
OpenVMS Record Management Utilities
Reference Manual

Part Number: AA-PV6QA-TK

Open VMS Record Management
Utilities Reference Manual
Order Number: AA-PV6QA-TK

May 1993

This manual describes the Record Management utilities, including
the Analyze/RMS_File utility, the Convert utility, the Convert/Reclaim
utility, the Create/FDL utility, and the Edit/FDL utility. The manual
also describes the File Definition Language (FDL) facility and the File
Definition Language.

Revi,sion/Update Information: This is a new manual that incorporates
the information formerly contained in
the VMS Analyze I RMS _File Utility
Manual, the VMS Convert and Convert
I Reclaim Utility Manual, and the
VMS File Definition Language Facility
Manual.

Software Version: Open VMS AXP Version 1.5
Open VMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Res~rved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
DECnet, Digital, OpenVMS, RMS-U, RSX-U, RSX-UM, RSX-UM-PLUS, RT-U, VAX, VMS, the
AXP logo, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6027

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface vii

1 Analyze/RMS_File Utility

1.1 Analyzing RMS File Structure Interactively . 1-1
1.2 Using the Analyze/RMS_File Utility with DECnet for Open VMS 1-6
1.3 Handling Error Conditions. 1-7
1.3.1 Nonjournaling Errors. 1-7
1.3.2 Journaling Errors . 1-7

ANALYZE/RMS_FILE Usage Summary................................ 1-9

ANALYZE/RMS_FILE Qualifiers . 1-11
/CHECK.. 1-11
/FDL... 1-11
/INTERACTIVE . 1-12
/OUTPUT... 1-12
/RU_JOURNAL . 1-13
/STATISTICS . 1-14
/SUMMARY . 1-15

ANALYZE/RMS_FILE Commands . 1-16
AGAIN... 1-16
BACK.. 1-16
DOWN... 1-17
DUMP . 1-18
EXIT . 1-18
FIRST . 1-19
HELP.. 1-19
NEXT.. 1-20
POSITION/BUCKET . 1-20
POSITION/RECORD 1-22
REST.. 1-23
TOP... 1-23
UP . 1-23

iii

ANALYZE/RMS_FILE Examples...................................... 1-25

2 Convert Utility

2.1
2.2
2.3
2.4

Output Files
Converting Carriage Control Formats
Using the Convert Utility with DECnet for Open VMS Operations
ExceptionCondilions .. .

2-1
2-3
2-4
2-4

CONVERT Usage Summary . 2-5

CONVERT Qualifiers . 2-6
I APPEND . 2-6
/CREATE . 2-6
/EXCEPTIONS_FILE . 2-7
/EXIT.. 2-7
/FAST_LOAD . 2-8
/FDL... 2-10
/FILL_BUCKETS . 2-10
/FIXED_CONTROL . 2-11
/KEY . 2-12
/MERGE... 2-12
!PAD... 2-13
/PROLOG . 2-14
/READ_CHECK . 2-14
/SHARE . 2-15
/SORT . 2-15
/STATISTICS . 2-17
/TRUNCATE . 2-17
/WORK_FILES... 2-18
/WRITE_CHECK . 2-18

CONVERT Examples . 2-20

3 Convert/Reclaim Utility

3.1 Using the Convert/Reclaim Utility 3-1

CONVERT/RECLAIM Usage Summary . 3-2

CONVERT/RECLAIM Qualifier . 3-3
/STATISTICS . 3-3

4 File Definition Language Facility

iv

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Overview
ACCESS Section .. .
ANALYSIS_ OF _AREA Section
ANALYSIS_ OF _KEY Section
AREA Section .. .
CONNECT Section
DATE Section
FILE Section

4-1
4-2
4-3
4-4
4-6
4-8

4-15
4-16

4.1.8
4.1.9
4.1.10
4.1.11
4.1.12
4.1.13

KEY Section .. .
NETWORK Section ;
RECORD Section .. .
SHARING Section
SYSTEM Section .. .
TITLE and IDENT Attributes

4-25
4-30
4-31
4-35
4-36
4-37

5 Create/FOL Utility

5.1
5.2
5.3

Creating FDL Files
Methods of Creating FDL Files
Creating Data Files

5-1
5-1
5-2

CREATE/FOL Usage Summary . 5-3

CREATE/FOL Qualifier . 5-4
/LOG . 5-4

6 Edit/FD~ Utility

6.1 Creating FDL Files with the Edit/FDL Utility. 6-1
6.1 .1 Validity Rules . 6-1

Edit/FOL Usage Summary . 6-3

EDIT/FOL Qualifiers . 6-4
/ANALYSIS . 6-4
/CREATE . 6-4
/DISPLAY. 6-5
/EMPHASIS . 6-5
/GRANULARITY... 6-6
/NOINTERACTIVE.................. .. 6-7
/NUMBER_KEYS . 6-8
/OUTPUT . 6-8
/PROMPTING 6-9
/RESPONSES. 6-9
/SCRIPT . 6-10

EDIT/FOL Commands . 6-13
ADD... 6-13
DELETE . 6-14
EXIT . 6-14
HELP.. 6-15
INVOKE . 6-15
MODIFY . 6-16
QUIT . 6-17
SET .. ·....... 6-17
VIEW.. 6-18

v

Index

Figures

1-1
1-2
1-3
1-4
1-5
1-6

Tables

4-1

vi

Structure of Sequential Files
Structure of Relative Files
AREA DESCRIPTOR Path
KEY DESCRIPTOR Path
Structure of Primary Records
Data Buckets in the Alternate Index Structures

Maximum Record Size for File Organizations and Record Formats ...

1-2
1-3
1-4

1-5
1-6
1-6

4-34

Preface

Intended Audience
This manual is intended for all programmers who use Open VMS RMS data files,
including high-level language programmers who use only their language's input
and output statements.

Document Structure
Chapter 1 describes the Analyze/RMS_File utility (ANALYZE/RMS_FILE) and
consists of five sections:

• Description-Provides a full description of the Analyze/RMS_File utility.

• Usage Summary-Outlines the following ANALYZE/RMS_FILE information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes ANALYZE/RMS_FILE qualifiers, including format,
parameters, and examples.

• Commands-Describes ANALYZE/RMS_FILE commands, including format,
parameters, and examples.

• Examples-Provides additional ANALYZE/RMS_FILE examples.

Chapter 2 describes the Convert utility (CONVERT) and consists of four sections:

• Description-Provides a full description of the Convert utility.

• Usage Summary-Outlines the following CONVERT information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes the CONVERT qualifiers, including format, parameters,
and examples.

• Examples-Provides additional CONVERT examples.

Chapter 3 describes the Convert/Reclaim utility (CONVERT/RECLAIM) and
consists of four sections:

• Description-Provides a full description of the Convert/Reclaim utility.

• Usage Summary-Outlines the following CONVERT/RECLAIM information:

-Invoking the utility
-Exiting from the utility

vii

-Directing output
-Restrictions or privileges required

• Qualifiers-Describes the CONVERT/RECLAIM qualifier, /STATISTICS.

• Examples-Provides CONVERT/RECLAIM examples implementing the
/STATISTICS qualifier.

Chapter 4 describes in detail the File Definition Language facility (FDL). This
chapter provides an overview and detailed descriptions about the File Definition
Language. It describes in detail each file section and associated file attributes.

Chapter 5 describes the Create/FDL utility (CREATE/FDL) and consists of four
sections:

• Description-Provides a description of the utility.

• Usage Summary-Outlines the following information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes the sole CREATE/FDL qualifier, /STATISTICS.

• Examples-Provides additional examples of implementing CREATE/FDL.

Chapter 6 describes the Edit/FDL utility (EDIT/FDL) and consists of four
sections:

• Description-Provides a description of the Edit/FDL utility.

• Usage Summary-Outlines the following EDIT/FDL information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers-Describes the EDIT/FDL commands and qualifiers, together with
related examples.

• Examples-Provides additional examples of implementing EDIT/FDL.

Associated Documents

viii

The following manuals contain information that relates to the information in this
manual:

• Guide to Open VMS File Applications

• Open VMS Record Management Services Reference Manual

• Open VMS RMS Journaling Manual

Conventions
In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX:

•

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are also used in this manual:

Ctrl/x

()

[]

{}

boldface text

....

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

ix

italic text

UPPERCASE TEXT

numbers

x

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. Non decimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

1
Analyze/RMS_File Utility

The Analyze/RMS_File utility (ANALYZE/RMS_FILE) allows you to examine,
either with or without an interactive terminal dialogue, the internal structure
of a Record Management Services (RMS) file. The Analyze/RMS_File utility can
check the structure of the file for errors, generate a statistical report on the
structure and use of the file, or generate a File Definition Language (FDL) file
from a data file.

The Analyze/RMS_File utility also provides information about RMS Journaling
for Open VMS (RMS journaling) files marked for after-image journaling, before­
image journaling, and, where applicable, information about the state of recovery
units affecting RMS journaling files.

The Analyze/RMS_File utility provides a set of commands that you may use to
analyze a file interactively.

FDL files created with the Analyze/RMS_File utility have special sections that
contain statistics about the structure of the specified data file. You can use FDL
files created with the Analyze/RMS_File utility in conjunction with other Record
Management utilities.

1.1 Analyzing RMS File Structure Interactively
One of the most useful features of the Analyze/RMS_File utility is its interactive
mode. You enter the interactive mode by specifying the /INTERACTIVE qualifier
to the ANALYZE/RMS_FILE command; you then begin an interactive session,
during which you can examine the structure of an RMS file. Enter the HELP
command at the ANALYZE> prompt for help about the various commands
available to you for traversing the file.

The Analyze/RMS_File utility treats the internal RMS file as a multilevel entity.
All RMS files are identical, relative to the first two levels. Level 1 contains the
file header and level 2 contains the file attributes.

Files marked for RMS journaling, level 2, include information relative to
before-image journaling and after-image journaling, where applicable.

Some differentiation occurs at level 3. For sequential files, level 3 is the lowest
level and it contains data records (see Figure 1-1) that ANALYZE/RMS_FILE can
display individually. For relative files and indexed files, level 3 contains the file ·
pro log.

1-1

Analyze/RMS_File Utility
1.1 Analyzing RMS File Structure Interactively

Figure 1-1 Structure of Sequential Files

1-2

File Header

File
Attributes

First Record Second Record • • • Last Record

ZK-0327-GE

For relative files, level 4 contains data buckets that are accessible individually
(see Figure 1-2). Using the Analyze/RMS_File utility, you can view the contents
of each individual data bucket.

For indexed files, the Analyze/RMS_File utility presents you with two options
at level 4: you can proceed down the path that begins with a level of area
descriptors (see Figure 1-3) or you can choose the path that begins with a level of
key descriptors (see Figure 1-4).

Level 5 is the final level in a relative file. This level contains the record cells that
are accessible individually. For indexed files, the contents of level 5 depend on
whether you have chosen the area descriptor path or the key descriptor path:

• If you select the area descriptor path, level 5 is the lowest level and it
contains reclaimed data records-that is, records that are effectively empty
and are available for storing new data.

• If you select the key descriptor path, the Analyze/RMS_File utility gives you
the option of viewing the index root bucket or the data bucket for the selected
key, or traversing the level laterally and viewing another key.

When you choose to view the index root bucket, the next level down contains the
index record for the selected key. After you view the index record, the Analyze
/RMS_File utility provides you with direct access to the first data bucket for the
selected key.

Analyze/RMS_File Utility
1.1 Analyzing RMS File Structure Interactively

Figure 1-2 Structure of Relative Files

File Header

File
Attributes

Pro log

First Data Second ... Last Data
Bucket Data Bucket Bucket

~ "'
First Record Last Record First Record

Cell in ... Cell in Cell in
First Bucket First Bucket Second Bucket

ZK-0328-GE

At the data bucket level, you can either view the data record or traverse the data
level laterally and select another data bucket for the selected key.

The structure of an indexed file is more complicated than that of sequential and
relative files. From the PROLOG level, the structure branches to the AREA
DESCRIPTORs and the KEY DESCRIPTORs. Each AREA DESCRIPTOR
describes the attributes and the virtual block numbers for the different file areas.
The KEY DESCRIPTOR path contains the primary index structures (and data
records) as well as the alternate index structures.

There are two types of record structures: primary records and alternate records.
If you follow the primary index structure (key= 0), you find the primary record
structures, which contain the actual data records (see Figure 1-5). You can
examine the actual bytes of data in the record. If the record has been moved to
another bucket as a result of a bucket split, you can examine the bucket to which
the record reference vector (RRV) points. An RRV is a forwarding pointer that a
record leaves behind in its former bucket location when it moves to a new bucket.

1-3

Analyze/RMS_File Utility
1.1 Analyzing RMS File Structure Interactively

1-4

Figure 1-3 AREA DESCRIPTOR Path

/
Area

Descriptor

Reclaimed
Bucket

File Header

File
Attributes

Pro log

•••

•••

(Key Descriptors)

ZK-0329-GE

Analyze/RMS_File Utility
1.1 Analyzing RMS File Structure Interactively

Figure 1-4 KEV DESCRIPTOR Path

(Area
Descrip tors)

File Header

File
Attributes

Pro log

~
Key

Descriptor

Data
Bucket

Primary or
Alternate
Record

...

~
Index

Root Bucket

Index Record

/
...

ZK-0330-GE

1-5

Analyze/RMS_File Utility
1.1 Analyzing RMS File Structure Interactively

Figure 1-5 Structure of Primary Records

Actual Bytes
of Data

Primary
Record

Bucket
Referenced

by RRV

ZK-0332-GE

If you follow any of the alternate index structures, you find the alternate record
structures, which contain the secondary index data records (SIDRs). A SIDR
consists of an alternate key value and one or more pointers to the actual data
records in the primary index structure (see Figure 1-6).

Figure 1-6 Data Buckets in the Alternate Index Structures

Alternate •••
Record (SIDR)

SIDR •••
Pointer

ZK-0333-GE

1.2 Using the Analyze/RMS_File Utility with DECnet for OpenVMS

1-6

The ANALYZE/RMS_FILE command is supported only for the examination of
files accessible to Open VMS RMS or RMS-11.

You use the ANALYZE/RMS_FILE command over a network to analyze the
internal structure of a remote file in exactly the same way that you use it to
analyze the internal structure of a local file. For example, you can specify the
/FDL qualifier to generate an FDL file from the data file. Using other qualifiers,
you can check the file structure for errors, generate a statistical report on the
file's structure and use, or enter interactive mode to explore the structure of the
file. However, you can specify only one of these qualifiers in each command.

Note that you need the NETMBX privilege to execute the ANALYZE/RMS_FILE
command over a network.

Analyze/RMS_File Utility
1.3 Handling Error Conditions

1.3 Handling Error Conditions
You handle the Analyze/RMS_File utility errors for two general error categories:
nonjournaling errors and journaling errors. Even if you do not have RMS
Journaling software, you may find that you have imported files marked for RMS
Journaling from another system or from other nodes within a VMScluster.

1.3.1 Nonjournaling Errors
If you receive any of the Analyze/RMS_File utility error messages while analyzing
a file interactively, the file has been corrupted by a serious error. Note that the
Analyze/RMS_File utility errors are not listed in the Open VMS system messages
documentation because in all cases the user response to errors signaled by the
Analyze/RMS_File utility is identical, as described in the following paragraphs.

If the application program encounters errors during noninteractive analysis,
the Analyze/RMS_File utility returns to the program, as exit status, the first
occurrence of the most severe error it encounters. For example, if a warning (A)
and two errors (B and C) are signaled, then the first error (B) is placed in the
DCL symbol $STATUS at image exit.

If you have had a hardware problem (for example, a power or disk head failure),
then the hardware most likely caused the corruption.

If you have no hardware problems, then a software error may have been
introduced through either the user software or the system software. First,
verify the user software and computer operations. Possibly, data files may have
been corrupted by a process being stopped abnormally; for example, if a STOP/ID
or DELETE/ENTRY occurs in the midst of data processing.

One test of whether the problem is in the system software is to note the situations
where errors occur. For example, if a particular application uses an unusual I/O
sequence that seems to result in file corruption, it may be that the problem is in
the system software. In a situation like this, you should attempt to reproduce
the problem and note precisely the I/O sequence. This information, together
with appropriate supporting information, should be submitted with a Software
Performance Report (SPR).

In either case, try to fix the problem with the Convert utility, using the same file
specification for both the input file and the output file. If this procedure does not
yield the result you want, use the Backup utility to restore a backup copy of the
file.

1.3.2 Journaling Errors
If RMS Journaling software is not installed on your system and you attempt
to write to a file marked for journaling, the system issues the following error
message:

%RMS-F-JNS, operation not supported by RMS Journaling

If RMS Journaling software is installed and you receive this message, you
attempted an operation that is not supported by RMS Journaling. For more
information on handling RMS Journaling errors, see the Open VMS RMS
Journaling Manual.

1-7

Analyze/RMS_File Utility
1.3 Handling Error Conditions

1-8

To turn off journaling in either case, use the following DCL command:

$ SET FILE/NOAI_JOURNAL/NOBI_JOURNAL/NORU_JOURNAL

Note that the SET FILE commands for turning off journaling are available to
users who do not have RMS Journaling software as well as to users who do.

Another error condition may occur if you import a file marked for recovery-unit
journaling that has active recovery units. This can happen when a file is not
recovered properly before the volume is moved to your system.

If you try to back up the file, RMS issues the following error message:

%BACKUP-E-OPENIN, error opening DISK$DATA: [USER]FILE.DAT;l as input
-SYSTEM-F-RUCONFLICT, another facility has active recovery units on file

To turn off the active recovery units, use the following DCL command:

$ SET FILE/RU_FACILITY=RMS/NORU_ACTIVE

Note that this may leave the file in an inconsistent state with respect to recovery
units because active recovery units are not rolled back (aborted).

ANALYZE/RMS_FILE Usage Summary

Format

The Analyze/RMS_File utility (ANALYZE/RMS_FILE) allows you to examine the
internal structure of an RMS file by performing the following functions:

• Checking the structure of a file for errors.

• Generating a statistical report on the file's structure and use.

• Entering an interactive mode through which you can explore a file's structure.
This analysis can determine whether the file is properly designed for its
application and can point out improvements to make in the file's File
Definition Language (FDL) specification.

• Generating an FDL file from a data file.

• Generating a summary report on the file's structure and use.

• Generating information related to the file's journaling status.

ANALYZE/RMS_FILE filespec[, ...]

filespec[, ...]
Specifies the data file to be analyzed. The default file type is .DAT. You can use
multiple file specifications and wildcard characters with the /CHECK qualifier,
the /RU_JOURNAL qualifier, the /STATISTICS qualifier, and the /SUMMARY
qualifier, but not with the /FDL qualifier or the /INTERACTIVE qualifier.

Usage Summary
Invoke the utility by entering the ANALYZE/RMS_FILE command at the DCL
command level. This command can perform only one of the utility functions at a
time; in other words, you must enter a new ANALYZE/RMS_FILE command each
time you choose a different function.

If you specify the /INTERACTIVE qualifier, exit the Analyze/RMS_File utility
by entering the EXIT command. Otherwise, let the utility run to successful
completion.

If the Analyze/RMS_File utility terminates with an error message, you should
try converting the file and then running the utility again. If the error condition
persists, verify the integrity of the hardware and software. If the hardware
and software appear to be functioning properly, submit a Software Performance
Report (SPR) about the condition.

You can control the Analyze/RMS_File utility output by using the /OUTPUT
qualifier. For a more detailed explanation of the /OUTPUT qualifier, refer to the
ANALYZE/RMS_FILE Qualifiers section.

During the time that you are using the Analyze/RMS_File utility to examine the
system authorization file (SYSUAF.DAT), you prevent other users from logging
in to the system. Similarly, while you are analyzing your mail file, you cannot
receive mail. So if you need to analyze these or other shared files, you may want
to make a copy of the file and analyze the copy to avoid this problem.

1-9

ANALYZE/RMS_FILE Usage Summary

1-10

~~~~~~~~~~~~ Note ~~~~~~~~~~~~ 

If you want to analyze files over a network, you need the NETMBX 
privilege. If you want to analyze journal files using the /RU_JOURNAL 
qualifier, you must have CMEXEC privilege and you must have access to 
the [SYSJNL] directory. 



1.3 Handling Error Conditions 

ANALYZE/RMS_FILE Qualifiers 

/CHECK 

Format 

Description 

Example 

/FOL 

Format 

Description 

This section describes the ANALYZE/RMS_FILE qualifiers and how you use them 
to select the utility functions. Unless otherwise noted, these qualifiers do not take 
a qualifier value. 

Checks the integrity of the file and generates a report of any errors in its 
structure. 

/CHECK 

The report produced by the /CHECK qualifier includes a list of any errors 
and a summary of the file's structure. If you do not specify an output file, the 
report is written to the current SYS$0UTPUT device, which is generally your 
terminal. You can use wildcards and multiple file specifications. If you specify 
/NOOUTPUT, no report is generated; instead, you only get a message indicating 
whether the file has errors. 

The check function is active by default when you use the ANALYZE/RMS_FILE 
command without any qualifiers. The /CHECK qualifier is not compatible with 
the /FDL qualifier, the /INTERACTIVE qualifier, the /STATISTICS qualifier, or 
the /SUMMARY qualifier. 

$ ANALYZE/RMS_FILE/CHECK CUSTFILE 

This command checks the file CUSTFILE.DAT for errors and displays the report 
on the terminal. 

Generates an FDL file describing the RMS data file being analyzed. 

/FOL 

By default, the /FDL qualifier creates a file with the file type .FDL and the same 
file name as the input data file. To assign a different type or name to the FDL 
file, use the /OUTPUT qualifier. If the data file is corrupted, the FDL file contains 
the Analyze/RMS_File utility error messages. 

1-11 



/FOL 

Example 

For indexed files, the FDL file contains special analysis sections you can use 
with the EDIT/FDL Optimize script to make better design decisions when you 
reorganize the file. For more information on these special analysis sections, see 
Chapter 4. 

You cannot use wildcards or multiple file specifications with the /FDL 
qualifier. The /FDL qualifier is not compatible with the /CHECK qualifier, 
the /INTERACTIVE qualifier, the /STATISTICS qualifier, or the /SUMMARY 
qualifier. 

$ ANALYZE/RMS_FILE/FDL ADDRFILE 

This command generates an FDL file named ADDRFILE.FDL from the data file 
ADDRFILE.DAT. 

/INTERACTIVE 

Format 

Example 

/OUTPUT 

Format 

Begins an interactive examination of the file's structure. You cannot use 
wildcards or multiple file specifications. For help with the interactive commands, 
enter the HELP command at the ANALYZE> prompt. 

Do not use this qualifier with /CHECK, /FDL, /STATISTICS, or /SUMMARY. For 
a list of interactive commands, see the ANALYZE/RMS_FILE Commands section. 

/INTERACTIVE 

$ ANALYZE/RMS_FILE/INTERACTIVE SUPPLIERS.DAT 

This command begins an interactive session during which you can examine the 
structure of the data file SUPPLIERS.DAT. 

Identifies the destination file for the results of the analysis. The /NOOUTPUT 
qualifier specifies that no output file is to be created. In all cases, the Analyze 
/RMS_File utility displays a message indicating whether the data file has errors. 

/OUTPUT [=output-filespec] 

/NOOUTPUT 

Qualifier Value 

1-12 

output-ti I es pee 
Identifies the output file for the results of the analysis. The use of the output file 
depends on which of the other qualifiers you specify. 



Examples 

/CHECK 

/FDL 

/INTERACTIVE 

/RU_JOURNAL 

/STATISTICS 

/SUMMARY 

/OUTPUT 

Places the integrity report in the output file. The 
default file type is .ANL, and the default file name is 
ANALYZE. If you omit the output-filespec parameter, 
output is written to the current SYS$0UTPUT device, 
which is generally your terminal. 

Places the resulting FDL specification in the output 
file. The default file type is .FDL, and the default file 
name is that of the input file. 

Places a transcript of the interactive session in the 
output file. The default file type is .ANL, and the 
default file name is ANALYZE. If you omit the output­
filespec parameter, no transcript of your interactive 
session is produced. 

Places the recovery-unit journal information in the 
output file. The default file type is .ANL, and the 
default file name is ANALYZE. If you omit the 
output-filespec parameter, output is written to the 
current SYS$0UTPUT device, which is generally your 
terminal. 

Places the statistics report in the output file. The 
default file type is .ANL, and the default file name is 
ANALYZE. If you omit the output-filespec parameter, 
output is written to the current SYS$0UTPUT device, 
which is generally your terminal. 

Places the summary report in the output file. The 
default file type is .ANL, and the default file name is 
ANALYZE. If you omit the output-filespec parameter, 
output is written to the current SYS$0UTPUT device, 
which is generally your terminal. 

1. $ ANALYZE/RMS_FILE/STATISTICS/OUTPUT=.TXT SEQ.ADD 

This command generates a statistics report named ANALYZE.TXT from the 
data file SEQ.ADD. 

2. $ ANALYZE/RMS_FILE/NOOUTPUT/CHECK PARTS_INVENTORY.DAT 

This command checks the structure of the data file PARTS_INVENTORY.DAT. 
No output is produced except the message telling whether the data file 
contains errors. 

/RU_JOURNAL 

Provides information about recovery-unit journaling where applicable. 

Format 

/RU_JOURNAL 

1-13 



/RU_JOURNAL 

Description 

Example 

/STATISTICS 

Format 

Description 

1-14 

You can use the /RU_JOURNAL qualifier on any file, but it is inoperative on files 
not marked for recovery-unit journaling. 

This qualifier provides the only way of accessing a file that would otherwise be 
inaccessible because of unresolved recovery units. This situation might be the 
result of an unavailable recovery-unit journal file or of unavailable data files that 
were included in the recovery unit. 

To use the /RU_JOURNAL qualifier, your process must have both CMEXEC 
privilege and access to the [SYSJNL] directory (either SYSPRV privilege or access 
for UIC [1,4]). 

This qualifier is compatible with all of the ANALYZE/RMS_FILE qualifiers, and 
you can use it with wildcards and multiple file specifications. 

When you specify the /RU_JOURNAL qualifier, the Analyze/RMS_File utility 
provides you with the following data for each active recovery unit: 

• The journal file specification and the journal creation date 

• The recovery-unit identification, recovery-unit start time, cluster system 
identification number (CSID), and process identification (PID) 

• Information about the files involved in the recovery unit, including the 
file specification, the name of the volume where the file resides, the file 
identification, the date and time the file was created, and the current status 
of the file 

• The state of the recovery unit - active, none, started, committed, or not 
available (for more information, see the Open VMS RMS Journaling Manual) 

• An error statement 

$ ANALYZE/RMS_FILE/RU_JOURNAL SAVINGS.DAT 

This command generates information regarding the journaling status of the data 
file SAVINGS.DAT. 

Specifies that a report is to be produced containing statistics about the file. 

/STATISTICS 

The /STATISTICS qualifier is used mainly on indexed files. 

By default, if you do not specify an output file with the /OUTPUT qualifier, 
the statistics report is written to the current SYS$0UTPUT device, which is 
generally your terminal. 

The /STATISTICS qualifier is not compatible with the /CHECK qualifier, the 
/FDL qualifier, the /INTERACTIVE qualifier, or the /SUMMARY qualifier. 



Example 

/SUMMARY 

Format 

Description 

Example 

/STATISTICS 

$ ANALYZE/RMS_FILE/STATISTICS SEQ.DAT 

This command generates a statistics report from the data file SEQ.DAT and 
displays the report on the current SYS$0UTPUT device, which is generally your 
terminal. 

Specifies that a summary report is to be produced containing information about 
the file's structure and use. 

/SUMMARY 

The /SUMMARY qualifier generates a summary report containing information 
about the file's structure and use. 

If the file has no errors, the output generated from the /SUMMARY qualifier is 
identical to that produced by the /CHECK qualifier. Unlike the /CHECK qualifier, 
however, the /SUMMARY qualifier does not check the structure of your file, so 
output is generated more quickly. 

Do not use this qualifier with the /CHECK qualifier, the /FDL qualifier, the 
/INTERACTIVE qualifier, or the /STATISTICS qualifier. 

$ ANALYZE/RMS_FILE/SUMMARY INVENTORY.DAT 

This command generates a summary report from the data file INVENTORY.DAT 
and displays the report on the current SYS$0UTPUT device, which is generally 
your terminal. 

1-15 



/SUMMARY 

ANALYZE/RMS_FILE Commands 

AGAIN 

Format 

Example 

BACK 

Format 

Parameter 

Description 

1-16 

This section describes the the Analyze/RMS_File utility commands that you use 
in the interactive mode. Unless otherwise noted, these commands do not take 
parameters or qualifiers. 

In the interactive mode, you use various commands to move through the file 
structure, examining its various components. Interactive sessions always begin 
at the FILE HEADER level. 

Redisplays the structure you are currently viewing. 

AGAIN 

FIXED PROLOG 

Number of Areas: 8, VBN of First Descriptor: 3 
Prolog Version 3 

ANALYZE> AGAIN 

FIXED PROLOG 

Number of Areas: 8, VBN. of First Descriptor: 3 
Prolog Version : 3 

This command redisplays the FIXED PROLOG structure. 

Displays a previous structure at the current level, if one exists. 

BACK [n] 

n 
Specifies the number of times that the structure pointer moves back. 

You can use the optional parameter n instead of entering multiple BACK 
commands. For example, the command BACK 6 has the same effect as six BACK 
commands. 



BACK 

Examples 

DOWN 

Format 

1. ANALYZE> BACK 

This command displays the previous structure at the current level. For 
example, if you are currently viewing the second key descriptor of the 
primary key, this command displays the primary key descriptor. 

2. ANALYZE> BACK 3 

This command displays the third structure back at the current level. 

Moves the structure pointer down to the next level. From the FILE HEADER 
level, the first command you enter is the DOWN command, which moves the 
structure pointer to the FILE ATTRIBUTE level. 

DOWN [branch) 

Parameter 

Examples 

branch 
Specifies the branch you want to follow when the current level has several 
branches. If there are several branches from the current level and you do not 
specify a value for the branch parameter, the Analyze/RMS_File utility prompts 
you by displaying a list of possible branches. 

You can also use a question mark after the DOWN command to obtain a list of 
the possible branches. 

1. ANALYZE> DOWN ? 
%ANLRMS-I-DOWNHELP, The following is a list of paths down from this structure: 
%ANLRMS-I-DOWNPATH, AREAS Area descriptors 
%ANLRMS-I-DOWNPATH, KEYS Key descriptors 

This command displays the branches available to you from the current location in 
the file structure. In this case, you can specify the AREAS branch or the KEYS 
branch. 

2. ANALYZE> DOWN AREAS 
AREA DESCRIPTOR #0 (VBN 3, offset %X'0000') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5 
Default Extend Quantity: 2 
Total Allocation: 9 

This command displays information about the descriptor structure for the first 
area in the file. 

1-17 



DUMP 

DUMP 

Format 

Parameter 

Example 

EXIT 

Format 

Example 

1-18 

Displays a hexadecimal dump of the specified virtual block. 

DUMP n 

n 
Specifies the virtual block number from which you want a dump. The number 
can be decimal or hexadecimal. The format for a hexadecimal number is %Xn. 

ANALYZE> DUMP 10 
DUMP OF VIRTUAL BLOCK 10: 

7 6 5 4 3 2 1 0 

73 20 73 27 65 6C 69 66 
65 72 75 74 63 75 72 74 
20 75 6F 59 00 43 00 2E 
20 65 73 75 20 6E 61 63 
66 20 4C 44 46 20 6E 61 
64 6F 72 70 20 65 6C 69 
20 79 62 20 64 65 63 75 
2F 45 5A 59 4C 41 4E 41 
45 4C 49 46 SF 53 4D 52 
74 6F 20 68 74 69 77 20 
20 53 4D 52 20 72 65 68 
65 69 74 69 6C 69 74 75 
20 20 20 20 20 20 00 73 

01234567 

0000 If ile' s s I 
0008 I tructure I 
0010 I •• C. You I 
0018 lean use I 
0020 Ian FDL f I 
0028 I ile prod I 
0030 luced by I 
0038 !ANALYZE/I 
0040 IRMS_FILEI 
0048 I with otl 
0050 lher RMS I 
0058 lutilitie I 
0060 Is. I 

This command shows the first part of a dump of virtual block number (VBN) 10. 
The left column shows the bytes of the block in hexadecimal, read from right to 
left. The middle column shows the byte offset in hexadecimal from the beginning 
of the blocks. In the right column, the character equivalents of each byte are 
displayed. Nonprintable characters are represented by a period (. ). 

Ends an interactive session. 

EXIT 

ANALYZE> EXIT 
$ 

This command terminates the interactive session and returns you to the DCL 
level. 



FIRST 

Format 

Example 

HELP 

Format 

Parameter 

Examples 

FIRST 

Displays the first structure on the current level. 

FIRST 

ANALYZE> FIRST 

If you are examining the primary and alternate key descriptors, this command 
displays the first key descriptor. 

Displays help information about the interactive commands. 

HELP [keyword ... ] 

keyword 
Specifies the interactive command you want help with. 

1. ANALYZE> HELP 

Information available: 

AGAIN 
FIRST 
REST 

BACK 
HELP 
TOP 

DOWN DUMP 
New_f eatures 
UP 

EXIT 
NEXT 

This command shows the available help topics. 

2. Topic? AGAIN 
AGAIN 

File_Structure 
POSITION Radix 

This command displays the current structure one more time. 
Topic? 

This command displays information about the AGAIN command. 

1-19 



NEXT 

NEXT 

Format 

Parameter 

Description 

Examples 

Displays the next structure at the current level, if one exists. Because NEXT is 
the default command, pressing the Return key is equivalent to executing a NEXT 
command. 

NEXT [n] 

n 
Specifies the number of times the structure pointer moves forward. 

You can use the optional parameter n instead of entering multiple NEXT 
commands. For example, the command NEXT 6 has the same effect as six 
NEXT commands (or pressing the Return key six times). 

1. ANALYZE> NEXT 

This command displays the next structure at the current level. For example, 
if you are viewing key descriptors, this command displays the next key 
descriptor. 

2. ANALYZE> NEXT 3 

This command moves the location pointer forward three times. For example, 
if you are viewing the first structure at the current level, this command 
displays the fourth structure. 

POSITION/BUCKET 

Format 

Parameter 

1-20 

Directly positions the structure pointer to a specific bucket of an indexed file or a 
relative file. 

POSITION/BUCKET bucket_vbn [/INDEX=n] 

bucket_vbn 
The virtual block number (VBN) of the selected bucket. If the bucket includes 
more than one block, specify the VBN of the first block. 



Qualifier 

Description 

Example 

POSITION/BUCKET 

/INDEX=n 
Specifies the relative key for the bucket of an indexed file. The /INDEX qualifier 
is necessary only when the index number information is unavailable in the bucket 
header. For example, you use this qualifier to analyze a Prolog 1 or Prolog 2 file 
(no bucket header) or a Prolog 3 file with a corrupted bucket header. You can also 
use this qualifier to override the index number in a Prolog 3 file bucket header. 

The number you use specifies the key. For example, I INDEX=O specifies that the 
bucket is a primary index or primary data bucket, and I INDEX=l specifies that 
the bucket is found in the first alternate index structure. 

The POSITION/BUCKET command lets you position the structure pointer to a 
specific bucket of your file. You can use this command to bypass step-by-step 
positioning. You can also use it to position the structure pointer at a bucket that 
is inaccessible because of structural errors in the file. 

When the structure pointer is positioned at the beginning of the bucket, you can 
step forward or down through the index structure using the NEXT or DOWN 
command. If you enter an UP command when the structure pointer is positioned 
at the beginning of the bucket, the Analyze/RMS_File utility positions the pointer 
to the bucket's key descriptor. If you enter a BACK command when the structure 
pointer is positioned at the beginning of the bucket, the Analyze/RMS_File utility 
displays an appropriate error message and the pointer remains stationary. 

Using the POSITION/BUCKET command allows you to specify a particular 
bucket header from which key descriptor information and valid path information 
are derived. The Analyze/RMS_File utility does not verify that the specified VBN 
is at the beginning block of a bucket. If the Analyze/RMS_File utility displays a 
series of error messages when you enter the POSITION/BUCKET command, it 
may be that the structure pointer is not positioned at the beginning of the bucket, 
or it may be that you specified an incorrect index number with the /INDEX 
qualifier. 

ANALYZE> POSITION/BUCKET 4 
BUCKET HEADER (VBN 4) 

Check Character: %X'93' 
Key of Reference: 0 
VBN Sample: 4 
Free Space Offset: %X'0055' 
Free Record ID: 24 
Next Bucket VBN: 36 
Level: 0 
Bucket Header Flags: 

(0) BKT$V_LASTBKT 0 

This command displays the information for the bucket that begins at VBN4. 
Because this is a Prolog 3 file, you do not have to specify the key using the 
/INDEX=n qualifier. In a Prolog 3 file, the key information is available in the 
bucket header (Key of Reference: 0). 

1-21 



POSITION/RECORD 

POSITION/RECORD 

Format 

Parameter 

Description 

Example 

1-22 

Positions the pointer at a specific record in an indexed or relative file. 

POSITION/RECORD record-offset 

record-offset 
The offset (in bytes) from the beginning of the bucket to the desired record. By 
default, the offset is a decimal number. If you want to use hexadecimal notation 
to specify the offset, use the format %Xn. 

Use this command to display a specific record in the bucket. When the structure 
pointer is positioned at the desired record, you can move it down and forward to 
display the various records in the bucket; you cannot display previous records. 

The POSITION/RECORD command is valid only when you are positioned at a 
bucket header. The command positions the structure pointer at the specified byte 
offset. If the pointer is not positioned at the beginning of a valid record, a series 
of error messages is generated. 

ANALYZE> POSITION/RECORD %XE 
PRIMARY DATA RECORD (VBN 4, offset %X'000E') 

Record Control Flags: 
(2) IRC$V_DELETED 0 
(3) IRC$V_RRV 0 
(4) IRC$V_NOPTRSZ 0 
(5) IRC$V_RU_DELETE 0 
(6) IRC$V_RU_UPDATE 0 

Record ID: 11 
RRV ID: 11, 4-Byte Bucket Pointer: 4 
Key: 

7 6 5 4 3 2 1 0 01234567 

00 oo 00 00 00 00 00 021 0000 I ........ I 

This command positions the pointer at byte offset %XE, which is the location 
of the beginning of a record. This command is valid because the pointer was 
positioned at a bucket header before the POSITION/RECORD %XE command 
was entered. 



REST 

Format 

Example 

TOP 

Format 

Example 

UP 

Format 

REST 

Sequentially displays structures at the current level. 

REST 

ANALYZE> REST 

This command displays each structure at the current level. For example, if you 
are viewing the primary and alternate key descriptors, the REST command 
displays each key descriptor sequentially. 

Displays the FILE HEADER level. 

TOP 

ANALYZE> TOP 
FILE HEADER 

File Spec: DISK$: [JONES.PROGRAM]INVENTORY.DAT;6 
File ID: (6367,16,1) 
Owner UIC: [DOC,DOE] 
Protection: System: RWE, Owner: RWED, Group: R, World: 
Creation Date: 13-NOV-1993 09:10:29.83 
Revision Date: 16-DEC-1993 14:10:37:16, Number: 4 
Expiration Date: none specified 
Backup Date: none posted 
Contiguity Options: none 
Performance Options: none 
Reliability Options: none 
Journaling Enabled: none 

This command displays the file header information for the file INVENTORY.DAT. 

Displays the data structures at the next higher level. 

UP 

1-23 



UP 

Example 

1-24 

ANALYZE> UP 

This command positions the pointer at the next higher level of the file's structure. 
For example, if you are currently examining the RMS FILE ATTRIBUTES level, 
entering the UP command positions you at the FILE HEADER level and displays 
that level. 



ANALYZE/RMS_FILE Examples 

1. .$ ANALYZE/RMS_FILE/INTERACTIVE/OUTPUT=INVENTORY INVENTORY.DAT 

This command begins an interactive session during which you can examine 
the structure of the data file INVENTORY.DAT. A transcript of the session is 
placed in the output file INVENTORY.ANL. 

2. $ ANALYZE/RMS_FILE/NOOUTPUT *.*;* 

This command verifies the structural integrity of all files in the current 
default directory. 

3. $ ANALYZE/RMS_FILE/FDL PARTS.DAT 

This command produces the FDL file PARTS.FDL from the data file 
PARTS.DAT. Assuming that PARTS.DAT is an indexed file, the new FDL 
file contains two special sections that FDL files created with the Edit/FDL 
utility do not have: ANALYSIS_ OF _AREA and ANALYSIS_ OF _KEY. You can 
use these sections with the EDIT/FDL Optimize script to tune your original 
data file, PARTS.DAT. To complete the tuning cycle, enter the following DCL 
commands: 

$ EDIT/FDL/ANALYSIS=PARTS/SCRIPT=OPTIMIZE PARTS 
$ CONVERT/FDL=PARTS PARTS.DAT * 

4. $ ANALYZE/RMS_FILE DENVER::DBl: [PROD]RUN.DAT 

This command analyzes the structure of the file RUN.DAT residing at remote 
node DENVER. 

5. $ ANALYZE/RMS_FILE/FDL/OUTPUT=TEST.FDL 
$_File(s): DENVER::DBl: [PROD]RUN.DAT 

This command analyzes the structure of the file RUN.DAT at remote node 
DENVER and generates the FDL file TEST.FDL at the local node. 

1-25 





2 
Convert Utility 

The Convert utility (CONVERT) can be used to reorganize files by copying 
records from one or more source files to an output file, while converting the 
records to be compatible with the output file's organization and record format. 

You can also use the Convert utility to improve the efficiency of indexed files that 
have had many record deletions and insertions by reformatting the file. In this 
case, the input file and the output file use the same file name and have the same 
organization, but the output file's version number is one greater than the highest 
previous version of the input file. When it reorganizes an indexed file, the utility 
establishes new record file addresses (RFAs) and may reorder duplicate records 
along secondary keys. 

You can use callable routines to perform the functions of the Convert utility from 
within a program. For more information, refer to the the Convert utility routines 
in the Open VMS Utility Routines Manual. 

This chapter tells you how to use the Convert utility. Section 2.1 explains how to 
produce converted output files -with the utility. Section 2.2 describes converting 
between carriage control formats. Section 2.3 discusses using the Convert utility 
with DECnet for Open VMS operations. Section 2.4 explains how to handle the 
Convert utility exception conditions. 

2.1 Output Files 
There are two ways to use the Convert utility to reorganize a file: 

• You can reorganize the input file to be organized like an existing output file. 

• You can reorganize the input file in a new file. If you want the new file to 
be organized differently from the input file, use a File Definition Language 
(FDL) file to specify the characteristics for the new file. If you want the new 
file to be organized the same as the input file, do not use an FDL file to create 
the new file. 

Note ~~~~~~~~~~~~~­

If you specify an input FDL file that uses a collating sequence from the 
local system's National character set (NCS) library, be sure that the 
collating sequence does not have the same name as the collating sequence 
from the input index file. If the two collating sequences have the same 
name, the output file might be sorted improperly. 

Typically, this might happen when the input indexed file is created on 
one system and is later transported to another system that already has a 
collating sequence with the same name. Both NCS and RMS use collating 
sequences that are identified by a character string that is processed as 
part of the named collating sequence. You can avoid this problem by 
renaming collating sequences that have conflicting names. 

2-1 



Convert Utility 
2.1 Output Files 

2-2 

(For more information about NCS, see the Open VMS National Character 
Set Utility ·Manual.) 

You can use an existing output file that has records or an output file that has no 
records. If the output file is sequential, specifying the /APPEND qualifier causes 
the converted records from the input file to be added sequentially to the end of 
the output file. Note that the /APPEND qualifier is ignored if the output file is 
formatted for direct access; that is, either a relative file or an indexed file. If the 
output file is indexed and contains records, you can use the /MERGE qualifier to 
insert the new records in their proper order. 

Sorting the records from an input file can be costly in terms of processing time 
and disk space. If the records in the output file are to be ordered in the same 
manner as the input file records, use the /NOSORT qualifier to save processing 
time and space. For more information about sorting indexed files, see both the 
/FAST_LOAD and the /SORT qualifiers in the CONVERT Qualifiers section. 

RMS appends records with duplicate key values to the end of a list of duplicate 
keys so that the records are retrieved in chronological order. However, the 
Convert utility does not preserve chronological order for secondary keys. Instead, 
records having duplicate secondary keys are reordered and retrieved by the 
collating value of the primary key. For example, assume that you have a file 
of names that uses the primary key (KeyO) FIRST_NAME and a secondary key 
(Keyl) LAST_NAME. Assume, too, that the application program inserts a group 
of records in the following order: 

KeyO Keyl 

John Jones 
Martin Smith 
David Jones 
Joseph Brown 
Gary Adams 
Adam Jones 

When an application program accesses the records sequentially by the secondary 
key (Keyl), the records are retrieved in the following order: 

KeyO Keyl 

Gary Adams 
Joseph Brown 
John Jones 
David Jones 
Adam Jones 
Martin Smith 



Convert Utility 
2.1 Output Files 

When an application program accesses the records sequentially by the secondary 
key (Keyl) after the file is converted, the records are retrieved in the following 
order: 

KeyO Keyl 

Gary Adams 
Joseph Brown 
Adam Jones 
David Jones 
John Jones 
Martin Smith 

Note the revised order of retrieval for the people named Jones. 

2.2 Converting Carriage Control Formats 
A file can have one of four carriage control formats: 

• CARRIAGE_RETURN 

• FORTRAN 

• PRINT 

• NONE 

These formats are all represented differently, so when you are converting a file 
from one carriage control format to another, the carriage control information has 
to be translated. 

Translation is especially important when you are converting to or from a file with 
the FORTRAN format. Records with the FORTRAN format contain one byte of 
carriage control information at the beginning of each record. 

For most conversions, the FORTRAN carriage control information is preserved 
as the first data byte of the record, and the printing characteristics are lost. 
However, certain conversions can preserve the printing characteristics of the 
FORTRAN carriage control information. When FORTRAN carriage control is 
converted to the equivalent PRINT carriage control, the information preceding 
each FORTRAN record is changed but not lost. 

When PRINT carriage control is converted to FORTRAN carriage control, 
certain characters that supply carriage control information to the printer cannot 
be translated exactly. These untranslatable characters are represented as a 
single-spaced FORTRAN record. 

When FORTRAN carriage control is converted to STREAM, control characters 
affecting carriage returns (<CR>), line feeds (<LF>), and form feeds (<FF>) are 
prefixed and appended to each FQ_RTRAN record. These characters may affect 
the STREAM output because they are considered record delimiters for stream 
files. As a result, you may have a different number of records in the STREAM 
output file, and some of the records may be null. 

The following table shows how FORTRAN carriage control information translates 
to STREAM. 

2-3 



Convert Utility 
2.2 Converting Carriage Control Formats 

FORTRAN 
Format 

1 

0 

space 

$ 

+ 

null 

STREAM Format Equivalent 

Characters 
Prefixed 

<FF> 
<LF><LF> 
<LF> 
<LF> 
Nothing prefixed 

Nothing prefixed 

Characters 
Appended 

<CR> 
<CR> 
<CR> 
Nothing appended 

<CR> 
Nothing appended 

All other conversions from FORTRAN preserve the carriage control information 
as data. All other conversions to FORTRAN prefix the converted records with the 
ASCII space character to obtain single spacing. 

For more information about carriage control, see the description of the File 
Definition Language (FDL) in Chapter 4. 

2.3 Using the Convert Utility with DECnet for OpenVMS Operations 
You can use the CONVERT command to transfer files to and from a remote node, 
either with or without modifying file attributes. If the output file exists, the 
Convert utility changes the organization and format of the input data file to that 
of the output file. If the output file does not exist, the utility creates it from the 
file attributes specified in an FDL file. 

You can also use the Convert utility to copy files to or from a remote node without 
modifying file attributes. The Convert utility transfers the file record by record, 
just as it does on a single node. However, you must have NETMBX privilege to 
execute CONVERT commands over a network. 

2.4 Exception Conditions 

2-4 

Certain conversions cause exc~ption conditions. An exception condition occurs 
when a record from the input file cannot be placed in the output file because of 
some format incompatibility. The Convert utility sends a warning error message 
to SYS$ERROR upon encountering a record that causes an exception condition. 

For example, an exception condition occurs when the length of the input records 
exceeds the length you specified for fixed-length output records. You can avoid 
this exception condition by specifying the /TRUNCATE qualifier. Converting short 
fixed-length records into longer fixed-length records also causes an exception. To 
avoid this exception condition, use the /PAD qualifier to fill in the output records. 
The /PAD qualifier allows you to specify your choice of pad character. 

To keep a copy of the exception records, create an exceptions file with the 
/EXCEPTIONS_FILE qualifier. The exceptions file is a sequential file with 
variable-length records; it receives a copy of any record that cannot be placed in 
the output data file. Exceptions files have the file type .EXC, by default. 



CONVERT Usage Summary 

Format 

The Convert utility (CONVERT) copies records from one or more files to an output 
file, changing the record format and file organization to those of the output file. 

CONVERT input-filespec[, ... ] output-filespec 

input-filespec [, ... ] 
Specifies the file or files to be converted. You may specify up to 10 input files but 
wildcard characters are not allowed. Multiple input files are concatenated to form 
a single output file. 

output-filespec 
Specifies the output file for the converted records. If you omit the file type, the 
Convert utility assigns the output file the file type of the first input file. No 
wildcard characters are allowed. 

Usage Summary 
Invoke the Convert utility by entering the CONVERT command at the DCL level. 

Exit the Convert utility by letting the utility run to successful completion. 

Output from the Convert utility is directed to the file you indicate with the 
output-filespec parameter. For more information, see Section 2.1. 

If you want to execute CONVERT commands over a network, you need NETMBX 
privilege. 

2-5 



2.4 Exception Conditions 

CONVERT Qualifiers 

/APPEND 

Format 

Description 

Example 

/CREATE 

Format 

Description 

2-6 

This section describes the CONVERT command qualifiers used to select the 
organization and format of the output file. 

Controls whether converted records from an input file are appended to an existing 
sequential file. 

/APPEND 

/NOAPPEND 

The /APPEND qualifier is useful when you want to convert an existing file to the 
format of an existing output file and append the converted records to the existing 
output file. The default is /NOAPPEND. If you specify the /APPEND qualifier 
and the /CREATE qualifier, /APPEND overrides the /CREATE. 

You should use this option when you are loading records into a sequential file 
that already contains records, or when you are creating a new sequential file. 
When the output file is a direct access file (relative or indexed), the /APPEND 
qualifier is ignored. 

$ CONVERT/APPEND N_Z_FILE.DAT A_M_FILE.DAT 

This command causes the sequential input file N_Z_FILE.DAT to be attached to 
the end of the sequential file A_M_FILE.DAT. 

Determines whether the Convert utility creates a file or uses an existing file for 
output. 

/CREATE 

/NOCREATE 

The /CREATE qualifier causes the Convert utility to create an output file instead 
of using an existing file for output. 

If the output file is to have different characteristics from the input file, you 
must also specify the /FDL qualifier. To create an output file with the same 
characteristics as the input file, omit the /FDL qualifier. 



Examples 

/CREATE 

If you specify the /NOCREATE qualifier, the Convert utility uses an existing file 
for output. You would use this option, for instance, to load records into a data file 
that you created previously with the Create/FDL utility. 

The default is /CREATE. 

1. $ CONVERT/CREATE OLDFILE.DAT NEWFILE.DAT 

This command creates the new output file NEWFILE.DAT and loads it with 
the records from OLDFILE.DAT. 

2. $ CONVERT/CREATE/FDL=UPDATE.FDL OLDFILE.DAT NEWFILE.DAT 

This command creates the new output file NEWFILE.DAT and loads it with 
the OLDFILE.DAT records that have been reformatted according to the 
characteristics in the FDL file UPDATE. 

/EXCEPTIONS_FILE 

Format 

Specifies whether an exceptions file (file type .EXC) is to be generated during the 
conversion. 

/EXCEPTIONS_FILE [=filespec] 

/NOEXCEPTIONS_FI LE 

Qualifier Value 

Example 

/EXIT 

files pee 
Specifies the file in which the exception records are returned. If you specify 
/EXCEPTIONS_FILE but omit the filespec parameter, the exception records are 
displayed on the SYS$0UTPUT device. 

The default is /NOEXCEPTIONS. 

$ CONVERT/EXCEPTIONS_FILE=EXFILE.EXC/FDL=NEWFILE.FDL OLDFILE.DAT NEWFILE.DAT 

This command loads the records from OLDFILE.DAT into NEWFILE.DAT and 
writes any records that cause exceptions into the file EXFILE.EXC. 

Controls whether the Convert utility exits when it encounters an exception record. 
By default, the Convert utility continues processing records when it encounters 
an exception record. 

2-7 



/EXIT 

Format 

Example 

/EXIT 

/NO EXIT 

$ CONVERT/FDL=NEWFILE.FDL/EXIT OLDFILE.DAT NEWFILE 

This command loads the records from OLDFILE.DAT into NEWFILE.DAT and 
causes the Convert utility to exit if an exception record is processed. Because no 
output file type is specified, the Convert utility assigns the output file the same 
file type as the input file. 

/FAST_LOAD 

Format 

Description 

2-8 

Specifies whether the Convert utility uses a fast-loading algorithm for indexed 
files. 

/FAST_LOAD 

/NO FAST _LOAD 

The /FAST_LOAD qualifier is one of the most useful features of the Convert 
utility. 

Note ~~~~~~~~~~~~-­

If CONVERT/FAST_LOAD is executed across a network, the Convert 
utility automatically changes from /FASTLOAD to /NOFAST_LOAD. 

The /FAST_LOAD qualifier and the /NOFAST_LOAD qualifier both sort primary 
keys, and both qualifiers require multiple scratch disk files. 

Essentially, the difference between the /NOFAST_LOAD option and the /FAST_ 
LOAD option is the way records are inserted into an indexed file. The /NOFAST_ 
LOAD qualifier uses the normal RMS Put service to load each record; RMS 
updates the indexes of both the primary and secondary (alternate) keys as each 
record is inserted. 

The main disadvantage of using the /NOFAST_LOAD option is the slower system 
performance that results from bucket splits and updates to the index. As each 
primary key is inserted, any secondary keys for that record are inserted in the 
order of the primary key. In other words, the secondary keys are not inserted in 
order of their own keys. These unsorted secondary keys may eventually cause 
bucket splits; as a result, the index structure for the secondary keys may be less 
efficient. 

The advantage of the /NOFAST_LOAD option is that the Convert utility does 
not attempt to sort secondary keys. Conversely, if you specify the /FAST_LOAD 
option, the Convert utility sorts the primary and the secondary keys. 



/FAST_LOAD 

The Convert utility processes a file as follows: 

1. The primary keys are sorted. If the input file is on magnetic tape or if you 
specify multiple input files, the sort work file contains the sorted records. If 
the input file is on a disk, however, the sort work file contains only pointers 
to the sorted records. 

Note 

If your input records are already ordered by the primary key or if the 
primary key of the input and output files is the same, you should specify 
/NOSORT. This qualifier ensures that the primary keys are not sorted 
again. For more information about sorting, see the description of the 
/SORT qualifier. 

2. The Convert utility builds the primary data record level from the sorted 
output file. The utility completely fills a bucket with data before it creates the 
lowest primary index level (the level 1 index). When an index bucket is filled, 
the Convert utility creates an index record in the next highest index level. 

3. When the Convert utility is finished with the primary key, it updates the 
associated KEY DESCRIPTOR in the file's prolog, closes any input files, 
deletes any temporary files, and closes the output file. At this point, the 
utility has created a valid output file with records ordered by the primary key. 
If you specified no alternate keys, the Convert utility terminates. 

4. The Convert utility reopens the input file so the first alternate key (if one 
has been specified) can be sorted. Again, the utility creates a temporary file 
containing pointers to the primary data records. These pointers, however, 
have been sorted according to the first alternate key. 

5. The Convert utility loads these sorted pointers into the secondary index data 
record (SIDR) level and adjusts them to point to the records in the primary 
data level. Again, the utility completely fills a bucket with data before it 
creates the lowest secondary index level. When an index bucket is filled, the 
Convert utility creates an index record in the next highest secondary index 
level. 

6. When the Convert utility is finished with this secondary key, it updates the 
associated KEY DESCRIPTOR in the file's prolog, closes any input files, 
deletes any temporary files, and closes the output file. At this point, the 
Convert utility has created a valid output file, containing sorted primary keys 
and secondary keys. If you specified no more alternate keys, the Convert 
utility terminates. 

The primary advantage of using the /FAST_LOAD option is that it is considerably 
faster than the RMS method used by the /NOFAST_LOAD option. In most cases, 
you can increase processing speed by a factor of 10. Even greater speed results 
when you load large files with many keys. 

In addition, the index structure can be very efficient because each key is sorted 
before it is loaded. The only disadvantage is the large amount of disk space 
needed for the work files. However, you can control the amount of disk space by 
using the /WORK_FILES qualifier and by reassigning the work files to different 
devices. See the /WORK_FILES qualifier for more information. 

The default is /FAST_LOAD. 

2-9 



/FAST_LOAD 

Examples 

/FOL 

Format 

1. $ CONVERT/FAST_LOAD UPDATE.DAT MASTER.DAT 

This command loads the records from the file UPDATE.DAT into the output 
file MASTER.DAT using the /FAST_LOAD option. The Convert utility attains 
the added speed by building the indexes directly and then using RMS for 
block I/O only. 

2. $ CONVERT/NOFAST_LOAD UPDATE.DAT MASTER.DAT 

This command loads the records from the file UPDATE.DAT into the output 
file MASTER.DAT. In this case, the operation takes longer because the 
Convert utility uses RMS Put services to output each individual record. 

Indicates that an FDL file is to be used in creating the output file. 

/FDL=fdl-filespec 

Qualifier Value 

fdl-filespec 

Description 

Example 

Specifies the FDL file to be used in creating the output file. 

The newly created output file will have the name specified by the fdl-filespec 
command parameter; this name overrides any file name specified in the FDL file. 

The default file type for the FDL file is .FDL. 

$ CONVERT/FDL=INDEXFILE CUSTSEQ.DAT CUSTIND.DAT 

This command creates the new file CUSTIND.DAT according to the specifications 
in the FDL file INDEXFILE.FDL. Records are then loaded from CUSTSEQ.DAT 
into CUSTIND.DAT. 

/FILL_BUCKETS 

Format 

2-10 

Controls whether to override the bucket fill percentage parameter associated with 
the output file. 

/FILL_BUCKETS 

/NOFILL_BUCKETS 



Description 

Example 

/FILL_BUCKETS 

If you specify /FILL_BUCKETS, the Convert utility fills the output file buckets 
with as many records as possible. This behavior is advantageous if you do not 
plan to do random file processing, because using fewer buckets saves disk space 
and processing time. 

With /NOFILL_BUCKETS, however, the Convert utility does not fill the buckets 
completely. Therefore, you can add records at a later date without splitting 
buckets or extending the file. 

This option is valid only for indexed output files. The default is /NOFILL_ 
BUCKETS. 

$ CONVERT/FILL_BUCKETS SALES_DATA.DAT CUST_DATA.DAT 

This command loads the records from the indexed file SALES_DATA.DAT into the 
indexed file CUST_DATA.DAT, filling the buckets of the output file with as many 
records as possible. 

/FIXED_CONTROL 

Format 

Description 

Controls file conversions between files having variable-length with fixed-length 
control field (VFC) records and files having other record formats. 

/FIXED_CONTROL 

/NOFIXED_CONTROL 

This qualifier applies only to conversions where either the input or the output 
file, but not both, uses VFC records. This option is applicable only to sequential 
files. The default is /NOFIXED_CONTROL. 

When you use this qualifier, you must account for the size of the fixed-control 
area when you calculate the maximum size of the output record. 

• If you specify /FIXED_CONTROL and the input file uses VFC records but 
the output file does not, the fixed-length control field from the input record is 
inserted into the output record as data. 

• If you specify /FIXED_CONTROL and the output file has VFC records but 
the input file does not, the leading part of the input record is used to fill the 
fixed-length control part of the output record. 

• If you specify /NOFIXED_CONTROL and the input file uses VFC records but 
the output file does not, the fixed-length control field from the input record is 
not included as data in the output record. 

• If you specify /NOFIXED_CONTROL and the output file has VFC records but 
the input file does not, the control field attached to the output record is set to 
null. 

2-11 



/FIXED_CONTROL 

Example 

/KEV 

Format 

$ CONVERT/FIXED_CONTROL VFC_FILE.DAT OUTFILE.DAT 

This command loads the VFC records in the input file VFC_FILE.DAT into the 
output file OUTFILE.DAT. 

Directs the Convert utility to read records from an indexed file using a specified 
key of reference, such as the primary key, the first alternate key, or the second 
alternate key. 

/KEY=n 

Qualifier Value 

Description 

Example 

/MERGE 

Format 

2-12 

n 
A numeric value that specifies the key of reference that the Convert utility uses 
for reading records from the input indexed file. For example, you can specify the 
primary key as the key of reference by using the value 0 (/KEY =0), which is the 
default, or you can specify the first alternate key as the key of reference by using 
the value 1 (IKEY=l). 

The /KEY qualifier is valid for indexed input files only. If you use the /KEY 
qualifier, you must specify a key value (IKEY=O, IKEY=l, and so on). If you do 
not specify the /KEY qualifier, the default is the primary key (/KEY =0). 

$ CONVERT/NOCREATE/KEY=l CUST_INX.DAT CUST_SEQ.DAT 

This command loads the records from the indexed input file CUST_INX.DAT into 
the sequential output file CUST _SEQ.DAT. The records in the output file are 
ordered by the first alternate key in the input file. 

Specifies that records are to be inserted into their proper position in an existing 
indexed file. 

/MERGE 



Description 

Example 

/PAD 

Format 

/MERGE 

The /MERGE qualifier is useful when your input records are not sorted and you 
do not want them to be sorted as they are loaded into an output file. 

If you specify both /MERGE and /CREATE, /MERGE overrides the /CREATE 
qualifier. 

$ CONVERT/MERGE ACCOUNTS.DAT MASTER_INX.DAT 

This command ioads the records from the input file ACCOUNTS.DAT into the 
existing indexed output file MASTER_INX.DAT according to primary key values. 

Determines whether short records are to be padded. 

/PAD [=[%b]x] 

/NO PAD 

Qualifier Value 

Description 

Examples 

x 
Specifies that the short records are to be padded with either ASCII characters (A 
through Z, a through z, or 0 through 9) or numeric values. 

To specify x as a numeric value, you must specify the numeric base using the 
percent symbol ( % ) followed by one of the following characters: 

D Indicates that x is a decimal number. 

0 Indicates that xis an octal number. 
X Indicates that x is a hexadecimal number. 

The numeric value can be any number from 0 to 255. 

The /PAD option is valid only for fixed-output record formats and is used to pad 
short records with ASCII characters or numeric values. A record is too short 
when it contains fewer bytes than the number of bytes specified for fixed-length 
records. 

The default is /NOPAD. If you specify /PAD without a qualifier value, the default 
pad character is the ASCII null character (binary value 0). 

1. $ CONVERT/NOCREATE/PAD=%X20 INFILE.DAT OUTFILE 

This command specifies that any short records in the input file INFILE.DAT 
are to be padded with an ASCII space character before being loaded into the 
fixed-length output file OUTFILE.DAT. 

2-13 



/PAD 

/PRO LOG 

Format 

2. $ CONVERT/FDL=FIXED/PAD=X INFILE.VAR OUTFILE.FIX 

This command creates the fixed format file OUTFILE.FIX and then loads it 
with records from the variable input file INFILE.VAR. Any short records from 
the input file are padded with ASCII X characters before they are loaded into 
the output file. 

Specifies the prolog version number of the output indexed file. 

/PROLOG=n 

Qualifier Value 

Description 

Example 

n 
Specifies the prolog number 1, 2, or 3. 

If you specify 2 for n, the output file will be either a Prolog 1 or a Prolog 2 file. 

If you specify 3, the Convert utility creates a Prolog 3 file for output. Prolog 3 
files accept multiple keys (or alternate keys), all data types, and segmented keys. 
The only restriction on using a Prolog 3 file applies to files containing overlapping 
key segments for the primary key. In this case, you would have to use a Prolog 2 
file. 

If you do not specify the /PROLOG qualifier, the Convert utility uses the prolog 
version of the first input file. If the input file is not indexed, the utility uses 
the RMS default. To see what this default is on your system, enter the DCL 
command SHOW RMS_DEFAULT. 

The /PROLOG qualifier overrides the value given with the FDL attribute KEY 
PRO LOG. 

$ CONVERT/PROLOG=3 INFILE_2 OUTFILE_3 

This command loads the records from the Prolog 2 input file INFILE_2 into the 
Prolog 3 output file OUTFILE_3. Both the input and output file are indexed files. 

/READ_CHECK 

2-14 

Specifies whether each input record is to be read from the file a second time and 
compared to the record originally read. 

The default is /NOREAD_CHECK. 



Format 

Example 

/SHARE 

Format 

Description 

Example 

/SORT 

Format 

/READ_CHECK 

/NOREAD_CHECK 

$ CONVERT/READ_CHECK Q3_SALES.DAT YTD_SALES.DAT 

/READ_CHECK 

This command specifies that the records from the input file Q3_SALES.DAT are 
to be read and checked by the file processor, and then loaded into the output file 
YTD_SALES.DAT. 

Specifies whether the input file is to be opened for sharing with other processes 
during the conversion. 

/SHARE 

/NOS HARE 

You can use the /SHARE option to generate a rough backup of a file that is always 
opened for sharing by some applications. However, another process can alter the 
records during the Convert utility operations. As a result, the consistency of the 
output file cannot be guaranteed. The default is /NOSHARE. 

$ CONVERT/SHARE SYSUAF.DAT BACKUP.DAT 

This command indicates that the input file SYSUAF.DAT is open for sharing with 
other processes at the same time its records are being loaded into the output file 
BACKUP.DAT. 

Specifies whether the input file is to be sorted before being loaded into an indexed 
file. The sort is done according to the primary key of the output file. 

/SORT 

/NOSORT 

2-15 



/SORT 

Description 

Examples 

2-16 

Two procedures can improve the sort performance: 

• Increasing the size of the working set for the duration of the sort. The general 
rule is to use as large a working set as allowed by your working set quota. To 
set this value, use the DCL command SET WORKING_SET. To see what your 
authorized quota is, enter the SHOW WORKING_SET command. 

• Placing the input file, the output file, and the temporary work files on 
separate disk devices. The default operation is to place the work files on your 
default device, which could cause the Convert utility to run out of disk space. 
To specify the location of the work files, enter a command in the following 
form: 

ASSIGN device-name: SORTWORKn 

Then represents the number of the work file, from 0 to 9. The colon is 
required after the device name. For example, the following two ASSIGN 
commands would place the work files on disks named TMPD and DEVD: 

$ ASSIGN TMPD: SORTWORKO 
$ ASSIGN DEVD: SORTWORKl 

Using more than two work files (the default) is not particularly advantageous 
unless you have to use many smaller ones in order to fit on crowded disks. 
You can control the number of work files with the /WORK_FILES qualifier. 

When using the Sort utility, the Convert utility may open up to 13 files. If 
your process open-file limit is reached or if RMS runs out of dynamic memory, 
the Sort utility may fail to open a necessary temporary file. 

The default is /SORT. 

For more information about using the Sort utility with the Convert utility, see the 
/FAST_LOAD qualifier. 

1. $ CONVERT/SORT IN_INX.DAT OUT_INX.DAT 

This command causes the records in the input indexed file IN_INX.DAT to 
be sorted according to the primary key values before being loaded into the 
output indexed file OUT_INX.DAT. 

2. $ CONVERT/NOSORT/FDL=REORG INX.DAT INX.DAT 

This command reorganizes the file INX.DAT according to the attributes 
specified in the FDL file REORG.FDL. The primary keys are not sorted 
because INX.DAT is already ordered by the primary key, and the primary key 
definition did not change. 



/STATISTICS 

/STATISTICS 

Format 

Description 

Example 

/TRUNCATE 

Format 

Description 

Determines whether a set of statistics about the completed conversion is to be 
displayed. 

/STATISTICS 

/NOSTATISTICS 

The statistics produced by the Convert utility are as follows: 

• Number of files processed 

• Total records processed 

• Total exception records 

• Total valid records 

• Elapsed time 

• Buffered I/O count 

• Direct I/O count 

• Page faults 

• CPU time 

The default is /NOSTATISTICS. 

$ CONVERT/STATISTICS Q3_SALES.DAT YTD_SALES.DAT 

This command causes the Convert utility to load the records from the input file 
Q3_SALES.DAT into the output file YTD_SALES.DAT and then to display a set 
of statistics about the conversion. 

Specifies whether records that exceed the maximum record length for variable­
length records, or records that exceed the specified record length for fixed-length 
records, are to be truncated. 

/TRUNCATE 

If you specify /NOTRUNCATE and a long record is encountered, the record is not 
written to the output file. If you specify the /EXCEPTIONS_FILE qualifier, the 
entire record is written to the exceptions file. · 

2-17 



/TRUNCATE 

Examples 

1. $ CONVERT/TRUNCATE INFILE.DAT OUTFILE.DAT 

In response to this command, CONVERT truncates input file records to 
conform to the specifications of the output file. 

2. $ CONVERT/NOTRUNCATE/EXCEPTIONS_FILE=EXFILE INFILE OUTFILE 

This command causes the Convert utility to write input file records that 
exceed the size specifications of the output file to the exceptions file. 

/WORK_FILES 

Specifies the number of temporary work files to be used during the sort process. 

Format 

/WORK_FILES=n 

Qualifier Value 

Description 

Example 

n 
Specifies the number of work files you want. You can specify 0 or any value from 
1 through 10. 

The default number of work files used during a sort is 2. 

This qualifier is valid when you are fast-loading a file with multiple keys or when 
you specify the /SORT qualifier. For more information about sorting, see both the 
/SORT and the /FAST_LOAD qualifiers. 

$ CONVERT/WORK_FILES=O UPDATE.DAT MASTER.DAT 

This command loads the records from the input file UPDATE.DAT into the output 
file MASTER.DAT without using any work files. 

/WRITE_ CHECK 

Format 

2-18 

Specifies whether all writes are to be checked by comparing the new disk records 
with the original records in memory. 

/WRITE_ CHECK 

/NOWRITE_CHECK 



Description 

Example 

/WRITE_ CHECK 

If you use this switch, each new record on the disk is read and then compared 
with the original record in memory. The default is /NOWRITE_CHECK. 

$ CONVERT/WRITE_CHECK UPDATE.DAT MASTER.DAT 

In response to this command, the Convert utility loads the records from the input 
file UPDATE.DAT into the output file MASTER.DAT, and then compares the 
output records with the input for accuracy. 

2-19 



CONVERT Examples 

2-20 

1. $ CONVERT/NOCREATE/TRUNCATE/EXCEPTIONS_FILE=EXFILE VARFILE.DAT FIXFILE.DAT 

This command causes the Convert utility to copy records from a file with 
variable-length records (VARFILE.DAT) to a file with fixed-length records 
(FIXFILE.DAT). Records longer than the fixed length are truncated, and 
short records are copied to the exceptions file EXFILE.EXC. 

2. $ CONVERT FILE.IDX FILE.IDX 

This command creates the output file FILE.IDX with a version number one 
higher than that of the input file. The output file is a copy of the input file, 
but it is a clean copy without bucket splits, RRVs (record reference vectors), 
or pointers to deleted records. The performance of the output file is also 
improved. 

Note that the Convert utility establishes new record file addresses (RFAs) 
during such reorganizations. 

3. $ CONVERT/FDL=TEST.FDL TRNTO: :DBAl: [EXP] SUB.DAT OUT.DAT 

This command creates a new sequential file OUT.DAT with stream record 
format at the local node, according to the specification in the previously 
created FDL file TEST.FDL. The input file SUB.DAT at remote node TRNTO 
is sequential with variable-length record format. The Convert utility copies 
records from SUB.DAT to OUT.DAT, changing the format of the records. 

The contents of the FDL file TEST.FDL are as follows: 

SYSTEM 
SOURCE VAX/VMS 

FILE 
ORGANIZATION SEQUENTIAL 

RECORD 
BLOCK_SPAN YES 
CARRIAGE_CONTROL CARRIAGE_RETURN 
FORMAT STREAM 
SIZE 0 

4. $CONVERT MASTER.DAT DENVER::DBl: [PROD]MASTER.SAV 

This command creates a new file called MASTER.SAY at remote node 
DENVER from the file MASTER.DAT at the local node. Because the /FDL 
qualifier is not used, the new file has the same file organization and record 
format as the original file. The action of this CONVERT command is similar 
to that performed by the COPY command. However, CONVERT transfers the 
file record by record and thus does not use block 1/0. 

5. $CONVERT/APPEND SALES.TMP KANSAS:: [200,2]SALES.CMD 

This command causes records from the file SALES. TMP at the local node to 
be added sequentially to the end of the output file SALES.CMD at remote 
node KANSAS. The file SALES.TMP is sequential with variable-length record 
format, and the file SALES.CMD is sequential with stream record format. 
When the Convert utility loads records from the input file to the output file, it 
changes the record format. 



CONVERT Examples 

6. $ CONVERT/FDL=FIXED/PAD=O/TRUNCATE INFILE.VAR OUTFILE.FIX 

This command creates the fixed format file OUTFILE.FIX and then loads it 
with records from the variable input file INFILE.VAR. Before they are loaded, 
any short records from the input file are padded with an ASCII 0 character, 
and any long records are truncated. 

7. $ CONVERT/FDL=SYS$INPUT FORT.DAT STREAM.DAT 
FILE 

RECORD 

ORGANIZATION 

CARRIAGE_ CONTROL 
FORMAT 

SEQUENTIAL 

CARRIAGE_RETURN 
STREAM 

This command converts the FORTRAN carriage control file FORT.DAT to a 
stream file that prints or types identically. The number of records may differ, 
and the FORTRAN carriage control information is removed from the records. 

8. $ CONVERT/FDL=SYS$INPUT FORT.DAT VAR.DAT 
FILE 

RECORD 

ORGANIZATION 

CARRIAGE_ CONTROL 
FORMAT 

SEQUENTIAL 

CARRIAGE_ RETURN 
VARIABLE 

This command converts the FORTRAN carriage control file FORT.DAT to a 
variable-length record file. The FORTRAN carriage control information is 
preserved as the first data byte, and the number of records in the output and 
input files is the same. 

2-21 





3 
Convert/Reclaim Utility 

The Convert/Reclaim utility (CONVERT/RECLAIM) reclaims empty buckets in 
a Prolog 3 indexed file. You can also use the Convert/Reclaim utility to reclaim 
empty buckets in Prolog 3 indexed files from a remote node. 

Unlike the Convert utility, the Convert/Reclaim utility preserves the RFAs from 
the input file. In general, the Convert utility provides more efficient indexed files 
than the Convert/Reclaim utility. 

You can use callable routines to perform the functions of the Convert/Reclaim 
utility from within a program. For more information, refer to the CONVERT 
routines in the Open VMS Utility Routines Manual. 

3.1 Using the Convert/Reclaim Utility 
Unlike the Convert utility, which changes the organization and record format of 
a file, the Convert/Reclaim utility reclaims empty buckets in an existing Prolog 3 
indexed file. The organization and record format of the file are not changed. 

When you delete all the records in a bucket, the bucket still retains its position 
within the database because it has a certain range of primary key values 
associated with it. When you write new records to the file, those records whose 
primary key falls within that range are written to that bucket. 

If your application has buckets with records that do not use a primary key left 
over from a deleted record, empty buckets cannot be reused unless you reclaim 
them. To reclaim a bucket, the Convert/Reclaim utility deletes the old pointers 
to it and puts it on a list of free buckets. When an application adds records and 
needs a bucket, RMS goes to the free bucket list and sets up pointers to a bucket 
from the list. By reclaiming buckets, you can often avoid extending the file, which 
causes inefficient processing. 

In addition, the Convert/Reclaim utility preserves RFA (record file address) access 
to the file. 

You cannot use the Convert/Reclaim utility on Prolog 1 or Prolog 2 indexed files. 
To reclaim empty buckets in a Prolog 1 or Prolog 2 indexed file, you must first 
reorganize the file by using the Convert utility. This reorganization creates a 
new version of the file. However, unlike the Convert/Reclaim utility, the Convert 
utility establishes new RFAs for the records. 

To invoke the Convert/Reclaim utility from within a program, use the callable 
CONV$RECLAIM routine. For more information, refer to the Open VMS Utility 
Routines Manual. 

3-1 



CONVERT/RECLAIM Usage Summary 

Format 

The Convert/Reclaim utility (CONVERT/RECLAIM) reclaims empty buckets in 
Prolog 3 indexed files so that new records can be written in those buckets. It does 
not change the record format and file organization of these files. 

CONVERT/RECLAIM filespec 

files pee 
Specifies the Prolog 3 indexed file in which you want to reclaim buckets. When 
you use the CONVERT/RECLAIM command, the file cannot be opened for shared 
access. 

Usage Summary 

3-2 

Invoke the Convert/Reclaim utility by entering the CONVERT/RECLAIM 
command at the DCL level. Exit the Convert/Reclaim utility by letting the 
utility run to successful completion. The Convert/Reclaim utility produces an 
output file only if you specify the /STATISTICS command qualifier. 

If you want to execute CONVERT/RECLAIM commands over a network, you need 
NETMBX privilege. 



3.1 Using the Convert/Reclaim Utility 

CONVERT/RECLAIM Qualifier 
This section describes the sole CONVERT/RECLAIM command qualifier, the 
/STATISTICS qualifier. 

/STATISTICS 

Format 

Description 

Determines whether statistics about the completed conversion and reclamation 
are displayed. 

/STATISTICS 

/NOSTATISTICS 

The Convert/Reclaim utility provides the following statistics: 

• Total buckets scanned 

• Data buckets reclaimed 

• Index buckets reclaimed 

• Total buckets reclaimed 

• Elapsed time 

• CPU time 

3-3 





4 
File Definition Language Facility 

The File Definition Language facility includes the File Definition Language 
(FDL), the Create/FDL utility (see Chapter 5), and the Edit/FDL utility (see 
Chapter 6). This chapter describes the File Definition Language. 

4.1 Overview 
The File Definition Language facility helps you design data files that can 
be processed efficiently by using a model file (FDL file) whose attributes 
(characteristics) are subsequently applied to the data file. This section provides 
an overview of an FDL file, briefly describing each of its primary attributes. 
Other sections expand on each of the primary attributes, presenting them in 
alphabetical order. 

An FDL file is a collection of file sections, where each section describes a file 
attribute. The file sections appear in the following order: 

• TITLE 

• IDENT 

• SYSTEM 

• FILE 

• DATE 

• RECORD 

• ACCESS 

• NETWORK 

• SHARING 

• CONNECT 

• AREA 

• KEY 

• ANALYSIS_ OF _AREA 

• ANALYSIS_ OF _KEY 

The TITLE, IDENT, AREA, KEY, ANALYSIS_ OF _AREA, and ANALYSIS_ OF_ 
KEY sections take values. The SYSTEM, FILE, DATE, RECORD, ACCESS, 
SHARING, and CONNECT sections do not take values; instead, they serve as 
labels for the related sections. The ANALYSIS_OF _AREA and ANALYSIS_OF _ 
KEY sections appear only in FDL files created with the Analyze/RMS_File utility 
(ANALYZE/RMS_FILE). 

4-1 



File Definition Language Facility 
4.1 Overview 

Each section may include a lower order of file characteristics called secondary 
attributes, and some secondary attributes have a third level of attributes called 
qualifiers. An FDL file consists of attribute keywords followed by their assigned 
values. Lowercase letters and uppercase letters are equivalent and can be used 
interchangeably. Secondary attributes can be either create-time attributes or 
run-time attributes. Create-time attribute values are established when the file 
is created. Run-time attributes are established just prior to an application's 
opening or connecting to an existing file by calling the FDL$PARSE routine and 
by passing the routine the applicable FDL file specification. See the Open VMS 
Utility Routines Manual for details about using the FDL$PARSE routine. 

Attributes take one of the following value types: 

Switch 

Keyword 

String value 

Number 

A logical value set to TRUE (YES) or FALSE (NO). TRUE or YES 
asserts the attribute; FALSE or NO negates it. You can abbreviate the 
logical values to T (TRUE), Y (YES), F (FALSE), and N (NO). 

One or more words that follow the attribute name. When you use 
multiple keywords with an attribute, you must enclose them in 
parentheses and separate them by commas. You can truncate a 
keyword to its unique leading character(s). 

A character string that follows the attribute name. You should enclose 
a string value in a pair of single or double quotation marks. The null 
string is a valid string value. 

A decimal number. 

The following sections describe primary and secondary attributes and contain 
cross-references to corresponding fields (parameters) in RMS control blocks. 
The term DECnet for Open VMS operations refers to remote file access between 
two Open VMS operating systems and, unless stated otherwise, attributes are 
supported for DECnet for Open VMS operations. 

4.1.1 ACCESS Section 

4-2 

The ACCESS primary attribute allows you to specify file-processing operations by 
assigning appropriate values to the secondary attributes. The ACCESS keyword 
takes no values; it serves only to define this section. 

The following table lists the ACCESS secondary attributes and their default 
values. Note that all of the ACCESS secondary attributes are run-time attributes. 

Secondary 
Attribute 

BLOCK_IO 

DELETE 

GET 

PUT 

RECORD_IO 

TRUNCATE 

UPDATE 

Default Value 

FALSE 

FALSE 

GET when performing an Open service 

PUT when performing a Create service 

FALSE 

FALSE 

FALSE 



File Definition Language Facility 
4.1 Overview 

BLOCK_IO 
This switch specifies block I/O operations involving either the Read or the Write 
RMS service, depending on whether you have specified the GET (Read service) or 
the PUT (Write service) ACCESS secondary attributes. If you specify BLOCK_IO, 
no record I/O operations (such as DELETE, GET, PUT, TRUNCATE, or UPDATE) 
can be performed. The BLOCK_IO secondary attribute also permits you to use 
the Space service. 

The BLOCK_IO attribute corresponds to the BIO option in the FAB$B_FAC field. 

DELETE 
This switch enables Delete operations. The DELETE attribute corresponds to the 
DEL option in the FAB$B_FAC field. 

GET 
This switch specifies either the Get or the Find RMS service. GET is the default 
when you are opening the file and when one of the following conditions exists: 

• No other ACCESS section secondary attribute is defined. 

• The DELETE or UPDATE secondary attributes in the SHARING section have 
been specified. 

If you also specify the BLOCK_IO attribute, you can perform Read services. The 
GET attribute corresponds to the GET option in the FAB$B_FAC field. 

PUT 
This switch specifies the Put service or the Extend service. PUT is the default 
when you create a file. If you specify the PUT attribute and the BLOCK_IO 
attribute, you can perform Write services. 

The PUT attribute corresponds to the PUT option in the FAB$B_FAC field. 

RECORD_IO 
This switch allows mixed record I/O and block I/O operations under certain 
circumstances (see the Open VMS Record Management Services Reference Manual 
for more information). 

The RECORD_IO attribute corresponds to the BRO option in the FAB$B_FAC 
field. 

TRUNCATE 
This switch allows Truncate operations. The TRUNCATE attribute corresponds 
to the TRN option in the FAB$B_FAC field. 

UPDATE 
This switch selects either the Update service or the Extend service. The UPDATE 
attribute corresponds to the UPD option in the FAB$B_FAC field. 

4.1.2 ANALYSIS_OF_AREA Section 
The Analyze/RMS_File utility (ANALYZE/RMS_FILE) creates the ANALYSIS_ 
OF _AREA section and supplies it with values. The ANALYSIS_ OF _AREA section 
appears only in FDL files that describe indexed files. 

This primary section has only one secondary attribute: the run-time attribute 
RECLAIMED_SPACE. 

4-3 



File Definition Language Facility 
4.1 Overview 

RECLAIMED_SPACE 
ANALYZE/RMS_FILE supplies a number value for the RECLAIMED_SPACE 
secondary attribute that represents the number of blocks in the area reclaimed 
by the Convert utility (CONVERT) using the /RECLAIM qualifier. For more 
information about using CONVERT/RECLAIM, see Chapter 3. 

4.1.3 ANALVSIS_OF_KEV Section 

4-4 

ANALYZE/RMS_FILE creates the ANALYSIS_ OF _KEY section and supplies 
appropriate values. The Edit/FDL utility uses the ANALYSIS_OF _KEY section in 
its Optimize script for FDL files that define an indexed file. 

The primary attribute AN~YSIS_OF _KEY has a numeric value that represents 
the key being analyzed (0 is the primary key). 

The following table lists the ANALYSIS_OF _KEY secondary attributes. Note that 
all ANALYSIS_ OF _KEY secondary attributes are run-time attributes. All values 
returned to the attributes are numerical. 

Secondary Attribute 

DATA_FILL 

DATA_KEY_COMPRESSION 

DATA_RECORD_COMPRESSION 

DATA_RECORD_COUNT 

DATA_SPACE_OCCUPIED 

DEPTH 

DUPLICATES_PER_SIDR 

IND EX_ COMPRESSION 

INDEX_FILL 

INDEX_SPACE_OCCUPIED 

LEVELl_RECORD_COUNT 

MEAN_DATA_LENGTH 

MEAN_INDEX_LENGTH 

DATA_FILL 

Default Value 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

This attribute shows the percentage of bytes per bucket in the data level that has 
been filled. 

DATA_KEY _COMPRESSION 
This attribute shows the percentage of compression achieved for the primary 
keys. For example, if the keys added up to 1000 bytes and compression reduced 
that figure to 600 bytes, the value shown in the DATA_KEY_COMPRESSION 
attribute would be 40 (representing 40 percent compression). 

Negative compression might occur because of the overhead involved. If you see a 
negative value, you should disable that type of compression in the KEY section. 

DATA_RECORD_COMPRESSION 
This attribute shows the percentage of compression that has occurred in the 
level 0 data record.· For example, if compression reduces the number of bytes in 
the data records added from 100,000 to 70,000, the value shown in the DATA_ 
RECORD_COMPRESSION attribute would be 30 (representing 30 percent 
compression). 



File Definition Language Facility 
4.1 Overview 

Negative compression might occur because of the overhead involved. If you see a 
negative value, you should disable that type of compression in the KEY section. 

This attribute applies only to the primary key. 

DATA_RECORD_COUNT 
This attribute shows the number of data records in the file. 

DATA_SPACE_OCCUPIED 
This attribute shows the size, in blocks, of the level 0 of the index structure. 

DEPTH 
This attribute shows the number of index levels in the index structure. The value 
does not include the data level. 

DUPLICATES_PER_SIDR 
This attribute shows the average number of duplicate key values for the 
secondary index data records (SIDR); that is, the value is the total number 
of duplicates divided by the total number of SIDRs. 

This attribute applies only to alternate keys. 

INDEX_ COMPRESSION 
This attribute shows the percentage of compression that has occurred in the 
index records within the index levels. If the full indexes amounted to 10,000 
bytes and compression reduced this value to 8000 bytes, the value shown in the 
INDEX_COMPRESSION attribute would be 20 (representing 20 percent). 

INDEX_FILL 
This attribute shows the percentage of bytes per bucket that have been filled in 
the index levels. 

INDEX_SPACE_OCCUPIED 
This attribute shows the size, in blocks, of the index levels (level 1 and greater). 

LEVEL 1_RECORD_COUNT 
This attribute indicates the number of records in the level 1 index, which is the 
index level immediately above the data. When duplicate key values (for SIDRs) 
have been specified, even when SIDR overflow buckets exist, the tuning algorithm 
of EDIT/FDL is made more accurate. 

Generally, every bucket on level 0 of an alternate key has a pointer record from 
level 1 of the alternate key. However, there are no pointers from level 1 to any 
overflow buckets. LEVELl_RECORD_COUNT keeps track of how many records 
are in level 1, particularly when duplicate key values force overflow buckets to be 
created. 

MEAN_DATA_LENGTH 
This attribute shows the average length, in bytes, of the data records. This does 
not take compression into account. 

MEAN_INDEX_LENGTH 
This attribute shows the average length, in bytes, of the index records. This does 
not take compression into account. 

4-5 



File Definition Language Facility 
4.1 Overview 

4.1.4 AREA Section 

4-6 

The AREA section is an RMS-specific region of an indexed file that you cannot 
create or manipulate from a high-level programming language. RMS provides 
appropriate areas for you when you create an indexed file. 

If you want to create or manipulate areas in an indexed file, you must include 
the AREA primary attribute in an FDL file. The AREA primary attribute acts 
as a header for a section in the FDL file that describes areas. It takes a numeric 
value in the range 0 to 254 that identifies the area. To define multiple areas for 
an indexed file, you must specify a separate AREA section for each area. 

Most AREA secondary attributes (except for the EXACT_POSITIONING, 
POSITION, and VOLUME secondary attributes) have corre.sponding FILE 
secondary attributes. The values you specify for AREA secondary attributes 
override values you specify for corresponding secondary attributes in the FILE 
section. 

The AREA primary attribute corresponds to the XAB$B_AID field in a XAB 
(extended attribute block). 

The following table lists the AREA secondary attributes and their default values. 
Note that all AREA secondary attributes are create-time attributes. 

Secondary Attribute Default Value 

ALLOCATION 0 

ASYNCHRONOUS FALSE 

BEST_TRY_CONTIGUOUS FALSE 

BUCKET_SIZE 0 

CONTIGUOUS FALSE 

EXACT_POSITIONING FALSE 

EXTENSION 0 

POSITION None 

VOLUME 0 

ALLOCATION 
This numeric attribute establishes the initial number of blocks allocated to an 
area. Its value must be an integer in the range 0 to 4,294,967 ,295. If you take 
the default value of 0, the system allocates no space for the area. 

The ALLOCATION attribute corresponds to the XAB$L_ALQ field in a XAB. 

ASYNCHRONOUS 
This switch specifies that the task is to be done asynchronously. This option is 
relevant only to file tasks that involve I/O operations. It is typically used with 
success/error ASTs, or in conjunction with the $WAIT service, to synchronize the 
program with task completion. 

The ASYNCHRONOUS attribute corresponds to the FAB$V _ASY bit in the 
FAB$L_FOP field. 

BEST_ TRY _CONTIGUOUS 
This switch controls whether an area is allocated contiguous space, assuming 
there is enough space for it. If you set the switch to YES and there is not enough 
space, the area is allocated noncontiguously. 



File Definition Language Facility 
4.1 Overview 

If you take the default, NO, this attribute has no effect. 

The BEST_TRY_CONTIGUOUS attribute corresponds to the CBT option in the 
XAB$B_AOP field. 

BUCKET _SIZE 
This numeric attribute establishes the number of blocks per bucket for this area. 
Its value must be an integer in the range 0 to 63. If you take the default value of 
0, RMS calculates the smallest bucket size capable of holding the largest record. 
If RMS-11 is to process the file, the bucket size is limited to 32 blocks. 

The BUCKET_SIZE attribute corresponds to the XAB$B_BKZ field. 

CONTIGUOUS 
This switch controls whether RMS allocates contiguous space for the file. If there 
is not enough contiguous space, RMS returns an error when you try to create the 
file. 

When you take the default, NO, FDL ignores this attribute. 

The CONTIGUOUS attribute corresponds to the CTG option in the XAB$B_AOP 
field. 

EXACT _POSITIONING 
This switch mandates that the area is allocated the precise location you specify 
with either the POSITION CYLINDER attribute or the POSITION LOGICAL 
attribute. If the location is not available, RMS returns an error. When you take 
the default (NO), RMS allocates the area nearest the specified location. 

The EXACT_POSITIONING attribute corresponds to the HRD option in the 
XAB$B_AOP field. 

EXTENSION 
This numeric attribute establishes the area's default extension size, in blocks. 
The extension is the space added to the area when the allocated space is filled. 

This value must be an integer in the range 0 to 65,535. If you take the default 
(0), the system determines the extension size. 

The EXTENSION attribute corresponds to the XAB$W _DEQ field. 

POSITION 
This attribute establishes the location of the area and takes one of the following 
keyword values: 

ANY_CYLINDER 

CYLINDER 

FILE_ ID 

This keyword begins the area on any cylinder boundary. 

This keyword begins the area on the specified cylinder boundary. 

This keyword positions the area as close to the specified file as 
possible. You must use a value for an existing file that includes 
the file identification number (FID), the file sequence number, 
and the relative volume number. The FILE_ID attribute uses the 
following syntax, including parentheses: 

(FID-num,FID-seq,RVN) 

4-7 



File Definition Language Facility 
4.1 Overview 

FILE_NAME 

LOGICAL 

NONE 

VIRTUAL 

This keyword positions the area as close to the specified file as 
possible; you must specify an existing file. The FILE_NAME 
attribute is not supported for DECnet for Open VMS operations; 
use the keyword NONE. 

This keyword positions the start of the area at the specified logical 
block. 

This keyword is the default value; it means you do not want to 
control the placement of the area. 

This keyword positions the start of the area at the specified virtual 
block. 

The POSITION attribute corresponds to the XAB$B_ALN, XAB$L_LOC, and 
XAB$W _RFI fields in a XAB. This attribute is not supported for DECnet for 
Open VMS operations; use the keyword NONE. 

VOLUME 
This attribute specifies the area location by using the relative volume number in 
a Files-11 disk volume set. 

You must specify an integer in the range 0 to 255. If you take the default, 0, it 
means that you do not want to control the area's placement on the volume set. 

The VOLUME attribute corresponds to the XAB$W _VOL field. 

4.1.5 CONNECT Section 

4-8 

The CONNECT section specifies application-dependent run-time attributes 
related to record access and performance. The CONNECT keyword takes 
no values; it serves only to define this section. The following table lists the 
CONNECT secondary attributes. Note that all CONNECT secondary attributes 
are run-time attributes. 

Secondary Attribute Default Value 

ASYNCHRONOUS None 

BLOCK_IO None 

BUCKET_IO None 

CONTEXT None 

END_OF_FILE None 

FAST_DELETE None 

FILL_BUCKETS None 

KEY_GREATER_EQUAL None 

KEY_GREATER_THAN None 

KEY_LIMIT None 

KEY_OF_REFERENCE None 

LOCATE_MODE None 

LOCK_ON_READ None 

LOCK_ON_WRITE None 

MANUAL_ UNLOCKING None 

MULTIBLOCK_COUNT None 

MULTIBUFFER_COUNT None 



File Definition Language Facility 
4.1 Overview 

Secondary Attribute 

NO LOCK 

NONEXISTENT_RECORD 

READ_AHEAD 

READ_REGARDLESS 

TIMEOUT_ENABLE 

TIMEOUT_PERIOD 

TRUNCATE_ON_PUT 

TT_CANCEL_CONTROL_O 

TT_PROMPT 

TT_PURGE_TYPE_AHEAD 

TT_READ_NOECHO 

TT_READ_NOFILTER 

TT_UPCASE_INPUT 

UPDATE_IF 

WAIT_FOR_RECORD 

WRITE_BEHIND 

ASYNCHRONOUS 

Default Value 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

None 

This switch specifies asynchronous I/O operations. When you select this attribute, 
RMS returns control to your program as soon as an I/O operation begins. The 
switch is ignored for process-permanent files. 

The ASYNCHRONOUS attribute corresponds to the ASY option in the RAB$L_ 
ROP field. 

BLOCK_IO 
This· switch determines whether block or record I/O operations are performed. If 
you set the switch to YES, only block operations are permitted. If you set the 
switch to NO, only record operations are allowed for relative and indexed files. 
However, if you specify the ACCESS section RECORD_IO attribute, mixed block 
and record operations may be performed on sequential files only. 

The BLOCK_IO attribute corresponds to the BIO option in the RAB$L_ROP field. 

BUCKET_IO 
This numeric attribute specifies a relative record number or a numeric value 
representing the virtual block number to be accessed. You use this attribute with 
records in a relative file or when you want block I/O to be performed. 

The BUCKET_IO attribute corresponds to the RAB$L_BKT field. 

CONTEXT 
You can use this attribute to specify any numeric value, up to 4 bytes in length. 
RMS does not use the CONTEXT attribute; it is provided exclusively for your use. 
For example, you could use it to communicate with a completion routine in your 
program. 

The CONTEXT attribute corresponds to the RAB$L_CTX field. 

END_OF _FILE 
This switch directs RMS to connect to the end of the file. 

4-9 



File Definition Language Facility 
4.1 Overview 

4-10 

The END_OF _FILE attribute corresponds to the EOF option in the RAB$L_ROP 
field. 

FAST_DELETE 
This switch directs RMS not to delete the alternate index pointers used for 
duplicate records when you delete a record. Instead, RMS deletes the pointers 
and generates an appropriate error message only when you subsequently attempt 
to access the deleted record. The FAST_DELETE attribute avoids the overhead 
usually involved with RMS record deletions-updating the data level, the primary 
index, and then the alternate indexes. 

The FAST_DELETE attribute corresponds to the FDL option in the RAB$L_ROP 
field. 

FILL_BUCKETS 
This switch directs RMS to load buckets according to the fill size established 
at file-creation time. If you do not set the switch, RMS ignores the established 
bucket fill size and fills buckets completely. 

The FILL_BUCKET attribute corresponds to the LOA option in the RAB$L_ROP 
field. 

KEY_GREATER_EQUAL 
When using an ascending data type, this switch directs RMS to access the first 
record in an indexed file containing a key of reference value greater than or 
equal to the value described by the RAB$L_KBF and RAB$B_KSZ fields. For 
a descending data type, RMS accesses the first record that contains a key of 
reference value less than or equal to the value described by the RAB$L_KBF and 
RAB$B_KSZ fields. 

If you set neither this switch nor the KEY_ GREATER_ THAN switch, RMS 
accesses the first record that contains a key of reference value equal to the value 
described by the RAB$L_KBF and RAB$B_KSZ fields. 

This attribute corresponds to the KGE option in the RAB$L_ROP field. For 
more information about the RAB$L_KBF and RAB$B_KSZ fields, refer to the 
Open VMS Record Management Services Reference Manual. 

KEY_GREATER_THAN 
When using an ascending data type, this switch directs RMS to access the first 
record in an indexed file containing a key of reference value greater than the 
value described by the RAB$L_KBF and RAB$B_KSZ fields. When using a 
descending data type, the switch directs RMS to access the first record that 
contains a key of reference value less than that specified in the RAB$L_KBF and 
RAB$B_KSZ fields. 

If you set neither this switch nor the KEY_GREATER_EQUAL switch, RMS 
accesses the first record that contains a key of reference value equal to the value 

'described by the RAB$L_KBF and RAB$B_KSZ fields. 

The KEY_GREATER_THAN attribute corresponds to the KGT option in the 
RAB$L_ROP field. For more information about the RAB$L_KBF and RAB$B_ 
KSZ fields, refer to the Open VMS Record Management Services Reference Manual. 

KEY_LIMIT 
This switch directs RMS to compare the key value described by the RAB$L_KBF 
and RAB$B_KSZ fields to the value in the record accessed in sequential mode. If 



File Definition Language Facility 
4.1 Overview 

you set this switch and the record's key value is greater than the limit key value, 
RMS returns the RMS$_0K_LIM status code. 

This attribute corresponds to the LIM option in the RAB$L_ROP field. 

KEY_OF_REFERENCE 
This numeric attribute specifies the key or index (such as primary, or first 
alternate) by which you want to process records in a file. The default value, 0, 
indicates the primary key. Values 1 to 254 indicate alternate keys. 

The KEY_OF _REFERENCE attribute applies only to indexed files and it 
corresponds to the RAB$B_KRF field. 

LOCATE_MODE 
This switch directs RMS to return records by supplying a pointer to the data 
rather than by copying the data to the user buffer. 

The LOCATE_MODE attribute corresponds to the LOC option in the RAB$L_ 
ROP field. 

LOCK_ON_READ 
This switch permits a process reading a record to prohibit other processes from 
modifying the record. 

The LOCK_ON_WRITE attribute takes precedence over the LOCK_ON_READ 
attribute, and the NOLOCK attribute takes precedence over both. 

The LOCK_ON_READ attribute corresponds to the REA option in the RAB$L_ 
ROP field. 

LOCK_ ON_ WRITE 
This switch permits a process to allow other processes to read a record that it is 
modifying. 

The LOCK_ON_WRITE attribute takes precedence over the LOCK_ON_READ 
attribute, and the NOLOCK attribute takes precedence over both. 

The LOCK_ON_ WRITE attribute corresponds to the RLK option in the RAB$L_ 
ROP field. 

MANUAL_UNLOCKING 
This switch prohibits RMS from unlocking records automatically. Instead, after a 
record is locked by a Get, Find, or Put operation, RMS must use a Free or Release 
operation to explicitly unlock the record. 

The NOLOCK attribute takes precedence over the MANUAL_UNLOCKING 
attribute and corresponds to the ULK option in the RAB$L_ROP field. 

MULTIBLOCK_COUNT 
This numeric attribute permits a process that is accessing a sequential disk file 
to specify the number of blocks, in the range 0 to 127, allocated to each I/O buffer. 

The MULTIBLOCK_COUNT attribute optimizes data throughput for sequential 
operations, and it does not affect the structure of the file. It reduces the number 
of times you have to access the disk for record operations, thereby reducing 
execution time. However, the extra buffering increases memory requirements. 

4-11 



File Definition Language Facility 
4.1 Overview 

4-12 

If you do not specify this attribute or if you specify the value 0, RMS uses the 
process default for the multiblock count. If the process default is 0, RMS uses the 
system default. If the system default is 0, the default size for each I/O buffer is 
one block. Use the DCL command SET RMS_DEFAULT to establish process or 
system defaults. 

The MULTIBLOCK_COUNT attribute corresponds to the RAB$B_MBC field and 
is not supported for DECnet for Open VMS operations. 

MULTIBUFFER_COUNT 
This numeric attribute specifies the number of buffers, in the range 0 to 127, to 
be allocated at connect time. 

If you do not select this attribute or if you use the value 0, RMS uses the process 
default for the particular file organization and device type. If the process default 
is 0, the system default for the particular file organization and device type 
applies. 

If the system default is likewise 0, one buffer is allocated. However, if you specify 
either the READ_AHEAD attribute or the WRITE_BEHIND attribute, RMS 
allocates at least two buffers. Similarly, RMS allocates a minimum of two buffers 
for an indexed sequential file or for a process-permanent file. 

The MULTIBUFFER_COUNT attribute corresponds to the RAB$B_MBF field 
and is not supported for DECnet for Open VMS operations. 

NO LOCK 
This switch specifies that the record accessed through a Get or Find operation 
is not to be locked. The NOLOCK attribute takes precedence over all other 
attributes that control record locking, such as MANUAL_UNLOCKING, LOCK_ 
ON_READ, and LOCK_ON_WRITE. 

The NOLOCK attribute corresponds to the NLK option in the RAB$L_ROP field. 

NONEXISTENT _RECORD 
This switch specifies that if a record randomly accessed with a Get or Find RMS 
operation does not exist (was never inserted into the file or was deleted), it is to 
be processed anyway, locking the record cell if necessary. 

The NONEXISTENT_RECORD attribute does not apply to indexed files, and it 
corresponds to the NXR option in the RAB$L_ROP field. 

READ_AHEAD 
This switch is used with multiple buffers (see MULTIBUFFER_COUNT) 
to indicate read-ahead operations. It directs the system not to wait for I/O 
completion because input and computing can overlap. That is, when one buffer is 
filled, the next record is read into a second buffer while I/O operations take place 
in the first buff er. 

If you specify READ_AHEAD when the multibuffer count is 0, two buffers 
are allocated to allow multibuffering. If you specify two or more buffers, 
multibuffering is allowed regardless. However, if you specify a buffer count 
of 1, multibuffering is disabled. 

The READ_AHEAD attribute applies only to sequential file processing and 
is ignored for unit record device I/O. This attribute corresponds to the RAH 
option in the RAB$L_ROP field and is not supported for DECnet for Open VMS 
operations. 



File Definition Language Facility 
4.1 Overview 

READ_REGARDLESS 
This switch permits you to read a record even if it is locked, allowing some control 
over access. If a record is locked against all access and you request a Find or Get 
RMS operation, RMS returns the record anyway. 

The READ_REGARDLESS attribute corresponds to the RRL option in the 
RAB$L_ROP field. 

TIMEOUT _ENABLE 
This numeric attribute specifies the maximum time value, in seconds, allowed 
for a record input wait caused by a locked record when you specify the WAIT_ 
FOR_RECORD attribute. This attribute also applies to the time allowed for a 
character to be received during terminal input. If the timeout period expires, 
RMS returns an error status. 

The TIMEOUT_ENABLE attribute also serves a special purpose for mailbox 
devices. If you specify this attribute with a TIMEOUT_PERIOD of 0, Get and Put 
RMS operations to mailbox devices use the I0$M_NOW modifier. The operation 
then completes immediately instead of synchronizing with another cooperating 
writer or reader of the mailbox. See the Open VMS I I 0 User's Reference Manual 
for a further discussion of mailboxes. 

The TIMEOUT_ENABLE attribute corresponds to the TMO option in the RAB$L_ 
ROP field and is not supported for DECnet for Open VMS operations. 

TIMEOUT _PERIOD 
This numeric attribute specifies the maximum duration, in seconds (Oto 255), of 
a Get operation. If the user specifies a Get operation from the terminal and the 
attribute value is 0, RMS does not return the current contents of the type-ahead 
buffer. 

You can use this attribute only with the TIMEOUT_ENABLE attribute. It 
corresponds to ~he RAB$B_TMO field and is not supported for DECnet for 
Open VMS operations. 

TRUNCATE_ON_PUT 
This switch permits a Put or Write operation at any point in a file, truncating 
the file at that point. A Write operation causes the end-of-file (EOF) mark to 
immediately follow the last byte written. 

TRUNCATE_ ON_PUT can only be used with sequential files. It corresponds to 
the TPT option in the RAB$L_ROP field. 

TT_CANCEL_CONTROL_O 
This switch ensures that terminal output is not discarded if you press Ctrl/O. It 
corresponds to the CCO option in the RAB$L_ROP field and is not supported for 
DECnet for Open VMS operations. 

TT_PROMPT 
This switch specifies that the contents of the prompt buffer be used as a prompt 
on a terminal-read operation. 

It corresponds to the PMT option in the RAB$L_ROP field and is not supported 
for DECnet for Open VMS operations. 

4-13 



File Definition Language Facility 
4.1 Overview 

4-14 

TT_PURGE_TVPE_AHEAD 
This switch eliminates any information that might be in the type-ahead buffer on 
a terminal-read operation. The TT_PURGE_TYPE_AHEAD attribute corresponds 
to the PTA option in the RAB$L_ROP field and is not supported for DECnet for 
Open VMS operations. 

TT _READ_NOECHO 
This switch specifies that input data is not to be echoed (displayed) on the 
terminal as it is entered on the keyboard. The TT_READ_NOECHO attribute 
corresponds to the RNE option in the RAB$L_ROP field and is not supported for 
DECnet for Open VMS operations. 

TT_READ_NOFILTER 
This switch specifies that the Ctrl/U, Ctrl/R, and Delete keys are not to be 
considered control commands from the terminal but are to be passed to the user 
program. 

The TT_READ_NOFILTER attribute corresponds to the RNF option in the 
RAB$L_ROP field and is not supported for DECnet for Open VMS operations. 

TT _UPCASE_INPUT 
This switch changes lowercase characters read from a terminal to uppercase. The 
TT_UPCASE_INPUT attribute corresponds to the CVT option in the RAB$L_ROP 
field and is not supported for DECnet for Open VMS operations. 

UPDATE_IF 
This switch specifies that a Put operation for a record that already exists is 
converted to an Update operation. This attribute is necessary to overwrite (as 
opposed to update) an existing record in relative and indexed sequential files. 

Indexed files using UPDATE_IF must not allow duplicates on the primary key. 

The UPDATE_IF attribute corresponds to the UIF option in the RAB$L_ROP 
field. 

WAIT _FOR_RECORD 
This switch directs RMS to wait for a currently locked record until it becomes 
available. You can use this attribute with the TIMEOUT_ENABLE and 
TIMEOUT_PERIOD attributes to limit waiting periods to a specified time. 

The WAIT_FOR_RECORD attribute corresponds to the WAT option in the 
RAB$L_ROP field. 

WRITE_BEHIND 
This switch is used with multiple buffers (see MULTIBUFFER_COUNT) to 
specify write-behind operations. It directs the system not to wait for I/O 
completion because computing and output can overlap. When one buffer is 
filled, the next record is written into a second buffer while the I/O operation takes 
place for the first buff er. 

If you specify WRITE_BEHIND when the multibuffer count is 0, two buffers 
are allocated to allow multibuffering. If you specify two or more buffers, 
multibuffering is allowed regardless. However, if you specify a buffer count 
of 1, multibuffering is disabled. 

The WRITE_BEHIND attribute applies to sequential file processing only and is 
ignored for unit record device I/O. This attribute is not supported for DECnet for 
Open VMS operations. 



File Definition Language Facility 
4.1 Overview 

This attribute corresponds to the WBH option in the RAB$L_ROP field. 

4.1.6 DATE Section 
The DATE section allows you to specify dates and times for various file 
characteristics. The DATE keyword takes no values; it serves only to define this 
section. The following table lists the DATE secondary attributes and their default 
values. Note that all DATE secondary attributes are create-time attributes. 

Secondary 
Attribute 

BACKUP 

CREATION 

EXPIRATION 

REVISION 

Default Value 

Null-string 

Null-string 

Null-string 

Null-string 

In general, you should let the system specify values for the DATE secondary 
attributes. The only secondary attribute you can routinely specify is 
EXPIRATION. 

BACKUP 
This string indicates the date when the file was last backed up. It must use the 
following syntax: 

dd-mmm-yyyy hh:mm:ss.cc. 

The BACKUP attribute corresponds to the XAB$Q_BDT field. 

CREATION 
This string indicates the date and time when the file was created. It uses the 
following syntax: 

dd-mmm-yyyy hh:mm:ss.cc. 

The CREATION attribute corresponds to the XAB$Q_CDT field. 

EXPIRATION 
This string indicates the earliest date and time a disk file can be deleted. For 
magnetic tape files, the EXPIRATION attribute establishes the date and time 
when you can overwrite the file. It uses the following syntax: 

dd-mmm-yyyy hh:mm:ss:cc. 

The EXPIRATION attribute corresponds to the XAB$Q_EDT field. 

REVISION 
This string indicates the date of the last modification to the data file. It uses the 
following syntax: 

dd-mmm-yyyy hh:mm:ss.cc. 

The REVISION attribute corresponds to the XAB$Q_RDT field. 

4-15 



File Definition Language Facility 
4.1 Overview 

4.1. 7 FILE Section 

4-16 

The FILE section allows you to specify file processing and file-related 
characteristics for your file. The FILE keyword takes no values; it serves 
only to define this section. 

FILE section attributes (ALLOCATION, BEST_TRY_CONTIGUOUS, BUCKET_ 
SIZE, CONTIGUOUS, and EXTENSION) have corresponding AREA section 
attributes. Values you specify for these attributes in the AREA section override 
associated values that you specify in the FILE section. 

The following table lists the FILE secondary attributes and their default values. 
It also specifies whether each attribute is a create-time attribute or a run-time 
attribute. 

Secondary Attribute Default Value Attribute Type 

ALLOCATION 0 Create-time 

ASYNCHRONOUS NO Run-time 

BEST_TRY_CONTIGUOUS NO Create-time 

BUCKET_SIZE 0 Create-time 

CLUSTER_SIZE1 See note See note 

CONTEXT 0 Run-time 

CONTIGUOUS NO Create-time 

CREATE_IF NO Run-time 

DEFAULT_NAME Null-string Run-time 

DEFERRED_ WRITE NO Run-time 

DELETE_ON_CLOSE NO Run-time 

DIRECTORY_ENTRY YES Run-time 

EXTENSION 0 Create-time 

FILE_MONITORING NO Create-time 

GLOBAL_BUFFER_COUNT 0 Create-time 

MAX_RECORD_NUMBER 0 Create-time 

MAXIMIZE_ VERSION YES Run-time 

MT_BLOCK_SIZE 0 Create-time 

MT_CLOSE_REWIND NO Run-time 

MT_CURRENT_POSITION NO Run-time 

MT_NOT_EOF NO Run-time 

MT_OPEN_REWIND NO Run-time 

MT_PROTECTION Space character Create-time 

NAME Null-string Create-time 

NON_FILE_STRUCTURED NO Run-time 

ORGANIZATION SEQUENTIAL Create-time 

OUTPUT_FILE_PARSE NO Run-time 

OWNER System or process Create-time 
default 

1The bucket size attribute is available only following file analysis. The default value is the same as 
the disk cluster size of the analyzed file. 



Secondary Attribute 

PRINT_ ON_ CLOSE 

PROTECTION 

READ_CHECK 

REVISION 

SEQUENTIAL_ ONLY 

STORED_SEMANTICS 

SUBMIT_ON_CLOSE 

SUPERSEDE 

TEMPORARY 

TRUNCATE_ ON_ CLOSE 

USER_FILE_OPEN 

WINDOW _SIZE 

WRITE_ CHECK 

ALLOCATION 

File Definition Language Facility 
4.1 Overview 

Default Value Attribute Type 

NO Run-time 

System or process Create-time 
default 

NO Run-time 

0 Create-time 

NO Run-time 

None Create-time 

NO Run-time 

NO Run-time 

NO Run-time 

NO Run-time 

NO Run-time 

Volume default Run-time 

NO Run-time 

This numeric attribute establishes the number initially allocated to the file. The 
value must be an integer in the range 0 to 4,294,967 ,295. If you take the default 
(0), the system allocates no initial space for the file. 

The ALLOCATION attribute corresponds to the FAB$L_ALQ field. 

ASYNCHRONOUS 
This switch specifies asynchronous I/O operations. When you select this attribute, 
RMS returns control to your program as soon as an I/O operation begins. The 
switch is ignored for process-permanent files. 

The ASYNCHRONOUS attribute corresponds to the ASY option in the RAB$L_ 
ROP field. 

BEST_ TRY _CONTIGUOUS 
This switch controls whether the file is to be allocated contiguously, assuming 
there is sufficient contiguous space for it. If you set the switch and there is not 
enough space, the system allocates the file noncontiguous space. If you take the 
default, no space is allocated. 

The BEST_TRY_CONTIGUOUS attribute corresponds to the CBT option in the 
FAB$L_FOP field. 

BUCKET _SIZE 
This numeric attribute establishes the number of blocks per bucket. Its value 
must be an integer in the range 0 to 63. If you take the default (0), RMS 
computes the smallest bucket size capable of holding the largest record. Files 
processed by RMS-11 are limited to 32 blocks. 

If you specify separate areas for the data level and the index levels, you must 
define separate bucket sizes for each file area; thus, the corresponding attribute 
in each AREA section overrides this related attribute in the FILE section. 

The BUCKET_SIZE attribute corresponds to the FAB$B_BKS field. 

4-17 



File Definition Language Facility 
4.1 Overview 

4-18 

CLUSTER_ SIZE 
This numeric attribute specifies the number of blocks allocated to a disk cluster. 
The disk cluster size can be established only when a disk volume is initialized. 

The CLUSTER_SIZE attribute is output from the Analyze/RMS_File utility 
(ANALYZE/RMS_FILE), which returns the actual value of the disk cluster size to 
EDIT/FDL for use during an Optimize script. 

CONTEXT 
This numeric attribute contains a user-specified value 4 bytes long. RMS never 
uses the attribute for record management activities. It is intended solely for you 
to convey user information to a completion routine in your program. 

The CONTEXT attribute corresponds to the FAB$L_CTX field. 

CONTIGUOUS 
This switch specifies that a file is allocated contiguous space. 

If there is not enough contiguous space for the file's initial allocation, RMS 
returns an error. 

If you take the default, the system allocates no space for the file. 

This attribute corresponds to the CTG option in the FAB$L_FOP field. 

CREATE_IF 
This switch creates a file if the specified file does not already exist and, where 
applicable, RMS returns the alternate success status RMS$_CREATED to 
indicate that the file was created, not just opened. If the file exists, RMS opens 
it. 

The CREATE_IF attribute is valid as input to the Create service only. It overrides 
the SUPERSEDE (supersede existing file) attribute and corresponds to the CIF 
option in the FAB$L_FOP field. 

DEFAULT_NAME 
This attribute takes a string value that defines portions of the file specification 
for the data file being created. 

When a utility creates a data file from an FDL file, it first attempts to get the file 
specification from the calling process. If the call includes a full file specification, 
the utility ignores the DEFAULT_NAME and NAME attributes. 

When a process supplies a partial file specification, the invoked utility tries to 
complete the file specification from the DEFAULT_NAME string. If the calling 
process does not specify a value for DEFAULT_NAME, the utility uses the RMS 
defaults. 

If the calling process supplies a file specification by using the NAME attribute, 
the utility uses it. If the NAME attribute includes only a partial file specification, 
the utility uses it and examines the DEFAULT_NAME attribute for the rest of 
the file specification. 

If the NAME and DEFAULT_NAME attributes together provide only a partial file 
specification, the utility uses RMS default values to complete the file specification. 

For example, if you assign the value WRKD$:.KSM to DEFAULT_NAME, unless 
you specify otherwise, the created data file specification takes the device name 
WRKD$ and the file type .KSM. 



File Definition Language Facility 
4.1 Overview 

The NAME and DEFAULT_NAME attributes correspond to the FAB$L_DNA and 
the FAB$B_DNS fields, respectively. 

DEFERRED_WRITE 
This switch specifies that the writing of modified I/O buffers to the file is deferred 
until that buffer is needed for other purposes. This attribute applies only to 
relative files, indexed files, and sequential files opened for shared access. 

The DEFERRED_ WRITE attribute corresponds to the DFW option in the FAB$L_ 
FOP field. This attribute is not supported for DECnet for Open VMS operations. 

DELETE_ON_CLOSE 
This switch specifies that the file is to be deleted after it is closed. If you select 
this attribute, you cannot create the file with either the Create/FDL utility or the 
FDL$CREATE routine because both open and then close the file. Therefore, the 
file will not exist long enough to be used. To create a file with the DELETE_ON_ 
CLOSE attribute, you must use the FDL$PARSE routine. 

The DELETE_ON_CLOSE attribute corresponds to the DLT option in the 
FAB$L_FOP field. The default is to ignore this attribute. 

DIRECTORY _ENTRY 
This switch specifies a temporary file created and retained with a directory entry. 
When you set this switch to NO, RMS retains the file but does not include it as 
a directory entry. To access the file, you must use its file identification number 
(FID). 

The DIRECTORY_ENTRY attribute corresponds to the TMP option in the 
FAB$L_FOP field. 

EXTENSION 
This numeric attribute establishes the size, in blocks, of the file's default 
extension value. Each time the file is automatically extended, the specified 
number of blocks is added.. The value for this attribute must be an integer in 
the range 0 to 65,535. When you take the default (0), the system determines the 
extension size. 

The EXTENSION attribute corresponds to the FAB$W _DEQ field. 

FILE_MONITORING 
This switch enables RMS performance monitoring. It corresponds to the XABITM 
field XAB$_STAT_ENABLE and its default value is NO. 

GLOBAL_BUFFER_COUNT 
This numeric attribute specifies the number of global buffers allocated to the file. 
The value must be a number in the range 0 to 32,767; the default value is 0. 

The GLOBAL_BUFFER_COUNT attribute corresponds to the FAB$W_GBC field. 
This attribute is not supported for DECnet for Open VMS operations. 

MAX_RECORD_NUMBER 
This numeric attribute specifies the maximum number of records that can 
be placed in a relative file. The value must be an integer in the range 0 to 
2,147,483,647. When you take the default value (0), you can place as many 
records as you want in the relative file, up to the maximum 2,147,483,647. 

The MAX_RECORD_NUMBER attribute corresponds to the FAB$L_MRN field. 

4-19 



File Definition Language Facility 
4.1 Overview 

4-20 

MAXIMIZE_ VERSION 
This switch specifies the file's version number. If you take the default, YES, 
the File Definition Language facility assigns the greater of two possible version 
numbers: either the number that was part of the file specification or a version 
number that is 1 higher than the highest existing version number. 

When you set the switch to NO, assigning an explicit version number lower than 
an existing version results in creating a new data file with the lower version 
number. If you assign an explicit version number that matches an existing 
version, RMS returns an error. 

The MAXIMUM_ VERSION attribute corresponds to the MXV option in the 
FAB$L_FOP field. 

MT _BLOCK_SIZE 
This numeric attribute establishes the number of bytes in a magnetic tape 
file block. The value can be 0, an integer in the range 20 to 65,535 for ANSI­
formatted tapes, or an integer in the range 14 to 65,532 for foreign tapes (tapes 
that are not in the standard ANSI format used by Open VMS operating systems 
and that must be mounted by means of the DCL command MOUNT/FOREIGN). 
If you take the default value (0), RMS assigns the block size specified when the 
tape was mounted. 

The MT_BLOCK_SIZE attribute corresponds to the FAB$W_BLS field. 

MT _CLOSE_REWIND 
This switch controls whether a magnetic tape volume is rewound when the file is 
closed. The magnetic tape volume does not rewind if you take the default (NO). 

The MT_CLOSE_REWIND attribute corresponds to the RWC option in the 
FAB$L_FOP field. 

MT _CURRENT _POSITION 
This switch directs RMS to position the magnetic tape volume set immediately 
after the most recently closed file when it creates the next file. If you use this 
option when you invoke the $CREATE service, RMS overwrites all files located 
beyond the current tape position. 

If you do not specify either of the position specifiers (MT_CURRENT_POSITION 
or MT_OPEN_REWIND), RMS creates the new file at the logical end of the 
tape. If you specify both position specifiers, the MT_OPEN_REWIND attribute 
overrides the MT_CURRENT_POSITION attribute. 

The MT_CURRENT_POSITION attribute corresponds to the POS option in the 
FAB$B_FOP field. 

MT_NOT_EOF 
This switch prevents positioning the tape to the end of a file being opened with 
the PUT attribute specified. 

This attribute corresponds to the NEF option in the FAB$L_FOP field. 

MT _OPEN_REWIND 
This switch specifies that the magnetic tape volume is to be rewound before the 
file is opened or created. If you use this option to create a tape file, RMS assumes 
that write operations are to take place at the beginning of the tape, rewinds the 
tape to the beginning, and proceeds to overwrite the tape data beginning with the 
first tape file. 



File Definition Language Facility 
4.1 Overview 

Conversely, if you specify this attribute when you open an existing tape file, RMS 
rewinds to the beginning of the tape but then proceeds to find the specified file 
before doing any file operations. 

Typically, a user specifies the MT_OPEN_REWIND option to improve efficiency in 
opening a tape file or to ensure access to the correct file when the tape contains 
files with duplicate names. ANSI tapes allow named files, but they have no 
directories and can contain repeated instances of files with the same name. 

In the first case, assume the tape has 50 files, is positioned at the fortieth file, 
and the user wants to access the thirtieth file. If the user specifies MT_ OPEN_ 
REWIND to the Open service, RMS rewinds the tape to the first file and then 
winds the tape forward to the thirtieth file. If the user does not specify MT_ 
OPEN_REWIND, RMS winds the tape forward to the end of the tape. Then, not 
having found the file, RMS rewinds the tape to the first file and proceeds to wind 
the tape forward to the thirtieth file. 

In the second case, assume a tape has two files named X.DAT and is positioned 
between the two files. Assume further that the user wants to access the first 
file named X.DAT. If the user does not specify MT_OPEN_REWIND, RMS winds 
forward until it finds the second file and opens it, instead of opening the desired 
file. Conversely, if the user does specify MT_OPEN_REWIND, RMS rewinds the 
tape and then winds forward until it finds and opens the first file named X.DAT. 

The MT_OPEN_REWIND option takes precedence over the MT_CURRENT_ 
POSITION option and corresponds to the RWO option in the FAB$L_FOP field. 

MT _PROTECTION 
This single-character string attribute allows you to control access to a magnetic 
tape file. The default value is a space character that specifies access is not 
controlled. If the attribute is a non-space character, you can access the file only 
by specifying the /OVERRIDE=ACCESSIBILITY qualifier and option when you 
initialize or mount the volume. 

This attribute corresponds to the XAB$B_MTACC field and is not supported for 
DECnet for Open VMS operations. 

NAME 
This string attribute specifies the name of the data file to be created from this 
FDL file. If you supply a name for the data file, that name overrides the one 
specified here. 

This attribute corresponds to the FAB$L_FNA and the FAB$B_FNS fields. 

NON_FILE_STRUCTURED 
This switch directs that the volume is to be processed in a manner that is not file 
structured. This attribute corresponds to the NFS option in the FAB$L_FOP field 
and is not supported for DECnet for Open VMS operations. 

ORGANIZATION 
This keyword attribute specifies the file organization. Its value must be one of 
the following keywords: 

• SEQUENTIAL 

• RELATIVE 

• INDEXED 

The default is SEQUENTIAL. 

4-21 



File Definition Language Facility 
4.1 Overview 

4-22 

This attribute corresponds to the FAB$B_ORG field. 

OUTPUT _FILE_PARSE 
This· switch specifies that the resultant file specification string, if used, is to 
provide directory, file name, and file type defaults only. 

This attribute corresponds to the OFP option in the FAB$L_FOP field. 

OWNER 
This string attribute specifies the owner of the data file. The value must be the 
user identification code (UIC), in this form: 

octal-group-number,octal-user-number 

For example, OWNER [12,322] indicates that the person in group 12 with the 
user number 322 is the owner of the data file. 

This attribute corresponds to the XAB$W_GRP and the XAB$W_MBM fields. 

PRINT _ON_ CLOSE 
This switch controls whether the data file is to be spooled to the process default 
print queue when the file is closed, and applies to sequential files only. When you 
set the switch to YES, the data file is to be spooled to the process default print 
queue (SYS$PRINT) after the file is closed. 

If you also set DELETE_ ON_ CLOSE to YES, the file is deleted after it is printed. 

This attribute corresponds to the SPL option in the FAB$L_FOP field. 

PROTECTION 
This keyword attribute specifies file protection by defining the type of file access 
allowed for each of the four user classes: 

• System (S) 

• Owner (0) 

• Group (G) 

• World (W) 

You define the access level for each user class by entering the appropriate access­
level code as the argument for each user-class keyword. There are four access 
levels and you can assign one or more to each user class: 

• Read (R) access-lets the user read the file 

• Write (W) access-lets the user modify the file 

• Execute (E) access-lets the user run the file 

• Delete (D) access-lets the user delete the file 

Each user class has a unique first letter (S, 0, G, and W) and the same is true for 
each access level (R, W, E, and D). This lets you truncate the code for each user 
class if you prefer. Note that you must truncate the access level to the leading 
letter. 

The syntax for encoding protection may take either of the following forms: 

(SYSTEM=code,OWNER=code,GROUP=code,WORLD=code) 

(SYSTEM:code,OWNER:code,GROUP:code,WORLD:code) 



File Definition Language Facility 
4.1 Overview 

You must enclose the protection specification in parentheses and you have the 
option of using either the equal sign ( = ) or a colon ( : ) to separate each keyword 
from its associated code value. 

By default, RMS assigns the file the default protection for the current process. To 
see the default protection for the current process, use the DCL command SHOW 
PROTECTION. 

To deny a user class a specific access level, omit the access level from the code. 
To deny a user class all access levels, omit the user class keyword from the 
protection specification. For example, the following protection specification gives 
all access levels to user class System and user class Owner, read access to user 
class Group, and no access levels to user class World: 

(System=RWED,Owner=RWED,Group=R) 

This attribute corresponds to the XAB$W _PRO field. 

READ_CHECK 
This switch determines whether transfers from disk volumes are followed by 
read-compare operations. 

When you activate the switch, transfers from disk volumes are followed by read­
compare operations. This double check increases the likelihood that the system 
will catch data errors; however, it also increases disk overhead. 

Activating this switch does not permanently mark the file for READ_CHECK; 
it merely selects a run-time option. To permanently mark the file for READ_ 
CHECK, use the SET FILE/DATA_CHECK=READ command. 

This attribute corresponds to the RCK option in the FAB$L_FOP field. 

REVISION 
This numeric attribute specifies the revision number of the data file as an integer 
in the range 0 to 65,535. Unless you want to change the revision number to some 
specific number, you should leave this value at its default of 0. When REVISION 
is set to 0, the file's revision number is incremented each time the file is opened 
for write access. 

This attribute corresponds to the XAB$W _RVN field. 

SEQUENTIAL_ ONLY 
This switch limits the file to sequential processing and related processing options. 
Any attempt at random access results in an error. 

For DECnet for Open VMS operations, this attribute enables file transfer mode, 
which is a data access protocol (DAP) feature that allows several records to 
be transferred in a single network operation. It maximizes throughput for 
single-direction, sequential-access file transfer. 

This attribute corresponds to the SQO option in the FAB$L_FOP field. 

STORED_SEMANTICS 
Where applicable, this string attribute identifies the file semantics established 
when a file is created. The string is limited to 64 characters and the attribute 
corresponds to the XAB$_STORED_SEMANTICS field. 

4-23 



File Definition Language Facility 
4.1 Overview 

4-24 

SUBMIT_ON_CLOSE 
This switch submits the data file to the process default batch queue 
(SYS$BATCH) when the file is closed and is appropriate only for sequential 
command files. 

If you also set DELETE_ ON_ CLOSE to YES, the file is deleted after the batch job 
completes. 

This attribute corresponds to the SCF option in the FAB$L_FOP field and is not 
supported for DECnet for Open VMS operations. 

SUPERSEDE 
This switch replaces the existing data file with a different file of the same name, 
type, and version. 

If you successfully create a new file with the same name, type, and version as an 
existing file, the old file is deleted. 

SUPERSEDE is overridden by the CREATE_IF attribute. 

This attribute corresponds to the SCF option in the FAB$L_FOP field. 

TEMPORARY 
This creates a temporary file that is deleted when it is closed. No directory entry 
is created for a temporary file. 

You cannot create a file that has this attribute by using the CREATE/FDL 
command or the FDL$CREATE routine, because these commands open and 
then close the data file before it can be used. You can only use the FDL$PARSE 
routine to create a file that has the TEMPORARY attribute. 

This attribute corresponds to the TMD option in the FAB$L_FOP field. 

TRUNCATE_ ON_ CLOSE 
This switch deallocates unused space at the end of a sequential file when the file 
is closed. 

This attribute corresponds to the TEF option in the FAB$L_FOP field. 

USER_FILE_OPEN 
This switch limits RMS operations to opening or creating a file. If you specify 
this option, you must also specify the SHARING USER_INTERLOCK attribute 
unless you have specified the SHARING PROHIBIT attribute. 

This attribute corresponds to the UFO option in the FAB$L_FOP field and is not 
supported for DECnet for Open VMS operations. 

WINDOW_SIZE 
This attribute specifies the number of retrieval windows (pointers) you want RMS 
to maintain in memory for your file. You can specify a numeric value in the range 
0 to 127, or 255. A value of 0 indicates that RMS is to use the system default 
number of retrieval pointers. A value of 255 means to map the entire file, if 
possible. Values between 128 and 254, inclusive, are reserved for future use. 

This attribute corresponds to the FAB$B_RTV field and is not supported for 
DECnet for Open VMS operations. 

WRITE_ CHECK 
This switch specifies that disk transfers are checked by a read-compare operation. 
Note, however, that this operation creates extra system overhead. 



File Definition Language Facility 
4.1 Overview 

This switch does not permanently mark the file for WRITE_CHECK; it sets 
an RMS run-time option. You must use the SET FILE/DATA_CHECK=WRITE 
command to mark the file permanently. 

This attribute corresponds to the WCK option in the FAB$L_FOP field. 

4.1.8 KEY Section 
The KEY primary attribute acts as a header for a section of the FDL file that 
describes keys. You must specify a separate KEY section for each key of an 
indexed file. The number of the key being described follows the word KEY (for 
example, KEY 0, KEY 1, ... KEY n ). The KEY value for the primary key must 
be 0. The KEY value for secondary keys can be numbered from 1 to 254. 

The KEY primary attribute corresponds to the XA.B$B_REF field. 

The following table lists the KEY secondary attributes and their default values. 
Note that all KEY secondary attributes are create-time attributes. 

Secondary Attribute 

CHANGES 

COLLATING_SEQUENCE 

DATA_ AREA 

DATA_FILL 

DATA_KEY_COMPRESSION 

DATA_RECORD_COMPRESSION 

DUPLICATES 

INDEX_AREA 

INDEX_ COMPRESSION 

INDEX_FILL 

LENGTH 

LEVELl_INDEX_AREA 

NAME 

NULL_KEY 

NULL_ VALUE 

POSITION 

PRO LOG 

SEGn_LENGTH 

SEGn_POSITION 

TYPE 

CHANGES 

Default Value 

NO 

None (only present for files with collated keys) 

None 

Same as bucket size 

YES 

YES 

NO for primary; YES for alternate 

None 

YES 

Same as bucket size 

None 

None 

Null-string 

NO 

ASCII null character 

None 

System or process default 

None 

None 

STRING 

This switch allows an RMS Update operation to change the value of the key. Such 
a change is not allowed for the primary key (regardless of this attribute), so the 
default setting for primary keys is NO. With alternate keys the default setting is 
also NO, but you can specify YES to allow changes to alternate key values. 

This attribute corresponds to the CHG option in the XA.B$B_FLG field. 

4-25 



File Definition Language Facility 
4.1 Overview 

4-26 

COLLATING_ SEQUENCE 
The name of the NCS collating sequence that defines the sorting order of the 
characters for this key. The value is a string from 1 to 31 characters long. You 
must supply the value; there is no default. 

This attribute corresponds to the XAB$L_COLNAM field. 

DATA_AREA 
This numeric attribute identifies the area where you place the data records in an 
indexed file with multiple areas. The value is an integer in the range 0 to 254, 
which must be the same number as that assigned to the area in an AREA section. 

The DATA_AREA, LEVELl_INDEX_AREA, and INDEX_AREA values are used 
when the data level and the index levels are placed in separate areas or when 
each key is placed in its own area. 

This attribute corresponds to the XAB$B_DAN field. 

DATA_FILL 
This attribute establishes the percentage of bytes in each data bucket in the area 
you want populated initially. If you anticipate that many records will be inserted 
randomly into the file, this value should be less than 100 percent of the bytes. 
The default value is 100 percent, and the minimum value is 50 percent. The 
/FILL_BUCKETS qualifier to the CONVERT command overrides this attribute. 

This attribute corresponds to the XAB$W _DFL field except that XAB$W _DFL 
contains a byte count, not a percentage. 

DATA_KEY _COMPRESSION 
This switch compresses leading and trailing repeating characters in the primary 
key and its default value is YES. For compression to occur, your indexed file must 
be defined as a Prolog 3 file with the FDL attribute KEY PROLOG. However, 
KEY PROLOG 3 is the default. 

This attribute corresponds to the KEY_NCMPR option in the XAB$B_FI.p field, 
and should be set for DECnet for Open VMS operations. 

DATA_RECORD_COMPRESSION 
This switch controls whether repeating characters are compressed in the data 
records. The default is YES; however, for compression to occur, your indexed file 
must be defined as a Prolog 3 file. 

This attribute corresponds to the DAT_NCMPR option in the XAB$B_FLG field 
and should be set for DECnet for Open VMS operations. 

DUPLICATES 
This switch controls whether duplicate keys are allowed in the indexed files. For 
primary keys, the default setting is NO, but for alternate keys, the default setting 
is YES. 

Duplicate alternate keys can be useful. For example, sorting a customer file on 
an alternate key of a postal code is a common application and one that requires 
duplicate keys. 

When duplicate keys are not allowed, any attempt to write a record where the 
key would be a duplicate results in an error. 

This attribute corresponds to the DUP option in the XAB$B_FLG field. 



File Definition Language Facility 
4.1 Overview 

INDEX_AREA 
This numeric attribute identifies the area where you place the index levels (other 
than level 1) in an indexed file with multiple areas. The value is an integer in 
the range 0 to 254, which must be the same number as that assigned to the area 
in an AREA section. 

The INDEX_AREA, DATA_AREA, and LEVELl_INDEX_AREA values are used 
when the data level and the index levels are placed in separate areas or when 
each key is placed in its own area. 

This attribute corresponds to the XAB$B_IAN field. 

INDEX_ COMPRESSION 
This switch controls whether leading repeating characters in the index are 
compressed. The default value is YES; however, for compression to occur, your 
indexed file must be defined as a Prolog 3 file. 

This attribute corresponds to the IDX_NCMPR option in the XAB$B_FLG field 
and should be set for DECnet for Open VMS operations. 

INDEX_FILL 
This attribute sets the percentage of bytes in each index level bucket to be 
populated initially. If you anticipate that many records will be inserted randomly 
into the file, this value should be less than 100 percent. The default value is 100 
percent and the minimum value is 50 percent. 

The /FILL_BUCKETS qualifier to the CONVERT command overrides this 
attribute. 

This attribute corresponds to the XAB$W _IFL field except that the XAB$W _IFL 
field contains a byte count, not a percentage. 

LENGTH 
This numeric attribute sets the length of the key in bytes. This value, along with 
the POSITION and TYPE attributes, is used when the key is unsegmented. 

This attribute corresponds to the XAB$B_SIZO field. Its value must be specified 
because there is no default. 

LEVEL 1_1NDEX_AREA 
This attribute identifies the area where you place the level 1 index in an indexed 
file with multiple areas. The value is an integer in the range 0 to 254, which 
must be the same number as that assigned to the area in an AREA section. 

When the data level and the index levels are placed in separate areas, or when 
each key is placed in its own area, use the LEVELl_INDEX_AREA, DATA_AREA, 
and INDEX_AREA values. 

This attribute corresponds to the XAB$B_LAN field. 

NAME 
This string attribute can be used to assign a name to a key. The name string is 
limited to 32 bytes and is padded with ASCII null characters. The default value 
is no name (blank). 

This attribute corresponds to the XAB$L_KNM field. 

4-27 



File Definition Language Facility 
4.1 Overview 

4-28 

NULL_KEY 
This switch controls whether null key values will be allowed in an alternate 
string key field. The default value, NO, requires that all records contain a valid 
value for this alternate key. 

In some databases, such entries are not desirable; some records will not contain 
a value for a particular alternate key. By allowing null keys, by declaring a null 
field, and by writing the null field as the alternate key for a record, you can 
include the record in the database. 

A null key value is specified with the KEY NULL_ VALUE secondary attribute. If 
a record has the specified null value in its alternate key field, a pathway to that 
record will not be made in the alternate index structure. 

This attribute corresponds to the NUL option in the XAB$B_FLG field. 

NULL_ VALUE 
This attribute specifies the null value that instructs the system not to create an 
alternate index entry for the record that has the null value in every byte of the 
key field. All data types may be used to specify null key values. 

If the alternate key is a string data-type key, you can specify the null value either 
by enclosing the character in apostrophes or by specifying an unsigned decimal 
number denoting the character's ASCII value without enclosing characters. 

Note 

The string data-type keys include STRING, DSTRING, COLLATED, and 
DCOLLATED. 

The default is the ASCII null character (0). 

This attribute corresponds to the XAB$B_NUL field. 

POSITION 
This numeric attribute defines the byte position of the beginning of the key field, 
with the first position being 0. Primary keys work best if they start at byte 0. 
This attribute, along with the LENGTH and TYPE attributes, is used when the 
key is unsegmented. 

This attribute corresponds to the XAB$W _POSO field. 

PRO LOG 
This numeric attribute defines the internal structure level of indexed files­
PROLOG 1, PROLOG 2, and PROLOG 3. 

Prolog 3 files accept multiple keys (or alternate keys) and all data types. They 
also give you the option of compressing your data, indexes, and keys. PROLOG 3 
is the default. -

On the other hand, Prolog 1 and 2 files do not allow these options. You should 
not specify Prolog 3 if the primary key is segmented and the segments overlap. 
If you want to use a Prolog 3 file in this case, consider defining the overlapping 
segmented key as an alternate key and then choosing a different key to be the 
primary key. 

To specify a Prolog 3 file, assign the value 3 to this attribute. To specify a Prolog 1 
or 2 file, assign the value 2. There is no perceivable difference between PROLOG 
1 and PROLOG 2. 



File Definition Language Facility 
4.1 Overview 

If you do not specify a value for this attribute, the utility that creates a data file 
from the FDL file uses the system or process default. To see these default values, 
enter the DCL command SHOW RMS_DEFAULT. 

This attribute is not supported for DECnet for Open VMS operations; the default 
prolog in effect at the remote node is used. 

This attribute corresponds to the XAB$B_PROLOG field. 

SEGn_LENGTH 
This numeric attribute defines the length of the key segment in bytes and is used 
with the SEGn_POSITION attribute when the key is segmented. The value n is 
the number of the segment and may be 0 to 7. The first segment in the key must 
be numbered 0, and each key may have up to eight segments. Segmented keys 
must be STRING type. 

For Prolog 3 files, segments cannot overlap. 

This attribute corresponds to the key size fields, XAB$B_SIZO to XAB$B_SIZ7. 

SEGn_POSITION 
This numeric attribute defines the starting byte for a segment in a string key. 
The first position is 0 and segments cannot overlap in Prolog 3 files. 

This attribute corresponds to the positioning fields, XAB$W _POSO to XAB$W _ 
POS7. 

TYPE 
This attribute specifies the key type and must have one of the following values: 

BIN2 

BIN4 

BINS 

COLLATED 

DBIN2 

DBIN4 

DBIN8 

DCOLLATED 

DDECIMAL 

An unsigned, 2-byte, binary number in the range 0 to 65,535 (216-1). 

An unsigned, 4-byte, binary number in the range 0 to 4,294,967 ,295 
(232_1). 

An unsigned, 8-byte, binary value that ranges from 0 to 264-1. 

A string of ASCII characters. If the key is to be sorted by an NCS 
collating sequence, then the key type must be declared as COLLATED 
or as DCOLLATED (descending collated-sort in reverse order 
according to the collating sequence for that particular key). The 
sort order is determined by the collating sequence for that particular 
key. 

An unsigned, 2-byte, binary value that ranges from 0 to 65,535 (216
-

1). In an indexed file, records are stored in descending order for this 
key of reference. · 

An unsigned, 4-byte, binary value that ranges from 0 to 4,294,967 ,295 
(232-1). In an indexed file, records are stored in descending order for 
this key of reference. 

An unsigned, 8-byte, binary value that ranges from 0 to 264-1. In 
an indexed file, records are stored in descending order for this key of 
reference. 

A string of ASCII characters. If the key is to be sorted by an NCS 
collating sequence, then the key type must be declared as COLLATED 
or as DCOLLATED (descending collated-sort in reverse order 
according to the collating sequence for that particular key). 

A packed-decimal value (that is, a continuous string of 1 to 16 bytes) 
accessed in descending sort order in an indexed file. The format of 
the DDECIMAL type is the same as for DECIMAL, described next 
(except that DECIMAL is accessed in ascending order). 

4-29 



File Definition Language Facility 
4.1 Overview 

DECIMAL 

DINT2 

DINT4 

DINTS 

DSTRING 

INT2 

INT4 

INT8 

STRING 

A packed-decimal value, which is a continuous string of 1 to 16 bytes. 
A DECIMAL value is specified by the address of the first byte of the 
string and by the number of decimal digits. 

Each byte in a DECIMAL value is divided into two 4-bit fields. Each 
of these fields contains the binary representation of one decimal digit, 
except for the first 4-bit field in the highest byte, which represents 
the sign of the DECIMAL value. 

Although 4 bits can represent values up to decimal 16 (a hexadecimal 
10), values greater than 9 are not allowed in a DECIMAL 4-bit field, 
except for the sign field. 

The first byte contains the two beginning digits of the value. The 
high-order nibble contains either the most significant digit or a 
leading zero if it is needed to make the sign field appear in the 
correct 4-bit field. 

For example, a DECIMAL value of +123 has a length of 3 (for 3 
digits) and requires 2 bytes of storage. 

A DECIMAL value of -5237 would have a length of 4 digits. It would 
need 3 bytes of storage. 

A signed, 2-byte integer accessed in descending order in an indexed 
file. This data type can represent integers between -32, 768 and 
+32,767. 

A signed, 4-byte integer accessed in descending order in an indexed 
file. This data type can represent integers between -2,147,483,648 
and +2,147,483,647. 

A signed, 8-byte integer accessed in descending order in an indexed 
file. This data type can represent integers between -263 and +263-1. 

A string of ASCII characters accessed in descending sort order in an 
indexed file. The maximum length of the string is 255 characters. 

A signed, 2-byte integer; this data type can represent integers 
between -32, 768 and +32, 767. 

A signed, 4-byte integer; this data type can represent integers 
between -2,147,483,648 and +2,147,483,647. 

A signed, 8-byte integer; this data type can represent integers 
between -263 and +26]-1. 

A string of ASCII characters. The longest length allowed is 255 
characters. 

The default key data type is STRING. 

This attribute corresponds to the XAB$B_DTP field. 

4.1.9 NETWORK Section 

4-30 

The NETWORK section sets run-time network access parameters. The following 
table lists the NETWORK secondary attributes and their default values. Note 
that all NETWORK secondary attributes are run-time attributes. 

Secondary Attribute 

BLOCK_ COUNT 

LINK_CACHE_ENABLE 

LINK_ TIMEOUT 

NETWORK_DATA_CHECKING 

Default Value 

Varies 

YES 

30 

YES 



BLOCK_ COUNT 

File Definition Language Facility 
4.1 Overview 

A local node uses this numeric attribute to establish the size, in blocks, of a 
message buffer for messages between itself and a remote node. The value can be 
0 to 127. By default, the local node uses the NETWORK BLOCK COUNT value 
for the process. If that value is 0, then the NETWORK BLOCK COUNT value for 
the system is used. Use the SHOW RMS command to see what the process and 
system values are for NETWORK BLOCK COUNT. 

The BLOCK_COUNT attribute corresponds to the XABITM item code XAB$_ 
NET_BLOCK_COUNT, the requested block count. 

LINK_CACHE_ENABLE 
This switch enables logical link caching. It corresponds to the XABITM item code 
XAB$_NET _LINK_ CACHE_ENABLE. 

LINK_ TIMEOUT 
This numeric attribute specifies the logical link timeout in seconds, from 0 to 
65,535. It corresponds to the XABITM item code XAB$_NET_LINK_TIMEOUT. 

NETWORK_DATA_CHECKING 
This switch enables data access protocol (DAP) level cyclic redundancy check 
(CRC). It corresponds to the XABITM item code XAB$_NET_DATA_CRC_ 
ENABLE. 

4.1.10 RECORD Section 
The RECORD section contains secondary attributes that define various controls 
for records. The RECORD keyword itself takes no value; it serves only to begin 
this section. The following table lists the RECORD secondary attributes and 
their default values. Note that all RECORD secondary attributes are create-time 
attributes. 

Secondary Attribute 

BLOCK_SPAN 

tMSB_RECORD_LENGTH 

CARRIAGE_ CONTROL 

CONTROL_FIELD 

FORMAT 

SIZE 

tVAX specific 

BLOCK_SPAN 

Default Value 

YES 

NO 

CARRIAGE_RETURN 

2 

VARIABLE 

No default 

This switch determines whether records can span block boundaries in a 
sequential file. It corresponds to the BLK option in the FAB$B_RAT field. 

When the switch is set to NO, records cannot be larger than 512 bytes. When the 
space remaining in a block is insufficient to store the next record, RMS stores the 
next record in a new block. 

4-31 



File Definition Language Facility 
4.1 Overview 

4-32 

MSB_RECORD_LENGTH 
On VAX systems, this switch determines whether the format for the 2-byte 
count field that is prefixed to each variable-length record is formatted as LSB 
(NO) or MSB (YES). The 2-byte count field contains the number of bytes in the 
associated variable-length record (always an even number). When the default 
(NO) is taken, this attribute is not displayed. This attribute corresponds to the 
FAB$V _MSBRCW option in the FAB$B_RAT field. + 

CARRIAGE_ CONTROL 
This attribute corresponds to the FAB$B_RAT parameter and must be one of the 
following keywords: 

CARRIAGE_RETURN 

FORTRAN 

NONE 

Specifies that each record is preceded by a line feed and is 
followed by a carriage return when the record is written to a 
carriage control device, such as a line printer or a terminal. 
This is the default. 

Specifies that the first byte (byte 0) of each record contains 
a FORTRAN (ASA) carriage control character. The following 
lists the byte 0 values, the ASCII representation of each byte 
and the carriage control interpretation. 

Byte 0 
Value 

0 

20 

24 

28 

30 

ASCII 

Null 

Space 

$ 

+ 

0 

Meaning 

Null carriage control. Sequence: 
print buffer contents. 

Single-space carriage control. 
Sequence: line feed, print buffer 
contents, carriage return. 

Prompt carriage control. Sequence: 
line feed, print buffer contents. 

Overprint carriage control. Sequence: 
print buffer contents, carriage return. 
Allows double printing for emphasis. 

Double-space carriage control. 
Sequence: line feed, line feed, print 
buffer contents, carriage return. 

31 1 Page eject carriage control. 
Sequence: form feed, print buffer 
contents, carriage return. 

All Same as ASCII space character: 
others single-space carriage control. 

Specifies that no carriage control is to be provided. 



PRINT 

CONTROL_FIELD 

File Definition Language Facility 
4.1 Overview 

Specifies that the fixed control portion of VFC records contains 
carriage control information. The first byte of the control 
portion specifies the carriage control to be performed before 
printing. The second byte specifies the control to be performed 
after printing. 

The following table shows the encoding scheme for the control 
bytes when you specify the PRINT keyword. 

87 86 85 84 Meaning 

0 0 0 0 To specify no carriage control (NULL), 
set bits 3 to 0 at 0. 

0 x x x Use bits 6 to 0 to specify a count 
of new lines (line feed followed by 
carriage return). 

1 0 0 x Output the ASCII CO control 
character specified by the 
configuration of bits 4 to 0. 

1 0 1 x Reserved. 

1 1 0 0 Skip to the vertical format unit (VFU) 
channel (1-16) specified by bits 3 to 
0. Devices that do not have hardware 
VFUs translate these codes as a 1-line 
advance. 

1 1 0 1 Reserved. 

1 1 1 0 Reserved. 

This attribute specifies the size, in bytes, of the fixed-length control portion of 
VFC records. Its value must be a number in the range 1 to 255. The default 
value is 2. 

This attribute corresponds to the FAB$B_FSZ field. 

FORMAT 
This keyword attribute establishes the record format for the data file. Its value 
must be one of the following keywords: 

FIXED 

STREAM 

STREAM_ CR 

STREAM_LF 

Specifies fixed-length records. 

Specifies that the records are STREAM records; the record is viewed 
as a continuous stream of bytes, delimited by a special character. 
This format is compatible with RMS-11 stream files. This is valid for 
sequential files only. 

Specifies that the records are STREAM records; the record is viewed 
as a continuous stream of bytes, delimited by a CR character. This is 
valid for sequential files only. 

Specifies that the records are STREAM records; the record is viewed 
as a continuous stream of bytes, delimited by an LF character. This 
is valid for sequential files only. 

4-33 



File Definition Language Facility 
4.1 Overview 

4-34 

UNDEFINED Specifies undefined record format, which means that the record is a 
continuous stream of bytes with no specific terminator. This keyword 
is valid for sequential files only. 

VARIABLE 

VFC 

Specifies variable-length records. This is the default setting. 

Specifies variable-length records with fixed-length control fields 
(VFC). This is valid for sequential and relative files. 

This attribute corresponds to the FAB$B_RFM field. 

SIZE 
Sets the maximum record size in bytes. 

When used with fixed-length records, this value is the length of every record in 
the file. 

When used with variable-length records, this value is the longest record that can 
be placed in the file. With sequential or indexed files, you can specify 0 and the 
system will not impose a maximum record length. (Note, however, that records in 
an indexed or relative file cannot cross bucket boundaries.) 

When used with relative files, the SIZE attribute is used with the BUCKET_SIZE 
attribute to set the size of the fixed-length cells. 

With VFC records, do not include the fixed control portion of the record in the 
SIZE calculation; only the data portion is set by this attribute. The RECORD 
CONTROL_FIELD attribute sets the size of the fixed control portion. 

The fixed area is the size, in bytes, of the fixed-control portion of VFC records. 
Regular VFC records have a control field size of 0. 

This attribute corresponds to the FAB$W _MRS field. 

Table 4-1 gives the maximum record sizes, in bytes, for the various file 
organizations and record formats. 

Table 4-1 Maximum Record Size for File Organizations and Record Formats 

File Organization Record Format Maximum Record Size 

Sequential Fixed-length 32,767 

Sequential (disk) Variable-length 32,767 

Sequential (disk) VFC 32,7671 

Sequential (disk) Stream 32,767 

Sequential (disk) Stream CR 32,767 

Sequential (disk) Stream LF 32,767 

Sequential (ANSI Tape) Variable-length 9,995 

Sequential (ANSI Tape) VFC 9,9951 

Relative Fixed-length 32,255 

Relative Variable-length 32,253 

Relative VFC 32,253-FSZ1 

Indexed, Prolog 1 or 2 Fixed-length 32,234 

1The maximum record size listed for the VFC record format is for the data portion of the record only. 
It does not include the number of bytes in the control area. 

(continued on next page) 



File Definition Language Facility 
4.1 Overview 

Table 4-1 (Cont.) Maximum Record Size for File Organizations and Record 
Formats 

File Organization 

Indexed, Prolog 1 or 2 

Indexed, Prolog 3 

Indexed, Prolog 3 

Record Format 

Variable-length 

Fixed-length 

Variable-length 

Maximum Record Size 

32,232 

32,224 

32,224 

For DECnet for Open VMS operations, the maximum record size is determined by 
the DCL command SET RMS/NETWORK_BLOCK_COUNT. 

4.1.11 SHARING Section 
The SHARING section allows you to specify whether you want to allow multiple 
readers or writers to access your file at the same time. The SHARING keyword 
takes no values; it serves only to define this section. . 

The following table lists the SHARING secondary attributes and their default 
values. Note that all SHARING secondary attributes are run-time attributes. 

Secondary Attribute 

DELETE 

GET 

MULTISTREAM 

PROHIBIT 

PUT 

UPDATE 

USER_INTERLOCK 

DELETE 

Default Value 

None 

GET, if ACCESS GET has also been specified 

None 

None 

None 

None 

None 

The process accessing a file uses this switch to permit other accessors to delete 
records from the file. 

This attribute corresponds to the DEL option in the FAB$B_SHR field. 

GET 
The process accessing a file uses this switch to permit other accessors to allow 
other users to read the file (to perform Find or Get RMS services or the equivalent 
language statement that reads a record). SHARING GET is the default if you 
have also specified ACCESS GET. 

This attribute corresponds to the GET option in the FAB$B_SHR field. 

MULTISTREAM 
This switch allows multistream access to a file and is relevant for record 
operations only. This attribute is not available for sequential files with other 
than 512-byte, fixed-length records. 

This attribute is not supported for DECnet for Open VMS operations; an error is 
returned if you try to use it. 

This attribute corresponds to the MSE option in the FAB$B_SHR field. 

4-35 



File Definition Language Facility 
4.1 Overview 

PROHIBIT 
The process accessing a file uses this switch to prohibit any type of file sharing 
by other accessors. The PROHIBIT attribute takes precedence over all other 
ACCESS secondary attributes; if you specify the DELETE, PUT, TRUNCATE, or 
UPDATE attribute in the ACCESS section, the PROHIBIT attribute defaults to 
YES. 

This attribute corresponds to the NIL option in the FAB$B_SHR field. 

PUT 
The process accessing a file uses this switch to allow other users to write records 
to the file (to perform Put or Extend RMS services or the equivalent language 
statement that writes a record or extends the space allocated to a file). 

This attribute corresponds to the PUT option in the FAB$B_SHR field. 

UPDATE 
The process accessing a file uses this switch to allow other users to update 
records currently existing in the file (to perform Update or Extend RMS services 
or the equivalent language statement that rewrites a record or extends the space 
allocated to a file). 

This attribute corresponds to the UPD option in the FAB$B_SHR field. 

USER_INTERLOCK 
This switch allows one or more users to write to a sequential file or a shared file. 
Usually this attribute is used for a file that is open for block I/O and the user is 
responsible for any interlocking required. USER_INTERLOCK is specified with 
the DELETE, GET, PUT, and UPDATE attributes. 

This attribute corresponds to the UPI option in the FAB$B_SHR field. 

4.1.12 SYSTEM Section 

4-36 

The SYSTEM section consists of system identification information and can be 
used to help document your FDL file. The SYSTEM keyword takes no values; it 
serves only to define this section. 

The following table lists the SYSTEM secondary attributes and their default 
values. Note that all SYSTEM secondary attributes are run-time attributes. 

Secondary 
Attribute 

DEVICE 

SOURCE 

TARGET 

DEVICE 

Default Value 

Null-string 

VMS 
VMS 

This string attribute is used for comment purposes only. The intended use is to 
name the model of the disk on which the data file will reside. 

SOURCE 
This keyword attribute specifies the name of the operating system you are using 
to create the FDL file. The value must be one of the following keywords: 

• IAS 

• RSTS/E 



4.1.13 

• RSX-HM 

• RSX-HM-PLUS 

• RT-H 

• VMS 

TARGET 

File Definition Language Facility 
4.1 Overview 

This keyword attribute specifies the name of the operating system on which the 
FDL file is to be used. The value must be one of the following keywords: 

• IAS 

• RSTS/E 

• RSX-HM 

• RSX-HM-PLUS 

• RT-H 

• VMS 

TITLE and IDENT Attributes 
If you use EDIT/FDL to create your FDL file, the utility prompts you for a title 
during the session. The title is a string that you can place at the beginning of the 
FDL file. The character string you supply is for comment purposes only. It can be 
up to 132 characters long, including the TITLE keyword. 

When the Edit/FDL and Analyze/RMS_File utilities create an FDL file, they 
place a header called the IDENT section after the TITLE in the FDL file. The 
IDENT attribute specifies the date and time of the creation of the FDL file, and 
it specifies the name of the utility that created it (either EDIT/FDL or ANALYZE 
/RMS_FILE). 

However, you can also specify the header in the IDENT section. The character 
string that you supply can be up to 132 characters long, including the IDENT 
keyword. 

4-37 





5 
Create/FOL Utility 

This chapter describes the Create/FDL utility. You use the Create/FDL utility 
to create empty data files optimally structured for improving data processing 
performance. 

5.1 Creating FOL Files 
The first step in applying the File Definition Language facility to improve the 
performance of your data files is the creation of FDL files. When you have created 
an FDL file, you can then use it with the Create/FDL utility to create empty data 
files modeled on the input FDL file. 

5.2 Methods of Creating FOL Files 
This chapter provides information about creating empty data files using the 
Create/FDL utility (CREATE/FDL) in conjunction with FDL files. You can create 
FDL files in several ways: 

• Using the Edit!FDL utility (EDIT/FDL). See Chapter 6. 

• Using the Analyze/RMS_File utility (ANALYZE/RMS_FILE). See Chapter 1. 

• Using a text editor. 

• Using the DCL command CREATE. 

You should use either the Analyze/RMS_File utility or the Edit/FDL utility to 
create FDL files. You can use a text editor or the DCL command CREATE to 
create text files containing FDL specifications. However, these methods are not 
recommended because you must make sure that you place the primary sections 
in the correct order and that you give valid values to the attributes. For more 
information on validity rules, refer to Section 6.1.1. 

The following is an example of an FDL file: 

TITLE Sequential organization, variable records up to 320 bytes 

IDENT 25-SEP-1993 13:08:17 
SYSTEM 

FILE 

RECORD 

SOURCE 

ALLOCATION 
BEST_TRY_CONTIGUOUS 
EXTENSION 
ORGANIZATION 

BLOCK_SPAN 
CARRIAGE_ CONTROL 
FORMAT 
SIZE 

OpenVMS FDL Editor 

VMS 

5050 
yes 
505 
sequential 

yes 
carriage_return 
variable 
320 

5-1 



Create/FOL Utility 
5.3 Creating Data Files 

5.3 Creating Data Files 

5-2 

Once you have created an FDL file, it can be used by the record management 
utilities and callable FDL routines to format data files according to your 
specifications. 

The Create/FDL utility uses the specifications in an existing FDL file to 
create a new, empty data file. You can supply the Create/FDL utility with the 
file specification of the new data file, or the Create/FDL utility can use the 
specification given in the FDL file itself. 

The Convert utility (CONVERT), on the other hand, uses the specifications in an 
FDL file to create an output data file and to load it with records from one or more 
input files. 

Like the Convert utility, the callable Convert routines (CONV$CONVERT, 
CONV$PASS_FILES, and CONV$PASS_OPTIONS) use the specifications in FDL 
files to create output data files from within a program. 

These data files can use the full set of RMS creation-time options and they can 
be used by all the native Open VMS high-level languages. This capability gives 
the high-level language user 1 a tool for creating efficient data files that use a 
minimum amount of system resources. 

The FDL routines (FDL$CREATE, FDL$GENERATE, and FDL$PARSE) also 
use FDL files. FDL$CREATE invokes the functions of the Create/FDL utility 
(CREATE/FDL) to create a file from an FDL specification and then to close the 
file. FDL$GENERATE produces an FDL specification from the RMS control 
blocks your program supplies, and then writes it to either an FDL file or a 
character string. FDL$PARSE parses an FDL specification, allocates RMS control 
blocks (FABs, RABs, or XABs), and then fills in the relevant fields. 



CREATE/FOL Usage Summary 

Format 

The Create/FDL utility uses the specifications in an existing FDL file to create a 
new, empty data file. 

CREATE/FDL=fdl-filespec [filespec] 

fdl·filespec 
Specifies the FDL file from which to create the data file. 

filespec 
Specifies an optional file specification for the created file. If you specify a complete 
file specification, it overrides any contained in the FDL file. 

Usage Summary 
To invoke the Create/FDL utility, enter the CREATE/FDL command at the DCL 
command level. The Create/FDL utility produces the empty data file specified by 
the CREATE/FDL command or by the FDL file. To exit the Create/FDL utility, let 
it run to successful completion. 

5-3 



5.3 Creating Data Files 

CREATE/FOL Qualifier 

/LOG 

Format 

Examples 

5-4 

The CREATE/FDL command has only one qualifier: the /LOG qualifier. It does 
not affect the execution of the utility; it only produces an informational message. 

This qualifier controls whether the Create/FDL utility displays the file 
specification of the data file it has created. By default, the utility does not display 
the file specification. 

/LOG 

/NO LOG 

1. $ CREATE/FDL=INVENTORY/LOG DISK$: [COMPANY.ORDERS]PARTS.DAT 
%FDL-I-CREATED, DISK$: [COMPANY.ORDERS]PARTS.DAT;l CREATED 

This command produces the empty output file PARTS.DAT from the 
specifications in the FDL file INVENTORY.FDL. Because the /LOG qualifier 
is used in the command, the Create/FDL utility returns an informational 
message stating the file specification for the file that was created. 

2. $ CREATE/FDL=INVENTORY PARTS.DAT 

This command produces the empty output file PARTS.DAT from the 
specifications in the FDL file INVENTORY.FDL. Because the /LOG qualifier 
was not used with the CREATE/FDL command, no informational message is 
returned. 



6 
Edit/FOL Utility 

This chapter describes the Edit/FDL utility (EDIT/FDL). 

6.1 Creating FOL Files with the Edit/FOL Utility 
One way to create FDL files easily is with the Edit/FDL utility (also known as 
the FDL editor). You can use the EDIT/FDL command to design FDL files that 
define commonly needed data files and then to create the data files when they are 
needed. The Edit/FDL utility has some special features that simplify the process 
of creating an FDL file. It recognizes FDL syntax and informs you of syntax 
errors immediately. It also lets you model the data file to be created and change 
attribute values to find the most efficient design. 

Alternatively, you can use the ANALYZE/RMS_FILE command to create an FDL 
file from an existing data file which can then be used with the Edit/FDL utility 
Optimize script to determine the optimum design of the data file. 

6.1.1 Validity Rules 
The Edit/FDL utility (EDIT/FDL) and the Analyze/RMS_File utility (ANALYZE 
/RMS_FILE) place the attributes in their correct format and order automatically. 
If you use the CREATE command or a text editor to create an FDL file, you must 
observe the following validity rules: 

• The primary sections must appear in the order listed in Section 4.1. If you 
have two or more AREA primary sections, they must follow one another in 
numerical order (for example, AREA 1, AREA 2, ... , AREA n). 

• If you have two or more KEY primary sections, they too must follow one 
another in numerical order (for example, KEY 0, KEY 1, ... , KEY n). 

• Within a KEY section, any SEGn secondary attributes should follow one 
another in numerical order; the SEGn numbers must be "dense," not "spars~." 
For example, if you use SEG3 to label a key segment, segments SEGO, SEGl, 
and SEG2 must also exist. 

• Each source line can contain multiple attributes, each terminated by a 
semicolon ( ; ) or by the end of the line. 

• Use the exclamation point ( ! ) to begin a comment. Comments begin at the 
exclamation point and continue to the end of the line, or to the first semicolon 
( ; ) encountered. 

FDL does not process files with comment lines containing semicolons. 
However, you can use a semicolon on a comment line if the line is enclosed 
within quotation marks. For example: 

!"This line is okay; there are quotes setting off the comment" 

• The Edit/FDL utility ignores leading or trailing blanks or tabs. 

6-1 



Edit/FOL Utility 
6.1 Creating FOL Files with the Edit/FOL Utility 

6-2 

• FDL string values are terminated by the comment character (!)or by the 
statement terminator ( ; ). Strings must be enclosed in quotation marks (" "). 

• You can truncate keywords, but take care to avoid ambiguities. EDIT/FDL 
and ANALYZE/RMS_FILE always write out the entire keyword. 



Edit/FOL Usage Summary 

Format 

The Edit/FDL utility (EDIT/FDL) can help you create FDL files. The Edit/FDL 
utility was developed especially to manipulate FDL files. It has special features 
designed to simplify the process of creating an FDL file and should be used in 
most cases. 

EDIT/FOL fdl-filespec 

fdl-filespec 
Use this parameter to specify the FDL file to be created, modified, or optimized 
during this session. If you specify an existing FDL file for modification or for 
optimization, the output file is the next higher version of the file being modified 
or optimized. In all cases, you have the option of using the /OUTPUT qualifier to 
specify the output FDL file. The default file type is .FDL. 

Usage Summary 
To invoke the Edit/FDL utility, enter the EDIT/FDL command at the DCL 
command level. The Edit/FDL utility produces a new version of the input file 
unless the /OUTPUT qualifier is used to direct the output to a different file. To 
exit the Edit/FDL utility, enter either the EXIT command or the QUIT command. 
(Pressing Ctrl/Z has the same effect as entering the EXIT command, and Ctrl/C 
has the same effect as the QUIT command.) 

~~~~~~~~~~~~~ Note ~~~~~~~~~~~~~ 

When you enter the EDIT/FDL command, the system refers to a reserved
logical name, EDF. Do not use this logical name.

6-3

6.1 Creating FOL Files with the Edit/FOL Utility

EDIT/FOL Qualifiers

/ANALYSIS

Format

The DCL command EDIT/FDL begins an interactive session during which you
can create or modify an FDL file. You can give the editor file design decisions
and it will supply values for the FDL attributes or you can assign values to the
attributes yourself. This section describes the EDIT/FDL qualifiers and how you
use them to select the utility functions. Unless otherwise noted, these qualifiers
do not take a qualifier value.

This qualifier specifies an FDL file obtained from a file analysis. See Chapter 1
for more information about analyzing files.

/ANALYSIS fdl-filespec

Qualifier Value

fdl-filespec

Example

/CREATE

Format

Description

6-4

Specifies the particular FDL file obtained from a file analysis that is to be used as
an input to the Optimize script. The default is a null file specification.

$ EDIT/FDL/ANALYSIS=Ql_SALES Q2_SALES

This command begins an interactive session in which the analysis information
in the file Ql_SALES.FDL is used, together with the input FDL file Q2_
SALES.FDL, to obtain an optimized output file, which the system designates
as the next higher version of Q2_SALES.FDL.

This qualifier allows you to create an output file without an existing input file.

/CREATE

Using the /CREATE qualifier, you can create an output file directly without the
Edit/FDL utility notifying you that the file is to be created. The Edit/FDL utility
does not attempt to open the specified file for input when you use the /CREATE
qualifier. The Edit/FDL utility assumes that either the file does not exist or that
you want the utility to ignore it.

You can select the Design or the Add Key scripts only when your input file does
not already exist.

Example

/DISPLAY

Format

Parameter

Example

/EMPHASIS

Format

/CREATE

$ EDIT/FDL/CREATE SALES_DATA

This command begins a session in which SALES_DATA.FDL is created. The
Edit/FDL utility does not issue the informational message stating that the new
file SALES_DATA.FDL will be created.

This qualifier specifies the type of graph you want displayed.

/DISPLAY graph-option

graph-option
Specifies the type of graph you want displayed: LINE, FILL, KEY, RECORD,
INIT, or ADD.

LINE

FILL

KEY
RECORD

Plots bucket size against index depth.

Plots bucket size by the percentage of load fill by index depth.

Plots bucket size by key length by index depth.

Plots bucket size by record size by index depth.

INIT Plots bucket size by initial load record count by index depth.

ADD Plots bucket size by additional record count by index depth.

The default is LINE.

$ EDIT/FDL/DISPLAY=KEY TEMP_DATA

This command begins an interactive session in which the default value for the
type of graph to be displayed has been changed from LINE to KEY. TEMP _DATA
is the name of the FDL file to be created.

This qualifier provides you with a choice between smaller buffers and flatter
files. You can use /EMPHASIS with the /NOINTERACTIVE qualifier if you want
EDIT/FDL to be executed without an interactive terminal dialogue.

/EMPHASIS tuning-bias

6-5

/EMPHASIS

Qualifier Value

Example

tuning-bias
Represents how you want to weight the default bucket size for your file.

There are two valid options, FLATTER_FILES and SMALLER_BUFFERS.

FLATTER_FILES Generally increases bucket size. The bucket size,
in turn, controls the number of levels in the index
structure. If a larger bucket size eliminates one
level, then you should use this option. At some
point, however, the benefit of having fewer levels
will be offset by the cost of scanning through the
larger buckets.

SMALLER_BUFFERS Generally decreases the amount of memory you
have to use.

The default is FLATTER_FILES and it should be used unless excessive paging
or RMS CPU time occurs because of oversized buffers. However, if your system
has little extra memory or if you are not sure which tuning bias will improve the
performance of your program, try· tuning your file using SMALLER_BUFFERS
and then FLATTER_FILES.

$ EDIT/FDL/EMPHASIS=SMALLER_BUFFERS TEMP_DATA

This command begins an interactive session in which the default value for the
bucket size emphasis has been changed from FLATTER_FILES to SMALLER_
BUFFERS. TEMP _DATA is the name of the FDL file to be created.

/GRANULARITY

6-6

This qualifier specifies the number of key-associated areas in an indexed file. A
file can contain from 1 to 255 key-associated areas and each area can contain one
or more index levels from one or more keys.

Each key definition contains the following area designations:

• DATA_AREA

• LEVELl_INDEX_AREA

• INDEX_AREA

During input processing, the optimization and redesign functions assign two
areas per key, one for data and one for both indexes. During output processing,
the area designators are adjusted according to the granularity specified. Checks
are made to exclude areas that have no key indexes and to create new key
indexed areas where none previously existed.

To assign more than two areas per key (DOUBLE) or to assign nonstandard
key and area associations, you must invoke an interactive session. With the
granularity qualifier configured as GRANULARITY=DOUBLE, create new areas
and set the corresponding area designators to reference the new areas on a
per-key basis.

/GRANULARITY

Format

/GRANULARITY n

Qualifier Value

Example

n
The following table shows the relationship between granularity, key, and area for
various values of granularity.

The acceptable values are the numeric values 1, 2, 3, or 4; the literal values
ONE, TWO, THREE, FOUR; or the logical value DOUBLE. If you do not specify
granularity, the system establishes a default value of three (3).

Granularity

1

2

3

4

DOUBLE

Key and Area Relationships

All indexes for all keys are assigned to AREA 0.
Primary KEY data to AREA 0, all other indexes for all
other keys to AREA 1.

Primary KEY data to AREA 0, Primary KEY indexes to
AREA 1, all other indexes for all other keys to AREA 2.
Primary KEY data to AREA 0, Primary KEY indexes
to AREA 1, all other key data to AREA 2, all other key
indexes to AREA 3.

Primary KEY data to AREA 0, Primary KEY indexes to
AREA 1, all other key data to AREA (key_number*2), all
other key indexes to AREA ((key_number*2)+1).

$ EDIT/FDL/GRANULARITY=2 TEMP_DATA.FDL

This command begins an interactive session in which the output granularity will
be two (2). TEMP _DATA.FDL is the name of the FDL file being processed.

/NOINTERACTIVE

Format

Description

This qualifier causes the Edit!FDL utility to execute the Optimize script without
a terminal dialogue.

/NO INTERACTIVE

The /NOINTERACTIVE qualifier allows you to optimize an existing FDL file with
the Edit/FDL utility but without an interactive terminal dialogue. You must have
previously entered the ANALYZE/RMS_FILE/FDL command, specifying your
existing RMS data file as the target file. The Edit/FDL utility then uses the data
from the analysis FDL file while the Optimize script proceeds noninteractively.
If data is missing, the Edit/FDL utility uses the defaults. However, if critical
data items are not found in the analysis file, the Edit/FDL utility exits without
producing an output file.

6-7

/NOINTERACTIVE

Example

$ EDIT/FDL/ANALYSIS=TEMP_DATA/NOINTERACTIVE TEMP_DATA

This command begins a noninteractive session in which the FDL file TEMP_
DATA;2 is created from the analysis FDL file TEMP.DATA;l.

/NUMBER_KEYS

This qualifier allows you to specify the number of keys in your indexed file.

Format

/NUMBER_KEYS n

Qualifier Value

Example

/OUTPUT

Format

n
Indicates how many keys you want to define for your indexed file. You can define
up to 255 keys. The default is 1 key.

$ EDIT/FDL/NUMBER_KEYS=3 TEMP_DATA

This command begins an interactive session in which the default value for the
number of keys in an indexed file is changed from 1 key to 3 keys. TEMP _DATA
is the name of the FDL file to be created.

This qualifier specifies the FDL file in which to place the definition from the
current session.

/OUTPUT [=fdl-filespec]

Qualifier Value

Description

6-8

fd 1-f ii es pee
Specifies the output FDL file.

If you omit the /OUTPUT qualifier, the output FDL file will have the same name
and file type as the input file, with a version number that is one higher than the
highest existing version of the file.

The default file type is .FDL.

Example

/OUTPUT

$ EDIT/FDL/OUTPUT=NEWINDEX INDEX

Begins a session in which the contents of INDEX.FDL are read into the FDL
editor and can then be modified. NEWINDEX.FDL is created; INDEX.FDL is not
changed.

/PROMPTING

Specifies the level of prompting to be used during the terminal session.

Format

/PROMPTING prompt-option

Qualifier Value

prompt-option

Example

Specifies the level of menu prompting to be used during the terminal session,
BRIEF or FULL.

BRIEF Selects a terse level of prompting.

FULL Provides more information about each menu question.

By default, the Edit/FDL utility chooses either BRIEF or FULL, depending on the
terminal type and the line speed. High-speed CRT terminals are set to FULL;
nonscope terminals and terminals operating at less than 2400 baud are set to
BRIEF.

If the Edit/FDL utility has to repeat a question, it repeats the FULL version of
the question, with a BRIEF form of the HELP text. You can also type a question
mark (?) for help on a particular question.

The extra line of HELP text is not given for menu questions.

$ EDIT/FDL/PROMPTING=BRIEF TEMP_DATA

This command begins an interactive session in which the value of the prompting
level for the Edit/FDL utility menus is set to BRIEF.

/RESPONSES

This qualifier allows you to select how you want to respond to script questions.

Format

/RESPONSES response-option

6-9

/RESPONSES

Qualifier Value

response-option

Example

/SCRIPT

Format

Specifies the type of script response you want to use, AUTOMATIC or MANUAL.

AUTOMATIC Indicates that you want all script default responses to be used
automatically. This option speeds the progress of the question
and answer session. Once you have entered the design phase,
you can modify most of the answers you took by default.

MANUAL Indicates that you want to provide all script responses.

If you use the SET RESPONSES command during the interactive session, the
default is·AUTOMATIC; otherwise the default is MANUAL.

$ EDIT/FDL/RESPONSES=MANUAL TEMP_DATA

This command begins an interactive session in which the type of script response
is MANUAL.

This qualifier .controls whether the Edit/FDL utility begins the session by asking
a logically grouped sequence of questions to aid you in creating the FDL file.

/SCRIPT script-title

Qualifier Value

script-title

6-10

This qualifier specifies a script title. The valid options are as follows:

ADD_KEY

DELETE_KEY

INDEXED

OPTIMIZE

Allows you to model or add to the attributes of a new index.

Allows you to remove attributes from the highest index of
your file.
Begins a dialogue in which you are prompted for
information about the indexed data file to be created
from the FDL file. The Edit!FDL utility supplies values for
certain attributes.
Requires that you use the analysis information from an
FDL file that was created with the Analyze/RMS_File
utility (ANALYZE/RMS_FILE). The FDL file itself is one
of the inputs to the Edit!FDL utility (EDIT/FDL). In other
words, you can tune the parameters of all your indexes
using the file statistics gathered from a file analysis.

Description

Example

RELATIVE

SEQUENTIAL

TOUCHUP

/SCRIPT

Begins a dialogue in which you are prompted for
information about the relative data file to be created
from the FDL file. The Edit/FDL utility supplies values
for certain attributes.

Begins a dialogue in which you are prompted for
information about the sequential data file to be created
from the FDL file. The Edit/FDL utility supplies values for
certain attributes.
Begins a dialogue in which you are prompted for
information about the changes you want to make to an
existing index.

The default is not to invoke a script automatically. Note that, if you specify
/NOSCRIPT, you can still use the scripts by entering the INVOKE command in
response to the main editor function prompt.

$ EDIT/FDL/SCRIPT=INDEXED TEMP_DATA

This command begins an interactive session in which both the main menu
and the script menu are bypassed. Instead, the Indexed script is generated
immediately.

6-11

Edit/FOL Utility
/SCRIPT

6-12

EDIT/FOL Examples

1. $ EDIT/FDL INDEX

This command begins an interactive session that will modify an FDL file
named INDEX.FDL.

2. $ EDIT/FDL/ANALYSIS=INDEXFILE/SCRIPT=OPTIMIZE MAKEINDEX

This command uses the analysis information in the file INDEXFILE.FDL to
create a more efficient MAKEINDEX.FDL file. The sequence of events is as
follows:

a. The FDL file MAKEINDEX.FDL is created by the Edit/FDL utility.

b. INDEXFILE.DAT is created by the CREATE/FDL=MAKEINDEX
command.

c. INDEXFILE.DAT is used in applications.

d. INDEXFILE.FDL is created with the ANALYZE/RMS_FILE/FDL
command.

e. The following command uses INDEXFILE.FDL to optimize
MAKEINDEX.FDL:

$ CONVERT/FDL=MAKEINDEX INDEXFILE.DAT INDEXFILE.DAT

3. $ EDIT/FDL/NOINT/A=INVENTORY/G=4
File: SALES
$

This command creates the output FDL file SALES from the analysis FDL
file INVENTORY without an interactive terminal dialogue. In addition, the
Edit/FDL utility optimizes the input file, changing the granularity factor to
4 areas and the number of keys to 2. Otherwise, all the defaults supplied by
the Edit/FDL utility are used.

/SCRIPT

EDIT/FOL Commands

ADD

Format

Example

The Edit/FDL utility commands are used during the interactive session only. The
Edit!FDL utility prompts for one of the following commands at the start of your
interactive session:

ADD
DELETE
EXIT
HELP
INVOKE
MODIFY
QUIT
SET
VIEW

However, because the Edit/FDL utility is not command oriented but menu
oriented, the prompt may change during the interactive session to fit the needs
of the menu questions. In general, the prompt consists of a short question, the
type of required value or the range of acceptable values (in parentheses), and the
default answer (in brackets), as follows:

question (keyword or range)[default] : answer

In addition, some prompts consist of a short question, a list or a range of
acceptable values (either in parentheses or in a table), the required type of
the value (in parentheses), and the default answer (in brackets), as follows:

question (list of values) (keyword or range)[default] : answer

If no default is allowed, you see the symbol [-], in which case you must supply an
. answer.

This command allows you to add one or more lines to the FDL file. If the line
already exists, you can optionally replace it with the new line. After you insert
a line, you can optionally continue to add lines under that particular primary
section. If no primary section exists to hold the secondary attribute being added,
one is automatically created.

ADD

Main Editor Function (Keyword) [Help] : ADD

This command allows you to add lines to your existing FDL file. When you enter
the ADD command, the Edit/FDL utility prompts you with the following menu.

6-13

ADD

DELETE

Format

Example·

EXIT

Format

6-14

ACCESS
AREA x
CONNECT
DATE
FILE
JOURNAL
KEY y
RECORD
SHARING
SYSTEM
TITLE

Legal Primary Attributes

attributes set the run-time access mode of the file
attributes define the characteristics of file area x
attributes set various RMS run-time options
attributes set the date parameters of the file
attributes affect the entire RMS data file
attributes set the journaling parameters of the file
attributes define the characteristics of key y
attributes set the non-key aspects of each record
attributes set the run-time sharing mode of the file
attributes document operating system-specific items
is the header line for the FDL file

Enter desired primary (Keyword) [FILE] :

After you enter the name of the primary attribute, the Edit/FDL utility provides
another menu showing all the secondary attributes for the primary attribute and
asks which secondary attribute value you want to change.

This command allows you to delete one or more lines from the FDL file. If the
line is the only remaining secondary attribute in a primary section, the primary
attribute is also removed. After you remove a line, you can optionally continue to
delete lines under the affected primary section.

DELETE

Main Editor Function (Keyword) [Help] : DELETE

This command allows you to delete lines from your existing FDL file. When you
enter the DELETE command, the Edit/FDL utility prompts you with a menu
displaying the current primary attributes of your FDL file. After you enter the
name of a primary attribute, the Edit/FDL utility prompts you with another menu
displaying the current secondary attributes for the selected primary attribute and
asks which secondary attribute value you want to change.

This command ends the Edit/FDL utility session. The EXIT command causes the
new FDL file to be created. This command is equivalent to pressing Ctrl/Z. If the
definition file is empty when you exit, no FDL file is created. Refer to the online
help topic Operation for more information on the Edit/FDL utility's relationship
to input and output files.

EXIT

Example

HELP

Format

Example

INVOKE

EXIT

Main Editor Function (Keyword) [Help] : EXIT

This command allows you to leave the Edit/FDL utility after creating or modifying
your FDL file. It displays the file specification of the FDL file it has created or
modified and then returns you to the DCL level.

Invokes an interactive help session, which describes the the Edit/FDL utility
commands and the File Definition Language. Information is available on the
following commands and definitions:

Abstract

Operation

ADD DELETE EXIT

MODIFY QUIT SET

HELP

VIEW

INVOKE

To exit help and return to the main level menu, press the Return key in response
to the "Topic?" prompt.

HELP

Main Editor Function (Keyword) [Help] HELP

Information available:

Abstract Add Delete Exit Help Invoke Modify
Operation Quit Set View

Topic?

This command allows you to request information about the Edit/FDL utility while
you are editing your FDL file. It displays a menu of the various topics about
which you can request help.

This command prompts you for a script and initiates your choice. The scripts
guide you through the design and optimization of a data file to ensure that
complex operations are completed in a logical fashion. If a script is aborted,
script operations and calculations are discarded, except for clearing the previous
definition. All scripts assume that the fileE· you are designing reside on a Files-11
disk.

6-15

INVOKE

Format

Example

MODIFY

Format

Example

6-16

INVOKE

Main Editor Function (Keyword) [Help] INVOKE

Add_key
Delete_key
Indexed
Optimize

Script Title Selection

modeling and addition of a new index's parameters
removal of the highest index's parameters
modeling of parameters for an entire Indexed file
tuning of all indices' parameters using file
statistics

Relative selection of parameters for a Relative file
Sequential selection of parameters for a Sequential file
Touchup remodeling of parameters for a particular index

Editing Script Title (Keyword)[-] :

This command allows you to select which script you want to help you design your
FDL file. After you enter the INVOKE command, the Edit/FDL utility prompts
you with another menu displaying the possible script choices.

This command allows you to change an existing line in the FDL definition.

MODIFY

Main Editor Function (Keyword) [Help] : MODIFY

This command allows you to modify lines in your existing FDL file. When you
enter the MODIFY command, the Edit/FDL utility prompts you with a menu
displaying the current primary attributes of your FDL file. After you select
a primary attribute, the Edit/FDL utility prompts you with another menu
displaying the secondary attributes for the selected primary attribute and asks
which secondary attribute value you want to change.

QUIT

Format

Example

SET

Format

Example

QUIT

This command causes an abrupt end to the the Edit/FDL utility session. The new
FDL file is not created. The QUIT command is equivalent to pressing Ctrl/C.

QUIT

Main Editor Function (Keyword) [Help] : QUIT

This command returns you to the DCL command level without creating or
modifying an FDL file.

This command allows you to establish defaults or to select any of the FDL editor
characteristics you forgot to specify on the command line.

SET

Main Editor Function (Keyword) [Help] SET

ANALYSIS
DISPLAY
EMPHASIS
GRANULARITY
NUMBER_KEYS
OUTPUT
PROMPTING
RESPONSES

FDL Editor SET Function

f ilespec of FDL Analysis file
type of graph to display
of default bucketsize calculations
number of areas in Indexed files
number of keys in Indexed files
f ilespec of FDL output file
Full or Brief prompting of menus
usage of default responses in scripts

Editor characteristic to set (Keyword)[-] :

This command allows you to establish defaults and to reduce the number of
questions you are asked by the scripts. After you enter the SET command, the
Edit/FDL utility displays a menu of Edit/FDL utility characteristics.

6-17

VIEW

VIEW

Format

Example

6-18

This command displays the attributes contained in the current FDL definition.
This offers a preview of what the contents of the FDL file would be if it were to
be output at this time.

VIEW

Main Editor Function (Keyword) [Help] : VIEW

This command displays your current FDL file one screen at a time.

A
ALLOCATION attribute, 4-6, 4-17
Alternate index, 4-28

structure, 1-3
Alternate key, 1-6, 4-5, 4-28
Alternate record, 1-6
ANALYSIS_ OF _AREA section, 1-25
ANALYSIS_ OF _KEY primary attribute

secondary attributes, 4-4
ANALYSIS_OF _KEY section, 1-25

using in EdiUFDL optimize script, 4-4
ANALYZE/RMS_FILE command, 1-9

/CHECK qualifier, 1-11
comparing /SUMMARY qualifier with /CHECK

qualifier, 1-15
default output file name, 1-13
example of using /STATISTICS qualifier with

wildcard characters, 1-13
/FDL qualifier, 1-11
/FDL qualifier limitation, 1-9
generating summary reports, 1-9
/INTERACTIVE qualifier, 1-1, 1-12
/INTERACTIVE qualifier limitation, 1-9
output file default name, 1-13
/OUTPUT qualifier, 1-12
/RU_JOURNAL qualifier, 1-13
/STATISTICS qualifier, 1-14
/SUMMARY qualifier, 1-15
user response to errors, 1-7
using /CHECK qualifier with wildcard

characters, 1-9
using /INTERACTIVE qualifier with /OUTPUT

qualifier, 1-13
using /RU_JOURNAL qualifier with /OUTPUT

qualifier, 1-13
using /STATISTICS qualifier with /OUTPUT

qualifier, 1-13
using /STATISTICS qualifier with wildcard

characters, 1-9
using /SUMMARY qualifier with /OUTPUT

qualifier, 1-13
using /SUMMARY qualifier with wildcard

characters, 1-9
using to obtain information about RMS

Journaling, 1-1

Index

Analyze/RMS_File utility (ANALYZE/RMS FILE)
4-37 - '

AGAIN command, 1-16
ANALYSIS_ OF _AREA section, 4-3
ANALYSIS_OF _KEY section, 4-4
analyzing file structure interactively, 1-1
BACK command, 1-16
creating FDL files, 1-1, 6-1
directing output, 1-9
DOWN command, 1-17
DUMP command, 1-18
duplicate key values, 4-5
error conditions, 1-7
examples, 1-25

analyzing a remote file, 1-25
EXIT command, 1-18
exiting from, 1-9, 1-18
FIRST command, 1-19
HELP command, 1-19
invoking, 1-9
list of functions, 1-9
NEXT command, 1-20
POSITION/BUCKET command 1-20
POSITION/RECORD command' 1-22
REST command, 1-23 '
restrictions, 1-10
TOP command, 1-23
UP command, 1-23
with DECnet for OpenVMS, 1-6

.ANL file type, 1-13
AREA attributes, 4-26, 4-27
AREA primary sections

ordering requirement, 6-1
ASCII pad character, 2-13
ASCII space character

conversion function, 2-4
ASYNCHRONOUS attribute 4-6, 4-9, 4-17
ASY option, 4-9, 4-1 7 '
Attributes

types of value, 4-2

8
BACKUP attribute, 4-15
Batch queues

default, 4-24

lndex-1

BEST_TRY_CONTIGUOUS attribute, 4-6, 4-17
BIN2 key type, 4-29
BIN4 key type, 4-29
BINS key type, 4-29
BIO option, 4-3, 4-9
BLK option, 4-31
BLOCK_COUNT attribute, 4-31
BLOCK_IO attribute, 4-3, 4-9
BLOCK_SPAN attribute, 4-31
Branching

using DOWN command, 1-17
BRIEF prompt, 6-9
BRO option, 4-3
Buckets, 1-2, 4-5, 4-26

boundary, 4-34
examining, 1-3
fill, 4-27
fill percentage, 2-10
list of free, 3-1
split, 1-3

BUCKET_IO attribute, 4-9
BUCKET_SIZE attribute, 4-7, 4-17
Buffered 1/0 count, 2-17

c
Carriage control, 2-3

converting formats, 2-3
device, 4-32

CARRIAGE_CONTROL attribute, 4-32
CARRIAGE_RETURN keyword, 4-32
CBT option, 4-7, 4-17
CCO option, 4-13
Cells, 1-2, 4-34
CHANGES attribute, 4-25
CIF option, 4-18
CLUSTER_SIZE attribute, 4-18
COLLATE key type, 4-29
Collating sequence

potential problem with, 2-1
COLLATING_SEQUENCE attribute, 4-26
Comments

in FDL files, 6-1
Compression, 4-5, 4-27

negative values, 4-4
of data record, 4-26
within data record, 4-4
within primary key, 4-4, 4-26

Concatenating input files, 2-5
CONNECT secondary attributes, 4-8
CONTEXT attribute, 4-9, 4-18
CONTIGUOUS attribute, 4-7, 4-18
CONTROL_FIELD_SIZE attribute, 4-33, 4-34
CONV$RECLAIM routine, 3-1
CONVERT command

/APPEND qualifier, 2-2
/CREATE qualifier, 2-6
/EXCEPTIONS_FILE qualifier, 2-4, 2-7

lndex-2

CONVERT command (cont'd)
/EXIT qualifier, 2-7
/FAST_LOAD qualifier, 2-8
/FDL qualifier, 2-10
/FILL_BUCKETS qualifier, 2-10, 4-26, 4-27
/FIXED_CONTROL qualifier, 2-11
/KEY qualifier, 2-12
/MERGE qualifier, 2-12
/PAD qualifier, 2-4, 2-13
/PROLOG qualifier, 2-14
/READ_CHECK qualifier, 2-14
/SHARE qualifier, 2-15
/SORT qualifier, 2-15
/STATISTICS qualifier, 2-16
/TRUNCATE qualifier, 2-4, 2-17
using /APPEND qualifier on sequential files,

2-2
using /MERGE qualifier on indexed files, 2-2
using /NOSORT qualifier to save sort order on

indexed files, 2-2, 2-9
using /PAD qualifier to fill in output records,

2-4
/WORK_FILES qualifier, 2-18
/WRITE_CHECK qualifier, 2-18

CONVERT/RECLAIM command
/STATISTICS qualifier, 3-2, 3-3

Convert/Reclaim utility (CONVERT/RECLAIM),
3-1

exiting, 3-2
invoking, 3-2
restrictions, 3-2
with DECnet for OpenVMS, 3-1

Convert utility (CONVERT), 2-1, 4-4
comparing NOFAST_LOAD option with

FAST_LOAD option, 2-8
creating data files with, 5-2
DCL qualifiers, 2-6 to 2-20
directing output, 2-5
establishing RFAs, 3-1
examples, 2-20 to 2-21
exiting, 2-5
FDL output data file, 5-2
invoking, 2-5
restrictions, 2-5
saving disk space, 2-9
using with existing output file, 2-1
using with new output file, 2-1
with DECnet for Open VMS, 2-4

CPU time, 2-17
CR character, 4-33
CREATE command, 5-3, 6-1
CREATE/FDL command

/LOG qualifier, 5-4
Create/FDL utility (CREATE/FDL), 5-2, 5-3, 6-3

creating data files, 5-2
exiting, 5-3
invoking, 5-3
restrictions, 5-3

Create-time attribute
establishing value, 4-2

CREATE_IF attribute, 4-18
CREATION attribute, 4-15
CTG option, 4-7, 4-18
CVT option, 4-14

D
Data bucket, 4-26
Data files

creating, 2-1, 6-1
Data records, 1-3, 4-5
Data structure, 1-1

displaying at next higher level, 1-23
DATA_AREA attribute, 4-26, 4-27
DATA_FILL attribute, 4-4, 4-26
DATA_KEY_COMPRESSION attribute, 4-4, 4-26
DATA_RECORD_COMPRESSION attribute, 4-4,

4-26
DATA_RECORD_COUNT attribute, 4-5
DATA_SPACE_OCCUPIED attribute, 4-5
DATE attribute, 4-15
DAT_NCMPR option, 4-26
DBIN2 key type, 4-29
DBIN4 key type, 4-29
DBIN8 key type, 4-29
DCOLLATED key type, 4-29
DDECIMAL key type, 4-29
DECIMAL key type, 4-30
DECnet for Open VMS

using the Analyze/RMS_File utility with, 1-6
using the Convert/Reclaim utility with, 3-1
using the Convert utility with, 2-4

Default extension quantity, 4-19
Default protection, 4-23
Default values

AREA, 4-6
DATE, 4-15
FILE, 4-16
key, 4-25
RECORD, 4-31
SYSTEM, 4-36

DEFAULT_NAME attribute, 4-18
DEFERRED_ WRITE attribute, 4-19
Delete access, 4-23
DELETE attribute, 4-3, 4-35
DELETE_ON_CLOSE attribute, 4-19, 4-24
Delimiting characters

in FDL source code, 6-1
DEL option, 4-35
DEPTH attribute, 4-5
DEVICE attribute, 4-36
DFW option, 4-19
DINT2 key type, 4-30
DINT4 key type, 4-30

DINTS key type, 4-30
Direct I/O count, 2-17
DIRECTORY_ENTRY attribute, 4-19
Disk model, 4-36
Disk volume transfer, 4-23
DLT option, 4-19
DSTRING key type, 4-30
Dump

hexadecimal, 1-18
Duplicate key, 4-26
Duplicate key values, 4-5
DUPLICATES attribute, 4-26
Duplicate secondary keys

retrieval order, 2-2
DUPLICATES_PER_SIDR attribute, 4-5

E
EDF logical name

restricted use, 6-3
EDIT/FDL command

/ANALYSIS qualifier, 6-4
/CREATE qualifier, 6-4
/DISPLAY qualifier, 6-5
/EMPHASIS qualifier, 6-5
/GRANULARITY qualifier, 6-6
/NOINTERACTIVE qualifier, 6-7
/NUMBER_KEYS qualifier, 6-8
/OUTPUT qualifier, 6-8
/PROMPTING qualifier, 6-9
/RESPONSES qualifier, 6-9
/SCRIPT qualifier, 6-10

Edit/FDL utility (EDIT/FDL), 4-37, 6-1, 6-3
ADD command, 6-13
creating FDL files, 5-1
DELETE command, 6-14
EXIT command, 6-14
exiting, 6-3
HELP command, 6-15
INVOKE command, 6-15
invoking, 6-3
Optimize script, 6-1
QUIT command, 6-17
restrictions, 6-3
scripts, 6-15
SET command, 6-17
specifying output file name, 6-8
VIEW command, 6-18

Editor
FDL, 6-3

Elapsed time, 2-17
END_ OF _FILE attribute, 4-9
EOF option, 4-10
Error handling

ANALYZE/RMS_FILE journaling errors, 1-7
ANALYZE/RMS_FILE nonjournaling errors,

1-7

lndex-3

Error messages
warning, 2-4

EXACT_POSITIONING attribute, 4-7
Examples

analyzing a file interactively, 1-25
appending a remote file, 2-20
converting a carriage control file to stream,

2-21
converting a carriage control file to

variable-length, 2-21
converting a remote file, 2-20
converting fixed format to variable-length,

2-21
converting record formats, 2-20
creating an FDL file, 1-25
improving a file's performance, 2-20
modifying an FDL file, 6-12
modifying an FDL file noninteractively, 6-12
reorganizing a remote file, 2-20
tuning a file, 6-12 ·

Exception conditions, 2-4
Exception records, 2-4
Exceptions files, 2-4
Exclamation point (!)

as comment delimiter, 6-1
Execute access, 4-23
EXPIRATION attribute, 4-15
EXTENSION attribute, 4-7, 4-19

F
FAST_DELETE attribute, 4-10
FDL$CREATE, 5-2
FDL$GENERATE, 5-2
FDL$PARSE, 5-2
FDL (File Definition Language), 4-1

ACCESS section, 4-2
ANALYSIS_OF_AREA section, 4-3
ANALYSIS_ OF _KEY section, 4-4
AREA section, 4-6
CONNECT section, 4-8
DATE section, 4-15
editor, 6-3
FILE section, 4-16
IDENT section, 4-37
KEY section, 4-25
NETWORK section, 4-30
ordering of AREA sections, 6-1
processing files with comment lines containing

semicolons, 6-1
RECORD section, 4-31
routine for creating data files, 5-2
SHARING section, 4-35
syntax, 5-1
SYSTEM section, 4-36
TITLE section, 4-3 7

lndex-4

FDL files, 5-2, 5-3
creating, 5-1
creating interactively, 6-13
creating with ANALYZE/RMS_FILE command,

1-9, 1-11, 6-1
creating with Edit/FDL utility, 6-4
displaying specification, 5-4
file type, 6-8
how to comment, 6-1
manipulating with Edit/FDL utility, 6-3
specifying output file name, 6-8
using analysis output, 6-4
using with the Convert utility, 2-1

FDL file type, 1-13
FDL option, 4-10
File conversions

exceptions conditions, 2-4
of VFC records, 2-11

File Definition Language (FDL)
See FDL

File headers, 1-1
File protection, 4-22
Files

analysis, 1-9
analyzing structure interactively, 1-1
creating, 6-1
creating FDL, 1-9
displaying structures, 1-16 to 1-23
FDL, 5-3, 6-3
how Convert utility processes, 2-9
internal structure, 1-1
organization, 1-1
reorganizing, 3-1
structure, 1-1, 1-9
temporary, 2-18, 4-19
transferring to and from remote node, 2-4

File sections
See FDL (File Definition Language)

File specifications, 2-5, 4-18
partial, 4-18

FILE_MONITORING attribute, 4-19
Fill factor, 4-5, 4-27
FILL_BUCKETS attribute, 4-10
Fixed control, 4-32, 4-33, 4-34
FIXED format, 4-33
Fixed-length records, 2-13, 2-17, 4-34
FLG=CHG option, 4-25
FLG=DUP option, 4-26
FLG=NUL option, 4-28
Format

of fixed-length record, 2-13
of hexadecimal dump, 1-18

FORMAT attribute, 4-33
FORTRAN carriage control, 2-3, 4-32
Free bucket list, 3-1

FULL prompt, 6-9

G
GET attribute, 4-3, 4-35
GET option, 4-3, 4-35
Global buffers, 4-19
GLOBAL_BUFFER_COUNT attribute, 4-19
Group number, 4-22
Group protection code, 4-22

H
Hardcopy terminal output, 6-9
Hexadecimal dump, 1-18
Hierarchical structure, 1-1
High-speed terminal output, 6-9
HRD option, 4-7

I/O counts, 2-17
IDENT attribute, 4-37
IDENT keyword, 4-37
IDX_NCMPR option, 4-27
INDEXED attribute, 4-21
Indexed files

compression, 4-27
duplicate keys, 4-26
level 1 index, 4-27
loading, 2-8
reformatting, 2-1
structure, 1-1, 1-3, 4-28

Index levels, 4-5
Index records, 4-5
INDEX_AREA attribute, 4-26, 4-27
INDEX_COMPRESSION attribute, 4-5, 4-27
INDEX_FILL attribute, 4-5, 4-27
INDEX_SPACE_OCCUPIED attribute, 4-5
Input files

concatenating, 2-5
INT2 key type, 4-30
INT4 key type, 4-30
INT8 key type, 4-30
Interactive mode, 1-1, 1-9, 1-16
Internal structure

of file, 1-1

J
Journaling not supported

error message, 1-7

K
KEY attribute, 6-1
KEY DESCRIPTOR

how updated by Convert utility, 2-9
KEY NULL_ VALUE attribute, 4-28
Key of reference, 2-12
KEY primary sections

ordering requirement, 6-1
KEY PROLOG attribute, 2-14, 4-26, 4-27
Keys

alternate, 4-5
length, 4-27
segmentlength, 4-29
type, 4-29

Keywords
abbreviating, 6-2
SOURCE attribute, 4-36
TARGET attribute, 4-37

KEY_GREATER_EQUAL attribute, 4-10
KEY_GREATER_THAN attribute, 4-10
KEY_LIMIT attribute, 4-11
KEY_NCMPR option, 4-26
KEY_OF _REFERENCE attribute, 4-11
KGE option, 4-10

L
LENGTH attribute, 4-27, 4-28
Length of key segment, 4-29
LEVELl_INDEX_AREA attribute, 4-26, 4-27
LEVELl_RECORD_COUNT attribute, 4-5
Level of prompting, 6-9
LF character, 4-33
LIM option, 4-11
Line feed, 4-32
LINK_CACHE_ENABLE attribute, 4-31
LINK_TIMEOUT attribute, 4-31
LOA option, 4-10, 4-11
LOCATE_MODE attribute, 4-11
LOCK_ON_READ attribute, 4-11
LOCK_ON_ WRITE attribute, 4-11

M
Magnetic tapes

file expiration, 4-15
file protection, 4-21
files, 4-20
starting position, 4-20

MANUAL_UNLOCKING attribute, 4-11
MAXIMIZE_ VERSION attribute, 4-20
MAX_RECORD_NUMBER attribute, 4-19
MEAN_DATA_LENGTH attribute, 4-5
MEAN_INDEX_LENGTH attribute, 4-5

lndex-5

MODIFY command, 6-16
MSBRCW option, 4-32
MSB_RECORD_LENGTH attribute, 4-32
MSE option, 4-35
MT_BLOCK_SIZE attribute, 4-20
MT_CLOSE_REWIND attribute, 4-20
MT_CURRENT_POSITION attribute, 4-20
MT_NOT_EOF attribute, 4-20
MT_OPEN_REWIND attribute, 4-20
MT_PROTECTION attribute, 4-21
MULTIBLOCK_COUNT attribute, 4-11
MULTIBUFFER_COUNT attribute, 4-12
Multiple areas, 4-6, 4-27
Multiple input files, 2-5
Multiple keys, 2-18
MULTISTREAM attribute, 4-35
MXV option, 4-20

N
NAME attribute, 4-18, 4-21, 4-27
NEF option, 4-20
Negative compression, 4-4
NETWORK_DATA_CHECKING attribute, 4-31
NFS option, 4-21
NIL option, 4-36
NLK option, 4-12
NOLOCK attribute, 4-12
NONE carriage control, 4-32
NONEXISTENT_RECORD attribute, 4-12
Null keys, 4-28
NULL pad character, 2-13
NULL_KEY attribute, 4-28
NULL_ VALUE attribute, 4-28
Number of files processed, 2-17
NXR option, 4-12

0
OFP option, 4-22
Optimize script, 6-1, 6-4
Ordering requirement

AREA for primary sections, 6-1
for primary sections, 6-1

ORGANIZATION attribute, 4-21
Output

directing, 1-9
Output file

how affected by Convert utility, 2-4
OUTPUT_FILE_PARSE attribute, 4-22
/OVERRIDE=ACCESSIBILITY qualifier, 4-21
Overwrite tape file, 4-15
OWNER attribute, 4-22
Owner protection code, 4-22

lndex-6

p
Pad characters

for short records, 2-13
Padding records, 2-4
Page faults, 2-17
PMT option, 4-13
POSITION attribute, 4-7, 4-27, 4-28
POS option, 4-20
Primary attribute, 4-1
Primary data record, 1-3
Primary index structure, 1-3
Primary key, 2-12
Primary sections

ordering requirement, 5-1, 6-1
PRINT carriage control, 2-3, 4-32
Print queues, 4-22
PRINT_ON_CLOSE attribute, 4-22
Privileges

required to analyze RMS Journaling files, 1-9
Process defaults, 4-29

batch queue, 4-24
print queue, 4-22

PROHIBIT attribute, 4-36
Prolog 3 file, 4-26

compression, 4-26, 4-27
key segment length, 4-29
key segment position, 4-29

Prolog 3 indexed files
reclaiming empty buckets, 3-1

PROLOG attribute, 2-14, 4-26, 4-27, 4-28
PROTECTION attribute, 4-22
Protection codes, 4-23
PTA option, 4-14
PUT attribute, 4-3, 4-36

R
RAH option, 4-12
RCK option, 4-23
Read access, 4-23
READ_AHEAD attribute, 4-12
READ_CHECK attribute, 4-23
READ_REGARDLESS attribute, 4-13
REA option, 4-11
RECLAIMED_SPACE attribute, 4-4
Reclaiming buckets in a Prolog 3 indexed file, 3-1
Record file address

See RFA
Record reference vector

See RRV
Records, 1-3

fixed-length format, 2-13
maximum length, 2-17, 4-34
maximum number, 4-19
maximum size, 4-34
positioning to, 1-21

Records CONTROL_FIELD_SIZE attribute, 4-34
Record structures, 1-3
Record_IO attribute, 4-3
RELATIVE attribute, 4-21
Relative file record limit, 4-19
Relative files

structure, 1-1, 1-2
viewing individual data buckets, 1-2

Reorganizing a file, 3-1
Repeating characters, 4-26, 4-27
Retrieving duplicate secondary keys

example, 2-2
REVISION attribute, 4-15, 4-23
Revision number, 4-23
RFA (record file address), 2-1, 3-1

access, 3-1
RLK option, 4-11
RMS, 5-3, 6-3

control blocks, 4-1
creation-time options, 5-2
default, 2-14, 4-18
Put service, 2-8
role in reclaiming buckets, 3-1

RMS-11
stream files, 4-33

RMS Journaling
handling errors, 1-7, 1-8
how to turn off, 1-8

RMS_DEFAULT command, 4-29
RNE option, 4-14
RNF option, 4-14
RRL option, 4-13
RRV (record reference vector), 1-3
Rules for FDL validity, 6-1
Run-time attributes

establishing value, 4-2
RWC option, 4-20
RWO option, 4-21

s
SCF option, 4-24
Scratch files, 2-8
Scripts

Design and Add Key
restrictions, 6-4

EDIT/FDL, 6-15
generating Indexed, 6-11
invoking, 6-15
Optimize

executing without terminal dialogue, 6-7
specifying FDL file, 6-4
using with ANALYSIS_ OF _AREA and

ANALYSIS_OF _KEY sections, 1-25
using with special analysis sections, 1-12

selecting response method, 6-9
specifying title, 6-10
using with INVOKE command, 6-11

Secondary index data record
See SIDR

Secondary keys
duplicate retrieval order, 2-2

Segmented keys, 4-29
SEGn secondary attribute

ordering within KEY section, 6-1
SEGn_LENGTH attribute, 4-29
SEGn_POSITION attribute, 4-29
Semicolon (;)

as comment delimiter or statement terminator,
6-1

SEQUENTIAL attribute, 4-21
Sequential files, 4-24

structure, 1-1
SEQUENTIAL_ONLY attribute, 4-23
SHOW RMS_DEFAULT command, 2-14, 4-29
SIDR (secondary index data record), 1-6, 4-5

for storing sorted pointers, 2-9
SIZE attribute, 4-34
Sorting

suggestions for improving performance, 2-16
Sort utility

open file limitation, 2-16
SOURCE attribute, 4-36
Source statements in FDL files, 6-1
SPL option, 4-22
SQO option, 4-23
Starting key position, 4-28
Statistical report, 1-9
Statistics

produced by Convert/Reclaim utility, 2-17, 3-3
produced by Convert utility, 2-17

STREAM carriage control, 2-3
STREAM format, 4-33
STREAM_CR format, 4-33
STREAM_LF format, 4-33
String key type, 4-30
SUBMIT_ON_CLOSE attribute, 4-24
SUPERSEDE attribute, 4-24
SYS$ERROR warning message, 2-4
SYS$0UTPUT

using with Convert utility, 2-7
System defaults, 4-29
System protection code, 4-22

T
TARGET attribute, 4-37
TEF option, 4-24
TEMPORARY attribute, 4-24
Temporary files, 2-18, 4-19
Text files

using text editor to create, 5-1
TIMEOUT_ENABLE attribute, 4-13

lndex-7

TIMEOUT_PERIOD attribute, 4-13
TITLE attribute, 4-37
TMD option, 4-24
TMO option, 4-13
TMP option, 4-19
Total exception records, 2-1 7
Total records processed, 2-1 7
Total valid records, 2-1 7
TPT option, 4-13
Transfer from disk volumes, 4-23
TRUNCATE attribute, 4-3
TRUNCATE_ON_CLOSE attribute, 4-24
TRUNCATE_ON_PUT attribute, 4-13
Truncation of records, 2-4
TT_CANCEL_CONTROL_O attribute, 4-13
TT_PROMPT attribute, 4-13
TT_PURGE_TYPE_AHEAD attribute, 4-14
TT_READ_NOECHO attribute, 4-14
TT_READ_NOFILTER attribute, 4-14
TT_UPCASE_INPUT attribute, 4-14
TYPE attribute, 4-27, 4-28, 4-29

u
UFO option, 4-24
UICs (user identification codes), 4-22, 4-28
UIF option, 4-14
VLK option, 4-11
UNDEFINED format, 4-33
Unsegmented key, 4-27
UPDATE attribute, 4-3, 4-36
UPDATE_IF attribute, 4-14
UPD option, 4-3, 4-36
UPI option, 4-36
User classification, 4-23
User identification codes (UICs)

See UICs
User number, 4-22
USER_FILE_OPEN attribute, 4-24
USER_INTERLOCK, 4-36

v
Validity rules, 6-1
VARIABLE format, 4-34
Variable format units

See VFUs
Variable-length records, 4-34
VBNs (virtual block numbers), 1-3
Version numbers

specifying, 4-20
VFC (variable with fixed-length control) records,

4-32,4-33,4-34
converting, 2-11

VFUs (variable format units)
RMS support for, 4-33

lndex-8

Virtual block
dump, 1-18

Virtual block numbers
See VBNs

VOLUME attribute, 4-8

w
$WAIT service

used with ASYNCHRONOUS option, 4-6
WAIT_FOR_RECORD attribute, 4-14
WAT option, 4-14
WBH option, 4-15
WCK option, 4-25
Wildcard characters, 2-5

using with ANALYZE/RMS_FILE, 1-9
WINDOW _SIZE attribute, 4-24
Working sets

adjusting for optimal sort performance, 2-16
determining quotas, 2-16

World protection code, 4-22
Write access, 4-23
WRITE_BEHIND attribute, 4-14
WRITE_CHECK attribute, 4-24

x
%X format, 1-18

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

5

NOTES

6

NOTES

7

NOTES

8

NOTES

9

NOTES

10

NOTES

11

NOTES

12

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DECdirect
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 874-3023

DTN: 234-4325
(508) 351-4325
FAX: (508) 351-4467

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 014 73

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments OpenVMS Record Management
Utilities Reference Manual

AA-PV6QA-TK

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like I.east about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary

if Mailed
in the

United States

Do Not Tear- Fold Here ---

Reader's Comments OpenVMS Record Management
Utilities Reference Manual

AA-PV6QA-TK

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08

NASHUA, NH 03062-2642

I I I 11111II1II1111II1111I1I11Iii1II111I11I11I1I1I1I1 I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here ---

