
mamaoma

Migrating an Application from
OpenVMS VAX to OpenVMS Alpha

Migrating an Application from
Open VMS VAX to Open VMS Alpha
Order Number: AA-QSBKA-TE

December 1995

This manual describes how to create an Open VMS Alpha version of an
Open VMS VAX application.

Revision/Update Information: This is a new manual.

Software Version: Open VMS Alpha Version 7 .0
Open VMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1995. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ALL-IN-1, AXP, Bookreader,
CDD/Plus, CDD/Repository, CI, DDIF, DEC, DEC Ada, DEC COBOL, DEC Fortran, DECdirect,
DECforms, DECmigrate, DECnet, DECset, DECwindows, DEC Pascal, Digital, Digital UNIX,
OpenVMS, PATHWORKS, PDP-11, RdbNMS, SPM, TURBOchannel, ULTRIX, VAX, VAX 6000,
VAX Ada, VAX C, VAX COBOL, VAX DBMS, VAX DOCUMENT, VAX FORTRAN, VAX MACRO,
VAX Pascal, VAXft, VAXstation, VMS, VMScluster, XMI, XUI, and the DIGITAL logo.

Futurebus/Plus is a registered trademark of Force Computers GmbH, Fed. Rep. of Germany.

IEEE is· a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

INGRES is a registered trademark of Ingres Corporation.

Motif is a registered trademark of Open Soft.ware Foundation, Incorporated.

ORACLE is a registered trademark of the Oracle Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd.

ZK6459

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xi

1 Overview of the Migration Process

1.1
1.2
1.2.1
1.3
1.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.7

Compatibility of VAX and Alpha Systems
Differences Between the VAX and Alpha Architectures

User-Written Device Drivers
Migration Process .. .
How to Assess the Portability of an Application
Migration Paths .. .
Migration Support from Digital

Migration Assessment Service
Application Migration Detailed Analysis and Design Service
System Migration Detailed Analysis and Design Service
Application Migration Service
System Migration Service

Migration 'lraining .. .

Part I ·Planning for Migration

2 Selecting a Migration Method

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.3
2.5.4
2.5.5
2.5.5.1
2.5.5.2
2.5.6

Taking Inventory
How to Select a Migration Method
Which Migration Methods are Possible?
Coding Practices That Affect Recompilation

VAX MACRO Assembly Language
Privileged Code .
Features Specific to the VAX Architecture

Identifying Dependencies on the VAX Architecture in Your Application .. .
Performance Issues

Data Alignment
Data 'l'ypes .

Protection of Shared Data
Modifying Data in Memory
Reading or Writing Data Smaller Than a Quadword
Page Size Considerations .
Order of Read/Write Operations on Multiprocessor Systems

Immediacy of Arithmetic Exception Reporting
Explicit Reliance on the VAX Procedure Calling Standard
Explicit Reliance on VAX Exception-Handling Mechanisms

Establishing a Dynamic Condition Handler
Accessing Data in the Signal and Mechanism Arrays

Modification of the VAX AST Parameter List

1-1
1-4
1-6
1-7
1-7
1-8

1-:-10
1-10
1-10
1-10
1-10
1-10
1-11

2-1
2-2
2-3
2-5
2-6
2-6
2-7
2-7
2-9
2-9

2-10
2-11
2-11 .I

2-12
2-13
2-14
2-15
2-16
2-16
2-17
2-17
2-18

iii

2.5.7

2.5.8
2.6
2.7
2.7.1
2.7.2

Explicit Dependency on the Form and Behavior of VAX
Instructions .
Generation of VAX Instructions at Run Time

Identifying Incompatibilities Between VAX and Alpha Systems
Deciding Whether to Recompile or Translate

Translating Your Application
Combining Native and Translated Images , ..

3 Sample Migration Plan

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.4.1
3.6.4.2
3.6.4.3

Executive Summary
Technical Analysis .

Application Characteristics
Software Architecture
Results of Image Analysis
Results of Source Analysis

Milestones and Deliverables .
Technical Approach

Line Mode Prompt
Image Bridge
Floating-Point Format Decision
Full Omega-1 Exception Handling
Begin Code Generator Implementation
Build Applications
Test Code Generator
Test Complete Application
DECwindows Motif User Interface
Omega Quality Assurance and Field Test

Dependencies and Risks '. .. .
Resource Requirements

Hardware .. .
On-Site Training .. .
Telephone Support
Testing Assistance .

Testing the Code Generator
Testing Applications .
Omega Quality Assurance

Part II Migrating the Application

4 Migrating Your Application

iv

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.2
4.2.2.1

4.3

Setting Up the Migration Environment
Hardware .. .
Software

Converting Your Application
Recompiling and Relinking

Native Alpha Compilers
VAX MACR0-32 Compiler for Open VMS Alpha
Other Development Tools

Translating .. .
VAX Environment Software Translator (VEST) and Translated
Image Environment (TIE)

Debugging and Testing the Migrated Application

2-18
2-18
2-18
2-20
2-23
2-24

3-1
3-2
3-2
3-2
3-3
3-4
3-6
3-6
3--q
3-7
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9

3-10
3-10
3-10
3-10
3-10
3-10
3-11

4-1
4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-6

4-7
4-8

4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2
4.3.2.1
4.3.2.2
4.3.3
4.3.3.1
4.3.3.2
4.3.4
4.4

Debugging
Debugging with the Open VMS Debugger
Debugging with the Delta Debugger
Debugging with the Open VMS Alpha System-Code Debugger

Analyzing System Crashes
System Dump Analyzer
Crash Log Utility Extractor

Testing .. .
V.AX... Tests
Alpha Tests

Uncovering Latent Bugs
Integrating the Migrated Application into a Software System

5 Recompiling and Relinking Overview

5.1
5.2
5.3
5.4

5.5

Overview
Recompiling Your Application with Native Alpha Compilers
Relinking Your Application on an Alpha System
Compatibility Between the Mathematics Libraries Available on V.AX... and
Alpha Systems
Determining the Host Architecture

6 Adapting Applications to a Larger Page Size

6.1
6.1.1
6.1.2

6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5

Overview
Compatibility Features
Summary of Memory Management Routines with Potential Page-Size
Dependencies

Examining Memory Allocation Routines
Allocating Memory in Expanded Virtual Address Space
Allocating Memory in Existing Virtual Address Space
Deleting Virtual Memory

Examining Memory Mapping Routines
Mapping into Expanded Virtual Address Space
Mapping a Single Page to a Specific Location
Mapping into a Defined Address Range .. '.
Mapping from an Offset into a Section File

Obtaining the Page Size at Run Time
Locking Memory in the Working Set ,

7 Preserving the Integrity of Shared Data

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.3
7.4

Overview
V.AX... Architectural Features That Guarantee Atomicity
Alpha Compatibility Features

Uncovering Atomicity Assumptions in Your Application
Protecting Explicitly Shared Data
Protecting Unintentionally Shared Data

Synchronizing Read/Write Operations
Ensuring Atomicity in Translated Images

4-8
4-9

4-10
4-10
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-13

5-1
5-1
5-2

5-4
5-4

6-1
6-1

6-2
6-6
6-6
6-8
6-9

6-10
6-10
6-12
6-13
6-19
6-20
6-21

7-1
7-2
7-3
7-3
7-5
7-8
7-9

7-10

v

8 Checking the Portability of Application Data Declarations

8.1
8.2
8.3
8.3.1
8.3.2

Overview
Checking for Dependence on a VAX Data Type
Examining Assumptions About Data-Type Selection

Effect of Data-Type Selection on Code Size
Effect of Data-Type Selection on Performance

9 Examining the Condition-Handling Code in Your Application

9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.5

Overview
Establishing Dynamic Condition Handlers
Examining Condition-Handling Routines for Dependencies
Identifying Exception Conditions

Testing for Arithmetic Exceptions on Alpha Systems
Testing for Data-Alignment Traps

Performing Other Tasks Associated with Condition Handling

10 Translating Applications

10.1 DECmigrate for OpenVMS Alpha
10.2 DECmigrate: Translated Image Support
10.3 Translated Image Environment (TIE)
10.3.1 Problems and Restrictions ,
10.3.1.1 Condition Handler Restriction
10.3.1 .2 Exception Handler Restrictions
10.3.1.3 Floating-Point Restrictions
10.3.1.4 Interoperability Restrictions
10.3.1.5 VAX C: Translated Program Restrictions
10.4 Translated Image Support
10.5 Translated Run-Time Libraries
10.5.1 CRF$FREE_ VM and CRF$GET_ VM: Translated Callers
10.6 Translated VAX C Run-Time Library
10.6.1 Problems and Restrictions
10.6.1.1 Functional Restrictions
10.6.1 .2 Interoperability Restrictions
10. 7 Translated VAX COBOL Programs
10.7.1 Problems and Restrictions

11 Ensuring Interoperability Between Native and Translated Images

vi

11.1
11.1.1

11.1.2

11.2
11.3
11.3.1
11.3.2

Overview
Compiling Native Images That Can Interoperate with Translated
Images .. .
Linking Native Images That Can Interoperate with Translated
Images .. .

Creating a Native Image That Can Call a Translated Image
Creating a Native Image That Can Be Called by a Translated Image

Controlling Symbol Vector Layout
Creating Stub Images

8-1
8-1
8-4
8-4
8-4

9-1
9-1
9-2
9-6
9-8

9-10
9-11

10-1
10-2
10-2
10-4
10-4
10-4
10-4
10-5
10-5
10-6

10-10
10-11
10-11
10-11
10-11
10-12
10-12
10-12

11-1

11-1

11-2
11-2
11-5
11-6
11-8

Part Ill Layered Products

12 OpenVMS Alpha Compilers
12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.2
12.2.1
12.2.2
12.2.2.1
12.2.3
12.2.3.1
12.2.3.2

Compatibility of DEC Ada Between Alpha Systems and VAX Systems
Differences in Data Representation and Alignment
Tasking Differences .
Differences in Language Pragmas
Differences in the SYSTEM Package
Differences Between Other Language Packages
Changes to Predefined Instantiations

Compatibility of DEC C for Open VMS Alpha Systems with VAX C

12.2.3.3
12.2.4

12.2.4.1
12.2.4.2
12.2.4.3
12.2.4.4
12.2.5

Language Modes .. .
DEC C for Open VMS Alpha Systems Data-Type Mappings

Specifying Floating-Point Mapping
Built-in Functions That Access Alpha Instructions

Accessing Alpha Instructions
Accessing Alpha Privileged Architecture Library (PALcode)
Instructions .
Ensuring the Atomicity of Combined Operations

Differences Between the VAX C and DEC C for Open VMS Alpha
Systems Compilers

Controlling Data Alignment
Accessing Argument Lists
Synchronizing Exceptions .
Dynamic Condition Handlers

SYS$STARLET_C.TLB: Functionally Equivalent to
STARLETSD.TLB
VAX C Features Not Supported by /STANDARD=VAXC Mode 12.2.6

12.3
12.3.1
12.3.1.1
12.3.1.2
12.3.1.3
12.3.2
12.3.2.1

Compatibility of DEC COBOL with VAX COBOL

12.3.2.1.1
12.3.2.1.2
12.3.2.2

12.3.2.3

12.3.2.4

12.3.2.5

12.3.2.6

12.3.2.7

12.3.2.7.1
12.3.2.7.2

Command Line Qualifiers
Qualifiers Shared by DEC COBOL and VAX COBOL
DEC COBOL Qualifiers Not Available in VAX COBOL
VAX COBOL Qualifiers Not Available in DEC COBOL

Behavior Differences .
Specifying Alignment for Numeric Data Items with the DEC
COBOL /ALIGNMENT Qualifier and Alignment Directives

Using the /ALIGNMENT Qualifier
Using Alignment Directives

Validating Numeric Data with the DEC COBOL
/CHECK=NODECIMAL Qualifier Option
Converting Leading Blanks to Zeros with the DEC COBOL
/CONVERT=LEADING_BLANKS Qualifier Option
Specifying a Floating-Point Data Format with the DEC COBOL
/FLOAT Qualifier
Optimizing Your Code with the DEC COBOL /OPTIMIZE
Qualifier .. .
Checking for Special Reserved Words with the DEC COBOL
/RESERVED_ WORDS Qualifier
Calling Out Language Feature Extensions to the COBOL ANSI
Standard with the DEC COBOL /STANDARD Qualifier

/STANDARD= V3 Qualifier Option
/STANDARD and /WARNINGS Qualifiers

12-1
12-2
12-2
12-2
12-3
12-4
12-4
12-4
12-4
12-5
12-5
12-6
12-6

12-6
12-6

12-7
12-7
12-7
12-8
12-8

12-8
12-9

12-10
12-11
12-11
12-12
12-13
12-13

12-14
12-14
12-15

12-15

12-15

12-16

12-1e

12-16

12-17
12-17
12-19

vii

12.3.2.8 Calling Native and Translated Images with the DEC COBOL /TIE
Qualifier .. .

12.3.2.9 VAX COBOL to DEC COBOL Program Conversion
12.3.2.10 Program Structure
12.3.2.11 COPY and REPLACE Statements
12.3.2.12 MOVE Statement
12.3.2.13 ACCEPT and DISPLAY Statements
12.3.2.14 LINAGE Statement
12.3.2.15 File Status Differences
12.3.2.16 System Return Codes
12.3.2.17 Storage Differences for Double-Precision Data Items
12.3.2.18 RMS Special Registers
12.4 Compatibility of Digital Fortran for Open VMS Alpha with VAX

FORTRAN .. .
12.4.1
12.4.1.1

12.4.1.2

12.4.1.3
12.4.2
12.4.2.1
12.4.2.2
12.4.3
12.4.4
12.5

Language Features
Language Features Specific to Digital Fortran for Open VMS
Alpha .. .
Language Features Specific to DEC Fortran for Open VMS VAX
Systems .. .
Interpretation Differences .

Command Line Qualifiers
Qualifiers Specific to Digital Fortran for Open VMS Alpha
Qualifiers Specific to DEC Fortran for Open VMS VAX Systems ..

Interoperability with Translated Shared Images
Porting DEC Fortran for Open VMS VAX Systems Data

Compatibility of DEC Pascal for Open VMS Alpha Systems with VAX
Pascal

12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6
12.5.6.1
12.5.6.2
12.5.6.3

New Features of DEC Pascal
Establishing Dynamic Condition Handlers ·
Modifying Default Alignment Rules for Record Fields
Recommended Use of Predeclared Identifiers
Platform-Dependent Features
Obsolete Features

/OLD_ VERSION Qualifier
/G_FLOATING Qualifier
OVERLAID Attribute

A Application Evaluation Checklist

Glossary

Index

Examples

5-1
6-1
6-2
6-3
6-4
6-5

viii

Using the ARCH_TYPE Keyword to Determine Architecture Type .. .
Allocating Memory by Expanding Your Virtual Address Space
Allocating Memory in Existing Address Space
Mapping a Section into Expanded Virtual Address Space
Mapping a Section into a Defined Area of Virtual Address Space
Source Code Changes Required to Run Example 6-4 on an Alpha
System .. .

12-20
12-20
12-20
12-21
12-24
12-25
12-25
12-26
12-26
12-27
12-27

12-28
12-28

12-29

12-30
12-31
12-32
12-32
12-33
12-34
12-35

12-35
12-36
12-37
12-37
12-37
12-38
12-38
12-38
12-39
12-39

5-5
6-8
6-9

6-11
6-15

6-17

6-6

7-1
7-2
8-1
9-1
9-2
11-1
11-2

Figures

1-1
2-1
3-1
4-1
6-1
6-2
7-1
7-2
7-3
8-1
8-2
9-1
9-2
9-3
9-4

Tables

1-1
2-1
2-2
2-3

3-1
3-2
3-3
3-4
4-1
5-1

5-2
5-3
6-1

6-2
8-1

Using the $GETSYI System Service to Obtain the CPU-Specific Page
Size .. .
Atomicity Assumptions in a Program with an AST Thread
Version of Example 7-1 with Synchronization Assumptions
Assumptions About Data Types in VAX C Code
Condition-Handling Routine
Sample Condition-Handling Program
Source Code for Main Program (MYMAIN.C)
Source Code for Shareable Image (MYMATH.C)

Methods for Moving VAX Applications to an Alpha System
Migrating a Program
Layer Structure of Omega-1
Migration Environments and Tools
Virtual Address Layout
Effect of Address Range on Mapping from an Offset
Synchronization Decision Tree .
Atomicity Assumptions in Example 7-1
Order of Read and Write Operations on an Alpha System
Alignment of mystruct Using VAX C
Alignment of mystruct Using DEC C for Open VMS Alpha Systems ..
32-Bit Signal Array on VAX and Alpha Systems
Mechanism Array on VAX and Alpha Systems
SS$_HPARITH Exception Signal Array
SS$_ALIGN Exception Signal Array

Comparison of Alpha and VAX Architectures
Floating-Point Data Type Support
Migration Path Comparison
Choice of Migration Method: Dealing with Architectural.
Dependencies
Image Analysis Results
Milestones and Deliverables .
Omega Optional Product Dependencies ~
Summary of Digital Support
CLUE Differences Between Open VMS VAX and Open VMS Alpha
Linker Qualifiers and Options Specific to Open VMS Alpha
Systems
Linker Options Specific to Open VMS VAX Systems
$GETSYI Item Codes That Specify Host Architecture
Potential Page-Size Dependencies in Memory Management
Routines
Potential Page-Size Dependencies in Run-Time Library Routines
Comparison of VAX and Alpha Native Data Types

6-20
7-5
7-7
8-3
9-6

9-13
11-3
11-3

1-9
2-4
3-3
4-3
6-7

6-20
7-4
7-6

7-10
8-6
8-6
9-3
9-4
9-9

9-11

1-5
2-7

2-20

2-22
3-4
3-6
3-9
3-9

4-12

5-2
5-4
5-5

6-2
6-6
8-2

ix

x

9-1
9-2
9-3
10-1
10-2
10-3
12-1
12-2

12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10

12-11

12-12
12-13
12-14

Architecture-Specific Hardware Exceptions
Exception Summary Argument Fields
Run-Time Library Condition-Handling Support Routines
Support for Translated Images on Open VMS Alpha Versions
Interoperability Documentation ~
Run-Time Library Logical Names
Modes of Operation of the DEC C for Open VMS Alpha Systems
Arithmetic Data-Type Sizes in DEC C for Open VMS Alpha
Compiler .. .
DEC C Floating-Point Mappings
DEC C Compiler Features Specific to Alpha Systems
Atomicity Built-Ins
Qualifiers and Options Shared by DEC COBOL and VAX COBOL .. .
DEC COBOL Qualifiers Not Available in VAX COBOL
VAX COBOL Qualifiers Not Available in DEC COBOL
I/O File Status Codes for the /STANDARD Qualifier
Digital Fortran for Open VMS Alpha Qualifiers Not in DEC Fortran
for Open VMS VAX Systems
DEC Fortran for Open VMS VAX Systems Qualifiers Not in Digital
Fortran for Open VMS Alpha
Floating-Point Data on VAX and Alpha Systems
New Features of DEC Pascal
Recommended Use of Predeclared Identifiers

9-7
9-9

9-12
10-2
10-3

10-11
12-4

12-5
12-6
12-6
12-7

12-11
12-12
12-13
12-18

12-32

12-34
12-35
12-36
12-37

Preface

Migrating an Application from Open VMS VAX to Open VMS Alpha is designed to
assist developers in moving Open VMS VAX applications to an Open VMS Alpha
system or a Mixed-Architecture cluster. The manual consists of the following
chapters:

• Chapter 1 provides an overview of the relationship of Open VMS and the VAX
and Alpha architectures, and of the process of migrating an application from
a VAX to an Alpha system. It includes information on the following:

• Areas in which Open VMS Alpha is highly compatible with Open VMS VAX

• Comparison of the Alpha architecture with other RISC architectures and
with the VAX architecture

• Overview of the stages in the migration process

• The two main migration paths-recompiling source code and translating
VAX images

• Migration support available from Digital

• Chapter 2 considers the differences between the two main migration paths
and the issues involved in choosing which path to take in migrating your
application. It also describes how to analyze the individual parts of your
application to identify architectural differences that affect migration and how
to assess what is involved in resolving those differences.

• Chapter 3 contains a sample migration plan.

• Chapter 4 describes the steps in the actual migration, from setting up your
migration environment to integrating the migrated application into a new
environment.

• Chapter 5 provides an overview of converting your application by recompiling
and relinking.

• Chapter 6 describes how to handle dependencies your application may have
on the VAX page size.

• Chapter 7 describes how to handle dependencies your application may have
on the synchronization provided by the VAX architecture with regard to data
access by multiple processes.

• Chapter 8 describes the implications of data declarations on an Alpha system,
including alignment concerns.

• Chapter 9 describes how to handle dependencies your application may contain
on the VAX condition-handling facility.

• Chapter 10 discusses translating VAX images to run on Alpha systems.

xi

• Chapter 11 describes how to create native Alpha images that can call and be
called by translated VAX images.

• Chapter 12 contains brief summaries of the new and changed features
supported by the Ada, C, COBOL, FORTRAN, and Pascal programming
languages on Alpha systems.

• Appendix A contains a checklist that you can use to evaluate your application
for migration from Open VMS VAX to Open VMS Alpha.

Intended Audience
This manual is intended for experienced software engineers responsible for
migrating application code written in high- or mid-level programming languages.

Related Documents

xii

This manual is part of a set of manuals that describes various aspects of
migrating from Open VMS VAX to Open VMS Alpha systems. The other manuals
in this set are as follows:

• Migrating an Environment from Open VMS VAX to Open VMS Alpha describes
how to migrate a computing environment from an Open VMS VAX system to
an Open VMS Alpha system or a Mixed-Architecture Cluster. It provides an
overview of the VAX to Alpha migration process and describes the differences
in system and network management on VAX and Alpha computers.

• Porting VAX MACRO Code from Open VMS VAX to Open VMS Alpha describes
how to port VAX MACRO code to an Alpha system using the MACR0-32
compiler for Open VMS Alpha. It describes the features of the compiler,
presents a methodology for porting VAX MACRO code, identifies nonportable
coding practices, and recommends alternatives to such practices. The manual
also provides a reference section with detailed descriptions of the compiler's
qualifiers, directives, and built-ins, and the system macros created for porting
to Alpha systems.

In addition, the DECmigrate for Open VMS AXP Systems Translating Images
manual describes the VAX Environment Software Translator (VEST) utility.
This manual is distributed with the optional layered product, DECmigrate for
Open VMS Alpha, which supports the migration of Open VMS VAX applications
to Open VMS Alpha systems. The manual describes how to use VEST to convert
most user-mode VAX images to translated images that can run on Alpha systems;
how to improve the run-time performance of translated images; how to use VEST
to trace Alpha incompatibilities in a VAX image back to the original source files;
and how to use VEST to support compatibility among native and translated
run-time libraries. The manual also includes complete VEST command reference
information.

For additional information on Open VMS products and services, access the Digital
Open VMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader's Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

openvmsdoc@zko.mts.dec.com Internet

Fax

Mail

603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Open VMS Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders ,

Location

U.S.A.

Puerto Rico

Canada

International

Internal Orders

Conventions

Call

DECdirect
800-DIGITAL
800-344-4825

809-781-0505

800-267-6215

DTN: 264-4446
603-884-4446

Fax

Fax:800-234-2298

Fax:809-749-8300

Fax:613-592-1946

Fax:603-884-3960

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street, Suite 200
P.O. Box 11038
Metro Office Park
San Juan, Puerto Rico 00910-2138

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

ZK-7654A-GE

The name of the Open VMS AXP operating system has been changed to Open VMS
Alpha. Any references to Open VMS AXP or AXP are synonymous with Open VMS
Alpha or Alpha.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for Open VMS software.

The following conventions are also used in this manual:

xiii

Ctrl/x

()

[]

{ }

boldface text

italic text

UPPERCASE TEXT

Monospace type

numbers

xiv

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.) ·

Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the choices.
(Brackets are not optional, however, in the syntax of a directory
name in an Open VMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the book.

Italic text emphasizes important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (IPRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Non decimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

1
Overview of the Migration Process

For many applications, migrating from OpenVMS VAX to Open VMS Alpha is
straightforward. If your application runs only in user mode and is written in
a standard high-level language, you most likely can recompile it with a native
Alpha compiler and relink it to produce a version that runs successfully on an
Alpha system. This book is intended to help you evaluate your application and to
handle the relatively few cases that are more complicated.

1.1 Compatibility of VAX and Alpha Systems
The Open VMS Alpha operating system is designed to preserve as much
compatibility with the Open VMS VAX user, system management, and
programming environments as possible. For general users and system managers,
Open VMS Alpha has the same interfaces as Open VMS VAX. For programmers,
the goal is to come as close as possible to a "recompile, relink, and run" model for
migration.

Many aspects of an application running on an Open VMS VAX system remain
unchanged on an Alpha system:

User Interface

• DIGITAL Command Language (DCL)

The DIGITAL Command Language (DCL), the standard user interface
to Open VMS, remains essentially unchanged with Open VMS Alpha. All
commands, qualifiers, and lexical functions available on Open VMS VAX also
work on Open VMS Alpha.

• Command Procedures

Command procedures written for earlier versions of Open VMS VAX continue
to work on an Alpha system without change. However, certain command
procedures, such as build procedures, must be changed to accommodate new
compiler qualifiers and linker switches. Linker options files will also require
modification, especially for shareable images.

• DECwindows

The window interface, DECwindows Motif, is unchanged.

• DECforms

The DECforms interface is unchanged.

• Editors
The two standard Open VMS editors, EVE and EDT, are unchanged.

1-1

Overview of the Migration Process
1.1 Compatibility of VAX and Alpha Systems

1-2

System Management Interface

The system management utilities are mostly unchanged. One major exception
is that device configuration functions, which appear in the System Generation
utility (SYSGEN) on VAX systems, are provided in the System Management
utility (SYSMAN) for Open VMS Alpha. For more information, see A
Comparison of System Management on Open VMS AXP and Open VMS VAX.

Programming Interface

In general, the system service and run-time library (RTL) calling interfaces
remain unchanged.1 You do not need to change the definitions of arguments.
The few differences fall into two categories:

• Some system services and RTL routines (such as the memory
management system and exception-handling services) operate somewhat
differently on VAX and Alpha systems. See the Open VMS System Services
Reference Manual and the Book.reader version of the Open VMS RTL
Library (LIB$) Manual for further information.

• A few RTL routines are so closely tied to the VAX architecture that their
presence on an Alpha system would not be meaningful:

Routine Name

LIB$DECODE_FAULT

LIB$DEC_OVER

LIB$ESTABLISH

LIB$FIXUP _FLT

LIB$FLT_UNDER

LIB$INT_OVER

LIB$REVERT

LIB$SIM_TRAP

LIB$TPARSE

Restriction

Decodes VAX instructions.

Applies to VAX Processor Status Longword
(PSL) only.

Similar functionality supported by compilers
on Alpha systems.

Applies to VAX PSL only.

Applies to VAX PSL only.

Applies to VAX PSL only.

Supported by compilers on Alpha systems.

Applies to VAX code.

Requires action routine interface changes.
Replaced by LIB$TABLE_PARSE.

Most VAX images that call these services and routines will work when
translated and run under the Translated Image Environment (TIE) on
OpenVMS Alpha. For more information on TIE, see Section 4.2.2.1 and
DECmigrate for Open VMS AXP Systems Translating Images.

Data

The on-disk format for ODS-2 data files is the same on VAX and Alpha
systems. However, ODS-1 files are not supported on Open VMS Alpha.

Record Management Services (RMS) and file management interfaces are
unchanged.

The IEEE little-endian data types S_floating and T_floating have been added.

1 Effective with Version 7.0, OpenVMS Alpha provides many system services and RTL
routines to support 64-bit addressing. Since these are not available on VAX systems and
are therefore not a VAX-to-Alpha migration issue, they are not discussed in this manual.

Overview of the Migration Process
1.1 Compatibility of VAX and Alpha Systems

Most VAX data types are retained in the Alpha architecture; however,
support for H_floating and full-precision D_floating has been eliminated
from hardware to improve overall system performance.

Alpha hardware converts D _floating data to G_floating for processing. On
VAX systems, D_floating has 56 fraction bits (D56) and 16 decimal digits of
precision. On Alpha systems, D_floating has 53 fraction bits (D53) and 15
decimal digits of precision.

The H_floating and D_floating data types can usually be replaced by G_
floating or one of the IEEE formats. However, if you require H_floating or the
extra precision of D56 (56-bit D_floating), you may have to translate part of
your application.

Databases

Standard Digital databases (such as Oracle Rdb) function the same on VAX
and Alpha systems.

Network Interfaces

VAX and Alpha systems both support the following interfaces:

• Interconnects

Ethernet

- X.25

FDDI

• Protocols

DECnet (Phase IV in Version 7 .O; Phase V in the optional DECnet/OSI
kit)

TCP/IP

OSI

LAD/LAST

LAT (Local Area Transport)

• Peripheral connections

- TURBOchannel

SCSI

Ethernet

CI

DSSI

- XMI

Future bus/Plus

- VME

1-3

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

1.2 Differences Between the VAX and Alpha Architectures

1-4

The VAX architecture is a robust, flexible, complex instruction set computer
(CISC) architecture used across the entire family of VAX systems. The use
of a single, integrated VAX architecture with the Open VMS operating system
permits an application to be developed on a VAXstation, prototyped on a small
VAX system, and put into production on a large VAX processor or run on a
fault-tolerant VAXft processor. The advantage of the VAX system approach is
that it enables individual solutions to be tailored and fitted easily into a larger,
enterprisewide solution. The hardware design of VAX processors is particularly
suitable for high-availability applications, such as dependable applications for
mission-critical business operations and server applications for a wide variety of
distributed client/server environments.

The Alpha architecture implemented by Digital is a high-performance reduced
instruction set computing (RISC) architecture that can provide 64-bit processing
on a single chip. It processes 64-bit virtual and physical addresses and 64-bit
integers and floating-point numbers. The 64-bit capability is especially useful for
applications that require high-performance and very large addressing capacity.
For example, Alpha processors are especially appropriate for graphics or numeric­
intensive software applications such as econometric or weather forecasting that
involve imaging, multimedia, visualization, simulation, and modeling.

The Alpha architecture is designed to be scalable and open. It can be
implemented on a single chip in a palmtop system or with thousands of chips
in a massively parallel supercomputer. The architecture also supports multiple
operating systems, including Open VMS Alpha.

Table 1-1 summarizes some major differences between the Alpha and VAX
architectures.

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

Table 1-1 Comparison of Alpha and VAX Architectures

Alpha VAX

• 64-bit addresses • 32-bit addresses

• 64-bit processing • 32-bit processing

• Multiple operating systems: • One operating system: Open VMS
Open VMS, Digital UNIX, Windows
NT

• Instructions
• Instructions

Some complex
Simple

Variable length
All same length (32 bits)

• Load/store memory access
• Permits combining operations and

memory access in a single instruction

• Severe penalty for unaligned data

• Many registers

• Out-of-order instruction completion

• Deep pipelines and branch prediction

• Large page size (which varies
from 8 KB to 64 KB, depending
on hardware)

•
•
•
•
•

Moderate penalty for unaligned data

Relatively few registers

Instructions completed in order issued

Limited use of pipelines

Smaller page size (512 bytes)

General RISC Characteristics
Some features of the Alpha architecture are typical of newer RISC architectures
in general. The following features are especially important:

• A simplified instruction set

The Alpha architecture uses relatively simple instructions, all of which are 32
bits long. Common instructions require only one clock cycle. Uniformly sized
simple instructions allow a RISC implementation to achieve high performance
goals by adopting techniques such as multiple instruction issue and
optimized instruction scheduling.

• Multiple instruction issue

The earliest Alpha platform issued two instructions per clock cycle. Current
machines (EV5 or higher) issue four instructions per clock cycle.

• A load/store operation model

The Alpha architecture defines 32 64-bit integer registers and 32 64-bit
floating-point registers. Most data manipulation occurs between registers.
Typically, operands are loaded from memory into registers before an
operation; after the operation, the results are stored in memory from a
result register.

Restricting operations to register operands allows the use of a simple, uniform
instruction set. Moreover, the separation of memory access from arithmetic
operations "results in a large performance gain in a system that can fully
exploit pipelining, instruction scheduling, and parallel operational units.

1-5

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

• Elimination of microcode

Because the Alpha architecture does not use microcode, Alpha processors are
saved the time required to fetch microcode instructions from random-access
memory (RAM) in order to execute a machine instruction.

• Out-of-order completion of instructions

The Alpha architecture does not require that instructions always complete
in the order in which they are issued. As a result, an Alpha processor can
improve performance by delaying the reporting of an arithmetic or fioating­
point exception until the execution stream allows the reporting without a
performance penalty.

Alpha Specific Characteristics
Besides these generic RISC characteristics, the Alpha architecture offers features
that promote running migrated VAX applications on an Alpha system. These
features include:

• Hardware support for all VAX data types except packed decimal, H_floating,
and D_floating. (For information on what to do if your application uses
H_fl.oating or D_floating data, see Section 2.5.1.2.)

• Certain privileged architecture 'features, such as four processor modes (user,
supervisor, executive, and kernel), 32 interrupt priority levels (IPLs), and
asynchronous system traps. (ASTs).

• A privileged architecture library (PAL), part of an environment known as
PALcode, that supports the atomic execution of certain VAX operations, srich
as Change Mode (CHMx), Probe (PROBEx), queue instructions, and REI.

The Alpha architecture does not favor a particular operating system. To
accommodate different operating systems, it enables the creation of privileged
architecture library code (PALcode).

Furthermore, certain Open VMS Alpha compilers, such as C and the MACR0-
32 compiler, provide PALcode built-ins that supplement the instructions
available in the Alpha instruction set. For example, the MACR0-32 compiler
provides built-ins that emulate those VAX instructions for which there are no
Alpha equivalents and a built-in that enables you to write your own PALcode.

PALcode can be used to access internal hardware registers and physical
memory. PALcode can provide direct correspondence of physical and virtual
memory. For more information about PALcode, see the Alpha Architecture
Reference Manual.

1.2.1 User-Written Device Drivers

1-6

Formal support for user-written device drivers and a new interface known as
the Step 2 driver interface were introduced in Open VMS AXP Version 6.1. The
Step 2 driver interface supports user-written device drivers in the C programming
language (as well as MACRO and BLISS). It replaced the temporary Step 1 driver
interface that was provided in Open VMS Alpha Versions 1.0 and 1.5.

There is no formal support for writing Open VMS VAX device drivers in C. For
example, Open VMS VAX does not provide .h files for internal Open VMS (lib) data
structures.

The Step 2 driver interface has increased the differences between Open VMS
Alpha and Open VMS VAX device drivers. Device driver source files written in
VAX MACRO or BLISS can be kept common between Open VMS Alpha and VAX
through the use of conditional compilation and user-written macros.

Overview of the Migration Process
1.2 Differences Between the VAX and Alpha Architectures

The advisability of this approach depends greatly on the nature of the individual
driver.2 It is likely that in future versions of Open VMS Alpha, the 1/0 subsystem
will continue to evolve in directions that will have an impact on device drivers.
This could increase the differences between Open VMS Alpha and VAX device
drivers and add more complexity to common driver sources. For this reason,
a fully common driver source file approach might not be advisable for the long
term.

Depending on the individual driver, it might be advisable to partition the driver
into a common module and an architecture-specific one. For example, if one
were writing a device driver that does disk compression, then the compression
algorithm could readily be isolated into an architecture independent module.
One could also avoid operating-system-specific data structures in such common
modules with the intent of having some common modules across various types of
operating systems; for example, Open VMS, Windows NT, and Digital UNIX.

For more information about writing OpenVMS Alpha device drivers in C, see the
Open VMS Alpha Device Support: Developer's Guide.

1.3 Migration Process
The process for converting your VAX programs to run on an Alpha system
includes the following stages:

1. Evaluate the code to be migrated:

• Take inventory of the elements of your application and its environment.
Identify any dependencies on other programs.

• Review code in each element to find potential obstacles to migration.

• Decide on the best method for moving each part of the application to the
Alpha system.

2. Write a migration plan.

3. Set up the migration environment.

4. Migrate your application.

5. Debug and test the migrated application.

6. Integrate the migrated software into a software system.

There are a number of tools and Digital services available to help you migrate
your applications to Open VMS Alpha. These tools are described in the context of
the process described in this manual. The migration services are summarized in
Section 1.6.

1.4 How to Assess the Portability of an Application
The portability of an application depends on the language in which it is written,
the amount of nonstandard code it contains, the number of architectural
dependencies it contains, and whether a compiler is available for the language in
which the application is written. While it is possible to introduce architectural
dependencies in applications written in high-level languages, they are more likely
to occur in applications written in mid- and low-level languages.

2 With OpenVMS Version 7.0, the difference is even greater due to the 64-bit support.

1-7

Overview of the Migration Process
1.4 How to Assess the Portability of an Application

In general, if your application is written in a high-level programming language,
you should be able to run it on an Alpha system with a minimum amount
of effort. High-level languages insulate applications from dependence on the
underlying machine architecture, and, for the most part, the programming
environment on Alpha systems duplicates the programming environment on VAX
systems. Using native Alpha versions of the language compilers and the Linker
utility (linker), you can recompile and relink the source files that make up your
application to produce a native Alpha image.

If your application is written in VAX MACRO, you may be able to run it on an
Alpha system with a minimum amount of effort, although it is more likely to
contain some dependencies on the underlying VAX architecture, some of which
may require your intervention.

Privileged applications, which run in inner modes or at elevated interrupt
priority levels (IPLs), may require significant changes because of assumptions
incorporated in the code about the internal operation of the operating system.
Typically, such applications also require significant changes after a major release
of the Open VMS VAX operating system.

Recently, Digital introduced new versions of several compilers. It is likely that
the applications that you want to move to an Open VMS Alpha system were
compiled using the earlier VAX compilers.

To assess the portability of an application, consider the following:

• The application's dependencies on the VAX architecture

• The differences between the VAX and Alpha language compilers

1.5 Migration Paths

1-8

There are two ways to convert a program to run on an Alpha system:

• Recompiling and relinking, which creates native Alpha images

• Translating, which creates native Alpha images with some routines emulated
under TIE

These two methods are shown in Figure 1-1. Section 2.2 discusses factors to
consider when choosing a migration method.

Recompiling and Relinking
The most effective way to convert a program from Open VMS VAX to Open VMS
Alpha is to recompile the source code using a native Alpha compiler (such as DEC
C or DEC Fortran) and then to relink the resulting object files and any required
shareable images with the Open VMS Linker. This method produces a native
Alpha image that takes full advantage of the speed of the Alpha system.

Translating
Despite differences between VAX and Alpha systems, you can run most user-mode
VAX images without error on an Alpha system by using the VAX Environment
Software Translator (VEST), which is part of the DECmigrate for Open VMS
Alpha layered product. For a list of exceptions, see Section 2.3. This process
provides a higher degree of VAX compatibility than recompiling the sources, but
since the translated image does not provide the same high performance as a
recompiled image, translation is used primarily as a safety net when recompiling

Overview of the Migration Process
1.5 Migration Paths

Figure 1-1 Methods for Moving VAX Applications to an Alpha System

Analyze the
application:
list components,
check for source
availability,
translatability,
and so forth.

Modify
sources if
necessary

Recompile
sources

Relink
objects

--- and
images

Test the
application

Debug the
application

Translate
VAX image

ZK-4988A-GE

is impossible or impractical. For example, translation is used in the following
situations:

• When an appropriate compiler is not yet available for Open VMS Alpha

• When source files are not available

VEST translates the VAX binary image file into a native Alpha image that runs
under the Translated Image Environment (TIE) on an Alpha system. (TIE is a
shareable image that is part of Open VMS Alpha.) Translation does not involve
running a VAX image under emulation or interpretation (with certain limited
exceptions). Instead, the new Alpha image contains Alpha instructions that
perform operations identical to those performed by the instructions in the original
VAX image.

A translated image should run as fast on an Alpha system as the original image
runs on a VAX system. However, since the translated image does not benefit from
the optimizing compilers that take full advantage of the Alpha architecture, it
will typically run only about 25 to 40 percent as fast as a native Alpha image.
Major causes of this reduced performance are unaligned data and extensive use
of complex VAX instructions.

For more information on image translation and VEST, see Section 4.2.2.1 and
DECmigrate for OpenVMS AXP Systems Translating Images.

Mixing Native Alpha and Translated Images
You can mix migration methods among the individual images that comprise
an application. An application can also be partially translated as one stage
in a migration: this allows the application to run and to be tested on Alpha
hardware before being completely recompiled. For more information about
interoperability of native Alpha and translated VAX images within an application,
see Section 2.7.2.

1-9

Overview of the Migration Process
1.6 Migration Support from Digital

1.6 Migration Support from Digital
Digital offers a variety of services to help you migrate your applications to
Open VMS Alpha.

Digital customizes the level of service to meet your needs. The VAX to Alpha
migration services available include the following:

• Migration Assessment

• Application Migration Detailed Analysis and Design

• System Migration Detailed Analysis and Design

• Application Migration

• System Migration

To determine which services are appropriate for you, contact your Digital account
representative or authorized reseller, or the Digital Systems integration Business
Development Manager for your region (AP, Americas, Europe). Call 800-832-6277
(within the United States) or 603-884-8990 (outside the United States).

1.6.1 Migration Assessment Service
The Migration Assessment service assesses the VAX system and application
environment to be migrated to the Alpha platform. The objectives of the
migration are reviewed and a complete current state configuration is completed.
The desired end state is determined and risks and constraints are identified.
Finally, several migration scenarios are developed.

1.6.2 Application Migration Detailed Analysis and Design Service
The Application Migration Detailed Analysis and Design service does a detailed
analysis of an in-house developed application, creating a report of all VAX
dependencies within all modules and recommendations as to what modifications
should be made to migrate the application to Alpha. Acceptance criteria is
specified for performance and functionality.

1.6.3 System Migration Detailed Analysis and Design Service
The System Migration Detailed Analysis and Design service performs a detailed
analysis of the current system environment which includes hardware, software
(Digital and third party, excluding in-house developed applications) and network
components. The best tools and migration methods are determined and a project
plan, which maps the steps from the current to the future state, is created.

1.6.4 Application Migration Service
The Application Migration service migrates an in-house developed application
from an Open VMS VAX platform to an Alpha platform. Each code module is
either recompiled or translated depending on source code availability. VAX
dependencies are removed beforehand. Finally the entire application is relinked
and tested on the Alpha platform. The application is then deployed on the target
system(s).

1.6.5 System Migration Service

1-10

The System Migration service migrates an Open VMS system (single node or
cluster) from the VAX platform to the Alpha platform. The customer's system
availability and performance requirements are reviewed and acceptance testing
methodology and criteria are determined.

1.7 Migration Training

Overview of the Migration Process
1. 7 Migration Training

Digital Customer Training offers several seminars and courses to provide
migration training to third-party application developers and end users. The first
course in the following list is designed for technical or MIS managers, and the
others are designed for experienced Open VMS VAX programmers:

• Alpha Planning Seminar-2 days

• Migrating HLL Applications to Open VMS Alpha-3 days

• Migrating MACR0-32 Applications to Open VMS Alpha-2 days

To obtain a schedule and enrollment information in the United States, call
800-332-5656. In other locations, contact your Digital account representative or
authorized reseller.

1-11

Part I
Planning for Migration

2
Selecting a Migration Method

Evaluating your application identifies the work to be done and allows you to plan
the rest of the migration.

The evaluation process has three main stages:

1. General inventory, including identifying dependencies on other software

2. Source analysis to identify coding practices that affect migration

3. Selection of a migration method: rebuilding from source code or translating

When you have completed these steps, you will have the information necessary to
write an effective migration plan.

2.1 Taking Inventory
The first step in evaluating an application for migration is to determine exactly
what has to be migrated. This includes not only the application itself, but
everything that the application requires in order to run properly. To begin
evaluating your application, identify and locate the following items:

• Parts of the application

Source modules for the main program

Shareable images

Object modules

Libraries (object module, shareable image, text, or macro)

Data files and databases

Message files

CLD files

UIL and UID files for DECwindows support

• Other software on which your application depends, for example:

Run-time libraries

Digital layered products

Third-party products

To help identify dependencies on other code, use VEST with the qualifier
/DEPENDENCY. VEST/DEPENDENCY identifies executable and shareable
images on which your application depends, such as run-time libraries, system
services, and other applications. For details on using VEST/DEPENDENCY,
see DECmigrate for Open VMS AXP Systems Translating Images.

2-1

Selecting a Migration Method
2.1 Taking Inventory

• Required operating environment

System characteristics

What sort of system is required to run and maintain your application; for
example, how much memory is required, how much disk space, and so on?

Build procedures

This includes Digital tools such as Code Management System (CMS) and
Module Management System (MMS).

Testing suite

You will need your tests to confirm that the migrated application runs
correctly and to evaluate its performance.

Many of these items have already been migrated to Open VMS Alpha, for example:

• Digital software bundled with Open VMS

RTLs

Other shareable libraries, such as those supplying callable utility routines
and application library routines

• Digital layered products

Compilers and compiler RTLs

Database managers

Networking environment

• Third-party products

Many third-party applicatio~s now run on Open VMS Alpha. To determine
whether a particular application has been migrated, contact the application
vendor.

You will be responsible for migrating your application and your development
environment, including build procedures and testing suites.

2.2 How to Select a Migration Method

2-2

When you have completed the inventory of your application, you must decide how
to migrate each part of it: by recompiling and relinking or by translating. The
large majority of applications can be migrated just by recompiling and relinking
them. If your application runs only in user mode and is written in a standard
high-level language, it is probably in this category. For the major exceptions, see
Section 2.4.

The remainder of this chapter discusses how to choose a migration method for
the relatively few applications that require more work to migrate. To make this
decision, you will need to know which methods are possible for each part of the
application, and how much work will be required for each method.

Note ~~~~~~~~~~~~

The following process assumes that you will recompile your application if
possible, and use translation only for parts that cannot be recompiled or
as a temporary measure in the course of your migration.

Selecting a Migration Method
2.2 How to Select a Migration Method

The following sections outline a process for choosing a migration method. This
process includes the following steps:

1. Determine which of the two migration methods is possible.

Under most conditions, you can either recompile and relink your program
or translate the VAX image. Section 2.3 describes cases where only one
migration method is available.

2. Identify architectural dependencies that affect recompilation.

Even if your application is generally suitable to be recompiled, it may contain
code that depends on features of the VAX architecture that are incompatible
with the Alpha architecture.

Section 2.4 discusses these dependencies and provides information that allows
you to identify them and to begin to estimate the type and amount of work
required to accommodate any dependencies you find.

Section 2.6 describes tools and methods you can use to help answer the
questions that come up in evaluating your application.

3. Decide whether to recompile or translate.

After you have evaluated your application, you must decide which migration
method to use. Section 2. 7 describes how to make the decision by balancing
the advantages and disadvantages of each method.

If you cannot recompile and relink your program, or if the VAX image
uses features specific to the VAX architecture, you may wish to translate
that image. Section 2.7.1 describes ways to increase the compatibility and
performance of translated images.

As shown in Figure 2-1, the evaluation process consists of a series of questions
and some tasks you can perform to help answer those questions. Digital provides
a number of tools that you can use to help answer the questions; these tools are
described at the relevant points in the process.

2.3 Which Migration Methods are Possible?
In most cases, you can either recompile and relink, or translate your application.
However, depending on the design of your application, only one of the two
migration paths may be available to you:

• Programs that cannot be recompiled

The following types of images must be translated:

Software that is written in a programming language for which no Alpha
compiler is yet available, for example VAXscan

Executable and shareable images for which the source code is not
available

Programs that require H_floating or 56-bit D _floating data

• Images that cannot be translated

The source code must be recompiled and relinked (and possibly revised) for
the following types of images:

Images produced prior to Open VMS VAX Version 4.0

2-3

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

Figure 2-1 Migrating a Program

Source no
code

available?

yes

Compilers no Can program yes

available?
image be

translated?

no
---- Errors? --- You are done

yes

Correcting no Can program
errors .,__--------1.i image be

yes

practical? translated?

yes no

ZK-4990A-GE

2-4

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

Images written in Ada

Images that call or are called by images written in Ada

Images that use PDP-11 compatibility mode

Based images

Images that contain coding practices that are currently unsupported by
the Alpha architecture. These include code that:

Runs in inner access modes or elevated IPL (for example, VAX device
drivers)

Refers directly to addresses in system space

Refers directly to undocumented system services

Uses threaded code; for example, code that switches stacks

Uses VAX vector instructions

Uses privileged VAX instructions

Inspects or modifies return addresses or makes other decisions based
on a program counter (PC)

Depends on exact access-violation behavior due to 512-byte size
memory page dependencies

Aligns global sections on boundaries other than the native machine
page boundary (for example, depends on a 512-byte memory page size)

Uses most of the VAX PO or Pl space or is otherwise sensitive to the
space taken up by the translated-image run-time support routines

Although the translated image's run-time performance will be degraded
because of the amount of VAX code that TIE will be required to interpret,
VEST can probably translate the following kinds of images:

Images that include self-modifying or created-on-the-fly VAX code, except
for the code generated at run time by TIE

Images with code that inspects the instruction stream, except when TIE
interprets such code at run time

For more information on which images can be translated, see DECmigrate for
Open VMS AXP Systems Translating Images.

2.4 Coding Practices That Affect Recompilation
Many applications, especially those that use only standard coding practices or are
written with portability in mind, will migrate from Open VMS VAX to Open VMS
Alpha with little or no trouble. However, recompiling an application that depends
on VAX specific features that are incompatible with the Alpha architecture will
require modifying your source code. Typical incompatibilities include use of the
following:

• VAX MACRO assembly language to obtain high performance on a VAX system
or to make use of features specific to the VAX architecture

• Privileged code

• Features specific to the VAX architecture

2-5

Selecting a Migration Method
2.4 Coding Practices That Affect Recompilation

If none of these incompatibilities is present in your application, the rest of this
chapter does not apply to you.

2.4.1 VAX MACRO Assembly Language
On Alpha systems, VAX MACRO is not the assembly language, but just another
compiled language. However, unlike the high-level language Alpha compilers, the
VAX MACR0-32 Compiler for Open VMS Alpha does not produce highly optimized
code in all cases. Digital strongly recommends that you use the VAX MACR0-32
Compiler for Open VMS Alpha only as a migration aid, not for writing new code.

Many of the reasons for using assembly language on a VAX system are no longer
relevant on Alpha systems, for example:

• There is no inherent performance advantage in using assembly language
on a RISC processor. RISC compilers, such as those in the Alpha compiler
set, can generate optimized code that takes advantage of architecture­
and implementation-specific features more easily and efficiently than a
programmer can.

• New system services can perform some functions that previously required
assembly language.

For more information on migrating MACRO code, see Porting VAX MACRO Code
from Open VMS VAX to Open VMS Alpha.

2.4.2 Privileged Code

2-6

VAX code that executes in inner access mode (kernel, executive, or supervisor
mode) or that references system space is more likely to use coding practices
dependent on the VAX architecture or to refer to VAX data cells that do not exist
on Open VMS Alpha. Such code will not migrate to an Alpha system without
change. These programs will require recoding, recompiling, and relinking.

Code in this category includes:

• User-written system services and other privileged sh,areable images

For more information, see the Open VMS Programming Concepts Manual and
the Open VMS Linker Utility Manual.

• Device drivers and performance monitors not supplied by Digital

• Code that uses special privileges; for example, code that uses $CMEXEC or
$CMKRNL system services, or code that uses the $CRMPSC system service
with the PFNMAP option

For more information on memory mapping, see Chapter 6.

• Code that uses internal Open VMS routines or data, such as:

' Code that links against the system symbol table, SYS.STB, to access
locations in system address space

Code that compiles against SYS$LIBRARY:LIB

For assistance in migrating inner-mode code that refers to the Open VMS
executive, contact Multivendor Customer Services.

Selecting a Migration Method
2.4 Coding Practices That Affect Recompilation

2.4.3 Features Specific to the VAX Architecture
To achieve its high performance, the Alpha architecture differs significantly
from the VAX architecture. Software developers who have become accustomed to
writing code that relies on certain aspects of the VAX architecture must be aware
of architectural dependencies in their code in order to transport it successfully to
an Alpha system.

Common architectural dependencies, along with ways to identify them and
actions you can take to eliminate them, are described briefly in the following
sections. For a detailed discussion of ways to identify and eliminate these
dependencies, see Chapters 5 to 9.

2.5 Identifying Dependencies on the VAX Architecture in Your
Application

Even if your application recompiles successfully with a compiler that generates
native Alpha code, it may still contain subtle dependencies on the VAX
architecture. The Open VMS Alpha operating system has been designed to
provide a high degree of compatibility with Open VMS VAX; however, the
fundamental differences between the VAX and Alpha architectures can create
problems for applications that depend on certain VAX architectural features. The
following list highlights areas of your application you should examine.

• Check the data declarations contained in your application.

The high-level language data types you selected to represent data items on
a VAX system may not be the best choice on an Alpha system. In particular,
consider the following:

Data packing-Applications on VAX systems typically use the smallest
available data type to represent a data item to achieve efficient use of
memory resources. For various reasons, using larger data types may be
more efficient on Open VMS Alpha systems. For example, unaligned data
can take up to 100 times longer to process than aligned data. For more
information, see Chapter 8.

Data-type selection-The Alpha architecture supports most of the
VAX native data types; however, certain VAX data types, such as the
H_floating data type, are not supported (see Table 2-1). Check to
see if your application depends on the size or bit representation of an
underlying native data type.

Table 2-1 Floating-Point Data Type Support

Data Type

D53_floating (G_
floating) (Default
double-precision
format)

D56_floating
(Default double­
precision format)

On VAX

Not supported.

Supported.

On Alpha

Supported. Using D53_floating instead of D56_
floating drops three bits of precision and yields
slightly different results.

Not supported. You can obtain full support
by translating your code with DECmigrate.
Alternatively, you can substitute D53_floating
for D56_floating, if your application does not
require the extra three bits of precision.

(continued on next page)

2-7

Selecting a Migration Method
· 2.5 Identifying Dependencies on the VAX Architecture in Your Application

2-8

Table 2-1 (Cont.) Floating-Point Data Type Support

Data Type

F _floating

G_floating

H_floating (128-bit
floating-point)

S_floating (IEEE)

T_floating (IEEE)

X_floating (128-bit
floating-point
(Alpha; IEEE-like))

On VAX

Supported.

Supported.

Supported.

Not supported.

Not supported.

Not supported.

On Alpha

Supported.

Supported.

Not supported. You can obtain full H_floating
support with DECmigrate. You can use it
to translate the code module that contains
H_floating structures, or you can recode your
application, using a supported data type.

Supported.

Supported.

Supported by DEC Fortran Version 6.2 and
by DEC C Version 4.0. The X_floating data
format is not identical to H_floating, but
both cover a similar range of values. For
Fortran applications, automatic conversion
between X_floating memory format and
H_floating on-disk is possible by use of
the FOR$CONVERTnnn logical name, the
OPTIONS statement, the /CONVERT compiler
qualifier, or the CONVERT=keyword on OPEN
statements.

Shared access to data-Check any writable data item that is accessed
by multiple threads of execution. The VAX. architecture includes
instructions that can perform certain complex operations, such as
incrementing a variable, that appear as a single, noninterruptable
operation to other threads of execution. The Alpha architecture is a
load-store architecture that does not support atomic memory-to-memory
modifications, so different program constructs may be required. Chapter 7
provides more information about this topic.

In addition, the VAX. architecture supports instructions that can
manipulate byte- and word-sized data in a single noninterruptable
operation. The Alpha architecture supports noninterruptable access only
to aligned longword or aligned quadword-sized data. Chapters 7 and 8
describe how this can affect your application.

Buffer size-Your application may determine the size of certain data
buffers based on the VAX. page size. Different implementations of the
Alpha architecture can support BK, 16K, 32K, or 64K byte pages. Search
your application for the text strings 512 and 511 (or the hexadecimal
equivalents, 200 and lFF) to find dependencies on the VAX. page size.

· Chapter 6 describes how to adapt your application to this change in page
size.

• Check any condition handlers your application may include.

While the condition-handling facility on Open VMS Alpha systems is
functionally equivalent to the VAX. condition-handling facility, certain
aspects of the facility have changed, such as the format of the mechanism
array. In addition, the way in which arithmetic exceptions are reported has
changed. For more information about this topic, see Chapter 9.

• Check for dependence on the AST parameter list.

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

While the AST parameter list on Open VMS Alpha systems has the same
format as on VAX systems, only the AST parameter field can be modified.
The other fields in the AST parameter list (contents of RO, Rl, program
counter [PC], and processor status [PS]) are provided for compatibility only
and have no subsequent use after the AST procedure exits.

For example, on Open VMS VAX systems, some user-written AST procedures
are designed to change one or more of the values in the other fields in the
AST parameter list so that these new values take effect upon completion
of the AST procedure. Because ASTs are handled differently on Open VMS
Alpha systems, such changes by the AST procedure to the other fields in the
AST parameter list have no effect. Anything an AST procedure writes to the
last four parameters on an Alpha computer is lost when the AST procedure
exits.

For more information about dependencies on the VAX architecture, see the
following sections; for language differences, see Chapter 12 and the user's
guides for the particular language you are using. For applications written in
VAX MACRO, see Porting VAX MACRO Code from Open VMS VAX to Open VMS
Alpha.

2.5.1 Performance Issues
Two differences between the VAX and Alpha architectures do not keep a
VAX application from running on Open VMS Alpha, but do have a significant
performance impact:

• Data alignment

• Choice of data types

2.5.1.1 Data Alignment
Data is naturally aligned when its address is an integral multiple of the size of
the data in bytes. For example, a longword is naturally aligned at any address
that is a multiple of 4, and a quadword is naturally aligned at any address that
is a multiple of 8. A structure is naturally aligned when all its members are
naturally aligned.

Accessing data that is not naturally aligned in memory incurs a significant
performance penalty both on VAX and on Alpha ·systems. On VAX systems, most
languages align data on the next available byte boundary by default, because
the VAX architecture provides hardware support that minimizes the performance
penalty in referencing unaligned data. On Alpha systems, however, the default is
to align each data item naturally, so Alpha, like other typical RISC architectures,
does not provide hardware support to minimize the performance degradation from
using unaligned data. As a result, references to naturally aligned data on Alpha
systems are 10 to 100 times faster than references to unaligned data.

Alpha compilers automatically correct most potential alignment problems and
flag others.

Finding the Problem
To find instances of unaligned data, you can use the following methods:

• Use a qualifier provided by most Alpha compilers that allows the compiler
to report compile-time references to unaligned data. For example,
for DEC C and DEC Fortran programs, compile with the qualifier
/WARNING=ALIGNMENT.

2-9

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

• To detect unaligned data at run time, use the Open VMS Debugger (SET
BREAK/UNALIGNED command) or DEC PCA (Performance and Coverage
Analyzer).

Eliminating the Problem
To eliminate unaligned data, you will be able to use one or more of the following
methods:

• Maximize performance by aligning data items on quadword boundaries,
since Alpha systems generally provide only quadword granularity (see
Section 2.5.2.2).

• Compile with natural alignment, or, when language semantics do not provide
for this, move data to be naturally aligned. Where filler is inserted to ensure
that data remains aligned, there is a penalty in increased memory size.
A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment within
data structures. For example, in DEC C, natural alignment is the
default option. To define data structures that must match the VAX C
default alignment-such as on-disk data structures-use the construct
#PRAGMA NO_MEMBER_ALIGNMENT. With DEC Fortran, local variables
are naturally aligned by default. To control alignment of record structures
and common blocks, use the /ALIGN qualifier.

• Use compiler qualifiers that generate VAX compatible unaligned data­
structure mappings. Use of these qualifiers will result in Alpha programs
that are functionally correct but potentially slow.

Note

Software that is converted to natural alignment may be incompatible with
other software that is running translated, on a VAX system in the same
VMScluster environment, or over a network; for example:

• An existing file format may specify records with unaligned data.

• A translated image may pass unaligned data to, or expect it from, a
native image.

In such cases, you will have to adapt all parts of the application to expect
the same type of data, either aligned or unaligned.

For more information on data alignment, see Chapter 8 and Section 9.4.2.

2.5.1.2 Data Types

2-10

To improve their performance, Alpha processors implement the numeric string
and packed decimal string, H_floating, and full-precision D_floating data types by
using software, as follows:

• Decimal

Eighteen-digit decimal data is converted to 64-bit binary integers internally,
which provides very fast COBOL performance.

• H_floating

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Alpha compilers do not support H_floating data; however, the Translated
Image Environment (TIE) provides emulated support for H_floating data in
translated images.

• D_floating

D_floating data is implemented on Alpha platforms in the following ways:

Using G_floating hardware (D53). Alpha hardware converts D_floating
data (D53) to G_floating for processing. This provides speed and data­
type compatibility with existing binary files that contain D_floating data,
but loses 3 fraction bits compared to D_floating arithmetic on current
VAX systems. D_floating data is thus processed with 15 decimal digits
of precision instead of the 16 decimal digits supplied by D56 on a VAX
system.

Using software emulation (D56) for translated images. This gives exact
D56 format VAX results, but is slower than D53 or G_floating.

Eliminating the Problem
To eliminate data type problems, you will be able to use one or more of the
following methods:

• Instead of D_floating or H_floating, use G_floating or IEEE T_floating
whenever possible because both:

Support data in the range 10-308 to 10308

Have approximately 15 decimal digits of precision

• Instead of decimal data types, use integer data types whenever possible.

For more information on Alpha data types, see Chapter 8.

2.5.2 Protection of Shared Data
Several differences between the VAX and Alpha architectures can affect the
integrity of shared data.

2.5.2.1 Modifying Data in Memory
An atomic operation is one in which:

• Intermediate or partial results cannot be seen by other processors or devices.

• The operation cannot be interrupted (that is, once started, the operation
continues until completion).

On Open VMS Alpha, any operation that reads, modifies, and stores data in
memory will be broken into several instructions, and can be interrupted between
any of those instructions. As a result, if your application expects to modify data
in shared memory atomically, you must take steps to guarantee the atomicity of
the operation.

An application can depend on the atomicity of operations under any of the
following conditions:

• An AST routine within the process shares data with the mainline code.

• The process shares data in a writable global section with another process
that executes on the same CPU (that is, in a uniprocessor system).

2-11

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

• The process shares data in a writable global section with another process
that may execute concurrently on another CPU (that is, in a multiprocessor
system).

Finding the Problem
To find dependencies on atomicity, reexamine use of shared variables for hidden
or explicit assumptions of atomicity.

Eliminating the Problem
To eliminate general problems of instruction atomicity, you will be able to use one
or more of the following methods:

• Use language constructs, where. available, that guarantee atomicity to protect
shared variables: for example, in C, the VOLATILE declaration.

• Use explicit synchronization rather than relying on assumptions of
atomicity.

• Use OpenVMS locking services (such as $ENQ and $DEQ), Parallel
Processing Run-Time Library (PPL$) routines, or LIB$ routines.

• To synchronize with an AST thread, use the $SETAST system service in
the mainline code to block the AST and then reenable delivery after the
instruction has completed.

For more information on synchronization, see Chapter 7.

2.5.2.2 Reading or Writing Data Smaller Than a Quadword

2-12

Granularity refers to the size of the data that can be read or written to memory
as an atomic operation, without interfering with data in adjacent memory
locations. Machines such as the VAX that provide granularity at the byte level
are said to be byte granular. Alpha systems are quadword granular.1

Since Open VMS Alpha is quadword granular, writes to a shared byte, word, or
longword may corrupt other data present in the same quadword as the shared
data. This occurs when:

• A program attempts to modify a byte, word, or longword.

• An unaligned field of any size crosses an aligned quadword boundary, which
creates a byte, word, or longword that must be written independently.

Note

All of the types of data sharing listed in the discussion of atomicity
(Section 2.5.2.1) can create granularity problems in the rest of the
quadword containing the intentionally shared data.

In addition, if a process invokes asynchronous system services or
asynchronously completing library functions that write a result back to
process space, then the data written back can create granularity problems
in the quadword that contains it; for example:

• An asynchronous system service that writes to a status block

• An I/O operation that writes to a process buffer

1 The Alpha architecture also supports longword granularity, but assuming longword
granularity is not recommended. Digital compilers assume by default that source code
does not depend on granularity finer than quadword, but most Digital languages allow
you to specify a smaller granularity by using the /GRANULARITY qualifier.

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

• An I/O operation in which a direct-memory-access (DMA) controller
writes to a process buffer

Finding the Problem
To find uses of byte, word, or longword granularity, you can use the following
methods:

• Look for intentionally shared data (between an AST and main thread or
between processes). Check whether the shared data occupies the same
quadword as other data that might be written.

• Look for data written back by asynchronous system services or library calls
that complete asynchronously. Check whether that data occupies the same
quadword as other data written by another process.

• Look for I/O buffers that contain data written back asynchronously from
a device. Check whether the start and end of the buffers occupy the same
quadword as data written by another process.

Eliminating the Problem
To eliminate use of granularity at a level smaller than the quadword, you will be
able to use one or more of the following methods:

• Put shared items in private quadwords.

• Align I/O buffer heads on quadword boundaries and move any data after the
buffer into the next quadword.

• If the problem is not caused by data shared with the system, use a higher­
level synchronization mechanism to interlock both intentionally shared data
and background data in the same quadword.

Digital compilers assume quadword granularity by default, but to maintain
compatibility with your current code, they allow you to specify byte, word,
unaligned longword, and unaligned quadword granularity by using the
/GRANULARITY qualifier. For more information, see the documentation for
the individual compilers.

For more information on read/write granularity, see Chapter 7.

2.5.2.3 Page Size Considerations
Page size governs the amount of virtual memory allocated by memory
management routines and system services. It is also the basis on which
protection is assigned to code and data in memory.

The Open VMS VAX operating system allocates memory in multiples of 512 bytes.
To improve overall system performance, Alpha systems have much larger page
sizes, ranging from 8 KB to 64 KB, depending on the specific hardware platform.

Page size is a factor in the management of system resources, such as working set
quotas. In addition, memory protection on VAX systems can vary for each 512-
byte region of memory; on Alpha systems, the granularity of memory protection is
much larger, depending on the system's page-size implementation.

Note

The change to a larger page size affects only applications that explicitly
rely on a 512-byte page size, for example, applications that:

2-13

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

• Use "512" to:

Compute memory usage.

Calculate page table requirements.

• Change protection on a 512-byte granularity.

• Use the system service Create and Map Section ($CRMPSC) to map a
file into a specific location in the process address space (for example,
to reuse memory when available memory is limited).

Finding the Problem
To find uses of the VAX page size, identify code that manipulates virtual memory
in 512-byte chunks or relies on 512-byte memory protection granularity. Search
your code for occurrences of numbers such as the decimal values 511, 512, or 513;
the hexadecimal values lFF, 200, or 201; and so forth.

Eliminating the Problem
To eliminate conflicts between the VAX and Alpha page sizes, you will be able to
use one or more of the following methods:

• Change hardcoded page size references to symbolic values (assigned at run
time using a call to $GETSYI).

• Reevaluate code that assumes that page size and disk (file) block size are
equal. On Alpha systems, this assumption is not correct.

• Do not depend on being able to use memory-management-related system
services (for example, $CRMPSC, $MGBLSC) to map a file into a fixed, page­
size-dependent range of addresses (global section). Consider instead using the
$EXPREG system service.

For more information on page size, see Chapter 6.

2.5.2.4 Order of Read/Write Operations on Multiprocessor Systems

2-14

The VAX architecture specifies that if a processor in a multiprocessing system
writes multiple data items to memory, these items are written to memory in the
order specified. This ordering ensures that the writes become visible to other
CPUs in the order in which they were specified by the program and 1/0 devices.

The guarantee that writes become visible to other CPUs in the same order in
which they are specified limits the performance optimization that the system can
make. It also makes caches more complex and limits the optimization of cache
performance.

To benefit overall system performance, Alpha systems, as well as other RISC
systems, can reorder reads and writes to memory. Therefore, writes to memory
can become visible to other CPUs in the system in an order different from that in
which they were issued.

Note

This section is relevant only to multiprocessor systems. On a uniprocessor
system, all memory accesses are completed in the order in which the
program requested them.

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Finding the Problem
To find instances of reliance on read/write ordering for applications that may
execute on multiprocessor systems, identify algorithms that depend upon the
order in which data is written: for example, use of flag-passing protocols for
synchronization.

Eliminating the Problem
To eliminate problems with the ordering of read and write operations, you will be
able to use one or more of the following methods:

• Instead of flag-passing protocols, use system-supplied routines for
synchronization, such as those in the Parallel Processing Run-Time Library
(PPL$) or the Open VMS locking system services ($ENQ, $DEQ).

• The Alpha architecture specifies a memory barrier instruction, which
causes the hardware to complete all previous memory reads and writes
before performing reads and writes following the barrier. Some Alpha
languages provide a way of inserting this instruction, but its use will degrade ·
performance.

For more information on synchronization, see Chapter 7.

2.5.3 Immediacy of Arithmetic Exception Reporting
Alpha (and vector VAX) systems treat exceptions differently from scalar VAX
systems. Scalar VAX systems use "precise exception reporting;" that is, they
guarantee that if an instruction causes an exception, the program counter
(PC) that is reported is the address of the instruction that caused the exception.
Because no subsequent instructions have been issued or have affected the context
of the process, a condition handler can remedy the cause of the exception and
resume execution of the program at or after the failing instruction.

To achieve the best possible performance in a pipelined environment, vector VAX
and Alpha systems use "imprecise exception reporting;" that is, the PC reported
by the exception handler is not guaranteed to be that of the instruction that
caused the arithmetic exception. Furthermore, subsequent instructions may
complete before the exception is reported.

In. practice, very few, if any, programs rely on knowing the specific instruction
that caused an arithmetic exception. Typically, when an arithmetic exception
occurs, a program does one of the following:

• Logs the exception and continues

• Prints an error message and aborts the subroutine or program

• Restarts the entire subroutine and uses a different algorithm that scales the
data to prevent overflow or underflow

If a VAX-program performs one of these actions upon encountering an arithmetic
exception, it will not be affected by being migrated to a RISC system that uses
imprecise exception handling.

Imprecise exception reporting applies only to arithmetic exceptions. For
other types of exceptions, such as faults and traps, Open VMS Alpha uses
precise exception reporting, and the specific instruction that caused the
exception is reported.

2-15

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

Finding the Problem
To find instances of reliance on precise exception reporting, check for the presence
of arithmetic exception handlers. Check whether the handler depends on having
the exact program counter (PC) or only needs to know what procedure caused the
exception.

Eliminating the Problem
To eliminate the use of precise exception handling, avoid writing arithmetic
condition handlers that depend upon knowing the exact instruction that caused
an arithmetic exception.

For more information on exception handling, see Chapter 9.

For compatibility, most Alpha compilers provide a compiler option that allows
a programmer to specify at compile time whether or not precise exception
reporting is required (DEC C: /IEEE_MODE; DEC Fortran: /IEEE_MODE or
/SYNCHRONOUS_EXCEPTIONS). Precise exception reporting severely impairs
the performance of an application. If only certain operations in an application
require precise exception reporting, you should use this option to compile only the
portions of the application that contain those operations. For more information,
see the documentation for the individual compilers.

2.5.4. Explicit Reliance on the VAX Procedure Calling Standard
The Open VMS calling standard specifies significantly different calling conventions
for Alpha programs than for VAX programs. Application programs that depend
explicitly on certain details of the VAX procedure calling conventions must be
modified to run as native code on an Alpha system. Such dependencies include:

• Code that locates the placement of arguments relative to the argument
pointer (AP)

In many cases, however, the VAX MACR0-32 Compiler for Open VMS Alpha
compensates for this.

• Code that modifies its return address on the stack

• Code that interprets the contents of a call frame

Both VAX and Alpha compilers provide techniques for accessing procedure
arguments. If your code uses these standard mechanisms, you can simply
recompile it to run correctly on an Alpha system. If your code does not use
these mechanisms, you must rewrite it so that it does. For a description of these
standard mechanisms, see the Open VMS Calling Standard.

Translated code mimics the behavior of VAX procedure calling. Images that
contain the dependencies listed here will execute properly under translation on
an Alpha system.

2.5.5 Explicit Reliance on VAX Exception-Handling Mechanisms

2-16

The mechanics of exception handling differ between VAX and Alpha systems.
Chapter 9 discusses the differences in how arithmetic exceptions are dispatched
on VAX and Alpha systems. This section focuses on the mechanisms by which
code dynamically establishes a condition handler and by which a condition
handler accesses the exception state.

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

2.5.5.1 Establishing a Dynamic Condition Handler
VAX systems provide a number of ways in which an application can establish
a condition handler dynamically at run time. The Open VMS calling standard
facilitates this operation for VAX programs by providing a space at the top of a
call frame in which executing code can place the address of a condition handler
that is to service exceptions that occur in the context of that frame. However,
the Open VMS calling standard provides no such writable area in the procedure
descriptor for Alpha procedures.

For instance, a VAX MACRO program might use the following instruction
sequence to move the address of a condition handler into a call frame:

MOVAB HANDLER,(FP)

The MACR0-32 Compiler for Open VMS Alpha parses this statement and
generates appropriate Alpha assembly language code that results in the
establishment of the condition handler. For more information, see Porting
VAX MACRO Code from Open VMS VAX to Open VMS Alpha.

Note

On VAX systems, the run-time library routine LIB$ESTABLISH and
its counterpart LIB$REVERT allow an application to establish and
disestablish a condition handler for the current frame. These routines do
not exist on an Alpha system; however, compilers may handle these calls
properly (such as with FORTRAN intrinsic functions). For more precise
information, see Chapter 12 and the documentation for the compilers
relevant to your application.

Translated code mimics the VAX mechanism for dynamically establishing a
condition handler.

Certain Alpha compilers (and cross-compilers) provide a language-specific
mechanism to establish a dynamic condition handler.

For more information on condition handlers, see Chapter 9.

2.5.5.2 Accessing Data in the Signal and Mechanism Arrays
During exception processing, both VAX and Alpha systems push the exception
processor status, an exception PC, a signal array, and a mechanism array onto
the stack.

Both the signal array and mechanism array have different contents on VAX
and Alpha systems; the mechanism array also has different formats on the two
platforms. To work properly in either system, a condition handler that accesses
data in the signal array or the mechanism array must use the appropriate CHF$
symbols rather than hardcoded offsets. For descriptions of the appropriate CHF$
symbols, see the Bookreader version of the Open VMS Programming Concepts
Manual.

The condition handler cannot successfully locate information in the
mechanism array by using hardcoded offsets from AP.

2-17

Selecting a Migration Method
2.5 Identifying Dependencies on the VAX Architecture in Your Application

2.5.6 Modification of the VAX AST Parameter List
Open VMS VAX passes five longword arguments to an AST service routine. AST
service routines written in VAX MACRO access this information by using offsets
from the argument pointer (AP). Open VMS VAX allows an AST service routine
to modify any of these arguments, including the saved registers and the return
PC. These modifications can then affect the interrupted program once the AST
routine returns.

Although the AST parameter list on Alpha systems also consists of five
parameters, the only argument directly intended for the AST procedure is
the AST parameter. Although the other arguments are present, they are not
used after the AST procedure exits. Because modifying them has no effect on the
thread of operation to be resumed at AST exit, a program that relies on such an
effect must be changed to use more conventional argument-passing mechanisms
to run on an Alpha system.

2.5.7 Explicit Dependency on the Form and Behavior of VAX Instructions
Programs that rely specifically on the execution behavior of VAX MACRO
instructions or on binary encoding of VAX instructions must be modified before
being recompiled or relinked to run as native code on an Alpha system.

For example, the following coding practices will not work on an Alpha system:

• In VAX MACRO, embedding a block of VAX instructions in a program data
area, and modifying a PC to transfer control to this code block

• Examining condition codes or other information in the processor status word
(PSW)

For more information on migrating VAX MACRO code, see Porting VAX MACRO
Code from Open VMS VAX to Open VMS Alpha.

2.5.8 Generation of VAX Instructions at Run Time
Creating and executing conventional VAX instructions will not work in native
Alpha mode.

VAX instructions created at run time will execute by emulation in a translated
image.

For more information on code that generates specific VAX instructions at run
time, see Porting VAX MACRO Code from Open VMS VAX to Open VMS Alpha.

2.6 Identifying Incompatibilities Between VAX and Alpha Systems

2-18

To identify architectural incompatibilities in a module of your application, start
by doing a test compile of the module using the Alpha compiler. For information
on diagnostic compiler switches, see your language processor documentation.

Many modules will compile and run with no errors. If errors occur, you may have
to revise the module.

The DEC compilers can produce messages that are very useful for identifying
potential porting problems. For example, the MACR0-32 compiler provides the
/FLAG qualifier with 10 options. Depending on which options you include, the
compiler reports all unaligned stack and memory references, any run-time code
generation (such as self-modifying code), branches between routines, or several
other conditions.

Selecting a Migration Method
2.6 Identifying Incompatibilities Between VAX and Alpha Systems

The DEC Fortran compiler qualifier, /CHECK, produces messages about any of
the various options you specify.

Even if a module runs without error in isolation, there may be latent
synchronization problems that will turn up only when the module is run
together with other parts of the application.

If a module does not run without error after being recompiled and relinked,
you can use the following methods to assess what must be revised to make the
program run well on an Alpha system:

• Examining the source code

A code review at this point can avoid many difficulties in the migration
process and save a great deal of time and effort in the later stages of
migration. To examine ·your code, use the checklist in Appendix A, as well
as the guidelines in Chapter 5. These migration issues are summarized in
Section 2.4.

If a direct code review of your entire application is not practical, an automated
search can still be useful: for example, using a combination of DCL SEARCH
and an editor to locate and tabulate instances of architectural dependencies.

• Using messages generated by the compiler in your initial test run

Compilers will give you information on:

Differences between VAX and Alpha compilers

Data alignment

Specific compilers may also identify other differences between the VAX and
Alpha architectures.

• Analyzing the image using VEST

Even if you intend to recompile and relink a program, you can use VEST
as an analysis tool. It can provide a great deal of useful information about
changes that will make your program run most efficiently on an Alpha
system. For example, VEST can help identify the following problems:

Static unaligned data (data declarations, including unaligned fields in
data structures) and unaligned stack operations

Floating-point references (H_ and D_fioating)

Packed decimal references

Privileged code

Nonstandard coding practice

References to Open VMS data or code other than by using system
services

Uninitialized variables

Certain synchronization issues, such as multiprocess use of interlocked
instructions

VEST cannot identify some problems, including:

Unaligned variables (in data structures created dynamically)

2-19

Selecting a Migration Method
2.6 Identifying Incompatibilities Between VAX and Alpha Systems

Most synchronization issues

• Running the image using the PCA (Performance and Coverage Analyzer)

The PCA can point out the following issues:

Run-time alignment faults

Which sections of the application are executed most frequently and hence
are critical to performance

Once all the images of the application run without errors on an Alpha system,
you must combine the rebuilt images to test for problems of synchronization
between images. For more information on testing, see Section 4.3.3.

2.7 Deciding Whether to Recompile or Translate

2-20

If both methods are possible for a given image, you must balance the projected
performance of native and translated versions of the image on an Alpha system
against the effort required to translate the image or to convert it to a native
Alpha image.

In general, different images that make up an application can be run in different
modes: for example, a native Alpha image can call translated shareable images
and vice versa. For more information on mixed-architecture applications, see
Section 2. 7 .2.

The two migration paths are compared in Table 2-2.

Table 2-2 Migration Path Comparison

Factor

Performance

Effort required

Schedule constraints

Programs supported

-Age

-Limitations

VAX compatibility

Ongoing support and
maintenance

Recompile/Relink

Full Alpha capability

Varies: easy to difficult

Based on availability of
native compilers

Source for VAXNMS
Version 4.0 or earlier
accepted

Privileged code
supported

High: most code will
recompile and relink
without difficulty

Normal source code
maintenance

Translate

Typically 25-40% of native
Alpha potential; equivalent to
performance on VAX

Easy

None: available immediately

Only VAXNMS Version 4.0 or later
supported

Only user-mode code supported

Complete by emulation

Source maintenance on VAX;
recompile and retranslate for each
new version

To determine how to proceed with the migration of your application, answer the
following questions:

• Do you build your application entirely from source code, or do you rely on
binary images for some functions?

If you rely on binary images, you will have to translate them.

Selecting a Migration Method
2. 7 Deciding Whether to Recompile or Translate

• Do you have access to the source code for all images that are part of your
application?

If not, you will have to translate those images with missing source code.

• Which images are critical to the performance of your application?

You will want to recompile those images to take full advantage of the speed of
Alpha systems.

Use the Performance and Coverage Analyzer to identify critical images.

Only images that are produced by native Alpha compilers use Alpha
processing capabilities efficiently and achieve optimal performance. A
translated VAX image runs at one-third the speed of native Alpha code or
slower, depending on the translation options used.

• How much work will be required to convert each image under the two
methods?

Depending on the complexity of the application, software translation
usually requires less effort and time than recompiling and relinking.

You may choose to translate some part of your application in order to get
it running on Open VMS Alpha while you complete the migration to an
all-native version.

Code that depends on details of the VAX architecture and the VAX
calling standard cannot be recompiled directly. It must either run under
translation, or it must be rewritten, recompiled, and relinked.

You can remove architectural dependencies in several ways:

• Replace an architecture-dependent code sequence with high-level language
lexical elements that support the same operation in a platform-independent
manner.

• Use a call to an Open VMS system service to perform the task in a way that is
appropriate for the processor architecture.

• Use a high-level language compiler switch to help guarantee correct program
behavior with minimal changes to the source code.

Table 2-3 summarizes how the architectural dependencies of a given program
can affect which method you use to migrate the program to an Alpha system. For
more detailed information, see the following chapters.

2-21

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

2-22

Table 2-3 Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source

Data alignment1

By default, most compilers align data
naturally. For information on qualifiers
to retain VAX alignment, see Chapter 12.

Data types

Replace H_floating with X_floating.

For D_floating, if the 15 decimal digits
of precision provided by the D53 format
are sufficient, replace D_floating with
G_floating. If the application requires
16-bit decimal precision (D56 format),
translate it.

COBOL packed decimal is automatically
converted to binary format for operations.

For more information on data types, see
Chapter 8.

Atomicity of read-modify-write
operations

Support depends on options provided
by the individual compiler. (For more
information, see Chapter 7 .)

Atomicity and granularity of byte and
word write operations

Supported using compiler options with
appropriate source code changes. (For
more information, see Chapter 7 .)

Page size

The OpenVMS Linker produces large,
Alpha style pages by default.

Translated VAX Image

Unaligned data supported, but the qualifier
/OPTIMIZE=ALIGNMENT can improve
overall execution speed by assuming that
data is longword aligned.

To retain 16-bit decimal precision for D_
floating, use the /FLOAT=D56_FLOAT
qualifier. Performance using this qualifier
will be slower than when using the default,
/FLOAT=D53_FLOAT.

Use the /PRESERVE=INSTRUCTION_
ATOMICITY qualifier. Execution speed may
drop by a factor of 2.

Use the /PRESERVE=MEMORY_ATOMICITY
qualifier. Execution speed may drop by a
factor of 2.

Most 512-byte page images are supported.
However, because of the permissive protection
assigned by VEST, images that rely on
restrictive protection to generate access
violations will not execute properly on an
Alpha system when translated.

1 Unaligned data is primarily a performance issue. Whereas references to unaligned data were
only somewhat detrimental to VAX performance, loading unaligned data from memory and storing
unaligned data to memory in an Alpha system can be up to 100 times slower than the corresponding
aligned operations.

(continued on next page)

Selecting a Migration Method
2. 7 Deciding Whether to Recompile or Translate

Table 2-3 .(Cont.) Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source

Read/write ordering

Supported by adding appropriate
synchronization instructions (MB) to
source code, but with a performance
penalty. (For more information, see
Chapter 7.)

Immediacy of exception reporting

Translated VAX Image

Use the /PRESERVE=READ_ WRITE_
ORDERING qualifier.

Partly supported using compiler options.
(For more information, see Chapter 9.)

Use the /PRESERVE=FLOAT_EXCEPTIONS
or the /PRESERVE=INTEGER_EXCEPTIONS
qualifier. Execution speed may drop by a
factor of 2. ·

Explicit reliance on details of the VAX
architecture and calling standard2

Unsupported; dependencies must be
removed.

Supported.

2Dependencies on details of the VAX architecture and calling standard include explicit reliance on the
VAX.. calling standard, VAX exception handling, the VAX AST parameter list, the format and behavior
of VAX instructions, and the generation of VAX instructions at run time.

2.7.1 Translating Your Application
If you are unable to recompile your application, or if it uses features specific to
the VAX architecture, you may decide to translate the application. You can choose
to translate only some parts of the application, or you can translate parts of it
temporarily as a means of staging the overall migration.

Many of the differences that affect recompilation discussed in Section 2.4 can
also affect the performance of a translated VAX image. You can use the following
methods to increase the compatibility of images that are dependent on the VAX
architecture. (For more information, see DECmigrate for Open VMS AXP Systems
Translating Images.)

• Data alignment

Supply the VEST translate-time qualifier /OPTIMIZE=NOALIGNMENT
to make VEST generate extra inline Alpha code that avoids generating
exceptions for references to unaligned data. With this qualifier, VEST
produces Alpha code that executes about 10 times slower than code
that uses only aligned data references. (If you use the default option
/OPTIMIZE=ALIGNMENT, unaligned data causes an exception, which takes
about 100 times longer to execute than with aligned data.)

• Instruction atomicity

When you invoke the translator, supply the translate-time qualifier
/PRESERVE=INSTRUCTION_ATOMICITY to make VEST generate an
Alpha instruction sequence that is AST atomic for a specified set of VAX
instructions. Although an AST can be delivered in the middle of an Alpha
instruction sequence that performs such an atomic operation, the instruction
sequence will be restarted at the beginning when the AST routine completes.

2-23

Selecting a Migration Method
2.7 Deciding Whether to Recompile or Translate

Execution speed for a particular code sequence may drop by a factor of 2 if the
/PRESERVE=INSTRUCTION_ATOMICITY qualifier is specified. (For a list of
VAX instructions for which the translator generates AST-atomic code, as well
as additional information about the software translator, see DECmigrate for
Open VMS AXP Systems Translating Images.)

• Read/write granularity

VEST ensures the atomicity of byte or word writes when you use the
translate-time qualifier /PRESERVE=MEMORY_ATOMICITY. This qualifier
allows a mainline routine and an AST routine to update adjacent bytes within
a longword or quadword concurrently without interfering with each other.
The /PRESERVE=MEMORY_ATOMICITY qualifier guarantees atomic access
of longwords that are not naturally aligned and of data that crosses quadword
boundaries. Execution speed may drop by a factor of 2 when these qualifiers
are specified.

• Page size and permissive protection

To enable VAX images to run on an Alpha system, VEST, together with
the image activator, maps the VAX image sections into large pages. With
an Alpha processor that supports 8 KB pages, up to 16 VAX pages can fit
in a single page. However, because this big page is described by only a
single page-table entry, only one protection and a single backing store can be
assigned to the page. Consequently, VEST assigns the Alpha page the most
permissive protection associated with any of the Alpha image sections that it
maps. Thus, VAX images that rely on restrictive protection to generate access
violations will not execute properly on an Alpha system when translated.

One possible alternative is to relink the program on a VAX using the default
linker qualifier /BPAGE to align the pages on 64KB boundaries.

• Precise arithmetic exceptions

VEST allows you to set precise exception reporting for certain exception types
at translate time by using the /PRESERVE=FLOAT_EXCEPTIONS qualifier
or the /PRESERVE=INTEGER_EXCEPTIONS qualifier. If you specify either
of these qualifiers, execution speed for certain code segments may drop by a
factor of 2.

• Generating VAX instructions at run time

VAX instructions created at run time will execute by emulation under
translation. However, emulated instructions are significantly slower than
translated instructions, which can be important if the code is generated at
run time to speed up the performance of critical sections of your application.

Table 2-3 includes a summary of ways you can allow for various architectural
dependencies in a translated image.

2.7.2 Combining Native and Translated Images

2-24

In general, you can combine native Alpha images with translated images on an
Alpha system. For example, a native Alpha image can call translated shareable
images and vice versa.

Selecting a Migration Method
2. 7 Deciding Whether to Recompile or Translate

In order to run together, native and translated images must be able to make calls
between the VAX and Alpha calling standards. No special action is required if
the native and translated images meet the following conditions:

• Routine interface semantics and data alignment conventions for the native
Alpha image are identical to those on a VAX image.

• All the entry points are CALLx; that is, there are no external JSB entry
points. This is probably true of any code written in a high-level language.

• The inbound and outbound calls in the native image are not written in Ada.

When a source procedure that uses one calling standard calls a destination
procedure that uses a different calling standard, it does so indirectly through
a jacket routine. The jacket routine interprets the procedure's call frame and
argument list and builds the equivalent destination call frame and argument
list, then transfers control to the destination procedure. When the destination
procedure returns, it does so through the jacket routine. The jacket routine
propagates the destination routine's returned register values into the source
routine's registers and returns control to the source procedure.

The Open VMS Alpha operating system creates jacket routines automatically for
most calls. To make use of automatic jacketing, use the compiler qualifier /TIE
and the linker option /NONATIVE_ONLY to create the native Alpha parts of your
application.

In certain cases, the application program must use a specially written jacket
routine. For example, you may have to write jacket routines for nonstandard
calls to libraries such as the following:

• A VAX shareable library that includes external JSB entry points

• A library that includes read/write data in the transfer vector

• A library that contains VAX specific functions

• A library that uses resources that would need to be shared between a native
and a translated version of the library

• A native Alpha library that does not provide or export all the symbols that
the VAX image did

(The term exported means that a routine is included in the Global Symbol
Table (GST) for the image.)

For information on how to create a jacket image for one of these situations, see
DECmigrate for Open VMS AXP Systems Translating Images.

Translated shareable images (such as run-time libraries for languages without
native Alpha compilers) that are shipped with the Open VMS Alpha operating
system are accompanied by jacket routines that allow them to be called by native
Alpha images.

2-25

3
Sample Migration Plan

The following migration plan is for a fictitious application, but is based on actual
migration plans written for customer applications.

Migration Plan for Omega-1

Omega Corporation

3.1 Executive Summary
Omega-1 is an enterprise-wide information system for accessing, analyzing,
managing, and presenting data.

Omega-1 has more than 4 million lines of source code. Most of the source code,
written in the C programming language, is common to a variety of platforms and
is considered highly portable.

However, Omega-1 has a set of routines, unique to each platform, that is
implemented in VAX C and VAX MACRO for the VAX platform (about 350,000
lines of code). These routines present a number of VAX architectural dependency
issues, described in Section 3.2.4, that require resolution for successful migration.
Resolution of these issues will involve significant work including design changes,
but none of these appear to jeopardize shipping Omega-1 to customers in
December 1992.

Omega-1 supports connections to a number of Digital and third-party products.
Although some of these products will not be available on the Alpha platform
when Open VMS Alpha is first shipped, Omega Corporation, the Omega-1 vendor,
has committed to migrating the base Omega-1 by that date.

Digital Services will provide support services to Omega Corporation throughout
the life of the migration project as detailed in this plan. In summary, the support
plan for Omega Corporation includes:

• On-site hardware and software tools for Alpha development at Omega
Corporation

• Engineering assistance for quality assurance testing

• Access to Alpha systems at an Alpha Migration Center

• Telephone access to a Digital engineer who will provide Alpha technical
information, support the cross-development tools, and act as a liaison for
resolving any problems with Digital software products reported by Omega
Corporation ·

3-1

Sample Migration Plan
3.1 Executive Summary

• A three-day technical seminar for Omega Corporation developers at their site

One additional problem is providing the hardware for Omega to carry out an
adequate field test of their products prior to the ship date. Normally, the Omega
developers conduct field tests for four months before revenue shipment at 30 to
40 of their customer sites. It is unclear whether the number of required Alpha
units will be available for a field test of this size.

3.2 Technical Analysis
The technical analysis was performed by Omega Corporation in conjunction with
Digital Services.

3.2.1 Application Characteristics
Omega-1 runs on most VAX platforms and platforms of other vendors. It consists
of three layers that may or may not take advantage of specific aspects of the VAX
environment. However, there are no direct dependencies on particular hardware
configurations or devices.

Most of the functionality is provided in the applications layer, which contains the
user interface, basic data management tools, and the Omega fourth generation
language (4GL). The Omega-1 base product does not depend on any Digital or
third-party layered products.

Additional products in Omega-1 are layered on top of the base product and
provide expanded data management or communications functionality. These
options depend on Digital or third-party layered products and will be available
when the underlying products are released. The layered product dependencies
are listed in Table 3-3.

3.2.2 Software Architecture

3-2

Omega-1 is built in layers as shown in Figure 3-1. This layering creates a high
degree of portability for the software, because only about 10% of the system is
specific to a particular implementation, and all of this code is contained within
one set of modules, the host layer.

The applications and core layers are expected to run on the Alpha platform
simply by recompiling and relinking all of the source files. The only prerequisite
is successful migration of the Omega software development tools, which are
also considered quite portable and depend only on the C compiler and run-time
libraries for Open VMS Alpha.

TI:ie host layer will require a number of changes such as a rewrite of some
modules that contain some VAX hardware dependencies.

• Applications layer

This layer comprises the bulk of the system and is considered portable
because it is implemented similarly on many platforms.

• Core layer

This layer creates an Omega-designed set of services that conforms to the
special needs of Omega-1 on each platform. Essentially, anything that is
part of the Omega-1 "virtual operating system" but can be written portably
resides in this layer. Components include high-level I/O, high-level memory

Figure 3-1 Layer Structure of Omega-1

Applications Layer 70% of code

Core Layer 20% of code

Host Layer 10% of code

ZK-5174A-GE

Sample Migration Plan
3.2 Technical Analysis

management, character-based window systems, and the 4GL compiler with its
execution environment. This layer is portable.

• Host layer

This layer provides an interface to specific operating system elements and
may be dependent on aspects of the hardware architecture. Components
include:

• I/O operation

• Image loading and unloading

• Memory management

• Lightweight thread management

• Termjnal services

• Windowing interfaces

The host layer is different for each platform implementation. The VAX
implementation is written in VAX C and VAX MACRO. This layer embodies
most of the issues on which the migration project will focus.

3.2.3 Results of Image Analysis
Although Omega-1 will be recompiled and relinked, the VAX Environment
Software Translator (VEST) was used to analyze 26 images of the host layer. A
large number of these images had instructions that relied on the D_floating data
type, which is the default for VAX C. If Omega engineers decide to move from
D_floating to another floating-point format, they must be aware of the issues
concerning compatibility of data files across mixed VAX and Alpha VMScluster
environments.

Table 3-1 lists the error messages generated by the images during image
analysis.

3-3

Sample Migration Plan
3.2 Technical Analysis

Table 3-1 Image Analysis Results

Image Name % Code Found by VEST Major Findings

OMEGADEV60 -Fatal errors- VEST-F-PROTISD
no code found VEST-F-ISDALIGN

VEST-F-ISDMIXED
VEST-W-STACKMATCH
Packed decimal instructions

OMECRTL 92% VEST-W-STACKMATCH
VEST-W-STKUNAL
Packed decimal instructions

PSCN 64% VEST-W-STKUNAL
VEST-W-STACKMATCH

PVSN 65% VEST-W-STKUNAL
VEST-W-STACKMATCH

The following list describes the major findings of the Omega image analysis:

• PROTISD-user-written system service vector that indicates that an image
has one or more user-written system services. This problem will be handled
automatically when compiling the code using a native Alpha compiler.

• ISDALIGN-the image section is not aligned on a 64 KB boundary. Before
performing another VEST analysis, it will be necessary to relink the image
with 64KB pages. The linker will handle this problem during the migration
process.

• ISDMIXED-incompatible VAX image sections were mapped to the same
64KB block. The linker will handle this problem during the migration
process.

• STKUNAL-a warning indicates that a block of code changes the stack
from longword aligned to unaligned, which causes performance degradation.
Omega engineers will review the logs from the VEST analysis.

• STACKMATCH-the stack may be unbalanced at a certain point. Omega
engineers will review the logs from the VEST analysis.

• Packed decimal instructions-supported only with software and not with
hardware, which may hinder performance of the application. Omega
engineers will review the packed decimal code.

3.2.4 Results of Source Analysis

3-4

As stated previously, the migration of the applications and core layers is fairly
straightforward; however, the host layer of Omega-1 contains many VAX
dependencies .. Discussions with Omega engineers uncovered the architectural
dependencies described in the following list:

• Data alignment

The Omega-1 software contains unaligned public data structures. To maintain
source code portability, Omega engineers will compile this code with the
/NOMEMBER_ALIGN qualifier of the DEC C compiler.

• Data types

Sample Migration Plan
3.2 Technical Analysis

Omega-1 extensively uses floating-point calculations and data files. The VAX
version uses the D56 format for all operations, which is not implemented
in the native Alpha instruction set. For customers who may eventually
operate with mixed VAX and Alpha clusters, it is best to maintain the D_
floating format. Omega is not concerned about the slight loss of floating-point
precision entailed in using the 53-bit (versus 56-bit) version of D_floating
available on Alpha.

However, most of the other Omega-1 implementations use the IEEE floating­
point formats, which are fully supported by the Alpha instruction set.
Reimplementation to the IEEE format involves simply recompiling with
a different qualifier, but VAX customers would then need to convert all
floating-point data in their files to the new format as part of their migration
process.

• Read/write/modify atomicity

A few AST routines need to be examined to determine whether any operations
on shared variables need to be protected by explicit synchronization methods.
No major problems are expected in this area.

• Granularity of byte and word operations

The Omega-1 software has a latch that protects data that is not aligned
on natural quadword boundaries. Digital engineers discussed this problem
with Omega engineers and reviewed a code sample for the solution. They
determined that the compilers can handle this type of access using shared
data declarations and compiler directives.

• VAX page size

The host layer includes a few routines that handle memory management on
behalf of the applications. Although the existing algorithms do not actually
require that the page size be 512 bytes, nevertheless, they are hardcoded as
512. Correct functionality will be guaranteed by modifying these modules to
query for system page size at system startup and then using the system page
size for calculations involving memory management operations.

• VAX procedure calling standard

Omega-1 "chases" the call frame stack to determine call history when a user
interrupt occurs. Omega-1 modifies the return address in one of the preceding
call frames to redirect flow-of-control, or accept the interrupt, when in a
noncritical region of the code. Much of this is similar to what SYS$UNWIND
does, except that Omega-1 does it with an AST instead of an exception
handler.

Omega-1 includes a number of functions that depend on the VAX calling
standard, including Omega's own implementation of setjmp() and longjmp().
These functions are written in VAX MACRO and are isolated in the operating­
system code. Omega will rewrite these functions to remove dependencies on
the VAX calling standard.

• Exception handling

Omega-1 fixes illegal or faulted floating-point operations with a statistical
"missing" value. It is a concern whether the current design can correctly
decode the actual faulting instruction on the Alpha architecture, where
delivery of exception traps may be delayed.

• VAX instruction set and code generation

3-5

Sample Migration Plan
3.2 Technical Analysis

The host layer includes a code generator that writes platform-native
instructions into memory and executes them as part of its 4GL language.
This code generator produces, among other things, "scatter/gather" code
to handle database I/O operations. A portable interpreter that is "plug
compatible" with the code generator can be used for the early stages of the
migration project. However, a new version of the generator that produces
Alpha instructions will eventually have to be implemented.

3.3 Milestones and Deliverables
The ship date goal for the Omega-1 base product is December 1992. Table 3-2
lists the major milestones and deliverables for the base product project. For a
discussion of each of the deliverables, see Section 3.4.

Table 3-2 Milestones and Deliverables

Milestone Responsible

Omega-1 line-mode prompt Omega/Digital

New cross-image bridge Omega/Digital

Floating-point decision Omega

Omega-1 exception handler Omega/Digital

Begin code generator Omega/Digital

Build applications layer Omega/Digital

Test code generator Omega/Digital

Test applications Omega/Digital

Implement and test Motif Omega/Digital
user interface

Begin Omega QA and field Omega
test

Ship date Omega

Digital Role

Consulting

Consulting

Consulting

Consulting

Consulting

Run test scripts

Run test scripts

Run test scripts

On-site support

Completion Date

November 1991

December 1991

December 1991

January 1992

January 1992

January 1992

March 1992

May 1992

July 1992

December 1992

December 1992

3.4 Technical Approach
The following sections describe in detail the approach to be taken to reach each
milestone of this migration project.

3.4.1 Line Mode Prompt

3-6

The first milestone is bringing Omega-1 to a line-mode prompt and entering
a meaningful Omega-1 program name or command sequence for execution.
Reaching this goal will demonstrate basic functionality of the development tools
and run-time libraries. At this point, the host layer will be functional except for
the following:

• The Omega-1 interpreter will be used instead of code generation for the 4GL
functionality.

• The image bridge will be a temporary implementation.

• Exception handling will be incomplete.

Furthermore, the core layer will be functional (without the windowing user
interface), and at least one Omega-1 application will be tried. This work is being
done by the Omega VMS Host Group with support from Digital.

3.4.2 Image Bridge

Sample Migration Plan
3.4 Technical Approach

Omega-1 has a central bridge routine that dispatches all jumps across images.
This allows Omega-1 to call routines in unloaded images, which will then be
loaded dynamically. The bridge also allows images to be unloaded by Omega-1.

The image activation routines and the format of Alpha object files have already
established that the bridge for Open VMS Alpha can be implemented similarly to
its implementation on Open VMS VAX.

The work will be done by the Omega VMS Host Group with support from Digital,
and the required changes can be completed by December 1991.

3.4.3 Floating-Point Format Decision
Omega-1 and many customers that use it rely on the D56 floating-point data type.
Although it is possible to replace D56 with IEEE T_floating for increased speed,
this will require that all users convert their data from one format to the other.

This is an Omega business decision, which will be made by the end of calendar
year 1991.

3.4.4 Full Omega-1 Exception Handling
The next major issue to be resolved is how to perform Omega-1 exception
handling on Open VMS Alpha. General exception handling, such as a run-
time access violation upon opening a file, is trapped by the Omega-1 exception
handler, which may then proceed with a "stack chase" on the call frames. Omega
developers will make the necessary changes to account for the new calling
standard on OpenVMS Alpha, and will use the "setjmp" and "longjmp" features of
DECC.

Floating-point exception handling will also require design changes and.
reimplementation. There are a number of options for getting correct functionality,
but the best answer for performance considerations is yet to be determined. Still,
the Omega developers expect to solve this by the scheduled date.

3.4.5 Begin Code Generator Implementation
The final component required for a full implementation of the host layer is the
code generator. To implement the code generator, the Omega developers need a
complete definition of the native Alpha instruction set. The code generator effort
will be fully handled by the Omega VMS Host Group. Digital will provide support
by telephone, as needed.

3.4.6 Build Applications
Once the host layer has achieved full functionality, the applications can be built
during January 1992. These applications are expected to recompile and run, since
they are all written in C to very strict portability standards. Digital will provide
telephone support for tools and compiler issues to the Omega developers.

3.4. 7 Test Code Generator
Digital will provide assistance with debugging and functional testing for the
Omega-1 code generator on an Alpha system during the month of March 1992.
An Omega developer will establish a test bed environment on the Alpha system
in an Alpha Migration Center, train a Digital engineer how to run the tests, and
supervise the initial set of tests. After that, Omega will send test scripts and
data sets by mail for the Digital engineer to run.

3-7

Sample Migration Plan
3.4 Technical Approach

3.4.8 Test Complete Application
Omega maintains a number of developmental regression test streams, which
must be run on an Alpha system to verify successful porting. If Omega does not
have an Alpha system by the time they are ready for this testing, Digital will
run the regression tests against the Omega-1 base system applications on one of
Digital's systems.

To do this, an Omega developer will establish a test bed environment on an
Alpha system in the Digital laboratory, train a Digital engineer how to run the
regression tests, and supervise the initial set of tests. After that, Omega will
send test scripts and data sets by mail for the Digital engineer to run. Digital
will then report results back to Omega. This effort will begin in April 1992 and
will be finished by the end of May.

3.4.9 DECwindows Motif User Interface
Omega needs to have the Motif developers tool kit prior to field test, so that the
developers can test their Motif user interface.

3.4.10 Omega Quality Assurance and Field Test
Omega maintains an extensive set of test streams used to validate their final
product. They routinely run these suites immediately prior to starting their field
tests. These tests must be run on a full Alpha system implementation.

At this point, some testing and optimization may be required to fix specific
performance problems that become apparent only on an Alpha system. Digital
will provide on-site engineering support for these efforts.

3.5 Dependencies and Risks

3-8

The chief risk to the successful delivery of Omega-1 is related to Omega's quality
assurance and field test processes. The developers normally conduct their field
test with 30 to 40 of their customers, and it takes about four months to complete.
Omega and its Digital account team need to determine how Omega can execute a
testing program that meets its minimum requirements and that can be completed
before December 1992.

The following list shows the software dependencies for the Omega-1 base product:

• DEC C for Open VMS Alpha compiler

• VAX MACR0-32 Compiler for Open VMS Alpha

• MACR0-64 Assembler for Open VMS Alpha

• Open VMS Debugger

• DEC C Run-Time Library

• Open VMS Run-Time Library (LIB$)

• Screen Management Library (SMG$)

• DECTPU

Omega-1 applications also offer access to Digital or third-party data management
or networking options. For example:

• Omega/Graph can use CDA tools to generate graphic images in DDIF format.

• Omega/Access can access RdbNMS or ORACLE databases.

Sample Migration Plan
3.5 Dependencies and Risks

• Omega/Share and Omega/Connection can access remote data with TCP/IP
using the ULTRIX Connection (UCX).

Table 3-3 lists all of the layered product options available to the users of Omega-1
along with the expected delivery dates.

Table 3-3 Omega Optional Product Dependencies

Item

Digital Products

DECwindows Motif user interface (tool
kit)

CDA

ALL-IN-1

RdbNMS

CDD/Repository

CDD/Plus

DECnet (Phase IV)

PATHWORKS

SPM

Third-Party Products

ORACLE

INGRES

3.6 Resource Requirements

Field Test

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

Shipping

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

TBS

Digital resources used to support the plan outlined in Section 3.3 are summarized
in Table 3-4 and are described in the following sections.

Table 3-4 Summary of Digital Support

Resource Time Frame

On-site training Dec 91

Telephone support Dec 91-Aug 92

Engineering assistance Mar92

Alpha hardware Mar92

Activity Level of Effort

Training 1 engineer for 3
days

General support 1 engineer for 8
hours/week

Test code generator 1 full-time
engineer for 2
weeks, half time
for 4 weeks

Test code generator 5 days/week for
two weeks, 2
days/week for 4
weeks

(continued on next page)

3-9

Sample Migration Plan
3.6 Resource Requirements

Table 3-4 (Cont.) Summary of Digital Support

Resource Time Frame Activity Level of Effort

Engineering assistance Apr-May 92 Application testing 1 engineer, half
time for 8 weeks

Alpha hardware Apr-May 92 Application testing 2 days/week for 8
weeks

On-site support Jan-Aug 92 Omega QA 1 week per
month

3.6.1 Hardware
Omega requires that a system be loaned to its site to complete the migration
tasks without affecting normal development activities.

The Omega-1 base product spans several RA90 drives on its development system,
which is a VAX 6000 Model 550. Disk space may become a problem for building
the full application set.

3.6.2 On-Site Training
Digital will assume an active role in support of Omega migration beginning in
December 1991 with a three-day Alpha technical seminar for the application and
core-layer developers at Omega.

3.6.3 Telephone Support
During the first two-thirds of 1992, the Omega developers will continue their
efforts to migrate the host layer at their site using the cross tools on a Digital­
supplied platform. During this period, and throughout the entire migration effort,
Omega will receive telephone support from a software engineer at Digital. The
assigned engineer will spend approximately eight hours per week working with
Omega issues, following up on bug reports, and supporting the cross tools.

3.6.4 Testing Assistance
Digital will support several phases of testing the Omega-1 application.

3.6.4.1 Testing the Code Generator
One full-time Digital engineer is required for the first two weeks of March to test
the code generator. This period includes training by an Omega developer and
running the initial tests. During the following four weeks, the assigned engineer
will spend 50 percent of working time performing follow-up tests and reporting
the results to Omega.

The code generator testing will require nearly full-time use of an Alpha system
during the first two weeks, followed by two additional days of Alpha hardware
time per week during the following four weeks.

3.6.4.2 Testing Applications

3-10

Application testing will be done at Digital during the months of April and May
1992, and will require 40 percent of an engineer's time for running regression
tests and reporting results to Omega. This effort will require two days on Alpha
hardware per week during the eight-week test period.

3.6.4.3 Omega Quality Assurance

Sample Migration Pla·n
3.6 Resource Requirements

A Digital engineer will be available for an estimated 15 days during the months
of January to August 1992 to provide on-site support at Omega.

3-11

Part II
Migrating the Application

4
Migrating Your Application

Actually migrating your application to an Alpha system involves several steps:

1. Setting up the migration environment

2. Testing the application on a VAX system to establish baselines for evaluating
the migration

3. Converting the application to run on an Alpha system

4. Debugging and testing the migrated application

5. Integrating the migrated application into a software system

4.1 Setting Up the Migration Environment
The native Alpha environment is' a complete development environment equivalent
to that on VAX systems.

At present, you will have to complete the debugging and testing of your migrated
application on Alpha hardware.

An important element of the Alpha migration environment is support from
Digital, which can provide help in modifying, debugging, and testing your
application.

4.1.1 Hardware
There are several issues to consider when planning what hardware you will need
for your migration. To begin, consider what resources are required in your normal
VAX development environment:

• CPUs

• Disks

• Memory

To estimate the resources needed for an Alpha migration environment, consider
the following issues:

• Greater image size on Alpha systems

Compare VAX and Alpha compiled and translated images.

• Greater page size and physical memory size on Alpha systems

• CPU requirements

Using VEST tends to take a lot of CPU time. (It is difficult to predict how
much; it depends more on application complexity than size.) VEST also needs a
great deal of disk space for log files, for an Alpha image if you request one, for
flowgraphs, and so on. The new image includes both the original VAX instructions
and the new Alpha instructions, so it is always larger than the VAX image.

4-1

Migrating Your Application
4.1 Setting Up the Migration Environment

A suggested configuration consists of:

• 6 VUP multiprocessing system with 256 MB of memory

• 1 GB system disk

• 1 GB disk per application

In a multiprocessing system, each processor should be able to support the image
analysis of a separate application.

If computer resources are scarce, Digital suggests that you do one or more of the
following:

• Run compilers or VEST as a batch job at off-peak hours.

• Lease additional equipment for the migration effort.

4.1.2 Software

4-2

To create an efficient migration environment, check the following elements:

• Migration tools

You need, a .compatible set of migration tools, including the following:

Compilers

Translation tools

VEST and VEST/DEPENDENCY

TIE

RTLs

System libraries

Include files for C programs

• Logical names

Logical names must be consistently defined to point to VAX and Alpha
versions of tools and files. For more information, see Section 4.4.

• Compile and link procedures

These procedures must be adjusted for new tools and the new environment.

• Tools for maintaining sources and building images

CMS

MMS

Native Alpha Development
All of the standard development tools you have on VAX are also available as
native tools on Alpha systems.

Translation
The software translator VEST runs on both VAX and Alpha systems. The
Translated Image Environment (TIE), which is required to run a translated
image, is part of Open VMS Alpha, so· final testing of a translated image must
either be done on an Alpha system or at an Alpha Migration Center.

Migrating Your Application
4.2 Converting Your Application

4.2 Converting Your Application
If you have thoroughly analyzed your code and planned the migration process,
this final stage should be fairly straightforward. You may be able to recompile
or translate many programs with no change. Programs that do not recompile or
translate directly will frequently need only straightforward changes to get them
up on an Alpha system.

For more detailed information on the actual conversion of your code, see the
following Open VMS Alpha migration documentation:

• DECmigrate for Open VMS AXP Systems Translating Images

• Porting VAX MACRO Code from Open VMS VAX to Open VMS Alpha

For descriptions of these books, see the Preface of this manual.

The two migration environments and the principal tools used in each are shown
in Figure 4-1.

Figure 4-1 Migration Environments and Tools

VAX Hardware

Native Development

Translation

VEST

Alpha Hardware

Native _J Linker
,__c_o_m_p_il_e_r~ l~------~

VEST

Native
Debugger

Native
Debugger

ZK-4989A-GE

4-3

Migrating Your Application
4.2 Converting Your Application

4.2.1 Recompiling and Relinking
In general, migrating your application involves repeated cycles of revising,
compiling, linking, and debugging your code. During the process, you will resolve
all syntax and logic errors noted by the development tools. Syntax errors are
usually simple to fix; logic errors typically require significant modifications to
your code.

Your compile and link commands will require some changes, such as new
compiler and linker switches. For example, to allow portability among different
Alpha platforms, the linker default page size for Alpha systems is 64 KB, which
allows any Open VMS Alpha image to run on any Alpha processor, regardless of
the system page size on that processor. Also, Alpha shareable images declare
their universal entry points and symbols by means of a symbol vector declaration
in a linker options file, not by means of the VAX transfer vector mechanism.

A number of native compilers and other tools are available for software
development and migration on an Alpha platform.

4.2.1.1 Native Alpha Compilers

4-4

Recompiling and relinking an existing VAX source produces a native Alpha
image that executes within the Alpha environment with all the performance
advantages of a RISC architecture. For Alpha code, Digital is using a series of
highly optimizing compilers. These compilers have a common optimizing code
generator. However, they use a different front end for each language, each of
which is compatible with a current VAX compiler.

For Open VMS Alpha Version 7.0, native Alpha compilers are available for the
following languages:

• Ada

• BASIC

• c
• C++

• COBOL

• FORTRAN

• Digital Fortran (Alpha systems only)

• Pascal

• PL/I

• MACR0-32 (cross compiler)

Later releases of Open VMS Alpha will provide native compilers for other
languages, including LISP.

VAX user-mode programs that are written in any other language can be run on
an Alpha system by translating them with VEST. Compilers for other languages
may be available through third-party vendors.

In general, the Alpha compilers provide command-line qualifiers and language
semantics to allow code with dependencies on the VAX architecture to run on
an Alpha system with little modification. For a list of such dependencies, see
Table 2-3.

Migrating Your Application
4.2 Converting Your Application

Some compilers on Open VMS Alpha systems support new features not supported
by their counterparts on Open VMS VAX systems. To provide compatibility, some
compilers support compatibility modes. For example, the DEC C compiler for
Open VMS Alpha systems supports a VAX C compatibility mode that is invoked
by specifying the /STANDARD=VAXC qualifier.

In some cases, the compatibility is limited. For example, VAX C implements
built-in functions that allow access to special VAX hardware features. Since the
hardware architecture of VAX computers differs from Alpha computers, these
built-ins are not available in DEC C for Open VMS Alpha systems even when the
/STANDARD=VAXC qualifier is used.

The compilers can also compensate for some architectural dependencies that
may exist in your code. For example, the MACR0-32 compiler provides the
/PRESERVE qualifier that can preserve granularity or atomicity or both.

The DEC C compiler provides a header file that defines macros for each data
type. These macros map a generic data-type name, such as int64, to the machine­
specific data type, such as -64. For example, if you must have a data type that is
64 bits long, use the int64 macro.

Review the documentation for your compiler to become familiar with all its
features that support portability.

Chapter 12 describes in greater detail the process of using Alpha compilers to
migrate Open VMS VAX programs to an Open VMS Alpha system.

4.2.1.2 VAX MACR0-32 Compiler for OpenVMS Alpha
The VAX MACR0-32 Compiler for Open VMS Alpha is used to convert existing
VAX MACRO code into machine code that runs on OpenVMS Alpha systems. It is
included with Open VMS Alpha for that purpose.

While some VAX MACRO code can be compiled without any changes, most code
modules will require the addition of entry point directives. Many code modules
will require other changes as well.

Note -----------­

The MACR0-32 compiler will attempt to call LIB$ESTABLISH if it is
contained in the source code.

If MACR0-32 programs establish dynamic handlers by storing a routine
address at O(FP), they will work correctly when compiled on an Open VMS
Alpha system. However, you cannot set the condition handler address
from within a JSB (Jump to Subroutine) routine, only from within a
CALL_ENTRY routine.

The compiler generates code that is optimized for Open VMS Alpha systems, but
many features of the VAX MACRO language that provide the programmer with a
high level of control make it more difficult to generate optimal code for Open VMS
Alpha systems. For new program development for Open VMS Alpha, Digital
recommends the use of mid- and high-level languages. For more information on
the MACR0-32 compiler, see Porting VAX MACRO Code from Open VMS VAX to
Open VMS Alpha.

4-5

Migrating Your Application
4.2 Converting Your Application

4.2.1.3 Other Development Tools
Several other tools in addition to the compilers are available to create native
Alpha images:

• Open VMS Linker

The Open VMS Linker can now accept VAX object files or Alpha object files to
produce either a VAX image or an Alpha image. It also functions as a cross
linker, since it can produce Alpha images while running on VAX hardware.

• Open VMS Debugger

The Open VMS Debugger running on Open VMS Alpha has the same command
interface as the current Open VMS VAX debugger. The graphical interface on
Open VMS VAX systems is also available on Open VMS Alpha systems.

• Open VMS Librarian utility

The Open VMS Librarian utility creates either VAX or Alpha libraries.

• Open VMS Message utility

The Open VMS Message utility allows you to supplement the Open VMS
system m.essages with your own messages.

• MACR0-64 Assembler for Open VMS Alpha

The MACR0-64 assembler for OpenVMS Alpha systems is the native
assembler for all Alpha computers. Unlike the VAX MACRO assembler,
which is included with the Open VMS VAX operating system, the MACR0-64
assembler is not included with the Open VMS Alpha operating system. It
can be purchased separately. In general, the mid- and high-level language
compilers generate higher performance code for Open VMS Alpha systems
than the MACR0-64 assembler. Therefore, Digital recommends you use mid­
and high-level compilers for new program development for Open VMS Alpha
systems. For more information about the MACR0-64 assembler, see the
MACR0-64 Assembler for Open VMS AXP Systems Reference Manual.

• ANALYZE/IMAGE

The Analyze/Image utility can analyze either VAX or Alpha images.

• ANALYZE/OBJECT

The Analyze/Object utility can analyze either VAX or Alpha objects.

• DECset

DECset, a comprehensive set of CASE tools, includes the Language Sensitive
Editor (LSE), Source Code Analyzer (SCA), Code Management System (CMS),
Module Management System (MMS), and other components.

4.2.2 Translating

4-6

The process of translating a VAX image to run on an Alpha system is described
in detail in DECmigrate for Open VMS AXP Systems Translating Images. In
general, the process is straightforward, although you may have to modify your
code somewhat to get it to translate without error.

Migrating Your Application
4.2 Converting Your Application

4.2.2.1 VAX Environment Software Translator (VEST} and Translated Image Environment (TIE}
The main tools for migrating VAX user-mode images to Open VMS Alpha are a
static translator and a run-time support environment:

• The VAX Environment Software Translator (VEST) is a utility that analyzes
a VAX image and creates a functionally equivalent translated image. Using
VEST, you will be able to do the following:

Determine whether a V~ image is translatable.

Translate the VAX image to an Alpha image.

Identify specific incompatibilities with Open VMS Alpha within the
image and, when appropriate, obtain information on how to correct
those incompatibilities in the source files.

Identify ways to improve the run-time performance of the .translated
image.

• The Translated Image Environment (TIE) is an Alpha shareable image that
supports translated images at run time. TIE provides the translated image
with an environment similar to Open VMS VAX and processes all interactions
with the native Alpha system. Items that TIE provides include:

• VAX instruction interpreter, which supports:

Execution of VAX instructions (including instruction atomicity) that is
similar to their execution on a VAX system

Complex VAX instructions, as subroutines

• VAX compatible exception handler

• Jacket routines that allow communication between native and translated
code

• Emulated VAX stack

TIE is invoked automatically for any translated image; you do not need to call
it explicitly.

VEST locates and translates as much VAX code as possible into Alpha code. TIE
interprets any VAX code that cannot be converted into Alpha instructions; for
example:

• Instructions that VEST could not statically identify

• H_ and D56 (56-bit D_floating) floating-point operations

Since interpreting instructions is a slow process, requiring perhaps 100 Alpha
instructions per average VAX instruction, VEST attempts to find and translate as
much VAX code as possible to minimize the need for interpreting it at run time.
A translated image runs at approximately one-third the speed of a comparable
native Alpha image, depending on how much VAX code TIE needs to interpret.
Translated VAX images run at least as fast as they would run on equivalent
(same technology) VAX hardware.

Note that you cannot specify dynamic interpretation of a VAX image on an
Alpha system. You must use VEST to translate the image before it can run on
Open VMS Alpha.

4-7

Migrating Your Application
4.2 Converting Your Application

Translating a VAX image produces an image that runs as a native image on Alpha
hardware. The Alpha image is not merely an interpreted or emulated version of
the VAX image, but contains Alpha instructions that perform operations identical
to those performed by the instructions in the original VAX image. The Alpha
.EXE file also contains the original VAX image in its entirety, which allows TIE to
interpret any code that VEST could not translate.

VEST's analysis capability also makes it useful for evaluating programs that you
intend to recompile, rather than translate.

See DECmigrate for Open VMS AXP Systems Translating Images for a complete
description of VEST and TIE. The manual explains in detail all the output that
VEST generates, such as flowgraphs, and how to interpret it. The manual also
explains how information provided in image information files (IIFs) created by
VEST can help you improve the translated image's run-time performance.

4.3 Debugging and Testing the Migrated Application
Once you have migrated your application to Open VMS Alpha, you may have to
debug it.

You will also need to test the application for correct operation.

4.3.1 Debugging

4-8

The Open VMS operating system provides the following debuggers:

• The Open VMS Debugger supports debugging of both VAX and native Alpha
programs. This debugger does not support the debugging. of translated
images.

The Open VMS Debugger is a symbolic debugger, that is, the debugger allows
you to refer to program locations by the symbols you used for them in your
program-the names of variables, routines, labels, and so on. You do not need
to specify memory addresses or machine registers when referring to program
locations, although you can if you wish.

Although the Open VMS Debugger does not generally work for translated
images, it is helpful in one area. Since the translated image mimics the VAX
registers, you can use the commands SHOW CALLS and SHOW STATE to
get some VAX context for more detailed debugging.

• The Delta Debugger supports debugging of VAX and Alpha programs. This
debugger also supports the debugging of translated images.

The Delta Debugger is an address location debugger, that is, the debugger
requires you to refer to program locations by address location. This debugger
is primarily used to debug programs that run in privileged processor mode or
at an elevated interrupt level.

• The System-Code Debugger is a symbolic debugger that allows you to debug
nonpageable code and device drivers running at any IPL.

• The Heap Analyzer provides a graphical representation of memory use in real
time. This allows you to quickly identify inefficient memory usage in your
application such as allocations that are made too often, memory blocks that
are too large, fragmentation, or memory leaks.

Debugging must take place on Alpha hardware.

Migrating Your Application
4.3 Debugging and Testing the Migrated Application

4.3.1.1 Debugging with the OpenVMS Debugger
On Open VMS Alpha systems you can use the debugger with programs written in
the following Digital languages:

• DEC Ada

• DEC BASIC

• DEC C

• DEC C++

• DEC COBOL

• DEC Fortran (VAX systems)

• Digital Fortran (Alpha systems)

• MACR0-32 (compiled with the MACR0-32 compiler)

• MACR0-64

• DEC Pascal

• DEC PL/I

The Open VMS Debugger includes several features that address the architectural
differences of Open VMS Alpha code. These enable you to more easily debug code
that you are porting to Open VMS Alpha systems. For example, you can use the
/UNALIGNED_DATA qualifier with the SET command to cause the debugger to
break directly after any instruction that accesses unaligned data (such as a load
word instruction which accesses data that is not on a word boundary).

You can use the /RETURN qualifier with the SET command for any routine. It
is not limited to routines called with a CALLS or CALLG instruction as it is
on an Open VMS VAX system. For more information about features specific to
Open VMS Alpha systems, see the Open VMS Debugger Manual.

When you debug your migrated application on an Alpha system with the
Open VMS Debugger, bear in mind the following considerations:

• You can use the debugger with programs written in any language for which
there is an Alpha compiler available.

• The debugger does not support debugging of installed resident images. For
more information on installed resident images, see the Bookreader version of
the Open VMS System Manager's Manual: Tuning, Monitoring, and Complex
Systems.

• The debugger does not support debugging of inlined routines. If you attempt
to debug an inlined routine, the debugger issues a message that it cannot
access the routine:

DBG> %DEBUG-E-ACCESSR, no read access to address 00000000

• The debugger does not completely support the debugging of Register Frame
Procedures or No Frame Procedures. If you issue STEP/OVER or STEP
/RETURN commands for these procedures, unexpected results can occur.

For more information on debugging with the Open VMS Debugger, see the
Open VMS Debugger Manual.

4-9

Migrating Your Application
4.3 Debugging and Testing the Migrated Application

4.3.1.2 Debugging with the Delta Debugger
The Delta/XDelta Debugger (DELTAIXDELTA), running on Open VMS Alpha
systems, provides enhancements to existing commands and several new
commands necessitated by the Alpha architecture. The enhancements include
the display of base registers in decimal instead of hexadecimal notation and the
ability to look at the internal process identification (PID) number of another
process. The new commands include ;Q, used to validate queues, and ;I, used
to locate and display information about the current main image. For the Delta
Debugger, the ;I command can also display information about all shareable
images activated by the current main image. For more information about how the
Delta/XDelta Debugger operates on Open VMS Alpha systems, see the Open VMS
Delta/XDelta Debugger Manual.

You can use the Delta Debugger to debug applications that are partly or
completely translated.

Translated Applications
When attempting to debug a translated image, you should:

• · Make sure that the program you are translating works correctly under
Open VMS VAX Version 7.0.

• Make sure that VEST and any IIF files for run-time libraries are of the same
release as the version of Open VMS Alpha you are using.

• Use the VEST qualifiers /DEBUG, /LIST, and /SHOW=MACHINE_CODE to
capture Alpha and VAX instructions. (Note that in the listing, an asterisk
identifies a VAX instruction.) Have the VAX map and listing for the VAX
image at hand for comparison.

Mixed Applications
To debug an application that is partly native Alpha code and partly translated
code, make sure that the native parts of the application were compiled
using the /TIE qualifier; in addition, you must link the application with the
/NO_NATIVE_ONLY linker option.

For more information on debugging with the Delta Debugger, see the Open VMS
Delta I XDelta Debugger Manual.

For more information on debugging translated images, contact Systems
Integration.

4.3.1.3 Debugging with the OpenVMS Alpha System-Code Debugger

4-10

The Open VMS Alpha System-Code Debugger is available for debugging
nonpageable system code and device drivers running at any IPL. The Open VMS
Alpha System-Code Debugger is a symbolic debugger. You can specify variable
names, routine names, and so on, precisely as they appear in your source code.
You can also display the source code where the software is executing and step
through it by source line.

Note that running the System-Code Debugger requires two Alpha systems.

You can use this debugger to debug code written in the following languages:

• c
• BLISS

Migrating Your Application
4.3 Debugging and Testing the Migrated Application

• VAX.MACRO

Note

A BLISS compiler is available on the Open VMS Freeware CD that ships
with Open VMS VAX Version 6.2 and Open VMS Alpha Version 6.2.

The Open VMS Alpha System-Code Debugger recognizes the syntax, data typing,
operators, expressions, scoping rules, and other constructs of a given language.
If your program is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

For more information about Step 2 drivers and the Open VMS Alpha System-Code
Debugger, see the Open VMS Alpha Device Support: Developer's Guide.

4.3.2 Analyzing System Crashes
Open VMS provides two tools for analyzing system crashes: the System Dump
Analyzer and the Crash Log Utility Extractor.

4.3.2.1 System Dump Analyzer
The System Dump Analyzer (SDA) utility on Open VMS Alpha systems is almost
identical to the utility provided on Open VMS VAX systems. Many commands,
qualifiers, and displays are identical, although there are some additional
commands and qualifiers, including several for accessing functions of the Crash
Log Utility Extractor (CLUE) utility. Some displays have been adapted to show
information specific to Open VMS Alpha systems, such as processor registers and
data structures.

While the SDA interface has changed only slightly, the contents of VAX and Alpha
dump files and the entire process of analyzing a system crash from a dump differ
significantly between the two computers. The Alpha execution paths leave more
complex structures and patterns on the stack than VAX execution paths do.

To use SDA on a VAX computer, you must first familiarize yourself with the
Open VMS calling standard for VAX systems. Similarly, to use SDA on an Alpha
system, you must familiarize yourself with the Open VMS calling standard for
Alpha systems before you can decipher the pattern of a crash on the stack.

The changes to SDA include the following:

The displays of the SHOW CRASH and SHOW STACK commands contain
additional information that make debugging fatal system exception bugchecks
simpler.

The SHOW EXEC command display includes additional information about
executive images if they were loaded using image slicing. Slicing is a
function performed by the executive image loader for executive images and by
the Open VMS Install utility for user-mode images. Slicing an executive image
(or a user-mode image) greatly improves performance by reducing contention
for the limited number of translation buffer entries.

The MAP command, a new SDA command, enables you to map an address in
memory to an image offset in a map file.

A new symbol, FPCR, has been added to the symbol table. This symbol
represents a floating-point register.

4-11

Migrating Your Application
4.3 Debugging and Testing the Migrated Application

4.3.2.2 Crash Log Utility Extractor
The Crash Log Utility Extractor (CLUE) is a tool for recording a history of
crash dumps and key parameters for each crash dump and for extracting and
summarizing key information. Unlike crash dumps, which are overwritten
with each system crash and are available only for the most recent crash, the
crash history file (on Open VMS VAX) and the summary crash history file with a
separate listing file for each crash (on Open VMS Alpha), are permanent records
of system crashes.

The implementation differences between Open VMS VAX and Open VMS Alpha
are shown in Table 4-1.

Table 4-1 CLUE Differences Between OpenVMS VAX and OpenVMS Alpha

Attribute

Access method

History file

Uses in addition
to debugging
crash dumps

Documentation

OpenVMS VAX

Invoked as a separate utility.

A cumulative file that contains a
one-line summary and detailed
information from the crash dump
file for each crash.

None.

Bookreader versions of the
Open VMS System Manager's
Manual and Open VMS System
Management Utilities Reference
Manual

OpenVMS Alpha

Accessed through SDA.

A cumulative file that contains only
a one-line summary for each crash
dump. The detailed information
for each crash is put in a separate
listing file.

CLUE commands can be used
interactively to examine a running
system.

Bookreader versions of the
Open VMS System Manager's
Manual and Open VMS Alpha
System Dump Analyzer Utility
Manual

4.3.3 Testing
You must test your application to compare the performance and functionality of
the migrated version with those of the original VAX version.

The first step in testing is to establish baseline values for your application by
running your test suite on the VAX application.

Once your application is running on an Alpha system, there are two types of tests
you will want to apply:

• The standard tests used for the VAX version of the application

• New tests to check specifically for problems due to the change in architecture

4.3.3.1 VAX Tests

4-12

Because the changes in your application are combined with use of a new
architecture, testing your application after it is migrated to Open VMS Alpha
is particularly important. Not only can the changes introduce errors into the
application, but the new environment may bring out latent problems in the VAX
version.

Testing your migrated application involves the following steps:

1. Get a complete set of standard data for the application prior to the migration.

2. Migrate your test suite along with the application (if the tests are not already
available on Alpha).

Migrating Your Application
4.3 Debugging and Testing the Migrated Application

3. Validate the test suite on an Alpha system.

4. Run the migrated tests on the migrated application.

Both regression tests and stress tests are useful here. Stress tests are important
to test for platform differences in synchronization, particularly for applications
that use multiple threads of execution.

4.3.3.2 Alpha Tests
While your standard tests should go a long way toward verifying the function of
the migrated application, you should add some tests that look at issues specific to
the migration. Points to focus on include the following:

• Compiler differences-changes in optimization and .data alignment

• Architectural differences-changes in instruction atomicity, memory atomicity,
and read/write ordering, for example

• Integration-modules written in different languages, or modules that had to
be translated

4.3.4 Uncovering Latent Bugs
Despite your best efforts, and following all the previous suggestions, you may
encounter bugs that were in your program all along, but never caused a problem
on an Open VMS VAX system. For example, a failure to initialize some variable
in your program might have been benign on a VAX computer but could produce
an arithmetic exception on an Alpha computer. The same could be true moving
between any other two architectures, because the available instructions and the
way compilers optimize them is bound to change. There is no magic answer for
bugs that have been in hiding, but you should test your programs after porting
them before making them available to other users.

4.4 Integrating the Migrated Application into a Software System
After you have migrated your application by recompiling or translating it, check
for problems that are caused by interactions with other software and that may
have been introduced during the migration.

Sources of problems in interoperability can include the following:

• Alpha and VAX systems within a VMScluster environment must use separate
system disks. You must make sure that your application refers to the
appropriate system disk.

• Image names

In a mixed environment, be sure that your application refers to the correct
version.

Native VAX and native Alpha versions of an image have the same name.

The translated version of an image has the string "_TV" added to its
name.

• Recompiled images may expect naturally aligned data, while translated
images have unaligned data, like the original VAX image.

4-13

5
Recompiling and Relinking Overview

This chapter introduces the general process of moving an application that runs
on a VAX system to an Alpha system by recompiling and relinking the source
files that make up the application. Specifically, this chapter covers the following
topics:

• Using Alpha versions of tools, such as native compilers and the linker

• Identifying dependencies your application may have on aspects of the VAX
architecture

5.1 Overview
In general, if your application is written in a high-level programming language,
you should be able to get it running on an Alpha system with a minimum
of effort. High-level languages insulate applications from dependence on the
underlying machine architecture. In addition, for the most part, the programming
environment on Alpha systems duplicates the programming environment on VAX
systems. Using native Alpha versions of the language compilers and the
Open VMS Linker utility (linker), you can recompile and relink the source files
that make up your application to produce a native Alpha image.

However, it is possible to introduce architectural dependencies even in
applications written in high-level languages. The following sections describe
the programming environment on an Alpha system and provide guidelines for
identifying code in your application source files that may not be able to be moved
to an Alpha system without modification.

5.2 Recompiling Your Application with Native Alpha Compilers
Many of the languages supported on VAX systems, such as FORTRAN and C, are
also supported on Alpha systems. For complete information about the availability
of programming languages on Alpha systems, see Chapter 12.

The compilers available on Alpha systems are intended to be compatible with
their counterparts on VAX systems. The compilers conform to language standards
and include support for most VAX language extensions. The compilers produce
output files with the same default file types as they do on VAX systems, such as
.OBJ for an object module.

Note, however, that some features supported by the compilers on VAX systems
may not be available in the same compiler on Alpha systems. In addition,
some compilers on Alpha systems support new features not supported by their
counterparts on VAX systems. To provide compatibility, some compilers support
compatibility modes. For example, the DEC C for Open VMS Alpha systems
compiler supports a VAX C compatibility mode that is invoked by specifying the
/STANDARD=VAXC qualifier. Chapter 12 lists the features of several compilers
available on both the VAX and Alpha systems.

5-1

Recompiling and Relinking Overview
5.3 Relinking Your Application on an Alpha System

5.3 Relinking Your Application on an Alpha System

5-2

Once you successfully recompile your source files, you must relink your
application to create a native Alpha image. The linker produces output files
with the same file types as on current VAX systems. For example, by default, the
linker uses the file type .EXE to identify image files.

Because the way in which you perform certain linking tasks is different on Alpha
systems, you will probably need to modify the LINK command used to build
your application. The following list describes some of these linker changes that
may affect your application's build procedure. See the Bookreader version of the
Open VMS Linker Utility Manual for more information.

• Declaring universal symbols in shareable images-If your application
creates shareable images, your application build procedure probably includes
. a transfer vector file, written in VAX MACRO, in which you declare the
universal symbols in the shareable image. 'On Alpha systems, instead of
creating a transfer vector file, you must declare universal symbols in a linker
options file by specifying the SYMBOL_ VECTOR= option.

• Linking against the OpenVMS executive-On VAX systems, you link
against the Open VMS executive by including the system symbol table file
(SYS.STB) in your build procedure. On Alpha systems, you link against the
Open VMS executive by specifying the /SYSEXE qualifier.

• Optimizing the performance of images-On Alpha systems, the linker
can perform certain optimizations that can improve the performance of the
images it creates. The linker can also enhance performance by creating
shareable images that can be installed as resident images.

• Processing shareable images implicitly-On VAX systems, when you
specify a shareable image in a link operation, the linker also processes all
the shareable images to which that shareable image was linked. On Alpha
systems, you must specify these shareable images to include them in your
build procedure.

The linker supports several qualifiers and options, listed in Table 5-1, that are
specific to Alpha systems. Table 5-2 lists linker qualifiers supported on VAX
systems but not on Alpha systems.

Table 5-1 Linker Qualifiers and Options Specific to OpenVMS Alpha Systems

Qualifiers

/DEMAND_ZERO

/DSF

/GST

Description

Controls how the linker creates demand-zero image
sections.

Directs the linker to create a file called a debug
symbol file (DSF) for use by the Open VMS Alpha
System-Code Debugger.

Directs the linker to create a global symbol table
(GST) for a shareable image (the default). More
typically specified as /NOGST when used to create
shareable images for run-time kits.

(continued on next page)

Recompiling and Relinking Overview
5.3 Relinking Your Application on an Alpha System

Table 5-1 (Cont.) Linker Qualifiers and Options Specific to OpenVMS Alpha
Systems

Qualifiers

/INFORMATIONALS

/NATIVE_ ONLY

/REPLACE

/SECTION_BINDING

/SYS EXE

Options

SYMBOL_TABLE= option

SYMBOL_ VECTOR= option

Description

Directs the linker to output informational messages
during a link operation (the default). More typically
specified as /NOINFORMATIONALS to suppress
these messages.

Directs the linker to not pass along the procedure
signature block (PSB) information, created by the
compilers, in the image it is creating (the default).

If /NONATIVE_ONLY is specified during linking, the
image activator uses the PSB information, if any,
provided in the object modules specified as input
files to the link operation to invoke jacket routines.
Jacket routines are necessary to allow native Alpha
images to work with translated VAX images.

Directs the linker to perform certain optimizations
that can improve the performance of the image it is
creating, when requested to do so by the compilers
(the default).

Directs the linker to create a shareable image that
can be installed as a resident image.

Directs the linker to process the Open VMS executive
image (SYS$BASE_IMAGE.EXE) to resolve symbols
left unresolved in a link operation.

Description

Directs the linker to include global symbols as
well as universal symbols in the symbol table file
associated with a shareable image. By default, the
linker includes only universal symbols.

Used to declare universal symbols in Alpha shareable
images.

5-3

Recompiling and Relinking Overview
5.3 Relinking Your Application on an Alpha System

Table 5-2 Linker Options Specific to OpenVMS VAX Systems

Options

BASE= option

DZRO_MIN= option

ISD _MAX= option

UNIVERSAL= option

Description

Specifies the base address (starting address) that you
want the linker to assign to the image.

Specifies the minimum number of contiguous,
uninitialized pages that the linker must find in
an image section before it can extract the pages
from the image section and place them in a newly
created demand-zero image section. By creating
demand-zero image sections (image sections that do
not contain initialized data), the linker can reduce
the size of images.

Specifies the maximum number of image sections
allowed in the image.

Declares a symbol in a shareable image as universal,
causing the linker to include it in the global symbol
table of a shareable image.

5.4 Compatibility Between the Mathematics Libraries Available on
VAX and Alpha Systems

Mathematical applications using the standard Open VMS call interface to the
Open VMS Mathematics (MTH$) Run-Time Library need not change their calls to
MTH$ routines when migrating to an Open VMS Alpha system. Jacket routines
are provided that map MTH$ routines to their math$ counterparts in the Digital
Portable Mathematics Library (DPML) for Open VMS Alpha systems. However,
there is no support in the DPML for calls made to JSB entry points and vector
routines. Note that DPML routines are different from those in the Open VMS
MTH$ RTL and you should expect to see small differences in the precision of the
mathematical results.

To maintain compatibility with future libraries and to create portable
mathematical applications, Digital recommends that you use the DPML routines
available through the high-level language of your choice (for example, DEC
C or DEC Fortran) rather than using the call interface. Significantly higher
performance and accuracy are also available to you with DPML routines.

See the Digital Portable Mathematics Library manual for more information about
the DPML routines.

5.5 Determining the Host Architecture

5-4

Your application may need to determine whether it is running on an Open VMS
VAX system or an Alpha system. From within your program, you can obtain
this information by calling the $GETSYI system service (or the LIB$GETSYI
RTL routine), specifying the ARCH_TYPE item code. When your application
is running on a VAX system, the $GETSYI system service returns the value 1.
When your application is running on an Alpha system, the $GETSYI system
service returns the value 2.

Example 5-1 shows how to determine the host architecture in a DCL command
procedure by calling the F$GETSYI DCL command and specifying the ARCH_
TYPE item code. (For an example of calling the $GETSYI system service to
obtain the page size of an Alpha system, see Section 6.4.)

Recompiling and Relinking Overview
5.5 Determining the Host Architecture

Example 5-1 Using the ARCH_ TYPE Keyword to Determine Architecture Type

$! Determine architecture type
$ type symbol = f$getsyi("arch type")
$ if type symbol .eq. 1 then goto ON VAX
$ if type-symbol .eq. 2 then goto ON-ALPHA
$ ON VAX:- -
$! -
$! Do VAX-specific processing
$!
$ exit
$ ON ALPHA:
$! -
$! Do Alpha-specific processing
$!
$ exit

Note, however, that the ARCH_TYPE item code is available only on VAX systems
running Open VMS Version 5.5 or later. If your application needs to determine
the host architecture for earlier versions of the operating system, use one of the
other $GETSYI system service item codes listed in Table 5-3.

Table 5-3 $GETSYI Item Codes That Specify Host Architecture

Keyword

ARCH_ TYPE

ARCH_NAME

HW_MODEL

CPU

Usage

Returns 1 on a VAX system; returns 2 on an Alpha system.
Supported on Alpha systems and on VAX systems running
OpenVMS Version 5.5 or later.

Returns text string "VAX" on VAX systems and text string "Alpha"
on Alpha systems. Supported on Alpha systems and on VAX
systems running Open VMS Version 5.5 or later.

Returns an integer that identifies a particular hardware model. All
values equal to or larger than 1024 identify Alpha systems.

Returns an integer that identifies a particular CPU. The value 128
identifies a system as "not a VAX." This code is supported on much
earlier versions of Open VMS than the ARCH_ TYPE and ARCH_
NAME codes.

5-5

6
Adapting Applications to a Larger Page Size

This chapter describes how to identify dependencies your application may have on
the VAX page size and makes recommendations for correcting those dependencies.

6.1 Overview
In general, page size, the basic unit of memory manipulated by the operating
system, is below the level of applications, especially for applications written
in high- or mid-level programming languages. However, your application may
contain page-size dependencies if it calls system services or rim-time library
routines to perform memory management functions such as the following:

• Allocating virtual memory

• Mapping sections into the virtual address space of your process

• Locking memory into your working set

• Protecting segments of your virtual address space

The system services and run-time library routines that perform these functions
manipulate memory in pages. The values you specified as arguments to these
routines are based on an assumption of a 512-byte page, the page size defined
by the VAX architecture. The Alpha architecture supports an SK, 16K, 32K, or
64K byte page size, depending on the implementation, so you should examine
the values you specify as arguments to the routines to make sure they still
satisfy the requirements of your application. The following sections provide more
information about examining the routines.

Note that this difference in page sizes does not affect memory allocation using
higher level routines, for example, the run-time library routines that manipulate
virtual memory zones or language-specific memory allocation routines such as the
malloc and free routines in C.

6.1.1 Compatibility Features
Wherever possible, system services or run-time library routines attempt to
present the same interface and return values on Alpha systems as they do on
VAX systems. For example, on Alpha systems, the routines that accept page­
count values as arguments still interpret these arguments in 512-byte quantities,
now called pagelets to distinguish them from the CPU-specific page size. The
routines convert pagelet values into CPU-specific pages. The routines that return
page-count values convert from CPU-specific pages to pagelets so that the return
values expected by your application are still measured in 512-byte units.

6-1

Adapting Applications to a Larger Page Size
6.1 Overview

Note ___________ _

On Alpha systems, when creating page frame sections using the
$CRMPSC system service (with the SEC$M_PFNMAP flag bit set),
the value specified in the page count argument (pagcnt) is interpreted as
the CPU-specific page size, not as a pagelet value.

6.1.2 Summary of Memory Management Routines with Potential Page-Size
Dependencies

Despite the compatibility, some routines behave differently on Alpha systems
than they do on VAX systems and may require you to modify your source code.
For example, on Alpha systems, the system services that map section files
($CRMPSC and $MGBLSC) require you to specify address value arguments that
are aligned on CPU-specific page boundaries. On VAX systems, these routines
round the address values specified in arguments to VAX page boundaries. On
Alpha systems, the routines do not round these addresses to CPU-specific page
boundaries.

Table 6-1 lists the memory management routines with the arguments they
support that may contain page-size dependencies. The table lists the arguments
with their intended function and describes how these arguments are interpreted
on Alpha systems. Note that the table does not attempt to list all the arguments
accepted by each routine. For more information about the routines and their
argument lists, see the Open VMS System Services Reference Manual.

Table 6-1 Potential Page-Size Dependencies in Memory Management Routines

Routine

Adjust Working Set Limit
($ADJWSL)

Create Process
($CREPRC)

Create Virtual Address
($CRETVA)

6-2

Argument

pagcnt specifies the number of
pages to add to (or subtract from)
the current working set limit.

wsetlm specifies the value of the
current working set limit.

. quota accepts several quota
descriptors that specify page counts,
such as the default working set size,
paging file quota, and working set
expansion quota.

inadr specifies the start- and end­
addresses of the memory to be
allocated. If the end-address is the
same as the start-address, a single
page is allocated.

retadr specifies the actual start­
and end-addresses of the memory
affected by the call.

Behavior on Alpha Systems

Interpreted in pagelets, adjusted
up or down to represent CPU­
specific-sized pages.

Interpreted in pagelets, adjusted
up or down to represent CPU­
specific-sized pages.

Interpreted in pagelets, adjusted
up or down to represent CPU­
specific-sized pages.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

(continued on next page)

Adapting Applications to a Larger Page Size
6.1 Overview

Table 6-1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine

Create and Map Section
($CRMPSC)

Delete Virtual Address
($DELTVA)

Argument

inadr specifies the start- and end­
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in PO or Pl
space.

retadr specifies the actual start­
and end-addresses of the memory
affected by the call.

flags specifies the type and
characteristics of the section to
be created or mapped.

relpag specifies the page offset at
which mapping of the section file
should begin.

pagcnt specifies the number of
pages (blocks) in the file to be
mapped.

pfc specifies the number of pages
that should be mapped when a page
fault occurs.

inadr specifies the start- and end­
addresses of the memory to be
deallocated.

retadr specifies the actual start­
and end-addresses of the memory
that was d.eleted.

Behavior on Alpha Systems

Addresses must be aligned
on CPU-specific pages (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 6.3 for more information
about mapping.)

Returns the start- and end­
addresses of the usable range
of addresses, which may be
different than the total amount
mapped. This argument is
required when the relpag
argument is specified.

The flag bit SEC$M_NO_
OVERMAP indicates that
existing address space should
not be overmapped. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

Interpreted as an index into
the section file, measured in
pagelets.

Interpreted in pagelets; no
rounding is done. When the
flag bit SEC$M_PFNMAP is
set, the pagcnt argument is
interpreted as CPU-specific
pages, not pagelets.

Interpreted in CPU-specific­
sized pages. When specifying
a value for this argument,
remember that, because Alpha
systems support SK, 16K, 32K,
and 64K byte physical page
sizes, at least 16 pagelets will be
mapped for each physical page.
The system cannot map less
than a physical page.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

(continued on next page)

6-3

Adapting Applications to a Larger Page Size
6.1 Overview

Table 6-1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine

Expand Program/Control Region
($EXPREG)

Get Job/Process Information
($GETJPI)

Get Queue Information
($GETQUI)

Get Systemwide Information
($GETSYI)

Get User Authorization
Information ($GETUAI)

Lock Page
($LCKPAG)

Lock Working Set
($LKWSET)

Map Global Section
($MGBLSC)

6-4

Argument

pagcnt specifies the amount of
memory to allocate, in 512-byte
units.

retadr specifies the actual start­
and end-addresses of the memory
affected by the call.

itmlst specifies which information
about the process is to be returned.

itmlst specifies information to be
used in performing the function
specified by the func argument.

itmlst specifies which information
is to be returned about the node or
nodes.

itmlst specifies which information
from the user's user authorization
file is to be returned.

inadr specifies the start- and end­
addresses of the memory to be
locked.

retadr specifies the actual start­
and end-addresses of the memory
that was locked.

inadr specifies the start- and end­
addresses of the memory to be
locked.

retadr specifies the actual start­
and end-addresses of the memory
that was locked.

inadr specifies the start- and end­
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in PO or Pl
space.

Behavior on Alpha Systems

Interpreted in pagelets.

Unchanged.

Many items, such as JPI$_
WSEXTENT, interpreted
as pagelet values. See the
Open VMS System Services
Reference Manual for more
information.

Several items interpreted
as pagelet values. See the
Open VMS System Services
Reference Manual for more
information.

Several items interpreted as
pagelet values. One additional
item, SYI$_PAGE_SIZE,
specifies the page size supported
by the node. See the Open VMS
System Services Reference
Manual for more information.

Several items return pagelet
values. See the Open VMS
System Services Reference
Manual for more information.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

Addresses must be aligned on
a CPU-specific page (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 6.3 for more information
about mapping.)

(continued on next page)

Adapting Applications to a Larger Page Size
6.1 Overview

Table 6-1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine

Purge Working Set
($PURGWS)

Set Protection
($SETPRT)

Set User Authorization File
($SETUAI)

Send to Job Controller
($SNDJBC)

Unlock Page
($ULKPAG)

Unlock Working Set
($ULWSET)

Update Section
($UPDSEC)

Argument

retadr specifies the actual start­
and end-addresses of the memory
affected by the call.

relpag specifies the page offset at
which mapping of the section file
should begin.

inadr specifies the start- and end­
addresses of the memory to be
purged.

inadr specifies the start- and end­
addresses of the memory to be
protected.

retadr specifies the actual start­
and end-addresses of the memory
that was protected.

itmlst specifies which information
from the user authorization file is to
be set.

itmlst specifies information to be
used in performing the function
specified by the func argument.

inadr specifies the start- and end­
addresses of the memory to be
unlocked.

retadr specifies the actual start­
and end-addresses of the memory
that was unlocked.

inadr specifies the start- and end­
addresses of the memory to be
unlocked.

retadr specifies the actual start­
and end-addresses of the memory
that was unlocked.

inadr specifies the start- and end­
address of the section to write to
disk.

retadr specifies the actual start­
and end-addresses of the memory
that was written to disk.

Behavior on Alpha Systems

Returns start- and end­
addresses of usable portion
of memory mapped.

Interpreted as an index into
the section file, measured in
pagelets.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

Several items interpreted
in pagelet values. See the
Open VMS System Services
Reference Manual for more
information.

Several items interpreted
in pagelet values. See the
Open VMS System Services
Reference Manual for more
information.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Unchanged.

Rounds requests to CPU­
specific pages. Note that only
the address range actually
represented by on-disk storage
will be written to disk.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

6-5

Adapting Applications to a Larger Page Size
6.1 Overview

The run-time library routines listed in Table 6-2 allocate (or free) pages
of memory. For compatibility, these routines also interpret the page-count
information you specify in pagelets.

Table 6-2 Potential Page-Size Dependencies in Run-Time Library Routines

Routine Argument Behavior on Alpha Systems

LIB$GET_ VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to allocate.

Interpreted in pagelets, rounded
to CPU-specific pages.

LIB$FREE_ VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to free.

Interpreted in pagelets, rounded
to CPU-specific pages.

6.2 Examining Memory Allocation Routines
To determine if the memory allocation performed by your application requires
modification, check to see where the memory is allocated. The system service
routines that perform memory allocation ($EXPREG and $CRETVA) allow you to
allocate memory in two ways:

• By expanding the size of the PO or Pl regions of your application's virtual
address space

• By reclaiming a region of your application's existing virtual address space,
starting at a location you specify

The Alpha architecture defines the same virtual address space layout as the VAX
architecture and allows for growth of the PO and Pl regions in the same direction
as on VAX systems. Figure 6-1 shows this layout.

6.2.1 Allocating Memory in Expanded Virtual Address Space

6-6

If your application allocates memory by expanding virtual address space using
the $EXPREG system service, you may not need to make any source code changes
because the values you specified as arguments are valid on Alpha systems and
VAX systems. The reasons for this are as follows:

• On Alpha systems, the $EXPREG system service interprets the amount of
memory requested (specified as a page count in the pagcnt argument) in 512-
byte units, the same as on an VAX system. Thus, the value your application
specified still requests the same amount of memory. Note, however, that
because the system service rounds the value up to CPU-specific pages,
the actual amount of memory allocated by the system for your application
may be larger on an Alpha system than it is on a VAX system. The entire
amount of memory allocated is available for use by your application. Because
applications typically allocate memory to satisfy buffer requirements, which
do not change with different platforms, the value you specified should still
satisfy the requirements of your application.

• Because the allocation occurs in an expanded area of virtual address space,
the discrepancy between the amount requested and the amount actually
allocated by the system should have no effect on the function of your
application.

Adapting Applications to a Larger Page Size
6.2 Examining Memory Allocation Routines

Figure 6-1 Virtual Address Layout

Virtual
Address

00000000
Program Region

(PO)

Control Region
(P1)

Direction of
Growth

I
I
I
I
I
I

+ Length ---------------------i

Length ---------------------i + I
I
I
I
I
I
I

Direction of
Growth

7FFFFFFF ,___ ________________ __ ___.

ZK-0861-GE

Recommendation
Your application may not need to be modified. However, Digital suggests that you
obtain the exact boundaries of the memory allocated by the system, because the
amount of memory returned by the $EXPREG system service may vary among
implementations of the Alpha architecture. To do this, specify the optional retadr
argument to the $EXPREG system service, if your application does not already
include it. The retadr argument contains the start-address and the end-address
of the memory allocated by the system service.

For example, the program in Example 6-1 calls the $EXPREG system service to
request 10 additional pages of memory. If you run this program on a VAX system,
the $EXPREG system service allocates 5120 bytes of additional memory. If you
run this program on an Alpha system, the $EXPREG system service allocates at
least 8192 bytes and possibly more, depending on the page size of the particular
implementation of the Alpha architecture.

6-7

Adapting Applications to a Larger Page Size
6.2 Examining Memory Allocation Routines

Example 6-1 Allocating Memory by Expanding Your Virtual Address Space

#include <ssdef .h>
#include <stdio.h>
#include <stsdef .h>
#include <descrip.h>
#include <dvidef .h>

#define PAGE COUNT 10 0
#define PO SPACE 0
#define Pl=SPACE 1

main(argc, argv
int argc;
char *argv[];
{

int status = O;
long bytes_allocated, addr_returned[2];

f} status= SYS$EXPREG(PAGE_COUNT, &addr_returned, O, PO_SPACE);

bytes_allocated = addr_returned[l] - addr_returned[O];

if (status == SS$ NORMAL)
printf("bytes allocated= %d\n", bytes_allocated);

else
return (status);

The items in the following list correspond to the numbered items in Example 6-1:

0 The example defines a symbol, PAGE_COUNT, to stand for the number of
pages requested.

f} The example requests 10 additional pages to be added at the end of the PO
region of its virtual address space.

6.2.2 Allocating Memory in Existing Virtual Address Space

6-8

If your application reallocates memory that is already in its virtual address space
by using the $CRETVA system service, you may need to modify the values of the
following arguments to $CRETVA:

• If your application explicitly rounds the address specified in the inadr
argument to be a multiple of 512 in order to align on a VAX page boundary,
you need to modify the address. On Alpha systems, the $CRETVA system
service rounds the start-address down to a CPU-specific page boundary, which
will vary with different implementations.

• The size of the reallocation, specified by the address range in the inadr
argument, may be larger on an Alpha system than it is on a VAX system
because the request is rounded up to CPU-specific pages. This can cause the
unintended destruction of neighboring data, which also occurs with single­
page allocations. (WJien the start-address and the end-address specified in
the inadr argument match, a single page is allocated.)

Recommendations
To determine whether your application needs to be modified, Digital suggests
doing the following:

• For all potential page sizes, make sure the area of virtual address space
affected by the call does not destroy important data.

Adapting Applications to a Larger Page Size
6.2 Examining Memory Allocation Routines

• For all potential page sizes, make sure the start-address at which the
allocation begins always falls on a page boundary.

• Specify the optional retadr argument, if not already included by your
application, to determine the exact boundaries of the memory allocated by
the call to the $CRETVA system service.

Example 6-2 shows how memory allocated to a buffer can be reallocated by using
the $CRETVA system service.·

Example 6-2 Allocating Memory in Existing Address Space

#include <ssdef .h>
#include <stdio.h>
#include <stsdef .h>
#include <descrip.h>
#include <dvidef .h>

char _align(page) buffer[l024];

main(argc, argv
int argc;
char *argv[];
{

int
long
long

inadr[O]
inadr[l]

status = O;
inadr[2];
retadr[2];

= &buffer[O];
= &buffer[l023];

printf("inadr[O]=%u,inadr[l]=%u\n",inadr[O],inadr[l]);

status= SYS$CRETVA(inadr, &retadr, O);

if (status & STS$M SUCCESS
{ -

}

printf("success\n");
printf("retadr[0]=%u,retadr[l]=%u\n",retadr[O],retadr[l]);

else
{

printf("failure\n");
exit(status);

6.2.3 Deleting Virtual Memory
Calls to the $DELTVA system service to free memory allocated by the $EXPREG
and $CRETVA system services should require no modification if your application
uses the address range returned in the retadr argument (returned by the
routine used to allocate the memory) as the inadr argument to the $DELTVA
system service. Because the actual amount of the allocation will vary with the
implementation, your application should not make any assumptions regarding
the extent of the allocation.

6-9

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

6.3 Examining Memory Mapping Routines
To determine if the memory mapping performed by your application requires
modification, check to see where in virtual memory your application performs
the mapping. The memory mapping system services ($CRMPSC and $MGBLSC)
allow you to map memory in the following ways:

• Map memory into an expanded area of your application's virtual address
space

• Map a single page of memory into your application's virtual address space,
starting at a location you specify (the location may be in existing virtual
address space)

• Map memory into an existing area of your virtual address space, defined by
the start- and end-addresses you specify

How your application maps a section is determined primarily by the following
arguments to the $CRMPSC and $MGBLSC system services:

• inadr argument-Specifies the size and location of the section by its start­
and end-addresses, interpreted by the $CRMPSC system service in the
following ways:

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG bit is set in the flags argument, the system service
allocates the memory in whichever program region the addresses fall, but
does not use the specified location.

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG flag is not set, a single page is mapped, starting at the
specified location. (Note that this mode of operation of the $CRMPSC
system service is not supported on Alpha systems. If your application
uses this mode, see Section 6.3.2 for recommendations about modifying
your source code.)

If both addresses are different, the system service maps the section into
memory using the boundaries specified.

• pagcnt (page count) argument-Specifies the number of blocks you want to
map from the section file.

o relpag (relative page number) argument-Specifies the location in the section
file at which you want mapping to begin.

The $CRMPSC and $MGBLSC system services map a miminum of one CPU­
specific page. If the section file does not fill a single page, the remainder of the
page is filled with zeros. The extra space on the page should not be used by your
application because only the data that fits into the section file will be written
back to the disk.

6.3.1 Mapping into Expanded Virtual Address Space

6-10

If your application maps a section file into an expanded area of your application's
virtual address space~ you may not need to modify the source code. Because
the mapping occurs in expanded virtual address space, there is no danger of
overmapping existing data, even if the amount of memory allocated is larger
on an Alpha system than on a VAX system. Thus, the values you specify as
arguments to the $CRMPSC system service on a VAX system should still work on
an Alpha system.

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

Recommendation
While applications that map sections into expanded areas of virtual memory may
work correctly without modification, Digital suggests that you specify the :r;etadr
argument, if not already specified by your application, to determine the exact
boundaries of the memory that was mapped by the call.

Note

If your application specifies the relpag argument, you must specify the
retadr argument; it is not an optional argument. For more information
about using the relpag argument, see Section 6.3.4.

Example 6-3 shows a call to the $CRMPSC system service that maps a section
file into expanded address space. The example maps a section file named
MAPTEST.DAT that was created using the DCL CREATE command, as follows:

$. CREATE maptest.dat
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
lctrl!ZI

Example 6-3 Mapping a Section into Expanded Virtual Address Space

#include <ssdef .h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stsdef .h>
#include <descrip.h>
#include <dvidef .h>
#include <rms.h>
#include <secdef .h>

struct FAB fab;

char align(page) buffer[l024];
char °*filename = "maptest.dat";

main(argc, argv
int argc;
char *argv[];
{

int status = O;
long flags = SEC$M EXPREG;
long inadr[2]; -
long retadr[2];
int fileChannel;

(continued on next page)

6-11

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

Example 6-3 {Cont.) Mapping a Section into Expanded Virtual Address Space

/******** create disk file to be mapped *************/

fab = cc$rms fab;
fab.fab$1 fna = filename;
fab.fab$b-fns = strlen(filename);
fab.fab$l=fop = FAB$M_CIF I FAB$M_UFO; /* must be UFO */

status= sys$create(&fab);

if (status & STS$M SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[O] = &buffer[O];
inadr[l] = &buffer[O];

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

O, /* acmode */
flags, /* flags, with SEC$M EXPREG bit set */

O, /* gsdnam, only for global sections */
O, /* ident, only for global sections */
O, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
O, /* pagcnt = size of sect. file used */
O, /* vbn = first block of file used */
0, /* prot = default okay */
O); /*page fault cluster size*/

if (status & STS$M_SUCCESS)
{

}
else
{

printf("section mapped\n");
printf("retadr[0]=%u,retadr[l]=%u\n",retadr[O],retadr[l]);

printf("map failed\n");
exit(status);

6.3.2 Mapping a Single Page· to a Specific Location

6-12

If your application maps a section file into a single page of memory, you will need
to modify your source code because this mode of operation is not supported on
Alpha systems. Because the page size on Alpha systems differs from that on VAX
systems and varies with different implementations of the Alpha architecture, you
must specify the exact boundaries of the memory into which you intend to map
a section file. The $CRMPSC system service returns an invalid arguments error
(SS$_INVARG) for this usage.

To see if your application uses this mode, check the start- and end-addresses
specified in the inadr argument. If both addresses are the same and the
SEC$M_EXPREG bit in the flags argument is not set, your application is using
this mode.

Recommendations

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

Digital suggests the following guidelines when modifying calls to the $CRMPSC
system service in this mode:

• If the location into which the mapping occurs is unimportant, set the SEC$M_
EXPREG bit in the flags argument and let the system service map the section
into an expanded area of your application's virtual address space. For more
information about this mode of operation, see Section 6.3.1.

• If the location into which the mapping occurs is important, define both the
start- and end-addresses in the inadr argument and map the section into a
defined area. For more information about this mode, see Section 6.3.3.

6.3.3 Mapping into a Defined Address Range
If your application maps a section into a defined area of its virtual address
space, you may need to modify your source code because, on Alpha systems,
the $CRMPSC and $MGBLSC system services interpret some of the arguments
differently than on VAX systems. The differences are as follows:

• The start-address specified in the inadr argument must be aligned on a
CPU-specific page boundary and the end-address specified must be aligned
with the end of a CPU-specific page. On VAX systems, the $CRMPSC and
the $MGBLSC system services round these addresses to page boundaries for
you. On Alpha systems, automatic rounding is not done because rounding to
CPU-specific page boundaries affects a much larger portion of memory due to
the larger page sizes on Alpha systems. Thus, on Alpha systems, you must
explicitly state where you want the virtual memory space mapped. If the
addresses you specify are not aligned on CPU-specific page boundaries, the
$CRMPSC system service returns an invalid arguments error (SS$_INVARG).

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section_ file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end-address
specified in the retadr argument specifies the upper limit available to your
application. Note also that, when the relpag argument is specified, you must
also include the retadr argument; it is not an optional argument on Alpha
systems as it is on VAX systems. See Section 6.3.4 for more information.

Recommendations
Digital suggests that you change your application so that it maps data into
expanded virtual address space, if possible. If you cannot change the way your
application maps data, Digital recommends the following guidelines:

• Because the operating system maps a minimum of one physical page and
physical pages on Alpha systems are larger than pages on VAX systems,
you must make sure that when the system maps the section into the buffer
you define in your application it does not overwrite neighboring data. Most
applications on VAX systems define the buffer into which the section is to
be mapped in multiples of 512 bytes because that is the page size on VAX
systems, even if the section file to be mapped is less than 512 bytes in size.
To follow this strategy on Alpha systems, you would need to declare a buffer

6-13

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

6-14

in your application as large as the largest possible Alpha page, 64K bytes,
which would waste memory.

A better way to make sure your section does not overwrite neighboring data
when it is mapped is to force the linker to isolate the buffer into a separate
image section. (The linker creates an image out of image sections. Each
image section defines the memory requirements of part of the image.) By
isolating the buffer into its own image section, you ensure that the mapping
operation will not overwrite neighboring data because the linker allocates
image sections on page. boundaries; neighboring data will start on the next
page boundary. Thus, you can map a page of memory into your section
without disturbing neighboring data and without having to change the size of
the buffer.

To ensure that the linker puts your section into its own image section,
you must set the SOLITARY attribute of the program section in which
your section resides, using the linker's PSECT_ATTR= option. (For more
information, see the Bookreader version of the Open VMS Linker Utility
Manual.) Note that you may need to use the capabilities of whatever high- or
mid-level programming language you are using to ensure that the compiler
puts the buffer you define into a separate program section. See compiler
documentation for more information.

• Make sure that the start- and end-addresses of the section that you specify as
arguments to the $CRMPSC and $MGBLSC system services are aligned with
the start- and end-addresses of a CPU-specific page. On VAX systems, the
system services round the addresses to page boundaries for you. On Alpha
systems, the system services do not round the addresses you specify to page
boundaries.

If you isolate the section into its own image section, using the SOLITARY
program section attribute, the start-address is guaranteed to be on a page
boundary because the linker aligns image sections on page boundaries by
default, no matter what the page size of the host machine is at run time.

To make sure the end-address of the section is aligned on a CPU-specific page
boundary, you must know the page size supported by the machine on which
your application is being run. You can obtain the CPU-specific page size at
run time by calling the $GETSYI system service or the LIB$GETSYI run-time
library routine, and use this value to calculate an aligned end-address value
to pass in the inadr argument to the system services.

Note that you should specify the retadr argument to determine the amount of
usable memory the system mapped. The operating system maps a minimum
of one page; however, your application may use only part of the page. The
end-address specified in the retadr argument marks the upper limit of
usable memory. (On Alpha systems, if your application specifies the relpag
argument to the $CRMPSC system service, you must specify the retadr
argument.)

For example, the VAX program in Example 6-4 maps the section file created in
Section 6.3.1 into its existing virtual address space. The application defines a
buffer, named buffer, that is 512 bytes in size, reflecting the VAX page size. The
program defines the exact bounds of the section by passing the address of the
first byte of the buffer as the start-address and the address of the last byte of the
buffer as the end-address in the inadr argument.

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

Example 6-4 Mapping a Section into a Defined Area of Virtual Address Space

#include <ssdef .h>
#include <stdio.h>
#include <stsdef .h>
#include <descrip.h>
#include <dvidef .h>
#include <rms.h>
#include <secdef .h>

struct FAB fab;

char *filename = "maptest.dat";

char _align(page) buffer[512];

main(argc, argv
int argc;
char *argv[];
{

int
long
long
long
int

status = O;
flags = O;
inadr[2];
retadr[2];
fileChannel;

/******** create disk file to be mapped *************/

fab = cc$rms fab;
fab.fab$1 fna = filename;
fab.fab$b-fns = strlen(filename);
fab.fab$l=fop = FAB$M_CIF I FAB$M_UFO; /* must be UFO */

status= sys$create(&fab);

if (status & STS$M SUCCESS)
printf("Opened mapfile %s\n",filename);

else
{

printf("Cannot open mapfile %s\n",filename);
exit(status);

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[O] = &buffer[O];
inadr[l] = &buffer[Sll];

printf("inadr[O]=%u,inadr[l]=%u\n",inadr[O],inadr[l]);

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

O, /* acmode */
0, /* flags *I
O, /* gsdnam, only for global sections */
O, /* ident, only for global sections */
O, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
O, /* pagcnt = size of sect. file used */
O, /* vbn = first block of file used */
0, /* prot = default okay */
0); /*page fault cluster size*/

(continued on next page)

6-15

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

6-16

Example 6-4 (Cont.) Mapping a Section into a Defined Area of Virtual Address
Space

if (status & STS$M_SUCCESS)
{

}
else
{

printf("Map succeeded\n");
printf("retadr[O]=%u,retadr[l]=%u\n",retadr[O],retadr[l]);

printf("Map failed\n");
exit(status);

To get the program in Example 6-4 to run correctly on an Alpha system, you
must make the following modifications:

• You must ensure that the start-address of the section specified in the inadr
argument is aligned on an Alpha page boundary and the end-address specified
is aligned with the end of an Alpha page.

• You must ensure that when a larger page on an Alpha system is mapped,
neighboring data is not overwritten.

One way to accomplish these goals is to isolate the program section that contains
the section data in its own image section by using the SOLITARY program section
attribute.

In the example, the section, named buffer, appears in the program section named
buffer. (Program section creation is different in various programming languages
on each platform. Check compiler documentation to ensure that the section is
placed in its own program section.), The following link operation illustrates how
to set the solitary attribute of this program section:

$ LINK MAPTEST, SYS$INPUT/OPT
PSECT ATTR=BUFFER,SOLITARY
lctrltzl -

To specify an end-address for the section buffer that is aligned with the end of
a CPU-specific page boundary, obtain the CPU-specific page size at run time,
subtract 1 from the returned value, and use it to take the address of the last
element of the array. Pass this value as the second longword in the inadr
argument. (To find out how to obtain the page size at run time, see Section 6.4.)
Note that you do not need to change the allocation of the buffer into which the
section is mapped.

To ensure that your application will run on an Alpha system with any page size,
specify the /BPAGE=16 qualifier to force the linker to align image sections on
64KB boundaries. Note that the total amount of memory mapped may be much
larger than the total amount of usable memory. The amount of usable memory is
determined by the value of the page count argument (pagcnt) or the size of the
section file, whichever is smaller. To avoid using memory that is not within the
bounds of the section, use the values returned in the retadr argument.

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

Example 6-5 shows the source changes required for Example 6-4 to get it to run
on an Alpha system.

Example 6-5 Source Code Changes Required to Run Example 6-4 on an Alpha
System

#include <ssdef .h>
#include <stdio.h>
#include <stsdef .h>
#include <string.h>
#include <stdlib.h>
#include <descrip.h>
#include <dvidef .h>
#include <rms.h>
#include <secdef .h>
#include <syidef .h> C)

char buffer[512]; f)
char *filename= "maptest.dat";
struct FAB fab;

long cpu_pagesize; @)
/* item list */ struct itm {

short int
short int
long

buf len;
item code;

bufadr;
retlenadr;

/* length of buffer in bytes */
/* symbolic item code */

long
itmlst[2]; e

/* address of return value buffer */
/* address of return value buffer length */

main(argc, argv
int argc;
char *argv[];
{

int
int
long
long
long
int
char

i;
status = O;
flags = SEC$M EXPREG;
inadr[2]; -
retadr[2];
fileChannel;

*mapped_section;

/******** create disk file to be mapped *************/

fab = cc$rms fab;
fab.fab$1 fna = filename;
fab.fab$b-fns = strlen(filename);
fab.fab$l=fop = FAB$M_CIF I FAB$M_UFO; /* must be UFO */

status= sys$create(&fab);

if (status & STS$M SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);

fileChannel = fab.fab$l_stv;

(continued on next page)

6-17

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

6-18

Example 6-5 (Cont.) Source Code Changes Required to Run Example 6-4 on
an Alpha System

/********** obtain the page size at run time ****************/

itmlst[O].buflen = 4;
itmlst[O].itern code= SYI$ PAGE SIZE;
itmlst[O].bufadr = &cpu pagesize;
itmlst[O].retlenadr = &cpu pagesize len;
itmlst[l].buflen = O; - -
itmlst[l].itern_code = O;

CB status= sys$getsyiw(O, O, O, &itmlst, O, O, O);

if (status & STS$M SUCCESS)
{ -
}
else
{

printf("getsyi succeeds, page size= %d\n",cpu_pagesize);

printf("getsyi fails\n");
exit(status);

/********** create and map the section ****************/

inadr[O] = &buffer[O];
inadr[l] = &buffer[cpu_pagesize - l]; (5)

printf("address of buffer= %u\n", inadr[O]);

status = SYS$CRMPSC(&inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

O, /* acmode */
O, /* no flags to set */
O, /* g~dnam, only for global sections */
O, /* ident, only for global sections */
O, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
O, /* vbn = first block of file used */
O, /* prot = default okay */
O); /*page fault cluster size*/

if (status & STS$M_SUCCESS)
{

}
else
{

printf("section mapped\n");
printf("start address returned =%u\n",retadr[O]);

printf("map failed\n");
exit(status);

The items in the following list correspond to the numbered items in Example 6-5:

0 The header file SYIDEF.H contains definitions of Open VMS item codes for the
$GETSYI system service.

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

f) The buffer is defined without using the __ align(page) storage descriptor.
Because the page size cannot be determined until run time on Open VMS
Alpha systems, the DEC C for Open VMS Alpha compiler aligns the data on
the largest Alpha page size (64 KB) when __ align(page) is specified.

0 This structure defines the item list used to obtain the page size at run time.

C) This variable will hold the page-size value returned.

0 This call to the $GETSYI system service obtains the page size at run time.

0 The end-address of the buffer is specified by subtracting 1 from the page-size
value returned.

· 6.3.4 Mapping from an Offset into a Section File
Your application may map a portion of a section file by specifying the address at
which to start the mapping as an offset from the beginning of the section file. You
specify this offset by supplying a value to the relpag argument of the $CRMPSC
system service. The value of the relpag argument specifies the page number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, the $CRMPSC system service interprets the value of
the relpag argument in 512-byte units on both VAX systems and Alpha systems.
Note, however, that because the CPU-specific page size on Alpha systems is
larger than 512 bytes, the address specified by the offset in the relpag argument
probably does not fall on a CPU-specific page boundary. The $CRMPSC system
service can map virtual memory in CPU-specific page increments only. Thus, on
Alpha systems, the mapping of the section file will start at the beginning of the
CPU-specific page that contains the offset address, not at the address specified by
the offset.

Note

Even though the routine starts mapping at the beginning of the CPU­
specific page that contains the address specified by the offset, the start­
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If your application maps from an offset into a section file, you may need to enlarge
the size of the address range specified in the inadr argument to accommodate the
extra virtual memory space that gets mapped on Alpha systems. If the address
range specified is too small, your application may not map the entire portion
of the section file you desire, because the mapping begins at an earlier starting
address in the section file.

For example, to map 16 blocks in a section file starting at block number 15 on a
VAX system, you could specify an address range 16*512 bytes in size in the inadr
argument and specify a value of 15 for the relpag argument. To accomplish this
same mapping on an Alpha system, you must allow for the difference in page
sizes. For example, on an Alpha system with an 8KB page size, the address
specified by the relpag offset might fall 15 pagelets into a CPU-specific page, as
shown in Figure 6-2. Because the $CRMPSC system service on an Alpha system
begins the mapping of the section file at a CPU-specific page boundary, it would
fail to map blocks 16 through 30. For the mapping to succeed, you would need to
increase the size of the address range to accommodate the additional 15 pagelets
mapped by the $CRMPSC system service (or the $MGBLSC system service) on

6-19

Adapting Applications to a Larger Page Size
6.3 Examining Memory Mapping Routines

an Alpha system. Otherwise, only one block of the portion of the section file you
specified would be mapped.

Figure 6-2 Effect of Address Range on Mapping from an Offset

0

On OpenVMS AXP system:

$MGBLSC: inadr=512*16
relpag=15

(pagelets O through 15 mapped)

On Open VMS VAX system:

$MGBLSC: inadr=512*16
relpag =15

(pagelets 15 through 30 mapped)

ZK-2499A-GE

When trying to calculate how much to enlarge the siZe of the address range
specified in the relpag argument, the following formula may be helpful. The
formula calculates the maximum number of CPU-specific pages needed to map a
given number of pagelets.

(number _of _pagelets_to_map + (2 * pagelets_per _page) - 2)
pagelets_per _page

For example, this formula can be used to calculate how much to enlarge the
address range specified in the previous scenario. In the following equation, the
page size is assumed to be BK, so pagelets_per _page equals 16:

16+((2xl6)-2)/16=2.87 •••

Rounding the result down to the nearest whole number, the formula indicates
that the address range specified in the inadr argument must encompass two
CPU-specific pages.

6.4 Obtaining the Page Size at' Run Time

6-20

To obtain the page size supported by an Alpha system, use the $GETSYI system
service. Example 6-6 shows how to use this system service to obtain the page
size at run time.

Example 6-6 Using the $GETSYI System Service to Obtain the CPU-Specific
Page Size

#include <ssdef .h>
#include <stdio.h>
#include <stsdef ~h>
#include <descrip.h>

(continued on next page)

Adapting Applications to a Larger Page Size
6.4 Obtaining the Page Size at Run Time

Example 6-6 {Cont.) Using the $GETSYI System Service to Obtain the
CPU-Specific Page Size

#include <dvidef .h>
#include <rms.h>
#include <secdef .h>
#include <syidef .h> /* defines page size item code symbol */

struct itm {
short int
short int
long
long
itmlst[2];

buflen;
item code;

bufadr;
retlenadr;

long cpu pagesize;
long cpu=pagesize_len;

main(argc, argv
int argc;
char *argv[];
{

int status = O;

/* define item list */
/* length in bytes of return value buffer */
/* item code */
/* address of return value buffer */
/* address of return value length buffer */

itmlst[O].buflen = 4; /* page size requires 4 bytes */
itmlst[O].item_code = SYI$_PAGE_SIZE; /* page size item code */
itmlst[O].bufadr = &cpu pagesize; /* address of ret val buffer */
itmlst[O].retlenadr = &cpu_pagesize_len; /* addr of length of ret_val */
itmlst[l].buflen = O;
itmlst[l].item_code = O; /*Terminate item list with longword of 0 */

}

status= sys$getsyiw(O, O, O, &itmlst, 0, 0, 0);

if (status & STS$M_SUCCESS)
{

}
else
{

printf("getsyi succeeds, page size= %d\n",cpu_pagesize);
exit(status);

printf("getsyi fails\n");
exit(status);

6.5 Locking Memory in the Working Set
The $LKWSET system service locks into the working set the range of pages
identified in the inadr argument as an address range on both VAX and
Alpha systems. The system service rounds the addresses to CPU-specific
page boundaries if necessary.

However, because Alpha instructions cannot contain full virtual addresses,
Alpha images must reference procedures and data indirectly through a pointer
to a procedure descriptor. The procedure descriptor contains information about
the procedure, including the actual code address. These pointers to procedure
descriptors and data are collected into a new program section called a linkage
section.

6-21

Adapting Applications to a Larger Page Size
6.5 Locking Memory in the Working Set

6-22

Recommendation
On Alpha systems, it is not sufficient to simply lock a section of code into memory
to improve performance. You must also lock the associated linkage section into
the working set.

To lock the linkage section in memory, determine the start- and end-addresses of
the linkage section and pass these addresses as values in the inadr argument to
a call to the $LKWSET system service.

7
Preserving the Integrity of Shared Data

This chapter describes synchronization mechanisms that ensure the integrity of
shared data, such as the atomicity guaranteed by certain VAX instructions.

7 .1 Overview
If your application uses multiple threads of execution and the threads share
access to data, you may need to add explicit synchronization mechanisms to your
application to protect the integrity of the shared data on Alpha systems. Without
synchronization, an access to the data initiated by one application thread can
potentially interfere with an access initiated simultaneously by a competing
thread, leaving the data in an unpredictable state.

On VAX systems, the degree of synchronization required depends on the
relationship of the different threads of execution, which can include the following:

• Multiple threads executing within a single process, such as a main thread
~nterrupted by an asynchronous system trap (AST) thread.

Note that the AST thread can either be initiated by the application or by
the operating system. For example, the operating system uses an AST to
write status to an 1/0 status block. The operating system also uses an AST to
complete a buffered 1/0 read operation to a specified user buffer.

• Multiple threads separated into multiple processes executing on a single
processor that access a global section.

• Multiple threads separated into multiple processes executing concurrently on
_ multiple processors that access a global section.

On VAX systems, applications that take advantage of the parallel processing
potential of a multiprocessor system have always had to provide explicit
synchronization mechanisms such as locks, semaphores, and interlocked
instructions to protect shared data. However, applications that use multiple
threads on uniprocessor systems may not explicitly protect the shared data.
Instead, these applications may depend on the implicit protection provided
by features of the VAX architecture that guarantee synchronization between
application threads executing on a VAX uniprocessor system (described in
Section 7 .1.1).

For example, applications that use a semaphore variable to synchronize access
to a critical region of code by multiple threads depend on the semaphore being
incremented atomically. On VAX systems, this is guaranteed by the VAX
architecture. The Alpha architecture does not make the same synchronization
guarantees. On Alpha systems, access to this semaphore or any data that can
be accessed by multiple threads of execution must be explicitly synchronized.
Section 7 .1.2 describes features of the Alpha architecture you can use to provide
equivalent protection.

7-1

Preserving the Integrity of Shared Data
7.1 Overview

7.1.1 VAX Architectural Features That Guarantee Atomicity

7-2

The following features of the VAX architecture provide synchronization among
multiple threads of execution running on a uniprocessor system. (Note that the
VAX architecture does not extend this guarantee of atomicity to multiprocessor
systems.)

• Instruction atomicity-Many of the instructions defined by the VAX
architecture are capable of performing a read-modify-write operation in a
single, noninterruptable sequence (called an atomic operation) from the
viewpoint of multiple application threads executing on a single processor.
The Alpha architecture does not support such instructions. Operations
that could be performed atomically on VAX systems require a sequence of
instructions on Alpha systems, which can be interrupted, leaving the data in
an unpredictable state.

For example, the VAX Increment Long (INCL) instruction fetches the contents
of a specified longword, increments its value, and stores the value back in the
longword, performing the operations without interruption. On Alpha systems,
each step must be explicitly performed by a separate instruction.

To provide compatibility with VAX systems, the Alpha architecture defines a
pair of instructions that you can use to ensure that a read/write operation is
done atomically. Section 7 .1.2 describes these instructions and how compilers
on Alpha systems make this capability available to programs written in
high-level languages.

Note, however, that even on VAX systems, implicit dependence on the
atomicity of VAX instructions is not recommended. Because of the
optimizations they perform, compilers on VAX systems do not guarantee that
they implement certain program statements, such as an increment operation
(x = x + 1), using a VAX atomic instruction, even if such an instruction is
available.

• Memory access granularity-The VAX architecture supports instructions
that can manipulate byte- and word-sized data in a single, noninterruptable
operation. (The VAX architecture supports instructions to manipulate data
of other sizes as well.) The .Alpha architecture supports instructions that
manipulate longword- and quadword-sized data. Manipulation of byte-
and word-sized data on Alpha systems requires multiple instructions: the
longword or quadword that contains the byte or word must be fetched, the
nontargeted bytes must be masked, the target byte or word manipulated, and
then the entire longword or quadword must be stored. Because this sequence
is interruptable, operations on byte and word data, which are atomic on VAX
systems, are not atomic on Alpha systems.

Note that this change in the granularity of memory access can also affect the
definition of which data is shared. On VAX systems, a byte- or word-sized
data item that is shared can be manipulated individually. On Alpha systems,
the entire longword or quadword that contains the byte- or word-sized item
must be manipulated. Thus, simply because of its proximity to an explicitly
shared data item, neighboring data may become unintentionally shared.

Compilers use the Alpha instructions described in Section 7 .1.2 to ensure the
integrity of byte- and word-sized data.

Preserving the Integrity of Shared Data
7 .1 Overview

• Read/write ordering-On VAX uniprocessor and multiprocessor systems,
sequential write operations and read operations appear to occur in the same
order in which you specify them from the viewpoint of all types of external
threads of execution. Alpha uniprocessor systems also guarantee that the
order of read and write operations appears synchronized for multiple threads
of execution running within a single process or within multiple processes
running on a uniprocessor. However, write operations visible to threads
executing concurrently on an Alpha multiprocessor system require explicit
synchronization.

To provide compatibility with VAX systems, the Alpha architecture supports
an instruction with which you can ensure that read/write operations occur
in the order specified, from the viewpoint of all the processors in the system.
Section 7 .1.2 provides more information about this instruction and about how
high-level languages make this instruction available. Section 7.3 describes
the feature of the Alpha architecture that provides this synchronization and
how the compilers make it available to high-level language programs on
Alpha systems.

7.1.2 Alpha Compatibility Features
To provide compatibility with the atomicity capabilities of the VAX architecture,
the Alpha architecture defines two mechanisms:

• Load-locked/Store-conditional instructions-The Alpha instruction
set includes a pair of instructions, named Load-locked (LDxL) and Store­
conditional (STxC), that provide for atomic load and store operations
by setting and testing a lock bit. For complete information about these
instructions, see the Alpha Architecture Reference Manual.

Using the Load-locked/Store-conditional instructions, compilers can provide
atomic access to byte- and word-sized data on Alpha systems. In addition,
compilers may generate the Load-locked/Store-conditional instruction
sequence when accessing byte- and word-sized data that is declared with
the volatile attribute. (The Alpha architecture provides atomic load and
store operations of longword- and quadword-sized data.)

• Memory barriers-The Alpha instruction set includes an instruction that
can ensure that read/write operations, issued by multiple threads executing
on separate processors in a multiprocessor system, appear to occur in the
order specified. This instruction, named memory barrier (MB), guarantees
that all subsequent load or store instructions will not access memory until
after all previous load and store instructions have accessed memory from the
viewpoint of multiple threads of execution.

7.2 Uncovering Atomicity Assumptions in Your Application
One way to uncover synchronization assumptions in your application is to identify
data that is shared among multiple threads of execution and then examine each
access to the data from each thread. When looking for shared data, remember
to include unintentionally shared data as well as intentionally shared data.
Unintentionally shared data is shared because of its proximity to data that
is accessed by multiple threads of execution such as data written to by AS Ts
generated by the operating system as a result of system services such as $QIO,
$ENQ, or $GETJPI.

7-3

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

7-4

(

Because compilers on Alpha systems use quadword instructions by default in
certain circumstances, all data items within a quadword of a shared data item
may potentially become unintentionally shared. For example, compilers use
quadword instructions to access a data item that is not aligned on natural
boundaries. (Data is naturally aligned when its address is divisible by its size.
For more information, see Chapter 8. Compilers align explicitly declared data on
natural boundaries by default.)

When examining data access, determine if another thread could view the data
in an intermediate state and, if such a view is possible, whether it is important
to the application. In some cases, the exact value of the shared data may not be
important; the application depends only on the relative value of the variable. In
general, ask the following questions:

• Is the operation performed on the shared data atomic from the viewpoint of
other threads of execution?

• Is it possible to perform an atomic operation to the data type involved?

Figure 7-1 shows this decision process.

Figure 7-1 Synchronization Decision Tree

Does your application
share data between
multiple threads of
execution?

No

Is operation performed
on the data atomic?

No

Can data be accessed
atomically?

No

No synchronization required.

No synchronization
required.

Requires explicit
synchronization.

Requires explicit
synchronization.

ZK-5204A-GE

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

7.2.1 Protecting Explicitly Shared Data
Example 7-1 is a simplified example of some possible atomicity assumptions
in a VAX application. The program uses a variable, flag, through which an
AST thread communicates with a main processing thread of execution. The.
main processing loop continues working until the counter variable reaches a
predetermined value. The program queues an AST interruption that sets the flag
to the maximum value, terminating the processing loop.

Example 7-1 Atomicity Assumptions in a Program with an AST Thread

#include <ssdef .h>
#include <descrip.h>

#define MAX FLAG VAL 1500

int ast rout();
long time-val[2];
short int - flag; /* accessed by main and AST threads */

main()
{

int status = O;
static $DESCRIPTOR(time_desc, "0 ::1 11

);

/* changes ASCII time value to binary value */

status= SYS$BINTIM(&time_desc, &time_val);

if (status != SS$ NORMAL)
{ -

printf ("bintim failure\n");
exit(status);

/* Set timer, queue ast */

status= SYS$SETIMR(O, &time_val, ast_rout, O, 0);

if (status != SS$ NORMAL)
{ -

}

printf("setimr failure\n");
exit(status);

flag = O; /* loop until flag = MAX FLAG VAL */
while(flag < MAX FLAG VAL) - -
{ - -

printf("main thread processing (flag= %d)\n",flag);
flag++;

}
printf("Done\n");

ast rout()
{ -

/* sets flag to maximum value to stop processing */

flag = MAX_FLAG_VAL;

In Example 7-1, the variable named flag is explicitly shared between the
main thread of execution and an AST thread. The program does not use any
synchronization mechanism to protect the integrity of this variable; it implicitly
depends on the atomicity of the increment operation.

7-5

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

7-6

On an Alpha system, this program may not always work as desired because the
mainline thread of execution can be interrupted in the middle of the increment
operation by the AST thread before the new value is stored back into memory,
as shown in Figure 7-2. (This would be more likely to fail in a real application
with dozens of AST threads.) In this scenario, the AST thread would interrupt
the increment operation before it completes, setting the value of the variable to
the maximum value. But once control returns to the main thread, the increment
operation would complete, overwriting the value of the AST thread. When the
loop test is performed, the value would not be at its maximum and the processing
loop would continue.

Figure 7-2 Atomicity Assumptions in Example 7-1

Tme Main Thread Shared Data AST Thread

Main
thread

Read value
of flag.

Begin

..-----..... :flag
125

increment operation. AST interrupts
increment operation

..------. :flag AST thread
----- reads value of

flag (125)
125

....-----..... :flag AST thread writes
------1 MAX_FLAG_VAL

to flag variable.
1500

resumes. Write incremented
value to flag. ~1.----

1
-
26

---.1 :flag

Main thread overwrites value written by
AST thread.

ZK-5203A-GE

Aecom mendations
To correct these atomicity dependencies, Digital recommends doing the following:

• Disable AST delivery, using the $SETAST system service, while the data is
being accessed and enable it after access is completed.

• Explicitly protect the data by using a compiler mechanism. For example,
DEC C for Open VMS Alpha systems supports atomicity built-ins. In addition,
you can use ;other mechanisms to synchronize access to this data, such as the
$ENQ system service (for data accessed by multiple threads running on a
multiprocessor system) or run-time library routines, such as LIB$BBCCI or
LIB$BBSSI, and the interlocked queue routines.

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

For example, in Example 7-1, replace the increment operation,
which is performed by the C increment operator (flag++) with the
atomicity built-in supported by DEC C for Open VM:S Alpha systems
(__ADD_ATOMIC_LONG(&flag,1,0)). See Example 7-2 for the complete
example.

Note that the shared variable must be an aligned longword or aligned
quadword to be protected by the atomicity built-ins.

• If you cannot change byte- or word-sized data to a longword or quadword,
change the granularity the compiler uses when accessing the data item.
Many compilers on Alpha systems allow you to specify the granularity they
will use when accessing a particular data item or when processing an entire
module. Note, however, that specifying byte and word granularity can have
an adverse effect on the performance of your application.

Example 7-2 shows how these changes are implemented in the program
presented in Example 7-1.

Example 7-2 Version of Example 7-1 with Synchronization Assumptions

#include <ssdef .h>
#include <descrip.h>
#include <builtins.h> C»
#define MAX FLAG VAL 1500
int ast rout();
long time-val[2];
int f} - flag; /* accessed by mainline and AST threads */

main()
{

int status = O;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status= SYS$BINTIM(&time_desc, &time_val);

if (status != SS$ NORMAL)
{ -

printf("bintim failure\n");
exit(status);

/* Set timer, queue ast */

status= SYS$SETIMR(0, &time_val, ast_rout, O, 0);

if (status != SS$ NORMAL)
{ -

printf("setimr failure\n");
exit(status);

(continued on next page)

7-7

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

Example 7-2 {Cont.) Version of Example 7-1 with Synchronization
Assumptions

flag = O;
while(flag < MAX FLAG VAL) /* perform work until flag set to zero */
{ - -

printf("mainline thread processing (flag= %d)\n",flag);
~ADD_ATOMIC_LONG(&flag,1,0); 0

}
printf("Done\n");

ast rout()
{ -

/* sets flag to maximum value to stop processing */

flag = MAX_FLAG_VAL;

The items in the following list correspond to the numbers in Example 7-2:

0 To use the DEC C for Open VMS Alpha systems atomicity built-ins, you must
include the builtins.h header file.

f} In this version, the variable fiag is declared as a longword to allow atomic
access (the atomicity built-ins require it).

0 The increment operation is performed with an atomicity built-in function.

7.2.2 Protecting Unintentionally Shared Data

7-8

In Example 7-1, both threads clearly access the same variable. However, on
an Alpha system, it is possible for an application to have atomicity concerns
for variables that are inadvertently shared. In this scenario, two variables
are physically adjacent to each other within the boundaries of a longword or
quadword. On VAX systems, each variable can be manipulated individually. On
an Alpha system, which supports atomic read and write operations of longword
and quadword data only, the entire longword must be fetched before the target
bytes can be modified. (For more information about this change in data-access
granularity, see Chapter 8.)

To illustrate this problem, consider a modified version of the program in
Example 7-1 in which the main thread and the AST thread each increment
separate counter variables that are declared in a data structure, as in the
following code:

struct {
short int flag;
short int ast flag;
}; -

If both the main thread and the AST thread attempt to modify their individual
target words simultaneously, the results would be unpredictable, depending on
the timing of the two operations.

Preserving the Integrity of Shared Data
7.2 Uncovering Atomicity Assumptions in Your Application

Recommendations
To remedy this synchronization problem, Digital suggests doing the following:

• Change the size of the shared variables to longwords or quadwords. Note,
however, that because compilers on Alpha systems use quadword instructions
in certain circumstances, you should use quadwords to ensure the integrity of
the data. For example, if the data is not aligned on a natural boundary, the
compilers use a quadword instruction to access the data.

In data structures, you can also insert extra bytes between data items to
force

1
the elements of the structure onto natural quadword boundaries. The

compilers align data on natural boundaries by default on Alpha systems.

For example, to ensure that each flag variable in the data structure can be
modified without interference from other threads of execution, change the
declarations of the variables so that they are 64-bit quantities. Using DEC C,
you could use the double data type, as in the following code:

struct {
double flag;
double ast_flag;
} ;

• Explicitly protect the data by using a compiler mechanism, such as the
atomicity built-ins or the volatile attribute. In addition, you can synchronize
access to data by multiple threads of execution running on a multiprocessor
system by using the $ENQ system service or a run-time library routine, such
as LIB$BBCCI or LIB$BBSSI, or by using interlocked queue operations.

7.3 Synchronizing Read/Write Operations
VAX multiprocessing systems have traditionally been designed so that if one
processor in a multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they
were written. For example, if CPU A writes a data buffer (represented by X in
Figure 7-3) and then writes a flag (represented by Yin Figure 7-3), CPU B can
determine that the data buffer has changed by examining the value of the flag.

On Alpha systems, read and write operations to memory may be reordered
to benefit overall memory subsystem performance. Processes that execute on
a single processor can rely on write operations from that processor becoming
readable in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which write operations tq memory become
visible throughout the system. In other words, write operations performed by
CPU A may become visible to CPU Bin an order different from that in which
they were written.

Figure 7-3 depicts this problem. CPU A requests a write operation to X, followed
by a write operation to Y. CPU B requests a read operation from Y and, seeing the
new value of Y, initiates a read operation of X. If the new value of X has not yet
reached memory, CPU B receives the old value. As a result, any token-passing
protocol relied on by procedures running on CPUs A and Bis broken. CPU A
could write data and set a flag bit, but CPU B may see the flag bit set before the
data is actually written and erroneously use stale memory contents.

7-9

Preserving the Integrity of Shared Data
7 .3 Synchronizing Read/Write Operations

Figure 7-3 Order of Read and Write Operations on an Alpha System

lime
Code on
CPUA Writable global section

____ a _____ I :x

____ a __ ____.! :v

write #123,XI ,__ _____ o_o_r_12_3 ____ ___.I :X

write #1,Y __ ______.l:Y

Recommendations

Code on
CPUS

readY
if Y = 1 then read X
(even if Y = 1, X can be either
O or 123; if y = 0, X can also
be either O or 123)

ZK-5202A-GE

Programs that run in parallel and that rely on read/write ordering require some
redesigning to execute correctly on an Alpha system. One or more of the following
techniques may be appropriate, depending on the application:

• Use the Alpha memory barrier instruction (MB) before and after all read and
write instructions for which the completion order is crucial. For example, the
DEC C for Open VMS Alpha systems compiler supports the memory barrier
instruction as a built-in function.

• Redesign the application to use the memory interlocks available in the PPL$
run-time library or the VAX interlocked instruction routines available in the
LIB$ run-time library.

• Redesign the application to use the $ENQ and $DEQ system services to
protect the data with a lock.

7.4 Ensuring Atomicity in Translated Images

7-10

The VEST command's /PRESERVE qualifier accepts keywords that allow
translated VAX images to run on Alpha systems with the same guarantees of
atomicity that are provided on VAX systems. Several /PRESERVE qualifier
keywords provide different types of atomicity protection. Note that specifying
these /PRESERVE qualifier keywords can have an adverse effect on the
performance of your application. (For complete information about specifying the
/PRESERVE ,qualifier, see DECmigrate for Open VMS AXP Systems Translating
Images.)

To ensure that an operation that can be performed atomically on a VAX system
by a VAX instruction is performed atomically in a translated image, specify the
INSTRUCTION_ATOMICITY keyword to the /PRESERVE qualifier.

Preserving the Integrity of Shared Data
7.4 Ensuring Atomicity in Translated Images

To ensure that simultaneous updates to adjacent bytes within a longword or
quadword can be accomplished without interfering with each other, specify the
MEMORY_ATOMICITY keyword to the /PRESERVE qualifier.

To ensure that read/write operations appear to occur in the order you specify
them, specify the READ_ WRITE_ ORDERING keyword to the /PRESERVE
qualifier.

7-11

8
Checking the Portability of Application Data

Declarations

This chapter describes how to check the data your application uses for
dependencies on the VAX architecture. The chapter also describes the effect your
choice of data type can have on the size and performance of your application on
an Alpha system.

8.1 Overview
The data types supported by high-level programming languages, such as int
in C or INTEGER*4 in FORTRAN, provide applications with a degree of data
portability because they hide the machine-specific details of the underlying
native data types. The languages map their data types to the native data types
supported by the target platform. For this reason, you may be able to successfully
recompile and run an application that runs on VAX systems on an Alpha system
without .modifying the data declarations it contains.

However, if your application contains any of the following assumptions about data
types, you may need to modify your source code:

• Assumptions about data-type mappings-Your application may depend
on the underlying VAX data type to which a high-level language maps. The
Alpha architecture supports most of the VAX data types; however, there
are some data types that are not supported. Your application may make
assumptions about the size or bit format of a data type that may no longer be
valid on an Alpha system. Section 8.2 provides more information about this
topic.

• Assumptions about data-type selection-Your choice of data type may
have different implications on an Alpha system. For example, on VAX
systems, you may have chosen the smallest data type available to represent
data items to conserve memory usage. On an Alpha system, this strategy
may actually increase memory usage. Section 8.3 provides more information
about this topic.

8.2 Checking for Dependence on a VAX Data Type
To provide data compatibility, the Alpha architecture has been designed to
support many of the same native data types as the VAX architecture. Table 8-1
lists the native data types supported by both architectures. (See the Alpha
Architecture Reference Manual for more information about the formats of the data
types.)

8-1

Checking the Portability of Application Data Declarations
8.2 Checking for Dependence on a VAX Data Type

8-2

Table 8-1 Comparison of VAX and Alpha Native Data Types

VAX Data Types

byte

word

longword

quadword

octaword

F _floating

D_floating (56-bit precision)

G_floating

H_floating

Variable-length bit field

Absolute queue

Self-relative queue

Character string

Trailing numeric string

Leading separate numeric string

Packed decimal string

Recommendations

Alpha Data Types

byte

word

longword

quadword

F _floating

D_floating (53-bit precision)

G_floating

X_floating

S_floating (IEEE)

T_floating (IEEE)

Absolute longword queue

Absolute quadword queue

Self-relative longword queue

Self-relative quadword queue

Unless your application depends on the format or size of the underlying native
VAX data types, you may not have to modify your application because of changes
to the data-type mappings. Wherever possible, the compilers on Alpha systems
map their data types to the same native data types as they do on VAX systems.
For those VAX data types that are not supported by the Alpha architecture, the
compilers map their data types to the closest equivalent native Alpha data type.
(For more information about how the compilers on Alpha systems map the data
types they support to native Alpha data types, see Chapter 12 and compiler
documentation.)

The following list provides guidelines that can be helpful for certain types of data
declarations:

• D_floating data-Most compilers on Alpha systems map their double­
precision floating-point data type to the VAX native G_floating data type by
default because the Alpha architecture does not support the VAX D_floating
data type. The Open VMS VAX compilers map their double-precision floating­
point data type to the D_floating data type. For example, VAX C maps the
double data type to D_floating and DEC C for Open VMS Alpha systems
compiler maps the double data type to the G_floating data type.

This change may not affect most applications. Note, however, that the
value returned by the G_floating data type (significant to 15 digits after
the decimal) is slightly less precise than the value returned by the D_floating
data type (significant to 16 digits after the decimal).

Checking the Portability of Application Data Declarations
· 8.2 Checking for Dependence on a VAX Data Type

The Open VMS Run-Time Library supports a conversion routine
(CVT$CONVERT_FLOAT) that can convert floating-point data from one
format to another. For example, using this routine you can convert data in
D_floating format to IEEE format and back again. Note also that the Alpha
architecture supports the IEEE double-precision floating-point format (T_
floating).

DEC C for Open VMS Alpha systems issues a warning message when it
encounters declarations that use the long float data type. On VAX systems,
the long float data type is a synonym for double. On Alpha systems, the long
float data type is obsolete, even when the DEC C compiler is used in VAX C
mode.

• Pointer data-Check for assumptions that an address (pointer) data type is
equivalent in size to an integer data type. On Alpha systems, an address is
64 bits.

For example, in VAX C, some programs may make this assumption, as shown
in Example 8-1.

Example 8-1 Assumptions About Data Types in VAX C Code

typedef struct {

main()
{

char small;
short medium;
long large;
} MYSTRUCT ;

int al;
long bl;
MYSTRUCT cl;

0 al = &cl;
f) bl = &cl;

6) al->small = l;
. bl-> small = 2;

The items _in the following list correspond to the numbered items in
Example 8-1:

0 The example assigns the address of the structure to the variable al,
declared as an int data type.

f) The example assigns the address of the structure to the variable bl,
declared as a long data type.

6) The example accesses the first field in the structure by using the variables
assigned to int and long data types.

To move this example to an Alpha system, you should change the declarations
of al and bl to be pointers to the data structure (MYSTRUCT), as in the
following:

MYSTRUCT *al,*b2;

8-3

Checking the Portability of Application Data Declarations
8.3 Examining Assumptions About Data-Type Selection

8.3 Examining Assumptions About Data-Type Selection
Even though your application may recompile and run successfully on an Alpha
system, your data-type selection may not take full advantage of the benefits of
the Alpha architecture. In particular, data-type selection can impact the ultimate
size of your application and its performance on an Alpha system.

8.3.1 Effect of Data-Type Selection on Code Size
On VAX systems, applications typically use the smallest size data type adequate
for the data. For example, to represent a value between 32, 768 and -32, 767
in an application written in C, you might declare a variable of type short. On
VAX systems, this practice conserves storage and, because the VAX architecture
supports instructions that operate on all sizes of data types, does not affect
efficiency.

On an Alpha system, byte- and word-sized data incurs more overhead than
longword- or quadword-sized data because the Alpha architecture does not
support instructions that manipulate these smaller data types. Each reference to
a byte or word, which generates a single instruction on a VAX system, generates
a sequence of instructions on an Alpha system, in which the longword containing
the byte or word is fetched, manipulated so that only the target bytes are
modified, and then stored. For frequently referenced data, these additional
instructions can significantly add to the total size of your application on an Alpha
system.

8.3.2 Effect of Data-Type Selection on Performance

8-4

Another aspect of data-type selection is data alignment. Alignment is an attribute
of a data item that refers to its placement in memory. The mixture of byte-sized,
word-sized, and larger data types, typically found in data-structure definitions
and static data areas in applications on VAX systems, can lead to data that is not
aligned on natural boundaries. (A data item is naturally aligned when its address
is a multiple of its size in bytes.)

Accessing unaligned data incurs more overhead that accessing aligned data on
both VAX and Alpha systems. However, VAX systems use microcode to minimize
the performance impact of unaligned data. On Alpha systems, there is no
hardware assistance. References to unaligned data trigger a fault, which must
be handled by the operating system's unaligned fault handler. While the fault
is being handled, the instruction pipeline must be stopped. Thus, the cost of an
unaligned reference in performance is dramatically higher on Alpha systems.

The compilers on Alpha systems attempt to minimize the performance impact by
generating a special unaligned reference instruction sequence when an unaligned
reference is known at compile time. This prevents a run-time unaligned fault
from occurring. Unaligned references that appear at run time must be handled
as unaligned reference faults.

Recommendations
Given the potential impact of data-type selection on code size and performance,
you might think you should change all byte- and word-sized data declarations to
longwords to eliminate the extra instructions required for byte and word accesses
and improve alignment. However, before making sweeping changes to your data
declarations, consider the following factors:

• Frequency of access/Number of replications-If a byte- or word-sized
data item is frequently referenced, changing it to a longword eliminates the
extra instructions required at each reference and can reduce application

Checking the Portability of Application Data Declarations
8.3 Examining Assumptions About Data-Type Selection

size significantly. However, if the byte or word is not referenced frequently
and is replicated a large number of times (for example, in a data structure
instantiated many times), the change to a longword can add up to more than
the cost of the additional instructions at each reference. The three bytes
added when changing to a longword can significantly increase virtual memory
usage if the data item is replicated thousands of tim~s. Before changing a
data declaration, consider how it is used and how much virtual memory (and
thus physical memory) you want to spend for this performance improvement.
Such trade-offs between size and performance are a frequent consideration
during design.

• Interoperability requirements-If the data object is shared with a
translated component or a native VAX component, you may be unable to
make changes that would improve its layout because the other components
depend on the binary layout of the data. Compilers (and the VEST utility)
attempt to minimize the performance impact in this case by including the
unaligned reference instruction sequence in the code they generate.

Taking these factors into consideration, use the following guidelines when
examining data-type selections:

• For data that is frequently referenced but not frequently replicated, change
byte- and word-sized fields to longwords, especially for performance-critical
fields.

• For data that is not frequently referenced but that is frequently replicated, no
change is recommended.

• For data that is both frequently referenced and frequently replicated,
the decision must be made after carefully examining the code size versus
performance impact of the change.

• For static data, always use a longword instead of a byte. It does incur
three extra bytes of storage; however, a single reference requires three extra
instructions, each of which is a longword.

• Use the capabilities of the compilers on Alpha systems to uncover data that
is not aligned on natural boundaries. For example, many compilers on Alpha
systems (for example, DEC C, Digital Fortran, but not DEC COBOL) support
the /WARNING=ALIGNMENT qualifier, which checks for data that is not
aligned on natural boundaries.

• Use the capabilities of the run-time analysis tools, Program Coverage and
Analyzer (PCA) and the Open VMS Debugger, to uncover at run time data
that is not aligned on natural boundaries. For more information, see the
Guide to Performance and Coverage Analyzer for VMS Systems and the
Open VMS Debugger Manual.

• Take advantage of the natural alignment provided by the compilers on
Alpha systems, wherever interoperability concerns allow. On Alpha systems,
compilers align data on natural boundaries by default, wherever possible. On
VAX systems, compilers use byte alignment.

Note that the compilers on Alpha systems support qualifiers and language
pragmas that allow you to request they use the same byte alignment
they use on VAX systems. For example, the DEC C for Open VMS Alpha
systems compiler supports the /NOMEMBER_ALIGNMENT qualifier and a
corresponding pragma that allow you to control data alignment. For more
information, see the DEC C compiler documentation.

8-5

Checking the Portability of Application Data Declarations
8.3 Examining Assumptions About Data-Type Selection

a~s

The data structure defined in Example 8-1 shows these data-type selection
concerns. The structure definition, called mystruct, is made up of byte-, word-,
and longword-sized data, as follows:

struct{
char small;
short medium;
long large;
} mystruct ;

When compiled using VAX C, the structure is laid out in memory as shown in
· Figure 8-1.

Figure 8-1 Alignment of mystruct Using VAX C

63 31 0
:0

Large Medium Small

ZK-5209A-GE

When compiled using the DEC C for Open VMS Alpha systems compiler, the
structure is padded to achieve natural alignment, as shown in Figure 8-2. Note
that by adding a byte of padding after the first field, small, both the following
members of the structure are aligned.

Figure 8-2 Alignment of mystruct Using DEC C for OpenVMS Alpha Systems

63 31 0

Large Medium Small

ZK-521 OA-GE

Note that the byte- and word-sized fields of the data structure still require
multiple instruction sequences for access. If the fields small and medium are
frequently referenced, and the entire structure is not frequently replicated,
consider redefining the data structure to use longword data types. If, however,
the fields are not frequently referenced or the data structure is frequently
replicated, the cost of the byte or word references is a design trade-off the
programmer must make.

9
Examining the Condition-Handling Code in

Your Application

This chapter describes the effect of differences between the VAX architecture and
the Alpha architecture on the condition-handling code in your application.

9.1 Overview
For the most part, the condition-handling code in your application will work
correctly on an Alpha system, especially if your application uses the condition­
handling facilities provided by the high-level language in which it is written,
such as the END, ERR, and IOSTAT specifiers in FORTRAN. These language
capabilities insulate applications from architecture-specific aspects of the
underlying condition-handling facility.

However, there are certain differences between the Alpha condition-handling
facility and the VAX condition-handling facility that may require you to modify
your source code, including:

• Changes to the mechanism array format

• Changes to the condition codes returned by the system

• Changes to how other tasks related to condition handling in your application
are accomplished, such as enabling exception signaling and specifying
condition-handling routines dynamically at run time.

The following sections describe these changes in more detail and provide
guidelines to help you decide if modifying your source code is necessary.

9.2 Establishing Dynamic Condition Handlers
The OpenVMS Alpha run-time libraries (RTLs) do not contain the routine
LIB$ESTABLISH, which the Open VMS VAX RTLs contain. Due to the nature of
the Open VMS Alpha calling standard, setting up condition handlers is done by
compilers.

For those programs that need to dynamically establish condition handlers,
some Alpha languages give special treatment for calls to LIB$ESTABLISH and
generate the appropriate code without actually calling an RTL routine. The
following languages support LIB$ESTABLISH semantics in a compatible fashion
with the corresponding VAX language:

• DEC C and DEC C++

Although DEC C and DEC C++ for Open VMS Alpha systems treat
LIB$ESTABLISH as a built-in function, the use of LIB$ESTABLISH is
not recommended on Open VMS VAX or Open VMS Alpha systems. C and C++
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH

9-1

Examining the Condition-Handling Code in Your Application
9.2 Establishing Dynamic Condition Handlers

(VAXC$ESTABLISH is a built-in function on DEC C and DEC C++ for
Open VMS Alpha systems).

• DEC Fortran

DEC Fortran allows declarations to the LIB$ESTABLISH and LIB$REVERT
intrinsic functions, and converts them to DEC Fortran RTL specific entry
points.

• DEC Pascal

DEC Pascal provides the built-in routines, ESTABLISH and REVERT, to use
in place of LIB$ESTABLISH and LIB$REVERT. If you declare and try to use
LIB$ESTABLISH, you will get a compile-time warning.

• MACR0-32

The MACR0-32 compiler will attempt to call LIB$ESTABLISH if it is
contained in the source code.

If MACR0-32 programs establish dynamic handlers by storing a routine
address at O(FP), they will work correctly when compiled on an Open VMS
Alpha system. However, you cannot set the condition handler address from
within a JSB (Jump to Subroutine) routine, only from within a CALL_ENTRY
routine.

9.3 Examining Condition-Handling Routines for Dependencies

9-2

The calling sequence of user-written condition-handling routines remains the
same on Alpha systems as it is on VAX systems. Condition-handling routines
declare two arguments to access the data the system returns when it signals
an exception condition. The system uses two arrays, the signal array and the
mechanism array, to convey information that identifies which exception condition
triggered the signal and to report on the state of the processor when the exception
occurred.

The format of the signal array and the mechanism array is defined by the system
and is documented in the Bookreader version of the Open VMS Programming
Concepts Manual. On Alpha systems, the data returned in the signal array and
its format is the same as it is on VAX systems, as shown in Figure 9-1.

Examining the Condition-Handling Code in Your Application
9.3 Examining Condition-Handling Routines for Dependencies

Figure 9-1 32-Bit Signal Array on VAX and Alpha Systems

31 0

Argument Count

Condition Code

Optional Message Sequence Arguments

Program Counter (PC)

Processor Status Longword (PSL)

ZK-5208A-GE

The following table describes the arguments in the signal array:

Argument

Argument Count

Condition Code

Optional Message
Sequence

Program Counter (PC)

Processor Status
Longword (PSL)

Description

On Alpha and VAX systems, this argument contains a positive
integer that indicates the number of longwords that follow in the
array.

On Alpha and VAX systems, this argument is a 32-bit code that
uniquely identifies a hardware or software exception condition.
The format of the condition code, which remains unchanged
on Alpha systems, is described in Open VMS Programming
Interfaces: Calling a System Routine. Note, however, that Alpha
systems do not support every condition code returned on VAX
systems and define condition codes that cannot be returned on a
VAX system. Section 9.4 lists VAX condition codes that cannot
be returned on Alpha systems.

These arguments provide additional information about the
particular exception returned and vary for each exception. The
Bookreader version of the Open VMS Programming Concepts
Manual describes these arguments for VAX exceptions.

The address of the next instruction to be executed when the
exception occurred, if the exception is a trap; or the address of
the instruction that caused the exception, if the exception is a
fault. On Alpha systems, this argument contains the lower 32
bits of the PC (which is 64 bits long on Alpha systems).

A formatted 32-bit argument that describes the status of the
processor when the exception occurred. On Alpha systems,
this argument contains the lower 32 bits of the Alpha 64-bit
processor status (PS) quadword.

On Alpha systems, the mechanism array returns much of the same data that
it does on VAX systems; however, its format is different. The mechanism array
returned on Alpha systems preserves the contents of a larger set of integer
scratch registers as well as the floating-point scratch registers. In addition,
because these registers are 64 bits long, the mechanism array is constructed of
quadwords (64 bits) on Alpha systems, not longwords (32 bits) as it is on VAX
systems. Figure 9-2 compares the format of the mechanism array on VAX and
Alpha systems.

9-3

Examining the Condition-Handling Code in Your Application
9.3 Examining Condition-Handling Routines for Dependencies

Figure 9-2 Mechanism Array on VAX and Alpha Systems

31

9-4

0 63 31 0

Argument Count Flags I Argument Count

Frame(FP) Frame(FP)

Depth Reserved I Depth

RO Handler Data Address

R1 Exception Stack Frame Address

Signal Array Address

RO

R1

R16

Integer Registers R17 - R27

R28

FO

F1

F10

Floating Registers F11 - F29

F30

ZK-5207A-GE

The following table describes the arguments in the mechanism array:

Argument

Argument Count

Flags

Description

On VAX systems, this argument contains a positive
integer that represents the number of longwords that
follow in the array. On Alpha systems, this argument
represents the number of quadwords in the mechanism
array, not counting the argument count quadword (always
43 on Alpha systems).

On Alpha systems, this argument contains various flags to
communicate additional information. For example, if bit 0
is set, it indicates that the process has already performed
a floating-point operation and the floating-point registers
in the array are valid (no equivalent in the mechanism
array on VAX systems).

Examining the Condition-Handling Code in Your Application
9.3 Examining Condition-Handling Routines for Dependencies

Argument

Frame Pointer (FP)

Depth

Reserved

Handler Data Address

Exception Stack Frame
Address

Signal Array Address

Registers

Recommendations

Description

On VAX and Alpha systems, this argument contains the
address of the call frame on the stack that established the
condition handler.

On VAX and Alpha systems, this argument contains an
integer that represents the frame number of the procedure
that established the condition-handling routine, relative
to the frame that incurred the exception.

Reserved.

On Alpha systems, this argument contains the address of
the handler data quadword, when a handler is present (no
equivalent in the mechanism array on VAX systems).

On Alpha systems, this argument contains the address
of the exception stack frame (no equivalent in the
mechanism array on VAX systems).

On Alpha systems, this argument contains the address of
the signal array (no equivalent in the mechanism array
on VAX systems).

On VAX and Alpha systems, the mechanism array
includes the contents of scratch registers. On Alpha
systems, this includes a much larger set of registers
and also includes a corresponding set of floating-point
registers.

Because the 32-bit signal array is the same on Alpha systems as it is on VAX
systems, you may not need to modify the source code of your condition-handling
routine. However, the changes to the mechanism array may require changes to
your source code. In particular, check the following:

• Check the source code of your condition-handling routine for assumptions
about the size of array elements or the ordering of array elements in the
mechanism array.

• If the condition-handling routine in your application uses the depth argument
to unwind a specific number of stack frames, you may need to modify your
source code. Because of architectural changes, the depth argument returned
on an Alpha system may be different from that returned on a VAX system.
(The depth argument in the mechanism array indicates the number of frames
between the procedure that established the handler, relative to the frame that
incurred the exception.)

Applications that unwind to the establisher frame by specifying the address
of the depth argument to the SYS$UNWIND system service, or unwind to
the caller of the establisher frame by using the default depth argument of
the SYS$UNWIND system service, will continue to work correctly. Depths
specified as negative numbers still indicate exception vectors (as on VAX
systems).

Example 9-1 presents a condition-handling routine written in C.

9-5

Examining the Condition-Handling Code in Your Application
9.3 Examining Condition-Handling Routines for Dependencies

Example 9-1 Condition-Handling Routine

#include <ssdef .h>
#include <chfdef .h>

0 int cond handler(sigs, mechs)
struct chf$signal array *sigs;
struct chf$mech_array *mechs;

int status;

8 status = LIB$MATCH COND(sigs->chf$1 sig name, /* returned code */
- SS$_INTOVF)T - /* test against */

0 if (status != 0)
{

}
else
{

/* .•. Condition matched. Perform processing. */
return SS$_CONTINUE;

/* ... Condition does not match. Resignal exception. */
return SS$_RESIGNAL;

The items in the following list correspond to the numbered items in Example 9-1:

0 The routine defines two arguments, sigs and mechs, to access the data
returned by the system in the signal array and the mechanism array.
The routine declares the arguments using two predefined data structures,
chf$signal_array and chf$mech_array, defined by the system in the
CHFDEF.H header file.

8 This condition-handling routine uses the LIB$MATCH_COND run-time
library routine to compare the returned condition code with the condition code
that identifies integer overflow (defined in SSDEF.H). The condition code is
referenced as a field in the system-defined signal data structure (defined in
CHFDEF.H).

0 The LIB$MATCH_COND routine returns a nonzero result when a match is
found. The condition-handling routine executes different code paths based on
this result.

9.4 Identifying Exception Conditions

9-6

Application condition-handling routines identify which exception is being
signaled by checking the condition code returned in the signal array. The
following program fragment, taken from Example 9-1, shows how a condition­
handling routine can accomplish this task by using the run-time library routine
LIB$MATCH_COND:

status = LIB$MATCH_COND(sigs->chf$1 sig name, /* returned code */
ss$_INTOVF); /*test against */

On Alpha systems, the format of the 32-bit condition code and its location in the
signal array are the same as they are on VAX systems. However, the condition
codes your condition-handling routine expects to receive on VAX systems may
not be meaningful on Alpha systems. Because of architectural differences, some

Examining the Condition-Handling Code in Your Application
9.4 Identifying Exception Conditions

exception conditions that are returned on VAX systems are not supported on
Alpha systems.

For software exceptions, Alpha systems support the same set supported by VAX
systems, as documented in the online Help Message utility or in the Open VMS
system messages documentation. Hardware exceptions, however, are more
architecture specific, especially the arithmetic exceptions. Only a subset of the
hardware exceptions supported by VAX systems (documented in the Book.reader
version of the Open VMS Programming Concepts Manual) are also supported on
Alpha systems. In addition, the Alpha architecture defines several additional
exceptions that are not supported by the VAX architecture.

Table 9-1 lists the VAX hardware exceptions that are not supported on Alpha
systems and the Alpha hardware exceptions that are not supported on VAX
systems. If the condition-handling routine in your application tests for any
of these VAX-specific exceptions, you may need to add the code to test for the
equivalent Alpha exceptions. (Section 9.4.1 provides more information about
testing for arithmetic exceptions on Alpha systems.)

Note ~~~~~~~~~~~~~

A translated VAX image run on an Alpha system can still return these
VAX exceptions.

Table 9-1 Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to Alpha Systems

SS$_HPARITH-High-performance arithmetic
exception

Replaces VAX arithmetic exceptions
(see Section 9.4.1)

SS$_ALIGN-Data alignment trap

Exceptions Specific to VAX Systems

SS$_ARTRES-Reserved arithmetic trap

SS$_COMPAT-Compatibility fault

SS$_DECOVF-Decimal overflow1

SS$_FLTDIV-Float divide-by-zero (trap)1

SS$_FLTDIV _F-Float divide-by-zero (fault)

SS$_FLTOVF-Float overflow (trap)1

SS$_FLTOVF _F-Float overflow (fault)

SS$_FLTUND-Float underflow (trap)1

1May be generated by software on Alpha systems

No equivalent on VAX systems

No equivalent on Alpha systems

No equivalent on Alpha systems

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

(continued on next page)

9-7

Examining the Condition-Handling Code in Your Application
9.4 Identifying Exception Conditions

Table 9-1 (Cont.) Architecture-Specific Hardware Exceptions

Exception Condition Code

Exceptions Specific to VAX Systems

SS$_FLTUND_F-Float underflow (fault)

SS$_INTDIV-Integer divide-by-zero1

SS$_INTOVF-Integer overflow1

SS$_TBIT-Trace pending

SS$_0PCCUS-Opcode reserved to customer

SS$_RADMOD-Reserved addressing mode

SS$_SUBRNG-INDEX subscript range check

1 May be generated by software on Alpha systems

Comment

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

Replaced by SS$_HPARITH
(see Section 9.4.1)

No equivalent on Alpha systems

No equivalent on Alpha systems

No equivalent on Alpha systems

No equivalent on Alpha systems

9.4.1 Testing for Arithmetic Exceptions on Alpha Systems

9-8

On a VAX system, the architecture ensures that arithmetic exceptions are
reported synchronously; that is, a VAX arithmetic instruction that causes an
exception (such as an overflow) enters any exception handlers immediately and
no subsequent instructions are executed. The program counter (PC) reported to
the exception handler is that of the failing arithmetic instruction. This allows
application programs, for example, to resume the main sequence, with the failing
operation being emulated or replaced by some equivalent or alternate set of
operations.

On Alpha systems, arithmetic exceptions are reported asynchronously; that is,
implementations of the architecture can allow a number of instructions (including
branches and jumps) to execute beyond that which caused the exception. These
instructions may overwrite the original operands used by the failing instruction,
thus causing information integral to interpreting or rectifying the exception
to be lost. The PC reported to the exception handler is not that of the failing
instruction, but rather is that of some subsequent instruction. When the
exception is reported to an application's exception handler, it may be impossible
for the handler to fix up the input data and restart the instruction.

Because of this fundamental difference in arithmetic exception reporting, Alpha
systems define a single condition code, SS$_HPARITH, to indicate all of the
arithmetic exceptions. Thus, if your application contains a condition-handling
routine that performs processing when an integer overflow exception occurs, on
VAX systems it expects to receive the SS$_INTOVR condition code. On Alpha
systems, this exception is indicated by the condition code SS$_HPARITH. In
this way, condition-handling routines in applications cannot mistake an Alpha
arithmetic exception with the corresponding VAX exception. This is important
because the processing performed by the applications may be architecture specific.

Figure 9-3 shows the format of the SS$_HPARITH exception signal array.

Examining the Condition-Handling Code in Your Application
9.4 Identifying Exception Conditions

Figure 9-3 SS$_HPARITH Exception Signal Array

31 0

Argument Count

Condition Code (SS$_HPARITH}

Integer Register Write Mask

Floating Register Write Mask

Exception PC

Exception PS

ZK-5206A-GE

This signal array contains three arguments that are specific to the SS$_HPARITH
exception: the integer register write mask, the floating register write
mask, and the exception summary arguments. The integer and floating
register mask arguments indicate the registers that were targets of instructions
that set bits in the exception summary argument. Each bit in the mask
represents a register. The exception summary argument indicates the type of
exception (or exceptions) that is being signaled by setting flags in the first seven
bits. Table 9-2 lists the meaning of each of these bits when set.

Table 9-2 Exception Summary Argument Fields

Bit Meaning

0 Software completion.

1 Invalid floating arithmetic, conversion, or comparison operation.

2 Invalid attempt to perform a floating divide operation with a divisor of zero.
Note that integer divide-by-zero is not reported.

3 Floating arithmetic or conversion operation overflowed the destination
exponent.

4 Floating arithmetic or conversion operation underflowed the destination
exponent.

5 Floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer arithmetic or conversion operation from floating point to integer
overflowed the destination precision.

Recommendations
The following recommendations provide guidelines for determining if a condition­
handling routine that performs processing in response to an arithmetic exception
needs modification to run on an Alpha system:

• If the condition-handling routine in your application only counts the number
of arithmetic exceptions that occurred, or aborts when an arithmetic exception
occurs, it does not matter that the exception is delivered asynchronously on
Alpha systems. These condition-handling routines require only the addition
of a test for the SS$_HPARITH condition code.

9-9

Examining the Condition-Handling Code in Your Application
9.4 Identifying Exception Conditions

• If your application attempts to restart the operation that caused the
exception, you must either rewrite your code or use a compiler qualifier
that ensures the exact reporting of arithmetic exceptions. (See Chapter 12
for more information about these compiler qualifiers.) Note, however, that
specifying these instructions can affect performance adversely.

• To guarantee precise reporting of arithmetic exceptions in translated images,
specify the /PRESERVE=FLOAT_EXCEPTIONS qualifier on the VEST
command line when translating the image. When this qualifier is used, the
VEST utility generates code that allows an exception to be reported after each
instruction that could result in a floating-point fault. This qualifier adversely
affects the performance of the translated image. For more information about
using the VEST command, see DECmigrate for Open VMS AXP Systems
Translating Images.

Note ___________ _

A translated VAX image running on an Alpha system can return VAX
exception conditions, including arithmetic exception conditions.

9.4.2 Testing for Data-Alignment Traps

9-10

On an Alpha system, a data-alignment trap is generated when an attempt is
made to load or store a longword or quadword to or from a register using an
address that does not have the natural alignment of the particular data reference,
without using an Alpha instruction that takes an unaligned address as an
operand (LDQ_U). (For more information about data alignment, see Chapter 8.)

Compilers on Alpha systems typically avoid triggering alignment faults by:

• Aligning static data on natural boundaries by default. (This default behavior
can be overridden by using a compiler qualifier.)

• Generating special inline code sequences for data that is known to be
misaligned at compile time.

Note, however, that compilers cannot align dynamically defined data. Thus,
alignment faults may be triggered.

An alignment exception is identified by the condition code SS$_ALIGN.
Figure 9-4 shows the elements of the signal array returned by the SS$_ALIGN
exception.

Examining the Condition-Handling Code in Your Application
9.4 Identifying Exception Conditions

Figure 9-4 SS$_ALIGN Exception Signal Array

31 0

Argument Count

Condition Code (SS$_ALIGN)

Virtual Address

Register Number

Exception PC

Exception PS

ZK-5205A-GE

This signal array contains two arguments specific to the SS$_ALIGN exception:
the virtual address argument and the register number argument. The virtual
address argument contains the address of the unaligned data being accessed. The
register number argument identifies the target register of the operation.

Recommendation

• Use this exception to detect alignment exceptions during the development
of your application. In this phase, you have the opportunity to fix the data
alignment before it can impact performance for a user of your application.
Once this exception is reported, your application has already experienced the
performance impact.

9.5 Performing Other Tasks Associated with Condition Handling
In addition to condition-handling routines, applications that include condition
handling must perform other tasks, such as identifying their condition-handling
routine to the system. The run-time library provides a set of routines that
allow applications to perform these tasks. For example, applications can call
the run-time library routine LIB$ESTABLISH to identify (or establish) the
condition-handling routine they want executed when an exception is signaled.

Because of differences between the VAX architecture and the Alpha architecture
and between the calling standards for both architectures, the way in which many
of these tasks are accomplished is not the same. Table 9-3 lists the run-time
library condition-handling support routines available on VAX systems and
indicates which are supported on Alpha systems.

9-11

Examining the Condition-Handling Code in Your Application
9.5 Performing Other Tasks Associated with Condition Handling

9-12

Table 9-3 Run-Time Library Condition-Handling Support Routines

Routine Support on Alpha Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER-Enable or disable signaling of decimal Not supported
overflow

LIB$FIXUP _FLT-Change floating-point reserved operand Not supported
to a specified value.

LIB$FLT_UNDER-Enable or disable signaling of floating- Not supported
point underflow

LIB$INT_OVER-Enable or disable signaling of integer Not supported
overflow

General Condition-Handling Support Routines

LIB$DECODE_FAULT-Analyze instruction context for
fault

LIB$ESTABLISH-Establish a condition handler

LIB$MATCH_COND-Match condition value

LIB$REVERT-Delete a condition handler

LIB$SIG_TO_STOP-Convert a signaled condition to a
condition that cannot be continued

LIB$SIG_TO_RET-Convert a signal to a return status

LIB$SIM_TRAP-Simulate a floating-point trap

LIB$SIGNAL--Signal an exception condition

LIB$STOP-Stop execution by using signaling

Recommendations

Not supported

Not supported by RTL but
supported by compilers to
provide compatibility

Supported

Not supported by RTL but
supported by compilers to
provide compatibility

Supported

Supported

Not supported

Supported

Supported

The following list provides specific guidelines for applications that use run-time
library routines:

• If your application enables the signaling of exceptions by calling one of the
run-time library routines that enable exception reporting, you will need to
change your source code. These routines are not supported on Alpha systems.
Note, however, that certain types of arithmetic exceptions are always enabled
on Alpha systems. The following types of arithmetic exceptions are always
enabled:

Floating-point invalid operation

Floating-point division by zero

Floating-point overflow

Those exceptions that are not enabled by default must be enabled at compile
time.

Examining the Condition-Handling Code in Your Application
9.5 Performing Other Tasks Associated with Condition Handling

0 If your application specifies a condition-handling routine by calling the run­
time library routine LIB$ESTABLISH, you may not have to change your
source code. Most compilers on Alpha systems, to preserve compatibility,
accept calls to the LIB$ESTABLISH routine. The compilers create a variable
on the stack to point at the "current" condition handler. LIB$ESTABLISH
sets this variable; LIB$REVERT clears it. The statically established handler
for these languages reads the value of this variable to determine which
routine to call. For information on specific languages, see Chapter 12.

The FORTRAN program in Example 9-2 uses the RTL routine LIB$ESTABLISH
to specify a condition-handling routine that tests for integer overflow by specifying
the condition code SS$_INTOVF. On VAX systems, you must compile the program
with the /CHECK=OVERFLOW qualifier to enable integer overflow detection.

To get this program to run on an Alpha system, you must change the condition
code from SS$_INTOVF to SS$_HPARITH. (You can determine the type of
overflow by examining the exception summary argument in the signal array.
For more information, see the compiler documentation.) As on VAX systems, you
must specify the /CHECK=OVERFLOW qualifier on the compile command line to
enable overflow detection. The call to the LIB$ESTABLISH routine does not have
to be removed because DEC Fortran accepts this routine as an intrinsic function.

Example 9-2 Sample Condition-Handling Program

C This program types a maximum value of integers
c Compile with /CHECK=OVERFLOW and the /EXTEND_SOURCE qualifiers

INTEGER*4 int4
EXTERNAL HANDLER
CALL LIB$ESTABLISH (HANDLER) G)

int4=2147483645
WRITE (6,*) ' Beginning DO LOOP, adding 1 to ' int4
DO I=l,10

int4=int4+1
WRITE (6,*) ' INT*4 NUMBER IS ' int4

END DO
WRITE (6,*) , The end ••. '
END

C This is the condition-handling routine

INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*),MECHARGS(*)
INCLUDE '($FORDEF)'
INCLUDE '($SSDEF)'
INTEGER INDEX
INTEGER LIB$MATCH_COND

INDEX= LIB$MATCH COND (SIGARGS(2), SS$_INTOVF) f}
IF (INDEX .EQ. 0 T THEN

HANDLER = SS$ RESIGNAL
ELSE IF (INDEX .GT. 0) THEN

WRITE (6,*) 'Arithmetic exception detected ..• '
CALL LIB$STOP(SIGARGS(l))

END IF
END

9-13

Examining the Condition-Handling Code in Your Application
9.5 Performing Other Tasks Associated with Condition Handling

9-14

The items in the following list correspond to the numbered items in Example 9-2:

0 The example calls LIB$ESTABLISH to specify the condition-handling routine.

f.} On an Alpha system, you must change the condition code SS$_INTOVF to
SS$_HPARITH. The handler routine calls the LIB$STOP routine to terminate
execution of the program.

The following example shows how to compile, link, and run the program in
Example 9-2.

$ FORTRAN/EXTEND SOURCE/CHECK=OVERFLOW HANDLER EX.FOR
$ LINK HANDLER EX -
$ RUN HANDLER-EX
Beginning DO LOOP, adding 1 to 2147483645
INT*4 NUMBER IS 2147483646
INT*4 NUMBER IS 2147483647

Arithmetic exception detected ...
%TRACE-F-TRACEBACK, symbolic stack dump follows
Image Name Module Name Routine Name Line Number rel PC
INT OVR HAND INT OVR HANDLER HANDLER 1637 00000238
DEC$FORRTL - - 0 000651E4

----- above condition handler called with exception 00000504:
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=OOOOOOOl,
000, summary=40, PC=000200EO, PS=OOOOOOlB
-SYSTEM-F-INTOVF, arithmetic trap, integer overflow at PC=000200EO,
----- end of exception message

INT OVR HAND INT OVR HANDLER INT OVR HANDLER - - - - - -
0 84FE9FFC

15 OOOOOOEO
0 84EFD918
0 7FF23EEO

abs PC
00020238
001991E4

Fmask=OOOOO

PS=OOOOOOlB

84FE9FFC
000200EO
84EFD918
7FF23EEO

10
Translating Applications

This chapter describes resources used to translate a VAX application to run on an
Alpha system.

10.1 DECmigrate for OpenVMS Alpha
DECmigrate for Open VMS Alpha is used to translate images for which the
source code is not available. The VAX Environment Software Translator
(VEST) component of DECmigrate translates the VAX binary image file into a
native Alpha image. The translated image runs under the Translated Image
Environment (TIE) on an Alpha computer. (TIE is a shareable image that is
included with the Open VMS Alpha operating system.) Translation does not
involve running an Open VMS VAX image under emulation or interpretation (with
certain limited exceptions). Instead, the new Open VMS Alpha image contains
Alpha instructions that perform operations identical to those performed by the
instructions in the original Open VMS VAX image.

A translated image generally runs as fast on an Alpha computer as the original
image runs on a VAX computer. However, a translated image does not benefit
from the optimizing compilers that take full advantage of the Alpha architecture.
Therefore, a translated image typically runs about 25 to 40 percent as fast as a
native Open VMS Alpha image. The primary causes for this reduced performance
are unaligned data and the extensive use of complex VAX instructions.

DECmigrate translation support is limited to the language features, system
services, and run-time library entry points that existed on Open VMS VAX Version
5.5-2. This limitation and a method for overcoming it (in case your application
uses features introduced after the Open VMS VAX Version 5.5-2 release) are
described in the Open VMS Version 6.2 Release Notes.

A second function of DECmigrate is to analyze images to identify specific
incompatibilities for an Alpha computer. Depending on the type of incompatibility,
you can choose to specify a compiler qualifier that will compensate for the problem
or make changes to the code.

For more information on image translation and VEST, see DECmigrate for
Open VMS AXP Systems Translating Images.

10-1

Translating Applications
10.2 DECmigrate: Translated Image Support

10.2 DECmigrate: Translated Image Support

f!iMMI DECmigrate Version 1. lA runs on Alpha systems running Open VMS Version
6.1 or later. The images it translates require this version or a later version to
execute. Translated images are generally forward compatible but not backward
compatible; that is, images translated with DECmigrate Version 1.lA can run
only on Alpha systems running Open VMS Version 6.1 or later while images
translated with DECmigrate Version 1.0 can run on Open VMS Alpha Version 1.0
and later. Table 10-1 correlates the versions of Open VMS Alpha systems with
the different versions of DECmigrate that support them.•

Table 10-1 Support for Translated Images on OpenVMS Alpha Versions

DECmigrate Version
Used to Translate
Images OpenVMS Alpha Support for Translated Images

Version 1.0

Version 1.1

Version 1. lA

Version 1.0

Yes

No

No

Version 1.5

Yes

Yes

No

Version 6.1 and later

Yes

Yes

Yes

10.3 Translated Image Environment (TIE)

10-2

Image translation is one means of migrating all or part of a VAX application
to Open VMS Alpha. The DECmigrate for Open VMS AXP VAX Environment
Software Translator utility (VEST) creates a translated image by converting a
VAX executable or shareable image into a functionally equivalent Alpha image.
VEST is a component of the optional layered product DECmigrate for Open VMS
·AXP.

When a translated image runs on Open VMS Alpha, the Translated Image
Environment (TIE) provides the VAX environment required for the image to
execute properly. The TIE consists of the shareable images TIE$SHARE and
TIE$EMULAT_Tv, which perform VAX complex instructions. For information on
the role of image translation in a migration strategy, see the manuals Migrating
to an Open VMS AXP System: Planning for Migration and DECmigrate for
Open VMS AXP Systems Translating Images.

The following subsections discuss these topics:

• Interoperability between native and translated images

• Running translated images

• TIE statistics and feedback

Interoperability Between Native and Translated Images
The TIE works together with other components of Open VMS Alpha to enable
native and translated images to call one another. If you are developing
applications or run-time libraries that rely on interoperability, you need to
follow certain procedures when compiling, linking, or translating. See the
first restriction described in Section 10.3.1.4. Table 10-2 provides pointers to
documentation that describes the procedures.

Translating Applications
10.3 Translated Image Environment (TIE)

Table 10-2 Interoperability Documentation

Goal

Ensuring interoperability between native
and translated images

Coordinating native and translated
run-time libraries

Running Translated Images

Reference

Migrating to an Open VMS AXP System:
Recompiling and Relinking Applications

DECmigrate for Open VMS AXP Systems
Translating Images

DECmigrate for Open VMS AXP Systems
Translating Images

Use the DCL RUN command to run a translated image. For example:

$ RUN FOO_TV.EXE

Note that the translated image does not run correctly unless Open VMS Alpha
includes the appropriate translated shareable images and run-time libraries.
When you translate an image, VEST requires the image information files (IIFs­
file type .IIF) corresponding to whichever images and libraries the input image
refers to. These .IIF files enable VEST to create a translated image that correctly
refers to the translated versions of the shareable images and libraries. An image
information file used at image translation must exactly correspond to the version
of the translated shareable image or run-time library available on Open VMS
Alpha.

Open VMS Alpha includes a set of translated run-time libraries and a matching
set of image information files, which are listed in Section 10.4. Check these
lists to determine if they include the libraries or shareable images referred to
by images you want to translate and run. If Open VMS Alpha does not include
the required shared images or libraries, refer to DECmigrate for Open VMS AXP
Systems Translating Images. This manual describes how to create and use image
information files.

When a translated library has been replaced by a native version of the library,
you need to define accordingly any logical names that point to it-that is, you
need to redefine image_TV to image.

TIE Statistics and Feedback
In addition to the TIE's run-time support function, TIE statistics and feedback
can help to improve translated image performance:

• The TIE can display statistics about the run-time execution of translated
images. These statistics describe the image's use of TIE resources and the
interactions between images.

• The TIE can record information about VAX entry points discovered while
interpreting VAX code. When you retranslate the image, VEST uses the
information to find and translate more VAX code.

DECmigrate for Open VMS AXP Systems Translating Images describes these
features in detail and explains how to define the logical names that enable and
disable their use.

10-3

Translating Applications
10.3 Translated Image Environment (TIE)

10.3.1 Problems and Restrictions
This section describes known problems and restrictions with the TIE.

10.3.1.1 Condition Handler Restriction
There is a permanent restriction 'on the type of condition handler that can be
established for both native and translated images. A native routine cannot
establish a translated condition handler, nor can a translated routine establish a
native condition handler. If a native or translated image violates this restriction,
the run-time results are unpredictable.

10.3.1.2 Exception Handler Restrictions
The following exception handler restrictions are permanent:

• Translated images with exception handlers that depend on receiving the
correct program status longword (PSL) might not function properly. When
exceptions are reported, the Alpha program status (PS) is reported in the
signal array instead because there is no VAX PSL.

• Translated images with exception handlers that depend on modifying the
PSL in the signal array do not function properly. The modified PSL is not
propagated back to the faulting code.

10.3.1.3 Floating-Point Restrictions

10-4

The following floating-point restrictions are permanent:

• In some cases, floating-point instructions operating on the same data generate
a trap on an Alpha system but not on a VAX system. Specifically, VAX
floating-point instructions on Open VMS Alpha generate traps for the "dirty
zeros" that VAX hardware can handle correctly. "Dirty zeros" are floating­
point values that are alternate encodings for zero. To retain compatibility
with translated code that performs operations using dirty zeros, the TIE
includes a condition handler that corrects the dirty zeros and retries
the floating-point operation. However, the handler succeeds only if the
qualifier /PRESERVE=FLOAT_EXCEPTIONS was used when the image was
translated.

Images that were not translated with /PRESERVE=FLOAT_EXCEPTIONS
and that perform an operation on a dirty zero incur an HPARITH exception
with a summary status that has bit 1 set. If your translated application
incurs one of these exceptions, retranslate with /PRESERVE=FLOAT_
EXCEPTIONS. VAX dirty zeros commonly result from not initializing floating
data to 0. In this case, changes to source code may be necessary to port to
Open VMS Alpha an application that uses dirty zeros.

• Alpha D53 floating point (D_floating point as a 53-bit fraction instead of a
56-bit fraction) is VAX D_floating converted to G_floating representation.
This conversion leads to the following problem. Consider the VAX instruction
sequence:

MOVD (SP),R2
MOVD R2,-(SP)

VEST translates these VAX instructions into Alpha code like the following:

LDD
CVTDG
CVTGD
STD

F2,0(R14)
F2,F2
F2,F17
F17,-8(R14)

Pickup D float
Convert to Canonical G Form with rounding
Convert back to D Form for storing
Store the result

Translating Applications
10.3 Translated Image Environment (TIE}

At run time, the VEST-generated code uses rounding to obtain the most
accurate G_floating value when converting the D56 floating point to G
canonical form. In some cases, the conversion to G canonical form may round
up the D_floating value to create an exponent that cannot be represented in
D_floating. When this happens, the CVTGD operation incurs an HPARITH
trap with floating overflow as the summary reason.

If a translated image incurs this problem at run time, it needs to be
retranslated with the VEST qualifier /FLOAT=D56_FLOAT to execute
properly.

10.3.1.4 Interoperability Restrictions
Note the following interoperability restrictions:

• A native routine that either calls or is called by a translated image must be
compiled with the /TIE qualifier and be linked with the /NONATIVE_ONLY
qualifier. Checking for interoperability between native and translated images
occurs at run time. If the /TIE and /NONATIVE_ONLY qualifiers are not
used to compile and link the native routine, an error occurs at run time when
the native routine and a translated image attempt to interoperate. If such an
error occurs, recompile and relink the native routine appropriately.

• An access violation can occur at run time if a native routine that was not
compiled with the trIE qualifier makes an indirect call to a translated
routine. The indirect call is made through a variable that contains the
translated routine's address. When this happens, there is no autojacketing
code in place to assist the native-to-translated call. The native code attempts
to use the routine address as a native procedure descriptor. The code address
of a native procedure is at offset PDSC$L_ENTRY, whose value is 8, from the
base of the procedure descriptor. Because the translated routine address is
treated as a procedure descriptor, the value at offset 8 from that address is
used as the code to call. This usually results in an access violation.

If you are encountering this problem, use a debugger to check the following:

• Check that R27 points into a translated image.

• Check that bits <31:2> of 8(R27) equal bits <31:2> of the access violation
address. (All bits are not used because Alpha instructions are longword
aligned.)

• Check that R26 points into a native image.

• Check that -4(R26) is a JSR R26,(26) instruction.
If all these checks prove to be true, recompile the native routine with the /TIE
qualifier to enable autojacketing at run time.

10.3.1.5 VAX C: Translated Program Restrictions
The following translated VAX C program restrictions are permanent:

• If a program uses the VAX C RTL routine brk() to release dynamic memory
(that is, a break address lower than the current break address is requested),
the next attempt by TIE to use a complex instruction routine may result
in a fatal memory access violation. This may happen because the complex
instruction routines are in a separate image, TIE$EMULAT_Tv.EXE, which
is dynamically activated by LIB$FIND_IMAGE_SYMBOL on the first use
of one of the routines. Depending on when this occurs and the address
passed to the brk() call that releases memory, the memory into which
TIE$EMULAT_TV.EXE is loaded may also be released.

10-5

Translating Applications
10.3 Translated Image Environment (TIE)

To avoid this problem, never use brk() to release memory, or be sure to
execute a complex VAX instruction before getting the break address that is
later used to release memory. Using brk() to allocate memory is fine.

• A translated VAX C program that uses vfork() and any executive function
may hang at run time. If the child process of the VAX C program aborts
erroneously, it may hang waiting for a mailbox I/O to be completed. One
workaround is to prevent the child process from aborting.

10.4 Translated Image Support

10-6

At the beginning of the Open VMS Alpha program, translation support was
provided to remove impediments for users moving to Alpha due to:

• Lack of full language support initially

• Unavailability of source code for recompilation

• Difficulty of recompiling code that depended heavily on certain features of the
VAX architecture

For languages whose VAX versions are undergoing active development, native
Alpha versions are now available. The TIE is being maintained to support those
language features that were available as of the release of Open VMS VAX Version
5.5-2.

Similarly, translation is supported for images whose use of system services and
run-time library entry points is restricted to those that existed on Open VMS VAX
Version 5.5-2.

In cases where more recent VAX layered products have been installed, it may be
necessary to take minor additional steps if application needs require rebuilding
an image suitable for translation. For instance, with DECwindows Motif Version
1.2 or Version 1.2-3 for Open VMS VAX, images must be built with the OSF Motif
Version 1.1.3 library or the DECwindows XUI library rather than with the OSF
Motif Version 1.2.2 or Version 1.2.3 library in order to be suitable for translation.

Similarly, for those using recent versions of DEC Fortran for VAX, an additional
qualifier is required to compile Fortran programs that are suitable for translation.

For further information, see the release notes for particular VAX products.

As a safety measure for situations where future rebuilding and retranslation of
Open VMS VAX images is likely, it may be preferable to save copies of the relevant
Open VMS VAX Version 5.5-2 shareable images in a separate VAX directory and
link new versions of VAX applications against those images. Using that technique
the resulting images will be compatible with newer Open VMS VAX shareable
images (picking up any Open VMS enhancements of existing features), and will
also be properly built for translation to Open VMS Alpha (by not requiring newer
versions of shareable images).

The following sections list the translated images, image information files, and
other related files that are provided with Open VMS Alpha.

Open VMS Alpha contains no translated message images. All message images
have been made native.

Translated Images in SYS$LIBRARY:

BASRTL2_D53_TV.EXE
BASRTL2_D56_ TV.EXE
BASRTL_D56_TV.EXE
BASRTL_TV _SUPPORT.EXE
BLAS1RTL_D53_TV.EXE
BLAS1RTL_D56_TV.EXE
COBRTL_D56_TV.EXE
DBLRTL_D56_Tv.EXE
EDTSHR_Tv.EXE
FORRTL2_TV.EXE
FORRTL_D56_TV.EXE
LIBRTL2_D56_TV.EXE
LIBRTL_D56_TV.EXE
MTHRTL_D53_Tv.EXE
MTHRTL_D56_Tv.EXE
PASRTL_D56_TV.EXE
PLIRTL_D56_TV.EXE
RPG RTL_ TV.EXE
SCNRTL_Tv.EXE
TECOSHR_TV.EXE
TIE$EMULAT_TV.EXE
UVMTHRTL_D53_TV.EXE
UVMTHRTL_D56_Tv.EXE
VAXCRTLG_D5~_TV.EXE
VAXCRTL_D56_Tv.EXE
VMSRTL_Tv.EXE

Translated Images in SVS$SVSTEM:

DBLMSGMGR_TV.EXE
EDF_TV.EXE
EDT_Tv.EXE
MONITOR_ TY.EXE
TEC032_Tv.EXE

Translated RTL Images in IMAGELIB:

BASRTL2_D53_TV.EXE
BASRTL_D56_Tv.EXE
BLAS1RTL_D53_Tv.EXE
COBRTL_D56_Tv.EXE
DBLRTL_D56_TV.EXE
FORRTL2_TV.EXE
FORRTL_D56_Tv.EXE
LIBRTL_D56_TV.EXE
PLIRTL_D56_TV.EXE
RPG RTL_ TY.EXE
SCNRTL_Tv.EXE

Translating Applications
10.4 Translated Image Support

Note that most of the translated RTLs are provided in D56 format rather than
D53 format; some are provided in both formats. Where both formats are provided,
the default format is D53. See Section 10.5 for more information about the
translated run-time libraries.

10-7

Translating Applications
10.4 Translated Image Support

10-8

Image Information Files in SYS$LIBRARY:

ACLEDTSHR.IIF
BASRTL2.IIF
BASRTL.IIF
BLASlRTL.IIF
COBRTL.IIF
CONVSHR.IIF
CRFSHR.IIF
DBLRTL.IIF
DCXSHR.IIF
DISMNTSHR.IIF
DTKSHR.IIF
EDTSHR.IIF
ENCRYPSHR.IIF
EPC$SHR.IIF
FDLSHR.IIF
FORRTL.IIF
FORRTL2.IIF
INIT$SHR.IIF
LBRSHR.IIF
LIBRTL.IIF
LIBRTL2.IIF
MAILSHR.IIF
MOUNTSHR.IIF
MTHRTL.IIF
NCSSHR.IIF
Pl_SPACE.IIF
PASRTL.IIF
PLIRTL.IIF
PPLRTL.IIF
PTD$SERVICES_SHR.IIF
RPGRTL.IIF
SO_SPACE.IIF
SCNRTL.IIF
SCRSHR.IIF
SECURESHR.IIF
SMBSRVSHR.IIF
SMGSHR.IIF
SORTSHR.IIF
SPISHR.IIF
TECOSHR.IIF
TPUSHR.IIF
UVMTHRTL.IIF
VAXCRTL.IIF
VAXCRTLG.IIF
VMSRTL.IIF

System Logical Names Definitions
The following system logical names are defined to facilitate the translated
environment:

ACLEDTSHR_TV = ACLEDTSHR
CDDSHR_TV = CDDSHR
CONVSHR_TV = CONVSHR
CRFSHR_TV = CRFSHR

Translating Applications
10.4 Translated Image Support

DCXSHR_TV = DCXSHR
DISMNTSHR_TV = DISMNTSHR
DTKSHR_TV = DTKSHR
ENCRYPSHR_TV = ENCRYPSHR
EPC$SHR_TV = EPC_SHR
FDLSHR_TV = FDLSHR
INIT$SHR_TV = INIT$SHR
LBRSHR_TV = LBRSHR
MAILSHR_TV = MAILSHR
MOUNTSHR_TV = MOUNTSHR
NCSSHR_TV = NCSSHR
PPLRTL_TV = PPLRTL
PTD$SERVICES_SHR_TV = PTD$SERVICES_SHR
SCRSHR_TV = SCRSHR
SECURESHR_TV = SECURESHR_JACKET
SMBSRVSHR_TV = SMBSRVSHR
SMGSHR_TV = SMGSHR
SORTSHR_TV = SORTSHR
SPISHR_TV = SPISHR
TPUSHR_TV = TPUSHR

BASRTL_TV = BASRTL_D56_TV
BASRTL2_TV = BASRTL2_D53_TV
BLASlRTL_TV = BLAS1RTL_D53_TV
COBRTL_TV = COBRTL_D56_TV
DBLRTL_TV = DBLRTL_D56_TV
FORRTL_TV = FORRTL_D56_TV
LIBRTL_TV = LIBRTL_D56_TV
LIBRTL2_TV = LIBRTL2_D56_TV
MTHRTL_TV = MTHRTL_D53_TV
PASRTL_TV = PASRTL_D56_TV
PLIRTL_TV = PLIRTL_D56_TV
VAXCRTL_TV = VAXCRTL_D56_TV
VAXCRTLG_TV = VAXCRTLG_D56_TV

DBLMSGMGR = DBLMSGMGR_TV
EDTSHR_TV = EDTSHR
TEC032 = TEC032_TV
TECOSHR = TECOSHR_TV
VMSRTL = VMSRTL_TV

DBLRTLMSG = DBL$MSG
PASMSG = PAS$MSG
PLIMSG = PLI$MSG
RPGMSG = RPG$MSG
SCNMSG = SCN$MSG
VAXCMSG = DECC$MSG

10-9

Translating Applications
10.5 Translated Run-Time Libraries

10.5 Translated Run-Time Libraries

10-10

As part of the Open VMS Alpha kit, Digital provides a set of translated run-time
libraries.

Some of the routines in the VAX run-time libraries use the VAX D_floating data
type for double-precision arithmetic.

In the translated versions of these libraries, the Alpha D56 D_floating data
type is used by default (where the VAX run-time library used D_floating). This
provides the full precision of the 56-bit mantissa in VAX D_floating, yielding
consistency of results at a cost in execution-time performance.

For a handful of performance-critical math-related libraries, Digital also supplies
versions of the translated run-time libraries that use the Alpha D53 D_floating
data type for double-precision operations. For these libraries, the D53 forms
are the default. The D53 forms provide better performance by sacrificing the
low-order three bits of precision in the mantissa.

The following translated libraries are provided in D56 form only:

• BAS RTL

• COBRTL

• DBLRTL

• FORRTL

• LIB RTL

• LIBRTL2

• PASRTL

• PLIRTL

• VAXCRTL

• VAXCRTLG

The following translated libraries are provided in both D56 and D53 (the default)
form:

• BASRTL2

• BLASlRTL

• MTHRTL

• UVMTHRTL

Accessing the 056 Form of the Run-Time Libraries
When you use the run-time libraries, the following happens by default:

• For BASRTL2, translated BASIC images that use MAT functions on double­
predsion data invoke BAS~C run-time library routines that use the D53 data
type.

• For BLASlRTL, translated images that invoke BLAS$ functions with double­
precision floating-point arguments get routines that use the D53 data type.

• For MTHRTL, translated images that invoke MTH$ double-precision floating­
point functions get routines that use the D53 data type.

• For all others, the Alpha D56 floating-point data type is used by default.

Translating Applications
10.5 Translated Run-Time Libraries

Some users might need the full precision of D56 floating point. However, using
the D56 routines imposes a very significant performance penalty. To access
the D56 routines, redefine the run-time library's logical name to the D56 form,
as shown in Table 10-3. The logical name can be defined on a per-process or
systemwide basis, as appropriate for your site.

Table 10-3 Run-Time Library Logical Names

Library

BASRTL2

BLASlRTL

MTHRTL

Logical Name

BASRTL2_TV

BLASlRTL_TV

MTHRTL_TV

056 Name

BASRTL2_D56_TV

BLAS1RTL_D56_TV

MTHRTL_D56_TV

10.5.1 CRF$FREE_VM and CRF$GET_VM: Translated Callers
Translated callers to CRF$FREE_ VM and CRF$GET_ VM will not work properly.
The translated callers are expecting VAX JSB semantics, but instead, Alpha JSB
semantics are present in the native code (naturally).

To work around this problem, the translated callers need to use CALL instead of
JSB.

10.6 Translated VAX C Run-Time Library
The following sections contain release notes pertaining to the translated VAX C
run-time library.

10.6.1 Problems and Restrictions
This section describes known problems and restrictions with the Open VMS Alpha
translated VAX C Run-Time Library (VAX C RTL).

10.6.1.1 Functional Restrictions
The translated VAX C RTL is a translated version of the Open VMS VAX Version
5.4 VAX C RTL. All problems and restrictions present in that release of the VAX
C RTL exist unchanged in the translated VAX C RTL. The following items are
known restrictions in the functionality of the translated VAX C RTL:

• The fmod() function does not produce correct results for D _FLOAT.

• D_FLOAT programs that use the SIGFPE signal may not catch all fioating­
point exceptions. Translating the program using /FLOAT=D56_FLOAT fixes
most SIGFPE problems.

• The sbrk() function returns an address that does not match the value
returned from SYS$EXPREG.

• D_FLOAT programs that use the HUGE_ VAL constant or call the math
functions (which may return HUGE_ VAL) may fail unless they are translated
with /FLOAT=D56_FLOAT.

• Under certain circumstances, some math functions (either D_FLOAT or G_
FLOAT) may generate a high-performance arithmetic trap exception instead
of setting errno to ERANGE or EDOM.

10-11

Translating Applications
10.6 Translated VAX C Run-Time Library

10.6.1.2 Interoperability Restrictions
The following restrictions apply when the translated VAX C RTL interoperates
with the native DEC C RTL:

• The longjmp function cannot be used to transfer control from:

A native routine to a translated routine

A translated routine to a native routine

• Memory allocated by malloc, calloc, and so forth must be freed in the same
context. That is, if a translated routine allocates memory, the free call
must occur in a translated routine. Allocating memory in a translated
routine and freeing it in a native routine results in corruption of the heap.
Likewise, allocating memory in a native routine and freeing that memory in a
translated routine also corrupts the heap.

• Signal handlers established by the signal (and related) functions in translated
routines are not invoked when the signal is raised. Only native signal
handlers can be used to catch UNIX style signals.

• The signals SIGEMT, SIGTRAP, SIGIOT, and SIGFPE cannot be caught if
those signals are raised by a translated image.

• · The exec function can be used only to invoke similar images. That is, an
exec function invoked in a native image cannot execute a translated image.
Likewise, an exec function invoked in a translated image cannot execute a
native image.

• An access violation occurs if vfork is executed in a native image to establish
the context for a later system call and the system call is then invoked in a
translated image.

• File pointers and file descriptors cannot be shared between native and
translated images. An access violation or file corruption is likely to occur
if a file is opened in a translated image and a native image attempts to read
or write using that file pointer. The same results occur if a file is opened in a
native image and a translated image attempts to read or write using that file
pointer.

Programs that perform any of these restricted actions may receive access
violations or other exceptions. No testing is performed to detect and prevent
restricted operations from being performed.

10.7 Translated VAX COBOL Programs
The Open VMS Alpha operating system supports the execution of translated
VAX COBOL programs compiled with the VAX COBOL Version 5.0 compiler (or
earlier compilers).

10.7.1 Problems and Restrictions

10-12

Programs compiled with the VAX COBOL Version 5.1 compiler are not supported
by the Open VMS Alpha operating system.

11
Ensuring Interoperability Between Native and

Translated Images

This chapter describes how to create native Alpha images that can make calls to
and be called by translated VAX images.

11.1 Overview
DECmigrate for Open VMS AXP Systems Translating Images describes how to use
the VAX Environment Software Translator (VEST) to convert a VAX executable
or shareable image into a functionally equivalent Alpha image. (DECmigrate for
Open VMS Alpha is an optional layered product that supports the migration of a
VAX application to an Alpha system. VEST is a component of the DECmigrate
utility.)

Using VEST, you can translate all the components of an application, such as the
main executable image and all the shareable images that it calls. However, you
can also create an application that is a mix of translated and native components.
For example, you may want to create a native version of a shareable image that
is called by your application to take advantage of native performance. You may
also choose to use a mixture of native and translated components to allow you to
create a native version of your application in stages.

You can use translated VAX images as you would a native Alpha image. However,
to create native images that can interoperate with translated images requires
some additional considerations, described in the following sections.

11.1.1 Compiling Native Images That Can Interoperate with Translated Images
To create a native image that can call or be called by a translated image, you
must specify the trIE qualifier when compiling the source files of the native Alpha
image. Any source module that contains a procedure that is made available to
external callers must be compiled with the trIE qualifier. When you specify the
trIE qualifier, the compilers create procedure signature blocks (PSBs) that are
needed by the Translated Image Environment (TIE) at execution time in order to
properly jacket calls between translated and native imag.es. The TIE is part of
the operating system.

You must also specify the trIE qualifier when compiling a source module
that contains a procedure that performs a callback (or calls out to a specified
procedure) that may be in a translated image. In this case, the trIE qualifier
causes the compilers to generate a call to a special run-time library routine,
OTS$CALL_PROC, that ensures that the outbound call to a translated procedure
is handled properly.

11-1

Ensuring Interoperability Between Native and Translated Images
11.1 Overview

In addition to the fTIE qualifier, you may need to specify other compiler
qualifiers to ensure correct interoperation between a translated image and
a native shareable image. For example, if the translated callers of a native
shareable image use the VAX D_floating format for double-precision floating-point
operations (the default for VAX languages), you must specify the /FLOAT=D_
FLOAT qualifier because the default format for double-precision data on Alpha
systems is not VAX D_floating. Consult compiler documentation to determine
the exact qualifier syntax to specify VAX D_floating format. Note that, because
the VAX D_floating data type is not supported by the Alpha architecture, its use
adversely affects performance.

Depending on application-specific semantics, you may also need to specify other
compiler qualifiers to force byte granularity, data alignment, and AST atomicity.

11.1.2 Linking Native Images That Can Interoperate with Translated Images
To create a native Alpha image that can call a translated VAX image, you must
explicitly link the native object modules with the /NONATIVE_ONLY qualifier.
(Note that /NATIVE_ONLY is the default used by the linker for.this qualifier.)
This qualifier causes the linker to include in the image the PSB information
created by the compilers.

Because the /NONATIVE_ONLY qualifier affects only outgoing calls from native
images to translated images, you do not need to specify it when creating a native
Alpha image that will be called by a translated VAX image. The linker's default
behavior (/NATIVE_ONLY qualifier) can prevent native images from calling
translated images but not from being called by translated images.

Note that the layout of the symbol vector in the native version of the shareable
image must match the layout of the symbol vector in the translated shareable
image it replaces. For more information about replacing translated shareable
images with native shareable images, see Section 11.3.

11.2 Creating a Native Image That Can Call a Translated Image

11-2

To create a native Alpha image that can make calls to a translated VAX shareable
image, perform the following steps:

1. Translate the VAX shareable image. See DECmigrate for Open VMS AXP
Systems Translating Images for information about using VEST to translate
VAX images.

2. Create a native Alpha version of the main program. Compile the source
modules using a compiler that produces native Alpha code, specifying the
/TIE qualifier on the command line.

3. Link the native object module with the translated VAX shareable
image. Specify the translated image in a linker options file as you would any
other shareable image.

To illustrate interoperability, consider the programs in Example 11-1 and
Example 11-2. Example 11-1 calls the routine mysub that is defined in
Example 11-2.

Ensuring Interoperability Between Native and Translated Images
11.2 Creating a Native Image That Can Call a Translated Image

Example 11-1 Source Code for Main Program (MVMAIN.C)

#include <stdio.h>

int mysub () ;

main()
{

int numl, num2, result;

numl = 5;
num2 = 6;

result= mysub(numl, num2);
printf("Result is: %d\n", result);

Example 11-2 Source Code for Shareable Image (MVMATH.C)

int myadd(value 1, value_2)
int value 1; -
int value-2;

{ -
int result;

result = value 1 + value 2;
return(result-); -

int mysub(value 1,value 2)
int value 1; - -
int value-2;

{ -
int result;

result = value 1 - value 2;
return(result-); -

}

int mydiv(value 1, value 2
int value 1; -
int value~);

int result;

result = value 1 I value 2;
return(result-); -

int mymul(value 1, value 2
int value 1; -
int value=2;

int result;

result = value 1 * value 2;
return(result-); -

To create VAX images from these examples, compile the source modules using a
C compiler on a VAX system. To implement Example 11-2 as a shareable image,
link the module, specifying the /SHAREABLE qualifier on the LINK command
line and declaring the universal symbols in the shareable image by using the
UNIVERSAL= option or by creating a transfer vector file. (See the Bookreader
version of the Open VMS Linker Utility Manual for information about how to

11-3

Ensuring Interoperability Between Native and Translated Images
11.2 Creating a Native Image That Can Call a Translated Image

11-4

create a shareable image.) The following example shows a LINK command that
creates the shareable image MYMATH.EXE:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mydiv
UNIVERSAL=myrnul
lctr11zl

You can then link the main program with the shareable image to create the
executable image MYMAIN.EXE, as in the following example:

$ LINK MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH.EXE/SHAREABLE
lctr11zl

Note that you may need to specify the /BPAGE qualifier on the LINK command
line to force the linker to create image sections using a larger page size than the
default page size on VAX systems (512 bytes). Otherwise, when VEST translates
your VAX image, VEST may collect a number of these 512-byte image sections
on a single Alpha page. When VEST puts neighboring image sections with
conflicting protection attributes on the same Alpha page, it assigns the most
permissive protection to all the image sections and issues a warning. (See the
Bookreader version of the Open VMS Linker Utility Manual for more information
about using the /BPAGE qualifier.)

After creating the VAX images, translate them using VEST. Note that you must
translate the shareable image first. (For more information about using the VEST
command, see DECmigrate for Open VMS AXP Systems Translating Images.) The
following example creates the translated files named MYMATH_Tv.EXE and
MYMAIN_Tv.EXE (VEST appends the characters "_TV'' to the end of the image's
file name):

$ VEST MYMATH.EXE
$ VEST MYMAIN.EXE

To replace the translated main executable image MYMAIN_Tv.EXE with a
native version, compile the source module in Example 11-1 using a compiler
that generates Alpha code, specifying the trIE qualifier on the compile command
line. Then link the native object module MYMAIN.OBJ to create a native Alpha
image, specifying the translated shareable image in the linker options file as you
would any other shareable image, as in the following example:

$ LINK/NONATIVE ONLY MYMAIN.OBJ,SYS$INPUT/OPT
MYMATH TV.EXE/SHAREABLE
lctrltzl -

You can run the native main image as you would any other Alpha image. Define
the name of the translated shareable image, MYMATH_TV, as a logical name
that points to the location of the translated shareable image (unless it is located
in the directory pointed to by the SYS$SHARE logical name) and execute the
RUN command, as in the following example:

$DEFINE MYMATH TV YOUR$DISK:[YOUR DIR]MYMATH TV.EXE
$ RUN MYMAIN - - -

Ensuring Interoperability Between Native and Translated Images
11.3 Creating a Native Image That Can Be Called by a Translated Image

11.3 Creating a Native lmC!ge That Can Be Called by a Translated
Image

To create a native Alpha shareable image that can be called by a translated VAX
image, perform the following steps:

1. Translate the VAX shareable image. Even though you are replacing
the VAX version of the shareable image with a native version, you must
still translate the shareable image to create a VEST interface information
file (IIF). VEST needs the IIF associated with the shareable image when
it translates an image that calls the shareable image. See DECmigrate for
Open VMS AXP Systems Translating Images for information about IIF files
and about using VEST to translate VAX images. (Note that you may have to
repeat this step to control the layout of the symbol vector in the translated
shareable image. See Section 11.3.1 for more information.)

2. Translate the VAX executable image that calls the shareable image.

3. Create a native Alpha version of the shareable image. Compile the
source modules using a compiler that generates Alpha code, specifying the
trIE qualifier on the command line.

4. Link the object module to create a native Alpha shareable image.
Use the SYMBOL_ VECTOR= option to declare the universal symbols in the
shareable image. For compatibility, declare the universal symbols in the
SYMBOL_ VECTOR= option in the same order as they were declared in the
VAX shareable image.

Note ~~~~~~~~~~~~~

When creating a native Alpha shareable image to replace a translated
VAX shareable image, always leave the first entry of a symbol vector
empty by specifying the SPARE keyword as the first entry in the
SYMBOL_ VECTOR= option. VEST reserves the first symbol vector entry
in the translated VAX image for its own use.

The following example creates a native shareable image from the source
module in Example 11-2:

$ LINK/SHAREABLE MYMATH.OBJ,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000 C»
SYMBOL_VECTOR=(SPARE,-

lctrl!ZI

rnyadd=procedure,- f}
rnysub=procedure,­
rnydiv=procedure,­
rnyrnul=procedure)

C» Specifies the major and minor ide~tification numbers of the shareable
image. The values of these identification numbers must match the values
specified in the VAX shareable image. (For more information about using
the GSMATCH= option, see the Bookreader version of the Open VMS
Linker Utility Manual.)

f} Specifies the universal symbols in the shareable image.

11-5

Ensuring Interoperability Between Native and Translated Images
11.3 Creating a Native Image That Can Be Called by a Translated Image

5. Make sure the layout of the symbol vector in the native Alpha image
matches the symbol vector in the translated VAX image. Section 11.3.1
describes how to determine the offsets of symbols in these symbol vectors and
how to control the layout of these symbol vectors to ensure they match.

You can run the translated main image, MYMAIN_TV.EXE, with either the
translated VAX shareable image, MYMATH_Tv.EXE, or with the native Alpha
shareable image, MYMATH.EXE. By default, the translated executable image
calls the translated shareable image. (The translated executable image contains
a global image section descriptor [GISD] that points to the translated shareable
image. The image activator activates the shareable images to which the image
has been linked.)

To run the translated main image with the native shareable image, define the
name of the shareable image MYMATH_TV as a logical name that points to the
location of the native Alpha shareable image, MYMATH.EXE, as in the following
example:

$DEFINE MYMATH TV YOUR DISK:[YOUR DIR]MYMATH.EXE
$ RUN MYMAIN_TV- - -

11.3.1 Controlling Symbol Vector Layout

11-6

To create a native Alpha shareable image that can replace a translated VAX
shareable image in an application, you must ensure that the universal symbols
in the shareable images appear at the same offsets in the symbol vectors in both
images. When a VAX shareable image is translated, VEST creates a symbol
vector for the image that includes the universal symbols declared in the original
VAX shareable image. (A translated image is actually an Alpha image, created
by VEST, and, like any other Alpha shareable image, it lists universal symbols
in a symbol veetor.) To create a native shareable image that is compatible with a
translated shareable image, you must make sure that the same symbols appear
at the same offsets in the symbol vector in the native Alpha shareable image and
in the translated VAX shareable image it replaces.

To control how VEST lays out the symbol vector it creates in the translated VAX
image, create a symbol information file (SIF) and include it in the translation
operation. An SIF is a text file with which you can specify the layout of entries
in the symbol vector VEST creates for the translated image and to determine
which symbols should appear in the global symbol table (GST) of the translated
shareable image. If you do not specify the layout of the symbol vector, VEST may
change the layout in subsequent retranslations of the shareable image. Note that
VEST reserves the first symbol vector entry for its own use. For more information
about SIFs, see DECmigrate for Open VMS AXP Systems Translating Images.

You control the layout of the symbol vector in a native shareable image by
specifying the SYMBOL_ VECTOR= option. The linker lays out the entries in a
symbol vector in the order in which you specify the symbols in the SYMBOL_
VECTOR= option statement. Make sure you list the symbols in the SYMBOL_
VECTOR= option in the same order as they appear in the transfer vector used
to create the VAX shareable image. For more information about using the
SYMBOL_ VECTOR= option, see the Bookreader version of the Open VMS Linker
Utility Manual.

Ensuring Interoperability Between Native and Translated Images
11.3 Creating a Native Image That Can Be Called by a Translated Image

To make sure the symbol vector in a translated shareable image matches the
symbol vector in a native shareable image, perform the following steps:

1. Translate the VAX shareable image, specifying the /SIF qualifier.
When you specify the /SIF qualifier, VEST generates an SIF that lists the
contents of the symbol vector. (For more information about creating and
interpreting an SIF, see DECmigrate for Open VMS AXP Systems Translating
Images.) The following example is the SIF created by VEST for the shareable
image MYMATH.EXE. Note that the entries start at the second position in
the symbol vector (offset 10 hexadecimal):

! .SIF Generated by VEST
! Image 11 MYMATH 11

,
11 Vl.0 11

MYDIV
MYSUB 0
MYADD
MYMUL

(Vl.0) on

00000018 +S +G 00000030 00 4e
OOOOOOOc +S +G 00000020 f) 00 4e
00000008 +S +G 00000010 00 4e
00000010 +S +G 00000040 00 4e

0 The entry for the universal symbol MYSUB.

f) The offset of the entry for MYSUB in the translated image's symbol
vector.

2. Determine the symbol vector offsets in the native shareable image.
Use the ANALYZE/IMAGE utility to determine the offsets of the symbols in
the symbol vector in the native shareable image. The following excerpt from
an analysis of the shareable image MYMATH.EXE shows the offset of the
symbol MYSUB:

.
4) Universal Symbol Specification (EGSD$C_SYMG)
data type: DSC$K DTYPE z (0)
symbol flags: - -

(0) EGSY$V WEAK 0
(1) EGSY$V-DEF 1
(2) EGSY$V-UNI 1
(3) EGSY$V-REL 1
(4) EGSY$V-COMM 0
(5) EGSY$V-VECEP 0
(6) EGSY$V-NORM 1

psect: O -
value: 16 (%X'00000020')
symbol vector entry (procedure)
%X'00000000 00010000'
%X'00000000 00000050'

symbol: 11 MYSUB 11

3. Edit the offsets in the SIF, if necessary. Use a text editor to change
the offsets listed in the SIF if they do not match the offsets in the native
shareable image. Remember that the first entry in the symbol vector is
reserved for use by the VEST utility.

11-7

Ensuring Interoperability Between Native and Translated Images
11.3 Creating a Native Image That Can Be Called by a Translated Image

4. Retranslate the VAX shareable image, including the SIF in the
translation operation. In this translation operation, VEST creates the
symbol vector in the translated image using the offsets specified in the SIF.
VEST looks for the SIF in the current device and directory. (See DECmigrate
for Open VMS AXP Systems Translating Images for more information about
using VEST.)

11.3.2 Creating Stub Images

11-8

In some cases, it is not possible to completely replace a VAX shareable image
with an Alpha shareable image. For example, there may be functions in the
VAX shareable image that are specific to the VAX architecture. In this situation,
it may be necessary to build both a translated image and a native image that
together provide the functionality of the original VAX shareable image. In other
cases, there may be a need to define a relationship between a translated VAX
shareable image and a new Alpha shareable image. In both situations, the
translated VAX image must be a jacket image.

When building a jacket image, create a stub version of the new Alpha image on a
VAX system. Then create a modified VAX shareable image that depends on it and
translate it, specifying the /JACK.ET=shrimg qualifier, where shrimg is the name
of the new Alpha shareable image. Note that a throwaway translation of the stub
image must be performed in advance so that there is an IIF that describes it. For
complete information about creating stub images, see DECmigrate for Open VMS
AXP Systems Translating Images.

. Part Ill
Layered Products

OpenVMS Alpha Compilers

This appendix provides information about the features that are specific to
the native Open VMS Alpha compilers. In addition, it lists the features of the
Open VMS VAX compilers that are not supported by or that have changed
behavior in their Open VMS Alpha counterparts.

The following compilers are covered in this appendix:

• DEC Ada (Section 12.1)

• DEC C (Section 12.2)

• DEC COBOL (Section 12.3)

• DEC Fortran and Digital Fortran (Alpha systems only) (Section 12.4)

• DEC Pascal (Section 12.5)

Compiler differences can exist for two reasons: differences between earlier and
current versions of compilers running on Open VMS VAX and differences between
the DEC versions running on the VAX and Alpha computers. The Open VMS
Alpha compilers are intended to be compatible with their Open VMS VAX
counterparts. They include several qualifiers that contribute to compatibility, as
described in the following sections.

The languages conform to language standards and include support for most
Open VMS VAX language extensions. The compilers produce output files with the
same default file types as they do on Open VMS VAX systems, such as .OBJ for
an object module.

Note, however, that some features supported by the compilers on Open VMS VAX
systems may not be available on Open VMS Alpha systems.

For more information about the compiler differences for each language, refer to
its documentation, especially the user's guides and the release notes.

12.1 Compatibility of DEC Ada Between Alpha Systems and VAX
Systems

DEC Ada includes nearly all the standard and extended Ada language features
included in VAX Ada. These features are documented in the following manuals:

• DEC Ada Language Reference Manual

• Developing Ada Programs on Open VMS Systems

• DEC Ada Run-Time Reference Manual for Open VMS Systems

12-1

OpenVMS Alpha Compilers
12.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems

However, owing to differences in the platform hardware, some features are not
supported or are implemented differently on VAX systems than on Alpha systems.
To aid in porting programs from one system to another, the following sections
highlight these differences.

~~~~~~~~~~~~- Note ~~~~~~~~~~~~~ 

Not all of these features may be implemented on all systems for each 
release. See the DEC Ada release notes for more information. 

12.1.1 Differences in Data Representation and Alignment 
In general, DEC Ada supports the same data types on all platforms. However, 
keep in mind the following differences: 

• H_floating data 

Supported on VAX systems but not supported on Alpha systems. 

• IEEE floating-point formats 

Supported on Alpha systems but not supported on VAX systems. 

• Natural alignment 

On Alpha systems, DEC Ada aligns record and array components on natural 
boundaries by default. On VAX systems, DEC Ada aligns record and array 
components on byte boundaries. Note that you can specify the alignment with 
the pragma COMPONENT_ALIGNMENT. The record representation clause 
maximum alignment is 29 on both VAX and Alpha systems. 

12.1.2 Tasking Differences 
Task priorities and scheduling and task control block size are architecture 
specific. S~e the release notes for specifics. 

12.1.3 Differences in Language Pragmas 

12-2 

Note the following differences in language pragmas: 

• pragma COMPONENT_ALIGNMENT 

On Alpha systems, COMPONENT_SIZE is the default choice. On VAX 
systems, STORAGE_UNIT is the default. 

• pragma FLOAT_REPRESENTATION 

On Alpha systems, this pragma supports two choices, IEEE_FLOAT and 
VAX_FLOAT. On VAX systems, this pragma supports the VAX_FLOAT choice. 

• pragma LONG_FLOAT 

On Alpha systems, the LONG_FLOAT pragma is supported when the value of 
the FLOAT_REPRESENTATION pragma is VAX_FLOAT. 

• pragma SHARED 

There are type restrictions that are different between the systems. See 
the DEC Ada Run-Time Reference Manual for Open VMS Systems for more 
information. 

• pragma MAIN_STORAGE 

Not supported on Alpha systems. 



OpenVMS Alpha Compilers 
12.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems 

• pragma SHARE_GENERIC 

Not supported on Alpha systems. 

• pragma TIME_SLICE 

There are some implementation differences between the support of this 
pragma on VAX systems and on Alpha systems. See the DEC Ada Run-Time 
Reference Manual for Open VMS Systems for more information. 

12.1.4 Differences in the SYSTEM Package 
Note the following changes to the system package: 

• SYSTEM.IEEE_SINGLE...:.FLOAT and 
SYSTEM.IEEE_DOUBLE_FLOAT 

Supported on Alpha systems but not on VAX systems. 

• SYSTEM.H_FLOAT 

Supported on VAX systems but not on Alpha systems. 

• SYSTEM.MAX_DIGITS 

The value is 33 on VAX systems and 15 on Alpha systems: 

• SYSTEM.NAME 

Specific numerals are supported for each system on which DEC Ada is 
available. 

• SYSTEM.SYSTEM_NAME 

The name OpenVMS_Alpha is supported on Alpha systems. 

• SYSTEM.TICK 

The value is 10.o-3 (1 ms) on Alpha systems. The value on VAX systems is 
10.0-2 (10 ms). 

In addition, the following types and subprograms supported on VAX systems are 
not supported on Alpha systems: 

SYSTEM.READ_REGISTER 
SYSTEM.WRITE_REGISTER 
SYSTEM.MFPR 
SYSTEM.MTPR 
SYSTEM.CLEAR_INTERLOCKED 
SYSTEM.SET _INTERLOCKED 
SYSTEM.ALIGNED_ WORD 
SYSTEM.ADD_INTERLOCKED 
SYSTEM:INSQ_STATUS 
SYSTEM.REMQ_STATUS 
SYSTEM.INSQHI 
SYSTEM.REMQHI 
SYSTEM.INSQTI 
SYSTEM.REMQTI 

12-3 



OpenVMS Alpha Compilers 
12.1 Compatibility of DEC Ada Between Alpha Systems and VAX Systems 

12.1.5 Differences Between Other Language Packages 
Note the following differences in these other packages: 

• package CALENDAR 

Implementation differences between systems; see the DEC Ada Language 
Reference Manual for more information. 

• package MATH_LIB 

Implementation differences between systems; see individual package 
specifications. 

• package SYSTEM_RUNTIME_TUNING 

This package is supported on VAX systems and, with some restrictions, on 
Alpha systems. See the DEC Ada Run-Time Reference Manual for Open VMS 
Systems or the release notes for more information. 

12.1.6 Changes to Predefined Instantiations 
The following two predefined instantiations supported on VAX systems are not 
supported on Alpha systems: 

• LONG_LONG_FLOAT..:.TEXT_IO 

• LONG_LONG_FLOAT_MATH_LIB 

12.2 Compatibility of DEC C for OpenVMS Alpha Systems with 
VAXC 

The DEC C compiler defines a core, ANSI-conforming C language that can be 
used on all strategic Digital platforms, including the Alpha architecture. For 
comprehensive information, see the DEC C documentation. 

12.2.1 Language Modes 
DEC C for Open VMS Alpha systems conforms to the ANSI C standard, with 
optional support for VAX C and Common C (pee) extensions. You invoke these 
optional extensions, called modes, using the /STANDARD qualifier. Table 12-1 
describes these modes and the command-qualifier syntax needed to invoke them. 

Table 12-1 Modes of Operation of the DEC C for OpenVMS Alpha Systems 

Mode Command Qualifier 

Default /STANDARD=RELAXED_ANSI89 

ANSI C /STANDARD=ANSI89 

VAX C /STANDARD=VAXC 

Common C (pee) /STANDARD=COMMON 

12-4 

Description 

Follows ANSI C standard but also allows 
additional Digital keywords and predefined 
macros that do not begin with an underscore. 

Accepts only strictly conforming ANSI C 
language. 

Allows use of VAX C extensions to the ANSI C 
standard, even where the extensions may be 
incompatible with the ANSI C standard. 

Allows use of Common C extensions to the 
ANSI C standard, even where the extensions 
may be incompatible with the ANSI C standard. 



OpenVMS Alpha Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

12.2.2 DEC C for OpenVMS Alpha Systems Data-Type Mappings 
The DEC C for Open VMS Alpha systems compiler supports most of the same 
data-type mappings as. its VAX counterpart. Table 12-2 lists the sizes of the C 
arithmetic data types on the Alpha architecture. 

Table 12-2 Arithmetic Data-Type Sizes in DEC C for OpenVMS Alpha Compiler 

VAX C DEC C 
C Data Type Mapping Mapping 

pointer 32 32 or 641 

long 32 32 

int 32 32 

short 16 16 

char 8 8 

float 32 322 

double 642 1282 

long double 642 642 

__ int16 NA 16 

__ int32 NA 32 

__ int64 NA 64 

1 You select the size by using a pragma in your source file or by using a command line qualifier. For 
more information, see the DEC C User's Guide for Open VMS Systems. 
2You select how this maps to an Alpha .D, F, G, S, T,or X floating point by using a command line 
qualifier. See Section 12.2.2.1. 

To aid portability, the DEC C for Open VMS Alpha compiler provides a header 
file that defines typedefs for the signed and unsigned variants of these data 
types. For example, if you have a data type that is a 64-bit integer, use the int64 
typedef. 

12.2.2.1 Specifying Floating-Point Mapping 
The mapping between the C floating-point data types and the Alpha floating-· 
point data types is controlled by command line qualifiers. The Alpha architecture 
supports the following floating-point types: 

• F _floating (same as on Open VMS VAX systems) 

• D_floating (53-bit precision) 

• G_floating (same as on Open VMS VAX systems) 

• S_floating (IEEE single precision-32 bits) 

• T_floating (IEEE double precision-64 bits) 

• X_floating (IEEE extended double precision-128 bits) 

By using a command line qualifier, you control which of the Alpha floating-point 
data types the standard C data types float and double map to. For example, if 
you specify the /FLOAT=G_FLOAT qualifier, DEC C maps the float data type to 
the Alpha F _floating data type and maps the double data type to the Alpha G_ 
floating data type. Table 12-3 describes the complete list of floating-point options. 
Note that you can specify only one floating-point qualifier in a command line. 

12-5 



OpenVMS Alpha Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

Table 12-3 DEC C Floating-Point Mappings 

Compiler Option Float Double Long Double 

/FLOAT=F _GLOAT F _floating format G_floating 
format 

/FLOAT=D_FLOAT F _floating format D-53 floating 
point 

/FLOAT=IEEE_FLOAT S_floating format T_floating 
format 

IL_DOUBLE_SIZE=128 X_floating format 
(default) 

12.2.3 Built-in Functions That Access Alpha Instructions 
DEC C includes features, listed in Table 12-4, that are specific to Alpha systems. 
The following sections describe these features. 

Table 12-4 DEC C Compiler Features Specific to Alpha Systems 

Feature Description 

Access to some Alpha instructions Available as built-ins 

Access to some VAX instruction equivalents 

Atomicity built-ins 

Available through Alpha PALcode 

Ensures the atomicity of AND, OR, and ADD 
operations 

12.2.3.1 Accessing Alpha Instructions 
DEC C supports certain Alpha instructions to provide functions that cannot 
be expressed in the C language, especially for system-level programming; for 
example: 

• TRAPB-Drain the instruction pipeline 

• MB-Memory barrier 

12.2.3.2 Accessing Alpha Privileged Architecture Library (PALcode) Instructions 
The Alpha architecture implements certain VAX instructions as privileged 
architecture library (PALcode) instructions. DEC Callows access to the following 
PALcode instructions: 

• INSQUEx-Insert entry into longword or quadword queue 

• INSQxI-Insert entry in queue, interlocked 

• REMQUEx-Remove entry from longword or quadword queue 

• REMQxI-Remove from queue, interlocked 

12.2.3.3 Ensuring the Atomicity of Combined Operations 

12-6 

In the VAX architecture, certain combined operations, such as incrementing 
a variable, are guaranteed to be atomic (that is, they complete without 
interruption). To provide an equivalent function on Alpha systems, DEC C 
provides built-ins that perform the operations with the guarantee of atomicity. 
For example, several of these atomic built-ins are listed in Table 12-5. For a 
complete description of these built ins, see the DEC C language documentation. 



OpenVMS Alpha Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

Table 12-5 Atomicity Built-Ins 

Atomicity Built-In 

__ ADD_ATOMIC_LONG(ptr, expr, retry_count) 
__ ADD_ATOMIC_QUAD(ptr, expr, retry_count) 

__ AND_ATOMIC_LONG(ptr, expr, retry_count) 
__ AND_ATOMIC_QUAD(ptr, expr, retry_count) 

__ OR_ATOMIC_LONG(ptr, expr, retry_count) 
__ OR_ATOMIC_QUAD(ptr, expr, retry_count) 

Description 

Add the expression expr to the data segment 
pointed to by ptr. The optional retry _count 
parameter specifies the number of times the 
operation should be attempted (the default is 
forever). 

Fetch the data segment pointed to by ptr, 
perform a logical AND operation with the 
expression expr, and store the resulting 
value. The retry _count parameter specifies 
the number of times the operation should be 
attempted (the default is forever). 

Fetch the data segment pointed to by ptr, 
perform a logical OR operation with the 
expression expr, and store the resulting 
value. The retry _count parameter specifies 
the number of times the operation should be 
attempted (the default is forever). 

These built-ins guarantee only that the operation completes without interruption. 
If you perform an atomic operation on a variable that might be subject to 
concurrent write access (for example, from an AST and mainline code or from 
two concurrent processes), you must still protect it with the volatile attribute. 

In addition, DEC C for Open VMS Alpha systems supports the following 
equivalents to the VAX interlocked instructions: 

• TESTBITSSI 

• TESTBITCCI 

These built-ins use the retry_count parameter, as do the atomicity built-ins, to 
avoid getting stuck in an endless loop. 

12.2.4 Differences Between the VAX C and DEC C for OpenVMS Alpha 
Systems Compilers 

The following features, present in VAX C, have different default behavior in DEC 
C for Open VMS Alpha systems. Note, however, that for some of these features, 
you can retain the VAX C behavior by using command line qualifiers and pragma 
instructions. 

12.2.4.1 Controlling Data Alignment 
Because accesses to data that is not aligned on natural boundaries cause severe 
performance degradation on Alpha systems, DEC C for Open VMS Alpha systems 
aligns data on natural boundaries by default. To override this feature and retain 
VAX (packed) alignment, specify the nomember_alignment pragma in your source 
file or use the /NOMEMBER_ALIGNMENT command line qualifier. 

12.2.4.2 Accessing Argument Lists 
Taking the address of an argument, such as &argvl, causes DEC C for Open VMS 
Alpha systems to generate prologue code for the function that moves all the 
arguments onto the stack (called homing arguments), causing a performance 
degradation. Also, argument list "walking'' can be accomplished only by using the 
functions in the <varargs. h> or <stdargs. h> include files. 

12-7 



OpenVMS Alph~ Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

12.2.4.3 Synchronizing Exceptions 
Because the Alpha architecture does not provide for immediate reporting of 
arithmetic exceptions, do not expect an assignment to a static variable (even with 
the volatile attribute) to occur before a subsequent exception is signaled. 

12.2.4.4 Dynamic Condition Handlers 
Although DEC C and DEC C++ for Open VMS Alpha systems treat 
LIB$ESTABLISH as a built-in function, using LIB$ESTABLISH is not 
recommended on Open VMS VAX or Open VMS Alpha systems. C and C++ 
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH 
(VAXC$ESTABLISH is a built-in function on DEC C and DEC C++ for Open VMS 
Alpha systems). 

12.2.5 SYS$STARLET _C.TLB: Functionally Equivalent to STARLETSD.TLB 
Open VMS Alpha Version 1.0 included a new file, SYS$STARLET_C.TLB, 

12-8 

that contained all the .H files that provide STARLET functionality 
equivalent to STARLETSD.TLB. The file SYS$STARLET_C.TLB, together 
with DECC$RTLDEF.TLB now shipping with the DEC C Compiler, 
replaces VAXCDEF.TLB that previously shipped with the VAX C Compiler. 
DECC$RTLDEF. TLB contains all the .H files that support the compiler and RTL, 
such as STDIO.H. 

The following differences may require source changes: 

• RMS structures 

Previously, the RMS structures FAB, NAM, RAB, XABALL, and so forth, 
were defined in the appropriate .H files as "struct RAB { ... ", for example. 
The .H files supplied in Open VMS Alpha Version 1.0 defined them as "struct 
rabdef { ... ". To compensate for this difference, lines of the form "#define RAB 
rabdef' were added. However, there is one situation where a source change is 
required because of this change. If you have a private structure that contains 
a pointer to one of these structures and your private structure is defined 
(but not used) before the RMS structure has been defined, you will receive 
compile-time errors similar to the following: 

%CC-E-PASNOTMEM, In this statement, "rab$b_rac" is not a member of "rah". 

This error can be avoided by reordering your source file so that the RMS 
structure is defined before the private structure. Typically, this involves 
moving around "#include" statements. 

• LIB (privileged interface) structures 

Historically, three structures from LIB (NFBDEF.H, FATDEF.H, and 
FCHDEF.H) have been made available as .H files. These files were 
shipped as .H files in Open VMS Alpha Version 1.0 and 1.5 (not in the 
new SYS$STARLET_C.TLB). In Open VMS Alpha 7.0, the file SYS$LIB_ 
C.TLB, containing all LIB structures and definitions, has been added. These 
three .H files are now part of that . TLB and are no longer shipped separately. 
Source changes may be required, as no attempt has been made to preserve 
any existing anomalies in these files. The structures and definitions from LIB 
are for privileged interfaces only and are therefore subject to change. 

• Use of "variant_struct" and "variant_union" 

In the new .H files, "variant_struct" and "variant_union" are always used, 
whereas previously some structures used "struct" and "union". Therefore, 



OpenVMS Alpha Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

the intermediate structure names cannot be specified when referencing fields 
within data structures. 

For example, the following statement: 

AlignFaultitem.PC[O] = DataPtr->afr$r_pc_data_overlay.afr$q_fault_pc[O]; 

becomes: 

AlignFaultitem.PC[O] = DataPtr->afr$q_fault_pc[O]; 

• Member alignment 

Each of the .H files in SYS$STARLET_C.TLB saves and restores the state of 
"#pragma member_alignment". 

• Conventions 

The .H files in SYS$STARLET_C.TLB adhere to some conventions that 
were only partly followed in VAXCDEF.TLB. All constants (#defines) have 
uppercase names. All identifiers (routines, structure members, and so forth) 
have lowercase names. Where there is a difference from VAXCDEF.TLB, the 
old symbol name is also included for compatibility, but users are encouraged 
to follow the new conventions. 

• Use of Librarian utility to access the .H files 

During installation of Open VMS Alpha, the contents of SYS$STARLET_ 
C.TLB are not extracted into the separate .H files. The DEC C Compiler 
accesses these files from within SYS$STARLET_C.TLB, regardless of the 
format of the #include statement. If you want to inspect an individual .H file, 
you can use the Librarian utility, as in the following example: 

$ LIBRARY /EXTRACT=AFRDEF /OUTPUT=AFRDEF.H SYS$LIBRARY:SYS$STARLET_C.TLB 

• Additional .H files included in SYS$STARLET_C.TLB 

In addition to the .H files derived from STARLET sources, SYS$STARLET_ 
C. TLB includes .H files that provide support for DECthreads, such as CMA.H. 

12.2.6 VAX C Features Not Supported by /STANDARD=VAXC Mode 
While most programming practices supported by VAX C are supported by DEC C 
for Open VMS Alpha systems in /STANDARD=VAXC mode, certain programming 
practices that conflict with the ANSI standard are not supported. The following 
list highlights some of these differences; see the DEC C compiler documentation 
for more information. 

• The inclusion of text after an #endif statement, as in the following example: 

#ifdef a 

#endif a 

Delete the text or surround it with comment delimiters, as in the following: 

#endif /* a */ 

• Modification of string constants, while always a questionable programming 
practice, was accepted by VAX C. DEC C for Open VMS Alpha systems places 
all string constants in a read-only program section so that they cannot be 
modified. 

12-9 



OpenVMS Alpha Compilers 
12.2 Compatibility of DEC C for OpenVMS Alpha Systems with VAX C 

• Structure-initialization values must be enclosed within braces ( {}): 

array[SIZE] = NULL; /* accepted by VAX c */ 
array[SIZE] = {NULL}; /* required by DEC c */ 

• Redefinitions of symbols are now flagged with a warning-level diagnostic 
message: 

#define x a 
#define x b /* generates a warning message in DEC c */ 

• Use of text libraries is no longer recommended. While supported by VAX C, 
text libraries are not portable. 

#include stdio 

Instead, use the following syntax: 

#include <stdio.h> 

• You must have one, and only one, declaration of an external variable. This is 
the definition of this variable. Other modules can use it by declaring it with 
the extern semantics. 

• If you are recompiling VAX C code, either an entire application or one or 
more modules, you will want to pay particular attention to any external 
symbols that it contains. Unlike the VAX C compiler which supports one 
external symbol model, the DEC C compiler supports four models. The 
default external symbol produced by the DEC C compiler is not the same as 
the single VAX C external symbol. 

Furthermore, when you link such code, due to changes in the linker, if you 
did not specify the /SHARE qualifier when you recompiled the C code module, 
you will need to specify a related linker qualifier. 

12.3 Compatibility of DEC COBOL with VAX COBOL 

12-10 

The DEC COBOL Version 1.0 compiler, running on an Open VMS Alpha system, 
is based on and is highly compatible with the VAX COBOL Version 4.4 compiler 
running on an Open VMS VAX system. The DEC COBOL compiler supports 
many, but not all, VAX COBOL features. The following list summarizes the major 
differences betweeen the DEC COBOL and VAX COBOL compilers: 

• A new alignment qualifier that selects Alpha data alignment to optimize 
performance or VAX COBOL data alignment to ensure compatibility with 
VAX COBOL record alignment 

• A new qualifier that provides both IEEE and VAX floating-point data types 
for single- and double-precision data items 

• A new qualifier to generate code that allows native images to call translated 
images and translated images to call native images 

• A new qualifier to recognize additional COBOL reserved words defined by the 
XI Open Portability Guide 

• A new screen manager for ACCEPT/DISPLAY extensions 

• Support for only the most important features of the VAX COBOL 
/STANDARD= V3 qualifier option 

• No support for the VAX DBMS (Database Management System) Data 
Manipulation Language (DML) 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

• No support for intrinsic functions, which are included in VAX COBOL Version 
5.0 and higher 

• No support for multibyte characters and other Japanese-language features, 
which are included in Version 5.0 and higher of VAX COBOL (Japanese 
version) 

• Support for file status values that are compatible with VAX COBOL Version 
5.1, which differ from those of VAX COBOL Version 5.0 and previous versions 

The information in this section is intended to help you write COBOL applications 
that are compatible with both VAX COBOL and DEC COBOL as well as to 
help you convert your existing COBOL applications from VAX COBOL to DEC 
COBOL. 

This section describes similarities and differences between VAX COBOL Version 
4.4 and DEC COBOL Version 1.0. Differences between DEC COBOL and later 
versions of VAX COBOL are noted when warranted. 

For the latest information about product features and future release 
enhancements of the DEC COBOL compiler, refer to the most recent version 
of the DEC COBOL release notes. For information about VAX COBOL features, 
refer to the VAX COBOL release notes and other documentation. You can obtain 
an online version of the release notes for your installed COBOL compiler by 
entering the HELP COBOL RELEASE_NOTES command at the system prompt. 

For reference information about DEC COBOL language features, see the DEC 
COBOL Reference Manual. For reference information about VAX COBOL 
language features, see the VAX COBOL Reference Manual. For information about 
DEC COBOL command line qualifiers, invoke the online help system for COBOL 
at the op'erating system prompt. For information about VAX COBOL command 
line qualifiers, see the VAX COBOL User Ma,nual. 

12.3.1 Command Line Qualifiers 
Tables 12-6, 12-7, and 12-8 compare and contrast the DEC COBOL and 
VAX COBOL command line qualifiers. 

12.3.1.1 Qualifiers Shared by DEC COBOL and VAX COBOL 
Table 12-6 lists the command line qualifiers shared by DEC COBOL and 
VAX COBOL. For more information about the command line qualifiers available 
in DEC COBOL, refer to Table 12-7 or invoke the DEC COBOL online help 
system. For more information about the VAX COBOL command line qualifiers, 
refer to Table 12-8 and the VAX COBOL User Manual. 

Table 12-6 Qualifiers and Options Shared by DEC COBOL and VAX COBOL 

Qualifier 

/ANALYSIS_DATA 

/ANSI_FORMAT 

/AUDIT 

/CHECK 

Comments 

Equivalent. 

Equivalent. 

Equivalent. 

A new option (ICHECK=[NO]DECIMAL) is 
available for DEC COBOL. (See Table 12-7 and 
Section 12.3.2.2.) 

(continued on next page) 

12-11 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

Table 12-6 (Cont.) Qualifiers and Options Shared by DEC COBOL and 
VAX COBOL 

Qualifier 

/CONDITIONALS 

/COPY_LIST 

/CROSS_REFERENCE 

/DEBUG 

/DEPENDENCY_DATA 

/DIAGNOSTICS 

/FIPS 

/FLAGG ER 

/LIST 

/MACHINE_ CODE 

IMAP 
/OBJECT 

/SEQUENCE_ CHECK 

/STANDARD 

/TRUNCATE 

/WARNINGS 

Comments 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Minor differences in functionality exist. (Invoke the 
DEC COBOL online help system for information about 
the behavior of the /FIPS=7 4 qualifier option.) 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Equivalent. 

Some VAX COBOL options are available in DEC 
COBOL. (See Section 12.3.2. 7 for information about 
the behavior of the /STANDARD=V3 qualifier option.) 

Equivalent. 

Minor differences in functionality exist. (See 
Section 12.3.2.7.2 and invoke the DEC COBOL online 
help system for information about the behavior of the 
/WARNINGS qualifier.) 

12.3.1.2 DEC COBOL Qualifiers Not Available in VAX COBOL 

12-12 

Table 12-7 lists the command line qualifiers and options that are specific to DEC 
COBOL. These qualifiers and options are not available in VAX COBOL. For more 
information about the command line qualifiers available in DEC COBOL, invoke 
the DEC COBOL online help system. 

Table 12-7 DEC COBOL Qualifiers Not Available in VAX COBOL 

Qualifier 

/ALIGNMENT=([NO]PADDING) 

/CHECK=[NO]DECIMAL 

/CONVERT=LEADING_BLANKS 

Comments 

Aligns and pads data fields to conform with the 
Digital Calling Standards for Open VMS Alpha 
and Digital UNIX .. (See Section 12.3.2.1.) 

Validates numeric digits when using display 
numeric items in a numeric context. (See 
Section 12.3.2.2.) 

Changes leading blanks to zeros in numeric 
display items. (See Section 12.3.2.3.) 

(continued on next page) 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

Table 12-7 (Cont.) DEC COBOL Qualifiers Not Available in VAX COBOL 

Qualifier 

/FLOAT=[D_FLOAT] ,[IEEE_FLOAT] 

/OPTIMIZE 

/RESERVED_ WORDS=([NO]XOPEN, 
[NO]FOREIGN_EXTENSIONS) 

tr IE 

Comments 

Specifies the floating-point data format to be used 
in memory for single- and double-precision data 
items. (See Section 12.3.2.4.) 

Controls whether the compiler optimizes the 
compiled program to generate more efficient code. 
(See Section 12.3.2.5.) 

Controls whether or not the compiler recognizes 
X/Open COBOL words as reserved words. (See 
Section 12.3.2.6.) 

Generates code that allows native images to call 
translated images and translated images to call 
native images. (See Section 12.3.2.8.) 

12.3.1.3 VAX COBOL Qualifiers Not Available in DEC COBOL 
Table 12-8 lists the command line qualifiers and options that are specific to 
VAX COBOL. These qualifiers and options are not available in DEC COBOL. For 
detailed information about the VAX COBOL command line qualifiers, refer to the 
VAX COBOL User Manual. 

Table 12-8 VAX COBOL Qualifiers Not Available in DEC COBOL 

Qualifier 

/DESIGN 

/INSTRUCTION_SET[ =option] 

/STANDARD=[NO]OPENVMS_ 
Alpha 

/STANDARD=[NO]PDPll 

/WARNINGS=[NO]STANDARD 

12.3.2 Behavior Differences 

Comments 

Controls whether the compiler processes the input 
file as a detailed design. 

Improves run-time performance on single-chip VAX 
processors, using different portions of the VAX 
instruction set. 

Produces informational messages about language 
features that are not supported by the DEC 
COBOL compiler. (See Section 12.3.2.9 and the 
VAX COBOL Version 5.1 release notes.) 

Produces informational messages about language 
features that are not supported by the COBOL--81 
compiler. 

Produces informational messages about language 
features that are Digital extensions. The DEC 
COBOL equivalent is /STANDARD=[NO]SYNTAX. 
(See Section 12.3.2.7.2.) 

This section describes differences in behavior between VAX COBOL Version 
4.4 and DEC COBOL Version 1.0, including new DEC COBOL command line 
qualifiers and options, as well as behavior that is specific to DEC COBOL Version 
1.0. 

12-13 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

12.3.2.1 Specifying Alignment for Numeric Data Items with the DEC COBOL /ALIGNMENT 

12-14 

Qualifier and Alignment Directives 
You can use the /ALIGNMENT qualifier and alignment directives to specify the 
alignment of binary and decimal data items within record structures. Refer to the 
DEC COBOL Reference Manual for specific information about alignment. 

Proper data alignment is needed to optimize your COBOL applications on Alpha 
systems. Manipulating binary data is significantly faster if the data lies within 
natural boundaries. Manipulating decimal data is significantly faster if you align 
the data along the preferred boundaries for the system you are using. 

The primary goal of alignment specification is optimum performance. In addition, 
the /ALIGNMENT qualifier and alignment directives meet the following goals: 

• Ease of use and conversion-You need to make only a minimal number of 
changes to your existing source files. In some cases, all you need to do is add 
the /ALIGNMENT qualifier when you invoke the DEC COBOL compiler. 

• VAX COBOL source compatibility-You can compile the same source files 
with VAX COBOL and DEC COBOL. DEC COBOL directives are structured 
comments that the VAX COBOL compiler ignores. 

• Flexibility-You can specify VAX byte alignment or natural alignment on a 
record-by-record basis. For example, you can specify byte alignment for files 
shared by both compilers and natural alignment for DEC COBOL files and 
records. 

The /ALIGNMENT qualifier, alignment directives, and SYNCHRONIZED clause 
affect the alignment of items within a group (group elements) as shown in the 
following figure: 

/ALIGNMENT qualifier 

Alignment directive 
1 · 

I 
Align binary and decimal 
group.elements 

SYNCHRONIZED clause 

Align binary 
group elements 

As with the VAX COBOL compiler, you can use the SYNCHRONIZED clause 
to align binary components of records on natural boundaries. Thus, for the 
DEC COBOL compiler operating on binary data, the SYNCHRONIZED clause, 
/ALIGNMENT qualifier, and alignment directives can exhibit equivalent behavior. 

12.3.2.1.1 Using the /ALIGNMENT Qualifier The /ALIGNMENT qualifier allows 
you to specify natural alignment for binary data and preferred alignment for 
numeric decimal data in your program. 

Binary and decimal alignment are separate options (a useful feature for 
programs that alias decimal and string data, but that can still benefit 
from the alignment of binary data). For example, when you specify 
/ALIGNMENT=(BINARY,NODECIMAL) (or /ALIGNMENT), the DEC COBOL 
compiler aligns binary data along natural boundaries and decimal data along 
byte boundaries. Use /ALIGNMENT to ensure that your data is aligned for 
optimum performance on Open VMS Alpha systems. 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

Use /NOALIGNMENT, the default, to specify byte data alignment (including 
programs that align binary data items with the SYNCHRONIZED clause). Also 
use /NOALIGNMENT for portability and compatibility with data files produced 
on an Open VMS VAX system. 

12.3.2.1.2 Using Alignment Directives The alignment properties specified by 
the /ALIGNMENT qualifier remain in effect throughout a given compilation, 
except as modified by alignment directives. Directives are structured comments 
that the DEC COBOL compiler interprets. (DEC COBOL directives are ignored 
by the VAX COBOL compiler.) All directives begin with "*DC", where the "*" 
signals the beginning of the structured comment. 

You can use the following alignment directives anywhere within your COBOL 
source program to change the current set of alignment porperties: 

• *DC SET ALIGNMENT[=(option, ... )] (where option is [NO]BINARY 
or [NO]DECIMAL)-Specifies a new alignment. Specifying 
*DC SET ALIGNMENT is equivalent to specifying *DC SET 
ALIGNMENT=(BINARY,NODECIMAL). 

• *DC END-SET ALIGNMENT-Restores the alignment to the previous setting. 
(Use of this alignment directive is optional.) 

• *DC SET NOALIGNMENT-Specifies byte alignment. 

You can nest alignment directives within your program to turn alignment on or 
off for specific numeric data items. Although the *DC END-SET ALIGNMENT 
directive is optional, you must use it to indicate the end of each nested alignment 
directive. 

12.3.2.2 Validating Numeric Data with the DEC COBOL /CHECK=NODECIMAL Qualifier Option 
The /CHECK=[NO]DECIMAL qualifier option validates numeric characters when 
you use numeric display items in a numeric context. Use /CHECK=DECIMAL 
when you want the system to generate an error for any invalid, or nonnumeric, 
characters. 

This feature is primarily intended to help validate data produced by other 
systems that might use a different internal representation for numeric data. 
A secondary consideration is that this qualifier can also be used to detect logic 
errors in programs that result in text data being moved to numeric data items. 
The disadvantage of this feature is that extra instructions are needed to perform 
the checks, resulting in slightly larger images and slightly longer execution times. 

Use /CHECK=NODECIMAL, the default, when you do not want the system to 
check for numeric characters in numeric display items. 

12.3.2.3 Converting Leading Blanks to Zeros with the DEC COBOL 
/CONVERT=LEADING_BLANKS Qualifier Option 

The /CONVERT=LEADING_BLANKS qualifier and option generates code to 
check for and change leading blanks to zeros in numeric display items. 

This feature is primarily intended to help users convert existing COBOL 
programs to run on an Open VMS Alpha system by changing leading blanks 

· in the data to zeros at run time. The disadvantage of this feature is that extra 
instructions are needed to perform the data conversions. This results in slightly 
larger images and slightly longer execution times. 

Use /NOCONVERT=LEADING_BLANKS, the default, when you do not want the 
compiler to change leading blanks to zeros in numeric display items. 

12-15 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

12.3.2.4 Specifying a Floating-Point Data Format with the DEC COBOL /FLOAT Qualifier 
The /FLOAT=[option] qualifier specifies the floating-point data format to be used 
in memory for single- and double-precision data items. Specify either /FLOAT=D_ 
FLOAT or /FLOAT=IEEE_FLOAT within a single program. 

Because the Alpha architecture is IEEE-compliant, you can run existing COBOL 
programs containing IEEE floating-point data formats on DEC COBOL. 

Use the /FLOAT=D_FLOAT qualifier option, the default, at compile time to 
specify the VAX F _floating memory format for single-precision (COMP-1) data 
and the VAX D_floating memory format for double-precision (COMP-2) data. 

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, 
defines four floating-point formats in two groups, basic and extended, each group 
having two widths, single and double. The Alpha architecture supports the basic 
single and double formats. 

Use the /FLOAT=IEEE_FLOAT qualifier option at compile time to specify the 
IEEE S_floating memory format for single-precision (COMP-1) data and the IEEE 
T_floating memory format for double-precision (COMP-2) data. 

Refer to the Alpha Architecture Handbook for more information about using 
floating-point data types with the Alpha architecture. 

12.3.2.5 Optimizing Your Code with the DEC COBOL /OPTIMIZE Qualifier 
The /OPTIMIZE qualifier controls whether the compiler optimizes the compiled 
program to generate more efficient code. 

Use /OPTIMIZE, the default, when you want your program to run faster. Note 
that using this qualifier may cause the compiler to produce larger object modules 
and result in longer compile times. 

Use /NOOPTIMIZE for a debugging session to ensure that the machine code 
occurs in the same order as the program lines in your source program. 

12.3.2.6 Checking for Special Reserved Words with the DEC COBOL /RESERVED_ WORDS 

12-16 

Qualifier 
The /RESERVED_ WORDS qualifier controls whether or not the compiler 
recognizes certain COBOL words as reserved words. 

Use /RESERVED_ WORDS=NOXOPEN if your program uses one or more of the 
COBOL words defined by the XI Open Portability Guide as an identifier. 

Use /RESERVED_WORDS=XOPEN, the default, if none of the following X/Open 
COBOL words appears in your program: 

AUTO 
BACKGROUND-COLOR 
BELL 
BLINK 
EOL 
EOS 
ERASE 
FOREGROUND-COLOR 
FULL 
HIGHLIGHT 
LOWLIGHT 
REQUIRED 
REVERSE-VIDEO 
SCREEN 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

SECURE 
UNDERLINE 

12.3.2.7 Calling Out Language Feature Extensions to the COBOL ANSI Standard with the DEC 
COBOL /STANDARD Qualifier 

The /STANDARD qualifier controls whether the compiler prints informational 
messages associated with specific language features. To receive these 
messages, specify /STANDARD or /STANDARD=85 (and /WARNINGS=ALL or 
/WARNINGS=INFORMATIONAL) or /STANDARD=SYNTAX. 

Use /STANDARD=85, the default, to instruct the DEC COBOL compiler to 
compile and generate code according to the ANSI 1985 COBOL standard. 

Use /STANDARD=SYNTAX to instruct the DEC COBOL compiler to produce 
informational messages about language features that are Digital extensions to 
the ANSI 1985 COBOL Standard. The default, NOSYNTAX, suppresses these 
messages. 

Use /STANDARD=V3 to instruct the DEC COBOL compiler to compile and 
generate code in the manner of VAX COBOL Version 3.4 in specific instances. 
Section 12.3.2.7.1 describes the /STANDARD=V3 qualifier option in more detail. 

12.3.2.7.1 /STANDARD=V3 Qualifier Option DEC COBOL Version 1.0, as with 
VAX COBOL Version 4.0 and higher versions, is based on the ANSI 1985 COBOL 
standard. As such, DEC COBOL provides full support for the /STANDARD=85 
qualifier option. DEC COBOL also provides support for some features of the 
/STANDARD=V3 qualifier option that were available with VAX COBOL Version 
4.0 and higher. 

VAX COBOL versions prior to Version 4.0 were based on the ANSI 197 4 COBOL 
standard. While most of the enhancements made to VAX COBOL Version 4.0 and 
higher versions are compatible with earlier versions of the VAX COBOL compiler, 
some differences exist, which cause results to vary in some instances. 

To minimize conflicts with existing VAX COBOL programs, VAX COBOL allows 
you to compile programs according to the rules for either VAX COBOL Version 
4.0 and later versions or VAX COBOL Version 3.4. Specifying /STANDARD=V3 
instructs the VAX COBOL compiler to compile and generate code in the manner 
of VAX COBOL Version 3.4 in specific instances, as described in the VAX COBOL 
User Manual. 

When compared with the features available with VAX COBOL Version 4.0 and 
higher, DEC COBOL provides limited support for the /STANDARD= V3 qualifier 
option. When you specify /STANDARD=V3, DEC COBOL behavior is identical 
to VAX COBOL Version 4.0 and higher behavior in the following four specific 
instances: 

• EXIT PROGRAM statement in a main program 

• 1/0 file status codes 

• No valid next record condition 

• Opening nonoptional files in 1/0 and EXTEND !fiOde 

The following four subsections describe this DEC COBOL behavior in more detail. 

12-17 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

12-18 

EXIT PROGRAM Statement 
. If you specify /STANDARD=V3, an EXIT PROGRAM statement is treated as a 
return in both main programs and subprograms. 

Specifying /STANDARD=85 bypasses an EXIT PROGRAM statement in the body 
of a main program and executes the statements following the EXIT PROGRAM 
statement. If the program is a subprogram, the EXIT PROGRAM statement acts 
as a return to the program that called the subprogram. · 

1/0 File Status Codes 
If you specify /STANDARD= V3, you receive the file status codes listed in the 
left-hand column, labeled V3, and your program acts accordingly. 

If you specify /STANDARD=85, you receive the file status codes listed in the 
right-hand column, labeled 85, and your program acts accordingly. 

Table 12-9 explains the I/O file status codes for VAX COBOL Version 3.4 and 
DEC COBOL. 

Table 12-9 1/0 File Status Codes for the /STANDARD Qualifier 

1/0 Error Condition 

READ successful-record shorter than fixed file attribute. 

CLOSE reel/unit attempted on nonreel/unit device. 

READ fails-relative key digits exceed relative key. 

WRITE fails-relative key digits exceed relative key. 

OPEN 1/0 on file that is not mass storage. 

WRITE fails-attempt to write a record of a different size than 
in the file description. 

READ fails-no next logical record (EOF detected). 

READ fails-no next logical record (EOF on OPTIONAL file). 

READ fails-no valid next record (already at EOF). 

READ NEXT or sequential READ-no valid next record pointer. 

READ or START fails-optional input file not present. 

READ successful-record longer than fixed file attribute. 

OPEN on relative or indexed file that is not mass storage. 

REWRITE fails-attempt to rewrite record of different size. 

CLOSE fails-file not currently open. 

DELETE or REWRITE fails-previous 1/0 not successful READ. 

OPEN fails-file previously closed with LOCK. 

OPEN fails-file created with different organization. 

OPEN fails-file created with different prime record key. 

OPEN fails-file created with different alternate record keys. 

1See the subsection No Valid Next Record Condition. 

Status Code 

V3 85 

00 04 

00 07 

00 14 

00 24 

00 37 

00 44 

13 10 

15 10 

16 10 

161 461 

25 23 

30 04 

30 37 

30 44 

93 42 

93 43 

94 38 

94 39 

94 39 

94 39 

(continued on next page) 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

Table 12-9 (Cont.) 1/0 File Status Codes for the /STANDARD Qualifier 

Status Code 

UO Error Condition V3 85 

OPEN fails-file currently open. 94 41 

READ or START fails-file not opened INPUT or 1/0. 94 47 

WRITE fails-file not opened OUTPUT, EXTEND, or 1/0. 94 48 

DELETE or REWRITE fails-file not opened 1/0. 94 49 

OPEN INPUT on a nonoptional file-file not found. 97 35 

No Valid Next Record Condition 
This subsection describes what happens when you compile your program using 
either /STANDARD=V3 or /STANDARD=85 and when all the following conditions 
exist: 

• The no valid next record (NVNR) condition exists. 

• Your program attempts a sequential READ statement. 

• Your program includes an AT END branch associated with the READ 
statement. 

When you use /STANDARD=V3 to compile your program, the following occurs: 

• The file status code variable, if any, for the file is set to 16. 

• The statements associated with the AT END statement are executed. 

• The program continues to execute normally. 

If you use /STANDARD=85 to compile your program, the following occurs: 

• The file status code variable, if any, for the file is set to 46. 

• The statements associated with the AT END statement are not executed. 

• The program terminates execution abnormally (unless you have provided for 
this situation with a USE AFTER STANDARD EXCEPTION procedure). 

OPEN 1/0 and EXTEND Modes 
Ifyou specify /STANDARD=V3, nonoptional files opened in 
1/0 or EXTEND mode are created, if the files are unavailable. 

If you specify /STANDARD=85, nonoptional files opened in 1/0 or EXTEND mode 
are not created if the files are unavailable. Instead, a run-time error is issued. 

12.3.2.7.2 /STANDARD and /WARNINGS Qualifiers VAX COBOL provides 
two qualifiers that specify the same behavior: /STANDARD=[NO]SYNTAX and 
/WARNINGS=[NO]STANDARD. 

12-19 



OpenVMS Alpha Compilers 
12.3 Compatibility of DEC COBOL with VAX COBOL 

DEC COBOL does not support the [NO] STANDARD option of the /WARNINGS 
qualifier. Therefore, specifying /WARNINGS=ALL with the DEC COBOL 
compiler will not produce the informational messages that point out Digital 
extensions. To receive messages such as the following one, you must specify 
/STANDARD=SYNTAX. 

%COBOL-I-EXTENSION 

~~~~~~~~~~~~- Note ~~~~~~~~~~~~-

For VAX COBOL and DEC COBOL, the FIPS messages about
Digital extensions that the compiler produces when you specify
/FLAGGER[(=option, ...)] continue to be controlled by the
/WARNINGS=INFORMATION qualifier option.

12.3.2.8 Calling Native and Translated Images with the DEC COBOL !TIE Qualifier
The /TIE (Translated Image Environment) qualifier generates code that allows
native Open VMS Alpha images to call translated images and translated images
to call native Open VMS Alpha images. This qualifier is supported on Open VMS
Alpha systems only.

Specifying /TIE enables you to use compiled code with shared translated images,
either because the code might call into a translated image or because it might
be called from a translated image. If you specify /TIE, you should link the
object module using the LINK command qualifier /NONATIVE_ONLY. (See the
Open VMS Linker .Utility Manual for information about the /NONATIVE_ONLY
qualifier.)

Specifying /NOTIE, the default, indicates that your compiled code will not be
associated with a translated image.

For information about interoperability, see Chapter 11. For information about
translated images, see DECmigrate for Open VMS AXP Systems Translating
Images.

12.3.2.9 VAX COBOL to DEC COBOL Program Conversion
VAX COBOL Version 5.1 provides a new flagging system, via the
/STANDARD=OPENVMS_Alpha qualifier option, to identify language features in
your existing VAX COBOL programs that are not available in DEC COBOL on
Open VMS Alpha.

When you specify /STANDARD=OPENVMS_Alpha (and /WARNINGS=ALL
or /WARNINGS=INFORMATIONAL), the VAX COBOL compiler generates
informational messages to flag language constructs that are not available in DEC
COBOL. You can use this information to modify your program before running it
on DEC COBOL.

Use /STANDARD=NOOPENVMS_Alpha, the default, to suppress these
informational messages.

12.3.2.10 Program Structure

12-20

In some cases, the DEC COBOL compiler generates more complete messages
about unreachable code or other logic errors than does the VAX COBOL compiler.

The following example shows a sample program and the messages issued by the
DEC COBOL compiler.

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

Source file:
IDENTIFICATION DIVISION.
PROGRAM-ID. Tl.
ENVIRONMENT DIVISION.
PROCEDURE DIVISION.
PO.

GO TO Pl.
P3.

GO TO P2.
P2.

DISPLAY "This is unreachable code".
Pl.

STOP RUN.
IDENTIFICATION DIVISION.
PROGRAM-ID. T2.
ENVIRONMENT DIVISION.
PROCEDURE DIVISION.
PO.

DISPLAY "This is unreachable code".
EXIT PROGRAM.

END PROGRAM T2.
END PROGRAM T 1 •

On VAX systems:
$ COBOL /ANSI/WARNINGS=ALL Tl.COB

On Alpha systems:
$ COBOL/ANSI/OPT/WARNINGS=ALL Tl.COB

PROGRAM-ID. T2.
/\

%COBOL-I-UNCALLED, routine T2 can never be called
at line number 14 in file DISK$YOURDISK:[TESTDIR]Tl.COB;l

P2.

%COBOL-I-UNREACH, code can never be executed at label P2
at line number 9 in file DISK$YOURDISK:[TESTDIR]Tl.COB;l

For the same program, the VAX COBOL compiler produces no messages even
though the compiler does detect both the unreachable label and the unreachable
contained program.

Use the /OPTIMIZE qualifier to direct the DEC COBOL compiler to do the
uncalled routine analysis. The compiler performs the unreachable code analysis
for the default (lowest) level of optimization.

This difference from VAX COBOL can help you when debugging a program.
Because these messages are informational, the compiler produces an object
file, which you can link and execute. However, these messages may point out
otherwise undetected logic errors (that is, the structure of the program is probably
not what you intended).

12.3.2.11 COPY and REPLACE Statements
The DEC COBOL compiler produces different output when listing annotations for
the COPY statement in COBOL programs.

The following two examples show the difference in the position of the listing
annotations, represented by the letter L, in a COBOL program using the
VAX COBOL compiler and the DEC COBOL compiler.

12-21

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

12-22

VAX COBOL source file:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOPlB.
3 *
4 * This program tests the copy library file
5' * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * This is the comment in the middle
9 LCOPlA.

lOL ENVIRONMENT DIVISION.
llL INPUT-OUTPUT SECTION.
12L FILE-CONTROL.
13L SELECT FILE-1
14L ASSIGN TO "FILEl.TMP".
15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILEl-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

DEC COBOL source file:

L
L
L
L
L

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOPlB.
3 *
4 * This program tests the copy library file.
5 * with a comment in the middle of it.
6 * It should not produce any diagnostics.
7 COPY
8 * this is the comment in the middle
9 LCOPlA.

10 ENVIRONMENT DIVISION.
11 INPUT-OUTPUT SECTION.
12 FILE-CONTROL.
13 SELECT FILE-1
14 ASSIGN TO "FILEl.TMP".
15 DATA DIVISION.
16 FILE SECTION.
17 FD FILE-1.
18 01 FILEl-REC PIC X.
19 WORKING-STORAGE SECTION.
20 PROCEDURE DIVISION.
21 PE. DISPLAY "***END***"
22 STOP RUN.

The DEC COBOL compiler also produces different output when listing a COBOL
program with multiple COPY statements on a single line, as shown in the next
two examples. When the compiler issues a message on a replaced line, the
message pointer calls out the original text, not the replacement text.

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

VAX COBOL source file:

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOPlJ.
3 *
4 * Tests copy with three copy statements on 1 line.
5 *
6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.

10 COPY LCOPlJ.
llL DISPLAY 11 POIUYTREWQ 11

•

12C COPY LCOPlJ.
13L DISPLAY "POIUYTREWQ".
14C COPY LCOPlJ.
15L DISPLAY "POIUYTREWQ".
16 STOP RUN.

DEC COBOL source file:

L
L
L

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. DCOPlJ.
3 *
4 *
5 *

Tests copy with three copy st.atements on 1 line.

6 ENVIRONMENT DIVISION.
7 DATA DIVISION.
8 PROCEDURE DIVISION.
9 THE.

10
11
12
13
14

COPY LCOPlJ. COPY LCOPlJ. COPY LCOPlJ.
DISPLAY "POIUYTREWQ".
DISPLAY "POIUYTREWQ".
DISPLAY 11 POIUYTREWQ 11

•

STOP RUN.

The diagnostics for the COBOL source statements REPLACE and DATE­
COMPILED result in compiler listings that contain multiple instances of the
source line.

For a REPLACE statement listing in a DEC COBOL program, if the compiler
issues a message on the replacement text, the compiler message corresponds
to the original text in the program. In a VAX COBOL program, however, the
compiler message corresponds to the replacement text.

The compiler listing for a DEC COBOL program and a VAX COBOL program
differs when a COPY statement inserts text in the middle of a line as shown in
the following two examples.

DEC COBOL source file:

13 PO. MOVE COPY LCOP5D. TO ALPHA.
L 14 "O"

12-23

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

VAX COBOL source file:

13 PO. MOVE COPY LCOPSD.
14L "0"
lSC TO ALPHA.

LCOP5D.LIB contains "O". The DEC COBOL compiler keeps the same line and
inserts the COPY file contents below the source line. The VAX COBOL compiler
splits the original source line into parts.

For the REPLACE and COPY REPLACING statements, program listing line
numbers differ between DEC COBOL and VAX COBOL. For DEC COBOL,
the line number for the replacement line corresponds to its line number in the
original source text, while subsequent line numbers differ. The VAX COBOL
compiler arranges the line numbers consecutively.

The following source program can result in listings with different ending line
numbers, depending on whether you compile it with the DEC COBOL or the
VAX COBOL compiler.

Source file:

REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
A
VERY
LONG
STATEMENT.
DISPLAY "To REPLACE or not to REPLACE".

DEC COBOL version:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
6 DISPLAY "To REPLACE or not to REPLACE".

VAX COBOL version:

1 REPLACE ==A VERY LONG STATEMENT== by ==EXIT PROGRAM==.
2 EXIT PROGRAM.
3 DISPLAY "To REPLACE or not to REPLACE".

12.3.2.12 MOVE Statement

12-24

Unsigned computational fields can hold larger values than signed computational
fields. In accordance with the ANSI COBOL Standard, the values for unsigned
items should always be treated as positive. VAX COBOL, however, treats
unsigned items as signed, while DEC COBOL treats them as positive. Therefore,
in some rare cases, a mixture of unsigned and signed data items in MOVE or
arithmetic statements can produce different results between VAX COBOL and
DEC COBOL.

The following sample program produces different results for VAX COBOL and
DEC COBOL.

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

Source file:

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOW-DIFF.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 A2 PIC 99 COMP.
01 Bl PIC S9(5) COMP.
01 B2 PIC 9(5) COMP.
PROCEDURE DIVISION.
TEST-1.

MOVE 65535 TO A2.
MOVE A2 TO B 1.
DISPLAY Bl WITH CONVERSION.
MOVE A2 TO B2.
DISPLAY B2 WITH CONVERSION.
STOP RUN.

VAX COBOL results:
Bl = -1
B2 = -1

DEC COBOL results:
Bl = 65535
B2 = 65535

12.3.2.13 ACCEPT and DISPLAY Statements
When you use any extended feature of ACCEPT or DISPLAY within your
program, the DEC COBOL compiler uses the DEC SMG (Screen Manager).
The visible differences in behavior between DEC COBOL and VAX COBOL are as
follows:

• When you run your program, the screen is automatically erased when it
encounters the first ACCEPT or DISPLAY statement.

• Because the DEC SMG manages terminal I/O use with extended ACCEPT
and DISPLAY statements as screen entities rather than as line by line I/O,
you may not be able to redisplay information that appears to have scrolled off
the screen by using the DECterm s'croll bar.

• The DCL RECALL command is not supported during screen accepts.

• Escape sequence processing is limited to the use of an escape sequence that
occupies the leftmost positions of a DISPLAY string. (Sample programs are
located in the DEC COBOL User Manual.)

• When you mix ANSI ACCEPT statements and extended ACCEPT statements
in a program, the editing keys used by the extended ACCEPT statements will
also be m~ed by the ANSI ACCEPT statements. (See the DEC COBOL User
Manual for a complete list of editing keys.)

12.3.2.14 LINAGE Statement
The DEC COBOL and VAX COBOL compilers exhibit different behavior when
handling large values for the LINAGE statement. If the line count for the
ADVANCING clause of the WRITE statement is larger than 127, DEC COBOL
advances one line. VAX COBOL results are undefined.

12-25

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

12.3.2.15 File Status Differences
The DEC COBOL and VAX COBOL compilers report different file status codes
when you open a file in EXTEND mode and then try to REWRITE it. DEC
COBOL reports a 49 (incompatible open mode). VAX COBOL reports an error 43
(no previous READ).

DEC COBOL sets the file status to 46 after a START fails. VAX COBOL does not
produce these results.

12.3.2.16 System Return Codes

12-26

The· following example illustrates an illegal coding practice that exhibits a
certain behavior on Open VMS VAX systems but that does not produce the same
behavior on Open VMS Alpha systems. This difference in behavior points to
an architectural difference in the register sets between the VAX and Alpha
architectures. Specifically, the difference in behavior on the Alpha system is due
to the separate set of registers used for floating-point data types.

IDENTIFICATION DIVISION.
PROGRAM-ID. BADCODING.
ENVIRONMENT DIVISION.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

01 FIELDS-NEEDED.
05 CYCLE-LOGICAL PIC X (14) VALUE 'A LOGICAL NAME'.

01 EDIT-PARM.
05 EDIT-YR
05 EDIT-MO

01 CMR-RETURN-CODE

LINKAGE SECTION.

01 PARM-REC.
· 05 CYCLE-PARM

05 RETURN-CODE

PIC X(4).
PIC XX.

COMP-1 VALUE O.

PIC X(6).
COMP-1 VALUE 0.

- -

PROCEDURE DIVISION USING PARM-REC GIVING CMR-RETURN-CODE.

PO-CONTROL.

CALL 'LIB$SYS_TRNLOG' USING BY DESCRIPTOR CYCLE-LOGICAL,
OMITTED,

IF RETURN-CODE GREATER 0
THEN

BY DESCRIPTOR CYCLE-PARM
GIVING RETURN-CODE.

MOVE RETURN-CODE TO CMR-RETURN-CODE
GO TO PO-EXIT.

MOVE CYCLE-PARM TO EDIT-PARM.

IF EDIT-YR NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

IF EDIT-MO NOT NUMERIC
THEN

MOVE 4 TO CMR-RETURN-CODE, RETURN-CODE.

OpenVMS Alpha Compilers
12.3 Compatibility of DEC COBOL with VAX COBOL

IF CMR-RETURN-CODE GREATER 0
OR

RETURN-CODE GREATER 0
THEN

PO-EXIT.

DISPLAY "***************************"
DISPLAY "** BADCODING.COB **"
DISPLAY"** A LOGICAL NAME> 11

, CYCLE-PARM, 11 **"
DISPLAY "***************************"

EXIT PROGRAM.

In the sample program, the programmer incorrectly defined the return value for
a system service call to be F _floating when it should have been· binary (COMP).
The programmer was depending on the following VAX behavior: in the VAX
architecture, all return values from routines are returned in register RO. The
VAX architecture has no separate integer and floating-point registers. The Alpha
architecture defines separate register sets for floating-point and binary data. In
particular, routines that return floating-point values return them in register FO;
routines that return binary values return them in register RO.

The DEC COBOL compiler has no method for determining what data type an
external routine may return. You must specify the correct data type for the
GIVING-VALUE item in the CALL statement. On Open VMS Alpha systems, the
generated code is testing FO instead of RO because of the different set of registers
used for floating-point data items.

In the sample program, the value in FO is completely random in this code
sequence. In some cases, this coding practice may produce the expected behavior,
but in most cases it will not.

12.3.2.17 Storage Differences for Double-Precision Data Items
The difference in storage of D_floating items between the VAX and Alpha
architectures produces slightly different answers when validating execution
results. The magnitude of the difference depends upon how many D-float
computations and stores the compiler performed before outputing the final
answer. This behavior difference may cause some difficulty if you attempt to
validate output generated by your program running on Open VMS Alpha systems
against output generated by Open VMS VAX systems where they output COMP-2
data to a ·file.

For information about storage for floating-point data types, see the Alpha
Architecture Handbook.

12.3.2.18 RMS Special Registers
The DEC COBOL run-time system checks some I/O error situations before
attempting the RMS operation. VAX COBOL does the RMS calls without doing
any checking, resulting in different values for RMS special registers. When the
DEC COBOL run-time system does not attempt an RMS operation, the register
value retains its previous value.

For example, in the case of a file that was not successfully opened, any DEC
COBOL record operation (READ, WRITE, START, DELETE, REWRITE, or
UNLOCK) will fail without invoking RMS.

12-27

OpenVMS Alpha Compilers
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN

12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX
FORTRAN

This section discusses the compatibility between Digital Fortran for Open VMS
Alpha systems and DEC Fortran for Open VMS VAX Systems (formerly
VAX FORTRAN) in the following areas:

• Language features (Section 12.4.1)

• Command line qualifiers (Section 12.4.2)

• Interoperability with translated shared images
(Section 12.4.3)

• Porting DEC Fortran for Open VMS VAX Systems data (Section 12.4.4)

12.4.1 Language Features

12-28

Digital Fortran for Open VMS Alpha includes ANSI FORTRAN-77 and ISO/ANSI
Fortran 9x standard features, as well as the Digital Fortran for Open VMS VAX
Systems extensions to these Fortran standards, including:

• RECORD statement and STRUCTURE statement

• CDEC$ directives and the OPTIONS stat~ment

• BYTE, INTEGER*l, INTEGER*2, INTEGER*4, LOGICAL*l, LOGICAL*2,
LOGICAL*4

• REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16

• IMPLICIT NONE statement

• INCLUDE statement

• NAMELIST I/O

• Names up to 31 characters including use of dollar sign ($)and underscore
(_)

• DO WHILE and END DO statements

• Use of the exclamation point (!) for end-of-line comments

• Built-in functions %DESCR, %LOC, %REF, and %VAL

• VOLATILE statement

• DICTIONARY statement (FORTRAN-77 compiler only)

• POINTER statement data type

• Recursion

• Unformatted data conversion between disk and memory

• Indexed files

• I/O statements such as PRINT, ACCEPT, TYPE, DELETE, UNLOCK

• OPEN and INQUIRE statement specifiers, including CARRIAGECONTROL,
CONVERT, ORGANIZATION, RECORDTYPE

• Other language elements identified in the appropriate Fortran language
reference manuals

OpenVMS Alpha Compilers
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN

For detailed information about extensions and language features, see the Fortran
langauge reference manual, which visually shows extensions of the FORTRAN-77
standard.

~~~~~~~~~~~~~ Note ~~~~~~~~~~~~~ 

The Digital Fortran for Open VMS Alpha product supports most of 
the FORTRAN-77 language extensions supported by DEC Fortran for 
Open VMS Alpha and the ISO/ANSI Fortran 90 standard. 

The remainder of this section summarizes language features specific to DEC 
Fortran for Open VMS VAX Systems and Digital Fortran for Open VMS Alpha, 
language features that are shared but interpreted differently in each language, 
Digital Fortran for Open VMS Alpha restrictions that do not apply to DEC Fortran 
for Open VMS VAX Systems, and data porting considerations. 

12.4.1.1 Language Features Specific to Digital Fortran for OpenVMS Alpha 
The following language features are available in Digital Fortran for Open VMS 
Alpha but are not supported in Digital Fortran for Open VMS VAX Systems 
Version 6.3: 

• Quotation marks ( ") as delimiters for character constants. This can be 
disabled by specifying the /VMS qualifier. 

• Naturally aligned or packed boundaries for fields of records and items in 
COMMON blocks 

• The INTEGER*!, INTEGER*8, and LOGICAL*8 data types 

• Support for S_fioating, T_fl.oating, and X_fl.oating IEEE data types as well as 
support for non-native unformatted data file formats, including big-endian 
numeric format. For a description of the native floating-point data types for 
Alpha systems, see the Alpha Architecture Reference Manual. 

• LIB$ESTABLISH and LIB$REVERT are provided as intrinsic functions 
for compatibility with DEC Fortran for Open VMS VAX Systems condition 
handling. 

DEC Fortran converts declarations to LIB$ESTABLISH to DEC Fortran RTL 
specific entry points. 

• The alternate "Z" spelling for double-precision complex intrinsic functions. 
(For example, the square root double-precision intrinsic function can be 
spelled as CDSQRT or ZSQRT.) 

• The following intrinsic functions: 

!MAG 
AND 
OR 
XOR 
LSHIFT 
RSHIFT 

• Certain run-time errors are specific to Digital Fortran for Open VMS Alpha. 

• Case-sensitive names 

12-29 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

• 1/0 unit numbers can be any nonnegative integer in Digital Fortran for 
Open VMS Alpha. In DEC Fortran for Open VMS VAX Systems, the values for 
1/0 unit numbers can range from 0 to 99. 

For an explanation of Digital Fortran language features, see the Fortran language 
reference manual. 

12.4.1.2 Language Features Specific to DEC Fortran for OpenVMS VAX Systems 

12-30 

The following language features are available in DEC Fortran for Open VMS VAX 
Systems but are not supported in Digital Fortran for Open VMS Alpha: 

• Automatic decomposition features of FORTRAN/PARALLEL=(AUTOMATIC) 

• Manual (directed) decomposition features of FORTRAN 
/PARALLEL=(MANUAL) using the CPAR$ directives, such as CPAR$ DO_ 
PARALLEL 

• The following 1/0 and error subroutines for PDP-11 compatibility: 

ASSIGN 
CLOSE 
ERRS ET 

ERRTST 
FDBSET 
IRAD50 

RAD50 
R50ASC 
USE REX 

When porting existing programs, calls to ASSIGN, CLOSE, and FBDSET 
should be replaced with the appropriate OPEN statement. (You might 
consider converting DEFINE FILE statements at the same time, even 
though Digital Fortran for Open VMS Alpha does support the DEFINE FILE 
statement.) 

In place of ERRSET and ERRTST, Open VMS condition handling might be 
used. Note that Digital Fortran for Open VMS Alpha supports the ERRSNS 
subroutine. 

• Radix-50 constants in the form nRxxx 

For existing programs being ported, radix-50 constants and the IRAD50, 
RAD50, and R50ASC routines should be replaced by data encoded in ASCII 
using CHARACTER declared data. 

Certain DEC Fortran for Open VMS VAX Systems features have restricted use or 
are not available in Digital Fortran for Open VMS Alpha: 

• Numeric local variables are sometimes, but not always, initialized to a zero 
value, depending on the level of optimization used. To guarantee that a value 
will be initialized to zero under all circumstances, use an explicit assignment 
or DATA statement. 

• Character constants must be associated with character dummy arguments, 
not numeric dummy arguments. (DEC Fortran for Open VMS VAX Systems 
passed 'A' by reference if the dummy argument was numeric:) Consider 
using the /BY_REF _CALL qualifier for such arguments. 

• Saved dummy arrays do not work: 

SUBROUTINE F INIT (A, N) 
REAL A(N) -
RETURN 
ENTRY F DO IT (X, I) 
A (I) =-X -! No: A no longer visible 
RETURN 
END 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

• Hollerith actual arguments must be associated with numeric dummy (formal) 
arguments, not character dummy arguments. 

The following language features are available in DEC Fortran for Open VMS VAX 
Systems but are not supported in Digital Fortran for Open VMS Alpha because of 
differences between the Alpha architecture and the VAX architecture: 

• Certain FORSYSDEF symbol definition modules may be specific to the VAX 
or Alpha architecture. 

• Precise exception-handling control 

The handling of certain exceptions differs between Open VMS VAX and 
Open VMS Alpha systems. To request precise exception-handling control, use 
the /SYNCHRONOUS_EXCEPTIONS qualifier. 

• REAL*16 data uses the H_floating data format on VAX systems and 
X_floating on Alpha systems. 

• VAX support for D_floating 

Because the Alpha instruction set does not support the D_floating REAL*8 
format, D_floating data is converted to G_floating by software during 
computations and then converted back to D_floating format. Thus, there 
will be differences in D_floating arithmetic between VAX and Alpha systems. 

For optimal performance on Alpha systems, consider using REAL*8 data 
in VAX G_floating or IEEE T_floating format, perhaps using the /FLOAT 
qualifier to specify the format. To create a Digital Fortran for Open VMS 
Alpha application program to convert D_floating data to G_floating or 
T_floating format, use the file conversion methods described in the Fortran 
language reference manual. 

• Vectorization capabilities 

Vectorization, including /VECTOR and its related qualifiers, and the CDEC$ 
INIT_DEP _FWD directive are not supported. The Alpha processor provides 
pipelining and other features that resemble vectorization capabilities. 

12.4.1.3 Interpretation Differences 
The following language features are interpreted differently between DEC Fortran 
for Open VMS VAX Systems and Digital Fortran for Open VMS Alpha: 

• Random number generator (RAN) 

The RAN function generates a different pattern of numbers in Digital Fortran 
for Open VMS Alpha than in DEC Fortran for Open VMS VAX Systems for the 
same random seed. (The RAN and RANDU functions are provided for DEC 
Fortran for Open VMS VAX Systems compatibility.) 

• Hollerith constants in formatted I/O statements 

DEC Fortran for Open VMS VAX Systems and Digital Fortran for Open VMS 
Alpha behave differently if either of the following occurs: 

Two different I/O statements refer to the same CHARACTER 
PARAMETER constant as their format specifier. For example: 

CHARACTER*(*) FMT2 
PARAMETER (FMT2='(10Habcdefghij)') 
READ (5, FMT2) 
WRITE (6, FMT2) 

12-31 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

'l\vo different I/O statements use the identical character constant as their 
format specifier. For example: 

READ (5, '(lOHabcdefghij)') 
WRITE (6, '(lOHabcdefghij)') 

In DEC Fortran for Open VMS VAX Systems, the value obtained by the READ 
statement is the output of the WRITE statement (FMT2 is ignored). However, 
in Digital Fortran for Open VMS Alpha, the output of the WRITE statement 
is "abcdefghij." (The value read by the READ statement has no effect on the 
value written by the WRITE statement.) 

12.4.2 Command Line Qualifiers 
While Digital Fortran for Open VMS Alpha and DEC Fortran for Open VMS VAX 
Systems share most qualifiers, some qualifiers are specific to each platform. ·This 
section summarizes the differences between Digital Fortran for Open VMS Alpha 
and DEC Fortran for Open VMS VAX Systems command line qualifiers. 

For complete details about the Digital Fortran for Open VMS Alpha compilation 
command and options, see the DEC Fortran User Manual for Open VMS AXP 
Systems. For complete details about the DEC Fortran for Open VMS VAX 
Systems compilation command and options, see the DEC Fortran User Manual 
for Open VMS VAX Systems. 

To initiate compilation on either VAX or Alpha systems, use the FORTRAN 
command. 

12.4.2.1 Qualifiers Specific to Digital Fortran for OpenVMS Alpha 

12-32 

Table 12-10 lists Digital Fortran for Open VMS Alpha compiler qualifiers that 
have no equivalent DEC Fortran for Open VMS VAX Systems options and are not 
supported in DEC Fortran for Open VMS VAX Systems Version 6.3. 

Table 12-10 Digital Fortran for OpenVMS Alpha Qualifiers Not in DEC Fortran 
for OpenVMS VAX Systems 

Qualifier 

/BY_REF _CALL 

/CHECK=FP _EXCEPTIONS 

/DOUBLE_SIZE 

/FAST 

/FLOAT 

Description 

Allows character constant actual arguments to be 
associated with numeric dummy arguments (allowed 
by DEC Fortran for OpenVMS VAX Systems). 

Controls whether messages about IEEE floating-point 
exceptional values are reported at run time. 

Makes DOUBLE PRECISION declarations REAL*16 
instead of REAL*S. 

Sets several qualifiers that improve run-time 
performance. 

Controls the format used for floating-point data (REAL 
or COMPLEX) in memory, including the selection 
of either VAX F _floating or IEEE S_floating for 
KIND=4 data and VAX G_floating, VAX D_floating, 
or IEEE T_floating for KIND=8 data. DEC Fortran 
for OpenVMS VAX Systems provides the /[NO]G_ 
FLOATING qualifier. 

(continued on next page) 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

Table 12-10 (Cont.) Digital Fortran for OpenVMS Alpha Qualifiers Not in DEC 
Fortran for OpenVMS VAX Systems 

Qualifier 

/GRANULARITY 

/IEEE_MODE 

/INTEGER_SIZE 

/NAMES 

/OPTIMIZE 

/REAL_SIZE 

/ROUNDING_MODE 

/SEPARATE_ COMPILATION 

/SYNTAX_ ONLY 

/WARNINGS 

NMS 

Description 

Controls the granularity of data access for shared 
data. 

Controls how floating-point exceptions are handled for 
IEEE data. 

Controls the size of INTEGER and LOGICAL 
declarations. 

Controls whether external names are converted to 
uppercase, lowercase, or as is. 

The /OPTIMIZE qualifier supports the INLINE 
keyword, the TUNE keyword, the UNROLL keyword, 
and software pipelining. 

Controls the size of REAL and COMPLEX 
declarations. 

Controls how floating-point calculations are rounded 
for IEEE data. 

Controls whether the DEC Fortran compiler: 

• Places individual compilation units as separate 
modules in the object file like DEC Fortran 
for Open VMS VAX Systems (!SEPARATE_ 
COMPILATION) 

• Groups compilation units as a single module in 
the object file (/NOSEPARATE_COMPILATION, 
the default), which allows more interprocedure 
optimizations. 

Requests that only syntax checking occurs and no 
object file is created. 

Certain keywords are not available on DEC Fortran 
for OpenVMS VAX Systems. 

Requests that Digital Fortran use certain DEC Fortran 
for Open VMS VAX Systems conventions. 

12.4.2.2 Qualifiers Specific to DEC Fortran for OpenVMS VAX Systems 
This section summarizes DEC Fortran for Open VMS VAX Systems compiler 
qualifiers that have no equivalent Digital Fortran for Open VMS Alpha qualifiers. 

Table 12-11 lists compilation qualifiers specific to DEC Fortran for Open VMS 
VAX Systems Version 6.3. 

12-33 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

Table 12-11 DEC Fortran for OpenVMS VAX Systems Qualifiers Not in Digital Fortran for 
OpenVMS Alpha 

DEC Fortran for OpenVMS VAX 
Systems Qualifier 

/BLAS=(INLINE,MAPPED) 

/CHECK=ASSERTIONS 

/DESIGN=[NO]COMMENTS 
/DESIGN=[NO]PLACEHOLDERS 

/DIRECTIVES=DEPENDENCE 

/PARALLEL=(MANUAL or 
AUTOMATIC) 

/SHOW=(DATA_DEPENDEN­
CIES,DICTIONARY,LOOPS) 

/VECTOR 

/WARNINGS=INLINE 

Description 

Specifies whether DEC Fortran for Open VMS VAX Systems 
recognizes and inlines or maps the Basic Linear Algebra Subroutines 
(BLAS). Available only in DEC Fortran for Open VMS VAX Systems. 

Enables or disables assertion checking. Available only in DEC 
Fortran for OpenVMS VAX Systems. 

Analyzes program for design information. 

Specifies whether specified compiler directives are used at 
compilation. Available only in DEC Fortran for Open VMS VAX 
Systems. 

Supports parallel processing. 

Control whether the listing file includes: 

• Diagnostics about loops that are ineligible for dependence 
analysis and data dependencies that inhibit vectorization or 
autodecomposition CDATA_DEPENDENCIES) 

• Source lines from included Common Data Dictionary records 
(DICTIONARY) 

• Reports about loop structures after compilation (LOOPS) 

The keywords DATA_DEPENDENCIES and LOOPS are available 
only in DEC Fortran for Open VMS VAX Systems. 

Requests vector processing. Available only in DEC Fortran for 
OpenVMS VAX Systems. 

Controls whether the compiler prints informational diagnostic 
messages when it is unable to generate inline code for a reference to 
an intrinsic routine. Available only in DEC Fortran for Open VMS 
VAX Systems. 

All CPAR$ directives and certain CDEC$ directives associated with directed 
(manual) decomposition and their associated qualifiers or keywords are specific 
to DEC Fortran for Open VMS VAX Systems, as described in the DEC Fortran 
Language Reference Manual. 

For details about the DEC Fortran for Open VMS VAX Systems compilation 
commands and options, see the DEC Fortran User Manual for Open VMS VAX 
Systems. 

12.4.3 Interoperability with Translated Shared Images 

12-34 

Using Digital Fortran for OpenVMS Alpha, you can create images that can 
interoperate with translated images at image activation (run time). 

To allow the use of translated shared images: 

• On the FORTRAN command line, specify the trIE qualifier. 

• On the LINK command line, specify the /NONATIVE_ONLY qualifier. 



OpenVMS Alpha Compilers 
12.4 Compatibility of Digital Fortran for OpenVMS Alpha with VAX FORTRAN 

The created executable image contains code that allows the resulting executable 
image to interoperate with shared images, including allowing the DEC Fortran 
for Open VMS VAX Systems RTL (FORRTL) to work with the Digital Fortran 
for Open VMS Alpha RTL (DEC$FORTRTL). The native (Digital Fortran for 
Open VMS Alpha RTL) and translated (DEC Fortran for Open VMS VAX Systems 
RTL) programs can perform I/Oto the same unit number, as long as the RTL that 
opens the file also closes it. 

Programs should use the intrinsic names (without the prefix) rather than calling 
routines by their complete (fac$xxxx) name. One allowable exception to using 
fac$xxxx names is that translated image programs declare the FOR$RAB system 
function as EXTERNAL. Native Alpha programs should use FOR$RAB as an 
intrinsic function. 

12.4.4 Porting DEC Fortran for OpenVMS VAX Systems Data 
Record types are identical for DEC Fortran for Open VMS VAX Systems and 
Digital Fortran for Open VMS Alpha. If needed, transport the data using 
the EXCHANGE command with the /NETWORK and /TRANSFER=BLOCK 
qualifiers. To convert the file to Stream_LF format during the copy 
operation, use /TRANSFER=03LOCK,RECORD_SEPARATOR=LF) instead of 
/TRANSFER=BLOCK, or specify the /FDL qualifier to the EXCHANGE command 
to change the record type or other file characteristics. 

If you need to convert unformatted floating-point data, keep in mind that 
DEC Fortran for Open VMS VAX programs (VAX hardware) store REAL*4 or 
COMPLEX*8 data in F _floating format, REAL*8, REAL*16, or COMPLEX*16 
data in either D _floating or G_floating format, and REAL* 16 data in H_floating 
format. Digital Fortran for Open VMS Alpha programs (running on Alpha 
hardware) store REAL*4, REAL*8, REAL*16, COMPLEX*8, and COMPLEX*16 
data in one of the formats shown in Table 12-12. 

Table 12-12 Floating-Point Data on VAX and Alpha Systems 

Data Declaration VAX Formats 

REAL*4 and VAX F _floating format 
COMPLEX*S 

REAL*S and VAX D_floating or G_ 
COMPLEX*l6 floating format 

REAL*16 VAX H_floating 

Alpha Formats 

IEEE S_floating or VAX F _floating format 

IEEE T_floating, VAX D_floating1
, or VAX 

G_floating format 

X_floating. Requires conversion, perhaps 
using the /CONVERT qualifier or 
associated OPTION statement, logical 
name, or OPEN statement /CONVERT 
keyword. You can also use the RTL 
routine CVT$CONVERT_FLOAT. 

10n Alpha systems, the use of VAX D_floating format involving many computations is not 
recommended. Consider converting D_floating format to IEEE T_floating (or VAX G_floating) format 
in a conversion program that uses the Digital Fortran for OpenVMS Alpha conversion routines. 

12.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems 
with VAX Pascal 

This section compares DEC Pascal to other Digital Pascal compilers and lists 
the differences between DEC Pascal on VAX and Alpha systems. For a complete 
description of these features, see the DEC Pascal Language Reference Manual. 

12-35 



Open VMS Alpha Compilers 
12.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal 

12.5.1 New Features of DEC Pascal 

12-36 

Table 12-13 lists features not previously supplied in VAX Pascal. 

Table 12-13 New Features of DEC Pascal 

Feature 

Support for Open VMS 
systems 

Redefinable values for 
predeclared constants 

An optional quoted 
parameter to the 
COMMON, EXTERNAL, 
GLOBAL, PSECT, 
WEAK_EXTERNAL, 
and WEAK_GLOBAL 
attributes 

Double-quoted strings 

Embedded string values 

Additional data types 
and values 

Assignment of 
UNSIGNED values 
to INTEGER variables 

Assignment of string 
values into unpacked 
arrays of characters 

Additional statements 

Additional predeclared 
routines 

Optional second 
parameter to RESET, 
REWRITE, and 
EXTEND 

Description 

Including all the data types available on the Open VMS 
platforms. 

Values for MAXINT, MAXUNSIGNED, MAXREAL, MINREAL, 
EPSREAL are defined by the platform and the compiler 
switches for specifying the integer size and floating-point 
format. 

Allows you to pass an unmodified identifier to the linker. 

DEC Pascal now accepts the double-quote characters as string 
and character delimiters. 

Inside of double-quoted strings, DEC Pascal now supports 
constant characters specified with a backslash as in the 
C programming language, such as "" \ n"" for the linefeed 
character. 

DEC Pascal now supports these data types: ALFA, 
CARDINAL, CARDINAL16, CARDINAL32, INTEGER16, 
INTEGER32, INTEGER64, INTSET, POINTER, UNIV _PTR, 
UNSIGNED16, UNSIGNED32, and UNSIGNED64. 

DEC Pascal now allows UNSIGNED values to be assignment­
compatible with INTEGER variables and array indices. 

DEC Pascal now allows ARRAY of CHAR variables to be 
treated as fixed-length character strings. 

DEC Pascal now supports these statements: BREAK, 
CONTINUE, EXIT, NEXT, and RETURN. 

DEC Pascal now supports these functions and procedures: 
ADDR, ARGC, ARGV, ASSERT, BITAND, BITNOT, BITOR, 
BITXOR, HBOUND, LBOUND, FIRST, FIRSTOF, LAST, 
LASTOF, IN_RANGE, LSHIFT, RSHIFT, LSHFT, RSHFT, 
MESSAGE, NULL, RANDOM, SEED, REMOVE, SIZEOF, 
SYSCLOCK, and WALLCLOCK. 

DEC Pascal now accepts a second parameter that is a literal 
string expression for the file name to be associated with the file 
variable. 

(continued on next page) 



OpenVMS Alpha Compilers· 
12.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal 

Table 12-13 (Cont.) New Features of DEC Pascal 

Feature Description 

Compiler command 
switches 

DEC Pascal now includes switches that allow you to specify 
the storage and alignment allocation for data types. You can 
also specify the level of optimization with a switch. On Alpha 
systems, an option controls the default meaning of the REAL 
and DOUBLE data types. Arguments to the usage switch 
enable messages relating to alignment, alignment compatibility 
on different platforms, and features that are not available on a 
specified platform. 

12.5.2 Establishing Dynamic Condition Handlers 
DEC Pascal provides the built-in routines, ESTABLISH and REVERT, to use in 
place of LIB$ESTABLISH. If you declare and try to use LIB$ESTABLISH, you 
will get a compile-time warning. 

12.5.3 Modifying Default Alignment Rules for Record Fields 
DEC Pascal allows you to override field alignment and position with the POS, 
ALIGNED, and DATA attributes and the data compiler switch. 

12.5.4 Recommended Use of Predeclared Identifiers 
Although for backward compatibility DEC Pascal compiles programs that include 
the predeclared identifiers listed in Table 12-14, Digital recommends that you 
use the listed replacements. 

Table 12-14 Recommended Use of Predeclared Identifiers 

Identifier 

ADDR 

ALFA 

BITAND 

BITNOT 

BITOR 

BITXOR 

EXIT 

FIRST, 
FIRSTOF 

HBOUND 

IN_RANGE 

INT SET 

LAST, LASTOF 

LBOUND 

LSHFT 

MESSAGE 

Recommended Usage 

Use the ADDRESS function 

Equivalent to TYPE ALFA= PACKED ARRAY [l..lO]OF CHAR 

Equivalent to the UAND statement 

Equivalent to the UNOT statement 

Equivalent to the UOR statement 

Equivalent to the UXOR statement 

Equivalent to the BREAK statement 

Equivalent to the LOWER function 

Equivalent to the UPPER function 

Useful only when subrange checking is disabled. IN_RANGE(X) is 
equivalent to (X2::LOWER(X))AND(X~UPPER(X)). 

Equivalent to TYPE INTSET = SET OF 0 .. 255; 

Equivalent to the UPPER function 

Equivalent to the LOWER function 

Equivalent to the LSHIFT function 

Equivalent to WRITELN(ERR,expression) 

(continued on next page) 

12-37 



OpenVMS Alpha Compilers 
12.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal 

Table 12-14 (Cont.) Recommended Use of Predeclared Identifiers 

Identifier 

NEXT 

NULL 

REMOVE 

RSHFT 

SIZE OF 

STLIMIT 

UNIV_PTR 

Recommended Usage 

Equivalent to the CONTINUE statement 

Equivalent to the empty statement 

Equivalent to the DELETE_FILE procedure 

Equivalent to the RSHIFT function 

Equivalent to the SIZE function 

Compiles but does not return an error 

Equivalent to TYPE UNIV _PTR = POINTER; 

12.5.5 Platform-Dependent Features 
DEC Pascal can use an environment file only on the same platform (the 
combination of operating system and hardware) on which it was compiled. 

In addition, the following lists features of DEC Pascal supplied only on VAX 
systems: 

• QUADRUPLE data type 

• H_floating-point data type 

• VAX Pascal Version 1.0 dynamic arrays 

• MFPR and MTPR predeclared routines 

• [OVERLAID] attribute 

• Table of contents in listing 

• Optimize attribute on routines 

The following lists features of DEC Pascal supplied only on Alpha systems: 

• Abbreviations when reading enumerated data types 

• Indexed file organization 

• Relative file organization 

12.5.6 Obsolete Features 
This section describes features that are supported, but not recommended, by 
Digital. They are provided only for compatibility with other Digital Pascal 
compilers. 

12.5.6.1 /OLD_ VERSION Qualifier 

12-38 

The /OLD_ VERSION qualifier directed the compiler to resolve differences 
between VAX Pascal Version 1.0 and subsequent versions by using the 
VAX Pascal Version 1.0 definition of the language. The qualifier is provided 
so that existing programs continue to work. 



OpenVMS Alpha Compilers 
12.5 Compatibility of DEC Pascal for OpenVMS Alpha Systems with VAX Pascal 

12.5.6.2 /G_FLOATING Qualifier 
The /G_FLOATING qualifier directs the compiler to use the G_floating 
representation and instructions for values of type DOUBLE. The [[NO]G_ 
FLOATING] attribute can be specified on both Open VMS VAX and Open VMS 
Alpha systems. · 

If the use of the /G_FLOATING qualifier conflicts with a double-precision 
attribute specified in the source program or module, an error occurs. Routines 
and compilation units between which double-precision quantities are passed 
should not mix floating-point formats. Not all Open VMS VAX processors support 
the G_floating data types. 

See also the description of the /FLOAT qualifier, which is the preferred method 
for specifying the floating-point format to the compiler. The /FLOAT qualifier also 
allows you. to select the IEEE floating-point format, which is supported only on 
Alpha systems. 

12.5.6.3 OVERLAID Attribute 
The OVERLAID attribute indicates how storage should be allocated for variables 
declared within a compilation unit. If you specify OVERLAID on a compilation 
unit, the variables declared at program or module level (unless they have the 
STATIC or PSECT attribute) overlay the storage of static variables in all other 
overlaid compilation units. 

This attribute is intended for use only with programs that use the 
decommitted separate compilation facility provided by VAX Pascal Version 1.0. 

12-39 





A 
Application Evaluation Checklist 

This checklist is based on one used by Digital to evaluate applications for 
Open VMS Alpha. 

Comments in brackets following a question are intended to help clarify the 
purpose of that question. 

A-1 



Application Evaluation Checklist 

Application Evaluation Checklist 

Development History and Plans 

1. Does the application currently run on other operating 
systems or hardware architectures? 

2. 

If yes, does the application currently run on a RISC 
system? 

[If so, it will be easier to migrate to Open VMS Alpha.] 

What are your plans for the application after migration? 

a. No further development 

b. Maintenance releases only 

c. Additional or changed functionality 

d. Maintain separate VAX and Alpha sources 

[If you answer YES to a, you may wish to consider 
translating the application. A YES response to b or 
c should give you reason to evaluate the benefits of 
recompiling and relinking your applic~tion, although 
translation is still possible. If you intend to maintain 
separate VAX and Alpha sources, as indicated by a YES 
to d, you may need to consider interoperability and 
consistency issues, especially if the different versions of 
the application can access the same database.] 

External Dependencies 

3. What is the system configuration (CPUs, memory, disks) 
required to set up a development environment for the 
application? 

[This will help you plan for the resources needed for 
migration.] 

4. What is the system configuration (CPUs, memory, disks) 
required to set up a typical user environment for the 
application, including installation verification procedures, 
regression tests, benchmarks, or workloads? 

[This will help you determine whether your entire 
environment is available on Open VMS Alpha.] 

5. Does the application rely on any special hardware? 

[This will help you determine whether the hardware is 
available on Open VMS Alpha, and whether the application 
includes hardware-specific code.] 

6. a. What version of Open VMS does your application 
currently run on? 

b. Does the application run on Open VMS VAX Version 7.0? 

A-2 

DYES 

DYES 

DYES 

DYES 

DYES 

DYES 

DYES 

DYES 

ONO 

ONO 

ONO 

ONO 

ONO 

ONO 

ONO 

ONO 



Application Evaluation Checklist 

c. Does the application use features that are not available DYES ONO 
on Open VMS Alpha? 

[The migration base for Open VMS Alpha is Open VMS 
VAX Version 7.0. If you answer YES to c, your application 
may use features that are not yet supported on Open VMS 
Alpha, or be linked against an Open VMS RTL or other · 
shareable image that is incompatible with the current 
version of Open VMS Alpha.] 

7. Does the application require layered products to run? 

a. From Digital: (other than compiler RTLs) DYES ONO 
b. From third parties: DYES ONO 
[If you answer YES to a and are uncertain whether the 
Digital layered products are yet available for Open VMS 
Alpha, check with your Digital Account Representative. If 
you answer YES to b, check with your third-party product 
supplier.] 

Composition of the Application 

8. How large is your application? 

How many modules? 

How many lines or kilobytes of code? 

How much disk space is required? 

[This will help you "size" the effort and the resources 
required for migration.] 

9. a. Do you have access to all source files that make up your DYES ONO 
application? 

b. If you are considering using Digital Services, will it be DYES ONO 
possible to give Digital access to these source files and build 
procedures? 

[If you answer YES to a, translation may be your only 
migration option for the files with missing sources. A YES 
answer to b allows you to take advantage of a greater range 
of Digital migration services.] 

10. a. What languages is the application written in? (If 
multiple languages are used, give the percentages of each.) 

[If the compilers are not yet available, you must translate 
or rewrite in a different language.] 

b. If you use VAX MACRO, what are your specific reasons? 

c. Could the function of the VAX MACRO code be DYES ONO 
performed by a high-level-language compiler or a system 
service (such as $GETJPI for retrieving process names)? 

A-3 



Application Evaluation Checklist 

11. 

[Digital does not recommend the use of VAX MACRO 
or the MACR0-64 Assembler for Open VMS Alpha in 
Alpha applications. You may be able to replace assembly­
language code in certain user-mode applications by a call 
to an Open VMS system service that did not exist when the 
application was first written.] 

a. Do you have regression tests for the application? 

b. If yes, do they require DEC Test Manager? 

[If you answer YES to a, you should consider migrating 
those regression tests. The DEC Test Manager is not 
available at the initial release of Open VMS Alpha. Contact 
your Digital Account Representative if your regression tests 
depend on this product.] 

Dependencies on the VAX Architecture 

12. a. Does the application use the H_fioating data types? 

b. Does the application use the D_fioating data types? 

c. If the application uses D_fioating, does it require 56 bits 
of precision (16 decimal digits) or would 53 bits (15 decimal 
digits) suffice? 

[If you answer YES to a, you must either translate your 
application to obtain H_fioating compatibility, or convert 
the data to G_fioating, S_fioating, or T_floating format. 
If you answer YES to b, you must either translate the 
application to obtain full 56-bit VAX precision D_fioating 
compatibility, accept the 53-bit precision D_fioating format 
provided by Alpha systems, or convert the data to G_ 
floating, S_fioating, or T_fioating format.] 

13. a. Does the application use large amounts of data or data 
structures? 

b. Is the data byte, word, or longword aligned? 
[If you answer YES to a, but NO to b, you should consider 
aligning your data naturally to achieve optimal Alpha 
performance. You must align data naturally if the data is 
in a global section shared among a n-µmber of processes, or 
is shared between a main program and an AST.] 

DYES 

DYES 

DYES 

DYES 
D 56 bits 

DYES 

DYES 

14. Does the application make assumptions about how D YES 
compilers align data (that is, does the application assume 

A-4 

that data structures are: packed, aligned naturally, aligned 
on longwords, and so forth)? 

[If you answer YES, you should consider portability 
and interoperability issues resulting from differences in 
compiler behavior, both on the Alpha platform and between 
the VAX and Alpha platforms. Be aware that compiler 
defaults for data alignment vary, as do compiler switches 
for forcing alignment. Typically, VAX systems default to a 
packed style alignment, whereas Alpha compilers default to 
natural alignment where possible.] 

ONO 

ONO 

ONO 

ONO 
D 53 bits 

ONO 

ONO 

ONO 



Application Evaluation Checklist 

15. a. Does the application assume a 512-byte page size? DYES ONO 
b. Does the application assume that a memory page is the 
same size as a disk block? 

DYES ONO 

[If you answer YES to a, you should be prepared to adapt 
the application to accommodate the Alpha page size, which 
is much larger than 512 bytes and varies from system 
to system. Avoid hardcoded references to the page size; 
rather, use memory management system services and RTL 
routines wherever possible. If you answer YES to b, you 
should examine all calls to the $CRMPSC and $MGBLSC 
system services that map disk sections to memory and 
remove these assumptions.] 

16. Does the application call Open VMS system services? DYES ONO 
Specifically, services that: 

a. Create or map global sections (such as $CRMPSC, 
$MGBLSC, $UPDSEC) 

DYES ONO 

b. Modify the working set (such as $LCKPAG, $LKWSET) DYES ONO 
c. Manipulate virtual addresses (such as $CRETVA, 
$DELTVA) 

DYES ONO 

[If you answer YES to any of these, you may need to 
examine your code to determine that it specifies the 
required input parameters correctly.] 

17. a. Does the application use multiple, cooperating processes? DYES ONO 
If so: 
b. How many processes? 

c. What interprocess communication method is used? 

0$CRMPSC D Mailboxes oscs D Other 

DDLM 0SHM, IPC 0SMG$ 0STR$ 

d. If you use global sections ($CRMPSC) to share data with 
other processes, how is data access synchronized? 
[This will help you determine whether you will need to use 
explicit synchronization, and the level of effort required 
to guarantee synchronization among the parts of your 
application. Use of a high-level synchronization method 
generally allows you to migrate an application most easily.] 

18. Does the application currently run in a multiprocessor DYES ONO 
(SMP) environment? 

[If you answer YES, it is likely that your application 
already uses adequate interprocess synchronization. 
methods.] 

A-5 



Application Evaluation Checklist 

19. Does the application use AST (asynchronous system trap) DYES ONO 
mechanisms? 
[If you answer YES, you should determine whether the AST 
and main process share access to data in process space. If 
so, you may need to explicitly synchronize such accesses.] 

20. a. Does the application contain condition handlers? DYES ONO 
b. Does the application rely on immediate reporting of DYES ONO 
arithmetic exceptions? 

[The Alpha architecture does not provide immediate 
reporting of arithmetic exceptions. If your handler 
attempts to fix the condition and restart the instruction 
sequence that led to the exception, you will need to alter 
the handler.] 

21. Does the application run in privileged mode or link against DYES ONO 
SYS.STE? 

If so, why? 

[If your application links against the Open VMS executive 
or runs in privileged mode, you must rewrite it for it to 
work as a native Alpha image.] 

22. Do you write your own device drivers? DYES ONO 
[User-written device drivers are not supported in the initial 
release of Open VMS Alpha. Contact your Digital Account 
Representative if you need this feature.] 

23. Does the application use connect-to-interrupt mechanisms? DYES []NO 
If yes, with what functionality? 

[Connect-to-interrupt is not supported on Open VMS Alpha 
systems. Contact your Digital Account Representative if 
you need this feature.] 

24. Does the. application create or modify machine instructions? DYES ONO 
[Guaranteeing correct execution of instructions written to 
the instruction stream requires great care on Open VMS 
Alpha.] 

25. What parts of the application are most sensitive to 
performance? 1/0, floating point, memory, realtime (that is, 
interrupt latency, and so on). 

[This will help you determine how to prioritize work on the 
various parts of your application and allow Digital to plan 
performance enhancements that are most meaningful to 
customers.] 

A-6 



Glossary 

alignment 

See natural alignment. 

atomic instruction 

An instruction that consists of one or more discrete operations that are handled 
by the hardware as a single operation, without interruption. 

atomic operation 

An operation that cannot be interrupted by other system events, such as an AST 
(asynchronous system trap) service routine; an atomic operation appears to other 
processes to be a single operation. Once an atomic operation starts, it always 
completes without interruption. 

Read-modify-write operations are typically not atomic at an instruction level on a 
RISC machine. 

byte granularity 

A property of memory systems in which adjacent bytes can be written 
concurrently and independently by different processes or processors. 

CISC 

See complex instruction set computer. 

compatibility 

The ability of programs written for one type of computer system (such as 
Open VMS VAX) to execute on another type of system (such as Open VMS Alpha). 

complex instruction set computer {CISC) 

A computer that has individual instructions that perform complex operations, 
including complex operations performed directly on locations in memory. 
Examples of such operations include instructions that do multibyte data moves or 
substring searches. CISC computers are typically contrasted with RISC (reduced 
instruction set computer) computers. 

concurrency 

Simultaneous operations by multiple agents on a shared object. 

cross development 

The process of creating software using tools running on one system, but targeted 
for another type of system; for example, creating code for Alpha systems using 
tools running on a VAX system. 

Glossary-1 



Glossary-2 

granularity 

A characteristic of storage systems that defines the amount of data that can be 
read or written with a single instruction, or read or written independently. VAX 
systems have byte or multibyte granularities while disk systems typically have 
512-byte or greater granularities. 

image information file (llF) 

An ASCII file that contains information about the interface between VAX images. 
VEST uses IIFs to resolve references to other images and to generate the 
appropriate linkages. 

image section 

A group of program sections with the same attributes (such as read-only access, 
read/write access, absolute, relocatable, and so on) that is the unit of virtual 
memory allocation for an image. 

interlocked instruction 

An instruction that performs some action in a way that guarantees the complete 
result as a single, uninterruptible operation in a multiprocessing environment. 
Since other potentially conflicting operations can be blocked while the interlocked 
instruction completes, interlocked instructions can have a negative performance 
impact. 

jacket routine 

A procedure that converts procedure calls from one calling standard to another; 
for example, calls between translated VAX images, which use the VAX calling 
standard, and native Alpha images, which use the Alpha calling standard. 

load/store architecture 

A machine architecture in which data items are first loaded into a processor 
register, then operated on, and finally stored back to memory. No operations on 
memory other than load and store are provided by the instruction set. 

longword 

Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits 
are numbered from right to left, 0 to 31. The address of the longword is the 
address of the byte containing the low-order bit (bit 0). A longword is naturally 
aligned if its address is evenly divisible by 4. 

multiple instruction issue 

Issuing more than one instruction during a single clock cycle. 

natural alignment 

Data storage in memory such that the address of the data is evenly divisible by 
the size of the data in bytes. For example, a naturally aligned longword has an 
address that is evenly divisible by 4, and a naturally aligned quadword has an 
address that is evenly divisible by 8. A structure is naturally aligned when all its 
members are naturally aligned. 

page size 

The number of bytes that a system's hardware treats as a unit for address 
mapping, sharing, protection, and movement to and from secondary storage. 



page let 

A 512-byte unit of memory in an Alpha environment. On Alpha systems, certain 
DCL and utility commands, system services, and system routines accept as input 
or provide as output memory requirements and quotas in terms of pagelets. 
Although this allows the external interfaces of these components to be compatible 
with those of VAX systems, Open VMS Alpha internally manages memory only in 
even multiples of the CPU memory page size. 

PA Leo de 

See privileged architecture library. 

privileged architecture library (PAL) 

A library of callable routines for performing instructions unique to a particular 
operating system. Special instructions call the routines, which must run without 
interruption. 

processor status (PS) 

On Alpha systems, a privileged processor register consisting of a quadword of 
information including the current access mode, the current interrupt priority 
level (IPL), the stack alignment, and several reserved fields. 

processor status longword (PSL) 

On VAX systems, a privileged processor register consisting of a word of privileged 
processor status and the processor status word itself. The privileged processor 
status information includes the current interrupt priority level (IPL), the previous 
access mode, the current access mode, the interrupt stack bit, the trace trap 
pending bit, and the compatibility mode bit. 

processor status word (PSW) 

On VAX systems, the low-order word of the processor status longword. Processor 
status information includes the condition codes (carry, overflow, 0, negative), 
the arithmetic trap enable bits (integer overflow, decimal overflow, floating 
underflow), and the trace enable bit. 

program counter (PC) 

That portion of the CPU that contains the virtual address of the next instruction 
to be executed. Most current CPUs implement the program counter as a register. 
This register is visible to the programmer through the instruction set. 

quadword 

Four contiguous words (64 bits) starting on any addressable byte boundary. 
Bits are numbered from right to left, 0 to 63. The address of a quadword is the 
address of the word containing the low-order bit (bit 0). A quadword is naturally 
aligned if its address is evenly divisible by 8. 

quadword granularity 

A property of memory systems in which adjacent quadwords can be written 
concurrently and independently by different processes or processors. 

read-modify-write operation 

A hardware operation that involves the reading, modifying, and writing of a piece 
of data in main memory as a single, uninterruptible operation. 

Glossary-3 



Glossary-4 

read-write ordering 

The order in which memory on one CPU becomes visible to an execution agent (a 
different CPU or device within a tightly coupled system). 

reduced instruction set computer {RISC) 

A computer that has an instruction set reduced in complexity, but not necessarily 
in the number of instructions. RISC architectures typically require more 
instructions than CISC architectures to perform a given operation, because an 
individual instruction performs less work than a CISC instruction. 

RISC 

See reduced instruction set computer. 

synchronization 

A method of controlling access to some shared resource so that predictable, well­
defined results are obtained when operating in a multiprocessing environment or 
in a uniprocessing environment using shared data. 

translated code 

The native Alpha object code in a translated image. Translated code includes: 

• Alpha code that reproduces the behavior of equivalent VAX code in the 
original image 

• Calls to the Translated Image Environment (TIE) 

translated image 

An Alpha executable or shareable image created by translation of the object code 
of a VAX image. The translated image, which is functionally equivalent to the 
VAX image from which it was translated, includes both translated code and the 
original image. See VAX Environment Software Translator. 

Translated Image Environment {TIE) 

A native Alpha shareable image that supports the execution of translated 
images. The TIE processes all interactions with the native Alpha system and 
provides an environment similar to Open VMS VAX for the translated image by 
managing VAX state; by emulating VAX features such as exception processing, 
AST delivery, and complex VAX instructions; and by interpreting untranslated 
VAX instructions. 

translation 

The process of converting a VAX binary image to an Alpha image that runs with 
the assistance of the TIE on an Alpha system. Translation is a static process that 
converts as much VAX code as possible to native Alpha instructions. The TIE 
interprets any untranslated VAX code at run time. 

VEST 

See VAX Environment Software Translator. 

VAX Environment Software Translator {VEST) 

A software migration tool that performs the translation of VAX executable 
and shareable images into translated images that run on Alpha systems. See 
translated image. 



word granularity 

A property of memory systems in which adjacent words can be written 
concurrently and independently by different processes or processors. 

writable global section 

A data structure (for example, FORTRAN global common) or shareable 
image section potentially available to all processes in the system for use in 
communicating between processes. 

Glossary-5 





A 
Access modes 

inner, 2-6 
__ ADD_ATOMIC_LONG built-in, 12-7 
__ ADD_ATOMIC_QUAD built-in, 12-7 
$ADJWSL system service 

page-size dependencies, 6-2 
Alignment 

See Data alignment 
Allocating memory 

by expanding virtual address space 
page-size dependencies, 6-6 

freeing allocated memory 
page-size dependencies, 6-9 

page-size dependencies, 6-6 
reallocating existing virtual addresses 

page-size dependencies, 6-8 
specifying address ranges, 6-8 
specifying page counts, 6-6 
using the $CRETVA system service, 6-9 
using the $EXPREG system service, 6-7 

Alpha architecture 
compared to other RISC architectures, 1-5 to 

1-7 
compared to VAX, 1-4 
general description, 1-4 

Alpha instructions 
accessing from DEC C, 12-6 

Analyze/Image utility (ANALYZE/IMAGE), 4-6 
Analyze/Object utility (ANALYZE/OBJECT), 4-6 
Analyzing an application, 2-18 to 2-20 

AND ATOMIC_LONG built-in, 12-7 
==AND=ATOMIC_QUAD built-in, 12-7 
AP 

See Argument pointer (AP) 
Application Migration Detailed Analysis Service, 

1-10 
Application Migration Service, 1-10 
Applications 

analyzing, 2-18 to 2-20 
assessing portability, 1-7 
establishing baseline values for, 4-12 
languages used, A-3 
size, A-3 
VAX dependency checklist, 2-7 

Architecture 
dependencies, 2-7 

ARCH_NAME keyword 
determining host architecture, 5-5 

ARCH_TYPE keyword 
determining host architecture, 5-4 

Argument lists 
accessing from DEC C, 12-7 

Argument pointer (AP), 2-16 
Arithmetic exceptions, 2-15 to 2-16 -

condition handler for, 2-16 
on Alpha systems, 9-8 
precise 

VEST qualifiers, 2-24 
Assembly language 

Index 

no performance advantage on Alpha, 2-6 
replaced by system services, 2-6 

AST parameter list 
reliance on architectural details of, 2-18 

ASTs (asynchronous system traps), 1-6, A-6 
sharing data, 2-11 
synchronizing with, 2-12 

AST service routines 
dependence on parameter list, 2-8, 2-18 

Asynchronous system traps 
See ASTs 

Atomic instructions 
effect on synchronization, 7-2 

Atomicity 
DEC C support, 12-6 
definition, 2-11 
language constructs to guarantee, 2-12 
of byte and word write operations, 2-12, 2-22 
of read-modify-write operations, 2-22, 3-5 
preserving in translated images, 7-10 
provided by PALcode, 1-6 

B 

VEST qualifiers 
instruction, 2-23 
memory, 2-23 

Based images, 2-5 
Baseline values for application 

establishing, 4-12 

lndex-1 



BASIC 
translated images, 10-10 

BLAS$ functions invoked by translated images, 
10-10 

BLASlRTL translated library, 10-10 
/BPAGE linker qualifier 

linking VAX images to be translated, 2-24, 
11-4 

Buffer sizes 
in mixed-architecture VMScluster system, 2-8 

Bugs 
latent, 4-13 

Build procedures, 2-2 
changes required, 1-1 

Byte granularity, 2-12, 2-22 
effect on synchronization, 7-2 
specifying, 2-13 

c 
c 

header files for defining macros, 4-5 
LIB$ESTABLISH, 9-1, 12-8 

Call frames 
interpreting contents of, 2-16 

Calling standard 
call frame stack, 3-5 
reliance on, 2-16 

Calls 
nonstandard 

writing jacket routines for, 2-25 
CALLx VAX instruction, 2-25 
Choosing a migration method, 2-3, 2-22 
CLUE (Crash Log Utility Extractor) 

See Crash Log Utility Extractor 
$CMEXEC system service, 2-6 
$CMKRNL system service, 2-6 
CMS (Code Management System), 2-2, 4-2 
COBOL 

fast performance, 2-10 
packed decimal data, 2-10 

COBOL programs support, 10-12 
Code Management System 

See CMS 
Code reviews, 2-19 
Command procedures, 1-1 
Compatibility 

granularity specified by compiler, 2-13 
mixing native and translated images, 1-9 
Open VMS VAX and Open VMS Alpha, 1-1 to 

1-3 
using translation for, 1-8, 2-23 

Compile commands 
changes required, 4-4 

Compile procedures, 4-2 

lndex-2 

Compilers 
architectural differences, 4-5 
availability on Alpha, 2-3, 4-4 
availability on Alpha systems, 5-1 
BLISS, 4-10 
commands, 4-4 
compatibility between compilers on VAX 

systems and on Alpha systems, 12-1 to 
12-39 

data alignment defaults, 2-22 
differences, 12-1 
messages generated by, 2-19 
native Alpha, 2-3, 4-4 
optimizing, 4-4 
options 

exception reporting, 2-16 
PALcode built-ins, 1-6 
qualifiers, 1-1 
qualifiers for VAX dependencies, 4-4 
specifying granularity, 2-13 
use of LIB$ESTABLISH routine, 9-1 

Conditional compilation directives 
DEC C incompatibility with VAX C, 12-9 

Condition code 
matching, 9-6 

Condition handlers, 2-8, A-6 
arithmetic exceptions, 2-16 
establishing dynami.c, 2-17, 9-1, 12-8, 12-29, 

12-37 
Condition handling 

alignment fault reporting, 9-10 
arithmetic exceptions, 9-8 
condition codes, 9-6 
enabling overflow detection, 9-12 
hardware exception conditions, 9-7 
mechanism array format, 9-3 
on Alpha systems, 9-1 
run-time library support routines, 9-11 
signal array format, 9-2 
specifying condition handlers, 9-12 
unwinding, 9-5 
VAX hardware exceptions, 9-7 
with translated images, 9-7 
writing condition handlers, 9-2 

Connect-to-interrupt mechanisms, A-6 
CPU keyword 

determining the host architecture, 5-5 
Crashes 

analyzing, 4-11 
Crash Log Utility Extractor (CLUE), 4-12 
$CREPRC system service 

page-size dependencies, 6-2 
$CRETVA system service, A-5 

code example, 6-9 
page-size dependencies, 6-2 
reallocating memory on an Alpha system, 6-8 



$CRMPSC system service, 2-6, 2-14, A-5 
mapping a single page section 

D 

page-size dependencies, 6-12 
mapping into a defined address range 

code example, 6-14 
page-size dependencies, 6-13 

page-size dependencies, 6-2 
used to map into expanded virtual address 

space 
code example, 6-11 
page-size dependencies, 6-10 

Data 
See also Data alignment 
ODS-1 format not supported in Alpha, 1-2 
ODS-2 format unchanged, 1-2 
porting between Digital Fortran for Open VMS 

Alpha and DEC Fortran for OpenVMS VAX 
Systems, 12-35 

shared 
access, 2-7 
unintentional sharing, 7-8 

Data alignment, 2-9 to 2-10, 2-12, 2-22, A-4 
compiler defaults, 2-22 
compiler options, 2-9, 2-10 
DEC Ada support, 12-2 
DEC COBOL support, 12-14 

default alignment, 12-15 
DEC C support, 12-7 
DEC Pascal support, 12-37 
exception reporting, 9-10 
finding unaligned data, 2-9 
global sections, 2-5 
incompatibility with translated software, 2-10 
performance, 2-9, 2-22 
run-time faults, 2-20 
static unaligned data, 2-19 
unaligned stack operations, 2-19 
VEST qualifiers, 2-23 

Databases 
same function on Alpha, 1-3 

Data packing, 2-7 
Data types, 2-10 to 2-11 

Alpha implementations, 2-10 
decimal, 2-10 
differences between Digital Fortran for 

OpenVMS Alpha and DEC Fortran for 
OpenVMS VAX Systems, 12-35 

D_floating, 1-6, 2-11, 2-19, 2-22 
full precision, 1-3, A-4 
in mixed-architecture clusters, 3-3, 3-4 

G_floating, 1-3, 2-11, 2-22 
H_floating, 1-3, 1-6, 2-7, 2-10, 2-19, 2-22, 

A-4 
IEEE formats, 2-11 

little endian, 1-2 

Data types (cont'd) 
packed decimal, 2-19, 2-22 
portability between VAX and Alpha systems, 

8-1 
supported by Alpha architecture, 8-1 
supported by VAX architecture, 8-1 

Data-type sizes 
DEC C portability macros, 12-5 
effect on protection of shared data, 7-9 
supported by DEC C, 12-5 

DCL (DIGITAL Command Language), 1-1 
Debugger, 4-8 to 4-11 

Delta/XDelta, 4-10 
detecting unaligned data, 2-10 
native Alpha, 4-6 
OpenVMS, 4-9 
System Code Debugger, 4-10 

Debugging, 4-6, 4-8 to 4-11 
on Alpha hardware only, 4-8 
restrictions on Alpha systems, 4-9 
translated images, 4-10 

DEC Ada 
compatibility with VAX Ada, 12-1 
language pragma support on Alpha systems, 

12-2 
system package support on Alpha systems, 

12-3 
DECC 

accessing Alpha instructions, 12-6 
accessing VAX instructions, 12-6 
ANSI conformance, 12-4 
atomicity built-ins, 12-6 
64-bit capabilities, 12-5 
compatibility modes, 12-4 
controlling data alignment, 12-7 
data-type-size portability macros, 12-5 
establishing dynamic condition handler, 12-8 
features specific to Alpha systems, 12-6 
specifying floating-point formats, 12-5 
/STANDARD qualifier, 12-4 
supported data-types, 12-5 
support for pee mode, 12-4 
VAX C mode, 12-4 

incompatibilities with VAX C, 12-9 
DEC C for Open VMS Alpha systems 

See DEC C 
DEC COBOL 

ACCEPT statement differences, 12-25 
/ALIGNMENT qualifier, 12-14 
/CHECK qualifier, 12-15 
command line qualifiers not supported by 

VAX COBOL, 12-12 
command line qualifiers shared with 

VAX COBOL, 12-11 
compatibility modes, 12-17 
compatibility with VAX COBOL, 12-10 
compiler messages, 12-20 
controlling data alignment, 12-14 

lndex-3 



DEC COBOL (cont'd) 
/CONVERT=LEADING_BLANKS qualifier, 

12-15 
converting VAX COBOL programs, 12-20 
COPY statement differences, 12-21 
defining storage for return values, 12-27 
differences in program structure, 12-20 
DISPLAY statment differences, 12-25 
EXIT PROGRAM statement, 12-18 
file status differences, 12-26 
/FLOAT qualifier, 12-16 
I/O file status codes, 12-18 
LINAGE statement differences, 12-25 
listing file differences, 12-24 
MOVE statement differences, 12-24 
moving unsigned data items, 12-24 
no valid next record condition, 12-19 
/OPTIMIZE qualifier, 12-16 
register set differences, 12-26 
relationship to DEC SMG (Screen Manager), 

12-25 
REPLACE statement differences, 12-23 
/RESERVED_ WORDS qualifier, 12-16 
RMS special registers, 12-27 
/STANDARD=OPENVMS_Alpha qualifier 

option, 12-20 
/STANDARD qualifier, 12-17 
support for ANSI 197 4 standard, 12-17 
support for ANSI 1985 standard, 12-17 
support for Version 3, 12-17 
system return codes, 12-26 
/TIE qualifier, 12-20 
unreachable code analysis, 12-21 
using data alignment directives, 12-15 
validating numeric data, 12-15 
/WARNINGS=STANDARD qualifier support, 

12-19 
WRITE statement, 12-25 
X/Open reserved words list, 12-16 

DECforms, 1-1 
DEC Fortran for Open VMS Alpha 

compatibility with DEC Fortran for Open VMS 
VAX Systems 
architectural differences, 12-31 
command line, 12-32 
interpretation differences, 12-31 
porting data, 12-35 
restrictions, 12-30 

establishing dynamic condition handler, 12-29 
instrinsic names 

prefixes, 12-35 
interoperability considerations, 12-34 
LIB$ESTABLISH routine, 9-1, 12-29 
LIB$REVERT routine, 9-1, 12-29 
performing I/O from native and translated 

images, 12-35 
porting data, 12-35 

lndex-4 

DEC Fortran for OpenVMS Alpha (cont'd) 
qualifiers not available in DEC Fortran for 

OpenVMS VAX Systems, 12-32 
qualifiers specific to DEC Fortran for Open VMS 

VAX Systems, 12-33 
support for floating-point data types, 12-35 

DECmigrate 
See also Translated Image Environment (TIE) 

and Translated image support 
support for translated images, 10-2 
VEST, 10-2 

DECmigrate utility 
VEST command /PRESERVE qualifier, 7-10 

DEC Pascal 
compatibility with VAX Pascal, 12-38 
differences with VAX Pascal, 12-35 
establishing dynamic condition handler, 12-37 
/G_FLOATING qualifier, 12-39 
identifiers included for compatibility, 12-37 
LIB$ESTABLISH routine, 9-1, 12-37 
new features, 12-36 
obsolete features, 12-38 
/OLD_ VERSION qualifier, 12-38 
OVERLAID attribute, 12-39 
specifying floating-point format, 12-39 
support for data alignment, 12-37 

DECset, 4-6 
DECthreads 

.H file support, 12-9 
DECwindows, 1-1 
Delta/XDelta Debugger (DELTAIXDELTA), 4-8 

See also Debugger 
OpenVMS Alpha, 4-10 

$DELTVA system service, A-5 
freeing allocated memory 

page-size dependencies, 6-9 
page-size dependencies, 6-3 

Dependencies on other software 
identifying, 2-1 

$DEQ system service, 2-12, 2-15 
Device configuration functions 

in SYSMAN for Alpha, 1-2 
Device drivers, 2-5 

debugging, 4-10 
Step 1 interface, 1-6 
Step 2 interface, 1-6 
user-written, 1-6, 2-6, A-6 
written in C, 1-6 

Diagnostic features 
compilers, 2-18 
VEST, 2-18 

DIGITAL Command Language 
See DCL 

Digital Fortran for Open VMS Alpha 
compatibility with DEC Fortran for Open VMS 

VAX Systems, 12-28 
language features, 12-28 



Digital Fortran for Open VMS Alpha (cont'd) 
differences with DEC Fortran for OpenVMS 

VAX Systems, 12-28 
Digital Portable Mathematics Library 

See DPML 
Disk block size 
· relation to page size, 2-14 
DMA controller, 2-13 
DPML (Digital Portable Mathematics Library) 

compatibility, 5-4 
Dump files 

See System dump files 
Dynamic condition handler 

establishing, 2-17 
D_floating data type, 1-3, 1-6, 2-11, 2-19, 3-3 

in mixed-architecture clusters, 3-4 

E 
Editors 

unchanged for Alpha, 1-1 
$ENQ system service, 2-12, 2-15 
Evaluating code, 1-7 

checklist, A-1 
Exception handling 

See Condition handling 
Exception reporting, 2-15 to 2-16, 3-5, 3-7 

compiler options, 2-16 
immediacy of, A-6 
imprecise, 2-15 
precise, 2-15, 2-23 
reliance on architectural details of, 2-17 

Executive images 
slicing, 4-11 

$EXPREG system service 

F 

allocating memory on Alpha systems, 6-6 
code example, 6-7 
page-size dependencies, 6-3 

File types 
on Alpha systems, 5-2 

Flag-passing protocols 
for synchronization, 2-15 

Floating-point data types 
comparison of VAX and Alpha types, 2-7, 

12-35 
converting H_floating data, 12-35 
CVT$CONVERT_FLOAT RTL routine, 12-35 
DEC COBOL storage differences, 12-27 
differences between DEC Fortran for Open VMS 

VAX Systems and Digital Fortran for 
Open VMS Alpha, 12-35 

locating references, 2-19 
specifying in DEC COBOL, 12-16 
supported by DEC Ada, 12-2 

Floating-point data types (cont'd) 
supported by DEC C, 12-5 
supported by DEC Pascal, 12-39 
VAX little-endian formats, 12-35 

/FLOAT qualifier 
specifying floating-point format in DEC C, 

12-5 
Fortran 

/CHECK qualifier, 2-18 
qualifier needed for translated image support, 

10-6 
free routine 

memory allocation, 6-1 

G 
Generating VAX instructions at run time, 2-5, 

2-18, 2-24, 3-5, 3-7 
$GETJPI system service 

page-size dependencies, 6-4 
$GETQUI system service 

page-size dependencies, 6-4 
$GETSYI system service, 2-14 

determining host architecture, 5-4 
obtaining the system page size, 6-20 
page-size dependencies, 6-4 

$GETUAI system service 
page-size dependencies, 6-4 

Global sections 
alignment of, 2-5 
creating, A-5 
mapping, A-5 
writable, 2-11 

Global symbol tables 
See GSTs 

Granularity, 2-10, 2-12 to 2-14 
byte, 2-12 
of byte and word operations, 2-22, 2-24, 3-5 
quadword, 2-12 
specifying by compiler, 2-13 
VEST qualifiers 

memory, 2-24 
GSTs (Global symbol tables), 2-25 
G_floating data type, 1-3, 2-11 

H 
Heap Analyzer, 4-8 
.H files 

from SYS$STARLET_C.TLB to support 
DECthreads, 12-9 

provided by SYS$STARLET_C.TLB, 12-9 
HW _MODEL keyword 

determining the host architecture, 5-5 
H_floating data type, 1-3, 1-6, 2-7, 2-10, 2-19 

lndex-5 



IEEE data types 
little endian, 1-2 

IEEE floating-point data types, 2-11 
specifying in DEC COBOL, 12-16 
supported by DEC Ada, 12-2 
supported by DEC C, 12-5 

IIFs (image information files), 10-3 
provided with Alpha software, 10-6, 10-8 

Image information files 
See IIFs 

Images 
creating, 5-2 
translated 

condition handling, 9-7 
creating, 11-1 
preserving atomicity in, 7-10 
replacing with native Alpha image, 11-6 
using in a link operation, 11-4 

Imprecise exception reporting, 2-15 
inadr argument 

used with $CRETVA system service, 6-8 
Include files 

for C programs, 4-2 
Initializing data structures 

DEC C incompatibility with VAX C, 12-10 
Inner access modes, 2-5, 2-6 
INSQUEx instruction 

accessing from DEC C, 12-6 
Instructions 

atomicity, 2-11 to 2-12 
provided by PALcode, 1-6 
VEST qualifiers, 2-23 

memory barrier, 2-15 
multiple instruction issue, 1-5 
out-of-order completion, 1-6 
parallel execution, 1-6 

Instruction stream 
inspecting, 2-5 

Interlocked instructions 
supported by DEC C, 12-7 

Interoperability 
between native and translated images, 10-2 
compile-time considerations, 11-2 
compiling native Alpha images, 11-1 
confirming, 4-13 
controlling the layout of symbol vectors, 11-6 
creating native images that can be called by 

translated images, 11-5 
creating native images that can call translated 

images, 11-2 
creating stub images, 11-8 
DEC COBOL support, 12-20 
linking native Alpha images, 11-2 
of native Alpha and translated images, 1-9, 

2-20, 2-24 

lndex-6 

Interoperability (cont'd) 
of translated and native images, 11-1 
using the /BPAGE qualifier, 11-4 

Interrupt priority level 
See IPL 

IPL (interrupt priority level) 
elevated, 2-5 
retained on Alpha, 1-6 

J 
Jacket routines, 2-25, 4-7 

created automatically, 2-25 
creating stub images, 11-8 
writing for nonstandard calls, 2-25 

JSB VAX instruction, 2-25 

L 
Languages, programming 

See programming languages 
$LCKPAG system service, A-5 

page-size dependencies, 6-4 
LIB$ESTABLISH routine, 2-17, 9-1, 12-8, 

12-29, 12-37 
support on Alpha systems, 9-12 

LIB$FIND_IMAGE_SYMBOL routine, 10-5 
LIB$FREE_ VM_PAGE routine 

page-size dependencies, 6-6 
LIB$GET_ VM_PAGE routine 

page-size dependencies, 6-6 
LIB$MATCH_COND routine, 9-6 
LIB$REVERT routine, 2-17, 12-29 
Librarian utility (LIBRARIAN) 

native Alpha, 4-6 
Library (LIB$) routines, 2-12 

LIB$ESTABLISH, 2-17 
LIB$REVERT, 2-17 
not on Alpha, 1-2 

Link commands 
changes required, 4-4 

Linker utility 
/BPAGE option, 2-24 
commands, 4-4 
default page size, 4-4 
features specific to OpenVMS Alpha, 5-2 
native Alpha, 4-6 
/NONATIVE_ONLY option, 2-25 
options file changes, 1-1 

Linking 
creating native Alpha images, 5-2 
creating native images that can call translated 

images, 11-2 
Link procedures, 4-2 
Little-endian data types, 1-2 



$LKWSET system service, A-5 
page-size dependencies, 6-4, 6-21 

Load locked instruction (LDxL), 7-3 
Load/store operations, 1-5 
Locking mechanisms 

for accessing byte variables, 2-13 
Locking pages 

page-size dependencies, 6-21 
Locking services 

$DEQ, 2-12, 2-15 
$ENQ, 2-12, 2-15 

Logical names 

M 

for tools and files, 4-2 
run-time libraries, 10-10 
systemwide definitions, 10-8 

Machine instructions 
creating, A-6 

MACR0-32 compiler, 4-5 
MACR0-64 assembler, 4-6 
MACRO code 

replacing, A-3 
malloc routine 

memory allocation, 6-1 
Managing code migration, 1-8 
Mapping memory 

See Memory mapping 
Mapping sections 

into expanded virtual address space 
page-size dependencies, 6-10 

mapping a single page 
page-size dependencies, 6-12 

mapping into a defined address range 
page-size dependencies, 6-13 

page-size dependencies, 6-10 
MAT functions used by translated BASIC images, 

10-10 
Mathematic routines 

compatibility, 5-4 
MB instruction 

accessing from DEC C, 12-6 
Mechanism array 

format, 9-3 
reliance on architectural details of, 2-17 
using the depth argument, 9-5 

/MEMBER_ALIGNMENT qualifier 
controlling data alignment in DEC C, 12-7 

Memory allocation 
by expanding virtual address space 

page-size dependencies, 6-6 
finding page-size dependencies in, 6-6 
freeing allocated memory 

page-size dependencies, 6-9 
page-size dependencies, 6-1 
reallocating existing virtual addresses 

Memory allocation 
reallocating existing virtual addresses (cont'd) 

page-size dependencies, 6-8 
specifying address ranges, 6-8 
specifying page counts, 6-6 
using the $CRETVA system service, 6-9 
using the $EXPREG system service, 6-7 

Memory barrier 
See MB instruction 

Memory barrier instructions, 2-15 
Memory locking 

page-size dependencies, 6-1, 6-21 
Memory management functions 

page-size dependencies, 6-1 
summary, 6-2 to 6-5 

Memory-management system services, 2-14 
Memory mapping 

into expanded virtual address space 
page-size dependencies, 6-10 

mapping a single page 
page-size dependencies, 6-12 

mapping into a defined address range 
page-size dependencies, 6-13 
required changes, 6-16 

page-size dependencies, 6-1, 6-10 
using the $CRMPSC system service, 6-11 

Memory protection 
page-size dependencies, 6-1 
page size granularity, 2-13 

Message utility (MESSAGE) 
native Alpha, 4-6 

$MGBLSC system service, 2-14, A-5 
page-size dependencies, 6-4 

Migrating 
ease of, 1-1 
privileged code, 2-6 
third-party products, 2-2 
user-mode code, 1-1, 1-8 

Migration Assessment Service, 1-10 
Migration methods 

and program architectural dependencies, 2-22 
comparison of, 2-20 
for user-mode code, 1-8 
illustration of, 1-8 
selecting, 2-3, 2-22 

Migration planning 
sample migration plan, 3-1 
services, 1-10 

Migration services 
Application Migration, 1-10 
Application Migration Detailed Analysis, 1-10 
Migration Assessment, 1-10 
System Migration, 1-10 
System Migration Detailed Analysis, 1-10 

Migration tools, 4-2 

lndex-7 



Migration training, 1-11 
how to order, 1-11 

Mixing native Alpha and translated images 
as a stage in migration, 1-9 
possibility of, 1-9 

MMS (Module Management System), 2-2, 4-2 
Module Management System 

See MMS 
MTH$ routines 

compatibility, 5-4 
MTH$ RTL 

double-precision floating-point functions invoked 
by translated images, 10-10 

translated, 10-10 
Multiple instruction issue, 1-5 
Multiprocessing, A-5 

N 
/NATIVE_ONLY qualifier, 11-4, 12-34 

interoperability, 11-2 
Natural alignment of data 

See data alignment 
Network interfaces 

supported on Alpha, 1-3 
/NOMEMBER_ALIGN qualifier 

for DEC C compiler, 3-4 
N onstandard calls 

writing jacket routines for, 2-25 

0 
Open VMS Alpha operating system 

compatibility goals of, 1-1 
diagnostic features, 2-18 

Open VMS Mathematics Run-Time Library 
compatibility, 5-4 

Optimized code, 2-6 
Optimizing compilers, 4-4 
Order information 

migration services, 1-10 
migration training, 1-11 

__ OR_ATOMIC_LONG built-in, 12-7 
__ OR_ATOMIC_QUAD built-in, 12-7 
OTS$CALL_PROC RTL routine 

enabling callbacks to translated images, 11-1 
Overflow detection 

enabling, 9-12 

p 
Packed decimal data type, 2-10, 2-19 
Pagelets 

definition, 6-1 
using with $EXPREG system service, 6-6 

lndex-8 

Page sizes, 1-5, 2-13 to 2-14, 3-5, A-5 
compatibility with Open VMS VAX, 6-1 
dependencies on VAX page size, 6-1 
hard-coded references, 2-14 
memory protection granularity, 2-13, 2-24 
permissive protection, 2-5, 2-22 
relation to disk block size, 2-14 
supported by Alpha systems, 6-1 
using $GETSYI to obtain the page size at run 

time, 6-20 
PALcode (privileged architecture library), 1-6 
Parallel execution of instructions, 1-6 
Parallel Processing Run-Time Library (PPL$) 

routines, 2-12, 2-15 
PCA (Performance and Coverage Analyzer) 

analyzing images, 2-20 
detecting unaligned data, 2-10, 2-20 
identifying critical images, 2-21 

pee 
supported as DEC C compatibility mode, 12-4 

PCs (Program counters), 2-5, 2-15 
in signal array on Alpha systems, 9-3 
modifying, 2-18 

PDP-11 compatibility mode, 2-5 
Performance 

of translated images, 1-9, 10-1 
Performance and Coverage Analyzer 

See PCA 
Performance monitors 

non-Digital, 2-6 
Permissive protection, 2-24 
Planning a migration, 1-8, 2-1 
Porting checklist, 2-7 
#PRAGMA NO_MEMBER_ALIGNMENT, 2-10 
Precise exception reporting, 2-15, 2-23, 2-24 

VEST qualifiers, 2-24 
/PRESERVE=FLOAT_EXCEPTIONS 

translation qualifier needed for TIE condition 
handler, 10-4 

Privileged architecture library 
See PALcode 

Privileged code 
finding with VEST, 2-19 
migrating to Open VMS Alpha, 2-6 

Privileged mode operation, A-6 
Privileged shareable images, 2-6 
Privileged VAX instructions, 2-5 
Procedure arguments 

accessing, 2-16 
Procedure signature blocks 

See PSBs 
Processor modes 

unchanged on Alpha, 1-6 
Processor status longwords 

See PSLs 



Processor status word (PSW), 2-18 
Process space 

used by translated image, 2-5 
Program counters 

See PCs 
Programming languages 

See also specific languages; Compilers 
Ada, 4-4 
BASIC, 4-4 
c, 4-4 

include files, 4-2 
/NOMEMBER_ALIGN qualifier, 3-4 
VOLATILE declaration, 2-12 

C++, 4-4 
COBOL, 4-4 
FORTRAN, 4-4 
LISP, 4-4 
Pascal, 4-4 
PUI, 4-4 
VAX MACRO, 4-4 

Protection 
permissive, 2-24 

PSBs (procedure signature blocks) 
generating, 11-1 

PSLs (Processor status longwords) 
in signal array on Alpha systems, 9-3 

$PURGWS system service 
page-size dependencies, 6-5 

Q 
Quadword granularity, 2-12 

R 
RdbNMS 

same function on Alpha, 1-3 
Read/write operations 

ordering of, 2-14 to 2-15, 2-23 
Read/write ordering, 7-9 

effect on synchronization, 7-3 
Recompiling, 2-18 

changes in compile commands, 4-4 
comparison with translating, 2-20, 2-22 
effect of architectural dependencies, 2-22 to 

2-23 
produces native Alpha image, 4-4 
resolving errors, 4-4 
restrictions, 2-3 
to create native Alpha images, 1-8 

Record Management Services 
See RMS 

Relinking, 4-6 
changes in link commands, 4-4 
to create native Alpha images, 1-8 

REMQUEx instruction 
accessing from DEC C, 12-6 

retadr argument 
used with $CRETVA system service, 6-9 
used with $CRMPSC system service, 6-11 
used with $EXPREG system service, 6-7 

Return addresses 
modifying on stack, 2-16 

Reviewing application code, 2-19 
RISC architecture 

characteristics of, 1-5 to 1-6 
RMS (Record Management Services) 

unchanged for Alpha, 1-2 
Rounding problem and workaround 

in translated images, 10-4 
Running translated images, 10-3 

defining logical names for translated libraries, 
10-3 

Run-time library routines 

s 

accessing the D56 form, 10-10 
calling interface unchanged, 1-2 
different operation on Alpha, 1-2 
LIB$ESTABLISH, 2-17 
LIB$REVERT, 2-17 
page-size dependencies, 6-6 

SDA (System Dump Analyzer utility) 
See System Dump Analyzer utility 

Selecting a migration method, 2-3, 2-22 
Self-modifying code, 2-5 
$SETAST system service, 2-12 
$SETPRT system servic~ 

page-size dependencies, 6-5 
$SETUAI system service 

page-size dependencies, 6-5 
Shareable images 

identifying, 2-1 
linker options file changes required, 1-1 
privileged, 2-6 
replacing a translated image with a native 

image, 11-6 
translated, 2-25 

Shared data, 2-11 
atomicity of, 2-12 
unintentional sharing, 7-8 

SIFs (symbol information files), 11-6 
format, 11-7 

Signal array 
format, 9-2 
reliance on architectural details of, 2-17 

Sliced images, 4-11 
$SNDJBC system service 

page-size dependencies, 6-5 

lndex-9 



Software migration tools, 1-8 
SS$_ALIGN exception, 9-7 

signal array format, 9-10 
SS$_HPARITH exception, 9-7 

signal array format, 9-8 
SS$_INVARG exception 

mapping memory, 6-12 
returned when mapping memory, 6-13 

Stack 
modifying return addresses on, 2-16 

Stack switching, 2-5 
Store conditional instruction (STxC), 7-3 
String constants 

modifying, · 12-9 
Stub images 

creating, 11-8 
Support for migration, 1-10 
Switching stacks, 2-5 
Symbols 

redefining 
DEC C incompatibility with VAX C, 12-10 

Symbol vectors 
controlling the layout of, 11-6 
declaring universal symbols on Alpha systems, 

5-2 
SYMBOL_ VECTOR= option 

interoperability considerations, 11-6 
Synchronization, 7-1 to 7-11 

Alpha compatibility features, 7-3 
and VEST, 2-20 
checking for VAX assumptions, 7-3 
example program, 7-5 
explicit, 2-12 
instructions, 2-23 
latent problems, 2-19 
of interprocess communication, A-5 
of translated images, 7-10 
using flag-passing protocols, 2-15 
using system services, 2-15 
VAX architectural features, 7-2 

SYS$LIBRARY:LIB 
compiling against, 2-6 

SYS$STARLET_C.TLB 
adherence to conventions, 12-9 
functional equivalency to STARLETSD.TLB, 

12-8 
impact on use of "variant_struct" and "variant 

union", 12-8 -
potential impact on LIB structures, 12-8 
potential impact on RMS structures, 12-8 
providing .H files, 12-9 

SYS$UNWIND routine, 9-5 
SYS.STE 

linking against, 2-6, A-6 
SYSGEN (System Generation utility) 

See System Generation utility 

lndex-10 

SYSMAN (System Management utility) 
See System Management utility 

System-Code Debugger, 4-8 
See also Debugger 
OpenVMS Alpha, 4-10 

System Dump Analyzer utility (SDA) 
OpenVMS Alpha, 4-11 

System dump files 
analyzing, 4-11 

System Generation utility (SYSGEN) 
device configuration functions, 1-2 

System information files 
See SIFs 

System library 
compiling against, 2-6 

System Management utility (SYSMAN) 
device configuration functions, 1-2 

System Migration Detailed Analysis Service, 1-10 
System Migration Service, 1-10 
System services 

asynchronous, 2-12 
calling interface unchanged, 1-2 
$CMEXEC, 2-6 
$CMKRNL, 2-6 
$CRETVA, A-5 
$CRMPSC, 2-6, 2-14, A-5 
$DELTVA, A-5 
$DEQ, 2-12, 2-15 
different operation on Alpha, 1-2 
$ENQ, 2-12, 2-15 
$GETSYI, 2-14 
$LCKPAG, A-5 
$LKWSET, A-5 
memory management, 2-14 
memory management functions 

page-size dependencies, 6-2 
$MGBLSC, 2-14, A-5 
protection problems created, A-5 
replacing VAX MACRO code, 2-6 
$SETAST, 2-12 
undocumented, 2-5 
$UPDSEC, A-5 
user-written, 2-6 

System space 
reference to addresses in, 2-5, 2-6 

System symbol table (SYS.STE) 
linking against, 2-6 

Systemwide logical names, 10-8 

T 
TESTBITCCI instruction 

accessing from DEC C, 12-7 
TESTBITSSI instruction 

accessing from DEC C, 12-7 



Text libraries 
portability, 12-10 

Third-party products 
migrating, 2-2 

Threaded code, 2-5 
Threads of execution 

effect on synchronization, 7-1 
TIE$EMULAT_Tv.EXE image, 10-5 
TIE$SHARE shareable image, 10-2 
TIE (Translated Image Environment), 1-2, 4-2, 

10-2, 10-6 
access violation workaround, 10-5 
description, 4-7 
interoperability between native and translated 

images, 10-2 
invoked automatically, 4-7 
restrictions, 10-4 
running translated images, 10-3 
statistics and feedback, 10-3 
system logical names, 10-8 
using trIE qualifier to enable autojacketing, 

10-5 
trIE qualifier 

compiler interoperability qualifier, 11-1 
DEC Fortran for Open VMS Alpha support, 

12-34 
Training, 1-11 
Translated VAX COBOL programs support, 10-12 
Translated Image Environment 

See TIE 
Translated images 

contents, 4-8 
creating, 11-1 
debugging, 4-10 
description, 1-9 
enabling callbacks to, 11-1 
library routine calls, 1-2 
performance of, 1-9, 10-1 
preserving atomicity in, 7-10 
system service calls, 1-2 
using in a link operation, 11-4 

Translated image support, 10-2, 10-6 
See also TIE 
additional qualifier required for FORTRAN, 

10-6 
need for additional steps, 10-6 

Translated VAX C Run-Time Library, 10-11 
functional restrictions, 10-11 
interoperability restrictions, 10-12 

Translating, 1-2, 4-6 
See also VEST 
as a stage in migration, 2-23 
comparison with recompiling, 2-20, 2-22 
effect of architectural dependencies, 2-22 to 

2-23 
for compatibility, 1-8, 2-23 
performance of translated image, 1-9 

Translating (cont'd) 
programs in languages with no Alpha compiler, 

4-4 
restrictions, 2-3 
tools for, 4-7 
type of image produced, 4-8 

Translation 
BASIC images, 10-10 
BLAS$, 10-10 
callers to CRF$FREE_ VM or CRF$GET_ VM, 

10-11 
executable files, 10-6 
images, 10-6 
MTHRTL, 10-10 
run-time libraries, 10-10 

TRAPB instruction 
accessing in DEC C, 12-6 

u 
$ULKPAG system service 

page-size dependencies, 6-5 
$ULWSET system service 

page-size dependencies, 6-5 
Unaligned data 

cause of reduced performance, 1-9 
in dynamic structures, 2-19 
reduced performance, 10-1 
supported under translation, 2-22 

Unaligned variables, 2-19 
Uninitialized variables, 2-19 
Unwinding in exception handlers, 9-5 
$UPDSEC system service, A-5 

page-size dependencies, 6-5 
User-mode images 

slicing, 4-11 
User-written device drivers 

on OpenVMS Alpha systems, 1-6 

v 
Variables 

shared 
atomicity of, 2-12 

unaligned, 2-19 
uninitialized, 2-19 

"variant_struct" 
impact of SYS$STARLET_C.TLB, 12-8 

"variant_ union" 
impact of SYS$STARLET_C.TLB, 12-8 

VAX Ada 
See DEC Ada 

VAX architecture 
dependencies, 2-9 
general description, 1-4 

VAXC 
See DEC C 

lndex-11 



VAX calling standard 
call frame stack, 3-5 
reliance on, 2-16 

VAXCDEF.TLB 
replaced by new files, 12-8 

VAX COBOL 
See DEC COBOL 

VAX dependency checklist, 2-7 
VAX Environment Software Translator 

See VEST 
VAX FORTRAN 

See DEC Fortran for OpenVMS VAX Systems 
VAX instructions 

accessing from DEC C, 12-6 
CALL.x, 2-25 
generating at run time, 2-5, 2-18, 2-24, 3-5, 

3-7 
interlocked instructions 

supported by DEC C, 12-7 
interpreting, 4-7 
JSB, 2-25 
LONGJMP, 3-5 
modifying, 2-18 
privileged instructions, 2-5 
reduced performance, 10-1 
reliance on behavior of, 2-18 

cause of reduced performance, 1-9 
SETJMP, 3-5 
supported in PALcode, 1-6 
vector instructions, 2-5 

VAX MACRO 
See also MACR0-32 compiler 
as compiled language, 2-6 
LIB$ESTABLISH routine, 9-1 
only a migration aid, 2-6 
recompiling on Open VMS Alpha systems, 4-5 
replaced by system services, 2-6 

VAX MACR0-32 compiler, 2-16 
only a migration aid, 2-6 

VAX Pascal 
See DEC Pascal 

VAXscan compiler, 2-3 
Vector instructions, 2-5 
VEST, 10-2 

See also DECmigrate, Translated Image 
Environment (TIE), and Translated image 
support 

VEST (VAX Environment Software Translator), 
1-8, 4-2, 11-4 

analytical ability, 4-8 
and page size, 2-24 
as analysis tool, 2-19 

restrictions, 2-19 
capabilities, 4-7 
creating stub images, 11-8 
/FLOAT=D53_FLOAT qualifier, 2-22 
/fLOAT=D56_FLOAT qualifier, 2-22 

lndex-12 

VEST (VAX Environment Software Translator) 
(cont'd) 

generating VAX instructions, 2-24 
interoperability, 11-1 
/OPTIMIZE=ALIGNMENT qualifier, 2-22, 

2-23 
/OPTIMIZE=NOALIGNMENT qualifier, 2-23 
/PRESERVE=FLOAT_EXCEPTIONS qualifier, 

2-23, 2-24 
/PRESERVE=INSTRUCTION_ATOMICITY 

qualifier, 2-22, 2-23 
/PRESERVE=INTEGER_EXCEPTIONS 

qualifier, 2-23, 2-24 
/PRESERVE=MEMORY _ATOMICITY qualifier, 

2-22,2-24 
/PRESERVE=READ_ WRITE_ORDERING 

qualifier, 2-23 
/PRESERVE qualifier, 7-10, 9-10 
resources required, 4-2 
runs on VAX and Alpha systems, 4-2 
using symbol information files (SIF), 11-6 
warning messages, 3-4 

VEST/DEPENDENCY analysis tool, 2-1, 4-2 
Virtual addresses 

manipulating, A-5 
Volatile attribute 

protecting shared data, 7-3, 7-9 
supported by DEC C, 12-8 

w 
Working set 

modifying, A-5 
Writable global sections, 2-11 



NOTES 



NOTES 



NOTES 



NOTES 


