- PS
if (PS<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2
aO +- 1
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Mnemonics:

bugchk. Bugcheck trap

Description:

! PALcode format

Mode is user so switch to kernel

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 1 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al .. a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+OS)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the bugchk instruction are the same in the
Open VMS and the OSF/1 PALcode.

OSF/1 PALcode Instruction Descriptions (Ill) 2-3

Digital Restricted Distribution

2.1.3 System Call

Format:

call sys

Operation:

if (PS<mode> EQ 0) then
machineCheck

endif
USP +- SP
SP +- KSP

! PALcode format

PS +- 0 Mode=kernel
SP +- SP - { 6*8}
(SP+OO) +- 8 PS of mode=user, IPL=O
(SP+08) +- PC
(SP+08) +- GP

GP +- KGP
PC +- entSys

Exceptions:

Machine check-invalid kernel mode callsys

Kernel stack not valid

Mnemonics:

callsys System call

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a
callsys from kernel mode. causes a machine check exception).

The callsys instruction switches mode to kernel and builds a callsys stack frame.
The GP is loaded with the KGP. The exception then dispatches to the system call
code pointed to by the entsys register. On entry to the callsys code, the scratch
registers t8 .. tll are UNPREDICTABLE.

2-4 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.1.4 Generate Trap

Format:

gen trap

Operation:

temp _.. PS
if (PS<mode> NE 0) then

USP _.. SP
SP _.. KSP
PS _.. 0

endif
SP_.. SP - {6 * 8}
(SP+OO) - temp
(SP+08) - PC
(SP+16) - GP
(SP+24) - aO
(SP+32) - al
(SP+40) - a2

aO - 2
GP - KGP
PC +-- entIF

Exceptions:

Kernel stack not valid

Mnemonics:

gen trap . Generate trap

Description:

! PALcode format

Mode is user so switch to kernel

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 2 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al .. a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the gentrap instruction are the same in the
Open VMS and the OSF/1 PALcode.

· OSF/1 PALcode Instruction Descriptions (Ill) 2-5

Digital Restricted Distribution

2.1.5 Read Unique Value

Format:

rd unique ! PALcode format

Operation:

vO +- unique

Exceptions:

None

Mnemonics:

rd unique Read unique value

Description:

The read unique value (rdunique) instruction returns the process unique value in
vO. The write unique value (wrunique) instruction, described in Section 2.1.6, sets
the process unique value register.

Notes:

• The opcode and function code for the rdunique instruction are the same in the
OpenVMS and the OSF/1 PALcode.

2-6 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.1.6 Write Unique Value

Format:

wrunique ! PALcode format

Operation:

unique - aO

Exceptions:

None

Mnemonics:

wrunique Write unique value

Deseription:

The write unique value (wrunique) instruction sets the process unique register to
the value passed in aO. The read unique value (rdunique) instruction, described in
Section 2.1.5, returns the process unique value.

Notes:

• The opcode and function code for the wrunique instruction are the same in the
OpenVM:S and the OSF/1 PALcode.

OSF/1 PALcode Instruction Descriptions (Ill) 2-7

Digital Restricted Distribution

2.2 Privileged OSF/1 PALcode Instructions

The Privileged OSF/1 PALcode instructions provide an abstracted interface tO control
the privileged state of the machine.

Table 2-2: Prlvlleged OSF/1 PALcode Instructions

Mnemonic

halt

rdps

rdusp

rd val

retsys

rti

swpctx

swpipl

tbi

whami

wrent

wrfen

wrkgp

wrvptptr

Name

Halt the Processor
Described in Common Architecture, Chapter 6

Read processor status

Read user stack pointer

Read system value

Return from system call

Return from trap, fault, or interrupt

Swap process context

Swap IPL

TB (translation buffer) invalidate

Who am I

Write system entry address

Write floating-point enable

Write kemal global pointer

Write virtual page table pointer

2-8 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.1 Read Processor Status

Format:

rdps

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO -+--- PS

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format

rdps Read processor status

Description:

The read processor status (rdps) instruction returns the PS in vO. On return from
the rdps instruction, registers tO and t8 .. tll are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions {Ill) 2-9

Digital Restricted Distribution

2.2.2 Read User Stack Pointer

Format:

rdusp

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +-- USP

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format

rdusp Read user stack pointer

Description:

The read user stack pointer (rdusp) instruction returns the user stack pointer
in vO. The user stack pointer is written by the wrusp instruction, described in
Section 2.2.13. On return from the rdusp instruction, registers tO and t8 .. tll are
UNPREDICTABLE.

2-10 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.3 Read System Value

Format:

rd val

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- sysvalue

Exceptions:

Opcode reserved to Digital

Mnemonics:

rdval Read system value

Description:

!PALcode format

The read system value (rdval) instruction returns the sysvalue in vO, allowing access
to a 64-bit per-processor value for use by the operating system. On return from the
rdval instruction, registers tO and t8 .. tll are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-11

Digital Restricted Distribution

2.2.4 Return From System Call

Format:

retsys

Operation:

if {PS<mode> EQ 1} then
{Initiate opDec fault}

endif
tmp -
GP -
KSP -
SP -

(SP+08)
(SP+16)

SP + {6*8}
USP

intr_flag = 0
lock_flag = 0
PS - 8
PC - tmp

Exceptions:

Opcode reserved to Digital

Kernel stack not valid (halt)

Mnemonics:

! PALcode format

! Clear the interrupt flag
! Clear the load lock flag
! Mode=user

retsys Return from system call

Description:

The, return from system call (retsys) instruction pops the return address and the user
mode global pointer from the kernel stack. It then saves the kernel stack pointer,
sets the mode to user, sets the IPL to zero, and enters the user mode code at the
address popped off the stack.

2-12 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.5 Return From Trap, Fault or. Interrupt

Format:

rti

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
tempps +- (SP+O)
temppc +- (SP+8)
GP +- (SP+16)
aO +- (SP+24)
al +- (SP+32)
a2 +- (SP+40)
SP +- SP + {6 * 8}
if tempps<3> EQ l}

KSP +- SP
SP +- USP
tempps +-

endif
intr_flag = 0
lock_flag = 0
PS +- tempps<3: 0>
PC +- temppc

Exceptions:

8

then

Opcode reserved to Digital

Kernel stack not valid (halt)

Mnemonics:

! PALcode format

New mode is user

Clear the interrupt flag
Clear the load lock flag
Set new PS

rti Return from trap, fault, or interrupt

Description:

The return from fault, trap, or interrupt (rti) instruction pops registers (a0 .. a3, and
GP), the PC, and the PS, from the kernel stack. If the new mode is user, the kernel
stack is saved and the user stack is restored.

OSF/1 PALcode Instruction Descriptions (Ill) 2-13

Digital Restricted Distribution

2.2.6 Swap Process Context

Format:

swpctx ! PALcode format

Operation:

if (PS<mode> EQ 1)
{Initiate opDec fault}

endif
(PCBB) -. SP Save current state
(PCBB+8) -. USP
tmp -. PCC
tmpl -. tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> -. tmp1<31:0>

vO -. PCBB Return old PCBB
PCBB -. aO Switch PCBB
SP -. (PCBB) Restore new state
USP -. (PCBB+8)
oldPTBR -. PTBR
PTBR -. (PCBB+16)
tmpl -. (PCBB+24)
PCC<63:32> -. {tmpl - tmp}<31:0>
FEN -. (PCBB+40)
if {process unique register implemented} then

(v0+32) -. unique
unique -. (PCBB+32)

endif
if {ASN implemented}

ASN -. tmp1<63: 32>
else

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=O}

endif
endif

Exceptions:

Opcode reserved to Digital

Mnemonics:

swpctx Swap process context

Description:

The swap process context (swpctx) instruction saves the current process data in
the current PCB. Then swpctx switches to the PCB passed in aO and loads ihe

2-14 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

new process context. The old PCBB is returned in vO. On return from the swpctx
instruction, registers tO, t8 .. tll, and aO are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-15

Digital Restricted Distribution

2.2.7 Swap IPL

Format:

swpipl

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- PS<IPL>
PS<IPL> +- a0<2:0>

Exceptions:

Opcode reserved to Digital

Mnemonics:

swpipl Swap IPL

Description:

! PALcode format

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in
vO and sets the IPL to the value passed in aO. On return from the spwipl instruction,
registers tO, t8 .. tll, and aO are UNPREDICTABLE.

2-16 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.8 TB Invalidate

Format:

tbi ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case aO begin

endcase

Exceptions:

1: ! tbisi
{Invalidate ITB entry for va=al}
break;

2: tbisd
{Invalidate DTB entry for va=al}
break;

3: tbis
{Invalidate both ITB and DTB entry for va=al}
break;

-1: tbiap
{Invalidate all TB entries with ASM=O}
break;

-2: tbia
{Flush all TBS}
break;

otherwise:
break;

Opcode reserved to Digital

Mnemonics:

tbi TB (translation buffer) invalidate

Description:

The TB invalidate (tbi) instruction removes specified entries from the I and D
translation buffers (TBs) when the mapping changes. The tbi instruction removes
specific entry types based on a CASE selection of the value passed in register
aO. On return from the tbi instruction, registers tO, tS .. tll, aO, and al are
UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-17

Digital Restricted Distribution

2.2.9 Who Am I

Format:

whami ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO ~ whami

Exceptions:

Opcode reserved to Digital

Mnemonics:

whami Who aml

Description:

The who am I (whami) instruction returns the processor number for the current
processor in vO. The processor number is in the range 0 to the number of processors
minus one (0 .. maxCPU-1) that can be configued in the system. On return from the
whami instruction, registers tO and t8 .. tll are UNPREDICTABLE.

2-18 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.10 Write System Entry Address

Format:

wrent ! PALcode format

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case al begin

endcase;

Exceptions:

0: ! Write the Entint:
entint +- aO
break;

1: Write the EntArith:
entArith +- aO
break;

2: Write the EntMM:
entMM +- aO
break;

3: Write the EntIF:
entIF +- aO
break;

4: Write the EntUna:
entUna +- aO
break;

5: Write the EntSys:
entSys +- aO
break;

otherwise:
break;

Opcode reserved to Digital

Mnemonics:

wrent Write system entry address

Description:

The write system entry address (wrent) instruction determines the specific system
entry point based on a CASE selection of the value passed in register al. The wrent
instruction then sets the virtual address of the specified system entry point to the
value passed in aO.

OSF/1 PALcode Instruction Descriptions (Ill) 2-19

Digital Restricted Distribution

For best performance all the addresses should be kseg addresses. ·(See Chapter 3
for a definition of kseg addresses).

On return from the wrent instruction, registers tO, t8 .. tll, aO, and al are
UNPREDICTABLE.

2-20 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.11 Write Floating-Point Enable

Format:

wrfen

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
FEN - aO<O>
(PCBB+40) - aO AND 1

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format

wrfen Write floating-point enable

Description:

The write floating-point enable (wrfen) instruction writes bit zero of the value passed
in aO to the floating-point enable register. The wrfen instruction also writes the value
for FEN to the PCB at offset (PCBB+40). On return from the wrfen instruction,
registers tO, t8 .. tll, and aO are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-21

Digital Restricted Distribution

2.2.12 Write Kernel Global Pointer

Format:

wrkgp

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
KGP +- aO

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format

wrkgp Write kernal global pointer

Description:

The write kernel global pointer (wrkgp) instruction writes. the value passed in aO to
the kernel global pointer (KGP) internal register. The KGP is used to load the GP
on exceptions. On return from the wrkgp instruction, registers tO, t8 .. tll, and aO
are UNPREDICTABLE.

2-22 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.13 Write User Stack Pointer

Format:

wrusp

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
USP +- aO

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format ·

wrusp Write user stack pointer

Description:

The write user stack pointer (wrusp) instruction writes the value passed in aO to the
user stack pointer. On return from the wrusp instruction, registers tO, t8 .. tll, and
aO are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-23

Digital Restricted Distribution

2.2.14 Write System Value

Format:

wrval

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
sysvalue +- aO

Exceptions:

Opcode reserved to Digital

Mnemonics:

wrval Write system value

Description:

!PALcode format

The write system value (wrval) instruction writes the value passed in aO to a 64-
bit system value register. The combination of wrval with the rdval instruction,
described in Section 2.2.3, allows access by the operating system to a 64-bit per­
processor value. On return from the wrval instruction, registers tO, t8 .. tll, and aO
are UNPREDICTABLE.

2-24 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

2.2.15 Write Virtual Page Table Pointer

Format:

wrvptptr

Operation:

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
VPTPTR +- aO

Exceptions:

Opcode reserved to Digital

Mnemonics:

! PALcode format

wrvptptr Write virtual page table pointer

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed
in aO to the virtual page table pointer register (VPTPTR). The VPTPTR is described
in Chapter 3. On return from the wrvptptr instruction, registers tO, t8 .. tll, and aO
are UNPREDICTABLE.

OSF/1 PALcode Instruction Descriptions (Ill) 2-25

Digital Restricted Distribution

2.3 \Revision History

Revision 1.0, May 12, 1992

• First review distribution

\

2-26 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

3.1 Introduction

Chapter 3

OSF/1 Memory Management (Ill)

3.2 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the
virtual address space. Implementations subset the supported address space to one
of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal supported
virtual address size is 43 bits. If an implementation supports less than 64-bit virtual
addresses, it must check that all the VA<63:vaSize> bits are equal to VA<vaSize--1> ..
This gives two disjoint ranges for valid virtual addresses. For example, for a
43-bit virtual address space, valid virtual address ranges are 0 .. 3FFFFFFFFFF16
and FFFFFC000000000016 •• FFFFFFFFFFFFFFFF 16• Access to virtual addresses
outside of an implementation's valid virtual address range cause an access-violation
fault.

The virtual address space is divided into 3 segments. The two bits
va<vaSize-l:vaSize-2> select a segment as shown in Table 3-1.

Table 3-1: Virtual Address Space Segments
VA<VaSize-l:vaSize-2> Name Mapping Access Control

Ox segO Mapped via TB Programed in PTE

10 kseg PA +- sext(VA<VaSize-3:0>) Kernel Read/Write

11 segl Mapped via TB Programed in PTE

For kseg, the relocation, sharing, and protection are fixed. For segO and segl, the
virtual address space is broken into pages, which are the units of relocation, sharing,
and protection. The page size ranges from 8 Kbytes to 64 Kbytes. Therefore, system
software should allocate regions with differing protection on 64 Kbyte virtual address
boundaries to ensure image compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables and saves the inactive (but used)
parts of the virtual address space on external storage media.

OSF/1 Memory Management (Ill) 3-1

Digital Restricted Distribution

3.2.1 Segment Sego and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in
memory. A segO or segl virtual address consists of three level-number fields and a
byte_ within_page field, as shown in Figure 3-1.

Figure 3-1: Virtual Address Format

63 0

SEXT (level1 <level size-3>) level1 level2 level3 byte_within_page

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are 8 Kbytes, 16 Kbytes,
32 Kbytes, and 64 Kbytes. Each level-number field is 0-n bits long, where, for
example, n is 9 for an SK page size. Level-number fields are the same size for a
given implementation.

The level-number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide.
Thus as the page size grows the virtual and physical address size also grows.

In Table 3-2, the physical address column is the maximum physical address
supported by the smaller of segO/segl or kseg, as indicated.

Table 3-2: Virtual Address Options
Page Byte Level Virtual Physical Physical
Size Offset Size Address Address Address
(bytes) (bits) (bits) (bits) (bits) Limited by

SK 13 10 43 41 kseg

16K 14 11 47 45 kseg

32K 15 12 51 47 segO/segl

64K 16 13 55 48 segO/segl

3.2.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand
in memory. A kseg virtual address consists of segment select field with a value
of 102 and a physical address field. The segment select field is the two bits
va<vaSize-l:vaSize-2>. The physical address field is va<vaSize-3:0>.

3-2 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Figure 3-2: Kseg Virtual Address Format

63 0

SEXT (segment_select<1 >) Segment Select= 1 0
2

Physical Address

Figure 3-3: Page Table Entry (PTE)

~
16151413121110 9 8 7 6 5 4 3 2 1 0

' R R R
s u K s UK

S GH
AF F F

r~ I~ RR so 0 ov v v EE v ME ~ R
~

0 1 2
...

3.3 Physical Address Space

Physical addresses are at most vaSize-2 bits. This allows all of physical memory
to be accessed via kseg. A processor may choose to implement a smaller physical
address space by not implementing some number of high order bits. The two
most significant implemented physical address bits select a caching policy or
implementation dependent type of address space. Implementations will use these
bits as appropriate for their systems. For example, in a workstation with a 30-bit
physical address space, bit<29> might select between memory and non-memory like
regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.4 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled.

3.5 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate segO and segl
virtual addresses to physical addresses. A PTE contains hardware and software
control information and the physical page frame number (PFN). A PTE is a quadword
with the following fields:

OSF/1 Memory Management (Ill) 3-3

Digital Restricted Distribution

Table 3-3: Page Table Entry (PTE) Bit Summary

Bits

63:32

31:16

15:14

13

12

11:10

9

8

7

6:5

Name Meaning

PFN Page frame number

The PFN field always points to a page boundary. If V is set, the PFN
is concatenated with the byte_ within_page bits of the virtual address to
obtain the physical address.

SW Reserved for software.

RSVO Reserved for hardware; SBZ.

UWE User write enable.

KWE

RSVl

URE

KRE

RSV2

GH

This bit enables writes from user mode. If this bit is 0 and a store is
attempted while in user mode, an access-violation fault occurs. This bit
is valid even when V=O.

Kernel write enable.

This bit enables writes from kernel mode. If this bit is 0 and a store is
attempted while in kernel mode, an access-violation fault occurs. This
bit is valid even when V=O.

Reserved for hardware; SBZ.

User read enable.

This bit enables reads from· user mode. If this bit is 0 and a load or
instruction fetch is attempted while in user mode, an Access Violation
occurs. This bit is valid even when V=O.

Kernel read enable.

This bit enables reads from kernel mode. If this bit is 0 and a load or
instruction fetch is attempted while in kernel mode, an access-violation
fault occurs. This bit is valid even when V=O.

Reserved for hardware; SBZ.

Granularity hint.

Software may set these bits to a non-zero value to supply a hint to
translation buffer implementations that a block of pages can be treated
as a single larger page:

1. A block is an aligned group of B**N pages where N is the value of
PTE<6:5>, e.f. a group of 1, 8, 64, or 512 pages starting at a virtual
address with page_size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping and the high 32-3*N PFN
bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>.
Hardware may use this hint to map the entire block with a single
TB entry, instead of 8, 64, or 512 separare TB entries.

3-4 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Table 3-3 {Cont.): Page Table Entry {PTE) Bit Summary
Bits Name Meaning

4 ASM Address space match.

3 FOE

2 FOW

1 FOR

0 v

When set, this PTE matches all address space numbers. For a given VA,
ASM must he set consistently in all processes, otherwise the address
mapping is UNPREDICTABLE.

Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute
any location in the page.

Fault on write.

When set, a Fault on Write exception occurs on an attempt to write any
location in the page.

Fault on read.

When set, a Fault on Read exception occurs on an attempt to read any
location in the page.

Valid.

Indicates the validity of the PFN field. When V is set the PFN field is
valid for use by hardware. When V is clear, the PFN field is reserved
for use by software. The V bit does not affect the validity of PTE<15:b
bits.

3.5.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions.
For example, the operating system may set or clear the V bit, change the PFN field
as pages are moved to and from external storage media, or modify the software bits.
The processor hardware never changes PrEs.

Software must guarantee that each PrE is always consistent within itself.
Changing a PTE one field at a time can cause incorrect system operation, such as
setting PrE<V> with one instruction before establishing PTE<PFN> with another.
Execution of an interrupt service routine between the two instructions could use an
address that would map using the inconsistent PTE. Software can solve this problem
by building a complete new PrE in a register and then moving the new PrE to the
page table by using an STQ instruction.

Multiprocessing makes the problem more complicated. Another processor could be
reading (or even changing) the same PrE that the first processor is changing. Such
concurrent access must produce consistent results. Software must use some form
of software synchronization to modify PrEs that are already valid. Whenever a
processor modifies a valid PrE, it is possible that other processors in a multiprocessor
system may have old copies of that PTE in their translation buffer. Software must
inform other processors of changes to PTEs. Hardware must ensure that aligned
quadword reads and writes are atomic operations. Hardware must not cache invalid
PTEs (PTEs with the V bit equal to 0) in translation buffers. See Section 3.8 for
more information.

OSF/1 Memory Management (Ill) 3-5

Digital Restricted Distribution

3.6 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific. page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed. The processor uses the following to determine whether
an intended access is allowed:

• The virtual address, which is used to either select kseg mapping or provide the
index into the page tables.

• The intended access type (read or write).

• The current access mode base on Processor Mode.

For protection checks, the intended access is read for data loads and instruction
fetches, and write for data stores.

3.6.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running
process is stored in the processor status mode bit (PS<mode>).

3.6.2 Protection Code
Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. Associated
with each page is a protection code that describes the accessibility of the page for
each processor mode.

For segO and segl, the code allows a choice of read or write protection for each
processor mode. For each mode, access can be read/write, read-only, or no­
access. Read and write accessibility and the protection for each mode are specified
independently.

For kseg, the protection code is kernel read/write, user no .. access.

3.6.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page's protection.

3.7 Address Translation for Sego and Seg1

The page tables can be accessed from physical memory, or (to reduce overhead) can
be mapped to a linear region of the virtual address space. The following sections
describe both access methods.

3. 7 .1 Physical Access for Sego and Seg1 PTEs

SegO and segl address translation can be performed by accessing entries in a three­
level page table structure. The page table base register (PTBR) contains the physical
page frame number (PFN) of the :highest level (level 1) page table. Bits <lavall> of
the virtual address are used to index into the first level page table ·to obtain the

3-6 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

physical PFN of the base of the second level (level 2) page table. Bits <level2> of
the virtual address are used to index into the second level page table to obtain the
physical PFN of the base of the third level (level 3) page table. Bits <level3> of the
virtual address are used to index the third level page table to obtain the physical
PFN of the page being referenced. The PFN is concatenated with virtual address bits
<byte_ within_page> to obtain the physical address of the location being accessed.

If part of any page table does not reside in a memory-like region, or does reside in
nonexistent memory, the operation of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protectio:p. bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first
level or second level PTE is invalid, an access-violation fault occurs if the PTE<KRE>
equals zero. An access-violation fault on a first-level or second-level PTE implies that
all lower-level page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a segO or segl virtual address
follows:
IF {SEXT(VA<vaSize-1:0>) neq VA} THEN

{ initiate access-violation fault}

levell PTE ~ ({PTBR * page size} + {8 * VA<levell>}
IF levell_PTE<v> EQ 0 THEN -

IF levell PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level2 PTE ~ ({ levell PTE<PFN> * page size} + { 8 * VA<level2>}
IF level2 PTE<v> EQ o THEN -

IF level2 PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level3_PTE ~ ({level2_PTE<PFN> * page_size} + {8 * VA<level3>}

Read physical

Read physical

! Read physical

IF {{{level3 PTE<UWE> eq O} AND {write access} AND {ps<mode> EQ 1} } OR
{{level3-PTE<URE> eq O} AND {read access} AND {ps<mode> EQ 1} } OR
{{level3-PTE<KWE> eq O} AND {write access} AND {ps<mode> EQ O} } OR
{{level3=PTE<KRE> eq 0} AND {read access} AND {ps<mode> EQ O} } }

THEN
{initiate memory-management fault}

ELSE
IF level3 PTE<v> EQ 0 THEN

{initiate memory-management fault}

IF level3 PTE<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF level3 PTE<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF level3 PTE<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ~ {level3_PTE<PFN> * page_size} OR VA<byte_within_page>

3. 7 .2 Virtual Access for Sego or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address space,
reducing the overhead for segO and segl PTE accesses. The mapping is done as
follows: ·

OSF/1 Memory Management (Ill) 3-7

Digital Restricted Distribution

1. Select a 2<3 *lg(pageSize/S))+S byte-aligned region (an address with 3 * Ig(pageSize/B) + 3

low-order zeros) in the segO or segl address space. Set the virtual page table
pointer (VPTPTR) with a write virtual page table pointer instruction (wrvptptr)
to the selected value.

2. Create a levell PTE to map the page tables as follows.

levell PTE = 0 ! Initialize all fields to 0
levell=PTE<63:32> = pfn_of_Level_l_pagetable

levell PTE = 1
levell-PTE<O> = 1

! Set the PFN to the PFN of the level one pagetable
! Set the kernel read enable bit
! Set the valid bit

3. Set the levell page table entry that corresponds to the VPTB to the created
levell_PTE.

4. Set all levell and level 2 valid PrEs to allow kernel read access. With this setup
in place the algorithm to fetch a segO or segl PTE is:
tmp +- left_shift (va, {64 - {{lg(pageSize) *4} - 9}})
tmp +- right shift (tmp, {64 - {{lg(pageSize) *4} - ,9} + lg(pageSize) - 3})
tmp +- VPTB OR tmp
tmp<2 : 0> +- 0
level3_PTE +- (tmp) ! Load PTE using it's virtual address

The virtual access method is used by PALcode for most TB fills.

3.8 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states. When the process context
is changed, a new value is loaded into the address space number (ASN) internal
processor register with a swap process context (swpctx) instruction. This causes
address translations for pages with PrE<ASM> clear to be invalidated on a processor
that does not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a
valid PTE, it must also execute a CALL_PAL tbi instruction. The entire translation
buff er can be invalidated by tbia, and all ASM=O entries can be invalidated by tbiap.
The translation buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate translation buffer entries when making changes for PTEs that
are already invalid.

3.9 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
translations for process specific addresses when a context switch occurs. \
The supported address space number (ASN) range is O .. MAX_ASN, MAX_ASN is
provided in the HWRPB MAX_ASN field. \

The address space number for the current process is loaded by software in the
address space number (ASN) with a swpctx instruction. ASN s are processor
specific and the hardware makes no attempt to maintain coherency across multiple

3-8 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

processors. In a multiprocessor system, software is responsible for ensuring the
consistency of TB entries for processes that · might be rescheduled on different
processors.

\ Systems that support ASNs should have MAX_ASN in the range 13 .. 65535. The
number of ASNs should be determined by the market a system is targeting. \

PROGRAMMING NOTE
System software should not assume that the number
of ASNs is a power of two. This allows, for example,
hardware to use N TB tag bits to encode (2**N)-3 ASN
values, one value for ASM= 1 PTEs, and one for invalid.

There are several possible ways of using ASN s. There
are several complications in a multiprocessor system.
Consider the case where a process that executed on
processor-1 is rescheduled on processor-2. If a page
is deleted or its protection is changed, the TB in
processor-1 has stale data. One solution would be to
send an interprocessor interrupt to all the processors on
which this process could have run and cause them to
invalidate the changed PTE. This results in significant
overhead in a system with several processors. Another
solution would be to have software invalidate all TB
entries for a process on a new processor before it can
begin execution, if the process executed on another
processor during its previous execution. This ensures
the deletion of possibly stale TB entries on the new
processor. A third solution would assign a new ASN
whenever a process is run on a processor that is not the
same as the last processor on which it ran.

3.1 O Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in al to specify
the type of fault encountered, as shown in Table 3-4.

Table 3-4: Memory-Management Fault Type Codes

Fault

Translation not valid

Access violation

Fa ult on read

Fa ult on execute

MMCSRvalue

0

1

2

3

OSF/1 Memory Management (Ill) 3-9

Digital Restricted Distribution

Table 3-4 (Cont.): Memory-Management Fault Type Codes
Fault MMCSRvalue

Fault on write 4

• A translation-not-valid fault is taken when a read or write reference is attempted
through an invalid PTE in a first, second, or third-level page table.

• An access-violation fault is taken on a reference to a segO or segl address when
the protection field of the third-level PTE that maps the data indicates that the
intended page reference would be illegal in the specified access mode. An access­
violation fault is also taken if the KRE bit is a zero in an invalid first or second
level PTE. An access-violation fault is generated for any access to a kseg address
when the mode is user (PS<mode> EQ 1).

• A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR>
set.

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted
with PTE<FOE> set.

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW>
set.

3-10 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

3.11 \Revision History

Revision 1.0, May 12, 1992

• First review distribution

\

OSF/1 Memory Management (Ill) 3-11

Digital Restricted Distribution

(
\

Chapter 4

OSF/1 Process Structure (Ill)

4.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled
and is executed by the processor. A process consists of an address space and both
software and hardware context. The hardware context of a pr0.cess is defined by the
the following:

• 30 integer registers (excluding R31 and SP)

• 31 :floating-point registers (excluding F31)

• The program counter (PC)

• The two per-process stack pointers (USP/KSP)

• The processor status (PS)

• The address space number (ASN)

• The process cycle counter (PCC)

• The page table base register (PTBR)

• The process unique value (unique)

This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the
internal registers. When a process is not being executed, its hardware context is
stored in memory in a software structure termed the process control block (PCB).
Saving the process context in the PCB and loading new values from another PCB for
a new context is termed context switching. Context switching occurs as one process
after another is scheduled for execution.

4.2 Process Control Block (PCB)

As shown in Figure 4-1, the PCB holds the state of a process.

The contents of the PCB are loaded and saved by the swpctx instruction. The PCB
must be quadword aligned and should be 64 byte aligned for best performance.
Kernel mode code can read the PTBR, the ASN, and the FEN for the current process
from the PCB. Kernel mode code must use the rdusp/wrusp instructions to access
the USP. The PCC must be read with the rpcc instruction. The unique value can be
accessed with the rdunique and wrunique instructions.

OSF/1 Process Structure (Ill) 4-1

Digital Restricted Distribution

Figure 4-1: Process Control Block (PCB)
63 32 31

Kernel Stack Pointer (KSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

Address Space Number (ASN) I Cycle Counter (PCC)

Process Unique Value (unique)

Reserved to Digital

Reserved to Digital

4-2 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

1 0

F
E
N

:00

:08

:16

:24

:32

:40

:48

:56

4.3 \Revision History
Revision 1.0, May 12, 1992

• First review distribution

\

OSF/1 Process Structure (Ill) 4-3

Digital Restricted Distribution

5.1 Introduction

Chapter 5

OSF/1 Exceptions and Interrupts (Ill)

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of contrel. When such an event
occurs, an Alpha processor forces a change in control flow from that indicated by the
current instruction stream. The notification process for such an event is either an
exception or an interrupt.

5.1.1 Exceptions
Exceptions are relevant primarily to the currently executing process. Exception
service routines execute in response to exception conditions caused by software. All
exception service routines execute in kernel mode on the kernel stack. Exception
conditions consist of faults, arithmetic traps, and synchronous traps:

• A fault occurs during an instruction and leaves the registers and memory in
a consistent state such that elimination of the fault condition and subsequent
reexecution of the instruction gives correct results. Faults are not guaranteed to
leave the machine in exactly the same state it was in immediately prior to the
fault, but rather in a state such that the instruction can be correctly executed if
the fault condition is removed. The PC saved in the exception stack frame is the
address of the faulting instruction. An rti instruction to that PC reexecutes the
faulting instruction.

• An arithmetic trap occurs at the completion of the operation that caused the
exception. Since several instructions may be in various stages of execution at any
point in time, it is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next
instruction that would have been issued if the trapping conditions had not
occurred. However, that PC is not necessarily the address of the instruction
immediately following the instructions that encountered the trap condition.
Further, intervening instructions may have changed operan,ds or other state used
by the instructions encountering the trap conditions.

An rti instruction to that PC does not reexecute the trapping instructions, nor
does it reexecute any intervening instructions; it simply continues execution from
the point at which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated :fixup code. This is accomplisherl: by following a
set of code generation restrictions in the code that could cause arithmetic traps

OSF/1 Exceptions and Interrupts (Ill) 5-1

Digital Restricted Distribution

which are to be completed by a software trap handler (see Common Architecture,
Chapter 4), including specifying the IS software completion modifier in each such
instruction.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
the SWC is set, a trap handler may find the trigger instruction by scanning
backward from the trap PC until each register in the register write mask has
been an instruction destination. The trigger instruction is the first instruction in
the I-stream order to get a trap within a trap shadow. (See Common Architecture,
Chapter 4 for a definition of trap shadow.) If the SWC bit is clear, no fixup is
possible.

• A synchronous trap occurs at the completion of the operation that caused the
exception. No instructions can be issued between the completion of the operation
that caused the exception and the trap.

5.1.2 Interrupts
The processor arbitrates interrupt requests. When the interrupt priority level (IPL)
of an outstanding interrupt is greater than the current IPL, the processor raises IPL
to the level of the interrupt and dispatches to entlnt, the interrupt entry to the OS.
Interrupts are serviced in kernel mode on the kernel stack. Interrupts can come
from one of four sources: 1/0 devices, the clock, performance counters, or machine
checks.

5.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode
(PS<mode>) in bit <3> and a three-bit interrupt priority level (PS<IPL>) in bits
<2 .. 0>. The PS<mode> bit is zero for kernel mode and one for user mode. The
PS<IPL> bits are always zero if the mode is user and can be 0 to 7 if the mode is
kernel. The PS is changed when an interrupt or exception is initiated and by the
rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 5-1.

Table 5-1: Processor Status Summary
PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts

5-2 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Table 5-1 (Cont.): Processor Status Summary
PS<IDode> PS<IPL> Mode Use

0

0

0

5

6

7

5.3 Stack Frames

Kernel

Kernel

Kernel

Clock, and interprocessor interrupts

Real time devices

Machine checks

There are two types of system entries-those for the callsys instruction and those for
exceptions and interrupts. Both types use the same stack frame layout, as shown in
Figure 5-1. The stack frame contains space for the PC, the PS, the saved GP, and
the saved registers aO, al, a2. On entry, the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt
entries save the PC, the PS, the GP, and also save the registers a0 .. a2.

Figure 5-1: Stack Frame Layout
63

5.4 System Entry Addresses

PS

PC

GP

aO

a1

a2

0

:OO

:08

:16

:24

:32

:40

All system entries are in kernel mode. The interrupt priority PS bits (PS<lPL>) are
set as shown in the following table. The system entry point address is set by the
CALL_PAL wrent instruction, as described in Section 2.2.10.

Table 5-2: Entry Point Address Registers
Entry Point Value in aO Value in al value in a2 PS<IPL>

entArith Exception Register mask UNPREDICT- Unchanged
summary ABLE

entIF Fault Type code UNPREDICT- UNPREDICT- Unchanged
ABLE ABLE

OSF/1 Exceptions and Interrupts (Ill) 5-3

Digital Restricted Distribution

5.4.1

Table 5-2 (Cont.): Ent,.Y Point Address Registers
Entry Point Value in aO Value in al value in a2 PS<IPL>

en tint Interrupt type Vector UNPREDICT- Priority of interrnpt
ABLE

entMM VA MM CSR Cause Unchanged

entSys pO pl p2 Unchanged

entUna VA Opcode Src/Dst Unchanged

System Entry Arithmetic Trap (entArith)

The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On
entry, aO contains the exception summary register and al contains the exception
register write mask. Section 5.4.1.1 describes the exception summary register and
Section 5.4.1.2 describes the register write mask.

· 5.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 5--2 and described in Table 5-3,
records the various types of arithmetic exceptions that can occur together. Those
types of exceptions are listed and described in Table 5-3.

Figure 5-2: Exception Summary Register

63 7 6 5 4 3 2 1 0

Zero

Table 5-3: Exception Summary Register Bit Definitions
Bit Description

0 Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 5.1.1 for rules about using the SWC bit in a trap
handler.

5-4 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

Table 5-3 (Cont.): Exception Summary Register Bit Definitions
Bit Description

1 Invalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

An INV trap is reported for most :floating-point operate instructions with an input
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result
register is written with an UNPREDICTABLE value.

2 Division by zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

ADZE trap is reported when a finite number is divided by zero. Floating divide by
zero traps are always enabled. If this trap occurs, the result register is written with
an UNPREDICTABLE value.

3 Overflow (OVF)

A :floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating overflow traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

4 Underflow (UNF)

A :floating arithmetic or conversion operation underflowed the destination exponent.

An UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating underflow trap enable can be
specified in each :floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

5 Inexact result (INE)

A :floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact
result trap enable can be specified in each IEEE floating-point operate instruction. The
rounded result value is stored in all cases.

6 Integer overflow (IOV)

An integer arithmetic operation or a conversion from :floating to integer overflowed the
destination precision.

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. Integer overflow trap enable can be specified in each
arithmetic integer operate instruction and each floating-point convert-to-integer
instruction. If integer overflow occurs, the result register is written with the truncated
true result.

OSF/1 Exceptions and Interrupts (Ill) 5-5

Digital Restricted Distribution

5.4.1.2 Exception Register Write Mask

The exception. register write mask parameter records all registers that were targets
of instructions that set· the bits in the exception summary register. There is a one­
to-one correspondence between bits in the register write mask quadword and the
register numbers. The quadword records, starting at bit 0 and proceeding right
to left, which of the registers rO through r31, then ID through £31, received an
exceptional result.

For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

NOTE

if the add overflows and the multiply does not, the OVF
bit is set in the exception summary, and the F3 bit is
set in the register mask, even though the over:fiowed
sum in F3 can be overwritten with an in-range product
by the time the trap is taken. (This code violates the
destination reuse rule for software completion. See
Common Architecture, Chapter 4 for the destination
reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

5.4.2 System Entry Instruction Fault (entlF)

The instruction fault entry is called for bpt, bugchk, gentrap, opDec, and for a FEN
fault (:floating-point instruction when the :Boating-point unit is disabled, FEN EQ 0).
On entry, aO contains a 0 for a bpt, a 1 for bugchk, a 2 for gentrap, a 3 for FEN fault,
and a 4 for opDec. No additional data is passed in al..a2. The saved PC at (SP+OO)
is the address of the instruction that caused the fault for FEN faults. The saved
PC at (SP+OO) is the address of the instruction after the instruction that caused the
fault bpt, bugchk, gentrap, and opDec faults.

5.4.3 System Entry Hardware Interrupts (entlnt)

The interrupt entry is called to service a hardware interrupt, or a machine check.
Table 5-4 shows what is passed in a0 .. a2 and the PS<IPL> setting for various
interrupts.

Table 5-4: System Entry Hardware Interrupts

Entry Type Value in aO Value in al

Interprocessor
interrupt

0

5-6 DEC OSF/1 Alpha Software (Ill)

UNPREDICT­
ABLE

value in a2

UNPREDICT­
ABLE

PS<lPL>

5

Digital Restricted Distribution

Table 5-4 (Cont.): System Entry Hardware Interrupts
Entry Type Value in aO Value in al value in a2 PS<IPL>

Clock 1 UNPREDICT- UNPREDICT- 5
ABLE ABLE

Machine check 2 Interrupt Pointer to 7
vector Logout Area

1/0 device 3 Interrupt UNPREDICT- Level of device
interrupt vector ABLE

Performance 4 Interrupt UNPREDICT- 6
counter vector ABLE

On entry to the hardware interrupt routine, the IPL has been set to the level of the
interrupt. For hardware interrupts, register al contains a platform-specific interrupt
vector. That platform-specific interrupt vector is typically the same value as the SCB
offset value that would be returned if the platform was running Open VMS PALcode.

For a machine check, a2 contains kseg address of the logout area. The first 4
longwords of the logout area are implementation-independent. The rest of the logout
area is system specific. The first longword of the logout area is a machine check in
progress flag. If the flag is non zero when· a machine check is being initiated, a
double machine check halt is initiated instead. The machine check handler needs to
clear the machine check in progress flag when it can handle a new machine check.
Figure 5-3 describes the logout area.

Figure 5-3: Logout Area

32

Machine Check in Progress Flag

Logout Area Size in Quadwords Including Header

Machine Type

Logout Area Version

An Implementation-Dependent Number of
Quadwords of Additional State

5.4.4 System Entry MM Fault (entMM)

0

:00

:04

:08

:12

:16

The memory-management fault entry is called when a memory management
exception occurs. On entry, aO contains the faulting virtual address and al contains
the MMCSR (See Section 3.10). On entry, a2 is set to a minus one (-1) for an
instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction,
or to a 0 for a fault caused by a load instruction. '

OSF/1 Exceptions and Interrupts (Ill) 5-7

Digital Restricted Distribution

5.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode.
On entry, only registers (t8 .. tll) have been modified. The PC+4 of the callsys
instruction, the user global pointer, and the current PS are saved on the kernel
stack. Additional space for a0 .. a2 is allocated. After completion ofthe system service
routine, the kernel code executes a CALL_PAL retsys instruction.

5.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On
entry, aO contains the faulting virtual address, al contains the zero extended six-bit
opcode (bits <31:26>) of the faulting instruction, and a2 contains the zero extended
data source or destination register number (bits<25:21> of the faulting instruction)

5.5 PALcode Support

5.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack
that would produce a memory-management fault will result in a kernel-stack-not­
valid halt. The stack pointer must always point to a quadword-aligned address. If
the kernel stack is not quadword aligned on a PALcode access, a kernel-stack-not­
valid halt is initiated.

5-8 DEC OSF/1 Alpha Software (Ill)

Digital Restricted Distribution

5.6 \Revision History
Revision 1.0, May 12, 1992

• First review distribution

\

OSF/1 Exceptions and Interrupts (Ill) 5-9

Digital Restricted Distribution

Platforms {IV)
This part describes an architected platform implementation and contains the
following chapters:

• Chapter 1, Console Subsystem Overview and Operator Interface (IV)

• Chapter 2, Console Interface to Operating System Software (IV)

• Chapter 3, System Bootstrapping (IV)

Digital Restricted Distribution

Contents

Platforms (IV)

Chapter 1 Console Subsystem Overview and Operator Interface (IV)

1.1
1.1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.6

Console Implementations .. .
Console Implementation Registry

Console Lock Mechanisms
Console Presentation Layer .. .
Messages .. .
Implementation Considerations

Console Implementations .. .
Security
Internationalization ··
ISO-LATIN-1 Support .. .

\REVISION HISTORY

Chapter 2 Console Interface to Operating System Software {IV)

2.1
2.1.1
2.1.2
2.1.3

Hardware Restart Parameter Block (HWRPB)
Revision, Type, and Variation Fields
Translation Buffer Hint Block .. .
Per-CPU Slots in the HWRPB .. .

1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-7

2--1
2--9

2--10
2--11

2.1.4 Configuration Data Block......... 2--19
2.1.5 Field Replaceable Unit Table . 2--19
2.2 Environment Variables . 2--20
2.3 Console Callback Routines................. 2--25
2.3.1 System Software Use of Console Callback Routines......................... 2--26
2.3.2 System Software Invocation of Console Callback Routines 2--27
2.3.3 Console Callback Routine Summary . 2--27
2.3.4
2.3.4.1
2.3.4.2
2.3.4.3
2.3.4.4
2.3.4.5
2.3.4.6

Console Terminal Routines
GETC - Get Character from Console Terminal
PROCESS_KEYCODE - Process and Translates Keycode
PUTS - Put Stream to Console Terminal
RESET_TERM - Reset Console Terminal to default parameters
SET_TERM_CTL - Set Console Terminal Controls
SET_TERM_INT - Set Console Terminal Interrupts

Digital Restricted Distribution

2--28
2--31
2--33
2--36
2--38
2--39
2--40

iii

2~3.5

2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.3.5.5
2.3.6
2.3.6.1
2.3.6.2
2.3.6.3
2.3.6.4
2.3.7
2.3.7.1
2.3.7.2
2.3.8
2.3.8.1
2.3.8.1.1
2.3.8.1.2
2.3.8.2

Console Generic 1/0 Device Routines
CLOSE - Close Generic I/O Device for Access
IOCTL - Perform Device-specific Operations
OPEN - Open Generic I/O Device for Access
READ - Read Generic I/O Device _
WRITE - Write Generic I/O Device

Console Environment Variable Routines
GET_ENV - Get an environment variable
RESET_ENV - Reset an environment variable
SAVE_ENV - Save current environment variables
SET_ENV - Set an environment variable

Miscellaneous Routines
FIXUP - Fix.up virtual addresses in console routines
PSWITCH - Switch Primary Processors

Console Callback Routine Data Structures
Console Routine Block · .. .

Console Routine Block Initialization
Console Routine Remapping

Console Terminal Block Table
2.4 Interprocessor Console Communications
2.4.1
2.4.2
2.4.3
2.4.3.1

Interprocessor Console Communications Flags
Interprocessor Console Communications Buffer Area
Sending a Command to a Secondary

Sending a Message to the Primary
2.5
2.5.1

Implementation Considerations
Serial Number and Revision Fields

2.5.2 Console Environment Variables
2.5.3 Console Callback Routines
2.5.3.1
2.5.3.2

System Software Use of Console Callback Routines
Console Terminal Routines

2.5.3.2.1 PROCESS_KEYCODE :
2.5.3.3
2.5.3.4
2.5.4
2.6

Console Block Storage Routines

FIXUP ·
Interprocessor Console Communications

\REVISION HISTORY

Chapter 3 System Bootstrapping (IV)

3.1
3.1.1
3.1.2
3.2
3.3

Iv

Processor States and Modes
States and State Transistions .. .
Major Modes

,System Initialization
System Bootstrapping .. .

Digital Restricted Distribution

2--42
2--44
2--45
2--47
2--49
2-51
2-53
2-54
2-55
2-56
2-58
2-59
2-59
2-60
2-61
2-61
2-63
2-64
2-66
2-68
2-69
2-70
2-70
2-71
2-72
2-72
2-73
2-74
2-74
2-74
2-75
2-75
2-75
2-76
2-78

3-1
3-1
3-3
3-4
3-5

3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.1.7
3.3.2
3.3.2.1
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4

Cold Bootstrapping in a Uniprocessor Environment
Memory Sizing and Testing .. .
PALcode Loading .. .
Bootstrap Address Space ·
Bootstrap Flags
Loading of System Software .. .
Processor Initialization
Transfer of Control to System Software

Warm Bootstrapping in a Uniprocessor Environment
HWRPB Location and Validation

Multiprocessor Bootstrapping :
Selection of Primary Processor
Actions of Console
PALcode Loading on Secondary Processors
Actions of the Running Primary

3-5
3-6
3-9
3-9

3-14
3-15
3-16
3-17
3-18
3-19
3-19
3-19
3-20
3-20
3-22

3.3.3.5 Actions of a Console Secondary . 3-22
3.3.3.6 Bootstrap Flags . 3-23
3.3.4 Addition of a Processor to a Running System . 3-23
3.3.5 System Software Requested Bootstraps.................................. 3-23
3.4 System Restarts.. 3-24
3.4.1 Actions of Console . 3-24
3.4.2 Powerfail and Recovery - Uniprocessor . 3-25
3.4.3 Powerfail and Recovery - Multiprocessor . 3-25
3.4.3.1 United Powerfail and Recovery . 3-26
3.4.3.2 Split Powerfail and Recovery . 3-26
3.4.4 Error Halt and Recovery 3-26
3.4.5 Operator Requested Crash . 3-27
3.4.6 Primary Switching.. 3-28
3.4. 7 Saving and Restoring console terminal state during HALT/RESTART. 3-30
3.4.7.1 SAVE_TERM - Save Console Terminal State 3-31
3.4. 7 .2 RESTORE_ TERM - Restore Console Terminal State . 3-32
3.4.8 Operator Forced Entry to Console 1/0 Mode . 3-32
3.5 Bootstrap Loading and Image Media Format. 3-33
3.5.1 Disk Bootstrapping . 3-33
3.5.2 Tape Bootstrapping . 3-35
3.5.2.1 Bootstrapping From ANSI-formatted Tape..... 3-35
3.5.2.2 Bootstrapping from Boot Blocked Tape . 3-37
3.5.3 ROM Bootstrapping . 3-38
3.5.4 Network Bootstrapping . 3-39
3.5.4.1 MOP-based Network Booting . 3-39
3.5.4.2 BOOTP-UDP/IP Network Booting . 3-40
3.6 BB_ WATCH 3-40
3.7 Implementation Considerations . 3-42
3.7.1 Memory Sizing, Testing, and Memory Data Descriptor Table.................. 3-42
3.7.2 Bootstrap Flags . 3-43

v

Digital Restricted Distribution

3.7.3
3.7.3.1
3.7.4
3.7.5
3.7.5.1
3.7.5.2
3.7.5.3
3.7.5.3.1
3.7.5.3.2

Embedded console
Multiprocessor considerations

Detached console .. .
Goals of the Bootstrap Address Space

Address Space must be reachable
The coarseness effect .. ·
Address Space must not create conflicts

Location of Page Table Space
Laying out the first 2GB .. .

Conclusion
Bootstrap Devices and Image Media

Disk Bootstrapping .. .
ROM Bootstrapping .. .
Network Bootstrapping

3.7.5.4
3.7.6
3.7.6.1
3.7.6.2
3.7.6.3
3.8 \REVISION HISTORY

Figures

3-44
3-44
3-45
3-45
3-46
3-46
3-47
3-47
3-48
3-49
3-49
3-49
3-50
3-50
3-51

2-1 HWRPB Overview . 2-2
2-2 Hardware Restart Parameter Block Structure . 2-3
2-3 Per-CPU Slot in HWRPB . 2-13
2-4 Console Data Structure Linkage . 2-61
2-5 Console Routine Block . 2-62
2-6 Console Terminal Block . 2-67
2-7
3-1
3-2
3-3
3-4
3-5
3-6
3-7

Inter-Console Communications Buffer
Major State Transitions
Memory Cluster Descriptor Table
Memory Cluster Descriptor .. .
Initial Virtual Memory Regions
Initial Page Tables
Alpha Boot Block .. .
Alpha ROM Boot block .. .

Tables

2-70
3-2
3-7
3-8

3-11
3-13
3-34
3-38

1-1 Console Error Messages.. 1-4
2-1 HWRPB Fields . 2-4
2-2 Granularity Hint Fields . 2-11
2-3 Per-CPU Slot Fields · ~ . 2-14
2-4 Per-CPU State Flags ... ·. 2-17
2-5 Required Environment Variables . 2-22
2-6 Supported Languages . 2-25
2-7 Supported Character Sets . 2-25
2-8 Console Callback Routines . 2-27
2-9 CRB Fields 2r-63
2-10 CTB Fields . 2--68

vi

Digital Restricted Distribution

2-11 Inter-Console Communications Buffer Fields . 2-70
3-1 Effects of Power-Up Initialization . 3-4
3-2 Memory Cluster Descriptor Table Fields . 3-7
3-3 Memory Cluster Descriptor Fields . 3-8
3-4 Console Interpretation of BIP and RC flags : 3-15
3-5 Processor Initialization 3-16
3-6 Initial HWPCB contents . 3-17
3-7 Bootstrap Devices and Image Media ... ; ·. 3--33
3-8 Page Table Coarseness Effect . 3-46
3-9 Page Table Space Location . 3-4 7
3-10 Page Table Address Space as Function of Page Size . 3-48

vii

Digital Restricted Distribution

Chapter 1

Console Subsystem Overview and Operator Interface
(IV)

On an Alpha system, underlying control of the system platform hardware is provided
by a "console" 1 . The console:

1. Initializes, tests, and prepares the system platform hardware for Alpha system
software.

2. Bootstraps (loads into memory and starts the execution of) system software.

3. Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software which simplify system software control of
and access to platform hardware.

5. Provides a means for a "console operator" to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three.
The actual mechanisms of these interactions are obviously specific to the platform
hardware, however the net effects are common to all systems. Chapter 3 describes
these functions.

The console interacts with system software once control of the system platform hard­
ware has been transferred to that software. Chapter 2 discusses the basic functions
of a console and its interaction with Alpha system software.

The console interacts with the console operator through a virtual display device
or "console terminal". The console operator may be a human or a management
application. The console terminal forms the interface between the console and a
console presentation layer. The functions of that presentation layer and the display
formats are described in Section 1.3.

In an Alpha multiprocessor system, there is one primary processor and one or more
secondary processors. The primary is the processor that:

1. Can legally refer to the console 1/0 devices,

2. Can legally send characters to the console terminal,

3. Can legally receive characters from the console terminal,

4. Has direct access to a BB_ WATCH on the system

1 A term shrouded in the antiquity of computing. So named because this mechanism was first realized as a desklike panel
of switches and blinking lights.

Console Subsystem Overview and Operator Interface (IV) 1-1

Digital Restricted Distribution

5. Is named in response to an inquiry as to which processor is primary.

All other processors in the system are secondary processors.

1.1 Console Implementations

1-2

The actual implementation of an Alpha console varies from system to system. Re­
gardless of implementation, the console on each system provides the functionality
described in this chapter and in Chapters 2 and 3. The console may be implemented
as:

• "Embedded" or co-resident in the hardware platform complex which contains the
processors.

• "Detached" or resident on a separate and distinct hardware platform.

• Any hybrid of the above.

The distinction is somewhat arbitrary. A detached console may have cooperating
special code which executes on one of the processors; an embedded console may have
a cooperating management application which executes on a remote machine.

Regardless of the actual implementation, each console must provide:

1. A virtual display device, the default "console terminal".

This device. allows the console operator to issue commands and receive displays.
In the absence of hardware errors and with the proper console-lock setting, the
default console terminal device provides reliable communication with the rest of
the console.

2. Reliable access to console functionality by system software and the console oper­
ator.

All console functionality must appear to be resident within the console at all
times. All console functions must be accessible in a timely manner, without prior
notification, and wj.th sufficient reliability.

3. Secure communications with system software and the console operator.

All console communication paths must be able to be made secure by either phys­
ical measures or encryption methods.

4. A mechanism by which the console can gain control of a processor executing
system software.

This mechanism must preserve the execution state of system software; it must
be possible for the console to gain control of the processor, and subsequently
continue system software execution successfully.

5. A mechanical mechanism which locks the console.

The console lock may be a keyswitch, jumper, or any other implementation­
specific mechanism; see Section 1.2 .. The lock is either "locked" or "unlocked".

Digital Restricted Distribution

1.1.1 Console Implementation Registry

This chapter, and Chapters 2 and 3 specify required console functions. Some of these
functions have attributes which may vary with console implementation; consoles
may also extend beyond the required functions. Console functions or attributes
which may vary with implementation are:

1. Supported CTBs

2. Supported environment variables

3. Environment variable value formats, such as BOOT_DEV or BOOT_OSFLAGS

4. Configuration Data Block format

5. Supported callback routines

6. Supported bootstrap media

7. Implementation-specific HALT codes or messages

Functions implemented by current consoles are summarized in Appendix E. \Also
see that appendix for information on how to register a function.\

1.2 Console Lock Mechanisms

TBD in a subsequent ECO.

1.3 Console Presentation Layer

The console presentation layer is TBD in a subsequent ECO. This text assumes the
following command syntax:

• BOOT (bootstrap the system)

• CONTINUE (continue execution)

• START -CPU (start a given secondary).

• INITIALIZE (initialize system)

• INITIALIZE -CPU (initialize a given processor)

• HALT -CPU (force a given processor into console 1/0 mode)

• HALT -CRASH (cause a given processor to initiate a crash)

1.4 Messages

The console generates a binary message code to the console presentation layer to
signal messages, such as audit trail or error messages. The console presentation
layer interprets the binary code into something meaningful to the console operator.
Table 1-1 summarizes the binary message codes, symbol names, and the expected
translation into English.

Console Subsystem Overview and Operator Interface (IV) 1-3

Digital Restricted Distribution

Table 1-1: Console Error Messages

Code16 Symbol English Interpretation

1 AUDIT_BOOT_STARTS Audit trail of booting begins

2 AUDIT_BSTRAP _GOOD Bootstrap checksum matches

3 AUDIT_BSTRAP _ACCESSIBLE Bootstrap image accessible

4 AUDIT_ CHECKSUM_ GOOD Boot block checksum matches

5 AUDIT_LOAD_BEGINS Loading of bootstrap begins

6 AUDIT_LOAD_DONE Loading of bootstrap done

7 AUDIT_TAPE_ANSI Verified as ANSI tape
(

8 AUDIT_FILE_FOUND<filename> Found <filename>

9 AUDIT_TAPE_BBLOCK Verified as bootblocked tape

A AUDIT_BOOT_TYPE<string> Bootstrap type <string>

B AUDIT_BOOT_REQ<filename> Requesting bootstra pdilename>

c AUDIT_BSERVER_FOUND Remote server located

D AUDIT_BSTRAP _ABORT Bootstrap load abort

E-3F reserved

40 ?PALREQ? PALcode load request

41 ?STARTREQ? Secondary start request

42-7F reserved

80 ERROR_BOOT_ABORT Unable Boot

81 ERROR_PROC_INIT Unable to Initialize Processor

82-FFF reserved

other console implementation-specific

1.5 Implementation Considerations

1.5.1 Console Implementations

1-4

\ This chapter and Chapters 2 and 3 attempt to standardize across all console im­
plementations, the dissimilar options, functions, and features, that were not men­
tioned by DEC STD 032. The lack of standardization for VAX systems presented
VAX software and Digital Field Service with too many different interfaces. \

The goal of the Alpha console architecture is to promote a consistent interface across
all Alpha systems. Some console functionality is inherently implementation-specific
and cannot be required of all .Alpha systems; some may be applicable to more than

Digital Restricted Distribution

one Alpha system. To prevent the proliferation of interfaces and achieve commonal­
ity of function whenever possible, the Alpha console architecture requires that:

1. Any console function which is visible to system software which is not specified
by these chapters must be registered with the Alpha architecture group.

2. Any console function which is visible to an on-site or remote console operator
(including Field Service engineers) which is not specified by these chapters must
be registered with the Alpha architecture group.

3. Whenever possible, implementations must use previously registered functions
rather than inventing new variations.

Console functions intended for use solely by development engineering or expert­
level repair and diagnosis are excluded from the above. See Appendix E for registry
information.

1.5.2 Security
The means by which the console achieves a secure communications path with sys­
tem software and with the console operator is implementation-specific. Embedded
consoles inherently have the capability of secure communications with system soft­
ware. Detached consoles can achieve this security by residing in the same room as
the Alpha system and communicating with it over a private connection. Detached
consoles can also achieve security by using an encrypted protocol over a shared con­
nection. This latter method allows a workstation over a network to function as the
console.

1.5.3 Internationalization

Wherever possible, console implementations should support the goals of internation­
alization:

1. Each message has a binary message code. The console presentation layer inter­
prets the code into a meaningful message display of the appropriate language
and characters.

2. Consoles should avoid explicitly interpreting character set encoding (such as
ISO"""'.LATIN-1). Character strings are to be viewed as simple byte strings. Thus,
the GETC console callback routine supports from one to four byte character en­
codings depending on the currently selected language and character set; the
PUTS routine outputs only a byte stream.

3. ASCII strings are used in certain fields of the HWRPB and certain interprocessor
communications due to DEC Standard 12 and to present a common interface to
system software.

4. The currently selected character-set encoding and language to be used for the
console terminal are defined by the CHAR_SET and LANGUAGE environment
variables.

5. The end of a character string passed between the console and the operating
system as an argument to a console callback routine is determined by passing
its length.

Console Subsystem Overview and Operator Interface (IV) 1-5

Digital Restricted Distribution

6. Console callback routines should be written to be independent from character­
set encoding and language. At a minimum, every implementation must support
ISO-LATIN-1 character-set encodings. The supported character-set encodings
is determined by platform product requirements.

7. The console presentation layer is independent of the required console function­
ality interface.

1.5.4 ISO-LATIN-1 Support

1-6

Implementations supporting the ISO-LATIN-1 character-set encoding must have the
following properties:

1. The GETC console callback routine returns a one byte character; see Section 2.3.4.

2. The PROCESS_KEYCODE console callback routine returns a one byte character;
see Section 2 .3 .4

3. English console presentation layers are strongly encouraged to use the ·actual
values as defined in Table 2-5, rather than inventing aliases.

Digital Restricted Distribution

1.6 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Reorganized according to SRM Rev 5 requirements

2. Converted to SDML

3. Replace previous Console Chapter with Console ECO #15

4. Includes 3 chapters and two appendices, renumber 1/0 Chapter

5. Material substantially changed or rearranged

\

Console Subsystem Overview and Operator Interface (IV) 1-7

Digital Restricted Distribution

Chapter 2

Console Interface to Operating System Software (IV)

This chapter describes the interactions between the console subsystem and system
software. These services depend on state which is shared between the console and
system software. That shared state is contained in the "Hardware Restart Param­
eter Block" (HWRPB) and a number of "environment variables". The HWRPB is a
data structure which is directly accessed by both the console and system software;
the environment variables are indirectly accessed by system software. Section 2.1
describes the HWRPB; Section 2.2 describes the environment variables. The ser­
vice, or "callback", routines provided by the console to system software are given in
Section 2.3. Communication between the console and system software is described
in Section 2.4. Functions implemented by registered consoles are summarized in
Appendix E. Various implementation considerations are given in Section 2.5.

2.1 Hardware Restart Parameter Block (HWRPB)

The Hardware Restart Parameter Block (HWRPB) is a page-aligned data structure
shared between the console and system software. The HWRPB is a critical resource
during bootstraps, powerfail recoveries, and other restart situations. The fields of
the HWRPB are shown in Figure 2-1 and described in Table 2-1.

The console creates the HWRPB and the required per-CPU, CTB, CRB, and MEMDSC
offset blocks as a physically contiguous structure during console initialization. Fields
within the HWRPB and the required offset blocks are updated by the console and
system software during and after system bootstrapping. The console must be able
to locate the HWRPB and the required offset blocks at all times. Neither the console
nor system software may move the HWRPB or the required offset blocks to different
physical memory locations; subsequent operation of the system is UNDEFINED if
such an attempt is made.

The HWRPB and the required offset blocks must comprise a virtually contiguous
structure at all times. Prior to transferring control to system software, the console
maps the HWRPB and the required offset blocks into contiguous addresses beginning
at virtual address 0000 0000 1000 000016. in the initial bootstrap address space.
If system software subsequently changes this virtual mapping, any new mapping
must preserve the relative offsets of all fields and blocks; all physically contiguous
pages must remain virtually contiguous. Note that some of the data structures
located by HWRPB fields need not be contiguous with the HWRPB. Those structures
which may be discontiguous are the optional CONFIG Block, the optional FRU Table,
the PALcode space(s), the logout area(s), the CRB pages, and the memory bitmaps
located by the MEMDSC Table.

Console Interface to Operating System Software (IV) 2-1

Digital Restricted Distribution

2-2

Figure 2-1: HWRPB Overview

CONFIG Table

FRU Table

CPU Restart Routine

PALcode Spaces

CPU Logout Areas

CAB Pages

Cluster # 1 Bitmap

Cluster # n Bitmap

HWRPB

General Information

Per-CPU Offset
CTB Table Offset

CAB Offset
M EM DSC Offset
CON FIG Offset

FRU Table Offset
(Restart Routine Linkage Pair)

-Per-CPU Slots

PALcode Pointers

Logout Area Pointers

Console Terminal Block
(CTB) Table

Console Routine Block
(CAB)

CAB Map Entries

Memory Data
Descriptor Table

Register # 1 Bitmap Pointer

Register # n Bitmap Pointer

All offset blocks must be at least quadword aligned. The starting address of an offset
block is determined by adding the contents of the HWRPB offset field to the starting
address of the' HWRPB. For example, the starting address of the MEMDSC block is
given by:

MEMDSC Address = HWRPB address + MEMDSC OFFSET
= HWRPB address+ (HWRPB[200])

The total size of the HWRPB and the required offset blocks is on the order of 8KB to
16KB. The size is contained in the HWRPB_SIZE field at HWRPB[24]. The required
offset blocks may be offset from the HWRPB in any order; the HWRPB offset fields
must not be used to infer the size of the HWRPB nor any offset block.

Digital Restricted Distribution

Figure 2-2: Hardware Restart Parameter Block Structure

~ 0

Physical Address of the HWRPB

"HWRPB"

HWRPB Revision

HWRPB Size

Primary CPU ID

Page Size (Bytes)

Number of PA Bits

Maximum Valid ASN

System Serial Number (SSN)

System Type

System Variation

System Revision

Interval Clock Interrupt Frequency

Cycle Counter Frequency

Virtual Page Table Base

Reserved for Architecture Use

Offset to Translation Buffer Hint Block

Number of Processor Slots

Per-CPU Slot Size

Offset to Per-CPU Slots

Number of CTBs

CTB Size

Offset to Console Terminal Block Table

Offset to Console Callback Routine Block

Offset to Memory Data Descriptor Table

Offset to Configuration Data Block (If Present)

Offset to FRU Table (If Present)

Virtual Address of Terminal Save State Routine

Procedure Value of Terminal Save State Routine

Virtual Address of Terminal Restore State Routine

Procedure Value of Terminal Restore State Routine

Figure 2-2 (continued on next page)

:HWRPB

:+08

:+16

:+24

:+32

:+40

:+48

:+56

:+64

:+80

:+88

:+96

:+104

:+112

:+120

:+128

:+136

:+144

:+152

:+160

:+168

:+176

:+184

:+192

:+200

:+208

:+216

:+224

:+232

:+240

:+248

Console Interface to Operating System Software (IV) 2-3

Digital Restricted Distribution

2-4

Figure 2-2 (Cont.): Hardware Restart Parameter Block Structure

63

Virtual Address of CPU Restart Routine

Procedure Value of CPU Restart Routine

Reserved for System Software

Reserved for Hardware

Checksum

RXRDY Bitmask

TXRDY Bitmask

0

:+256

:+264

:+272

:+280

:+288

:+296

:+304

t _____________ T_ra_n_sl_a_tio_n_B_u_ff_e_r _H-in-t -B-loc_k ____________ __,} :+(HWRPB[136J:

T ________________ Pe_r_-P_r_oc_e_s_so_r_S_lo-ts _______________ J :+(HWRPB[160JJ

T _______________ c_o_n_s_o-le_T_e_rm_i-nal_B_loc_k _______________ J :+(HWRPB[184JJ

t ... _____________ c_o-ns_o_le_C_al_lb-ack_R_o_u-ti-ne_B_lo_ck ____________ __,} :+(HWRPB[192])

t _____________ M_e_m_o_ry_D-at_a_o_e_s_cn-·p-to_r_T_a_b_le ____________ _...t :+(HWRPB[200])

Table 2-1: HWRPB Fields
Offset

HWRPB

+08

Description

HWRPB PA1

Starting physical address of the HWRPB field. This field is used by the
console to validate the HWRPB.

HWRPB VALIDATION1

Quadword containing "HWRPB<0><0><0>" (0000 0042 5052 57481s). This
field is used by the console to validate the HWRPB.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.

Digital Restricted Distribution

Table 2-1 (Cont.): HWRPB Fields

Offset

+16

+24

+32

+40

+48

+56

+64

+80

Description

HWRPB REVISIONl

Format of the HWRPB. See Section 2.1.1. Assigned values are referenced
to the revision level of this chapter:

Version Interpretation

0 Reserved
1 Revision 1.1-2.1 \ADU only\
2 Revision 3.0
3 Revision 3.3 \ECO #30\
other Reserved for future use

HWRPB SIZE1

Size in bytes of the HWRPB and required physically contiguous per-CPU,
CTB, CRB, and MEMDSC offset blocks. Unsigned field.

PRIMARY CPU IDl,4

WHAMI of the primary processor. System software modifies this field only
at primary switch; see Section 3.4.6. Unsigned field.

PAGE SIZE1

Number of bytes within a page for this Alpha processor implementation.
Unsigned field.

PA SIZE1

Size of the physical address space in bits for this Alpha processor imple­
mentation. PA SIZE must be 48 bits or less; see Open VMS Section, Chapter
3 and Common Architecture, Chapter 5. Unsigned field.

MAX VALID ASNl

Maximum ASN value allowed by this Alpha processor implementation.
Unsigned field.

SYSTEM SERIAL NUMBERl

Full DEC STD 12 serial number for this Alpha System. This octaword
field contains a 10 character ASCII serial number determined at the time.
of manufacture; see DEC STD 12 for format information.

SYSTEM TYPEl

Family or system hardware platform. Assigned values are summarized in
Appendix D; see Section 2.1.1. Unsigned field.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
4May be modifed by system software.

Console Interface to Operating System Software (IV) 2-5

Digital Restricted. Distribution

2-6

Table 2-1 (Cont.): HWRPB Flelds
Offset

+88

+96

+104

+112

+120

+128

+136

+144

+152

+160

Description

SYSTEM VARIATIONl,4

Subtype variation of the system. This may include whether the system has
optional features such as multiprocessor support or special power supply
conditioning. Assigned values are summarized in Appendix D; see Sec­
tion 2.1.l.

SYSTEM REVISION CODE1•4

DEC STD 12 revision field for this Alpha system. Four ASCII characters.
May be modified by system software or application software.

INTERVAL CLOCK INTERRUPT FREQUENCY1

Number of interval clock interrupts per second (scaled by 4096) in this
Alpha system. Interrupts occur only if enabled; see Open VMS Section,
Chapter 6. Unsigned field.

CYCLE COUNTER FREQUENCY1

Number of SCC and PCC updates per second in this Alpha system. See
the RPCC and PAL RSCC instructions. Unsigned field.

VIRTUAL PAGE TABLE BASE2,4

Virtual address of the base of the entire three-level page table structure;
see Open VMS Section, Chapter 6. The console sets this field to the virtual
address of the LlPTE within bootstrap address space at system bootstraps
and restores VPTB IPR with this value at all processor restarts. System
software is responsible for updating this field whenever the VPTB IPR is
modified. See Sections 3.3.1.3, 3.3.3.5, and 3.4.2.

Reserved

Reserved for architecture use; SBZ.

TB HINT OFFSET1

Unsigned offset to the starting address of the Translation Buffer Hit Block
(TBB). See Section 2.1.2.

NUMBER OF PER-CPU SLOTS1

Number of per-CPU slots present. See Section 2.1.3 for the per-CPU slot
format. Unsigned field.

PER-CPU SLOT SIZE1

Size in bytes of each per-CPU slot rounded up to the next integer multiple
of 128. See Section 2.1.3. Unsigned field.

CPU SLOT OFFSET1

Unsigned offset to the first per-CPU slot in the HWRPB. See Section 2.1.3.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
4May be modifed by system software.

Digital Restricted Distribution

Table 2-1 {Cont.): HWRPB Fields
Offset

+168

+176

+184

+192

+200

+208

+216

+224

+232

+240

Description

NUMBER OF CTBl

Number of Console Terminal Blocks (CTBs) contained in the CTB Table.
See Section 2.3.8.2. Unsigned field.

CTB SIZE1

Size in bytes of the largest Console Terminal Block (CTB) contained in the
CTB Table. See Section 2.3.8.2. Unsigned field.

CTB OFFSET1

Unsigned offset to the starting address of the Console Terminal Block
(CTB) Table. See Section 2.3.8.2.

CRB OFFSETl

Unsigned offset to the starting address of the Console Callback Routine
Block (CRB). See Section 2.3.8.1.

MEMDSC OFFSETl

Unsigned offset to the starting address of the Memory Data Descriptor
(MEMDSC) Table. See Section 3.3.1.1.

CONFIG OFFSETl

Unsigned offset to the starting address of the Configuration Data Table
(CONFIG). If zero, no CONFIG Table exists. See Section 2.1.4.

FRU TABLE OFFSET1

Unsigned offset to the starting address of the Field Replaceable Unit (FRU)
Table. If zero, no FRU Table exists. See Section 2.1.5.

SAVE_ TERM RTN VA2,4

Starting virtual address of a routine which saves console terminal state.
This routine is optionally provided by system software. See Section 3.4. 7.
Set to zero by the console at system bootstraps.

SAVE_TERM VALUE2,4

Procedure value of the SAVE_TERM routine optionally provided by sys­
tem software. The console copies this value into R27 before invoking the
routine; see Section 3.4.7. Set to zero by the console at system bootstraps.

RESTORE_TERM RTN VA2,4

Starting virtual address of a routine which restores console terminal state.
This routine is optionally provided by system software. See Section 3.4. 7.
Set to zero by the console at system bootstraps.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
4May be modifed by system software.

Console Interface to Operating System Software (IV) 2-7

Digital Restricted Distribution

2-8

Table 2-1 {Cont.): HWRPB Fields

Offset

+248

+256

+264

+272

+280

+288

+296

+304

Description

RESTORE_TERM VALUE2,4

Procedure value of the RESTORE_ TERM routine optionally provided· by
system software. The console copies this value into R27 before invoking the
routine; see Section 3.4.7. Set to zero by the console at system bootstraps.

RESTART RTN VA2,4

Starting virtual address of a CPU restart routine· provided by system soft­
ware. The console restarts system software by transferring control to this
routine. See Section 3.4. Set to zero by the console at system bootstraps.

RESTART VALUE2·4

Procedure value of the CPU restart routine provided by system software.
During the restart process, the console copies this value into R27 before
transferring control to the CPU restart routine. See Section 3.4. Set to
zero by the console at system bootstraps.

RESERVED FOR SYSTEM SOFTWARE2,4

Reserved for use by system software. Set to zero by the console at system
bootstraps.

RESERVED FOR HARDWARE1

Reserved for use by hardware.

HWRPB CHECKSUM2 •4

Checksum of all the quadwords of the HWRPB from offset [00] to [118]
inclusive. Computed as a. 64-bit, 2's complement sum ignoring overflows.
Used to validate the HWRPB during warm bootstraps, restarts, and sec­
ondary starts. Set by console initialization; recomputed and updated when­
ever a HWRPB field with offset [00] to [118] inclusive is modified by the
console or system software.

RXRDY BITMASK2•4

Secondary receive bitmask for interprocessor console communications. When
transmitting a command to a secondary, the primary processor sets the
RXRDY bit which corresponds to the CPU ID of the secondary. The num­
ber of active bits in this field is determined by the number of per-CPU slots
in HWRPB[144]. See Section 2.4. All bits are initialized as clear.

TXRDY BITMASK2·4

Secondary transmit bitmask for interprocessor console communications.
When transmitting a message to the primary, the secondary processor sets
the TXRDY bit which corresponds to its CPU ID and requests an inter­
processor interrupt to the primary. The number of active bits in this field
is determined by the number of per-CPU slots in HWRPB[144]. See Sec­
tion 2.4. All bits are initialized as clear.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
4 May be modifed by system software.

Digital Restricted Distribution

Table 2-1 (Cont.): HWRPB Fields
Offset Description

+(HWRPB[136]) TB HINT BLOCK2·4

Quadword-aligned block that describes the characteristics of the transla­
tion buffer (TB) granularity hints. See Section 2.1.2.

+(HWRPB[160]) Per-CPU SLOTS2·4

128 Byte-aligned slots which describe each processor in the system. See
Section 2.1.3.

+(HWRPB[184]) CTB TABLE1

Quadword-aligned Console Terminal Block Table. Set at console initializa­
tion; modified by console terminal callbacks. See Section 2.3.8.2.

+(HWRPB[192]) CONSOLE CALLBACK ROUTINE BLOCK2•4

Quadword-aligned block that' describes the location and mapping of the
console callback routines. Set at system bootstrap; modified by console
FIXUP callback. See Section 2.3.8.1.

+(HWRPB[200]) MEMDSCl,4

Quadword-aligned Memory Data Descriptor Table. Set at console initial­
ization; preserved across warm bootstraps. See Section 3.3.1.1.

1 Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
4May be modifed by system software.

2.1.1 Revision, Type, and Variation Fields
The HWRPB contains several revision, type, and variation fields which describe the
Alpha system platform hardware and PALcode. System software uses these fields to
identify hardware-dependent support code which must be loaded or enabled. These
fields are examined early in operating system bootstrap; if one of the fields contains a
value which is unrecognized or incompatible with the operating system, the bootstrap
attempt fails. Diagnostic software uses these fields to guide field installation and
upgrade procedures and for material and parts control.

In multiprocessor systems, the processor type and PALcode revisions need not be
identical for all processors. System software uses these fields to determine if multi­
processor operation is viable. This evaluation may be performed by running primary,
the starting secondary, or a combination of both. For example, see Section 3.3.3.3.
The fields include:

1. HWRPB Revision - HWRPB[16]

This field identifies the format of the HWRPB. Since the HWRPB is shared be­
tween the console and system software, both must agree on the field offsets,
formats, and interpretations.

2. System Type and System Variation - HWRPB[80] and HWRPB[88]

Console Interface to Operating System Software (IV) 2-9

Digital Restricted Distribution

These fields identify the Alpha system platform. System software infers at­
tributes such as physical address offsets and 1/0 device locations from the system
type.

3. System Revision - HWRPB[96]

This field identifies the system platform hardware revision.

4. Processor Type and Processor Variation - SLOT[l 76] and SLOT[l84]

These per-CPU slot fields identify each Alpha processor and its capabilities. The
Processor Type field contains two sub-fields. The major type sub-field identifies
the processor implementation \ (such as EV-3 or EV--4) \ ; the minor type sub­
field identifies any system-specific attributes (such as local memory or cache size)

5. Processor Revision - SLOT[192]

This per-CPU slot field identifies the processor hardware revision.

6. PALcode Revision - SLOT[168]

This field identifies the PALcode revision required and/or in use by the proces­
sor. System software uses the PALcode variation and PALcode compatibility
sub-fields. The variation subfield indicates whether the PALcode image includes
extensions or functional variations necessary to a given operating system or ap­
plication.

PROGRAMMING NOTE
For example, a PALcode variation may contain a dif­
ferent TB fill routine. System software uses the com­
patibility subfield to ensure that all processors in
a multiprocessor system are using compatible PAL­
code images.

\ PALcode revisions are specific to the system platform and processor major type.
The filename of distributed PALcode images must contain sufficient information
to distinguish the intended system platform and pr~essor. \

2.1.2 Translation Buffer Hint Block

2-10

The Translation Buffer Hint Block (TBB) contains information on the characteristics
of the instruction stream translation buffer (!TB) and data stream translation buffer
(DTB) granularity hints (GH). All processors in a multiprocessor Alpha system must
implement the same granularity hints.

The TBB consists of 8 quadwords, 4 for each of the translation buffers (ITB and
DTB). The 4 quadwords contain 16 word fields; each word contains the number of
entries in the translation buffer that implement a combination of granularity hints
(including none).

Digital Restricted Distribution

Table 2-2: Granularity Hint Fields

Offset16 Granularity Hint

0 None

2 1 page

4 8 pages

6 1and8 pages

8 64 pages

A 1 and 64 pages

c 8 and 64 pages

E 1, 8, and 64 pages

10 512 pages

12 1 and· 512 pages

14 8, and 512 pages

16 1, 8 and 512 pages

18 64 and 512 pages

1A 1, 64, and 512 pages

lC 8, 64, and 512 pages

lE 1, 8, 64, and 512 pages

2.1.3 Per-CPU Slots in the HWRPB

Information on the state of a processor is contained in a "per-CPU slot" data structure
for that processor. The per-CPU slots form a contiguous array indexed by CPU ID.
The starting address of the first per-CPU slot is given by the offset HWRPB[160]
relative to the starting address of the HWRPB. The number of per-CPU slots is
given in HWRPB[144]. Each per-CPU slot must be 128B aligned to ensure natural
alignment of the HWPCB at SLOT[O]. The slot size rounded up to the nearest
multiple of 128 bytes, is given in HWRPB[152].

CPU IDs are determined in an implementation-specific manner. The only require­
ment is that they be in the range of zero to the maximum number of processors the
particular platform supports minus one.

SOFTWARE NOTE
OpenVMS Alpha supports CPU IDs in the range 0-31
only.

Each per-CPU slot contains information necessary to bootstrap, start, restart or halt
the processor. The format is shown Figure 2-3 and Table 2-3. The HWPCB specifies
the context in which the loaded system software will execute; see Open VMS Section,
Chapter 4 for more information.

Console Interface to Operating System Software (IV) 2-11

Digital Restricted Distribution

2-12

The console must initialize the per-CPU slot for the primary processor prior to system
bootstrap. The per-CPU slot fields for secondary processors are set by a combination
of the console and system software~ The console updates the halt information at
error halts and prior to processor restarts.

Slots corresponding to nonexistent processors are zeroed. There may be more per­
CPU slots than are necessary in any given Alpha system. A system implementation
may reserve HWRPB space for processors which are not present at system bootstrap.

An Alpha system may support internally different, yet software compatible, PAL­
code for different processors in a multiprocessor implementation. Each per-CPU
slot contains a PALcode memory descriptor which locates the PALcode used by that
processor. See Section 3.3.1.2 for information on PALcode loading and initialization
on the primary processor and Section 3.3.3.3 for information on PALcode loading
and initialization on secondary processors.

The starting address of a per-CPU slot is calculated by:

Slot Address = {CPU ID * slot size} + offset + HWRPB base
={CPU ID* HWRPB[152]} + HWRPB[l60] + #HWRPB

The address may be physical or virtual.

Digital Restricted Distribution

Figure 2-3: Per-CPU Slot In HWRPB

63 0

/'t/ Bootstrap/Restart HWPCB o/

Per-CPU State Flag Bits

PALcode Memory Length

PALcode Scratch Length

Physical Address of PALcode Memory Space

Physical Address of PALcode Scratch Space

PALcode Revision Required by Processor

Processor Type

Processor Variation

Processor Revision

Processor Serial Number

Physical Address of Logout Area

Logout Area Length

Halt PCBB

Halt PC

Halt PS

Halt Argument List (R25)

Halt Return Address (R26)

Halt Procedure Value (R27)

Reason for Halt

Reserved for Software

:SLOT

:+128

:+136

:+144

:+156

:+160

:+168

:+176

:+184

:+192

:+200

:+216

:+224

:+232

:+240

:+248

:+256

:+264

:+272

:+280

:+288

"" A1
:t~~~~~~~~~~~~~~-1n_t_e_rp_r_o_ce_s_s_o_r_c_o_n_so_1_e_B_u_ff_e_r_A_re_a~~~~~~~~~~~~--1!:+296
'Y Reserved for Architecture Use N :+464
-~~~~~~~~~~~~~~~~--~~~~~~~~~~~~~~~~~~~~~--'~ :+512

Console Interface to Operating System Software (IV) 2-13

Digital Restricted Distribution

. 2-14

Table 2-3: Per-CPU Slot Fields
Offset Description

SLOT HWPCB3·6

Hardware Privileged Context Block for this processor. See Open VMS Section,
Chapter 4 for the structure of the HWPCB; see Table 3-6 for the contents as set
by the console.

+128 STATE FLAGS3,6

Current state of this processor. See Table 2-4 for the interpretation of each bit.

+136 PALCODE MEMORY SPACE LENGTH1•2

Number of bytes required by this processor for PALcode memory. Unsigned field.

+144 PALCODE SCRATCH SPACE LENGTH1•2

Number of bytes required by this processor for PALcode scratch space. Unsigned
field.

+152 PA OF PALCODE MEMORY SPACE1•6

Starting physical address of PALcode memory space for this processor. PALcode
memory space must be page aligned. See Section 3.3.1.2 or Section 3.3.3.3.

+160 PA OF PALCODE SCRATCH SPACE1•6

Starting physical address of PALcode scratch space for this processor. PALcode
scratch space must be page aligned. See Section 3.3.1.2 or Section 3.3.3.3.

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
21nitialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
31nitialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
6May by modified by system software for a secondary prior to processor start .

Digital Restricted Distribution

Table 2-3 (Cont.): Per-CPU Slot Flelds

Offset

+168

Description

PALCODE REVISION1,2

PALcode revision level for this processor.

Bits

<7:0>
<15:8>
<23:16>

<31:24>
<47:32>

<63:48>

Interpretation

PALcode minor revision (0-255)
PALcode major revision (0-255)
PALcode variation

0
1
2
3-127
128-255
SBZ

Reserved
Open VMS PALcode version
DEC OSF/1 PALcode version
Reserved for Digital
Reserved for non-Digital

PALcode compatibility (0-65535)

0 Unknown
1-65535 Compatibility revision
Maximum number of processors that can share this PALcode
image

The major and minor PALcode revisions are set at console initialization; the re­
maining fields are set during PALcode loading and initialization. See Section 2.1.1
and Section 3.3.3.3.

+176 PROCESSOR TYPE1.2

Type of this processor.

Bits

<31:0>
<63:32>

Interpretation

Minor type
Major type

Assigned values are summarized in Appendix D; see Section 2.1.1.

+184 PROCESSOR VARIATION1·2

Variation or subtype of this processor. Assigned values are summarized in Ap­
pendix D; see Section 2.1.1.

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.

Console Interface to Operating System Software (IV) 2-15

Digital Restricted Distribution

2-16

Table 2-3 (Cont.): Per-CPU Slot Flelds

Offset Description

+192 PROCESSOR REVISION1.2

Full DEC STD 12 revision field for this processor. This quadword field contains 4
ASCII characters. See Section 2.1.1.

+200 PROCESSOR SERIAL NUMBER1·2

Full DEC STD serial number for this processor. This octaword field contains a 10
character ASCII serial number determined at the time of manufacture; see DEC
STD 12 for format information.

+216 PA OF LOGOUT AREA1•2

Starting physical address of PALcode logout area for this processor. Logout areas
must be at least quadword aligned. See Open VMS Section, Chapter 6.

+224 LOGOUT AREA LENGTH1·2

Number of bytes in the PALcode logout area for this processor. See Open VMS
Section, Chapter 6.

+232 HALT PCBB3•4

Value of the PCBB IPR when a processor halt condition is encountered by this
processor. Initialized to the address of the HWPCB at offset [0] from this per-CPU
slot at system bootstraps or secondary processor starts.

+240 HALT PC3•4

Value of the PC when a processor halt condition is encountered by this processor.
Zeroed at system bootstraps or secondary processor starts.

+248 HALT PS3•4

Value of the PS when a processor halt condition is encountered by this processor.
Zeroed at system bootstraps or secondary processor starts.

+256 HALT ARGUMENT LIST3·4

Value of R25 (argument list) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

+264 HALT RETURN ADDRESSa,4

Value of R26 (return address) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

+272 HALT PROCEDURE VALUE3·4

Value of R27 (procedure value) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
21nitialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
3 Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.

Digital Restricted Distribution

(

~

Table 2-3 (Cont.): Per-CPU Slot Fields

Offset Description

+280 REASON FOR HALT3,4

Indicates why this processor was halted. Values include:

Code16

0
1
2
3
4
5
6
7-FFF
other

Reason

Bootstrap, processor start, or powerfail restart
Console operator requested a system crash
Processor halted due to kernel-stack not-valid halt
Invalid SCBB
Invalid PTBR
Processor executed CALL_PAL HALT instruction in kernel mode
Double error abort encountered
Reserved
Implementation-specific

See Open VMS Section, Chapt;er 6 for information on system exceptions associated
with codes 2 through 6. Set to 'O' at console initialization.

+288 RESERVED FOR SOFTWARE6

Reserved for use by system software. Zeroed at system bootstraps or secondary
processor starts.

+296 RXTX BUFFER AREA

Used for interprocessor console communication. See Section 2.4.

+464 RESERVED

Reserved for Digital; SBZ.

8Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.
6May by modified by system software for a secondary prior to processor start.

Table 2-4: Per-CPU State Flags

Bit Description

0 BOOTSTRAP IN PROGRESS (BIP) 3,5,6

For the primary, this bit indicates that this processor is undergoing a system boot­
strap. For a secondary, this bit indicates that a CPU start operation is in progress.
Set by the console and cleared by system software. See Sections 3.3.1.4, 3.3.3.6, and
3.4.1.

81nitialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
5May be :modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

Console Interface to Operating System Software (IV) 2-17

Digital Restricted Distribution

2-18

Table 2-4 (Cont.): Per-CPU State Flags
Bit Description

1 RESTART CAPABLE (RC)3,4,5,6

Indicates that system software executing on this processor is capable of being
restarted in the event of a detected error halt, powerfail recovery, or other error
condition. Cleared by the console and set by system software. See Sections 3.3.1.4,
3.3.3.6, and 3.4.1.

2 PROCESSOR AVAILABLE (PA)1,2

This bit indicates that this processor is available for use by system software. The
PA bit may differ from the PP bit based on self-test or other diagnostics, or as the
result of a console command which explicitly sets this processor unavailable.

3 PROCESSOR PRESENT (PP)l,2

This bit indicates that this processor is physically present in the configuration.

4 OPERATOR HALTED (OH)a,4

This bit indicates that this processor is in console 1/0 mode as the result of explicit
operator action. See Section 3.4.8.

5 CONTEXT VALID (CV)3,6

This bit indicates that the HWPCB in this slot is valid. Set after the console or
system software initializes the HWPCB in this slot. See Sections 3.3.1.2 and 3.3.3.

6 PALCODE VALID (PV)1,2

This bit indicates that this processor's PALcode is valid. Set after PALcode has been
successfully loaded and initialized. See Sections 3.3.1.2 and 3.3.3.3.

7 PALCODE MEMORY VALID (PMV) 1,2,6

This bit indicates that this processor's PALcode memory and scratch space addresses
are valid. Set after the necessary memory is allocated and the addresses are written
into the processor's slot. See Sections 3.3.1.2 and 3.3.3.3.

8 PALCODE LOADED (PL) 1,2,6

This bit indicates that this processor's PALcode image has been loaded into the
address given in the processor's slot PALcode memory space address field. See
Sections 3.3.1.2 and 3.3.3.3.

15:9 RESERVED; MBZ.

1 Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
21nitialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
8 Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.
5May be modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

Digital Restricted Distribution

Table 2-4 (Cont.): Per-CPU State Flags

Bit Description

23:16 HALT REQUESTED 3,5,6

Indicates the console action requested by system software executing on this proces­
sor. Values include:

Code16 Reason

0 Default (no specific action)
1 SAVE_TERM/RESTORE_TERM exit
2 Cold Bootstrap requested
3 Warm Bootstrap requested
4 Remain halted (no restart)
other Reserved

Set to 'O' at system bootstraps and secondary processor starts. May be set to non­
zero by system software prior to processor halt and subsequent processor entry into
console 1/0 mode. See Sections 3.4. 7 and 3.3.5.

63:24 RESERVED; MBZ.

3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
5May be modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

2.1.4 Configuration Data Block

Systems may have a Configuration Data Block (CONFIG). The format of the block
and whether it exists in a system is implementation-specific. If present, the block
must be mapped in the bootstrap address space. The CONFIG Offset in the HWRPB
(HWRPB[208]) contains the virtual address offset of the block; if no CONFIG block
exists, the offset is zero. The· first quadword of a CONFIG block must contain the
size in bytes of the block. The second quadword must contain a checksum for the
block; the checksum is computed as a 64-bit, 2's complement sum ignoring overflows.

2.1.5 Field Replaceable Unit Table
Systems may have a field replaceable unit (FRU) table. The format of the table and
whether it exists in a system is implementation-specific. If present, the table must
be mapped in the bootstrap address space. The FRU Table Offset in the HWRPB
(HWRPB[216]) contains the virtual address offset of the table; if no FRU table exists,
the offset is zero.

See the Fault Management Architecture document.

Console Interface to Operating System Software (IV) 2-19

Digital Restricted Distribution

2.2 Environment Variables

\

2-20

The environment variables provide a simply extensible mechanism for managing
complex console state. Such state may be variable length, may change with system
software, may change as a result of console state changes, and may be established
by the console presentation layer. Environment variables may be read, written, or
saved.

An environment variable consists of an identifier (ID) and a byte stream value main­
tained by the console. There are three classes of environment variables:

1. Common to all implementations: ID= 0 to 3F16•

These have meaning to both the console and system software. All Alpha consoles
must implement all of these environment variables.

2. Specific to a given console implementation: ID= 40 to 7F16.

These have meaning to a given console implementation and system software
implementation. Support for these environment variables is optional.

3. Specific to system software: ID= 80 to FF16•

These have meaning to a given system software application or implementation;
the console simply passes these environment variables between the console pre­
sentation layer and the target application without interpretation. Support for
these environment variables is optional.

Optional environment variables, if any, supported by a given console must be detailed
in the relevant console implementation specification and registered with the Alpha
architecture group. See Appendix E. \

The value, format, and size of each environment variable is dependent on the en­
vironment variable and the console implementation. The size of an environment
variable value is specified in bytes. The byte stream value of most environment
variables consists of an ASCII string. Some environment variable values consist of
multiple fields, some environment variable values consist of lists. Values are parsed
as follows:

1. Each field is delimited by one and only one space 11 11 2016.

2. Each list element is delimited by one and only one comma"," 2C16.

3. Any numeric quantities are expressed in hexadecimal.

4. All characters are case-blind and may be expressed in uppercase or lowercase.

Examples of environment variables which have list values are BOOT_DEV, BOOTED_
OSFLAGS, and DUMP _DEV.

PROGRAMMING TEXT
For example, BOOT_DEV might consist oi~'O 4 MSCP,O 1 MOP;;
and BOOT_OSFLAGS might consist of "7,2,lC".

Digital Restricted Distribution

Appendix E summarizes the format and lengths of the environment variables for
each implementation.

System software uses the console environment variable routines to access the en­
vironment variables. Each environment variable is identified by an identification
number (ID). If the console resolves the ID, the associated byte stream value is re­
turned. The console environment variable routines present system software with a
consistent interface to environment variables regardless of the presentation layer
and internal console representation. The console operator interacts with the console
presentation layer to access environment variables. See Section 1.3 for details.

In a multiprocessor system, the console must ensure that the dynamic state created
by the environment variables is common to all processors. It must not be possible for
a value observed on a secondary to differ from that observed on the primary or an­
other secondary. This is necessary to support bootstrapping, restarting a processor,
and switching the primary.

Some environment variables contain critical state which must be maintained across
console initializations and system power transitions. Other environment variables
contain dynamic state which must be initialized at console initialization and retained
across warm bootstraps. Still others contain dynamic state which is initialized at
each system bootstrap. See Section 2.5.2.

Environment variable values which must be maintained across console initializa­
tions must be retained in some sort of non-volatile storage. Default values for these
environment variables must be set prior to system shipment. Thus, there are three
possible values: the dynamic value, the default value retained in non-volatile stor­
age, and the initial default value set in non-volatile storage prior to system shipment.
The console need not preserve the initial default value. If console implementation
preserves the initial default value, that value is accessible only to the console pre­
sentation layer; system software accesses only the dynamic and default (last writ­
ten) values. The dynamic and default values may. differ at any time after console
initialization as the result of changes by system software or the console operator.

The internal representation and implementation mechanisms of environment vari­
ables is at the complete discretion of the console and is unknown to both system soft­
ware and the console presentation layer. The realization of the required non-volatile
storage is also implementation specific.

Table 2-5 lists the environment variables maintained by the console. Each environ­
ment ID is also assigned a symbolic name which is used to reference the environment
variable elsewhere in this specification.

Console Interface to Operating System Software (IV} 2-21

Digital Restricted Distribution

2-22

Table 2-5: Required Environment Variables
Environment Var

ID16 Symbol

00

01

02

03

04

05

AUTO_ACTION1·2

BOOT_DEv2

BOOTDEF _DEV112

BOOTED_DEV4

BOOT_FILE1.2

Description

Reserved

Console action following an error halt or powerup. Defined
values and the action invoked are:

"BOOT" (544F 4F4216) bootstrap

"HALT" (544C 414816) halt

"RESTART" (54 52415453455216) restart

Any other value causes a halt; The default value when
the system is shipped is "HALT" (544C 414816). See Sec­
tion 3.1.1.

Device list used by the last (or currently in progress) boot­
strap attempt. The console modifies BOOT_DEV at con­
sole initialization and when a bootstrap attempt is initi­
ated by a BOOT command. The value of BOOT_DEV is
set from the device list specified with the BOOT command
or, if no device list is specified, BOOTDEF _DEV. The con­
sole uses BOOT_DEV without change on all bootstrap at­
tempts which are not initiated by a BOOT command. See
Section 3.3.1.5. The format is independent of the console
presentation layer; registered formats are contained in Ap­
pendix E.

Device list from which bootstrapping is to be attempted
when no path is specified by a BOOT command. See Sec­
tion 3.3.1.5. The format follows BOOT_DEV. The default
value when the system is shipped indicates a valid implementation­
specific device or NULL 0016.

Device used by the last (or currently in progress) bootstrap
attempt. Value is one of the devices in the BOOT_DEV list.
See Section 3.3.1.5. The format is independent of the con­
sole presentation layer; registered formats are contained in
AppendixE.

Filename to be used when a bootstrap requires a filename
and when the bootstrap is not the result of a BOOT com­
mand or when no filename is specified on a BOOT com­
mand. The console passes the value between the console
presentation layer and system software without interpre­
tation; the value is preserved across warm bootstraps. The
default value when the system is shipped is NULL 0016.

1Non-volatile. The last value saved by system software or set by console eommands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm non-volatile. The last value set by system software is preserved across warm bootstraps and restarts.
4Read-only. The variable cannot be modified by system system software or console commands.

Digital Restricted Distribution

Table 2-5 (Cont.): Required Environment Variables
Environment Var
ID16 Symbol

06 BOOTED_FILE4

Description

Filename used by the last (or currently in progress) boot­
strap attempt. The value is derived from BOOT_FILE or
the the current BOOT command. The console passes the
value between the console presentation layer and system
software without interpretation.

07 BOOT_OSFLAGS1·2 Additional parameters to be passed to system software
when the bootstrap is not the result of a BOOT command or
when none are specified on a BOOT command. The console
preserves the value across warm bootstraps and passes the
value between the console presentation layer and system
software without interpretation. The default value when
the system is shipped is NULL 0016.

08 BOOTED_OSFLAGS4 Additional parameters passed to system software during
the last (or currently in progress) bootstrap attempt. The
value is derived from BOOT_OSFLAGS or the current BOOT
command. The console passes the value between the con­
sole presentation layer and system software without inter­
pretation.

09 BOOT_RESET1·2 Indicates whether a full system reset is performed in re­
sponse to an error halt or BOOT command. Defined values
and the action invoked are:

OA DUMP _DEV1.2

"OFF" (46 464F1s) warm bootstrap, no full system reset
is performed.

"ON" (4E4F1s) cold bootstrap, a full system reset is per­
formed.

See Sections 3.3.1 and 3.3.2. The default value when the
system is shipped is implementation-specific.

Device used to write operating system crash dumps. The
format follows BOOTED_DEV and is independent of the
console presentation layer; registered formats are contained
in Appendix E. The value is preserved across warm boot­
straps. The default value when the system is shipped in­
dicates an implementation-specific device or NULL 0016.

1 Non-volatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm non-volatile. The last value set by system software is preserved across warm bootstraps and restarts.
4 Read-only. The variable cannot be modified by system system software or console commands.

Console Interface to Operating System Software (IV) 2-23

Digital Restricted Distribution

2-24

Table 2-5 (Cont.): Required Environment Variables
Environment Var

ID16 Symbol

OB ENABLE_AUDIT1,2

oc

OD

OE

OF

10-3F

40-7F

80-FF

LICENSE1•4

CHAR_SET1.2

LANGUAGE1•2

TTY_DEV 1•
2

•
4

Description

Indicates whether audit trail messages are to be generated
during bootstrap. Defined values and the action invoked
are:

"OFF" (46 464F16). Audit trail messages suppressed.

"ON" (4E4F1s). Audit trail messages generated.

The default value when the system is shipped is "ON"
(4E4F16.)

Software license in effect. The value is derived in an.
implementation-specific manner during console initializa­
tion. Defined values and (optional) software interpretation
are:

"MU" (554D1s) multiple user system.

"SU" (55531s) single user system.

\ Note that the mechanism used to derive the value of LI­
CENSE should NOT be documented in customer-available
literature. \

CUITent console terminal character-set encoding. Defined
values are given in Table 2-7. The default value when the
system is shipped is determined by the manufacturing site.

CUITent console terminal language. Defined values are
given in Table 2-6. The default value when the system
is shipped is determined by the manufacturing site.

CUITent console terminal unit. Indicates which entry of the
CTB Table corresponds to the actual console terminal. The
value is preserved across warm bootstraps. The default
value is "O" 3016.

Reserved for Digital.

Reserved for console implementation use.

Reserved for system software use.

1Non-volatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm non-volatile. The last value set by system software is preserved across warm bootstraps and restarts.
4 Read-only. The variable cannot be modified by system system software or console commands.

Digital Restricted Distribution

Table 2-6: Supported Languages
GETC

LANGUAGE16 Language Character-Set Bytes

0 none (cryptic) ISO-LATIN-1 1

30 Dansk ISO-LATIN-1 1

32 Deutsch ISO-LATIN-1 1

34 Deutsch (Schweiz) ISO-LATIN-1 1

36 English (American) ISO-LATIN-1 1

38 English (British/Irish) ISO-LATIN-1 1

3A Espanol ISO-LATIN-1 1

3C Francais ISO-LATIN-1 1

3E Francais (Canadian) ISO-LATIN-1 1

40 Francais (Suisse Romande) ISO-LATIN-1 1

42 Italiano ISO-LATIN-1 1

44 Nederlands ISO-LATIN-1 1

46 Norsk ISO-LATIN-1 1

48 Portugues ISO-LATIN-1 1

4A Suomi ISO-LATIN-1 1

4C Svenska ISO-LATIN-1 1

4E Vlaams ISO-LATIN-1 1

other reserved TBD TBD

Table 2-7: Supported Character Sets
CHAR_SET1s Character-Set

0 ISO-LATIN-1

other TBD

2.3 Console Callback Routines

System software can access certain system hardware components through a set of
callback routines provided by the Alpha console. These routines give system software
an architecturally consistent and relatively simple interface to those components.

All of the console callback routines may be used by system software when the op­
erating system has only restricted functionality, such as during bootstrap or crash.
When invoked in this context, the console may assume full control of system platform
hardware. Some of the console callback routines may be used by system software

Console Interface to Operating System Software (IV) 2-25

Digital Restricted Distribution

when the operating system is fully functional. Such usage imposes constraints on
the console implementation.

All routines must be called by system software executing in kernel mode. All routines
require that the HWRPB and the per-CPU, CTB, and CRB offset blocks are virtually
mapped and kernel read/write accessible. If these conditions are not met, the results
are UNDEFINED. Some of the routines execute correctly only at or above certain
IPLs.

The routines must never modify any processor registers except those explicitly indi­
cated by the routine descriptions.

2.3.1 System Software Use of Console Callback Routines

2-26

Those console callback routines which are intended for use while the operating sys­
tem is fully functional execute in the unmodified context of that operating system.
The console must not usurp operating system control of system platform hardware.
These routines must:

1. Not alter the current IPL.

2. Not alter the current execution mode.

3. Not disable or mask interrupts.

4. Not alter any registers except as explicitly defined by the routine interface.

5. Not alter the existing memory management policy.

6. Not usurp any existing interrupt mechanisms.

7. Be interruptable.

8. Ensure timely completion.

Once the operating system is bootstrapped, the console must not reclaim resources
transferred to that operating system. This includes both the issuing and servicing
of 1/0 device interrupts, interprocessor interrupts, and exceptions.

It is the responsibility of the console implementation to ensure that these console
callback routines may be invoked at multiple IPLs, may be interrupted, and may be
invoked by multiple system software threads. The operation of these routines must
appear to be atomic to the calling system software even if that software thread is
interrupted. See Section Section 2.5.3.1.

In a multiprocessor system, some console routines may be invoked only on the pri­
mary processor. A secondary processor may invoke only a subset of these routines
and then only under a limited set of conditions. These conditions are explicitly stated
in the routine descriptions; if violated, the results are UNDEFINED.

Digital Restricted Distribution

2.3.2 System Software Invocation of Console Callback Routines
With the exception of the FIXUP routine, all of the routines are accessed uniformly
through a common DISPATCH procedure. The target routine is identified by a func­
tion code. All console callback routines are invoked using the Alpha standard calling
conventions.

Any memory management exceptions generated by incorrect mapping or inaccessi­
bility of console callback routine parameters are serviced by the operating system.
This occurs naturally for those console callback routines which are intended for use
while the operating system is fully functional; these routines execute in the unmodi­
fied context of that operating system. For those routines intended for use only while
the operating system has restricted functionality, the DISPATCH-routine must en­
sure that any mapping or accessibility conflicts are resolved prior to permitting the
console to gain control of the system platform hardware.

2.3.3 Console Callback Routine Summary
The console callback routines fall into four functional groups:

1. Console terminal interaction.

2. Generic 1/0 device access.

3. Environment variable manipulation.

4. Miscellaneous.

The hexadecimal function code, name, and function for each routine are summarized
in Table 2-8.

Table 2-8: Console Callback Routines
Code16 Name Function Invoked

01

02

03

04

05

06

07-F

Console Terminal Routines

GETC

PUTS

RESET_ TERM

SET_TERM_INT

SET_TERM_CTL

PROCESS_KEYCODE

Get character from console terminal

Put byte stream to console terminal

Reset console terminal to default

Set console terminal interrupts·

Set console terminal controls

Process and translate keycode

reserved

Console Interface to Operating System Software (IV) 2-27

Digital Restricted Distribution

Table 2-8 (Cont.): Console Callback Routines

Code16 Name Function Invoked

10

11

12

13

14

15-lF

20

21

22

23

30

(none)

(none)

other

Console Generic 1/0 Device Routines

OPEN Open 1/0 device for access

CLOSE Close I/O device for access

IOCTL Perform 1/0 device-specific operations

READ Read 1/0 device

WRITE Write 1/0 device

reserved

Console Environment Variable Routines

SET_ENV Set (write) an environment variable

RESET_ENV Reset (default) an environment variable

GET_ENV Get (read) an environment variable

SAVE_ENV Save current environment variables

Console Miscellaneous Routines

PSWITCH

FIX UP

DISPATCH

Switch primary processor

Remap console callback routines

Access console callback routine

reserved

All Alpha consoles must implement:

1. All console terminal routines except PROCESS_KEYCODE.

2. All console generic 1/0 device routines.

3. All environment variable routines except SAVE_ENv.

4. The FIXUP and DISPATCH miscellaneous routines.

The PSWITCH routine is required for all Alpha multiprocessor systems which sup­
port dynamic primary switching. See Section 3.4.6.

2.3.4 Console Terminal Routines

2-28

Alpha consoles provide system software with a consistent interface to the console
terminal, regardless of the physical realization of that terminal. This interface con­
sists of the Console Terminal Block (CTB) Table and a number of console terminal
routines. Each CTB contains the characteristics of a terminal device which can be
accessed through the console terminal routines; see Section 2 .3 .8.2.

Digital Restricted Distribution

There is ONLY ONE console terminal. The CTB Table may contain multiple CTBs
and the console terminal routines may be used to access multiple terminal devices.
Each terminal device is identified by a "unit number" which is the index of its CTB
within the CTB Table. The TTY_DEV environment variable indicates the unit, hence
the CTB, of the console terminal. The console terminal unit is determined at system
bootstrap and cannot be altered by system software. Console terminal deVice inter­
rupts are delivered at IPL 20 to the primary processor; interrupts can be redirected
to a secondary only when switching the primary processor.

The console terminal routines permit system software to access the console terminal
in a device-independent way. These routines may be invoked while the operating
system is fully functional as well as during operating system bootstrap or crash. All
console terminal routines are subject to the constraints given in Section Section 2.3.1.
These routines must:

1. Not alter the current IPL or current mode.

These routines must be invoked in kernel mode at or above the console terminal
device IPL 20.

2. Not alter the existing memory management policy.

All internal pointers must have been remapped by FIXUP.

3. Not block interrupts.

The operating system must be capable of continuing to receive hardware inter­
rupts at higher IPLs.

4. Be interruptable and re-entrant.

These routines may be invoked at multiple IPLs and their execution may be in­
terrupted. Note, however, that console terminal callback operations are not nec­
essarily atomic. In the event of re-entrant invocations, it is UNPREDICTABLE
whether or not the interrupted operation will fail and characters may be trans­
mitted or received out of order.

The time required for console terminal routines to complete is UNPREDICTABLE;
however, a console implementation will attempt to minimize the time whenever
possible.

SOFTWARE NOTE
To permit use of these routines by Open VMS, implemen­
tations must limit the execution time to significantly
less than the interval clock interrupt period. A return
after partial operation completion is preferable to long
latency.

When invoking these routines, system software must:

1. Be executing in kernel mode at or above the console terminal device IPL 20.

Console Interface to Operating System Software (IV) 2-29

Digital Restricted Distribution

2-30

If these routines are invoked in other modes, their execution causes UNPRE­
DICTABLE operation. If invoked at lower IPLs, their execution causes UNDE­
FINED operation.

2. Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on secondary processors, their execution causes
UNDEFINED operation.

3. Be prepared to service any resulting console terminal interrupts, if enabled.

System software must provide valid interrupt service routines for the console
terminal transmit and receive interrupts. The operating system interrupt service
routines must be established prior to enabling interrupts; otherwise the operation
of the system is UNDEFINED.

PROGRAMMING NOTE
Any console terminal interrupt service routines es­
tablished by the console prior to transferring con­
trol to operating system software are not transferred
to the operating system nor are they remapped by
FIXUP. Any console terminal interrupts will be de­
livered only after the operating system lowers IPL
from the console terminal device IPL.

IMPLEMENTATION NOTE
The implementation of console terminal I/O inter­
rupts are specific to system hardware platform. An
exam pie ofimplementation-specific characteristics in­
clude console terminal SCB vectors.

Digital Restricted Distribution

2.3.4.1 GETC ·Get Character from Console Terminal

Format:

char = DISPATCH (GETC,unit)

Inputs:

GETC

unit

arginfo

retadr

procval

Outputs:

char

= R16; GETC function code - 0116

= Rl 7; terminal device unit number

= R25;, argument information

= R26; return address

= R27; procedure value

=RO; returned character and status:

R0<63:61> '000' success, character received
success, character received, more
to be read

R0<60:48>
R0<47:40>
R0<39:32>

R0<31:0>

'001'

'100' failure, character not yet ready
for reception

'110' failure, character received with er­
ror

'111' failure, character received with er-
ror, more to be read

device-specific error status
SBZ
terminal device unit number returning char­
acter
character read from console terminal

GETC attempts to read one character from a console terminal device and, if success­
ful, returns that character in R0<31:0>. The character is not echoed on the terminal
device. The size of the returned character is from one to four bytes and is a func­
tion of the current character-set encoding and language, see Table 2--6. The routine
performs any necessary keycode mapping.

For implementations which support multiple directly addressable terminal devices,
R17 contains the unit number from which to read the character. If the implemen­
tation does not support· multiple terminal devices or if the devices are not directly
addressable, Rl 7 SBZ. The unit number from which the character was read is re­
turned in R0<39:32>. If the implementation does not support multiple terminal
devices, R0<39:32> is returned as zero.

Console Interface to Operating System Software· (IV) 2-31

Digital Restricted Distribution

2-32

GETC returns character reception status in R0<63:61>. If received characters are
buffered by the console terminal, R0<6 l> is set '1' whenever additional characters
are available. If GETC returns a character without error, R0<63:62> is set to '00'.
If no character is yet ready, R0<63:62> is set to '10'. If an error is encountered
obtaining a character, R0<63:62> is set to '11'; examples of errors during character
reception include data overrun or loss of carrier.

When an error is returned by GETC, the contents of R0<31:0> and R0<60:48> de­
pend on the capabilities of the underlying hardware. Implementations in which the
hardware returns the character in error must provide that character in R0<31:0>.
Additional device-specific error status may be contained in R0<60:48>. See the ap­
propriate CTB description in Appendix E.

When appropriate, GETC performs special keyboard operations such· as turning on
or off keyboard LEDs. Such action is based on the incoming stream of keycodes
delivered by the console terminal. See the appropriate device CTB description in
Appendix E for more details.

The return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.4.2 PROCESS_KEYCODE ·Process and Translates Keycode

Format:

char =DISPATCH(PROCESS_KEYCODE,unit,keycode,again)

Inputs:

PROCESS_KEYCODE = R16; PROCESS_KEYCODE function code - 0616

unit

keycode

again

argi.nfo

retadr

procval

Outputs:

char

= Rl 7; terminal device unit number

= RlS; Keycode to be processed

= R19; 'l' if calling again for same keycode
'O' otherwise

= R25; argument information

= R26; return address

= R27; procedure value

=RO; translated character and status:

R0<63:61> '000' success, character returned
'101' failure, more time needed

to process keycode
'110' failure, device not sup-

ported by routine or rou-
tine not supported

'111' failure, no character - more
keycodes needed or ille-
gal sequence encountered

R0<60> 'O' success in correcting se-
vere error

'l' failure in correcting se-
vere error

R0<59:32> SBZ
R0<31:0> translated character

PROCESS_KEYCODE attempts to translate the keycode contained in RlS and, if
successful, returns the character in R0<31 :0>. The translation is based on the cur­
rent character-set encoding, language, and console terminal device state contained in
the appropriate CTB. The translated character may be from one to four bytes. For
implementations which support multiple terminal devices, Rl 7 contains the unit
number of the keyboard; Rl 7 SBZ otherwise. -

Console Interface to Operating System Software (IV) 2-33

Digital Restricted Distribution

2-34

IMPLEMENTATION NOTE
For ISO-LATIN-1 character-set encoding, PROCESS_
KEYCODE returns a one byte character; see Section 2.5.3.2.1.

PROCESS_KEYCODE returns keycode translation status in R0<63:61>. The pro­
cessing falls into one of several cases:

1. The keycode, along with previous keycodes if any, translates into a character
from the currently selected character-set. In this case, R0<63:61> set to '000'.

2. The keycode, along with previously entered keycodes if any, does not translate
into a character from the currently selected character-set. This is because either:

• there are not yet enough keycodes entered to produce a character in the
currently selected character-set

• the keycodes entered to this point indicate a severe keyboard error status

• the keycodes entered to this point form an illegal or unsupported keycode
sequence In this case, R0<63:61> set to '111'.

3. The console terminal device for which keycode translation is being performed
is not supported by the PROCESS_KEYCODE implementation or the console
implementation does not support PROCESS_KEYCODE. In this case, R0<63:61>
set t.o '110'.

4. The keycode cannot be processed in a reasonable amount of time; multiple invo­
cations of PROCESS_KEYCODE are necessary. In this case, the routine returns
with R0<63:61> set t.o '101'. The subsequent call(s) should be made with the
same keycode in R18 and R19 set to '1'.

IMPLEMENTATION NOTE
It may not be possible for an implementation to
perform all the actions associated with special key­
codes (such as turning on LEDs) in a timely manner.
The PROCESS_KEYCODE routine must return af­
ter partial operation completion if necessary. It is
the responsibility of the console to ensure that sub­
sequent calls make forward progress. The delay be­
tween successive operating system calls is UNPRE­
DICTABLE, although the operating system should
attempt to complete the operation in a timely fash­
ion. See Sections 2.3.4 and 2.5.3.1.

In all but the first case, the contents of R0<31:0> are UNPREDICTABLE.

When certain severe keyboard errors are encountered, PROCESS_KEYCODE at­
tempts to correct them by performing special keyboard operations. Those severe er­
rors which may be corrected are device-specific and contained in the terminal device
CTB. If an error is encountered and the attempt to correct the error is unsuccessful,
R0<60> set to '1'; otherwise R0<60> set to 'O'.

Digital Restricted Distribution

The keyboard state recorded in the CTB is updated appropriately as the input stream
of keycodes is processed. If appropriate, PROCESS_KEYBOARD may buffer some
of the keycodes in the CTB keycode buffer. The supported keyboard state changes
are device-specific and are listed in the device CTB.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-35

Digital Restricted Distribution

2.3.4.3 PUTS - Put Stream to Console Terminal

2-36

Format:

wcount

Inputs:

PUTS

unit

address

length

arginfo

retadr

procval

Outputs:

wcount

=DISPATCH (PUTS,unit,address,length)

= R16; PUTS function code - 02 l6

= Rl 7; terminal device unit number

= R18; virtual address of byte stream to be written

= R19; count of bytes to be written

= R25; argument information

= R26; return address

= R27; procedure value

=RO; count of bytes written and status:

R0<63:61> '000' success, all bytes written

R0<60:48>
R0<47:32>

'001' success, some bytes written
'100' failure, no bytes written, termi­

nal not ready
'110' failure, no bytes written, termi­

nal error encountered
'111' failure, some bytes written, ter-

minal error encountered
device-specific error status
SBZ

R0<31:0> count of bytes written (unsigned)

PUTS attempts to write a number of bytes to a console terminal device. R18 contains
the base virtual address of the memory-resident byte stream; R19 contains its 32-bit
size in bytes. The byte stream is written in order with no interpretation or special
handling. The count of the bytes transmitted is returned in R0<31:0>.

PROGRAMMING NOTE
For multiple byte character-set encodings, the returned
byte count may indicate a partial character transmis­
sion.

For implementations which support multiple terminal devices, Rl 7 contains the unit
number to which the byte stream is to be written; Rl 7 SBZ otherwise.

Digital Restricted Distribution

PUTS returns byte stream transmission status in R0<63:61>. If only a portion of the
byte stream was written, R0<61> is set to '1'. If no error is encountered, R0<63 :62> is
set to '00'. If no bytes were written because the terminal was not ready, R0<63:62>
is set to '10'. If an error is encountered writing a byte, R0<63:62> is set to '11';
examples of errors during byte transmission include data overrun or loss of carrier.

When an error is returned by PUTS, additional device-specific error status may be
contained in R0<60:48>. See the appropriate CTB description in Appendix E for
more details.

Multiple invocations of PUTS may be necessary because the console terminal may
accept only a very few bytes in a reasonable period of time.

The output byte stream located by R18 should be mapped and kernel read accessible;
the return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-37

Digital Restricted Distribution

2.3.4.4 RESET_ TERM • Reset Console Terminal to default parameters

2-38

Format:

status = DISPATCH (RESET_TERM,unit

Inputs:

RESET_TERM= R16; RESET_TERM function code - 0316

unit

arginfo

retadr

procval

Outputs:

status

= R17;

= R25;

= R26;

= R27;

=RO;

terminal device unit number

argument information

return address

procedure value

status:

R0<63> 'O'
'l'

R0<62:0> SBZ

success, terminal reset
failure, terminal not fully reset

RESET_TERM resets a console terminal device and its CTB to their initial, default
state. All errors in the CTB are cleared. For implementations which support multi­
ple terminal devices, Rl 7 contains the unit number to be reset; Rl 7 SBZ otherwise.

The CTB describes the capabilities of the terminal device and its initial, default state.
Depending on the terminal device type and particular console implementation, other
terminal devices may be affected by the routine.

PROGRAMMING NOTE
For example, if multiple terminal units share a common
interrupt, that interrupt may be disabled or enabled for
all.

If the console terminal is successfully reset, RESET _TERM returns with R0<63> set
to 'O'. If errors are encountered, the routine attempts to return the console terminal
to a usable state and then returns with R0<63> set to 'l'.

The return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

(

2.3.4.5 SET_TERM_CTL ·Set Console Terminal Controls

Format:

status = DISPATCH (SET_TERM_CTL,unit,ctb

Inputs:

SET_TERM_CTL= R16; SET_TERM_CTL function code - 0516

unit

ctb

arginfo

retadr

procval

Outputs:

status

= R17;

= R18;

= R25;

= R26;

= R27;

=RO;

terminal device unit number

virtual address of CTB

argument information

return address

procedure value

status:

R0<63> 'O' success, requested change com­
pleted

'1' failure, change not completed
R0<62:32> SBZ
R0<31:0> offset to offending CTB field (unsigned)

SET_TERM_ CTL, if successful, changes the characteristics of a console terminal de­
vice and updates its CTB. Th~ changes are specified by fields contained in a CTB
located by Rl8. The characteristics which can be changed, hence the active CTB
fields, depend on the console terminal device type; see the appropriate CTB descrip­
tion in Appendix E. For implementations which support multiple terminal devices,
Rl 7 contains the unit number to be reset; Rl 7 SBZ otherwise.

If the console terminal characteristics are successfully changed, SET_TERM_CTL
returns with R0<63> set to 'O'. If errors are encountered or if the terminal device
does not support the requested settings, the routine attempts to return the device
to the previous usable state and then returns with R0<63> set to '1' and R0<31:0>
set to the offset of an offending or unsupported field in the CTB located by R18.
Regardless of success or failure, the device CTB Table entry always contains the
current device characteristics upon routine return. SET_TERM_CTL returns the
CTB located by R18 without modification.

The CTB located by R18 should be mapped and kernel read accessible; the return
address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-39

Digital Restricted Distribution

2.3.4.6 SET _TERM_INT - Set Console Terminal Interrupts

2-40

Format:

status =DISPATCH (SET_TERM_INT,unit,mask

Inputs:

SET_TERM_INT = R16; SET_TERM_INT function code - 0416

unit

mask

arginfo

retadr

procval

Outputs:

status

= R17;

= R18;

= R25;

= R26;

= R27;

=RO;

terminal device unit number

bit encoded mask:

R18<1:0>

R18<7:2>
R18<9:8>

'01'
'00'
'IX'
SBZ

no change to transmit interrupts
disable transmit interrupts
enable transmit interrupts

'O l' no change to receive interrupts
'00' disable receive interrupts
'IX' enable receive interrupts

R18<63:10> SBZ

argument information

return address

procedure value

status:

R0<63> 'O' success
'1' failure, operation not supported

R0<62:2> SBZ
R0<0> '1' transmit interrupts enabled

'O' transmit interrupts disabled
RO<l> 'l' receive interrupts enabled

'O' receive interrupts disabled

SET_TERM_INT reads, enables, and disables transmit and receive interrupts from
a console terminal device and updates its CTB. For implementations which sup­
port multiple terminal devices, Rl 7 contains the unit number to be reset; Rl 7 SBZ
otherwise.

If the interrupt settings are successfully changed, the routine returns with R0<63>
set to 'O'. If the terminal device does not support the requested setting, then the
routine returns with R0<63> set to 'l'.

Digital Restricted Distribution

PROGRAMMING NOTE
For example, a device which has a unified transmit
/receive interrupt would would not support a request to
enable transmit interrupts while leaving receive inter­
rupts disabled.

Regardless of success or failure, the routine always returns with the previous set­
tings in RO<l:O>. The current state of the interrupt settings can be read without
change by invoking SET_TERM_INT with R18<1:0> and R18<9:8> set to '01'.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-41

Digital Restricted Distribution

2.3.5 Console Generic 1/0 Device Routines

2-42

The Alpha console provides primitive generic I/O device routines for system software
use during the bootstrap or crash process. These routines serve in place of the more
sophisticated system software I/O drivers until such time as these drivers can be
established. These routines may also be used to access console-private devices which
are not directly accessible by the processor.

During the bootstrap process, these routines can be used to acquire a secondary
bootstrap program from a system bootstrap device. .!or write messages to a terminal
other than the logical console terminal. When the operating system is about to crash,
these routines can be used to write dump files.

These routines are NOT intended for use while the operating system is fully func­
tional. These routines may:

1. Alter the current IPL.

The console may raise, but not lower, the IPL for the duration of the routine
execution.

2. Block interrupts.

These routines may cause any and all interrupts to be blocked or delivered to
and serviced by the console for the duration of the routine execution.

3. Block exceptions.

These routines may cause any and all exceptions to blocked or delivered to and
serviced by the console for the duration of the routine execution.

4. Alter the existing memory management policy.

The console may substitute a console-private (or bootstrap address) mapping for
the duration of the routine execution.

PROGRAMMING NOTE
The console must resolve any virtually addressed ar­
guments prior to altering the existing memory man­
agement policy.

5. Take any length of time for completion.

The operating system has no timeliness guarantee when invoking these routines.
Any operating system timer may have expired by their return. The time nec­
essary for completion is UNPREDICTABLE; however, a console implementation
will attempt to minimize the time whenever possible.

Prior to returning to the invoking system software, these routines must restore any
altered processor state. These routines must return to the calling system software
at the IPL and in the memory management policy of that software.

System software invokes these routines synchronously. When invoking these rou­
tines, system software must:

Digital Restricted Distribution

1. Be executing in kernel mode.

If these routines are invoked in other modes, their execution causes UNPRE­
DICTABLE operation.

2. Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on other processors, their execution causes UNDE­
FINED operation.

Console Interface to Operating System Software (IV) 2-43

Digital Restricted Distribution

2.3.5.1 CLOSE - Close Generic 110 Device for Access

2-44

Format:

status

Inputs:

CLOSE

channel

arginfo

retadr

procval

Outputs:

status

=DISPATCH (CLOSE, channel)

= R16;

= R17;

= R25;

= R26;

= R27;

=RO;

CLOSE function code - 111s

channel to close

argument information

return address

procedure value

status:

R0<63> 'O' success
'l' failure

R0<62:60> SBZ
R0<59:32> device-specllic error status
R0<31:0> SBZ

CLOSE deassigns the channel number from a previously opened block storage stor­
age I/O device. The channel number is free to be reassigned. The I/O device must
be reopened prior to any subsequent accesses.

CLOSE returns status in R0<63>. If the channel was open and the close is successful,
R0<63> is set to 'O'; otherwise R0<63> is set to '1' and additional device-specific status
is recorded in R0<62:32>.

For magnetic tape devices, CLOSE does not affect the current tape position nor is
any rewind of the tape performed.

The return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.5.2 IOCTL • Perform Device-specific Operations

Format:

count

Inputs:

IOCTL

channel

arginfo

retadr

procval

=DISPATCH (IOCTL,channel,Rl8,Rl9,R20,R21)

= R16;

= R17;

=.R25;

= R26;

= R27;

IOCTL function code - 1216

channel number of device to be accessed

argument information

return address

procedure value

For Magnetic Tape Devices Only:

operate

count

Outputs:

= R18; tape positioning operation:

'01' for SKIP to next/previous Inter-Record Gap
'02' for SKIP over Tape Mark
'03' for REWIND
'04' for write Tape Mark

= R19; number of SKIPs to perform (signed)

= R20- Reserved for future use as inputs
R21

For Magnetic Tape Devices Only:

count =RO; number of skips performed and status:

R0<63:62> '00' success
'10' failure, position not found
'11' hardware failure

R0<61:60> SBZ
R0<59:32> device-specific error status
R0<31:0> number of SKIPs actually performed (signed)

IOCTL performs special device-specific operations on I/O devices. The operation
performed and the interpretation of any additional arguments passed in R18 - R21
are functions of the device type as designated by the channel number passed in Rl7.

For magnetic tape devices, the following operations are defined:

Console Interface to Operating System Software (IV) 2-45

Digital Restricted Distribution

2-46

1. '01' - IOCTL relocates the current tape position by skipping over a number of
inter-record gaps. The direction of the skip and the number of gaps skipped
is given by the signed 32-bit count in R19. Skipping with a count of 'O' does
not change the current tape position. The number of gaps actually skipped is
returned in R0<31:0>.

2. '02' - IOCTL relocates the current tape position by skipping over a number of tape
marks. The direction of the skip and the number of marks skipped is given by
the signed 32-hit count in Rl9. Skipping with a count of 'O' does not change the
current tape position. The number of tape marks actually skipped is returned in
R0<31:0>.

3. '03' - IOCTL rewinds the tape to the position just after the Beginning-Of-Tape
(BOT) marker. R0<31:0> is returned as SBZ.

4. '04'- IOCTL writes a tape mark starting at the current position. R0<31:0> is
returned as SBZ.

IOCTL returns magnetic tape operation status in R0<63:62>. If the operation was
successful, R0<63:62> is set to '00'. If the tape positioning was not successful, the
tape is left at the position where the error occurred and R0<63:62> is set to '10'.
Tape positioning may fail due to encountering a BOT marker (R18 '01' or '02'), en­
countering a tape mark (R18 '01'), or running off the end of the tape. If a hardware
device error is encountered, the final position of the tape is UNPREDICTABLE and
R0<63:62> is set to '11'. In the event of an error, additional device-specific status is
recorded in R0<61:32>.

The return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.5.3 OPEN • Open Generic 1/0 Device for Access

Format:

channel =DISPATCH (OPEN,devstr,length)

Inputs:

OPEN = R16;

devstr = R17;

length = R18;

arginfo = R25;

retadr = R26;

procval = R27;

Outputs:

channel =RO;

OPEN function code - 1016

starting virtual address of byte string which contains the
device specification

length of byte string

argument information

return address

procedure value

assigned channel number and status:

R0<63:62> '00' success
'10' failure, device does not exist
'11' failure, error - device cannot be ac­

cessed or prepared
R0<61:60> SBZ
R0<59:32> device-specific error status
R0<31:0> assigned channel number of device

OPEN prepares a generic 1/0 device for use by the READ and WRITE routines. Rl 7
contains the base virtual address of a byte string which specifies the complete device
specification of the I/O device. The length of the string is given in R18. The format
and contents of the device specification string follows that of the BOOTED _DEV
environment variable; see Appendix E.

The routine assigns a unique channel number to the device. The channel number is
returned in RO and must be used to reference the device in subsequent calls to the
READ, WRITE, and CLOSE routines.

OPEN returns status in R0<63:62>. Ifthe I/O device exists and can be prepared for
subsequent accesses, R0<63:62> is set to '00'. If the device does not exist, R0<63:62>
is set to '10'. If the device exists, but errors are encountered in preparing the device,
R0<63:62> is set to '11' and additional device-specific status is recorded in R0<61:32>.
In the latter two failure cases, the channel number returned in R0<31:0> is UNPRE­
DICTABLE.

Console Interface to Operating System Software (IV) 2-47

Digital Restricted Distribution

2-48

All console implementations must support at least two concurrently opened generic
110 devices. Additional generic 1/0 devices may be supported.

PROGRAMMING NOTE
See the relevant console implementation specification
and Appendix E.

For magnetic tape devices, OPEN does not affect the current tape position nor is
any rewind of the tape performed.

Multiple channels cannot be assigned to the same device; the second and any sub­
sequent calls to OPEN fail with R0<63:62> set to '11' and R0<31:0> as UNPRE­
DICTABLE. The status of the first opened channel is unaffected.

The input string located by Rl 7 should be mapped and kernel read accessible; the
return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.5.4 READ • Read Generic 1/0 Device

Format:

rcount

Inputs:

READ
channel

count

address

block

arginfo

retadr

procval

Outputs:

rcount

=DISPATCH (READ,channel,count,address,block)

= R16;

= R17;

= R18;

= R19;

= R20;

= R25;

= R26;

= R27;

=RO;

READ function code - 1316

channel number of device to be accessed
'·

number of bytes to be read (should be multiple of the
device's record length) (unsigned)

virtual address of buffer to read data into

logical block number of data to read (used only by disk
devices)

argument information

return address

procedure value

number of bytes read and status:

R0<63> 'O' success
'l' failure

R0<62> 'l' EOT or Logical End of Device condi­
tion encountered

'O' otherwise
R0<61> 'l' illegal record length specified

'O' otherwise
R0<60> 'l' run off end of tape

'O' otherwise
R0<59:32> device-specific error status
R0<31:0> number of bytes actually read (unsigned)

READ causes data to be read from the generic I/O device designated by the channel
number in Rl 7 and written to a memory buffer pointed to by Rl9. The 32-bit
transfer byte count, hence length of the buffer, is contained in Rl8. The buffer must
be quadword aligned, virtually mapped, and resident in physical memory.

READ returns transfer status in R0<63:60> and the number of bytes actually read,
if any, in R0<31:0>. If the routine is successful, R0<63> is set to 'O'. If an error
is encountered accessing the device, R0<63> is set to 'l'. Additional device-specific
status may be returned in R0<59:32>.

Console Interface_ to Operating System Software (IV) 2-49

Digital Restricted Distribution

2-50

The transfer byte count should be a multiple of the record length of the device. If the
specified byte count is not a multiple of the record length, R0<61> is set to 'l'. Ifthe
count exceeds the record length, the count is rounded down to the nearest multiple
of the record length and READ attempts to read that number of bytes. If the record
length exceeds the count, it is UNPREDICTABLE whether READ attempts to access
the device. If no read attempt is made, R0<63> is set to 'l'.

For magnetic tape devices; READ does not interpret the tape format nor differentiate
between ANSI formatted and unformatted tapes. The routine simply reads the
requested transfer byte count starting at the current tape position. READ terminates
when either:

1. The specified number of bytes have been read. In this case, R0<63 :60> is set to
'0000'.

2. An inter-record gap is encountered. In this case, the tape is positioned to the
next position after the gap and R0<63:60> is set to '0000'.

3. A. tape mark is encountered. In this case, tape is positioned to the next position
after the tape mark and R0<63:60> is set to '0100'. (Note that after calling READ
and finding a tape mark, the caller can determine if the logical End-Of-Volume
or an empty file section has been found by calling READ again. The condition
exists if the second READ returns with zero bytes read and a tape mark found.)

4. The routine runs off the end of tape. In this case, R0<63:60> is set to '1001'.

READ ignores End-Of-Tape (EOT) markers.

For disk devices, READ does not understand the file structure of the device. The
routine simply reads the requested transfer byte count starting at the logical block
number specified by R20. The transfer continues until either the specified number
of bytes has been read or the last logical block on the device has been read. If the
logical end of the device is encountered, then R0<63:62> is set to '01'.

For network devices, READ interprets and removes any device-specific or protocol­
specific packet headers. If a packet has been received, the remainder of the packet is
copied into the specified buff er. If a packet has not been received, the routine returns
with R0<31:0> set to '0'. Only those network packets which are specifically addressed
to this system and are of the specified protocol type are returned; broadcast packets
are not returned. The actual packet size is dependent on the device and protocol;
the characteristics of the network device and protocol are specified at the time of the
channel OPEN.

The buffer pointed to by R19 should be mapped and kernel write accessible; the
return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.5.5 WRITE • Write Generic 1/0 Device

Format:

wcount

Inputs:

WRITE

channel

count

address

block

arginfo

retadr

procval

Outputs:

wcount

=DISPATCH (WRITE,channel,count,address,block)

= R16;

= R17;

= R18;

= R19;

= R20;

= R25;

= R26;

= R27;

=RO;

WRITE function code - 1416

channel number of device to be accessed

number of bytes to be written (should be multiple of the
device's record length) (unsigned)

virtual address of buffer to read data from

logical block number of data to be written (used only by
disk devices)

argument information

return address

procedure value

number of bytes written and status:

R0<63> 'O' success
'1' failure

R0<62> '1' EQT or Logical End of Device condi­
tion encountered

'O' otherwise
R0<61> '1' illegal record length specified

'O' otherwise
R0<60> 'l' if run off end of tape

'O' otherwise .
R0<59:32> device-specific error status
R0<31:0> number of bytes actually written (unsigned)

WRITE causes data to be written to the generic I/O device designated by the channel
number in Rl 7 and read from to a memory buffer pointed to by R19. The 32-bit
transfer byte count, hence length of the buffer, is contained in Rl8. The buffer must
be quadword aligned, virtually mapped, and resident in physical memory.

WRITE returns transfer·status in R0<63:60> and the number of bytes actually writ­
ten, if any, in R0<31:0>. If the routine is successful, R0<63> is set to 'O'. If an error
is encountered accessing the device, R0<63> is set to 'l'. Additional device-specific
status may be returned in R0<59:32>.

Console Interface to Operating System Software (IV) 2-51

Digital Restricted Distribution

2-52

The transfer byte count should be a multiple of the record length of the device. If the
specified byte count is not a multiple of the record length, R0<6 l> is set to 'l '. If the
count exceeds the record length, the count is rounded down to the nearest multiple
of the record length and WRITE attempts to write that number of bytes. If the
record length exceeds the count, it is UNPREDICTABLE whether WRITE attempts
to access the device. If no write attempt is made, R0<63> is set to 'l'.

For magnetic tape devices, WRITE does not interpret the tape format nor differen­
tiate between ANSI formatted and unformatted tapes. The routine simply writes
the requested transfer byte count starting at the current tape position. WRITE
terminates when either:

1. The specified number of bytes have been written without detecting an End-Of­
Tape (EOT) marker. In this case, R0<63:60> is set to '0000'.

2. The specified number of bytes have been written and an End-Of-Tape (EOT)
marker was detected. In this case, R0<63:60> is set to '0100'.

3. The routine runs off the end of tape. In this case, R0<63:60> is set to '1001'.

For disk devices, WRITE does not understand the file structure of the device. The
routine simply writes the requested transfer byte count starting at the logical block
number specified by R20. The transfer continues until either the specified number
of bytes has been written or the last logical block on the device has been written. If
the logical end of the device is encountered, then R0<63:62> is set to '01'.

For network devices, WRITE appends any device-specific or protocol-specific head­
ers. The routine transmits the specified requested transfer bytes with the proper
network protocol over the appropriate network. The actual packet size is dependent
on the device and protocol; the characteristics of the network device and protocol are
specified at the time of the channel OPEN.

The buffer pointed to by Rl9 should be mapped and kernel write accessible; and the
return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.6 Console Environment Variable Routines

System software accesses the environment variables indirectly through console call­
back routines. These routines may be invoked while the operating system is fully
functional as well as during operating system bootstrap or crash. The GET_ENv,
SET_ENY, and RESET_ENV routines are subject to the constraints given in Sec­
tion 2.3.1. These routines must:

1. Not alter the current IPL or current mode.

These routines must be invoked in kernel mode.

2. Not alter the existing memory management policy.

All internal pointers must be remapped by FIXUP.

3. Not block interrupts.

The operating system must be capable of continuing to receive hardware and
software interrupts.

The constraints on SAVE_ENV differ; see Section 2.3.6.3.

The time necessary for these routines to complete is UNPREDICTABLE; however,
a console implementation will attempt to minimize the time whenever possible.

SOFTWARE NOTE
To permit use of these routines by Open VMS, implemen­
tations must limit the execution time to significantly
less than the interval clock interrupt period.

The console implementation must ensure that any access to an environment variable
is atomic. The console implementation must resolve multiple competing accesses by
system software as well as competing accesses by system software and the console
presentation layer. See Section 2.5.3.1.

When invoking these routines, system software must be executing in kernel mode. If
these routines are invoked in other modes, their execution causes UNPREDICTABLE
operation.

These routines may be invoked on both the primary and secondary processors in
a multiprocessor configuration. System software is recommended to serialize com­
peting accesses to a given environment variable; a stale value may be returned if
GET_ENV is invoked simultaneously with SET_ENV or RESET_ENY.

Console lntertace to Operating System Software (IV) 2-53

Digital Restricted Distribution

2.3.6.1 GET_ENV - Get an environment variable

2-54

Format:

status =DISPATCH (GET_ENV,ID,value,length

Inputs:

GET_ENV = R16; GET_ENV function code - 2216

ID

value

length

arginfo

retadr

'procval

Outputs:

status

= R17;

= R18;

= R19;

= R25;

= R26;

= R27;

=RO;

ID of environment variable

starting virtual address of byte stream to contain re­
turned value

number of bytes in byte stream (unsigned)

argument information

return address

procedure value

status:

R0<63:61> '000' success
'001' success, byte stream truncated
'110' failure, variable not recognized

R0<60:32> SBZ
R0<31:0> count of bytes returned (unsigned)

GET_ENV causes the value of the environment variable specified by the ID in Rl 7
to be returned in the byte stream specified by the virtual address in R18. The size
in bytes of the byte stream is contained in R19.

GET_ENV returns status in R0<63:61>. If the environment variable is recognized,
R0<63:62> is set to '00', its current value is copied into the byte stream, and R0<31:0>
is set to the number of bytes copied. If the value must be truncated, R0<61> is set
to '1'. If the variable is not recognized, R0<63:61> is set to '110' and R0<31:0> is set
to '0'.

The byte stream indicated by R18 should be mapped and kernel write accessible;
the return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3.6.2 RESET_ENV ·Reset an environment variable

Format:

status =DISPATCH (RESET_ENV,ID,value,length)

Inputs:

RESET_ENV = R16; RESET_ENV function code - 2116

ID

value

length

arginfo

retadr

procval

Outputs:

status

= Rl 7; ID of environment variable

= R18; starting virtual address of byte stream to contain re-
turned value

= R19; number of bytes in byte stream (unsigned)

= R25; argument information

= R26; return address

= R27; procedure value

=RO; status:

R0<63 :61> '000' success
'001' success, byte stream truncated
'100' failure, variable read-only
'101' failure, variable read-only, byte stream

truncated
'110' failure, variable not recognized

R0<60:32> SBZ
R0<31:0> count of bytes returned (unsigned)

RESET_ENV causes the environment variable specified by the ID in Rl 7 to be reset
to the system default value and that default value to be returned in the byte stream
specified by the virtual address in Rl8. The size in bytes of the byte stream is
contained in Rl9.

RESET_ENV returns status in R0<63:61>. If the environment variable is success­
fully reset to the default value, R0<63 :62> is set to '00'. If the variable is recognized
but read-only, the value is unchanged and R0<63:62> is set to '10'. In both cases,
the default value is copied into the byte stream and R0<31:0> is set to the number
of bytes copied; if the value must be truncated, R0<61> is set to 'l'. If the variable
is not recognized, R0<63:61> is set to '110' and R0<31:0> is set to 'O'.

The byte stream indicated by R18 should be mapped and kernel write accessible;
the return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-55

Digital Restricted Distribution

2.3.6.3 SAVE_ENV ·Save current environment variables

2-56

Format:

status = DISPATCH (SAVE ENV

Inputs:

SAVE_ENV = R16; SAVE_ENV function code - 2316

arginfo = R25; argument information

retadr = R26; return address

procval = R27; procedure value

Outputs:

status =RO; status:

R0<63:61> '000' success, all values saved
'001' success, some bytes saved, addi-

tional values to be saved
'110' failure, routine unsupported
'111' failure, error encountered saving

values
R0<60:0> SBZ

SAVE_ENV attempts to update the non-volatile storage of those environment vari­
ables which must be retained across console initializations and system power tran­
sitions. These environment variables are identified as "NV" in Table 2-5.

PROGRAMMING NOTE
For example, SAVE_ENV may cause an EEPROM to be
updated. That update may write all ''NV" environment
variable values to the EEPROM, or may only write those
variables which have been modified since the last update
or console initialization.

This routine is not subject to the constraints given in Section 2.3.6. The console.may
usurp operating system control of the system platform hardware, but must restore
any such control or altered state prior to return. The console must not service any
interrupts or exceptions which are otherwise intended for the operating system.

The non-volatile storage update may take significant time and multiple invocations
of SAVE_ENV may be necessary. The time necessary for this routine to complete
is UNPREDICTABLE. A console implementation will attempt to minimize the time
whenever possible and must return in a timely fashion. The routine must return
after partiai operation completion if necessary. It is the responsibility of the console

Digital Restricted Distribution

to ensure that subsequent calls make forward progress. The operating system may
delay for extended periods between subsequent calls; the console must not rely on
timely invocations of SAVE_ENv.

IMPLEMENTATION NOTE
To permit use of these routines by Open VMS, implemen­
tations must limit the execution time to significantly
less than the interval clock interrupt period. A return
after partial operation completion is preferable to long
latency.

SAVE_ENV returns status on the update in R0<63:61>. When the update has suc­
cessfully completed and all relevant variables have been saved, the routine returns
with R0<63:61> set to '000'. If SAVE_ENV returns after only a partial update to
ensure timely response, R0<63:61> set to '001'. If an unrecoverable error is en­
countered, the the routine returns with R0<63:61> set to '111'. The contents of the
non-volatile storage are UNDEFINED.

Implementation of SAVE_ENV is optional. If the console does not support SAVE_
ENv, the routine returns with R0<63:61> set to '110'.

On a multiprocessor system with an embedded console, the routine must be invoked
on each processor in the configuration. See Section 3.7.3.

System software is recommended to ensure that calls to SET_ENV or RESET _ENV
are not issued while an update operation is in progress on any processor. It is
UNPREDICTABLE whether the updated environment value is saved.

The return address indicated by R26 should be mapped and kernel executable. This
routine does not affect the current value of any environment variable maintained by
the console.

Console Interface to Operating System Software (IV) 2-57

Digital Restricted Distribution

, 2.3.6.4 SET_ENV ·Set an environment variable

2-58

Format:

status =DISPATCH (SET_ENV,ID,value,length)

Inputs:

SET_ENV = R16; SET_ENV function code - 2016

ID

value

length

arginfo

retadr

procval

Outputs:

status

= R17;

= RlS;

= R19;

= R25;

= R26;

= R27;

=RO;

ID of environment variable

starting virtual address of byte stream containing value

number of bytes in byte stream (unsigned)

argument information

return address

procedure value

status:

R0<63:61> '000'
'100'
'110'
'111'

R0<60:31> SBZ

success
failure, variable read-only
failure, variable not recognized
failure, byte stream exceeds value
length

R0<31:0> maximum value length (unsigned)

SET_ENV causes the environment variable specified by the ID in R17 to have the
value specified by the byte stream value pointed to by the virtual address in by RlS.
The size in bytes of the byte stream is contained in R19.

SET_ENV returns status in R0<63:61>. If the environment variable is successfully
set to the new value, R0<63:61> is set to '000'. If the variable is not recognized,
R0<63:61> is set to '110'. If the variable is read-only, the value is unchanged and
R0<63:61> is set to '100'. If the input byte stream exceeds the maximum value
length, the value is unchanged and R0<63:61> is set to '111'. In all cases, the
maximum value length is returned in R0<31:0>.

The byte stream indicated by RlS should be mapped and kernel read accessible; the
return address indicated by R26 should be mapped and kernel executable.

Digital Restricted Distribution

2.3. 7 Miscellaneous Routines
2.3.7.1 FIXUP • Fixup virtual addresses In console routines

Format:

status FIXUP (NEW_BASE_VA, HWRPB VA

Inputs:

NEW _BASE_ VA= R16; New starting virtual address of the console callback
routines

HWRPB_VA

arginfo

retadr

procval

Outputs:

status

= R17;

= R25;

= R26;

= R27;

=RO;

New starting virtual address of the HWRPB

argument information

return address

procedure value

status:

R0<63> 'O' success
'l' failure

R0<62:0> SBZ

FIXl.JP adjusts virtual address references in all other console callback routines using
the new starting virtual address in R16, the new starting virtual address of the
HWRPB in R17, and the current contents of the CRB. See Section 2.3.8.1.2 for a full
description of FIXl.JP usage and functionality.

If FIXUP is successful, it returns with R0<63> set to 'O'. If FIXl.JP is not successful,
console internal state has been compromised. The console attempts a cold bootstrap
if the state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET
environment variable is set to "ON" (4E4F16). Otherwise, the system remains in
console I/O mode.

This routine must be called in kernel mode and in the context of the existing mem­
ory mapping; otherwise its execution causes UNPREDICTABLE or UNDEFINED
operation.

SOFTWARE NOTE
FIXUP is generally called while the bootstrap address
space mapping is in effect.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (IV) 2-59

Digital Restricted Distribution

2.3.7.2 PSWITCH ·Switch Primary Processors

2-60

Format:

status = DISPATCH (PSWITCH,action)

Inputs:

PSWITCH = R16; PSWITCH function code - 3016

action

cpu_id

arginfo

retadr

procval

Outputs:

status

= Rl 7; action requests:

= R18;

= R25;

= R26;

= R27;

=RO;

R17<1:0> '01'
'10'
'11'

R17<63:2> SBZ

transition from primary
transition to primary
switch primary

new primary CPU ID

argument information

return address

procedure value

status:

R0<63> 'O' success
'l' failure, operation not supported

R0<62:0> implementation-specific error status

PSWITCH attempts to perform any implementation-specific functions necessary to
support primaryness switching. Rl 7 indicates the requested primary transition ac­
tion. R18 contains the CPU ID (WHAMI IPR) of the new primary.

PSWITCH is invoked by the old primary, the secondary which is to become the
new primary, or both. See Section 3.4.6 for a full description of PSWITCH usage,
functionality, and error returns.

If PSWITCH is successful, it returns with R0<63> set to 'O'. If PSWITCH is unsuc­
cessful for any reason, it returns with R0<63> set to '1' and implementation-specific
status in R0<62:0>.

PSWITCH is invoked at IPL 31. The return address indicated by R26 should be
mapped and kernel executable.

Digital Restricted Distribution

2.3.8 Console Callback Routine Data Structures
The console and system software share two data structures which are necessary for
the console callback routines. These are the Console Routine Block (CRB) and th~
Console Terminal Block (CTB) Table. Both are located by offset fields in the HWRPB
as show in Figure 2-4.

The CRB locates all addresses necessary for console callback routine function. The
base physical address of the CRB is obtained by adding the CRB OFFSET field at
HWRPB[192] to the base physical address of the HWRPB. The CRB format is shown
in Figure 2-5 and described in Table 2-9.

The CTB Table contains information necessary to describe the console terminal de­
vices. The base physical address of the CTB Table is obtained by adding the CTB
TABLE OFFSET field at HWRPB[184] to the base physical address of the HWRPB.
The CTB format is shown in Figure 2-6 and described in Table 2-10.

Figure 2-4: Console Data Structure Linkage

~~-M~~-W_R_P_B ___________________ !_:C_T_B_J~
[1
[Offset to CRB] : . . I [VA of DISPATCH Procedure Value] :CRB J

[PA of DISPATCH Procedure Value]
[VA of FIXUP Procedure Value]

[Procedure Descriptor 1st Quadword] [PA of FIXUP Procedure Value]

[VA of DISPATCH Entry)~ [Number of Entries in Map]~
[Number of Pages in Map
[Virtual/Physical Map

[DISPATCH Procedure]

2.3.8.1 Console Routine Block

Prior to transferring control to system software, the console ensures that the console
callback routines, console-private data structures, and associated local I/O space
locations are mapped into region 0 of initial bootstrap address space. All necessary
pages are located by the Console Routine Block (CRB).

Console Interface to Operating System Software (IV) 2-61

Digital Restricted Distribution

Figure 2-5: Console Routine Block

~ 0

Virtual Address of DISPATCH Procedure Descriptor CRB

Physical Address of DISPATCH Procedure Descriptor +08

Virtual Address of FIXUP Procedure Descriptor +16

Physical Address of FIXUP Procedure Descriptor +24

Number of Entries in the Virtual-Physical Map : +32

Number of Pages To Be Mapped +40

Virtual Address for Entry 1 +48

Physical Address for Entry 1 +56

Page Count for Entry 1 +72

.N At
"¥ "¥

Virtual Address for Entry Last

Physical Address for Entry Last

Page Count for Entry Last

2-62

Digital Restricted Distribution

Table 2-9: CRB Fields

Offset Description

CRB DISPATCH VA - The virtual address of the procedure descriptor for the DISPATCH
procedure.

+08 DISPATCH PA - The physical address of the procedure descriptor for the DIS­
PATCH procedure.

+16 FIXUP VA- The virtual address of the procedure descriptor for the FIXUP proce­
dure.

+24 FIXUP PA - The physical address of the procedure descriptor for the FIXUP pro-
cedure.

+32 ENTRIES - The number of entries in the virtual-physical map. Unsigned integer.

+40 PAGES - The total number of physical pages to be mapped. Unsigned integer.

+48 ENTRY - Each entry identifies a collection of physically contiguous pages to be
mapped. Each map entry consists three quadwords:

Offset

+00
+08
+16

Name

ENTRY_ VA
ENTRY_PA.
ENTRY_PAGES

Description

Base virtual address for entry
Base physical address for entry
Number of contiguous physical pages to be mapped.
Unsigned integer.

The CRB must be quadword aligned. The DISPATCH and FIXUP addresses must be
quadword aligned; all unused bits SBZ. The ENTRY addresses must be page aligned
and all unused bits SBZ.

The DISPATCH and FIXUP procedure descriptors located by DISPATCH_PA, DIS­
PATCH_ VA, FIXUP _PA and FIXUP _VA must be contained within the pages located
by the first virtual-physical map entry.

2.3.8.1.1 Console Routine Block lnltlalizatlon

Prior to transferring control to system software, the console initializes all fields of
the CRB. The console fills in all physical and virtual address fields, the number
of entries in the virtual-physical map (ENTRIES), the total number of pages to be
mapped (PAGES), and the virtual addresses contained in the procedure descriptors
for the DISPATCH and FIXUP procedures1. PAGES is the sum of the contents of
all ENTRY_PAGES fields. .

All addresses are initially mapped within region 0 of the initial bootstrap address
space. These addresses include the contents of the CRB and all addresses contained

1 Recall from the Alpha calling standard, that the second quadword of a procedure descriptor contains the entry address
(virtual) of the procedure· itself.

Console Interface to Operating System Software (IV) 2-63

Digital Restricted Distribution

within the DISPATCH and FIXUP procedure descriptors. The mapping must permit
kernel access with appropriate read/write/execute access. Note that the KRE, KWE,
and FOx PTE fields are never subsequently altered by system software. The initial
mapping need not be virtually contiguous.

2.3.8.1.2 Console Routine Remapping

When the console transfers control to the system software, the console callback rou­
tines may be invoked by the system software without additional setup. All neces­
sary virtual mappings into initial bootstrap address space must be performed by the
console prior to transferring control.

The system software may virtually remap the console callback routines. This remap­
ping permits the system software to relocate the routines to virtual addresses other
than those assigned in initial bootstrap address space. This relocation requires that
the console adjust (or fixup) various internal virtual address references.

The system software invokes the FIXUP routine to enable the console to perform
the necessary internal relocations. The FIXUP routine virtually relocates all console
routines and adjusts any console-private virtual address pointers such as those used
to locate a local 1/0 device or HWRPB data structure. Note that if system software
virtually remaps the HWRPB, FIXUP must be invoked prior to calling any other
console callback routine; it is recommended that system software remap both the
HWRPB and the console routines together1 . Calling the console callback routines
after the HWRPB has been remapped from its original bootstrap address location
results in UNDEFINED operation of the system.

To remap the console callback routines, the system software and the console cooper­
ate as follows:

1. System software must be executing on the primary processor in a multiprocessor
system.

2. System software determines the new base virtual address of the HWRPB; this
remapping is optional. System software does not perform any- remapping of the
HWRPB at this step.

Note that system software need not remap the memory data descriptor table
located by HWRPB[200]. See Section 2.1 for a description of the HWRPB and its
size.

3. System software determines the new base virtual address of the console callback
routines. The CRB entries will be mapped into a set of virtually contiguous
pages. The CRB PAGES field (CRB[40]) is used to determine the number of
pages that must be mapped. System software does not perform any remapping
of the console callback routines at this step.

4. System software passes control to the console by calling FIXUP (NEW .,...BASE_ VA,
NEW _HWRPB_ VA). NEW _BASE_ VA is the new base virtual address as estab-

1 Note that if the HWRPB is remapped but subsequently returned to its original bootstrap address location, the routines
may be successfully invoked after the return of the HWRPB to its original remapping without calling FIXUP.

2-64

Digital Restricted Distribution

lished in step 3. HWRPB_VA is the new starting virtual address ofthe.HWRPB
as established in step 2.

5. The console first locates the HWRPB, then locates the CRB using the CRB OFF­
SET field. The console then locates all internal pointers and adjusts them. All
linkage sections and other console-internal pointers ·must be modified. These
data structures can be located during FIXUP because the initial bootstrap ad­
dress space mapping is in effect; any console-internal pointers are valid until
modified. ·

Note that system software need not remap the optional CONFIG Block or FRU
Table located by HWRPB OFFSET fields. If these blocks will be subsequently
used by the console, they must be located by console-internal pointers and those
pointers must be modified during FIXUP.

DISPATCH and FIXUP are not uniquely remapped by the system software. The
FIXUP must update the DISPATCH and FIXUP procedure descriptors located by
CRB[8] and CRB[24]. The physical pages containing the procedure descriptors
and the routines themselves must be included in the virtual-physical map.

Lastly, note that the relative virtual address offsets of the pages located by the
entry map are not guaranteed to be retained across the FIXUP. The initial boot­
strap address mapping of the physical pages located by the entry map is not
required to be virtually contiguous. The system software remapping is required
to be virtually contiguous. Any offsets which cross physical pages may have to
be modified by FIXUP.

6. The console returns from FIX.UP. If the FIX.UP was not successful, console in­
ternal state has been compromised. The console attempts a cold bootstrap if the
state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET en­
vironment variable is set to "ON" (4E4F16). Otherwise, the system remains in
console I/O mode.

7. System software updates each virtual-physical map entry of the CRB:

1. The PTE and TB entries corresponding to the range of old virtual address
are invalidated using the old ENTRY_ VA and ENTRY_PAGES values.

2. The new starting virtual address is written into the ENTRY_ VA. This virtual
address is computed by adding the NEW_BASE_VA to the sum of the PAGE_
COUNTs of each preceding entry.

3. New PTEs are constructed for each physical page. The new PTE FOx and
protection fields are copied from the original bootstrap address PTE.

PROGRAMMING NOTE
Note that it is the responsibility of the console
to judiciously set both the protection and FOx
bits in the bootstrap address PTE. In particular,
if the console sets the FOE bit, there is no ar­
chitectural guarantee that the console exception

Console Interface to Operating System Software {IV) 2-65

Digital Restricted Distribution

handler will gain control nor any obvious appro­
priate response for the operating system handler.

8. System software updates. the DISPATCH and FIXUP VAs. The first virtual­
physical map entry locates the physical page which contains the DISPATCH and
FIXUP procedure descriptors.

9. System software updates all PTEs and invalidates all appropriate TB entries
associated with the remapped HWRPB and any remapped OFFSET blocks.

At the completion of this process, the console callback routines are remapped and
may again be used by system software. Note that since FIXUP itself is relocated,
system software may remap the routines more than once.

2.3.8.2 Console Terminal Block Table

2-66

The Console Terminal Block (CTB) Table indicates the current identity and charac­
teristics of each console terminal device. The CTB Table is the only data structure
shared by the console and system software which describes the terminal devices
accessible by console callback routines.

The CTB Table contains an array of CTBs. Each CTB is a quadword-aligned struc­
ture with format as shown in Figure 2-6 and described in Table 2-10. The index
of the CTB in the CTB Table is the unit number of the terminal device. The CTB
format consists of two parts: a header and a device-specific segment. The format
of the header is common to all CTBs; the format of the device-specific segment is
dependent on the unique device type. Appendix E contains the specification of all
registered CTB formats.

There is ONLY ONE console terminal. The console terminal unit is selected by
the console presentation layer prior to bootstrapping the operating system; see Sec­
tion 1.3. Once the operating system is bootstrapped, the console terminal unit should
not be changed by the console presentation layer. Any attempt to do so results in
UNDEFINED operation of the console. Specifically, if the console presentation layer
halts the operating system, alters the console terminal unit, then restarts or contin­
ues operating system execution, the operation of the console is UNDEFINED. The
console terminal unit is identified by the TTY_DEV environment variable.

During console initialization, the console:

1. Locates all console terminal devices.

2. Selects the console terminal.

3. Builds a CTB for each.

4. Initializes the CTB OFFSET field of the HWRPB.

5. Initializes each console terminal device.

6. Records the default state of each console terminal device in its CTB.

7. Records the unit number of the console terminal in the TTY_DEV environment
variable.

Digital Restricted Distribution

Whenever the console changes the state of a console terminal device, the console
must update its CTB to reflect the change. The console may record extended status
on character transfers (GETC/PUTS) in the CTB.

System software uses the CTB to determine console terminal device characteristics.
System software never directly modifies the contents of a CTB; such modifications
can result in UNDEFINED operation of the console terminal device either as the
result of a subsequent call to a console terminal routine or as the result of a console
internal need to access a console terminal device (e.g. as the result of a halt). Sys­
tem software calls the SET_TERM_CTL console terminal routine to change console
terminal device characteristics.

Figure 2-6: Console Terminal Block

63 31 0

Device Type CTB

Device ID : +08

Reserved +16

Length of Device-Specific Data in Bytes : +24

+32
A.I .. .N

T
Dev1ce-Spec1f1c Data Segment r

:+256

Console Interface to Operating System Software (IV) 2-67

Digital Restricted Distribution

Table 2-10: CTB Fields
Offset Description

CTB DEVICE TYPE - Console terminal device type and format of the device-specific
segment. Defined device types are:

Type Description

0 No console present
1 Detached service processor
2 Serial line UART
3 Graphics display with LK keyboard connected to serial line UART
other Reserved

+08 DEVI CE ID - The physical device and channel which sends and receives the console
terminal stream. This field is necessary for configurations which include multiple­
channel devices or multiple single-channel devices. The field has two subfields:

Bits Description

<63 :32> Device index
<31:0> Channel index

For implementations which support only a single directly-connected console ter­
minal device, this field is set to zero. Note that the device ID is not necessarily
related to the console terminal device unit number.

+16 RESERVED - This field is reserved for future expansion and may not be used by
the console or system software.

+24 DSD LENGTH - This field specifies the number of bytes in the device-specific data
field, DSD.

+32 DSD - This field contains device-specific data associated with the unique console
terminal type. Device-specific data may include such parameters as baud rate,
flow control is enables, and the current state of the CAPS LOCK key. The DSD
field should contain only those items which are must be shared between the console
and system software.

2.4 Interprocessor Console Communications

2-68

Only those communications between a running processor and a console processor are
considered here. Communications paths between running processors are external to
the console. Communications paths between console processors are internal to the
console. See Section 2.5.4.

Commands are transmitted from a running primary to a console secondary; mes­
sages {and requests) are transmitted from a console secondary to a running primary.
Commands and messages are passed via Receive (RX) and Transmit (TX) buffers

Digital Restricted Distribution

contained in each per-CPU slot of the HWRPB. The use of these buffers is controlled
by the Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags.
Messages consist of the message symbol as given in Table 1-1.

PROGRAMMING NOTE
For example, "?PALREQ?" is passed to request PALcode
loading.

Commands use the command syntax given in Section 1.3.

The transmit and receive buffers are named from the point of view of the console
secondary. The console secondary receives commands in the RX buffer and transmits
messages in the TX buffer.

2.4.1 Interprocessor Console Communications Flags

The Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags are
used to control the interprocessor console communications. The RXRDY and TXRDY
flags are gathered into bitmasks in the HWRPB at HWRPB[296] and HWRPB[304]
respectively. The TXRDY bitmask allows a running primary to quickly determine
which, if any, of the console secondaries are trying to send messages.

The running primary sets the appropriate RXRDY flag to indicate to the receiving
console secondary that a command is contained in the secondary's RX buffer. The
secondary is assumed to be polling its RXRDY flag. The RXRDY flag is cleared by
the secondary after the command has been read from the RX buffer and prior to
executing the command.

A console secondary sets its TXRDY flag to indicate to the running primary that
a message is contained in the secondary's TX buffer. The console generates an
interprocessor interrupt to the primary to notify it that a message is ready. System
software clears the TXRDY flag after the message has been read from the TX buffer
and prior to processing the message.

IMPLEMENTATION NOTE
The TXRDY bitmask minimizes interprocessor interrupt
service overhead by reducing the number of required
memory lookups.

Console Interface to Operating System Software (IV) 2-69

Digital Restricted Distribution

2.4.2 Interprocessor Console Communications Buffer Area
Each per-CPU slot of the HWRPB includes an RXTX Buffer Area which provides
the communications path between processors. The buffer area is controlled by the
RXRDY and TXRDY flags. The format is shown in Figure 2-7 and described in
Table 2-11.

Figure 2-7: Inter-Console Communications Buffer

63 32 31 0

I
TXLEN RXLEN

Rx Buffer

I
80(dec) Bytes

Tx Buffer

i--------~-~----~--'---~~-~---------tl:SLOT+296

-----------------------------------iI:sLoT+s04

....._ ______________________________ __,J:SLOT+384 T
80(dec) Bytes

:SLOT+464

Table 2-11: Inter-Console Communications Buffer Fields
Offset Description

SLOT+296 RXLEN - If the bit corresponding to this processor is set in the RXRDY bitmask
at HWRPB[296], the RXLEN field contains the length in bytes of the command
in the RX buffer.

+300 TXLEN - If the bit corresponding to this processor is set in the TXRDY bitmask
at HWRPB[304], the TXLEN field contains the length in bytes of the message
in the TX buffer.

+304 RX BUFFER - Buffer used by this console secondary to receive a command from
the running primary. Only command data is passed through this buffer; a con­
sole secondary does not receive messages from the running primary. Commands
must end with "<CR><LF>" (OAOD1s).

+384 TX BUFFER - Buffer used by this console secondary to transmit a message
to the running primary. Only message data is passed through this buffer;
a console secondary does not send commands to the running primary. Mes­
sages must end with with the console secondary's prompt, "<CR><LF>Pnn>>>"
(3E3E 3Enn nn50 OAOD16).

2.4.3 Sending a Command to a Secondary

2-70

The running primary manipulates the secondary's RXRDY flag and RX buffer in the
following manner to send a command to a console secondary. In the sequence, the
console secondary is assumed to have CPU ID = "N".

Digital Restricted Distribution

PROGRAMMING NOTE
The RXRDY flag is a software lock variable; the primary
and the secondary must use LDQ_L/STQ_ C instructions
to set and clear bit ''N". See Common Architecture, Chap­
ter 5.

1. The primary examines bit "N" of the RXRDY bitmask. If the bit is clear, proceed
to step 3.

2. The primary polls bit ''N" of the RXRDY bitmask until clear or until some timeout
is reached. If a timeout occurs, system software reports an error and takes
appropriate action.

3. The primary moves the text of the desired console command into the RX buffer
in the secondary's HWRPB slot (the ''Nth" per-CPU slot).

4. The primary sets the length of the command into the RXLEN field in the sec­
ondary's HWRPB slot (the "Nth" per-CPU slot).

5. The primary sets bit ''N" of the RXRDY bitmask to indicate there is a command
waiting.

6. The secondary is assumed to be polling bit ''N" of the RXRDY bitmask.

7. When the secondary notices that bit "N" of the RXRDY bitmask is set, it removes
the command from its RX buffer.

8. The secondary clears bit ''N" of the RXRDY bitmask, indicating that its RX buffer
is again available.

9. The secondary attempts to process the command.

2.4.3.1 Sending a Message to the Primary

The console secondary manipulates its TXRDY flag and TX buffer in the following
manner to return a message to the running primary. Again, the console secondary
is assumed to have CPU ID= ''N".

PROGRAMMING NOTE
The TXRDY flag is a software lock variable; the primary
and the secondary must use LDQ_L/STQ_ C instructions
to set and clear bit ''N". See Common Architecture, Chap­
ter 5.

1. The secondary examines bit "N" of the TXRDY bitmask. If the bit is clear, then
proceed to step 3.

2. The secondary polls this bit until it clears or until a long timeout occurs. (See
step 7.)

3. The secondary moves the text of its response message into the TX buffer in the
secondary's HWRPB slot (the ''Nth" per-CPU slot).

Console Interface to Operating System Software {IV) 2-71

Digital Restricted Distribution

4. The secondary sets the length of the message into the TXLEN field in the sec­
ondary's HWRPB slot (the "Nth" per-CPU slot).

5. The secondary sets bit "N" of the TXRDY bitmask to indicate there is a message
waiting.

6. The secondary issues an interprocessor interrupt to the primary. This is always
done; the primary need not poll for bits in the TXRDY.bitmask.

7. The secondary polls the TXRDY bitmask until bit ''N" clears or until a long
timeout expires. This prevents the secondary from performing any action which
might cause the message to be lost before the primary can process it.

PROGRAMMING NOTE
The secondary may be restarted once it has trans­
mitted the error halt message to the primary. How­
ever, it must wait for the primary to have a rea­
sonable chance to respond to the interprocessor in­
terrupt and process the message before the restart
proceeds since that message is important visible evi­
dence of the error halt condition. On the other hand,
the secondary shouldn't wait forever for the primary
to respond since the primary may be affected by the
same condition that caused the secondary to error
halt. Hence, the need for a timeout that is of rea­
sonable length.

8. As a result of the interprocessor interrupt, the primary eventually checks for
console messages by examining the TXRDY bitmask. The primary notices that
bit ''N" of the TXRDY bitmask is set.

9. The primary removes the message from the TX buffer.

10. The primary clears bit ''N" of the TXRDY bitmask, indicating that the TX buffer
is again available.

11. The primary attempts to process the message.

2.5 Implementation Considerations

2.5.1 Serial Number and Revision Fields

2-72

The system serial number and revision fields must be distinct from the processor
serial number and revision fields. In particular, on multiprocessing systems, the
system fields must not be simply replicated from the fields of the primary processor.
The system fields must be constant regardless of which processor serves as primary
and must have persistence across processor failures and/or replacement.

This is necessary to permit application software to determine the system identity in
a dependable fashion. An example of such application software is the system error
log. Ii ihe system serial number were tied to a given processor, the error log would
report a different serial number if that processor is later unavailable for any reason.

Digital Restricted Distribution

2.5.2 Console Environment Variables

While the HWRPB is the primary means of communication between the console and
system software, there are cases for which it is ill-suited:

• Because the HWRPB resides in main memory, it cannot preserve certain-critical
components of the console state across powerfails. This state must be held by
a mechanism that can survive powerfails. This state includes the necessary
information to reboot system software after a powerfail.

• The structure of the HWRPB is too rigid for the direct inclusion of variable-length
console state which may be added after system software bootstraps. Support for
variable-length state through the HWRPB would require the HWRPB to contain
pointers to the actual state. The usage of memory reserved for this actual state
would require negotiation between the console and system software.

• There is a need for the console presentation layer to establish environment pa­
rameters which affect the bootstrapping of system software. Many of these pa­
rameters are set only once, but stay in effect across subsequent bootstraps and in
some cases across the powering down and up of the system. This requirement is
in effect today on both VAXes and DECsystems. The number, format, size, and
legal values of these parameters are established by system software and may
change from one revision to the next; they cannot be predicted by the console.
Using the HWRPB to share these parameters between the console presentation
layer and system software is awkward at best.

The Alpha console solves the requirements of the above cases with one unified ap­
proach: environment variables.

The console environment variable routines must present a consistent interface to
environment variables regardless of the presentation layer and regardless of the
internal representation. For example, an ISO-LATIN-I French console presentation
layer could accept and display text for the BOOT _RESET environment variable as
"marche" or "oui" for, 4E4F16 and "arrjt" or "non" for 46 464F16 provided that the
values of 4E4F1s or 46 464F1s. are returned to system software by GET_ENV.

Console implementations are recommended to maintain a memory-resident copy of
all non-volatile environment variables to ensure that the access time to these vari­
ables remains within acceptable bounds. Examples of non-volatile storage media
for environment variables include EEPROM, Flash ROM, and a console-private I/O
device.

A need to distinguish between environment variable values which are static across
console initializations from those which are static across system bootstraps was nec­
essary to support Open VMS Alpha host-based shadow set bootstraps. This separa­
tion permits the operating system to "temporarily" change the environment variables
which govern bootstrapping. During shadow set state transitions, the operating sys­
tem system disk must be a known valid shadow set member and that member or
members cannot be determined until after the initial bootstrap process has com­
pleted and the system initialization has begun. Temporarily altering the environ­
ment variables enables the operating system to reorder the console bootstrap device
list to ensure that the next, rapidly ensuing, bootstrap attempt will use a known

Console Interface to Operating System Software (IV) 2-73

Digital Restricted Distribution

valid shadow set member. Such an alteration is known to be transient and should
not affect the normal bootstrap controls.

Console implementation-specific or system software specific environment variable
may be volatile or non-volatile. The nature of these environment variables is at the
discretion of the console implementation.

2.5.3 Console Callback Routines
2.5.3.1 System Software Use of Console Callback Routines

For those console callback routines intended for use while the operating system is
fully functional, the console implementation must ensure that system software can
invoke those routines at multiple IPLs and that the execution may be interrupted.
The console implementation must ensure that internal console state is not corrupted
by conflicting requests by the console presentation layer and system software.

Consider the case of an operating system debugger which gains control of the proces­
sor during the execution of a console terminal routine invoked by system software
executing at a lower IPL. The debugger must be able to access the console terminal.
The console implementation may not block the higher IPL call. Note, however, that
system software is recommended to serialize such accesses. If routine execution is
resumed at the lower IPL, the console need not guarantee that the resumed oper­
ation completes correctly. For example, if the routine requires access which is not
atomic (for example indirect register access), the console implementation need not
ensure that the resulting pattern of accesses do not result in an UNPREDICTABLE
condition.

Similarly, consider the case of a system software invocation of SET_ENV which is
suspended by a processor halt. If the console presentation layer sets that same en­
vironment variable and then continues the system, the new environment variable
value must be either that specified by the console presentation layer OR that spec­
ified by the system software. The value must not be corrupted even if there is no
hardware guarantee of atomicity.

2.5.3.2 Console Terminal Routines

2-74

The console terminal routines are intended to provide a consistent interface to the
"console terminal device", regardless of the physical realization of that "terminal de­
vice". The "console terminal device" may be a physical terminal directly connected
to an embedded console by a UART or an graphic application executing on a work­
station which is networked to the processor console.

The CTB solves the problem present in previous VAX systems where there are dif­
ferently formatted data structures describing the same device across the various
systems. This increases the burden of the operating system to support new systems.
By requiring all Alpha implementations to use the same CTB format for the same
device, the burde.n of supporting new systems by system software is lessened.

A simple example of a multiple-channel controller is a DZ; multiple serial lines, each
going to a different external device, share one set of CSRs and device characteristics.
Another example of a multiple-channel controller is the DEFNA which supports

Digital Restricted Distribution

multiple, possibly disjoint, Ethernets. A simple example of multiple single-channel
controllers is multiple SGECs, each of which connects to a unique Ethernet.

To simplify system software interrupt handling, it is recommended that implemen­
tations provide separate console terminal transmit and receive interrupts.

2.5.3.2.1 PROCESS_KEYCODE

PROCESS_KEYCODE is intended for use by system software which must acquire
keycodes directly from the console terminal device; PROCESS_KEYCODE translates
the keycode into characters of the currently selected character-set. GETC is the
normal method used to acquire characters from the console terminal; GETC performs
any necessary translation.

CTB information relevant to the translation includes the type of display-keyboard
combination and the current keyboard state. In the process of translation, the rou­
tine may buffer previously entered keycodes in the CTB.

The supported display-keyboard combinations are specific to the console implemen­
tation. Only those combinations which are supported by the console implementation
are processed and translated by PROCESS_KEYCODE.

Examples of severe keyboard errors which may be corrected include the LK401 key­
codes: OUTPUT ERROR, INPUT ERROR, and TEST MODE ACKNOWLEDGE.

Examples of keyboard state changes include shifting to uppercase keys, enabling
CAPS LOCK and lighting the CAPS LOCK LED, and activating output flow control
and lighting the HOLD SCREEN LED.

This routine in intended to ease software effort to support graphics workstations in
which the console presentation layer shares the workstation screen.

2.5.3.3 Console Block Storage Routines

These routines are provided for operating systems whose primary bootstrap is not
large enough to carry the necessary 1/0 drivers to fetch the system image. This
is particularly a problem for ULTRIX, where the primary bootstrap must fit into
logical blocks 1 to 15 .of the ULTRIX system disk. The console possesses most of the
capabilities specified in these block storage routines due to boot device requirements.
As such, permitting system software to make use of that functionality seemed both
beneficial and simple to provide.

2.5.3.4 FIXUP

When considering how to make the console routines compliant to the Alpha Calling
Standard and virtually relocatable, two choices quickly presented themselves.

1. Provide the physical and virtual addresses of the procedure descriptor for each
routine, ensure that the descriptor existed, and give the pages necessary to map
for it. The resulting relocation would be quite piecemeal and, moreover, did not
address the relocation of any necessary routine-private pointers (e.g. local 1/0
device registers.)

Console Interface to Operating System Software (IV) 2-75

Digital Restricted Distribution

2. Provide a calling standard compliant interface, DISPATCH, give only the virtual
and physical addresses for its procedure descriptor, and a (gather-scatter) list
of physical pages to be mapped and relocated. The resulting relocation is less
piecemeal and addresses the relocation of any necessa:cy routine-private pointers.

Note that both choices still require a virtual address FIX.UP routine for relocation.

The DISPATCH procedure and the console routines should be consolidated into a few
contiguous physical pages. Implementations should attempt to reduce the necessary
CRB mapping entries.

2.5.4 Interprocessor Console Communications

2-76

Considering the reasonable combinations of the four processor states, the following
communications paths must be provided:

1. Running processor to running processor.

These paths are external to the console and independent of which is primary
or secondary. They are supported by the communications mechanisms within
the operating system. These paths are used even when the communications is
related to the console. For example, an operating system debugger entered on
a secondary is responsible for passing characters to and from the primary, and
thus to the console terminal.

2. Running primary to/from console seconda.ry.

The operating system on the primary must be able to send complete console
commands to a console secondary, for example to start a secondary. A console
secondary must be able to send messages to the operating system on the run­
ning primary, for example when the secondary encounters an error halt. Such
messages may be sent by a secondary at any time.

It is not necessary for a secondary to send commands to the primary, or for the
primary to send messages to a secondary.

3. Console primary to/from running secondary.

It is unclear what communication is necessary along this path. It is likely that
whenever the primary halts, the secondaries will eventually block waiting for
resources locked by the primary. The console primary will support receiving
complete messages from a running secondary.

NOTE
All consoles include a mechanism to force a running
primary into console 1/0 mode. Specific secondary
processors may then be forced into console 1/0 mode
using targeted HALT -CPU commands.

4. Console primary to/from console secondary.

The console primary must be able to send complete commands to a console sec­
ondary. This allows the primary to update the copy of an implementation-specific

Digital Restricted Distribution

parameter stored in each processor. Such commands are generated internally by
the console program. Also, commands entered at the console terminal which are
intended for a secondary must be forwarded by the primary.

Secondaries must be able to send complete messages to the primary. Such mes­
sages arrive complete, the primary can easily avoid interleaving messages on the
console terminal.

Console Interface to Operating System Software (IV) 2-n

Digital Restricted Distribution

2.6 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Integrated ECO #30

2. Widget -> Device or Controller, as appropriate

3. VMS -> Open VMS

4. Converted appropriate internal text to various 'notes'

5. Convert to SDML

Revision 4.1, August 12, 1991

1. Replace previous Console Chapter with Console ECO #15

2. Includes 3 chapters. and two appendices, renumber I/O Chapter

3. Material substantially changed or rearranged

\

2-78

Digital Restricted Distribution

Chapter 3

System Bootstrapping (IV)

This chapter describes the net effects of the action of the console to control the system
platform hardware. The major system state transitions and the role of the console
in controlling those transitions is described in Section 3.1.1. When power is applied
to an Alpha system, the console initializes the system as given in Section 3.2. The
console actions necessary to bootstrap system software are described in Section 3.3.
These steps include processor initialization (Section 3.3.1.6), memory sizing and test­
ing (Section 3.3.1.1), building an initial virtual address space (Section 3.3.1.3), and
loading the bootstrap (Section 3.5). The console actions to restart system software
are described in Section 3 .4.

3.1 Processor States and Modes

3.1.1 States and State Transistions

An Alpha processor can be in one of five major states:

1. Powered off - no system power supplied to the processor.

2. Halted - operating system software execution suspended.

3. Bootstrapping - attempting to load and start the operating system software.

4. Restarting - attempting to restart the operating system software.

5. Running - operating system software functioning.

The transitions between the major states are determined by the current state and
by a number of variables and events, including:

• Whether power is available to the system.

• The console AUTO_ACTION environment variable.

• The console lock setting.

• The Bootstrap-In-Progress (BIP) flags.

• The Restart-Capable (RC) flags.

• Processor error halts.

• The CALL_PAL HALT instruction.

• Console commands.

The following is a key for Figure 3-1:

System Bootstrapping (IV) 3-1

Digital Restricted Distribution

3-2

A Console is unlocked and AUTO_ACTION is ''HALT" (544C 414816).

B . Console is unlocked and AUTO_ACTION is ''BOOT" (544F 4F4216).

C Console is unlocked and AUTO_ACTION is "RESTART" (54 5241 5453 4552i6)
or console is locked.

D Console is unlocked, the processor is forced into console 1/0 mode.

Figure 3-1: Major State Transitions

Action Causing
Transition to
Final State Off Halted

Powerfail Off Off

A and Power Restored Halted

B and Power Restored Booting
C and Power Restored Restart

BOOT and Console Is Locked Booting

START or CONTINUE or Running
Console Is Unlocked

Bootstrap Fails or D

Bootstrap Succeeds

D
Restart Fails

Restart Succeeds

A and Processor Halts or D

B and Processor Halts
c and Processor Halts

Initial State

Booting Restart

Off Off

Halted

Running

Halted
Booting

Running

Running

Off

Halted

Booting

Restart

Final
State

Digital Restricted Distribution

To effect major state transitions, the console obeys these rules:

• If the console is unlocked when power is restored or when the processor halts,
enter the state selected by the console AUTO _ACTION environment variable.

• If the console is locked when power is restored or when the processor halts,
attempt a processor restart.

• When processor restart fails, attempt a bootstrap of that processor. One cause of
a failed restart is the processor's RC flag being clear when the console attempts
the restart.

• When system bootstrap fails, halt. One cause of a failed bootstrap is the proces­
sor's BIP flag being set prior to the console attempting the bootstrap. Only the
processor that failed bootstrap will halt.

• When system bootstrap or processor restart succeeds, the processor starts run­
ning.

• When the primary processor is halted and the console is unlocked, the console
BOOT command causes a system bootstrap.

• When a secondary processor is halted and the console is unlocked, the console
START -CPU command causes the console to attempt to start that processor
running.

• When a processor is halted and the console is unlocked, the console CONTINUE
command cause the processor to continue running as though no halt was in­
curred.

• If the console is unlocked and a specified processor is running or booting or
restarting, that processor is halted by a console HALT -CPU command.

3.1.2 Major Modes

IMPLEMENTATION NOTE
In an embedded console implementation, the pri­
mary processor must be forced into the console I/O
mode prior to issuing the HALT -CPU command; see
Section 3.7.3.

In addition to the major states, the console and processor are described as being in
one of three modes:

1. Program I/O mode

The processor is running. The processor interprets instructions, services inter­
rupts and exceptions, and initiates I/O operations under the control of the oper­
ating system.

2. Console I/O mode

The processor is halted or bootstrapping or restarting. The console provides
control over the system; The operating system has either relinquished control

System Bootstrapping (IV) 3-3

Digital Restricted Distribution

or has yet to gain control. The operating system does not service interrupts or
exceptions or initiate I/O operations. The actions of the console are determined
by internal console state and commands from the console operator.

3. Console Initialization mode

The console has yet to acquire control of the processor. The console itself may
also require initialization, such as when power is first applied to the system.

A given processor may be in one of four modes:

1. Primary processor in program I/O mode or "running primary"

2. Primary processor in console I/O mode or "console primary"

3. Secondary processor in program I/O mode or "running secondary"

4. Secondary processor in console I/O mode or "console secondary"

As noted in Section 1.1, implementations must include a mechanism to force a pro­
cessor executing in program I/O mode into console I/O mode.

3.2 System Initialization

3-4

An Alpha system must be initialized when power is restored. System initialization
also occurs as the result of a system bootstrap when the BOOT _RESET environ­
ment variable is set to "ON" (4E4F16), or as the result of the console INITIALIZE
command. Initialization involves all implementation-specific, system-wide actions
necessary to give the system the ability to boot system software on the primary pro­
cessor. Table 3-1 summarizes the effects of initialization as seen by system software.

Initialization may include initialization of the console itself. During console initial­
ization, the console must build the HWRPB and all associated data structures nec­
essary to permit the console to accept console commands and boot system software.

System initialization may also include any necessary system bus, processor, or I/O
device initialization. The initialization of a processor performed as part of system
initialization is not necessarily that performed just prior to transfer of control to
the operating system bootstrap. See Section 3.3.1.6 for a description of processor
initialization as seen by system software.

Table 3-1: Effects of Power-Up lnltlallzatlon

Processor State

BIP and RC flags

Reason for halt code

Integer and floating point registers

System memory

Initialized State:

Cleared

'O' (bootstrap)

UNPREDICTABLE

Unaffected if preserved by battery backup; oth­
erwise, UNPREDICTABLE

Digital Restricted Distribution

Table 3-1 (Cont.): Effects of Power-Up lnltlallzatlon

Processor State

Environment variables

BB_ WATCH

1/0 device registers

3.3 System Bootstrapping

Initialized State:

Unaffected if non-volatile otherwise, set to de­
fault

Unaffected

UNPREDICTABLE

This section describes the operations performed by the Alpha console to locate, load,
and transfer control to a primary bootstrap. The responsibilities of the console and
the initial state seen by system software are presented for multiprocessor and the
uniprocessor environments. The actions of the console for cold bootstrap (full hard­
ware initialization) and warm bootstrap (partial hardware initialization) are de­
scribed.

A system bootstrap can occur as the result of a powerfail recovery, a processor halt,
or an INITIALIZE or BOOT console command. See Section 3.1.1 for a complete
description of these state transitions.

3.3.1 Cold Bootstrapping in a Uniprocessor Environment

This section describes a cold bootstrap in a uniprocessor environment. A system
bootstrap will be a cold bootstrap when any of the following occur:

• Power is first applied to the system

• A console INITIALIZE command is issued and the AUTO _ACTION Environment
variable is set to "BOOT" (544F 4F4216).

• The BOOT_RESET environment variable is set to "ON" (4E4F16).

• Requested by system software.

The console must perform the following steps in the cold bootstrap sequence.

1. Perform a system initialization

2. Size memory

3. Test sufficient memory for bootstrapping

4. Load PALcode

5. Build a valid Hardware Restart Parameter Block (HWRPB)

6. Build a valid Memory Data Descriptor Table in the HWRPB

7. Initialize bootstrap page tables and map initial regions

8. Locate and load the system software primary bootstrap image

System Bootstrapping (IV) 3-5

Digital Restricted Distribution

9. Initialize processor state on all processors

10. Transfer control to the system software primary bootstrap image

The steps leading up to the transfer of control to system software may be per­
formed in any order. The final state seen by system software is defined, but the
implementation-specific sequence of these steps is not. Prior to beginning a boot­
strap, the console must clear any internally pended restarts to any processor.

3.3.1.1 Memory Sizing and Testing

3-6

Memory sizing is the responsibility of the console. The console must also test suf­
ficient memory to permit control to be passed to the primary bootstrap image. The
results of console memory sizing and testing are passed to system software in the
Memory Data Descriptor (MEMDSC) Table located by HWRPB[200].

The MEMDSC Table contains one or more memory cluster descriptors. Each memory
cluster descriptor describes a physically contiguous extent of physical memory within
which there are no holes. Cluster descriptors are ordered by increasing physical
address; the range of PFN s described by cluster N is of lower address than the
range of PFN s described by cluster N + 1.

The MEMDSC Table must be quadword aligned and both physically and virtually
contiguous. The MEMDSC Table format is shown in Figure 3-2; the memory cluster
descriptor format is shown in Figure 3-3. The size of the MEMDSC Table can be
determined by the number of clusters contained in MEMDSC[16]. The size of the
table and the offset to the last quadword of the table are given by:

MEMDSC_SIZE = ((7 * MEMDSC[l016]) + 3) * 8
MEMDSC END = MEMDSC SIZE -8 - -

The memory within a cluster is either available to system software or reserved
for console use. Usage within a cluster cannot be mixed; if the cluster contains a
page reserved for console use, system software cannot allocate any page within the
cluster. The memory cluster descriptor contains a cluster usage field which indicates
the cluster availability to system software. Note that the primary bootstrap image
must reside in clusters available to system software.

The memory within each cluster may be fully tested, partially tested, or untested
by the console. If the memory is untested, no cluster memory bitmap is built. The
console must test enough memory to allow the primary bootstrap image to be loaded
and control to be passed to that image. This memory includes:

• PALcode memory and scratch areas

• CPU logout areas

• Memory bitmaps

• HWRPB and all offset blocks

• Console CRB map entries

• Bootstrap address space page tables

• Primary bootstrap image

Digital Restricted Distribution

• One page for the initial bootstrap stack

Any additional memory testing by the console is· implementation-specific. It is the
responsibility of system software to test any memory untested by the console.

A cluster bitmap is built if the cluster is available to system software and the console
tests any memory within the cluster. Each page in the cluster is represented by a
bit in the bitmask. A '1' in the bitmap means that the corresponding page is "good";
the page was tested without error. A 'O' in the bitmap means that the corresponding
page is "bad"; the page is either untested or was tested but encountered correctable
(Corrected Read Data) errors or hard (Read Data Substitute) errors.

Cluster bitmaps must be at least quadword aligned and must be an integral number
of quadwords; any unused bits in the highest addressed quadword MBZ.

\See Section 3. 7 .1 for the rationale behind memory clusters, highwater marking,
and marking Corrected Read Data errors as bad pages.\

Figure 3-2: Memory Cluster Descriptor Table

63

Checksum

PA of Optional Implementation-Specific Information

Number of Clusters

Memory Cluster Descriptor 1

"""

:

:

:

..V

MEMOSC

+08

+16

+24

l __________________________ M_e_m-ory __ C_lu-st-er_o_e-sc-ri-pt-o-rl_a-st _____________________ f MEMDSC_END

Table 3-2: Memory Cluster Descriptor Table Fields

Offset Description

MEMDSC CHECKSUM - Checksum which is the 64-bit, 2's complement sum ignoring
overflows of all the quadwords from MEMDSC+S through MEMDSC_END.
The checksum does not include any of the cluster bitmaps nor any optional
implementation-specific data.

+08 IMP _DATA_PA - Physical address of additional implementation-specific infor­
mation (if any). Ifno additional implementation-specific information exists, the
field must contain a zero.

+16 CLUSTERS - Number of clusters in the Memory Cluster Descriptor Table. Un­
signed integer.

System Bootstrapping (IV} 3-7

Digital Restricted Distribution

Table 3-2 (Cont.): Memory Cluster Descriptor Table Fields
Offset

+24

Description

CLUSTER - Each Memory Cluster Descriptor describes an extent of physical
memory. See Figure 3-3.

Figure 3-3: Memory Cluster Descriptor

63

Starting PFN of Cluster

Count of Pages in Cluster

Count of Tested Pages in Cluster Bitmap

VA of Cluster Bitmap or Zero

PA of Cluster Bitmap or Zero

Checksum of Cluster Bitmap

Usage of Cluster

Table 3-3: Memory Cluster Descriptor Flelds
Offset Description

MEMC PFN - Starting PFN of the memory cluster.

+08 PAGES - Number of pages in the memory cluster. Unsigned integer.

0

:MEMC

:+08

:+16

:+24

:+32

:+40

:+48

:+56

+16 TESTED_PAGES - Number of tested memory pages in the cluster. If only a limited
extent of the cluster memory was tested, a bitmap is built, and this field indicates
the number of pages that were tested. See Section 3.7.1.

+24 BITMAP_ VA - Starting virtual address of the cluster memory testing bitmap in
the bootstrap address space. If the memory is untested, no bitmap is built and
this field is set to zero.

+32 BITMAP _PA - Starting physical address of the cluster memory testing bitmap. If
the memory is untested, no bitmap is built and this field is set to zero.

+40 BITMAP _CHECKSUM - Checksum which is the 64-bit, 2's complement sum ignor­
ing overflows of the cluster memory testing bitmap. Computed over the PAGES
active bits only.

+48 USAGE - Indicates whether the cluster is available for use by system software. If
USAGE<O> is 'O', system software may allocate and use the cluster. IfUSAGE<O>
is 'l', the cluster is reserved for console use and must not be allocated by system
software. USAGE<63:1> SBZ.

Digital Restricted Distribution

3.3.1.2 PALcode Loading

The console loads PALcode into good memory within a memory cluster which is
not available to system software. If PALcode scratch space is required, the console
allocates good memory within a memory cluster which is not available to system
software. PALcode memory and scratch space are at least page aligned. The console
records the starting physical address and length of PALcode memory and scratch
space and then sets the PALcode Memory Valid (PMV) flag in the per-CPU slot of
the primary processor. The PMV flag indicates that the PALcode descriptors are
valid.

After PALcode loading and initialization, the console sets the PALcode Loaded (PL)
and PALcode Valid (PV) flags in the primary's per-CPU slot. The PL flag indicates
that PALcode has been loaded; the PV flag indicates that any necessary PALcode
initialization has been performed.

PALcode loading and initialization is implementation-specific. The PALcode source
may be a special console device, ROM, a system device, a communications line, or
any other implementation-specific source. The state of the console and system must
be such that the source is accessible. The means by which any PALcode internal
state is initialized is implementation-specific.

3.3.1.3 Bootstrap Address Space

\ See Section 3. 7 .5 for a justification of the structure of the initial bootstrap address
space.\

All system software, including the primary bootstrap image, runs in a virtual mem­
ory environment. The console creates the initial page tables which define the initial
bootstrap address space for the primary bootstrap. System software may replace this
bootstrap address space at any time after the console passes control to the primary
bootstrap image.

The bootstrap address space consists of four regions. All regions must be located in
good memory within clusters which are available to system software. The regions
are:

Region O
This region maps all console or PALcode data structures which must be shared with
system software. These structures include the HWRPB in its entirety, all blocks
located by HWRPB offsets, the console callback routines, and all memory bitmaps.
Region 0 begins at address 256MB, virtual address 0000 0000 1000 000016· The
starting address of the HWRPB is the base of Region 0.

Region 1
The primary bootstrap image is loaded into this region. The region must be at least
large enough to load system software plus three pages. The three additional pages
are used as an initial bootstrap stack and stack guard pages. The stack guard pages
are virtually adjacent to the bootstrap stack page and marked no-access. All other
pages in the region are mapped and valid. Region 1 begins at address 512MB, virtual
address 0000 0000 2000 000016.

System Bootstrapping (IV) 3-9

Digital Restricted Distribution

3-10

Region 2

SOFTWARE NOTE
This region must be set to the size of the primary boot­
strap image plus 3 pages for Open VMS Alpha and at
least 256K bytes for OSF/1 Alpha.

This region, or "page table space", contains the bootstrap address space page tables.
Region 2 begins at address lGB, virtual address 0000 0000 4000 000016. The range
is dependent on the page size:

Page Size

SKB

16KB

32KB

64KB

Page Table Space
Address Range

lGB to lGB+SMB

lGB to 1GB+16MB

lGB to 1GB+32MB

lGB to 1GB+64MB

This region includes the level 2 and level 3 page tables used to map all three regions
comprising bootstrap address space. The level 2 page table maps itself as a level 3
page table. The address of the level 2 page table page and the Pl'E within the page
which is used for self-mapping are also dependent on the page size:

Virtual Address of L2PTE Number Used
Page Size Level 2 Page Table for Self-mapping

SKB lGB+lMB 128

16KB 1GB+512KB 32

32KB 1GB+256KB 8

64KB 1GB+128KB 2

Figure 3-5 illustrates the initial page tables that map the virtual address regions
shown in Figure 3-4.

Region 3
This region maps the level 1 page table pages. The level 1 page table is self-mapped
by the penultimate PI'E in the page. Region 3 exists to support virtual. page table
lookup for Translation Buffer misses. Region 3 is not the primary page table space
that is presented to bootstrap software; system software must explicitly map the
level 1 page tape page if required.

PROGRAMMING NOTE
Due to the self mapping, Region 3 maps all page table
pages. The level 2 and level 3 page table pages are in
both Region 2 and Region 3.

Digital Restricted Distribution

Page Size Virtual Address of Level 1 Page Table

8KB 2**64-8GB-8MB-16KB

16KB 2**64-64GB-32MB-32KB

32KB 2**64-.5TB-128MB-64KB

64KB 2**64-4TB-.5GB-128KB

Figure 3-4: Initial Virtual Memory Regions

Region 0

l HWRPB Pages (lncludesl
Memory Data Descriptor :VA=1000 OOOO (hex)

Table and CRB)

Console Service
Routines

Memory Bitmaps

Region 1

y

,c; /l,
Loaded Syste Softwa e :V A=2000 0000 (hex) ~ m r . '¥

No-Access

1 Page Stack
:SP

No-Access

Region 2
,t

Unused ~ :VA=4000 0000 (hex)

I I Level 3 Page Table

I Map Region 0 I Unused

I I Level 3 Page Table

I Map Region 1 I Unused '¥ '¥

Level 2, 3 Page Table
(Maps Itself and Region 2)

All valid pages allow read/write access from kernel mode and deny all access from
executive, supervisor and user modes. All fault bits (FOR, FOW, FOE) are clear, as

· well as Address Space Match (ASM) and Granularity Hint (GH).

The self-mapping of the level 2 page table excludes the level 1 page table page from
Region 2. The level 1 page table has two active PTEs. The first LlPTE points to

System Bootstrapping (IV) 3-11

Digital Restricted Distribution

3-12 .

the PFN of the level 2 page table page which maps page table space(Region 2). The
penultimate LlPTE contains the PFN of the level 1 page table itself, thus defining
Region 3. Only these two entries within the level 1 page table are valid; all other
level 1 PTEs are zeroes. See Section 3.7.5.

Digital Restricted Distribution

Figure 3-5: Initial Page Tables

PTBR:

Level 1 PT

PTEO

l Last PTE r
l
T

Level 3 PT

First
Region O

Page Table

Level 3 PT

Region 1

Level 2 PT

HMapsV~256MB I
T I Maps V~512 MB I

Maps VA=1 GB r Page Table r
t' y

The level 2 PT maps Region 2 (page table
space) at 1 GB. The level 2 PT maps itself
as its own level 3 PT.

The level 1 PT is not mapped.

The self-mapping of the level 2 page table also causes the addresses of the level 2 and
level 3 PTEs for a given virtual address to be functions of that address. For every
virtual address within the bootstrap address space, there is .exactly one location
within page table space for the level 2 PTE that maps that virtual address, and
exactly one location for the level 3 PTE that maps that virtual address.

Thus, the level 2 and level 3 PTE virtual addresses for a given virtual address (VA)
within bootstrap address space can be calculated given the page size. The following
bit range definitions provide convenient notation for referring to the constituent
parts of a virtual address. For example, ''VA<L2>" is equivalent to "VA<32:23>" for
8KB sized pages.

VA:l~-------L-1-------'"--------L2 ______ __. ________ L3 ______ __. _____ B~_e_i_n_P_ag_e __ __.

System Bootstrapping (IV) 3-13

Digital Restricted Distribution

Page Size Ll L2 L3

8KB 42:33 32:23 22:13

16KB 46:36 35:25 24:14

32KB 50:39 38:27 26:15

64KB 54:42 41:29 28:16

The base of page table space is a constant value:

1. PT Base = lGB

The virtual address of the level 3 PTE (L3PTE_ VA) of any virtual address (VA)
is given by:

2. L3PTE_VA(VA) = PT_Base + (page_size * VA<L2>) + (8 * VA<L3>)

Thus, the virtual address of the level 3 PTE which maps the lowest address of
page table space is given by:

L3PTE_VA(PT_Base) = PT_Base + (page_size * PT_Base<L2>)

Since the level 2 page table is self-mapped, the above is also the base virtual
address of the level 2 page table. Thus:

3. L2PT_Base = PT_Base + (page_size * PT_Base<L2>)

Finally, the virtual address of the level 2 PTE (L2PTE_ VA) of any virtual address
(VA) is given by:

L2PTE_VA(VA) = L2PT_Base + (8 * VA<L2>)

4. L2PTE_VA(VA) =PT Base+ (page_size*PT_Base<L2>) + (8 *VA<L2>)

3.3.1.4 Bootstrap Flags

3-14

The Bootstrap-In-Progress (BIP) and Restart-Capable (RC) processor state flags in
the primary processor's per-CPU slot are used to detect failed bootstraps. If the
primary reenters console 1/0 mode while the BIP flag is set and the RC flag is clear,
the bootstrap attempt fails, and the subsequent console action is determined by
Figure 3-1.

The console sets the BIP flag and clears the RC flag prior to transferring control to
system software. System software sets the RC flag to indicate that sufficient context
has been established to handle a restart attempt. System software clears the BIP
flag to indicate that the bootstrap operation has been completed. The RC flag should
be set prior to clearing the BIP flag.

Digital Restricted Distribution

Table 3-4: Console Interpretation of BIP and RC flags
BIP RC Interpretation at Entry to Console 1/0 Mode

set clear Failed bootstrap

set set Halt condition encountered during bootstrap, restart processor

clear clear Failed restart

clear set Halt condition encountered, restart processor

3.3.1.5 Loading of System Software

The console is responsible for loading system software at the base of Region 1 begin­
ning at virtual address 512MB. This software is expected to be a primary bootstrap
program which is responsible for loading other system software, but may be diagnos­
tic or other special purpose software. Section 3.5 contains descriptions of the format
of each supported bootstrap medium.

The console uses the BOOT_DEV environment variable to determine the bootstrap
device and the path to that device. These environment variables contain lists of
bootstrap devices and paths; each list element specifies the complete path to a given
bootstrap device. If multiple elements are specified, the console attempts to load a
bootstrap image from each in turn.

The console uses the BOOTDEF _DEV, BOOT_DEV, and BOOTED_DEV environ­
ment variables as follows:

1. At console initialization, the console sets the BOOTDEF _DEV and BOOT_DEV
environment variables to be equivalent. The format of these environment vari­
ables is a function of the console implementation and independent of the console
presentation layer; the value may be interpreted and modified by system soft­
ware. See Appendix E for a list of current formats.

2. When a bootstrap results from a BOOT command which specifies a bootstrap
device list, the console uses the list specified with the command. The console
modifies BOOT_DEV to contain the specified device list. NOTE: This may require
conversion from the presentationlayer format to the registered format.

3. When a bootstrap is the result of a BOOT command which does not specify a
bootstrap. device list, the console uses the bootstrap device list contained in the
BOOTDEF _DEV environment variable. The console copies the value of BOOT­
DEF_DEV to BOOT_DEV.

4. When a bootstrap is not the result of a BOOT command, the console uses the
bootstrap device list contained in the BOOT_DEV environment variable. The
console does not modify the contents of BOOT_DEV.

5. The console attempts to load a bootstrap image from each element of the boot­
strap device list. If the list is exhausted prior to successfully transferring control
to system software, the bootstrap attempt fails and the subsequent console action
is determined by Figure 3-:-1.

System Bootstrapping (IV) 3-15

Digital Restricted Distribution

6. The console indicates the actual bootstrap path and device used in the BOOTED_
DEV environment variable. The console sets BOOTED_DEV after loading the
primary bootstrap image and prior to transferring control to system software.
The BOOTED_DEV format follows that of a BOOT_DEV list element.

7. If the bootstrap device list is empty, BOOTDEF_DEV or BOOT_DEV are NULL
0016, the action is implementation-specific. The console may remain in console
I/O mode or attempt to locate a bootstrap device in an implementation-specific
manner.

The BOOT_FILE and BOOT_OSFLAGS environment variables are used as default
values for the bootstrap filename and option flags. The console indicates the ac­
tual bootstrap image filename (if any) and option flags for the current bootstrap at­
tempt in the BOOTED_FILE and BOOTED_OSFLAGS and environment variables.
The BOOT_FILE default bootstrap image filename is used whenever the bootstrap
requires a filename and either none was specified on the BOOT command or the
bootstrap was initiated by the console as the result of a major state transition. The
console never interprets the bootstrap option flags, but simply passes them between
the console presentation layer and system software.

3.3.1.6 Processor lnltiallzation

3-16

Before control is transferred to system software, certain IPRs and other processor
state must be initialized as shown in Table 3-5. Processor initialization is performed
by the console prior to booting a processor, prior to restarting a processor, or as the
result of the INITIALIZE -CPU console command.

The Context Valid (CV) flag in the processor's per-CPU slot must be valid for pro­
cessor initialization to be successful. If the CV flag is clear, the HWPCB contained
in the per-CPU slot is not valid, and the console must not transfer control to system
software. In the event of this or any error initializing the processor, the console re­
tains control of the system and generates the binary error message ERROR_PROC_
INIT.

Table 3-5: Processor Initialization
Processor State

ASN Address Space Number

ASTEN AST Enable

ASTSR AST Summary

FEN

IPL

MCES

PCBB

PS

Floating Enable

Interrupt Priority Level

Machine Check Error Summary

Privileged Context Block

Processor Status

Initialized State

Zero

ASTEN in processor's HWPCB

ASTSR in processor's HWPCB

FEN in processor's HWPCB

31

Zero.

Address of processor's HWPCB

IPL=31, VMM=O, CM=K, SW=O

Digital Restricted Distribution

Table 3-5 (Cont.): Processor lnltlallzatlon

Processor State

'Pl'BR Page Table Base Register

SISR Software Interrupt Summary

WHAM! Who-Am-I

SCC System Cycle Counter

SP Kernel Stack Pointer

Other IPRs

Cache, instruction buffer, or write buffer

Translation buffer

Main memory

Integer and floating point registers

Reason for Halt code

BIP and RC flags

Environment variables

3.3.1. 7 Transfer of Control to System Software

Initialized State

PFN value in processor's HWPCB

Zero

CPU ide:ntifier

Zero

KSP in processor's HWPCB

UNPREDICTABLE

empty or valid

Invalidated

Unaffected

Unaffected, except SP

Unaffected

Unaffected

Unaffected

Prior to transferring control to system software, the console must define valid hard­
ware privileged context for that software. The console builds that context in the
hardware privileged context block (HWPCB) in the primary processor's per-CPU
slot. The initialize context is summarized in Table 3-6.

The initial KSP points to the lowest ·addressed quadword in the higher addressed
stack guard page (top-of-stack) of Region 1 of the bootstrap address space. The
PTBR points to the level 1 page table page. All other scalar and floating point
register contents are UNPREDICTABLE.

After building HWPCB for the primary, the console sets the Context Valid (CV) flag
in the primary's per-CPU slot. All other bootstrap information is passed from the
console to system software via environment variables. See Section 2.2 for more
details.

Table 3-6: lnltlal HWPCB contents

HWPCBField

KSP

ESP

SSP

USP

Initialized State

Top-of-stack (contents of SP)

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

System Bootstrapping (IV) 3-17

Digital Restricted Distribution

Table 3-6 (Cont.): Initial HWPCB contents

HWPCBField Initialized State

PrBR PFN of level 1 page table

ASN Zero

ASTSR Zero

AS TEN Zero (all disabled)

FEN Zero (disabled)

PCC Zero

Unique Zero
Value

PAL scratch Implementation-specific

Control is transferred to system software in kernel mode at IPL 31 with virtual
memory management enabled. ·Control is transferred to the first longword of the
system software image loaded into Region 1, virtual address 0000 0000 2000 000016•

Prior to transferring control, the console ensures that the SP contains the KSP value
in the HWPCB. System software should assume that the stack is initially empty.

The transfer of control transitions the primary processor from the halted state into
the running state and from console I/O mode into program 1/0 mode. The rest of the
uniprocessor bootstrap process is the responsibility of system software.

3.3.2 Warm Bootstrapping in a Uniprocessor Environment

3-18

The actions of the console on a warm bootstrap are a subset of those for a cold
bootstrap. A system bootstrap willbe a warm bootstrap whenever the BOOT _RESET
environment variable is set to "OFF" (46 4E4F 16) and console internal state permits.

The console performs the following steps in the warm bootstrap sequence.

1. Locate and validate the Hardware Restart Parameter Block (HWRPB)

2. Locate and load the system software primary bootstrap image

3. Initialize processor state on all processors

4. Initialize bootstrap page tables and map initial regions

5. Transfer control to the system software primary bootstrap image

At warm bootstrap, the console does not load PALcode, does not modify the Memory
Data Descriptor Table, and does not reinitialize any environment variables. If the
console cannot locate and validate the previously initialized HWRPB, the console
must initiate a cold bootstrap. Prior to beginning a bootstrap, the console must
clear any internally pended restarts to any processor.

Digital Restricted Distribution

PROGRAMMING NOTE
Warm bootstrap permits system software to preserve
limited context across bootstraps. See Sections 2.5.2 and
3.7.1.

3.3.2.1 HWRPB Location and Validation

After console initialization, the console must preserve the location of the HWRPB in
an implementation-specific manner. On warm bootstraps and restarts, the console
locates the HWRPB and verifies it by ensuring that:

1. The first quadword of the table contains the physical address of the table.

2. The second quadword of the table contains "HWRPB" 0000 0042 5052 574816•

3. The quadword at offset HWRPB[288] contains the 64-bit, 2's complement sum
ignoring overflows of the quadwords from offset HWRPB[OO] to HWRPB[280],
inclusive, relative to the beginning of the potential HWRPB.

4. The quadword at offset [0] of the MEMDSC block contains the 64-bit, 2's com­
plement sum ignoring overflows of the quadwords from MEMDSC+8 through
MEMDSC_END of that block. The MEMDSC block is located by the MEMDSC
OFFSET at HWRPB[200]. See Figure 3-2.

5. As described in Section 2.1.4, if a CONFIG table exists, it is located by the
CONFIG OFFSET at HWRPB[208]. The quadword at offset [8] of the optional
CONFIG table contains the 64-bit, 2's complement sum ignoring overflows of the
quadwords from CONFlG+8 through CONFIG_END of that table.

If any of the above conditions are not true, .the HWRPB is not valid. The warm boot­
strap (or restart) fails. The subsequent console action is determined by Figure 3-1.
If a bootstrap is indicated, a cold bootstrap will be performed.

\The console must not search memory for a HWRPB; searching memory constitutes
a security hole.\

3.3.3 Multiprocessor Bootstrapping
Multiprocessor bootstrapping differs from uniprocessor bootstrapping primarily in
areas relating to synchronization between processors. In a shared memory system,
processors cannot independently load and start system software; bootstrapping is
controlled by the primary processor.

3.3.3.1 Selection of Primary Processor

The primary processor is selected by the console during system initialization prior
to any access to main memory by any processor. Selection of the primary processor
may be done in any fashion that guarantees choosing exactly one primary processor.

Once a primary processor has been selected, the secondary processors take no further
action until appropriately notified by the primary processor. In particular, secondary
processors must not access main memory.

See Section 3. 7 .3 for considerations for embedded console implementations.

System Bootstrapping (IV) 3-19

Digital Restricted Distribution

3.3.3.2 Actions of Console

After selection, the console· proceeds to bootstrap the primary processor following the
normal uniprocessor bootstrap as described in Section 3.3.1.

The console must correctly initialize all HWRPB :fields used for synchronization or
communication between the processors. The console must initialize the PRIMARY
CPU ID :field at HWRPB[32], zero the TXRDY and RXRDY bitmasks at HWRPB[296]
and HWRPB[304], and recompute the HWRPB checksum at HWRPB[288].

The console must also initialize each per-CPU slot for the secondary processors. The
console must:

1. Clear the BIP, RC, OH, and CV :Bags.

2. Clear the Halt Request code field.

3. Set the PP :Bag if the processor is present.

4. Set the PA flag if the processor is present and available for use by system soft­
ware.

5. Set the PMV and PL flags if the console has loaded PALcode on this processor.

6. Set the PV flag if the console has initialized PALcode on this processor.

7. Set the PE processor variation :Bag if the processor is eligible to become a primary.

After initializing each processor's per-CPU slot, the console must notify each con­
sole secondary processor of the existence and location of the valid HWRPB. See
Section 3.7.3 for considerations for embedded console implementations.

3.3.3.3 PALcode Loading on Secondary Processors

3-20

Most console implementations load PALcode on all secondary processors prior to
bootstrapping the primary processor. Console implementations may delay the load­
ing or initialization of PALcode on a secondary. If delayed, PALcode loading and
initialization requires the cooperation of system software ~xecuting on the running
primary and the console executing on behalf of the secondary.

The console secondary must have performed any necessary initialization as described
in Section 3.3.3.5. All interprocessor console communications follow the mechanisms
described in Section 2.4. The operation proceeds as follows:

1. The console secondary initializes the PALcode memory and scratch space length
fields in its per-CPU slot.

2. The console secondary sets the PALcode major revision, minor revision, and com­
patibility subfields in the PALcode revision· field in its per-CPU slot.

3. The console secondary notifies the primary that PALcode loading is requested
by transmitting a ?PALREQ? message to the running primary as described in
Section 2.4.

4. The console secondary polls the PALcode Memory Valid (PMV) flag in its per-CPU
slot.

Digital Restricted Distribution

5. The running primary detects the console secondary request.

6. The running primary verifies that the Processor Available (PA) flag is set in the
secondary's per-CPU slot. If not, the operation fails.

7. The running primary compares the major and minor revision sub-fields of the
PALcode revision field in its per-CPU slot to that in the secondary's per-CPU
slot. If the revisions levels do not match, the running primary proceeds to step
12.

8. The running primary compares the number of processors currently sharing its
PALcode image to the maximum contained in the sub-field of the PALcode re­
vision field of its per-CPU slot. If the current number is the maximum, no ad­
ditional console secondary can share the PALcode image. The running primary
proceeds to step 12.

PROGRAMMING NOTE
The running primary can determine the number of
processors currently sharing a given PALcode im­
age by counting the number of per-CPU slots with
the same valid PALcode memory space descriptors.
A PALcode memory space descriptor is valid if the
PALcode Loaded (PL) :flag is set in the per-CPU slot.

9. The running primary copies the PALcode memory and scratch space descriptors
from its per-CPU slot into the secondary's per-CPU slot.

10. The running primary copies the PALcode variation, compatibility, and maximum
number of processors sub-fields of the PALcode revision field from its per-CPU
slot into the secondary's per-CPU slot.

11. The running primary sets the PALcode Loaded (PL) flag in the secondary's per­
CPU slot, then proceeds to step 13.

12. The running primary allocates physical memory for PALcode memory and scratch
areas and records the addresses in the secondary's per-CPU slot.

13. The running primary sets the PALcode Memory Valid (PMV) flag in the sec­
ondary's per-CPU slot.

14. The console secondary observes the PMV :flag is set in its per-CPU slot.

15. If the PL :flag in its per-CPU slot is not set, the console secondary loads PALcode
into the allocated PALcode memory and scratch space. In this case, the console
secondary sets the PALcode Loaded (PL) :flag in its per-CPU slot.

16. The console secondary ensures that any required implementation-specific PAL­
code initialization is performed.

17. The console secondary sets the PALcode Valid (PV) :flag in the secondary's per­
CPU slot.

System Bootstrapping (IV) 3-21

Digital Restricted Distribution

The PALcode memory and scratch space must be page aligned. If not allocated by the
console prior to system bootstrap, the allocation management of PALcode memory
for secondary processors is the responsibility of system software.

Note that it is the responsibility of system software to ensure that the PALcode
revision levels of all processors are compatible. This may be performed by the pri­
mary prior to starting the secondary, by the starting secondary, or any combination
thereof. PALcode images of different revision levels are compatible if the PALcode
revision compatibility subfields match.

3.3.3.4 Actions of the Running Primary

System software executing on the primary processor must initialize the HWPCB for
each secondary processor. The HWPCB contains the necessary privileged context
for the execution of system software and successful restarts. The HWPCB must
be initialized prior to requesting that the console secondary perform any START
command. After initializing the HWPCB, system software sets the Context Valid
(CV).flag.

Once the PALcode is valid on a console secondary, the secondary waits for a START
(or other) command from the running primary. System software issues the necessary
console commands which instruct the secondary to begin executing software. The
exchange of commands and messages between the running primary and a secondary
is described in Section 2.4.

PROGRAMMING NOTE
Note that all commands sent to a console secondary are
implicitly targeted to the secondary. No -CPU command
qualifier is necessary.

3.3.3.5 Actions of a Console Secondary

3-22

After failing to become the primary, a console secondary uses an implementation­
specific mechanism to determine when a valid HWRPB has been constructed in main
memory. The console secondary then locates the HWRPB in an implementation­
specific manner.

Once the HWRPB is located, the secondary locates its per-CPU slot using its CPU
ID as an index. The secondary verifies that its slot exists by comparing its CPU ID
to the number of per-CPU slots at HWRPB[144]. If its CPU ID exceeds the number
of per-CPU slots, the secondary must not leave console mode or continue to access
main memory. If PALcode loading is necessary, the console secondary follows the
procedure given in Section 3.3.3.3.

Once PALcode is valid, the console secondary waits for a START (or other) command
from the running primary by polling the appropriate flag in the RXRDY bitmask.
The exchange of commands and messages between the running primary and a sec­
ondary is described in Section 2.4.

In response to a START command, the console secondary:

1. Verifies that the Context Valid (CV) flag is set in its per-CPU slot.

Digital Restricted Distribution

2. Sets the Bootstrap-In-Progress (BIP) flag in its per-CPU slot.

3. Clears the Restart-Capable (RC) flag in its per-CPU slot.

4. Initializes the processor.

5. Loads the privileged context specified by the HWPCB in its per-CPU. slot.

6. Loads the procedure value at HWRPB[264] into R27.

7. Clears R26 (return address) and R25 (argument information).

8. Loads the virtual address page table base (VPTB) register with the value stored
in HWRPB[272].

9. Transfers control to the CPU Restart routine, whose virtual address is stored in
HWRPB[256].

The CV flag indicates that the HWPCB in the slot contains valid hardware privileged
state for system software. If the CV flag is not set, the processor remains in console
I/O mode. '

3.3.3.6 Bootstrap Flags

The Bootstrap-In-Progress (BIP) and Restart-Capable (RC) processor state flags in
the console secondary processor's per-CPU slot are used to control error recovery
during secondary starts. If the secondary reenters console I/O mode while the BIP
flag is set and the RC flag is clear, the start attempt fails. Failed starts are equiva­
lent to failed bootstraps, and the subsequent console action is determined by Table
Figure 3-1. See Section 3.3.1.4 and Table 3-4.

3.3.4 Addition of a Processor to a Running System
A processor may be added to a running system at any time if a slot has been provided
for it in the HWRPB. The new console secondary processor follows the secondary
start procedure given in Sections 3.3.3.3 and 3.3.3.5 with one minor difference. Ifno
PALcode loading is necessary, the console secondary sends a ?STARTREQ? message
to the 'running primary. This message notifies the primary that a new processor
has been added to the configuration. After sending the ?STARTREQ? message, the
console secondary waits for a START (or other) command from the running primary.
See Section 2.4 for a description of interprocessor console communication.

3.3.5 System Software Requested Bootstraps
System software can request that the console perform a system bootstrap. This
request can be made on any processor in a multiprocessor system and overrides the
setting of the AUTO_ACTION and BOOT_RESET environment variables.

To request a bootstrap, system software sets one of the bootstrap requested codes
in the Halt Request field of its per-CPU slot then executes a CALL_PAL HALT
instruction. If a cold bootstrap is requested, the "Cold Bootstrap Requested" code ('2')
is set; the "Warm Bootstrap Requested" ('3') code is set to request a warm bootstrap.

Rather than the normal error halt processing described in Section 3.4.4, the console
initiates the appropriate system bootstrap as described in Sections 3.3.1 and 3.3.2.

System Bootstrapping (IV) 3-23

Digital Restricted Distribution

The bootstrap attempt is unconditional; the AUTO_ACTION or the BOOT_RESET
environment variables do not affect the bootstrap attempt.

3.4 System Restarts

The console is responsible for restarting a processor halted by powerfail or by error
halt. The console follows the same sequence for a primary or secondary processor.

3.4.1 Actions of Console

3-24

The console begins the restart sequence by locating and then validating the HWRPB
following the procedure given in Section 3.3.2.1. If the HWRPB is not valid, the
restart attempt fails. See Section 3.1.1 for console actions at major state transitions.

If the HWRPB is valid, the console uses the processor CPU ID as an index to calculate
the address of that processor's HWRPB slot. The console:

1. Verifies that the processor's PALcode Valid (PV) flag is set. If the PV flag is clear,
PALcode is not valid, and restart attempt fails.

2. Verifies that the processor's Context Valid (CV) flag is set. If the CV flag is
clear, the HWPCB does not contain valid software context for the restart, and
the restart attempt fails.

3. Examines the processor's restart-capable (RC) flag. If set, the console proceeds
with the restart at step 5. If clear, system software is not capable of attempting
the restart, the restart attempt fails.

4. Examines the Bootstrap-In-Progress (BIP) flag. If clear, and the AUTO_ACTION
environment variable is "BOOT" (544F 4F4216), a system bootstrap is attempted.
Otherwise, the processor remains in console 1/0 mode. See Figure 3-1.

5. Loads the privileged context specified by the HWPCB in. its per-CPU slot.

6. Loads the procedure value at HWRPB[264] into R27.

7. Clears R26 (return address) and R25 (argument information).

8. Loads the virtual address page table base (VPTB) register with the value stored
in HWRPB[272].

9. Transfers control to the CPU Restart routine, whose virtual address is stored in
HWRPB[256].

On all restart attempt failures the console initiates the action indicated by Fig­
ure 3-1. Note that the PV and CV flags should never be clear for the primary
processor; if either :flag is clear, then the restart fails. Also note that no PALcode or
system software is loaded during a restart.

It is the responsibility of system software to complete the restart operation and to
set the RC :flag at the point where a subsequent restart can be handled correctly.

Digital Restricted Distribution

3.4.2 Powerfail and Recovery· Uniprocessor
An Alpha system requires power to operate. The system power supply conditions
external power and transforms it for use by the processor, memory, and I/O subsys­
tems. Backup options are available on some systems to supply power after external
power fails. The backup option may supply power to all of the system platform
hardware, or only a subset.

The effect of an external power failure depends on the backup option.

1. If no backup option exists, the processor is not restartable after restoration of
power. The processor must be bootstrapped or left halted in console I/O mode.

2. If the backup option maintains power to all of the system platform hardware,
execution of system software is unaffected by the power failure. It must be
possible for system software to determine that a transition to backup power has
occurred.

3. If the backup option maintains only the contents of memory and keeps system
time with the BB_ WATCH, the power supply must request a powerfail interrupt.
After requesting the interrupt, the power supply must continue to supply power
to the processor for an implementation-specific period to allow system software
to save state.

In the last case, powerfail recovery is possible only if adequate system state is pre­
served during an interruption of power to the processor. As explained in Open VMS
Section, Chapter 6, a powerfail interrupt is delivered at IPL 30 to the interrupt
service routine located at SCB offset 64016. System software must save all volatile
state and perform any operating system specific actions necessary to ensure later
successful recovery.

When power is restored, the console determines that the HWRPB is still valid, then
examines the console lock and AUTO_ACTION environment variable. If the console
is locked, andAUTO_ACTION environment variable is "RESTART" (54 5241 5453 45521s),
the console attempts an operating system restart. See Section 3.1.1.

Note that the processor may lose state when power is lost. For example, if a processor
is halted when power fails, the action on power up is still determined by the console
switches and environment variables. The system does not necessarily stay halted.

3.4.3 Powerfail and Recovery· Multiprocessor
There are two basic approaches to powerfail recovery on multiprocessor systems:

• United - all available processors effectively experience the powerfail event iden­
tically.

• Split - each available processor effectively experience independent powerfail
events.

A processor is "available" if the Processor Available (PA) flag is set in the processor's
per-CPU slot. The Powerfail system variation flag at HWRPB[88] indicates the type
of powerfail and restart action.

System Bootstrapping (IV) 3-25

Digital Restricted Distribution

A multiprocessor Alpha system that supports powerfail recovery must implement
the united powerfail mode. The split mode may be optionally implemented as a
alternative selected at system bootstrap.

SOFIWARE NOTE
Open VMS Alpha supports only the united powerfail and
recovery mode at this time. Powerfail recovery is possi­
ble only when the primary is restarted; all secondaries
should remain in console I/O mode.

3.4.3.1 United Powerfall and Recovery

· In united powerfail and recovery mode, all available processors experience powerfail
interrupts, halts, and restorations uniformly. If one available processor experiences
a powerfail event, all other available processors experience that event. Therefore, if
one processor powerfails and recovers, all processors must do so. Even if a separately
powered processor does not actually lose power, that processor will still receive the
powerfail interrupt and must be restarted as if power had been lost.

When power is restored and a restart is to be attempted, the console must determine
whether to restart all available processors or only the primary processor. The console
determines the appropriate action by the Powerfail Restart (PR) :flag in the system
variation field of the HWRPB[88]. If the PR :flag is set, the console attempts to restart
all available processors; if clear, the console attempts to restart only the primary
processor. In both cases, it is the responsibility of system software to coordinate and
synchronize further powerfail recovery.

3.4.3.2 Spllt Powerfall and Recovery

In split powerfail and recovery mode, only the available processors that actually
experience a loss of power will see a powerfail interrupt and subsequent recovery.
Available processors that are separately powered and do not lose power do not see
a powerfail interrupt.

When power is restored and a restart is to be attempted, the console must determine
whether to restart any· available processor or only the primary processor. As in
the united mode, the console determines the appropriate action by the Powerfail
Restart (PR) :flag in the system variation field of the HWRPB[88]. If the PR :flag
is set, the console attempts to restart any available processor. If clear, the console
attempts to restart only the primary processor; on a secondary, the console sends
the ?STARTREQ? message and waits for a START (or other ·command) from the
running primary as discussed in Section 3.3.3.5. Again, system software has the
responsibility for further coordination and synchronization of powerfail recovery.

3.4.4 Error Halt and Recovery

3-26

There are a number of serious error conditions that prevent a processor from execut­
ing the current thread of software. Such error conditions are detected by PALcode
and lead to the processor being halted.

Digital Restricted Distribution

The console must ensure that the processor hardware state when a halt is encoun­
tered is visible to system software after a subsequent restart attempt and to the con­
sole operator. This state includes the current values in PS, PC, SP, PCBB, HWPCB,
all integer registers, all :floating point registers, and the name of the halt condition.
The console must:

1. Ensure that the contents of the integer and :floating point registers appear unaf­
fected.

2. Write the current hardware context to the HWPCB located by the current PCBB.

3. Write the current PS, PC, PCBB register contents into the processor's per-CPU
slot.

4. Write the current R25, R26, and R27 register contents into the processor's per­
CPU slot.

5. Set appropriate code into the Reason For Halt field of the processor's per-CPU
slot.

Note that the values of R25, R26, and R27 must be explicitly saved in the per-CPU
slot to permit the console to follow the Alpha calling standard when invoking the
CPU Restart routine.

Section 3.1.1 and Table 2-3 list the defined halt conditions that transition an Alpha
processor from the running state to a halted state, and which may lead to an attempt
to restart the processor. Each condition is passed to the operating system in the
Reason For Halt quadword of the processor's HWRPB slot.

When an error halt occurs, the console examines the console lock setting. If the con­
sole is locked, the console attempts a restart. If unlocked, the console action is deter­
mined by the setting of the AUTO_ACTION environment variable, see Figure 3-1.
See Section 3.4.1 for a description of the restart attempt process.

The processor must be initialized after an error halt. If the processor starts running
after an error halt without an intervening processor initialization, the operation of
the processor is UNDEFINED. The effects of processor initialization are summarized
in Table 3-5.

An error halt directly affects only the processor that incurred one, although multiple
processors may simultaneously and coincidentally incur their own error halt condi­
tions. If restarts are enabled, each halted processor must be independently restarted
by the console. The restarts of individual processors may occur in a different order
than the error halts occurred, but if the console restarts any halted processor, it must
restart all halted processors in a timely fashion unless a bootstrap is requested in
the meantime. A bootstrap nullifies any pending restarts in the multiprocessor.

3.4.5 Operator Requested Crash

When the operating system does not respond to normal program requests, the console
operator may request that the console request an operating system crash. A console
requested crash differs from a console halt of a processor in that system software
can write a crash dump.

System Bootstrapping (IV) 3-27

Digital Restricted Distribution

The console operator interacts with the console presentation layer and requests the
crash with a HALT -CRASH command. The console converts this command to an er­
ror halt restart of system software. After gaining control of the processor, the console
preserves the hardware state; see Section 3.4.4. The console passes the crash request
to system software by using the "Console Operator requests system crash" code in
the Reason For Halt field in the primary's per-CPU slot. It is the responsibility of the
system software restart routine to initiate the crash in an implementation-specific
fashion.

3.4.6 Primary Switching

3-28

System software may find it necessary to replace the primary processor with one of
the running secondary processors Without bootstrapping the system. This "switch"
of the running primary may be caused by an error encountered by the primary, or
by a program request. Switching a running primary must be initiated by system
software; the console cannot force a switch to occur.

Support for primary switching is optional to system software, console implementa­
tions, and system platforms. The system platform hardware must permit the se­
lected secondary to assume the functions of a primary. The selected secondary must
have direct access to the console, a BB_ WATCH, and all I/O devices. Direct access to
the console ensures that the secondary can access console I/O devices and the console
terminal. Direct access to a BB_ WATCH ensures that the secondary can act as the
system timekeeper. Direct access to all I/O devices ensures that the secondary can
initiate I/O requests to and receive I/O interrupts from all I/O devices, and that the
secondary can reinitialize all devices as part of powerfail recovery.

If the processor is eligible to become a primary, the console will set the Primary
Eligible (PE) processor variation :flag in the processor's per-CPU slot during processor
initialization.

Primary switching requires cooperation between system software and the console.
System software is responsible for the selection of the new primary and any nec­
essary redirection of I/O interrupts. The console is responsible for any necessary
configuration of the console terminal or other console device interface.

The sequence of events differs depending on the type of console implementation. On
a system with an embedded console, the operation proceeds as follows:

1. System software performs any actions specific to system software synchroniza­
tion.

2. System software executing on the old primary ensures that the console terminal
is in a quiescent state. In particular, character reception from the terminal must
be suspended.

3. System software selects the new primary. The selected secondary must be eligible
as indicated by the PE processor variation :flag in its per-CPU slot.

4. System software executing on the old primary invokes the PSWITCH console
callback specifying the "transition from primary" action. . ·

Digital Restricted Distribution

5. The console attempts to perform any necessary hardware state changes to trans­
form the old primary into a secondary.

HARDWARE/SOFTWARE COORDINATION NOTE
An example of such a hardware state change is dis­
abling a console UART physically located on the pro~
cessor board.

6. If the state change is completed, PSWITCH returns success status. System soft­
ware may proceed with the primary switch at step 8.

7. If the state change is not effected, PSWITCH returns failure status. System
software must take other appropriate action.

8. System software executing on the old primary notifies system software on the
selected secondary of the successful PSWITCH completion.

9. System software executing on the selected secondary invokes the PSWITCH con­
sole callback specifying the "transition to primary" action.

10. The console verifies that the selected secondary is eligible to become a primary
and attempts to perform any necessary hardware state changes to transform
the old secondary into the new primary. \An example of such a hardware state
change is draining the character FIFO and enabling a console UART physically
located on the processor board.\

11. If the state change is completed, PSWITCH returns success status. System soft­
ware may proceed with the primary switch at step 13.

12. If the state change is not effected, PSWITCH returns failure status. System soft­
ware must select a different potential primary or take other appropriate action.

13. System software executing on the selected secondary reactivates the console ter­
minal. In particular, character reception from the terminal is reenabled.

14. System software performs any additional system reconfiguration, updates the
PRIMARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum at
HWRPB[288], and performs any actions specific to system software synchroniza­
tion.

On a system with a detached console, the operation is similar, but only one call
to PSWITCH is required. Additional calls to PSWITCH with the "switch primary''
action may result in UNDEFINED operation. The operation proceeds as follows:

1. System software performs any actions specific to system software synchroniza­
tion.

2. System software executing on the old primary ensures that that the console
terminal is in a quiescent state. In particular, character reception from the
terminal must be suspended.

3. System software selects the new primary. The selected secondary must be eligible
as indicated by the PE processor variation flag in its per-CPU slot.

System Bootstrapping (IV) 3-29

Digital Restricted Distribution

4. System software executing on any processor invokes the PSWITCH console call­
back specifying the "switch primary". action and the CPU ID of the new primary.

5. The console verifies that the selected secondary·is eligible to become a primary
and attempts to perform any necessary hardware state changes to transform the
old primary into a secondary and to transform the selected secondary into the
primary.

6. If the state change is completed, PSWITCH returns success status. System soft­
ware may proceed with the primary switch at step 9.

7. If the state change is not effected and the resulting hardware state permits a -
return to system software, PSWITCH returns failure status. System software
must select a different potential primary or take other appropriate action.

8. If the state change is not effected and the resulting hardware state does not
permit a return to system software, the console takes the action associated with
a failed restart.

9. System software executing on the selected secondary reactivates the console ter­
minal. In particular, character reception from the terminal is reenabled.

10. System software performs any additional system reconfiguration, updates the
PRIMARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum at
HWRPB[288], and performs any actions specific to system software synchroniza­
tion.

3.4. 7 Saving and Restoring console terminal state during HALT /RESTART
Abrupt transitions from program 1/0 mode to console I/O mode may occur. Such tran­
sitions may be caused by execution of a CALL_PAL HALT instruction, a catastrophic
error, or a console operator forcing the processor into console 1/0 mode. Upon tran­
sition to console I/O mode, the console must be able to regain control of the console
terminal, even though system software may have changed the device characteristics.

3-30

The console may seize control of the console terminal without regard to system
software when the transition is such that no return to program I/O mode is possible.
Such transitions are normally associated with a catastrophic error. ·

If system software execution may be continued, the console must be able to restore
the existing state of the console terminal. The console must r~gain and subsequently
relinquish control of the console terminal with the cooperation of system software.

HARDWARE/SOFTWARE COORDINATION NOTE
This is particularly desirable on workstations when the
console operator forces the processor into console I/O
mode.

System software may provide SAVE_TERM and RESTORE_TERM routines which
can be called by the console to save and restore the state of the console termi­
nal. To provide these optional routines, system software loads the SAVE_TERM
and RESTORE_TERM starting virtual address and procedure descriptor fields in

Digital Restricted Distribution

the HWRPB, and recomputes the HWRPB checksum at HWRPB[288]. At system
bootstraps, the console sets these fields to zero.

The console calls SAVE_TERM and RESTORE_TERM in kernel mode at IPL 31
in the memory management· policy established by system software. The console
loads the routine procedure value into R27, clears R25 and R26, and then trahsfers
control to system software at the starting virtual address. The procedure value
and starting virtual address for SAVE_TERM are contained in HWRPB[224] and
[232]; those for RESTORE_TERM are contained in HWRPB[240] and [248]. These
routines are invoked only on the primary processor and only upon an unexpected
entry into console 1/0 mode. Note that the console must preserve sufficient hardware
state to permit the processor to be restarted prior to invoking these routines. See
Section 3.4.4.

Exit from these routines must be accomplished by using the CALL_PAL HALT in­
struction to return the processor to console 110 mode; these routines do not use the
RET subroutine return instruction. Prior to ex.it, these routines must set the "SAVE_
TERM/RESTORE_TERM exit" code ('1') in the Halt Request field of the primary's
per-CPU slot and indicate success ('0') or failure ('l') status in R0<63>. The console
will not attempt to continue system software in the event that a failure status is
returned.

SAVE_TERM and RESTORE_TERM may be called when system software has en­
countered an unexpected CALL_PAL HALT or other halt condition; system state
may be corrupt. These routines must be written with little or no dependencies on
possibly corrupt system state.

HARDWARE/SOFTWARE COORDINATION NOTE
A console terminal on a serial line may or may not have
state which needs to be saved. A console terminal on
a workstation may require the system software to "roll
down" the current screen to expose the "console window"
and "roll up" the "console window'' to expose the current
screen.

3.4.7.1 SAVE_TERM ·Save Console Terminal State

Format:

status SAVE TERM

Inputs:
None

System Bootstrapping (IV) 3-31

Digital Restricted Distribution

Outputs:

status = RO; status:

R0<63> 'O'
'1'

R0<62:0> SBZ

Success, terminal state saved.
Failure, terminal state not saved.

SAVE_TERM is called by the console after an unexpected entry to console mode. The
routine performs any implementation-specific and device-specific actions necessary
to save the state of the console terminal as established by system software. When
the routine exits and console 1/0 mode is restored, the console is free to modify the
existing console terminal state in any manner.

3.4.7.2 RESTORE_TERM ·Restore Console Terminal State

Format:

status RESTORE TERM

Inputs:
None

Outputs:

status = RO; Status:

R0<63> 'O'
'l'

R0<62:0> SBZ

Success, terminal state restored
Failure, terminal state not restored

RESTORE_TERM routine is called by the console just prior to continuing system
software. The routine performs any implementation-specific and device-specific ac­
tions necessary to restore the state of the console terminal as established by system
software.

3.4.8 Operator Forced Entry to Console 1/0 Mode

3-32

The console operator can force a processor into console 1/0 mode with a HALT -CPU
command. When a processor enters console I/O mode in this way, the console sets
the Operator Halted (OH) :flag in its per-CPU slot. The console does not update the
Reason For Halt or any other processor halt state in its per-CPU slot. The console
sets the OH :flag only as the result of an explicit operator action; the OH :flag is not set
on transitions to console 1/0 mode resulting from error halt conditions, powerfails,
CALL_PAL HALT instructions in kernel mode, console operator requests of a system
crash, or software directed processor shutdowns.

The console clears the OH :flag prior to.returning to program 1/0 mode as the result
of a CONTINUE or BOOT command. The console may clear OH :flag if an error halt
or operator-induced condition is encountered which precludes a subsequent CON­
TINUE command. Such a condition is treated as an error halt; see Section 3.4.4.

Digital Restricted Distribution

I

\~

3.5 Bootstrap Loading and Image Media Format

An Alpha console may load a primary bootstrap image from one or more of the
device classes listed in Table 3-7. \A given console implementation may support
any combination of the devices and protocols below; see Section 3.7.6.\ Subsequent
sections describe how the console locates, sizes, and loads the bootstrap image for
each device class.

Table 3-7: Bootstrap Devices and Image Media
Device Class Data Link Protocol

Local Disk n/a -Bootblock

Local Tape n/a -ANSI
-Bootblock

Network-like NI, -MOP
FDDI -Bootp

-Bootparam
-SNMP
-CMIP

ROM n/a -ROM Bootblock

Console Storage n/a -Bootblock
-Implementation-specific

Serial DDCMP -MOP

As explained in Section 3.3.1.5, the console attempts to load a bootstrap image from
each element of a bootstrap devi~e list until a successful image load is achieved. If
the bootstrap image cannot be located or if the load fails for any reason, the console
retains control of the system, generates the binary error message AUDIT_BSTRAP _
ABORT, and then attempts to load a bootstrap image from the next bootstrap device
list element. After a bootstrap image is successfully located and loaded, the console
transfers control to. system software as described in Section 3.3.

As the bootstrap image load proceeds, the console optionally generates an audit trail
of messages indicating progress. The ENABLE_AUDIT environment variable con­
trols audit trail generation. The audit trail begins with the AUDIT_BOOT_STARTS
message. The audit trail continues with messages which are specific to the boot­
strap device. All message codes generated by the console are summarized in Table
Table 1-1; each consists of a binary message code which is interpreted by the console
presentation layer.

3.5.1 Disk Bootstrapping
An Alpha primary bootstrap may be loaded from a directly accessed disk device.
The console loads the ''boot block" contained in the first logical block (LBN 0) of the
disk. The boot block contains the starting logical block number (LBN) of the primary
bootstrap program and the count of contiguous LBNs which make up that image.

System Bootstrapping (IV) 3-33

Digital Restricted Distribution

The first 512 bytes of the boot block are structured as shown in Figure 3-6. The
console loads the primary bootstrap without knowledge of the· operating system file
system. The boot block is (previously) initialized by the operating system. The actual
size of a logical block is device-specific and may exceed 512 bytes. The platform­
specific quadword is unused by the operating system.

One intended use of this quadword is to permit a given console to boot another
console which presents a different operating system interface. This quadword is
intended for use only on locally connected disks which are not served to multiple,
possibly nonhomogeneous, platforms. Note that neither Open VMS or OSF/1 support
this quadword. In particular, the quadword is lost at disk initialization, not written
as a part of bootstrap block update and not replicated on a backup or archive.

Figure 3-6: Alpha Boot Block

63

3-34

Reserved (VAX Compatibility)

Reserved (Expansion)

Reserved (Platform-Specific)

Count (LBNs)

Starting LBN

Flags

Checksum

A local disk bootstrap proceeds as follows:

0

:BB

:+136

:+472

:+480

:+488

:+496

:+504

:+512

1. The console reads the boot block from LBN 0 of the specified disk device.

2. The console validates the boot block CHECKSUM; if the checksum is not vali­
dated, the bootstrap image load attempt aborts. The console computes the check­
sum of the first 63 quadwords in the block as a 64-bit, 2's complement sum ig­
noring overflow. Note that the computation includes both reserved regions. The
computed checksum is compared to the CHECKSUM at [BB+504].

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit trail
is enabled.

4. The console ensures that the FLAG quadword is zero; otherwise the bootstrap
image load attempt aborts.

5. The console ensures that the COUNT is non-zero; otherwise the bootstrap image
load attempt aborts. The count field indicates the number of contiguous logical
blocks that contain the primary bootstrap.

6. The console generates the AUDIT _LOAD _BEGINS message if the audit trail is
enabled.

Digital Restricted Distribution

7. The console reads the primary bootstrap image specified by COUNT and START­
ING LBN into system memory; in the event of any error, the bootstrap image
load attempt aborts.

The transfer begins at the logical block given by the STARTING LBN; a con­
tiguous COUNT number of logical blocks is read. The image is read into
a virtually contiguous system memory buffer; the starting virtual address is
0000 0000 2000 000016. (See Section 3.3.1.3).

Errors include device hardware errors, the specified STARTING LBN not being
present on the disk, or unexpectedly encountering the last logical block on the
disk during the read.

8. The console generates the AUDIT_LOAD_DONE message when the load has
completed; the message is generated only if the audit trail is enabled.

9. The console prepares to transfer control to the bootstrap program as described
in Section 3.3.1.7.

3.5.2 Tape Bootstrapping
An Alpha primary bootstrap may be loaded from a directly accessed tape device.
Prior to loading the primary bootstrap, the console must determine the tape format
and locate the primary bootstrap on the tape. The console:

1. Rewinds the tape on the specified tape device to the beginning of the tape (BOT).

2. Reads the first record.

3. Determines the record length.

• If the record length is 80 bytes, the tape may be an ANSI-formatted tape.
The console proceeds as described in Section 3.5.2.1.

• If the record length is 512 bytes, the tape is "boot blocked". The console
proceeds as described in Section 3.5.2.2.

• If the length is other than 80 or 512 bytes, the bootstrap image load attempt
aborts. "

3.5.2.1 Bootstrapping From ANSI-formatted Tape

Prior to loading the primary bootstrap image from an ANSI-formatted tape, the
console must ensure that the format is valid. To verify that a given record contains
a particular ANSI label, the console checks for the ASCII label name string at the
beginning of the record. For example, a record containing a VOLl label begins with
the ASCII string ''VOLl". All other record bytes are ignored when verifying the
label.

A primary bootstrap image filename may be specified explicitly on a BOOT command
or implicitly by the BOOT_FILE environment variable. If no filename is specified,
the first located file will be used.

A local ANSI-formatted tape bootstrap proceeds as follows:

System Bootstrapping (IV) 3-35

Digital Restricted Distribution

3-36

1. The console verifies that the first record contains a VOLl label; ifthe verification
fails, the bootstrap image load attempt aborts.

2. The console generates the AUDIT_TAPE_ANSI message if the audit trail is en­
abled.

3. If no filename was specified, the console advances the tape position to the End­
Of-Tape (EOT) side of the the first tape mark. The console proceeds to step
5.

4. If a filename was specified, the console attempts to locate that file on the tape. If
the file cannot be located, the bootstrap image load attempt aborts. The console
compares the specified filename with the filename present in each HDRl label
on the tape. At the first match, the console proceeds to step 5.

The console searches for the specified file starting with the second tape record.
The console reads 80-byte records from the tape until it encounters an HDRl
label, then proceeds as follows:

a. The console generates the AUDIT_FILE_FOUND<filename> message, where
<filename> is the value of the HDRl label. The message is generated only if
the audit trail is enabled.

b. The console compares the specified filename with the 17 character File Iden­
tifier Field found in the HDRl label.

c. If a match occurs, then the console advances the tape position to after the next
tape mark and proceeds to step 5. (Any HDR2 or HDR3 labels are ignored.)

d. If there is no match, then the console advances the tape position over the
next three tape marks and reads next the record. If another tape mark is
found, then the logical end of volume has been encountered and the bootstrap
image load attempt aborts. Otherwise the record should be the HDRl label
for the next file on the tape and the console proceeds at step a.

The console aborts the bootstrap image load attempt whenever an unexpected
tape mark is encountered, the tape runs off the end, or a hardware error occurs.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is
enabled.

6. The console reads the primary bootstrap image from tape into system memory;
in the event of any error or if the tape runs off the end, the bootstrap image load
attempt aborts.

The transfer from tape begins at the current tape position and continues until
a tape mark is encountered. The image is read into a virtually contiguous sys­
tem memory buffer; the starting virtual address is 0000 0000 2000 000016. (See
Section 3.3.1.3).

7. The console checks that the bootstrap file was properly closed by:

a. Reading the record after the tape mark and verifying that the record is an
EOFl label, If not, the bootstrap image load attempt aborts.

Digital Restricted Distribution

b. Searching for a subsequent tape mark. If one is not found, the bootstrap file
was improperly closed and the bootstrap image load attempt aborts. (Any
EOF2 and EOF3 labels are ignored.)

8. The console generates the AUDIT_LOAD_DONE message if the audit trail is
enabled.

9. The console prepares to transfer control to the bootstrap as described in Sec­
tion 3.3.1.7. Note that the console does not rewind or otherwise change the
position of the tape after reading the bootstrap image.

3.5.2.2 Bootstrapping from Boot Blocked Tape

Bootstrapping from a boot blocked tape is similar to the local disk bootstrapping
described in Section 3.5.l. The first tape record must be 512 bytes, and must follow
the format given for disk boot blocks as shown in Figure 3-6. The STARTING LBN
and FLAGS fields are MBZ for tape boot bootblocks.

All tape records which comprise the primary bootstrap must be 512 bytes in size. If
the console encounters records of any other size, the bootstrap image load attempt
aborts.

A local tape boot block bootstrap proceeds as follows:

1. The console generates the AUDIT_TAPE_BBLOCK message if the audit trail is
enabled.

2. The console validates the boot block CHECKSUM; if the checksum is not vali­
dated, the bootstrap image load attempt aborts. The console computes the check­
sum of the first 63 quadwords in the block as a 64-bit, 2's complement sum ig­
noring overflow. Note that the computation includes both reserved regions and
the MBZ fields. The computed checksum is compared to the CHECKSUM at
[BB+504].

3. The console generates the AUDIT_CHECKSUM_GOOD message ifthe audit trail
is enabled.

4. The console ensures that the COUNT is non-zero; otherwise the bootstrap image
load attempt aborts. The count field indicates the number of subsequent 512
byte records that contain the primary bootstrap.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is
enabled. ·

6. The console reads the COUNT subsequent records from the tape into system
memory. The bootstrap image load attempt aborts if the console encounters any
error, encounters any record size other than 512 bytes, or the tape runs off the
end.

The image is read into a virtually contiguous system memory buffer; the starting
virtual address is 0000 0000 2000 000016• (See Section 3.3.1.3).

7. The console generates the AUDIT_LOAD_DONE message if the audit trail is
enabled.

System Bootstrapping (IV) 3-37

Digital Restricted Distribution

8. The console prepares to transfer control to the bootstrap as described in Sec­
tion 3.3.1.7. Note that the console does not rewind or otherwise change the
position of the tape after reading the bootstrap image.

3.5.3 ROM Bootstrapping

3-38

An Alpha console may support bootstrapping from Read Only Memory (ROM). Boot­
strap ROM is assumed to appear in multiple discontiguous regions of the physical
address space. A given ROM region may contain multiple bootstrap images. A given
bootstrap image must not span ROM regions.

Each ROM bootstrap image is page aligned and begins with a boot block as shown
in Figure 3-7. The ROM boot block is similar to the local disk and tape boot block
shown in Figure 3-6.

Figure 3-7: Alpha ROM Boot block

63 3231

Complement Check l
Image Checksum

Image Offset

Image Length (Bytes)

Bootstrap ID

Checksum

8 7

Reserved l Ox80

0

:BB

:+08

:+16

:+24

:+32

:+40

:+48

A ROM bootstrap proceeds as follows:

1. The console locates the specified ordinal ROM bootstrap image; if the bootstrap
image cannot be located, the bootstrap image load attempt aborts.

The console locates the ROM bootstrap image by searching ROM regions be­
ginning with the ROM region with the lowest physical address and proceeding
upward to the ROM region with the highest physical address.

The search proceeds as follows:

a. The console verifies that the page contains a ROM bootstrap image:

• The low-order byte of the first quadword must be 8016.

• The high-order longword of the first quadword must be the one's comple­
ment of the low-order longword.

• The sixth quadword must contain the checksum of the first five quad­
words. The checksum is computed as a 64-bit, 2's complement sum ignor­
ing overflow.

·Digital Restricted Distribution

b. The console generates the AUDIT_BOOT_TYPE<string> message for each
valid bootblock, if the audit trail is enabled. The <string> is the ISO-LATIN-
1 string contained in the BOOTSTRAP ID quadword.

c. If the specified ordinal image number has been reached, the console proceeds
to step 2.

d. Otherwise, the console uses the IMAGE LENGTH at [BB+24] to determine
the offset to the next ROM region page to be searched. The console repeats
the process at step a.

2. The console computes the starting physical address of the bootstrap image by
adding the physical address OFFSET at [BB+ 16] to the starting physical address
of the bootblock [BB].

3. The console verifies the accessibility of each page of the bootstrap image. If any
page is inaccessible, the bootstrap image load attempt is aborted.

4. The console generates the AUDIT_BSTRAP _ACCESSIBLE message if the audit
trail is enabled.

5. If requested, the console validates the IMAGE CHECKSUM; if the checksum is
not validated, the bootstrap image load attempt aborts. The console computes
the checksum of all quadwords in the bootstrap image as a 64-bit, 2's complement
sum ignoring overflow. The existence and implementation of the mechanism for
requesting this validation is implementation-specific.

6. The console generates the AUDIT_BSTRAP _GOOD message if the audit trail is
enabled.

7. If requested, the console copies the bootstrap image from ROM into system mem­
ory (RAM). The image is copied into a virtually contiguous buffer starting at vir­
tual address 0000 0000 2000 000016. (See Section 3.3.1.3). The console generates
the AUDIT_LOAD_BEGINS message before beginning the copy and the AUDIT_
LOAD_DONE after the copy completes successfully if the audit trail is enabled.

8. The console prepares to transfer control to the bootstrap as described in Sec­
tion 3.3.1.7.

3.5.4 Network Bootstrapping
An Alpha system may support bootstrapping over one or more network communi­
cation devices and data link protocols. The console actions are dependent on the
network device, data link protocol, and remote server capabilities.

3.5.4.1 MOP-based Network Booting

An Alpha system can use the Digital Network Architecture Maintenance Operations
Protocol to bootstrap an Alpha system; see the MOP specification for a detailed
description.

The MOP bootstrap proceeds as follows:

1. The console determines if a bootstrap filename is to be used. The filename is
taken from the BOOT command or the BOOT_FILE environment variable. If no

System Bootstrapping (IV) 3-39

Digital Restricted Distribution

filename is specified on the BOOT command and BOOT _FILE is null, no filename
will be used.

2. The console generates the AUDIT_BOOT_REQ<filename> message if the audit
trail is enabled.

3. The console issues the appropriate MOP.bootstrap request message(s).

4. The console receives an appropriate MOP response from a remote bootstrap
server. If no such response is received, the bootstrap image load attempt aborts.

5. The console generates the AUDIT_BSERVER_FOUND message if the audit trail
is enabled.

6. The bootstrap load proceeds following the MOP protocol.

7. When the console receives the first portion of the bootstrap image, the console
generates the AUDIT_LOAD_BEGINS message if the audit trail is enabled.

8. The console loads the initial portion of the bootstrap image into a virtually con­
tiguous system memory buffer; the starting virtual address is 0000 0000 2000 000016·
(See Section 3.3.1.3).

9. When the bootstrap image has been loaded, the console generates the AUDIT_
LOAD_DONE message if the audit trail is enabled.

10. The console prepares to transfer control to the bootstrap program as described
in Section 3.3.1.7.

In the event of any error, the bootstrap image load attempt aborts.

3.5.4.2 BOOTP·UDP/IP Network Booting

TBD.

3.6 BB_WATCH

3-40

The following lists important points about BB_ WATCH:

1. \ BB_ WATCH is the correct name for this entity. Although incorrect terminology,
T-0-Y, T-0-D-R, toy, todder, and watch chip when used in an Alpha context are
equivalent in meaning to the BB_ WATCH.\

2. System software must directly manipulate the BB_ WATCH through an implementation­
dependent interface.

3. System software makes the decision where to acquire known time; if a BB_
WATCH is present, it may be used as the provider of known time.

4. Systems are not required to have a ·BB_ WATCH.

SOFTWARE NOTE
However, all systems that support Open VMS Alpha
or OSF/l on Alpha must have one.

Digital Restricted Distribution

5. If a BB_ WATCH is present in a system, it meets the following requirements:

• it has an accuracy of at least 50 ppm regardless of whether power is applied
to the system;

• it has a resolution of at least 1 second (That is, it is read and written in units
of a second or better).

• changing the entirety of the time maintained by the BB_ WATCH takes under
1 second; and

• it has battery backup to survive the loss of power.

6. A BB_ WATCH is always accessible to the primary processor. Or stated another
way, a processor must be able to access a BB_ WATCH directly (i.e., not needing
to go through another processor to get at it) in order to be a candidate for primary
processor.

7. The number of BB_WATCHes in a system is either one for the entire system or
one per each processor in the system; which of the two options a system chooses
is implementation-dependent. If the latter option is chosen (one BB_ WATCH per
each processor), note that writing one BB_ WATCH does not update another.

8. Although writing the BB_ WATCH takes less than one second, it may not be a
fast operation. Software should avoid frequently writing the BB_ WATCH lest it
negatively impact performance.

9. The processor and its PALcode never changes the value of BB_ WATCH except
under the direction of system software. (Note: the console, boot programs, and
remote console clients are not system software.) The console, its PALcode, and
any console application (including a diagnostic supervisor) never changes BB_
WATCH except under the direction of the console operator - even when the CPU
is HALTED, the processor is being initialized, or the BB_ WATCH has an invalid
time.

SOFIWARE NOTE
The format of time representation in the BB_ WATCH
may vary from implementation to implementation. The
architecture requires, wherever possible, that when sys­
tem software writes a time value into the BB_ WATCH,
the format of the time must conform to that of the 64-
bit Absolute Time field of the 128-bit Digital Ti.me Ser­
vice Standard (DTSS) Binary Time field, as described
in A-DG-ELEN112-00-0, Rev. A, 30-Jul-1987, which is
available from Digital Standards and Methods Control.
This absolute time format indicates the number of 100
nanosecond units that have elapsed since midnight Oc­
tober 15, 1582 UTC, the beginning of the Gregorian re­
form. Since the absolute time format is based on Coordi·
nated Universal Time (UTC, popularly known as Green-

System Bootstrapping (IV) 3-41

Digital Restricted Distribution

wich Mean Time or GMT), it does not include a local time
offset.

If DTSS conformance is not possible in a particular BB_
WATCH, system software must at least use UTC based
time when writing the BB_ WATCH.

This is a pure and simple constraint on the operating
systems that use an Alpha system. It prevents an op­
erating system from updating the BB_ WATCH in an in­
compatible way with a subsequently booted operating
system on the same machine.

This requirement is waivered for Open VMS Alpha until
no later than the first release of Open VMS Alpha after
1-Jan-1995, when it will then comply.

PROGRAMMING NOTE
The Primary-Elegible (PE) bit in the per-cpu slot of
the HWRPB for each processor indicates, among other
things, whether the CPU has access to a BB_ WATCH.
See Appendix D.

The description of primary switching details the actions
taken in a multiprocessor system, including the require­
ment for the primary processor to have access to the BB_
WATCH.

3.7 Implementation Considerations

3.7.1 Memory Sizing, Testing, and Memory Data Descriptor Table

3-42

Alpha systems are allowed to have holes of unimplemented physical memory. The
cluster mechanism allows all of available memory to be described in such a system
without the need for creating bitmaps for unimplemented physical memory.

Every implementation cannot be required to test all of memory before booting the
operating system. Partial memory testing is recommended whenever testing is time
consuming and would significantly delay the bootstrapping process; the choice is
implementation-specific. The highwater mark mechanism allows implementations
to completely size memory without testing all of it and indicate to the operating
system where testing ended. ·

This is the rationale for flagging pages that test as having Corrected Read Data
errors as bad pages.

1. Pages which have hard (repeatable) or soft (transient) CRD errors must be re­
ported as bad so that operating systems have the option of implementing a user ..
directed policy over the use of these pages. For example, Open VMS Alpha cus­
tomers with critical applications may want the operating system to use only
pages that test absolutely good.

Digital Restricted Distribution

2. Determining whether a page that tests as a CRD page is really a CRD page or
an RDS page is potentially a time consuming operation. A page of this type must
have each bit held in a known state and all others put through a one to zero and
zero to one transition to determine if the page is CRD or RDS. Flagging CRD
pages as bad, frees the console from doing this extensive testing and potentially
speeds-up the booting process. The operating system can bury this testing time
with other tasks after it has been booted.

3. Typically the time between writing a test pattern to memory and reading it back
is on the order of microseconds. The probability is low that a transient CRD
error has occurred in this short time. Thus, pages testing as having CRD errors,
probably have hard CRD errors and it is not efficient checking these CRD pages
for the few times where the error is actually a transient error.

In some Alpha systems, it is expected that the console will attempt to partition
physical memory into two clusters--one for the console and one for the operating
system-and that all pages in the operating system cluster will be tested. Again,
console implementations are strongly discouraged from testing all of memory if the
booting process is significantly delayed.

Clusters reserved for console and PALcode use do not have associated bitmaps. If
such a cluster would contain a large number (3 or more) of contiguous pages which
encounter soft read errors or are otherwise unsuitable for console and PALcode, the
console should consider breaking the bad pages into a separate cluster. This cluster
should be made available for use by system software which can possibly reclaim the
pages for use.

The PALcode function for flushing at least one page to memory (CFLUSH) may be
used to aid in implementation of this system software function. (CFLUSH takes one
argument, the PFN of the physical page to flush.)

The console does not alter the Memory Data Descriptor Table or any bitmaps across
warm bootstraps. This permits system software to propagate information on system
software memory testing and intermittent errors across operating system bootstraps.
For example, system software could set the "bad" bit of a page which incurred re­
peated CRD errors.

3.7.2 Bootstrap Flags

The console uses the BIP and RC flags to detect failed bootstraps, starts, and restarts.
The default response of the console is take the least drastic action possible. The
console attempts a restart in preference to a bootstrap and attempts a bootstrap in
preference to remaining in console I/O mode.

BIP and RC are shared between the console and system software. There are two
improbable cases of seemingly extraneous bootstrap attempts:

1. Repeated power failures caused by a bouncing power supply.

System software may not have sufficient time to set the RC flag.

2. Intermittent hardware failures on a secondary processor.

System Bootstrapping (IV) 3-43

Digital Restricted Distribution

The console executing on the secondary may force a system bootstrap due to a
failed restart of the secondary.

3.7.3 Embedded console

In an embedded console implementation, the console executes on the same processor
as the operating system. In such an implementation, the state transitions as expe­
rienced by the processor are more conceptual. For example, the processor acting as
the console will be executing instructions when in the halted state. The processor
may also field console I/O mode exceptions and interrupts.

An embedded console may be implemented as an extension of PALcode or as a dis­
tinct software entity. The console may execute from dedicated RAM or ROM on the
processor or, after console initialization, may execute from main memory.

An embedded console implementation must include a mechanism by which the pri­
mary processor can be forced into console I/O mode from program I/O mode. This
enables the console operator to gain control of the system regardless of the state of
the system software. See Section 1.2 for recommended and required mechanisms.

3. 7.3.1 Multiprocessor considerations

3-44

In a multiprocessor system, selection of the primary processor occurs prior to any
access to main memory by any of the processors. At system cold start, each of the
processors will be executing in console I/O mode. The necessary memory for console
execution must be independent of main memory; the console must be executing from
dedicated console RAM or ROM and/or a suitably configured processor cache.

The selection of the console primary requires one or more hardware registers with
state which is shared by all processors. One possible example is a mutex contained
in a single-bit register accessed only with LDQ_L/STQ_ C instructions. The primary
successfully gains ownership of the mutex. Note that implementations should in­
clude mechanisms for operator override of the selection process and for recovery in
the event that the selection process fails.

Once a console primary has been selected, the console secondaries take no further
action until appropriately notified by the primary. In particular, console secondaries
must not access main memory. The console primary has the responsibility of build­
ing the HWRPB and any console-internal data structures (such as environment vari­
ables) for the secondaries. When these structures have been initialized, the console
primary must be able to signal one or more of the secondaries by additional hardware
register(s).

The console primary allocates a HWRPB in main memory, initializes it, and stores
its physical address in an implementation-specific non-volatile manner. The console
primary then indicates the presence of the HWRPB and its location to all secondaries
by an implementation-specific mechanism.

On system restarts, the console primary identifies itself by comparing its WHAMI
register contents with the Primary CPU ID value stored in the HWRPB.

'\1lhen executing in console I/O mode, all processors must observe the same values
of all console environment variables. Of particular importance are the values of the

Digital Restricted Distribution

AUTO_ACTION and BOOT~RESET environment variables. After failing to become
the console primary processor, a console secondary waits to be notified that a valid
HWRPB exists. Upon such notification by the primary, the console secondaries use
the address provided by the primary to locate the HWRPB. The primary may be in
either program 1/0 mode or console 1/0 mode.

On cold bootstrap, a console secondary must not access main memory until notified
by the primary that a valid HWRPB exists. Thus, there must exist a non-main
memory based mechanism by which the primary may signal each of the secondaries.
On warm bootstrap or restart, a secondary processor must locate its per-CPU slot
in the HWRPB and poll its RXRDY bit.

Console processors must locate the HWRPB without searching memory; such a
search constitutes a security hole. One possible implementation is to use an environ­
ment variable or other shared console data structure. The address of the HWRPB
must be non-volatile across power failures in systems which support powerfail re­
covery.

Console implementations which support SAVE_ENV must be capable of executing
the routine simultaneously on each processor. System software use of SAVE_ENV
requires care. System software must invoke SAVE_ENV on all available processors,
but cannot ensure that the non-volatile storage is updated on processors which are
not available at the time of update. In the event of mismatch, the console uses the
non-volatile values preserved by the primary processor.

3. 7.4 Detached console

In a detached console implementation, the console executes on a separate and dis­
tinct hardware platform. A detached console may have cooperating special code
which executes on one of the processors in the system configuration.

Detached console implementations should provide some sort of keep-alive function.
System software should be able to detect failures of the path between the system
platform and the console. This may be a single dedicated signal or may be periodic
message exchange. System software should be capable of continuing to execute in
the event of a keep-alive failure and restoration of the connection (or console state)
should not cause a system crash or other major state transition. The console should
buffer any messages in the event of a keep-alive failure until reconnection occurs.

Detached consoles may maintain a local console log. The logging device and format
are implementation-specific.

3.7.5 Goals of the Bootstrap Address Space
The bootstrap address space established by the console for executing the primary
bootstrap is specifically tailored to address the goals and needs of system software
supported by Alpha, as listed here:

• The address space cannot exceed the reach of our supported implementation
languages. In particular, page table address space must be reachable.

• The address space layout should not create conflicts for system software. The
immediate addressing needs of system software must be accommodated.

System Bootstrapping (IV) 3-45

Digital Restricted Distribution

• Page table simplicity is desirable, but not to the extent that bogus translation
paths are created.

• The address space layout must be architected to ensure that the previous goals
are met and to ensure a growth. path for future console and primary bootstrap
needs.

• The address space layout should not preclude bootstrapping an operating system
which supports full 64-bit addressing.

Several alternatives were considered for implementing a bootstrap address space.
One scheme that was considered involved having a single, triply-mapped page table.
This scheme introduced address space conflicts which unnecessarily placed imple­
mentation restrictions on the primary bootstrap program. A variation of this which
created additional page tables, all of which were naturally located in virtual memory,
eliminated the bogus translation paths but didn't solve the address space conflicts
created for the primary bootstrap program.

The chosen design solves all of these problems through careful location of page table
address space. The location of page table address space naturally excludes the level
1 page table from virtual memory, but this is not a problem for software. The chosen
design incurs no additional page table complexity or memory usage over any triply­
mapped scheme that doesn't also introduce bogus translation paths.

3.7.5.1 Address Space must be reachable

There exists system software (Open VMS Alpha Phase 1) which is implemented using
32-bit oriented languages. Such software is limited to a 32-bit address space subset
modeled after the VAX address space and supported by Alpha longword arithmetic
operations. This is not to say that the remainder of the Alpha virtual address space
is inherently unavailable, only that the software implementation language imposes
a restriction on the amount of the Alpha address space that can be reached by that
particular software.

A requirement immediately emerges that the bootstrap address space in which sys­
tem software executes must be "32-bit oriented". Valid potential bootstrap address
space can only consist of the first and last 2GB (due to longword sign-extension) of
the Alpha 64-bit virtual memory space.

3. 7.5.2 The coarseness effect

3-46

A triply-mapped page table scheme of any kind imposes extreme coarseness upon the
location of page table space. Consider Table 3-8, which shows the locations of page
table space for a triply-mapped page table using different LlPTEs for self-mapping:

Table 3-8: Page Table Coarseness Effect
LlPTE
Number SKB 16KB 32KB 64KB

0 0 0 0 0

Digital Restricted Distribution

Table 3-8 (Cont.): Page-Table Coarseness Effect

LlPTE
Number SKB 16KB 32KB 64KB

1 8GB 64GB 0.5TB 4TB

2 16GB 128GB l.OTB 8TB

3 24GB 192GB l.5TB 12TB

4 32GB 256GB 2.0TB 16TB

Last 2**64-8GB 2**64-64GB 2**64-0.5TB 2**64-4TB

Self-mapping in any LlPTE other than the first LlPTE would locate page table
space at an address that a 32-bit oriented language cannot reach.

3. 7.5.3 Address Space must not create conflicts

3.7.5.3.1 Location of Page Table Space

As was noted above, the only reachable location for page table address space utilizes
the first LlPTE, thus locating page table address space at a region beginning at
address zero and extending at least to address SGB-1. This creates an immediate
addressing conflict since no reachable address space is left over for system software
itself or for console-mapped structures and code.

A finer grained virtual address layout is therefore required, one in which the self­
mapping that establishes reachable page table address space is done at page table
level 2 instead of level 1. A level 1 page table would exist which is entirely empty
except for the first LlPTE. The first LlPTE would point to a separate level 2 page
table. A PTE within the level 2 page table would be used for self-mapping, thus
locating page table address space at a finer grained location (within the total address
space mapped by the single LlPTE) than would be otherwise possible. With this
approach, page table space could be located within the entire 64-bit address space
as shown in Table 3-9.

Table 3-9: Page Table Space Location

Page Size
LlPTE I L2PTE
Numbers SKB 16KB 32KB 64KB

0/0 0 0 0 0

0/1 8MB 32MB 128MB 0.5GB

0/2 16MB 64MB 256MB 1.0GB

System Bootstrapping (IV) 3-47

Digital Restricted Distribution

Table 3-9 {Cont.): Page Table Space Location
Page Size

LlPTE I L2PTE
Numbers 8KB 16KB 32KB 64KB

0/3 24MB 96MB 384MB l.5GB

0/4 32MB 128MB 512MB 2.0GB

This table shows that self-mapping using any of the first four L2PTEs will define a
reachable location for page table address space (anywhere in the first 2GB), regard­
less.of page size.

Table 3-10 shows the size of page table address space as a function of page size.
Any space in the first 2G B of virtual memory that is not part of page table address
space is available for other uses.

Table 3-10: Page Table Address Space as Function of Page Size
Page Size

SKB

16KB

32KB

64KB

Length of Page Table Space

SMB

32MB

128MB

512MB

Self-mapping at level 2 naturally excludes the Ll page table from the defined page
table address space. Self-mapping at level 2 merely establishes an address space
within the context of whatever LlPTE is used to map the level 2 page table.

Either the level 1 page table can be mapped to some arbitrary, yet architected, VA
outside of page table address space, or it can be left unmapped by the console, or
another address space can be created through self-mapping at level 1 which would
naturally include the level 1 page table. The need to support virtual PTE lookup
during Translation Buffer miss processing dictates the third choice.

Thus the second LlPTE is used to map the level 1 page table itself. Note from the
discussions above, this creates a second address sapce for the page tables which is
not reachable from 32-bit oriented software. Such software will use the finer grained
page table space created by the self-map technique at level 2.

3.7.5.3.2 Laying out the first 2GB

3-48

Bootstrap address space can be laid out once a location is chosen for page table space.
The four natural locations for page table space that would be expressible regardless
of page size are found in the column above for the 64KB page size. These locations
aTe 0, 0.5GB, 1.0GB and 1.5GB. After reserving iocation zero for software use, any
one of the remaining three locations could be chosen. Remaining address space in

Digital Restricted Distribution

the first 2GB could then be allocated for other purposes. The :final layout of the first
2GB of address space is described in Section 3.3.1.3.

3.7.5.4 Conclusion

The needs of more restrictive implementation languages can be met by utilizing the
natural flexibility of the Alpha multi-level page tables. This can be done without
undue complexity or memory usage, and without precluding the use of any less
restrictive language used to implement a '64-bit' operating system.

3.7.6 Bootstrap Devices and Image Media

Various factors should be considered when determining which of the bootstrap de­
vices and image media listed in Table 3-7 are supported.

1. Workstations and other low-end platforms may consider supporting ROM boot­
blocks for DEC OSF/1 and customer applications. Open VMS Alpha currently
uses a single bootstrap image for all platforms; support for ROM bootstrapping
will require customization. See Section 3.5.3 for the Alpha ROM Bootblock mech­
anism.

2. Platforms considering bootstrap media which is local to the console must nego­
tiate with the operating systems for such support on a case-by-case basis. DEC
OSF/1 supports the bootblock method; see Section 3.5.1.

3. Products intended for embedded systems applications should consider DDCMP
/MOP support.

Support for audit trail generation during console bootstrap is strongly recommended
to all implementations. An audit trail is essential to the isolation of errors during
the bootstrap process. Section 3.5 give the architected audit trail for each bootstrap
device. Console implementations may generate additional audit trail messages.

3. 7.6.1 Disk Bootstrapping

Note that unlike the VAX boot block support, NO code is contained in the boot block;
the boot block contains ONLY the LBN descriptor for the Alpha primary bootstrap
image. Also note that an Alpha boot block can contains pointers to primary bootstrap
images for both VAX and Alpha simultaneously.

Because the boot block includes an LBN and block count, the console need have no
knowledge of the operating system file system or on-disk- structure.

The first 136 bytes of the boot block are currently used by the VAX disk boot block
mechanism. The next 80 bytes are not currently used either by VAX or Alpha boot
blocks. For future expansions, VAX boot blocks should expand towards higher ad­
dresses, and Alpha boot blocks expand towards lower addresses; each region remains
contiguous. These 216 bytes are ignored by the Alpha console except for the purposes
of computing the bootblock checksum~

The boot block FLAGS word is reserved for future expansion. Flag<O> is reserved
to indicate a discontiguous bootstrap image; Flag <63:1> are reserved for future
definition. There are no current plans by any Digital operating system to have a
discontiguous primary bootstrap image.

System Bootstrapping (IV) 3-49

Digital Restricted Distribution

3. 7.6.2 ROM Bootstrapping

A ROM block is uniquely identified as containing an Alpha bootstrap image by the
value of 008016 in the first word of the block. Each ROM bootstrap image is uniquely
identified by a zero-based ordinal number. ·

The size of the ROM bootstrap is specified in bytes to permit the same ROM bootstrap
image to be used by systems with different page sizes.

Other alternatives to specify which ROM bootstrap to use were considered, such as
making the console operator give the physical· address of the ROM bootstrap. The
specified method seemed the least complicated. A console implementation should
consider a command which permits the location of ROM bootstraps, their IDs, and
PR assignments to be displayed.

Note that the specified searching process ensures that incorrectly created ROM boot­
blocks are ignored by the console.

3. 7.6.3 Network Bootstrapping

3-50

Data link protocols include CSMA/CD (IEEE 802.3 and Ethernet), Token-passing
Bus (IEEE 802.4), Token-ring (IEEE 802.5), HDLC, and DDCMP. It is strongly rec­
ommended that a console implementation support both BOOTP-UDP/IP and MOP
protocols over all supported network devices and data links.

Digital Restricted Distribution

3.8 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Removed references to ELN

2. ULTRIX-> DEC OSF/1

3. Widget -> device

4. Added eco #30 text part

5. Material rearranged according to SRM Rev 5 requirements

6. Added ECO #17, #23

7. Converted to SDML.

8. Replace previous Console Chapter with Console ECO #15

9. Includes 3 chapters and two appendices, renumber 1/0 Chapter

10. Material substantially changed or rearranged

System Bootstrapping (IV) 3-51

Digital Restricted Distribution

Appendixes
The following appendixes are included in the Alpha System Reference Manual:

• Appendix A, Software Considerations

• Appendix B, IEEE Floating-Point Conformance

• Appendix C, Instruction Encodings

• Appendix D, Registered System and Processor Identifiers

• Appendix E, Registered Console Implementation Functions

Digital Restricted Distribution

Contents

Appendixes

Appendix A Software Considerations

A.l
A.2

Hardware-Software Compact .. . A-1
A-2
A-2
A-2
A-3
A-5
A-5
A-6
A--6
A-7
A-8

Instruction-Stream Considerations
Instruction Align.ment .. .
Multiple Instruction Issue - Factor of 3
Branch Prediction and Minimizing Branch-Taken -Factor of 3
Improving I-Stream Density - Factor of 3
Instruction Scheduling - Factor of 3

A.2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4

Data-Stream Considerations
Data Alignment - Factor of 10
Shared Data in Multiple Processors - Factor of 3
Avoiding Cache!l'B Conflicts - Factor of 1
Sequential Read/Write - Factor of 1
Prefetching - Factor of 3

Code Sequences

A-10
A-10
A-11
A-11 A.4.1

A.4.2
A.4.3
A.4.3.1
A.4.3.2
A.4.3.3
A.4.3.4
A.4.3.5
A.4.3.6
A.4.3.7

Align.ed Byte/Word Memory Accesses
Division : . A-12
Stylized Code Forms . A-12

NOP ... A-13
Clear a Register.. A-13
Load Literal ... ·~ : A-13
Register-to-Register Move . A...;.14
Negate . A-14
NOT ... A-14
Booleans . A-14

'!'rap Barrier . A-14 A.4.4
A.4.5
A.5
A.6

Pseudo-Operations (Stylized Code Forms) . A-14
Timing Considerations: Atomic Sequences . A-17
\REVISION HISTORY . A-18

Ill

Digital Restricted Distribution

Appendix B IEEE Floating-Point Conformance

B.1 Alpha Choices for IEEE Options . B-1
B.2 Alpha Hardware Support of Software Exception Handlers ... _. B-2
B.3 Mapping to IEEE Standard ... _. B-3
B.4 \REVISION HISTORY . B-11

Appendix C Instruction Encodings

C.l Memory Format Instructions . C-1
C.2
C.3
C.4
C.4.1
C.4.2
C.5
C.6
C.6.1
C.6.2
C.7
C.8
C.9
C.10
C.11
C.12

Branch Format Instructions .. .
Operate Format Instructions
Floating-Point Operate Format

IEEE Floating-Point Instructions
VAX Floating-Point Instructions

Opcode Summary .. .
Open VMS PALcode Format Instructions

Unprivileged Open VMS PALcode Function Codes
Privileged Open VMS PALcode Function Codes

Unprivileged OSF/1 PALcode Function Codes
Privileged OSF/1 PALcode function codes
Required PALcode Function Codes
Opcodes Reserved to PALcode .. .
Opcodes Reserved to Digital .. .
\REVISION HISTORY

Appendix D Registered System and Processor Identifiers

C-2
C-2
C-3
C-4
C-5
C-6
C-8
C-8
C-8
C-9
C-9

C-10
C-10
C-10
C-12

D.1 1/0 Architecture Section................ D-4
D.1.1 Special Commands.. D-4
D.1.1.1 XMI Specific Information............. D-4
D.1.1.2 Futurebus+ Specific Information . D-5
D .2 \Revision History . D-7

Appendix E Registered Console Implementation Functions

E.1
E.2
E.2.1
E.2.2
E.3
E.3.1
E.3.2
E.4

iv

Environment Variables _
Console Terminal Block Formats .. .

Serial Line UART
Graphic Display with LK Keyboard

Implemented Console Functions .. .
Cobra and Laser Systems .. _
Flamingo System Console Functions

\REVISION HISTORY _

Digital Restricted Distribution

E-1
E-1
E-1
E-2
E-5
E-5
E-6
E-7

Figures

B-1 IEEE Trap Handling Behavior... B-4
E-1 Serial Line UART Format . E-2
E-2 Serial Line UART with LK Keyboard Format . E-3

Tables

A-1 Decodable Pseudo-Operations (Stylized Code Forms) . A-15
B-1 IEEE Floating-Point Trap Handling . B-5
B-2 IEEE Standard Charts... B-10
C-1 Memory Format Instruction Opcodes .. C-1
C-2 Memory Format Instructions with a Function Code........................... C-1
C-3 Memory Format Branch Instruction Opcodes . C-2
C-4 Branch Format instruction Opcodes . C-2
C-5 Operate Format Instruction Opcodes and Function Codes . C-2
C-6 Function Codes for Floating Data Type Independent Operations................. C-3
C-7 IEEE Floating-Point Instruction Function Codes . C-4
C-8 VAX Floating-Point Instruction Function Codes.............................. C-5
C-9 Opcode Sum.mary . C-7
C-10 Key to Opcode Sum.mary (Table C-9)............ .. C-7
C-11 Unprivileged Open VMS P.ALcode Function codes . C-8
C-12 Privileged Open VMS P.ALcode Function Codes . C-8
C-13 Unprivileged OSF/1 PALcode Function Codes . C-9
C-14 Privileged OSF/1 PALcode Function Codes . C-9
C-15 Required PALcode Function Codes . C-10
C-16 Opcodes Reserved for PALcode... C-10
C-17 Opcodes Reserved for Digital . C-10
D-1 System and Processor Identification Assignments . D-2
D-2 System Variation Assignments . D-3
D-3 Processor Variation Assignments .. ~ D-4
D-4 WHO_ARE_YOU returns . D-4
D-5 XMI CMD field . D-5
D--6 Futurebus+ CMD field . D-5
E-1 Option Environment Variables... E-1
E-2 Cobra and Laser Console Functionality . E-5
E-3 Flamingo Console Functionality . E-6

v

Digital Restricted Distribution

A.1 Hardware-Software Compact

Appendix A

Software Considerations

The Alpha architecture, like all RISC architectures, depends on careful attention to
data alignment and instruction scheduling to achieve high performance.

Since there will be various implementations of the Alpha architecture, it is not
obvious how compilers can generate high-performance code for all implementations.
This chapter gives some scheduling guidelines that, if followed by all compilers and
respected by all implementations, will result in good performance. As such, this
section represents a good-faith compact between hardware designers and software
writers. It represents a set of common goals, not a set of architectural requirements.
Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below are advantageous only for
frequently executed code. For rarely executed code, they may produce a bigger
program that is not any faster. Some of the branching optimizations also depend on
good prediction of which path from a conditional branch is more frequently executed.
These optimizations are best done by using an execution profile, either an estimate
generated by compiler heuristics, or a real profile of a previous run, such as that
gathered by PC-sampling in PCA.

Each computer architecture has a "natural word size." For the PDP-11, it is 16 bits;
for VAX, 32 bits; and for Alpha, 64 bits. Other architectures also have a natural word
size that varies between 16 and 64 bits. Except for very low-end implementations,
ALU data paths, cache access paths, chip pin buses, and main memory data paths
are all usually the natural word size.

As an architecture becomes commercially successful, high-end implementations
inevitably move to double-width data paths that can transfer an aligned (at an even
natural word address) pair of natural words in one cycle. For Alpha, this means
eventual 128-bit wide data paths. It is hard to get much speed advantage from paired
transfers unless the code being executed has instructions and data appropriately
aligned on aligned octaword boundaries. Since this is hard to retrofit to old code,
the following sections sometimes encourage "over-aligning" to octaword boundaries
in anticipation of high-speed Alpha implementations.

In some cases, there are performance .advantages in aligning instructions or data
to cache-block boundaries, or putting data whose use is correlated into the same
cache block, .or trying to avoid cache conflicts by not having data whose use is
correlated placed at addresses that are equal modulo the cache size. Since the
Alpha architecture will have many implementations, an exact cache design cannot
be outlined here. Nonetheless, some expected bounds can be stated.

Software Considerations A-1

Digital Restricted Distribution

1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB

2. Small cache block sizes will likely be 16, 32, 64, ·or 128 bytes

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to
8MB

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes

5. TB sizes will likely be in the range 16 to 1024 entries

Thus, if two data items need to go in different cache blocks, it is desirable to
make them at least 128 bytes apart (modulo 2 KB). Doing that creates a high
probability of allowing both items to be in a small cache simultaneously, for all
Alpha implementations.

In each case below, the performance implication is given by an order-of-magnitude
number: 1, 3, 10, 30, or 100. A factor of 10 means that the performance difference
being discussed will likely range from 3 to 30 across all Alpha implementations.

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword-aligned. Targets of frequently taken branches
should be at least quadword-aligned, and octaword-aligned for very frequent loops.
Compilers could use execution profiles to identify frequently taken branches.

Most Alpha implementations will fetch aligned quadwords of instruction stream (two
instructions), and many will waste an instruction-issue cycle on a branch to an odd
longword. High-end implementations may eventually fetch aligned octawords, and
waste up to 3 issue cycles on a branch to an odd longword. Some implementations
may only be able to fetch wide chunks of instructions every other CPU cycle.
Fetching four instructions from an aligned octaword can get at most one cache miss,
while fetching theui from an odd longword address can get 2 or even 3 cache misses.

Quadword I-fetch implementors should give first priority to executing aligned
quadwords quickly. Octaword-fetch implementors should give first priority to
executing aligned octawords quickly, and second priority to executing aligned
quadwords quickly. Dual-issue implementations should give first priority to issuing
both halves of an aligned quadword in one cycle, and second priority to buffering
and issuing other combinations.

A.2.2 Multiple Instruction Issue - Factor of 3

Some Alpha implementations will issue multiple instructions in a single cycle. To
improve the odds of multiple-issue, compilers should choose pairs of instructions to
put in aligned quadwords. Pick one from column A and one from column B (but only
a total of one load/store/branch per pair).

A-2 Appendixes

Digital Restricted Distribution

Column A

Integer Operate

Floating Load/Store

Floating Branch

ColumnB

Floating Operate

Integer Load/Store

Integer Branch

BR/BSR/JSR

Implementors of multiple-issue machines should give first priority to dual-issuing at
least the above pairs, and second priority to multiple-issue of other combinations.

In general, the above rules will give a good hardware-software match, but compilers
may want to implement model-specific switches to generate code tuned more exactly
to a specific implementation.

A.2.3 Branch Prediction and Minimizing Branch· Taken - Factor of 3

In many Alpha implementations, an unexpected change in I-stream address will
result in about 10 lost instruction times. "Unexpected" may mean any branch-taken
or may mean a mispredicted branch. In many implementations, even a correctly
predicted branch to a quadword target address will be slower than straight-line
code.

Compilers should follow these rules to minimize unexpected branches:

1. Implementations will predict all forward conditional branches as not-taken,
and all backward conditional branches as taken. Based on execution profiles,
compilers should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This means unrolling loops so that they contain at least
20 instructions, and putting subroutines of less than 20 instructions directly in
line. It also means using execution profiles to rearrange code so that the frequent
case of a conditional branch falls through. For very high-performance loops, it
will be profitable to move instructions across conditional branches to fill otherwise
wasted instruction issue slots, even if the instructions moved will not always do
useful work. Note that the Conditional Move instructions can sometimes be used
to avoid breaking up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away
from 50%-50% (51-49 is enough), put the infrequent case completely out of line,
so that the frequent case encounters zero branch-takens, and the infrequent case
encounters two branch-takens. If the infrequent case is rare (5%), put it far
enough away that it never comes into the I-cache. If the infrequent case is
extremely rare (error message code), put it on a page of rarely executed code and
expect that page never to be paged in.

Software Considerations A-3

Digital Restricted Distribution

4. There are two functionally identical branch-form.at opcodes, BSR and BR.

31 2625 2120 0

BSR Ra Displacement Branch Format

BR Ra Displacement Branch Format

Compilers should use the first one for subroutine calls, and the second for GOTOs.
Some implementations may push a stack of predicted return addresses for BSR
and not push the stack for BR. Failure to compile the correct opcode will result
in mispredicted return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction has 16 unused bits. These should be used
by the compilers to communicate a hint about expected branch-target behavior
(see Common Architecture, Chapter 4):

31 1615 0

I Ra I Rb -Memory Format

If the JSR is used for a computed GOTO or a CASE statement, compile bits
<15:14> as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0>
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so that
a normal PC+displacement*4 calculation will match the low 16 bits of the most
likely target longword address. (Implementations will likely prefetch from the
matching cache block.)

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01,
and bits <13:0> as above. Some implementations will prefetch the call target
using the prediction and also push updated PC· on a return-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no
branch-takens as quickly as possible, second priority to predicting conditional
branches based on the sign of the displacement field (backward taken, forward not­
taken), and third priority to predicting subroutine return addresses by running a
small prediction stack. (VAX traces show a stack of 2 to 4 entries correctly predicts
most branches.)

A-4 Appendixes

Digital Restricted Distribution

A.2.4 Improving I-Stream Density- Factor of 3
Compilers should try to use profiles to make sure almost 100 percent of the bytes
brought into an I-cache are actually executed. This means aligning branch targets
and putting rarely executed code out of line. Doing so would consistently make an
I-cache a:Qpear about two times larger, compared to current VAX. practice.

The example below shows the bytes actually brought into a VAX. cache (from part of
an address trace of a DLINPAC). The dots represent bytes brought into the cache
but never executed. They occupy about half of the cache.

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC
and a portion of Open VMS 4.x are shown. Uppercase I is the first byte of an
instruction, and lowercase i marks subsequent bytes. Period (.) shows a byte
brought into the cache but never executed.

I-fetch Byte 0 Byte 63

000268CO•..••... Iiiiiiiiiiiiiiiiiiiiiiii ..••••....••..••
00026900 .•....•.....•..•.•...•...••.•..••.••......•.••.• Iiiiiiiiiiiiiiii
00026940 Iiii ..•..•..••.•••••....•.
00026980 ..••..••...•.....•..•..•.•...•.•.•••...• Iiiiiiiiiiiiiiiiiiiiiiii
000269CO I ••.....••.•... IiiiiiiiiiiiiiiiiiiiiiiiIIiiiiiiiiiiiiiiiiii •..••
00026AOO .••••.••••.••..••...•....••. Iiiiiiiiiiiiiiiiiiiiiiiiiii ...••..••
00026A40 .•••..•.•..•••..•••......••..•.•. Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
00026A80 Iii .•.••••.•••.•.••• Iiiiii
00026ACO Iiiiiii .••••••.••••.•••.••••.••...••.•.••.•••.••.•••.••.••••.•••

80004440 ...•.•.••..•••.•.••..••.••.••••••••..•.•••.•• Iiiiiiiiii .•••.•...
80004680 ..•• Iiiiiiiiii •.••.••••.•••••.••.•.••..•••.•••••••••.•.•..•..•.•
80004900 •.••.•..•.••.••• IiiI
80004940 Iiiiiiiiiiiiiiiiii. ••••••••.•.• Iiiiiiiii. ••.•.•..•.•..•..•••••.•
80004AOO ..••••••.•.••••..••.•••.•••.•.•••••••.••••.••.••• Iiiiiiiiiiiiiii
80004A40 Iiiiiiiiiiiiiiiiiiiiiiiiii .•..•••••••• IiiiiiIIiiiiiiiiiiiiiiiiiI
80004A80 Iiiiiiiiiiiiiiiiiii. ••• Iiiiiiiiii. ••..••.•.•..•.••••.•••••.•••••
80004F40 •.•.••.••.••••.••.••.•••••.•• Iiiiiiiiiiiiiiiiiiiiiiiiiiii. ••••••
80004F80 •.•.••.•.•••••.•...•••• IiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiI
80004FCO IIiiiiiiiiiiiiiiiiiii ••.•• Iiiiiiiiiii ••.•••••.•••..••.....••••.•
80008A40 .••.•.••..•.••..••...•....••..••••.••..••••.•.•........• Iiiiiiii
80008A80 IIiii.

A.2.5 Instruction Scheduling - Factor of 3
The performance of Alpha programs will be sensitive to how carefully the code is
scheduled to minimize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an
instruction that writes a result register and one that uses that register, if execution­
time stalls are to be avoided. Thus, a latency of zero means that the instruction
writes a result register and the instruction that uses that register can be multiple­
issued in the same cycle. A latency of 2 ineans that if the writing instruction is issued
at cycle N, the reading instruction can issue no earlier than cycle N+2. Latency is
implementation-specific.

Most Alpha instructions have a non-zero result latency. Compilers should schedule
code so that a result is not used too soon, at least in frequently executed code (inner

Software Considerations A-5

Digital Restricted Distribution

loops, as identified by execution profiles). In general, this will require loop unrolling
and short procedure inlining.

"Too soon" is currently ill-defined, since no implementations have been designed yet.
For starters, assume that implementations can dual-issue instructions. Assume
that Load and JSR instructions have a latency of 3, shifts and byte manipulation a
latency of 2, integer multiply a latency of 10, and other integer operates a latency
of 1. Assume floating multiply has a latency of 5, floating divide a latency of 10,
and other floating operates a latency of 4. Scheduling to these latencies will give
at least reasonable performance on currently anticipated implementations. \More
precise tables will be supplied in later versions of this Appendix, as the information
becomes available.\

Compilers should try to schedule code to match the above latency rules and also to
match the multiple-issue rules. If doing both is impractical for a particular sequence
of code, the latency rules are more important (since they apply even in single-issue
implementations).

Implementors should give first priority to minimizing the latency of back-to-back
integer operations, of address calculations immediately followed by load/store, ofload
immediately followed by branch, and of compare immediately followed by branch.
Second priority should. be given to minimizing latencies in general.

A.3 Data-Stream Considerations

The following sections describe considerations for the data stream.

A.3.1 Data Alignment - Factor of 10

Data PSECTs should be at least octaword-aligned, so that aggregates (arrays, some
records, subroutine stack frames} can be allocated on aligned octaword boundaries
to take advantage of any implementations with aligned octaword data paths, and to
decrease the number of cache fills in almost all implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on
at least aligned octaword boundaries whenever language rules allow this. In some
implementations, a series of writes that completely fill a cache block may be a factor
of 10 faster than a series of writes that partially fill a cache block, when that cache
block would give a read miss. This is true of writeback caches that read a partially
filled cache block from memory, but optimize away the read for completely filled
blocks.

For such implementations, long strings of sequential writes will be faster if they
start on a cache-block boundary (a multiple of 128 bytes will do well for most, if not
all, Alpha implementations). This applies to array results that sweep through large
portions of memory, and also to register-save areas for context switching, graphics
frame buffer accesses, and other places where exactly 8, 16, 32, or more quadwords
are stored sequentiallY, Allocating the targets at multiples of 8, 16, 32, or more
quadwords, respectively, and doing the writes in order of increasing address will
maximize the write speed.

A-6 Appendixes

Digital Restricted Distribution

Items within aggregates that are forced to be unaligned (records, common blocks)
should generate compile-time warning messages and inline byte extract/insert code.
Users must be educated that the warning message means that they are taking a
factor of 30 performance hit.

Compilers should consider supplying a switch that allows the compiler to pad
aggregates to avoid unaligned data.

Compiled code for parameters should assume that the parameters are aligned.
Unaligned actuals will therefore cause runtime alignment traps and vecy slow
fixups. The furup routine, if invoked, should generate warning messages to the
user, preferably giving the first few statement numbers that are doing unaligned
parameter access, and at the end of a run the total number of alignment traps (and
perhaps an estimate of the performance improvement if the data were aligned).
Again, users must be educated that the trap routine warning message means they
are taking a factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated
in memocy should normally be allocated an aligned quadword to itself, even if the
datum is only a byte wide. This allows aligned quadword loads and stores and avoids
partial-quadword writes (which may be half as fast as full-quadword writes, due to
such factors as read-modify-write a quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second
priority to fast writes of full cache blocks. Partial-quadword writes need not have a
fast repetition rate.

A.3.2 Shared Data in Multiple Processors - Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks
that either contain no other data, or read-mostly data whose usage is correlated with
the lock.

Whenever there is high contention for a lock, one processor will have the lock and
be using the guarded data, whil~ other processors will be in a read-only spin loop on
the lock bit. Under these circumstances, any write to the cache block containing the
lock will likely cause excess bus traffic and cache fills, thus having a performance
impact on all processors that are involved, and the buses between them. In some
decomposed FORTRAN programs, refills of the cache blocks containing one or two
frequently used locks can account for a third of all the bus bandwidth the program
consumes.

Whenever there is almost no contention for a lock, one processor will have the lock
and be using the guarded data. Under these circumstances, it might be desirable to
keep the guarded data in the same cache block as the lock.

For the high sharing case, compilers should assume that almost all accesses to
shared data result in cache misses all the way back to main memory, for each distinct
cache block used. Such accesses will likely be a factor of 30 slower than cache· hits.
It is helpful to pack correlated shared data into a small number of cache blocks. It is
helpful also to segregate blocks written by one processor from blocks read by others.

Software Considerations A-7

Digital Restricted Distribution

Therefore, accesses to shared data, including locks, should be minimized. For
example, a 4-processor decomposition of some manipulation of a 1000-row array
should avoid accessing lock variables every row, but instead might access a lock
variable every 250 rows.

Array manipulation should be partitioned across processors so that cache blocks do
not thrash between processors. Having each of 4 processors work on every fourth
array element severely impairs performance on any implementation with a cache
block of 4 elements or larger. The processors all contend for copies of the same cache
blocks and use only 1/4 of the data in each block. Writes in one processor severely
impair cache performance on all processors.

A better decomposition is to give each processor the largest possible contiguous
chunk of data to work on (N/4 consecutive rows for 4 processors and row-major
ari;-ay storage; N/4 columns for column-major storage). With the possible exception
of 3 cache blocks at the partition boundaries, this decomposition will result in each
processor caching data that is touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process
migration from one processor to another. Any time migration occurs, there are likely
to be a large number of cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some
affinity between a given device's interrupts and the processor on which the interrupt­
handler runs. I/O control data structures and locks for different devices should be
disjoint. Doing both of these allows higher cache hit rates on the corresponding I/O
control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of
transferring isolated lock values and other isolated, shared write data between
processors.

Implementors should assume that the amount of shared data will continue to
increase, so over time the need for efficient sharing implementations will also
increase.

A.3.3 Avoiding Cache/TB Conflicts - Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash,
taking excessive cache or TB misses. With some work, thrashing can be minimized
at com pile time.

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same aligned 64-byte block, or differ in bits VA<10:6>. For loops
that go through arrays in a common direction with a common stride, this means
allocating the arrays, checking that the first-iteration addresses differ, and if not,
inserting up to 64 bytes of padding between the arrays. This rule will avoid thrashing
in small direct-mapped data caches with block sizes up to 64 bytes and total sizes
of 2K bytes or more.

Example:

A-8 Appendixes

Digital Restricted Distribution

REAL*4 A(1000),B(1000)
DO 60 i=l,1000

60 A(i) = f(B(i))

BAD allocation (A and B thrash in 8 KB direct-mapped cache):

-0 4K SK 12K 16K

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of
B can be in cache simultaneously):

-B -0 4K 8K+64 12K 16K

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B
can be in cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache):

-0 4K-64 SK 12K 16K

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same 8 KB page, or differ in bits VA<l 7:13>. For loops that go
through arrays in a common direction with a comm.on stride, this means allocating
the arrays, checking that the first-iteration addresses differ, and if not, inserting
up to SK bytes of padding between the arrays. This rule will avoid thrashing in
direct-mapped TBs and in some large direct-mapped data caches, with total sizes of
32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytes in the executable image, just a skip
in virtual address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to
all the D-stream references. Some implementations will have combined I-stream
ID-stream large caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating
thrashing in all anticipated direct-mapped cache!I'B implementations.

Software Considerations A-9

Digital Restricted Distribution

A.3.4 Sequential Read/Write~ - Factor· of 1

All other things being equal, sequences of consecutive reads or writes should use
ascending (rather than descending) memory addresses. Where possible, the memory
address for a block of 2**Kbytes should be on a 2**K boundary, since this minimizes
the number of different cache blocks used and minimizes the number of partially
written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword
Loads or Stores should be broken up with intervening instructions (if there is any
useful work to be done).

For consecutive reads, implementors should give first priority to prefetching
ascending cache blocks, and second priority to absorbing up to eight consecutive
quadword Loads (aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read
overhead for fully written aligned cache blocks, and second priority to absorbing
up to eight consecutive quadword Stores (aligned on a 64-byte boundary) without
stalling.

A.3.5 Prefetching - Factor of 3

To use FETCH and FETCH_M effectively, software should follow this programming
model:

1. Assume that at most two FETCH instructions can be outstanding at once,
and that there are two prefetch address registers, PREa and PREb, to hold
prefetching state. FETCH instructions alternate between loading PREa and
PREb. Each FETCH instruction overwrites any previous prefetching state, thus
terminating any previous prefetch that is still in progress in the register that is
loaded. The order of fetching ·within a block and the order between PREa and
PREb are UNPREDICTABLE.

IMPLEMENTATION NOTE
Imj>lementations are encouraged to alternate at
convenient intervals between PREa and PREb.

2. Assume, for maximum efficiency, that there should be about 64 unrelated memory
access instructions (load or store) between a FETCa and the first actual data
access to the prefetched data.

3. Assume, for instruction-scheduling purposes in a multilevel cache hierarchy, that
FETCH does not prefetch data to the innermost cache level, but rather one level
out. Schedule loads to bury the last level of misses.

4. Assume that FETCH is worthwhile if, on average, at least half the data in a
block will be accessed. Assume that FETCH_M is worthwhile if, on average, at
least half the data in a block will be modified.

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch 4
operands, launch the first two prefetches, do about 128 memor.f references

A-10 Appendixes

Digital Restricted Distribution

worth of work, then launch the next two prefetches, do about 128 more memory
references worth of work, then start using the 4 sets of pref etched data.

6. Treat FETCH as having the same effect on a cache as a series of 64 quadword
loads. If the loads would displace useful data, so will FETCH. If two sets of loads
from specific addresses will thrash in a direct-mapped cache, so will two FETCH
instructions using the same pair of addresses.

IMPLEMENTATION NOTE
Hardware implementations are expected to provide
either no support for FETCHx or support that closely
matches this model.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word Memory Accesses

The instruction sequences given in Common Architecture, Chapter 4 for byte and
word accesses are worst-case code. In the common case of accessing a byte or aligned
word field at a known offset from a pointer that is expected to be at least longword
aligned, the common-case code is much shorter.

"Expected" means that the code should run fast for a longword-aligned pointer and
trap for unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D
rounded down to a multiple of 4 ((D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned
word is:

LDL Rl,D.lw(Rx) ! Traps if unaligned
EXTWL Rl,#D.mod,Rl ! Picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned
word is:

LDL
SLL
SRA

Rl,D.lw(Rx)
Rl,#48-8*D.mod,Rl
Rl,#48,Rl

Traps if unaligned
Aligns word at high end of Rl
SEXT to low end of Rl

NOTE
The shifts often can be combined with shifts that
might surround subsequent arithmetic operations (for
example, to produce word overflow from the high end of
a register).

In the common case, the intended sequence for loading and zero-extending a byte is:

LDL Rl,D.lw(Rx)
EXTBL Rl,#D.mod,Rl

Software Considerations A-11

Digital Restricted Distribution

In the common case, the intended sequence for loading and sign-extending a byte is:

LDL Rl,D.lw(Rx)
SLL Rl,#56-8*0.mod,Rl !
SRA Rl,#56,Rl

In the common case, the intended sequence for storing an aligned word R5 is:

LDL Rl,D.lw(Rx)
INSWL R5,#D.mod,R3
MSKWL Rl,#D.mod,Rl
BIS R3,Rl,Rl
STL Rl,D.lw(Rx)

In the common case, the intended sequence for storing a byte R5 is:

A.4.2 Division

LDL Rl,D.lw(Rx)
INSBL R5,#D.mod,R3
MSKBL Rl,#D.mod,Rl
BIS R3,Rl,Rl
STL Rl,D.lw(Rx)

In all implementations, floating-point division is likely to have a substantially longer
result latency than floating-point multiply; in addition, in many implementations
multiplies will be pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply
by the exact reciprocal, if it is representable without overflow or underflow. If
language rules or surrounding context allow, other divisions by constants can be
closely approximated via multiplication by the reciprocal.

Integer division does not exist as a hardware opcode. Division by a constant can
always be done via UMULH of another appropriate constant, followed by a right
shift. General quadword division by true variables can be done via a subroutine.
The subroutine could test for small divisors (less than about 1000 in absolute value)
and for those, do a table lookup on the exact constant and shift count for an UMULH
/shift sequence. For the remaining cases, a table lookup on about a 1000-entry
table and a multiply can give a linear approximation to 1/divisor that is accurate to
16 bits. Using this approximation, a multiply and a back-multiply and a subtract
can generate one 16-bit quotient "digit" plus a 48-bit new partial dividend. Three
more such steps can generate the full quotient. Having prior knowledge of the
possible sizes of the divisor and dividend, normalizing away leading bytes of zeros,
and performing an early-out test can reduce the average number of multiplies to
about 5 (compared to a best case of 1 and a worst case of 9).

A.4.3 Stylized Code Forms

Using the same stylized code form for a common operation makes compiler output
a little more readable and makes it more likely that an implementation will speed
up the stylized form.

A-12 Appendixes

Digital Restricted Distribution

A.4.3.1 NOP

The standard NOP forms are:

NOP
FNOP

BIS
CPYS

R31,R31,R31
F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no
operand issue delays, no destination issue delay, and no functional unit issue delay.
Implementations are free to optimize these into no action and zero execution cycles.

A.4.3.2 Clear a Register

The standard clear register forms are:

CLR
FCLR

BIS
CPYS

R31,R31,Rx
F31,F31,Fx

These generate no exceptions. In most implementations, they should encounter no
operand issue delays, and no functional unit issue delay.

A.4.3.3 Load Literal

The standard load integer literal (ZEXT 8-bit) form is:

MOV #lit8,Ry BIS R31, lit8, Ry

The Alpha literal construct in Operate instructions creates a canonical longword
constant for values 0 .. 255.

A longword constant stored in an Alpha 64-bit register is in canonical form when
bits <63:32>=bit <31>.

A canonical 32-bit literal can usually be generated with one or two instructions, but
sometimes three instructions are needed. Use the following procedure to determine
the offset fields of the instructions:

val <sign-extended, 32-bit value>

val<15:0> low
tmpl val - SEXT(low) Account for LDA instruction

high tmp1<31:16>
tmp2 tmpl - SHIFT_LEFT(SEXT(high,16))

if tmp2 NE 0 then
! original val was in range 7FFF800016··7FFFFFFF16

extra = 400016
tmpl tmpl - 4000000016
high = tmpl<31:16>

else
extra = 0

endif

The general sequence is:

LDA Rdst, low(R31)
LDAH Rdst, extra(Rdst)
LDAH Rdst, high(Rdst)

Omit if extra=O
Omit if high=O

Software Considerations A-13

Digital Restricted Distribution

A.4.3.4 Register-to-Register Move

The standard register move forms are:

MOV RX,RY == BIS RX,RX,RY
FMOV FX,FY == CPYS FX,FX,FY

These generate no exceptions. In most implementations, these should encounter no
functional unit issue delay.

A.4.3.5 Negate

The standard register negate forms are:

NEGz Rx,Ry
NEGz Fx,Fy
FNEGz Fx,Fy

SUBz R31,Rx,Ry
SUBz F31,Fx,Fy
CPYSN Fx,Fx,Fy

z = L or Q
z = F G S or T
z = F G S or T

The integer subtract generates no Integer Overflow trap if Rx contains the largest
negative number (SUBzN would trap). The floating subtract generates a floating­
point exception for a non-finite value in Fx. The CPYSN form generates no
exceptions.

A.4.3.6 NOT

The standard integer register NOT form is:

NOT Rx,Ry ORNOT R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no
functional unit issue delay.

A.4.3. 7 Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz BIS Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz == BIC Rx,Ry,Rz

The standard alternative to EQV is:

XORNOT Rx,Ry,Rz == EQV Rx,Ry,Rz

A.4.4 Trap Barrier

The TRAPB instruction guarantees that following instructions do not issue until all
possible preceding traps have been signaled. This does not mean that all preceding
instructions have necessarily run to completion (for example, a Load instruction may
have passed all the fault checks but not yet delivered data from a cache miss).

A.4.5 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha architecture that may
be used by various software components in an Alpha system. Most of these forms
are discussed in preceding sections.

A-14 Appendixes

Digital Restricted Distribution

In the context of this section, pseudo-operations all represent a single underlying
machine instruction. Each pseud9-operation represents a particular instruction
with either replicated fields (such as FMOV), or hard-coded zero fields. Since the
pattern is distinct, these pseudo-operations can be decoded by instruction decode
mechanisms.

In Table A-1, the pseudo-operation codes can be viewed as macros with parameters.
The formal form is listed in the left column, and the expansion in the code stream
listed in the right column.

Some· instruction mnemonics have synonyms. These are different from pseudo­
operations in that each synonym represents the same underlying instruction with
no special encoding of operand fields. As a result, synonyms cannot be distinquished
from each other. They are not listed in the table that follows. Examples of synonyms
are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A-1: Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

No-exception generic floating absolute
value:
FABS Fx, Fy CPYS

Branch to target (21-bit signed displace­
ment):
BR target BR

Clear integer register:
CLR Rx BIS

Clear a floating-point register:
FCLR Fx CPYS

Floating-point move:
FMOV Fx, Fy CPYS

No-exception generic floating negation:
FNEG Fx, Fy CPYSN

Floating-point no-op:
FNOP CPYS

Move Rx/8-bit zero-extended literal to
Ry:
MOV {Rx/Lit8}, Ry BIS

Move 16-bit sign-extended literal to
Rx:
MOV Lit, Rx LDA

F31,Fx,Fy

R31, target

R31, R31, Rx

F31, F31, Fx

Fx,Fx,Fy

Fx, Fx, Fy

F31, F31, F31

R31, {Rx/Lit8}, Ry

Rx, lit(R31)

Software Considerations A-15

Digital Restricted Distribution

Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

Move to ·FPCR:
MT_FPCR Fx MT_FPCR Fx, Fx, Fx

Move from FPCR:
MF_FPCR Fx MF_FPCR Fx, Fx, Fx

Negate F _floating:
NEGF Fx, Fy SUBF F31,Fx,Fy

Negate F _floating, semi-precise:
NEGF/S Fx, Fy SUBF/S F31, Fx, Fy

Negate G_floating:
NEGG Fx,Fy SUBG F31, Fx, Fy

Negate G_floating, semi-precise:
NEGG/S Fx, Fy SUBG/S F31, Fx, Fy

Negate longword:
NEGL {Rx/Lit8}, Ry SUBL R31, {Rx/Lit}, Ry

Negate longword with overflow detec-
ti on:
NEGLN {Rx/Li t8}, Ry SUBLN R31, {Rx/Lit}, Ry

Negate quadword:
NEGQ {Rx/Lit8}, Ry SUBQ R31, {Rx/Lit}, Ry

Negate quadword with overflow detec-
tion:
NEGQN {Rx/Li t8}, Ry SUBQ!V R31, {Rx/Lit}, Ry

Negate S_floating:
NEGS Fx,Fy SUBS F31,Fx,Fy

Negate S_floating, software with un-
derflow detection:
NEGS/SU Fx,Fy SUBS/SU F31, Fx, Fy

Negate S_floating, software with un-
derflow and inexact result detection:
NEGS/SUI Fx,Fy SUBS/SUI F31,Fx,Fy

Negate T_floating:
NEGT Fx,Fy SUBT F31, Fx, Fy

A-16 Appendixes

Digital Restricted Distribution

Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

Negate T_floating, software with un­
derflow detection:
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy

Negate T_floating, software with un­
derflow and inexact result detection:
NEGT/SUI SUBT/SUI F31, Fx, Fy

Integer no-op:
NOP BIS

Logical NOT of Rx/8-bit zero-extended
literal storing results in Ry:
NOT {Rx/Lit8}, Ry ORNOT

Longword sign-extension of Rx storing
results in Ry:
SEXTL {Rx/Lit8}, Ry ADDL

R31, R31, R31

R31, {Rx/Lit}, Ry

R31, {Rx/Lit}, Ry

A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_ C will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The following rules describe sequences that will eventually complete in
all Alpha implementations:

1. At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

2. At most two I-stream TB-miss faults. Sequential instruction execution
guarantees this.

3. No other exceptions triggered during the last execution of the sequence.

IMPLEMENTATION NOTE
On all expected implementations, this allows for about
50 µsec of execution time, even with 100 percent cache
misses. This should satisfy any requirement for a 1 msec
timer interrupt rate.

Software Considerations A-17

Digital Restricted Distribution

A.6 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Changed cache block sizes

2. Changed DRAINT to TRAPB

3. Converted to SDML

4. Changed MOVQ to MOV for standard load 16 bit literal

5. Changed NEGS and NEGT instruction qualifiers to match SUBS and SUBT
qualifiers

6. Modified text describing creation of canonical longword constants

Revision 4.0, August 21, 1991

1. Added Pseudo-op table

2. Typos

3. Change text describing JSR to indicate that PC+displacement*4 calculation will
produce the low 16 bits of most likely LW target address

4. Change name of NEGz form that operates on F, D, G, S, or T floating types to
FNEGz

5. Correct Load Literal code form description of sign-extended 32 bit load.

6. Added floating point data format types to 'Negate' section

Revision 3.0, March 2, 1990

1. Add section on prefetch instructions

2. Minor cleanups to match opcodes in rest of document

Revision 2.0, October 4, 1989

1. Renumber RO as R31, FO as F31

2. Show new byte inserts

3. Change Freeze-Thaw to LDQ/L-STQ/C

Revision 1.0, May 23, 1989

1. Reorder and add hardware implementation priorities

2. Add aligned byte/word section

3. Add stylized code form section

4. Add timing considerations section

A-18 Appendixes

Digital Restricted Distribution

\

Revision 0.0, March 15, 1989

1. Initial version

Software Considerations A-19

Digital Restricted Distribution

Appendix B

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (754-1985) is
provided in the Alpha :floating-point instructions. This appendix describes how to
construct a complete IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha supports IEEE single and double formats. Optional extended double is not
supported.

Alpha hardware supports normal and chopped IEEE rounding modes. IEEE plus
infinity and minus infinity rounding modes can be implemented in hardware or
software.

Alpha hardware does not support optional IEEE software trap enable/disable modes;
see the following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating
formats, convert between floating and integer formats, and compare. Software
routines support square root, remainder, round to integer in floating-point format,
and convert binary to/from decimal.

In the Alpha architecture, copying without change of format is not considered an
operation. (LDx, CPYSx, and STx do not check for non-finite numbers; an operation
would.) Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha choice is that the accuracy provided will meet or exceed IEEE standard
requirements. It is implementation-dependent whether the software binary/decimal
conversions beyond 9 or 17 digits treat any excess digits as zeros.

Overflow and underflow, NaN s, and infinities encountered during software binary to
decimal conversion return strings that specify the conditions. Such strings can be
truncated to their shortest unambiguous length.

Alpha hardware supports comparisons of same-format numbers. Software supports
comparisons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered
predicate. The other 19 optional predicates can be constructed from sequences of
two comparisons and two branches.

IEEE Floating-Point Conformance B-1

Digital Restricted Distribution

Alpha hardware supports infinity arithmetic only by trapping when an infinity
operand is encountered and when an infinity is to be created from finite operands
by overflow or division by zero. A software trap handler (interposed between the
hardware and the IEEE user) provides correct infinity arithmetic.

Alpha hardware supports NaN s only by trapping when a NaN operand is
encountered and when a NaN is to be created. A software trap handler (interposed
between the hardware and the IEEE user) provides correct Signaling and Quiet NaN
behavior.

In the Alpha architecture, Quiet NaN s do not afford retrospective diagnostic
information.

In the Alpha architecture, copying a Signaling NaN without a change of format does
not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite
numbers). Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha hardware fully supports negative zero operands, and follows the IEEE rules
for creating negative zero results.

Alpha hardware does not supply IEEE exception trap behavior; the hardware traps
are a superset of the IEEE-required conditions. A software trap handler (interposed
between the hardware and the IEEE user) provides correct IEEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss
of accuracy is detected by software as an inexact result.

In the Alpha architecture, user trap handlers will be supported by compilers and
a software trap handler (interposed between the hardware and the IEEE user), as
described in the next section.

B.2 Alpha Hardware Support of Software Exception Handlers

In Alpha instructions, hardware trap behavior is determined only at compile time;
short of recompiling, there are no dynamic facilities for changing hardware trap
behavior.

There is an essential disparity between the Alpha design goal of fast execution and
the IEEE design goal of exact trap behavior. The Alpha hardware architecture
provides means for users to choose various degrees of IEEE compliance, at
appropriate performance cost.

Instructions compiled without the /Software modifier cannot· produce IEEE­
compliant trap behavior, nor can they provide IEEE-compliant non-finite arithmetic.
Trapping and stopping on non-finite operands or results (rather than the IEEE
default of continuing with NaN s propagated) is an Alpha value-added behavior that
some users prefer.

Instructions compiled without the /Underflow hardware trap enable modifier cannot
produce IEEE-compliant underflow trap behavior, nor can they provide IEEE­
compliant denormal results. They are fast and provide true zero (not minus zero)
results whenever underflow occurs. This is an Aipha vaiue-added behavior that
some users prefer.

B-2 Appendixes

Digital Restricted Distribution

Instructions compiled without the /Inexact hardware trap enable modifier cannot
produce IEEE-compliant inexact trap behavior. Trapping on Inexact will be painfully
slow; few users appear to prefer this, but they can get it if they really want it.

IEEE :floating-point instructions compiled with the /Software modifier produce
hardware traps and unpredictable values; a software trap handler may then produce
all IEEE-required behavior.

IEEE :floating-point instructions compiled with the /Underflow enable modifier
produce hardware traps and true zero values for underflow; a software trap handler
may then produce all IEEE-required behavior.

IEEE floating-point instructions compiled with the /Inexact enable modifier produce
hardware traps that allow a software trap handler to produce all IEEE-required
behavior.

Thus, to get full IEEE compliance of all the required features of the standard, users
must compile with all three options enabled.

To get the optional full IEEE user trap handler behavior, a software trap handler
must be provided that implements the five exception flags, dynamic user trap handler
disabling, handler saving and restoring, default behavior for disabled user trap
handlers, and link.ages that allow a user handler to return a substitute result.

Also, users must insert a TRAPB in every basic block with a floating operation that
can potentiallytrap, so that a software handler has an opportunity to scale the true
result by 2**192 or 2**1536, as appropriate for enabled user trap handlers; and to
supply the default+/- infinity, +/-MAX, +/-MIN, denormal, or zero as appropriate
for disabled user trap handlers.

B.3 Mapping to IEEE Standard

There are five IEEE exceptions, each ofwhich can be "IEEE software trap-enabled"
or disabled (the default condition). Implementing the IEEE software trap-enabled
mode is optional in the IEEE standard.

Our assumption, tlierefore, is that the only access to IEEE-specified software trap­
enabled results will be generated in assembly language code. The following design
allows this, but only if such assembly language code has TRAPB instructions after
each :floating-point instruction, and generates the IEEE-specified scaled result in a
trap handler by emulating the instruction that was trapped by hardware overflow
/underflow detection, using the original operands.

There is a set of detailed IEEE-specified result values, both for operations that are
specified to raise IEEE traps and those that do not. This behavior is created on
Alpha by four layers of hardware, PALcode, the operating-system trap handler, and
the user IEEE trap handler, as shown in Figure B-1.

IEEE Floating-Point Conformance B-3

Digital Restricted Distribution

Figure B-1: IEEE Trap Handling Behavior

Hardware

Traps to PALcode

PALcode

Traps to Operating System

Optional System

Traps to User IEEE Trap Handler
: (IEEE Standard)

I User Condition Handler I

The IEEE-specified trap behavior occurs only with respect to the user IEEE trap
handler (the last layer in Figure B-1); any trap-and-fixup behavior in the :first three
layers is outside the scope of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:

• The finites are normal numbers:

-MAX .. -MIN, -0, 0, +MIN .. +MAX
• The non-finites are:

Denormals, +/- Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as
required by the IEEE standard.

Table B-1 specifies, for the IEEE /Software modes, which layer does each piece of
trap handling. See Common Architecture, Chapter 4 for more detail on the hardware
instruction descriptions.

B-4 Appendixes

Digital Restricted Distribution

Table B-1: IEEE Floating-Point Trap Handling

Alpha Instructions Hardware

OS
'frap

PAL Handler

FBEQ FBNE FBLT FBLE FBGT Bits Only-No Exceptions
FBGE

LDSLDT

STS STT

CPYS CPYSN

FCMOVx

ADDx SUBx INPUT Exceptions

Denormal operand

+/-Inf operand

QNaN operand

SNaN operand

+Inf+ -Inf

ADDx SUBx OUTPUT Exceptions

Exponent overflow

Exponent underflow
and disabled

Exponent underflow
and enabled

Inexact and disabled
in the instruction

Inexact and enabled
in the instruction

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

Trap

Trap

Trap

Trap

Trap

Trap

Supply
+O

Supply
+O and
trap

Trap

Trap Supply
sum

1Trap Supply
sum

Trap Supply
QNaN

Trap Supply
QNaN

Trap Supply
QNaN

Trap Supply
+/-Inf
+/-MAX

Trap Supply

Trap

+/-MIN
denorm
+/-0

User
Software
Handler

[Invalid Op]

[Invalid Op]

[Overflow]
Scale by
2**Alpha
_1

[Underflow]
Scale by
2**Alpha

[Inexact]

1 An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all
underflows.

IEEE Floating-Point Conformance B-5

Digital Restricted Distribution

Table B-1 (Cont.): IEEE Floating-Point Trap Handllng

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

MULx INPUT Exceptions

Denormal operand Trap Trap Supply
prod.

+/-Inf operand Trap Trap Supply
prod.

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

0 *Inf Trap Trap Supply [Invalid Op]
QNaN

MULx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply
and disabled +O

Exponent underflow Supply Trap Supply [Underflow]
and enabled +O and +/-MIN Scale by

Trap denorm 2**Alpha
+/--0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

DIVx INPUT Exceptions

Denormaloperand Trap Trap Supply
quot.

+/-Inf operand Trap Trap Supply
quot.

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

0/0 or Inf/Inf Trap Trap Supply [Invalid Op]
QNaN

B-6 Appendixes

Digital Restricted Distribution

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

DIVx INPUT Exceptions

A/O Trap Trap Supply [Div. Zero]
+/-Inf

DIVx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply
and disabled +O

Exponent underflow Supply Trap Supply [Underflow]
and enabled +O and +/-MIN Scale by

trap denorm 2**Alpha
+/-0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

CMPTEQ CMPTUN INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

QNaN operand Trap Trap Supply
False
forEQ, True
for UN

SNaN op~rand Trap Trap Supply [Invalid Op]
False/
True

CMPTLT CMPTLE INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

QNaN operand Trap Trap Supply · [Invalid Op]
False

SNaN operand Trap Trap Supply [Invalid Op]
False

IEEE Floating-Point Conformance B-7

Digital Restricted Distribution

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

CVTFi INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply [Invalid Op]
Cvt

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

CVTFi OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

Integer overflow Supply Trap [Invalid Op]2

Trunc.
result
and trap
if enabled

CVTif OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

CVTff INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply
Cvt

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

2 An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a
truncated result on all overflows.

B-8 Appendixes

Digital Restricted Distribution

Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Softwat"e

Alpha Instructions Hardware PAL Handler Handler

CVTff OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply
and disabled +O

Exponent underflow Supply Trap Supply [Underflow]
and enabled +Oand +/-MIN Scale by

trap de norm 2**Alpha
+/--0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

Other IEEE operations (software subroutines or sequences of instructions), are listed
here for completeness:

Remainder
SQRT
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above

IEEE Floating-Point Conformance B-9

Digital Restricted Distribution

Table B-2 shows the IEEE standard charts.

Table B-2: IEEE Standard Charts

IEEE Software IEEE Software
TRAP Disabled TRAP Enabled

Exception (IEEE Default) (Optional)

Invalid Operation

(1) Input signaling NaN QuietNaN

(2) Mag. subtract Inf. QuietNaN

(3) 0 *Inf. QuietNaN

(4) 0/0 or Inf/Inf QuietNaN

(5) x REM 0 or Inf REM y QuietNaN

(6) SQRT(negative non-zero) QuietNaN

(7) Cvt to int(ovfl, Inf, NaN) Quiet NaN

(8) Compare unordered Quiet NaN

Division by Zero

x/O, x finite <>0 +/-Inf

Overflow

Round nearest +/-Inf. Res/2** 192 or 1536

Round to zero +/-MAX Res/2**192 or 1536

Round to -Inf +MAXI-Inf Res/2** 192 or 1536

Round to +Inf +Inf/-MAX Res/2** 192 or 1536

Underflow O/denorm/+ -MIN Res*2**192 or 1536

Inexact Rounded/ovfl Res

IEEE software trap handler requirements are as follows:

Result is unpredictable unless supplied by trap handler.
Determine which exceptions occurred.
Determine the kind of operation.
Determine the destination format.
Overflow/underflow/inexact: the correctly rounded result, including parts that do
not fit in the format.
Invalid and divzero: the operand values.

B-10 Appendixes

Digital Restricted Distribution

B.4 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Reconciled TBDs

2. Changed DRAINT to TRAPB

3. Converted to SDML

Revision 4.0, August 21, 1990

1. Remove input exceptions for -0. This should have been removed in revision 3.0

2. Typos

3. Change 'IEEE user' to 'user IEEE' in section Mapping to IEEE Standard

4. Specified T floating point data type for CMP instructions and eliminated '+/-Inf
operand' input exception from these instructions

Revision 3.0, March 2, 1990

1. Revise and simplify IEEE trap behavior

Revision 2.0, October 4, 1989

1. Initial version

IEEE Floating-Point Conformance B-11

Digital Restricted Distribution

Appendix C

Instruction Encodings

The encodings for the Alpha instruction set are given in the following sections.
There is one section for each instruction format, followed by a summary of all the
instruction opcodes in a single table.

NOTE
\ To receive a VAX Structure Definition Language (SDL)
file defining the opcodes and function codes send mail to
AD::Alpha_$0PCODES. \

C.1 Memory Format Instructions

Table C--1 lists the hexadecimal values of the 6-bit opcode field for the Memory
format instructions.

Table C-1: Memory Format Instruction Opcodes

Mnemonic Mnemonic Mnemonic

LDA 08 LDAH 09 LDF 20
LDG 21 LDL 28 LDL_L 2A
LDQ 29 LDQ_L 2B LDQ_U OB
LDS 22 LDT 23 STF 24
STG 25 STL 2C STL_C 2E
STQ 2D STQ_C 2F STQ_U OF
STS 26 STT 27

Table C--2 lists the hexadecimal values of the 6-bit opcode field and the 16-bit
displacement field for the Memory format instructions that use the displacement
field as a function code. The notation used is oo.ffff, where oo is the 6-bit opcode and
the ffff is the 16-bit displacement field.

Table C-2: Memory Format Instructions with a Function Code
Mnemonic

FETCH
RC
TRAPB

18.8000
18.EOOO
18.0000

Mnemonic

FETCH_M 18.AOOO
RPCC 18.COOO

Mnemonic

MB
RS

18.4000
18.FOOO

Instruction Encodings C-1

Digital Restricted Distribution

PROGRAMMING NOTE
· The code points 18.4400, 18.4800, and 18.4COO must

operate as Memory Barrier instructions (MB 18.4000).
Software will currently only use the 18.4000 code point
for MB. This allows a weak.er memory barrier to be
added.

Table C-3 lists the hexadecimal values of the high-order two bits of the displacement
field for the Memory format branch instructions. The notation used is oo.h, where
oo is the 6-bit opcode and the his the high-order two bits of the displacement field.

Table C-3: Memory Format Branch Instruction Opcodes

Mnemonic

JMP
RET

lA.0
lA.2

Mnemonic

JSR lA.l

C.2 Branch Format Instructions

Mnemonic

JSR_ COROUTINE lA.3

Table C-4 lists the hexadecimal values of the 6-bit opcode field for the Branch format
instructions.

Table C-4: Branch Format Instruction Opcodes
Mnemonic Mnemonic Mnemonic

BR 30 FBEQ 31 FBLT 32
FBLE 33 BSR 34 FBNE 35
FBGE 36 FBGT 37 BLBC 38
BEQ 39 BLT 3A BLE 3B
BLBS 3C BNE 3D BGE 3E
BGT 3F

C.3 Operate Format Instructions

Table C-5 lists the hexadecimal values of the 6-bit opcode field and the 7-bit function
code field for the Operate format instructions The notation used is oo.ff, where oo is
the 6-bit opcode and the ff is the 7-bit function code field

Table C-5: Operate Format Instruction Opcodes and Function Codes

Mnemonic Mnemonic Mnemonic

ADDL 10.00 ADDLN 10.40 ADDQ 10.20
ADDQ/V 10.60 CMPBGE 10.0F CMPEQ 10.2D
CMPLE 10.6D CMPLT 10.4D CMPULE 10.3D
CMPULT 10.lD SUBL 10.09 SUBLN 10.49

C-2 Appendixes

Digital Restricted Distribution

Table C-5 (Cont.): Operate Format Instruction Opcodes and Function Codes
Mnemonic Mnemonic Mnemonic

SUBQ 10.29 SUBQ/V 10.69

S4ADDL 10.02 S4ADDQ 10.22 S4SUBL 10.0B
S4SUBQ 10.2B S8ADDL 10.12 S8ADDQ 10.32
S8SUBL 10.lB S8SUBQ 10.3B

AND 11.00 BIC 11.08 BIS 11.20
CMOVEQ 11.24 CMOVLBC 11.16 CMOVLBS 11.14
CMOVGE 11.46 CMOVGT 11.66 CMOVLE 11.64
CMOVLT 11.44 CMOVNE 11.26 EQV . 11.48
ORN OT 11.28 XOR 11.40

EXTBL 12.06 EXTLH 12.6A EXTLL 12.26
EXTQH 12.7A EXTQL 12.36 EXTWH 12.5A
EXTWL 12.16 INSBL 12.0B INSLH 12.67
INSLL 12.2B INSQH 12.77 INSQL 12.3B
INSWH 12.57 INSWL 12.lB MSKBL 12.02
MSKLH 12.62 MSKLL 12.22 MSKQH 12.72
MSKQL 12.32 MS KWH 12.52 MSKWL 12.12
SLL 12.39 SRA 12.3C SRL 12.34
ZAP 12.30 ZAPNOT 12.31

MULL 13.00 MULLN 13.40 MULQ 13.20
MULQ/V 13.60 UMULH 13.30

C.4 Floating-Point Operate Format

Table C-6 lists the hexadecimal values of the 11-bit function code field for the
Floating-point Operate format instructions that are data type independent.
6-bit opcode for these instructions is 1716•

Table C-6: Function Codes for Floating Data Type Independent Operations
Mnemonic

CPYS 020
CVTLQ 010
CVTQLN 130
FCMOVEQ 02A
FCMOVLE 02E
MF_FPCR 025

Mnemonic

CPYSE 022
CVTQL 030

FCMOVGE 02D
FCMOVLT 02C
MT_FPCR 024

Mnemonic

CPYSN 021
CVTQUSV 530

FCMOVGT 02F
FCMOVNE 02B

The

Instruction Encodings C-3

Digital Restricted Distribution

C.4.1 IEEE Floating-Point Instructions

Table C-7 lists the hexadecimal value of the 11-bit function code field for the
IEEE floating-point instructions, with and without qualifiers. The opcode for these
instructions is 1616•

Table C-7: IEEE Floating-Point Instruction Function Codes

None IC fM ID /U /UC /UM IUD

ADDS 080 000 040 oco 180 100 140 lCO
ADDT OAO 020 060 OEO lAO 120 160 lEO
CMPTEQ OA5
CMPTLT OA6
CMPTLE OA7
CM PT UN OA4
CVTQS OBC 03C 07C OFC
CVTQT OBE 03E 07E OFE
CVTTS OAC 02C 06C OEC lAC 12C 16C lEC
DIVS 083 003 043 OC3 183 103 143 1C3
DIVT OA3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 OC2 182 102 142 1C2
MULT OA2 022 062 OE2 1A2 122 162 1E2
SUBS 081 001 041 OCl 181 101 141 lCl
SUBT OAl 021 061 OEl !Al 121 161 !El

/SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5CO 780 700 740 7CO
ADDT 5AO 520 560 5EO 7AO 720 760 7EO
CMPTEQ 5A5
CMPTLT 5A6
CMPTLE 5A7
CM PT UN 5A4
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 .763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SUBS 581 501 541 5Cl 781 701 741 7Cl
SUBT 5Al 521 561 5El 7Al 721 761 7El

None IC IV NC /SV /SVC /SVI /SVIC

CVTTQ OAF 02F lAF 12F 5AF 52F 7AF 72F

C-4 Appendixes

Digital Restricted Distribution

Table C-7 (Cont.): IEEE Floating-Point Instruction Function Codes

D ND /SVD /SVID /M NM /SVM /SVIM

CVTTQ OEF lEF 5EF 7EF 06F 16F 56F 76F

PROGRAMMING NOTE
Since underflow cannot occur for CMPT:xx, there is no
difference in function or performance between CMPT:xx
IS and CMPT:xx/SU. It is intended that software
generate CMPT:xx/SU in place of CMPT:xx/S.

C.4.2 VAX Floating-Point Instructions
Table C-8 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions is 1516•

Table C-8: VAX Floating-Point Instruction Function Codes

None IC IV /UC 1s· /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500
CVTDG 09E OlE 19E llE 49E 41E 59E 51E
ADDG OAO 020 lAO 120 4AO 420 5AO 520
CMPGEQ OA5 4A5
CMPGLT OA6 4A6
CMPGLE OA7 4A7
CVTGF OAC 02C lAC 12C 4AC 42C 5AC 52C
CVTGD OAD 02D 1AD 12D 4AD 42D 5AD 52D
CVTQF OBC 03C
CVTQG OBE 03E
DIVF 083 003 183 103 483 403 583 503
DIVG OA3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG OA2 022 1A2 122 4A2 422 5A2 522
SUBF 081 001 181 101 481 401 581 501
SUBG OAl 021 lAl 121 4Al 421 5Al 521

None IC N NC IS /SC /SV /SVC

CVTGQ OAF 02F lAF 12F 4AF 42F 5AF 52F

Instruction Encodings C-5

Digital Restricted Distribution

C.5 Opcode Summary

Table C-9 lists all Alpha opcodes from 00 (CALL_PALL) through 3F (BGT). In the
table, the column headings appearing over the instructions have a granularity of
816• The rows beneath the leftmost column supply the. individual hex number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hex digit, replace-that 0 with the
number t.o the left of the backslash in the leftmost column on the instruction's row.
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that
8 with the number to the right of the backslash in the leftmost column.

For example, the third row (2/A) under the 1016 .column contains the symbol INTS*,
representing the all integer subtract instructions. The opcode for those instructions
wowd then be 1216 because the 0 in 10 is replaced by the 2 in the leftmost
column. Likewise, the third row under the 1816 column contains the symbol JSR*,
representing alljump instructions. The opcode for those instructions is 1A because
the 8 in the heading is replaced by the number t.o the right of the backslash in the
leftmost column.

The instruction format is listed under the instruction symbol.

The symbols in Table C-9 are explained in Table C-10.

C-6 Appendixes

Digital Restricted Distribution

Table C-9: Opcode Summary

00 08 10 18 20 28 30 38

018 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (hr)

1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (hr) (hr)

2/A Res Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (hr) (hr)

3/B Res LDQ_U INTM* \PAL\ LDT LDQ_L FBLE BLE
(mem) (op) (mem) (mem) (hr) (br)

4/C Res Res Res Res STF STL BSR BLBS
(mem) (mem) (br) (hr)

5/D Res Res FLTV* \PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (hr) (hr)

6/E Res Res FLTI* \PAL\ STS STL_C FBGE BGE
(op) (mem) (mem) (hr) (hr)

7/F Res STQ_U FLTL* \PAL\ S'IT STQ_C FBGT BGT
(mem) (op) (mem) (mem) (hr) (hr)

Table C-10: Key to Opcode Summary (Table C-9)

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer subtract instruction opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Digital

Instruction Encodings C-7

Digital Restricted Distribution

C.6 OpenVMS PALcode Format Instructions

C.6.1

Sections C.6.1 and C.6.2 list the OpenVMS Alpha unprivileged and privileged
PALcode function codes.

Unprivileged OpenVMS PALcode Function Codes

Table C-11 lists the hexadecimal values of the 26-bit function code field for the
unprivileged Open VMS PALcode format instructions. The 6-bit opcode for the
PALcode instructions is zero.

Table C-11: Unprivileged OpenVMS PALcode Function codes
Mnemonic Mnemonic Mnemonic

AMOVRM OOAl AMOVRR OOAO BPT 0080
BUGCHK 0081 CHME 0082 CHMK 0083
CH.MS 0084 CHMU 0085 GENTRAP OOAA
IMB 0086 INSQHIL 0087 INSQHILR OOA2
INSQHIQ 0089 INSQHIQR OOA4 INSQTIL 0088
INSQTILR OOA3 INSQTIQ 008A INSQTIQR OOA5
INSQUEL 008B INSQUEUD 008D INSQUEQ 008C
INSQUEQ!D 008E PROBER 008F PRO BEW 0090
RD_PS 0091 READ_UNQ 009E REI 0092
REMQHIL 0093 REMQHILR OOA6 REMQHIQ 0095
REMQHIQR OOA8 REMQTIL 0094 REMQTILR OOA7
REMQTIQ 0096 REMQTIQR OOA9 REMQUEL 0097
REMQUEL/D 0099 REMQUEQ 0098 REMQUEQ/D 009A
RSCC 009D SWASTEN 009B WRITE_UNQ 009F
WR_Ps_sw 009C

C.6.2 Privileged OpenVMS PALcode Function Codes

Table C-12 lists the hexadecimal values ·of the 26-bit function code field for the
privileged Open VMS PALcode format instructions. The 6-bit opcode for the PALcode
instructions is zero.·

Table C-12: Prlvlleged OpenVMS PALcode Function Codes
Mnemonic Mnemonic Mnemonic

CFLUSH 0001 DRAIN A 0002 HALT 0000
LDQP 0003

MFPR_ASN 0006 MFPR_ASTEN 0026 MFPR_ASTSR · 0027
MFPR_ESP OOlE MFPR_FEN OOOB MFPR_IPL OOOE
MFPR_MCES 0010 MFPR_PCBB 0012 MFPR_PRBR 0013
MFPR_PTBR 0015 MFPR_SCBB 0016 MFPR_SISR 0019
MFPR_$SP 0020 MFPR_TBCHK OOlA MFPR_USP 0022
MFPR_VPTB 0029 MFPR_WHAMI 003F

C-8 Appendixes

Digital Restricted Distribution

Table C-12 (Cont.): Privileged OpenVMS PALcode Function Codes

Mnemonic Mnemonic Mnemonic

MTPR_ASTEN 0007 MTPR_ASTSR 0008 MTPR_DATFX 002E
MTPR_ESP OOlF MTPR_FEN oooc MTPR_IPIR OOOD
MTPR_IPL OOOF MTPR_MCES 0011 MTPR_PERFMON 002B
MTPR_FRBR 0014 MTPR_SCBB 0017 MTPR_SIRR 0018
MTPR_SSP 0021 MTPR_TBIA OOlB MTPR_TBIAP OOlC
MTPR_TBIS OOlD MTPR_TBISD 0024 MTPR_TBISI 0025
MTPR_USP 0023 MTPR_VPTB 002A

STQP 0004 SWPCTX 0005 unused 0009

unused OOOA

C.7 Unprivileged OSF/1 PALcode Function Codes

Table C-13 lists lists the hexadecimal values of the 26-bit function code field for
the unprivileged OSF/1 PALcode instructions. The 6-bit opcode for the PALcode
instructions is zero.

Table C-13: Unprivileged OSF/1 PALcode Function Codes

Mnemonic

bpt
gentrap
wrunique

0080
OOAA
009F

Mnemonic

bugchk
imb

0081
0086

C.8 Privileged OSF/1 PALcode function codes

Mnemonic

call sys
rd unique

0083
009E

Table C-14 lists lists the hexadecimal values of the 26-bit function code field for
the unprivileged OSF/1 PALcode instructions. The 6-bit opcode for the PALcode
instructions is zero.

Table C-14: Privileged OSF/1 PALcode Function Codes

Mnemonic Mnemonic Mnemonic

halt 0000 rdps 0036 rdusp 003A
rd val 0032 retsys 0030 rti 003F
swpctx 0030 swpipl 0035 tbi 0033
whami 003C wrent 0034 wrfen 002B
wrkgp 0037 wrusp 0038 wrval 0031
wrvptptr 0020

Instruction Encodings C-9

Digital Restricted Distribution

C.9 Required PALcode Function Codes

The opcodes listed in Table C-15 are required for all Alpha implementations. The
notation used is oo.ffff, where· oo is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table C-15: Required PALcode Function Codes

Mnemonic Type

DRAINA Privileged

HALT Privileged

IMB Unprivileged

Function Code

00.0002

00.0000

00.0086

C.1 O Opcodes Reserved to PALcode

The opcodes listed in Table C-16 are reserved for use in implementing PALcode.

Table C-16: Opcodes Reserved for PALcode

Mnemonic

PAL19
PALlE

I9
IE

Mnemonic

PALIB
PAL IF

IB
lF

Mnemonic

PALlD

C.11 Opcodes Reserved to Digital

The opcodes listed in Table C-17 are reserved to Digital.

Table C-17: Opcodes Reserved for Dlgltal
Mnemonic

OPCOI
OPC04
OPC07
OPCOD
OPCIC

C-10 Appendixes

Mnemonic Mnemonic

01 OPC02 02 OPC03
04 OPC05 05 OPC06
07 OPCOA OA OPCOC
OD OPCOE OE OPC14
IC

\PROGRAMMING NOTE (SRM ONLY)
Opcodes 02, 06, OA, and OE are nominally reserved for
future extensions to octaword load/store for both integer
and :floating-point formats.

For IEEE Floating-point opcode 1616, if the function
code field bits<5:4> are 01 2 or the function code
bits<3:0> are 11012, then an illegal instruction trap

Digital Restricted Distribution

lD

03
06
oc
I4

is taken. This will allow for future additions of the
extended IEEE format. \

Instruction Encodings C-11

Digital Restricted Distribution

C.12 \REVISION HISTORY

\

Revision 5.0, May 12, 1992

1. Added note on IEEE floating-point code 16, special function code fields

2. Added DRAINA to list of required PALcode instructions

3. Added ECO #17, #23

4. Converted to SDML

5. Removed IS and /SC opcodes from CVTQF and CVTQG instructions encodings

6. Corrected text by removing extra 'instructions' from Fig. C-3 text

7. Added CMPBGE to Operate format instruction encoding

8. Add opcode for READ_UNQ and WRITE_UNQ

Revision 4.0, March 29, 1991

1. Changed IP to ID

2. Added RSCC opcode

3. Added Scaled Add/Subtract opcodes

4. Removed references to D_fioat

5. Updated various opcodes per EV-4 request

6. Typos

Revision 3.0, Mar 2, 1990

1. Version 3.0 update

Revision 2.0, October 4, 1989

1. First Pass

C-12 Appendixes

Digital Restricted Distribution

Appendix D

Registered System and Processor Identifiers

This appendix contains a registry of Alpha system platform types, system platform
variations, processor types, processor variations, and processor packaging types. See
Platform Section, Chapter 3 for a description of these fields.

\ Send mail to EAGLEl::ALPHA_SRM to register a new Alpha system, platform, or
processor. Note that the Alpha system types are not equivalent to the VAX SYSTYPE
values.\

Registered System and Processor Identifiers D-1

Digital Restricted Distribution

Table D-1: System and Processor Identification Assignments
System Type Processor Type Product Name

lADU 1 = EV-3
2:: EV-4

2 Cobra 1 = EV-3
2 = EV-4

3Ruby 1 = EV-3
2 = EV-4

4 Flamingo 1 = EV-3
2 = EV-4

5 Mannequin 3 = Simulation

6 Jensen 2 = EV_4

D-2 Appendixes

Digital Restricted Distribution

Table D-2: System Variation Assignments
Bit Description

0 MPCAP - If set, indicates this system platform is capable of being configured as a
multiprocessor; all support for multiprocessing is present, even if only one processor
is present. If clear, this system supports a uniprocessor only. Initialized by the
console at all cold bootstraps.

4:1 CONSOLE - Indicates the type of console. Defined values include:

<4:1> Interpretation

Reserved 0000
0001
0010
other

Detached service processor
Embedded console
Reserved for future use

Initialized by the console at all cold bootstraps.

7:5 POWERFAIL - Indicates the type of powerfail (if any) implemented by this platform.
Defined values include:

<7:5> Interpretation

000 Reserved
001 United
010 Separate
011 Full battery backup of system platform hardware

Initialized by the console at all cold bootstraps.

8 POWERFAIL RESTART - If set, indicates that the console should restart all available
processors on a powerfail recovery. If clear, -only the primary processor will be
restarted. Cleared by the console at system bootstraps; may be set by system
software.

9 GRAPHICS - If set, indicates that the platform contains an imbedded graphics
processor. Initialized by the console at all cold bootstraps.

63:10 RESERVED - MBZ

Registered System and Processor Identifiers D-3

Digital Restricted Distribution

Table D-3: Processor Variation Assignments

Bit Description

0 VAX-FP - If set, indicates this processor supports VAX Floating-point operations and
data types. If clear, this processor has no such support. Initialized by the console at
all cold bootstraps.

1 IEEE-FP - If set, indicates this processor supports IEEE Floating-point operations
and data types. If clear, this processor has no such support. Initialized by the console
at all cold bootstraps.

2 PRIMARY ELIGIBLE (PE) - If set, indicates that this processor is eligible to become
a primary processor. The processor has direct access to the console, a BB_ WATCH,
and all 1/0 widgets. Initialized by the console at all cold bootstraps. See Platform
Section, Chapter 4.

63:3 RESERVED - MBZ

D.1 1/0 Architecture Section

This section includes that information removed from the 1/0 chapter previously
located in the Platforms section.

D.1.1 Special Commands

The special "WHO_ARE_YOU" command (W=O, B=l, CMD=O) is common to all
bridge implementations. WHO_ARE_YOU is used to determine the type of remote
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command
and RBADR of 0, the remote bridge side returns a unique remote bus side identifier.
All other commands are specific to the type of remote bus and independent of the
bridge implementation.

Table D-4: WHO_ARE_VOU returns
System

Bus Bridge Type(s) WHO_ARE_YOU returns

XMI LAMB Laser XMI XDEV register

<31:16> Device revison

<15:0> 102A1s

Futurebus+ Cobra ~otimplemented

FLAG Laser TBD

D.1.1.1 XMI Specific Information

The XMI CMD field definition is given in Table 11-4. Bits <39:0> of the RBADR field
are passed unchanged onto the XM:I by the remote side. The MASK field is inverted
to form the XMI byte enables.

D-4 Appendixes

Digital Restricted Distribution

To access XMI device CSRs, RBADR field bit <31> must be clear and bits <30:29> ·
must be set. Only longword accesses are supported; MASK bits <7 :4> must be set
and WDATA bits <63:32> are ignored by the bridge.

Table D-5: XMI CMD field

Bit(s) Name Description

<3:0> TRANS Transaction type:

0 undefined

1 read longword

2-6 undefined

7 write longword

D.1.1.2 Futurebus+ Specific Information

The Futurebus+ CMD field definition is given in Platform Section, Chapter 1.
RBADR must be longword aligned for longword read or write accesses and quadword
aligned for quadword write accesses. The MASK field is passed unchanged onto the
Futurebus+ by the remote side.

Table D-6: Futurebus+ CMD field

Bit(s)

<3:0>

<6:5>

Name Description

TC Transaction code.

WR

DW

0 unmasked

1 undefined

2 partial - byte mask is valid

3-7 undefined

Write transaction.

0 Read

1 Write

Data width. Note that all widths may not be implemented by the
remote side.

0 32-bits

1 64-bits

2 128-bits

3 256-bits
Cobra and FLAG implement only 32-bit and 64-bit data widths.

Registered System and Processor Identifiers D-5

Digital Restricted Distribution

Table D-6 (Cont.): Futurebus+·CMD field
Bit(s) Name Description

<7> AW . Address width.

<.22:16>

<.29:23>

D-6 Appendixes

0 32-bits

1 64-bits

F _DIAG FLAG specific diagnostic bits. See FLAG specification.

C_DIAG Cobra specific diagnostic bits. See Cobra 1/0 specification.

Digital Restricted Distribution

D.2 \Revision History
Revision 5.0, May 12, 1992

1. Added Xl\U and Future+ tables from I/O chapter

2. Added Jensen identifier

3. Added graphics variation bit (9)

\

Registered System and Processor Identifiers D-7

Digital Restricted Distribution

Appendix E

Registered Console Implementation Functions

This appendix contains a registry of functions as implemented by current consoles.
The first two sections contain the registered environment variables and console
terminal blocks. The remaining sections summarize the functions implemented by
existing consoles.

\Console functions which vary with implementation are summarized in Platform
Section, Chapter 2. All console implementations and all such implementation-specific
functions must be registered with the Alpha Architecture Group by sending mail to
EAGLEl::ALPHA_SRM.\

E.1 Environment Variables

Table E-1: Option Environment Variables
Environment Var Notes Description
ID Symbol

40-7F TBD

E.2 Console Terminal Block Formats

E.2.1 Serial Line UART

Console terminal type '02' supports the full functionality of a VT device.

If the terminal interface is shared among multiple physical terminals, the device ID
indicates which physical terminal is the console terminal. If the terminal interface
is not shared, the device ID is zero.

Extended error status may result from the PUTS and GETC console callback
routines. As shown above, extended status is recorded· at offsets [64] and [72]; the
format is:

<63:3> SBZ
<2> 'l' Data Overrun

'O' otherwise
<1> '1' Framing error

'O' otherwise
<0> 'l' Parity error

'O' otherwise

Registered Console Implementation Functions E-1

Digital Restricted Distribution

SET_TERM_CTL alters only the baud rate at offset [56]. Support for multiple baud
rates is implementation-specific.

Figure E-1 : Serlal Line UART Format

63 62 31 0

Device Type = '02'* :CTB

Oevice ID* :+08

Reserved :+16

Length of Device-Specific Data in Bytes = '060'* :+24

CSR Address* :+32

T Transmit Interrupt SCB Offset* :+40

R Receive Interrupt SCB Offset* :+48

Baud Rate= (19200l9600l2400l1200l300)- (dee) :+56

PUTS Extended Error Status :+64

GETC Extended Error Status :+72

A.I "" T~--------------------------R-es_e_rv_e_d-fo_r_c_o_ns_o_le_u_s_e _______________________ ___.jJ:+80

* = Initialized by console, never changed
" = Initialized by console, updated by console
- = Initialized by console, updated by system software
T = Set to '1' if transmit interrupts enabled
R = Set to '1' if receive interrupts enabled

E.2.2 Graphic Display with LK Keyboard

:+144

Device-
Specific

Console terminal type '03' is connected by a serial line UART and supports the LK
keyboard functions as follows:

• 48 graphic keys and spacebar on the typewriter mass

• Numeric keypad

• Delete, Return, and TAB characters

• Control-character sequences

• Shift-key (uppercase) sequences

• CAPS-LOCK activation including the appropriate turning on and off of LED3,
the CAPS-LOCK LED

• METRONOME code, B416, used for autorepeat mode

• Lighting of the LED4 (Hold Screen. LED) when output :flow control is enabled
and active.

• Severe error keycodes_

E-2 Appendixes

Digital Restricted Distribution

All other special keycode operations are unsupported. Unsupported functions also
include the COMPOSE-key and other alternate keycode select mechanisms.

If the interface to the keyboard is shared among multiple devices (e.g. mouse), the
device ID indicates the keyboard unit. If the keyboard interface is not shared, the
device ID is zero.

Figure E-2: Serial Line UART with LK Keyboard Format

6362 31 0

Device Type= '03'* :CTB

Device ID (Keyboard)* :+08

Reserved :+16

Length of Device-Specific Data in Bytes = 'OEO'* :+24

Current Row (Character Position)- :+32

Current Column (Character Position)- :+40

Maximum Row (Character Position)- :+48

Character Cell Height (Pixels)* :+56

Character Cell Width (Pixels)* :+64

CSR Address of Display* :+72

CSR Address of LK Keyboard* :+80

aj LK Keyboard Interrupt SCB Offset* :+88

Keyboard State " :+96

:+104
Al ..V

,___ --------------------! :+144 I
Keycode Buffer " I

T Reserved for Console Use T
*=Initialized by console, never changed

" = Initialized by console, updated by console
- =Initialized by console, updated by system software
R = Set to '1' if receive interrupts enabled

Keyboard

State Interpretation

Keyboard error

CTRL sequence in progress

Default value

O,none

O,none

:+152

:+256

Registered Console Implementation Functions E-3

Digital Restricted Distribution

Device-
Specific

Keyboard

State Interpretation

Shift_key sequence in progress

CAPS LOCK in effect

Output flow control enabled

Output flow control status

Default value

O,off

0, off

1, enabled

0, inactive

The keyboard is assumed to be in LK200 mode with default settings as described
in the LK400 Functional Specification, Appendix II. The default key transmission
modes at power up are:

-Keyboard
Division

Main Array

Keypad

Del

Return and Tab

Function keys

Lock,AOO,AlO

Shift, Ctrl,AO 1,A09

Mode

autorepeat

autorepeat

autorepeat

down only

down only

down only

down up

Cursor keys autorepeat

6 Basic Editing Keys down only

Audio volume keyclick and bell volumes are 2 (dee). the Ctrl (C99) and
Shift (B99 and B 11) keys do not not generate clicks.

A REINITIATE KEYBOARD command, FD16, is sent to ~he keyboard when any of
the following severe errors are encountered during execution of a console terminal
callback routine:

1. TEST MODE ACKNOWLEDGE - B816

2. OUTPUT ERROR - B516

3. INPUT ERROR - B61s

4. KEYBOARD LOCKED CONFIRMATION - B716

KEYBOARD_STATE<O> set to 'l' when a POWER-UP keycode, 3D or 3E16, is
received from the keyboard. While KEYBOARD.;...STATE<O> is set to '1', calls to
GETC or PROCESS_KEYCODE for this unit fail with error status.

SET_TERM_CTL has no affect on any CTB field for this terminal device type.

E-4 Appendixes

Digital Restricted Distribution

E.3 Implemented Console Functions

E.3.1 Cobra and Laser Systems
The Cobra and Laser Systems share a common console firmware code base. As such,
most of the implemented functions are common. Common functions are summarized
below.

Table E-2: Cobra and Laser Console Functlonallty

Function

HWRPB Version

CTB format(s)

Optional Callbacks

Environment Variables

BOOTED_DEV format

BOOT_DEV format

Description

'2'.

Serial line UART (type '02').

PSWITCH implemented; SAVE_ENV and PROCESS_KEYCODE
not implemented.

No implementation-specific environment variables accessible by
system software.

Device path values consist of six fields as follows:

Field

protocol

hose

slot

Contents

mscp
scsi
dssi
mop
Cobra:

Laser:hose:
0-3
Cobra:
Laser:

Local I/O: 0
FBus I/O: 1

FBus node: 0-6
:XMI node: 0-14
FBus node: 0-14

channel Device channel number (0-n)
(valid only .for multiple channel wid­
gets)

remote_address CI, DSSI, SCSI node number
unit Disk or tape unit number

A Cobra example is "mop 1 6 1 0 O" indicating a MOP bootstrap
from the first channel of an FNA at the sixth FBus node. A
Laser example is "mscp 2 3 0 11 9" indicating a bootstrap from
disk unit 9 on an HSC connected to CI node 11 accessed from an
XCD at node 3 of an XMI connected to hose 2 of the IOP.

The number of list elements is TBD.

Registered Console Implementation Functions E-5

Digital Restricted Distribution

Table· E-2 (Cont.): Cobra and Laser Console Functlonallty
Function Description

BOOTDEF _DEV format TBD.

BOOTED_FILE format TBD.

BOOT_ OSFLAGS format The value consists of a list of up to four single hex digit flags.
Examples are "2,7", ",7", or "c,2,4,b".

CONFiG format See Figure TBD for Cobra. See Figure TBD for Laser.

Bootstrap media TBD.

HALT codes No implementation specific codes.

E.3.2 Flamingo System Console Functions

Table E-3: Flamingo Console Functlonallty
Function

HWRPB Version

CTB format(s)

Optional Callbacks

Environment Variables

BOOTED_DEV format

BOOT_DEV format

BOOTDEF _DEV format

BOOT_OSFLAGS format

BOOTED_FILE format

CONFIG format

Bootstrap media

HALT codes

E-6 Appendixes

Description

'2'.

Graphic Display with LK Keyboard (type '03').

PROCESS_KEYCODE implemented; SAVE_ENV and PSWITCH
not implemented.

No implementation-specific environment variables accessible by
system software.

TBD.

TBD.

TBD.

TBD.

TBD.

See Figure TBD.

TBD.

No implementation specific codes.

Digital. Restricted Distribution

~
I

;I

E.4 \REVISION HISTORY

Revision 5.0, May 12, 1992

1. Added ECO #30

2. Converted to SDML

3. Replace previous Console Chapter with Console ECO #15

4. Includes 3 chapters and two appendices, renumber 1/0 Chapter

5. Material substantially changed or rearranged

\

Registered Console Implementation Functions E-7

Digital Restricted Distribution

Index

A
Aborts, forcing, (I), 6-6
Absolute longword queue, (II), 2-21
Absolute quadword queue, (II), 2-25
Access control violation (ACV) fault, (II), 6-10

has precedence, (II), 3-13
memory protection, (II), 3-8
service routine entry point, (II), 6-27

Access-violation fault, (Ill), 3-10
ADDF instruction, (I), 4-88
ADDG instruction, (I), 4-88
Add instructions

See also Floating-point operate
add longword, (I), 4-23
add quadword, (I), 4-25
add scaled longword, (I), 4-24
add scaled quadword, (I), 4-26

ADDL instruction, (I), 4-23
ADDQ instruction, (I), 4-25
Address space match (ASM)

bit in PTE, (II), 3--4; (Ill), 3-5
TBIAP register uses, (II), 5-25
virtual cache coherency, (I), 5-4

Address space number (ASN)
defined, (Ill), 1-2
described, (Ill), 3-8
in HWPCB, (II), 4-2
privileged context, (II), 2-91
range supported, (II), 3-12
TBCHK register uses, (II), 5-22
TBIS register uses, (II), 5-26
translation buffer with, (II) 3-11
virtual cache coherency, m: 5-4

Address space number (ASN) remster (II')
5-4 b£ ' '

Address translation
algorithm to perform, (II), 3-9
page frame number (PFN), (II), 3-9
page table structure, (II), 3-8
performance enhancements, (II), 3-10
translation buffer with, (II) 3-11
virtual address segment fieids (II) 3-9

ADDS instruction, (I), 4-89 ' '
ADDT instruction, (I), 4-89
Aligned byte/word memory accesses, A-11

ALIGNED data objects, (I), 1-9
Alignment

atomic longword, (I), 5-2
atomic quadword, (I), 5-2
data alignment trap, (II), 6-16
data considerations, A-6
double-width data paths, A-1
D_floating, (I), 2-7
F _floating, (I), 2-5
G_floating, (I), 2-6
instruction, A-2
longword, (I), 2-2
longword integer, (I), 2-11
memory accesses, A-11
program counter (PC), (II), 6-6
quadword, (I), 2-3
quadword integer, (I), 2-11
stack, (II), 6-31
S_floating, (I), 2-8
T_floating, (I), 2-10
when data is unaligned, (II) 6-28

Alpha architecture '
See also Conventions
addressing, (I), 2-1
overview, (I), 1-1
porting operating systems to, (I), 1-1
programming implications, (I), 5-1
registers, (I), 3-1
security, -(I), 1-7

Alpha privileged architecture library
See PALcode

AMOVRM (PALcode) instruction, (II), 2-76
AMOVRR (PALcode) instruction, (II), 2-76
AND instruction, (I), 4-37
Arithmetic exceptions

See Arithmetic traps
Arithmetic instructions, (I), 4-22

See also specific arithmetic instructions
· Arithmetic left shift instruction (I) 4-36

Arithmetic trap entry (entArith) re~ster,
(Ill), 1-2, 5-3, 5-4

Arithmetic traps
defined, (11), 6-9; (Ill), 5-1
described, (II), 6-12

lndex-1

Digital Restricted Distribution

Index

Arithmetic traps (cont'd)
division by zero, (I), 4-63; (II), 6-14; (Ill),

5-5
F31 as destination, (II), 6-12
inexact result, (I), 4-64; (II), 6-15; (Ill),

5-5
integer overflow, (I), 4-64; (II), 6-15;

(Ill), 5-5
invalid operation, (I), 4-63; (II), 6-14;

(111), 5-5
overflow, (1), 4-63; (II), 6-15; (Ill), 5-5
program counter (PC) value, (11), 6-14
programming implications for, (I), 5-21
R31 as destination, (11), 6-12
recorded for software, (11), 6-13
REI instruction with, (11), 6-9
service routine entry point', (II), 6-27
system entry for, (Ill), 5-3, 5-4
TRAPB instruction with, (I), 4-120
underflow, (I), 4-63; (II), 6-15; (111), 5-5
when registers affected by, (II), 6-13

AST enable CASTEN) register
changing access modes in, (II), 4-3
described, (II), 5-5
in HWPCB, (II), 4-2
interrupt arbitration, (II), 6-35
operation (with ASTs), (II), 4-3
privileged context, (II), 2-91
SWASTEN instruction with, (II), 2-19

AST summary (ASTSR) register
described, (II), 5-7
indicates pending ASTs, (II), 4-3
in HWPCB, (II), 4-2
interrupt arbitration, (II), 6-34
privileged context, (II), 2-91

Asynchronous system traps (AST)
ASTEN/ASTSR registers with, (II), 4-3
initiating, (II), 4-3
interrupt definition, (II), 6-20
service routine entry point, (II), 6-27
with PS register, (II), 4-3

Atomic access, (1), 5-2
Atomic move operations, (11), 2-76
Atomic operations

accessing longword datum, (I), 5-2
accessing quadword datum, (I), 5-2
modifying page table entry, (II), 3-7
updating shared data structures, (I), 5-6
using load locked and store conditional, (I),

5-7
Atomic sequences, A-17
AUTO_ACTION variable, (NJ, 2-22

B

lndex-2

Barrier instructions
shared data structures and, (I), 8-10
use in I/O space read/write ordering, (I),

8-2, 8-8
BB_WATCH, (NJ, 3-40
BEQ instruction, (I), 4-17
B field (mailbox), (I), 8-5
BGE instruction, (I), 4-17
BGT instruction, (I), 4-17
BIC instruction, (I), 4-37
BIS instruction, (I), 4-37
BLBC instruction, (I), 4-17
BLBS instruction, (1), 4-17
BLE instruction, (I), 4-17
BLT instruction, (1), 4-17
BNE instruction, (I), 4-17
Boolean instructions, (1), 4-36

logical functions, (1), 4-37
Boolean stylized code forms, A-14
Boot block on disk, (NJ, 3-34
BOOTDEV_DEV variable, (NJ, 2-22
BOOTED_DEV variable, (NJ, 2-22
BOOTED_FILE variable, (N), 2-23
BOOTED_OSFLAGS variable, (NJ, 2-23
BOOTP-UDP/IP network bootstrapping, (IV),

3-40
Bootstrap address space

regions, (IV), 3-9
Bootstrap-in-progress (BIP) processor state

flag, (IV), 3-14
Bootstrapping, (IV), 3-1

adding processor while running system,
(IV), 3-24

address space at cold, (N), 3-9
boot block in ROM, (IV), 3-38
boot block on disk, (IV), 3-34
bootstrap address space goals, (N), 3-45
cold in uniprocessor environment, (IV), 3-5
control to system software, (IV), 3-17
detached console implementations, (IV),

3-45
disk media considerations, (IV), 3-49
from BOOTP-UDP/IP network, (IV), 3-40
from disk, (IV), 3-33
from magtape, (IV), 3-35
from MOP-based network, (IV), 3-39
from ROM, (IV), 3-38
implementation considerations, (IV), 3-42
loading page table space at cold, (IV), 3-10
loading primary image, (NJ, 3-33
loading system software, (N), 3-15
media implementation considerations, (IV),

3-49
MEMC Table at cold, (IV), 3-8
"""'""'"""'"''•u .,,.;.,..; nt+,,+.; U7.;+i. ,.,.1~ rnT} ~
.a.l..&"iJ.&..1..1..V..LJ .;1.L~.&.&.f5.1 "'"'IO;J".L.&..&E) YY.LV.&.& '°'"~""'' \Ar"''·~ V'

Digital Restricted Distribution.

Bootstrapping (cont'd)
multiprocessor, (N), 3-19
network boot considerations, (N), 3-50
page table coarseness effect, (N), 3-46
PALcode loading at cold, (N), 3-9
processor initialization, (N), 3-16
reaching the address space, (N), 3-46
request from system software, (N), 3-24
ROM boot considerations, (N), 3-50
state flags, (N), 3-14
synchronization for multiprocessor, (N),

3-19
system, (NJ, 3-5
warm, (N), 3-18

BOOT_DEV variable, (NJ, 2-22
BOOT_FILE variable, (NJ, 2-22
BOOT_OSFLAGS variable, (NJ, 2-23
BOOT_RESET variable, (NJ, 2-23
bpt (PALcode) instruction, (Ill), 2-2

required recognition of, (I), 6-4
BPT (PALcode) instruction, (11), 2-4

required recognition of, (I), 6-4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Branch instruction format, (I), 3-10
Branch instructions, (I), 4-16

See also Control instructions
backward conditional, (I), 4-17
conditional branch, (l),4-17
displacement, (I), 4-17
floating.-point, summarized, (I), 4-77
forward conditional, (I), 4-17
opcodes for, C-2
unconditional branch, (I), 4-19

Branch prediction model, (I), 4-15
Branch prediction stack, with BSR

instruction, (I), 4-19
Breakpoint exception, initiating, (II), 2-4
Bridge

defined, (I), 8-1
MBPR DON bit with, (I), 8-6
prefetch interrupts, (I), 8-12
with 1/0 space granularity, (I), 8-7

Bridge special commands, D-4
BR instruction, (I), 4-19
BSR instruction, (I), 4-19
Bugcheck exception, initiating, (II), 2-5
bugchk (PALcode) instruction, (Ill), 2-3

required recognition of, (I), 6-4
BUGCHK (PALcode) instruction, (II), 2-5

required recognition of, (I), 6-4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Byte data type, (I), 2-1

Index

Byte manipulation instructions, (I), 4-42
See also Extract instructions; Insert

instructions; Mask instructions
Byte_ within_page field, (II), 3-2; (Ill), 3-2

c
Cache coherency

banier instructions for, (I), 5-20
defined, (I), 5-1
110 space access, (I), 8-2
in multiprocessor environment, (I), 5-5
memory accesses by devices, (I), 8-17
with DMA, (I), 8-10

Caches
address granularity, (I), 8-14, 8-17
design considerations, A-1
flushing physical page from, (II), 2-84
!.-stream considerations, A-5
MB and IMB instructions with, (I), 5-20
requirements for, (I), 5-4
translation buffer conflicts, A-8
virtual, (I), 8-15
with powerfail/recovery, (I), 5-4

callsys (PALcode) instruction, (Ill), 2-4
entSys with, (Ill), 5-8
stack frames for, (Ill), 5-3

CALL_PAL (call privileged architecture
library) instruction, (I), 4-114

Canonical form, (I), 4-64
CFLUSH (PALcode) instruction, (II), 2-84

with powerfail, (II), 6-22
Changed datum, (I), 5-5
CHAR_SET variable, (NJ, 2-24
CHME (PALcode) instruction, (II), 2-6

service routine entry point, (II), 6-29
trap initiation, (II), 6-17

CHMK (PALcode) instruction, (II), 2-7
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CH:M:S (PALcode) instruction, (II), 2-8
service routine entry point, (II), 6-29
trap initiation, (II), 6-17

CHMU (PALcode) instruction, (JI), 2-9
service routine entry point, (II), 6-29
trap initiation, (II), 6-17

Clear a register, A-13
Clock

See BB_ WATCH
CLOSE console routine, (N), 2-44
CMD field (mailbox), (I), 8-5
CMOVEQ instruction, (I), 4-38
CMOVGE instruction, (I), 4-38
CMOVGT instruction, (1), 4-38

lndex-3

Digital Restricted Distribution

Index

CMOVLBC instruction, (I), 4-38
CMOVLBS instruction, (I), 4-38
CMOVLE instruction, (I), 4-38
CMOVLT instruction, (I), 4-38
CMOVNE instruction, (I), 4-38
CMPBGE instruction, (I), 4-44
CMPEQ instruction, (I), 4-27
CMPGEQ instruction, (I), 4-91
·CMPGLE instruction, (I), 4-91
CMPGLT instruction, (I), 4-91
CMPLE instruction, (I), 4-27
CMPLT instruction, (I), 4-27
CMPTEQ instruction, (I), 4-92
CMPTLE instruction, (I), 4-92
CMPTLT instruction, (I), 4-92
CMPTUN instruction, (I), 4-92
CMPULE instruction, (I), 4-28
CMPULT instruction, (I), 4-28
Code forms, stylized, A-12

Boolean, A-14
load literal, A-13
negate, A-14
NOP, A-13
NOT, A-14
register, clear, A-13
register-to-register move, A-14

Code sequences, A-11
Coherency, cache defined, (I), 5-1
Compare instructions

See also Floating-point operate
compare byte, m, 4-44
compare integer signed, (I), 4-27
compare integer unsigned, (I), 4-28

Conditional move instructions, (I), 4-38
See also Floating-point operate

CONFIG, (NJ, 2-19
Configuration data block, (NJ, 2-19
Console

adjusting routine virtual address, (NJ,
2-59

architecture requirements, (NJ, 1-5
at system restart, (NJ, 3-25
at warm bootstrap, (NJ, 3-18
close device for access, (NJ, 2-44
console 1/0 mode, (NJ, 3-4
data structure linkage, (NJ, 2-61
data structures loading at cold boot, (NJ,

3-9
definition, (NJ, 1-1
detached, (NJ, 1-2
embedded, (NJ, 1-2
environment variables, (NJ, 2-22, 2-72
forcing entry to 1/0 mode, (NJ, 3-32
getting character from, (NJ, 2-31
UTITD'D'D l"TTT\ n 1
.1..1. n J.\.~ .u, \.L V ;, ""1-l.

lndex-4

Console (cont'd)
1/0 device routines, (NJ, 2-42
implementation considerations, (NJ, 1-4,

2-72
implementations, (NJ, 1-2
implemented functions, E-5
internationalization, (NJ, 1-5
interprocessor console communications,

(NJ, 2-68
loading PALcode, (NJ, 3-9
loading system software, (NJ, 3-15
lock mechanisms, (NJ, 1-3
major state transitions, (NJ, 3-3
managing console state, (NJ, 2-20
messages, (IV), 1-3
miscellaneous routines, (NJ, 2-59
multiprocessor boot, (NJ, 3-20
open device for access, (NJ, 2-4 7
perform device-specific operations, (NJ,

2-45
presentation layer, (NJ, 1-3
processor state flags, (NJ, 3-15
program 1/0 mode, (NJ, 3-4
read from device, (NJ, 2-49
registered implementation functions, E-1
requirements, (NJ, 1-2
resetting, (NJ, 2-38
RESTORE_TERM routine, (IV), 3-32
SAVE_TERM routine, (NJ, 3-31
secondary at multiprocessor boot, (NJ,

3-22
security, (NJ, 1-5
sending commands to secondary, (NJ, 2-70
sending messages to primary, (NJ, 2-71
serial number and revision fields, (NJ,

2-72
setting terminal controls, (NJ, 2-39
setting terminal interr"'1pts, (NJ, 2-40
support requirements, (NJ, 2-25
translating keycode, (NJ, 2-33
write to device, (NJ, 2-51
writing characters to, (IV), 2-36

Console, overview, (I), 7-1
Console block storage routines, (NJ, 2-75
Console callback routines, (NJ, 2-25

CTB describes, (NJ, 2--66
data structures, (NJ, 2-61
implementation considerations, (NJ, 2-74
loading at cold boot, (NJ, 3-9
remapping, (NJ, 2-64
summary, (NJ, 2-27
system software invocation, (NJ, 2-27
system software usage, (NJ, 2-26

Console environment variables
getting, (N); 2-54

Digital Restricted Distribution

Console environment variables (cont'd)
implementation considerations, (N), 2-72
loading system software, (NJ, 3-15
resetting, (NJ, 2-55
routines for, (NJ, 2-53
saving, (NJ, 2-56
setting, (NJ, 2-58

Console 1/0 mode, (NJ, 3-3
forcing entry to, (IV), 3-32

Console initialization mode, (N), 3-4
Console interface, (N), 2-1
Console routine block (CRB), (N), 2-61

initializing, (IV), 2-63
structure, (IV), 2-62

Console terminal block (CTB), (IV), 2-61
described, (IV), 2-29, 2-66
implementation example, E-2
Keyboard example, E-4
structure, (IV), 2-67

Console terminal routines, (NJ, 2-28
implementation considerations, (N), 2-74

Context switching
See also Hardware; Process
defined, (11), 4-1
hardware, (11), 4-2
initiating, (11), 2-90
raising IPL while, (11), 4-4
software, (11),4-2

Control instructions, (1), 4-15
Control stream DMA, (1), 8-11
Conventions

code examples, (1), 1-10
extents, (1), 1-8
figures, (1), 1-9
instruction format, (1), 3-8
notation, (1), 3-8
numbering, (1), 1-7
ranges, (1), 1-8

IC opcode qualifier
IEEE :floating-point, (1), 4-60
VAX :floating-point, (1), 4-60

Corrected error interrupts, logout area for,
(11), 6-25

CPSY instruction, (1), 4-83
CPSYN instruction, (1), 4-83
CPU ID, (IV), 2-11
CPYSE instruction, (1), 4-83
CRB

See Console routine block
CTB

See Console terminal block
Current mode field

in PS register, (11), 6-6
Current PC

defined, (11), 6-2

CVTDG instruction, (1), 4-96
CVTGD instruction, (1), 4-96
CVTGF instruction, ([), 4-96
CVTGQ instruction, (1), 4-94
CVTLQ instruction, ([), 4-84
CVTQF instruction, (1), 4-95
CVTQG instruction, (1), 4-95
CVTQL instruction, (1), 4-84
CVTQS instruction, (1), 4-99
CVTQT instruction, (I), 4-99
CVTrQ instruction, ([), 4-98
CVT.l'S instruction, (1), 4-100

D
Data alignment, A-6
Data alignment trap, (11), 6-15
Data alignment trap :fixup (DAT) bit

in HWPCB, (11), 4-2

Index

Data alignment trap fix.up (DATFX) register,
(11), 5-9

Data alignment traps
memory management, (11), 6-16
registers used, (11), 6-16; (111), 5-4
service routine entry point, (11), 6-28
system entry for, (Ill), 5-8

Data format, overview, (1), 1-3
Data sharing (multiprocessor), A-7

synchonization requirement, (1), 5-5
Data stream considerations, A-6
Data stream DMA, (1), 8-11
Data types

byte, (1), 2-1
IEEE :floating-point, (1), 2-7
longword, (1), 2-2
longword integer, (1), 2-10
quadword, (1), 2-2
quadword integer, (1), 2-11
unsupported in hardware, (1), 2-12
VAX floating-point, (1), 2-3
word, (!), 2-1

Denormal, (1), 4-58
Detached console, (N), 1-2
Devices

conceptual flow of interrupts, (1), 8-18
CSRs, (1), 8-17
shared data structures and, (1), 8-10, 8-17

Dirty zero,"{1), 4-58
Disk bootstrap image, (IV), 3-33
DIVF instruction, (1), 4-102
DIVG instruction, (1), 4-102
Division

integer, A-12
performance impact ~f, A-12

lndex-5

Digital Restricted Distribution

Index

Division by zero trap, (II), 6-14; (Ill), 5-5
DIVS instruction, (I), 4-104
DIVT instruction, (I), 4-104
DMA, (I), 8-10

atomic, (I), 8-10
control stream, (I), 8-11
data stream stream, (I), 8-11
defined, (I), 8-2
interrupts with, (I), 8-12

DON field (mailbox), (I), 8-6
ID opcode qualifier

FPCR (:floating-point control register), (I),
4-64

IEEE floating-point, (I), 4-60
draina (PALcode) instruction, (I), 6-6
DRAINA (PALcode) instruction, (I), 6-6
Dual-issue instruction considerations, A-2
DUMP _DEV variable, (NJ, 2-23
DZE bit

exception summary parameter, (II), 6-13
exception summary register, (Ill), 5-5

D_floating data type, (I), 2-6
alignment of, (I), 2-7
mapping, (I), 2-6
restricted, (I), 2-7

E
Embedded console, (NJ, 1-2
ENABLE_AUDIT variable, (NJ, 2-24
entArith

See Arithmetic trap entry
entIF

See Instruction fault entry
entint

See Interrupt entry
entMM

See Memory-management fault entry
entSys

See System call entry
Environment variables, (NJ, 2-20
EQV instruction, (I), 4-37
ERR field (mailbox), (I), 8-6
Error checking, (I), 8-6
Error halt and recovery, (NJ, 3-26
Error messages, console, (NJ, 1-3
Errors, processor

corrected, (II), 6-23
uncorrected, (II), 6-23

Errors, system
corrected, (II), 6-22
uncorrected, (II), 6-22

Exceptional events
actions, summarized, (II), 6-2

lndex--6

Exceptional events (cont'd)
contrasted, (II), 6-2
defined, (II), 6-l

Exception handlers, B-2
TRAPB instruction with, (I), 4-120

Exception register write mask~ (Ill), 5-6
Exceptions

See also Arithmetic traps; Faults;
Synchronous traps

actions, summarized, (II), 6-2
defined, (Ill), 5-l
initiated before interrupts, (II), 6-18
initiated by PALcode, (II), 6-31
introduced, (II), 6-8
processor state transitions, (II), 6-36
stack frames, (II), 6-7
stack frames for, (Ill), 5-3

Exception service routines
entry point, (II), 6-26
introduced, (II), 6-8

Exception summary parameter, (II), 6-13
Exception summary register, (Ill), 5-2, 5-6

format of, (Ill), 5-4
Executive read enable (ERE), bit in PrE, (11),

3-5
Executive stack pointer (ESP)

as internal processor register, (II), 5-1
in HWPCB, (II), 4-2

Executive stack pointer (ESP) register, (11),
5-27

Executive write enable (EWE), bit in PrE,
(II), 3-6

EXTBL instruction, (I), 4-46
EXTLH instruction, (I), 4-46
EXTLL instruction, (I), 4-46
EXTQH instruction, (I), 4-46
EXTQL instruction, (I), 4-46
Extract instructions (list), (I), 4-46
EXTWH instruction, (I), 4-46
EXTWL instruction, (I), 4-46

F
Fault on execute (FOE), (II), 6-12

bit in PTE, (II), 3-4; (Ill), 3-5
service routine entry point, (II), 6-27
software usage of, (II), 6-12

Fault-on-execute fault, (Ill), 3-10
Fault on read (FOR), (II), 6-10

bit in PTE, (II), 3-4; (Ill),· 3-5
service routine entry point, (II), 6-27
software usage of, (II), 6-10

Fault-on-read fault, (Ill), 3-10
Fault on write (FOW), (II), 6-11

bit in PrE, (II), 3-4; a11J~ 3-5

Digital Restricted Distribution

Fault on write (FOW) (cont'd)
service routine entry point, (11), 6-27
software usage of, (II), 6-11

Fault-on-write fault, (Ill), 3-10
Faults

access control violation, (II), 6-10
defined, (II), 6-8; (Ill), 5-1
fault on execute, (11), 6-12
fault on read, (11), 6-10
fault on write, (II), 6-11
floating-point disabled, (11), 6-10
memory management, (Ill), 3-9
MM flag, (II), 6-10
program counter (PC) value, (II), 6-8
REI instruction with, (II), 6-8
translation not valid, (11), 6-10

FBEQ instruction, (I), 4-78
FBGE instruction, (I), 4-78
FBGT instruction, (1), 4-78
FBLE instruction, (I), 4-78
FBLT instruction, (I), 4-78
FBNE instruction, (!), 4-78
FCMOVEQ instruction, (!), 4-85
FCMOVGE instruction, (!), 4-85
FCMOVGT instruction, (!), 4-85
FCMOVLE instruction, (I), 4-85
FCMOVLT instruction, (I), 4-85
FCMOVNE instruction, (I), 4-85
FETCH (prefetch data) instruction, (I), 4-115

performance optimization, A-10
FETCH_M (prefetch data, modify intent)

instruction, (I), 4-115
performance optimization, A-10

Field replaceable unit table, (NJ, 2-19
Finite number, Alpha, contrasted with VAX,

(I), 4-57
FIXUP console routine, (NJ, 2-59

implementation considerations, (NJ,, 2-75
using, (NJ, 2-64

Floating-point branch instructions, (I), 4-77
Floating-point control register (FPCR), (I),

4-64
accessing, (I), 4-66
at processor initialization, (!), 4-67
bit descriptions, (!), 4-65
instructions to read/write, (I), 4-87
operate instructions that use, (!), 4-80
saving and restoring, (I), 4-67

Floating-point convert instructions, (I), .3-12
Floating-point disabled fault, (11), 6-10

service routine entry point, (II), 6-27
Floating-point division, performance impact

of, A-12
Floating-point enable (FEN) register

defined, (Ill), 1-3

Index

Floating-point enable (FEN) register (cont'd)
described, (II), 5-10
in HWPCB, (II), 4-2
privileged context, (II), 2-91

Floating-point format, number representation
(encodings), (I), 4-58

Floating-point instructions
branch (list), (I), 4-77
faults, (!), 4-56
introduced, (I), 4-56
memory format (list), (I), 4-68
operate (list), (I), 4-80
rounding modes, (I), 4-59
terminology, (I), 4-57
trapping modes, (I), 4-60
traps, (1), 4-56

Floating-point load instructions, (I), 4-68
load F _floating, (I), 4-69
load G_floating, (I), 4-70
load S_floating, (I), 4-71
load T_fl.oating, (I), 4-72
with nonfinite values, (I), 4-68

Floating-point operate instructions, (I), 4-80
add (IEEE), (I), 4-89
add (VAX), (I), 4-88
compare (IEEE), (I), 4-92
compare (VAX), (I), 4-91
conditional move, (!), 4-85
convert IEEE floating to IEEE floating, (I),

4-100
convert IEEE floating to integer, (I), 4-98
convert integer to IEEE floating, (I), 4-99
convert integer to integer, (I), 4-84
convert integer to VAX floating, (!), 4-95
convert VAX floating to integer, (!), 4-94
convert VAX floating to VAX floating, (I),

4-96
copy sign, (I), 4-83
divide (IEEE), (I), 4-104
divide (VAX), (!), 4-102
format of, (I), 3-11
move from/to FPCR, (!), 4-87
multiply (IEEE), (I), 4-107
multiply (VAX), (I), 4-106
opcodes for, C-3
subtract (IEEE), (I), 4-111
subtract (VAX), (I), 4-109

Floating-point registers, (I), 3-2
Floating-point rounding modes

IEEE, (I), 4-59
VAX,(!), 4-59

Floating-point single-precision operations, (I),
4-64

Floating-point store instructions, (I), 4-68
store F _floating, (!), 4-73

lndex-7

Digital Restricted Distribution

Index

Floating-point store instructions (cont'd)
store G_floating, (I), 4-74
store S_floating, ([), 4-75
store T_floating, (I), 4-76
with nonfinite values, (I), 4-68

Floating-point support
FPCR (floating-point control register), (I),

4-64
IEEE, (1), 2-7
IEEE standard 754-1985, (I), 4-67
instruction overview, (I), 4-56
longword integer, (I), 2-10
operate instructions, (I), 4-80
optional with Alpha, (I), 4-2
quadword integer, (I), 2-11
rounding modes, (I), 4-59
single-precision operations, (I), 4-64
trap modes, (I), 4-60
VAX, (I), 2-3

Floating-point trapping modes, (I), 4-60
See also Arithmetic traps
imprecision from pipelining, (I), 4-62

FOE
See Fault on execute

FOR
See Fault on read

FOW
See Fault on write

FPCR (floating-point control register)
See Floating-point control register (FPCR)

Frame pointer (FP), register linkage for, (III),
1-1

FRU, (IV), 2-19
Futurebus+ CMD field, D-5
F _floating data type, (I), 2-3

G

alignment of, (I), 2-5
compared to IEEE S_floating, (I), 2-8
MAX/MIN, (I), 4-58
operations, (I), 4-64
when data is unaligned, (II), 6-28

gentrap (PALcode) instruction, (Ill), 2-5
required recognition of, (I), 6--4

GENTRAP (PALcode) instruction, (11), 2-10
required recognition of, (I), 6--4
trap information, (II), 6-17

GETC console routine, (IV), 2-31
GET_ENV console routine, (IV), 2-54
Global pointer (GP), register linkage for, (Ill),

1-1
Granularity hint (GH)

bits in PTE, (II), 3-5; (Ill), 3--4

lndex-8

G_floating data type, (I), 2-5
alignment of, (I), 2-6
mapping, (1), 2-5
MAX/MIN, (I), 4-58
when data is unaligned, (11), 6-28

H
halt (PALcode) instruction, (I), 6-7
HALT (PALcode) instruction, (I), 6-7
Halting the processor, (I), 6-7
Hardware context, (Ill), 4-1
Hardware interrupts

interprocessor, (11), 6-21
interval clock, (11), 6-20
powerfail, (11), 6-22
servicing, (Ill), 5-6

Hardware non privileged context, (11), 4-3
Hardware privileged context, (II), 4-2

switching, (11), 4-2
Hardware privileged context block (HWPCB)

at cold boot, (IV), 3-17
at warm boot, (JV), 3-19
format, (II), 4-2
original built by HWRPB, (II), 4-4
PCBB register, (11), 5-16
process unique value in, (11), 2-80
specified by PCBB, (11), 4-2
swapping ownership, (II), 2-90
writing to, (11), 4-3

Hardware restart parameter block (HWRPB),
(IV), 2-1

field contents, (IV), 2--4
interval clock interrupt, (II), 6-20
loading at cold boot, (IV), 3-9
logout area, (II), 6-25
overview, (IV), 2-2
per-CPU slots, (IV), 2-11
per-CPU slots structure, (IV), 2-13
revision field, (IV), 2-9
structure, (IV), 2-3
system type and variation field, (IV), 2-9
TB hint block, (IV), 2-10

Hose, (I), 8-1
HOSE field (mailbox), (I), 8-5
HWPCB

See Hardware privileged context block
HWRPB

See Hardware restart parameter block

1/0 access granularity, (I), 8-2, 8-14
1/0 bus, access delay, (I), 8-14
1/0 device interrupts, (II), 6-20

Digital Restricted Distribution

1/0 devices, service routine entry points, (II)
6-30 '

1/0 implementation dependencies, (I), 8-13
1/0 space read/w1ite ordering, (I), 8-2, 8-7
I/O subsystem design, implementation

considerations, (I), 8-13
IEEE convert-to-integer trap mode,

instruction notation for, (I), ~1
IEEE floating-point

See also Floating-point instructions
exception handlers, B-2
format, (I), 2-7
FPCR (floating-point control reaister) (I) 4-64 bA ' '

hardware support, B-1
NaN, (I), 2-8
options, B-1
standard, mapping to, B-3
standard charts, B-10
S_floating, (I), 2-8
trap handling, B-4
trap modes, (1), 4-62
T_floating, (I), 2-9

IEEE floating-point instructions
add instructions, (I), 4-89
compare instructions, (I), 4-92
convert from integer instructions, ([), 4-99
convert IEEE floating format instructions

(l),4-100 '
convert to integer instructions, (I), 4-98
divide instructions, (I), 4-104
multiply instructions, (I), 4-107
opcodes for, C-4
operate instructions, ([), 4-80
qualifiers, summarized, C-4
subtract instructions, (I), 4-111

IEEE rounding modes, (I), 4-59
IEEE standard

conformance to, B-1
mapping to, B-3
support for, (I), ~7

IEEE trap modes, required instruction
notation, (I), 4-61

IGN (ignore), (I), 1-9
Illegal instruction trap, (II), 6-16

service routine entry point, (II), 6-28
Illegal operand trap

service routine entry point, (II), 6-28
~llegal PALcode operand trap, (II), 6-17
imb (PALcode) instruction, (I), 6-8
IMB (PALcode) instruction, (I), 5-17 6-8

virtual I-cache coherency, (I), 5-5'
IMP (implementation dependent) (I) 1-9
INE bit ' '

exception summary parameter, (11), 6-13

INE bit (cont'd)
exception summary register, (Ill), 5-5

Inexact result trap, (II), 6-15; (Ill) 5-5
Infinity, (I), 4-57 '
Initial virtual memory regions, (NJ, 3-11
Input/output interrupts, (II), 6-22
INSBL instruction, (I), 4-50
Insert instructions (list), (I), 4-50
Insert into queue PALcode instructions

Index

longword at head interlocked, (II), 2-31
longword at head interlocked resident, (II),

2-33,2-48
longword at tail interlocked, (II), 2-39
longword at tail interlocked resident, (II),

2-42,2-50
quadword at head interlocked, (II), 2-35
quadword at head interlocked resident

(II), 2-37 '
quadword at tail interlocked, (II), 2-44
quadword at tail interlocked resident, (II)

2-46 '
INSLH instruction, (I), 4-50
INS LL instruction, (I), 4-50
INSQHIL (PALcode) instruction, (II), 2-31
INSQHILR (PALcode) instruction, (II), 2-33
INSQH instruction, (I), 4-50
INSQHIQ (PALcode) instruction, (II), 2-35
INSQHIQR (PALcode) instruction, (11), 2-37
INSQL instruction, (I), 4-50
INSQTIL (PALcode) instruction, (II), 2-39
INSQTILR (PALcode) instruction, (II), 2-42
INSQTIQ (PALcode) instruction, (11), 2-44
INSQTIQR (PALcode) instruction, (II), 2-46
INSQUEL (PALcode) instruction, (II), 2-48
INSQUEL/D (PALcode) instruction, (II), 2-48
INSQUEQ (PALcode) instruction, (II), 2-50
INSQUEQ/D (PALcode) instruction, (II), 2-50
Instruction -encodings

floating-point format, C-3
summarized, C-1

Instruction fault
system entry for, (Ill), 5-3

Instruction fault entry (entlF) register, (Ill),
1-2, 5-3, 5-6

Instruction formats
branch, (I), 3-10
conventions, (I), 3-8
floating-point convert, (I), 3-12
floating-point operate, (I), 3-11
illegal trap, (II), 6-16
memory, (I), 3-9
memory jump, (I), 3-10
operands, (I), 3-8
operand values, (I), 3-8
operate, (/), 3-10

lndex-9

Digital Restricted Distribution

Index

Instruction formats (cont'd)
operators, (1), 3-5
overview, (1), 1-4
PALcode, (1), 3-12
registers', (1), 3-1

Instructions, overview of, (I), 1-5
Instruction set

See also Floating-point instructions;
PALcode instructions

access type field, (I), 3-4
Boolean (list), (I), 4-36
branch (list), (I), 4-16
byte (list), (I), 4-42
conditional move (integer), (I), 4-38
data type field, (I), 3-5
extract (list), (I), 4-42
floating-point subsetting, (I), 4-2
insert (list), (I), 4-42
integer arithmetic (list), (I), 4-22
introduced, (I), 1-6
jump (list), (I), 4-16
load memory integer (list), (I), 4-4
mask (list), (I), 4-42
miscellaneous (list), (I), 4-113
name field, (I), 3-4
opcode qualifiers, (I), 4-3
operand notation, (I), 3-4
overview, (I),. 4-1
shift, arithmetic, (I), 4-41
shift, logical, (I), 4-40
software emulation rules, (I), 4-2
store memory integer (list), (I), 4-4
VAX compatibility, (I), 4-121

Instruction stream
See I-stream

INSWH instruction, (I), 4-50
INSWL instruction, (I), 4-50
Integer arithmetic instructions

See Arithmetic instructions
Integer division, A-12
Integer overflow trap, (II), 6-15; (Ill), 5-5
Integer registers

defined, (I), 3-1
R31 restrictions, (1), 3-1

Integer register usage, (Ill), 1-1
Internal processor registers (IPR)

address space number (ASN), (II), 5-4
AST enable (ASTEN), (II), 5-5
AST summary (ASTSR), (II), 5-7
CALL_PAL MFPR with, (II), 5-1
CALL_PAL MTPR with, (II), 5-1
data alignment trap fixup (DATFX), (II),

5-9
defined, (II), 1-1
executive stack pointer (ESP), (II), 5-27

lndex-10

Internal processor registers (IPR) (cont'd)
floating-point enable (FEN), (II), 5-10
interprocessor interrupt request (IPIR)

register, (II), 5-11
interrupt priority level (IPL), (11), 5-12
kernel mode with, (11), 5-1
machine check error swnmary (MCES),

(II), 5-13
MFPR instruction with, (II), 2-86
MTPR instruction with, (11), 2-87
page table base (PTBR), (II), 5-18
performance monitoring (PERFMON), (II),

5-15
privileged context block base (PCBB), (II),

5-16
processor base (PRBR), (11), 5-17
software interrupt request (SIRR), (11),

5-20
software interrupt summary (SISR), (11),

5-21
swnmary, (11), 5-2
supervisor stack pointer (SSP), (II), 5-28
system control block base (SCBB), (11),

5-19
translation buffer check (TBCHK), (II),

5-22
translation buffer invalidate all (TBIA),

(II), 5-24
translation buffer invalidate all process

(TBIAP), (11), 5-25
translation buffer invalidate single (TBIS),

(11), 5-26
user stack pointer (USP), (II), 5-29
virtual page base (VPTB), (11), 5-30
Who-Am-I (WHAM!), (II), 5-31

Interprocessor console communications, (IV),
2-68

implementation considerations, (IV), 2-76
Interprocessor interrupt, (11), 6-21

protocol for, (11), 6-21
service routine entry point, (11), 6-30

Interprocessor interrupt request (IPIR)
register ·

described, (II), 5-11
protocol for, (11), 6-21

Interrupt entry (entlnt) register, (Ill), 1-2,
5-4, 5-6

Interrupt priority level (IPL), (1), 8-18
See also Interrupt priority level (IPL)

register
associated events, (II), 6-18
field in PS register, (11), 6-6
hardware levels, (II), 6-7
kernel mode software with, (11), 6-18
nno:.f~nn n.f 111) tt_ 17
"'t''"".L'-AV.LV.LA V.L' \ .. A/' "' ~ •

Digital Restricted Distribution

Interrupt priority level (IPL) (cont'd)
PS with, (Ill), 5-2
recording pending software (SISR register),

(!!), 5-21
requesting software (SIRR register), (II),

5-20
service routine entry points, (II), 6-30
software interrupts, (11), 6-19
software levels, (II), 6-7
starvation and timeouts, (I), 8-15

Interrupt priority level (IPL) register
See also Interrupt priority level (IPL)
described, (11), 5-12
interrupt arbitration, (11), 6-35

Interrupts
actions, summarized, (II), 6-2
device, (I), 8-18
from 1/0 devices, (I), 8-12
hardware arbitration, (11), 6-34
1/0 device, (II), 6-20
initiated by PALcode, (II), 6-31
initiation, (ll), 6-18
input/output, (11), 6-22
instruction completion, (II), 6-17
interprocessor, (11), 6-21
introduced, (II), 6-17
multiply targeted, (!), 8-18
ordering of, (I), 8-19
PALcode arbitration, (II), 6-34
passive release, (II), 6-20
powerfail, (11), 6-22
processor state transitions, (II), 6-36
program counter value, (II), 6-2
software, (II), 6-19
sources for, (Ill), 5-2
stack frames, (II), 6-7
stack frames for, (111), 5-3
system entry for, (111), 5-4
vectors, (I), 8-12

Interrupt service routines
entry point, (11), 6-26
in each process, (11), 6-18
introduced, (II), 6-17

Interval clock interrupt, (II), 6-20
service routine entry point, (II), 6-30

Invalid operation trap, (11), 6-14; (Ill), 5-5
INV bit

exception summary parameter, (II), 6-13
exception summary register, (111), 5-5

IOCTL console routine, (NJ, 2-45
/I opcode qualifier, IEEE floating-point, (I),

4-61
IOV bit

exception summary parameter, (11), 6-14
exception summary register, (Ill), 5-5

Index

IPR
See Internal processor registers (IPR)

IPR_K.SP (internal processor register kernel
stack pointer), (11), 5-1

ISO-LATIN-1 support, (NJ, 1-6
I-stream

coherency with D-stream, (I), 6-8
design considerations, A-2
modifying physical, (I), 5-5
modifying virtual, (I), 5-5
PALcode with, (I), 6-3
with caches, (I), 5-5

I-stream coherency, (I), 6-8

J
JMP instruction, (I), 4-20
JSR instruction, (I), 4-20
JSR_COROUTINE instruction, (I), 4-20
Jump instructions, (!), 4-16, 4-20

K

See also Control instructions
branch prediction logic, (1), 4-21
coroutine linkage, (1), 4-21
return from subroutine, (!), 4-20
unconditional long jump, (!), 4-21

Kernel global pointer (KGP), (111), 1-3
:J{ernel mode, protection code with, (111), 3-6
Kernel read enable (KRE)

bit in PTE, (II), 3-5; (111), 3-4
with access control violation (ACV) fault,

(11), 3-13
Kernel stack, PALcode access to, (II), 6-31
Kernel stack pointer (KSP)

defined, (Ill), 1-3
in HWPCB, (II), 4-2

Kernel write enable (KWE)
bit in PTE, (11), 3-6; (111), 3-4

Kseg

L

format of, (111), 3-2
mapping of, (Ill), 3-1
physical space with, (Ill), 3-3

LANGUAGE variable, (NJ, 2-24
LDAH instruction, (1), 4-5
LDA instruction, (I), 4-5
LDF instruction, (1), 4-69

when data is unaligned, (II), 6-28
LDG instruction, (!), 4-70

when data is unaligned, (11), 6-28
LDL instruction, (1), 4-6

when data is unaligned, (11), 6-28

lndex-11

Digital Restricted Distribution

Index

LDL_L instruction, (I), 4-8
restrictions, (I), 4-9
when data is unaligned, (II), 6-28
with processor lock register/flag, (I), 4-8
with STx_C instruction, (I), 4-8

LDQ instruction, (I), 4-6
when data is unaligned, (II), 6-28

LDQP (PALcode) instruction, (II), 2-85
LDQ_L instruction, (I), 4-8

restrictions, (I), 4-9
when data is unaligned, (II), 6-28
with processor lock register/flag, (I), 4-8
with STx_C instruction, (I), 4-8

LDQ_ U instruction, (I), 4-7
LDS instruction, (I), 4-71

when data is unaligned, (II), 6-28
LDT instruction, (I), 4-72

when data is unaligned, (ll), 6-28
LICENSE variable, (NJ, 2--24
Literals, operand notation, (I), 3-4
LK keyboard graphic display, E-2
Load instructions

See also Floating-point load instructions
emulation of, (I), 4-2
FETCH instruction, (I), 4-115
load address, (I), 4-5
load address high, (I), 4-5
load quadword, (I), 4-6
load quadword locked, (I), 4-8
load sign-extended longword, (I), 4-6
load sign-extended longword locked (I)

4-8 ' '
load unaligned quadword, (I), 4-7
multiprocessor environment, (I), 5-5
serialization, (I), 4-117
when data is unaligned, (II), 6-28

Load literal, A-13
Load memory integer instructions (list) (I)

4-4 ' '

Local devices, (I), 8-1
Local 1/0 space, (I), 8-2

flow control, (I), 8-15
Local side, (I), 8-1
Location, ([), 5-10
Location access order

defined, ([), 5-11
with processor issue order, (I), 5-12

Lock flag, per-processor
defined, ([), 3-2
with load locked instructions, ([), 4-8
with store conditional instructions, (I),

4-11
Lockout, (I), 8-3
Lock registers, per-processor

defined; (I), 3-2

lndex-12

Lock registers, per-processor (cont'd)
with load locked instructions, ([), 4-8
with store conditional instructions, (I),

4-11
Lock_fl.ag register, (Ill), 1-3
Logical instructions

See Boolean instructions
Logout area, (II), 6-25; (Ill), 5-7
Longword data type, (I), 2-2

alignment of, ([), 2-11
atomic access of, ([), 5-2
integer floating-point format, ([), 2-10

LSB (least significant bit), defined for
floating-point, (I), 4-57

M
Machine check error summary (MCES)

register
described, (II), 5-13
using, (II), 6-24

Machine checks~ (II), 6-22; (Ill), 5-6
actions, summarized, (II), 6-2
cannot disable, (II), 6-24
initiated by PALcode, (II), 6-31
introduced, (II), 6-22
logout area, (II), 6-25
masking, (II), 6-23
one per error, (ll), 6-24
processor correctable, (II), 6-23
program counter (PC) value, (II), 6-24
REI instruction with, (II), 6-23
retry flag, (II), 6-24
service routine entry points, (ll), 6-30
stack frames, (ll), 6-7
system correctable, (II), 6-23

Magtape bootstrap image
ANSI format, (NJ, 3-35
boot blocked, (NJ, 3-37

Mailbox
address alignment, (I), 8-4
bus-specific implementations for, ([), 8-12
CMD field checking, (I), 8-13
comparison to direct access method, (I),

8-14
error reporting, (I), 8-8
field checking, ([), 8-12
modification by host, (I), 8-6
observing effects of remote writes, (I), 8-16
operational definition, ([), 8-2
posting, ([), 8-2
posting software with, (I), 8-6
remote reads, (I), 8-6, 8-8
remote writes, (I), 8-6, 8-9
static, (I), 8-6

Digital Restricted Distribution

Mailbox (cont'd)
structure, (I), 8-5
synchronization with, (I), 8-16
translating direct accesses, (I), 8-14
use of STQ_C lock_flag, (!), 8-3, 8-8, 8-15
WHO_ARE_YOU command, (I), 8-13
with 1/0 space granularity, (I), 8-7

Mailbox pointer (MBPR) register, (I), 8-4
definition, (!), 8-2
flow control, (I), 8-15
ordering, (I), 8-7

Mailbox starvation, (I), 8-16
Major modes, (NJ, 3-3
Major states, (NJ, 3-1
Major state transitions, (NJ, 3-2

console rules, (NJ, 3-3
MASK field (mailbox), (I), 8-5
Masking, machine checks with, (II), 6-23
Mask instructions (list), (I), 4-52
MAX, defined for floating-point, (I), 4-59
maxCPU, (Ill), 1-2
MB (memory barrier) instruction, (I), 4-117

See also IMB
multiprocessors only, (I), 4-117
using, (I), 5-18
with DMA 1/0, (I), 5-17
with multiprocessor D-stream, (I), 5-17

MBPR
See Mailbox pointer (MBPR) register

MBZ (must be zero), (I), 1-9
MEMDSC

See Memory data descriptor table
Memory, unrecoverable errors with, (II), 6-22
Memory access

aligned byte/word, A-11
coherency of, (I), 5-1
granularity of, (I), 5-2
width of, (I), 5-2

Memory access sequence, (I), 5-11
Memory alignment, requirement for, (I), 5-2
Memory cluster descriptor (MEMC) table

structure, (NJ, 3-8
Memory data descriptor (MEMDSC) table

structure, (NJ, 3-7
with cold boot, (NJ, 3-6

Memory format instructions
function codes, summarized, C-1
opcodes for, C-1

- Memory instruction format, (I), 3-9
with function code, (I), 3-9

Memory interlocks, (!), 8-17
Memory jump instruction format, (I), 3-10
Memory-like behavior, (I), 5-3
Memory management

Memory management (cont'd)
See also Address translation; Pages;

Processor modes; Virtual address
space

address translation, (II), 3-8
always enabled, (II), 3-3
control of, (Ill), 3-3
faults, (II), 3-13, 6-9; (Ill), 3-9
introduced, (II), 3-1
page frame number (PFN), (II), 3-6
page table entry (PTE), (II), 3-3
protection code, (II), 3-8

Index

protection of individual pages, (II), 3-7
PTE modified by software, (II), 3-7
support in PALcode, (I), 6-3
translation buffer with, (II), 3-11
unrecoverable error, (II), 6-22
with interrupts, (II), 6-18
with multiprocessors, (II), 3-7
with process context, (II), 4-1

Memory-management fault entry (entMM)
register, (Ill), 1-2, 5-4, 5-7

Memory management faults
registers used, (II), 6-10
system entry for, (Ill), 5-4
types, (Ill), 3-9
with unaligned data, (11), 6-16

Memory prefetch registers, A-10
defined, (I), 3-2

Memory protection, (Ill), 3-6
MFPR_IPR_name (PALcode) instruction, (II),

2-86
MF _FPCR instruction, (I), 4-87
MIN, defined for floating-point, (I), 4-58
Miscellaneous instructions (list), (1), 4-113
MMCSR, (Ill), 5-7
MMCSR code, (Ill), 3-9
MOP-based- network bootstrapping, (NJ, 3-39
fM opcode qualifier, IEEE floating-point, (I),

4--60
Move, register-to-register, A-14
Move instructions (conditional)

See Conditional move instructions
MSKBL instruction, (I), 4-52
MSKLH instruction, (1), 4-52
MSKLL instruction, (I), 4-52
MSKQL instruction, (I), 4-52

. MSKWH instruction, (I), 4-52
MSKWL instruction, (1), 4-52
MTPR_IPR_name (PALcode) instruction, (II),

2-87
MT_FPCR instruction, (1), 4-87

synchronization requirement, (I), 4--66
MULF instruction, (I), 4-106

lndex-13

Digital Restricted Distribution

Index

MULG instruction, (I), 4-106
MULL instruction, (I), 4-29

with MULQ, (I), 4-29
MULQ instruction, (I),· 4-30

with MULL, (I), 4-29
with UMULH, (I), 4-30

MULS instruction, (I), 4-107
MULT instruction, (I), 4-107
Multiple instruction issue, A-2
Multiply instructions

See also Floating-point operate
multiply longword, (I), 4-29
multiply quadword, (I), 4-30
m~tiply unsigned quadward high, (I), 4-31

Mult~processor bootstrapping, (IV), 3-19
pnmary processor, (NJ, 3-19

Multiprocessor environment
See also Data sharing
booting, (IV), 3-19
cache coherency in, (I), 5-5
console requirements, (NJ, 2-21
context switching, (l), 5-18
interprocessor interrupt, (II), 6-21
I-stream reliability, (I), 5-17
MB instruction with, (I), 5-17
memory faults, (II), 6-10
memory management in, (II), 3-7
move operations in, (If), 2-76
no implied barriers, (I), 5-16
read/write ordering, (I), 5-9
serialization requirements in, (I), 4-117
shared data, (I), 5-5, A-7

Multiprocessors
1/0 with, (I), 8-3
interrupts with, (I), 8-12

Multithread implementation, (ll), 2-80

N
NaN (Not-a-Number)

defined, (I), 2-8
Quiet, (I), 4-57
Signaling, (I), 4-57

NATURALLY ALIGNED data objects (I) 1-9
Negate stylized code form, A-14 ' '
Network bootstrapping, (IV), 3-39

implementation considerations, (IV), 3-50
Next PC, (II), 6-2
Next PC, defined for arithmetic traps (ll)

6-14 ' '
Nonmemory-like behavior, (I), 5-3
NOP, A-13 .
NOT instruction, ORNOT with zero, (I), 4-37
NOT stylized code form, A-14

lndex-14

0
Opcode qualifiers

See also specific qualifiers
default values, (I), 4-3
notation (list), (I), 4-3

Opcodes
DEC OSF/1, C-9
OpenVMS, C-8
reserved, C-10
summarized, C-6

opDec, (Ill), 1-4
OPEN console routine, (NJ, 2-47
Open VMS PALcode instruction opcodes, C-8
OpenVMS PALcode instructions (list) (II)

2-2 ' '
Operand expressions, (I), 3-3
Operand notation

defined, (I), 3-3
from VAX architecture standard, (I), 3-4

Operand values, (I), 3-3
Operate format instructions, opcodes for C-2
Operate instruction format, (I), 3-10 '

floating-point, (I), 3-11
floating-point convert, (l), 3-12

Operators, instruction format, (I), 3-5
Optimization

See Perlormance optimizations
ORNOT instruction, (I), 4-37
OSF/1 PALcode instruction opcodes, C-9
Overflow trap, (II), 6-15; (Ill), 5-5
OVF bit

p

exception summary parameter, (II), 6-13
exception summary register, (Ill), 5-5

Page frame number (PFN)
bits in PTE, (II), 3-6; (Ill), 3-4
determining validitation, (II), 3-4
finding for SCB, (II), 5-19
PTBR register, (II), 5-18
with address translation, (II), 3-9
with hardware context switching, (II), 4-3

Pages
collecting statistics on, (ll), 6-11
individual protection of, (II), 3-7
max address size from, (ll), 3-3
possible sizes for, (II), 3-2
size range of, (Ill), 3-1
virtual address space from, (II), 3-2

pageSize, (Ill), 1-2
Page sizes, (Ill), 3-2
Page table base (PTBR) register, (ll), 5-18

defined, (Ill), 1-3

Digital Restricted Distribution

Page table base (PTBR) register (cont'd)
in HWPCB, (II), 4-2
privileged context, (11), 2-91
with address translation, (II), 3-9

Page table entry (PTE), (11), 3-3
atomic modification of, (11), 3-7
bit summary, (Ill), 3-4
calculating at cold boot, (N), 3-13
changing and managing, (Ill), 3-5
format of, (Ill), 3-3
modified by software, (11), 3-7
page protection, (II), 3-8
physical access of, (Ill), 3-6
virtual access of, (Ill), 3-7
with multiprocessors, (11), 3-7

Page tables
address space conflicts, (N), 3-4 7
address space/page size, (NJ, 3-48
calculating base, (N), 3-14
coarseness effect, (N), 3-46
initial mapping at cold boot, (N), 3-13
locating space for, (NJ, 3-47
space at cold boot, (N), 3-10

Page table space, loading at cold boot, (N),
3-10

Page table space location, (N), 3-48
PALcode

See also Queues, support for
access to kernel stack, (II), 6-31
barriers with, (I), 5-16
CALL_PAL instruction, (I), 4-114
compared to hardware instructions, (I), 6-1
defined for Open VMS, (II), 2-1
illegal operand trap, (II), 6-17
implementation-specific, (I), 6-3
instead of microcode, (I), 6-1
instruction format, (I), 3-12
memory management requirements, (11),

3-3
OSF/1 support for, (Ill), 5-8
overview, (1), 6-1
processor state transitions, (II), 6-36
queue data type support, (II), 2-21
recognized instructions, (1), 6-4
replacing, (I), 6-4
required function support, (1), 6-3
required instructions, (1), 6-5
running environment, (1), 6-2
special functions, (I), 6-3

PALcode instructions
opcodes for required, C-10
Open VMS (list), (11), 2-2
privileged Open VMS (list), (II), 2-83
privileged OSF/1 (list), (Ill), 2-8
reserved, opcodes for, C-10

PALcode instructions (cont'd)
threaded Open VMS, (II), 2-80
unprivileged gener~l (list), (11), 2-3
unprivileged OSF/1 (list), (Ill), 2-1

PALcode instructions, privileged
See also individual instructions
cache flush, (11), 2-84
drain aborts, (I), 6-6
halt processor, (I), 6-7

Index

load quadword physical, (11), 2-85
move from processor register, (11), 2-86
move to processor register, (11), 2-87
read processor status, (Ill), 2-9
read system value, (Ill), 2-11
read user stack pointer, (Ill), 2-10
return from system call, (111), 2-12
return from trap, fault, or interrupt, (Ill),

2-13
store quadword physical, (II), 2-88
swap IPL, (111),2-16
swap privileged context, (11), 2-89
swap process context, (Ill), 2-14
TB (translation buffer) invalidate, (Ill),

2-17
who am I, (Ill), 2-18
write floating-point enable, (Ill), 2-21
write kernel global pointer, (Ill), 2-22
write system entry address, (Ill), 2-19
write system value, (Ill), 2-24
write user stack pointer, (Ill), 2-23
write virtual page table pointer, (Ill), 2-25

PALcode instructions, thread, (II), 2-80
read unique context, (II), 2-81
write unique context, (II), 2-82

PALcode instructions, unprivileged
See also individual instructions
breakpoint, (II), 2-4; (Ill), 2-2
bugcheck, (II), 2-5; (Ill), 2-3
change to executive mode, (II), 2-6
change to kernel mode, (II), 2-7
change to supervisor mode, (II), 2-8
change to user mode, (II), 2-9
generate software trap, (11), 2-10
generate trap, (Ill), 2-5
insert into queue (list), (II), 2-30
I-stream memory barrier, (1), 6-8
probe for read access, (II), 2-11
probe for write access, (II), 2-11
read processor status, (II), 2-13
read system cycle counter, (II), 2-17
read unique value, (Ill), 2-6
remove from queue (list), (II), 2-30
return from exception or interrupt, (II),

2-14
swap AST enable, (11), 2-19

lndex-15

Digital Restricted Distribution

Index

PALcode instructions, unprivileged (cont'd)
system call, (III), 2-4
write PS software field, (II), 2-20
write unique value, (Ill), 2-7

PALcode instructions, unprivileged general
(list), (11), 2-3

PALcode loading at bootstrap, (NJ, 3-9
PALRESO, (I), 6-3
PALRESl, (I), 6-3
PALRES2, (1), 6-3
PALRES3, (I), 6-3
PALRES4, (I), 6-3
Passive release interrupt entry point, (11),

6-30
Passive release interrupts, (II), 6-20
PC

See program counter register
PCC

See Process cycle counter
Per-CPU slots, (NJ, 2-11

field contents, (NJ, 2-14
starting address calculation, (NJ, 2-12
structure, (NJ, 2-13

Per-CPU state flags, (NJ, 2-18
Performance monitoring register (PERF­

MON), (11), 5-15
Performance monitor interrupt entry point,

(11), 6-30
Performance optimizations

branch prediction, A-3
code sequences, A-11
data stream, A-6
for frequently executed code, A-1
for I-streams, A-2
instruction alignment, A-2
instruction scheduling, A-5
I-stream density, A-5
multiple instruction issue, A-2
shared data, A-7

PFN
See Page frame number

Physical address translation, (II), 3-9
Physical space, (Ill), 3-3
PME

bit in HWPCB, (11), 4-2
PMI bus, (I), 8-1

uncorrected protocol errors, (II), 6-22
Powerfail

CFLUSH PALcode instruction with, (11),
6-22

Powerfail and recovery
multiprocessor, (NJ, 3-25
split, (NJ, 3-26
uniprocessor, (NJ, 3-25
united, (T\1), 3-26

lndex-16

Powerfail interrupt, (II), 6-22
service routine entry point, (II), 6-30

Power-up initialization, (NJ, 3-4
Prefetch data (FETCH instruction), (I), 4-115
Prefetch data registers, A-10
Prefetching data, considerations, A-10
Primary bootstrap image

format, (NJ, 3-33
loading at cold, (NJ, 3-9

Primary processor
at multiprocessor boot, (NJ, 3-20, 3-22
definition, (NJ, 1-1
modes, (NJ, 3-4
switching from, (NJ, 3-28

Privileged Architecture Library
See PALcode

Privileged context, (II), 2-90
Privileged context block base (PCBB) register

described, (11), 5-16
Privileged PALcode instructions (list), (11),

2-83; (Ill), 2-8
PROBER (PALcode) instruction, (II), 2-11
PROBEW (PALcode) instruction, (II), 2-11
Process, (11), 4-1

context switching the, (11), 4-4
Process context, (Ill), 4-1
Process control block (PCB), (Ill), 4-1

structure, (Ill), 4-2
Process control block base (PCBB) register,

(Ill), 1-3
Process cycle counter (PCC)

in HWPCB, (II), 4-2
privileged context, (II), 2-91
RPCC instruction with, (I), 4-118
system cycle counter with, (II), 2-17

Processor
adding to running system, (NJ, 3-24
states and modes, (NJ, 3-1

Processor base (PRBR) register, (11), 5-17
Processor identifiers, registered, D-1
Processor initialization, (NJ, 3-16
Processor issue order

defined, (I), 5-11
with location access order, (I), 5-12

Processor issue sequence, (I), 5-10
Processor memory interconnect

See PMI bus
Processor modes

AST pending state, (II), 5-7
change to executive, (II), 2-6
change to kernel, (11), 2-7
change to supervisor, (II), 2-8
change to user, (11), 2-9
controlling memory access, (ll), 3-8

Digital Restricted Distribution

Processor modes (cont'd)
enabling executive mode reads, (II), 3-5
enabling executive mode writes, (II), 3-6
enabling kernel mode reads, (II), 3-5
enabling supervisor mode reads, (II), 3-6
enabling supervisor mode writes, (II), 3-6
enabling user mode reads, (II), 3-6
enabling user mode writes, a1J' 3-6
page access with, (II), 3-1
PALcode state transitions, (II), 6-36

Processor number, reading, (II), 5-31
Processors

address granularity of memory references,
(I), 8-14

conceptual flow of 110 interrupts, m, 8-18
switching primary, (NJ, 2-60

Processor state, defined, (II), 6-5
Processor state flags, at multiprocessor boot,

(NJ, 3-23
Processor state transitions, (II), 6-36
Processor status (PS) register

bit meanings for, (III), 5-2
boostrap values in, (II), 6-6
current, (II), 6-5
current mode field, (II), 6-6
defined, (II), 1-1; (Ill), 1-3
explicit reading of, (II), 6-5
in processor state, (II), 6-5
interrupt priority level (IPL) field, (II), 6-6
saved on stack, (II), 6-5
saved on stack frame, (II), 6-7
software (SW) field, (II), 6-6
stack alignment field, (II), 6-6
virtual machine monitor bit, (II), 6-6
WR PS SW instruction, (II), 2-20

Proces-; ~ique value (unique) register, (Ill),
1-4

PROCESS_KEYCODE console routine, (NJ,
2-33

implementation considerations, (NJ, 2-75
Program counter (PC) register, (I), 3-1

alignment, (11),6-6
current PC defined, (II), 6-2
defined, (Ill), 1-3
explicit reading of, (II), 6-6
in processor state, (II), 6-5
next PC defined, (II), 6-14
saved on stack frame, (II), 6-7
with arithmetic traps, (II), 6-14; (Ill), 5-1

_ with faults, (II), 6-8
with interrupts, (II), 6-2
with machine checks, (II), 6-23
with synchronous traps, (II), 6-15

Program 1/0 mode, (NJ, 3-3

Protection code, (II), 3-8; (Ill), 3-6
Protection modes, (II), 6-7
PS<SP _ALIGN> field, (II), 2-13
Pseudo-ops, A-14
PSWITCH console routine, (NJ, 2-60
PTE

See Page table entry
PUTS console routine, (NJ, 2-36

Q

Quadword data type, (I), 2-2
alignment of, (I), 2-3, 2-11
atomic access of, (I), 5-2
integer floating-point format, (I), 2-11
loading in physical memory, (II), 2-85
storing to physical memory, a1J, 2-88
T_floating with, (I), 2-11

Queues, support for

R

absolute longword, (II), 2-21
absolute quadword, (II), 2-25
PALcode instructions (list), (II), 2-30
self-relative longword, (II), 2-21
self-relative quadword, (II), 2-26

R31
restrictions, (I), 3-1
with arithmetic traps, (II), 6-12

RAZ (read as zero), aJ, 1-9
RBADR field (mailbox), (I), 8-5

Index

RC (read and.clear) instruction, (I), 4-122
RDATA field (mailbox), (I), 8-6
rdps (PALcode) instruction, allJ, 2-9
rdunique (PALcode) instruction, (Ill), 2-6

PCB with, (Ill), 4-1
required recognition of, (I), 6-4

RDUNIQUE ·(PALcode) instruction
required recognition of, (I), 6-4

rdusp (PALcode) instruction, (Ill), 2-10
PCB with, (Ill), 4-1

rdval (PALcode) instruction, (Ill), 2-11
RD_PS (PALcode) instruction, (llJ, 2-13
READ console routine, (NJ, 2-49
Read/write, sequential, A-10
Read/write ordering (multiprocessor), (I), 5-9

determining requirements, m, 5-9
memory location defined, (I), 5-10

READ_UNQ (PALcode) instruction, (II), 2-81
Registers, (I), 3-1

floating-point, m, 3-2
integer, (I), 3-1
lock, (I), 3-2
memory pref etch, (I), 3-2
optional, (I), 3-2

lndex-17

Digital Restricted Distribution

Index

Registers (cont'd)
program counter (PC), (I), 3-1
value when unused, m, 3-8
VAX compatibility,([), 3-2
with IPRs, (II), 5-1

Register-to-register move, A-14
Register write mask, with arithmetic traps,

(II), 6-14
REI (PALcode) instruction, (II), 2-14

arithmetic traps, (II), 6-9
faults, (II), 6-8
interrupt arbitration, (II), 6-35
interrupts, (II), 6-2
machine checks, (II), 6-23
synchronous traps, (II), 6-15

Remote devices
defined, (I), 8-1
interrupts with, (I), 8-12
with DMA, (I), 8-10

Remote 1/0 space, (I), 8-2
accessing, (I), 8-2, 8-8
access latency, ([), 8-14
address size, (I), 8-14
flow control, (I), 8-3
read/write ordering, (I), 8-9

Remote writes (mailbox), (I), 8-5
Remove from queue PALcode instructions

longword, (II), 2-72
longword at head interlocked, (II), 2-52
longword at head interlocked resident, (II),

2-55
longword at tail interlocked, (II), 2-62
longword at tail interlocked resident, (II),

2-65
quadword, (II), 2-7 4
quadword at head interlocked, (II), 2-57
quadword at head interlocked resident,

(II), 2-60
quadword at tail interlocked, (II), 2-67
quadword at tail interlocked resident, (II),

2-70
REMQHIL (PALcode) instruction, (II), 2--52
REMQHILR (PALcode) instruction, (II), 2-55
REMQHIQ (PALcode) instruction, (II), 2-57
REMQHIQR (PALcode) instruction, (II), 2-60
REMQTIL (PALcode) instruction, (II), 2-62
REMQTILR (PALcode) instruction, (II), 2-65
REMQTIQ (PALcode) instruction, (II), 2-67
REMQTIQR (PALcode) instruction, (II), 2-70
REMQUEL (PALcode) instruction, (II), 2-72
REMQUEL/D (PALcode) instruction, (II),

2-72
REMQUEQ (PALcode) instruction, (II), 2-74

lndex-18

REMQUEQ!D (PALcode) instruction, (II),
2-74

Representative result, (I), 4-57
Reserved instructions, opcodes for, C-10
Reserved operand, ([), 4-58
RESET_ENV console routine, (NJ, 2-55
RESET_TERM console routine, (NJ, 2-38
Restart-capable (RC) processor state flag,

(NJ, 3-14
RESTORE_TERM console routine, (NJ, 3-32
Result latency, A-5
RET instruction, (I), 4-20
retsys (PALcode) instruction, (Ill), 2-12

PS with, (Ill), 5-2
ROM boot block structure, (NJ, 3-38
ROM bootstrapping, (NJ, 3-38

implementation considerations, (NJ, 3-50
Rounding modes

See Floating-point rounding modes
RPCC (read process cycle counter) instruction,

([), 4-118
RSCC instruction with, (II), 2-18

RS (read and. set) instruction, (I), 4-122
RSCC (PALcode) instruction, (II), 2-17

RPCC instruction with, (II), 2-18
rti (PALcode) instruction, (Ill), 2-13

PS with, (Ill), 5-2
with exceptions, (Ill), 5-1 ,

s
S4ADDL instruction, (I), 4--24
S4ADDQ instruction,([), 4-26
S4SUBL instruction, (I), 4-33
S4SUBQ instruction,([), 4--35
SSADDL instruction, (I), 4--24
SSADDQ instruction, (I), 4-26
SSSUBL instruction, (I), 4--33
S8SUBQ instruction, (I), 4-35
SAVE_ENV console routine, (NJ, 2-56
SAVE_TERM console routine, (NJ, 3-31
SBZ (should be zero), (I), 1-9
sec

See System cycle counter
Secondary processors

at multiprocessor boot, (NJ, 3-20
definition, (NJ, 1-1
modes, (NJ, 3--4

Security holes, (I), 1-7
with UNPREDICTABLE results, ([), 1-8

SegO, mapping of, (Ill), 3-1
Segl, mapping of, (Ill), 3-1
Segment number fields, (II), 3-2
Self-relative longword queue, (II), 2-21

Digital Restricted Distribution

Self-relative quadword queue, (II), 2-26
Sequential read/write, A-10
Serialization, MB instruction with, (I), 4-117
SET_ENV console routine, (IV), 2-58
SET_TERM_CTL console routine, (NJ, 2-39
SET_TERM_INT console routine, (NJ, 2-40
Shared data (multiprocessor), A-7

changed vs. updated datum, (I), 5-5
Shared data structures

atomic update, (I), 5-6
ordering considerations, (I), 5-7
using memory barrier (MB) instruction, (I),

5-8
Shared memory

accessing, (I), 5-10
access sequence, (I), 5-10
defined, (I), 5-10
issue sequence, (I), 5-10

Shift arithmetic instructions, (1), 4-41
Shift logical instructions, (I), 4-40
Single-precision floating-point, (I), 4-64
SLL instruction, (I), 4-40
Software (SW) field, in PS register, (II), 6-6
Software completion bit, (II), 6-13
Software considerations, A-1

See also Performance optimizations
Software interrupt request (SIRR) register

described, (II), 5-20
interrupt arbitration, (II), 6-35
protocol for, (II), 6-19
with interrupts, (II), 6-19

Software interrupts, (II), 6-19
asynchronous system traps (AST), (II),

6-20
protocol between summary and request,

(II), 6-19
recording pending state of, (11), 5-21
request (SIRR) register, (II), 6-19
requesting, (II), 5-20
service routine entry points, (II), 6-29
summary (SISR) register, (II), 6-19
supported levels of, (II), 5-20

Software interrupt summary (SISR) register
described, (II), 5-21
protocol for, (11), 6-19
with interrupts, (II), 6-19

Software traps, generating, (II), 2-10
IS opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

SP
See Stack pointer

SRA instruction, (I), 4-41
SRL instruction, (I), 4-40

Stack alignment, (II), 6-31
Stack alignment (SP _ALIGN)

field in saved PS, (II), 6-6
Stack frames, (II), 6-7; (Ill), 5-3
Stack pointer (SP)

defined, (II), 1-1; (Ill), 1-4
register linkage for, (Ill), 1-1

Index

Stack pointer internal processor registers,
(II), 5-1

Starvation, (I), 8-4
STATUS field (mailbox), (I), 8-6
STF instruction, (I), 4-73

when data is unaligned, (II), 6-28
STG instruction, (I), 4-7 4

when data is unaligned, (II), 6-28
STL instruction, (I), 4-13

when data is unaligned, (II), 6-28
STL_ C instruction, (I), 4-11

when data is unaligned, (II), 6-28
with LDx_L instruction, (I), 4-11
with processor lock register/flag, (I), 4-11

Store instructions
See also Floating-point store instructions
emulation of, (I), 4-2
FETCH instruction, (I), 4-115
multiprocessor environment, (1), 5-5
serialization, (I), 4-117
store longword, (I), 4-13
store longword conditional, (I), 4-11
store quadword, (I), 4-13
store quadword conditional, (I), 4-11
store unaligned quadword, (I), 4-14
when data is unaligned, (II), 6-28

Store memory integer instructions (list), (I),
4-4

STQ instruction, (I), 4-13
when data is unaligned, (II), 6-28

STQP (PALcode) instruction, (II), 2-88
STQ_ C instruction, (I), 4-11

use in accessing MBPR, (I), 8-3, 8-15
with LDx_L inst., (I), 4-11
with processor lock register/flag, (I), 4-11

STQ_L instruction
when data is unaligned, (II), 6-28

STQ_U instruction, (I), 4-14
STS instruction, (I), 4-7 5

when data is unaligned, (II), 6-28
STT instruction, (I), 4-76

when data is unaligned, (II), 6-28
SUBF instruction, (I), 4-109
SUBG instruction, (I), 4-109
SUBL instruction, (I), 4-32
SUBQ instruction, (I), 4-34
SUBS instruction, (I), 4-111

lndex-19

Digital Restricted Distribution

Index

SUBT instruction, (I), 4-111
Subtract instructions

See also Floating-point operate
subtract longword, (I), 4-32
subtract quadword, (I), 4-34
subtract scaled longword, (I), 4-33
subtract scaled quadword, (I), 4-35

Supervisor read enable (SRE), bit in PTE,
(II), 3-6

Supervisor stack pointer (SSP)
as internal processor register, (II), 5--1
in HWPCB, (II), 4-2

Supervisor stack pointer (SSP) register, (II),
5--28

Supervisor write enable (SWE), bit in PTE,
(II), 3-6

SWASTEN (PALcode) instruction, (II), 2--19
interrupt arbitration, (II), 6-36
with ASTEN register, (II), 5--6

swc bit
exception summary parameter, (II), 6-13
exception summary register, (Ill), 5--2, 5--4

swpctx (PALcode) instruction, (Ill), 2--14
PCB with, (Ill), 4-1
with ASNs, (Ill), 3-8

SWPCTX (PALcode) instruction, (II), 2--89
with ASTSR register, (II), 5--8

swpipl (PALcode) instruction, (Ill), 2--16
PS with, (Ill), 5--2

Synchronous traps, (Ill), 5--2
data alignment, (II), 6-15
defined, (II), 6-9
program counter (PC) value, (II), 6-15
REI instruction with, (II), 6-15

System call entry (entSys) register, (Ill), 1-3,
5--4, 5--8

System control block (SCB)
arithmetic trap entry points, (II), 6-27
fault entry points, (II), 6-27
finding PFN, (II), 5--19
saved on stack frame, (II), 6-7
structure of, (II), 6-26
with memory management faults, (II),

3-14
System control block base (SCBB) register,

(II), 5--19
System crash, requesting, (NJ, 3-27
System cycle counter (SCC), reading, (II),

2--17
System entry addresses, (Ill), 5--3
System initialization; (NJ, 3-4
System restarts, (NJ, 3-25

error halt and recovery, (NJ, 3-26
forcing console 1/0 mode, (NJ, 3-32

lndex-20

System restarts (cont'd)
powerfail and recovery (multiprocessor),

(NJ, 3-25
powerfail and recovery (split), (NJ, 3-26
powerfail and recovery (uniprocessor), (NJ,

3-25
powerfail and recovery (united), (NJ, 3-25
primary switching, (NJ, 3-28
requesting a crash, (NJ, 3-27
RESTORE_TERM routine, (NJ, 3-32
restoring terminal state, (NJ, 3-30
SAVE_TERM routine, (NJ, 3-31
saving terminal state, (NJ, 3-30

System value (sysvalue) register, (Ill), 1-4
S_floating data type

T

alignment of, (I), 2--8
compared to F _floating, (I), 2-8
exceptions, (I), 2--8
format, (I), 2--8
mapping, (1), 2--8
MAX/MIN, (I), 4-58
operations, (I), 4-64
when data is unaligned, (II), 6-28

TB
See Translation buffer

tbi (PALcode) instruction, (Ill), 2--17
with TBs, (Ill), 3-8

Tightly coupled 1/0 bus, (I), 8-1
Timeout, (I), 8-4
Timing considerations, atomic sequences,

A-17
Translation

physical, (Ill), 3--6
virtual, (Ill), 3-7

Translation buffer (TB), (Ill), 3--8
address space number with, (II), 3-11
fault on execute, (II), 6-12
fault on read, (II), 6-11
fault on write, (II), 6-11
granularity hint in PTE, (II), 3--5
hint block in HWRPB, (NJ, 2--10
with invalid PTEs, (II), 3-12

Translation buffer check (TBCHK) register
described, (II), 5--22
with translation buffer, (II), 3-12

Translation buffer hint block, (NJ, 2--10
Translation buffer invalidate all (TBIA)

register
described, (II), 5--24
with translation buffer, (II), 3-12

Translation buffer invalidate all process
(TBIAP) register -

described, (II), 5--25

Digital Restricted Distribution

Translation buffer invalidate all process
(TBl.AP) register (cont'd)

with translation buffer, (II), 3-12
Translation buffer invalidate single (TBIS)

register
described, (II), 5-26

Translation not valid fault, (II), 6-10
service routine entry point, (II), 6-27

Translation-not-valid fault, (Ill), 3-10
TRAPB (trap barrier) instruction, A-14

described, (I), 4-120
with MT_FPCR, (I), 4-66
with trap shadow, (I), 4-62

Trap handler, with non-finite arithmetic
operands, (1),4-63

Trap handling, IEEE floating-point, B-4
Trap modes

floating-point, (I), 4-60
IEEE, ([), 4-61
IEEE convert-to-integer, (I), 4-61
VAX, (I), 4-60
VAX convert-to-integer, (I), 4-61

Traps
See Arithmetic traps

Trap shadow, (Ill), 5-2
defined, ([), 4-62
defined for floating-point, ([), 4-58
trap handler requirement for, (I), 4-62

Trigger instruction, (Ill), 5-2
True result, (I), 4-57
True zero, (I), 4-57
TTY_DEV variable, (N), 2-24
T_floating data type

u

alignment of, (I), 2-10
exceptions, (I), 2-10
format, (I), 2-9
MAX/MIN, (I), 4-59
when data is unaligned, (11), 6-28

UMULH instruction, (I), 4-31
with MULQ, ([), 4-30

Unaligned access fault
system entry for, (Ill), 5-4

UNALIGNED data objects, (I), 1-9
Unaligned fault entry (entUna) register, (Ill),

1-3, 5-8
Unconditional long jump, (I), 4-21
UNDEFINED operations, (I), 1-7
Underflow trap, (II), 6-15; (Ill), 5-5
UNF bit

exception summary parameter, (II), 6-13
exception summary register, (Ill), 5-5

Index

UNORDERED memory references, (I), 5-9
UNPREDICTABLE results, ([), 1-7
Unprivileged PALcode instructions

VAX compatibility, (II), 2-75
Unprivileged PALcode instructions (list), (Ill),

2-1
/U opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, ([), 4-61

Updated datum,([), 5-5
User mode, protection code with, (Ill), 3-6
User read enable (URE)

bit in PTE, (II), 3-6; (Ill), 3-4
User stack pointer (USP)

defined, (Ill), 1-4
in HWPCB, (II), 4-2
internal processor register, (11), 5-1

User stack pointer (USP) register, (II), 5-29
User write enable (UWE)

bit in PTE, (II), 3-6; (Ill), 3-4

v
Valid (V)

bit in PTE, (II), 3-4; (Ill), 3-5
vaSize, (Ill), 1-2
VAX compatibility instructions, restrictions

for, (!), 4-121
VAX compatibility register, (I), 3-2
VAX convert-to-integer trap mode, ([), 4-61
VAX floating-point

See also Floating-point instructions
D_floating, ([), 2-6
F _floating, (I), 2-3
G_floating, (I), 2-5
trap modes, ([), 4-62

VAX floating-point instructions
add instructions, ([), 4-88
compare instructions, (I), 4-91
convert from integer instructions, ([), 4-95
convert to integer instructions, (I), 4-94
convert VAX floating format instructions,

(1),4-96
divide instructions, ([), 4-102
multiply instructions, ([), 4-106
opcodes for, C-5
operate instructions, (I), 4-80
qualifiers, summarized, C-5
subtract instructions, (I), 4-109

VAX rounding modes, (I), 4-59
VAX trap modes, required instruction

notation, (I), 4-61
Virtual address format, (II), 3-2

segment number fields, (II), 3-2

lndex-21

Digital Restricted Distribution

Index

Virtual address space
minimum and maximum, (II), 3-2
page size with, (II), 3-1

Virt'lial address spaces, (Ill), 3-1
Virtual address translation, (II), 3-10
Virtual D-cache, (I), 5-3

maintaining coherency of, (I), 5-3
Virtual format, (Ill), 3-2
Virtual I-cache, (I), 5-3

maintaining coherency of, (I), 5-5
Virtual machine monitor (VMM), bit in PS

register, (II), 6-6
Virtual page base (VPTB) register, (11),. 5-30
Virtual page table pointer (VPTPI'R), (Ill),

1-4
N opcode qualifier

IEEE floating-point, (I), ~1
VAX floating-point, (I), ~1

w
Warm bootstrapping, (IV), 3-18
Watchpoints

with fault on read, (II), 6-11
with fault on write, (II), 6-11

WDATA field (mailbox), (I), S-6
W field (mailbox), (I), 8-5
Whami, (Ill), 1-4
whami (PALcode) instruction, (Ill), 2-18
Who-Am-I (WHAMI) register, (II), 5-31
WHO_ARE_YOU command, (1), 8-13, D-4
Word data type, (I), 2-1
wrent (PALcode) instruction, (Ill), 2-19
wrfen (PALcode) instruction, (Ill), 2-21
Write-back caches, requirements for, (I), 5-4
Write buffers, requirements for, (I), 5-4
WRITE console routine, (IV), 2-51
WRITE_UNQ (PALcode) instruction, (11),

2-82
wrkgp (PALcode) instruction, (Ill), 2-22
wrunique (PALcode) instruction, (Ill), 2-7

PCB with, (111), 4-1
required recognition of, (I), 6-4

WRUNIQUE (PALcode) instruction
required recognition of, (I), 6-4

wrusp (PALcode) instruction, (Ill), 2-23
PCB with, (Ill), 4-1

wrval (PALcode) instruction, (Ill), 2-24
wrvptptr (PALcode) instruction, (111), 2-25
WR_PS_SW (PALcode) inst., (II), 2-20

x
XMI CMD field, D-4
XOR instruction, (I), 4-37

lndex-22

z
ZAP instruction, (I), 4-55
ZAPNOT instruction, (I), 4-55
Zero byte instructions (list), (I), 4-55

Digital Restricted Distribution

