
m cn
Om
- (j jo
oz
zo

Digital
Press SECOND EDITION

Rdb
A Comprehensive Guide

Second Edition

Digital Press Editorial Board

Samuel H. Fuller, Chairman

Patti Anklam

Richard W. Beane

Donald Z. Harbert

Richard J. Hollingsworth

Alan G. Nemeth

Jean A. Proulx

Jeffrey H. Rudy

Stan Smits

Robert M. Supnik

Gayn B. Winters

Rdb
A Co01prehensive Guide
Second Edition

Lilian Hobbs and Ken England

Digital Press
Boston • Oxford • Melbourne • Singapore • Toronto • Munich • New Delhi • Tokyo

© Copyright 1995 Butterworth-Heinemann

-@_ A member of the Reed Elsevier Group

All rights reserved

Digital PressTM is an imprint of Butterworth-Heinemann, Publisher for Digital Equipment Corporation

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior permission of the publisher.

ACMS, AXP, Basic, COD/Plus, COD/Repository, DATATRIEVE, DBMS, DEC, DEC
ACCESSWORK, DEC Ada, DEC C, DEC Fortran, DEC Pascal, DEC RALLY, DEC
Rdb, DECdtm, DECforms, DECimage, DECnet, DECtp, DECtrace, DECwindows,
Digital, EDT, HSC, Open VMS, PATHWORKS, RdbNMS, SQL Multimedia, ULTRIX,
VAX, VAX C, VAX COBOL, VIDA, VMS, VMS RMS, VMScluster and the DIGITAL
logo are trademarks of Digital Equipment. IBM and OS/2 are registered trademarks and
DB2 is a trademark of International Business Machines Corporation. Appletalk and
Macintosh are registered trademarks of Apple Computer Inc. MS-DOS, MS Windows,
MS, Windows NT, Microsoft, Excel and Microsoft Access are registered trademarks
and Windows is a trademark of Microsoft Corporation. Netware and Novell are
registered trademarks of gn'vell, Inc. ORACLE is a trademark of the Oracle
Corporation. OSF/1 is a registered trademark of Open Software Foundation Inc. All
other trademarks and registered trademarks are the property of their respective holders.

Recognizing the importance of preserving what has been written, Butterworth­
Heinemann prints its books on acid-free paper whenever possible.

Library of Congress Catalog Card Number: 95-76239

ISBN: 1-55558-124-2

The publisher offers discounts on bulk orders of this book.
For information, please write:

Manager of Special Sales, Digital Press
Butterworth-Heinemann
313 Washington Street
Newton, MA 02158-1626

Order number: EY-S450E-DP

10987654321

Composition: P.K.McBride, Southampton, UK

Printed in the United States of America

In memory of Lilian's father

and her brother, Reggie

Lilian

To Margaret, Michael and Katy

for all their support and patience

Ken

To Steve Hagan,

for making the dream come true

Lilian & Ken

Foreword

Lilian Hobbs and Ken England have written the seminal book describing the
Rdb product family. Today, Rdb is the fastest and most economical database
system on the market - bar none (as measured by the Transaction Processing
Performance Council TPC-A metric). Rdb is also one of the most sophisticated
SQL database systems, including most SQL92 features, many SQL3 features,
support for multimedia data, and support for object-oriented extensions.

The product family includes RdbExpert that automates database design and
tuning, DEC Database Integrator that integrates multiple Rdb, DB2, Oracle,
SYBASE, DBMS, RMS and other databases, to create the image of a single
distributed database, and DEC DataDistributor that replicates data among
Rdb and foreign databases. These products work on the VMS and UNIX
(OSF/l) operating systems and are being ported to NT. Client software based
on the Open Database Connectivity standard (ODBC) allow desktop tools
like VisualBasic complete access to Rdb databases running on servers.

Hobbs and England have done an excellent job explaining how to use the Rdb
product family and how each element of the family works. Along the way,
they teach you how to use the SQL database language, complete with sophis­
ticated techniques like referential integrity, stored procedures, triggers, outer
joins, and many more. The presentation is extremely readable and informa­
tive - punctuated with examples and hints. It covers the core Rdb product,
covers the related tools for system administration, performance tuning, data
integration, data replication, and desktop data access.

This book is an essential reference to those who design, administer, program,
or use Rdb databases. It also provides an excellent reference to those inter­
ested in advanced database techniques, or who are interested in comparing
Rdb to other database systems.

Dr. Jim Gray,

Former Technical Director of Digital's Production Systems Group.

Contents

Preface xiii

1 Components 1
1.1 The Digital Information Management Family 1

1.2 Components of Rdb 2

1.3 Key Areas of Rdb 9

1.4 License Options 17

2 Data Definition 19
2.1 Basic Relational Terms 20

2.2 Creating a Single-File Rdb Database 22

2.3 Creating Multifile Databases 32

2.4 Deleting Database Metadata 32

2.5 The Multischema Database 34

2.6 The BANKING Database 38

3 Data Manipulation 45
3.1 SQL Data Manipulation Options 45

3.2 SQL 46

3.3 String Manipulation 59

3.4 Multistatement Procedures 67

3.5 Stored Procedures 76

3.6 External Functions 79

3.7 What's next for SQL? 82

viii Contents

4 Storage Structures 83
4.1 Why Use Multifile Databases? 83

4.2 Creating Multifile Databases 85

4.3 Creating Storage Areas 86

4.4 Displaying Database Pages 95

4.5 The Database Page Structure 96

4.6 Space Area Management (SPAM) Pages 104

4.7 Read-Only Areas 116

4.8 Write Once Read Many (WORM) Areas 116

5 Table Access 118
5.1 Indexed Access 118

5.2 The Structure of Sorted Indexes 121

5.3 The Structure of Hashed Indexes 128

5.4 The Database Buffer Pool 140

6 The Optimizer 157
6.1 Methods of Retrieving Data 157

6.2 Choosing a Strategy 160

6.3 Influencing the Optimizer 171

7 Transaction Management 175
7 .1 Transactions 17 6

7.2 Rdb Locking 178

7.3 Table Locking 181

7.4 RMU/SHOW LOCKS 194

7.5 Prestarted Transactions 196

7.6 Fast Commit Transaction Processing 197

8 Security 201
8.1 Using Open VMS Security 201

8.2 Security Strategy 203

Contents IX

8.3 Rdb Security 204

8.4 Alternative Security Mechanisms 209

8.5 Dept. of Defense or C2 Security 211

8.6 Controlling RMU Commands 213

8.7 Security Auditing 214

9 Database Integrity 219
9.1 Data Integrity 219

9 .2 Constraints 220

9.3 Primary and Foreign Keys 222

9.4 Using Indexes to Maintain Integrity 225

9 .5 Integration with the Repository 225

9.6 Triggers 226

9. 7 Database Structure Integrity 229

9.8 Backups and Journaling 233

9.9 Restore 243

9 .10 Restore by Area 249

9 .11 AU Recovery by Area 250

9.12 Recovering a Database Page 250

9 .13 Changing Database Parameters on Restore 251

9.14 Run-UnitJournaling 251

9.15 VMScluster Failover 252

9.16 Distributed Transactions 252

10 Database Restructuring 254
10.1 Changing the Metadata Definitions 256

10.2 Changing the Ph)'.sical Creation Parameters 263

10.3 RMU/UNLOAD AND LOAD 268

10.4 EXPORT AND IMPORT 272

10.5 Why Reorganize? 273

x Contents

11 Tuning and Optimization 274
11.1 Understanding the Physical Design 27 5

11.2 A Tuning Plan 284

11.3 Tuning Tools 284

11.4 The Need to Tune 317

12 Distributing Rdb Databases 318
12.1 Remote Database Access 318

12.2 DEC Data Distributor 320

12.3 DEC Database Integrator 327

12.4 Distributed Transaction Management 332

13 Interoperability 339
13.1 SQL/Services 340

13.2 DEC Db Gateways 341

13.3 ODBC Driver 345

14 COD/Repository 348
14. I Rdb and CDD/Repository 350

14.2 CDD/Administrator 361

15 Transaction Processing 362
15.1 What Is a Transaction Processing System? 362

15.2 What Are DECtp and DECdta? 363

15.3 DECdta 364

15.4 ACMS 371

16 Database Tools 378
16.1 DECtrace 378

16.2 RdbExpert 385

16.3 Graphical Schema Editor 389

16.4 InstantSQL 390

Contents

16.5 The FrEnd Family 391

16.6 Forest & Trees 394

16.7 Microsoft Access 395

17 Application Programming 397
17 .1 SQL Precompilers 398

17 .2 SQL Module Language 401

17 .3 Dynamic SQL 404

17.4 2-Phase Commit Protocols 406

18 Multimedia Databases 411
18.1 Blobs 412

19 Rdb on OSF/1 418
19.1 OSF/l Differences 418

20 The Future of Rdb 431
20.1 New Enhancements 431

Appendixes
A Banking Database Definition 434

B Rdb Logical Names/Environment Variables 443

Glossary 447

Index 457

xi

Xlll

Preface

This book is based on Version 6.0 of Rdb, which was released in April 1994
and contains many of the features to be found in V6.1. This version provides
a technically sophisticated and fully functional database management system
for the Open VMS and OSF/l operating systems made by Digital Equipment
Corporation. At the time of writing, Digital is in the process of selling its Rdb
product to the Oracle Corporation.

Digital announced Rdb in 1984 as a relational database for its proprietary
VAX/VMS operating system. The early versions of the Rdb system enjoyed
mixed success. With Version 3.0, however, Rdb emerged as a relational data­
base management system that could be used in high-performance transaction­
processing systems running on Digital's popular VMSclusters. Since Version
3.0 the system's functionality has continued to be extended dramatically and
at Version 6.0, with the addition of stored procedures and external functions,
Rdb is one of the most functionality rich products in the marketplace today.

Ten years after its initial release, Rdb finds itself on a new operating system
platform - OSF/1. With a Microsoft Windows NT version waiting in the
wings, the proprietary nature of the product has started to diminish and its
portability has started to increase.

The growing popularity ofRdb among customers, software development com­
panies, and consultant firms has prompted us to write this book. It is intended
to be a comprehensive introduction to the extensive capabilities offered by
Rdb and a text in which we can impart some of our experience.

All the examples in this book use the Open VMS version of Rdb and refer to
the functionality available in that version. The OSF/ l version is almost iden­
tical to the Open VMS version; therefore generally everything written in this
text applies to this version. Specific differences can be found in Chapter 19.

XIV Preface

The chapters are written to follow one another in a logical fashion, building
on some of the topics introduced in previous chapters. The structure of the
chapters is as follows:

• Chapter 1 introduces the components of Rdb, such as the architecture, man­
agement utility, and precompilers. The licensing strategy is also introduced.

• Chapter 2 presents the data definition features, such as how to create a
database and a table as well as introducing multischema databases.

• Chapter 3 introduces the data manipulation features, including how to
retrieve and store data, multistatement procedures, stored procedures and
external functions.

• Chapter 4 discusses the storage structures that can comprise a database,
such as multifile database features and the format of a database page.

• Chapter 5 describes indexed access, both sorted and hashed and buffering.

• Chapter 6 briefly describes the function of the optimizer as well as tech­
niques to observe and influence its strategy, such as query outlines.

• Chapter 7 describes transaction management, especially locking techniques
and strategies as well as transaction isolation levels.

• Chapter 8 discusses security, in terms of techniques to make data private.

• Chapter 9 describes maintaining the integrity of the data in the database in
terms of referential integrity and failure management. Rdb backup, restore
and recovery techniques using the after image journal are discussed.

• Chapter I 0 explores various restructuring techniques available to the data­
base administrator, and explains how a database can be changed.

• Chapter 11 explores the tuning and optimization of Rdb databases and in­
troduces the RMU/SHOW STATISTICS utility.

• Chapter 12 discusses distributing databases around a network and intro­
duces DEC Data Distributor, distributed transactions and DEC Database
Integrator.

Preface xv

• Chapter 13 introduces the interoperability products, such as SQL/Services,
Microsoft ODBC and the DEC Db Integrator Gateway family.

• Chapter 14 discusses the Repository, CDD/Repository, and its use.

• Chapter 15 describes how Digital's transaction processing architecture,
DECdta, and ACMS TP monitor can enhance a Rdb environment.

• Chapter 16 introduces the tools available for DEC Rdb, such as DECtrace,
RdbExpert as well as introducing some popular third party tools for Rdb
such as the FrEnd family of tools, Forest & Trees and Microsoft Access.

• Chapter 17 discusses writing Rdb programs and introduces SQL Module
Language.

• Chapter 18 introduces the multimedia capabilities of Rdb.

• Chapter 19 discusses the differences between Rdb implementations on the
new operating system platforms, OSF/1.

• Chapter 20 speculates on the future direction of Rdb.

A reader unfamiliar with Rdb may wish to skip chapters 4, 5, and 7 because
they are quite detailed. Other chapters can be read with little or no prior knowl­
edge of relational systems.

Acknowledgments

Most of all, we would like to thank Margaret England and Mrs. Lilian Hobbs
for their long suffering while we were writing this text. It quickly became
apparent to us that writing and being sociable were sometimes mutually ex­
clusive! We also would like to thank them for the great favor they did us in
proofreading. Michael and Katy England are too young to understand databases
but they were very patient while their dad kept disappearing in front of a PC
for protracted periods of time!

As well as the friends and colleagues who helped with the first edition of the
book, we would like to give an extra special thanks to the following people.

A very special thank you to Steve Hagan for not only giving us full access to
the Rdb development team, but for also being one the best managers we have
ever had the pleasure of working with.

xvi Acknowledgments

We were extremely grateful to the Rdb engineers who helped review some of
the materials. Writing a chapter on the optimizer is certain to fill any author
with trepidation. Therefore we are very grateful to Gennady Antoshenkov,
one of the consulting engineers responsible for the optimizer who very kindly
reviewed this chapter.

A big thank you to Rick Anderson for reviewing the chapter on after image
journaling, backup and restore and all that good stuff.

Ian Smith, who many customers from down-under will remember, before he
left his warm climate for the warm and snow of New England to further his
career with Rdb Engineering, reviewed the huge SQL chapter.

When it comes to COD/Repository, no one knows the product's integration
with Rdb better than Carol Dillingham. Thanks for reviewing and guidance
with the new features.

Larry Carpenter in Munich is one of the Rdb engineers located in Europe and
thanks for your assistance and support during the compilation of this book.

There are so many people involved with the development of Rdb that we could
fill this whole page with their names, but here are just a few of the people who
have guided and helped us, not just during the writing of this book but through­
out our involvement with Rdb: Peter Spiro and Russ Holden, Jay Feenan
database system Technical Directors; Jim Gray, Andy Schneider, Susan
Hillson, Zia Mohammed, Ranga, Ashok, Abe Mathew, Steve Horn, Ramu
Sunkara, Dave Campbell, Chuck Friewald, Chris Davis, Tom Tobin, Fred
Vona and Kate Brown.

We would like to express our deep gratitude and thanks to Mike Cash from
Butterworth-Heinemann (UK) and Mac Bride our typesetter. Thanks to all
their efforts and the use of desktop publishing tools we were able to release
this book at the same time as Rdb 6.1 instead of months later.

Finally, a thank you to Steve Hiscock and Rob Higman in the UK CSC for all
their help while this book was being written.

Many thanks to our other friends in Rdb engineering, without whose skill and
hard work Rdb would not be the superb product it is today.

Lilian Hobbs
Ken England
Basingstoke, U.K.
October 1994

1

1.1

Components

THE DIGITAL INFORMATION MANAGEMENT FAMILY

Rdb is a relational database system developed by Digital Equipment Corp­
oration and, at the time of writing, is about to be sold to the Oracle Corpo­
ration. For ten years it was only available for computers using the
Open VMS operating system. 1994 saw that change with the first release
on another platform, OSF/1. The plans do not intend to stop there and
Rdb will be implemented on other platforms like Windows NT.

Rdb is one of a number of information management products that work
together in an environment, designed so that information can be easily shared
throughout an enterprise. The products that comprise the Information Net­
work family, illustrated in Figure 1.1, are designed to function in isolation or
together with the other tools in the family. If any of these tools are unsuitable,
then some may be substituted for non-Digital tools, of which there are a wide
number to choose from. Using this approach, systems can be created and
tailored to match an organization's information management needs.

Information management products have been selected to provide the following:

• Common storage

• Data management

• Data access

• Distributed processing

• Decision support

• Application management

• Terminal management

2

Figure 1.1 The Information Network

SQL

Tools and Applications

SOL/
Services

Apple's
DAL

Microsoft
ODBC

DECnet I TCP/IP Novell

Information Network

DEC Db Integrator

DEC Db Integrator Gateways for

R D 0 s R D M v c
d B R y M B u s u D
b 2 A B s M M A s r

c A s p M T i
L s s 0 v
E E M e

r

DEC Data Distributor

Components

The products from Digital that comprise the information management fam­
ily are shown in Table 1.1. A complete system cannot be created without
them, or a non-Digital tool equivalent, since Rdb is only a relational data­
base management system.

1.2 COMPONENTS OF RDB

1.2.1 Overview

Originally Rdb only ran on the VAX range of computers and was perceived
as a database system that could only exist on this hardware platform. The
introduction of Alpha machines and the implementation on the OSF/1 plat­
form should convince any sceptics that Rdb is capable of running on other
platforms. During its lifetime a wide range of features have been incorpo­
rated into the product, making it a very sophisticated relational database
system. Today there are so many features and tuning options that one might

1.2 Components of Rdb 3

Table 1.1 Digital Information Management Products

Product Description

ACMS Digital's TP Monitor for VMS

ACMSxp Digital's TP Monitor for OSF/l

CDD/Repository Distributed, data dictionary that permits the storage of data defini­
tions accessed by many of the products in the information manage­
ment family, including Rdb. Enables relational databases, RMS files,
application programs, and form management systems to be built using
the same data definitions

DEC Data Distributor An optional, layered product of Rdb that provides an automatic ex­
traction or replication transfer from and to remote Rdb databases

DEC Database Integrator Provides transparent access to data residing in Rdb, DB2, Oracle or
other database systems on a local or remote server

Datatrieve A tool for managing data interactively or from within an application
program

DBMS

DECforms

Rdb

The CODASYL database management system

A forms management system based on the proposed FIMS standard

A relational database management system

DEC DB Gateway for ... Various gateways to access RMS, Oracle, DB2, Sybase, EDA/SQL,
DBMS, Mumps or create custom drivers

Rally

RMS

1.2.2

Digital's 4th generation language for building applications

Record Management System

think a degree in computer science is necessary to use the product. Nothing
could be further from the truth. These sophisticated options are there for very
large production systems or those users requiring ultra high performance.
The majority of users run very happily with the system defaults and are ob­
livious to all the other available options.

Rdb Product Family

A number of products comprise the complete Rdb interoperability family.
This book concentrates on the Rdb component, but will explain how these
other products integrate with it.

4 Components

The Rdb development kit provides the following capabilities:

• The Rdb kernel

• The RMU management utility and GUI

• The SQL query language

• SQL/Services (VMS, MS-DOS, OSF/1, Mac)

• Remote database access

• Precompilers for SQL

• Dynamic SQL API

• ODBC driver

• SQL/Multimedia routines

The Rdb development kit provides everything needed to develop applications
on centralized or remote databases. Another optional product is the Graphical
Schema Editor, a tool that enables the database design to be specified graphi­
cally rather than using SQL, although the output from this tool is the SQL to
create the database. The SQL/Services component of Rdb also allows access
to Rdb from a desktop or laptop computer. If a style of distributed database is
required, then one or more optional products will be needed. Several optional
products work with Rdb and extend its capabilities. DEC Data Distributor
can manage the distribution of data among multiple databases, for example
and DEC Db Integrator will transparently integrate data from many distrib­
uted data managers.

For the majority of systems, Rdb is sufficient because it provides the ability to
store and manipulate data locally, access remote databases, or access Rdb from a
PC or other operating system, which is adequate for most processing needs.

1.2.3 Inside Rdb

Rdb is a sophisticated relational database with a number of components, which
have been designed using a layered and modular approach. Rdb is based upon
the architecture shown in Figure 1.2. Although Rdb users need not be aware
of what lies underneath, the architecture has two layers, the relational data
manager and the record storage system.

1.2 Components of Rdb

Figure 1.2 Rdb Architecture

Language Callable and
Preprocessors Interactive User
C, Pascal Interface

Catalog Manager, Query Parser
Semantic Analyzer, Optimizer

Journal
Physical [PSI]

Lock Storage Interface
and Mgmt
Recovery Data 1/0 [DIO]

Record Mgmt

Physical 1/0 [PIO]
Buffer Mgmt

Common Operating System Interface [COSI]

Open VMS OSF/1 WNT l Other

The relational data manager has several components:

• Interactive user interface

• Callable interlace

• Query parser

• Semantic analyzer

• Catalog manager

•Optimizer

• Query executor

5

The record storage system is responsible for managing many tasks. These
tasks include:

• Fetching, storing, modifying, and erasing records

• Managing physical storage

6 Components

• Managing locking and buffers

• Controlling journaling and recovery

Digital Standard Relational Interface (DSRI)

In the early days ofRdb, much emphasis was placed on the Digital Standard
Relational Interface, or DSRI. This interface is an architecture and calling
standard for Digital relational database products intended to provide a com­
mon access method to relational database systems. No matter what language
is used to construct the query, it is always converted to the DSRI protocols.

Programming in DSRI is difficult and is similar to programming in assembler
language. Today there is a shift away from writing applications in complex
interface languages, with emphasis instead on the widely used standard SQL.
We encourage this approach because the small performance improvement that
results from writing in DSRI is far outweighed by the comparatively rapid
development time that results when using SQL. It should be mentioned that
the DSRI architecture has facilitated integration of Rdb with a wide range of
tools. Figure 1.3 illustrates, as we have said, that all user queries are ulti­
mately converted to the DSRI protocol.

SQL

3rd
Party
Tools

DSRI

Database Engine

Rally

Figure 1.3 DSRI Architecture

RMUUtility

1.2 Components of Rdb 7

Rdb is managed and controlled using a combination of the data manipulation
languages and the RMU management utility (Rdb Management Utility). From
V6.1 a GUI interface for this tool is also available, called RMUwin.

The RMU utility is made up of a number of commands which allow the user to
manage the database, such as backup, restore, statistics on database perfor­
mance, journal file management, and restricting access to the database. The
complete list is shown below. These commands will be discussed in more
detail in subsequent chapters.

Table 1.2 RMU Commands

Command

ALTER

ANALYZE

BACKUP

CHECKPOINT

CLOSE

CONVERT

COPY _DATABASE

DUMP

LOAD

MONITOR

MOVE

OPEN

OPTIMIZE

RECOVER

RESOLVE

RESTORE

SET AUDIT

SHOW

UNLOAD

VERIFY

Description

Tool to patch the physical contents of the database

Shows database usage, indexes, db pages, storage areas

Backs up a database

Forces a database checkpoint

Closes a database to prevent access

Facilitates upgrading to a new software version

Copies a database

Displays database internal structures

Loads data into a specific table

Controls the Rdb monitor

Moves a database storage area

Opens a database for access

Optimize an AU file

Recovers a database to a specific point using journal files

Allows manual commitment or abort of blocked distributed transactions

Restores a database

Controls security auditing

Displays various information such as current version, statistics on database perfor­
mance, users and how they are accessing a database

Unloads data from a specific table

Verifies the database format

Precompilers

Ada

c
COBOL

Fortran

Pascal

PL/1

8 Components

Precompilers are available for the various languages as shown in the table
below.

OpenVMS VAX Open VMS Alpha OSF/1

Yes Yes Yes

Yes Yes Yes

Yes Yes Microfocus

Yes Yes Yes

Yes

Yes

For organizations developing software that adheres to current standards,
options are available on the SQL precompilers to identify SQL statements
that are not in the ANSI/ISO SQL standard.

SQL also includes the SQL Module Language, which will be described in
detail in Chapter 17. Using the SQL Module Language, SQL statements are
grouped into modules. These modules can be called by any language, regardless
of whether an Rdb precompiler is available for that language.

This approach facilitates the writing of Rdb applications for languages with­
out the appropriate precompilers. It also enables a standard set of database
access modules to be written, which are then used by everyone. This practice
saves considerable time in writing and debugging similar database access code.

There is one additional interface, Dynamic SQL, which is a non-compiled
query language. It is used when the nature of the query is not known until
execution time.

SQL/Services

Increasingly today, access to an Rdb database is required from various
platforms, such as MS-DOS personal computers. SQL/Services, which is
supplied by default with Rdb, enables users on OSF/l, MS-DOS,OS/2, Sun
and Apple Macintosh platforms to query an Rdb database. This open, pub­
lished interface is based on Dynamic SQL, so there are no restrictions on the
operations that can be performed.

1.3 Key Areas of Rdb 9

ODBCDriver

The Monitor

1.3

Microsoft's ODBC driver is proving very popular with PC users to provide
access to various databases from the PC platform. Provided within the
SQL/Services component, once installed on the PC, it allows any ODBC
compliant application such as Microsoft Access or Forest & Trees to use this
method to access the Rdb data.

All activity on the database is monitored by a special process known as the
RDMS_MONITOR, which is always active. It is a watchdog process that logs
all users accessing the database and any abnormal process terminations that
have occurred, and it also coordinates recovery.

Hint: The log maintained by the monitor is very useful for detecting
problems with the database.

KEY AREAS OF RDB

When discussing Rdb, it is useful to group its many features into several key
areas:

• Performance

• Availability

• Referential integrity support

• Distributed capabilities

• Interoperability

• Multimedia

•Tools

10 Components

1.3.1 Performance

A relational database system is concerned with performance in two areas:
enabling the database designer to produce sophisticated physical designs to
overcome performance bottlenecks, and measuring the performance of the
database locating the cause of any performance problems. Rdb is strong in
both of these areas. They will be discussed in detail later in the book, but it is
worth summarizing the key features here.

Overcoming Performance Problems

Whether written in a third-generation language (3GL), such as COBOL, or
a fourth-generation language (4GL), such as RALLY, a database application
usually supports a finite number of users performing a finite amount of work
for a given hardware configuration, that is, for a certain power CPU and a set
number of disk drives. As the workload increases, a point is reached where the
throughput of the database stops increasing and levels off. Sometimes it even
starts to decrease. Further investigation typically shows that the limit of some
resource has been reached. For a database application the resource usually is
CPU capacity, disk I/O bandwidth capacity, or memory. In addition, a fourth
bottleneck typically is hit with database systems - locking contention.

The important question is whether a bottleneck can be overcome once it has
occurred. In the case of Rdb it usually can. Rdb on Open VMS makes full use
of Digital's Symmetrical Multi-Processing (SMP) and DECcluster architec­
ture, so adding another CPU board or another VMScluster node usually will
result in an increase in database throughput.

Another common bottleneck is disk I/O, which occurs when the I/O rates to
the disk exceed the capabilities of the disk drive. In this case a solution is to
buy more disk drives. However, this remedy is effective only if the database
architecture has the physical capability to enable the database designer to
make use of the extra disk drives. With Rdb there are many options. The
database itself has a multifile capability. Database tables can be mapped to
physical files that can be placed on separate disk drives. The mapping is quite
sophisticated-a table can reside in a single file or it can be horizontally par­
titioned across many physical files so the addition of extra disk drives can be
easily accommodated. But Rdb goes further than this.

1.3 Key Areas of Rdb 11

Sophisticated row-placement options allow the database designer to store rows
from different tables physically close to one another. Rows that are normally
accessed together are read in from disk in the same disk 1/0, thus reducing the
overall disk 1/0 requirements of the application. Hashed index support as well
as sorted index support means that for certain kinds of table access, fewer
disk I/Os are needed to access the data. The ability to specify index node sizes
and fill factors can reduce the disk 1/0 requirements even more.

If these techniques still do not achieve the required performance, then global
buffers can be used, which involves permanently allocating memory to the
database buffers. With the 64-bit architecture of the Alpha range of machines
which allows mapping of gigabytes of memory, very fast memory resident
databases become a reality.

A shortage of memory is not uncommon. The best solution to this problem is
to optimize its use with global buffers or if the memory is being consumed by
many user processes, running the application under a transaction processing
monitor, such as DEC ACMS, or DEC ACMSxd, should be considered.

Hitting a locking bottleneck is an interesting problem. Rdb tries to keep lock
contention to a minimum by providing a powerful locking mechanism that
will lock at the row level to avoid contention and maximize throughput. On
the Alpha range of machines, partitioned lock trees are available which create
smaller manageable lock trees. Other features, such as hashed indexes, ad­
justable locking granularity, variable page sizes, and snapshot transactions,
help reduce problems caused by locking.

Analyzing Performance Problems

A database designer or administrator may realize that there is a performance
problem but may not know the exact cause. A component of Rdb, the RMU/
SHOW STAT monitoring utility, helps find the cause by obtaining informa­
tion on the utilization of database tables, indexes, locks, and much more. An
additional product, the expert-system-based physical design tool RdbExpert,
produces optimized physical database designs. The event-based collector
DECtrace is used to record database performance events, and its monitor can
display database and other events in real-time. Both RMU and DECtrace are
invaluable tools to the database tuner.

12 Components

1.3.2 Availability

By availability, we mean that portion of time a database is available to run the
company's business applications. If critical business applications cannot be
run because the database is unavailable, the survival of the company is in
jeopardy. Obviously, it is in a company's best interests to use a database system
that is highly available.

The threats to availability are unscheduled failures, such as a CPU failure,
and scheduled downtime used for database backup and restructuring. Rdb
attempts to maintain its availability in the following ways.

Unscheduled Failures

If a node crashes in a single-node system, Rdb will automatically roll back
incomplete transactions when the node reboots. This procedure eliminates
manual intervention, which could be costly in terms of time. If a VMScluster
is being used and a node fails, a surviving node dynamically rolls back transac­
tions that were not completed by users on the failed node. The important points
to note here are that database integrity is ensured and that the service does not
terminate as long as there are remaining VMScluster nodes. The company's
business does not stop. This reliability is the result of using a mixture of high­
availability hardware (the VMScluster) and high-availability software (Rdb).

Scheduled Downtime

To minimize scheduled downtime, Rdb uses sophisticated backup technology.
A database backup can be run online while people are using the database.

The database does not have to be closed, nor do the users have to limit the
types of operation they are performing or the parts of the database they are
working on. Rdb ensures that the backups are consistent and that a restore
operation will result in a perfectly consistent database. Incremental backups
may be run, which only backup database pages that have changed. In addition,
Rdb supports the simultaneous backup/restore of a database to/from multiple
tape drives, allowing large quantities of data to be backed/restored in a short
time. However, large database users, such as those with more than 10 gigabytes,
generally do not have the time to restore the entire database. Therefore other
options are available, such as if a disk drive is damaged, only the affected area
needs to be restored, rather than the whole database or a specific page in the
database.

1.3 Key Areas of Rdb 13

Rdb supports online restructuring as well, so a database administrator need
not close the database to users when adding or deleting database table col­
umns or creating and deleting indexes. If a database area fills, disk space will
automatically be allocated. The database need not be closed to users while a
database administrator manually increases the size of the database. All these
features mean that Rdb supports highly available applications.

1.3.3 Referential Integrity Support

Referential integrity support is vital to ensure that the data in the database
remains consistent with the company's business rules. For example, it may be
inappropriate in a banking application for an account not to be associated
with a customer. It is important that such rules be stored in the database itself,
not in the applications, otherwise a maintenance headache would result.

Rdb allows the database designer to model constraints in the database so that
business rules are enforced. Primary and foreign key support ensures that
constraints are automatically created between primary and foreign keys in the
database. Rdb also supports triggers. Triggers are switches that operate when
some predefined event occurs and are also used to enforce the business rules
of a company at the database level.

1.3.4 Distributed Capabilities

Rdb has had distributed capabilities since Version 1.0. A 3GL program or
4GL can transparently access an Rdb database on another node in the network.
In fact, more than one database can be accessed from within a 3GL program
or 4GL in the network for retrieval or update. With the two-phase commit
protocol support that is in Version 4.0, Rdb also guarantees the integrity of
distributed transactions. An optional product, DEC Data Distributor, can be
used to replicate data throughout the network, and DEC Db Integrator to
provide location transparency and distributed query optimization to remote
databases.

1.3.5 Interoperability

The SQL/Services component of Rdb allows access to Rdb databases from
desktop and laptop computers, such as those running MS-DOS. Optional

14 Components

products including DEC Db Integrator Gateway for ORACLE, SYBASE and
DBMS and DB2, enable tools that are normally used with Rdb to be used with
ORACLE, DB2 or SYBASE. Other gateways include DEC Db Integrator
Gateway for RMS on VMS which allows SQL access to non-relational data
structures.

1.3.6 Multimedia

Today users demand more from their database system than storing textual
data. Increasingly people want to store objects like pictures, sound or even
video. Rdb supports multimedia objects with the BLOB datatype and the rou­
tines in SQL/Multimedia which facilitate easier management of these objects.
Once one enters the realm of multimedia, traditional storage mediums are
inadequate, so for this reason, Rdb supports WORM (write-once read many)
devices.

1.3.7 'fools

There are a number of tools for querying Rdb databases and developing appli­
cations. RALLY is a fourth-generation application environment. Of course,
SQL is used to manipulate data in the database. Because of the open architec­
ture of Rdb, currently, third-party companies have layered hundreds of tools
and application packages on it. This number is increasing constantly.

1.3.8 List of Key Features

Let us summarize the key features of Rdb. The following form can be used as
a quick reference:

• Performance

- Multifile support

- Horizontal table partitioning

- Coincidental record clustering

- Sorted index retrieval

- Hashed index retrieval, scattered and ordered

- Adjustable page size

1.3 Key Areas of Rdb

- Sophisticated query optimizer

- Query outlines to specify how to execute a query

- Ascending and descending indexes

- Row-level locking

- Adjustable locking granularity

- Data compression capability

- Global buff er

- Asynchronous pre-fetch

- Asynchronous batch writes

- AIJ cache on solid-state disk

-Full VMScluster and Symmetrical Multi-Processing (SMP) support

- Performance-monitoring utilities

- Expert-system-based physical design tools

• Availability

- Full VMScluster support

- Online backup

- Incremental backup

- Multithreaded backup/restore

- Selected area backup/restore

- No quiet-point backup

- Restore by page

- Powerful online restructuring capability

- Dynamic space allocation

- Online database parameter changes

- Circular AIJ, AIJ Backup Server, AIJ Log Server

• Referential integrity support

- Constraints

-Triggers

- Primary and foreign key support

15

16 Components

• Other Facilities

- Stored Procedures

- SQL-92 Compliance

- MIA support

- Date-time Arithmetic

- Collating Sequences

- Multimedia support and callable routines

• Interoperability

- Desktop integration via SQUServices of Open VMS, ULTRIX, MS-DOS,
OSF/1, OS/2, and Apple Macintosh computers

- DEC Db Gateways range of products

- ODBC driver

•Tools

- Graphical Schema Editor (optional)

- InstantSql to create SQL queries graphically (optional)

- Many Digital tools for development and end-user query

- Many third-party tools for development and end-user query

- Many applications layered on Rdb

• Distributed capabilities

- Remote database access

- Attachment to multiple schemas for read and write

- Distributed transaction integrity (2PC)

- Data replication across network via DEC Data Distributor

- Distributed queries and optimization via DEC Db Integrator

1.4

1.4 License Options 17

LICENSE OPTIONS

Rdb presents various types oflicensing options. The five Rdb license options are:

• Full development

• Interactive

• Run time

• Personal use Full or Interactive license

• Concurrent use run-time license

Selecting the most appropriate license can result in considerable cost savings:
for example, purchasing the full development license for a small DEC proces­
sor on which to do development and then running the production application
on a large DEC processor or DECcluster, using the considerably cheaper run
time license.

1.4.1 Full Development

The full development license includes all the kernel Rdb software, the dy­
namic SQL engine, SQL/Services, SQL/Multimedia API, ODBC driver, full
database maintenance and administration using the RMU utility, full database
definition and manipulation using Interactive SQL and RDO, Callable RDO,
Graphical Schema Editor, InstantSQL and all the precompilers. The
precompilers include the SQL Module Language and the SQL/Services Client
API, which is the component that runs on the client platform. This is the
license that is required to develop an Rdb system.

1.4.2 Interactive

The interactive license, also known as the DBA license, provides the base
database software, the dynamic SQL engine, SQL/Services server, full data­
base maintenance and administration using RMU, full interactive database
definition and manipulation using interactive SQL and the ODBC driver.

Hence this option supports the execution of previously developed applications,
database definition, and interactive queries from SQL. It does not support
program development using the precompilers.

1.4.3

1.4.4

1.4.5

18 Components

Run Time

With the run-time option comes the base database software, the dynamic SQL
engine, the SQL/Services server process, the RMU management utility, inter­
active SQL and the ODBC driver. The purpose of the run-time option is to
support the execution of previously developed applications. It is not possible
with this option to perform interactive queries or program development or
create or drop databases.

Personal Use

A personal use license is available for the development or interactive license.
It allows a single specified user to use all the options available with this license.
Purchasing a single personal use license can be a very cost-effective alterna­
tive if there will only be a single person responsible for managing the database
on a large system.

Concurrent Use

A concurrent use license is available with the run-time license and it enables
one to specify the specific number of users that will be using the database on
this system. When the maximum number of specified users has been reached,
no other users can attach to the database until one of the current users de­
taches. Once again, if only a few people will be using the database, this may
be a more cost-effective option than purchasing a full run-time license.

This brief introduction has shown that Rdb is a very comprehensive product.
The following chapters will discuss the details behind all these components.

2 Data Definition

This chapter introduces the data definition features of SQL. For detailed and
exhaustive descriptions of the SQL syntax, the appropriate Rdb manuals, such
as the Rdb SQL Reference Manual, can be consulted if necessary.

After the database designer has formulated a logical database design through
analysis and data normalization, he or she will want to create a database
based upon it, using the data definition statements provided by SQL.

The next section will introduce some basic relational terminology. Subsequent
sections in this chapter will describe how the database designer can use the
data definition features of SQL to create various Rdb objects, such as:

•Databases

•Tables

•Columns

•Domains

•Views

• Storage areas

• Storage maps

•Indexes

The CREATE DATABASE statement defines characteristics that can be ap­
plied to the database as a whole. Using Rdb, tables can be created containing
columns that may be based upon domain definitions, and virtual tables called
views, which combine columns from one or more tables, can also be defined.
If the database designer wishes to create a multifile database, storage areas
can be created that define the files into which the tables and indexes are placed.
Storage maps provide the mapping between the storage areas and the objects
placed in them. The function of storage areas and storage maps in multifile
databases is discussed in detail in Chapter 4; this chapter will discuss basic

2.1

20 Data Definition

data definition only in single-file databases. Indexes are structures that are
used to access data quickly. Only sorted indexes can be created in single-file
databases. In multifile databases, however, hashed indexes also may be cre­
ated. Indexed access is described in detail in Chapter 5.

Later in this chapter the BANKING database will be introduced, which will
form the basis for all the examples in this book. The reader should refer to the
description of the BANKING database in Appendix A while studying the
examples in the next few sections.

BASIC RELATIONAL TERMS

In relational databases, such as Rdb, data is stored in tables (sometimes called
relations). Examples of these tables are shown in Figure 2.1, including the
CUSTOMER and ACCOUNT tables. Usually, a table represents some
real-world object that is pertinent to the organization's business. A table may
contain a number of rows that are instances of table elements. For example,
the CUSTOMER table contains a number of rows, one for each customer.
The rows consist of columns, which are data elements and represent attributes
of the table element. For example, the CUSTOMER table consists of a number
of columns that are attributes of the entity customer, such as the customer's
name and address.

In the relational model, a column or number of columns is designated as a
primary key. A row must be uniquely identified by its primary key; therefore,
a primary key value cannot occur more than once in a table. This also means
that a primary key cannot contain null values; i.e. a column that constitutes a
primary key must contain a value. In the CUSTOMER table, the primary key
is the customer number represented by the column CUSTOMER_NO. Each
customer's number is unique throughout the bank. No two customers may
have the same number.

Columns in one table typically do not also appear in another table, other than
to establish a relationship between tables. These columns are called foreign
keys. In the BANKING database, the ACCOUNT table contains a column
CUSTOMER_NO. This is a foreign key and establishes a relationship be­
tween the CUSTOMER table and the ACCOUNT table. Foreign key relation­
ships, represented by thicker lines, are shown in Figure 2.1.

2.1 Basic Relational Terms

Figure 2.1 Tables in the BANKING Database

TRANSACTION TABLE

8882334992 13 OCT 1994

0066434427 14 OCT 1994

4522334927 12 OCT 1994

882334992

0066424427

4522334927

1122334997

1166434467

4422334997

44422765462 1122765467

008764482 1198764487

2000.00

50.00

1000.00

ALT

ALT

ALT

SOT

POT

2

104.89

200.77

786.50

987.00

544.77

so
CD

DD

1000.00

100.00

2000.00

50.00

1000.00

ALT

SOT

POT

2

2

CUSTOMER TABLE

1122334997 England Ken

1166434467 England Margaret

4422334997 Hobbs Lilian

1122765467 Lilburn Jocky

1198764487 Jackson Tony

77 Acacia Rd.

77 Acacia Rd.

56 The Street

Le Taj

The Mansion

Beech

Beech

Alton

Alton

Chandlers Solon

Drury Lane Holborn

Posh Road Upnorth

BRANCH TABLE

Alton 33 High St.

Southampton 46 Dock Rd.

Portsmouth

2

2

3

3

23 Navy Ave

140CT 1994

11OCT1994

130CT1994

140CT1994

12OCT1994

GU346RT

GU346RT

ST777YU

WC1 5TR

10000

15000

16000

100

Hanis

Hanis

Hanis

London

Cheshire ZX4 BUJ 1000000

21

D. Thomas

A. Ball

I. Stephen

14

11

13

14

12

2

3

22 Data Definition

Other common terms that are often found in the relational world are selection,
projection, and join. A selection operation forms a subset of the rows in a
table, usually by applying some condition such as the customers who have a
status value of one. A projection operation removes columns from the rows
being retrieved by forming a stream of rows with only specified columns present.
A join, probably one of the most powerful relational operators, allows data
from more than one table to be combined. Typically, data from more than one
table is joined by relating certain meaningful columns from the tables. In the
BANKING database, for example, a meaningful operation would be the join­
ing of the ACCOUNT and CUSTOMER tables over the CUSTOMER_NO
column to produce a report about customers and their accounts.

By using the SQL SELECT statement to achieve this join, specifying a
predicate of CREDIT _LIMIT> 10000, and specifying that the columns to be
displayed are the SURNAME, ACCOUNT_NO, and BALANCE, we have
combined all three relational operations to produce a meaningful result. The
SQL SELECT statement is described in more detail in Chapter 3.

2.2 CREATING A SINGLE-FILE RDB DATABASE

The following sections describe how the various objects present in a single­
file database can be created. Although the following definitions can be entered
interactively at the SQL> prompt, it is good practice to use a text editor to
enter them into a file and then to execute the file.

In addition, placing the SQL statements in a file facilitates the process of
correction and re-execution and also provides a documented record of the
metadata definition.

Hint: Use Digital's Graphical Schema Editor with its graphical user
interface to define the database and the objects in it, if you are not
familiar with SQL.

2.2.1 Creating a Database

The CREATE DATABASE statement is used to create a database and in its
simplest form can be specified as:

SOL> CREATE DATABASE FILENAME banking;

2.2.2

2.2 Creating a Single-File Rdb Database 23

This statement, using many of the defaults provided by Rdb, creates a data­
base file and a snapshot file. The database file will have a file extension of
.ROB, and the snapshot file will have a file extension of .SNP. In the directory
there will be two files where the database has been created, BANKING.ROB
and BANKING.SNP. This is known as a single-file database; that is, the user
data is stored in a single file along with the tables and indexes. Another option
is to create a multifile database, which will be discussed in Chapter 4.

When the database is created, a number of defaults can be used, including:

• The number of database buffers and their size

• The page size

• Whether snapshots are enabled or disabled

For OpenVMS users who wish to create an entry in the repository, COO/
Repository, the statement would be specified as:

SOL> CREATE DATABASE FILENAME banking

cont> PATHNAME eurobank: [uk. di ct] database.banking;

See Chapter 14 for more details about using CDD/Repository.

Creating Domains

The database designer will want to create tables consisting of columns.
However, generic data elements called domains can be defined, and one or
more columns in the database may be based upon these domains. By specifying
domains, the database designer can create standard definitions for data ele­
ments that share similar characteristics. An example of this in the BANKING
database would be the domain STANDARD_OATE, which is used to provide
a standard definition for columns that need to be defined as a date field. Such
columns would be STATEMENT_OATE and TRAN_DATE.

Generally, it is good practice to define all columns by basing them on domains.
For Open VMS users, these domains may themselves have been defined from
definitions in the Open VMS repository, COD/Repository. Using domains ena­
bles the designer to efficiently add columns to the database definition in the
future and to ensure that the correct attributes of the column are defined.
Many of the columns in the BANKING database are not based upon domains.
The reason is merely to demonstrate the different methods of defining columns.

24 Data Definition

Domains consist of a name, a datatype, and optional characteristics such as
an edit string. There are two ways to create a domain.

First, the designer can use the CREATE DOMAIN SQL statement specifying
a datatype. For example:

SOL> CREATE DOMAIN standard_date DATE;

Second, the designer can define a domain using a field definition in the
Open VMS repository, CDD/Repository. For example:

SOL> CREATE DOMAIN standard_date FROM
cont> eurobank:[uk.dict]database.standard_date:

In this case STANDARD_DATE is a field in CDD/Repository.

A comment may be added to a DOMAIN to aid clarity. For example:

SOL> CREATE DOMAIN CHAR(20);

SOL> COMMENT ON DOMAIN standard_name IS
cont> 'Standard Definition for a Name':

Hint: Once the domains have been created, it is a good idea to enter a
COMMIT statement to ensure that the definitions are made permanent in
the database.

2.2.3 Creating Tables

Once the domains have been defined, the database tables can be created. The
CREATE TABLE statement can be used to specify a name for the table, the
columns used in the table, and many other table characteristics. On the other
hand, for Open VMS users, the designer also can define a table using a record
definition in CDD/Repository. Each column in the table can be based on a
previously created domain or explicitly defined with a datatype and any other
column characteristic that the database designer wishes.

The database designer also can specify constraints. Constraints are rules that
can be applied to columns and tables. They are described in more detail in
Chapter 9.

2.2 Creating a Single-File Rdb Database 25

An example of creating a table could be:

SOL> CREATE TABLE account
cont> (account_no NUMERIC (10),
cont> customer_no CHAR (10),
cont> branch_code CHAR (4),
cont> balance NUMERIC (10,2),
cont> overdraft NUMERIC (10,2),
cont> acct_ type INTEGER,
cont> statement_freq STANDARD_DATE,
cont> statement_day INTEGER);

For Open VMS users, an example of creating a table from a CDD/Repository
record definition would be:

SOL> CREATE TABLE FROM eurobank:[uk.dict]branch;

In this example, BRANCH is the name of a record definition in CDD/Repository.

A comment can be added to a table to aid clarity. For example:

SOL> COMMENT ON TABLE branch IS 'This is the bank branch table';

Hint: Once the tables have been created, it is a good idea to enter a COMMIT
statement to ensure the definitions are made permanent in the database.

2.2.4 Creating Sorted Indexes

To improve data retrieval, the database designer may wish to create indexes in
the database. Indexing in Rdb is discussed in more detail in Chapter 5. Two
types of index can be created in Rdb:

• B-tree sorted indexes

• Hashed indexes (multifile databases only)

B-tree sorted indexes usually are referred to as sorted indexes. To create an
index, the CREATE INDEX statement is used. Different options may be added
to the statement to determine whether the index is a sorted or hashed index.

26 Data Definition

Other options may specify, for example, whether duplicate key values are
allowed and what index node size is to be used, as well as index compression
options. An example of creating a sorted index with no duplicate key values
allowed would be:

SOL> CREATE UNIQUE INDEX cust_index
cont> ON customer (customer_no);

This statement creates a sorted index (by default) on the CUSTOMER table
based on the column CUSTOMER_NO. The UNIQUE key word specifies
that no duplicate key values will be allowed. To allow duplicate key values,
the UNIQUE key word should be omitted. A comment can be added to an
index for clarity. For example:

SOL> COMMENT ON INDEX cust_index IS 'This helps us locate customers':

By default, the CREATE INDEX statement creates a sorted index with as­
cending index segments. The database designer may wish to create an index
with descending index segments. For example:

SOL> CREATE UNIQUE INDEX cust_index ON customer (customer_no DESCENDING);

An index can be composed of more than one column, which is known as a
multi-segment index. For example:

SOL> CREATE INDEX cust_index ON customer (surname, first_name);

Additionally, a database designer can specify the size of each index node in
bytes. Varying the index node size can reduce or increase the depth of the
index, that is, the number of index levels. Methods of calculating the optimum
index node size can be found in theRdb Guide to Database Maintenance and
Performance.

An initial fullness also can be specified for an index node, as well as whether
the index is to be used for update or for query. USAGE UPDATE specifies
that the initial fullness is 70 percent, and USAGE QUERY specifies that the
initial fullness is 100 percent. For example:

SOL> CREATE INDEX cust_index ON customer (surname,first_name)
cont> TYPE IS SORTED
cont>
cont>

NODE SIZE 400
USAGE UPDATE;

2.2.5

2.2 Creating a Single-File Rdb Database 27

Hint: As with tables, once the indexes have been created, it is a good idea
to enter a COMMIT statement to ensure the definitions are made perma­
nent in the database.

Creating Views

Views are virtual tables. They do not physically hold data, but rather act like
a window into physical tables that were defined with the CREATE TABLE
statement. The database designer uses the CREATE VIEW statement to cre­
ate views in the database. To the end-user, a view looks like a table and gener­
ally can be treated as if it were a table. The major exception is if the user
wishes to update or insert rows in a view. Rdb places restrictions on this type
of operation in a view.

Views can contain subsets of the rows or columns found in a physical table or
a combination of physical tables and can, therefore, be used to replace often­
used SELECT and JOIN operations. Views also may be used to enforce secu­
rity. A user may be allowed to retrieve data through a view, but not from the
underlying physical table.

An example of creating a view in the BANKING database would be:

SOL> CREATE VIEW customer_mailing

cont> (customer _no.
cont> surname,
cont> first_name,
cont> address_linel,
cont> address_line2,
cont> address_line3,
cont> address_line4,
cont> postcode)
cont> AS SELECT customer_no,
cont> surname,
cont> first_name,
cont> address_linel,
cont> address_line2,

28

cont>
cont>
cont>

address_line3,
address_line4,
postcode

cont> FROM customer;

Data Definition

This view specifies a subset of the columns present in the CUSTOMER table.
The columns CREDIT_LIMIT and STATUS are omitted. The database
designer may consider that these fields contain sensitive information. There­
fore, strict protection is placed on the CUSTOMER table, allowing only a
very few users to see data in these columns. Many users, however, are allowed
access to the view, CUSTOMER_MAILING, shown in Figure 2.2.

Figure 2.2 The CUSTOMER_MAILING View

CUSTOMER TABLE

1122334997 England Ken 77 Acacia Rd. Beech Alton Hants

1166434467 England Margaret 77 Acacia Rd. Beech Alton Hants

4422334997 Hobbs Lilian 56 The Street Chandlers Soton Hants

1122765467 Lilburn Jocky Le Taj Drury Lane Holborn London

1198764487 Jackson Tony The Mansion Posh Road Upnorth Cheshire

\
\

\
\

CUSTOMER MAILING VIEW \
\

1122334997 England Ken 77 Acacia Rd. Beech Alton

1166434467 England Margaret 77 Acacia Rd. Beech Alton

4422334997 Hobbs Lilian 56 The Street Chandlers Solon

1122765467 Lilburn Jocky Le Taj Drury Lane Holborn

1198764487 Jackson Tony The Mansion Posh Road Upnorth

GU346RT

GU346RT

ST777YU

WC1 5TR

ZX4 8UJ

Hanis

Han ts

Hanis

London

Cheshire

10000

15000

16000

100

1000000

\
\

\
\

\

GU346RT

GU346RT

ST777YU

WC1 5TR

ZX4 8UJ

2

3

2.2 Creating a Single-File Rdb Database 29

The CUSTOMER_MAILING view only specifies one table. It is possible to
define views that join data from one or more tables. For example:

SOL> CREATE VIEW customer_account_info
cont> (customer_no,
cont> surname,
cont> first_name,
cont> credit_limit,
cont> account_no,
cont> balance)
cont> AS SELECT c.customer_no,
cont> c.surname,
cont> c.first_name,
cont> c.credit_limit,
cont> a.account_no,
cont> a.balance
cont> FROM customer c, account a
cont> WHERE c.customer_no = a.customer_no;

The CUSTOMER_ACCOUNT_INFO view is shown in Figure 2.3.

Views can be created using a mixture of constructs, such as joins and unions,
and can be based upon previously created views. Depending on the constructs
used to create the view, Rdb may consider the view to be read-only.

A view is considered to be read-only if:

• Duplicate rows have been removed by using the DISTINCT clause in the
SELECT statement.

• A view is created from a join.

• A subquery is specified in the WHERE clause.

• The select list specifies a function such as COUNT.

• The clauses GROUP BY or HAVING are used.

If Rdb considers the view to be read-only because it was created with any of
the previous statements, the INSERT, UPDATE, or DELETE statements can­
not be used. Rdb will also consider the view to be read-only if columns in the

30 Data Definition

Figure 2.3 The CUSTOMER_ACCOUNT_INFO View

ACCOUNT TABLE

ACCOUNT

NO

882334992 1122334997 ALT 104.89 1000.00 2 14OCT1994 14

0066424427 1166434467 ALT 200.77 100.00 2 11OCT1994 11

4522334927 4422334997 ALT 786.50 2000.00 2 3 13OCT1994 13

44422765462 1122765467 SOT 987.00 50.00 14OCT1994 14

008764482 1198764487 POT 544.77 1000.00 2 3 12OCT1994 12 --- -- -- --- --
CUSTOMER_ACCOUNT _INFO VIEW - - - - -__

/

1122334997

1166434467

4422334997

1122765467

1198764487

CUSTOMER

NO

1122334997 England

1166434467 England

4422334997 Hobbs

1122765467 Lilburn

1198764487 Jackson

/
/

/

/
/

/

/
/

/
/ / /

/ /

England Ken 77 Acacia Rd.

England Margaret 77 Acacia Rd.

Hobbs Lilian 56 The Street

Lilburn Jocky Le Taj

Jackson Tony The Mansion

CUSTOMER TABLE

Ken 10000

Margaret 15000

Lilian 16000

Jocky 100

Tony 1000000

Beech Alton

Beech Alton

Chandlers Soton

Drury Lane Holborn

Posh Road Up north

8882334996

0066434427

4522334927

44422765462

0008764482

Hants

Hants

Hants

London

Cheshire

104.89

200.77

786.50

987.00

544.77

GU346RT

GU346RT

ST777YU

WC1 5TR

ZX4 8UJ

10000

15000

16000 2

100 3

1000000

2.2 Creating a Single-File Rdb Database 31

view are formed from arithmetic expressions. In this case, UPDATE and
INSERT statements cannot be used.

A useful clause that may be used with views is the WITH CHECK OPTION
clause. If this clause is used when creating a view, no rows can be inserted
through the view that do not conform to the view's definition. In other words,
a row cannot be inserted that does not belong to the set of rows that are dis­
played through the view.

For example, the following view definition only allows rows to be inserted
into the ACCOUNT_TRANSACTION table with a value in the TRAN_AMT
column greater than $10,000. The insertion of a row with TRAN_AMT of
$55,000 is allowed, but the insertion of a row with a TRAN_AMT of $5,000
is not.

SOL> CREATE VIEW big_transactions

cont> AS SELECT * FROM account_transaction

cont> WHERE tran_amt > 10000

cont> WITH CHECK OPTION CONSTRAINT check_view;

SOL> INSERT INTO

cont> bi g_transacti ons (account_no, tran_date, tran_amt,

cont> dc_ind, trans_cd)

cont> VALUES

cont> (1223466557, '10-Jun-1990', 55000, 1, 'CD');

1 row inserted

SOL> INSERT INTO

cont> big_transactions (account_no, tran_date, tran~amt,

cont> dc_ind, trans_cd)

cont> VALUES

cont> (1223466557, '10-Jun-1990', 5000, 1, 'CO');

%RDB-E-INTEG_FAIL, violation of constraint CHECK VIEW caused
operation to fail

-RDB-F-ON_OB, on database EUROBANK:[UK.DBJBANKING.RDB;l

Hint: Once the views have been created, it is a good idea to enter a COMMIT
statement to ensure the definitions are made permanent in the database.

2.3

2.4

32 Data Definition

Once the database designer has created the database, the domains, the tables,
the indexes, and the views, it may become necessary to alter these definitions.
This restructuring of the definitions is described in Chapter 10. More sophis­
ticated database definitions that include multiple files are discussed in detail
in Chapter 4, and more detail on indexes can be found in Chapter 5.

CREATING MULTIFILE DATABASES

The creation of multifile databases is fully described in Chapter 4. A multifile
database is created using the data definition features of Rdb, similar to single­
file databases. A multifile database, however, is composed of a number of
physical files. Tables and indexes, which are created using the same methods
as for single-file databases, then can be stored in these files. Chapter 4 has
more detail on this process.

DELETING DATABASE METADATA

At some point, the database designer may wish to remove definitions from the
database or to remove the entire database. This is achieved using the DROP
statement in SQL. The following sections describe how the various Rdb ob­
jects may be dropped.

2.4.1 Dropping Databases

The DROP DATABASE statement is used to delete a database. All the files
associated with the database are deleted. For example:

SOL> DROP DATABASE FILENAME 'eurobank: [uk.db]banking';

Hint: Be very careful when using this statement-it cannot be rolled back.

2.4.2 Dropping Domains

The DROP DOMAIN statement is used to delete a domain definition. For
example:

2.4 Deleting Database Metadata 33

SOL> DROP DOMAIN standard_date;

A domain cannot be dropped if a column in a table refers to it. The column
definition must be dropped from the table first. The database must have been
attached to prior to issuing this and the following DROP statements.

2.4.3 Dropping Columns

To drop a column from a table, the ALTER TABLE statement should be used.
A column cannot be dropped if it is referred to by a view, a constraint, or an
index. The view, constraint, or index must be dropped first. An example of
removing a column from a table would be:

SOL> ALTER TABLE customer DROP COLUMN status;

2.4.4 Dropping Tables

The DROP TABLE statement removes a table definition and the data stored
in it. For example:

SOL> DROP TABLE CASCADE customer:

If a view definition, index, or constraint refers to the table, it will be automati­
cally dropped.

2.4.5 Dropping Views

The DROP VIEW statement removes a view definition. For example:

SOL> DROP VIEW customer_mailing;

2.4.6 Dropping Indexes

The DROP INDEX statement removes an index definition. For example:

SOL> DROP INDEX cust_index;

2.5

34 Data Definition

THE MULTISCHEMA DATABASE

If we consider for the moment what in Rdb we understand to be a database,
we think of our user data, system metadata and information on physical storage
characteristics. The term schema is used to mean database, if it is used at all,
and no distinction is made between the two terms. In the default scenario this
is fine as there is one schema to one database and no confusion can arise.

A schema is an object in itself and can be named and referred to. In a
multischema database however, there may be more than one schema and it
becomes more necessary to be precise with terminology. In a multischema
database, a schema only consists of data definitions and so the data definition
and data are separated from the physical attributes of the database. ANSI
SQL standard compliance is one of the main reasons for supporting this option.

To create a multischema database the MULTISCHEMA IS ON clause must
be present on the CREATE DATABASE statement.

SOL> CREATE DATABASE FILENAME banking MULTISCHEMA IS ON;

If a database is not created with this extra clause, it can be converted into a
multischema database later with the ALTER DATABASE statement. A
multischema database may be made to behave like a single schema database
at attach time if required with the MULTISCHEMA IS OFF clause.

SOL> ATTACH 'DATABASE FILENAME banking MULTISCHEMA IS OFF';

The internal Rdb structure is not modified by enabling the multischema op­
tion. However, the way SQL references objects will change as we shall see
shortly.

To support the multischema database option, an Rdb database now allows
multiple schemas to be created within multiple catalogs within an Rdb data­
base. This classification hierarchy is shown in Figure 2.4.

This hierarchy allows for domains, tables and other schema objects to have
the same names in different schemas. Thus, schema objects can be classified
in ways that model a company's organization without having to use unique
table names such as BRANCH_NORTH, BRANCH_ WEST, which only serves
to complicate the application. The naming rules will be discussed shortly.

When a multischema database is created, a default catalog RDB$CATALOG
is created with a default schema RDB$SCHEMA inside it. A database de­
signer can create more catalogs and schemas and in reality would normally do so.

2.5 The Multischema Database 35

Figure 2.4 The Classification Hierarchy in a Multischema Database

DATABASE

CATALOG 1 CATALOG2 • • •

SCHEMA1 SCHEMA2 • • •
+ DOMAINS + DOMAINS

• TABLES • TABLES

• VIEWS • VIEWS

+ INDEXES + INDEXES

+ STORAGE MAPS + STORAGE MAPS

• •
• •
• •

If an existing single schema database is converted into a multischema data­
base, all the schema objects created previously would be placed inside
RDB$SCHEMA.

To add catalogs to the default multischema database, the CREATE CATALOG
statement is used and to add schemas to the multischcma database, the
CREATE SCHEMA statement is used. The following example shows two
catalogs being created:

SOL> CREATE CATALOG banking_america;
SOL> CREATE CATALOG banking_europe;
SOL> SHOW CATALOG;
Catalogs in database with filename banking

BANKING_AMERICA
BAN KI NG_EUROPE
RDB$CATALOG

36 Data Definition

The next example shows two schemas being created. Note that a SET
CATALOG statement is issued first to specify in which catalog the schema
belongs:

SOL> SET CATALOG 'banking_america';
SOL> CREATE SCHEMA retail_banking;
SOL> CREATE SCHEMA wholesale_banking;
SOL> SHOW SCHEMA;
Schemas in database with filename banking

RETAI L_BANKING
WHOLESALE_BANKING
RDB$CATALOG.RDB$SCHEMA

The next example shows a domain being created. Note that a SET CATALOG
and a SET SCHEMA statement are issued first:

SOL> SET CATALOG 'banking_america';
SOL> SET SCHEMA 'retail_banking';
SOL> CREATE DOMAIN exposure BIGINT;
SOL> SHOW DOMAIN exposure;
EXPOSURE BIGINT

Stored name is EXPOSURE

The stored name information line will be discussed shortly. To uniquely specify
the objects in a multischema database such as schemas and domains, it is not
sufficient to merely specify the name. This is because the same schema name
or schema object name can exist in the database more than once. For example,
the domain EXPOSURE could be defined in a number of different schemas in
a number of different catalogs and the schema RETAIL_BANKING could be
defined in a number of catalogs.

There are a number of ways of uniquely identifying the object:

• Use default catalog and schema settings

• Provide the full name of the object

The first method is achieved by using the SET CATALOG and SET SCHEMA
statements as shown in the previous examples.

2.5 The Multischema Database 37

The second method is achieved by providing qualified names, for example:

SOL> SHOW DOMAIN banking_america.retail_banking.exposure;

BANKING_AMERICA.RETAIL_BANKING.EXPOSURE BIGINT

Stored name is EXPOSURE

This could get tedious, so for interactive sessions, at least, it is easier to use
default catalog and schema settings.

If we do not name the schema an interesting message results.

SOL> ATTACH 'FILENAME banking';

SOL> SHOW DOMAIN exposure;

%SQL-F-SCHNOTDEF, Schema ENGLAND is not defined

This is because SQL will implicitly qualify the name of a schema object with
the current authorization identifier which identifies the definer of the schema.
In the above example, ENGLAND is the definer of the schema.

This fully qualified naming approach will get even more complex if aliases
are used. For example:

SOL> ATTACH 'ALIAS ban kl FILENAME banking';

SOL> SET ANSI QUOTING ON;

SOL> SHOW DOMAIN

cont> "BAN Kl. BANKING_AMERICA". retai l_banki ng .exposure;

"BNKl.BANKING_AMERICA".RETAIL_BANKING.EXPOSURE BIGINT

Stored name is EXPOSURE

The pair of names in the double quotes is referred to as a delimited identifier in
ANSI SQL. ANSI SQL allows a maximum of three levels in an object name
but with an alias, catalog name, schema name and schema object name we
have four levels. We are saved because ANSI SQL treats a delimited identifier
as one level. The SET ANSI QUOTING ON statement is needed to ensure
that Rdb interprets the (" ") as a delimited identifier- by default it would treat
it as a string literal and the above statement would fail.

Hint: Only use uppercase characters in the delimited identifier or errors
will be returned by Rdb.

If the multischema option is disabled or interfaces other than SQL are used,
Rdb refers to schema objects by their stored names. These are nonqualified

38 Data Definition

names assigned by Rdb that uniquely identifies the schema object. The stored
name is usually constructed by appending a numeric integer to the text part of
the name. In the example below, the CUSTOMER tables are uniquely identi­
fied by appending a value to one of the schema objects.

SOL> ATTACH 'FILENAME banking MULTISCHEMA IS ON';
SOL> SHOW TABLES
User tables in database with filename banking

BANKING_AMERICA.RETAIL_BANKING.CUSTOMER
BANKING_AMERICA.WHOLESALE_BANKING.CUSTOMER

SOL> ATTACH 'FILENAME banking MULTISCHEMA IS OFF';
SOL> SHOW TABLES
User tables in database with filename banking

CUSTOMER
CUSTOMER!

2.6 THE BANKING DATABASE

The examples in this book are based on a fictitious relational database that
supports the everyday business of a bank. The example is, of course, oversim­
plified for clarity. However, it is sufficiently complex to allow the features of
Rdb to be fairly described.

The BANKING database consists of four main tables:

•ACCOUNT

•BRANCH

•CUSTOMER

• ACCOUNT_TRANSACTION

The relationship between these entities is simple, as shown in Figure 2.5.
A bank's customers may hold a number of accounts of different types; for
example, a checking account and a saving account. Other tables and schema
objects appear throughout this book and in the SQL database definition in
Appendix A; however, for clarity only the major components are described
here.

2.6 The Banking Database 39

Figure 2.5 The Table Relationships in the BANKING database

Customer Branch

l. L ~ ~

Account L Account
.......... Transaction

These accounts may be held at the same bank branch or at different branches.
A branch usually would be responsible for a number of accounts. Various
transactions, such as deposits and withdrawals, can be made against an ac­
count. The details of each are recorded by storing a log of the transactions in
the ACCOUNT_ TRANSACTION table.

2.6.1 The BRANCH Table

Each row in the BRANCH table represents a branch of the bank. There are
four columns:

• BRANCH_CODE

• BRANCH_NAME

• BRANCH_ADDRESS

• MANAGERS_NAME

The BRANCH_ CODE column holds the unique branch code and is the pri­
mary key for this table. The BRANCH_NAME and BRANCH_ADDRESS
columns hold the name and address of the branch, and the
MANAGERS_NAME column holds the name of the branch manager. No
columns are designated as foreign keys in the BRANCH table.

40 Data Definition

2.6.2 The CUSTOMER Table

Each row in the CUSTOMER table represents a bank customer. There are ten
columns:

• CUSTOMER_NO

eSURNAME

• FIRST _NAME

• ADDRESS_LINEl

• ADDRESS_LINE2

• ADDRESS_LINE3

• ADDRESS_LINE4

•POSTCODE

• CREDIT _LIMIT

•STATUS

The CUSTOMER_NO column holds the unique customer number and is the
primary key for this table. The SURNAME and FIRST_NAME columns hold
the customer's name, and the ADDRESS_LINE and POSTCODE columns
hold his or her address. The customer's credit limit is held in the
CREDIT _LIMIT column and represents the total amount of cash the cus­
tomer is allowed to owe the bank at any given time. The STATUS column
holds the customer's status, for example, whether he or she resides abroad.
No columns are designated as foreign keys in the CUSTOMER table.

2.6.3 The ACCOUNT Table

Each row in the ACCOUNT table represents a customer account. There are
nine columns:

• ACCOUNT_NO

• CUSTOMER_NO

• BRANCH_CODE

•BALANCE

2.6 The Banking Database 41

• OVERDRAFT_LIMIT

• ACCT_TYPE

• STATEMENT _FREQ

• STATEMENT_DATE

• STATEMENT_DAY

The ACCOUNT_NO column holds the unique account number and is the
primary key for this table. The CUSTOMER_NO column holds the number
of the customer who owns this account, and the BRANCH_ CODE column
specifies the branch at which the account is held. The balance of the account
is held in the BALANCE column, and the amount to which the account is
allowed to go into the red by the branch manager is held in the
OVERDRAFT_LIMIT column. The type of account, such as checking or
saving, is specified in the ACCT_TYPE column. The STATEMENT_FREQ,
STATEMENT_DAY, and STATEMENT_DATE columns specify how often
an account statement is issued to the customer, on which day of the month it is
issued, and the date on which the statement was last issued. The
CUSTOMER_NO and BRANCH_ CODE columns are foreign keys relating
the ACCOUNT table to the CUSTOMER and BRANCH tables respectively.

2.6.4 The ACCOUNT_TRANSACTION Table

Each row in the ACCOUNT_TRANSACTION table represents a transaction
that has been executed against a customer's account. There are five columns:

• ACCOUNT_NO

• TRAN_DATE

• TRAN_AMT

• DC_IND

• TRANS_CD

The ACCOUNT_NO and TRAN_DATE columns hold the account number
and transaction date combination. The TRAN_DATE column holds the date
and time that a transaction was executed against the account. The TRAN_AMT
column holds the monetary value of the transaction, and the DC_IND column
specifies whether the account was debited or credited.

42 Data Definition

The TRANS_CD column holds the transaction code; for example, DD is a
direct debit and SO is a standing order. The ACCOUNT_NO column is a
foreign key relating the ACCOUNT_TRANSACTION table to the ACCOUNT
table.

2.6.5 The Indexes

The basic BANKING database contains five indexes:

• ACCOUNT_NO_HASH

• ACCOUNT_TXN_SORTED

• BRANCH_CODE_SORTED

• CUST_NO_HASH

• CUST_SURNAME_SORTED

The indexes ACCOUNT_NO_HASH and CUST_NO_HASH are hashed
indexes with a key based on the column CUSTOMER_NO. The index
CUST _SURNAME_SORTED is a sorted index with an ascending key based
on the column SURNAME. The index BRANCH_CODE_SORTED is a sorted
index on BRANCH with an ascending key based on the column
BRANCH_CODE and the index ACCOUNT_TXN_SORTED is a sorted
index on ACCOUNT_TRANSACTION with an ascending key based on the
columns ACCOUNT_NO and TRAN_DATE

2.6.6 The Storage Areas

When an Rdb database uses more than one physical file to hold the user data,
it is said to be a multifile database. In Rdb terminology, these files are known
as storage areas. Storage areas are discussed more fully in Chapter 4. The
basic BANKING database has nine storage areas:

• RDB$SYSTEM

• ACCOUNT_AREA

• BRANCH_AREA

• CUSTOMER_AREA

2.6 The Banking Database

• TXN_AREA_93

• TXN_AREA_94

• TXN_AREA_95

eINDEX_AREA

• LIST_AREA

43

The RDB$SYSTEM storage area holds the Rdb system relations, which are
often referred to as the metadata.

The INDEX_AREA storage area holds the sorted indexes:

• CUST _SURNAME_SORTED

• BRANCH_CODE_SORTED

• ACCOUNT_TXN_SORTED

The CUSTOMER_AREA holds the table CUSTOMER and the hashed
indexes:

• CUST_NO_HASH

• ACCOUNT_NO_HASH

The ACCOUNT_AREA storage area holds the table ACCOUNT. The
CUSTOMER_AREA and ACCOUNT_AREA storage areas are of MIXED
page format whereas all the other storage areas are of UNIFORM page
format.

The ACCOUNT_TRANSACTION table is partitioned across the three
storage areas:

• TXN_AREA_93

• TXN_AREA_94

• TXN_AREA_95

The BRANCH_AREA storage area holds the BRANCH table and the
LIST_AREA storage area is the default area for all lists (segmented strings).

Sorted indexes and hashed indexes are discussed in Chapter 5.

44 Data Definition

2.6.7 The Storage Maps

If a multifile Rdb database is created, there must be a means of specifying
which storage areas hold what data. This is achieved with storage maps, which
will be discussed more fully in Chapter 4. The basic BANKING database has
four storage maps:

• ACCOUNT_MAP

• BRANCH_MAP

• CUSTOMER_MAP

• ACCOUNT_TXN_MAP

The ACCOUNT_MAP specifies that the ACCOUNT table resides in the
storage area ACCOUNT_AREA and that it is placed via the index
ACCOUNT_NO_HASH. Data-compression techniques are not to be used to
compress the ACCOUNT data.

The BRANCH_MAP specifies that the BRANCH table resides in the storage
area BRANCH_AREA. By default, data-compression techniques will be used
to compress the BRANCH data.

The CUSTOMER_MAP specifies that the CUSTOMER table resides in the
storage area CUSTOMER_AREA and that it is placed via the index
CUST_NO_HASH. By default, data-compression techniques will be used to
compress the CUSTOMER data.

The ACCOUNT_TXN_MAP specifies that the ACCOUNT_TRANSACTION
table resides in the storage areas:

• TXN_AREA_93

• TXN_AREA_94

• TXN_AREA_95

By default, data-compression techniques will be used to compress the
ACCOUNT _TRANSACTION data.

The BANKING database definition is shown in Appendix A. It is meant to
support the examples in the book and, therefore, does not necessarily reflect a
fully realistic database.

3

3.1

Data Manipulation

When Rdb was first released back in 1984, the only data manipulation language
supplied was Digital's own proprietary data manipulation language, RDO
(Relational Database Operator). All of the early systems were built using the
RDO language, which had proved very popular because it was very easy to
understand and use. It also was very similar to another Digital query lan­
guage, VAX DATATRIEVE, which is still in extensive use around the world.

In 1986 the slightly changed SQL (Structured Query Language), originally
developed for the IBM System R prototype, was adopted by the American
National Standards Institute. It was later introduced into Rdb. Now SQL is
considered the standard data manipulation language for developing applications
using relational databases. Over the years SQL has evolved from its initial
SQL-86 through to SQL-89 and the ratified SQL-92. There is still much to be
incorporated into the language and it continues to evolve with the proposed
SQL3 standard.

Currently Rdb is SQL-92 entry level compliant. It should be noted that versions
of SQL that are only ISO or ANSI compliant lack in some of the functionality
demanded by the market today. Therefore most versions of SQL provide ex­
tensions to the language to extend its capabilities.

The purpose of this chapter is to review the query language SQL. It is not
meant to be a manual in how to use it; instead it will illustrate some of SQL's
capabilities. A comprehensive guide to the language is presented in the Rdb
manuals, the Guide to Using SQL, and Rdb Guide to Data Manipulation.

SQL DATA MANIPULATION OPTIONS

Various data manipulation options are offered by Rdb, but today the decision
is not which language to use, because that has to be SQL, the industry de-

3.2

46 Data Manipulation

facto standard, but which type of SQL language such as precompiled or a
callable interface. The options available are:

• Precompilers

• SQL Module Language

• Dynamic SQL

• Interactive SQL

An illustration of how to write application programs using the precompilers,
dynamic SQL or the SQL Module Language is given in Chapter 17 on
application programming.

SQL

Digital first provided the SQL query language for Rdb in 1987 as an optional
layer of functionality. Once SQL became widely accepted as the preferred
relational query language, SQL became a standard component of Rdb. Rdb
now complies with the standards like most implementations of the SQL lan­
guage. It also includes additional capabilities to allow for the enhancements
made to Rdb.

The newcomer to SQL should find the language fairly straightforward, al­
though some of the commands may not be immediately obvious. The rule to
remember is that every statement must be terminated with a semicolon.

Hint: If still struggling with the command line SQL interface, then try
developing queries with the GUI, InstantSQL.

3.2.1 Initial Access

Before any data manipulation can begin, the user must specify which data­
base to attach to, using one of two methods:

• ATTACH statement an Rdb extension

3.2 SQL

• SQL$DATABASE logical or SQL_DATABASE environment variable

SOL> ATTACH 'FILENAME eurobank:[uk.db]banking';

47

The /TYPE qualifier is required when using products like DEC Db Integrator
to specify the additional qualifiers it requires.

SOL> ATTACH 'FILENAME /TYPE=DBI/DBNAME= '

The SQL$DATABASE logical is a very handy alternative when using the
interactive query language. It contains the directory and name of the database
to access; SQL then uses it to automatically open the database. The disadvan­
tage of using the logical is that it is not possible to specify any of the addi­
tional qualifiers, as it is with the ATTACH statement.

To attach to the database in the previous example, the following logical
SQL$DATABASE can be defined instead:

DEFINE SOL$DATABASE eurobank: [uk.db]banking

Hint: Take care when using the interactive query language and the
SQL$DATABASE logical. It is very easy to attach to the wrong database.

3.2.2 Attaching to Several Databases

Organizations often need to distribute data across several databases. With the
introduction of two-phase commit protocols to ensure data integrity, multiple
databases will be used more often. To achieve this in SQL, an alias must be
specified in the ATTACH statement to identify which database is being refer­
enced. This is used on all subsequent statements:

SOL> ATTACH 'ALIAS bank FILENAME eurobank:[uk.db]banking';
SOL> ATTACH 'ALIAS insurance FILENAME euroins:[uk.ins]insurance';

In the previous example, BANK is the alias and is used on all queries, as
shown in the following example:

SOL> ATTACH 'ALIAS bank FILENAME eurobank:[uk.db]banking.rdb';
SOL>

48

SOL> SELECT surname FROM bank.customer;
SURNAME

Hobbs
Smith

2 row(s) selected

Data Manipulation

Specific details on accessing distributed databases will be covered in Chapter
12 on distributed databases and Chapter 17 on application programming.

3.2.3 Starting a Transaction

The process for starting a transaction in SQL may seem slightly confusing
because two statements are available and also their syntax might not im­
mediately convey the action implied by the statement. The two statements
provided are:

• DECLARE TRANSACTION

• SET TRANSACTION

The DECLARE TRANSACTION does not specify at which point the trans­
action is to start. It merely advises that the transaction will start with the
characteristics specified in the DECLARE TRANSACTION statement
when the first SQL statement is executed. Remember that the DECLARE
TRANSACTION statement merely declares an intention. It does not start
anything. For example:

SOL> DECLARE TRANSACTION READ WRITE NOWAIT
cont> RESERVING branch FOR SHARED READ;

To start a transaction at a specific point the SET TRANSACTION statement
should be used. This is the preferred method because it provides the applica­
tion developer with a means to control precisely when locks on resources are
taken. A transaction is started as soon as this statement is executed.

The transaction modes available are:

•READ WRITE

•READ ONLY

• BATCH UPDATE (Exclusive database access V6.0, table V6.1, no journaling)

3.2 SQL 49

The following is an example of SET TRANSACTION which is executed
immediately:

SOL> SET TRANSACTION READ WRITE NOWAIT
cont> RESERVING branch FOR SHARED READ;

Hint: The SET TRANSACTION statement makes applications easier
to read and provides more control over how the accessed tables should
be locked.

If the user attempts to finish the transaction without specifying whether to
commit or rollback, by default SQL will COMMIT the data.

3.2.4 Isolation Levels

The SQL standard defines four isolation levels which are explained in detail
in the chapter on locking:

• Read Uncommitted

• Read Committed

• Repeatable Read

• Serializable

By default, as specified by the SQL standard, all Rdb transactions are run in
mode Serializable but it does support all these levels except Read Uncommit­
ted. The isolation level is changed by specifying the required level on the
transaction statement, but it is only valid for a read-write transaction.

SOL> SET TRANSACTION READ WRITE ISOLATION LEVEL READ COMMITTED;

3.2.5 Retrieval Operations

The primary statement for retrieving data in SQL is the SELECT statement,
which forms a stream of records. To report the first and last names of all
customers, the equivalent SQL statement would be:

50 Data Manipulation

SOL> SELECT surname. fi rsLname FROM customer:

SURNAME

Hobbs

Smith

FIRST_NAME

Lilian

Paul

2 row(s) selected

Sort Sequence

Group By

Sort sequence is achieved using the ORDER BY clause. The following is used
to sort all the customers who have active accounts:

SOL> SELECT surname. fi rst_name FROM customer WHERE

cont> status = 1

cont> ORDER BY surname, fi rst_name;

SURNAME FIRST_NAME

Hagan Steve

Hobbs Lilian

Vona Fred

3 row(s) selected

If the sorting sequence is not specified, that is, the keyword ASC is omitted
after the column name, then Rdb assumes ascending order. With the descend­
ing clause, DESC, SQL will sort accordingly and use a descending index
whenever possible, if one is available.

The GROUP BY clause is used to group together rows that an aggregate
function such as SUM or COUNT has been applied to. The example below
produces a report for each customer, and their total balance for all the ac­
counts they hold.

SOL> SELECT SUM(bal ance) , customer _no FROM account GROUP BY
customer_no:

CUSTOMER_NO

1691.34 100201

Having

3.2 SQL 51

Sometimes the GROUP BY clause does not restrict the results sufficiently. In
this instance the HAVING clause is added to the query. For example, below
we report the total balance for all accounts for a customer, but only those with
an ACCT-TYPE of 1.

SOL> SELECT SUM(balance) ,customer_no FROM account
cont> GROUP BY customer_no, acct_type HAVING acct_type 1;

CUSTOMER_NO

1691.34

1 row selected
100201

Retrieving only n records

SQL will display only a specified number of records from the stream rather
than all the records, if the LIMIT TO clause is used. For example:

SOL> SELECT account_no, customer_no FROM account
cont> WHERE statement_day=lO
cont> LIMIT TO 3 ROWS;

ACCOUNT_NO
1551290
1561290
1674321

3 rows selected

Correlation Names

CUSTOM ER_NO
100201
100205
1002501

It is common for the same column name to appear in several tables. When
these tables are joined, a mechanism is required to determine which columns
are being referenced. This problem is overcome by the use of a correlation
name. Using the example of joining the ACCOUNT and the TRANSAC­
TION tables using the column ACCOUNT_NO, where A and Tare the corre­
lation names, the query becomes:

SOL> SELECT A.account_no, T.tran_date, T.tran_amt
cont> FROM account A, transaction T
cont> WHERE A.account_no = T.account_no
cont> ORDER BY A.account_no;

52 Data Manipulation

A.ACCOUNT_NO T.TRAN_DATE T.TRAN_AMT
1002013127 5-DEC-1993 00:00:00.00 -35.45
1002013127 30-NOV-1993 21:09:05.00 12.34
1002013127 1-DEC-1993 23:35:01.01 12.34
1002035678 1-DEC-1993 23:35:10.01 121. 54
1002035697 1-DEC-1993 23:45:10.01 1571. 54

5 rows selected

Use of the correlation name is optional. The same effect is achieved by
qualifying the query using the full table name instead.

Column Renaming

Another useful feature available in SQL is the ability to rename a column
using the AS clause. This is especially useful when creating new data values
based on existing columns. In the example show below create the column
address by concatenating together columns ADDRESS_LINEl and
ADDRESS_LINE2.

SOL> SELECT surname,
cont> substring (address_linel from 1 for 20) I I
cont> substring (address_line2 from 1 for 20) AS address
cont> from customer;

SURNAME ADDRESS
Hobbs 12 Special Street Chandlers Ford

Smith 10 Winchester Road Totton
2 rows selected

Relational Operators

A list of SQL relational operators can be found in Table 3.1. These SQL
relational operators are combined to form queries such as:

SOL> SELECT * FROM account WHERE overdraft_l imi t NOT BETWEEN 750 AND 900;
SOL> SELECT* FROM customer WHERE surname LIKE 'HOBBS%':

A very useful clause that may be specified on a SELECT expression is the
asterisk (*), which advises SQL to display all columns in the table or joined
tables.

3.2 SQL

Table 3.1 SQL Relational Operators

Equal To

<>

>

>=

<

<=

AND

OR

NOT

BETWEEN

IS NULL

LIKE

NOT IN

ALL

EXISTS

IN

SOME

Not Equal To

Greater Than

Greater Than or Equal

Less Than

Less Than or Equal

SUBSTRING Specify the number of characters to display

Partial Matching

To find all the customers who live in the SO postal code area:

SOL> SELECT customer_no, surname, first_name FROM
cont> WHERE postcode LIKE 'SO%';

CUSTOMER_NO SURNAME FIRST - NAME
100201 Hobbs Lilian
1 row(s) selected

53

customer

In SQL the wildcard symbol(%) denotes many characters and the underscore
(_) a single character.

54 Data Manipulation

Eliminating Duplicate Values

Not Null

The DISTINCT clause in the SELECT statement is used to eliminate all
duplicate values in a query. For example:

SOL> SELECT DISTINCT branch_code FROM account;
BRANCH_CODE

ALT
LON
SOT

3 row(s) selected

Sometimes a column may not initially be given a value. For example, when an
account is first opened, the overdraft limit may not be known. It will be en­
tered later when it has been agreed upon.

SOL> SELECT account_no FROM account WHERE overdraft_l imit IS NULL;

ACCOUNT_NO

1674321890
1 row(s) selected

To insert a NULL value into a record, the NULL clause is used, as is illus­
trated in the following example:

SOL> INSERT INTO account VALUES
cont> ('1674321890' ,'1002501', 'SOT' ,O,NULL,1,01, '10-JUN-1990' ,03);

1 row(s) inserted

Uniqueness or Existence

To identify all the accounts with no transactions, the NOT EXISTS clause is
included in the SELECT statement:

SOL> SELECT A.account_no FROM account A
cont> WHERE NOT EXISTS
cont> (SELECT T.account_no FROM transaction T
cont> WHERE T.account_no = A.account_no)
cont>
cont> ORDER BY account_no;

3.2 SQL

ACCOUNT_NO
1674321890
9167823415
9167823445
9167823487

4 rows selected

3.2.6 Joining Tables & Multi Record Joins

To join two or more tables:

SOL> SELECT account.customer_no, surname, account_no
cont> FROM account, customer
cont> WHERE account.customer_no = customer.customer_no;

ACCOUNT.CUSTOMER_NO CUSTOMER.SURNAME ACCOUNT.ACCOUNT_NO
100201 Hobbs 1002013127
100205 Smith 9167823445
100205 Smith 9167823487
100201 Hobbs 1002035678
100201 Hobbs 9167823415
100205 Smith 1002035697

6 rows selected

55

SOL> SELECT account.customer_no, account.account_no, tran_date
cont>
cont> FROM customer, account, transaction
cont>
cont>
cont>
cont>

WHERE customer.customer_no - '100201' AND
customer.customer_no - account.customer_no AND
account.account_no = transaction.account_no;

ACCOUNT.CUSTOMER_NO ACCOUNT.ACCOUNT_NO TRANSACTION.TRAN_DATE
100201 1002013127 5-DEC-1993 00:00:00.00
100201 1002013127 1-DEC-1993 23: 35: 01. 01
100201 1002013127 30-NOV-1993 21:09:05.00
100201 1002035678 1-DEC-1993 23:35:10.01
4 rows selected

56 Data Manipulation

Joins - Inner, Outer & Full

SQL offers various types of Joins, including the Inner, Outer and Full. An
Inner Join is the default join type; that is, only rows which match are retained.
A left outer join retains all the rows from the first table and only those from
the second table that matched the selection criteria. When a value is not avail­
able it is displayed as NULL.

SOL> SELECT a.account_no, tran_amt FROM account a
cont> LEFT OUTER JOIN
cont> account_transaction t

cont> ON a.account_no = t.account_no;

A.ACCOUNT_NO T.TRAN_AMT

1567890 -15.00

1567890 500.00
1567890 1245.78

1567890 -402.45

9551490 NULL
5 rows selected

A Right Outer join is the reverse; it reports all rows in the second table and
then only those rows from the first table that match.

SOL> SELECT a.account_no, tran_amt FROM account a
cont> RIGHT OUTER JOIN

cont> account_transaction t
cont> ON a.account_no = t.account_no;

A.ACCOUNT_NO T.TRAN_AMT

1567890 -402.45
1567890 1245.78

1567890 500.00
1567890 -15.00

4 rows selected

3.2.7

3.2 SQL 57

Date & Time Arithmetic

The SQL standard defines a number of functions to perform date and time
arithmetic. These functions are well worth using because they alleviate the
need to write special code or call operating system routines. The dates and
times can be defined as:

• DATE 'y-m-d'

• TIME 'h:m:s.sss'

• TIMESTAMP 'y-m-d:h:m:s.sss'

eINTERVAL

Using these functions it is very easy to perform operations like add 30 days to
the invoice date.

SOL> SELECT invoice_date +INTERVAL '30' DAY FROM account_transaction;

1994-03-17

These functions can only be used on ISO or ANSI datatypes. Existing
Open VMS systems are unlikely to have this datatype because they were prob­
ably defined with the DATE VMS datatype. However, this does not prevent
these legacy systems from using these functions. All that is required is to use
the CAST function to convert it to the DATE ANSI datatype. For example,
referring to the example below, the TRAN_DATE is converted to ANSI and
then it can be subtracted from the INVOICE_DATE. In this instance there is
a 3 year and 2 month difference between these dates so the result is 3-2.

SOL> SELECT (invoice_date - CAST(tran_date AS DATE ANSI))YEAR TO MONTH

cont> FROM account_transacti on;

03-02

There are infinite possibilities with Date and Time arithmetic; these examples
just scratch the surface with what is possible. Another example of where you
could use these functions is:

SOL> SELECT transaction_duration FROM query_log WHERE

cont> transacti on_durati on > INTERVAL' 1 'SECOND;

3.2.8

58

Statistical Functions

SQL supports the following statistical functions:

•COUNT(*)

•COUNT (DISTINCT column name)

eSUM

eAVG

eMIN

eMAX

Typical queries are:

How many customers are there?

SOL> SELECT COUNT(*) FROM customer;

2

1 row(s) selected

How many unique overdraft limits are there?

Data Manipulation

SOL> SELECT COUNT (DISTINCT overdraft_limit) FROM account;

5

1 row(s) selected

What is the average balance?

SOL> SELECT AVG (balance) FROM account;

8.5483757E+Ol

1 row(s) selected

What is the maximum overdraft?

SOL> SELECT MAX (overdraft_l imit) FROM account;

5000.00

1 row(s) selected

3.3 String Manipulation 59

3.2.9 Value Expressions

3.3

SQL also supports a range of value expressions that can be used within a
SELECT statement. We have seen some of these used in examples already
and will see more later within this chapter.

•EXTRACT

•TRANSLATE

•SUBSTRING

• CHAR_LENGTH

• OCTET _LENGTH

•COALESCE

• NULLIF

•CASE

What day of the week did the transaction take place?

SOL> SELECT EXTRACT(WEEKDAY FROM tran_date) FROM account_transaction;

3

4

6

6

4 rows selected

We will see later in this chapter how you can define your own functions that
may be called from within SQL.

STRING MANIPULATION

In Rdb, SQL allows string manipulation with the SUBSTRING qualifier. In­
cluded as part of a standard SELECT statement, it allows the columns to be
truncated upon display by specifying the number of characters to display. The
following example illustrates how to display the customers' numbers, names,
and the first ten characters of their addresses.

3.3.1

60 Data Manipulation

SOL> SELECT customer_no, surname,
cont> SUBSTRING (address_linel FROM 1for10) AS address FROM customer;

CUSTOMER_NO SURNAME ADDRESS
100201 Hobbs 'Nightsky

100205 Smith 10 Winches
1678345 Vona NULL

3 rows selected

Standard Key Words

Various standard key words may be used instead of variables in SQL to obtain
specific information. They are:

Table 3.2 SQL Key Words

CURRENT_TIMESTAMP Returns the date and time

CURRENT_USER Is the current active username. But if during the execution of the SQL
statement, definer's right are used, then the definer's username is returned.

SESSION_USER Current active username

SYSTEM_ USER This is the username used when first attached to the database

CURRENT _DATE Date in yyyy-mm-nn format

CURRENT_TIME Time in hh:mm:ss

These key words may be included in any SQL expression where a column
name is expected to either display or store data. Typical uses for these two key
words are in trigger definitions to obtain useful audit trail information. The
following example illustrates a SELECT expression where the two key words
are specified in an interactive session:

SOL> SELECT customer_no, USER, CURRENT_TIMESTAMP FROM customer;
CUSTOMER_NO

100201 HOBBS 20-FEB-1994 13:36:09.49
100205
1678345

HOBBS
HOBBS

3 rows selected

20-FEB-1994 13:36:09.49
20-FEB-1994 13:36:09.49

3.3.2

3.3 String Manipulation 61

SOL> SELECT current_date, current_time, current_timestamp from branch;

1994-02-20 20:27:51 20-FEB-1994 20:27:51.82

1 row selected

SOL> SELECT current_user, session_user, system_user FROM branch;

HOBBS HOBBS HOBBS
1 row selected

Cursors

A cursor is a logical table that contains the result of a query. It is a mechanism
by which a number of rows are grouped together and then processed individu­
ally. It is an essential statement used extensively in all application programs
because the SELECT clause on its own does not provide a way to process
rows individually. Therefore, the SELECT clause is specified in the cursor
declaration to group the rows together before they are individually processed.

SQL provides for two types of cursors:

•Table

•List

A table cursor provides access to individual rows in a table. All the examples
in this section are table cursors.

A list cursor provides access to individual elements in a list. List cursors are
used to manipulate the segmented string or list of byte-varying datatype. One
unique feature offered with list cursors is that they may be scrolled forwards
and backwards.

Further enhancements made to cursors include the ability to specify one of
two types of operation on the cursor. For a table cursor, the user can specify:

• Insert-only

•Update-only

•Read-only

An update cursor is the default type of cursor clause.

62

A list cursor may be either of the following types:

•Read-only

•Insert

Data Manipulation

A read-only cursor only allows data to be read, while an insert cursor allows
the insertion of data.

A typical example of cursor usage is creating a cursor to identify those
accounts that require a statement to be printed. The cursor is created, then
each account row is selected in turn and printed.

Four statements are used in cursor processing:

• DECLARE CURSOR- Specifies the name and result selection condition

•OPEN -Forms the cursor

• FETCH - Retrieves one row from the stream

• CLOSE - Deletes the cursor

The following is an example of the four statements:

SOL> DECLARE statement_prt CURSOR FOR
cont> SELECT * FROM account WHERE statement_day - 31:
SOL>

SOL> OPEN statement_prt:

SOL> FETCH statement_prt:

ACCOUNT_NO CUSTOMER_NO BRANCH_CODE BALANCE
OVERDRAFT_LIMIT

STATEMENT_DATE
9167823487 100205

250. 00 1

ACCT_TYPE STATEMENT_FREO
STATEMENT_DAY

SOT
31

354.34

6-DEC-1989 00:00:00.00 31

SOL> CLOSE statement_prt:

3.3 String Manipulation 63

Hint: It is important to remember that cursors are useful, but the rows in
the cursor can remain locked, depending on the isolation level; (unless it's a
snapshot transaction), until the transaction is finished using the commit or
rollback statement. Closing the cursor does not release the locks on the rows.

Later in the optimizer chapter we will see how we can influence the strategy
used by specifying the FAST FIRST or TOTAL TIME optimization.

SOL> DECLARE acurs READ ONLY TABLE CURSOR FOR
cont> select * from branch optimize for fast first;

3.3.3 Segmented Strings or List of Byte Varying

SQL provides support for manipulating the segmented string datatype that
SQL refers to as list of byte varying. In SQL, segmented strings require spe­
cial manipulation. This manipulation is achieved by using two types of cur­
sor, a list and a table cursor.

The list cursor specifies the list of values for the segmented string. The table
cursor defines the values for all the non-segmented string datatypes.

Storing Data into a Segmented String

The following example illustrates how data is stored in the segmented string
ACCOUNT_TEXT in the table ACCOUNT_NOTES:

1 Define a cursor for the table in which the list of byte varying row datatype is
defined. In this example it is table ACCOUNT_NOTES.

SOL> DECLARE table_cursor INSERT ONLY TABLE CURSOR FOR SELECT *
cont> FROM ACCOUNT _NOTES;

2 Create a list cursor into which each segment of the segmented string is
placed.

SOL> DECLARE l i st_cursor INSERT ONLY LIST CURSOR FOR SELECT account_text
cont> WHERE CURRENT OF table_cursor;

3 Open the cursor and insert a row into the table, omitting the segmented
string column. Therefore, in the following example the only data that is

64 Data Manipulation

specified is the account number because the other row in the table is a list of
byte varying datatype.

SOL> OPEN table_cursor;
SOL> INSERT INTO CURSOR table_cursor Caccount_no) VALUES ('1002013127');

4 Open the cursor for manipulating the segmented string. Each individual
segment of the segmented string is placed into the list cursor.

SOL> OPEN list_cursor;
SOL> INSERT INTO CURSOR list_cursor VALUES ('This customer has a
cont> very good');
SOL> INSERT INTO CURSOR list_cursor VALUES ('credit rating');
SOL> INSERT INTO CURSOR list_cursor VALUES ('Requested a Loan on
cont> 03-MAY-1994');

5 Finally, close the cursor when all activity upon the table has finished.

SOL> CLOSE list_cursor;
SOL> CLOSE table_cursor;

Retrieving Data from a Segmented String

As we previously stated, to read the data that is stored inside a segmented
string, two cursors must be defined and a loop must fetch each segment of the
segmented string. There is no loop in the following example, only a repeat of
the fetch command:

1 Create a cursor that can only be read from for the table ACCOUNT _NOTES

SOL> DECLARE read_tabl e_cursor READ ONLY TABLE CURSOR FOR SELECT *
cont> FROM ACCOUNT_NOTES;

2 Create another cursor that is read-only for the column account_text, which
is a segmented string. Using as the current row the position in the table
cursor

SOL> DECLARE read_list_cursor READ ONLY LIST CURSOR FOR
cont> SELECT account_text
cont> WHERE CURRENT OF read_table_cursor;
SOL> OPEN read_table_cursor;

3.3.4

3.3 String Manipulation

3 Fetch a row from the table cursor.

SOL> FETCH read_table_cursor;
ACCOUNT_NO ACCOUNT_TEXT
1002013127 1:115:8

SOL> OPEN read_list_cursor;

65

4 Open the list cursor for the segmented string column account_text and read
the first segment.

SOL> FETCH read_list_cursor;
ACCOUNT_TEXT
This customer has a very good

5 Fetch the next segment for this segmented string.

SOL> FETCH read_list_cursor;
ACCOUNT_TEXT
credit rating

SOL> FETCH read_list_cursor;
ACCOUNT_TEXT
Requested a Loan on 03-MAY-1990

6 Close the cursors.

SOL> CLOSE read_table_cursor;

SOL> CLOSE read_list_cursor;

Storing Data

Data is stored in the database using the INSERT clause. In SQL, first all the
column names are specified, then the actual value.

SOL> INSERT INTO branch
cont> (branch_code, branch_name, branch_address, managers_name)
cont> VALUES
cont> ('NW',' Engl and & Hobbs PLC', 'The High Street, Ampton'.
cont> 'Mr J Smith');
1 row(s) inserted

66 Data Manipulation

3.3.5 Modify

The UPDATE statement is very powerful because in one expression, the user
can specify which row to amend and the amendment. For example:

SOL> UPDATE customer SET
cont> credit_limit '900' WHERE customer_no
1 row(s) updated

The query also can be specified using a cursor.

SOL> DECLARE update_cust CURSOR FOR
cont> SELECT credit_limit FROM customer
cont> WHERE customer_no = '100205'
cont> FOR UPDATE OF credit_limit;

SOL> OPEN update_cust;

SOL> FETCH update_cust;

CREDIT_LIMIT

9.0000000E+02

SOL> UPDATE customer
cont> SET credit_limit - '900'
cont> WHERE CURRENT OF update_cust;
1 row(s) updated

3.3.6 Deletions

'100205.;

Data is removed in SQL using the DELETE statement. Its structure is similar
to the UPDATE statement seen previously:

SOL> DELETE FROM customer WHERE customer_no - '100205';
1 row(s) deleted

Or using cursors

SOL> DECLARE delete_cust CURSOR FOR
cont> SELECT* FROM customer WHERE customer_no = '100205';

SOL> OPEN delete_cust;

3.4 Multistatement Procedures

SOL> FETCH delete_cust;
CUSTOMER_NO SURNAME FIRST_NAME

ADDRESS_LINEl ADDRESS_LINE2
ADDRESS_LINE3 ADDRESS_LINE4

POSTCODE
100205

CREDIT_LIMIT
Smith

STATUS
Paul

10 Winchester Road Tighten
Portsmouth Hampshire

P012 6TY 9.0000000E+02 1

SOL> DELETE FROM customer WHERE CURRENT OF delete_cust;
1 row(s) deleted

3.4 MULTISTATEMENTPROCEDURES

It is possible to write two types of procedures in Rdb:

• Single statement procedures

• Multistatement procedures

67

As their names suggest, a single statement procedure allows access to a data­
base through a single SQL statement, whereas a multistatement procedure
allows access to a database through multiple SQL statements. This is achieved
through the concept of a compound statement, that is, a collection of a number
of SQL statements within a BEGIN ... END block. This is a concept not
unfamiliar to programmers who use structured languages. A multistatement
procedure can contain a number of these BEGIN ... END blocks and they may
be nested inside one another as shown below:

BEGIN
sql statement 1
sql statement 2

BEGIN
sql statement 3
sql statement 4

END
sql statement 5

END

68 Data Manipulation

Why bother doing this? A good reason is to simplify the logic in an application
program. An application program that makes calls to SQL Module Language
procedures can call a multistatement procedure that executes complex logic
before returning control to the calling program. If single statement procedures
were used, the program would have to call many procedures many times and
would have to deal with all the conditional logic.

With a multistatement procedure, one call might suffice and as we shall see
shortly, a multistatement procedure may contain conditional logic.
Multistatement procedures can also be written by one developer and reused
by many. We shall see later how multistatement procedures may be stored as
schema objects within an Rdb database.

An interesting question raised by the provision of multistatement procedures
in Rdb is that of atomicity; Rdb designers are used to the fact that single SQL
statements are atomic, that is, an SQL statement either executes to completion
or not at all. For example, a row can never be partly inserted. This is quite
apart from Rdb transactions that are themselves atomic and may contain a
number of SQL statements which may or may not succeed.

What happens in the case of the compound statements mentioned above? Does
Rdb treat a BEGIN ... END block as a unit of atomicity or can the BEGIN ... END
partially execute? In fact either case is possible and it is a design decision
made by the developer which determines what actually will happen as dis­
cussed next.

3.4.1 NOT ATOMIC Compound Statements

Compound statements that are not atomic contain SQL statements that are
atomic though the compound statement as a whole is not. This is the default.
If an error occurs while executing SQL statements in the compound state­
ment, any successful SQL statement will not be rolled back. In the following
example where the INSERT fails and is rolled back, the DELETE statement
has already successfully executed and so is not rolled back. The UPDATE is
never executed.

BEGIN
DELETE FROM account .. .
INSERT INTO account fails!
UPDATE account ...

END;

3.4 Multistatement Procedures 69

3.4.2 ATOMIC Compound Statements

Compound statements that are atomic contain SQL statements that are atomic
and the compound statement as a whole is atomic. If an error occurs while
executing SQL statements in the compound statement, all SQL statements
that have executed will be rolled back. In the following example where the
INSERT fails and is rolled back, the DELETE statement has already success­
fully executed and is also rolled back. The UPDATE is never executed.

BEGIN ATOMIC

DELETE FROM account •••

INSERT INTO account •••••. fails!

UPDATE account •••

END;

3.4.3 Compound Statements and Transaction Demarcation

A compound statement can contain SET TRANSACTION, COMMIT and
ROLLBACK statements but only if the compound statement is non-atomic.

SOL> BEGIN

cont> SET TRANSACTION READ WRITE RESERVING branch FOR SHARED WRITE;

cont> UPDATE BRANCH SET managers_name = 'Steve Horn'

cont> WHERE branch_code = 'ALT';

cont> COMM IT;

cont> END;

Note also that a compound statement cannot refer to more than one database
alias and that not all SQL statements can appear inside a compound state­
ment. The Rdb SQL Reference Manual lists the SQL statements than may be
placed inside a compound statement.

3.4.4 Variable Declaration and Assignment in Compound Statements

In order to test multistatement procedures that will be embedded in SQL
modules or precompiled programs and to write multistatement procedures in
interactive SQL, variables can be declared and have values assigned to them:

70 Data Manipulation

SOL> DECLARE :bnam CHAR(20);
SOL> DECLARE :cust_status INTEGER;

The above example shows two simple variable declarations. These variables
can be assigned values and used in other statements as in the examples below:

SOL> BEGIN

cont> DECLARE :bnam CHAR(20);
cont> SET :bnam - 'Bramley';
cont> DELETE FROM branch WHERE branch_name = :bnam:

cont> END;

SOL> BEGIN
cont> SET :bent= (SELECT COUNT(*) FROM branches);

cont> SET :bnam = NULL:

cont> END:

SELECT ... INTO

The following example shows the use of SELECT ... INTO with a variable:

SOL> BEGIN
cont> DECLARE :tot_bal INTEGER;

cont> SELECT SUM(account_balance) INTO :tot_bal FROM account:

cont> INSERT INTO funds_history (run_date, funds)
cont> VALUES (CURRENT_DATE, :tot_bal);

cont> END:

A variable exists for the duration of the compound statement in which it is
declared, again, a concept that will be familiar to anyone using structured
programming languages. In the example below, the variable BNAM is de­
clared within the scope of the inner compound statement. When an assignment
is made to it in the outer compound statement, a failure occurs because it no
longer exists, unless it is defined as a GLOBAL variable.

3.4 Multistatement Procedures

SOL> BEGIN
cont> BEGIN
cont> DECLARE :bnam CHAR(20);
cont> SET :bnam = 'Bramley';
cont> END;
cont> SET :bnam = 'Winchester';
cont> END;

%SOL-F-UNDEFVAR, Variable BNAM is not defined

71

Similarly, inner variable declarations hide outer ones. In the example below
the outer variable declaration ofBNAMhas been assigned the value "Rapley",
but the inner variable declaration of BNAM has not been assigned a value.
Consequently, the update places an undefined variable value into theBRANCH
row which is then displayed as " ". This is because the inner
declaration hid the outer declaration.

SOL> BEGIN
cont> DECLARE : bnam CHAR(20);
cont> DECLARE :bcode CHAR(4);
cont> SET :bcode = 'ROP';
cont> SET :bnam = 'Rapley';
cont> BEGIN
cont> DECLARE :bnam CHAR(20);
cont>
cont>
cont>

UPDATE branch SET branch_name
WHERE branch_code = :bcode;

END;
cont> END:

:bnam

SOL> SELECT branch_name FROM branch WHERE branch code

BRANCH_NAME

1 row selected

'ROP':

72 Data Manipulation

3.4.5 Flow Control in Compound Statements

CASE

IF

As in any programming languages, statements can be placed in compound
statements to modify the logic flow. There are a number of flow control
statements and these are:

•CASE

eIF

•LOOP

•LEAVE

eFOR

This statement is used to execute a number of alternative statements depend­
ing on the result of a value expression.

SOL> BEGIN
cont> SET :cust_status_line =

cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>

(CASE :cust_status
WHEN 1 THEN 'Living in Great Britain';
WHEN 2 THEN 'Living in Europe';
WHEN 3 THEN 'Living in North America';
WHEN NULL THEN 'Status Unknown';
ELSE 'Living in Hampshire';

END CASE;)

END;

This statement is used to execute statements conditionally depending on the
result of a predicate.

SOL> BEGIN
cont> IF :account_type = '2' THEN
cont> IF :account_balance < 0 THEN
cont> BEGIN

LOOP

3.4 Multistatement Procedures

cont>
cont>
cont>
cont>
cont>

SET :cust current desc
END;

END IF;

ELSEIF :account balance > 0 THEN
BEGIN

73

'Poor Customer';

cont> SET :cust_current desc = 'Jolly Fine Customer';

cont>
cont>
cont>
cont>
cont>
cont>
cont>

END;
ELSE

BEGIN
SET :cust current desc

END;
END IF;

END;

'Not Sure';

The LOOP statement is used to execute statements repetitively. The loop can
be made to end when a condition is reached or a LEAVE statement is
executed. This statement is extremely useful for loading test data into a data­
base. The example below loops around loading branch rows as long as the
WHILE condition is true.

DECLARE : i INTEGER;
DECLARE :c CHAR (4);

SET : i 1;

SET :c = l · .
BEGIN

WHILE : i <= 9999

LOOP
INSERT INTO branch (branch_code) VALUES (:c);

SOL> BEGIN
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>

SET :i :i +l;

cont>
cont>

SET :c

END LOOP;
END;

cont> END;

: i ;

FOR

74 Data Manipulation

The example below loops around loading branch rows as long as the IF
condition is true and then a LEAVE statement is executed.

SOL> BEGIN
cont> DECLARE :i INTEGER;
cont> DECLARE :c CHAR (4);
cont> SET :i = 1;
cont> SET :c = l;
cont> BEGIN
cont> branch_store_loop:
cont> LOOP
cont> INSERT INTO branch (branch_code) VALUES (:c);
cont>
cont>
cont>
cont>
cont>

SET :i - :i +l;

IF :i > 100 THEN LEAVE branch_store_loop;
END IF;
SET :c = :i;

END LOOP;
cont> END:
cont> END:

The FOR statement allows you to easily process rows in a record stream.
RDO fans will be used to this construct.

SOL> BEGIN
cont> DECLARE :cred_flag CHAR(l);
cont> FOR :cust AS EACH ROW OF
cont> SELECT * FROM customer
cont> DO
cont> IF cust_status = 3 THEN
cont> BEGIN
cont>
cont>

SET :cred_flag = 'D';
END;

cont> END IF;
cont> END FOR;
cont> END:

3.4 Multistatement Procedures 75

3.4.6 Getting Diagnostics in Compound Statements

If a statement in a compound statement returns an exception condition, the
multistatement procedure is terminated. GET DIAGNOSTICS can be used to
return the status of the last SQL statement as well as other information.

SOL> BEGIN
cont> DECLARE :rows_updated INTEGER;
cont> UPDATE branch SET managers_name = 'Steve Hagan'
cont> WHERE branch_code > '8999';
cont> GET DIAGNOSTICS :rows_updated - ROW_COUNT:
cont> END:

In the above example, the value of the number of rows updated is returned.
Other possibilities, to name but a few, include:

• Rowcount

• Transaction access mode

• Transaction isolation level

3.4. 7 Debugging Compound Statements

Unlike many 3GL compilers, there is no symbolic debugger for SQL. Debug
information for the values of variables must be obtained with the TRACE
statement. To turn on debugging, the logical name RDMS$DEBUG_FLAGS
must be set.

$ DEFINE RDMS$DEBUG_FLAGS 'Xt'

Note that the string Xt is case sensitive-XT or xT will not work! When the
logical name is set, TRACE can be inserted into the SQL statements.

SOL> BEGIN
cont> DECLARE :j INTEGER;
cont> WHILE :j <> -100
cont>
cont>

LOOP
SET : j = : j - 1;

3.5

76 Data Manipulation

cont> TRACE 'The value of j is . :j;
cont> END LOOP;
cont> END;
-Xt: The value of j is -1

-Xt: The value of j is -2

-Xt: The value of j is -3

-Xt: The value of j is -4

As in the example above, once the SQL statements are executed, a line of
debug information is displayed.

STORED PROCEDURES

SQL modules can be held as schema objects inside the database like a table or
view and typically consist of multistatement procedures. There are a number
of good reasons for doing this, including:

• Function encapsulation

• Inheritance of privilege

• Client/server processing

From an encapsulation of function perspective, stored procedures enable the
designer to place an action or group of actions together in the database. This
can effectively hide the complexity of the group of actions. Developers can
then easily re-use procedures.

From an inheritance of privilege perspective, the definer of a procedure must
have access to the base objects referenced in the procedure. However, the
invoker of a procedure can inherit the access rights of the procedure definer so
procedure invokers can execute set actions even though they have no access to
the base objects referenced in the procedure. Another option is that the proce­
dure invoker must have access to the base objects referenced in the procedure
when the procedure is executed. Note that the definer of a stored module must
have CREATE privilege and an invoker must have EXECUTE privilege granted
on the module holding the procedure to be called.

3.5 Stored Procedures 77

From an client/server perspective, by using stored procedures complex SQL
logic can be held at the server in the database. Holding one copy of the proce­
dure definition can simplify maintenance, and security can be implemented
more easily. Less SQL code is passed between the client and the server.

Procedures are not actually held as stand-alone objects in the database. They
are created as part of a CREATE MODULE statement. This means that the
database administrator cannot CREATE or DROP individual procedures.
However, the database administrator can SHOW individual procedures and a
procedure is called, not a module. A database administrator can CREATE,
DROP or SHOW individual modules in the database. To drop a procedure,
the sequence of events is:

1 DROP the module

2 Delete procedure from source module file

3 CREATE the module

4 Use RMU/EXTRACT to retrieve source module/procedure definition

The following is an example of creating a module:

SOL> CREATE MODULE branch_module LANGUAGE SOL
cont> PROCEDURE update_branch (:bcode CHAR(4));
cont> BEGIN
cont>
cont>

UPDATE branch
SET branch_name = 'Alton' WHERE branch code

cont> END;
cont> PROCEDURE DELETE_BRANCH (: bcode CHAR(4));
cont> BEGIN

:bcode;

cont> DELETE FROM branch where branch_code = :bcode;
cont> END;
cont> END MODULE;

78

The following is an example of showing a module:

SOL> SHOW MODULES
Modules in database with filename BANKING

Module name is: BRANCH_MODULE

SOL> SHOW MODULE branch_module
Module name is: BRANCH_MODULE

Data Manipulation

Header: branch_module LANGUAGE SOL AUTHORIZATION ENGLAND
No description found.
Owner is: ENGLAND
Module ID is: 13
Procedures in Module:

DELETE_BRANCH
UPDATE_BRANCH

The following is an example of showing a procedure:

SOL> SHOW PROCEDURE DELETE_BRANCH
Procedure name is: DELETE_BRANCH

Procedure ID is: 15
Source: DELETE_BRANCH (:bcode CHAR(4));

BEGIN
DELETE FROM branch where branch_code - :bcode;

END
No description found.
Module name is: BRANCH_MODULE
Module ID is: 13
Function owner is: NONE
Number of parameters is: 1

Parameter Name Data Type

BCODE CHAR(4)
Parameter position is 1
Parameter is IN (read)

Domain

Parameter is passed by REFERENCE

3.6 External Functions 79

A stored procedure is simply invoked by issuing a CALL statement; however,
note that a CALL statement cannot be issued in a compound statement. The
implication of this is that currently a stored procedure may not call a stored
procedure.

SOL> CALL delete_branch('2323');

Because of the objects that a stored procedure will typically reference, it has
dependencies upon these various objects such as tables and columns. If these
objects were to change then the behavior of the stored procedure could be
affected. To manage this, Rdb uses dependency tracking to keep a record of
the objects a stored procedure depends upon in new system relations. Rdb
records what objects the stored procedure references (called referenced ob­
jects). Referenced objects can include:

•Domain

•Table

•View

•Column

• Constraint

Depending on the type of dependency, an attempt to alter a referenced object
may fail. Alternatively, the stored procedure may be invalidated.

3.6 EXTERNAL FUNCTIONS

A function in SQL refers to a routine that returns a value. In SQL there are
two types of function. First, there are built-in functions that are essentially
internal code to Rdb and are not modifiable by anyone other than the Rdb
engineering group. Examples of built-in functions would be AVG() and
SUBSTRING(). Second, there are external functions. External functions are
3GL programs that are executed as part of a value expression in an SQL
statement and are external code to SQL. They are typically written by Rdb
sites and other groups outside Rdb engineering.

Because an external function is a 3GL program, almost limitless possibilities
exist as to its use, bounded only by a developer's imagination. As well as

80 Data Manipulation

being code written by an Rdb site, an external function can be an Open VMS
library routine. The only major restriction is that an external function cannot
call back to the database.

Functions are manipulated via:

• CREATE FUNCTION

• DROP FUNCTION

The following example creates an external function named encrypt and drops
an external function named decrypt.

SOL> CREATE FUNCTION encrypt CIN CHAR(80) BY REFERENCE)
cont> RETURNS CHARC80);
cont> LOCATION 'cypher$lib'
cont> LANGUAGE C GENERAL PARAMETER STYLE;

SOL> DROP FUNCTION decrypt;

Creating an external function consists of a number of steps:

1 Write and compile the code.

2 Create a linker options file.

3 Create a shareable image.

4 Check it using a testbed program.

5 Create an external function definition.

The steps required to creating a shareable image in Open VMS are as follows:

Compile the function

$ cc encrypt.c

On a VAX system create an options file with the external function name a
UNIVERSAL symbol

$ create encrypt.opt
UNIVERSAL = encrypt

3.6 External Functions 81

Link a shareable image

$ link/shareable encrypt encrypt.opt/opt

As external functions are executed as part of a value expression in an SQL
statement, there are many places where they can be embedded. For example:

SOL> INSERT INTO secret_accounts(account_num, account_name)
cont> VALUES ('99886543', encrypt('Margaret Moneybags'));

SOL> SELECT account_num, decrypt(account_name) FROM accounts;

Other possibilities include using external functions within column constraints,
triggers and COMPUTED BY clauses.

As was mentioned earlier, an Open VMS library routine can be used as an
external function; for example, the following external function definition uses
the mathematics library function mth$gsind to compute the sine of an angle
specified in degrees:

SOL> CREATE FUNCTION sine (IN DOUBLE PRECISION)
cont> RETURNS DOUBLE PRECISION;
cont> EXTERNAL NAME mth$gsind

cont> LOCATION 'sys$share:mthrtl'
cont> LANGUAGE GENERAL GENERAL PARAMETER STYLE;

The following table definition uses this external function in a COMPUTED
BY field:

SOL> CREATE TABLE sine table

cont> (degrees DOUBLE PRECISION,
cont> sine_num COMPUTED BY sine(degrees));

If we were now to insert some rows and display them we would see the following:

SOL> INSERT INTO sine_table (degrees) VALUES (0) ;

1 row inserted
SOL> INSERT INTO sine_table (degrees) VALUES (10);

1 row inserted
SOL> INSERT INTO sine_table (degrees) VALUES (45);

1 row inserted

3.7

82 Data Manipulation

SOL> INSERT INTO sine table (degrees) VALUES (90);
1 row inserted

SOL> COMMIT;

SOL> SELECT * FROM sine_table;
DEGREES SINE_NUM

O.OOOOOOOOOOOOOOOE+OOO O.OOOOOOOOOOOOOOOE+OOO

l.OOOOOOOOOOOOOOOE+OOl 1.736481776669304E-001

4.500000000000000E+001 7.071067811865476E-001
9.000000000000000E+OOl 1.000000000000000E+OOO

4 rows selected

If we wished to be really clever we could have used the CAST function to
display the sine value in a more friendly integer format!

Because external function code is not stored internal to the database, security
is a concern and external images should be made safe from tampering. One
approach on Open VMS is to use the Open VMS INSTALL utility. Another
approach is to use appropriately created concealed and system executive
logical names.

WHAT'S NEXT FOR SQL?

The SQL standard is continually evolving. It began as SQL-86 then SQL-89
and today the latest version is SQL-92, known as SQL2. The next working
version of the standard is known as SQL3 and the main areas of enhancement
are:

• Call level interface

• Stored modules

• Object oriented extension

• Further relational extensions

• Procedural extensions

It is unlikely that this standard with be ratified before 1996.

4 Storage Structures

In Chapter 2 we saw how a single-file Rdb database could be created. This
chapter describes how multifile Rdb databases are created and then gives an
overview of the on-disk structure used by Rdb.

4.1 WHY USE MULTIFILE DATABASES?

In a single-file database, all the tables containing the user data and the indexes
are stored in one operating system file, which usually resides on a single disk
drive. Disk drives are capable of sustaining a maximum physical 1/0 rate.
This rate depends on the type of disk drive, the amount of data transferred in
the physical 1/0, and the amount of disk head movement that needs to be
performed, often known as a disk seek.

If we place a single-file database on a single disk drive (assuming it would fit)
and steadily increase the work performed on the database, we would reach a
point where the rate of requests to perform physical 1/0 to the database exceeds
the rate at which the disk drive can service these requests. At this point, a
queue of physical 1/0 requests begins to build up, and a disk bottleneck occurs.
The rate at which the database is able to perform work stops increasing. The
addition of a larger central processing unit has no benefit-the bottleneck is
with the disk drive.

Hint: In the Open VMS environment, the Open VMS MONITOR utility is
used to monitor the disk 1/0 rates and the disk queues. The following
commands are used to do so.

MONITOR DISK

MONITOR DISK/ITEM=QUEUE_LENGTH

84 Storage Structures

Rdb allows a database designer to specify multifile databases. In a multifile
database, the tables and indexes usually are placed in more than one file,
which are placed on more than one disk drive. By doing this, the physical I/O
requests to the database are spread over a number of disk drives, increasing
the rate at which physical I/Os are handled by the system. Rdb names these
files storage areas. A storage area can hold:

•A table

• A number of tables

• Part of a table (a table partition)

•An index

•A number of indexes

• Part of an index (an index partition)

Figure 4.1 shows the relationship between tables and disk drives where the
tables are stored in a single storage area residing on a single disk drive.

Figure 4.2 shows the relationship between tables and disk drives where the
tables are stored in their own storage area and each storage area resides on its
own disk drive.

Figure 4.1 Mapping Many Tables to a Single Storage Area

4.2 Creating Multifile Databases 85

Figure 4.2 Mapping Tables to Their Own Storage Areas

Figure 4.3 Mapping a Single Table to Many Storage Areas

Figure 4.3 shows the relationship between a table and a number of disk drives
where the table is partitioned across four storage areas residing on four disk
drives.

The configuration in Figure 4.3 clearly will be able to support more concur­
rent table-level access than the configuration in Figure 4.1.

4.2 CREATING MULTIFILE DATABASES

To create a multifile database, the database designer uses the CREATE
STORAGE AREA clause in the CREATE DATABASE statement. In this
situation, a root file is created that contains Rdb housekeeping information. It
also contains pointers to files that contain tables and indexes.

The root file is created with a file extension of .RDB, and the data files with
an extension of .RDA. If an Rdb database is composed of a .RDB file and
.RDA files, it is said to be a multifile database. A storage area may be speci­
fied to hold the metadata definitions. This storage area is given the name
RDB$SYSTEM.

86 Storage Structures

A number of storage area slots may be reserved to enable the database admin­
istrator to add storage areas to the database at some future point with the
ADD STORAGE AREA clause of the ALTER DATABASE statement. This
operation may be performed without shutting down the database.

Hint: It is a good idea to reserve a small number of slots as insurance in
case it becomes necessary to add an area urgently.

The database designer must be able to specify which storage areas are used
for which tables. To do this, the CREATE STORAGE MAP statement is
used. To specify which storage areas are used for indexes, the STORE clause
is used as part of the CREATE INDEX statement.

4.3 CREATING STORAGE AREAS

When creating storage areas, a file specification is given, specifying the loca­
tion of the storage area files. An example of such a file specification in the
Open VMS environment would be:

222dua23:[uk.db]bank_cust

Although this is clearly a hardcoded filename, moving the storage area to
another directory and/or device is easily achieved with the RMU/
MOVE_AREA command. If the disk 222dua23 is logging errors, for ex­
ample, the storage area BANK_CUST may be moved to another disk.

$ RMU/MOVE_AREA banking bank_cust/DIRECTORY=222dua25: [uk.db]

Hint: Do not use the operating system's native file copy command with
multifile databases. Because the file specification of a storage area is held
in the root file, Rdb may think that a storage area is stored in one position
when in fact it has been copied to another. This will make the storage area
inaccessible.

Once the attributes of the storage areas and the root file have been decided, the
multifile database now may be created. The CREATE STORAGE AREA
clause is issued as part of the CREATE DATABASE statement.

4.3 Creating Storage Areas

SOL> CREATE DATABASE FILENAME 222dua23:[uk.db]banking
cont> RESERVE 10 STORAGE AREAS
cont> CREATE STORAGE AREA rdb$system
cont> FILENAME 222dua24:[uk.db]bank_system
cont> CREATE STORAGE AREA customer _area
cont> FILENAME 222dua25:[uk.db]bank_cust
cont> ALLOCATION IS 1000 PAGES
cont> CREATE STORAGE AREA account_area
cont> FILENAME 222dua26:[uk.db]bank_acct
cont> PAGE FORMAT IS MIXED;

87

This CREATE DATABASE statement performs a number of functions. A
storage area named RDB$SYSTEM is created in a file named
BANK_SYSTEM.RDA to hold the Rdb system tables. A storage area named
CUSTOMER_AREA is created in the file BANK_CUST.RDA, and a stor­
age area named ACCOUNT _AREA is created in a file named
BANK_ACCT.RDA. Ten storage area slots are reserved for the future addi­
tion of storage areas to the database.

Many qualifiers may be added to the CREATE STORAGE AREA clauses;
for example, an initial file allocation has been specified for the storage area
CUSTOMER_AREA and the storage area ACCOUNT_AREA has been speci­
fied with PAGE FORMAT IS MIXED. Page formats will be discussed shortly.
Other qualifiers that may be added to the CREATE STORAGE AREA state­
ment include:

• Extent parameters

•Page size

•SPAM intervals

• Thresholds

• Page or row locking

• Snapshot parameters

88 Storage Structures

4.3.1 Creating Storage Maps

To specify which tables use which storage areas, the database designer uses
storage maps. To specify which indexes use which storage areas, however, the
STORE clause is used in the CREATE INDEX statement. Mapping indexes
to storage areas is discussed in Chapter 5.

Previously, it was seen that storage areas are added as part of the CREATE
DATABASE statement. In the context of this statement, domains, tables, and
storage maps may be created. They may be added outside the CREATE
DATABASE statement by attaching to the database and submitting the com­
mands, but it is important to note that the CREATE STORAGE MAP state­
ment should have been executed while the tables are still empty; that is, no
data has been loaded into them. A storage map used by the BANKING data­
base could be created as follows:

Tables and Domains have been created

SOL> CREATE STORAGE MAP customer_map FOR customer
cont> STORE IN customer_area;

This is a simple mapping with the CUSTOMER table placed in the
CUSTOMER_AREA storage area. The relationship between the table, map,
an<l area is shown in Figure 4.4.

Figure 4.4 The Relationship Between a Table, a Map and Its Areas

4.3 Creating Storage Areas 89

A table is mapped by only one storage map. A storage map maps only one
table. However, a table may be mapped to one or many storage areas.

Qualifiers may be placed on the CREATE STORAGE MAP statement. For
example:

SOL> CREATE STORAGE MAP account_map FOR account
cont> STORE IN account_area
cont> DISABLE COMPRESSION;

In this example, the database designer has specified that the data in the
ACCOUNT table is not to be compressed by Rdb.

The way data is stored inside the storage area also may be specified by the
database designer. Typically, the method of storing the table rows with respect
to an index is specified. For example:

SOL> CREATE STORAGE MAP account_map FOR account
cont> STORE IN account_area
cont> DISABLE COMPRESSION
cont> PLACEMENT VIA INDEX account_index;

The placement of rows relative to indexes is discussed in Chapter 5. The
relationship between the table, map, index, and area is shown in Figure 4.5. A
STORE clause in the index definition specifies in which storage area the index
is to be placed.

Figure 4.5 The Relationship Between a Table, an Index, a Map, and an Area

90 Storage Structures

4.3.2 Uniform and Mixed Page Formats

The database designer may choose to create storage areas with UNIFORM or
MIXED page formats. A database page is the structure used to store and
locate data in an Rdb database. The choice of page format is determined by its
use in terms of the data to be stored in it and how that data is to be accessed.

UNIFORM Page Format

The database designer should choose UNIFORM page format when the tables
to be stored are likely to be accessed sequentially. In addition, sorted indexes
are usually placed in storage areas with UNIFORM page format. Hashed
indexes may not be, however. If the storage area is created with a UNIFORM
page format, the database pages in the storage area will only hold rows from
a specific table or index nodes from a specific index. Rdb assigns groups of
pages, known as clumps, in the storage area. These clumps will only hold
rows from a specific table or index nodes from a specific index. Figure 4.6
shows a storage area with a uniform page format. Space management (SPAM)
pages will be explained later in this chapter.

Typically, a table or sorted index will require a number of clumps to reside in,
which may or may not be adjacent in the storage area. The size of a clump is
a function of the buffer length (a database-wide parameter) and is calculated
by dividing the buffer length by the page size.

Page1 Page 2 Page 3 Page4 Page5

SPAM Customer Customer Customer Account

23 23 23 24
(logical area id)

Clump

Figure 4.6 A Uniform Format Storage Area

4.3 Creating Storage Areas 91

Note that the buffer length is specified on the CREATE DATABASE statement.
It cannot be changed with the ALTER DATABASE statement but can be in­
creased during an RMU/RESTORE operation. An SQL EXPORT followed
by an SQL IMPORT may be used to increase or decrease the buffer length.
This does not apply to the number of database buffers. These may be set on a
per-user basis (strictly speaking, per attach) by setting the logical name
RDM$BIND _BUFFERS to the number of buffers desired, or by setting the
value on a database-wide basis with the ALTER DATABASE statement.

Sequential scans of a table, in other words non-indexed access, is very efficient
when using UNIFORM page format. Rdb does not look for the data in the
clumps that it knows contain data from other tables. This saves physical I/Os to
disk. Figure 4.6 shows a storage area that has been created with a UNIFORM
page format. The RDB$SYSTEM storage area mentioned previously is al­
ways created with a UNIFORM page format. If a page format is not specified
on the CREATE STORAGE AREA command, the default action is to create
a storage area with UNIFORM page format.

MIXED Page Format

If the database designer creates a storage area with MIXED page format,
each page in the storage area may be used to store rows from any table in the
area, sorted index nodes, and hash buckets. Hash buckets are structures used
by hash indexes and are described in Chapter 5.

The database designer must be careful not to assign many tables and indexes
to such an area, otherwise each page may end up with a hodgepodge of rows
and index nodes that are ill-equipped for any query. The goal is to store only a
few objects in an area with a MIXED page format, including only objects that
tend to be accessed together. This will optimize certain important queries.

If the database designer wishes to use hashed indexes, the storage area must
be created with a MIXED page format. Hashed indexes only speed up queries
if the full value of the hash key is known. If this kind of access to a table is
required, a hashed index may be created for the table. The database designer
would store the table and the hashed index in a storage area with MIXED
page format. In the BANKING database, for example, the customer rows are
normally accessed by the column CUSTOMER_NO. In this case, the
CUSTOMER_NO column is always specified in full by the query, and the
end-user typically is looking for a row in the CUSTOMER table that exactly

92 Storage Structures

Figure 4.7 A Mixed Format Storage Area
Page1 Page 2 Page 3 Page 4

SPAM Customer (23) Customer Customer

Account (24) Account Account
Account (24) Account Account
Account (24) Account Account

] J []

System Records

matches the customer number supplied. The database designer may create a
hashed index on the CUSTOMER table based on the column CUSTOMER_NO
and store the CUSTOMER table and the hashed index in the same storage
area with a MIXED page format, in this case CUSTOMER_AREA.

Typically, the database designer will wish to store rows from different tables
on the same page. In our BANKING database example, it would be possible
to store the ACCOUNT rows belonging to a customer physically next to the
CUSTOMER row on the same database page. For transactions that joined
CUSTOMER rows and their ACCOUNT rows together to satisfy a particular
query, this will result in very high performance because, hopefully, only one
physical disk I/O would be needed to retrieve the CUSTOMER row. The
associated ACCOUNT rows, residing on the same page, will be retrieved at
the same time. Organizing data in this manner is known as coincidental clus­
tering. Figure 4. 7 shows a storage area with a mixed format where a customer
row and all its accounts reside on the same database page. Note that rows with
different logical area identifiers (23 and 24) may be stored on the same data­
base page. In the uniform format area, they had to be stored on database pages
in different clumps.

4.3.3 Partitioning Data in Multifile Databases

The fact that the database designer may create storage areas on separate disk
drives to spread the disk I/O load has already been mentioned. Suppose, though,
a table is subject to particularly heavy access. Placing the storage area that
holds the table on a single disk drive may still result in a disk I/O bottleneck.

4.3 Creating Storage Areas 93

The I/Orate that the disk drive is able to sustain is not large enough to suppott
the access requirements of the table. In this situation the database designer
may partition the table over a number of storage areas, which then are placed
on separate disk drives. This way, the disk I/O bottleneck is overcome. The
database designer also may place snapshot files on their own disk drives to
alleviate disk I/O problems. Snapshot files are described later in this chapter.
Chapter 5 discusses how indexes may be partitioned.

The rows of a table may be grouped by rows in particular storage areas ac­
cording to column values and the storage map specified. These storage areas
then may be created on separate disk drives. In the BANKING database, for
example, suppose the database designer wished to partition the CUSTOMER
table. The database designer could create a number of storage areas in which
to place the partitions. Suppose it was decided to create three partitions. These
could be named:

• CUSTOMER_AREA_l

• CUSTOMER_AREA_2

• CUSTOMER_AREA_3

The database designer then may create a storage map that specifies which
CUSTOMER rows are stored in which storage area. For example:

SOL> CREATE STORAGE MAP customer_map FOR customer
cont> STORE USING (customer_no)
cont>
cont>
cont>

IN customer_area_l WITH LIMIT OF ('3000000000')
IN customer_area_2 WITH LIMIT OF ('6000000000')
OTHERWISE IN customer_area_3;

When CUSTOMER rows are added to the database, they will be stored in the
appropriate storage area, depending on the value of the CUSTOMER_NO
column. When the rows are retrieved, only the appropriate storage areas will
be accessed, depending on the retrieval method. Figure 4.8 shows the relation­
ship between the customer table and the three storage areas created to hold it.

Hint: These three storage areas may be created initially on the same disk
drive and then moved to other disk drives with RMU/MOVE_AREA when
the single disk becomes a disk 1/0 bottleneck.

94 Storage Structures

Figure 4.8 Mapping the CUSTOMER Table to Three
Single Storage Areas

0000000000
to

3000000000

CUSTOMER
TABLE

CUSTOMER STORAGE MAP

3000000001
to

6000000000

6000000001
to

largest customer
number

Hint: In the case of sequential scans of the database, even though a particular
range of the column CUSTOMER_ NO may be specified, Rdb will scan all
the partitions. This is because Rdb would not physically move CUSTOMER
rows between partitions when the value of CUSTOMER_ NO was modified.
Therefore, scanning only one partition would not guarantee that all the rows
satisfying the condition would be found.

If in the future the database designer decides that more partitions are needed
to support access to the table, the SQL EXPORT and SQL IMPORT com­
mands may be used to restructure the database. The ALTER STORAGE MAP
statement also may be used to restructure partitions, as will be discussed in
detail in Chapter 10. Using ALTER STORAGE MAP is a quicker and sim­
pler option.

4.4 Displaying Database Pages 95

An important point to note is that partitioning is done at the physical level, not
the logical level. This means that partitioning is transparent to the application
program or end-user. The database designer can manipulate the physical
storage areas that constitute a table without having to modify application
programs.

4.4 DISPLAYING DATABASE PAGES

Once the database storage areas have been created, the RMU/DUMP com­
mand is used to display the contents of the database pages in them. This may
be used in the following ways:

• RMU/DUMP/AREA

• RMU/DUMP/LAREA

• RMU/DUMP/SNAPSHOTS

The RMU/DUMP/ AREA command allows the database designer to examine
pages from database storage areas.

The RMU/DUMP/LAREA command displays pages from logical areas within
a database storage file. The database designer examines pages allocated to a
table with this command.

The RMU/DUMP/SNAPSHOTS command is used by the database designer
to examine pages in snapshot files.

In a single-file database, there is only one data storage file which has the file
extension .RDB. In a multifile database, there may be many storage files with
file extension of .RDA. The .RDB file contains pointers to these. To examine
pages in a specific storage area, the storage area name must be used in the
RMU/DUMP command. For example:

$ RMU/DUMP/AREA=customer_area eurobank:[uk.db]banking

In this example, database pages from the storage area CUSTOMER_AREA
are displayed.

Tables in a database have their own logical areas. Each table has one logical
area, which cannot be shared with other tables. Indexes for a table also are
associated with a logical area. All the indexes for one table share a logical

4.5

96 Storage Structures

area in a single-file database. A logical area consists of groups of pages re­
served for rows for a particular table.

In a single-file database or multifile database with UNIFORM page format
storage areas, the first page of a logical storage area is the area bit map page,
or ABM. Area bit maps are discussed later in this chapter. A storage area with
a MIXED page format does not use area bit map pages, and the RMU/DUMP/
LAREA command cannot be used to display logical areas for such storage
areas.

The RMU/DUMP/LAREA command might be used to examine pages in the
logical area associated with the CUSTOMER table. For example:

$ RMU/DUMP/LAREA=customer eurobank: [uk.db]banki ng

THE DATABASE PAGE STRUCTURE
Now that the placement of tables in storage areas has been discussed, we can
explore the contents of the storage areas. Database storage areas are com­
posed of database pages, which may be one or more disk blocks in size. On
Open VMS systems a disk block is 512 bytes long. Page size in a database
storage area is normally specified in units of disk blocks.

Hint: On Open VMS systems, if a database storage area consists of one
block page, then the number of pages divided by 2000 gives the storage
area size in Megabytes.

A database page typically holds rows from tables or index structures. Certain
types of pages hold special control information, which will be discussed later.
A database page, besides holding the user's data, also holds certain fixed and
dynamic information. This information may be broken down as follows:

• Page header

• Lineindex

• Transaction sequence number (TSN) index

•Free space

4.5.1

4.5 The Database Page Structure 97

Figure 4.9 The Format of a Database Page

Bytes of Bytes Time Check Storage Page
Locked Free Stamp Sum Area Number

Free Space
Space

Further Line Second First Number of
Indexes Line Line Line Index

Index Index Entries

Locked Free Space TSN
Index

Available Free Space

Storage Segments

System Records

• Locked free space

•Page tail

• System record

Figure 4.9 shows the layout of these different components.

The Page Header

Every page in a database storage area is numbered. The page header contains
the page number and the storage area number, as well as a checksum value to
maintain the integrity of a database page. Also stored in the page header is the
time and date that the page was last written back to the database; that is, the
last time the page was modified. If the page contains data and fixed overhead,
then the page header also contains the value of the free space remaining on the

4.5.2

4.5.3

4.5.4

98 Storage Structures

database page. If data has been deleted from a page, free space becomes avail­
able on the database page but is marked as locked. In this case, the page
header contains a value specifying the amount of locked free space on the
page. Locked free space will be described shortly.

The Line Index

The line index grows and shrinks as rows are stored on and deleted from the
database page. Each line index entry points to a row. Strictly speaking, rows
should be called storage segments because a row is only one of the objects that
may be stored on a database page. The line index entries consist of the offset
address and length of the storage segment. The line index mechanism may be
thought of as a method of indirect addressing. The storage segments may be
physically moved within the database page, but the line index entry that points
to the storage segment remains constant.

Transaction Sequence Number Index

Each storage segment is associated with a transaction sequence number(TSN),
which allows Rdb to remember the last transaction that updated the storage
segment. Transaction sequence number entries and line index entries are stored
so that the nth line index entry and the nth transaction sequence number entry
relate to the same storage segment. The transaction sequence number entries
follow the line index entries. If a new storage segment is stored on a page, the
transaction sequence number entries are shuffled along the page until there is
space to store the new line index entry.

Locked Free Space

The part of the database page that separates the last transaction-sequence­
number index and the storage segments, called free space, is available to store
new storage segments. Just because there is free space does not guarantee that
a storage segment will be stored, however. There may appear to be enough
free space but the database designer may have specified threshold values that
cause Rdb to search elsewhere for space. Thresholds are discussed later in
this chapter.

4.5.5

4.5 The Database Page Structure 99

As storage segments are added to the database page, free space is used up.
Line index entries and transaction sequence number entries also encroach on
free space from the opposite direction until there is none left. When this
happens Rdb must find a new database page with available free space to add
new storage segments.

Suppose Rdb deletes a storage segment. Before the transaction has com­
mitted, there is no guarantee that the transaction will not abort and roll back
the deleted storage segment. Therefore, Rdb must guarantee that the deleted
storage segment can be stored back on the original database page; that is, it
must ensure that there is sufficient free space on the original database page.
Rdb does this by using the concept of locked free space. When a storage
segment is deleted, the space that becomes free is locked. It cannot be used by
any transaction other than the transaction that deleted the storage segment. In
fact, the space does not become available for use by other transactions until
the user whose transaction locked the space has detached from the database
by issuing a DISCONNECT statement. This may seem strange, but the method
is designed to reduce contention among users for free space.

Hint: When deleting rows with a program that stays attached to the data­
base for a long time, locked free space will not be available to other users.
In the case of systems that use dedicated database server processes that
attach to a database and stay attached, it may be advisable to detach from
the database and then attach again to unlock the free space at periodic
intervals. This situation is more common in transaction processing systems
that provide a continuous service to users. With Digital 's transaction
processing monitors, such as DEC ACMS, this may be done in such a
way that users are unaware that the reattachments to the database have
occurred.

Storage Segments

Typically, a database page holds a number of storage segments. If a storage
segment is too large to fit on a page, Rdb splits it into primary segment and a
number of secondary segments.

Why would a user's storage segment be too large to fit on a page? There are
probably two main reasons. First of all, a table in the database may have rows

100 Storage Structures

consisting of many columns, making the row length disproportionately long
compared to other tables in the database. The database designer may decide
not to place this table in its own storage area with a large page size. Instead,
the database designer decides that a small amount of fragmentation is accept­
able, and places the table in an area with other tables.

A more common cause for fragmentation is the expansion of rows that already
reside on a database page. Rdb gives the database designer the option of com­
pressing or not compressing data. Data frequently is compressed as the size of
the storage areas and the disk requirements (and, presumably, the financial
outlay) are reduced.

Suppose, though, a table contains four 30-byte columns to hold address data.
If only a fraction of these columns are used to store the address data, consid­
erable space is saved through data compression. But suppose after the storage
segments have been stored, the addresses are modified in a way that they take
up more space on the page. A point will be reached when there is not enough
room on the page to accommodate the expanded storage segment. In this case,
Rdb will fragment the row, and the secondary segment will be stored on a new
database page where there is space. When storing a row, Rdb allows for an
extra I 0 bytes of space in case the row becomes fragmented in the future.
This is to allow a primary fragment to be formed. It is useful to know if
fragmentation is occurring in the database. To retrieve fragmented rows
could take two or more disk I/Os, as opposed to one disk 1/0 for a row that is
not fragmented. The level of fragmentation in the database should be checked
with the RMU/ANALYZE command.

Note that adding columns to a table definition and placing values in rows
containing null will also eventually cause rows to expand and potentially
fragment.

Suppose that no database page is found with available space in which to store
a new row. This is not a problem with Rdb. Its dynamic space management
comes to the rescue and the database storage area automatically extends.
Database pages with free space become available without the intervention of
the database administrator or system manager and without the user being aware
that a database storage area has extended.

4.5 The Database Page Structure IOI

Hint: It is a good idea to pre-allocate space, if possible, when creating
storage areas. Although Rdb dynamically extends a storage area, there
is no guarantee that the operating system will allocate a disk extent
that is contiguous with existing extents. This may result in more disk
head movement and a small performance penalty. To see if a storage
area has extended, the RMU/DUMP/HEADER command is used. The
number of times each storage area has extended will be reported. Note
that it is very important to correctly size storage areas used for hashed
indexes. This is discussed in more detail in Chapter 5.

Typically, the types of storage segment that are stored on a database page are:

• Storage segments stored by a user (table rows)

• List segments (segmented-strings)

• Index node segments

The storage segments are stored with header information and a fragment indicator.

The user-stored segments contain user data. List storage segments contain a
pointer to the actual segments, which hold the user data. Lists are designed to
hold large amounts of unstructured data, such as graphics, voice, or image
data. Rdb does not know or care about the contents of the list; it merely knows
the length of the segments. The length of a segment is anything from 0 to 64
Kbytes and is specified by Rdb with the special name RDB$LENGTH. The
value of a segment is given the special name RDB$VALUE. These names are
used to manipulate lists.

In Rdb lists are stored by default in the RDB$SYSTEM storage area. How­
ever, it is possible to define an alternative default list storage area on the
CREATE DATABASE statement. The CREATE STORAGE MAP statement
allows the database designer to specify that:

• lists from different tables are to be stored in the same storage area

• lists from a single table are to be stored in their own storage area

• different lists from the same table be stored in different storage areas

An example of manipulating segmented strings was given in Chapter 3.

102 Storage Structures

Index node segments are stored on a database page the same way as any other
type of segment. An index node segment contains at least three index key
entries. The two types of index node segments are sorted and hashed.

If a table is stored in a UNIFORM page format storage area, the sorted index or
indexes are stored in a logical area within the storage area. Each sorted index has
its own hierarchical tree structure consisting of a collection of index nodes that are
linked together. A database storage area with a MIXED page format may contain
a number of rows from tables and their hashed indexes. These may be located
together. See Chapter 5 for more information on hashed index placement.

4.5.6 The Page Tail

4.5.7

4.5.8

The page tail comes at the end of the storage segments and usually contains
snapshot file information, which is described later in this chapter.

System Record

Each page in an area with MIXED page format contains a system record
pointed at by line index entry zero. If there are no hash buckets on the page,
the system record typically will take up 5 bytes of space. If a page contains a
hashed index, the system record will then contain a pointer to the hash bucket,
with the pointer usually adding an extra 6 to 10 bytes to its length. The system
record will contain as many pointers as there are hashed indexes defined on
that database page.

The Database Key

Now that the format of a database page has been explained, it is possible to
explain the concept of a database key. A database key ordbkeyis a pointer to
a storage segment on a page. It is used for fast, direct access to a row and may
be specified in SQL statements such as SELECT and INSERT. The database
key contains the database logical area number, the page number within the
area, and the line number. The length of a database key is typically 8 bytes
when referring to base tables and longer when referring to database views.
Digital provides a formula for calculating the length of the database key in
bytes when a view is involved.

4.5 The Database Page Structure 103

The formula is:

8 * number of tables named in the view

The length of time for which a database key stays valid may be specified when
the program attaches to the DATABASE or on the CREATE DATABASE
statement. The choice is:

•SCOPE IS TRANSACTION -The duration of a transaction (default)

• SCOPE IS ATTACH - The duration of a database attachment

The behavior of Rdb with respect to the re-use of database keys differs de­
pending upon which of the above options is taken.

If a user attaches to the database with a scope is transaction and deletes a
record, the database key of that record can be re-used as soon as that user
commits the transaction. Clearly, if the user rolls back the transaction the
record will not be deleted and the database key will not be available for re-use.

If a user attaches to the database with a scope is attach and deletes a record,
the database key of that record cannot be re-used until the user detaches from
the database.

Note that if all users of the database attached with scope is transaction, then
the database key scope is transaction for all users. If on the other hand only
one user attaches with scope is attach, then the database key scope is attach
for all users. In fact, as long as one user is attached with scope is attach,
database keys will not be re-used on the database.

Suppose a user, therefore, attaches with scope is attach and deletes rows from
the database and then detaches. The space freed up by the deleted records is
available for re-use, however, if users are active with scope is attach, the data­
base key will not be available for reuse. In this case, although the space freed
up by a deleted record is re-used, a new database key must be allocated which
will require a line index entry (4 bytes) and a TSN index entry (4 bytes).

Hint: Do not write applications where the application expects the value of
the database key to be stable across database attaches. It probably will
be; however, this is not guaranteed by Digital. An SQL IMPORT will
almost certainly cause the value of a row's database key to change.

4.6

104 Storage Structures

SPACE AREA MANAGEMENT (SPAM) PAGES

When Rdb is inserting storage segments (rows from tables or index nodes) in
the database, it must find database pages that contain enough free space to
hold the new storage segments. When a database is created, the storage areas
contain pages that have ample free space. Once many storage segments have
been inserted, it is important that Rdb does not waste time, processing power,
and disk 1/0 reading database pages into a buffer to insert new storage seg­
ments, only to find that these pages do not contain enough free space. This
could be disastrous for performance, with many physical I/Os to disk being
performed to find free space for each storage segment. To ensure that this
situation does not occur, Rdb uses a sophisticated space management scheme
based around space management pages, often known as SPAM pages.

A space management page contains a map of a range of database pages, with
each entry specifying the free space that is available for each database page in
the range. Figure 4.10 shows space management page entries pointing to the
appropriate data pages.

Figure 4.10 SPAM Entries Pointing to Data Pages

1

• • •

SPAM Data Data Data SPAM

Page
Number
-->

Space management pages are used in single-file and in multifile databases and
in database storage areas with UNIFORM and MIXED page format. In
multifile databases that contain storage areas with UNIFORM page format
space management is handled the same way as it is in single-file databases. In
this situation, only one storage segment type may be stored on a database
page, simplifying the space management page entries. Rdb always knows the
size of the storage segment that is to be stored. However, if compression is
enabled for a table, the actual space taken up by a row will vary for each row

4.6 Space Area Management (SPAM) Pages 105

depending on how effective the compression has been. Also, non-unique sorted
indexes may contain duplicate nodes of a different size to the higher level
nodes. Even in uniform page format storage areas, therefore, storage seg­
ments may be of varying sizes and as we shall see shortly, threshold values
may need to be specified.

In multifile databases that contain storage areas with MIXED page format,
more than one storage segment type may be stored on a database page. In this
situation, Rdb cannot know the size of the next storage segment to be stored.
Therefore, to manage space in MIXED page format areas, by default, Rdb
uses the concept of threshold values. Threshold values may be specified as
part of the CREATE STORAGE AREA and ALTER STORAGE AREA state­
ments. The space management pages do not hold the exact value of the free
space available in a database page; rather they hold a value that indicates
when certain thresholds have been exceeded. Holding the exact value would
place an unacceptable processing burden on Rdb and is unnecessary.

The database designer also may specify the interval between space management
pages as part of the CREATE STORAGE AREA clause. Each space manage­
ment page manages a number of database pages. Therefore, the structure is
one space management page, followed by the database pages it manages,
followed by the next space management page.

The specification of the number of space management pages in a storage area
has an impact on performance because it either increases or decreases the time
spent searching for free space. The database designer has control over the
number of pages managed by a space management page, that is the interval
between them, for MIXED page format storage areas but not UNIFORM
page format storage areas.

4.6.1 Space Management in Storage Areas with UNIFORM Page Format

In a single-file database or multifile database with UNIFORM page format
storage areas, the space management page is the same size as the data page it
manages; that is, it is the same number of 512-byte disk blocks. Therefore, a
space management page contains a finite number of entries, the number being
limited by its size. This also regulates the frequency at which a space manage­
ment page must occur in a storage area. Given a database page size and,
therefore, a space management page size, the intervals between the space
management pages in a database storage area are found from Table 4.1.

106 Storage Structures

Table 4.1 SPAM Intervals for Various Page Sizes

Page Size

(Blocks)

I

2

3

4

SPAM Interval

(Pages)

531

1089

1647

2205

These cannot be changed. Each entry in a space management page contains an
entry for each database page it manages and an entry specifying a fullness
threshold value. Each of these entries is two bits long. For UNIFORM page
format, by default, database storage areas may take a value 0 (neither bit set)
or 3 (both bits set). The value 0 denotes that a database page is not full, and
the value 3 denotes that a database page is full. For database storage areas
with MIXED page format, by default, this entry may take different values.

A database designer may, however, override the default case and specify thresh­
old values for areas containing UNIFORM page format. The threshold values
for UNIFORM page format areas are set on the CREATE STORAGE MAP
statement or the CREATE INDEX statement. How thresholds work will be
discussed shortly.

Hint: If a storage area is created with an initial allocation of 1000 pages,
each one block long, Table 4.1 shows that two space management pages
will be needed. These space management pages do not count against the
storage area's initial allocation, so if the RMU/DUMP/HEADER com­
mand is used to check the size of the storage area, a value of 1002 pages
will be found even though the initial allocation was specified as 1000 pages.
So these extra pages are space management pages, not poor arithmetic on
the part of Rdb.

Two other types of pages are found in database storage areas with UNIFORM
page format. These are area bit map (ABM) pages and area inventory pages
(AIP). Together, they optimize sequential searches in a table by informing
Rdb which space management pages manage which database pages for a par­
ticular logical area. This avoids a situation where Rdb could be checking

4.6 Space Area Management (SPAM) Pages 107

space management pages that are not relevant. The function these two page
types perform is critical for good performance in very large storage areas.

4.6.2 Space Management in Storage Areas with MIXED Page Format

The space management page entries in storage areas with MIXED page format
(or in UNIFORM page format if threshold values have been set) are updated
whenever the total amount of data stored on a database page managed by a
particular entry exceeds a threshold value. Consider what happens when rows
are inserted into a table. Rdb decides that it will store a particular row on a
particular database page, known as the target page. The way Rdb chooses the
target page depends on whether explicit placement (using the PLACEMENT
VIA clause in the storage map) is specified or not. If the target page is full,
Rdb typically checks the other pages in the database buffer for free space. If
they are full, Rdb looks at the space management page that manages the target
page to find if another page contains enough free space in which to store the
row. If there is not enough free space on the database pages in that SPAM
interval, the search for free space continues. Rdb only has to look at the space
management pages to find free space; it does not have to search the data pages
themselves. This is a very good strategy where large storage areas are
involved.

The interval between the space management pages in a MIXED page format
storage area may be specified by the database designer. The interval between
space management pages and the threshold values is specified as part of the
CREATE STORAGE MAP and ALTER STORAGE MAP statements.

Hint: If the database designer decides that new INTERVAL and
THRESHOLD values should be applied to an existing database the
RMU/MOVE_AREA command may be used.

The default number of database pages managed by a space management page
in a MIXED page format area is 216. Figure 4.11 shows the layout of space
management pages and database pages in this situation. Of course, the data­
base designer may choose an interval other than the default as long as it does
not exceed the maximum interval, which is a function of the page size of the
storage area. The minimum value for the interval is 216 pages, which is the

108 Storage Structures

Figure 4.11 SPAM Intervals in Storage Areas

Page 1 Page2 Page 3 Page 217 Page 218 Page 219

Data Data Data Data

• • •

default. Digital provides a formula for calculating the maximum value for the
interval:

((Page size in blocks* 512) - 22) * 4

Therefore, a page size of one block allows a maximum interval of 1960 data­
base pages, and a page size of two blocks allows a maximum interval of 4008
pages.

4.6.3 How Space Management Page Thresholds Work

We said that the space management page entries in storage areas with MIXED
page format (or UNIFORM page format if threshold values have been set) are
updated whenever the total amount of data stored on a database page man­
aged by a particular entry exceeds a threshold value. The database designer
may specify up to three threshold values. By default, they are 70%, 85%, and
95% for MIXED page format areas. (For UNIFORM page format areas the
default is in fact (0,0,0) which means that a page is marked as full once there
is not enough space to store an uncompressed record.)

Explaining how space management page thresholds work is easiest with an
example. Suppose that the BANKING database has been created such that
the database designer has specified that the threshold values for the
ACCOUNT_AREA are 70%, 80%, and 90%.

These threshold values define four ranges of guaranteed free space on a data­
base page in the ACCOUNT_AREA. The free space available in a database

4.6 Space Area Management (SPAM) Pages 109

will fall into one of these ranges at some point. Given these threshold values,
the ranges of guaranteed free space are:

• 30% free space (0% to 70% full)

• 20% free space (70% to 80% full)

• 10% free space (80% to 90% full)

• 0% free space (90% to 100% full)

If a space management page entry shows that a database page is in the 90% to
100% full range, Rdb will not attempt to use that database page to store a
storage segment. Imagine that Rdb wishes to insert a row in the ACCOUNT
table in the ACCOUNT_AREA storage area and the size of the row is 25% of
a data page. Rdb will not be interested in any database page other than those
pages in the first threshold-fullness range because database pages in the sec­
ond threshold-fullness range only have 20% guaranteed free space.

Then suppose that an application program, which adds new customer accounts
to the database, starts to insert rows in the ACCOUNT table. The rows in the
ACCOUNT table are stored according to the appropriate storage map, in this
case ACCOUNT _MAP. This storage map specifies that the rows are to be
placed via the hashed index ACCOUNT_INDEX (see Chapter 5 where hashed
indexes and placement is described). Essentially, when Rdb inserts a row, a
hashing algorithm chooses a target page in which to attempt to store that row.

Suppose database page 23 in this storage area is empty apart from the fixed
overhead described earlier in this chapter. The application program inserts a
row and the hash algorithm calculates that the row should be stored on that
empty database page. During the application program run, a number of rows
hash to this database page. Rdb inserts rows into this target page. So long as
the target page can hold the inserted rows, everything goes smoothly.

However, eventually a point will be reached when the database page is full
(the third threshold level is crossed). Rdb then must look elsewhere for a data­
base page to hold the row. If no other database pages in the buffer contain
enough free space, the SPAM page that controls the interval in which the
target page belongs is now searched for a database page that contains enough
free space to hold a new row.

Say, for example, that Rdb finds database page 42 and inserts rows in it.
Eventually, a point will be reached when database page 42 becomes 65% full,

110 Storage Structures

leaving only 35% of the free space available on the page. However, the data­
base page is still in the first threshold-fullness range; that is, it is less than
70% full.

Then the user begins to insert a group of new customer accounts. A row is
inserted and the hash algorithm calculates a target page, as it did before. Sup­
pose database page 23 is the target page again. That page is full, so Rdb must
look for free space. It looks at the space management page, as before, and
finds page 42 - our 65% full database page. If the row takes up 13% of the
available space on an empty page, in our example there would be enough free
space (30% guaranteed) in which to store the row. It is, therefore, stored on
database page 42, which now becomes 78% full. That leaves 22% free space.
Now, however, database page 42 is in the second threshold-fullness range,
which guarantees that 20% of the database page is still available. The appli­
cation inserts another row, and page 42 is chosen again because the space
management page entry shows that 20% free space is available there. This
amount is enough, so the row is inserted. Database page 42 is now 91 % full,
so it falls into the fourth threshold-fullness range as threshold level three is
crossed.

If the application program continues to insert rows whose target page is cal­
culated to be 23, Rdb will continue to check the space management page.
Database page 42 is now in the fourth threshold-fullness range, however. With
the next entry, Rdb ignores this page, therefore, and instead looks for a space
management page entry pointing to a database page that guarantees enough
free space for the data. Keep in mind that the database designer could store
more than one table in an area. If the application program tried to insert a row
from a different table that only required 6% free space, our target page would
still not have been chosen because it is in the fourth threshold-fullness range.

Calculating optimal threshold values in a storage area is not a trivial operation.
If the database designer is not sure which threshold values would be good
choices, the defaults should be taken. Choosing incorrect threshold values
may degrade performance. A good way to choose optimal threshold values is
to calculate what the thresholds should be and then create a small test data­
base with these threshold values set for the required storage areas. Some rows
should be inserted and then the database pages analyzed with the RMU/DUMP
command to see if the expected behavior matches the actual behavior.
Remember that Rdb uses the uncompressed size of a row to calculate the free
space necessary to insert that row. So if data compression is being used, the

4.6 Space Area Management (SPAM) Pages 111

designer may expect a row to fit on a page where it does not. If the threshold
values need to be changed, this can be done with the RMU/RESTORE or
RMU/MOVE_AREA command.

Hint: Use RMU/DUMP/HEADER/OPT=DEBUG to see how threshold
percent values translate into threshold byte values. The SPAM_Tl,
SPAM_T2 and SPAM_T3 fields are the ones to check.

4.6.4 Snapshot Files

Besides having files for user data and housekeeping information, Rdb databases
also hold another type of file. Called the snapshot file, it has a file extension of
.SNP. A single-file Rdb database has one snapshot file; a multifile database
has one snapshot file for each storage area. The database designer may specify
the size of each snapshot file and its location but not whether such files exist.
Snapshot files are always present and are necessary to support such activities
as READ ONLY transactions and the online backup facility. IfREAD ONLY
transactions and online-backups are not needed, the snapshot mechanism may
be disabled. This means that the snapshot files are present although they are
not used. To understand why Rdb uses snapshot files, it is necessary to under­
stand the concept of a snapshot transaction.

4.6.5 Snapshot Transactions

A snapshot transaction, also called a read-only transaction, is started by
issuing a SET TRANSACTION statement with a READ ONLY clause. For
example:

SOL> SET TRANSACTION READ ONLY;

A snapshot transaction ensures that the data in the database is always seen the
way it was when the transaction started. This is true regardless of however
long the transaction is active. It is almost as if Rdb takes a photograph of the
database when the transaction starts, freezing the database in time; hence the
name snapshot transaction. This consistent view of the data is one of the
advantages of using snapshot transactions.

112 Storage Structures

In the default state, snapshots are enabled. Transactions that update the data­
base when snapshots are enabled write the before images of the updated rows
into the relevant snapshot file. Rows, of course, are not the only objects that
could be updated. Index nodes are also written to the snapshot file. A snapshot
transaction is able to read these before images in the snapshot file and it does
not need to hold read locks to maintain consistency. Because of this fact, the
second major advantage of using snapshot files becomes apparent. Snapshot
transactions do not participate in lock conflict situations with updating trans­
actions. An end of year report, for example, could run for hours analyzing
masses of data in the database without being involved in lock conflicts with
updating transactions.There is one instance where snapshot transactions are
involved in lock conflicts with other transactions. This occurs when another
transaction has started that has reserved the database areas in EXCLUSIVE
mode. In this case a snapshot cannot start. The converse is also true.

To ensure that snapshot transactions only see data modified by transactions
that complete before the snapshot transaction starts, Rdb uses the concept of
a transaction sequence number (TSN). These numbers were mentioned earlier
while discussing the structure of a database page. When a transaction starts, a
transaction sequence number is assigned to it. If a storage segment is updated
by the transaction, the transaction sequence number is associated with that
storage segment. If a SHOW TRANSACTION statement is issued after a
snapshot transaction starts, the transaction sequence number values held by
the storage segments that the snapshot transaction can and cannot see are
returned. For example:

SOL> SET TRANSACTION READ ONLY;
SOL> SHOW TRANSACTION;

Transaction information:
Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Read only
Transaction information returned by base system:
a snapshot transaction is in progress
- all transaction sequence numbers (TSNs) less than 144 are visible
- all TSNs greater than or equal to 144 are i nvi si bl e
- session ID number is 24

4.6 Space Area Management (SPAM) Pages 113

Figure 4.12 A Snapshot Transaction with Updating Transactions

txb(1) - Aborted LI

txn(2) - Committed 1 1

txn(3) Aborted

txn(4) Committed

txn(5) ••••••••••••••••••-Active

txn(6)

txn(7)

txn(8)

!=========._;:. Snapshot

- Aborted

SET TRANSACTION
READ ONLY Commences

Committed

Time

The example shows that this snapshot transaction can see the storage segments
updated by transactions with transaction sequence numbers ofless than 144.
It cannot see the storage segments updated by transactions with transaction
sequence numbers greater than or equal to 144. The fact that the transaction
characteristics information shows it is read-only proves this is a snapshot.

From the previous example, we deduce that transactions with transaction
sequence numbers of less than 144 had completed before the snapshot trans­
action started. Figure 4.12 shows a snapshot transaction starting.

In the figure, the snapshot transaction only sees the changes made by txn(2)
because it completed before the snapshot transaction started. Txn(1) rolled
back its changes, so the snapshot transaction does not see them. In this exam­
ple, txn(2) would have been a transaction with a transaction sequence number
of less than 144. The snapshot transaction cannot see txn(3) and txn(4) be­
cause these transactions completed after the snapshot transaction started. The
snapshot transaction cannot see txn(5) because it has not yet completed and,
therefore, will complete after the snapshot transaction started. The snapshot
transaction cannot see txn(7) and txn(8) because they started after it.

4.6.6

114 Storage Structures

Disabling Snapshot Transactions

From the previous discussion, it is evident that snapshot files could experience
high disk I/O activity. Snapshots may be placed on separate disk devices to
spread the disk I/O load, but Rdb also can disable the snapshot mechanism. If
a transaction is started that reserves an area in EXCLUSIVE mode, it must by
definition be the only transaction accessing that area. Therefore, no snapshot
transactions may be started on that area, in which case there is no need for the
EXCLUSIVE transaction to write any before images to the relevant snapshot
file because they are never needed. Typically, load programs should use
EXCLUSIVE mode.

Another method of disabling the snapshot mechanism is by using the ALTER
DATABASE statement. For example:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking SNAPSHOT IS DISABLED;

The snapshot mechanism may be re-enabled in a similar fashion:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking SNAPSHOT IS ENABLED;

If the snapshot mechanism is disabled, snapshot transactions are converted to
READ WRITE retrieval mode transactions. For example:

SOL> ALTER DATABASE FILENAME eurobank: [uk.db]banking SNAPSHOT IS DISABLED;
SOL> SET TRANSACTION READ ONLY;
SOL> SHOW TRANSACTION;
Transaction information:

Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Read only
Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 192
- snapshot space for TSNs less than 192 can be reclaimed
- session ID number is 32

4.6 Space Area Management (SAPM) Pages 115

Note that the SHOW TRANSACTION statement now shows that "a read­
write transaction is in progress."

4.6. 7 Altering Snapshot Files

The size of snapshot files and the number of pages by which they dynamically
extend may be changed with the ALTER DATABASE statement by specify­
ing the storage area whose snapshot file needs to be changed. For example:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> ALTER STORAGE AREA CUSTOMER_AREA
cont> SNAPSHOT ALLOCATION IS 300 PAGES
cont> SNAPSHOT EXTENT IS 100 PAGES;

4.6.8 Def erred Snapshots

By default, all transactions that update the database write before images into
the snapshot files. If there are disk I/O bottlenecks in the system and the
application has many update transactions and few READ ONLY transactions,
performance may be improved by using the deferred snapshot capability of
Rdb. If this capability is used, updating transactions do not write to the snap­
shot files unless a READ ONLY transaction is active.

If an update transaction is active and a read-only transaction starts, it will be
forced to wait until the update transaction has completed. Subsequent update
transactions will write before images to the snapshot files. If the snapshot
transaction then completes, new update transactions will not write to the snap­
shot file until another snapshot transaction attempts to start, and the scenario
is repeated.

The ALTER DATABASE statement is used to select the deferred snapshot
capability. For example:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> SNAPSHOT IS ENABLED DEFERRED;

The deferred snapshot capability may be turned off and the snapshot mecha­
nism returned to its normal mode of execution with the ALTER DATABASE
statement. For example:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> SNAPSHOT IS ENABLED IMMEDIATE;

116 Storage Structures

Hint: To check whether snapshots are deferred or immediate, the RMU/
DUMP/HEADER command should be used.

4.7 READ-ONLY AREAS

An Rdb storage area may be set to be read-only, in which case the perform­
ance of operations that retrieve data from the storage area may improve be­
cause certain overheads, such as locking, are removed. Of course, data cannot
be inserted, updated, or deleted in a read-only area.

To designate a storage area as a read-only area, the ALTER DATABASE
statement is used. For example:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> ALTER STORAGE AREA customer_area
cont> READ ON LY;

This example shows how to alter the storage area so that write operations may
be performed:

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> ALTER STORAGE AREA customer _area
cont> READ WRITE;

4.8 WRITE ONCE READ MANY (WORM) AREAS

With the extremely cost-effective storage now available on WORM optical
devices, Rdb allows for the placement of lists (segmented strings) on them.
Note that non-list data cannot be written to a WORM device except via RMU
commands. A WORM device is treated similarly to any read-write device and
so special qualifiers pertinent to WORM devices must be used when perform­
ing various database administration functions, including:

• RMU/MOVE_AREA
• RMU/COPY_DATABASE
• RMU/RESTORE/ONLY_ROOT

4.8 Write Once Read Many (WORM) Areas 117

These qualifiers are/WORM and/NOSPAMS. The/WORM qualifier is used
to convert a read-write area to a WORM area, setting the storage area alloca­
tion and logical end-of-file as appropriate. The /NOSPAMS qualifier ensures
that the creation of SPAM pages is disabled in the WORM area as it makes no
sense to have SPAMS in what will essentially be a read-only area.

Apart from holding list data, Rdb support for WORM devices can be useful
when storage areas become stable and are not updated. These storage areas
can be archived to a WORM device with the RMU/MOVE_AREA command.
This means that the data is stored on cost-effective storage media but remains
online and accessible to the programs that accessed it when it was held on
read-write media, with the exception that it is now read-only.

A problem with holding large amounts of list data on WORM devices is that
any changes to such data could swamp the after-image journal file. To avoid
this, the logging of WORM data changes can be optionally disabled, for
example:

SOL> CREATE DATABASE FILENAME banking
cont> CREATE STORAGE AREA txn_area_93
cont> ALLOCATION 1000 PAGES
cont> WRITE ONCE JOURNAL IS DISABLED;

After-image journaling is described in Chapter 9.

5

5.1

Table Access

Once data has been put into a database, the data must be accessible or it is
useless. Many tools are used to access the data in Rdb databases.

INDEXED ACCESS

A user may use interactive SQL to manipulate the data in an ad-hoc fashion or
a variety of end-user decision-support tools, such as Microsoft's Access or
the Trinzic Corporation's Forest & Trees to name but two.

A user also may run pre-written applications that use embedded SQL in pro­
grams. Usually, these do not provide an ad-hoc interface. Instead, they are
menu driven or possess a graphical user interface (GUI) so the user can select
from a variety of options. These options generally would map onto business
functions; for example, a user may choose an option to update a customer
account or query a customer's last five account transactions.

The latter example is typical of a transaction processing application, where
users are performing discrete, predefined functions. In other words, the data­
base designer knows the types of transactions that will be run against the
database, the data they access, their frequency, and priority. The former
example, end-user decision support, is by its nature ad-hoc. Therefore, the
work that will be performed by the database cannot be strictly determined.
Ad-hoc querying and decision-support work tend to result in large amounts of
data being filtered, returning to the end-user data that meets certain criteria.
Transaction processing applications tend to manipulate small quantities of
data, but the number of users and the transaction rates often are high.

When asked to return some data, Rdb could sequentially scan an entire table
or tables to find the appropriate rows. The correct data would be returned. In
a small database the performance may be acceptable, but if the database holds

5.1 Indexed Access 119

a few gigabytes of user data, the performance almost certainly will not be
acceptable.

Consequently, Rdb maintains structures called indexes. Indexes are used to
dramatically speed up the retrieval of data based upon some search criteria. If
we wanted the account with the number 4523346786, for example, sequentially
scanning the ACCOUNT table until the correct row was found could result in
many disk I/Os. By using an index based on the column ACCOUNT _NO,
direct access to the appropriate row is gained with perhaps only one disk I/O
being involved. Indexes may speed up data retrieval, but they usually ad­
versely affect the insertion, deletion and sometimes updating of data.

The database designer, therefore, has to make a careful choice when deciding
which indexes to create in the database. Too many indexes may affect the
performance of applications that insert data. Too few indexes may severely
degrade the performance of applications that retrieve data. Also, the more
indexes the database designer creates, the more disk space is required. Obviously,
in read-only databases that support retrieval operations only, the database
designer does not have to perform a balancing act. Many indexes can be
created, with disk space requirements as the only concern.

How can an organization have read-only databases? How did the data get into
them in the first place? Read-only, or reference databases, are common. Many
organizations do not want ad-hoc work done on the production databases that
are supporting the second-by-second changes in the organization's business.
These organizations, therefore, periodically extract sections of the database to
give to ad-hoc users. Digital's DEC Data Distributor, described in Chapter
12, may be used for this task. Data warehousing has become a popular term
used to describe these reference databases.

There is no value in creating indexes without information on which transac­
tions need what data, how often transactions execute, and whether they are
important to the organization's business; that is, their priority relative to other
transactions. (This information is often determined through a transaction
analysis.) Without it, the database designer may end up creating indexes that
are never used for retrieval and forgetting to create indexes that are needed for
an organization's most important transactions. The database designer also
may end up creating inappropriate hashed indexes instead of sorted indexes.
In the authors' opinion, too many companies miss out this vital analysis.

120 Table Access

Rdb uses three methods to access data:

• Sequential retrieval

• Indexed retrieval

• Database key retrieval

This chapter is primarily concerned with indexed retrieval, although database
key retrieval is mentioned briefly later in the chapter. In sequential retrieval,
Rdb searches all the rows in a table to find those rows which match the speci­
fied search criteria. It is a fast process for small tables, but slower for large
tables. There are also locking implications, as described in Chapter 7. If there
are no suitable indexes on a table, the rows in the table will be accessed
sequentially. Because of asynchronous pre-fetch, a new feature introduced
with Rdb Version 6.0, the sequential retrieval of rows may now be performed
more quickly. Asynchronous pre-fetch is discussed later in this chapter.

Two types of indexed retrieval are available in Rdb:

• Sorted index

• Hashed index

Most relational database systems available today support sorted index re­
trieval and some support hashed index retrieval. Sorted index retrieval is a
good general-purpose method of indexed retrieval, while hashed index retrieval
is best where only certain types of queries are to be performed. Sorted index
retrieval works well for exact match retrieval, that is, where the complete
value of a key is known. It also is useful for finding whether a row with a
certain key value exists in a table. If a number of rows are to be retrieved
based on a range of key values or if only the first part of the key is known, then
sorted index retrieval also performs well.

Hashed index retrieval also performs well for exact match key retrieval. In
fact, it generally performs better than sorted index retrieval in this area, espe­
cially if a table has many rows. It is also very efficient at finding whether a
row with a certain key value exists in a table. Hashed index retrieval cannot be
used for partial key searches, range retrievals, or with operators other than the
equality operator. Sequential retrieval may perform best if there are few rows
in a table.

5.2

5.2 The Structure of Sorted Indexes 121

THE STRUCTURE OF SORTED INDEXES

A sorted index structure looks like an inverted tree and is somewhat similar to
that of indexed sequential files. This tree structure contains index key nodes
and duplicate key nodes. The index key nodes contain unique index keys and
pointers to other nodes. Because they contain the key values, a query that
requires only key data can be satisfied without having to retrieve the rows
from the actual table. Duplicate key nodes are present if the key word UNIQUE
was not specified in the CREATE INDEX statement. If an index contains
duplicate key values, they are held in duplicate nodes. Figure 5.1 shows a
sorted index structure.

Figure 5 .1 shows a balanced hierarchical structure, with three index nodes
linked by database keys. Level 1 nodes point to the rows in the table or to
duplicate index nodes. Level 2 and 3 nodes point to lower-level index nodes.
The Level 3 node (the index root) is at the top of the index tree. The duplicate
index nodes contain pointers to rows with identical key values. If there are
many rows with the same key values, more than one duplicate index node may
be needed and these duplicate index nodes are chained together.

Figure 5.1 A Sorted Index Structure

122 Table Access

Figure 5.2 A Duplicate Node Structure

Level 2 Node

i
Level 1 Node Carpenter England Hobbs

Figure 5.2 shows a duplicate node structure in more detail. Only single
instances of the key values Carpenter, England, and Hobbs exist; however,
there are a number of rows with the key value Hobbs. Therefore, a duplicate
node is seen pointing to a number of table rows with the key value Hobbs.

5.2.1 Creating a Sorted Index

Not surprisingly, the CREATE INDEX statement is used to create an index.
In Chapter 2, we saw how to create a simple sorted index that, for example,
may be found in a single-file database. In a single-file database, all the indexes
for a particular table are stored in a single logical area in the .RDB file. For a
multifile database, however, the database designer specifies a storage area in
which to create the index. The index can be partitioned across a number of
storage areas or it can share a storage area with the rows from the table.

The following example shows how the database designer creates a sorted
index in a specified storage area:

SOL> CREATE INDEX cust_index
cont> ON customer (surname, first_name)
cont> TYPE IS SORTED
cont> STORE IN cust_area;

5.2 The Structure of Sorted Indexes 123

In this example, a sorted index named CUST _INDEX is created in the storage
area CUST_AREA on columns surname andfirst_name.

The database designer can partition indexes in a way that is similar to parti­
tioning tables. For example:

SOL> CREATE UNIQUE INDEX cust_no_index
cont> ON customer (customer_no)
cont> TYPE IS SORTED
cont> STORE USING (customer_no)
cont> IN customer_area_l WITH LIMIT OF('3000000000')
cont> IN customer_area_2 WITH LIMIT OF('6000000000')
cont> OTHERWISE IN customer_area_3;

In this example, a sorted index, CUST_NO_INDEX, is created and parti­
tioned in three storage areas depending on the value of CUSTOMER_NO.
Partitioning an index in this way enables the database designer to spread the
disk 1/0 to an index across multiple disk spindles. There are other beneficial
effects that can be obtained from partitioning an index as there is a separate
index tree maintained for each partition dealing with its own subset of rows.
This often means that each tree has fewer levels of nodes than the equivalent
non-partitioned index. This is a physical implementation and, to the outside
world, there appears to be one logical index. Because of the partitioning, in­
dex lock conflicts may also be reduced. The partitioned index created in the
above example is shown in Figure 5.3.

A sorted index is accessed in a number of ways. If a unique index key is
specified in the query, Rdb uses it to locate the row and access it directly from

cust_no_index partition 1 cust_no_index partition 2 cust_no_index partition 3

customer_area_ 1
limit of 3000000000

customer _area_2
limit of 6000000000

Figure 5.3 A Partitioned Index

customer _area_3
overflow values

5.2.2

124 Table Access

the table. This technique is called direct index access. If the query specifies a
partial key, for example, the first two columns of a three-column key, or a
duplicate key, Rdb will scan the index until the appropriate keys are found,
then the rows are read from the table. This technique is called retrieval by
index. When the columns required by the query form part of the index key,
there is no need to access the table itself. In this case, Rdb performs index­
only retrieval.

Hint: The index-only retrieval method requires fewer logical and physical
1/0 operations to satisfy the query. Retrieval by index uses more CPU
and disk 1/0 resource.

Sorted Index Key Compression

Sorted indexes can use a considerable amount of disk space especially if they
arc defined on large tables or the keys themselves are of substantial length. To
reduce the disk space requirements of sorted indexes, four types of index com­
pression are available.

• Prefix and suffix compression

• SIZE IS segment truncation

•MAPPING VALUES compression

• Run-length compression

Note that the reduction in disk space requirements is as a result of less index
nodes being needed which in tum may result in a decrease in disk I/O require­
ments but an increase in locking.

Prefix and Suffix Compression

A database designer cannot specify whether prefix and suffix compression are
used; Rdb uses this type of compression automatically. Prefix compression
alone is applied to the Level 1 index nodes whereas both prefix and suffix
compression are applied at the other levels. Prefix compression works by
removing bytes from the front of the index key that are the same as the previous
index key. Suffix compression removes redundant trailing bytes from the key.

5.2 The Structure of Sorted Indexes 125

SIZE IS Segment Truncation

SIZE IS segment truncation may be used for CHAR or VARCHAR datatypes.
The database designer may specify on the CREATE INDEX statement that
the first n bytes of the key be used in the index, as it is this firstn bytes that are
unique. This means that if the key size is k, then k - n bytes may be saved for
each index entry. For example, the database designer might specify that the
first five characters of the branch name provide uniqueness.

SOL> CREATE UNIQUE INDEX branch_name_idx
cont> ON branch
cont> (branch_name SIZE IS 5)
cont> TYPE IS SORTED
cont> STORE IN index_area;

If specifying that the first 5 bytes be used for the index entry in the above
example actually results in an attempt to store a duplicate value being made,
an error will be returned and the insert or update operation will fail. Note that
the designer can specify that this be a non-unique index if required.

MAPPING VALUES Compression

Where SIZE IS segment truncation may be used only for CHAR or VARCHAR
datatypes, MAPPING VALUES compression may only be used for TINYINT,
SMALLINT and INTEGER datatypes. The specification of MAPPING
VALUES allows Rdb to encode the numeric data in a more compact internal
form hence saving disk space.

SOL> CREATE UNIQUE INDEX bank_annual_business_idx
cont> ON bank_annual_business
cont> (branch_code,

cont> bus_year MAPPING VALUES 1950 TO 2001)
cont> TYPE IS SORTED
cont> STORE IN history_area;

Run-length Compression

Rdb Version 6.0 onwards enables space characters from text datatypes and
binary zeros from non-text datatypes to be compressed. Quite dramatic space
saving for indexes can be achieved with this technique.

126 Table Access

Run-length compression compresses a sequence of space characters from text
datatypes and binary zeros from non-text datatypes. It is most useful when
there are a lot of consecutive spaces or binary zeros. Run-length compression
can be used with sorted or hashed indexes. An example of a sorted index
creation using run-length compression follows:

SOL> CREATE UNIQUE INDEX all_branch_index ON branch
cont> Cbranch_code,
cont> branch_name,
cont> branch_address,
cont> managers_name)
cont> ENABLE COMPRESSION
cont> (MINIMUM RUN LENGTH 2)

cont> STORE IN cust_area;

The MINIMUM RUN LENGTH is the minimum length of the sequence that
Rdb should compress and MINIMUM RUN LENGTH is 2 means that Rdb
should compress each sequence of 2 or more space characters or binary zeros.
A sequence is compressed to the minimum run length plus one byte contains
compression information, that is, the number of space characters compressed
in this sequence.

As an example, consider how this compression works on the managers_name
key column which is 20 bytes in length using a run-length compression of 2.

Without run-length compression the contents of this key column might be:

Dan*de*Lion*********

Where a* character represents a space. With run-length compression this key
column will now be:

Dan*de*Lion**#

Where a# character represents the compression information. This key col­
umn is now 14 bytes in length which is a considerable space saving.

Hint: Care is needed when using a minimum run length of one to ensure
that the key column size is not increased! For example, a key column
containing the character string AB*TT*GHT*GG*GHT may, after
compression, contain AB*#TT*#GHT*#GG*#GHT.

5.2 The Structure of Sorted Indexes 127

By compressing index keys, as well as saving disk space, disk 1/0 is reduced
because more keys can be held in an index node and therefore less index nodes
are needed. This may result in a sorted index tree with fewer levels. However,
note that fewer index nodes may mean more lock contention in the index in
multi-user systems and the designer should be prepared for this occurring.

System Metadata Index Compression

Run-length compression can be so effective at reducing space usage that Rdb
now gives the designer the opportunity to compress the system indexes resid­
ing in the system metadata. Unless applications frequently execute concurrent
DDL operations, system index compression is recommended.

SOL> CREATE DATABASE FILENAME banking
cont> SYSTEM INDEX COMPRESSION IS ENABLED:

5.2.3 Clustering Rows with a Sorted Index

If a sorted index is created on a table and rows are inserted into the table, Rdb
will store the rows in the database in no fixed order. The database designer
can specify that Rdb should try to store the rows in the order in which they
appear in the index. Although Rdb will attempt to do so, there is no guarantee
that the order the rows are stored in will match the index order.

The following factors influence the level of success Rdb will have:

• The technique initially used to load the table

• The volatility of the data in the table

If clustering rows via a sorted index is required, the initial load of the table
must be performed by sorting the data in ascending key order prior to the load.

Hint: The VAX SORT utility can be used to sort the data as required.

By sorting the data, the database designer ensures that every row inserted is
physically stored after the previous row, which has a lower key value, and
before the next row, which has a higher key value. Thus, the order in which
the rows are stored will be the same as the order in which they appear in the
index.

5.3

128 Table Access

Suppose the database designer is loading the CUSTOMER table and that the
rows from this table are clustered via the sorted index CUST_INDEX, which
has a key consisting of the customer's surname and first name.

The database designer sorts the data into ascending key order and loads it into
the CUSTOMER table. The physical order in which the rows are stored in the
database should be the same as the order in which the rows appear in the
index. Imagine that the rows in the table are not deleted and new rows are
inserted whose key values fall within the range of the key values already present.
In this case, Rdb cannot insert the new rows in the appropriate physical posi­
tion relative to the old rows because there is not enough free space where they
should go. In this situation, the clustering efficiency will be degraded. If rows
are regularly deleted from the table as well as inserted, there may be enough
appropriate free space to maintain clustering efficiency. Otherwise the table
must be regularly unloaded, sorted andreloaded to maintain optimum efficiency.

If the clustering is efficient, range retrieval queries use significantly fewer
disk I/Os because the target rows are physically close to one another.

Hint: Consider the technique of at least pre-sorting data when there are
queries that require all similar alphabetic names together, for example, all
surnames with SMITH.

THE STRUCTURE OF HASHED INDEXES

Hashed indexes are a more restrictive type of index than sorted in that there
are fewer scenarios in which they can be used. However, when they can be
used, they perform very efficiently indeed, fetching the target rows with the
minimum of overhead. Hashed indexes may only be used in database storage
areas with MIXED page format. As was mentioned earlier in the book, hashed
index structures only work if the full key value is known and the equality
operator (=) is used. Hashed indexes enable a row to be accessed with only
one or two I/Os, depending on whether the rows are in a different storage area
from the hashed index or in the same storage area. Compared to a sorted
index, this is a saving in I/Os. If a large sorted index is used with many levels
of index structure, a number of I/Os may be necessary to search the index tree.
Hashed index structures also tend to result in less locking overhead than sorted

5.3 The Structure of Hashed Indexes 129

indexes because it is not necessary to lock many levels of index nodes when
using them.

Prior to Rdb Version 6.0, there was only one hashing algorithm possible known
as Hashed Scattered. Rdb Version 6.0 introduced a second hashing algorithm
known as Hashed Ordered. Depending on, amongst other factors, the type of
index key and data distribution, one of the hashing algorithms may give better
results than the other. Hashed Scattered is still the default mechanism and is
still considered to be the algorithm that should be used in the majority of
cases. Hashed Ordered may only be used if certain criteria are met.

Hashed Scattered

With Hashed Scattered, a hashing function is performed on the hashed index
key that may be composed of a single column or a number of columns from
the table. The result produces a database page number in the appropriate
storage area that is dependent upon the number of database pages initially
allocated in the storage area and the value of the hashed index key. For exam­
ple, consider the hashed index ACCOUNT_INDEX, which uses the single
column ACCOUNT_NO as a key.

We may find that an account number of 1223454432 hashes to database page
545 in the ACCOUNT_AREA storage area. Another account number,
4997866554, may hash to database page 23. The Hashed Scattered algorithm
does not typically result in a uniform distribution of page numbers and we
would expect that account numbers with consecutive values will probably
hash to completely different database page numbers, which means they will be
stored physically far apart. Unlike sorted indexes, therefore, retrieving ac­
count numbers with similar values probably will require a physical disk I/O
for each retrieval. Indeed, the randomizing effect of the Hashed Scattered
hashing function means that database buffer caching is likely to be ineffective.

Suppose a storage area contains a total number of database pages that is
identical to the number of rows to be inserted and that the index key value for
each row is unique. Is it reasonable to expect that the randomizing effect of
the hashing function will result in one row per database page? With Hashed
Scattered, the answer is probably not. We would most likely find that some
index keys hashed to the same database page. This is known as a collision and
the rows that hashed to the same page are known as synonyms. We probably
would also find that some database pages remained empty. It is, therefore,

130 Table Access

very important that the database designer carefully choose such parameters as
the storage area initial page allocation and page size when using hashed in­
dexes. Correct hashed index page sizing is critical for performance and, as a
general rule, hashed indexes need a more careful eye kept on them by the
database administrator while in production use to make sure that they remain
in tip-top condition.

Hashed Ordered

The Hashed Ordered algorithm in contrast does result in a uniform distribu­
tion. It is likely to produce a good and uniform distribution of page numbers
for data with key values that are uniformly distributed across a range, that is,
each key value occurs the same number of times. An order numbering system
which allocated an order number that was the latest order number plus one
would provide an example of a uniform data distribution.

To use the Hashed Ordered algorithm, however, the index key must conform
to certain rules, including:

• The hashed index must be a single segment index and thus must be created
on at most one column from the table.

• This table column on which the Hashed Ordered index is created must be of
integer, date, timestamp or interval datatype.

• The range of index key values should be uniform with each key value occur­
ring the same number of times.

• The index must be created ascending.

To demonstrate the uniform distribution produced by a Hashed Ordered index
and the non-uniform distribution produced by a Hashed Scattered index the
following graphs were produced showing the number of rows resident on da­
tabase pages after executing a load program that incremented the key by one.
Note that as page one is a space area management page, it is not shown.

In Figure 5 .4 rows are randomly placed on the database pages. The number of
rows in a page ranges from zero through to three.

In Figure 5.5 rows are uniformly placed on the database pages. The number
of rows in a page is always one.

5.3 The Structure of Hashed Indexes

Figure 5.4 A Hashed Scattered Distribution

:g, N
ca
a..
in
3:
0
a:

0

Hashed Scattered

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Page Number

Figure 5.5 A Hashed Ordered Distribution

Hashed Scattered

.....

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Page Number

131

132 Table Access

A hashed index structure consists of three types of record:

• A system record

• A hash bucket record

• A duplicate node record

The system record points at each hash bucket on a database page so that the
appropriate hash bucket can be quickly located. In other words, the system
record on a database page has an entry for each hashed index in the storage
area that uses that database page.

A hash bucket, if it exists on a database page, contains the key value of the
row that hashed to that page. So, if a row from the ACCOUNT table with an
account number of 5686542245 hashed to page 77, a hash bucket will exist
on page 77 containing the key value 5686542245. The hash bucket also will
contain a database key pointing to the row itself. It may be that the row is not
stored on the same database page as the hash bucket. The reasons for this will
be explained shortly. If a hashed index is not created with the UNIQUE clause,
that is, if duplicate key values are allowed and duplicates exist, the hash bucket
wi 11 not contain the database key of the row but will contain the database key
of a duplicate node record.

A duplicate node record has a fixed size of 92 bytes and will hold the database
keys of the duplicate rows to a maximum of ten rows. If there are more dupli­
cate rows, another duplicate node record is used and the duplicate node records
are chained together. Figure 5.6 shows the structure of a hashed index that
contains unique key values only and Figure 5.7 shows the structure of a hashed
index that contains duplicate key values.

System Record

Hash Bucket Rows

Figure 5.6 A Unique Hashed Index Structure

5.3 The Structure of Hashed Indexes 133

Figure 5.7 A Non-Unique Hashed Index Structure

System Record

Hash Bucket

Next Duplicate Node1---->....___R_o_w_s __ ~
5.3.1 Creating a Hashed Index

The CREATE INDEX statement is used to create a hashed index the same
way it is used to create a sorted index. In Chapter 2, we saw how to create a
simple sorted index that, for example, may be found in a single-file database.
It is impossible to create a hashed index in a single-file database because a
hashed index must be placed in a storage area created with a MIXED page
format. A hashed index can be partitioned across a number of storage areas or
it can share a storage area with the rows from a table.

The following example shows how the database designer can create a hashed
index in a specified storage area:

SOL> CREATE INDEX account_index
cont> ON account Caccount_no)
cont> TYPE IS HASHED SCATTERED
cont> STORE IN account_area;

134 Table Access

In this example, a hashed index named ACCOUNT _INDEX is created in the
storage area ACCOUNT _AREA. The hashing algorithm used will be Hashed
Scattered. To create a Hashed Ordered index:

SOL> CREATE INDEX commodity_index
cont> ON commodity (commodity_num)
cont> TYPE IS HASHED ORDERED
cont> STORE IN deal_area;

Hashed indexes can be partitioned the same way as tables. For example:

SOL> CREATE UNIQUE INDEX cust_no_index
cont> ON customer (customer_no)
cont> TYPE IS HASHED SCATTERED
cont> STORE USING (customer_no)
cont> IN customer_area_l WITH LIMIT OF('3000000000')
cont> IN customer_area_2 WITH LIMIT OF('6000000000')
cont> OTHERWISE IN customer_area_3;

In this example, the hashed index CUST_NO_INDEX is created and parti­
tioned in three storage areas depending on the value of CUSTOMER_NO.

5.3.2 Storing and Retrieving Rows Stored via a Hashed Index

Let us look at the CUSTOMER table in the BANKING database. Assume
that if we examine the storage map CUSTOMER_MAP, which specifies where
the CUSTOMER table is stored, we find that the placement is specified via a
hashed index, CUSTOMER_INDEX. The CUSTOMER table and the hashed
index CUSTOMER_INDEX are stored in the same storage area,
CUSTOMER_AREA, and the hashed index uses only the SURNAME
column for simplicity.

Suppose that we wish to insert a row into the CUSTOMER table. The value
contained in the column SURNAME, the key value, is hashed by the Rdb
hashing algorithm. The result is a database page number within the storage
area CUSTOMER_AREA. Assume that the customer surname that we want
to insert is HOBBS and that the hash algorithm returns us a database page
number23.

5.3 The Structure of Hashed Indexes 135

This page number is the database page on which the hash bucket will be
created. If that page has enough free space according to the appropriate entry
on the space management page, the row is stored on that page. If no other row
from the table is stored on the page, Rdb also must create a hash bucket and
modify the system record on the database page so that it contains an entry for
the hashed index, CUSTOMER_INDEX. In fact, the system record will now
contain an entry that is the database key of the the hash bucket. The logical
area identifier component of the database key is that of the hashed index.

Assuming that the CUSTOMER_INDEX allows duplicate key values,
the hash bucket will contain a pointer to a duplicate record. If another
CUSTOMER row with the same key value is then inserted, Rdb checks for
sufficient free space on the database page. If there is free space, the hash
bucket is merely updated to reflect the count of rows that contain this key
value and another database key entry is added. Figure 5.8 shows what the
database page looks like after a second row has been inserted. Of course, in
the simplest case duplicates would not be allowed in the index and duplicate
nodes would not exist.

Figure 5.8 shows a database page with the system record pointing to a hash
bucket, which contains an entry for a customer with the surname of HOBBS.
Because duplicates are allowed in the index and two rows contain a key of
HOBBS, the hash bucket entry points to a duplicate node that, in tum, points
to the rows.

Suppose we want to retrieve a customer with the surname of HOBBS. Rdb
will hash the surname, and database page 23 will be returned. Rdb will re­
trieve this database page and check the system record for a pointer to the
appropriate hash bucket. First, the database key of the duplicate record is
found, then the database key of the actual row, which is fetched. Hopefully,
this is all achieved in a single disk 1/0 operation because all the information
resides on the same database page. If the row does not exist, Rdb will have
used only a single 1/0 operation to determine this.

If we continue to add rows with the same key value, the free space on the
database page eventually will be used up and there will be an overflow onto
another database page. In this case, Rdb already used a single disk 1/0 to
retrieve the hash bucket and now may need another disk 1/0 to fetch the actual
row if the page containing the row has not been brought into the buffer. Figure
5.9 shows an overflow onto another database page. A customer with a sur­
name of ENGLAND has been inserted on the page (ENGLAND hashed to the

136

Figure 5.8 A Hashed Index and Rows on the Same Page

Database page 23

Hobbs

DBkey of
Duplicate
Node

DBkey of
First Row

Table Access

same page as HOBBS) and, because there was not enough free space on page
23, the row was stored on page 24, the next page with free space. Note that as
only one row of the key value ENGLAND has been inserted, no duplicate
node has been created - the hash bucket entry points directly to the row.

The database designer should try to avoid this situation. Apart from causing
Rdb extra disk I/Os inserting and fetching rows, the problem is likely to get
worse. As rows overflow onto another database page with free space, this
database page fills and then contains insufficient free space to accommodate
the rows that hash to it. This is not a satisfactory state of affairs. The database
designer can use RMU/ANALYZE/PLACEMENT to investigate such over­
flow.

Note that the table can be put in a different storage area than the hashed index.
In this situation, an extra disk 1/0 will be needed to retrieve a row. However,
the database designer does have more flexibility in the choice of storage-area
design parameters, which then can be specified independently for each storage
area.

5.3.3

5.3 The Structure of Hashed Indexes

Figure 5.9 A Hashed Index and Rows on the Same Page

Database page 23

Hobbs

DBkey of
Duplicate
Node

England

DBkey of
Row Hash Bucket

Duplicate Node

Ensuring That Hashing Is Efficient

Database page 24

System Record

137

It was mentioned that hash overflow degrades performance. It is important to
create storage areas with the correct page size and allocation to optimize hashed
index performance.

The database designer should consider the following variables when choosing
hashed index access to a table:

•Row size

• Initial page allocation

•Page size

• Space management page threshold values

• The space management page interval

5.3.4

5.3.5

138 Table Access

• Hash key size

• The projected number of unique and duplicate hash key values

•The cardinality of the relevant table (the number of rows)

• Whether shadow clustering is being used

• Whether data and index keys are compressed or not

• Key value distribution

Chapter 11 contains equations to relate these variables. Their details are outside
the scope of this book; however, the page size and initial page allocation should
be mentioned. Too small a page will result in insufficient free space to hold the
hashed index structures and a sensible number of rows. Too small an initial
page allocation for the database storage area will cause it to dynamically
extend. The page hashing algorithm uses the initial database page range to
compute the target page so even though a storage area has extended, the new
database pages cannot become target pages for the hash algorithm. Rows may
be stored in the extension, but their hash buckets will always be in the initial
allocation of pages. Therefore, at least two disk I/Os will be needed to retrieve
these rows, assuming the pages are not already in a database buffer.

Hashed Index Key Compression

Index key compression has already been mentioned in relation to sorted indexes.
Hashed index keys may also be compressed. However, the compression tech­
niques that may be used are more limited. The available techniques are:

•MAPPING VALUES compression

• Run-length compression

These techniques have already been described and so will not be discussed further.

Concurrent Index Definition

There are occasions when the database administrator might wish to create a
number of indexes concurrently on a table. An example might be at the end of
the online day when extra indexes need to be created to facilitate overnight

5.3.6

5.3 The Structure of Hashed Indexes 139

batch processing or the creation of a lOGb database. Similarly, there may be
situations when more than one user simultaneously wishes to create an index
on a table.

Prior to Rdb Version 6.0, creating more than one index on a table simultane­
ously was difficult to do. Usually, one of the index creations was forced to
wait on a lock until the other one finished. Rdb Version 6.0 introduced new
syntax to the SET TRANSACTION statement to support the concurrent
creation of indexes:

SOL> SET TRANSACTION READ WRITE
cont> RESERVING branch FOR SHARED DATA DEFINITION;

If a transaction is started with the SHARED DATA DEFINITION clause,
querying and updating the reserved table are not allowed and other users can
only create indexes on this table. They are not allowed to execute any other
data definition language statements. The PROTECTED key word cannot be
used with the DATA DEFINITION clause. The EXCLUSIVE key word may
be used but this then forces single user access to the table so indexes cannot be
then created concurrently, which defeats the whole object of what we are
trying to do!

Dropping and Disabling Indexes

There will be occasions when the database administrator will wish to drop a
sorted or hashed index from the database. If the index is large, this operation
may take a considerable length of time. For example, for a sorted index it
usually involves the removal of every index node in the sorted index structure
or for a hashed index every page in the mixed area will be scanned.

Some optimizations were previously added to Rdb to speed up the DROP
INDEX statement for sorted indexes. If the index creation statement contained
a STORE clause that explicitly placed the index in a uniform page format
storage area, then the index or index partition will be allocated its own unique
logical area. In this case, Rdb merely marks this logical area as deleted when
the DROP INDEX statement is issued. This is a fast operation. If the index
was created in a mixed page format storage area, this optimization is not
possible and every page on which a node is stored must be retrieved.

If the database administrator wishes to remove an index but because of
reasons of time or concurrency it is not possible, the index may be disabled.

5.4

140 Table Access

A disabled index is not used by the optimizer and it is not maintained; that is,
it is not updated. It can be dropped later at the database administrator's
convenience but it cannot be enabled again. To disable an index, add the
syntax MAINTENANCE IS DISABLED to the ALTER INDEX statement.

SOL> ALTER INDEX branch_idx MAINTENANCE IS DISABLED;

THE DATABASE BUFFER POOL

It has been assumed up to now that if Rdb needs to retrieve a database page,
it must perform a physical I/Oto disk in order to read the page. Performing a
disk I/O is relatively time-consuming, so reducing disk I/Os will reduce the
time it takes to perform a database operation. Rdb uses the concept of a buffer
pool to achieve this. A buffer is an area of memory used to hold database pages
during read and write operations to the database. A buffer pool is a number of
these buffers and this number may be specified by the database designer.

There are two buffering mechanisms in Rdb:

•Local

•Global

The traditional mechanism is local which is still the default. Global buffering
is offered as an option. A description oflocal buffering follows. Global buff­
ering is described shortly.

In the case of Rdb, a local buffer pool is created every time an attach is made
to a database. Usually, this means that each Rdb user has his or her own
private buffer pool.

Hint: When Digital's ACMS transaction processing monitor is being used,
a few server processes are attached to the database. In this case, each
server process is allocated a buffer pool for each database it is attached to
(often just one). Many people may be using the transaction processing
system, and the effect is that these users share the server's buffer pool.
This is beneficial for performance and will be further discussed in Chap­
ter 15. Also note that many 4GL environments perform multiple attaches
to a database and therefore a number of buff er pools are created for a
user process.

5.4 The Database Buffer Pool 141

5.4.1 The Buffer Length

The length of a database buffer is a parameter that can be specified by the
database designer when the database is being created with the CREATE
DATABASE statement. To alter the buffer size, the SQL EXPORT and SQL
IMPORT commands are normally used. It is also possible to increase the
buffer size during an RMU/RESTORE operation.

The buffer size is specified as a number of 512-byte blocks. If the buffer size
is not specified, the default value of three database pages is used where a
database page refers to the largest page found in the database. The default
database page size is two disk blocks, so, by default, a database buffer is six
disk blocks long (remember that a disk block is 512 bytes). This relationship
is seen in Figure 5.10.

Figure 5.10 The Relationship Between Disk Blocks and Buffers

Database Page

Disk Block Disk Block I I Disk Block ... ,

Database Buffer

Disk Block I I Disk Block

Disk Block I I Disk Block

Disk Block I I Disk Block

Hint: The buffer pool is kept in the user's process virtual memory and is
pageable. Always ensure that the user's Open VMS operating system
working set is sufficiently large enough to accommodate the buff er pool,
otherwise the resulting paging may degrade performance.

142 Table Access

5.4.2 The Number of Buffers

Once the buffer size has been decided, the number of buffers in the buffer pool
needs to be considered. The default value for the number of buffers is 20. The
database designer can specify the number of database buffers in the buffer
pool when the database is being created with the CREATE DATABASE state­
ment. However, unlike the buffer size, the number of buffers in the buffer pool
can be easily changed with the ALTER DATABASE statement. More impor­
tantly, by defining an Open VMS process logical name or an OSF/1 environ­
ment variable, RDM$BIND_BUFFERS, the number of buffers in the buffer
pool may be made to take on different values for each database user.

For example, the following DCL command can be executed for an Open VMS
user, perhaps in the user's login command file:

$ DEFINE RDM$BIND_BUFFERS 200

5.4.3 Local Buffer Pool Operation

When Rdb needs to retrieve a row, it makes a request for the appropriate
database page. Before reading the database page on disk, it checks to see if the
page is in the buffer pool. If it is, Rdb has just saved a disk I/O operation. If it
isn't, Rdb has wasted a negligible amount of CPU (special techniques are be
used to efficiently search buffer pools) and now must read the page from the
disk. When Rdb reads the page, it does not read a single page, but rather a
buffer full of pages. These pages then stay in the buffer pool until the buffer
pool becomes full, in which case they may be discarded or written back to disk
if the buffer has been modified. A distinction should now made between physical
1/0 and logical I/O. A physical IIO is an access to a disk drive, whereas a
logical 110 is an access to a memory buffer. A logical I/O is much less costly
in terms of elapsed time than a disk I/O, because memory access is much
quicker than disk access. A request for a database page can be satisfied by a
logical or physical 1/0 being performed. It is part of the database designer's
challenge to minimize physical I/O and maximize logical I/O.

As each physical I/O is performed, a buffer in the database buffer pool is used
to hold the retrieved database pages. Eventually, no buffers are available to
hold new pages because they have all been used. In this situation, Rdb will re­
use the buff er that has been used the least, that is, the buffer that contains the
database pages that Rdb has not accessed for the longest time. This technique

5.4.4

5.4 The Database Buffer Pool 143

is known as a least-recently used algorithm. It is elegant in its simplicity and
very effective. It guarantees that the database pages that are being used the
most will be held in memory for the user. Frequently used database pages
usually will be those that hold sorted index nodes.

If a user has modified a row in a page and a second user wishes to gain access
to a row that is in the first user's buffer, Rdb signals the user to flush the
buffer to disk. If a user ends a transaction with a COMMIT statement, Rdb
flushes all the modified database pages to the storage areas on disk (unless the
Fast Commit feature is enabled). If the user starts a new transaction without
deattaching from and reattaching to the database, the buffers will still hold the
database pages acquired during the last transaction.

Large Versus Small Local Buffers

Should a large number of small buffers be used or a small number of large
buffers? There is no correct answer. It depends on the type of processing that
is being done, among other factors. Of course, it is possible to have a high
number oflarge buffers. Typically, however, the memory limit on the system
regulates this. If a large number of buffers is used, more index nodes will stay
resident in the buffer pool and a reduction in disk I/O operations will result.

This process is more useful for sorted index nodes. Hashed index buckets, by
definition, are randomly accessed and are unlikely to be re-used often in a
buffer. With a large number of buffers, database pages may not need to be
written to disk until the user commits the transaction. This operation is asyn­
chronous in nature, meaning that the disk I/Os happen together instead of one
after the other. As a general rule of thumb, a small number of large buffers is
beneficial for sequential operations against the database, whereas a large
number of small buffers is beneficial for random operations against the data­
base. This is summarized in Table 5 .1.

Table 5.1 Suggested Buffer Pool Profiles

Main Transaction Type

Random

Hierarchical Retrievals

Sequential Searches

Buffers Needed

Few Small

Many Small

Many Large

144 Table Access

Hint: When many users are updating a database and large buffers are
used, the probability of different users requesting database pages that are
in each other's buffers will increase. This will result in increased buffer
flushing, which will reduce overall database performance.

5.4.S Global Buffering

One of the main disadvantages of the local buffering approach is that cached
data is never shared between database attaches. Many users may read in the
same page from disk to a buffer but each user will need to perform a disk 1/0
to do so. Also, because no sharing takes place, each user will keep their own
copy of the database page in their buffer pool. This non-sharing of cached
data can lead to many disk I/Os being issued for the same pages and more
memory being used to hold the multiple copies in the local cache.

If we consider the case where a 4GL product makes multiple attaches to a
database, we can see that each attach that needed the same page would cause
the same process to issue a disk 1/0 and the same process would hold a copy
of the page in memory multiple times.

The above situation could be considered inefficient only if users were sharing
database pages and it might be that some applications do not have users sharing
data in this way. However, consider index nodes. If many users are constantly
navigating through a sorted index tree then there is a strong possibility that
they will be reading the same pages containing index nodes and the local buffer
case has again become inefficient even though data rows are not being shared.

To eliminate much of this inefficiency, Rdb has introduced global buffers. The
concept is fairly straightforward. Instead of every user's database attach be­
ing allocated a private set of local buffers, every attach may now share buffers
from a global buffer pool. If a user reads a page from disk into a buffer, that
buffer containing that page is available to any other attach against that data­
base. This means that no matter how many users need to read that page, only
one disk 1/0 is performed to bring it into memory the first time it is requested.
Unless it is overwritten, the page in that buffer will continue to be available to
all the users of that database. Another advantage of this approach is that only
one copy of the page is held in memory with a consequent saving in memory
usage. Note, however, that a global buffer pool is per machine.

5.4 The Database Buffer Pool 145

So disk I/O is saved and memory is saved-what is the downside? Because the
buffer pool is now a shared resource, synchronization in the form of locking
must be applied. This will use up extra CPU; however, with Rdb Version 6.0,
high performance locks, known as recoverable latches are used. The result is
that there really is no downside to global buffers and Rdb database designers
and administrators should strongly be considering their use.

Hint: Do not rush into global buffers. Although they are simple to enable
they require specific system resource. On an Open VMS system, for exam­
ple, they will require the number of global pages to be increased. Check
the Rdb documentation, adjust your system parameters and then experi­
ment with global buffering. Not adjusting system parameters is likely to
result in a fall at the first hurdle!

Global or local buffering may be specified for an individual database but not
both as the buffering technique is a database-wide parameter. Every node that
accesses the database will maintain a global buffer pool for that database.

To enable global buffers, the ALTER DATABASE statement is used.

SOL> ALTER DATABASE FILENAME banking GLOBAL BUFFERS ARE ENABLED

cont> (NUMBER IS 1000, USER LIMIT IS 50);

This statement enables global buffering for the BANKING database and speci­
fies that 1000 global buffers will be created in the database's global buffer
pool (per node). The USER LIMIT IS parameter will be discussed shortly.

If an RMU/DUMP/HEADER command is issued, information about the glo­
bal buffering for this database is displayed.

$ RMU/DUMP/HEADER banking

Buffers ...
- Global buffers are enabled
- Global buffer count is 1000

Maximum global buffer count per user is 50
- Default database buffer count is 20
- Recovery buffer count is 20
- Buffer size is 6 blocks

146 Table Access

This RMU/DUMP/HEADER display shows the global buffering information
stored in the database root file. To show the values actually in use on a node,
the RMU/SHOW USERS command can be used.

$ RMU/SHOW USERS banking

Rdb V6.0 on node ORION ll-FEB-1994 18:40:54.33

database EUROBANK:[UK.DBJBANKING.RDB;l

* database is opened by an operator

- global buffer count is 1000

maxi mum global buffer count per user is 50

- 980 global buffers free

- 1 active database user

- 0000005F:l - _FTA7:, ENGLAND - active user

- image $DKA100:[SYS$COMMON.][SYSEXEJSQL$.EXE;l

- 20 global buffers allocated

The values actually in use on a node and the values stored in the root file may
differ. We shall see how shortly. Firstly, though, the parameter USER LIMIT
needs some explaining. Global buffering gives the database designer two new
parameters. The NUMBER IS parameter is the number of buffers in the glo­
bal buff er pool for a database. The USER LIMIT IS parameter specifies the
maximum number of global buffers that can be allocated to a database attach
at any point in time.

How many buffers then is an attach given? Firstly, it is given the number of
buffers specified by the NUMBER OF BUFFERS IS parameter on the CRE­
ATE or ALTER DATABASE statement, or if no value was specified the Rdb
default of 20 buffers is used. For some processes, however, the logical name
or environment variable RDM$BIND_BUFFERS may have been specified
and its value will override the NUMBER OF BUFFERS IS parameter.

This behavior is identical to the local buff er case. The difference comes about
with the USER LIMIT parameter. This sets an effective limit to the number of
global buffers that can be allocated to an attach. It overrides both the NUMBER
OF BUFFERS IS parameter and RDM$BIND_BUFFERS.

The usual relationship between these parameters is shown in Figure 5 .11. It is
normal practice to specify a user limit that is not less than the other parameters.

5.4 The Database Buffer Pool

Figure 5.11 The Relationship Between Global Buffer Parameters

Increasing
number of
global
buffers for
attach

USER LIMIT

RDM$BIND_BUFFERS

NUMBER IS

147

Any attach may in fact gain access to any buffer in the buffer pool, all of
which are available to it. It is these buffer quota parameters that ultimately
determine the number of buffers that an attach can use at a given point in time.
In the ALTER DATABASE statement above, the number of global buffers in
the global buffer pool is set at 1000 with a user limit set at 50. This means that
20, that is 1000 divided by 50, attaches at most are guaranteed against this
database or 20 users assuming one attach per user. Any user is in fact able to
read any of the 1000 buffers but at any point in time a user can only modify a
maximum of 50 buffers. These 50 buffers are known as the user's allocate set.

It has been stated that the global buffer parameters are database wide and are
set on the CREATE or ALTER DATABASE statement. Indeed, they may be
also set during an RMU/RESTORE operation. Suppose, however, we have a
system that is comprised of a large processor with a great deal of memory and
a small processor with limited memory and we want to share a database across
both these nodes. In this scenario perhaps we would wish to specify many
global buffers for the large processor and few for the small processor. How do
we achieve this? The answer is to use the RMU/OPEN command. The RMU/
OPEN command allows the specification of the number of buffers in the glo­
bal buffer pool and the user limit.

$ RMU/OPEN/GLOBAL_BUFFERS=(TOTAL-5000,USER_LIMIT=lOO) banking

A typical approach would be to use the CREATE or ALTER DATABASE
statement to set the parameters to values suitable for the small processor and
then override these values using RMU/OPEN for the large processor. This is
why the values actually in use on a VMScluster node and the values stored in
the root file may differ and why RMU/DUMP/HEADER and RMU/SHOW
USERS may report different values.

148 Table Access

Hint: It is good practice to always use OPEN IS MANUAL on opera­
tional databases and make them accessible or unavailable with RMU/OPEN
and RMU/CLOSE. This will ensure that the global buffer pool is held
together as described shortly.

How should a database designer or administrator decide on values for the
buffer parameters? The total number of global buffers for a database is usu­
ally determined by the availability of memory. For example, if a processor has
64 Mb of memory configured, of which 30% is available for a database's
global buffer pool and the default buffer size of 3 pages (6 blocks or 3Kb) is
used, then the total number of global buffers in the pool is:

total memory * % memory available I buffer size

(64 * 0.30)/0.003 = 6400

Of course, the opposite approach can be taken - decide how many global
buffers are needed and ask your boss to buy you the extra memory!

But where do the other parameters fit in? The USER LIMIT parameter de­
fines the total number of guaranteed attaches that will be supported. In other
words, if each attach is allocated a number of buffers equal to the user limit
(the maximum possible for an attach), there will be an upper limit of guaran­
teed attaches. For example, if our global buffer pool consists of 6400 buffers
and the user limit is specified to be 100, Rdb will guarantee to allow 64 at­
taches. If a user attempts to execute a 65th attach, it will fail as the global
buffer pool will now be all allocated.

Hint: The Rdb monitor log or the RMU/SHOW USER command can be
used to see if the global buffer pool is nearly exhausted.

In reality, a database designer or administrator will probably set the NUMBER
OF BUFFERS IS parameter to be less than the USER LIMIT parameter.
Certain important classes of processes will then have their buffer allocation
increased up to the user limit by the use of RDM$BIND_BUFFERS.

So how does global buffering actually work? This is best described with an
example. Imagine two processes attached to a database. Each process has an

5.4 The Database Buffer Pool 149

allocate set of 3 buffers. The buffer size is 6 blocks and the page size is 2
blocks. The global buffer pool is 6 buffers in size. Initially the global buffer
pool contains no database pages as shown in Figure 5.12.

Figure 5.12 The Global Buffer Pool Initial State

0 0 0 0 0 0 Counter

Buffer

Pages

Processes

User 1 reads pages 2 to 4 into global buffer 1 and User 2 reads pages 38 to 43
into global buffers 2 and 3. The reference counters for global buffers 1, 2 and
3 are incremented. A reference counter indicates how many processes (at­
taches) are referencing a global buffer. The situation at this point is shown in
Figure 5.13.

Figure 5.13 The Global Buffer Pool After Users Have Read Data

0 0 0 Counter

Buffer

Pages

User1 User2 User2
Processes

The users continue to read data. User 1 reads pages 8-10 into global buffer 4
and pages 14-16 into global buffer 5. User 2 then reads 47-49 into global
buffer 6. The reference counters are all incremented accordingly. This is shown
in Figure 5.14. Note that there are now no free buffers.

150 Table Access

Figure 5.14 A Full Global Buffer Pool

1 1 Counter

CJ Buffer

Pages

User 1 User2 User2 User1 User2 User2
Processes

User 1 now wants page 83; however, User 1 has reached his maximum allot­
ment (3 buffers) and so the least recently used (LRU) algorithm chooses a
victim buffer to discard from User l's allocate set, in this case buffer 1.

User 2 now wants page 9. She has also reached her maximum allotment and
so a buffer must be discarded from her allocate set, in this case buffer 2.
However, in this case page 9 is already in a buffer in the global buffer pool.
The reference counter on buffer 2 is set to 0 and the reference counter on
huffer 4 is set to 2.

Figure 5.15 The Sharing of a Global Buffer

1 0

CJ
User 1

1 2 1

User2 User1 User2 User2
User2

Counter

Buffer

Pages

Processes

What actually happens to a discarded global buffer when a user's allocate set
is full; that is, the user is using all of their buffers?

As described previously, for local buffers, when a buffer is needed, the least
recently used algorithm (LRU) chooses a target buffer and effectively dis­
cards its contents by overwriting it with the new database pages just read in
from disk. If the buffer had been modified, it is written back to disk.

The pages in the overwritten buffer are now unavailable and if they are needed
they must be read back from disk using physical disk I/O.

5.4 The Database Buffer Pool 151

For global buffers the situation is somewhat different. A modified least re­
cently used algorithm comes into play. If the user's allocate set is full and they
need a new buffer of information, a target buff er must be chosen as in the local
case. However, the information in it may stay in the global buffer pool.

An optimization in global buffering ensures that an unallocated empty buffer
in the buffer pool is used to receive new pages from disk before an unallocated
buffer containing database pages. In this way, the discarded buffer is merely
returned to the buffer pool to make space in the user's allocate set for the new
buffer. It is available to be re-read by the user or by any other user without
incurring disk I/O.

This optimization does not happen if the entire global buffer pool is allocated
to database attaches. In this case the target buffer is overwritten with the new
pages from disk and the old information is discarded. To access this informa­
tion again, disk I/O will be incurred.

After users have been reading database pages into the global buffer pool for a
while it becomes an effective cache with frequently used database pages stay­
ing in memory in the buff er pool. If the global buff er pool is large enough to
accommodate all of the needed database pages, it effectively then provides an
in-memory database delivering very good performance.

But what happens to this global buffer pool when no one is attached to the
database? If the database OPEN attribute is AUTOMATIC then the last
person to detach from the database will cause the global buffer pool to be
released from memory. When a user attaches to the database again, the global
buffer pool will be created again. Thus all the hot cached data will have been
lost. This is obviously not desirable. To avoid this situation, the OPEN at­
tribute should be set to MANUAL with ALTER DATABASE and RMU/OPEN
and RMU/CLOSE used to manage access to the database. Now ifthe last user
detaches, the global buffer pool will not evaporate but will be held together by
the RMU/OPEN. A subsequent RMU/CLOSE will discard the global buffer
pool.

In this way, the global buffer pool and the useful data in it may be kept avail­
able until the database really must be shutdown. Figure 5 .16 shows the results
of an experiment performed with global buffers and the use of RMU/OPEN.

152 Table Access

Figure 5.16 The Benefit of Using RMU/OPEN for Global Buffers

120

100

80

DISK 60
110 40

20
o~~-

First Run

RMU/OPEN Test

Second Run

DWithout RMU/OPEN
•With RMU/OPEN

Third Run

The experiment consists of a program that retrieves data from the database.
The first time it is run, the same number of physical accesses to disk occur
whether the database is opened manually with RMU/OPEN or it is opened
automatically by the first user attach. The program, having detached from the
database, is then run again. Now there are significant differences. The run
where the database is opened manually with RMU/OPEN uses far fewer disk
I/Os than the case where the database is opened automatically. This is be­
cause in the automatic database open case, when the user detaches, the buffer
pool is released from memory, as described above. All the data must be read
again from disk, whereas it remains in the global buffer pool in the manual
open case. No matter how many times this experiment is run, the results will
be the same.

As a general statement, the authors believe that global buffering is likely to
benefit most Rdb based applications. If it is decided to investigate the effec­
tiveness of global buffering futher, a site should first decide on a test strategy
to compare local and global buff er pool performance. A good idea is to ensure
that for both cases a user is allocated the same number of buffers and also the
number of buffers in the global buffer pool and the total number of local
buffers is equal. Tests can then be run and RMU/SHOW STATISTICS dis­
plays observed to compare results. However, before global buffering is ena­
bled, the site should ensure that the appropriate Open VMS SYSGEN and
user parameters are adjusted accordingly.

5.4 The Database Buffer Pool 153

These parameters include:

• GBLSECTIONS

• GBLPAGES

• GBLPAGFIL

• VIRTUALPAGECNT

• PGFLQUOTA

• Rdb Monitor and user process account quotas

The Rdb Guide to Database Performance and Tuning documentation pro­
vides much useful information concerning these parameters.

Hint: The RMU/DUMP/HEADER command now provides information
that can assist in estimating global page requirements. A Derived Data
section calculates information on the Rdb global section size for both glo­
bal buffers disabled and enabled.

5.4.6 Transferring Database Pages To and From the Buffer Pool

It has been previously mentioned that Rdb generally moves data between the
database storage areas and the buffer pool (whether local or global) in units of
a buffer. Rdb Version 6.0 contains optimizations to ensure that these transfers
are made as efficiently as possible to ensure the maximum performance.

There are two new features that arrived in Rdb Version 6.0:

• Asynchronous pre-fetch of database pages

• Asynchronous batch write of database pages

and one that arrived in Rdb Version 6.1:

• Optimized page transfers

154 Table Access

Asynchronous Pre-Fetch

The asynchronous pre-fetch feature is designed to improve the efficiency of
sequential scans of a storage area. Usually, when Rdb wishes to read in data­
base pages to a buffer, the user process stalls while the transfer takes place.
Asynchronous pre-fetch attempts to reduce these process stalls by ensuring
that the page is read into the buffer asynchronously before the process re­
quests it. Currently, asynchronous pre-fetch is only active for sequential scans
although it is likely that the use of this feature will be extended in the future to
pre-fetch data for other kinds of retrieval.

The basic idea is simple. While Rdb is performing normal processing, pages
that Rdb believes will be needed by the sequential scan are read into the buffer
pool. When the process subsequently requests those pages, it finds that the
pages are in memory and no stall occurs. This is obviously a useful feature
and by default it is switched on. However, it can be disabled by setting an
Open VMS process or system logical name or OSF/1 environment variable.

$ DEFINE RDM$BIND_APF_DISABLED 1

The number of buffers that can be pre-fetched is known as the depth. By
default the depth is eight buffers or the allocate set divided by four, whichever
is the smaller. This can be overridden.

$ DEFINE RDM$BIND_APF_DEPTH 10

The page on which Rdb realizes a sequential scan is occurring is called a
triggering page. When a triggering page is discovered, asynchronous pre­
fetching of pages starts.

The asynchronous pre-fetch feature works in different ways depending on
whether the area is of mixed or uniform page format. A sequential scan of a
mixed page format area will look at each page in turn so the asynchronous
pre-fetch mechanism can easily calculate the next page to pre-fetch-it is the
triggering page number plus one. Rdb then, in a single read operation, pre­
fetches the depth of buffers. If a triggering page is found while the depths­
worth of buffers is being processed, asynchronous pre-fetch continues.

The situation in a uniform page format area is slightly more complex. A se­
quential scan of a uniform page format area will not look at each page in turn
as different clumps may be allocated to different logical areas. In this case the
asynchronous pre-fetch mechanism must calculate the next page to pre-fetch

5.4 The Database Buffer Pool 155

by examining the area inventory page (AIP), area bitmap page (ABM) and
space area management page (SPAM). Rdb then, pre-fetches the depth of
buffers but uses a single read operation for each buffer. To monitor the asyn­
chronous pre-fetch feature a new asynchronous PIO screen is available with
Rdb Version 6.0.

Asynchronous Batch Write

The asynchronous batch write feature is designed to improve the efficiency of
database writes to storage areas. Usually, when Rdb wishes to write out data­
base pages to a buffer, the user process stalls while the transfer takes place.
The asynchronous batch write feature attempts to reduce the stalls associated
with writing to the database. Prior to Rdb Version 6.0, a user's process would
collect together pages that needed to be written back to disk and then write
them together, during which the process would stall. Improvements were made
in successive versions of Rdb prior to Rdb Version 6.0. For example, whereas
Rdb Version 4.0 wrote buffers synchronously one by one, Rdb Version 4.1
wrote out buffers in batches. Rdb Versions 4.2 and 5.1 enhanced this capabil­
ity with user specified batch sizes. With Rdb Version 6.0, these batch writes
are asynchronous and so the process normally does not have to wait for them
to complete which reduces process stalls.

The idea behind the asynchronous batch write feature is that, at any given
time, a portion of the buffers in the user's allocate set are being asynchro­
nously written without stalling the user's process. Rather than waiting until
every buffer in the allocate set needs writing, the philosophy behind asynchro­
nous batch write is to start asynchronously writing buffers to disk when a
certain threshold has been crossed. In other words, once the number of un­
modified buffers has dropped below a specified value, the asynchronous writ­
ing of buffers is initiated. The group of unmodified buffers is known as the
clean region. The size of the clean region in buffers is specified by an Open VMS
logical name or OSF/1 environment variable.

$ DEFINE RDM$BIND_CLEAN_BUF_CNT 8

A modified buffer encroaching upon the clean region causes the asynchronous
writing of buffers to commence. Another logical name may be used to specify
number Of buffers that will be asynchronously written.

$ DEFINE RDM$BIND_BATCH_MAX 10

156 Table Access

In the above settings for the logical names, Rdb Version 6.0 will asynchro­
nously write a batch of ten buffers to disk whenever the user's attach has less
than eight clean buffers in its buffer pool.

Setting these values will require some experimentation. Too large a value for
RDM$B IND _BATCH_MAX may adversely affect other processes whose disk
I/Os may get queued behind the batch writer. Too small a value may cause the
process not to benefit much from the asynchronous batch write feature, espe­
cially where the batches are being written across multiple disk drives.

As well as user application processing, the asynchronous batch write feature
is likely to benefit database administrator tasks such as RMU/LOAD and
RMU/RECOVER and especially work performed by database recovery
processes.

The asynchronous batch write feature is switched on by default but can be
disabled by setting a logical name.

$ DEFINE RDM$BIND_ABW_DISABLED 1

Optimized Page Transfer

The last feature concerned with efficiently transferring database pages is the
optimized page transfer feature. This feature, under a set of restricted condi­
tions, allows processes on a single node to share and update pages in memory
without having to continually write them away to disk every time they are
modified. This feature is automatically enabled and can reduce disk 1/0 for
write intensive applications. However, for it to be enabled, the database must
conform to the following set of conditions.

• Global buffering is in use

• Fast commit processing is in use

• After-image journaling is in use

• Access is from a single machine

With the optimized page transfer feature, a process does not have to write a
modified page to disk if another process wishes to access it. This can be very
beneficial where the users of an application continually update a data page,
for example, a stock system where stock levels keep changing.

6

6.1

The Optimizer

When retrieving rows from an Rdb database, the programmer or end-user
usually does not stop to think about whether the data is being accessed in the
most efficient manner. In fact, deciding the most efficient way to retrieve data
is a very complex task.

Luckily, Rdb tackles this problem with a sophisticated piece of software called
the optimizer. The optimizer uses information such as the structure of the
query, the indexes available, and the number of rows in a table (the cardinality)
to decide the best method for retrieving the data. This is known as choosing
the optimum strategy. This process is extremely important because choosing
a good strategy over a bad strategy could save seconds or hours when querying
a large database. The optimizer is one of the components that differentiates a
relational database system from database systems based on the network or
hierarchical model. In network or hierarchical database management systems,
the programmer or user must specify exactly which access path must be used
to retrieve data. In a relational database system, the optimizer decides which
is the best access path to retrieve data.

METHODS OF RETRIEVING DATA

When the optimizer resolves a query, it chooses from a number of different
access methods to retrieve the data. Prior to Rdb Version 4.0, the optimizer
would choose one of four retrieval methods.

• Sequential retrieval

All the pages in the logical area of the database are checked sequentially.
This can be time-consuming in a large database, especially if a table has
been stored with MIXED page format as opposed to UNIFORM page format.

158 The Optimizer

• Index retrieval

A hashed or sorted index obtains the database key of the row, which is used
to retrieve the row itself.

• Index-only retrieval

Only the index is retrieved if the columns requested in the query are held in
the index. Rdb does not need to access the data in the table itself.

• Database key (db key) retrieval

If the database key of the row is known, it is accessed directly without using
indexes or sequential scans.

When one of these strategies is chosen, Rdb makes its choice prior to retriev­
ing the data. One of the disadvantages of this approach is that if a method is
selected but retrieval time turns out to be longer than anticipated, the choice
cannot be reversed.

6.1.1 Dynamic Optimization

Rdb Version 4.0 introduc~d four new optimizer strategies under the general
heading of dynamic optimization, making a total of eight strategies available.
When data is retrieved using the dynamic optimization strategy, several
indexes can be used to retrieve the data. The key difference between the
static optimizer and the dynamic optimizer is that the latter makes use of
background and foreground processes, where these two processes can run
synchronously in parallel or individually.

The purpose of the background process is to scan one or more indexes, and
return the matching rows as a list of dbkeys, which are passed to the fore­
ground stage. The list of dbkeys is held in memory or in a temporary table.
When multiple indexes must be scanned, the optimizer prioritizes them by
their selectivity factor; that is, the indexes most likely to return dbkeys are
searched first. The foreground process then takes this list of dbkeys and actu­
ally retrieves the record. There are four dynamic optimization methods:

• Background only

One or more indexes is used because no single index contains all the
columns required for the query.

6.1 Methods of Retrieving Data 159

•Index only

Selected when an index contains all the columns necessary to satisfy the query.

• Sorted order

A specific order is required by virtue of an ORDER BY, DISTINCT or
GROUP BY clause and index-only retrieval is not possible.

• Fast first

Retrieval of the first few records is very quick.

The method chosen to retrieve the data will ultimately govern how long Rdb
takes to execute the query, the amount of CPU used, and the number of disk
I/Os performed. Because of this, it is critical that Rdb chooses the best method.
Originally only the optimizer could make this choice, not the programmer or
end-user, but all of that has now changed. We will see shortly how the optimizer
can be forced to use the FAST FIRST or TOTAL TIME strategy or a specific
strategy with the query outline. Remember though, that if no indexes or the
incorrect indexes are created on a table, the optimizer can only perform a
sequential access. In versions of Rdb prior to V6.0 this was not an efficient
strategy, but with asynchronous pre-fetch the response time has improved
dramatically and sequential retrieval should not necessarily be considered
inefficient.

A transaction analysis, shown in Chapter 11, tells the database designer which
indexes to create on which tables using which columns. Performing a trans­
action analysis lets the designer understand which transactions the database
must be optimized for; that is, which indexes must be created (indexes speed
up retrievals and slow down inserts).

Hint: In our experience, many database performance problems are the
result of non-optimum strategies being chosen by the optimizer. This
happens because indexes are not created at the proper time because
they use the wrong set of columns, or because incorrect index types
are created (hashed instead of sorted). In all these cases, if the designer
had performed a rigorous transaction analysis, the problems may not
have occurred.

6.2

160 The Optimizer

CHOOSING A STRATEGY

When the optimizer analyzes a query, it performs a number of tasks. First, it
chooses a possible access method for each table based on the indexes that are
defined for the table and the columns that are specified in the query. Then it
estimates the cardinality of the rows to be accessed based on the selection
criteria of the query and the access method being explored. A cost in terms of
time is then worked out for this particular method. The cost may be greater or
less than previously explored strategies (solutions). If it is less, previous solu­
tions that cost more are discarded; if it is more, this current method is discarded.

6.2.1 Index Cardinality

6.2.2

Rdb knows the approximate number of rows in a table and the cardinality of
each index that is not unique. For example, in the BANKING database the
CUSTOMER table has a column marked STATUS. If the STATUS column
could only take three possible values and the designer had defined an index
based on this column alone, the index cardinality of this index would be three.
On the other hand, consider an index defined on the SURNAME field alone. If
there were 10,000 customers in the bank, the cardinality of this index could be
between 7000 and 10,000 because of duplicate surnames. The index
cardinalities, then, are a measure of the number of unique values in a non­
unique index. The CUST_INDEX in the BANKING database is a multi-seg­
ment index made up of the SURNAME and FIRST _NAME columns, so the
index cardinality probably will be higher than if the index was based on the
SURNAME alone.

The optimizer understands index cardinalities, so it can choose the best non­
unique index to use, possibly saving many disk I/Os. Maintaining index
cardinality adds a small overhead to certain write transactions, but it is more
than worth the effort.

Dynamic Optimization Strategy

Dynamic optimization methods are chosen when b-tree or hashed indexes are
available. The first step is to select the background indexes by identifying all
the useful indexes and then eliminate those indexes which contain the same
attributes. The cost of scanning each background index is determined and this

6.2 Choosing a Strategy 161

influences the order in which the indexes are scanned. All the strategies except
background-only use foreground and background indexes. Rdb switches be­
tween these indexes while retrieving data, depending on the retrieval speed
and the actual number of rows found that satisfied the query.

6.2.3 Checking the Optimizer Strategy

You will recall that many performance problems are caused by missing or
incorrect indexes. It is possible to check what strategy the optimizer has
chosen for a particular query and also its estimated cost. To produce a for­
matted display of the chosen strategy, set the Open VMS logical name
RDMS$DEBUG_FLAGS to be "S". For example:

$ DEFINE rdms$debug_flags "S"

This will display the output on the developer's terminal or workstation. If
required to direct the output to a file, the Open VMS logical name
RDMS$DEBUG_FLAGS_OUTPUT is defined in addition. For example:

$ DEFINE rdms$debug_flags_output "my_output.dat"

For dynamic optimization, two additional options for the debug flags are
available:

E Displays the dynamic optimization execution trace

\ Forces the optimizer to switch between the foreground and background
indexes once ten dbkeys are placed in the buffer; used during testing only.

Some examples of checking optimizer strategies follow. In the first example,
the optimizer cannot use an index so the access method chosen is sequential:

SOL> SELECT surname, first_name, credit_limit FROM customer;

-S4/0018

Get Retrieval sequentially

SURNAME FIRST_NAME
Hobbs
Smith

Lilian
Paul

of relation CUSTOMER
CREDIT_LIMIT
10000.00

900.00

162 The Optimizer

In the next example, a condition is specified (conjunct) but there is no index
on first name so a sequential access method is chosen again:

SOL> SELECT surname, fi rst_name, credit_l imit FROM customer
cont> WHERE fi rst_name = •Lili an';
~S/10035

Conjunct

SURNAME

Hobbs

Get Retrieval
FIRST_NAME

Lilian
1 row selected

sequentially of relation CUSTOMER
CREDIT_LIMIT

10000.00

The index BRANCH_INDEX is used in the following example because the
BRANCH_ CODE column is the only column in the index.

SOL> SELECT* FROM branch WHERE branch_code = 'SOT';
~S/10024

Get Retrieval by index of relation BRANCH
Index name BRANCH_INDEX [1:1] Direct lookup

BRANCH_CODE BRANCH_NAME BRANCH_ADDRESS MANAGERS NAME

SOT Southampton 10 High Street Mr Jones

A query is made against the ACCOUNT table in the next example, but the
condition used is the greater than (>) operator, so the hashed index
ACCOUNT_INDEX cannot be used.

SOL> SELECT customer_no FROM account

cont> WHERE account_no > 1234567890;

Conjunct Get
CUSTOMER_NO

1122334455

1122334455

13 rows selected

Retrieval sequentially of relation ACCOUNT

The final example shows a query being made against the ACCOUNT table
where the equality operator (=) is used. For this reason, the hashed index
ACCOUNT _INDEX is selected:

6.2 Choosing a Strategy

SOL> SELECT customer no FROM account WHERE account no
~Sff0039

Leaf#Ol FFirst ACCOUNT Card=8
BgrNdxl ACCOUNT_INDEX [1:1] Fan=l

163

1551290;

~E/fo0039. 01 (1) BgrNdxl EofData DB Keys= 1 Fetches=O+O Recs Out= 1 #Bufs= 1
~E#0039.01(1) FgrNdx FFirst DBKeys=l Fetches=O+O RecsOut=l 'ABA
~Eff0039.01(1) Fin Buf DBKeys=l Fetches=O+O RecsOut=l

CUSTOMER_NO
100201

1 row selected

It is important to note that the optimization of Rdb queries is dynamic; that is,
a query is optimized every time one is submitted to Rdb. Suppose a program
is run to access data, and afterwards the database administrator creates an
index. If the program is run again, the index will be considered by the optimizer
and may be used. Recompiling a program is not necessary to make use of the
new index structures available.

6.2.4 Checking the Optimizer Cost

The logical name RDMS$DEBUG_FLAGS is set to display statistics con­
cerning the number of solutions tried by the optimizer and rejected before
query execution. The statistics show the estimated number of rows that will be
returned, which is displayed as the cardinality of the chosen solution. The cost
of the chosen solution is the estimated number of I/Os (physical or logical)
that will be performed to execute the query. To display these statistics, set the
Open VMS logical name RDMS$DEBUG_FLAGS to be "O". For example:

$ DEFINE rdmsSdebug_flags "O"

The following is an example of the display:

SOL> SELECT customer_no FROM account
cont> WHERE account_no = 1234567890;
Solutions tried 2

Solutions blocks created 1

Created solutions pruned 0

Cost of the chosen solution 2.0769231E+OO

6.2.5

164

Cardinality of chosen solution
Solutions tried 0
Solutions blocks created O
Created solutions pruned 0

CUSTOMER_NO
1122334455

1 row selected

The Optimizer

2.4253564E-01

Herc we can see that the optimizer has estimated that approximately two I/Os
could be necessary to satisfy the query. The estimated cardinality implies that
no more than one row will be returned.

Pre-Version 4.0 Optimizer Strategy Examples

Seeing examples of queries and the resulting optimizer strategy can help you
to understand the optimizer.

Sequential Retrieval

The sequential retrieval strategy results in a sequential walk of the entire rela­
tion, which could be costly in terms of performance if the table walked is very
large. However, Rdb V6.0 has an asynchronous pre-fetch facility to read da­
tabase pages in advance which can reduce the time required to read all the
pages. Nevertheless, all sequential retrievals should be justified because while
the table is being read it is locked in protected mode which can prevent other
users from accessing data in the table. Sequential retrieval is usually consid­
ered undesirable, but bear in mind that there are instances where sequential
access is perfectly reasonable and may be the best retrieval method available.

SOL> SELECT account_no FROM account WHERE statement_day > 25;
-S1t0040

Conjunct Get
ACCOUNT_NO

1561290
9561490
9167890
1551290

4 rows selected

Retrieval sequentially of relation ACCOUNT

6.2 Choosing a Strategy 165

Index Retrieval

In index retrieval, an index is used to identify the records that satisfy the
record selection expression. Not all the required information is specified within
the index, however, so the actual row must be retrieved to display all the
information. An index retrieval method implies quick access to the data.

SOL> SELECT account_no,balance FROM account
cont> WHERE account_no= 1002035678;
Get Retrieval by index of relation ACCOUNT Index name ACCOUNT_INDEX

00000001 Segments in low Ikey 00000001 Segments in high Ikey

ACCOUNT_NO

1002035678
1 row selected

Index-Only Retrieval

BALANCE
-508.78

The only difference between an index-only retrieval and the previous strategy
is that in index-only the column BALANCE is not displayed. As a result, the
optimizer decides that since only the ACCOUNT _NO is required and this
information is already in the index, it is not necessary to retrieve the actual
row from the database. Improved performance is the result. The index-only
strategy is used when the optimizer can report all the requested information
without having to retrieve any of the actual rows from the database.

SOL> SELECT surname FROM customer ORDER BY surname;
~S#0045

Index only retrieval of relation CUSTOMER
Index name CUST_INDEX [0:0]

SURNAME
Grice

Hagan
Hobbs

Smith
4 rows selected

6.2.6

166 The Optimizer

Dynamic Optimizer Strategy Examples

In this chapter, there is not enough space or time to explain the detailed workings
of the optimizer using dynamic optimization methods. Instead, some exam­
ples of queries that have used the dynamic optimization strategy are included
to illustrate how the different methods are selected.

Interpreting the Dynamic Optimizer Display

The information output by the dynamic optimizer can be very useful, espe­
cially during database tuning. So what does the following output mean?

SOL> SELECT surname, fi rst_name, balance
cont> FROM customer c, account a WHERE surname='Hobbs' AND
cont> credit limit > 100 AND c.customer no
cont> ORDER BY postcode;
-S#0015 15th Strategy in this session

Sort
Cross block of 2 entries

Cross block entry 1
Bgr Only Retr on table Customer.

a.customer no

Leaf#Ol BgrOnly CUSTOMER Card=4 (4 rows in table)

Bgr Idx CUST_INDEX
BgrNdxl CUST_INDEX [1:1] Fan=ll (est 11 entries per node)

Cross block entry 2

Bgr Only Retr on table Account.
Leaf#02 BgrOnly ACCOUNT Card=8 (8 rows in table)

Bgr Idx ACCT_CUST
BgrNdxl ACCT_CUST [1:1] Fan=14 (est 14 entries per node)

-E#0015.01(1) BgrNdxl EofData DBKeys=l Fetches=O+O RecsOut=O #Bufs=l
-E#0015.02(1) BgrNdxl EofData DBKeys=4 Fetches=O+O RecsOut=O #Bufs=4
-E#0015.02(1) Fin Buf DBKeys=4 Fetches=O+O Recs0ut=4
-E#0015.01(1) Fin Buf DBKeys=l Fetches=O+O RecsOut=l

C.SURNAME C.FIRST NAME A.BALANCE -

Hobbs Lilian 1234.56
Hobbs Lilian 456.78

6.2 Choosing a Strategy

Hobbs
Hobbs

4 rows selected

Lilian
Lilian

167

-1207.56
-64.45

-E#0015.01 indicates the execution for leaf #01. EofData means that the
index was traversed to the end, and DBKeys is the number of dbkeys found,
which in this example is 1. Fetches ofO+O means that no I/O was incurred to
walk the index and no I/O to retrieve database pages. This means that all the
information was in the database buffer. RecsOut is the total number of rows
delivered; again this is zero and #Bufs is an estimate of how many page
buffers will be read for the dbkeys in the list, which in this example is only 1
buffer because we only found 1 dbkey.

-E#OOJ 5.02(1) refers to the execution for the second leaf where four dbkeys
have been identified that match the searching criteria.

-E#0015.02(1) Fin indicates the execution for leaf #02 in the final reading
phase. 4 dbkeys were found that matched the criteria, no I/O was incurred to
retrieve and 4 records were output.

When the indexes are scanned the numbers within the brackets indicate how
the index is scanned, [0:0] means that the entire index was scanned; [1:1]
means an equivalence test or there is a low and high value. Referring to our
example, the optimizer tells us that it used CUST_INDEX as [1:1] which
would be to evaluate the surname = 'Hobbs' part of the query.

If the values are [0:1], then this means there is no low value and one high
value. That is, the surname is less than 'S'.

SOL> SELECT surname FROM customer WHERE surname< 'S';
-Sf/0003

Index only retrieval of relation CUSTOMER
Index name CUST_INDEX [0:1]

Reversing the query, values are [l :O] because there is a low value but no high
value.

SOL> SELECT surname FROM customer WHERE surname> 'S';
-Sf/0004

Index only retrieval of relation CUSTOMER
Index name CUST_INDEX [1:0]

168 The Optimizer

Hint: Use the Fetches <no>+<no> as a measure of the amount of 1/0 used
to execute the query.

Background-Only

The objective of the background-only method is to reduce the total time re­
quired to execute the query. Unlike the fast-first method, where the objective
is to return the first few records very quickly, this method is selected when one
or more indexes could be used, but none contains all the fields required for the
query. In the following example, only one index, CUST_INDEX, is available
on the columns SURNAME and FIRST_NAME.

SOL> SELECT surname, first_name FROM customer
cont> WHERE surname = 'Hobbs'
cont> ORDER BY postcode;
-Sf/0046

Sort
Leaf//01 BgrOnly CUSTOMER Card=4

BgrNdxl CUST_INDEX [1:1] Fan=ll
-E#0046.01(1) BgrNdxl EofData DBKeys=l Fetches=O+O RecsOut=O #Bufs=l
-E//0046. 01 (1) Fin Buf DBKeys-1 Fetches-0+1 RecsOut=l

SURNAME
Hobbs

1 row selected

Index-Only Strategy

FIRST NAME
Lili an

The index-only method is used when one or more indexes exist that contains
all the columns required to execute the query. However, to use this method
there must be at least one other index that does not contain all the columns.
In the following example, two indexes are available, one called
CUST_SUR_STATUS on columns status and surname, the other
CUST_STATUS on column status.

6.2 Choosing a Strategy 169

SOL> SELECT surname, status FROM customer

cont> WHERE surname <='Z' AND surname >='A' AND status O;

-S#0050

Leaf#Ol NdxOnly CUSTOMER Card=4

FgrNdx CUST_SUR_STATUS [1: 1] Fan=9

BgrNdxl CUST_STATUS [1: 1] Fan=17

-E#0050. 01 (1) Fg rNdx NdxOn l y DBKeys=O Fetches=O+O RecsOut=O

0 rows selected

Sorted Method Strategy

The sorted method is used when:

• A query requests a sorted order.

• Index-only cannot be used.

• An index with the correct order exists.

• At least one index is used for filtering.

In the following example, two indexes are available, CUST_INDEX on
columns surname and first name, and CUST _STATUS on column status.

SOL> SELECT surname, first_name, status FROM customer

cont> WHERE surname >='Hobbs' AND status = 1 ORDER BY surname;

-S#0051

Leaf#Ol Sorted CUSTOMER Ca rd=4

FgrNdx CUST_INDEX [1: OJ Fan=ll

BgrNdxl CUST_STATUS [1: 1] Fan=17

SURNAME FIRST_NAME

Hobbs Lilian

-E#0051.01(1) FgrNdx Sorted

Smith Paul

2 rows selected

STATUS

1

DBKeys=2 Fetches=O+O Recs0ut=2

1

170 The Optimizer

Fast-First Strategy

The fast-first method is used to deliver a few records very quickly. This
strategy is often chosen by the optimizer during interactive queries when it
suspects that the query may be terminated early. Apart from interactive
queries, fast-first also is used on queries with EXISTS, FIRSTN, or LIMIT
TO x ROWS clauses.

SOL> SELECT surname, fi rst_name. status FROM customer
cont> WHERE surname >='Hobbs' ANO status = 1 ANO
cont> customer_no > '100203' AND first_name <='Lilian';

-S#0052
Leaf/fOl

CUSTOMER Card=4

BgrNdxl CUST_STATUS [1:1] Fan=17

BgrNdx2 CUST_UNIQUE [1:0] Fan=14
BgrNdx3 CUST_INDEX [1:0] Fan=ll

-E#0052.01(1) Estim Ndx:Lev/Seps/DBKeys 2:1/2/2 1:1/1\5 3:_7

-E#0052.01(1) Fin Seq DBKeys=4 Fetches=O+O RecsOut=O

O rows selected

Debug Flags Strategy

The logical RDMS$DEBUG_FLAGS can take a number of values. The table
below details the most useful.

Table 6.1 - RDMS$DEBUG_FLAGS Logical Possible Values

Value Description

C Cardinality Values

E Dynamic Optimization Execution Trace

0 Optimizer Costs

S Retrieval Statistics Strategy

Ss Generate a query outline

Dynamic Optimization fill buffer with only 10 dbkeys

6.3

6.3 Influencing the Optimizer I 7 I

INFLUENCING THE OPTIMIZER

In an ideal world it should not be necessary to influence the optimizer to take
a different course of action to the one that it thinks is best. However, experi­
ence has shown that sometimes the user knows best and for that reason Rdb
provides three methods to influence the optimizer strategy:

• Enforce a FAST FIRST strategy

•Enforce a TOTAL TIME strategy

• Query outline

6.3.1 FAST FIRST or TOTAL TIME

There are certain occasions when you may want the optimizer to use the FAST
FIRST (FFirst) or TOTAL TIME (BgrOnly) strategy. This can be simply
achieved by including these key words in the SELECT clause or in a cursor
declaration. Remember though that once specified in an application, this method
will always be used, so only include it in an application if it is really neces­
sary.

In the example shown below the optimizer decides that a FFirst strategy should
be used.

SOL> SELECT surname, fi rst_name FROM customer

cont> WHERE surname>='Hobbs' AND status = 1 AND
cont> customer _no > '100203' AND fi rst_name <='Lili an';

-S1f0016
Leaf#Ol FFirst CUSTOMER Card=4

BgrNdxl CUST_UNIQUE [1:0] Fan=14

BgrNdx2 CUST_INDEX

-E#0016.01(1) Estim

-E#0016.01(1) Fin
0 rows selected

[l:OJ Boal Fan=6
Ndx:Lev/Seps/DBKeys 1:1/2/2 2:_7

Seq DBKeys=4 Fetches=O+l RecsOut=O

By adding the OPTIMIZE FOR TOTAL TIME clause the strategy is changed
to BgrOnly.

172

SOL> SELECT surname, fi rst_name FROM customer
cont> WHERE surname>='Hobbs' AND status = 1 AND

The Optimizer

cont> customer_no > '100203' AND first_name <='Lilian'
cont> OPTIMIZE FOR TOTAL TIME;
~S#0017

Leaf#Ol BgrOnly CUSTOMER Card=4

BgrNdxl CUST_UNIQUE [1:0] Fan=l4
BgrNdx2 CUST_INDEX [1:0] Boal Fan=6

~E#0017.01(1) Estim
~E#0017.01(1) Fin

0 rows selected

6.3.2 Query Outlines

Ndx:Lev/Seps/DBKeys 1:1/2/2 2:_7
Seq DBKeys=4 Fetches=O+O RecsOut=O

One of the often touted advantages of using a relational database is the fact
that the user does not need to know how to retrieve the data; they simply
specify the query and the optimizer chooses the access path. For the majority
of queries and applications this approach is ideal. However, some users have
found that the access strategy chosen by the optimizer varies between versions
which can result in a sub-second query taking many seconds, or even minutes
if you are very unlucky. Another common problem is when a table is very
volatile and the number of rows in the table varies. In this instance, the number
of rows in the table will determine the strategy chosen by the optimizer. Both
of these examples illustrate the need to stabilise the optimizer strategy, which
is achieved by defining query outlines.

Hint: Query outlines should only be defined as a last resort because one
requires considerable knowledge of the optimizer to ensure that the query
does not perform worse when the outline is used.

A query outline is created by defining the two logicals
RDMS$DEBUG_FLAGS andRDMS$DEBUG_FLAGS_OUTPUT. Then the
query is executed and the outline for the query is modified to produce the
desired results. Finally it is executed in SQL and for all subsequent queries
that will be used.

6.3 Influencing the Optimizer 173

In the following example the normal retrieval strategy is to use the index. An
outline is created which changes the retrieval strategy to sequential. Of course
a sequential retrieval strategy is not one the authors would normally recommend.

$ DEFINE RDMS$DEBUG_FLAGS "Ss"
$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT query_outl i ne. sql
SOL> SELECT branch_name FROM branch WHERE branch_code = 'SOT';

This results in the creation of the following outline, which is edited to change
the access path to sequential.

SOL- Rdb Generated Outline : 19-DEC-1993 16:17
CREATE OUTLINE 00_102BBBD9A2DE99C7_00000000
id '102BBBD9A2DE99C76134EFB3D5CB4BA8'
mode 0
as (

query
subquery

BRANCH 0
)

access path sequential

)
)

compliance optional
COMMIT;

Using SQL, the outline is stored with the system metadata.

Now when the query is executed the optimizer output displays the name of the
query outline used to resolve this query.

SOL> SELECT branch_name FROM branch WHERE branch_code = 'SOT';
~S: Outline 00_102BBBD9A2DE99C7_00000000 used
~s110001

Conjunct Get
BRANCH_NAME
test

1 row selected

Retrieval sequentially of relation BRANCH

The nice aspect of this feature is that the query outline only applies to this
specific query; therefore the one shown below which is very similar to the
outline query but not identical, will use the index for retrieval.

174 The Optimizer

SOL> SELECT branch_name FROM branch WHERE branch code = 'SOT'
cont> AND branch_code IS NOT NULL;
~S1/0006

Get Retrieval by index of relation BRANCH
Index name BRANCH_INDEX [1:1] Bool

BRANCH_NAME

test
1 row selected

Direct lookup

Sometimes it might be desirable to change the strategies for a query depending
on the circumstances. For example, whether the query is run during the online
day or as part of overnight batch processing. This can be achieved by defining
multiple outlines for the same query, where each outline has a unique negative
number, known at the mode. Each outline for a query is allocated a unique
negative number. When the query is run, the outline chosen is determined by
the value of the logical:

RDMS$BIND_OUTLINE_MODE

Another option available to the designer of the query outline is to specify what
is known as a partial outline. Unlike a full outline which details how the entire
query must be executed, a partial outline specifies the strategy for certain
components or elements, such as one of the tables in the query. Outlines such
as these are less likely to be invalidated, and may offer all the query optimiza­
tion control required. An outline is automatically invalidated if metadata
changes occur which affect the outline, such as an index is dropped that is
referenced in the outline.

It is a good idea not to start defining outlines until a database design is stable,
because certain metadata changes will invalidate the outline, which means it
will have to be dropped and redefined.

This chapter introduced the optimizer and explained how the chosen strategy
is observed using the RDMS$DEBUG_FLAGS logical name. Use of the
RDMS$DEBUG_FLAGS logical name should be mandatory in every program
test and documentation. Since the optimizer code is enhanced in every release
of Rdb, it is vital that no attempts be made to fool the optimizer, otherwise the
strategy may change when a new release is installed. Influencing the optimizer
should only be attempted via query outline. TheRdb Guide to Database Main­
tenance and Performance has more detailed information about the optimizer.

7 Transaction Management

Rdb is a multi-user database system, meaning that many users can be attached
to a database, reading and updating rows simultaneously. When this is the
case, a number of users most likely will be interested in the same tables and
rows at the same time. Rdb manages this shared access to data with a locking
scheme. If shared access were not managed it would not be long before the
database contained inconsistent data. In fact, the data would gradually
become invalid, meaning information derived from it could not be trusted.
Eventually the database would not reflect the state of the business, making it
virtually useless. One of the organization's most important assets would have
to be written off.

To demonstrate how database data could become inconsistent, we can draw
upon a well-known problem that can occur in a database if shared access to its
data is improperly managed. This problem is known as the buried or lost
update problem. Suppose two users are updating customer accounts in the
BANKING database. The first runs an online program that starts transaction
txn(I). This transaction reads a customer account and displays the data on the
terminal screen. The user wishes to subtract $50 from the balance, which
stands at $200. The user, therefore, instructs the program to debit the account
by $50. The program displays the new account information on the terminal
screen and asks the user to confirm the transaction. The new balance dis­
played of $150 looks correct, so the user confirms the transaction and the
program updates the account on the database.

Everything is fine. Unfortunately, a second user also has decided to update the
same account. The second user runs the online program and starts a transac­
tion, txn(2). Just after the first user has read the account row with txn(I), the
second does the same with txn(2). Both users see exactly the same information
on the terminal screen. The second user wishes to credit the account balance
with $100. Unfortunately, this occurs after txn(I) has finished. The balance of

7.1

176 Transaction Management

$200 is credited with $100, overwriting the balance of $150 stored by the first
user. Clearly, the information added to the database by the first user is lost
forever and the information held on this customer account is incorrect. The
sequence of events is shown in Figure 7 .1, with time progressing from left to
right.

The correct balance value for this account should be $250 after executing
these transactions. Rdb ensures that the inconsistency just discussed cannot
occur by using a locking scheme. We shall see later in this chapter how a
locking scheme prevents the buried update inconsistency.

Another classical problem occurs when one transaction is reading rows
sequentially down a table while another transaction is allowed to insert rows
into the table. We shall look at such a problem shortly.

TRANSACTIONS

All operations in Rdb are performed within transactions, whether they are
data manipulation operations (DML) or data definition operations (DDL).
Within a transaction, all of the operations are performed or none of them are
performed. Consistency is maintained during a transaction; that is, the user's
view of the data is stable. Of the various degrees of consistency, Rdb, by
default, implements degree 3 consistency which is the ANSI standard default
for a READ/WRITE transaction. To adhere to degree 3 consistency a trans­
action must meet the following requirements:

• All reads must be repeatable. If a transaction is reading a row, another
transaction may not update that row until the first transaction finishes.

•An updated row cannot be read until the updating transaction finishes.
No transaction can read the in-flight updates of another transaction.

• If a transaction updates a row, no other transaction may update that row
until the first transaction finishes. In other words, all updates can be
correctly rolled back.

These requirements mean that writers must wait for readers to finish before
they can update. In fact, locks are never relinquished or demoted until the
transaction ends with a commit or rollback. A more relaxed regime will be
discussed later in this chapter.

7.1 Transactions 177

Figure 7.1 The Buried Update Problem

txn(1) Read Account Update Account

txn(2) Read Account Update Account

Balance $200 $150 $300

ti t2 t3 time

The locking scheme in Rdb is used for a number of purposes. Firstly, locks are
used to control data at the logical level. Users can control these locks to a
point using the SET TRANSACTION statement.

Secondly, locks are used to control data at the physical storage level. For
example, database pages must be locked because different users may wish to
manipulate rows on the same page. Prior to Rdb Version 6.0, page level lock­
ing was not controllable by the database designer. From Rdb Version 6.0
onwards, page level locking can be set for individual storage areas. Prior to
Rdb Version 6.0 page locks were really just a.mechanism to assist in buffer
locking and synchronization. Now they can be thought of as real page locks.

Third, locking is used to communicate events between processes, such as when
a node in a VMScluster accessing a database fails during a VMScluster state
transition.

72

178 Transaction Management

RDBLOCKING

The Rdb locking scheme is a sophisticated approach to ensuring that data
integrity is maintained in a multi-user environment. In the Open VMS environ­
ment, Rdb uses the Open VMS Ddistributed Lock Manager to implement its
locking scheme. To understand how Rdb overcomes problems such as the
buried update problem, it is useful to use this environment as an example. The
Open VMS Distributed Lock Manager controls locks and resources. Every
request for a lock is associated with a particular resource, such as a particular
row. A lock is considered to control two types of access: the access permitted
by the holder of the lock, the access mode, and the access permitted to other
users, the share mode. The access modes may be read or write. The share
modes may be:

• Concurrent: Readers and writers may share the resource.

• Protected: Only readers may share the resource.

• Exclusive: No one may share the resource.

Rdb considers many objects to be resources, including:

• The database itself

• A storage area (physical area)

• A table (logical area)

• A database page

•A table row

• An sorted index node

• A hash bucket

• A system record

A lock may be granted for any resource as long as it does not conflict with
locks already held by other users. Locks also may be promoted or, in certain
circumstances, demoted to a different lock mode. This is called lock conversion.
Lock mode compatibility is shown in Table 7 .1.

7.2 Rdb Locking 179

Table 7.1 Lock Mode Compatibility

Mode of Mode of Currently Granted Locks
Requested Lock NL CR cw PR PW EX

CR

cw
PR

PW

EX

Key:

Yes Yes Yes Yes Yes No

Yes Yes Yes No No No

Yes Yes No Yes No No

Yes Yes No No No No

Yes No No No No No

NL - Null Lock; CR - Concurrent Read; CW - Concurrent Write

PR - Protected Read; PW - Protected Write; EX - Exclusive Lock

If a conflict does occur, a user's lock cannot be granted. In this case, the user
trying to unsuccessfully apply the lock may wait until it can be granted or
terminate the lock request. The SET TRANSACTION statement includes a
WAIT and NOWAIT qualifier with which the programmer may specify the
desired course of action. If the WAIT qualifier is used, a time limit can also be
specified.

If the NOWAIT qualifier is to be used, any lock conflict will immediately
cause Rdb to return an error status. If the WAIT qualifier is used, the transac­
tion will wait until the lock can be granted. It may be that in a well-designed
database the transaction is forced to wait less than a second. In this instance,
it often makes sense to take a WAIT approach, avoiding the associated over­
head involved in trying access again, if the transaction would only have to
wait a short time before the lock was granted. There also is no guarantee that
a subsequent try would result in the lock being granted. Therefore, in most
cases, choosing WAIT is the best strategy.

Chapter 12 describes how a wait time can be specified for a transaction.

7.2.1 Deadlocks

In a deadlock situation, locks can be neither granted nor converted. Take a
situation where User A has a protected update lock on resource P, and User B
has a protected update lock on resource Q. Now suppose User A attempts to

180 Transaction Management

place a protected update lock on resource Q. It cannot be granted, because the
locks are incompatible. User A must wait until User B has released his lock. If
User B now tries to place a protected update lock on resource P, she will be
forced to wait for the same reasons. It is clear that both users, who are said to
be in a deadlock state, will wait indefinitely. Figure 7 .2 shows a deadlock state.

Figure 7 .2 A Deadlock State

User A waits
for User B

User A

User B waits
for User A

User B

The Open VMS distributed lock manager initiates a deadlock search once a
lock request has been waiting for a predetermined length of time. This pre­
determined time is the value of the Open VMS system (SYSGEN) parameter
DEADLOCK_ WAIT and by default is set at ten seconds. The deadlock search
is done to determine whether the waiting lock request is part of a deadlock. A
victim is chosen if a deadlock is detected. The victim is always the youngest
transaction, that is, the transaction that has existed for the shortest time. The
victim's lock request is denied, and an error status is returned from Rdb
indicating a deadlock failure. It is usual for the application to roll back the
transaction, releasing all its locks, and to try the transaction again. It is possi­
ble to be in distributed deadlocks where the relevant transactions originate
from different nodes on the network. Distributed deadlocks are described in
more detail in Chapter 12.

Hint: There is a myth that a process receiving a deadlock message
automatically releases its locks and the other process continues its work.
This is not true. When a deadlock error message is received the program
or 4GL code must detect this fact and explicitly release its locks by
ending the transaction, usually with a rollback.

7.2.2

73

7.3 Table Locking 1 8 l

The Buried Update Problem Revisited

If we look at the buried update problem again and apply a lock scheme similar
to that used by Rdb, we can devise a simple solution. Suppose that when a
transaction retrieves a customer account, Rdb places a protected read lock on
the account row. Since protected read locks are compatible (see Table 7.1),
both transactions can retrieve the same customer account row. However, when
the first transaction tries to update the customer account row, Rdb must at­
tempt to place a write lock on it. Write locks are not compatible with protected
read locks (see Table 7.1), so the first transaction is forced to wait. The sec­
ond transaction also attempts to update the customer account, but it, too, is
forced to wait for the same reason. Consequently, we have a deadlock state.
One of the transactions will be chosen as a victim and will receive an error
message. The application program usually will abort the transaction at this
point. The first transaction then will acquire its write lock and successfully
complete. The integrity of the customer account will have been maintained as
a buried update will not have been allowed to happen.

TABLE LOCKING

Three factors determine the locking for tables and rows:

• The SET TRANSACTION statement

• The verb being executed

• The retrieval method

• The transaction isolation level

7.3.1 The SET TRANSACTION Statement

Table locks are determined by the SET TRANSACTION statement. Transactions
have many characteristics associated with them, which can be specified as
part of the SET TRANSACTION or DECLARE TRANSACTION statements.
Most of the characteristics affect the type of locking that is performed. The
access mode that the transaction requires is one of the characteristics that can
be specified.

182

The access modes that can be specified are:

•READ ONLY

•READ WRITE

• BATCH UPDATE

Transaction Management

If snapshot files are enabled on the database, the clause READ ONLY can be
specified on the SET TRANSACTION statement to start a snapshot trans­
action. Snapshot transactions are discussed in detail in Chapter 4. Snapshot
transacti~ns can only be used to retrieve data. From a locking point of view,
they do not interfere with updating transactions. Thus, a user retrieving data
from a table with a snapshot transaction does not lock out a user updating
data in the same table. On the other hand, the user executing the snapshot
transaction is not locked out by the updating user. This can dramatically in­
crease concurrency in the table. Snapshot retrieval transactions are handy
when writing reports based on database tables. Not only is the data presented
consistently, no lock conflict occurs when rows are updated in the same table
that is being searched, no matter how long the report takes to generate.

Note: Snapshot transactions will conflict with exclusive transactions.

READ WRITE transactions can update, as well as read data. READ WRITE
transactions use locks determined by the tables and access modes specified in
the RESERVING clause of the SET TRANSACTION statement.

BATCH UPDATE transactions also can update data as well as read it. These
transactions lock the whole database, so no table or row-level locking needs to
be done. BATCH UPDATE transactions should only be used in very special
circumstances, such as the bulk loading of data, when the database has been
backed up and load failure is not a concern. Unlike EXCLUSIVE UPDATE
transactions, BATCH UPDATE transactions do not write to the run unit jour­
nal and therefore cannot be rolled back.

Share modes also can be specified as part of the SET TRANSACTION and
DECLARE TRANSACTION statements. By specifying a share mode, a trans­
action limits the access by other transactions. The RESERVING clause is
used to specify how the tables are to be shared.

7.3 Table Locking 183

If a lock is incompatible with other locks already in use, the SQL operation
may terminate immediately or it may be delayed until the lock can be granted.
The action taken is determined by a WAIT or NOWAIT qualifier on the SET
TRANSACTION or DECLARE TRANSACTION statement.

The ANSI SQL standard defines the concept of transaction isolation levels.
Isolation levels affect locking and are specified as part of the SET TRANS­
ACTION or DECLARE TRANSACTION statement; however, they will be
specifically dealt with shortly.

Some examples of the above mentioned SET TRANSACTION statements
follow. The following statement starts a snapshot transaction.

SOL> SET TRANSACTION READ ONLY;

The following example reserves two tables. The transaction may wish to read
the CUSTOMER table and update the ACCOUNT table.

SOL> SET TRANSACTION READ WRITE
cont>
cont>

RESERVING customer FOR SHARED READ
account FOR SHARED WRITE;

The next statement accesses two databases. Data will be read from the
CUSTOMER table in one database and stored in the CUSTOMER table of
another database. BANK and INSURANCE are known as aliases and specify
the databases that are to be accessed.

SOL> SET TRANSACTION
cont>
cont>
cont>
cont>

ON bank USING (READ ONLY
RESERVING bank.customer FOR SHARED READ)
AND ON insurance USING (READ WRITE
RESERVING insurance.customer FOR SHARED WRITE);

The example that follows shows a transaction that will not wait for a lock
conflict to be resolved. In the case of such a conflict, an error will be returned.

SOL> SET TRANSACTION READ WRITE
cont> RESERVING branch FOR PROTECTED WRITE NOWAIT;

184 Transaction Management

7.3.2 The Verb Being Executed

If no RESERVING clause is specified, the verbs executed during the trans­
action determine the table locks. That is, if the transaction only reads rows,
the table will be treated as if it were reserved for shared read. Once an update
occurs, the table will be treated as if it were reserved for shared write. A user
need not specify a SET TRANSACTION because Rdb will provide a default
READ WRITE transaction.

Hint: To ensure complete control over the transaction and to document
the type of transaction started, the authors advise that a SET TRANS­
ACTION statement always be issued.

7.3.3 The Retrieval Method

Once data is stored in a database, someone undoubtedly will want to retrieve
it. Typically, the user retrieves a number of rows based upon some condition,
such as all ACCOUNTS with a BALANCE greater than $10,000. In trans­
action processing, the search condition often is an exact key match, and only
one row is retrieved. Depending on the structure of the query and the indexes
defined on the table, the Rdb optimizer will choose one of the following
retrieval strategies, which will determine the locking.

• Sequential

• Sorted index

• Hashed index

• Database key (dbkey)

Sequential Retrieval

In sequential retrieval, the rows in the table are read sequentially until all the
rows satisfying the search condition are returned. Rdb locks each row before
reading it. In accordance with degree 3 locking, these locks cannot be re­
moved or demoted until the transaction issues a COMMIT or ROLLBACK.
Consequently, many locks could be used if a large number of rows are processed.
To avoid locking every row, Rdb changes to a table lock. To ensure that no

7.3 Table Locking 185

other user can update a row, the table is locked with a protected read lock or a
protected write lock, depending on whether the SET TRANSACTION state­
ment specified a shared read or a shared write transaction.

The table lock is promoted after the SET TRANSACTION statement, that is,
once the strategy is known. Therefore, a user may successfully issue a SET
TRANSACTION statement only to find it is necessary to wait for another
user to finish before access to the table is allowed.

Sorted Index Retrieval

If sorted indexes are present on a table, the optimizer may choose a sorted
index retrieval strategy. In this situation, Rdb does not alter an existing table
lock. Instead, both rows and index nodes are likely to be locked. It is possible,
therefore, for lock conflict to occur in an index as well as in the data itself.

Rows and index nodes are locked in similar fashion. SHARED READ trans­
actions place protected read locks on index nodes and rows, as in this transac­
tion example.

SOL> SET TRANSACTION RESERVING accounts FOR SHARED READ;

SHARED WRITE transactions place an exclusive write lock on the index
nodes and rows that are being modified, such as in the following transaction
example.

SOL> SET TRANSACTION RESERVING accounts FOR SHARED WRITE:

Table 7.1 shows that protected and exclusive write locks are not compatible
with protected read, protected write, and exclusive locks. Therefore, other
users may be denied access to the locked index node or row until an updating
transaction has committed or rolled back. This situation does not apply if only
readers are accessing index nodes and rows. Their transactions take out
protected retrieval locks that are compatible, as can be seen in Table 7 .1.

If a table has only a few rows, probably few index nodes are present. In this
case, conflict is likely. This situation is aggravated if the database designer
has created the index with large index nodes because there are fewer nodes to
hold all the index entries. A table with many rows probably has many index
nodes, which decreases the chance of conflict. The index node size is an im­
portant point for the database designer to consider. Smaller index nodes can
result in less locking contention when many users are updating the database,

186 Transaction Management

but they also result in deeper index trees, which could necessitate more disk
I/Os to traverse the index.

Hint: The database designer can use the powerful RMU command RMU/
ANALYZE/INDEX/PLACEMENT to check the number of index levels
and path lengths in an index. If necessary, the ALTER INDEX statement
can be used to change the index node size and other index attributes.

If a transaction does not update a column that is part of the index, the index
node will not get an update lock. If an index contains many nodes, the
different index node levels are navigated until the lowest level, the Level 1
node, is reached. The nodes at this level point to the rows or duplicate nodes.
As the different index levels are navigated, protected retrieval locks are placed
on the nodes until the Level 1 index node is reached. A protected retrieval lock
or an exclusive lock is placed on this node depending on whether the index is
updated or not.

Hint: It is important to avoid situations in which users are updating or
inserting rows based upon a similar range of key values, such as rows
with serially increasing order numbers. Another example would be a key
including a column with the current system time. In this situation, the
users inserting or updating rows will be locking the same index nodes and
increasing the probability of conflict. In both these situations, a hashed
index may be useful.

Sorted Indexes With Non-Unique Keys

In sorted indexes where duplicate key values are not allowed, Level 1 index
nodes contain database keys that point to the rows. Rdb creates duplicate
index nodes if a sorted index allows duplicate key values and if table rows are
inserted with duplicate key values. When duplicate nodes exist, the Level 1
index node entry points to the duplicate index node instead of a table row. The
duplicate index node contains the database key for each table row that has
identical key values. Duplicate index nodes also may be chained together. A
duplicate index node structure was shown in Figure 5.2.

As we have mentioned, Rdb will lock these duplicate index nodes where nec­
essary. Lock conflicts may occur between transactions accessing them.

7.3 Table Locking 187

Hashed Index Retrieval

As we learned in Chapter 5, a hashed index is a special kind of index that can
be used to retrieve rows when the whole value of the key is known; that is, all
the values of the columns that make up the key are known. A hashed index can
provide fast access to rows if the exact match operator (=) is used. Other
operators, such as greater than(>), less than (<),and BETWEEN, cannot use
hashed index structures to improve the performance of a query.

A hashed index consists of a set of storage segments called hash buckets.
These hash buckets contain database keys that point to the rows whose keys
hash to the database page managed by the hash bucket. Hash buckets are not
totally dissimilar to sorted index Level 1 nodes, and a lock placed on a hash
bucket can restrict access to other rows pointed to by that hash bucket.

Since hash buckets usually hold fewer database keys than Level 1 nodes, there
will be less contention than in sorted index nodes. More important, by defini­
tion, the hashing of the row keys may result in the random distribution of rows
depending on the algorithm chosen. Therefore, the situation described earlier
concerning inserting and updating rows with serially increasing key values
should not be a problem with hashed indexes. System records on a database
page pointing to hash buckets also are subject to locking and may be a source
of conflict.

Database Key Retrieval

7.3.4

A row can be directly retrieved using its database key. In this case only the
row is locked. If the row is updated in a way that causes an index update to
occur, the index will have to be read and the appropriate locks acquired.
Database keys were explained in Chapter 4.

Transaction Isolation Levels

Earlier in this chapter it was mentioned that, by default, Rdb provides degree
3 consistency which is also known as isolation level serializable. This ensures
that the highest levels of data integrity are enforced by a very strict locking
scheme. Unfortunately, locking is the natural enemy of performance and
concurrency and strict locking schemes will reduce transaction concurrency.
There may be situations where a relaxation of the locking scheme will not
affect the integrity of the data in the database but an increase in concurrency

188 Transaction Management

can be made. Rdb provides the capability for the database designer to relax
the degree of consistency provided by the locking scheme. The degree of con­
sistency is referred to in Rdb as the isolation level.

The isolation level determines the amount that transactions can be affected by
one another. There are three isolation levels supported in Rdb.

• Serializable

• Repeatable Read

• Read Committed

Another isolation level, Read Uncommitted, allows dirty data to be read, how­
ever, this is not supported by Rdb. The isolation level is specified as part of
the SET TRANSACTION or DECLARE TRANSACTION statement and is
only valid for READ WRITE transactions.

SOL> SET TRANSACTION READ WRITE ISOLATION LEVEL REPEATABLE READ;

The isolation level serializable represents the highest degree of consistency
and is the default transaction mode. Different isolation levels determine the
types of phenomenon that may occur when transactions are being run concur­
rently. These phenomena are:

• Nonrepeatable Read

•Phantom

Suppose a transaction txn(1) reads a row twice and between those two reads
another transaction txn(2) updates values in that row and commits the update,
then the second read of txn(1) will return a different result from the first read.
This is known as a nonrepeatable read phenomenon and often leads to the
buried update problem mentioned earlier in the chapter. It is shown diagram­
matically in Figure 7.3.

In this example, both transactions read a balance of £1000. Txn(l) updates
the balance by adding £500 to make it £1500 and commits the update. Txn(2)
then adds £200 to what it believes is the current balance value (£1000) and
commits the update. The update made by txn(1) has been overwritten by txn(2)
and in this case data integrity has been compromised.

Suppose a transaction txn(1) performs a range retrieval, summing up a column
in a number of rows and comparing the result of this summation with another

7.3 Table Locking 189

Figure 7.3 The Nonrepeatable Read Phenomenon

Commit

txn(1) Update
Value

£1000 £1500
Commit

txn{2)
Read
Value

Add
£1000 £200 £1200

Balance £1000 £1000 £1500 £1200 ..
time

location holding the total. Suppose a transaction txn(2) inserts a new row
after txn(I) has passed, updates the location holding the total and commits.
Txn(I) will find that the result of its summation and the value in the location
holding the total do not agree. This is known as a phantom phenomenon. It is
shown diagrammatically in Figure 7.4.

Figure 7.4 The Phantom Phenomenon

190 Transaction Management

These phenomena can be prevented by the selection of an appropriate isola­
tion level. Isolation level serializable will prevent both phenomena from oc­
curring and it is equivalent to degree 3 consistency. Isolation level repeatable
read will not allow the nonrepeatable read phenomenon to occur but will al­
low phantoms. Isolation level read committed allows both the nonrepeatable
read phenomenon and the phantom phenomenon to occur. This is summarized
in Table 7 .2.

Table 7.2 Phenomena Allowed By Different Isolation Levels

Isolation
Level Nonrepeatable Reads Allowed Phantoms Allowed

Serializable No No

Repeatable Read No Yes

Read Committed Yes Yes

7.3.5

It can be seen from the above discussion that starting a transaction with an
isolation level other than serializable can be dangerous as data integrity might
be compromised. However, if the database designer knows that his or her
database and the applications that use it will not be affected by nonrepeatable
read or phantom phenomena, some extra concurrency and therefore perfor­
mance might be gained by running under more relaxed isolation levels.

Page Level Locking

With Rdb Version 6.0 the database designer was given the choice of using row
level locking (as before) or specifying that locking should only be done at the
page level. The fact that Rdb applied locks on pages was not controllable by
the database designer prior to Version 6.0. Page locking was used transparently
to ensure that the integrity of the database pages users had in their buffers was
maintained.

Using page level locks instead ofrow level locks has advantages and disad­
vantages. The advantage is that one lock is used to lock the page and hence all
the rows on the page as opposed to potentially many row level locks. This is a
saving in system resource. The disadvantage is that concurrency may be re­
duced. If different users wish to update different rows on the same page and
row level locking is in force, they will be allowed to do so. If page level

7.3 Table Locking I 91

locking is in force, the first user will take out a page lock on the page and the
second user will be forced to wait for the page until the first user has commit­
ted their transaction. This is shown in Figure 7.5 and Figure 7.6. In Figure 7.5
two users are updating rows on a database page whereas in Figure 7 .6 only
one user is able to and the other user is forced to wait.

Figure 7.5 Using Row Level Locks, Two Users Can Both Update Rows

Database Page

User1

User 2

Figure 7.6 Using Page Level Locks, User 2 Must Wait for User 1

Database Page

User1

User 2

192 Transaction Management

Page level locking is therefore most effective when users are unlikely to be
accessing the same pages. An example of this might be where a parent row
and its child rows are physically clustered together on a page. In the BANK­
ING database this might be a customer and their accounts. In this case it is
probable that a bank clerk is dealing exclusively with a customer and their
accounts and so page level locking makes sense.

Page level locking is applied at the storage area level and is specified on the
CREATE or ALTER DATABASE statement.

SOL> ALTER DATABASE FILENAME banking
cont> ALTER STORAGE AREA customer_area
cont> LOCKING IS PAGE LEVEL;

The default is row level locking. A SHOW STORAGE AREA statement or
an RMU/DUMP/HEADER command will return information on the type of
locking in use for a storage area.

SOL> SHOW STORAGE AREA CUSTOMER_AREA

CUSTOMER_AREA
Access is:
Page Format:

Read write
Uni form

Locking is Page Level

$ RMU/DUMP/HEADER banking

Storage area CUSTOMER_AREA
Area ID number is 2
Filename is "EUROBANK: [UK. DB]CUSTOMER __ AREA. RDA; 1"
Access mode is READ/WRITE
Pages ...

- Page format is uniform
- Page size is 2 blocks
- Initial data page count was 501
- Current physical page count is 502
- Page-level locking is enabled

7.3 Table Locking 193

Hint: As row or page level locking can only be specified by storage area,
this is another consideration when deciding whether to group tables and
indexes together in storage areas. Note that page level locking cannot be
used for single-file databases or RDB$SYSTEM storage area in multifile
databases.

Figure 7.7 The ALG Tree

Table

1000 Pages

100 Pages

10 Pages

'--~~~1_a_b_le~R-ow~s~~~--'~
7.3.6 Adjustable Locking Granularity

We have seen that two users manipulating rows in the same table use a number
of locks to ensure data integrity. To reduce the number of locks used, Rdb
uses a technique called adjustable lock granularity. This technique assumes
an inverted tree of resources known as the ALG tree. Each level in the tree
corresponds to a resource. The farther down the tree the finer the granularity
of resource.

7.4

194 Transaction Management

This principle is shown in Figure 7.7, where the top of the ALG tree (the root)
corresponds to a logical database area (Level 4), the next level down (Level
3) corresponds to groups of 1000 consecutive pages, the next level down
(Level 2) corresponds to groups of 100 consecutive pages, the next level
down (Level I) corresponds to groups of 10 consecutive pages and the
bottom leaf (Level 0) to the database rows themselves.

A transaction will attempt to take a strong lock out at Level 4 first of all. If
there is contention the transaction will attempt to take out a strong lock at
Level 3 while demoting the lock at Level 4 to a weak lock, then Level 2 and so
on until the row is locked. This means that in a high contention environment it
is possible that five locks are used to lock one row.

ALG is most effective where users manipulate rows in the same table but the
rows are on different groups of pages.

The ALG mechanism uses CPU resources to manage the ALG tree and uses
virtual memory in which to hold the locks. If a small number of rows are
accessed by a transaction and other transactions also access a small number
of rows in the same group of pages, it is probably best to disable ALG. This
situation sometimes is found in transaction processing applications when a
small part of the database is being accessed by transactions that manipulate
only a few rows. To disable ALG for an individual database use the ALTER
DATABASE statement.

SOL> ALTER SCHEMA FILENAME banking
cont> ADJUSTABLE LOCK GRANULARITY IS DISABLED;

Contention in the ALG tree can be spotted with RMU/SHOW STATISTICS
using the stall message screens. If what looks like a database key with a
negative line number is seen, this is ALG tree lock contention. In this case the
'line number' field is set to -4, -3, -2 or -1 to represent the level. The page
number field is set to the first page in the group of pages and the logical area
identifies the table or index being locked.

RMU/SHOW LOCKS

The investigation of lock related problems will almost certainly involve the
RMU/SHOW STATISTICS command with its screens of lock related infor­
mation and lock stall messages. This command is described in Chapter 11.

7.4 RMU/SHOW LOCKS 195

However, the RMU command, RMU/SHOW LOCKS may facilitate the in­
vestigation of process locking activity and we will discuss this command in
this chapter as it is purely lock related.

The command, on the whole, returns information that is VMScluster node
specific. Various flavors of the command can be tried with different qualifiers
such as /PROCESS, /MODE or /LOCK_ID.

RMU/SHOW LOCKS/PROCESS=00000063/MODE=BLOCKING

SHOW LOCKS/PROCESS/BLOCKING Information

Resource: record 9597:23
Process ID Process Name Lock ID System ID Requested

Granted
Waiting: 00000063 FTA7: 050003DF 00000000 PR NL
Blocker: 00000062 FTA8: 05000356 00000000 EX EX

The above example requests information on processes blocking the named
process. In this case, process 00000062 has an exclusive lock on the resource,
record 9597:23, and this process is blocking process 00000063.

RMU/SHOW LOCKS/LOCK=050003DF

SHOW LOCKS/LOCK Information

Resource: record 9597:23
ProcessID Process Name Lock ID System ID Requested

Granted
Owner: 00000063 FTA7:. 050003DF 00000000
Blocker: 00000062 FTA8:... 05000356 00000000

PR NL
EX EX

The above example displays information about the specified lock. Note that
the lock ID can be obtained from an RMU/SHOW STATISTICS stall mes­
sages screen and then, using the L key, this information can be instantly dis­
played.

7.5

196 Transaction Management

PRESTARTEDTRANSACTIONS

Since the early versions of Rdb, an optimization has been employed to reduce
disk 1/0 to the database root file known as prestarted transactions. When a
read/write transaction is committed or rolled back a new read/write transac­
tion is started for that attach. The same transaction sequence number (TSN) is
given to the new prestarted transaction as was given to the previous read/write
transaction. Generally, this optimization is fine, however, in certain circum­
stances it can result in the snapshot file growing excessively.

This is because of the way in which Rdb reclaims snapshot file space, that is,
overwrites old, irrelevant data. The read/write transaction that has been active
for the greatest length of time has a TSN value that is the basis for a concept
known as the cutoff TSN. If Rdb finds a row in the snapshot file whose TSN
is less than the cutoff TSN, Rdb can overwrite this row and hence re-use the
space. Unfortunately, because of the prestarted transaction optimization, a
TSN value may stay in the database for a long time if the process does not
detach. This means that a cutoff TSN may stay at this same value for a long
time and therefore snapshot file space will not be reclaimed and the snapshot
file will potentially grow. This phenomenon is most likely to affect applica­
tions that use server processes that stay attached to the database for long
periods of time, for example, DEC ACMS or ACMSxp.

Originally, there were two methods for forcing a new read/write transaction to
receive a new TSN. First, the process could detach from the database and then
re-attach at specific time intervals or after a number of transactions had been
processed or at some other application defined event. Second, the process
could commit, start a read-only transaction, roll back and then start a read/
write transaction again. This would force a new TSN.

Now, new syntax is available to allow the database designer to disable the
prestarted transaction optimization. This can be specified on an a ATTACH,
CONNECT, DECLARE ALIAS, CREATE DATABASE and IMPORT statement.

SOL> ATTACH 'FILENAME banking
cont> PRESTARTED TRANSACTIONS ARE OFF';

The database designer will need to determine if there is a significant drop in
performance caused by this optimization being disabled.

7.6

7.6 Fast Commit Transaction Processing 197

FAST COMMIT TRANSACTION PROCESSING

When a user executes a COMMIT verb, the default scenario and the scenario
everyone expects is that Rdb writes all the modified (also known as marked)
buffers to stable storage, that is, to disk. In fact, a buffer pool is considered
well sized when the only time a modified buffer is written to disk is in response
to a commit. By default, the reasons why a modified buffer are written back to
disk are:

• A commit verb is issued

• Page contention

• Buffer pool overflow

Page contention occurs when a user wishes to access data held on the same
page that another user has in their buffer. In this case, the user holding it must
write the page back to disk so both users may see the same version. Buffer
pool overflow occurs when a user wishes to read in a page and there are no
more buffers free in their local buffer pool (or allocate set if global buffers are
enabled). In this case a least recently used algorithm chooses a buffer to dis­
card and if that buffer has been modified it must be written back to disk. Only
writing buffer back to disk when a commit occurs and avoiding the other two
cases benefits performance as Rdb writes out buffers on a commit in a very
efficient fashion.

Hint: Use the RMU/SHOW STATISTICS physical 1/0 (PIO) display to
observe the reasons for buff er flushing and the frequency of it.

Ensuring that all the modified buffers are written to disk on a commit has the
advantage that, in the event of a failure, Rdb only has to roll back incomplete
transactions. It never needs to consider the committed transactions that com­
pleted successfully - they are safely stored on disk, and in the after-image
journal file if after-image journaling is enabled. In other words, recovery is
very fast.

To summarize therefore what happens when Rdb executes a commit:

1 The run unit journal (RUJ) buffers are written to the RUJ file.

2 The modified database buffers are written to the storage area files.

198 Transaction Management

3 If enabled, AIJ buffers are written to the AIJ file.

4 Commit information is written to the root file.

There are applications where writing the database pages to disk at commit
time may be an overkill and may not be the most efficient approach. Consider
an application where each user is reponsible for continually updating their
own set of database rows. An example might be a commodities dealing system
where individual users are responsible for particular commodities or maybe
particular clients. They continually update the same group of database pages
and at the end of every transaction these pages are written back to disk which
can cause a high disk I/O load.

Fast commit processing is a technique that can be used to avoid this. With fast
commit processing enabled, a process does not write modified buffers to the
database storage areas when a commit is issued. Instead, it writes to the AIJ
file which must be in use, keeping the pages in the buffers. Writes to the RUJ
file are also avoided. This raises the question - when are the modified pages
written to the database storage areas? The answer is when a checkpoint occurs.

A checkpoint is an event that causes the process's modified buffers to be
written to the database storage areas. A variety of circumstances cause a check­
point to occur as will be described shortly, but invariably a checkpoint occurs
at a lower frequency than a commit, otherwise there would be no benefit derived.

To summarize therefore what happens when Rdb executes a commit with fast
commit processing enabled:

1 The modified database buffers are not written to the storage area files

2 AIJ buffers are written to the AIJ file.

3 Commit information is written to the root file.

Note that the run unit journal (RUJ) buffers are not written to the RUJ file.

The reasons why a modified buffer are written back to disk with fast commit
processing enabled are:

• A checkpoint is issued

• Page contention

• Buffer pool overflow

7.6 Fast Commit Transaction Processing 199

The explanation for page contention and buff er pool overflow is the same as
previously described, however, as the fundamental idea behind fast commit
processing is to reduce disk I/O, avoiding page contention and buffer pool
overflow becomes even more important.

Another question now becomes apparent - namely what happens if a failure
occurs with the database page updates now not stored safely in the database
storage areas on disk? They are in fact stored away safely on stable storage
but they are in the AIJ. Therefore, as well as rolling back a failed transaction,
a recovery process must also read the commited updates stored in the AIJ
file since the last checkpoint and write them to the database. This has an
important ramification - recovery can now be much slower especially if the
interval between checkpoints is long. Also a database recovery operation will
freeze other users until it completes. This, of course, is of no consequence if a
stable operational environment is present.

Note that by recovery we refer to the recovery initiated by, for example, a
process failure where a database recovery process is created. We are not
referring to a RMU/RECOVER operation.

The database administrator can specify how long the interval between check­
points is, or to look at this another way, how frequently should a checkpoint
be issued?

A long interval between checkpoints will minimize the disk I/O activity on the
database storage area disks but at the expense of a longer recovery time. A
short interval between checkpoints will reduce the benefits of fast commit
processing as the buffers will be frequently written. The frequency of process
checkpoints can be selected with any one or any combination of the following:

• The amount the AIJ can grow in blocks

• The elapsed time in seconds

• The number of transactions completed

When any condition becomes true, the process checkpoints and all the counters
are effectively reset. The first two counters are specified database-wide; how­
ever, the third may be specified per process. It is only set by a logical name
RDM$BIND_CKPT_TRANS_INTERVAL.

To turn on fast commit processing, the ALTER DATABASE statement may
be used.

2 0 0 Transaction Management

SOL> ALTER DATABASE FILENAME banking
cont> JOURNAL FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 200 BLOCKS,
cont> CHECKPOINT TIMED EVERY 120 SECONDS);

The above example will cause a process to checkpoint when the AIJ has grown
at least 200 blocks since the last checkpoint or 120 seconds has elapsed since
the last checkpoint, whichever is the sooner. Note that checkpoints do not
occur in the middle of a transaction, however, the database administrator can
force all the processes to checkpoint immediately for a given database with
the RMU/CHECKPOINT command:

RMU/CHECKPOINT banking

Hint: The effectiveness of the checkpointing intervals can be observed
with the RMU/SHOW STATISTICS checkpoint statistics display.

7.6.1 Commit To Journal Optimization

If fast commit processing is enabled for a database, a further optimization
may be used - journal optimization. This reduces disk I/O to the database root
file by assigning users a range of transaction sequence numbers instead of
assigning them one at a time. Enabling journal optimization is achieved with
additional syntax when enabling fast commit processing.

SOL> ALTER DATABASE FILENAME banking
cont> JOURNAL FAST COMMIT ENABLED
cont> (CHECKPOINT INTERVAL IS 200 BLOCKS,
cont> CHECKPOINT TIMED EVERY 120 SECONDS,
cont> COMMIT TO JOURNAL OPTIMIZATION,
cont> TRANSACTION INTERVAL IS 512);

The transaction interval specifies the range of transaction sequence numbers
to be assigned. To use this feature two criteria must be met:

• Fast commit processing must be enabled.

• Snapshots must be disabled or enabled deferred.

8

8.1

8.1.1

Security

Since their database is so crucial to many organizations, it is important to
restrict its use. The database cannot offer free-for-all access, especially when
it contains confidential corporate information. The goal ofRdb security is to
make sure users are authorized before they are allowed access to the database.

An Rdb database is secured using the GRANT and REVOKE commands in
SQL. Most database security is enforced with commands, but some security
also is available with the operating system's own file-security mechanism.
Using the options available in the operating system to secure the database is
not recommended because it secures the database only at the physical file
level, whereas Rdb security restricts access down to the column level. In
addition to the security measures just mentioned, this chapter will highlight
some of the other ways that Rdb enforces security using the Open VMS oper­
ating system. Differences in implementing security on other operating system
platforms will be described in Chapter 19.

USING OPENVMS SECURITY

When an Rdb database is created, Open VMS file security is placed on the
physical files that make up the database. By default, these files are seen only
by the owner of the database or anyone else using system-owned utilities, such
as Rdb.

Security Identifiers

Rdb security is implemented by allocating security identifiers to database
access privileges at the database, table, or column level.

202

Three types of security identifiers may be specified:

• UIC (user identification code)

•General

• System-defined

Security

It is possible to combine these three security identifiers and define stringent
security. Combining identifiers is shown in the following example:

[DEV,3]+REMOTE

UIC Identifiers

UIC (User Identification Code) identifiers are a component of the Open VMS
operating system and are allocated by the system manager when a user's
account is created. The UIC takes the form of an identifier that uses a combi­
nation of numbers or words. Typical UIC identifiers are:

[DEV,3]

[10,456]

In this example, the group is DEV and the unique number within that group is
3. This enables the group of development users to be denoted by [DEV,*], the
* denoting all users in that group. Each user has a unique number within that
group. UICs offer a convenient method of grouping users and giving them
unique identifiers. Open VMS automatically attaches the UIC identifier to all
files created by the user.

General Identifiers

A general identifier is created by the system manager and is allocated when
usernames are created. The identifiers are held in the system rights database and
are allocated either to an individual or to a group of users. Typical identifiers are:

PROGRAMMERS

CLERICAL

FINANCE

System-defined Identifiers

System-defined identifiers can also be used to restrict access to the database.

8.2 Security Strategy 203

Table 8.1 - SQL Privileges

SQL Privileges
ALL
ALTER
CREATETAB
DB ADM
DBCTRL
DELETE
DISTRIBTRAN
DROP
EXECUTE
INSERT
OPERATOR
REFERENCES
SECURITY
SHOW
SELECT
UPDATE

8.2

Priv Type

func, db, tab, mod
db, tab
db
func, db, tab, mod
db, tab
db
db, func, tab, mod
mod, func
db, tab
db
db, tab, col
db
db, tab, mod
db, tab
db, tab, col

Description
Grant all privileges.
Change database parameters or alter a table.
Create a table, domain, storage map, index, view, module & function
Use ALTER SCHEMA and RMU commands from Version 4.0.
Create, delete or modify access privileges.
Delete rows from a table.
Allow participation in a distributed transaction.
Drop a domain, table, view, index, function or module.
Execute a module or function.
Insert rows into a table.
Use RMU/ANALYZE and other RMU commands from Version 4.0.
Create a constraint based on another table
Enable security auditing.
Reserve for future use.
Read data from a table.
Allow column updating in a table.

Valid system identifiers are:

BATCH
I NTE RAC TI VE
REMOTE
DIALUP

Rdb security is complete when the SQL database privileges, listed in Table
8.1, have been allocated to the appropriate security identifiers.

SECURITY STRATEGY

A security strategy should be defined before database security is specified.
The golden rule is that security should always be maintained by the database
system, not left to the operating system. Rdb security should be used whenever
possible, because it prevents unauthorized access to the database, regardless
of how the database is accessed.

The next consideration is how secure the database should be. If the database
must be highly secure, each table must specify which users are allowed access
to its rows. Each table also should contain a catch all UIC of [*, *], which

8.3

204 Security

denies the general public any privileges. If the database is to be relatively
open, on the other hand, the database should provide access to everyone at the
schema level, securing only the tables that require restricted access. Whatever
the security requirements, strategy must be defined first, then the database
security must be created and maintained.

Hint: Once a standard set of security rules have been defined, they should
be included with the database creation command procedures to ensure
that they are always included whenever a database is created.

RDB SECURITY

Rdb security is implemented at the database, table, and column levels, by
allocating one or more of the database privileges listed in the SQL privileges
table. Privileges are granted to the user only when a match is found for the
user against the list of system identifiers specified within Rdb.

When defining security on an Open VMS system, users with certain operating
system privileges such as SYSPRV and BYPASS can override the protections
defined within the database.

Figure 8.1 Security within Rdb

Users
--------1> .. , Security Identifiers

Match Found
Access Granted

Rdb

8.3 Rdb Security 205

8.3.1 ANSI-Style Security

An Rdb database can be protected using the alternative ANSI-style GRANT
statement instead of the default ACL scheme used by Rdb. A major difference
between the two security approaches is that ANSI checks all the security iden­
tifiers for a match on the list of identifiers and performs an OR operation on
the result. The ANSI display format also is different. The SQL approach, known
as ACL protection, searches the list of identifiers in the order in which the
security identifiers are specified. As soon as the first match is found, the search
stops.

The following example is a list of security identifiers and the SQL database
privileges granted.

[20,3] Access=INSERT,SELECT
[100,*] Access=SELECT
[50,*] Access=INSERT,SELECT
[100,2] Access=INSERT

Suppose User [100,2] accesses the database. Using the ACL security scheme,
Rdb searches the list until [100, *] is identified, granting the user SELECT
privilege only, which is the right to read data. With the ANSI protection scheme,
the outcome would be different because Rdb matches on both [100,2] and
[100, *], which results in the user being granted both INSERT and SELECT
privilege. The following is an example of the ANSI-style display for the table
ACCOUNT. The WITH GRANT OPTION clause means that anyone with
the INSERT and SELECT privilege may grant it to other users.

SOL> GRANT select ON TABLE account TO PUBLIC;
SOL> GRANT select ON TABLE account TO [100,34];
SOL> GRANT select, insert ON TABLE account TO [100,34] WITH GRANT OPTION;
SOL> SHOW PROTECTION ON TABLE account;

Protection on Table ACCOUNT
[100,34]:

With Grant Option:
Without Grant Option:

SELECT, INSERT
SELECT, INSERT

206 Security

[DAVE]:
With Grant Option: SELECT, INSERT ,UPDATE,DELETE,SHOW,CREATE,ALTER,

DROP,DBCTRL,OPERATORDBADM,REFERENCES
Without Grant Option: NONE

[*,*]:

With Grant Option: NONE
Without Grant Option: SELECT

To use ANSI-level security, the PROTECTION IS ANSI clause must be
specified when the Rdb database is created using the CREATE DATABASE
command, otherwise SQL ACL security is implemented by default. The pre­
vious example also illustrates the additional user class of PUBLIC, which is
specified in the ANSI standard.

The following explanations apply to both the ANSI and ACL protection scheme,
although identifiers such as [DEV,*] are disallowed in ANSI. All the subse­
quent examples are in the ACL format.

8.3.2 Database-Level Security

When a database is created, Rdb allocates the following protections by default:

SOL> CREATE DATABASE ALIAS bank_id FILENAME eurobank:[uk.db]banking;

SOL> SHOW PROTECTION ON DATABASE ALIAS bank_id;

Protection on Alias BANK_ID
CIDENTIFIER=[40,12],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+

CREATETAB+ALTER+DROP+DBCTRL+OPERATOR+DBADM)
(IDENTIFIER-[*,*] ,ACCESS-NONE)

This example shows that the creator of the database, [40, 12), has all access
privileges, whereas other users have no rights to access the database.

Hint: In a production environment where security is of utmost importance,
it is good practice to create and maintain the database from a special
account with its own unique UIC that is used only by the DBA, rather
than from a general user account.

8.3 Rdb Security 207

The following example illustrates how to include security at the database level
so that User [200,33] or INTERACTIVE users can only retrieve data.

SOL> GRANT SELECT ON DATABASE ALIAS rdb$dbhandle TO [200,33];

SOL> SHOW PROTECTION ON DATABASE rdb$dbhandle;

Protection on Alias RDB$DBHANDLE
(IDENTIFIER=[200,33],ACCESS=SELECT)
(IDENTIFIER=[40,12],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATETAB+

ALTER+DROP+DBCTRL+OPERATOR+DBADM)
(IDENTIFIER-[*,*J,ACCESS=NONE)

SOL> GRANT SELECT.SHOW ON DATABASE ALIAS rdb$dbhandle TO INTERACTIVE;

SOL> SHOW PROTECTION ON DATABASE Rdb$dbhandle;

Protection on Alias RDB$DBHANDLE
(IDENTIFIER=INTERACTIVE,ACCESS-SELECT+SHOW)
(IDENTIFIER=[200,33J,ACCESS-SELECT)
(IDENTIFIER=[40,12],ACCESS-SELECT+INSERT+UPDATE+DELETE+SHOW+CREATETAB+

ALTER+DROP+DBCTRL+OPERATOR+DBADM)
(IDENTIFIER-[*,*J,ACCESS=NONE)

To remove an entry, the REVOKE command is used. In the following example,
the entry for User [200,33] is removed at the database level.

SOL> REVOKE ENTRY ON DATABASE ALIAS rdb$dbhandle FROM [200,33];

Hint: Users who cannot remember their SQL authorization identification
should use RDB$DBHANDLE instead.

8.3.3 Table Level

Database level security is generally inadequate to protect a database. Table
level security is the preferred method because it provides finer granularity as
to which parts of the database the user can access. In the following example,
User [200,33] is given the privilege to insert and update rows in the BRANCH
table. However, before being given access rights at the table level, a user must
have already received them at the database level.

208 Security

SOL> GRANT SELECT.UPDATE.INSERT ON TABLE branch TO [200,33];

SOL> SHOW PROTECTION ON branch;

Protection on Table BRANCH
(IDENTIFIER=[200,33],ACCESS=SELECT+INSERT+UPDATE)
(IDENTIFIER=[40,12J,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+

CREATETAB+ALTER+DROP+DBCTRL+OPERATOR+DBADM)
(IDENTIFIER=[*,*J,ACCESS=NONE)

8.3.4 Column Level

Privileges also can be applied to columns to prevent them from being updated.
In the next example, the MANAGERS_NAME columns may be changed on
the table BRANCH only by User [200,33]. At the table level, however, User
[200,33] may create new columns.

SOL> GRANT UPDATE ON COLUMN branch.managers_name TO [200,33];

SOL> SHOW PROTECTION ON TABLE branch;
Protection on Table BRANCH

(IDENTIFIER=[200,33],ACCESS=SELECT+INSERT)
(IDENTIFIER=[40,12],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+

CREATETAB+ALTER+DROP+DBCTRL+OPERATOR+DBADM)
(IDENTIFIER=[*,*J.ACCESS=NONE)

SOL> SHOW PROTECTION ON COLUMN branch.managers_name;

Protection on Column BRANCH.MANAGERS_NAME
(IDENTIFIER=[200,33],ACCESS=UPDATE)
(IDENTIFIER=[*,*],ACCESS=NONE)

SOL> UPDATE branch SET managers_name 'Miss K Jones'
cont> WHERE branch_code = 'ALT';

1 row updated

Any attempt to update other columns in the BRANCH table will result in the
following message:

SOL> UPDATE branch SET branch_name = 'New Alton'
cont> WHERE branch_code ='ALT';

%RDB-E-NO_PRIV, privilege denied by database facility

SA

8.4 Alternative Security Mechanisms 209

ALTERNATIVE SECURITY MECHANISMS

Security does not necessarily have to be enforced using the security com­
mands GRANT and REVOKE. Some other features also are used to enforce
security, including:

•Views

•Read-only areas

•Triggers

• Stored procedures

•Functions

8.4.1 Views

Besides accessing the database through a table, a user can gain access through
a view. The advantage of this approach is that to the user, the view seems to be
identical to a table, but it specifies exactly which columns in the table the user
can see. This is a very effective means ofrestricting a user's view of the data.
When taken one step further, this approach forces all access to the data through
the view because access to the table has been denied. The disadvantage of this
approach is that a view that references more than one table cannot be used for
updating purposes, only inquiries. Once a view has been defined, Rdb treats it
as if it were a table; therefore, the security identifiers are applied to a view as
if it were a table.

8.4.2 Read-Only Areas

One feature infrequently used in Rdb is the ability to define a database storage
area as a read-only storage area. A read-only area is a very effective means of
ensuring that absolutely no one writes to a storage area. This technique is
used to best advantage on storage areas containing data that must not be changed
under any circumstances. Storage areas such as these would only be opened
for write access under controlled circumstances, such as when new data must
be added.

Read-only is a security feature that cannot be overridden by anyone, even
with all the Open VMS privileges. Once a read-only area, always a read-only
area, unless it is changed to read-write by the database administrator.

210 Security

8.4.3 Triggers

Triggers, described in detail in the data integrity chapter, are used in database
security for the following:

• Audit trails

• Forcing an error when illegal update actions are performed

A trigger applies to all users; therefore it is an effective blanket-security
mechanism that cannot be overridden. One advantage of using triggers is that
their operation is transparent to the database user. For example, users insert­
ing rows into a table are unaware that an automatically activated trigger writes
an audit-trail record every time a row is created.

The ERROR clause is also an excellent overriding security mechanism.
Suppose a user breaks through the table security using a very privileged ac­
count that enables him to delete the row. The trigger is activated, forcing an
error and preventing the row deletion from completing.

8.4.4 Stored Procedures

Stored procedures, described in detail in the data manipulation chapter, and
available since V6.0 of Rdb, can be viewed as another means of securing the
database. If all access to the database is via these procedures then this is a
very effective method of restricting the operations a user may perform on the
database because each procedure can have its own security defined.

Although a user will call the procedure by name, security is defined on the
module containing the procedure. A user must have EXECUTE privilege to
call a procedure as illustrated in the example below. Therefore don't forget to
specify who may call the procedure, otherwise users will receive an unex­
pected error message.

SOL> CALL branch_name (•SOT', : bname):

%RDB-E-NO_PRIV, privilege denied by database facility

The procedure BRANCH_NAME is defined in the module
SHOW _BRANCH_NAME

SOL> GRANT EXECUTE ON MODULE show_branch_name TO [HOBBS];

8.4.5

8.5

8.5 Dept. of Defense or C2 Security

SOL> DECLARE :bname char(30);
SOL> CALL branch_name ('SOT', : bname):

BNAME
Southampton

External Functions

2 I I

To call external functions from within SQL the user must have been granted
the right to execute the function, as by default only the creator is given access.
Without access rights the user will receive the 'privilege denied by database
facility' message.

SOL> SHOW PROTECTION ON FUNCTION sqrt
Protection on Function SQRT

(IDENTIFIER=[250,1],ACCESS=EXECUTE+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=NONE)

DEYf. OF DEFENSE OR C2 SECURITY

Considerable interest has arisen recently in the security of relational database
systems. Since the database is a focal point for information on an organization,
it is imperative to deny unauthorized users access to the data and to record
any unauthorized access. Since no commercial security standards are available,
database systems suppliers have opted to comply with the U.S. Department of
Defense security classification. This is detailed in the Department of Defense
Trusted Computer System Evaluation Criteria, commonly known as the
Orange Book because of the color of the cover. This document specifies the
functionality, testing, and documentation requirements for a secure system.

The Orange Book defines four security divisions, A, B, C, and D, two of
which are subdivided into classes. Rdb is Class C2-compliant, which is known
as controlled access protection. The divisions and classes specified in the Or­
ange Book are:

• Division D - Minimal protection

• Division C - Discretionary protection

- Class C2 - Controlled access protection

- Class Cl - Discretionary access

212

• Division B - Mandatory protection

- Class B3 - Security domains

- Class B2 - Structures protection

- Class B 1 - Labelled protection

• Division A- Verified protection

Security

For Rdb to be C2-compliant, it must have the following capabilities:

• Object re-use

• User identification and authentication

• Discretionary access control

• Security auditing

Object re-use prohibits all new database objects from containing data that the
user is not authorized to see. In simple terms, this means that Open VMS
clears all memory pages before giving them to Rdb. Whenever a row in a table
is deleted, Rdb overwrites the data with the transaction identification.
Overwriting makes it impossible to see the previous data and protects all the
in-memory data structures used by Rdb.

User identification and authentication means that users may not access the
database until they have identified and authenticated themselves. This is
achieved in Rdb by:

•Open VMS UICs

• Open VMS environment identifiers (for example, REMOTE, INTERACTIVE)

• Open VMS class identifiers (for example, ORDER)

•SELECT privilege to access the database

To implement C2 security, a database probably will need to be considerably
enhanced in order to specify all the users who may be granted access.

The two relevant privileges are:

• DISTRIBTRAN, which allows a 2-phase commit protocol to be specified

• SECURITY, which permits a user to perform the new RMU auditing
commands

8.6

8.6 Controlling RMU Commands 213

Hint: The database creator by default is given full access to the database,
other users no access at all. Therefore, it is recommended that production
databases be created from a special maintenance account rather than from
their default account. This helps ensure that full access to the database is
available only from specific accounts rather than the database adminis­
trator's routine account.

CONTROLLING RMU COMMANDS

Database manipulation is not the only access that is restricted. Security is also
concerned with unauthorized database management. An Rdb database is
managed via the RMU utility. Using some of these commands it is possible to
alter the integrity of the database. Therefore it is important to secure their use
with the RMU/SET PRIVILEGE command. Each RMU command has an
associated RMU privilege that must be granted before it may be executed; in
addition, some of the commands also require operating system privileges to
execute them. To find out which users may execute an RMU command use the
SHOW PRIVILEGE command as shown in the following examples.

$ RMU/SHOW PRIVILEGE eurobank:[uk.db]banking
Object type: file,
Object name: EUROBANK:[UK.DB]BANKING.RDB;l, on 13-NOV-1993 17:57:16.79

(IDENTIFIER=[40,12],ACCESS=READ+WRITE+RMU$ALTER+RMU$ANALYZE+
RMU$BACKUP+RMU$CONVERT+RMU$COPY+RMU$DUMP+RMU$LOAD+RMU$MOVE+
RMUSOPEN+RMU$RESTORE+RMU$SHOW+RMU$UNLOAD+RMU$VERIFY)

(IDENTIFIER=[*,*J,ACCESS=READ+WRITE+RMU$ALTER+RMU$ANALYZE+
RMU$BACKUP+RMU$CONVERT+RMU$COPY+RMU$DUMP+RMU$LOAD+RMU$MOVE
+RMU$0PEN+RMU$RESTORE+RMU$SHOW+RMU$UNLOAD+RMU$VERIFY)

As can be seen from the above example there is quite a comprehensive list of
RMU privileges, which provide sufficient flexibility to ensure that only the
required commands are available to various users.

Granting the user a right to issue an RMU command is a simple process as
illustrated below with the RMU/SET PRIVILEGE. One simply specifies the
user; in the example below it is [ENGLAND] and the access right, in this
instance RMU$ANALYZE.

214 Security

$ RMU/SET PRIVILEGE /ACL=(IDENTIFIER-[ENGLAND], ACCESS=RMU$ANALYZE)
eurobank:[uk.db]banking

$ RMU/SHOW PRIVILEGE eurobank:[uk.db]banking
Object type: file,
Object name: EUROBANK:[UK.DBJBANKING.RDB;l on 13-NOV-1993 18:35:31.78

(IDENTIFIER=[ENGLANDJ,ACCESS=RMU$ANALYZE)
(1DENTIFIER=[HOBBS],ACCESS=READ+WRITE+CONTROL+RMU$ALTER+RMU$ANALYZE+

RMU$BACKUP+RMU$CONVERT+RMU$COPY+RMU$DUMP+
RMU$LOAD+RMU$MOVE+RMU$0PEN+RMU$RESTORE+RMU$SECURITY+
RMU$SHOW+RMU$UNLOAD+ RMU$VERIFY)

Typically, one gives the right to execute many RMU commands to a user, such
as [HOBBS] in the example above. If the syntax shown here is used then the
commands become very long and prone to error. An easier option is to use the
editor, invoked with the /EDIT option, which displays all the users and their
access rights. It is then very easy to change the values.

When a user does not have the right to execute an RMU command, the follow­
ing message is returned.

$ RMU/OPEN NEW_BANK
%RMU-F-NOPRIVERR, no privileges for attempted operation

8.7 SECURITY AUDITING

Security auditing is concerned with logging access to the database. Rdb per­
mits that three audit classes may be specified:

• DACCESS - Data access

•PROTECTION - Changes to security ACLs

• RMU - RMU commands

Using the RMU/SET AUDIT command makes it possible to log all access to
the database. This information is recorded in one of two ways, either directly
to the operator console, which is known as an alarm, or to the Open VMS
security log file, which is known as an audit. The latter is the best method to
implement audit trails because it does not interfere with the daily routine of

8. 7 Security Auditing 215

the operators managing the computer system. This method leaves the opera­
tors' console free to display messages that require their attention, rather than
informational messages.

Hint: C2 security features are managed only by Rdb users who have
the Rdb SECURITY privilege. It is impossible to bypass this security
mechanism with the Open VMS BYPASS privilege.

The following command enables security auditing on the database, which is
recorded in the Open VMS security audit log.

$ RMU/SET AUDIT /TYPE=AUDIT /ENABLE=RMU /START eurobank:banking

Once this command has been issued, any user issuing an RMU command will
be logged in the security audit file. A security alarm also could be set. In this
instance, the following display shows what typically would appear on the
operator's console for the data access class:

1 Data access - alarm example

%%%%%%%%%%% OPCOM 27-SEP-1994 16:16:19.08
%%%%%%%%%%% Message from user HOBBS on RDB4ME

Rdb Security alarm (SECURITY) on RDB4ME, system id: 63534

Database name: EUROBANK:BANKING.RDB;l
Auditable event:

Event time:

PIO:

User name:
Object name:

Object type:

Operation:
Access requested:

Sub status:
Final status:

Rdb privilege used:

Attempted table access
27-SEP-1994 16:16:19.06

21E018A9

HOBBS
BRANCH

TABLE

Select Record
SELECT
Rdb required privilege

%SYSTEM-S-NORMAL

SELECT

216

2 Protection access - alarm example

%%%%%%%%%%% OPCOM 14-SEP-1994 11:28:16.14

%%%%%%%%%%% Message from user HOBBS on RDB4ME

Security

Rdb Security alarm (SECURITY) on RDB4ME. system id: 63534

Database name: EUROBANK:BANKING.RDB;l

Auditable event:

Event time:
PIO:

User name:

Object name:
Object type:

Grantee:

Protection change
14-SEP-1994 11:28:16.01
21EOOAE8

HOBBS

EUROBANK:BANKING.RDB;l
SCHEMA
[100,23]

New ACE privileges: SELECT

Old ACE privileges:
Final status: %SYSTEM-S-NORMAL

3 RM U access -alarm example

%%%%%%%%%%% OPCOM 14-SEP-1994 11:15:44.97 %%%%%%%%%%%
Message from user HOBBS on RDB4ME

Rdb Security alarm (SECURITY) on RDB4ME, system id: 63534

Database name:
Auditable event:

Event time:

PIO:

User name:

EUROBANK:BANKING.RDB;l
Attempted RMU command

14-SEP-1994 11:15:44.95

21EOOAE8

HOBBS
RMU command: RMU/BACKUP eurobank:banking.rdb;l backupl_mon/LOG

Final status: %SYSTEM-S-NORMAL

These examples illustrate ways of logging all access, but it is possible to
restrict logging to an individual or a group of users. In fact, the data access
audit class will be logged only if the users to be logged are specified. Auditing
all access to the branch table by users with the code [200,33] or an identifier
of HOBBS, for example, is achieved by specifying the following RMU/SET
AUDIT commands.

8. 7 Security Auditing

$ RMU/SET AUDIT/ENABLE=DACCESS=TABLE=BRANCH /PRIV=ALL -
/TYPE=ALARM eurobank:banking

$ RMU/SET AUDIT /ENABLE=IDENT=('[200 ,33]') eurobank: banking

$ RMU/SET AUDIT/ENABLE=IDENT=[HOBBS] eurobank:banking

217

Under normal circumstances, all the audit records are written to the Open VMS
audit journal file. These audit records may be analyzed at any time by using
the qualifier /AUDIT on the RMU/LOAD command. Rdb will read the
Open VMS audit log, extract those records for the specified database, and
load them into an Rdb database, creating a special table for the data if re­
quired. After the records have been loaded into an Rdb database, they may be
examined and reported upon using any tool that can query an Rdb database.

In the following example, we first see the records being loaded into the data­
base using the RMU/LOAD AUDIT command. A new table called
AUDIT_RECS is created in the banking database, containing the database
audit records in the Open VMS AUDIT$JOURNAL file.

Then an SQL query is executed to find the users who issued an RMU/BACKUP
command.

$ RMU/LOAD /AUDIT eurobank:banking audit_recs audit$journal
%RMU- I -DATRECSTO. 155 data records stored

SOL>SELECT rdbvms$user _name. rdbvms RMU_command FROM au di t_recs
cont> WHERE rdbvmsRMU_command CONTAINS '/BACKUP';

rdbvms$USER_NAME
OPER_LMH

OPER_KE

rdbvmsRMU_COMMAND
RMU/BACKUP/LOG banking full_bkp_l009

RMU/BACKUP/LOG banking full_bkp_l109

In these examples, we can see that user OPER_LMH issued the backup
command for the backup filename 'full_bkp_l009', whereas user OPER_KE
performed that task for the filename 'full_bkp_1109'. This illustrates a very
small percentage of the information that is logged into the audit trail. Other
useful information that is recorded includes the date and time, the status of
command, the type of event, the action performed, the new ACL, and the old
ACL.

218 Security

Hint: When the audit records are loaded into the database, they are not
removed from the audit log. Therefore, a new audit log should be created
after each load to avoid duplicate records being loaded.

Rdb provides comprehensive security using either the ANSI or the ACL
approach. The ability to implement security down to the field level helps en­
sure that only authorized users may update corporate data. Data is such an
important company asset that the number of people allowed to change it must
be restricted.

9

9.1

Database Integrity

One of the most important benefits a database management system can provide
is the ability to maintain database integrity. The integrity of a database is
maintained when it contains no corrupt or invalid data. By corrupt data, we
mean data with an incomplete internal format. Invalid data is data that does
not conform to the business rules for the system, such as a branch code in the
account table that does not match the code in the master branch table. In the
unlikely event that a breakdown in database structure integrity occurs, utili­
ties are provided to rebuild the database. There are two areas to consider in
database integrity:

• Data integrity

• Database structure integrity

DATA INTEGRITY

By data integrity, we mean ensuring that the data stored in the database abides
by certain rules defined by the business functions. The rules that data must
conform to are defined in Rdb using a combination of:

• Constraints

• Primary and foreign keys

•Triggers

Another facet to data integrity is ensuring that the data manipulated in a trans­
action is either kept or thrown away to maintain database consistency. This is
achieved in Rdb using:

• After-image journaling

• Before-image journaling

9.2

220 Database Integrity

• DECdtm (distributed transaction monitor) for coordinating distributed
database transactions

CONSTRAINTS

A constraint in SQL is a rule that is applied to a single column or collection of
columns. It ensures that no matter how the data is stored or updated, whether
by interactive SQL or an application program, no updates or stores can be
made unless they comply with the constraint, as Figure 9.1 illustrates. SQL
al lows the following rules to be specified on a column:

•UNIQUE

•CHECK

•NOT NULL

Constraints can be defined as part of a table, column or domain definition.

An important decision to make when defining the constraint is when it should
be evaluated, at commit time or at statement execution time. This is known in
the SQL syntax as DEFERRABLE or NOT DEFERRABLE. Performance
can easily degrade if the wrong option is chosen. A good rule of thumb is to
use the NOT DEFERRABLE option so that the constraint is evaluated imme­
diately which is not the default. The only time one would need the deferrable
option is if a program was loading data and information required to evaluate
the constraint was not available until the transaction committed.

Row4
Row3
Row2

Row 1

New Row

Branch Table Column Rules

Figure 9.1 Constraint Rules on a Column

Branch Code
Must Equal
LON
ALT
HDG
SOT
POT

9.2 Constraints 221

The following two examples illustrate how to define both types of constraints.

SOL> CREATE TABLE customer (
cont>
cont>
cont>

customer_no CHAR (10)
CONSTRAINT customer_primary_customer_no

PRIMARY KEY NOT DEFERRABLE,

SOL> ALTER TABLE account_transaction

cont>
cont>
cont>

ALTER account_no
CONSTRAINT wrong_acct_for_trans
REFERENCES account (account_no) DEFERRABLE;

Hint: Although it is optional, it is good practice to define a sensible con­
straint name because if the constraint is violated, this is the name that will
be included in the error message.

The following are typical column-constraint definitions. The branch code must
be one of the specified codes, the branch name must be unique, and the branch
address cannot be omitted.

SOL> CREATE TABLE branch
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>

(branch_code CHAR(4)
CONSTRAINT check_the branch_code

CHECK
(branch_code IN ('LON','ALT','HDG','SOT','POT'))

NOT DEFERRABLE,
branch_name CHAR(20)
CONSTRAINT unique_branch_name

UNIQUE
NOT DEFERRABLE,

branch_address CHAR(120)
CONSTRAINT no_branch_address

NOT NULL
NOT DEFERRABLE,

managers_name CHAR(20));

222

Figure 9.2 Primary and Foreign Key Definition

Branch Table

Database Integrity

Account Table

r-->- BRANCH_CODE
BRANCH_NAME
BRANCH_ADDRESS
MANAGERS_NAME

ACCOUNT_NO
CUSTOMER_NO
BRANCH_CODE,. __ _.

OVERDRAFT _LIMIT
ACCT_TYPE

9.3 PRIMARY AND FOREIGN KEYS

It is very common today to define primary or foreign keys on a column within
a table definition. Including the primary key clause automatically ensures that
the columns referred to are unique and not null.

When a foreign key is defined using the REFERENCES clause on a column
or the clause FOREIGN KEY on a table, it ensures that the value of a field in
table A matches a value in table B, which contains the master list of allowed
values. Figure 9.2 illustrates this point.

Using the BANKING example, the BRANCH CODE in the table BRANCH
is defined as a primary key. The ACCOUNT table also uses the BRANCH
code. Therefore, a foreign key relationship is defined between BRANCH and
ACCOUNT to ensure that no row is defined in the ACCOUNT table that
contains a BRANCH code not already defined in the BRANCH table.

Hint: When defining column constraints, Rdb may require additional
indexes to be specified to speed evaluation, especially on large tables.

The following example illustrates the table definitions for ACCOUNT and
BRANCH required to implement this relationship.

SOL> CREATE TABLE branch
cont> (branch_code CHAR(4) CONSTRAINT dup_branch_code
cont> PRIMARY KEY NOT DEFERRABLE,
cont> branch_name CHAR(20),
cont> branch_address CHAR(l20),
cont> managers_name char(20));

9.3 Primary and Foreign Keys

SOL> CREATE TABLE account
cont> (account no BIGINT
cont> CONSTRAINT account_primary_account_no PRIMARY KEY
cont> NOT DEFERRABLE,
cont> customer_no CHAR(lO),

223

cont> branch_code CHAR(4) CONSTRAINT check_acct_branch_code

cont>
cont>

REFERENCES branch (branch_code)
NOT DEFERRABLE,

cont> overdraft_limit NUMERIC (10,2),
cont> acct_type INTEGER);

By creating this relationship, a constraint definition has automatically been
created that the SHOW TABLE command identifies.

SOL> SHOW TABLE account;
Information for table ACCOUNT

Columns for table ACCOUNT:
Column Name Data Type

ACCOUNT_NO BIGINT

Domain

Primary Key constraint ACCOUNT PRIMARY_ACCOUNT_NO
CUSTOMER_NO CHAR(lO)

Foreign Key constraint WRONG_CUSTOMER
BRANCH_CODE CHAR(4)

Foreign Key constraint WRONG_BRANCH_CODE
BALANCE
OVERDRAFT_LIMIT
ACCT_TYPE
STATEMENT_FREO
STATEMENT_DATE
STATEMENT_DAY

BIGINTC2)
BIGINT(2)

INTEGER
INTEGER
DATE VMS STANDARD_DATE

INTEGER

224

Table constraints for ACCOUNT:
ACCOUNT_PRIMARY_ACCOUNT_NO
Primary Key constraint
Column constraint for ACCOUNT.ACCOUNT_NO

Evaluated on COMMIT
Source:

ACCOUNT.ACCOUNT_NO PRIMARY KEY

CHECK_ACCT_BRANCH_CODE
Foreign Key constraint
Column constraint for ACCOUNT.BRANCH CODE
Evaluated on COMMIT
Source:

Database Integrity

ACCOUNT.BRANCH_CODE REFERENCES Branch (Branch_code)

Constraints ref e ren ci ng table ACCOUNT:
WRONG_ACCT_FOR_TRANS

Foreign Key constraint
Column constraint for ACCOUNT_TRANSACTION.ACCOUNT_NO
Evaluated on COMMIT
Source:
ACCOUNT_TRANSACTION.ACCOUNT_NO REFERENCES account(account_no)

The examples so far have illustrated integrity checks placed at the column
level. The foreign or primary key, on the other hand, can be specified at the
table level, as the following illustrates.

SOL> CREATE TABLE account
cont> (account_no
cont> customer _no
cont> branch_code
cont> overdraft_l imit
cont> acct_type

BIGINT,
CHAR(lO),
CHAR(4),
BIGINT,
INTEGER,

cont> CONSTRAINT a ccount_pri ma ry_account_no
cont> PRIMARY KEY (a ccount_no) ,
cont>
cont>
cont>
cont>

CONSTRAINT check_acct_branch_code
FOREIGN KEY (branch_code)

REFERENCES branch (branch_code)
) ;

9.5 Integration with the Repository 225

When a foreign key is defined at the table level, the FOREIGN KEY clause
may be used. There is no difference between defining the foreign key at the
column or table level. However, if multiple columns make up the primary key,
the key can only be defined at the table level.

Hint: Use the Graphical Schema Editor to specify a number of foreign
key constraints rapidly. Simply draw a line with the mouse between the
primary and foreign key columns and the constraint is defined.

9.4 USING INDEXES TO MAINTAIN INTEGRITY

9.5

In some cases, data integrity may be maintained by defining some constraints
upon the indexes that are created on the tables. For instance, specifying the
UNIQUE clause ensures that no non-unique index key columns are inserted
into the table. Another useful clause on an index definition is MAPPING
VALUES which ensures that all the values in the index map onto the range
supplied.

Therefore, in the BANKING example, an index is defined on the ACCOUNT
table on the field STATEMENT_DAY, so all the entries in the index must be
in the range 1 to 31.

CREATE INDEX statement_day
ON ACCOUNT

(statement_day MAPPING VALUES 1 TO 31)
TY PE IS SORTED;

INTEGRATION WITH THE REPOSITORY

Using COD/Repository V5.3 it is possible to define the constraints in the
Repository and then create the table using a CREATE TABLE FROM
PATHNAME statement. Otherwise the table definition must be altered after­
wards, using the ALTER TABLE command to include these constraint state­
ments as shown below:

SOL> CREATE TABLE branch FROM eurobank:[uk.dict]banking.branch;

9.6

226 Database Integrity

SOL> ALTER TABLE branch
cont> ADD CONSTRAINT check_branch_code
cont> PRIMARY KEY (branch_code);

When the constraints are defined using this method, the primary key con­
straint will be considered a table constraint and not a column constraint. So,
showing the table BRANCH will not include the primary key on the indi­
vidual column; instead, it is held at the table level. This has no impact upon
how the constraint is evaluated. It is highlighted to make the user aware that
the table constraints must be checked. Otherwise, the user might think that the
constraint does not exist.

SOL> SHOW TABLE branch;

Columns for table BRANCH:
Column Name Data Type

BRANCH CODE CHAR (4)

BRANCH_NAME CHAR (20)
BRANCH_ADDRESS CHAR(120)
MANAGERS_NAME CHAR (20)

Table constraints for BRANCH:
BRANCH_PRIMARY_BRANCH_CODE
Primary Key constraint
Table constraint for BRANCH
Evaluated on COMMIT
Source:

PRIMARY KEY (Branch_code)

TRIGGERS

Domain

STANDARD_NAME

STANDARD_NAME

So far, we have seen how constraints can prevent the insertion or amendment
of data that does not conform to specific rules. Implementing triggers inside
the database helps the user change data while still ensuring it conforms to
certain rules or automatically perform some actions when something occurs.
Triggers can be used to perform:

9. 6 Triggers

Figure 9.3 Cascading Update Trigger

Change
BRANCH code
for LON to LDN

TRIGGER
updates
ACCOUNT
table

...
~

.... --
~
-r

Branch

LON
ALT
SOT
POT

Account

........ LON

........ SOT

........ SOT. ...

........ ALT.

........ LON

• Cascading updates (see Figure 9.3)

• Cascading deletes (see Figure 9.4)

• Summation updates

• Hidden deletes

• Security functions

• Limited auditing

227

To further explain how triggers can be used, suppose a company reorganizes.
As a result, some of the branch offices are merged, which means the branch
coding system must be revised. It would not be possible to change the BRANCH
CODE using constraints because the existing relationships between account
and branch would be invalidated.

A trigger mechanism is required. This mechanism allows the master branch
code to be changed, automatically updating all the tables that include the old
branch code and replacing it with the new code. The integrity of the database
is maintained by ensuring that the data conforms to the business requirements.

228

Figure 9.4 Cascading Delete Trigger

Delete ACCOUNT
1002013127

TRIGGER
Deletes
transactions
for deleted
accounts

../

__,,,, ,..

_....
:.: _: ,..

Account Table

1002013127
1002035697
1002035678

Account_ Transact
Table

1002013127
1002013127
1002013127
10020135697
10020135678

ion

The following trigger example illustrates this point.

SOL> CREATE TRIGGER change_branch_code
cont> BEFORE UPDATE OF branch_code ON branch
cont> REFERENCING OLD AS ol d_branch_code
cont> NEW AS new_branch_code
cont>

(UPDATE account A

Database Integrity

cont>
cont>
cont>
cont>
cont>

SET A.branch_code = new_branch_code.branch_code
WHERE A.branch_code = old_branch_code.branch_code)

FOR EACH ROW;

The FOR EACH ROW clause means that the trigger will be performed for
every row that satisfies the WHERE condition.

Triggers can be defined to take effect upon any of the following types of actions:

• Insertions

•Updates

•Deletions

The advantage of using triggers is immediately apparent. The trigger mecha­
nism catches all types of changes to the database, regardless of how they were

9. 7 Database Structure Integrity 229

initiated, because the trigger is set off at a low level inside the database. Be­
cause the triggering code is completely transparent to the user, a trigger can
perform many types of actions, such as:

• INSERT - Automatically creating an entry in another table

• DELETE-Automatically deleting the transaction records for the appropri­
ate account row when an account is deleted

• UPDATE-Automatically updating the branch codes in other tables when a
branch code is changed

A trigger also can be used to force an error to prevent a row from being
deleted. This feature is useful when rows in a table must not be removed from
the database under any circumstance.

Hint: Creating comprehensive referential integrity of the data in the data­
base, however, can only be achieved using a combination of constraints
and triggers.

9.7 DATABASE STRUCTURE INTEGRITY

Relational databases contain many different types of internal structures, which
must be completely accurate if the system is to function properly. Sometimes,
these internal structures can become corrupt because of a hardware malfunction.
For this reason, Rdb provides the RMUNERIFY utility to verify the internal
Rdb structures of the database. The RMU/ALTER command is available to
correct some of the internal structure problems reported by RMUNERIFY,
but it should only be used by someone experienced with the internal structure
ofRdb.

9.7.1 RMUNERIFY

RMUNERIFY is used to verify the following structures:

• Checksums on database pages

• Constraints

230 Database Integrity

• Database page structure

• Indexes, sorted and hashed

• Rootfile

•Snapshots

• Storage areas

Hint: Use the /LOG option to see which structures are being verified and
how long it took to verify each area.

A common approach taken with the RMUNERIFY utility is to request Rdb
to verify everything. This can be very time consuming and may be quite un­
necessary. Therefore if the database is at least several gigabytes in size,
consider performing verifies with only some of the qualifiers such as check­
ing the page checksums or only the indexes but not their data as well. Remem­
ber though that full verifies must still be done.

For large databases, the /INCREMENTAL qualifier is used to verify the pages
in the database that have changed since the last full verify. Remember that
when performing an incremental verify, the I ALL qualifier must be included,
otherwise the page date and time stamps used to determine which pages to
check will not be updated.

Once RMUNERIFY detects an irreparable inconsistency in the internal data­
base structures, the database must be rebuilt from backups and journal files
because no utility is currently available to allow the database administrator to
patch the database. Sample output from a very simple verify follows.

$ RMU/VERI FY I LOG eurobank: [uk. db]banki ng

%RMU- I-DBBOUND ,bound to database "EUROBANK: [UK. DB] BANKING. RDB; 1"

%RMU-I-BGNROOVER, beginning root verification

%RMU-I-ENDROOVER, completed root verification

%RMU-I-BGNAIPVER, beginning AIP pages verification

%RMU-I-OPENAREA, opened storage area RDB$SYSTEM for protected retrieval

%RMU-I-ENDAIPVER, completed AIP pages verification

9. 7 Database Structure Integrity 231

%RMU-I-BGNABMSPM, beginning ABM pages verification
%RMU-I-OPENAREA, opened storage area CUSTOMERS_AREA for protected retrieval
%RMU-I-ENDABMSPM, completed ABM pages verification
%RMU-I-CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU-S-ENDVERIFY, elapsed time for verification : 0 00:00:15.81

Hint: The database should be verified frequently so a corrupt database
structure does not exist in too many database backups.

9.7.2 Repairing Internal Structures

Depending on the nature of the corruption, it may be possible to repair a
problem without having to restore the database. An index could be dropped
and then redefined, for example.

Another useful utility is RMU/REPAIR, which is used to repair damaged
space management (SPAM) pages. The main utility used to correct internal
structure problems is RMU/ ALTER, however.

RMU/ALTER

The command RMU/ALTER is a low-level patch utility that allows the user
to physically amend the internal structures of the database, such as the bytes
on a database page. It is a very powerful and useful utility that carries a
DATABASE HEALTH WARNING.

This utility must only be used by people who thoroughly understand the
internal structures of Rdb; otherwise it is the quickest route to database
corruption. Fortunately, the command cannot be run unless the user has the
Open VMS privilege SYSPRV and has been granted the RMU privilege
RMU$ALTER. But once this security hurdle is passed, a user can change
anything inside the database.

The following is important advice for anyone attempting to use this utility:

1 Read the manuals thoroughly so you understand all about RMU/ ALTER
and the internal Rdb structures.

2 Backup the database to be amended.

232 Database Integrity

3 Use a copy of the database to be amended or find a small test database.

4 Start an RMU/ALTER session on the test database, determine precisely
which commands should be used, and check that the database is accessible
afterwards.

5 Apply the proposed changes to the database only when you are sure that
they will work.

6 Backup the database when you are finished so the process does not have to
be repeated again.

In the hands of the right person, this utility can save an organization many
hours in costly recovery times.

When the RMU/ ALTER utility is invoked, the user passes into the ALTER
command line environment, which has its own comprehensive set of com­
mands. Some of these commands are specified in Table 9 .1.

Hint: Don't forget to set the RADIX to decimal so that conversions to
hexadecimal are not required.

Table 9.1 Popular Commands Within RMU/ALTER

Command Description

AREA

A HACH

COMMIT

DEPOSIT

DETACH

DISPLAY

LOG

PAGE

RADIX

ROLLBACK

VERIFY

Specify physical storage area

Specify database to attach to

Keep all changes

Change value in database structure

Detach from database

Display specified data structure or value

Log all commands and output

Specify database page to alter

Set radix to decimal or hexadecimal

Undo changes

Verify database page

9.8

9.8 Backups and Journaling 233

BACKUPS AND JOURNALING
Rdb provides its own mechanisms for making backups and journaling changes
made to the database. It is important that these utilities are not substituted by
alternatives that exist in the operating system such as BACKUP in Open VMS
and tar in OSF/l.

When databases are backed up, internal information is set by the Rdb RMU
commands BACKUP and RESTORE. This internal information is used to
rebuild the database and guarantee the integrity of the data.

The journal files are used to either roll back a transaction or recover the data­
base to a given point in time in conjunction with the database backup.

9.8.1 Backups

An Rdb database should be backed up using the RMU/BACKUP utility that
is provided with Rdb. This utility makes it possible to:

• Take online backups

• Back up entire databases

• Back up only the pages that have changed since the last full backup, which
is known as an incremental backup

• Back up specified storage areas

• Back up several areas concurrently to multiple tape drives

• Automatically create the backup file in compressed format

The default backup method is a complete backup of the database with no users
attached. This is achieved with the RMU/BACKUP command shown below.

$ RMU/BACKUP/LOG eurobank: [uk.db]banking week 34 bank. rbf

Online Backups

However, with so many 7 by 24 companies, many organizations do not have
the luxury of a period of time when no one is using their database. By using
the snapshot file, a consistent view of the database is available when an online
backup is started. This means that backups can be taken with users changing
the data because all changes are written to the database and the previous
version of the data is written to the snapshot file. The backup process then

234 Database Integrity

checks whether the version of the row it requires is taken from the storage area
or the snapshot area. Using this approach does not in any way significantly
degrade the performance of the backup utility. An online backup can be per­
formed on any database that has snapshots enabled and the qualifier /ONLINE
is specified.

$ RMU/BACKUP /ONLINE/LOG eurobank: [uk. db]banki ng week_34_bank. rbf

The online backup will begin once all users have committed their outstanding
transactions. While RMU is waiting for all outstanding transactions to com­
plete the following message is displayed:

%RMU-I-QUIETPT, waiting for database quiet point

Provided users are finishing their transactions quickly, the online backup should
start promptly. Unfortunately sometimes there is always one user who decides
not to complete their transaction. While the backup is waiting to start, new
transactions cannot commence, so not only is the backup waiting for this
troublesome user, but also other database users. To avoid this situation the
additional qualifier /LOCK_ TIMEOUT should be included. This tells RMU
to wait x seconds for the quiet point lock and if it is not acquired in that time,
then RMU aborts the backup operation.

$ RMU/BACKUP/ONLINE/LOG/LOCK_TIMEOUT=lO
eurobank:[uk.db]banking week_34_bank.rbf

%RMU-I-QUIETPT, waiting for database quiet point
%RMU-F-TIMEOUT, timeout on quiet
-COSI-W-CANCEL, opera ti on cancelled

No-Quiet Point Backups

If finding a quiet point for the backup to begin proves difficult, then the backup
can still be taken using the qualifier /NOQUIET _POINT. Although this method
means that the backup can be taken immediately, the restore operation is likely
to be more complicated because one or more AIJ files will be required to
recover the database to a guaranteed integrity point.

$ RMU/BACKUP/ONLINE/LOG/NOQUIET_POINT
eurobank:[uk.db]banking week_34_bank.rbf

9.8 Backups and Journaling 235

Figure 9.5 Multi-threaded Backup to Tape

y ~
QQ

Backup to Tape or Disk

Backups can be written either to a single disk file or to multiple tape drives,
but unless the database is very small, most database backups these days are
written directly to tape drives. In fact this is the preferred method for backup,
because it is the fastest and there are a wealth of options to ensure the integrity
of the tapes created. Amongst the options is the ability to label tapes, specify
the order in which the tapes must be placed in the stacker unit and write a
journal file. Therefore it's worth reading the manuals carefully to select the
appropriate options.

The fastest way to backup to tape is to use the multi-threaded option which
allows RMU to write to multiple tape drives in parallel.

Incremental Backups

The larger a database grows, the more impractical it becomes to take full
backups because they take too long, or one simply doesn't have the tapes
available. An incremental backup only backs up pages in the database that
have changed since the last full backup. Rdb V6.0 boasts a fast incremental
backup mechanism where it can determine from the SPAM pages in each
storage area which database pages need to be backed up. The advantage of
this method is that if very little data has changed in a database and it is con­
fined to a few storage areas, an incremental backup is completed very quickly.
It also results in a small backup file.

236 Database Integrity

Figure 9.6 Typical Database Backup Strategy for the Banking System
Monday Tuesday Wednesday Thursday Friday

LJ LJ LJ LJ LJ
Strategy A ._ e_ ._ e_ ~
Strategy B ._ ~ ._ ~ ._

Strategy C ~ e_ ._
Key: Full Iner.

A typical incremental backup command could be:

$ RMU/BACKUP/INCREMENTAL/LOG eurobank:[uk.db]banking week_34_bank_incr.rbf

Remember to keep incremental backup files safe because they must be used in
conjunction with a full backup to rebuild a database.

Backup Strategy

The flexibility of the backup mechanism means that a database strategy can
be designed that suits each organization's environment, as illustrated in Figure
9.6. This example shows several different strategies and also illustrates that
an incremental backup file can vary in size depending on the volume of data
changed.

Another useful backup strategy is illustrated in Figure 9 .5, where RMU/BACKUP
is used to back up several database storage areas simultaneously to tape.

Backup by Area

Another alternative to an incremental backup is to back up specific database
areas, but it can only be used if after-image journaling is enabled. This option
must be used very carefully otherwise it may be impossible to restore the
database.

9.8.2

9.8 Backups and Journaling 237

Hint: When using this strategy, always verify the database can be re­
stored before it is formally adopted.

To facilitate easy backup of a specific storage area, the
INCREMENTAL=BY _AREA qualifier should be used on the BACKUP
command with an INCLUDE or EXCLUDE specifying the storage areas that
must be included or excluded. A sample command to back up only the
ACCOUNT _AREA from the BANKING database into a file called mon_inc2
follows.

$ RMU/BACKUP/LOG/INCREMENTAL=BY_AREA/INCLUDE=CACCOUNT_AREA)
eurobank:[uk.db] banking eurobank:[db.backups]mon_inc2

Backup by area should not be used to provide a fast method for backing up the
database.

Journaling

Rdb provides two types of journaling:

• After-image

• Before-image

After-image journaling lists all changes that have been made to the database.
From V6.0 there may be one or multiple AU files, but whichever method is
used there will only be one after-image journal file open at any time for an
individual database. After-image journaling is completely integrated with the
backup facility to enable the database to be restored to a specified point.

Run-unit journaling lists the changes that a user has made within a transaction.
One run-unit journal file is open for every user who has an open transaction.

After-Image Journaling

A routine backup is a snapshot of the database at a given point, but often what
is required is the ability to restore the database to a given point, such as
Monday at 11:05:39 a.m. To achieve this precise level of database recovery,
after-image journaling is used.

After-image journaling can be enabled or disabled at any time, provided you
have exclusive access to the database. It is generally wise to enable it, especially

238 Database Integrity

on volatile databases when recovery is required to a specific point without
loss of data. After-image journaling is enabled at the database level. Its role is
to log all the changes that have been made to the database, collecting them in
a journal file with an extension of .AIJ. Only one AIJ file is open at any point
for a database. During recovery, however, it is common to use a number of
AIJ files to rebuild the database.

Prior to Rdb V6.0, there would have been only one AIJ file. There were a
number of performance restrictions with this approach and this resulted in the
introduction of multiple AIJ files. Using multiple AIJ files is straightforward,
but make sure to adopt good management procedures at the same time.
Although everything is done automatically, it is wise to understand the new
mechanism and how many AIJ files you are using, where they are located and
how often to back them up.

When deciding whether to enable after-image journaling, consider the benefits
and the need to maintain data integrity. Performance overhead should not be a
consideration, because the journaling mechanism is now very efficient,
especially if the electronic cache is being used. Therefore, it is rare that the
journaling mechanism degrades performance. The minimal impact on the sys­
tem is far outweighed by the ability to restore the database to a precise point
with guaranteed integrity.

Hint: To achieve optimum performance always use at least 3 fixed size
AIJ files.

When the database is created first specify how many AIJ slots are needed. It is
always a good idea to specify a few more slots than actual AIJ files. This will
mean that if you have to add an additional AIJ file, this can be done online
while users are active on the system. In the example below the database is
modified to support nine journal files.

SOL> ALTER DATABASE FILENAME eurobank:[db.db]banking
cont> RESERVE 9 JOURNALS;

Once the journals have been reserved, the next step is to create the AIJ journal
files. Each file must be uniquely named and can be individually sized.

SOL> ALTER DATABASE FILENAME eurobank:[db.db]banking
cont> JOURNAL IS ENABLED

9.8 Backups and Journaling

cont> ADD JOURNAL bank_aijl FILENAME
aij_diskl:[aijfiles]bank_aijl

cont> ALLOCATION IS 800 BLOCKS BACKUP FILENAME
aij_bkps:[aijfiles]bank_aijl_bck

cont> ADD JOURNAL bank_aij2 FILENAME
aij_disk2:[aijfiles]bank_aij2

cont> ALLOCATION IS 800 BLOCKS BACKUP FILENAME
aij_bkps:[aijfiles]bank_aij2_bck

cont>

239

The previous example shows that each journal file has a BACKUP
FILENAME.

There are three further options available with AIJ files that can improve per­
formance:

• Backup server

•Log server

• Cache on solid state disk

The role of the BACKUP SERVER is to automatically backup the contents of
the AIJ files, thus allowing the AIJ files to be used continuously. This option
should be used in highly available systems.

SOL> ALTER DATABASE FILENAME eurobank:[db.db]banking
cont> JOURNAL IS ENABLED
cont> (BACKUP SERVER AUTOMATIC);

To improve throughput to the AIJ file, the LOG SERVER can be enabled.
Instead of using one of the processes attached to the database to write to the
AIJ file, now the log server has the task, thus enabling the user's process to
complete their AIJ writing very quickly.

SOL> ALTER DATABASE FILENAME eurobank:[db.db]banking
cont> JOURNAL IS ENABLED
cont> (LOG SERVER IS AUTOMATIC);

If the system contains any solid state disks, an AIJ electronic cache can be
created on this device. It is a very small file, but it allows quick writing to the
AIJ file. The log server must also be enabled to use this option.

240 Database Integrity

SOL> ALTER DATABASE FILENAME eurobank:[db.db]banking
cont> JOURNAL IS ENABLED
cont> (LOG SERVER IS AUTOMATIC ,
cont> CACHE FILENAME disk_esel:[aijfiles]the_aij_cache);

Hint: For high throughput systems, it is really beneficial to enable the
electronic cache but it only works on solid state disks. No perceived
benefit will be seen if defined on a traditional disk.

Monitoring AIJ Activity

When the system is comprised of multiple AIJ files, the status of these files
can be monitored using the AIJ information screen in RMU/SHOW STATIS­
TICS. This is a very informative screen and it's really worth taking time to
understand the display. From the screen can determine:

• Whether AIJ is enabled

• The size of each AIJ file

• The current end of file for each AIJ file

• Time before the database will shut down

• If log server is automatic or manual

• If backup server is enabled

• Whether electronic cache (ACE) is enabled

• Whether fast commit is on or off

• The state of the AIJ file

• How many spare AIJ slots are available

From the screen here, we can see that four AU files are currently in use. One
of these files needs to be backed up and the other three files have size of 513
and 8000 blocks. The file that is being used presently for writing is BANK_AIJl
and at the moment we have only written up to block 93 of a 512 block file.

9.8 Backups and Journaling 241

Node: RDB4ME Rdb 6.0-0 Performance Monitor 26-FEB-1994 14:34:25

Rate: 3.00 Seconds AIJ Information Elapsed: 00:43:13.79
Page: 1of1 EUROBANK:[DB.UK]BANKING.RDB;l Mode: Online

Journaling: Enabled Shutdown: 60 Notify: Disabled State: Accessible

ALS: Manual ABS: Disabled ACE: Disabled FC: Disabled CTJ: Disabled

After-Image.Journal .Name ... SeqNum AIJsize CurrEOF Status. State
BANK_AIJ 2 513 93 Current Accessible
BANK_AIJ2 1 *BACKUP NEEDED* Written Accessible

BANK_AIJ3 Unused 8000 Empty Latent Accessible

BANK_AIJ4 Unused 513 Empty Latent Accessible
Available AIJ slot 1

Available AIJ slot 2
Available AIJ slot 3

Available AIJ slot 4
Available AIJ slot 5

Available AIJ slot 6

Available AIJ slot 7

9.8.3 AIJ File Is Full

In very active transaction-processing-style systems, the AU files will fill up
rapidly. When multiple files are in use, the system will automatically switch
over to the next available AU file. Once all the AU files have been filled with
data, until their contents are backed up, the database will stall. This stall can
be avoided by using the AU backup server but if this feature is not enabled
then the fastest solution to remove the stall is to add a new AIJ file or backup
one or more AU journal files.

The first hint that the AU file has filled up is users will stall and the stall
messages screen in RMU/SHOW STATISTICS will display the following:

Node: RDB4ME Rdb 6.0-0 Performance Monitor 26-FEB-1994 14:34:25

Rate: 3.00 Seconds Stall Messages Elapsed: 00:43:13.79
Page: 1of1 EUROBANK:[DB.UKJBANKING.RDB;l Mode: Online

Process.ID Since
Stall. reason•.................. Lock. ID.
00000038:4 18:06:31.19 - waiting for 800-block available AIJ (59 minutes)

9.8.4

9.8.5

242 Database Integrity

In this example the system requires the creation of an AU file, that has a mini­
mum size of 800 blocks so that system processing can continue. It is advisable
to create a considerably larger AU file than that recommended by the system,
otherwise the problem may recur again. The message also advises that unless
the AU file is created within the next 59 minutes, the system will be shut down
automatically.

Adding a new AU file can be achieved using one of two methods and it is not
necessary to remove any users from the system. They can remain attached to
the database and once the new AU file is created they will continue working.
The two methods available to add the AIJ file are via SQL or RMU. Remem­
ber that if your system only has a run-time environment then SQL may not be
available and in this instance will have to use RMU. There is no preferred
method; either is suitable.

SOL> ALTER DATABASE FILENAME eurobank: [db.db]banking

cont> ADD JOURNAL BANK_AIJ3 FILENAME aij_diskl:[aijfiles]bank_aij3

cont> ALLOCATION IS 2000 BLOCKS;

$ RMU/SET AFTER_JOURNAL /ADD=(NAME=bank_aij3, FILE=aij_diskl: [aijfiles]
bank_aij3, ALLOCATION=2000) eurobank: [db.db]banking

The RMU/SET AFTER command is a very useful command for managing
AU files because not only can it be used to add AIJ files but it also allows one
to enable or disable after-image journaling, enable the electronic cache, sup­
press an AIJ file and numerous other options.

AIJ Backups

We have already seen that the AU files can be automatically backed up via the
backup server. If this method is not being used then they must be backed up
manually using RMU/BACKUP/AFTER.The contents of the AU files are
transferred into an AU backup file and this file can now be used for recovery.

$ RMU/BACKUP/AFTER eurobank:[db.db]banking bank_bkpl

Optimizing AIJ Files

If your AU files are large then it is worth considering optimizing them to
improve recovery time. By applying the RMU/OPTIMIZE/AFTER command
to the quiet-point AU file, it creates a new AU file where:

9.9

9.9 Restore 243

• All rolled back transactions are removed

• All duplicate updates for the same row are removed

• The rows are sorted into dbkey order to improve recovery time

The optimize process creates a new AIJ file; however, it is important to retain
the original AIJ file. The reason for retaining the original file is because if you
need to recover to a specific point in time or have to do a restore by area, these
are not possible with optimized AIJ files.

RESTORE

With the RMU/RESTORE command, an Rdb database is restored from the
backup file that was created using RMU/BACKUP. In its basic form, RMU/
RESTORE will restore the database to its directory. Then, using the RMU/
RESTORE/INCREMENTAL qualifier, an incremental backup file that con­
tains only the database pages that have changed since the last full backup is
overlaid onto the restored database. From V6.0 the restore command will
automatically recover the AIJ files.

Hint: As recovery is automatic don't forget to include the /NO RECOVER
qualifier if you want to manually recover AIJ files or recover from AIJ
backup files.

If automatic recovery is not required then apply the AIJ files using the RMU/
RECOVER command. This complete process is illustrated in Figure 9.7.

The backup strategies described in Figure 9.6 would use after-image journaling
to rebuild the database to a specific point in the period between backups.

When a restore operation is executed many messages are displayed and it is
now very important to check these, especially when automatic recovery has
been invoked. In the following example of a restoration of the BANKING
database, automatic recovery has been disabled with the /NORECOVERY
qualifier because we have to restore an incremental backup, then a backed up
AIJ file, followed by an AIJ file.

Normally restoration will just involve a full backup and the AIJ files. In this
instance it is recommended that automatic recovery is used; i.e., give a simple
RMU/RECOVER/LOG command, and let Rdb do the rest.

244 Database Integrity

Figure 9.7 Typical Procedure to Restore a Database

DATABASE
STORAGE

AREAS

Stage 1

Stage 2

Stage 3 Stage 4

Another possibility with database restoration that is not shown here is the
ability to recover the database to a specific point in time. Using the /UNTIL
command we can recover the database to a specific point in time. This option
may be necessary if a crash occurred at a specific time and you need to rebuild
the system to just before this time. It is fair to say that this type of restoration
is not very common, because we normally require all data to be restored. But
suppose there was an application program fault that corrupted the database
and the DBA knew at what time it occurred. The DBA could then rebuild the
database to the time just before the corruption occurred.

Also remember that the examples shown here cover a full database recovery
but can also recover a specific storage area or specific pages in the database.
Some lines have been omitted to reduce the size of the example.

$ RMU/RESTORE/LOG/NORECOVERY bank_full_backup

%RMU-I-RESTXT_04, Thread 1 uses devices EUROBANK:

%RMU-I-AIJRSTBEG, restoring after-image journal "state" information

%RMU-I-AIJRSTJRN, restoring journal "AIJ_FILEl" information

%RMU-I-AIJRSTNMD, journal has not yet been modified

%RMU-I-AIJRSTSUC, journal "AIJ_FILEl" successfully restored from file
'EUROBANK:[BACKUPS] AIJFILEl.AIJ;l'

%RMU-I-AIJRSTJRN, restoring journal "AIJ_FILE2" information

9.9 Restore 245

%RMU-I-AIJRSTNMD, journal has not yet been modified

%RMU-I-AIJRSTSUC, journal "AIJ_FILE2" successfully restored from file
"EUROBANK: [BACKUPS]AIJFI LE2.AIJ;1"

%RMU-I-AIJRSTEND, after-image journal "state" restoration complete

%RMU-I-RESTXT_OO, Restored root file EUROBANK:[DB.UK]BANKING.RDB;l

%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_SYSTEM.RDA;l

%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_CUST.RDA;l

....•.......•............•...••..... (some information removed)

%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_SYSTEM.RDA;l

%RMU-I-RESTXT_05, rebuilt 1 space management page

%RMU- I -RESTXT_06. restored 6 inventory pages

%RMU-I-RESTXT_07, rebuilt 141 logical area bitmap pages

%RMU- I-RESTXT_08. restored 855 data pages

%RMU-I-RESTXT_Ol, Initialized snapshot file
EUROBANK:[DB.UKJBANK_SYSTEM.SNP;l

%RMU-I-LOGINIFIL, contains 192 pages, each page is 2 blocks long

%RMU-I-RESTXT_Ol, Initialized snapshot file
EUROBANK:[DB.UKJBANK_CUST.SNP;l

%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long

...................................... (some information removed)

%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up

%RMU- I -AIJRECFUL, Recovery of the entire database starts with AIJ file
sequence 0

%RMU-I-AIJRECBEG, recovering after-image journal "state" information

%RMU-I-AIJRSTAVL, 2 after-image journals available for use

%RMU-I-LOGMODSTR, activated after-image journal "AIJ_FILEl"

%RMU-I-AIJISON, after-image journaling has been enabled

%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery

%RMU- I -AIJRECEND. after-image journal "state" recovery complete

%RMU-I-LOGINIFIL, contains 109 pages, each page is 2 blocks long

%RMU- I -AIJWASON, AIJ journaling was active when the database was backed up

%RMU-I-AIJRECFUL, Recovery of the entire database starts with
AIJ file sequence 0

246 Database Integrity

%RMU- I -AIJRECBEG, recovering after-image journal "state" information
%RMU-I-AIJRSTAVL, 2 after-image journals available for use
%RMU-l-LOGMODSTR, activated after-image journal "AIJ_FILEl"
%RMU-I-AIJISON, after-image journaling has been enabled
%RMU-W-DOFULLBCK, full database backup should be done to ensure future

recovery
%RMU-I-AIJRECEND, after-image journal 'state' recovery complete

The first step of the restoration process is now complete; the next step is to
restore the incremental backup.

$ RMU/RESTORE/INCREMENTAL/LOG/NORECOVERY bank_incr_backup
%RMU-I-RESTXT_04, Thread 1 uses devices EUROBANK:

EUROBANK:[DB.UKJBANKING.RDB;l, restore incrementally? [N]:Y
%RMU-I-RESTXT_OO, Restored root file EUROBANK:[DB.UKJBANKING.RDB;l
%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_SYSTEM.RDA;l
%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_CUST.RDA;l
%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UK]BANK_ACCT.RDA;l
%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UKJBANK_TRANS.RDA;l
%RMU-I-LOGRESSST, restored storage area EUROBANK:[DB.UK]BANK_INDEX.RDA;l
%RMU- I -RESTXT_09, i ni ti al i zed O space management pages
%RMU-I-RESTXT_l0, restored 0 inventory pages
%RMU-I-RESTXT_ll, initialized 0 logical area bitmap pages
%RMU-I-RESTXT_l2, restored 18 data pages
%RMU-l-RESTXT_13, initialized 0 data pages
%RMU-l-LOGRESSST, restored storage area EUROBANK:[DB.UK]BANK_SYSTEM.RDA;l
%RMU-I-RESTXT_09, initialized 0 space management pages
%RMU- I -RESTXT_lO, restored 0 inventory pages
%RMU- I -RESTXT_ll, initialized O l ogi cal area bitmap pages
%RMU- I -RESTXT_12, restored 8 data pages
%RMU-I-RESTXT_13, initialized O data pages
%RMU-I-RESTXT_Ol, Initialized snapshot file

EUROBANK:[DB.UKJBANK_SYSTEM.SNP;l
%RMU-I-LOGINIFIL, contains 192 pages, each page is 2 blocks long
%RMU-I-RESTXT_Ol, Initialized snapshot fileEUROBANK:[DB.UKJBANK_CUST.SNP;l
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long

9.9 Restore 247

%RMU-I-RESTXT_Ol, Initialized snapshot fileEUROBANK:[DB.UK]BANK_ACCT.SNP;l
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long
%RMU-I-RESTXT_Ol, Initialized snapshot file

EUROBANK:[DB.UK]BANK_TRANS.SNP;l
%RMU-I-LOGINIFIL, contains 10 pages, each page is 2 blocks long
%RMU-I-RESTXT_Ol, Initialized snapshot file

EUROBANK:[DB.UK]BANK_INDEX.SNP;l
%RMU-I-LOGINIFIL, contains 109 pages, each page is 2 blocks long
%RMU-I-AIJWASON, AIJ journaling was active when the database was backed up
%RMU- I-AIJRECFUL, Recovery of the entire database starts with AIJ fi 1 e

sequence 0

The restoration of the incremental backup is complete. Each AIJ file is allo­
cated a sequence number and the recovery command indicates the number
required in the first file. If unsure as to which file to use first then use the
RMU/DUMP/AFTER command as shown below. We can see from the fol­
lowing example that this is not the first AIJ file to use because it contains AIJ
sequence number 4.

$ RMU/DUMP/AFTER/NODATA AIJ FI LEl. AIJ: 1

* Rdb 6.0-0 27-FEB-1994 22:52:16.25
*
* Dump of After Image Journal
* Filename: EUROBANK:[UK.DBJAIJFILEl.AIJ;l
*

1/1 TYPE=O, LENGTH=510, TAD=27-FEB-1994 20:37:53.68
Database EUROBANK:[UK.DB]BANKING.RDB;l
Database timestamp is 27-FEB-1994 19:38:37.42
Facility is 'RDMSAIJ ', Version is 601.0
AIJ Sequence Number is 4
Last Commit TSN is 95
Synchronization TSN is 0
Type is Normal (unoptimized)
Open mode is Initial
Backup type is Active
I/O format is Record

248 Database Integrity

The correct file has been found and the RMU/RECOVER command now
applies the AIJ files. When there are multiple AIJ files only one RMU/RECOVER
command is issued and it then prompts for each AIJ file as required as is
shown in the following example.

It is suggested that the DBA carefully read and check each of the messages
displayed. For example, in the following recovery sequence we can see that
the first AIJ uses sequence 0, then AIJ sequence 2. This is possible because
this file is a backed-up AIJ file. Then it prompts for the next AIJ file with a
sequence number of 3.

$ RMU/RECOVER/LOG AIJ_BKPl.AIJ;l
%RMU-I-LOGRECDB, recovering database file EUROBANK:[DB.UK]BANKING.RDB;l
%RMU-I-LOGOPNAIJ, opened journal file EUROBANK:[BACKUPS]AIJ_BKPl.AIJ;l
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed
%RMU-I-LOGRECOVR, 5 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU- I -LOGRECOVR, 7 transactions ignored
%RMU-I-AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU-I-LOGRECSTAT, transaction with TSN 91 is active
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed wi 11 be 3
_AIJ_file:AIJ_FILE3.AIJ;l
%RMU-I-LOGOPNAIJ, opened journal file EUROBANK:[BACKUPS]AIJ_FILE3.AIJ;l
%RMU-I-AIJONEDONE, AIJ file sequence 3 roll-forward operations completed
%RMU-I-LOGRECOVR. 4 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU- I -AIJNOACTIVE. there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number

needed wi 11 be 4
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed

9.10 Restore by Area

%RMU-I-LOGSUMMARY, total 9 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 7 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully

249

%RMU- I-AIJFNLSEO. to start another AIJ file recovery. the sequence number
needed wi 11 be 4

AU recovery is now complete. Readers should not be concerned that AU
recovery is a complex process because from V6.0 it is automated, unless
requested otherwise.

9.10 RESTORE BY AREA

If one area in a database becomes corrupt, it is not necessary to restore the
whole database. The/AREAqualifiercan be used to restore individual storage
areas from full backup or incremental backup files. This option is very useful
when a disk is lost and the database has to be put back online as quickly as
possible. Instead of restoring the entire database, the last full backup file can
be used with the RMU/RESTORE/ AREA command issued to extract the speci­
fied storage area from the backup file. This area then can be extracted from the
incremental backup file using the RMU/RESTORE/INCREMENTAL/ AREA.

Finally, the database can be recovered to the state it was in just prior to failure
by applying the after-image journal files to the database using the RMU/
RECOVER/AREA command. As databases become larger, the ability to re­
cover small parts of the database becomes essential.

The following is a typical example of restoring a full database, then a specific
area:

$ RMU/RESTORE/LOG/NORECOVERY sunday_ful l
$ RMU/RESTORE/LOG/INCREMENTAL/AREA banking mon_inc2 ACCOUNT_AREA

Hint: When specifying the I AREA command, it is important to also specify
which areas to recover in the storage area list. Failure to do this will result
in a successful recovery, but no data will have been restored.

250 Database Integrity

9.11 AIJ RECOVERY BY AREA

When a specific database is restored from a backup file, it can be brought up­
to-date by using RMU/RECOVER/ AREA. The RMU utility only applies
changes for a specific storage area, ignoring changes to other areas.

9.12 RECOVERING A DATABASE PAGE

Sometimes an individual page or a few pages in the database may become
corrupt. Depending on the application it may not be possible or even feasible
to recover the entire database. In this instance a rapid restoration method is
required and can be found in the restore by database page option.

Rdb knows which pages have to be restored, this information being held in the
root file. It can be viewed using the command RMU/DUMP/HEADER. To
recover the corrupt pages only in the database use the RMU/RESTORE/
JUST _PAGES command and specify which areas are to be recovered as shown
below. This command however must be used in conjunction with the backup file.

$ RMU/RESTORE/JUST_PAGES/AREA bank_full_backup

%RMU-W-USERECCOM, Use the RMU/RECOVER command. The journals are not
available

RMU/RECOVER/AREA/JUST_PAGES aij_bkpl.aij;l
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-AIJONEDONE, AIJ file sequence 2 roll-forward operations completed

_AIJ_file:AIJ_FILE3.AIJ;2
%RMU-I-AIJONEDONE, AIJ file sequence 3 roll-forward operations completed
%RMU-W-NOTRANAPP, no transactions in this journal were applied

_AIJ_file:AIJ_FILE3.AIJ;l

%RMU-W-AIJSEQPRI, AIJ file sequence number 3 created prior to expected
sequence 4

%RMU-I-AIJONEDONE, AIJ file sequence 3 roll-forward operations completed
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number

needed wi 11 be 4

9.14 Run-Unit Journaling 251

9.13 CHANGING DATABASE PARAMETERS ON RESTORE

When restoring a database, it is possible to change the following database
parameters:

• The after-image journal file names and number of reserved AIJ journals

• The number of VMScluster nodes

• The directory in which database files reside

• The maximum number of users allowed to be attached to the database

• The number of buffers

• Increase the size of the buffer

• Page size, snapshot file location, and threshold values for a specific storage area

Hint: If there are too many qualifiers to change them individually, the
/OPTIONS qualifier should be used to specify an options file that can
include all the parameters you wish to change.

9.14 RUN-UNIT JOURNALING

A run-unit journal file is created for every user-process attach. These files
contain an image of the data before the user changes it. The run-unit journal
file is kept until the user finishes the transaction, at which time its contents are
erased. If the user should choose to roll back the transaction, the contents of
the RUJ file will be used to return the database to its original state, before the
transaction began.

Hint: Many RUJ files will be created on a system. To prevent them all
from going to the same disk, the logical RDMS$RUJ should be used to
move the run-unit journal file for a given process to another directory.

To change the directory where the RUJ file for a process is stored:

$ DEFINE RDMS$RUJ eurobank: [uk.journal]

9.14.1

9.14.2

252 Database Integrity

Placement

The journal files are automatically placed, on Open VMS systems, in the
directory [RDM$RUJ] unless redirected by the logical RDMS$RUJ. If this
directory does not already exist, Rdb will create it automatically on the same
disk as where the user's SYS$SCRATCH is pointing to.

Naming Convention

The run-unit journal file's naming convention is the database name and
timestamp with an extension of RUJ. The format is:

<database name>$<timestamp number>.RUJ

With this naming convention, it is no longer possible to purge the run-unit
journal files because each has a unique identifier.

9.15 VMSCLUSTER FAILOVER

If a node (machine) in a VMScluster fails, a cluster state transition occurs. If
users have transactions open during VMScluster state transition, the database
journal files will be identified and Rdb will automatically roll back the trans­
actions that were active on the failed node, using one of the surviving Open VMS
cluster nodes. This maintains the integrity of the database and allows users on
other machines in the VMScluster to continue working once the cluster state
transition is complete.

If all the nodes in the Open VMS cluster fail, when the system is next avail­
able, the first user to access the database will have his or her process stalled
while all the unapplied run-unit journal files are recovered first. With this
powerful capability, it is important to ensure that RUJ files are placed on
disks to which all the nodes in the Open VMS cluster have access.

9.16 DISTRIBUTED TRANSACTIONS

Although distributed transactions will be covered in Chapter 12, you should
know that Rdb can maintain the integrity of a database during a transaction
that updates multiple distributed resource managers, such as two Rdb databases,

9.16 Distributed Transactions 253

or an Rdb database and an RMS file. Most systems only maintain integrity
within one type of resource manager, not multiple types. DECdtm will main­
tain the integrity of databases involved in distributed transactions.

The following additional RMU commands are available to support distributed
transactions and maintain integrity within the database:

• RMU/RESOLVE-Resolves blocked transactions

• RMU/RECOVER/RESOLVE- Resolves blocked transactions on roll-for-
ward

Since data is a corporate asset, it is imperative that its integrity is not compro­
mised. For this reason, Rdb provides a range of commands and facilities that
guarantee the database is not compromised.

10 Database Restructuring

Before relational database systems were introduced, CODASYL and hierarchial
database systems were popular. Changing the structure of these two systems
required major effort, however. Something as simple as changing the field
length from 10 to 12 characters involved major work and usually would take
days or even weeks. Changes were so time-consuming because all the data
had to be extracted from the old database. A new database with revised struc­
tures had to be created, then the old data would be loaded into the new data­
base in the new format. This was not a task to be taken lightly, especially since
all the programs required to make the change had to be thoroughly tested. The
unload and load programs offered ample opportunity to corrupt all the data in
the database, as illustrated in Figure 10.1.

If a company is to succeed today, it must be flexible enough to change to meet
market forces and demands. One of the main reasons for the dramatic success
of the relational database is that the physical database structure and metadata
definitions can be changed more easily. Of course, not all changes are instan­
taneous; there still are times when it is necessary to unload and load the data.
But with relational technology, these occasions are few and far between. Rdb
provides a number of methods for altering the metadata, or the data that de­
scribes the data stored in a database, and, consequently, the physical database
structures. The data structures usually are changed due to:

• Revised metadata definitions

• Changes in the physical position of tables and indexes in relation to the
storage areas

• Movement of physical storage areas to a new location

• Revised physical creation parameters

Figure 10.1 Changing Database Definitions Prior to
Relational Databases

Program

+~

Original
Database

Temporary
Files

New
Database

255

This chapter will review the tools and methods available to the database de­
signer and administrator to change the structure of the Rdb database with
minimum impact on the users or application programs. The following com­
mands and tools are used to restructure the database.

• SQLALTER

• RMU/UNLOAD and RMU/LOAD

• SQL EXPORT and IMPORT

• RMU/RESTORE

• RMU/COPY _DATABASE

• RMU/MOVE_AREA

256 Database Restructuring

10.1 CHANGING THE METADATA DEFINITIONS

10.1.1

Most changes in database structure occur because the data within it changes.
New data must be included and redundant data is removed. Initially, changes
in the data content will amend the domain or table definition. Unfortunately,
changes do not stop there. An existing index may require amendment or the
index definitions may be affected if a new index is required. The change also
could affect the storage map definition if a new table is included or if the
partitioning for an existing table requires amendment. Metadata changes do
not just affect the data definitions.

Many types of changes may be made to the Rdb database. The following list
indicates three SQL commands that change the metadata; however, note that
this list is by no means complete.

• CREATE

• ALTER

• DROP

It is possible to make many changes to the database online while users are
accessing the data. Of course, the one restriction is that users cannot access
data that someone is trying to change. The ability to perform concurrent
metadata changes means that new tables, domains, and indexes can be in­
cluded in the design while the database is being used. This reduces the amount
of time that metadata changes require exclusive access to the database. For
computer systems that operate 24 hours a day, this feature is essential to per­
form maintenance on the database.

Creating New Metadata Definitions

We have already seen in Chapter 2 how domains, tables, indexes, and views
are added to an Rdb database. The process of creating new tables is identical
to that for defining a new database. New domains or tables are added to a
database using the CREATE command described in Chapter 3 . Once they are
created and committed, the new metadata definitions are available for use.

New storage areas can be created at any time using the ALTER DATABASE
statement and the ADD STORAGE AREA clause. This command is not executed
inside a transaction. Therefore, once it is completed, there is no rolling back;

10.1.2

Domains

10.1 Changing the Metadata Definitions 257

the new storage area can only be deleted using the DROP STORAGE AREA
clause, as shown in the following example. Remember that first a full backup
of the database should be taken. Also remember that there must be free stor­
age area slots.

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> ADD STORAGE AREA new_transactions;

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> DROP STORAGE AREA new_transactions

Amending Existing Metadata

Amendments to existing metadata definitions are made using the SQL ALTER
command. This action allows changes to be made to:

•Domains

•Tables

•Indexes

• Storage maps

Domains are amended by the ALTER DOMAIN command. With this command,
Rdb permits modification of datatypes, the multinational collating sequence,
the default value, and the SQL and DATATRIEVE formatting strings. The
ability to change the datatype is a very powerful feature inside a relational
database. Provided the existing data is not invalidated, many changes can be
defined. Text strings can be lengthened or shortened, for example. The follow­
ing example changes the length of a domain:

SOL> ALTER DOMAIN standard_name CHAR(25);

Changing a domain automatically cascades the new definition into all the ta­
bles that have used it. The only exception is when an index has been defined
on a domain. In this instance, the domain can only be altered once the index
has been dropped.

Tables

Indexes

258 Database Restructuring

Hint: It should be noted here that shortening a text string does not change
the physical contents of the string until the data is modified. Rdb keeps
the original data, so it is possible to return to the previous data definition
without loss of data if no rows in the table are modified.

Alteration of table definitions is probably the most frequent type of change to
an Rdb database. The reason for this is because so many of the table attributes
can be changed. New columns and constraints may be added and existing
column definitions may be modified or dropped, including their constraints.
Using the BANKING example, suppose bank officials decide to offer a phone
banking service for a six-month trial period. To help determine if the service
should be one of the bank's standard services, the officials decide that every
time a customer makes a transaction with this new facility, the column
PHONE_ TRANSACTIONS in the CUSTOMER table is incremented by one.
The first step is to include the new column in the CUSTOMER table:

SOL> ALTER TABLE customer ADD COLUMN phone_transactions TINYINT;

Suppose the trial proved to be such a success that a TINYINT was inad­
equate. The column could be amended to a SMALLINT:

SOL> ALTER TABLE customer ALTER phone_transactions SMALLINT;

At the end of the trial period, the column could be removed using:

SOL> ALTER TABLE customer DROP COLUMN phone_transactions;

This is just one example of how a business may change its metadata in
response to the demands of the marketplace.

Indexes are frequently changed within Rdb databases. Typically, they are either
dropped (deleted) or new indexes are created. The modifications that may be
applied to an existing sorted index are:

• Changing the node size

• Adjusting the percentage fill factor

Storage Map

10.1 Changing the Metadata Definitions 259

• Stating the access mode as either query or update

• Disabling maintenance

• Changing the storage area in which the index is stored

Why are changes continually made to the indexes? There are many reasons. It
might be necessary, for example, to define additional access paths, rebuild the
index to improve performance, or change the access path because access re­
quirements have changed.

An example of amending the CUST_SURNAME_SORTED in our BANK­
ING database would be:

SOL> ALTER INDEX cust_surname_sorted
cont> NODE SIZE 450
cont> PERCENT FILL 75;

The storage map controls how rows in a table are physically stored in the Rdb
database. With the changing nature of many businesses today, data frequently
is moved inside the database. For instance, information may be required in a
different sequence, so a new index is created. To achieve optimum retrieval,
the rows in the table should be placed via this new index.

The ALTER STORAGE MAP command in SQL allows the following changes
to be made to the data:

• SPAM thresholds

• Placing data via a new index

• Stopping data placement via an index

• Enabling or disabling compression

• Reorganizing data so all data is affected

The last point is one of the most significant clauses in the ALTER STORAGE
MAP statement because it physically moves the data according to the new
placement requirements. This is an invaluable feature because it improves
performance that has deteriorated due to data-placement problems. Figure
10.2 shows how an ALTER STORAGE MAP statement using the REOR­
GANIZE clause makes it possible to increase the number of storage areas and
partition the data across all the areas, old and new, moving the data to be

260 Database Restructuring

Figure 10.2 Using the ALTER STORAGE MAP to Physically
Reorganize Data in the BANKING Database

Account Rows

Account Rows

Before

ALTER
STORAGE
MAP

Account Rows

Account Rows

Account Rows

After

positioned according to the new placement. If desired, a hashed index could
have been created and the data clustered around the hashed index.

The following example uses the BANKING database. The CUSTOMER rows
are moved from the CUSTOMER_AREA storage area, where they are stored
randomly, into the default system area RDB$SYSTEM, where they are placed
next to the new index CUST_FIRST_NAME. This probably is not a design
decision that would be implemented in a real database.

• Define a new index on CUSTOMER and place in storage area
RDB$SYSTEM

SOL> CREATE INDEX cust_first_name ON customer
cont> (first_name DESCENDING, surname ASCENDING)
cont> TYPE IS SORTED NODE SIZE 300
cont> STORE IN rdb$system;

• Display the current dbkeys for the CUSTOMER rows

SOL> SELECT customer_no, dbkey FROM customer;
CUSTOMER_NO DBKEY
100201 37:5:0
100205 37: 5: 1
1678345 37: 5: 2

3 rows selected

10.l Changing the Metadata Definitions

• Show the current storage map for the customers

SOL> SHOW STORAGE MAP customer_map;
CUSTOMER_MAP

For Table: CUSTOMER
Compression is: ENABLED
Store clause: STORE IN CUSTOMER_AREA

261

• Amend the storage map to move the CUSTOMER rows to RDB$SYSTEM
and place via the new index

SOL> ALTER STORAGE MAP customer_map
cont> STORE IN rdb$system
cont> PLACEMENT VIA INDEX cust_first_name
cont> REORGANIZE PAGES;

• Display the dbkeys of the CUSTOMER rows that have now moved to
logical area 51

SOL> SELECT customer_no, dbkey FROM customer;
CUSTOMER_NO DBKEY
100201 51:539:0

100205 51: 539: 1

1678345 51: 539: 2

3 rows selected

Hint: In this example, the REORGANIZE clause will move the data only
if the STORE clause is specified; otherwise Rdb does not know in which
areas to place the rows.

The REORGANIZE clause also is useful when the storage area in which a hashed
index is defined has extended. When this occurs, the hashing algorithm will
only use the initial allocation size to determine the range of pages over which
data can be spread. Therefore, once the extension area is used to store rows
from the table, additional I/O is required to retrieve the row, eliminating many
of the benefits ofusing hashed indexes. When this situation occurs, using the
REORGANIZE clause avoids the need to unload and reload the data.

10.1.3

262 Database Restructuring

Deleting Existing Metadata

So far, we have only considered adding or amending the metadata definitions,
but restructuring also could involve deleting data structures. SQL provides
the DROP statement to delete the following metadata structures:

•CATALOG

• COLLATING SEQUENCE

• CONSTRAINT

•DOMAIN

•FUNCTION

•INDEX

eMODULE

ePATHNAME

•OUTLINE

•SCHEMA

• STORAGE MAP

•TABLE

•TRIGGER

•VIEW

Some of these commands already have been described in Chapter 2.

Hint: To maintain the integrity of the Rdb database, Rdb imposes some
restrictions on the sequence in which metadata definitions may be deleted.

The DROP statement is not the only command available for removing metadata
definitions. The ALTER TABLE statement, for example, also includes a DROP
COLUMN or DROP CONSTRAINT clause to remove these metadata types
from the database. The following example would drop the column statement
date from the account table:

SOL> ALTER TABLE account
cont> DROP COLUMN statement_date;

10.2 Changing the Physical Creation Parameters 263

10.2 CHANGING THE PHYSICAL CREATION PARAMETERS

10.2.1

Restructuring the Rdb database does not always involve changing the metadata
definitions. Sometimes, amendments are required to the database-wide crea­
tion parameters, such as buffers, journal files, and storage area allocations. A
number of parameters may be modified with a number of different techniques.
Essentially, the parameters may be changed using:

• Operating system logical names or environment variables

• ALTER DATABASE

• IMPORT/EXPORT

• RMU/RESTORE

Table 10.1 lists many of the database-wide parameters that may be changed
and notes which utility implements the modifications. Note that the column
for RMU/MOVE is also valid for RMU/COPY _DATABASE.

A typical example from the BANKING database follows. This illustrates
amending the database parameters to set the number of buffers allocated to a
database attach to 100.

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> NUMBER OF BUFFERS IS 100;

Table 10.2 lists many of the database-wide parameters that may be changed
while users are attached to the database.

Table 10.3 lists many of the data definitions that may be changed while users
are attached to the database.

Increasing Storage Area Size

Rdb automatically increases the size of a storage area if extra space is re­
quired. This dynamic space allocation lets Rdb continue functioning until the
disk is full. At this point, even Rdb cannot pull disk space out of a hat. If the
Rdb database administrator noticed that extra space was required and the
disks were nearly full, either new storage areas could be created and the storage
map changed to use these additional areas, or the database could be restored

264 Database Restructuring

Table 10.1 Database-Wide Parameter Changes

ALTER IMPORT/ RMU/ RMU/
Parameters Logical DATABASE EXPORT RESTORE MOVE

Adjustable Locking N y y N N

AIJ Journal Name N y N y y

AIJ Allocation N y N N N

AIJ Extent N y N N N

AIJOn or Off N y N y y

Buffers, Number of y y y y y

Buffer Length N N y y N

Carry Over Locks N y y N N

Collating Sequence N N y N N

Commit to Journal Opt N y N N N

Database Page Size N N y y y

Extension Pages N y y y y

Fast Commit On or Off N y N N N

Global Buffering On or Off N y y y N

Open Automatic/Manual N y y y N

Recovery Buffers N y y N N

Restricted Access N y y N N

RUJ Extent y N N N N

Storage Area Placement N N y y y

Snapshots On or Off N y y N N

Snaps Immediate/Deferred N y y N N

Snapshot File Allocation N y y N N

Snapshot File Extent N y y N N

Thresholds N N y y y

Users N y y y y

VMScluster Nodes N y y y y

10.2 Changing the Physical Creation Parameters

Table 10.2 Database-Wide Parameter Changes with Attached Users

Parameters

Adjustable Locking

AIJ Journal Name

AIJ Allocation

Allowed or Disallowed

N

N

y

AIJ Extent y

AIJ On or Off y

AIJ Add y

AIJ Alter y

AIJDrop y

Buffers, Number of y

Buffer Length N

Carry Over Locks N

Collating Sequence y

Commit to Journal Opt N

Fast Commit On or Off N

Global Buffering On or Off N

Global Buffer Variables y

Lock Timeout Interval y

Recovery Buffers y

Reservation of Journal Slots N

Reservation of Storage Area Slots N

Snapshots On or Off N

Snaps Immediate/Deferred N

Snapshot File Allocation N

Snapshot File Extent N

Statistics Collection On or Off N

Storage Area Extension On or Off y

Storage Area Allocation y

Storage Area Read or Write y

Storage Area Lock Levels N

Users N

VMScluster Nodes N

265

266 Database Restructuring

Table 10.3 Data Definition Changes with Attached Users

Object Allowed or Disallowed Notes

Constraints

Domains

Functions

Indexes

Modules

Outlines

Protection

Storage Maps

Tables

Triggers

Views

y

y

y

y

y

y

y

y

y

y

y

Not while a transaction is accessing the associated tables

Not while a transaction is accessing the associated tables, but users
can now concurrently create indexes

Not while a transaction is calling or has called the stored procedure

Not while a transaction is accessing the associated tables or using
trigger

using RMU/RESTORE, using parameters on the RESTORE command to
create the additional space that would be required.

A common requirement is to be able to truncate the size of a snapshot file that
has grown beyond its normal size. This can happen for various reasons; per­
haps a load program was executed in a non-exclusive transaction while snap­
shots were enabled or perhaps a process such as an ACMS server process was
attached to the database for a long time issuing read/write transactions so that
Rdb was unable to reclaim snapshot file space.

The snapshot file can be truncated online while other users are attached to the
database; however, if any read-only transaction is active, the ALTER state­
ment will be forced to wait until it completes.

SOL> ALTER DATABASE FILENAME eurobank:[uk.db]banking
cont> ALTER STORAGE AREA BRANCH_AREA
cont> SNAPSHOT ALLOCATION 300;

10.2.2

10.2.3

10.2 Changing the Physical Creation Parameters 267

RMU/RESTORE

Most people associate RMU/RESTORE with restoring their database when a
problem occurs. Few people consider using it as a database-restructuring tool.
RMU/RESTORE can allow the specification of database or storage-area-wide
parameter amendments. Not only is it possible to change simple values, such
as the number of database users or the after-image journal file size, it also can
be used to change the storage area values, such as page size, allocation, or
extension. This flexibility means that while a database is being restored, it is
possible to refine the database at the same time. A simpler approach is often
the use of RMU/MOVE_AREA and RMU/COPY _DATABASE commands
to restructure the database. In this case no intermediate storage is required.
Table 10.1 defines many of the database-level changes permitted. In addition,
changes can be made for each of the following storage areas:

• Blocks per page

• Directory location

• Snapshot directory

• Threshold values

Note that the buffer size can also be specified on an RMU/RESTORE; how­
ever, it must be at least the size of the largest page in the database.

Hint: When restoring a database made up of a number of tables, an
options file is used to specify all the storage areas and their parameter
values. Unless this is done then, in the Open VMS environment, the
token limit will be exceeded.

Moving an Rdb database

Sometimes a database must be moved to another directory. The simplest way
to achieve this is with RMU/MOVE_AREA or RMU/COPY_DATABASE.
Alternatively, but using intermediate storage, the RMU/RESTORE command
with the /DIRECTORY qualifier may be used. The RMU/MOVE_AREA
command moves the storage area into the specified directory, whereas the
RMU/COPY _DATABASE will copy a whole database to a specified destination.

268 Database Restructuring

10.3 RMU/UNLOAD AND LOAD

10.3.1

RMU/UNLOAD and LOAD may be used to load and unload data. Unlike
SQL IMPORT and EXPORT, which can only manipulate a whole database,
RMU/LOAD and UNLOAD work at the table level. Assuming they are work­
ing on different tables to avoid conflict, RMU/LOAD and UNLOAD jobs can
be run in parallel.

Hint: Use RMU/EXTRACT to automatically generate RMU/LOAD and
UNLOAD command files for each table in the database.

RMU/LOAD and UNLOAD are useful when the database has to be reorgan­
ized and the existing tools are inadequate. Suppose extra columns are needed
in a table. The new columns easily could be added without affecting the exist­
ing data. In this instance, however, adding extra columns would force existing
rows to fragment, compromising the database performance. The solution is to
unload the individual table, reformat to include the new field, and reload the
table. The process is a typical example of how RMU/UNLOAD and LOAD
are used to manage an Rdb database.

It could be argued that ALTER with its reorganize options would perform the
same task and eliminate the need for the intermediate file. But extracting all
the data sometimes gives the database designer more control over the reload
operation. The commit frequency can be specified and the task can be broken
down into manageable portions.

RMU/UNLOAD

The RMU/UNLOAD command extracts data from a specific table or view.
The following example is from the BANKING database. The BRANCH table
is extracted into a file called branch_data, which has a file extension of .UNL
One important point to remember with this utility is that the data is only copied
from the Rdb database. Therefore, this command can be used to make copies
of tables in the database.

$ RMU/UNLOAD eurobank:[uk.db]banking branch branch_data

%RMU-I-DATRECUNL, 14 data records unloaded

10.3.2

10.3 RMU/UNLOADANDLOAD 269

The command has an additional qualifier, /FIELDS, which is used to specify
exactly which fields are to be written to the unload file. One problem with the
RMU/UNLOAD command is that it provides very little opportunity to
manipulate the data while extracting it from Rdb.

The output of RMU/UNLOAD can be a specially formatted file that contains
the table metadata, in which case, the RMU/LOAD command can read this
metadata later. Alternatively, the output file can be a file containing only data
in which case it can be used by any software that can read file system files. A
record-definition file can also be created in this case that describes the structure
of the file. Note that only the specially formatted file can contain segmented
strings.

To enable the output data to be read by a variety of software packages, it can
be enhanced by the addition of a:

•Prefix

• Suffix

• Separator

• Row terminator

The following example shows the format of an RMU/UNLOAD command
that unloads the BRANCH table, separates the fields with a comma and places
double-quotes around those fields.

$ RMU/UNLOAD/RMS_RECORD_DEF=(FILE=branch.def,FORMAT=DELIMITED_TEXT)
eurobank: [uk.db]banking branch branch.dat

The following example shows the format of an RMU/UNLOAD command
that does the same as above but adds a prefix to each column.

$ RMU/UNLOAD/RMS_RECORD_DEF=(FILE=branch.def, FORMAT=DELIMITED_TEXT,
PREFIX='$') eurobank: [uk. db]banki ng branch branch. dat

RMU/LOAD

When loading the data into the database, RMU/LOAD will accept either a
sequential RMS file or the specially formatted file with the .UNL extension
created by RMU/UNLOAD. Like the unload command, RMU/LOAD works
on one table at a time and has a number of options to control the load. Using
this command it is possible to specify:

10.3.3

270 Database Restructuring

• Commit after every x rows

• Load certain columns

• Pre-sort the data into dbkey order to speed up the load

• Skip over any rows

• Control how triggers are initiated

• Lock the database in a certain mode

• Load an Open VMS security audit journal into an Rdb table

• Create an exceptions record of rows that failed to load

In the following example from the BANKING database, rows are loaded into
the ACCOUNT table using RMU/LOAD.

$ RMU/LOAD eurobank:[uk.db]banking account account_data
%RMU-I-DATRECSTO, 978 data records stored

If the data requires modification before being loaded back into Rdb, this
operation must be performed outside of the RMU/UNLOAD and LOAD
commands. Any changes can be made provided the data is presented to RMU/
LOAD in the expected format.

RMU/LOAD and UNLOAD should be all the load/unload capability a database
administrator needs for most applications. For very large databases, however,
it might be necessary to write an application program specifically to unload
and load the database. The reason for this approach is that the application
program would provide far more control over the process than RMU/LOAD
and UNLOAD. Say, for example, that RMU/UNLOAD creates a fixed-length
record, which might cause a problem if the database containes one million
rows of fixed-length 600 bytes, but only 125 bytes were used. Writing an
application program to perform the unload would save a vast amount of disk
space because the application program could create variable-length record files.

RMU GUI MANAGEMENT UTILITY

An X/Windows GUI interface for building and executing RMU commands
was introduced in V6.1. Invoked by specifying RMUwin, the first screen,
Figure 10.3, determines the databases managed through the GUI. Clicking on
the icon for the database displays Figure 10.4 from which the RMU com­
mands are built.

10.3 RMU/UNLOAD AND LOAD 271

Figure 10.3 The RMUwin Startup Screen

Figure 10.4 RMUwin Management Screen

When Figurel0.4 first appears, each storage area is displayed and informa­
tion is provided about the tables and indexes in those areas. Some icons are
provided to automatically invoke backup, restore, show statistics and dump
header. Clicking on the far right icon changes the storage area display to the
header information normally displayed by an RMU/DUMP HEADER command.

272 Database Restructuring

Figure 10.5 RMUwin Backup Options Screen

Building RMU commands with the complex array of options available is not
a trivial task, especially to the newcomer to this utility. The GUI provides a
friendly, easily used mechanism for defining them. Suppose it is required to
create a backup command; then simply check the required boxes as illustrated
in Figure 10.5, then watch the RMU command automatically appear in the
lower box in Figure 10.4. This command should then be saved to a file. RMU
commands saved in these files can be executed directly from within the GUI.

Whether you are a novice or an expert, once you get used to using the GUI,
you will wonder how you ever managed without it.

10.4 EXPORT AND IMPORT

The last utility to mention is SQL EXPORT and IMPORT.

EXPORT creates a copy of the database in a special compressed form. No
structural changes may be made when the database is being exported. All that
this command does is to make an intermediate file with an extension of .RBR.

10.5 WhyReorganize? 273

In the OpenVMS environment, it is worth changing the RMS default EX­
TEND value using $SET RMS_DEFAULT to a value more appropriate to
the export file size. For example, the default is 3 blocks. If the database is 500
Megabytes, the export file will extend many times. It would be more efficient
to set the extend quantity to perhaps 50,000 blocks.

Hint: Compressed does not mean table compression, of course. All text
columns are stored in their full form, not in their compressed form as
inside Rdb. For this reason, the EXPORT tile can occupy more space
than the original database and usually does.

The IMPORT command takes as its input the file created by EXPORT and
loads the data into the Rdb database. At this stage, the format and structure of
the new database may be changed. Certain parameters, including buffer length,
can only be changed via an EXPORT and an IMPORT. A list of most amend­
ments that can be made to the database when importing is given in Table 10.1.

EXPORT and IMPORT should be used to migrate to higher software versions
if an Rdb database may have to be restored later on a different version ofRdb
than it was created on. The IMPORT and EXPORT statement provide the
option of NODATA, which results in either exporting an empty database or
importing only the metadata definitions and structure from an exported data­
base.

10.5 WHY REORGANIZE?

This chapter illustrated the wide range of tools that Rdb provides to restruc­
ture database design. Purists say that the relational model is so flexible that a
database reorganization utility is unnecessary. In theory this is true. Unfortu­
nately, in the real world the model's flexibility sometimes is inadequate and
the database must be reorganized. Or, for performance reasons, an alternative
physical implementation may improve throughput. Rdb does, however, try to
ensure that changing database structure is a smooth and easy process.

11 Tuning and Optimization

Many relational databases are created with default parameters or parameters
set by the database administrator, and never require amendment. However,
since relational databases frequently play crucial roles in many organizations,
the details of their performance characteristics are important. If fine-tuning
relational databases were simple, experienced database designers would not be
required. In reality, unfortunately, database tuning is something of a black art
if the appropriate tools are not available. As this chapter will show, Rdb users
have a number of tools available that enable them to completely optimize a
database. These tools range from capabilities within Rdb through to RdbExpert,
which is described in Chapter 16. RdbExpert is a new artificial-intelligence­
based database design tool that can determine the optimum physical database
design of a database for a given workload.

Describing in detail how to tune an Rdb database would fill a book. Instead,
this chapter will discuss the techniques that should be used during database
design to ensure that a database performs to its maximum potential. It also
will review the tools available to the designer and will indicate some of the
more obvious places to look if the database has a performance problem. For
further information, consult the Guide To Database Peiformance and Tuning
which is part of the Rdb documentation set.

Rdb databases do not require a lot of tuning. Rdb has been designed so that
most databases created with the default parameters will perform adequately
for most systems. However, if a system requires maximum performance, a
wealth of tools is available to easily tune the database. Think of Rdb as a
racing car. With a standard racing engine it runs very well, but in the hands of
the trained mechanic it is transformed into a world-class winner. Most data­
base designers will be able to tune their own databases. But maximum per­
formance most likely can only be achieved at the hands of an Rdb tuning
expert.

11.1 Understanding the Physical Design 275

11.1 UNDERSTANDING THE PHYSICAL DESIGN

11.1.1

To achieve optimum performance, the database designer must understand how
all the internal database structures, such as tables and indexes, are placed
within each of the defined storage areas. Making assumptions about data
positioning may lead to unexpected results because Rdb provides so many
different placement options, such as clustered or random placement, or place­
ment via a hashed index.

If the database is understood from this perspective, it is possible to determine
whether extra I/O is being performed. For example, if a table is placed via a
hashed index, reading a hashed index automatically brings the row into the
buffer. Only a read from memory is required to read the table row because the
row is already in the buffer. This procedure is considerably faster than read­
ing from disk and results in improved performance.

Determining how data is placed inside the database requires searching through
many pages of database definitions, referring to the table, index, and storage
map definitions to see the whole picture. This is a tedious, time-consuming
process that is prone to error. One way of understanding how the tables and
indexes are placed within the database is to draw a picture of the physical
implementation of the database. We will call such a picture a database place­
ment map.

Database Placement Map

The database placement map is a simple picture of the physical database im­
plementation that usually can be drawn on one or two sheets of paper. Once
constructed, the database placement map is used to:

•Determine whether the tables and indexes are placed optimally inside the
database

• Calculate database page size

• Describe the physical database design pictorially and concisely

• Display the overhead of internal database structures

• Assist during transaction analysis to determine I/O requirements

Step 1

276 Tuning and Optimization

A database placement map can be constructed in approximately one hour by
following a few simple steps. Ideally, it should be drawn on a computer be­
cause objects frequently are repositioned. If a computer is not available then
one or two pieces of paper also will suffice, but make sure you draw using a
pencil. And have an eraser- because you will certainly need it!

When constructing database placement maps, remember that they represent
typical relationships and what a database page is expected to contain. There­
fore, the following typical questions that must be answered:

• How are the BRANCH records accessed?

• How many TRANSACTION records typically are grouped together?

• Are the TRANSACTION rows clustered next to the ACCOUNT rows on a
database page?

Once these questions are answered, work can begin on the database placement
map.

First, draw an open rectangle for each storage area that is specified in the
database creation file. In the BANKING example, there are four storage areas.
Figure 11.1 shows the first step completed.

If a storage area is partitioned into many physical storage areas and the con­
tents of each partition are identical, only one storage area is drawn on the

INDEX_AREA

CUSTOMER

ACCOUNT

BRANCH

Figure 11.1 Database Placement Map - Step 1

Step2

11.1 Understanding the Physical Design 277

database placement map for the sake of clarity. A note is inserted stating that
this storage area actually is comprised of x partitions.

Identify in which storage area each database table is positioned. To gather this
information, first refer to the table definition and identify whether a storage
map exists for a particular table. If it does, the storage map will specify in
which area the table resides. Otherwise the table is stored in RDB$SYSTEM
by default.

Hint: Each table should have a storage map. Do not store anything in
RDB$SYSTEM except the system metadata.

In the storage area where the table resides, draw a small box to represent the
table and write the table name inside the box. If all of the rows in a table are
scattered throughout the storage area, only one box is drawn on the placement
map. In Figure 11.2, the rows in the CUSTOMER table are scattered throughout
the storage area; therefore only one box is drawn on the map in the CUS­
TOMER storage area. Frequently, rows in a table are clustered together. This
information is vitally important when trying to ascertain the number of I/Os
required to access data.

INDEX_AREA I BRANCH_CODE_SORTED I

CUSTOMER I CUSTOMER

ACCOUNT I ACCOUNT
X3

BRANCH I BRANCH

Figure 11.2 Database Placement Map - Step 2

Step 3

278 Tuning and Optimization

To represent clustering on the database placement map, first determine from
the storage map how the table is stored. If the table is stored via a hashed
index, database clustering will occur. Clustering is represented on the data­
base placement map by drawing several half-height boxes attached to the main
table box. The typical number of entries clustered together is written above
these half-height boxes.

In Figure 11.2 all the ACCOUNT records are clustered together. This is shown
on the map as a full box and several half-height boxes. Because on the aver­
age there will be 3 accounts per customer, the number 3 is written above the
boxes.

The BRANCH rows are placed in the Uniform page format storage area
BRANCH_AREA, which means that the rows are placed together in the clump
allocated to that table. The rows are stored together, but to differentiate from
rows that are clustered via a hashed index, the table is drawn as two separate
boxes, illustrating that the rows are together by default, rather than clustered.

The next map structures are the two different types of index, the sorted b-tree
and the hashed index. First include the sorted b-tree indexes. For each sorted
b-tree index defined in the database, identify in which storage area the index is
placed by referring to the index definition. If an index is in a specific storage
area, a placement clause will be in the definition; if not, the index is stored in
storage area RDB$SYSTEM. Next, draw a box on the map, write the index
node name inside, and draw several half-height boxes to illustrate that many
index nodes will be clustered together. In Figure 11.3, the branch index is
shown as being in storage area INDEX_AREA. The next step is estimating
roughly how many index nodes there will be. In our example, this index con­
tains an estimated 1000 nodes; therefore, the number 1000 is written above
the box to represent the index nodes.

Drawing the hashed index structure on the database placement map is a little
more complicated because, as we have seen, a number of database structures
make up a hashed index. As described in Chapter 5, a hashed index structure
is made up of the following:

• A system record

JI.I Understanding the Physical Design 279

• A hashed bucket

• A duplicate hashed bucket

Before drawing the hashed index onto the database placement map, first de­
termine which parts of the hashed index structure are relevant. Every mixed
format database page contains a system record. Its size varies according to the
number of hashed indexes on the page. For each index defined, there is one
hashed bucket which varies in size by the number of entries in the hash bucket.
Although the hash bucket can overflow, we won't concern ourselves with that
here because it is an unusual condition.

Duplicate hashed buckets will exist only when many rows have the same key.
The buckets are of a fixed size of 92 bytes, which allows for 10 dbkeys.
Therefore, there will be one duplicate hash bucket for every 10 duplicate keys.

Figure 11.3 shows a simple hash index on the CUSTOMER table made up of
only a system record and a hash bucket. This situation is shown as a system
record and a hashed bucket, therefore. In the case of the ACCOUNT_AREA
storage area, the hashed index on ACCOUNT may be made up of up to 3
duplicates. The hashed index structure in this instance, therefore, is made up of:

• A system record

• A hash bucket

• Two duplicate hash buckets

INDEX_AREA I I BRANCH_CODE_SORTED t-1 ----...-X_4o___,

CUSTOMER

ACCOUNT

BRANCH

I 1svSRECORD llcusT_NO_HASH I lcuSTOMER 11

SYS ACCOUNT _NO ACCOUNT
REC HASH

I 1sRANCH

ACCOUNT_NO X1
HASHDUPL

Figure 11.3 Database Placement Map - Step 3

280 Tuning and Optimization

Step 4

Our database placement map now is almost complete. The final step involves
calculating the size of each of the structures in the storage areas. For each
table and index node, write the expected size under the box representing the
data structure. Hashed index structures are slightly more difficult to calculate
because they vary in size according to the number of dbkeys inside the hashed
index. If the hashed index structures are to be calculated reasonably accu­
rately, the formulas in Table 11.1 should be used.

Table 11.1 Calculating the Size of a Hashed Index

Category Bytes/Entry

SYSTEM RECORDS

No. of Hashed Indexes a

Total System Record Size

Overhead 4

Minimum 6

Maximum 10

HASH BUCKET

Key Size 1

Key k+l

Overhead/Entry 12

Total/Entry 12+1+k+l=b

No. of Entries c

Overhead/Bucket 13

Total Bucket Size (b*c)+13

DUPLICATE NODE RECORD

No. of Duplicates d

No. of Entries/Node 10

No. of Duplicate Nodes

Overhead/Node

Total

(d+5)/10=e

92

e*92

Total

a

4

(6*a)+4

(10*a)+4

k+l

12

b

c

13

(b*c)+13

d

92

e*92

GRAND TOTAL (((6*a)+4) or ((10*a)+4)) + ((b*c)+13) + (e*92)

11.1.2

11.1 Understanding the Physical Design 281

Figure 11.4 Database Placement Map - Step 4

INDEX_AREA
430

I I BRANCH_cooE_SORTED l1----r-_x4_o___,

CUSTOMER
10 21 188

I 1 SYS RECORD II CUST _NO_HASH 11 CUSTOMER

10 21 46 32

ACCOUNT ACCOUNT_NO
ACCOUNT

ACCOUNT_NO X1
HASH HASHDUPL

138 32
E ~

261
164

BRANCH
BRANCH

Consider the instances where a number of different data structures are grouped
together, such as in the case of the ACCOUNT table and the hashed index to
which the row is clustered. All the items are added together, and an arrow is
drawn to illustrate which items in the storage areas are related and the total
bytes required to store all of this data.

With this final piece of information it is possible to determine whether the
database page sizes have been correctly calculated. The user can see exactly
what should reside on a database page. The total space requirements can be
compared with the specified page size.

Figure 11.4 is the completed database placement map. This map is now an
essential component of the database design documentation. When tuning the
database, it helps determine whether data is being efficiently retrieved from
the database.

Physical Design Verification

After application programs are written, they usually go through a period of
extensive testing before they are put into service. Database designs that do not
go through the testing process may have design flaws that are not identified

282 Tuning and Optimization

until the database is in use. This can result in expensive disruption to the
company, with a loss in both time and potential business.

A simple technique that may be used to verify the database design is transaction
analysis. It is a time-consuming manual process that frequently is overlooked.
Transaction analysis involves taking a business transaction, such as Account
Inquiry, and walking through the transaction to see how it accesses the data­
base. Following this process involves checking the database to see that:

• Tables are present

• Indexes are available for fast access

• Whether rows are locked and the duration of locks

It is not uncommon to find databases performing badly because an index is
missing. Transaction analysis could have avoided this situation. There is no
right way to perform transaction analysis. The following approach involves
completing the form shown in Figure 11.5 for each transaction that is being
reviewed. This form is designed to take into consideration all the access that is
likely to occur as the result of a database request:

• Read/write/delete a row

• Read/write/delete either to a sorted b-tree or a hashed index

• Write to the snapshot file

• Force a constraint check, which, in turn, can affect

-Row/table

-Index

-Snapshot

• Activate a trigger

The example in Figure 11.5 illustrates a completed transaction analysis form
for the deposit function for our BANKING example. The deposit function
process involves finding the account using the account number, creating a
transaction row that updates the balance in the account table by means of a
Rdb trigger called upd_bal.

11.1 Understanding the Physical Design 283

Figure 11.5 Transaction Analysis Form

Transaction Analysis

Function: Deposit Date: AUG '94

Version: 1

Description: Deposit an amount into an account Page: 1

Hashed B-tree Snap Journal Total 110
Table Action Index Constraint Trigger Shot RUJ AIJ Man Opt

Account Read1 Acct_ No 1

Transaction Insert 1 Create 1 Upd_bal 1 2 2 2 9

-Account

Comments: TOTAL 1/0 Mandatory 10

Assume 1 1/0 to read both account row and hashed index Optional

Reading across each row on the transaction analysis form informs us that this
transaction reads one row from the account table via the hashed index on
account number. Since the account row is placed on the same database page
as the hashed index, it is assumed that all the information is read in one 1/0.

The next step is to insert one transaction record, which creates an entry in the
hashed index. As a result, the trigger upd_bal is invoked, which updates the
balance in the account table. All this writing to the database results in two I/Os
to the snapshot file for updating the transaction and account table. The same
I/O's also are included for writing out the changes to the journal file. On
average, the deposit function requires approximately ten I/Os.

284 Tuning and Optimization

11.2 A TUNING PLAN

Before starting to tune the database, a plan should be formulated. Attempting
to tune without a proper plan will require considerable extra effort. The plan
should include:

• Tuning objectives

• A definitive starting position for all tests

• The conditions to be tested

• The expected results from the tests

The objectives of the tuning exercise must be clearly stated; for example, the
Account Inquiry response must be improved from 1.5 seconds to 1 second. It
also is imperative to create a database backup that contains the state of the
database to be used for all tests. Then it will be possible to determine whether
any improvements have been achieved through the tuning exercise.

Finally, all tuning activities should be logged and the results kept for examina­
tion later. Sometimes just writing down the elapsed and CPU time is not enough
because the data may be required later for analysis, such as the Direct 1/0
count values, which were not recorded earlier.

11.3 TUNING TOOLS

A number of tools may be used to tune an Rdb database. Some belong to the
native operating system, others are supplied with Rdb, and others are separate
products. The main tools to use are:

• Certain operating system commands

• Rdb Debug Flags

• RMU/SHOW STATISTICS

• RMU/ANALYZE and /DUMP

• DECtrace and RdbExpert products

We will now consider each of these tools individually.

11.3.1

11.3.2

11.3 Tuning Tools 285

Operating System Commands

Before starting to tune the actual database, it is worth checking the general
operating system parameters of the user account used to query the database.
Frequently, queries to the database are slow because the user's own account is
not granted enough resources.

Fragmented disks also must be considered. If the database files have been
fragmented, extra I/O will be needed. On Open VMS this is detected by check­
ing whether there is more than one retrieval pointer on a storage area by using
the $DUMP/HEADER command from the DCL prompt. Open VMS is rich in
useful performance monitoring commands, some of the more useful ones being:

• MONITOR DISK - shows disk I/O throughput

• MONITOR SYSTEM - shows system statistics

• MONITOR CLUSTER - shows VMScluster statistics

• MONITOR LOCK - shows the lock activity

• SHOW SYSTEM - shows the users on the system

Rdb Debug Flags

By setting the logical name RDMS$DEBUG_FLAGS, it is possible to see
what action Rdb is taking to perform a query. The logical name is set to a
number of different values, but the most useful one is 'S', because it advises
which strategy the optimizer has chosen to resolve the query. This is especially
useful when Rdb chooses an access path into the database that was unex­
pected, such as sequential access instead of index access, as shown below:

$ DEFINE RDMS$DEBUG_FLAGS 'S'

SOL> SELECT branch_code FROM branch;
Get Retrieval sequentially of relation BRANCH

BRANCH_CODE
SOT
POT
ROP
WICK
PLYM

11.3.3

286 Tuning and Optimization

It is good practice to test all major queries on the database to make sure that
no unexpected paths are being taken. The most useful values that the debug
flags may be set to are:

• 0 - Optimizer cost

• S - Optimizer strategy

• E - Dynamic optimization

RMU/SHOW STATISTICS

Without doubt, this RMU utility is one of the most powerful tools available to
the database designer. It monitors all activity upon the database and collects a
wealth of information, most of which may be replayed at a later date. The
RMU utility displays the information either graphically or numerically on a
standard VT terminal for a whole range of resource items. It collects informa­
tion continually on all of the following items:

• Summary IO statistics

• Summary locking statistics

• PIO (physical IO) statistics - writes, data fetches & SPAMs

• Global buffer information

• Asynchronous PIO statistics

•IO stall time (seconds *100)

• Index statistics (retrieval, insertion & removal)

• Hash index statistics

• AIJ statistics

• AIJ information

• Checkpoint statistics

• Record statistics

• Snapshot statistics

11.3 Tuning Tools 287

• Virtual memory usage statistics

• Transaction duration

• IO statistics (by file)

• Per process information

• Stall messages

• Active user stall messages

• Process accounting

• Database recovery information

• Logical name information

• Lock timeout & deadlock history

• Locking (one lock type)

• Locking (one stat field)

•CPU

• Objects usage

• Summary objects

• Custom statistics

The data can be either displayed on the screen or collected into a data file for
a specified period of time. It is collected at a specified interval, the default
interval being three seconds.

From V6.1 the SHOW STATISTICS utility also has a GUI interface which is
almost identical to its character cell version. Some sample screens will be
shown at the end of this chapter.

The Rdb manual entitled Guide to Database Maintenance and Performance
explains in detail the purpose of each individual data item on the screen. All of
the screens are useful, but it depends upon the area being tuned as to which
are the most relevant. This chapter will look at the most useful screens and
will highlight some of the data items that should be observed.

The RMU utility is started at the DCL level by using the RMU/SHOW STA­
TISTICS command. A number of different qualifiers may be specified. In the

288 Tuning and Optimization

Figure 11.6 RMU/SHOW STATISTICS - Summary IO Screen (Graph)

Node: ORION
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
Summary IO Statistics

EUROBANK:[UK.DB]BANKING.RDB;1

10 20 30

14-MAR-1994 17:40:11
Elapsed: 00:02:28.49

Mode: Online

40 50 statistic .•..•.... max. cur.
name ••...••.....•• rate rate +---------+---------+---------+---------+---------+

transactions
uerb successes
uerb Failures

synch data reads
synch data writes
RUJ file reads
RUJ file writes
AIJ file reads
AIJ file writes
root file reads
root file writes

I
o o I

23 23 +---------+---------+--*
o o I I

I I
10 10 +---------*
o o I I
o o I I
o o I I
4 4 +---* I
o o I I

12 1 I* I
1 o I I

+---------+---------+---------+---------+---------+

Display_menu Exit Help Numbers Options Reset Set_rate Time_plot Write_screen

following example, /TIME=l advises Rdb to collect data once a second. If
/OUTPUT was specified, Rdb would display the data and collect it into the
named file, which would allow the statistics to be replayed later.

$ RMU/SHOW STATISTICS /TIME=l banking

If the /INPUT qualifier is specified, a previously recorded statistics file can be
replayed.

The collection of statistics for a database process can be disabled by the speci­
fic a ti on of a logical name or OSF/1 environment variable,
RDMS$BIND_STATS_DISABLED. The following example disables the col­
lection of statistics for a database process:

$ DEFINE RDMS$BIND_STATS_DISABLED 1

To disable the collection of statistics for the database as a whole, use the
ALTER DATABASE statement:

SOL> ALTER DATABASE FILENAME banking
cont> STATISTICS COLLECTION IS DISABLED;

11.3 Tuning Tools 289

Figure 11.7 RMU/SHOW STATISTICS - Summary IO Screen (Numbers)

Node: RDB4ME DEC Rdb 6.0-0 Performance Monitor
Summary IO Statistics

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:00:18.96

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic rate.per.second .••.......... total. ••.... auerage ..••••
name•........••. max .•••• cur •..•. aug ••...•• count •.••••. per.trans

transactions 0 0 0.0 0 0.0
uerb successes 0 0 0.0 0 0.0
uerb failures 0 0 0.0 0 0.0

synch data reads 0 0 0.0 0 0.0
synch data writes 0 0 0.0 0 0.0
a synch data reads 0 0 0.0 0 0.0
asynch data writes 0 0 0.0 0 0.0
RUJ file reads 0 0 0.0 0 0.0
RUJ file writes 0 0 0.0 0 0.0
AIJ file reads 0 0 0.0 0 0.0
AIJ file writes 0 0 0.0 0 0.0
root file reads 1 0 0.2 4 0.1
root file writes 0 0 0.0 0 0.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen Yank

The database administrator should only disable statistics for an operational
database that is running at peak performance and is not likely to require that
the database administrator has a look at it with RMU/SHOW STATISTICS.

Hint: The authors have never found one of these!

Once started, the RMU/SHOW STATISTICS utility begins with the default
display shown in Figure 11.6.

This initial screen is the Summary IO Statistics which will be discussed shortly.
The screen is displayed in Graph Display Mode which shows a histogram
display. As visually striking as this is, the less spectacular Numbers Display
Mode tends to be more useful. This is shown in Figure 11. 7.

Hint: Use the /NO HISTOGRAM qualifier on RMU/SHOW STAT to make
the intial display Numbers Display Mode .

290 Tuning and Optimization

There are a number of items displayed on the strip-menu at the bottom of the
display which are activated by typing the first letter of the item. One of the
items on the menu is Options. This enables the database administrator to dump
all the screens into a file called STATISTICS.RPT. This captures a snapshot
of all screens and is an extremely useful capability. If the database adminis­
trator observes an interesting phenomenon on one screen, the use of this item
allows the contents of all the screens to be captured at that moment in time for
later perusal.

In a similar fashion, the item Write_screen allows the database administrator
to dump the screen that is being currently displayed into a file called RMU.SCR.
This is useful in conjunction with the/OUTPUT qualifier on RMU/SHOW STAT.
The background recording of statistics into a file specified by this /OUTPUT
qualifier does not, for example, record Stall Messages. To capture an interest­
ing stall message screen, therefore, can be done by typing 'W' and this can be
later studied in conjunction with a statistics replay from the /OUTPUT file.

The Time_plot option enables a time plot of a selected item, such as root file
reads. This may be very useful to confirm suspected peaks and troughs. Pressing
R to Reset will reduce all the values in the display to zero, but not those
collected in the data file.

Note that statistics are collected since the database was last opened; therefore,
a database close will lose the statistics collected up to that point. Also note
that in a VMScluster environment, the statistics are only collected for the
machine on which the utility is running, not cluster wide.

The Set_rate item allow the statistics collection interval to be changed from
its default value of three seconds. Entering a negative number allows a value
to be specified in hundredths of a second.

By selecting the Display _menu item, a list of statistics options is displayed as
shown in Figure 11.8. The desired statistics screen may be selected by moving
the cursor to it and pressing Return or by entering its menu letter.

The Yank option will extract the Statistic and include it on the Custom Statis­
tics screen.

Throughout this chapter, statements such as if the value is high will be made.
You may be asking the question, what is high? Unfortunately, it is impossible
to specify what is a high or low value because every system is different. For
this reason, RMU/SHOW STATISTICS should be run regularly, not only
when there is a performance problem. The typical values for your system

11.3 Tuning Tools

Figure 11.8 RMU/SHOW STATISTICS - Display Options Screen

A. SUMMary IO Statistics

C. SuMMary Object Statistics
0. PIO Statistics--Writes
E. PIO Statistics--Data Fetches
F. PIO Statistics--SPAM Fetches
G. Asynchronous PIO Statistics
H. IO Stall TiMe (seconds x100)
I. Index Statistics (Retrieval)
J. Index Statistics (Insertion)
K. Index Statistics (ReMoval)
L. Hash index statistics
M. AIJ Statistics
N. AIJ InforMation

o.
P.
Q.
R.
s.
T.
u.
v.
w.
x.
Y.
z.
o.

Checkpoint Statistics
Record Statistics
Snapshot Statistics
VM Usage Statistics
CustoM Statistics
Transaction Durations
IO Statistics (by file) [->
Per-Process InforMation [->
Global Buffer InforMation[->
Locking (one lock type) [->
Locking (one stat field) [->
Objects (one stat type) [->
Objects (one stat field) [->

291

should be noted so that they can be compared with the display when the sys­
tem is exhibiting signs of poor performance. Then you will see that a value of
156890 is typical, for example, but 456832 would be higher than normal.

The various screens will now be discussed. The screens that are deemed to be
most useful will vary depending on the reasons for looking at the statistics.
However, the authors tend to look at Stall messages first quickly followed by
the summary screens such as Summary Locking and Summary IO.

Summary IO Screen

The summary IO screen, shown in Figure 11. 7, gives an overview of disk 1/0
activity occurring on the database. There are a number of interesting fields.
The transactions entry shows the total number of transactions completed since
the database was opened and the transactions per second rate. The verb suc­
cesses entry shows the total number of successful verbs executed since the
database was opened and the average number of verbs per transaction. The
verb failures entry shows the total number of verbs executed since the data­
base was opened and the average number of verbs per transaction where an
error status was returned. This may be indicative of a problem. Synch data
reads and synch data writes show the number of reads and writes issued to the
storage area and snapshot files. These are synchronous disk I/Os as opposed
to asynchronous disk I/Os issued by the asynchronous pre-fetch and asyn­
chronous batch write features. The other entries refer to read and write opera­
tions to other files, that is, the root file, RUJ file and AIJ file. Look out for
RUJ file reads which indicates a rollback operation has occurred.

292 Tuning and Optimization

Figure 11.9 RMU/SHOW STATISTICS-Stall Messages Screen

Hode: RDB41'1E
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance l>lonitor
Stall l>lessages

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-l>IAR-1994 12:04:13
Elapsed: 00:07:45.87

!>lode: Online

Process.ID Since...... Stall.reason ••••••..........•••.....•..•. Lock.ID.
00000063:1 12:02:54.38 - waiting for logical area 60 {PR) 01000707

Alarm Display_menu Exit Help >next_page <preu_page Set rate Write_screen

Stall Messages

The Stall Messages screen is one of the most useful because it advises which
processes in the system are stalled and why. In the following example, process
63 is stalled because a user has area 60 locked in a lock mode not compatible
with the lock requested by process 63 which is a protected read lock. Once the
stall is clear, the message will disappear. Figure 11.9 shows the Stall Mes­
sages screen.

Hint: Use the L key to zoom in and see who is holding the lock block­
ing a user.

Active User Stall Messages

The Active User Stall Messages screen is similar in format to the Stall Mes­
sages screen described above. However, it differs in that a slot is reserved on
the screen for every process that is accessing the database. The location of the
process is fixed and thus can be easily found and hence this display is very

11.3 Tuning Tools 293

Figure 11.10 RMU/SHOW STATISTICS - Active User Stall Messages Screen

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
Actiue User Stall Messages

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

Process.ID Since...... Stall.reason ••••••................••.••.• Lock.ID.
0000005F:1 reading pages 4:68 to 4:70

Display_menu Exit Help >next_page <preu_page Set_rate Write_screen

useful for monitoring the stalls occurring for a particular process. Even when
the stall is finished, the stall message stays until it is overwritten. A finished
stall is recognized by having no timestamp in the Since entry. Because there
may be many users accessing the database and a slot is reserved in this display
for each user (to be accurate each user attach), the display may spread over a
number of pages. Figure 11.10 shows the Active User Stall Messages screen.

Hint: In the Open VMS environment, empty lines are not a peculiarity of
the display. They represent user attaches from another VMScluster node.

Physical IO Statistics

The PIO screens, shown in Figures 11.11, 11.12, 11.13 and 11.14, are useful
for determining how the buffers are being searched and used. RMU/SHOW
STATISTICS can detect whether global buffers are enabled or not and will
display appropriate screens accordingly as shown in Figure 11.13.

294 Tuning and Optimization

Figure 11.11 RMU/SHOW STATISTICS - PIO (Writes) Screen

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

statistic •..•.••••••
narne ...•.•.•••••••••
unrnark buffer

transaction
pool ouerflow
blocking AST
lock quota
lock conflict
user unbind
batch rollback
new area rnode
larea change
incr backup
no AIJ access
truncate snaps
checkpoint
AIJ backup

SPAM page

DEC Rdb 6.0-0 Performance Monitor
PIO Statistics--Writes

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

rate.per.second•.••••• total •••.... auerage •.••••
rnax •.••• cur ..•. aug ..••••• count •••.... per.trans ••••

1 0.9 415 31.9
1 0.1 25 1.9
1 0.7 339 26.1

0.0 0 0.0
0.0 0 0.0
0.0 4 0.3
0.0 0 0.0
0.0 0 0.0
0.0 0 0.0
0.0 0 0.0
0.0 0 0.0
0.0 0 0.0
0.0 0 0.0
0.1 47 3.6
0.0 0 0.0
0.0 9 0.7

Display_rnenu Exit Graph Help Options Reset Set_rate Tirne_plot Write_screen

The PIO Statistics - Writes display shows statistics concerning writes to the
database and the writing of buffers back to disk.

The unmark buffer entry represents a modified buffer being written back to
disk. Beneath this entry are a list of entries giving a more accurate reason
behind the buffer flushes. In Figure 11.11, a total of 415 buffers have been
flushed, of which 25 flushes occurred because of a commit or rollback (trans­
action), 339 occurred because of a buffer pool overflow (pool oveiflow) and
47 due to a checkpoint (checkpoint) as fast commit processing is enabled. A
total of 9 SPAM pages have been written back to disk.

A high buffer pool oveiflow figure implies that benefits may be derived from
increasing the number of buffers in the local buffer pool. Buffer flushes caused
by pool overflow are inefficient and should be minimized if possible. A high
number of lock conflict entries might suggest that the buffers are too large,
causing contention. To verify this, check the Stall Messages screen to see
whether contention is occurring.

In the PIO - Fetches screen, the fetch for read and fetch for write entries
represent the number of synchronous data page requests when a page is re­
quested for read or write respectively. These requests can be satisfied in a
number of ways as described in the other entries.Jn LB: all OK means that the

11.3 Tuning Tools 295

Figure 11.12 RMU/SHOW STATISTICS - PIO (Fetches) Screen

Node: RDB4ME DEC Rdb 6.0-0 Performance Monitor
PIO Statistics--Data Fetches

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••••••••••• rate.per.second ••••••••••••• total. •••••• auerage ••••••
name •••••••••••••••• max ••••• cur ••••• aug ••••••• count ••••••• per.trans •.•.

fetch for read 190 190 140.2 65317 5024.4
fetch for write 1244 1244 250.3 116609 8969.9

in LB: all ok 1425 1425 394.0 183530 14117. 7
LB: need lock 2 2 0.3 151 11.6
LB: old uersion 0 0 o.o 15 1.2

not found: read 6 6 3.3 1550 119.2
: synth 0 0 0.0 0 0.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

page was found in the buffer and no other work was necessary. In LB: need
lock means that the page was found in the buffer but some page locking work
was necessary. In LB: old version means that the page was found in the buffer
but because its version number was not the current one the page had to be read
again from disk. Not found: read means that the page was not found in the
buffer and had to be read from disk. Not found: synth means that Rdb need
not read the page as it can create it in memory.

If the In LB: all OK and In LB: need lock entries arehigh compared to the Not
found: read and In LB: old version, this indicates that most entries are found
in the buffer, so the buffer pool sizing probably is correct. If the buffer pool
sizing was incorrect, there would be a high number in Notfound: read.

Therefore a well sized buffer pool will have the sum of In LB: all OK and In
LB: need lock entries nearly equal to the sum of the fetch for read and fetch
for write entries.

Hint: In theory, the sum of fetch for read and fetch for write should equal
the sum of the other entries but sometimes this is not the case when the
statistics are dumped to a file.

296 Tuning and Optimization

Figure 11.13 RMU/SHOW STATISTICS-PIO (Fetches) Screen with
Global Buffering Enabled
Node: ORION DEC Rdb 6.0-0 Performance Monitor

PIO Statistics--Data Fetches
EUROBANK:[UK.DB]BANKING.RDB;1

14-MAR-1994 21:19:10
Elapsed: 03:41:27.28

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••••••••.•• rate.per.second ••••••••••••• total. •••.•• average ••••••
name •••••••••••••••. max ••••• cur ••••• avg ••••••• count ••••••• per.trans ••••

fetch for read 81 0 2.0 26219 1542.3
fetch for write 21 0 1.3 16862 991.9

in AS: all ok 64 0 3.2 43011 2530.1
AS: lock for GB 0 0 0.0 1 0.1
AS: need lock 8 0 0.0 216 12.7
AS: old version 0 0 0.0 0 0.0

in GB: need lock 8 0 0.0 163 9.6
GB: old version 0 0 0.0 0 0.0

not found: read 0 0 0.0 348 20.5
synth 0 0 0.0 0 0.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

When global buffering is enabled for a database, the PIO screens reflect this
fact. Figure 11.13 shows a screen that is essentially the same as for the local
buffer case but with entries specific to global buffering. The entries differen­
tiate between pages found in the process's allocate set and those found in the
global buffer pool but not in the process's allocate set.

In Version 6.1, three new Global Buffer screens are available: GB Utilization,
GB Hotpage Information and GB Frequency Information provide details as to
which pages are being used.

Figure 11.14 shows PIO statistics for SPAM pages. The explanation of the
entries is similar to that for Figure 11.12. This is not a very useful display but
is included here for completeness with the other PIO screens.

The screen in Figure 11.15 provides statistics on the efficiency of the asyn­
chronous pre-fetch and asynchronous batch write features. When a non-zero
entry is seen for data read request, Rdb must be performing a sequential scan
of the storage area as currently asynchronous pre-fetch is only enabled for
sequential scans. The data read IO are the number of asynchronous read re­
quests that actually become asynchronous reads to disk because they were not
found in the buffer pool.

11.3 Tuning Tools 297

Figure 11.14 RMU/SHOW STATISTICS - PIO (SPAM) Screen

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

statistic •..........
name .•.•••....•.•...

fetch for read
fetch for write

in LB: all ok
LB: need lock
LB: old uersion

not found: read
synth

DEC Rdb 6.0-0 Performance Monitor
PIO Statistics--SPAM Fetches

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

rate.per.second•.....•. total. •••••. auerage
max .•.•. cur •••.. aug ..•..•• count ..•••.. per.trans •...

108 108 32.6 15205 1169.6
286 9 4.8 2223 171.0

286 116 37.4 17406 1338.9
1 1 0.0 15 1.2
0 u o.u u 0.0

0 0 o.u 17 1.3
0 0 0.0 0 0.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

Figure 11.15 RMU/SHOW STATISTICS - Asynchronous PIO Screen

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••...••••••
name .•••••....••••••

data read request
data read IO

spam read request
spam read IO

read stall count
read stall time

write IO
write stall count
write stall time

DEC Rdb 6.0-0 Performance Monitor
Asynchronous PIO Statistics

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

rate.per.second •••.......... total ..•.... auerage .•••••
max ..••• cur ••••. aug .•..... count per.trans •••.

7 0 7.1 3320 255.4
2 0 2.3 1092 84.0

0 0 o.u 10 0.8
0 0 0.0 10 0.8

0 0 o.u 15 1.2
0 0 0.0 23 1.8

0 0 U.4 185 14.2
u 0 0.0 3 0.2
u u 0.0 11 0.8

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

298 Tuning and Optimization

Figure 11.16 RMU/SHOW STATISTICS - Record Statistics Display

Node: RDB4HE DEC Rdb 6.0-0 Perfor111ance Monitor
Record Statistics

EUROBANK:[UK.DB]BANKING.RDB;1

12-HAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic •...••.•••• rate.per.second •..•••......• total •.....• auerage ••••••
na111e ••.....•......•. 111ax cur ..••• aug ••••••. count ••••••. per.trans ..••

record 111arked 101 101 28.9 13443 1034.1

record fetched 297 297 69.8 32509 2500.7
frag111ented 0 0 0.0 0 0.0

record stored 101 101 9.4 4372 336.3
frag111ented 0 0 0.0 0 0.0

pages checked 101 101 9.4 4373 336.4

record erased 9 0 8.7 4070 313.1
frag111ented 0 0 0.0 0 0.0

Display_111enu Exit Graph Help Options Reset Set_rate Ti111e_plot Write_screen

The read stall count is the number of occasions that the process stalled while
it waited for an asynchronous read request to complete. The idea behind the
asynchronous pre-fetch is to minimize process stalls on I/O and therefore if
this figure is high, the feature is not peforming well. Specifying that more
buffers are pre-fetched may reduce these stalls.

Similarly, the write stall count is the number of occasions that the process
stalled while it waited for an asynchronous write request to complete. Again,
the idea behind the asynchronous batch write feature is to minimize process
stalls on I/O and therefore if this figure is high, the feature is not peforming
well. Specifying a larger clean buffer count may reduce these stalls.

Record Statistics

The Record Statistics screen is useful for determining how well rows are placed
inside the database. Records fetched indicates the number of rows retrieved to
execute a query, and records fragmented indicates how many of the rows
retrieved have been fragmented. A row also can be a snapshot record. A high
value in any of the fragmented rows will significantly affect performance be­
cause additional CPU time is required to join the fragmented records and
extra I/O is necessary to collect the fragments.

11.3 Tuning Tools 299

Figure 11.17 RMU/SHOW STATISTICS-IO Stall Time Display

Hade: RDB4ME DEC Rdb 6.0-0 Perfor111ance Monitor
IO Stall Ti111e (seconds x100)

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic rate.per.second ..•••••••.... total. ••...• average ...•..
na111e •.•............. 111ax •.... cur aug count ...•••. per.trans

root read ti111e 0 0 0.1 24 1.8
root write ti111e 1 0 0.1 56 4.3

data read ti111e 12 12 2.0 943 72.5
data write ti111e 8 0 0.6 276 21.2
data extend ti111e 0 0 0.0 0 0.0

RUJ read ti111e 21 0 0.2 79 6.1
RUJ write ti111e 0 0 0.3 135 10.4
RUJ extend ti111e 1 0 0.6 290 22.3

AIJ read ti111e 0 0 0.1 57 4.4
AIJ write ti111e 1 0 0.2 114 8.8
AIJ extend ti111e 0 0 0.5 214 16.5

Display_111enu Exit Graph Help Options Reset Set_rate Ti111e_plot Write_screen

If pages checked is considerably higher than record stored, it is an indication
that the first page selected to store a record is full and another suitable place
has to be found. This can be caused by a number of factors including locked
free space which is not reflected in SPAM entries, and SPAM thresholds.

IO Stall Time

The IO Stall Time screen indicates the amount of time spent reading and
writing data to the database and journal files. Large numbers in the extend
row would indicate time that was spent stalled while waiting for the file to
extend. If users complain that the database suddenly stops for a brief period,
the reason could be files extending. This screen should be checked in such a
situation. Figure 11.17 shows an IO Stall Time screen.

Hint: The figures on this screen reflect the total time that all users
have been stalled. Therefore, accumulating the stall time for all the
users together will result in a figure that is larger than the actual stalled
elapsed time for a user.

300 Tuning and Optimization

Figure 11.18 RMU/SHOW STATISTICS -Transaction Duration Display

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
Transaction Durations

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

Transaction rate (per second): current= o
Transaction duration (seconds): average= 39.3

average = 0.0
95th pctile = ~82.8

Scaled distribution of transaction lengths (in seconds)
+----+----+-~--+----+----+----+----+----+----+----+----+----+----+----+----+---+

I
I
I
I
I
I
I
I

**I
* ***I *

*

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---+

0 ..•. 1 •.•• 2 ..•• 3 •••• 4 •••. 5 ••.• 6 .••• 7 ..•• 8 •••• 9 .••• 10 ••• 11 .•. 12 •.. 13 .•• 14 .•• 15+++
(Each "*" represents 1 transaction)

Display_nenu Exit Help Options Set_rate Write_screen

Transaction Duration

The Transaction Duration screen is used to determine how long the transac­
tions exist. In Figure 11.18, the 95th pctile value indicates the time period in
which 95% of all transactions are completed. Once this value goes out beyond
about 30 seconds, this value reverts to 99999.99. If it is suspected that an
application is holding locks across terminal I/O, this screen should be monitored.
An entry will appear in the 15 + column if a telltale delay occurs in responding
to the screen. Version 6.1 also displays this information in a numeric format,
providing comprehensive details as to how many transactions have completed
and not completed.

IO Statistics by File

IO statistics are kept in the replay file, from Version 6.1. If they are required
while monitoring, the Write_screen option should be used to write the screen
frequently to a file called RMU.SCR for review later.

Once the IO Statistics option has been selected, another menu is presented
that specifies all the physical files that make up the database:

11.3 Tuning Tools 301

Figure 11.19 RMU/SHOW STATISTICS - IO Statistics by File Display

Node: RDB4ME
Rate: 3.66 Seconds
Page: 1 of 1

DEC Rdb 6.6-6 Perforrnance Monitor
File IO Statistics

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:64:13
Elapsed: 66:67:45.87

Mode: Online

For File: All data files
statistic .••....•••• rate.per.second ••.......•••• total ••••••. auerage
narne .•••.•••.....•.• rnax ..••. cur ..••• aug •...... count .•••... per.trans .•.•
total I/Os

(Synch. reads)
(Synch. writes)
(Extends)
(Asynch. reads)
(Asynch. writes)

6 2616 155.1
6 6 1.6 486 36.9
7 6 6.5 231 17.8
6 6 6.6 6 6.6
2 6 2.4 1117 85.9
6 6 6.4 188 14.5

statistic ...•.••....
narne••....•.

blocks.transferred ...•••...
aug.per.I/O •. total •••••...

stall.tirne.(x166) .••.......•
aug.per.I/0 ..• total

total I/Os
(Synch. reads)
(Synch. writes)
(Extends)
(Asynch. reads)
(Asynch. writes)

5.7 11522
5.8 2776
4.9 1134
6.6 6
5.9 6572
5.5 1646

Display_rnenu Exit Help Options Reset Set_rate Write_screen

•The AU file

• ·All data files

• The root file

• The RUJ file

• Individual data files

• Individual snapshot files

6.6 1253
2.6 943
1.2 276
6.6 6
6.6 23
6.1 11

Watch the maximum I/O rate per second on a file. If it exceeds the value for
the disk then it will be causing a performance problem. Remember the stall
time will always contain a value because it records the time taken to execute
an I/O action. The blocks transferred can help determine whether the buffer
lengths are appropriately set. Figure 11.19 shows a File IO Statistics screen.

302 Tuning and Optimization

Figure 11.20 RMU/SHOW STATISTICS - Index Statistics (Retrieval) Display

Node: RDB4ME DEC Rdb 6.0-0 Performance Monitor
Index Statistics (Retrieual)

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••••.••.... rate.per.second •••.•..•.•••• total ••.•••• auerage ••••••
name •••••••••.••.... max ••••• cur ••••• aug •..•••• count ••..••• per.trans •..•

transactions 0 0 O.lt 13 1. It
uerb successes 101 101 7.4 3451 265.5
uerb failures 0 0 0.0 3 0.2

node fetches 6 4 5.4 2498 192.2
leaf fetches 3 2 2.8 1291 99.3
dup. fetches 0 0 0.1 47 3.6

index lookups 2 2 0.2 92 7.1
index scans 3 1 2.5 1152 88.6

primary entries 3 2 2.5 1174 90.3
dup. entries 1 0 0.7 327 25.2

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

Index Statistics

Four screens are available for gathering data on index usage. Three of the
screens are for sorted index nodes and collect data for retrieval, insertion, and
removal options. The other screen collects data on hashed index usage. Figure
11.20 is a sample Index Statistics screen.

In this example, the node fetches entry indicates how many nodes have been
read in order to execute the query. The duplicate fetches entry shows how
many duplicate nodes have been read and the leaf fetches entry shows how
many Level 1 (the level of nodes that point to the data or duplicate nodes)
nodes have been read. This screen provides a quick way of determining whether
duplicate nodes are being used in queries. Using duplicate nodes could cause
a performance problem because of the time required to search them all.

The index lookup entry shows the number of times a direct single-key lookup
is performed as opposed to the index scans entry that indicates range retrievals
being performed. Figure 11.21 is a sample Hashed Index Statistics screen.

11.3 Tuning Tools 303

Figure 11.21 RMU/SHOW STATISTICS - Hashed Index Statistics Display

Node: RDB4ME DEC Rdb 6.0-0 Performance Monitor
Hash index statistics

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic .••••...... rate.per.second •......•••••• total ••••••• average ••••..
name .•........••••.• max ••••• cur •...• aug count per.trans ..••

hash insertions 3 3 0.0 21 1.8
duplicates 0 0 0.0 0 0.0

hash deletions 0 0 0.0 0 0.0
duplicates 0 0 0.0 0 0.0

hash scans 0 0 0.0 0 0.0

hash index fetches 0 0 0.0 0 0.0
bucket fragments 0 0 0.0 0 0.0
duplicate nodes 0 0 0.0 0 0.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

In this example hash insertions indicates the number of hash key insertions
made into the hash buckets and hash deletions the number of hash key
deletions made from the hash buckets. The hash index fetches entry indicates
the number of hash buckets fetched.

Hint: If you are using hashed indexes in your Rdb database but see no
activity on this screen, it is a good indication that the programs are not
using the hashed indexes for some reason.

AIJ Statistics

Most of what is seen on the AIJ screen, shown in Figure 11.22, is more infor­
mational than useful. The most useful entries are AIJ file writes, which advizes
how frequently writes are occurring to a particular file.

304 Tuning and Optimization

Figure 11.22 RMU/SHOW STATISTICS - AIJ Statistics Display

Node: RDB4ME DEC Rdb 6.0-0 Performance Monitor
RI J Statistics

EUROBRHK:[UK.DB]BRHKIHC.RDB;1

12-MRR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••••......• rate.per.second ••••••...•... total. ..•..• auerage•.
name ••...•.•••••.•.. max ••••• cur ••••• aug ••••••• count ••••..• per.trans ••••

RIJ file writes 0 0 0.0 22 1.7
data 0 0 0.0 22 1.7
control 0 0 0.0 0 0.0
file extend 0 0 0.0 2 0.2
switch ouer 0 0 0.0 0 0.0

records written 17 0 16.0 7445 572.7
blocks written 2 0 1.9 863 66.4

filler bytes 3 0 2.5 1148 88.3
group commits 0 0 0.0 22 1.7
cache overflows 0 0 0.0 12 0.9
quick flushes 0 0 o.o 0 0.0
ARB pool searches 1 0 0.5 232 17 .8

pool empty 0 0 0.0 0 0.0
lock rebuilds 0 0 0.0 1 0.1

RIJ File reads 0 0 0.0 13 1.0

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write screen

The other useful entry is file extend, which advises that the AIJ file has
extended. When this happens, all processing on the database is suspended
while the file is extended, which, obviously, could have serious impact upon
performance. If users complain that the system suddenly stops for a few
moments, this screen should be checked for file extends. This situation should
be avoided by pre-extending the after-image journal file.

Alternatively, the circular AIJ feature can be used and this approach is recom­
mended by the authors. This feature is described in Chapter 9 as is the RMU/
SHOW STATISTICS AIJ Information screen.

Snapshot Statistics

The Snapshot screen indicates the amount of activity on all the snapshot files,
providing mainly informational data. To see activity on a specific snapshot
file, the IO Statistics by File screen is required. A Snapshot screen is shown in
Figure 11.23.

11.3 Tuning Tools 305

Figure 11.23 RMU/SHOW STATISTICS - Snapshot Statistics Display

Node: RDB4ME DEC Rdb 6.0-0 Perfornance Monitor
Snapshot Statistics

EUROBRHK:[UK.DB]BRHKIHG.RDB;1

12-MRR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online
Rate: 3.00 Seconds
Page: 1 of 1

statistic ••••.....•• rate.per.second ••••••••••••• total ••••••• auerage ••••••
nane •••••••••••••••• nax ••••• cur ••••• aug ••••••• count ••••••• per.trans ••..

retrieued record 1 0 0.9 441 33.9
fetched line 1 0 0.9 441 33.9

read snap page 0 0 0.0 4 0.3

stored snap record 102 102 13.9 6456 496.6
page in use 2 2 0.3 123 9.5
page too full 0 0 0.1 32 2.5
page conflict 0 0 0.0 0 0.0
extended file 0 0 0.0 0 0.0

Display_nenu Exit Graph Help Options Reset Set_rate Tine_plot Write_screen

Summary Locking

Chapter 7 described several of the situations that can result in lock conflicts in
the system. When conflicts occur, three screens may be used to determine the
type of locks being held:

• Summary locking statistics

• Locking (one lock type)

• Locking (one stat field)

The Summary Locking screen, seen in Figure 11.24, provides an overview of
the locks held by Rdb. One of the most useful entries is rqsts stalled, which is
a measure of the number of locks that could not be granted immediately. How­
ever, don't be fooled by the stall time * 100 entry. This value is the total time
that all users have been stalled. Therefore, if one user stalls 100 other users
for one second, the stall time would show a value of 100 seconds. This, of
course, does not reflect the actual elapsed time lost.

306 Tuning and Optimization

Figure 11.24 RMU/SHOW STATISTICS - Summary Locking Statistics Display

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

statistic •••••••••••
name ••••••••••••••••

locks requested
rqsts not queued
rqsts stalled
rqst timeouts
rqst deadlocks

locks promoted
proms not queued
proms stalled
prom timeouts
prom deadlocks

locks demoted
locks released
blocking ASTs
stall time x1 00

DEC Rdb 6.0-0 Performance Monitor
Summary Locking Statistics

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

rate.per.second ••••••••••••• total ••••••• auerage ••••••
max ••••• cur ••••• aug ••••••• count ••••••• per.trans ••••

29
0
0
0
0
5
0
0
0
0

46
22

0
15

11
0
0
0
0
5
0
0
0
0
3

22
0
0

5.8
0.1
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
1.5
5.2
0.1

14.0

2709
36

6
0
0

458
7

16
0
1

701
2404

28
6538

208.4
2.8
0.5
0.0
0.0

35.2
0.5
1.2
0.0
0.1

53.9
184.9

2.2
502.9

Display_menu Exit Graph Help Options Reset Set_rate Time_plot Write_screen

Six lock requests have been sta1led in Figure 11.24. To find out what types of
locks they are, the Locking (one stat field) screen must be selected. The rqst
stalled option must be selected from the menu list, as shown in Figure 11.25.

This screen shows that the six stalled locks occurred for page, record, and
freeze locks.

Hint: A transaction-processing-style system will frequently have a high
number of stalls on the RWROOT and TSNBLK locks, which is quite
normal. These locks usually only stall for a very short period of time. If
many of these lock requests have been stalled, the IO by File screen for
the root tile should be selected to determine whether the 1/0 requests to
that disk are too high.

The locks that are of primary interest to us are the area, page, and record
locks, which reflect locks held on the data retrieved and amended in the
database. All the other locks specified on this screen are special locks, internal
to Rdb.

11. 3 Tuning Tools 307

Figure 11.25 RMU/SHOW STATISTICS - Locking (One Stat Field)
Statistics Display

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
Locking { rqsts stalled}

EUROBRNK:[UK.DB]BRHKING.RDB;1

12-MRR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

statistic•••• rate.per.second •.•••••.••... total •••.... average ••••••
name .••.•..•.•...... max •.... cur ..••. aug count ...•.•• per. trans

area locks
page locks
record locks
RWROOT lock
FILID locks
TSNBLK locks
RTUPB lock
RCTIUE lock
MEMBIT lock
RIJ locks

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0 0.0
1 0.1
3 0.2
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0

snapshot locks
freeze lock

0.
0.

0 0.0
2 0.2

quiet point lock
logical area locks
GBPT slot locks 0

0. 0
0. 0
0. 0

Display_menu Exit Help Options Reset Set_rate Time_plot Write_screen

0.0
0.0
0.0

The Locking (one lock type) screen is selected to see the detail for a specific
lock type. All the locks shown on the previous screen may be selected. In
Figure 11.26 we can see that 3 77 record locks have been requested, another
19 record locks have been promoted, and 360 locks have been subsequently
released. Check the stalled row on this screen. A high value could indicate
lock conflicts occurring, and an entry in the deadlock row will indicate a fatal
conflict.

Per-Process Information

Various statistics screens are grouped under the category of Per-Process
Information.

• Stall Messages

• Active User Stall Messages

• Process Accounting

• Checkpoint Information

308 Tuning and Optimization

Figure 11.26 RMU/SHOW STATISTICS - Locking (One Lock Type)
Statistics Display

Mode: RDBllME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Perfornance Monitor
Locking (record locks)

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-19911 12:04:13
Elapsed: 00:07:45.87

Mode: Online

statistic ••••••••..• rate.per.second .•••.•.•••••• total ..••••. average •.•.•.
nane ...••••••....... nax .•... cur ..•.. avg •....•. count ..•.... per.trans

locks requested 5 5 0.8 377 29.0
rqsts not queued 0 0 0.0 13 1.0
rqsts stalled 0 0 0.0 3 0.2
rqst tineouts 0 0 0.0 0 0.0
rqst deadlocks 0 0 0.0 0 0.0

locks pronoted 0 0 0.0 19 1.5
prons not queued 0 0 0.0 6 0.5
prons stalled 0 0 0.0 5 0.4
pron tineouts 0 0 0.0 0 0.0
pron deadlocks 0 0 0.0 1 0.1

locks denoted 0 0 0.0 10 0.8
locks released 5 5 0.8 360 27.7
blocking ASTs 0 0 0.0 7 0.5
stall tine x100 15 0 14.0 6517 501.3

Display_nenu Exit Help Options Reset Set_rate Write_screen

• CPU Utilization

• DBRActivity

• Defined Logicals

• Lock Timeout History

• Lock Deadlock History

We have already met two of these - Stall Messages and Active User Stall
Messages. Figure 11.27 shows a Process Accounting screen.

In the Open VMS environment, as shown in Figure 11.27, this display shows
Open VMS process accounting information. The display can be viewed in brief
or full modes by typing in B or F respectively. In brief mode the following
information is displayed:

•Process ID

• Process name

•CPU time

11. 3 Tuning Tools 309

Figure 11.27 RMU/SHOW STATISTICS - Process Accounting Display

Node: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
Process Accounting

EUROBANK:[UK.DB]BANKING.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

Process.ID Process.name ... CPUtime EnqCnt. PGflts. NumDio. WSsize. UMsize.
0000005F:1 _FTA4: 00:01:38.45 2807 18156 2825 3981 16305

Display_menu Exit Full Help >next_page <preu_page Set_rate Write_screen

• Lock quota remaining

• Page fault count

• Direct 1/0 operations

• Working set size

• Virtual memory size

Figure 11.27 shows the brief mode. In full mode, another line of information
is displayed. This contains:

• Username

• Imagename

• Process state

• Page file quota count

• Direct 1/0 quota count

• Buffered 1/0 operations

• Buffered 1/0 quota count

310 Tuning and Optimization

Figure 11.28 RMU/SHOW STATISTICS - DBR Activity Display

Hooe: RDB4ME
Rate: 3.00 Seconds
Page: 1 of 1

DEC Rdb 6.0-0 Performance Monitor
DBR Actiuity

EUROBAHK:[UK.DB]BAHKIHG.RDB;1

12-MAR-1994 12:04:13
Elapsed: 00:07:45.87

Mode: Online

Process.ID Actiuity .•• UBH •... Operation•••••.......•••.•..... Lock.ID.
00000067:1 TX undo 2 writing pages back to database

Display_rnenu Exit Help >next_page <preu_page Set_rate Write_screen

The next statistics screen in the category of Per-Process Information is the
DBR Activity screen which shows information for database recovery proc­
esses (Figure 11.28).

The next statistics screen in the category of Per-Process Information is the
Defined Logicals screen which shows information on logical names or envi­
ronment variables accessible to the process running RMU/SHOW STATISTICS.

This display also has a full and brief mode. Figure 11.29 shows the brief mode
which is logicals actually defined and accessible to the RMU/SHOW STAT
process. The full mode lists all the logicals known to Rdb whether they are
defined or not. This is a useful means of checking spelling as logicals can start
with RDM$, RDMS$ and SQL$ and it is easy to choose the wrong suffix.

The last two statistics screens in the category of Per-Process Information are
similar. They are the Lock Timeout History screen which shows information
on the database objects that caused lock timeouts to occur and the Lock Dead­
lock History screen which shows information on the database objects that
caused deadlocks to occur. Figure 11.30 shows a lock deadlock history dis­
play. These history displays can be useful in spotting lock conflict problems.

11.3 Tuning Tools 311

Figure 11.29 RMU/SHOW STATISTICS - Defined Logicals Display

Mode: RDB4ME
Rate: 3.1111 Seconds
Page: 1 of 4

DEC Rdb 6.11-11 Performance Monitor
Defined Logicals

EUROBAMK:[UK.DB]BAMKIMG.RDB;1

12-MAR-1994 12:114:13
Elapsed: 1111:117:45.87

Mode: Online

Logical.Mane•...•.•••. Table.Mane ..••..... Logical.Definition•.•.
RDM$BIMD BUFFERS LMM$PROCESS TABLE 2011
RDM$BIMD=LOCK_TIMEOUT_IMTERUA LMM$PROCESS=TABLE 311

Display_ruenu Exit Full Help >next_page <preu_page Set_rate Write_screen

Figure 11.30 RMU/SHOW STATISTICS - Deadlock History Display

Mode: RDB4ME
Page: 3.1111 Seconds
Page: 1 of 3

DEC Rdb 6.11-0 Performance Monitor
Lock Deadlock History

EUROBAMK:[UK.DB]BAMKIMG.RDB;1

12-MAR-1994 12:114:13
Elapsed: 1111:117:45.87

Mode: Online

Process.ID Occurred •..
111111111111611:4

Lock.deadlock.reason #Deadlock

11111111111165:1 15:115:111.12 - waiting for record 611:8:5 (EX)

Display_ruenu Exit Help >next_page <preu_page Set_rate Write_screen

II
1

Hint: Version 6.1 introduced a Custom Statistics screen which allows the
user to select specific items from all the screens and display them here.
Make use of this facility, as it stops you having to move between screens.

11.3.4

312 Tuning and Optimization

Figure 11.31 Initial RMU SHOW STATISTICS GUI Screen

The RMU SHOW STATISTICS GUI

From V6.1 RMU has a GUI interface for managing Rdb databases. We have
already seen the management part of the GUI in the previous chapter, but the
SHOW STATISTICS GUI is the one most likely to be used.

When RMU/SHOW STATISTICS is invoked, Figure 11.30 is the first screen
displayed. Don't hide this screen away because from here you invoke the screens
to be displayed, change the display rate and capture all the screens.

The options available from the GUI version of SHOW STATISTICS are al­
most identical to the character cell version. The main advantage of using this
version is the ability to display multiple screens for one database and the
ability to select the columns to be displayed.

It's worth spending a few moments customizing the displays by removing
columns not required such as the average value or the histogram. Once cus­
tomized, the screens are smaller, allowing more of them to be displayed.

One of the problems with the GUI is that it's possible to display so many
screens that the information can be lost!

Unique to the GUI version is a rolling histogram display, shown in Figure 11.32,
which is useful to monitor resources used. The figure used to determine the
rolling rate can be customized through the initial screen shown in Figure 11.31.

11.3 Tuning Tools 313

Figure 11.32 Sample RMU SHOW STATISTICS GUI Screen

Single screens can be captured by pressing the snapshot button on any screen,
which creates an rmu.scr file in the current directory.

The File IO Summary screen can be extensively customized in the GUI ver­
sion. More than a dozen statistics can be displayed, as opposed to the four
given in the character cell version.

From Figure 11.32 we can see that the contents of the GUI screens are virtu­
ally identical to its character cell counterpart. Therefore, once you have in­
voked the GUI and customized a few screens, you will then feel at home.

11.3.5

314 Tuning and Optimization

RMU/ANALYZE

The output from RMU/ANALYZE is used to see how efficiently the index
structures and data have been placed inside the database. Three options are
available:

eNORMAL

eFULL

•DEBUG

The recommended approach is to use the FULL option, although NORMAL
also is acceptable. DEBUG will produce a file that fills a disk and uses reams
of paper. However, DEBUG is useful for looking at a small range of pages to
check how many records of a given type are being stored on a page.

This is useful when checking your sizing calculations, especially for hash
indexes and row clustering. Note that RMU/ANALYZE will also produce a
binary output file whose format is documented in the Rdb Guide to Peifor­
mance and Tuning. Programs may be written or various tools can be used to
read and process this data in a company specific way.

$RMU/ANALYZE/OPTION-FULL/OUTPUT-analysis.txt
eurobank:[uk.db]banking

Data Placement

Some care is required to analyze the RMU/ANALYZE output because so
much information is provided. Nevertheless, useful information is provided
that may point out to a performance problem.

The following example shows that for the BRANCH table, there are 999 data
records, each with an average length of 13 bytes. The records have been placed
in less than 1 % of the space allocated to this table. Since the table is com­
pressed, the second histogram tells us that all rows are using 0 to 10% of the
full row space.

Logical area: BRANCH for storage area : BRANCH_AREA
Larea id: 60, Record type: 25, Record length: 172, Compressed

Data records: 999, bytes used: 12978 (1%)

average length: 13, compression ratio: .08

11.3 Tuning Tools

>90%
80-90%
70-80%
60-70%
50-60%
40-50%
30-40%
20-30%
10-20%

used/used+free vs # pages

I (O l
I (Ol
i== (32)
I (0 l
I (o l
I (0)
I (Ol
I (o l
I (o l

315

0-10% !======================================~ (622)

% of max length vs # records

>90% I (0)
80-90% I (0)
70-80% I (0)
60-70% I (0)
50-60% I (0)
40-50% I (0)
30-40% I (0)
20-30% I (0)
10-20% I (0)

0-10% !==================~======~============ (999)

Information also is provided on each storage area. In the following example,
42 data records are in the CUSTOMER_AREA, 21 of which are hash index
records.

Storage analysis for storage area: CUSTOMER_AREA - file:
EUROBANK:[UK.DB]CUST Area_id: 2,Page length: 1024,Last page: 504

Bytes free: 484164 (94%), bytes overhead: 30845 (6%)

Spam count: 3, AIP count: 0, ABM count: 0

Data records: 42, bytes used: 1087 (0%)

average length: 26, compression ratio: .22

index records: 21, bytes used: 735 (0%)

B-Tree: 0, Hash: 735, Duplicate: 0, Overflow: 0

316 Tuning and Optimization

Index Path Lengths

11.3.6

RMU/ANALYZE/PLACEMENT can be used to report the path lengths for
any type of index. This display is useful because it lets the database adminis­
trator determine the number of I/Os required to retrieve a row via an index. A
sample output follows.

Indexes for database - EUROBANK:[UK.DB]BANKING.RDB

Hashed Index CUST_NO_HASH for relation CUSTOMER duplicates not allowed

Levels: 1, Nodes: 21, Keys: 21, Records: 21
Maximum path length - DB keys: 3, IO range: 1 to 1

Average path length - DBkeys: 3.00, IO range: 1.00 to 1.00

Index BRANCH_CODE_SORTED for relation BRANCH duplicates allowed

Levels: 2, Nodes: 37, Keys: 1035, Records: 999

Dup nodes: 0, Dup keys: 0, Dup records: 0
Maxi mum path length - DB keys: 3, IO range: 3 to 3

Average path length - DBkeys: 3.00, IO range: 3.00 to 3.00

In this example, we can see that the hashed index CUST _NO _HASH is made
up of 21 hash buckets for 21 storage segments, requiring, on the average, 3
dbkey accesses to retrieve a row using 1 physical 1/0. For BRANCH_
CODE_SORTED, there are 999 storage segments, all of which need 37 index
nodes on two levels. Therefore, three dbkeys have to be fetched to retrieve a
row using three physical I/Os.

RMU/DUMP

The RMU/DUMP command is an often under-used tool that dumps the inter­
nal database format into a user-readable display. When tuning databases, it is
useful to dump a random selection of pages to see which tables are being
stored on a database page and how much space is being used.

11.3.7

11.4 The Need to Tune 317

DECtrace and RdbExpert

Two Digital products can be optionally purchased to assist in physical data­
base tuning:

• DECtrace- an event-based performance monitoring and collecting tool

• RdbExpert - an expert system-based physical database design tool

DECtrace automatically collects workload information on the current system.
While the system is running, DECtrace collects data into one of its own spe­
cial files. These files are formatted into a special DECtrace database, which
may be queried for event-related data. This formatted database is fed into
RdbExpert, which generates a revised database design. Refer to Chapter 16
for a more detailed explanation on how to use these tools to tune the database
and third-party tools such as ISG's DBTune.

11.4 THE NEED TO TUNE

Database tuning is somewhat of a black art. Many databases perform well
without any tuning, while some may require a little help along the way to
enable them to perform better. There always will be high-performing databases
that regularly need tuning by people or by database tools. If the database
structure must be changed and it cannot be be amended online as discussed in
Chapter 10, the database must be restructured using the SQL IMPORT and
EXPORT, ALTER, or RMU/UNLOAD and /LOAD commands. It is impor­
tant to note that performance problems become worse if left alone. The multifile
capability and choice of index types in Rdb are just two facilities that allow
the database designer to create extremely high-performance databases. Since
database tables and indexes can be spread over any available disk drives and
Rdb fully supports Digital VMScluster and symmetric multiprocessing
architectures, a CPU or disk 1/0 bottleneck can almost always be overcome.

12 Distributing Rdb Databases

The distributed capabilities in Rdb have greatly increased during the product's
lifetime. It is now possible to create and access physically separate Rdb
databases or database management systems, distributed around a network to
support a company's business. This chapter discusses remote database access,
remote data extraction and replication, and DEC Database Integrator for ac­
cessing distributed databases as well as distributed transaction management.

A great deal of discussion today centers on distributed database technology.
This is still an emerging technology that has made some advances in recent
years. Creating a truly distributed heterogeneous database system has not
proved as easy as first imagined. A lack of agreed standards has resulted in
vendor specific implementations to solve many of the distributed database
issues. Despite the work of the SQL Access Group we are still some years
away from database vendors creating an environment where integrating and
maintaining integrity is easy.

In a distributed database environment, one has the ability to partition fragments
of tables over a network, yet keeping the end-user unaware that a table is
composed of several physically separate parts. We are beginning to see these
features come alive along with distributed query optimizers which ensure that
a query is not just optimized for access to a local database, but also for access
to distributed tables. However, when one compares the features expected in a
fully distributed database system and those available in Rdb, for most compa­
nies, the capabilities of today's Rdb products are more than sufficient for their
distributed processing needs.

12.1 REMOTE DATABASE ACCESS

Every Rdb version since 1.0 has provided remote database access. This al­
lows a program or 4GL or tool on a PC to access a Rdb database on another

12.1 Remote Database Access 319

machine in the network as if it were accessing a local database. The only
difference is that the database filename, as specified in the ATTACH state­
ment, includes a node name. A program or 4GL on the node TAURUS can
access to a database on the node ORION by specifying a database name, such
as:

SOL> ATTACH 'FILENAME orion::eurobank:[uk.db]banking';

Alternatively an Open VMS user could define a logical name. For example:

$DEFINE BANKING orion: :eurobank: [uk.db]banki ng

SOL> ATTACH ' FILENAME banking';

The advantage of this method is that a program or 4GL can refer to the data­
base as BANKING. The physical location of the database on the network
could be changed, in which case the logical name could easily be modified.
The program or 4GL would not need changing. So, in the previous example,
we could decide to move the database to the node AQUILA. The logical name
definition and database declaration now would be:

$ DEFINE BANKING aquila::eurobank:[uk.db]banking

SOL> ATTACH ' FILENAME banking';

Only the definition of the logical name is changed; the attach declaration re­
mains unchanged.

When an attempt is made to attach to a remote database, a process is created
on the remote node. This database server process then attaches locally to the
database. In Figure 12.1 for example, if a TAURUS program tried to attach to
a database on ORION, a database server process would be created on ORION
that would attach to the ORION database. Requests for data and the data
itself would pass across the network between the database server process on
ORION and the user process on TAURUS. The security Access Control List
on the ORION database would see the database server process try to attach to
the database. If this process had a valid UIC, it would be allowed to attach; if
not, access would be denied. In other words, the database server process is
treated like any other process that attempts to attach to a database.

320 Distributing Rdb Databases

Figure 12.1 Accessing a Remote Rdb Database

_11 .
----TAURUS

-....- -...-

LAN or
WAN

ORION

The database server process must execute under a username just as any other
process. So, to gain remote access, the user must have the privilege to create
a remote process under the remote account. Various methods can specify which
usernames are acceptable for the database server process. One method is to
specify a username and password on the ATTACH statement. This may com­
promise the security of the system, however, and is not recommended. For
Open VMS users the use of proxy accounts is recommended. More detail con­
cerning proxy accounts may be found in the Open VMS Authorize Utility
Manual.

With authorization identifiers, there is no reason why a program or 4GL should
not be attached to more than one remote database. Special considerations
apply where more than one remote database is to be updated. This process is
discussed further in the distributed transaction management section later in
this chapter.

12.2 DEC DATA DISTRIBUTOR

DEC Data Distributor is a product designed to distribute subsets of the data in
tables in an Rdb database to one or more satellite Rdb databases, usually
residing on other nodes in the network. In Figure 12.2, subsets of a source
database on the node TAURUS can be sent to target databases on the nodes
ORION and AQUILA. DEC Data Distributor also can distribute subsets of
the databases on ORION and AQUILA to one database on TAURUS.

12.2 DEC Data Distributor

Figure 12.2 Extraction and Replication Transfers

TAURUS

11111 -­ORION

AQUILA

321

Why would a company want to distribute subsets of Rdb databases over the
network? Performance, availability and cost are the main reasons. If subsets
of the database on TAURUS are distributed to ORION and AQUILA, users
can be moved to these nodes, offloading processing to ORION and AQUILA
and freeing up system resources on TAURUS. If TAURUS holds production
databases that support critical transaction-processing systems such as order
entry, being able to move ad-hoc users onto another node and their unpredict­
able workload to another database is very useful.

If departments on the network need information from the TAURUS database
but they are geographically distant or located with ORION, normally they
would have to perform network accesses to get the data they require. If the
data is distributed to ORION, they can perform local access to a local data­
base and see improved response time. They also can now continue to work if
the network fails. The network only needs to be available for these users when
DEC Data Distributor transfers the data from the source database on TAURUS
to the target database on ORION. The company may save money by bringing
up the network only for the duration of the transfer. In DEC Data Distributor,

12.2.1

12.2.2

12.2.3

322 Distributing Rdb Databases

command procedures may be executed before and after a transfer. These
command procedures could dial up a network or send electronic MAIL to a
network manager informing that a transfer has completed.

DEC Data Distributor can distribute data using one of three methods:

• Extraction

• Extraction rollup

• Replication

Whether a company uses extraction or replication methods to distribute data
depends on the application requirements.

Extraction

Every time DEC Data Distributor executes an extraction transfer, anew version
of the source database is created. In Figure 12.2, a new database is created on
ORION every time an extraction transfer sends data from TAURUS to ORION.
Once the transfer completes, users on ORION may manipulate the data in the
target database in any way they like. They may retrieve, update, insert, or
delete the data because no changes are ever transferred back to the source
database. Users on ORION could, for example, create indexes on the target
database that were not present on the source database. They also could modify
the data in the target database to do what-if-style calculations.

Extraction Rollup

Extraction roll up is similar to extraction, but it can extract data from multiple­
source databases into a new target database.

Figure 12.3 shows DEC Data Distributor performing an extraction rollup
from multiple-source databases on ORION and AQUILA and creating a new
target database on TAURUS.

Replication

This is probably the most popular method for distributing data. A new target
database is only created the first time that a particular replication transfer

12.2.4

12.2 DEC Data Distributor

Figure 12.3 Extraction Rollup Transfers

TAURUS -­ORION

- II
AQ~·~

323

executes. Subsequent transfers contain only the changes that have been made
in the source database. Users are only permitted to query the replicated tables
in the target database; they are not allowed to update them, but they may
update other tables in the database. The reason for this restriction is because
of the relationship between the source and the target databases. Should a failure
occur during a transfer, DEC Data Distributor will ensure that consistency
between the source and target database is maintained.

Defining Transfers

The CREATE TRANSFER statement creates a transfer definition and stores
it in the transfer database. A transfer definition defines the subset of data to be
transferred, the type of transfer and where the target database resides. The
following example shows a transfer being defined, assuming that the ATTACH
statement has already been issued:

324 Distributing Rdb Databases

SOL> CREATE TRANSFER marketing_dept TYPE IS EXTRACTION
cont> MOVE TABLES
cont> SELECT customer_no,
cont> surname,
cont> first_name,
cont> address_l inel.
cont> address_line2,
cont> address_line3,
cont> address_line4,
cont> postcode
cont> FROM customer WHERE credit_l imit > 10000

cont> TO orion::mkt$db:good_customers_db
cont> LOG FILE IS extract.log
cont> COMMENT IS 'Extraction of customers with large credit limits':

In the previous example, an extraction transfer named MARKETING_DEPT
was defined, specifying that the rows from the CUSTOMER table with the
CREDIT_LIMIT column containing a value greater than $10,000 are to be
transferred to the node ORION. A new version of the database, with a full file
specification of MKT$DB:GOOD_CUSTOMERS_DB, will be created each
time the transfer executes. Only the columns specified will be transferred. When
the transfer executes, a log file named EXTRACT.LOG will be created with
details about the success or failure of the transfer. It will be created, by de­
fault, in the login directory of the definer of the transfer. To check the details
of a transfer, the SHOW TRANSFER statement can be issued:

SOL> SHOW TRANSFER marketing_dept;

Definition for transfer MARKETING_DEPT:
Definer THE_DBA
Type
Comment
From
To
Log file

EXTRACTION
Extraction of customers with large credit limits
EUROBANK:[UK.DB]BANKING.RDB
ORION::MKT$DB:GOOD_CUSTOMERS DB
EUROBANK:[THE_DBA]EXTRACT.LOG

No prologue file
No epilogue file

12.2.5

12.2 DEC Data Distributor

Move table
Select All

CUSTOMER_NO,
SURNAME,
FIRST_NAME,
ADDRESS_LINEl,
ADDRESS_LI NE2,
ADDRESS_LI N E3,
ADDRESS_LINE4,
POSTCODE

From CUSTOMER
Where

credit_limit > 10000

Schedule for transfer MARKETING_DEPT:
No schedule found

Status for transfer MARKETING_DEPT:
State UNSCHEDULED since 16-MAY-1994 16:07:48.88

325

Last completion status Transfer has never executed successfully

Note that a schedule has not yet been defined; thus the status must be that a
transfer has never successfully executed.

Defining Schedules

The CREATE SCHEDULE statement specifies when and how often a transfer
should execute. A schedule definition is stored in the transfer database. The
following example defines a schedule for the transfer MARKETING_DEPT.
The schedule specifies that the initial transfer is to execute on June 10, 1994
at 4 p.m. and, after that, every Monday at 4 p.m., every Wednesday at 2 p.m.,
and every Friday at 2 p.m. No attempt will be made to retry a failed transfer
because the RETRY clause has not been specified.

SOL> CREATE SCHEDULE FOR marketing_dept
cont> START 10-JUN-1994 16:00
cont> EVERY MONDAY,
cont> WEDNESDAY AT 14:00, FRIDAY;

326 Distributing Rdb Databases

A SHOW TRANSFER statement can be issued to check the schedule. For
example:

SOL> SHOW TRANSFER marketing_dept;

Definition for transfer MARKETING_DEPT:
Definer THE_DBA
Type EXTRACTION
Comment
From

Extraction of customers with large credit limits
EUROBANK:[UK.DB]BANKING.RDB
ORION::MKT$DB:GOOD_CUSTOMERS_DB
EUROBANK:[THE_DBA]EXTRACT.LOG

To
Log file
No prologue file
No epi 1 ague fi 1 e
Move table

Select A 11
CUSTOMER_NO.
SURNAME,
FIRST_NAME,
ADDRESS_LINEl.
ADDRESS_LI NE2.
ADDRESS_LI N E3.
ADDRESS_LI N E4,
POSTCODE

From CUSTOMER
Where

credit_limit > 10000

Schedule for transfer MARKETING_DEPT:
Start
Frequency

10-JUN-1994 16:00:00.00
Every Monday at 16:00:00.00
Every Wednesday at 14:00:00.00
Every Friday at 14:00:00.00

Number of retries 0 times

Status for transfer MARKETING_DEPT:
State SCHEDULED since 16-MAY-1990 16:11:38.47
Next transfer 10-JUN-1994 16:00:00.00
Last completion status Transfer has never executed successfully

12.3 DEC Database Integrator 327

If desired, a transfer can be executed on demand with the START TRANSFER
statement. If a transfer already has a schedule defined, subsequent transfers
execute according to the schedule. The following example starts the
MARKETING_DEPT transfer executing:

SOL> START TRANSFER marketing_dept NOW;

Transfers may be suspended with a STOP TRANSFER statement, in which
case they will not execute again until a START TRANSFER statement is
issued. While a transfer is in a suspended state, a schedule definition or
transfer definition can be deleted with the DROP SCHEDULE or DROP
TRANSFER statements.

12.3 DEC DATABASE INTEGRATOR

In 1994 Digital released a product called DEC Database Integrator which is
commonly known as DBI. It provides distributed database functionality, al­
lowing users to integrate data in a wide variety of database systems, not just
Rdb, such that they seamlessly appear as one database. DBI does not have its
own user interface; instead it uses SQL, or it can be used from a wide variety
of tools such as PC products like Microsoft Access or Forest & Trees or from
within a program or 4GL tool. The key to using this product lies in the initial
setup of the metadata information; once completed the remote databases ap­
pear as if they are local databases, thus providing the user with location
transparency.

To use DBI to access multiple Rdb databases or data in other database sys­
tems such as Oracle one must first create a database in which the metadata
that describes the databases to be accessed is stored. All applications that use
DBI then refer to this database rather than the actual remote databases.

In all the examples so far the BANKING database has been a single Rdb
multifile database located on a single node. Let us now assume that the BANK­
ING database is split into two databases, as shown in Figure 12.4,
EUROBANK_ACCT and EUROBANK_CUST, where each database con­
tains two of the four tables in the BANKING database.

To use DBI to access these two databases the first step is to create an ordinary
Rdb database, although it could be an Oracle or Sybase database, using the
SQL CREATE DATABASE statement. Next the DBI logical database is

328 Distributing Rdb Databases

Figure 12.4 Using DBI against Remote Databases

User

~

Account
Account_ Transaction

Customer
Branch

created by using the SQL CREATE DATABASE statement with the addi­
tional qualifier of ffYPE=DBI. This step probably confuses most people
because one wonders why it is necessary to do this in two steps, but this is the
way it is to be. The second step has the effect of importing the DBI metadata
into the database that is required before DBI can be used. The example below
illustrates this first step.

SOL>CREATE DATABASE FILENAME eurobank_dbi_db PROTECTION IS ANSI;

SOL> ATTACH 'ALIAS eurobank_dbi FILENAME eurobank_dbi_db';
SOL> GRANT DISTRIBTRAN ON DATABASE ALIAS eurobank_dbi TO PUBLIC;
SOL> COMMIT;

SOL> CREATE DATABASE FILENAME '/TYPE=DBI/DBNAME=eurobank_dbi'
cont> PROTECTION IS ANSI;

Hint: Don't forget to grant the DISTRIBTRAN privilege to the DBI
databases, otherwise, you won't be able to use DECdtm to guarantee
the integrity of the transactions.

12.3 DEC Database Integrator 329

Once the DBI database is created, the next step is to create the links to the
actual databases as shown below. Each link is given a name and then all
subsequent references to the database are via this link name, so it's a good
idea to specify sensible names.

SOL> CREATE LINK eurobank_acct TO
cont> 'london::dkaO:[eurobank]eurobank_acct';
SOL> CREATE LINK eurobank_cust TO
cont> 'bristol: :dkalOO:[eurobankJeurobank_cust';
SQ L> COMM IT;

Hint: When specifying links make sure that you specify the full location of
the database.

Additional commands are available to monitor the status of the link.

SOL> SHOW LINKS
User links in database with filename /TYPE=DBI/DBNAME=eurobank_dbi_db
Link EUROBANK_ACCT

Connection information: EUROBANK_ACCT
To database type: Rdb
State: Inactive

Link EUROBANK_CUST
Connection information: EUROBANK_CUST
To database type: Rdb
State: Inactive

Now that the links to the database have been established, the next step is to
define the tables. The tables don't have to keep the same names and one can
see from the example below that the TRANSACTIONS table has been re­
named to TRANS. Note that to specify in which database the table is located,
the link name is used.

SOL> CREATE TABLE account LINK TO account USING eurobank_acct;
SOL> CREATE TABLE branch LINK TO branch USING eurobank_cust;
SOL> CREATE TABLE trans LINK TO account transaction
cont> USING eurobank_acct;

330 Distributing Rdb Databases

SOL> CREATE TABLE customer LINK TO customer USING eurobank_cust;
SOL> COMMIT;

SOL> SHOW TABLES
User tables in database with filename /TYPE=DBI/DBNAME=eurobank_dbi_db

ACCOUNT
BRANCH
CUSTOMER
TRANS

This could be the final stage in the setup of the DBI database and we would
now be ready to start retrieving and updating data. However, it is highly likely
that incompatibilities will exist between the databases that have to be inte­
grated, such as the columns are named differently, have different formats,
i.e., CHAR(4) and INT, or they require some conversion because codes are
not the same.

To resolve these problems VIEWS are created and DBI provides a wide range
of methods to resolve all these issues. The view BRANCH_DETAILS below
illustrates how two columns can be merged into one column; in this instance a
new column BRANCH_ADDR is created from the two columns
BRANCH_NAME and BRANCH_ADDRESS.

SOL>CREATE VIEW branch_details
cont> (branch_cd. branch_addr) AS
cont>
cont> SELECT branch_code, (branch_name 11 ' ' 11

cont> branch_address) FROM BRANCH
cont>) :

In the next example the VIEW ACCT_TRANS joins together data from the two
databases, from the tables ACCOUNT, CUSTOMER and TRANSACTIONS.

SOL> CREATE VIEW acct_trans
cont> (account_no, customer_no, tran_date, tran_amt) AS
cont> SELECT a.account_no, a.customer_no, t.tran_date. t.tran_amt
cont> FROM account a. trans t WHERE a. account_no = t. account_no:
SQ L> COMM IT:

12.3 DEC Database Integrator 331

The possibilities with DBI are very comprehensive indeed and the examples
shown here are but a few of the many possibilities. For more detailed informa­
tion the reader should consult the DEC Db Integrator Handbook.

Once the environment has been established, DBI can be used to retrieve and
update data. When using DBI, the SQL specified is exactly the same as for a
single Rdb database except for the ATTACH statement containing a ffYPE=DBI.

For instance, take the example below which is joining data from two tables in
two different databases. The SQL to achieve this is:

SOL>ATTACH 'FILENAME /TYPE=DBI/DBNAME= eurobank_dbi_db;

SOL> SELECT a.account_no, c.customer_no FROM

cont> account a, customer c WHERE c.customer_no a.customer_no;

A.ACCOUNT_NO C. CUSTOMER_NO

1551290 100201
9167890 100201
1567890 100201
9551490 100201
9561490 100205
1561290 100205

6 rows selected

Since all access to the distributed databases is achieved by referencing the
DBI database, this makes it very easy to use DBI with PC products using the
ODBC driver. In this instance the database is specified as per normal, but the
ATTACH includes the /TYPE and /DBNAME qualifiers.

Hint: Many PC products do not always access distributed databases
efficiently, but due to DBl's distributed cost query optimizer and data­
base buffering techniques it is usually much more efficient to use this tool.

The one area that may cause some concern and extra work is defining secu­
rity. The only security that can be defined on the DBI database is at the table
level. Therefore once a user has access to the database they can see all the
tables. However, they will only be allowed access to the actual tables if access
has been granted in the distributed database.

332 Distributing Rdb Databases

12.4 DISTRIBUTED TRANSACTION MANAGEMENT

The fact that a program or 4GL can access more than one remote Rdb data­
base was mentioned in section 12.1. In such a situation, guaranteeing the
integrity of these distributed databases is important. A problem can arise when
changes are made to one of the remote databases but a failure prevents the
changes from being made to the other remote database.

This situation can create serious problems. Suppose in Figure 12.5 that a
program running on TAURUS attaches to a BANKING database on ORION
and a BANKING database on AQUILA. Imagine that a transaction debits an
account on ORION and credits an account on AQUILA; that is, money is
transferred between the two accounts. If the credit to the account on AQUILA
is committed to the database but a failure aborts the debit of the account on
ORION, the bank has potentially lost money. Indeed, the integrity of the dis­
tributed database domain was compromised even though the integrity of the
individual databases was not.

=11 - .
----TAURUS

--..- -

&II -­ORION

=====11 - .
----AQUILA

-.,,- -...-

Figure 12. 5 Distributed Transactions

2PC
Domain

12.4.1

12.4 Distributed Transaction Management 333

This is a classic distributed integrity problem. Rdb uses a transaction process­
ing service known as DECdtm, which is an Open VMS component.

DECdtm uses a two-phase commit protocol to ensure that distributed integ­
rity is maintained. The two-phase commit protocol, or 2PC, is well-known for
dealing with this problem. Briefly, it involves defining a global transaction
composed of a number of local database transactions. The global transaction
either commits or aborts.

In our example, both the databases on ORION and AQUILA either commit or
abort; the situation should not arise where one commits and the other aborts.
A coordinator is responsible for asking all the participants in the global trans­
action whether they are ready to commit or not (in DECdtm terminology, they
are asked to vote). If they are not ready, the transaction is aborted and all the
databases involved are rolled back. If they all agree to commit, they cannot
change their minds later - they lose their unilateral abort capability. The co­
ordinator then decides whether to commit or abort the transaction and com­
municates the decision to the participants. All the participants at some point
must follow that instruction.

Failure can occur in many ways, and the protocol can deal with all of them.
The worst-case scenario is if the participants lose contact with the coordinator
after they have voted but before they have received the coordinator's decision
to commit or abort. In this situation, the participants cannot make a decision
on their own and must wait for communication to be re-established with the
coordinator.

If the node on which the coordinator resides is located in a computer room that
was destroyed in an earthquake, re-establishing communication clearly may
take some time. Because of the possibility that this scenario could occur, as
remote as it is, DECdtm and Rdb allow the database administrator to manu­
ally decide whether to commit or abort local transactions.

Programming Distributed Transactions with SQL

Section 12.1 showed that accessing a remote Rdb database was a simple matter.
The only difference between accessing a local database and a remote database
is the addition of a node name in the database file specification. Section 12.1
also showed that it was possible to make life even simpler for the developer by
the use of Open VMS logical names. We can take this idea a step further by

334 Distributing Rdb Databases

showing that it is just as easy to attach to two remote databases as it is to
attach to one. The developer must merely specify an alias to uniquely identify
each database that the program has attached to. For example:

SOL> DECLARE london ALIAS FILENAME 'orion::eurobank:[uk.db]banking';

SOL> DECLARE leeds ALIAS FILENAME 'aquila::eurobank:[uk.db]banking';

A developer must use the alias to qualify table names in the program so it
becomes clear which table in which database is being used. For example:

SOL> SELECT * FROM london.branch;

In this example, the branch table is present in the database in London residing
on the node known as ORION and in the database in Leeds residing on the
node known as AQUILA. The SELECT statement, therefore, must be quali­
fied with the alias - in this case london - to resolve the ambiguity.

So far we have seen how it is possible to easily retrieve data from more than
one database by using an alias. But can data be updated in more than one
database? It can as long as the aliases are used. Suppose we wanted to move
a customer's details from the Leeds branch to the London branch. We could
achieve this as follows:

SOL> DECLARE london ALIAS FILENAME 'orion::eurobank:[uk.db]banking';

SOL> DECLARE leeds ALIAS FILENAME 'aquila::eurobank:[uk.db]banking';

SOL> SET TRANSACTION ON london USING (READ WRITE RESERVING
cont>
cont>
cont>

london.CUSTOMER FOR SHARED WRITE)
AND ON leeds USING (READ WRITE RESERVING

leeds.CUSTOMER FOR SHARED WRITE);

SOL> INSERT INTO london.customer
cont> SELECT* FROM leeds.customer WHERE customer_no - '4545332211';
1 row(s) inserted
SOL> DELETE FROM leeds.customer WHERE customer_no - '4545332211';
1 row(s) deleted

SOL> COMMIT;

12.4 Distributed Transaction Management 335

We added a row to the CUSTOMER table in the London database and deleted
a row from the CUSTOMER table in the Leeds database. We assume that the
COMMIT statement made both the INSERT and DELETE permanent. How­
ever, as has been said, there is no guarantee that a network or node failure at
a critical moment did not result in the customer being removed from the Leeds
branch but not added to the London branch. To guarantee distributed transac­
tion integrity, we need the two-phase commit support of DECdtm.

How can a developer of SQL-based applications code in distributed transac­
tion integrity? A developer may use either embedded SQL or SQL Module
Language to create applications that execute distributed transactions. It is
simple to program distributed transactions with Rdb. All programs that use
either embedded SQL or SQL Module Language to access more than one Rdb
database will automatically benefit from the distributed transaction integrity
provided by Rdb. In this case, DECdtm is said to be called implicitly, and
virtually no application code or SQL needs to be changed.

An application program may call DECdtm implicitly or explicitly. In most
cases, a developer should not bother with explicit calls. Explicit calls must
only be made to DECdtm when more than one database management system
participates in a transaction. For example, if a transaction updates an Rdb
database and an RMS sequential file, an explicit call must be made to DECdtm
to start a global transaction. If a transaction updates two Rdb databases,
explicit calls to DECdtm would not have to be made. Whether DECdtm is
called implicitly or explicitly, a distributed transaction is started by DECdtm
and associated with a transaction identifier, or TID. All subsequent Rdb trans­
actions (or DBMS or RMS) that form part of the distributed transaction are
passed this transaction identifier and thus join the distributed transaction. If
implicit calls are made to DECdtm, for example in the case of multiple Rdb
databases, the developer should not be concerned about transaction identifi­
ers. If explicit calls are made to DECdtm, such as when Rdb and DBMS
multiple database systems are used, the developer must handle the passing of
the unique transaction identifier to the local transactions in the program. The
distributed transaction as a whole either commits or aborts and, consequently,
the local transactions must all commit or abort.

When a program explicitly calls DECdtm, the SYS$START_TRANS and
SYS$END _TRANS system service calls must be made to start and end the
distributed transaction. The SYS$START_TRANS call returns a transaction
identifier, which is passed within the program using methods that depend on

336 Distributing Rdb Databases

whether embedded SQL or SQL Module Language is used. The following is
an example of the DECdtm call used to start a distributed transaction in
COBOL:

CALL "SYS$START_TRANSW" USING OMITTED,
BY VALUE ddtm$m_sync
BY REFERENCE io-sb,
OMITTED,
OMITTED,

BY REFERENCE dist-tid
GIVING status.

The format of the call, which is familiar to anyone who has used Open VMS
system services, is independent of the method used to implement the SQL
statements. The Open VMS documentation set details all the parameters of the
call, but it is worth mentioning the parameter DIST-TID here. DIST-TID is a
variable used to hold the unique distributed transaction identifier returned by
the call. It is defined as a 16-byte field. Typically, if the application was being
written in COBOL, the developer would define the transaction identifier in the
WORKING-STORAGE section as:

01 transaction-ident.

05 low_date PIC 9(9) COMP.
05 high_date PIC 9(9) COMP.
05 date_incarn PIC 9(4) COMP.
05 node_ id PIC 9(4) COMP.
05 node_idh PIC 9(9) COMP.

The reader may deduce that the transaction identifier contains dates and times
and also the Ethernet address of the coordinating node. The data item IO-SB
is the I/O status block, which is familiar to anyone who has used Open VMS
system services.

Once the transaction identifier has been obtained, it must be associated with
the SQL statements in the program. It should be noted here that a program
may start more than one distributed transaction, so SQL statements may be
associated with different transaction identifiers. The transaction identifier and
SQL statement association is made using a context structure. In SQL Module
Language, a context structure is declared in the host language program and

12.4 Distributed Transaction Management 337

passed to the called module. This context structure contains the transaction iden­
tifier, amongst other things. When the SQL Module is compiled, the /CONTEXT
qualifier also must be used to specify that the compiler must allow for this
additional context parameter.

In embedded SQL programs, a context structure is again declared. Each ex­
ecutable SQL statement, however, must now include a USING CONTEXT
clause. The USING CONTEXT clause informs SQL that the SQL statement
is part of a particular distributed transaction.

The Rdb Guide to Distributed Transactions manual contains detailed exam­
ples of program code to demonstrate these two methods. An example of the
declaration of a context structure in COBOL follows:

01 WS-CONTEXT.
05 CTX-VERSION PIC 9(9) COMP.
05 CTX-TYPE PIC 9(9) COMP.
05 CTX-LENGTH PIC 9(9) COMP.
05 CTX-TID.

10 LOW_DATE PIC 9(9) COMP.
10 HIGH_DATE PIC 9(9) COMP.
10 DATE_INCARN PIC 9(4) COMP.
10 NODE_ID PIC 9(4) COMP.
10 NODE_IDH PIC 9(9) COMP.

05 CTX-END PIC 9(9) COMP.

The embedded SQL will now have the additional USING CONTEXT con­
struct. For example:

EXEC SOL USING CONTEXT :ws-context
INSERT INTO london.customer
SELECT * FROM leeds.customer WHERE customer no

END-EXEC.

EXEC SOL USING CONTEXT :ws-context

:cust no

DELETE FROM leeds.customer WHERE customer_no = :cust_no
END-EXEC.

12.4.2

338 Distributing Rdb Databases

In the previous example, the transaction identifier contained in the context
structure WS-CONTEXT will be associated with the INSERT and DELETE
operations. In other words, the INSERT and DELETE operations will be part
of the same distributed transaction. Both the INSERT and DELETE will hap­
pen or neither will.

There may be occasions when the developer does not want a program to use
DECdtm implicitly. In this case, the OpenVMS logical name
SQL$DISABLE_CONTEXT can be used. For example:

$ DEFINE SQL$DISABLE_CONTEXT TRUE

Hint: The definition of this logical name is checked at compile time, not at
run time. If the logical is found and set as true, distributed transaction
management is disabled for that application.

Distributed Deadlocks

We have already learned about deadlocks in single databases. A deadlock al~o
may occur in a distributed scenario. In this case, processes on more than one
node in a network are waiting for one another in a deadly embrace. Rdb cannot
detect such distributed deadlocks because the lock manager can only detect
deadlocks on a local network. Instead, timeouts are used. After a transaction
has been waiting for a lock for a specified time, the transaction aborts and
breaks the deadlock. The length of time the transaction waits can be specified
in two ways. A OpenVMS logical name RDM$BIND_LOCK_
TIMEOUT_INTERVAL can be specified. For example:

$ DEFINE RDM$BIND_LOCK_TIMEOUT_INTERVAL 20

The WAIT clause also can be used in the SET TRANSACTION or DECLARE
TRANSACTION statements. For example:

SOL> SET TRANSACTION READ WRITE WAIT 20;

In both the previous examples, a transaction will wait 20 seconds.

The Rdb Guide to Distributed Transactions manual explains distributed
transactions and should be studied by anyone requiring further information.

13 Interoperability

More and more organizations today have a wide range of different hardware
and software systems, and they rarely depend on only one hardware or soft­
ware vendor. They may also have legacy systems from which they require
information or which they need to integrate into their existing systems. As
different groups within an organization begin to see the benefits of sharing
each other's data, there is a growing need for interoperability or gateway
products to access data on other platforms and in other database management
systems.

Digital provides a number of products including gateways which provide trans­
parent access to relational and non-relational data such as RMS and the
CODASYL product DBMS. These products are:

• SQL/Services

• ODBC Driver

• DEC DB Integrator Gateways for

- Custom Drivers

- DB2

- DBMS

- DSM

- EDA/SQL

- Oracle

- RMS

- Sybase

340 Interoperability

13.1 SQL/SERVICES

Access to the corporate Rdb database from personal-computer-based applica­
tions is almost mandatory for many organizations today. Simply placing a
database on a personal computer is unacceptable, because personal comput­
ers lack the processing power or storage capabilities required to hold large
volumes of data. SQL/Services makes holding data on a personal computer
unnecessary.

SQL/Services is a standard component of Rdb. Based on the client/server
architecture, it provides access to Rdb and other databases from clients on
MS9Windows, MS-DOS, Macintosh, OpenVMS and OSF/l systems. By
embedding standard SQL statements in a program using the Application
Programming Interface (API), a program is constructed to access the Rdb
database from a number of different platforms. The API itself is made up of
only a dozen statements, so it is easy to learn and use. In Open VMS systems
the AP! calls may be embedded in any language; from other systems, only the
C language may be used. All SQL statements written in the application code
are converted to dynamic SQL to provide access to Rdb.

However, most users of SQL/Services are unaware of the previously described
process because the tool they are using already has the calls embedded. For
example, a user in MSGWindows requires data from a DB2 database on an
IBM and an Rdb database on an Alpha AXP system. The query is specified
and SQL/Services passes it to the Alpha and the IBM system. Each system
identifies the data and then returns it to the PC user. Once it has been returned
to the personal computer, the data can be manipulated with various PC tools.

SQL API

SQUServices Client

SQUServices Server

Figure 13.1 SQL/Services

13.1.l

13.2 DEC Db Gateways 341

The entire SQL/Services environment is changing from Version 6.1 to handle
the client/server environment more efficiently. For Version 6.1 it will be im­
plemented on OSF/1 only. The changes are described in Chapter 19.

Multi-versioning

SQL/Services supports multiple versions of Rdb via use of the class server. In
a configuration file one can specify which servers are to be started such as
V60 for Version 6 and V51 for Version 5.1. A tool or application calling
SQL/Services will specify which class server it requires, otherwise it will use
the generic server which will belong to the default version of Rdb running at
the time SQL/Services was started.

Hint: Not all applications support SQL/Service class servers. If this is the
case use the ODBC driver instead, if this is possible.

13.2 DEC DB GATEWAYS

There are eight different gateway products that may be used to access data in
other data managers or on other hardware platforms, as shown in Figure 13.2.
They have been developed such that they can be used without Rdb present;
however, the software can be written as if were accessing an Rdb database.
Purchasing the gateway software provides all the necessary components in­
cluding SQL/Services. Each gateway varies slightly in the functionality of­
fered; for instance, some are read-write while others are read-only. The sup­
ported networks are DECnet, TCP/IP, Novell and Appletalk.

One of the main benefits of gateways is that they provide an almost transparent
interface to the end-user, enabling them to use a number of tools, including:

• SQL, interactive, pre-compiled, dynamic or Module Language

• ODBC compliant tools

• Apple's DAL

• DEC DATATRIEVE

• DEC Data Distributor

•RALLY

13.2.1

342

Figure 13.2 Digital Gateways

Tools and Applications

SOL SOL/ Apple's
Services DDAL

DECnet TCP/IP Novell

R DEC Db Gateways
d DB2, Oracle, RMS, VSAM
b Custom Drivers, DBMS

DSM, Sybase, EDA/SQL

Interoperability

Hint: When accessing multiple databases, it is recommended that DB
Integrator, described in Chapter 12, is used to join the data because it
can perform the task very efficiently.

DEC Db Integrator Gateway for DB2

DEC Db Integrator Gateway for DB2 provides read-write access to DB2,
which is the primary relational database on IBM mainframe computers. This
is a true interoperability product because it provides either interactive access
to or bulk data transfer from an IBM DB2 database, using the LU6.2 com­
munication protocol to ensure efficient data transfer. Based on the client/server
architecture, DB Gateway software is installed on the Open VMS and IBM
system. With the client and servers installed on each hardware platform, all
the work is done by the software. Hence, the gateway decides on which plat­
form it is most efficient to execute a query and which data conversions are
necessary. (IBM uses EBCDIC and the VAX uses ASCII.) The software tries
to make all operations as transparent as possible to the user.

Users requiring access to the data on the IBM DB2 database need not worry
if they are unfamiliar with the IBM software. The same know ledge and skills
used to access an Rdb database are used to access the IBM DB2 database.

13.2.2

13.2 DEC Db Gateways 343

There is no need to learn a new query language - simply use your favorite Rdb
query tool.

COD/Repository may be effectively used to manage and control the data within
an organization. One useful feature in the DEC Db Gateway for DB2, is that
it allows definitions to be extracted from the DB2 catalog and placed into
COD/Repository. This is a very simple mechanism for extracting and copying
data definitions from one system to the other. COD/Repository is described in
more detail in Chapter 14.

Using the DEC Db Gateway for DB2 software is a relatively simple task.
Consider the BANKING database where a subsidiary of the EUROBANK
uses DB2. To query the IBM DB2 database using interactive SQL on the
Digital platform, SQL would be invoked in the normal fashion. When the
attach to the database is made, an additional qualifier, /TYPE=VIDA2, is
specified to tell Rdb that it must access a DB2 database instead of Rdb.

Once the ATTACH has been specified, statements are issued as if an Rdb
database were being queried. The software does the rest. The next example
shows just how little extra data is required to access the IBM DB2 database.

SOL> ATTACH 'FILENAME /TYPE=DB2/DATABASE=eurobond';

SOL> SET TRANSACTION READ ONLY;

SOL> SELECT* FROM bonds WHERE bond_code = 'WSTl';

This example shows how transparent it is to the user that the database being
accessed is DB2. The SQL statements are identical to those issued to access
an Rdb database.

DEC Db Gateway for Oracle

DEC Db Gateway for ORACLE provides read-write access to ORACLE
databases the same way as the DB Gateway for DB2 provides read-write
access to DB2 databases. The ORACLE database must be running on an
Open VMS system somewhere on a DECnet or TCP/IP network. A program
written using embedded SQL, SQL Module Language or dynamic SQL can
access ORACLE tables and views. In fact, an end-user can use interactive
SQL, DATATRIEVE or RALLY to access ORACLE data and can use
SQL/Services to access ORACLE through applications running on MS-DOS,

13.2.3

13.2.4

344 Interoperability

OS/2, Macintosh, ULTRIX, or Open VMS operating systems. The SQL
ATTACH statement would use /TYPE=ORACLE.

The ORACLE metadata can be integrated into CDD/Repository through the
SQL INTEGRATE command. Once this has been done, the metadata defini­
tions can be shared by other software, such as application programs or forms.

DEC Data Distributor can also be used to extract data from ORACLE
databases into Rdb databases, and data from multiple ORACLE databases
can be rolled up in a single Rdb database. DEC Data Distributor was de­
scribed in Chapter 12.

DEC Db Gateway for RMS

DEC Db Gateway for RMS provides read/write access to non-relational data
in the form of DEC RMS files and read-only access to remote RMS files and
IBM MVS and VM/CMS data sets. A program written using embedded SQL,
SQL Module Language, or dynamic SQL can access RMS files and IBM
VSAM files transparently. In fact, an end-user can use interactive SQL,
DATATRIEVE, or RALLY to access the non-relational data. The user also can
use SQL/Services to access it through applications running on MS-DOS, OSI
2, Macintosh, ULTRIX, or Open VMS operating systems.

DEC Db Gateway for RMS retrieves the data definitions from CDD/Reposi­
tory and combines the definitions with the source data to allow relational
operations to be performed. Of course, the metadata definitions also can be
shared by other software, such as application programs or forms.

DEC Data Distributor can be used to extract data from the files into Rdb
databases on the network. Data from multiple files also can be rolled up into
a single Rdb database.

DEC Db Gateway for Custom Drivers

DEC DB Gateway for Custom Drivers is the software that allows the creation
of gateways to provide relational access to data sources without a driver.
Using the gateway's interactive SQL or dynamic SQL interface, applications
and tools have read/write access to the data. Client/server access is supported
through SQL/Services and the ODBC driver.

13.2.5

13.2.6

13.2.7

13.3 ODBC Driver 345

DEC Db Gateway for DBMS

There are still many users of the CODASYL database DBMS who would like
to use the SQL interface to access their data. This is now possible with this
gateway which allows read-only access to the data. The DBMS schema is
mapped onto the relational schema by translating records and sets into SQL
tables. A sample attach statement is shown below:

SOL> ATTACH 'FILENAME /TYPE=NSDS
cont> /PATH=dbms_schema:[schema]parts.partsl
cont> /DICTIONARY_DRIVER = DBMSQL$SHR';

DEC Db Gateway for DSM

The DEC DB Integrator Gateway for DSM allows transparent access to Digital
Standard Mumps (DSM) data, via interactive SQL, dynamic SQL, pre-compiled
SQL, and the SQL Module Language. Support for client/server access is pro­
vided by SQL/Services and the ODBC driver.

The gateway for DSM retrieves data definitions for DSM data sources from a
variety of data and metadata sources. Support is for Digital Application Soft­
ware Library (DASL) tables, FileMan files, and user-defined data and metadata
sources, by providing an M routine call interface definition.

DEC Db Gateway for Sybase

DEC DB Integrator Gateway for Sybase provides read/write access to
SYBASE SQL Server databases. Access is via SQL using the interactive or
dynamic interfaces. Support for client/server access is provided by SQL/Ser­
vices or the ODBC driver. Using DEC Db Integrator which is described in
Chapter 12, it is possible to perform cross-database joins.

13.3 ODBC DRIVER

Microsoft defined an interface for accessing data in heterogeneous data sys­
tems which they called ODBC which stands for Open Database Connectivity.
Although ODBC has now become a de facto industry standard, it is based upon
the work of the SQL Access Group. The SQL Access Group is a consortium

346 Interoperability

Figure 13.3 ODBC Data Source Definition

of both vendors and software users who defined a standard for accessing
heterogeneous remote databases. An ODBC driver is defined by the software
vendor using the ODBC APL Therefore to use ODBC, the tool on the client
must be ODBC compliant and then the database server must be able to accept
calls from the ODBC tool.

Using ODBC compliant tools to access Rdb or other data sources is proving
very popular and Rdb's ODBC driver uses SQL/Services to access remote
data, though the user need not be concerned by this fact. This is probably one
of the easiest methods for accessing remote data because once the data source
has been defined, it is then used by any ODBC compliant tool. Figure 13.3
shows the screen for defining an ODBC data source.

Each data source is given a name; in the example it is banking_v61. It is
important to choose a sensible name because this is what the user will see in
their tool when it is asked to display a list of ODBC compliant data sources.
Each source can be given a description, but that information will only be
displayed in the ODBC Administrator.

The server where the database resides is specified; in this case it's RDB4ME.
The class server corresponds to the version of Rdb required. If the default

13.3 ODBC Driver 347

version is required then use the generic class. Other information that must be
specified is the user ID, transport mechanism and database attach statement.
At the time of attach the user will be prompted for the password. The tool or
application will determine whether the password will be required each time or
can be stored.

Hint: Do not include a semicolon(;) at the end of the ATTACH state­
ment. The ODBC driver does not like it and will fail.

The full SQL attach statement must be specified which includes the location
and name of the database. Figure 13.3 shows how to access the banking data­
base but if you were accessing a DBI database then the ATTACH statement
would include the /TYPE=DBVDBNAME= and if were using a DB Gateway
product then the type would correspond to the database or driver name such
as DB2 or NSDS.

There are now many ODBC client tools available in the marketplace, offering
the user a wide variety of client applications. Although this route is usually
slower, the performance degradation is overlooked due to the flexibility and
ease of access provided by the client tools.

14 CDD/Repository

COD/Repository has become a core component in computer-aided software
engineering (CASE). Rdb is integrated with Digital's Data Repository prod­
uct, COD/Repository, which is an open, distributed repository system that
integrates with many Digital products and other companies' products.

Please note that CDD/Repository is not available to Rdb OSF/l users.

Digital's Data Repository product was known as CDD, Common Data Re­
pository, through Version 3.4. In 1988, the product was radically changed to
use Rdb for data storage. In this version the product was changed to hold
many different types of objects and to provide messaging and pieces tracking.
This new product, which still supported past CDD versions, was renamed
COD/Plus in Version 4.0. Digital announced Version 5.0 of the Data Reposi­
tory in 1990 and changed the name to CDD/Repository. At the time of writ­
ing, it is about to be sold to the Oracle Corporation.

CD D/Repository is at the core of the CASE environment, sharing information
with all the surrounding application-building tools. Many of these tools have
read-write access to the repository, which means that they can extract infor­
mation from the repository as well as write it back. The list of tools that only
have read access to the repository is decreasing. CDD/Plus, which is based on
the entity/relationship model, is able to define records and fields. Once de­
fined in the repository, these definitions can be used by:

• Compilers, copying record definitions into a program

• Rdb

•RALLY

• DEC ACMS TP Monitor

• DEC Db Gateway products

• Any program using the Callable Interface

349

Figure 14.1 COD/Repository Integration with Digital Products

Figure 14.1 illustrates how the BRANCH record definition is defined in
CDD/Repository and then is used by Rdb to build the database, by a COBOL
program, and by an ACMS task.

Many different types of objects may be stored in the repository directory struc­
ture that the data administrator has specified. CDD/Repository's directory
structure is a completely flexible hierarchical structure, which means it may
be defined differently for each repository. A typical structure is shown in Fig­
ure 14.2. The format for specifying exactly where an object resides in the
repository is:

repository anchor di rectory pa th object name

To locate the record definition for the BRANCH record, the repository anchor
used is the Open VMS file directory where the repository resides, which in this
case is EUROBANK:[UK.DICT]. The directory path to the BRANCH record
is BANKING.RECORDS. Therefore, the full specification to retrieve the
BRANCH record definition is:

eurobank: [uk.dict]banking.records.branch

<-Anchor-> <-Path-> <-Object->

The repository is made up of one logical repository that is physically imple­
mented as one or more repository files, which may be located anywhere on the
network. These distributed repository files can then be seen as one repository

350

Figure 14.2 Typical CDD/Repository Structure

COD/Repository

Banking

Records Databases Fields

branch ~ branch_ code
account account_ no
customers customer_no

Test Prod
banking_ db

CDD/Repository

joined together using a Open VMS search list logical. The rest of this chapter
will concentrate on the structure inside one repository.

14.1 RDB AND CDD/REPOSITORY

An Rdb database may be defined separately from the repository. This is done
when the database is created by specifying the REPOSITORY IS NOT
REQUIRED clause on the CREATE DATABASE statement.

When the clause REPOSITORY IS REQUIRED and the PATHNAME are
specified on the CREATE DATABASE statement, a link is established
between the database and the repository. Once this relationship has been
defined, metadata changes can only take place if the pathname option is speci­
fied on the ATTACH statement.

Therefore, creating the BANKING database requires the following:

SOL> CREATE DATABASE PATHNAME

cont> eu robank: [uk. cdd] database. banking FI LE NAME banking

cont> REPOSITORY IS REQUIRED:

This creates a single-file database and establishes a permanent link between
the Rdb database and the CDD/Repository. The CREATE DATABASE state­
ment creates an object in the CDD/Repository called banking of type
CDD$DATABASE. This object serves as the link between the repository and

14.1.1

14.1 Rdb and CDD/Repository 351

the Rdb database and is known as a proxy entity. Once the relationship be­
tween the repository and the database is formalized, no changes can be made
to the data definitions without the repository being present. If a change is
made to the data definition in the repository from which the Rdb database has
been built, a message is sent to the proxy entity, BANKING, advising of the
change because CDD/Repository cannot talk to Rdb directly. Messages will
be discussed later in this chapter.

Using Table and Field Definitions

One of the important roles of the repository is to hold the definitions of all the
records and fields used in the system. Once it is defined in this central place,
all application-building tools can extract the definition, thus ensuring consis­
tency. Rdb can extract from the repository both record and field definitions,
which equate to table and domains in SQL terminology. To use this approach,
the record and fields must be defined in CDD/Repository using the CDD/
Repository command language CDO. The following example from the
BANKING database illustrates the fields and records that make up the
BRANCH record.

CDO> DEFINE FIELD branch_code
COO> DEFINE FIELD branch_name

DATATYPE TEXT SIZE IS 4 CHARACTERS.
DATATYPE TEXT SIZE IS 20 CHARACTERS.

COO> DEFINE FIELD branch_address DATATYPE TEXT SIZE IS 120 CHARACTERS.
COO> DEFINE FIELD managers_name DATATYPE TEXT SIZE IS 20 CHARACTERS.

COO> DEFINE RECORD branch.
cont> branch_code.
cont> branch_name.
cont> branch_address.
cont> managers_name.
cont> END branch RECORD.

COO> DI RECTORY

Directory EUROBANK:[UK.DICTJDATABASE
BRANCH;l RECORD
BRANCH_ADDRESS;l
BRANCH_CODE; 1
BRANCH_NAME; 1
MANAGERS_NAME; 1

FIELD
FIELD
FIELD
FIELD

352 CDD/Repository

To define a table in the Rdb database using these repository definitions, the
Rdb database first must be attached and the link with the repository must be
opened. This is achieved using the PATHNAME qualifier on the ATTACH
statement. Without this option, Rdb will only open the database, which is the
normal procedure for production applications. When a formal link has been
defined between the Rdb database and the repository, metadata changes are
not allowed in SQL unless the PATHNAME qualifier is specified on the
ATTACH statement.

Hint: The Rdb database should not be accessed by PATHNAME in a
production system. Start-up of the application will be slower because a
transaction is started against the Rdb database and the repository.

In the following example, the domain STANDARD_NAME and the table
BRANCH have been created using the repository definitions.

SOL> ATTACH 'PATHNAME eurobank: [uk.di ct]database. banking';

SOL> CREATE DOMAIN FROM eurobank:[uk.dict]database.standard_name;

SOL> CREATE TABLE FROM eurobank:[uk.dict]database.branch;

If we show the table definition in SQL, it looks identical to the one created
without the repository. The only additional information is the inclusion of the
CDD pathname.

SOL> SHOW TABLE branch;

COD Pathname: eurobank: [uk. di ct] DATABASE. BRANCH; 1

Columns for table BRANCH:
Column Name Data Type Domain
------------ --------- -------

BRANCH_CODE CHAR(4) BRANCH_CODE
BRANCH_NAME CHAR(20) BRANCH_NAME
BRANCH_ADDRESS CHAR(120) BRANCH_ADDRESS
MANAGERS_NAME CHAR(20) MANAGERS_NAME

14.1.2

14.1.3

14.1 Rdb and CDD/Repository 353

There are two advantages in demanding that only data definitions defined in
the repository be used in the database:

• Everyone uses the same definition, ensuring consistency

• CDO pieces tracking identifies which applications are using various records
and fields

One important point to remember is that not all the components of a database
definition, such as storage areas, maps, and triggers, are held in the repository.
Hence, when a database is defined, the SQL command file should contain all
the information required to build the database. Only the table and domain
definitions should be extracted from the repository.

Hint: It is important to ensure that the repository object name and the
Rdb domain or table name are identical. If they differ, problems will
occur later when integrating the database into the repository.

Pieces Tracking

The pieces tracking capability in CDD/Repository is used to report what is
using an object. CDO has two pieces tracking commands, SHOW USES and
SHOW USED_BY. In the following example, CDO states that the BRANCH
record and an Rdb database called BANKING are using the object
BRANCH_NAME in the repository.

CDO> SHOW USES branch_name
Owners of EUROBANK:[UK.DICT]DATABASE.BRANCH_NAME;l

EUROBANK:[UK.DICTJDATABASE.BRANCH;l (Type : RECORD)
I via CDD$DATA_AGGREGATE_CONTAINS
BANKING (Type : CDD$RDB_DATABASE)

via CDD$RDB_DATA_ELEMENT

Managing Change

Once a database has been created using the objects in the repository, the
proxy entity creates a permanent link between the database and repository.

354 CDD/Repository

Attaching a message to the database object in the repository automatically
alerts the database to changes in the repository definition. When the next at­
tach to the database is made using the PATHNAME, which also creates a link
to the repository, a warning message is displayed advising of the change to the
repository definition. Since this is only a warning message, the database de­
signer is not forced to include the repository change into the repository imme­
diately.

The following example illustrates changing the length of the field
MANAGERS_NAME to 30 characters and shows the message that is sent to
Rdb and the data administrator.

• In COO change the field manager's name to 30 characters

COO> CHANGE FIELD managers_name DATATYPE TEXT SIZE 30.
%CDO-I-DBMBR, database EUROBANK:[UK.DICTJBANKING;l may need to

be INTEGRATED

• In SQL, invoke the database by pathname. This displays the informational
message that a data definition has changed

SOL> ATTACH •PATHNAME eurobank: [uk. di ct] database.banking';
%SQL-I-DIC_DB_CHG1, A repository definition used by schema

EUROBANK:[UK.DICT]DATABASE.BANKING;l has changed
-SOL-I-DIC_DB_CHG2, Use the INTEGRATE statement to resolve

any differences between the repository and the database
%COD-I-MESS, entity has messages

• Return to CDO, and display the messages for the banking database object

COO> SHOW MESSAGES banking
EUROBANK:[UK.DICTJDATABASE.BANKING;l is possibly invalid,

triggered by
CDD$DATA_ELEMENT EUROBANK:[UK.DICTJDATABASE.MANAGERS_NAME;l

The tight integration between the repository and the database illustrated here
is not limited to Rdb. It applies to any product that has read/write access to the
repository, including RALLY and ACMS.

14.1.4

14.1 Rdb and CDD/Repository

Figure 14.3 Repository and Database Integration

COD/Repository ~~
~

Maintaining Repository and Database Integration

355

Since no system is perfect, there may be times when the repository and data­
base will contain differences. In the previous example, the data definition in
the repository changed but the database still contained the old definition. SQL
provides an INTEGRATE command in the interactive query language that
transfers the metadata definitions from the repository to the Rdb database, or
from the database to the repository.

Figure 14.3 illustrates using the repository to reconcile definitions in an Rdb
database (ALTER FILES) or reconciling definitions in the repository using
the database definitions (ALTER DICTIONARY).

Integrating Repository and Database

The repository and database must be integrated when repository definitions
change and the Rdb database has to be updated. Integration is a straight­
forward procedure, but it does illustrate the reason why the naming conven­
tions used in the database must match those in the repository. If they do not
match, the Rdb definition will be overwritten when the data definition is read
from the repository.

In the following example from the BANKING application, a new definition in the
repository for the field MANAGERS_NAME is loaded into the Rdb database.

14.1.5

356 CDD/Repository

• Display the columns in table BRANCH; the MANAGERS_NAME is 20
characters

SOL> SHOW TABLE branch

Columns for table BRANCH:
Column Name Data Type Domain
----------- ---------
BRANCH_CODE CHAR(4)
BRANCH_NAME CHAR(20)
BRANCH_ADDRESS CHAR(l20)
MANAGERS_NAME CHAR(20) STANDARD_NAME

• Reconcile the definitions in the Rdb database from the

SOL> INTEGRATE DATABASE PATHNAME
cont> eurobank:[uk.dict]database.banking ALTER FILES;

• Display the columns in table BRANCH; the MANAGERS_NAME is now
30 characters

SOL> SHOW TABLE branch

COD Pathname: EUROBANK:[UK.DICTJDATABASE.BRANCH;l

Columns for table BRANCH:

Column Name Data Type Domain

----------- ---------
BRANCH_CODE CHAR(4)
BRANCH_NAME CHAR(20)
BRANCH_ADDRESS CHAR(l20)
MANAGERS_NAME CHAR(30) MANAGERS_NAME

Integrating Database to Repository

Many Rdb users find themselves having to integrate the Rdb database into the
repository. In our example, no links were established with the repository when
the database was created. Later, it was decided to formalize links with the
repository, which is done using a different form of the INTEGRATE com-

14.1.6

14.1 Rdb and CDD/Repository 357

mand. One of the problems with INTEGRATE is that all it appears to create
in the repository is a database object name for the database. All the database
tables and columns in the repository are created as well. They simply arc not
immediately visible. To make the tables and columns visible, the CDO ENTER
command must be used on each. Once the ENTER command has been used,
each object is visible and can be used by all tools that read the repository.

In the following example, the BANKING database is integrated into the re­
pository. Then the ACCOUNT table and ACCOUNT_NO column are made
visible in the repository.

SOL> INTEGRATE DATABASE FILENAME eurobank: [uk. db]banki ng
cont> CREATE PATHNAME eurobank:[uk.dict]database.banking;

COO> DIRECTORY

Di rectory EUROBANK: [UK. DI CT] DATABASE

BANKING;l CDD$DATABASE

COO> ENTER RECORD account FROM DATABASE banking
COO> ENTER FIELD account_no FROM RECORD account

COO> DI RECTORY

Directory EUROBANK:[UK.DICT]DATABASE

ACCOUNT;l
ACCOUNT_NO;l
BANKING;l

RECORD
FIELD
CDD$DATABASE

If the database contains hundreds of fields and many tables, the process of
using ENTER is tedious indeed. It is helpful to build from the repository
whenever possible.

Integrating Domains and Tables

Using CDD V5.4 and from Rdb V6.1, one no longer has to integrate the entire
database whenever a change is made to a domain or table. Now it is possible
to specifically identify the domains or tables that have changed and integrate
only these, thus saving a considerable amount of time and system resources.

14.1.7

14.1.8

358 CDD/Repository

Integration is possible in both directions, that is from Rdb to the repository or
from the repository to Rdb. The syntax is the same as that for integrating the
database except the words DOMAIN or TABLE are substituted as appropri­
ate. Therefore in the following example where the definition of the BRANCH
table changed, to include this in the Rdb database the required command would
be:

SOL> INTEGRATE TABLE branch ALTER FILES;

where the definition for the BRANCH table has been obtained from the
DATABASE.RECORDS.BRANCH path in the repository.

Database Objects Supported by CDD/Repository

So far the objects we have seen in CDD/Repository for Rdb are:

• CDD$DATABASE

•RECORD

•FIELD

The list does not end here. When the database is integrated into the repository,
other objects also are created in the repository, such as:

• CDD$INDEX

• CDD$CONSTRAINT

These objects are made visible using the ENTER GENERIC command. Once
available, however, there is nothing that can be done with them. They are best
left hidden.

Field Definitions and Validation

Ideally, the repository should contain all the information about the data defi­
nitions, including display formats and validation rules. Rdb is able to take
advantage of the column validation rules and to include them in the database
definitions.

In the BANKING example, a new column that contains the number of accounts
in each branch is added to the BRANCH table. The field definition for

14.1 Rdb and CDD!Repository 359

BRANCH_ACCOUNTS in the repository has a VALID IF clause, which is
part of the database definition. The Rdb database or the new field is integrated
into the repository to include the new definition. Any attempt to insert a value
of BRANCH_ACCOUNTS less than 1000 will generate an error, as shown
in the following example.

COO> DEFINE FIELD branch_accounts DATATYPE signed longword
cont> VALID IF branch_accounts > 1000.

COO> SHOW FIELD branch_accounts
Definition of field BRANCH_ACCOUNTS

Data type
Valid if

signed longword
CBRANCH_ACCOUNTS GT 1000)

The record definition for BRANCH is amended in CDO to include the new
column:

SOL> INTEGRATE DATABASE PATHNAME
cont> · eurobank: [uk.di ct]database. banking' ALTER FI LES;

Or you could just integrate table:

SOL> ATTACH 'PATHNAME eurobank: [uk.di ct]database. banking';
SOL> INTEGRATE TABLE branch ALTER FILES;

SOL> SHOW TABLE branch

COD Pathname: EUROBANK:[UK.DICT]DATABASE.BRANCH;2

Columns for table BRANCH:
Column Name Data Type
----------- ---------
BRANCH_CODE CHAR(4)
BRANCH_NAME CHARC20)
BRANCH_ADDRESS CHARC120)
MANAGERS_NAME CHARC30)
BRANCH_ACCOUNTS I NT EGER

SOL> INSERT INTO branch VALUES

Domain

BRANCH CODE
BRANCH_NAME
BRANCH_ADDRESS
MANAGERS_NAME
BRANCH_ACCOUNTS

cont> ('345','Westhampton','12 High St','Miss West','789');

%RDB-E-NOT_VALID, validation on field BRANCH_ACCOUNTS caused
operation to fail

14.1.9

360 CDD/Repository

Defining Primary and Foreign Key Constraints

It is now possible to define the constraints in the repository and then build the
database using those definitions. Previously this was not possible and the SQL
ALTER command had to be used to include the constraints in the database.
Within CDD one can define the following types of constraints:

•Primary key

• Foreign key

•Unique

•Check

• Not Null

In COO the constraint definition is defined before the columns in the record
definition with the exception of the NOT NULL constraint, which is defined
on the column. For example, to define the primary key on BRANCH_ CODE
the record definition would now be:

CDO> DEFINE RECORD branch
cont> CONSTRAINT branch_code_primary key PRIMARY KEY branch_code.
cont> branch_code.
cont> branch_name.
cont> branch_address.
cont> managers_name.
cont> END branch RECORD.

If we were defining the foreign key from the table ACCOUNT for
BRANCH_ CODE then the record definition in the CDD would be:

CDO> DEFINE RECORD ACCOUNT
cont> CONSTRAINT invalid_branch_code FOREIGN KEY branch_code
cont> REFERENCES branch branch_code.
cont> account_no
cont> customer_no.
cont> branch_code.
cont> balance NOT NULL .
.................. rest of definition
cont> END account RECORD.

14.2 CDD/Administrator 361

14.2 CDD/ADMINISTRATOR

COD/Administrator is a GUI Motif-based tool for managing the repository.
CDD/ Administrator is of interest to database designers because it provides
the ability to view repository information in a graphic format and also to
generate customized reports.

There are a number of presentation styles or navigators, as they are known
within COD/Administrator. A number of default navigators are supplied, but
if these are unsuitable they can be customized, or you can create your own
navigators. The Hierarchy Navigator shows the directory for the BANKING
example and some of the records and fields that make up the data definitions.
Each element in the repository has its own icon to represent its object type.

Another problem for the database designer is knowing how many databases
are in use throughout the system. This is one area where COD/Administrator
and the repository can help the database team. By selecting an object type in
the type hierarchy navigator, CDD/ Administrator shows all the objects of that
type. For example, if the object type database is selected, it shows that only
two databases are in this repository, the BANKING and the ASTRONOMY
databases.

Other useful navigators include the version graph which describes the ver­
sions that are in use by the various objects.

COD/Repository provides fairly tight integration with Rdb to permit efficient
management and control of the data definitions. This enables a central data
definition to be managed by the repository, which is responsible for advising
the users that the data definition has changed. This fulfills an essential role in
the maintenance of today's complex, integrated systems.

15 Transaction Processing

We have already mentioned that Rdb can be used for ad-hoc or predefined
work. This chapter discusses predefined work and how Rdb and Digital
Equipment's transaction processing architecture and products can help cor­
porations build high-performance, resilient transaction processing (TP)
systems.

In the past, relational database technology was not fast enough to support
high-performance TP systems, but this is not the case now. Today, Rdb is
frequently found at the heart of such systems.

15.1 WHAT IS A TRANSACTION PROCESSING SYSTEM?

A widely accepted picture of a TP system shows many users doing predefined
work against a shared resource, such as a database. Compare this with the
profile of an ad-hoc system, in which, typically, a few users issue ad-hoc
queries against a shared resource, probably a database. Unlike the TP system,
the ad-hoc system's database designer cannot easily tune the database to effi­
ciently process a class of known transactions. The transactions are not known
when the database is physically designed in the ad-hoc system. In the TP
system, the database's physical design is only one of a number of system
components that can be tuned to efficiently execute predetermined transactions.
The TP system also can be compared with a classic timesharing system. Such
a system may support many users, but usually they do not share a resource
such as a database.

In practice, most organizations have applications that fit the three systems
just described. Some organizations allow TP and ad-hoc work to execute against
the same database. Many organizations, however, do not allow ad-hoc work
to be executed against the production databases. Since production databases
reflect second-by-second changes in business, they help keep the business

15.2 What are DECtp and DECdta? 363

running smoothly. Order input is one example of a production application. It
is so crucial that these databases perform efficiently that an organization must
not risk allowing unplanned work to be submitted against them. One answer is
to take periodic copies of subsets of the production databases and to permit
ad-hoc queries against these reference databases. DEC Data Distributor, dis­
cussed in Chapter 12, is an ideal product with which to create these subsets.

Now let us tum to some examples of TP systems in everyday use. Many TP
systems involve high performance and high availability. Typical TP systems
include:

• Airline reservation systems

• Vacation booking systems

• Financial transaction systems

• Customer information systems

• Sales-order entry systems

Ad-hoc systems are often used in marketing and statistical systems to search
for groups of subjects within a class, such as all the customers who live in
Paris, are married, and have brown hair. Office systems or application-devel­
opment systems are typical timesharing systems. Although sharing some re­
sources, the users typically manipulate their own documents and files.

Many applications that run in a timesharing environment would run more
efficiently under a Digital TP monitor. Digital TP monitors can be used to
develop Rdb applications if they are form based, with the end-user filling in
predefined screens of information. Such systems will perform more efficiently
and need less hardware power.

15.2 WHAT ARE DECTP AND DECDTA?

DECtp is a transaction processing system environment composed of:

• A distributed transaction processing architecture (DECdta)

• Software and hardware products

364 Transaction Processing

The architecture and software products, such as ACMS (Application Control
and Management System), will be discussed in this chapter. Originally devel­
oped for Open VMS, ACMS is now also available on other Digital platforms.

15.3 DECDTA

DECtp is built around a distributed transaction processing architecture. An
architecture is a framework in which all the components have strictly defined
interfaces and clearly understood relationships. DECdta has well-defined in­
terfaces that allow the components of a TP system to be physically separated
without having to modify any application code. This is important for the TP
system to grow smoothly and to add users onto the database. Figure 15.1
shows some of the architected TP services.

Since DECdtm's distributed transaction management services reside in the
Open VMS operating system, they are available for use by timesharing and
batch systems, as well as the TP monitor.

Forms
System

Data
Management

Figure 15.1 Architected TP Services

15.3.1

15.3 DECdta 365

DECdta is designed to allow unbounded, flexible growth in a TP system be­
cause of the following features in its architecture:

• Separation of function

• Replication of components

• Distribution of processing power

• Data partitioning

Combined, these features allow Rdb databases to service transactions that
were requested anywhere in the network and span databases on remote ma­
chines, while ensuring database and data integrity. These features are described
in the following sections.

Separation of Function

A DECdta TP system is conceptually grouped into two parts:

• TP Client

• TP Server

The two parts are shown in Figure 15.2. This is a conceptual separation; the
physical separation of these parts may occur in a number of ways, as we shall
see shortly. The TP Client is the part of the TP system that initiates requests;
for example, to execute a transaction. The requests are typically put into
action by the TP Server. The TP Client often interfaces with the end-users,
executing a forms management system such as Digital's DECforms. In this
case, the TP Client is responsible for the presentation of the forms interface,
the character I/O processing, and the local validation of form fields.

The TP Client can communicate with a device other than a video terminal,
such as a badge reader, and can interact with an interface other than a human,
such as an external data feed.

The TP Server is made up of the application and the database management
system, which in our case is Rdb. This conceptual separation ·gives the de­
signer the flexibility to define the client-server topology. The TP Client and
TP Server can reside in a single machine, in which case they are not physi­
cally separated. Because of DECdta, however, they are logically separated.

366

Figure 15.2 Separation of Function

Users

Application
Program

Server

Transaction Processing

Resource
Manager Disk

The designer can physically separate the TP Client and TP Server, placing the
TP Client in one machine and the TP Server in another. These nodes may be
separated in a local-area network (LAN), a wide-area network (WAN), or
different VMScluster nodes. Because these components have architected in­
terfaces, no application code has to be changed. By placing the TP Client on
one machine and the TP Server on another, the designer can offload the CPU
demand of forms processing from the application server to a client machine in
the appropriate department.

In this example, the total CPU power of the system has been smoothly increased
without any extra space being taken up in the computer room. This may seem
trivial, but computer rooms have a finite size and their floors can take only a
certain amount of weight. Increasing a growing business's computing power
without having to create a new computer room saves money. DECdta allows
both distributed and centralized TP systems to be built. A company can start
off with a small centralized system and move to a distributed system consist­
ing of many machines in a network without changing a line of application
code.

Another interesting point is that the client machine on which the TP Client
resides handles the screen I/O processing of the forms interface. It efficiently
sends requests and records containing data over the network to the TP Server
over another architected interface.

Separate client and server machines often are referred to as front-end and
back-end machines. So far it has been assumed that a TP Client exists in only
one front-end machine and a TP Server exists in only one back-end machine.
In fact, DECdta allows the replication of these components.

15.3.2

15.3 DECdta

Figure 15.3 Replication of Components

Users

Replication of Components

367

The ability to replicate components lets the designer increase the CPU power
available to the TP system and also its availability. Figure 15.3 shows the
components that may be replicated.

The TP Client may be replicated so each department within an organization
has its own front-ends to do local forms processing, for example. These de­
partments could be in the same building or geographically distant. In this way,
new departments could start to use the application without too much extra
CPU power being needed on the back-end system. The TP Server also can be
replicated, if necessary. A common approach would be to have a VMScluster
back-end with shared disks holding an Rdb database. ATP Server would
reside on each node in the VMScluster, running the same application code
and attached to the same database. The request workload coming into the TP
Servers from the TP Clients could be shared. This would allow the back-end
VMScluster to deal with many requests. If more power were needed at the
back-end, another machine could be easily added to the VMScluster without
having to modify the application.

The ability to replicate the TP Client and TP Server means that highly available
distributed TP systems can be built. With more than one front-end machine in
a department, the TP system can be designed so that end-users can easily
connect to the TP service on another front-end machine if the one they are
connected to fails. For added protection, fault-tolerant machines could be used
as front-end processors.

Using VMSclusters as back-end application servers also provides failover
protection in case of node failure. If a TP Server is lost because its VMScluster
node has failed, the users' transactions active on that node are aborted.

15.3.3

15.3.4

368 Transaction Processing

The VMScluster support in Rdb ensures that the aborted transactions are
rolled back by a surviving VMScluster node. Because the TP Servers are
replicated on the VMScluster nodes, another TP Server will be used if a user
reselects the business function from the menu. The users can continue their
work with only minimal disruption.

Data Partitioning

One way to increase database performance would be to split up the database
into separate physical databases that are attached to separate processors. In
this situation, partitions have dedicated processors and disks. These separate
processors can be connected by a LAN or a WAN, although for performance
reasons a LAN may be more suitable.

Because of the DECdtm component, DECdta allows systems to be practically
designed with such partitioning. Without this component, updates that span
more than one database could not be guaranteed to perform the same action.
They would either commit the transaction or abort it. The DECdtm compo­
nent of DECdta allows TP systems to maintain the integrity of distributed
databases. Involving more than one database in a transaction was discussed in
detail in Chapter 12.

Distribution of Processing Power

With the features of DECdta that have been mentioned so far, a distributed TP
system such as the one in Figure 15.4 can be built.

In this system, client front-end machines can be geographically dispersed around
the network so they are physically close to the end-users. Local forms processing
and field validation can be performed quickly and efficiently at the local proc­
essor in this way. When interaction with the back-end TP Servers is necessary,
the communication is as efficient as possible. Transactions can span Rdb
databases on each of these back-end TP Servers under the control of DECdta' s
DECdtm component.

Users working at the front-end machines do not need to know where the vari­
ous back-end TP Servers are. A user typically would be presented with a
series of menus containing the business functions that he or she is allowed to
select. The user would have no idea that the CUSTOMER INFORMATION

15.3 DECdta

Figure 15.4 Distribution of Processing Power

Client
Front-End

Back-End
Server

Back-End
Server

369

menu item caused transactions to execute on systems in London and the
ANALYZE ACCOUNT HISTORY menu item to manipulate the BANKING
database in Boston.

Failures in the front-end TP Client systems and the back-end TP Server sys­
tems can be overcome, as explained earlier in this chapter, but what happens
if the network fails? In this scenario, the front-end TP Client systems and the
back-end TP Server systems could not communicate. Business, however, would
grind to a halt until the network was re-established. ATP service, although
possibly degraded, may still be offered because of two DECdta features. One
is failover, which was introduced earlier; the other is transaction queuing of­
ten known as store and forward replication in the database marketplace. Let
us use a network failure to explain queuing.

If the network fails, the front-end TP Clients will detect this and attempt to
fail over to an alternative service on another back-end TP Server. The sequence
of back-end TP Servers in this procedure can be specified to the front-end TP
Client by the logical name searchlists. The front-end TP Client will try to fail

370 Transaction Processing

over to each specified back-end TP Server, but will fail because no connection
is possible when the network is down. Suppose, however, the last entry speci­
fied in the searchlist was for a local TP service. No network communication is
necessary to connect to this service, so the fact that the network is down is of
no concern. The user has now connected to a TP Server on the departmental
client.

What can this local TP service do for the end-user? Take the case of retrieval.
Suppose that a business application is primarily concerned with looking up
data in a database. Imagine that a credit card must be validated. Given a card
number, the application must return a credit limit and also check whether the
card was stolen. All this data, held on a large, central Rdb database, would be
inaccessible across the network if the system were down.

However, suppose that once a day the stolen credit card information is sent to
a small Rdb database held locally on the departmental processors. This could
be done in the Open VMS environment by using the DEC Data Distributor
product described in Chapter 12. This local database would be available to
the local TP Server. Consequently, the salesclerks in the departments could
determine whether a card was stolen. They could not, however, find the exact
credit limit of an individual cardholder. A blanket credit limit as decided by
the credit card company would have to be applied. In this case, business
continued as usual, although in a somewhat limited fashion. The credit card
company continued to provide a service to its customers, who were told whether
a credit card could be used.

What about update operations? In this situation a transaction queue can be
used. Take the credit card company example again. Suppose that a store has
telephoned in a query about a purchase, giving the credit card number. The
local TP Server has supplied information to the salesclerk about whether the
card is stolen. Suppose the card is good and the purchase is given the go
ahead. How can a record of this purchase be sent to the central database when
the network is still down?

The solution is to use a transaction queue. The details of the credit card pur­
chase are written to a local queue. A component of DECdta tries to take this
information from the queue and send it across to the back-end TP Server for
processing. Because the network is down, it cannot, so it merely waits awhile
and tries again. Eventually, the network comes back up, the transaction queue
gets emptied, and the central database is updated. Even if the business opera­
tion involves updating or storing information on a central database, business

15.4 ACMS 371

does not have to stop if the network fails. An example of the queuing mecha­
nism used by ACMS will be given shortly.

15.4 ACMS

15.4.1

ACMS was created to support transaction-processing-style workloads against
Rdb and other database systems. It can work in conjunction with Digital's
forms product, DECforms, or with client software running on, for example,
an IBM PC, via ACMS Desktop. In fact, ACMS can be used with any front­
end device, since Digital publishes the definition of the ACMS System Inter­
face to allow developers to interface any device with the product.

ACMS Architecture

ACMS is built on the DECdta architecture, so it is client-server in nature. An
ACMS system, therefore, can reside in one machine or the front-end and back­
end components can run on separate machines in the network. In this case, the
front-end components deal with the client presentation, and the back-end com­
ponents run the application and interface to Rdb.

Far fewer operating system processes are present in a typical ACMS system
than in a typical timesharing system. When a user logs onto, for example, the
Open VMS operating system in a timesharing system, a process is created for
each user. A hundred users would have a hundred processes, all taking up
memory and requiring a significant amount of CPU resource to create. An
ACMS system uses far fewer processes. Some specialized multi-threaded proc­
esses handle terminal interaction and forms presentation. A special process
called an application execution controller executes tasks and manages the
server pool. Figure 15.5 shows the main ACMS component processes in an
ACMS application. Additional processes concerned with housekeeping duties
have been omitted for clarity.

Tasks are the high-level definitions of business transactions and will be dis­
cussed in the next section. The server process pool is a pool of dedicated
processes that ACMS uses to execute third-generation-language code to ac­
cess the database. Usually, the server pool contains few processes. When these
server processes are created, user-written server initialization code can be
executed to automatically attach to the Rdb database (and stay attached).

15.4.2

372

Figure 15.5 Simplified ACMS Architecture

Users

Command

ACMSTasks

Application
Execution
Controller

Transaction Processing

Server
Process
Pool Database

A developer typically writes an ACMS application in one of the following:

• Task-definition language

• 3GLcode

• SQL or SQL Module Language

If a program must be written to store orders in a database, for example, a
programmer usually would structure the code so that some mainline code called
code modules to perform database access and to handle forms processing. In
an ACMS task definition, the mainline 3GL code is replaced by high-level
task statements. These statements control the logic flow within the task.
Instead of calling code modules to handle forms processing, an ACMS task
can make calls directly to DECforms. These calls are called exchange steps.
An ACMS task accesses a database by executing processing steps, which call
3GL procedures written by the developer. In Rdb, these procedures usually
would include embedded SQL or calls to SQL Module Language routines.
Chapter 17 has more information on embedded SQL and SQL Module
Language.

Figure 15.6 shows a simplified ACMS task structure, with terminal I/Ohan­
dled by exchange steps and database access by processing steps.

15.4 ACMS 373

Figure 15.6 ACMS Task Structure

Database

Terminal

Database

It is interesting to note the processes within which these steps execute. In the
case of DECforms, a multi-threaded process known as a command process
executes the DECforms component. A number of command processes may be
in an ACMS system. In distributed systems, these command processes ex­
ecute on the front-end machine. The task language is interpreted by another
application execution controller, which passes the DECforms requests to the
command process. It also manages the server pool, which contains the servers
that will attach to the Rdb database and will execute the 3GL code and SQL.
When the application execution controller must execute a processing step, it
looks to see if the correct type of server is free. If it is, the server is asked to
execute the necessary code procedure; if not, ACMS will suspend the task
until the correct server is available. Extra server processes also can be dy­
namically created, depending on the settings of various control parameters.
When the processing step has completed, the server usually is returned to the
server pool for use by other processing steps. Within the task, data is passed
between exchange and processing steps in workspaces. Workspaces are simi­
lar to record definitions and are defined in CDD/Repository. In fact, a CDD/
Repository record definition can be used to define a workspace and an Rdb
table.

15.4.3

374 Transaction Processing

Hint: Rdb transactions may be started and ended at the ACMS task­
definition level, although it is not recommended. Transactions should be
started and ended in the code of the processing step. This facilitates error
handling, such as trapping errors from the SET TRANSACTION state­
ment and deadlock error handling.

ACMS Queuing

A set of queue management routines helps create and manage ACMS queues,
queue services allowing developers to deposit (enqueue) items and remove
(dequeue) items from a queue, and a queued task initiator (QTI), which auto­
matically removes items from queues and submits ACMS tasks locally or
remotely. Figure 15.7 shows a queuing configuration, with a local queue hold­
ing tasks ready for remote submission.

~
ACMS
Queue

ACMS
Front-End

ACMS Tasks
Submitted by QTI

Figure 15.7 ACMS Queuing

ACMS S/Rdb
Back-End
Server

15.4.4

Performance

15.4 ACMS 375

Usually, a developer uses the enqueue service from an ACMS task-processing
step or a free-standing program to place an item on a queue for subsequent
processing. The queued item typically would contain:

• The name of an ACMS task

• The name of an ACMS application

• A number of workspaces

• Control information

The QTI automatically dequeues the item and submits the task to the local or
remote ACMS application, passing the task and the workspaces containing
the user data. The task then is executed in the specified ACMS application. If
the application was remote and the network was down, the QTI would con­
tinue to retry the task submission until the network was functioning.

ACMSandRdb

The ACMS architecture benefits Rdb in many ways, including:

• Performance

• Distribution

• Availability

ACMS can boost the performance or reduce the drain on system resources of
Rdb in a number of ways. Where there are many users, ACMS uses far fewer
processes to support them than a traditional timesharing system would use.
This reduction can save a company a considerable amount of memory. In­
deed, some of this saved memory can be given to the server processes. Since
there are few server processes, they can be given large numbers of buffers,
which will use up some of the memory that was saved.

We also can go a step further. Chapter 4 described how a table can be parti­
tioned over a number of disk drives based on values in a table column or
columns. Based on the same columns and range of values, we can execute a
processing step in an ACMS server process that is dedicated to processing

376 Transaction Processing

Figure 15.8 ACMS Server Partitioning

Selection Clause

Processing Step ~ Database

Processing Step Database

Processing Step Database

that table partition only. Figure 15.8 shows a SELECT clause in an ACMS
task diverting the processing of database information to the appropriate ACMS
server.

Any access to the partition is through the dedicated process and the dedicated
buffer pool. This can result in efficient buffering and low resource contention,
allowing very high transaction rates to be achieved.

We saw in Chapter 7 that when many users update a table, lock contention can
result. Dedicated servers can drastically reduce or even remove this lock con­
tention. If only one dedicated server with a large number of buffers accesses one
table partition, for example, no other process could be in contention for locks.

As was mentioned, when a server process is created (usually at the start of
day), initialization code may be executed. At this point a server usually can be
attached to a database. Once the server has initialized, it waits in the pool,
ready to work with the database attached. When a request to start a transac­
tion occurs, the server is ready to execute.

Distribution

Availability

15.4 ACMS 377

Chapter 12 described the remote access capabilities of Rdb, particularly a
program's ability to attach to a remote database. In this situation, a remote
server process is created on the machine that performs the local access to the
database. If many remote attaches are being performed from across the network
to a database, many server processes will be created on the local machine,
with the possibility of many process creations and deletions as the remote
attaches and deattaches occur. Server-process creation and database attach­
ment is expensive in terms of CPU and memory resources. In this case, it is
much better to use the inherent distributed capabilities of ACMS if the application
is a transaction-processing application. A small number of server processes
will be on the machine local to the database. These servers will be created
only once and will attach to the database only once, which is much less costly
in terms of CPU and memory.

Chapter 9 explained how Rdb data integrity is preserved when a VMScluster
node fails. The database users on the surviving nodes experience no disruption
except for a small delay as the VMScluster state transition occurs. However,
the users who were logged onto the failed node will be returned to the terminal
server prompt on their terminal, where they can reconnect to the service and
log in to Open VMS.

In a distributed ACMS application, the failover to a surviving node is smoother
and requires less intervention on the part of the end-user than with Rdb alone.
If a user is executing a transaction on a VMScluster node that fails, the trans­
action will be aborted and the user will be returned to the ACMS menu with
an error message displayed. The user can reselect the menu item and be auto­
matically failed over to a surviving node. If the user was not executing a
transaction at the time of the failure but was examining a menu, he or she will
not even know a VMScluster node has failed.

16 Database Tools

16.1 DECTRACE

DECtrace is an application event-based collector, which collects data for sub­
sequent analysis and report generation. This section briefly describes how to
use DECtrace to help tune an Rdb database or to provide workload informa­
tion for the artificial intelligence database-design tool, RdbExpert.

DECtrace collects information for facility definitions. By default, DECtrace
provides facility definitions for Rdb, DBMS, ACMS, and ALL-IN-1, plus
some third-party tools like Smartstar, but the examples in this section will
refer only to the Rdb facility definition. In practice, a facility definition would
be defined for the business system that makes up the application programs
and the database.

There are two ways that DECtrace can be used:

• Online monitoring of activity using the DECtrace monitor

• Analysis of data after monitoring is complete

Using DECtrace to analyze the performance of an Rdb database is not com­
plex but a number of steps must be followed, as shown in Figure 16.1.

The first step in collecting data is to create a selection. In the following exam­
ple, a selection for the BANKING example has been defined, that collects
information for the facility RDBVMS. This means that DECtrace will collect
information for any Rdb database. For this reason, it is important to specify a
new facility definition that includes the application to restrict the data that is
returned to DECtrace.

DECtrace> CREATE SELECTION collect_banking -

DECtrace> /COMMENT= 'banki ng_exampl e' -

DECtrace> /OPTIONS

16.1 DECtrace

Figure 16.1 Steps in Using DECtrace to Analyze an Rdb Database

Define a
Selection

Schedule a
Collection

DECtrace
Admin Db

Workload
S DAT File ------- ~./

Format ~ 6

Application

Rdb

Workload 1------...,.IFormatted 7
Workload Rdb

Option> FACILITY RDBVMS /CLASS= ALL
Option> Exit

Input to
Rdb Expert

379

This example shows that when defining a selection, the classes of data to be
collected can be specified. Classes can be either user-defined or, in the case of
Rdb, specified so that the data collected can be input into RdbExpert.

Once a selection has been made, the next step is to ask DECtrace to collect
some data. This is done through the SCHEDULE COLLECTION command,
which specifies which selections to collect data for and when this should oc­
cur. Typically, many collections for a given selection will be specified. Once a
collection starts to gather the data, the information is written to a special file
with an extension of .DAT.

DECtrace> SHOW COLLECTIOH
5-APR-1994 16:58
Brief Report

Scheduled Collections

Collections scheduled for the entire cluster

Page 1
DECtrace U2.1-0

Collection Harne Selection Harne Start End

-> BAHKIHG_DATA COLLECT_BAHKIHG 5-APR-1994 16:58 5-APR-1994 17:18

Figure 16.2 Sample Schedule Collection Display

380 Database Tools

Figure 16.3 Sample Output from SHOW REGISTER

DECtrace> SHOW REGISTER
5-APR-1994 16:59 Register Information for node RDB4ME Page 1

DECtrace U2.1-0

Registt·ations actively collecting

Node: RDB4MEI Collection: BAHKIHG_DATA Selection: COLLECT_BAHKIHG

Process Process Harue Facility Uersion Registration Id

-> 000004C4 HOBBS RDBUMS U6. 0-0
DBSUK1$DKA300:[SYSO.SYSCOMMOH.][SYSEXE]SQL$60.EXE;6
EUROBAHK:[UK.DB]BAHK_DATA.DAT;1

In the BANKING example, a collection is scheduled to start at 16:58 and to
run for 20 minutes for the selection COLLECT_BANKING. The data it gath­
ers is to be written to the collection file BANK_DATA.DAT.

DECtrace> SCHEDULE COLLECTION banking_data bank_data -

DECtrace> /BEGIN='16:58:00' /DURATION='00:20'­

DECtrace> /SELECTION =coll ect_banki ng

%EPC-S-SCHED, Data collection BANKING_DATA is scheduled

Several commands can be issued while a collection is executing. The most
useful ones are SHOW COLLECTION and SHOW REGISTER. The arrow
-> against the collection name advises that the collection is active; ** indi­
cates it is aborting. The SHOW REGISTER command details the actual ac­
tive images from which DECtrace is collecting data.

The event data that is written to the data collection file (.DAT) now must be
formatted to permit the analysis. The event data is not directly written to the
formatted structure because this would affect the performance of the running
application and defeat the object. The data files from the collection stage should
be formatted into an Rdb database, using the DECtrace FORMAT command
in the following example:

DECtrace> FORMAT eurobank:[uk.db]bank_data.dat banking_dectrace_data

Once an existing, formatted database has been created, additional collections
can be formatted into the database using the /MERGE qualifier.

The next stage is very important because once the data has been formatted
into an Rdb database the information can be analyzed. (It can be passed into
an RMS file, but then the Report Writer and RdbExpert cannot read it.)
DECtrace has its own report writer, but it will never be a sophisticated one.

16.1 DECtrace 381

Inside the DECtrace formatted database a number of tables are defined as a
result of the formatting process. The one of primary interest to the database
tuner is EPC$1_22l_REQUEST_ACTUAL. Each column has a start and
end value; to determine the actual resources used for an individual request,
the start value must be subtracted from the end value. This is achieved by
creating a new column in the table which is computed from the end and start
value. The resource information available is listed here:

AIJ_WRITES AS_BATCH_WRITE AS_READ_STALL

AS_WRITE_STALL BIO BUFFER_READS

CLIENT_PC COLLECTION_RECORD ID COMP_STATUS

CONTEXT_NUMBER CPU CURRENT_PRIO

D_ASYNC_FETCH D_ASYNC_READIO D_FETCH_RET

D_FETCH_UPD D GB NEEDLOCK D_GB_OLDVER

D LB ALLOK_START D LB GBNEEDLOCK D_LB_NEEDLOCK

D LB OLDVER D_NOTFOUND_IO D_NOTFOUND_SYN

DBS_READS DBS_WRITES DIO

FREE VM BYTES GET VM BYTES IMAGE_RECORD_ID

LOCK_RELS LOCK_REQS LOCK_STALL_TIME

PAGEFAULT_IO PAGEFAULTS PROM_DEADLOCKS

REQ_DEADLOCKS REQ_ID REQ_NOT _QUEUED

REQ_STALLS REQUEST_OPER ROOT_READS

ROOT_WRITES RUJ_READS RUJ_WRITES

S_ASYNC_FETCH S_ASY NC_READ IO S_FETCH_RET

S_FETCH_UPD S GB NEEDLOCK S GB OLDVER

S_LB_ALLOK S LB GBNEEDLOCK S LB NEEDLOCK

S LB OLDVER S_NOTFOUND_IO S_NOTFOUND_SYN

STREAM_ID TIM EST AMP _END TIMESTAMP START

TRANS_ ID V IRTUAL_S I ZE WS_GLOBAL

WS_PRIVATE WS_SIZE

The authors' recommendation for analysis of the data is to use SQL or PC
tools like Forest & Trees and Business Objects. The reason for this approach
is that viewing the information graphically means that it is easier to spot
anomalies.

From the columns one can see that by using DECtrace it is possible to identify
queries that use an excessive amount of resource, such as too many direct I/Os
or buffer reads. This information is very useful, but when it is joined with

16.1.1

382 Database Tools

table EPC$SQL_QUERIES on column SQL_ID the actual SQL used for the
query is reported. A typical query is shown below which displays the SQL for
all queries where the number of buffer reads used exceeds 100.

SOL> SELECT BUFFER_READS, SQL_STRING FROM
cont> DB_ACTUALS 0, EPC$SQL_QUERIES a WHERE
cont> D.SQL_ID = Q.SQL_ID AND BUFFER_READS > 100;

Hint: When creating new columns, some PC tools do not like certain
datatypes such as BIG INT. Therefore check with your tool before amend­
ing the DECtrace formatted database.

DECtrace Monitor

One of the problems with using the previous method of analyzing DECtrace
data is that it cannot be done while the application is running. The solution to
the problem is to invoke the DECtrace monitor which reads the specially for­
matted file and does not require the formatted Rdb database.

$ COLLECT MONITOR BANK_DATA
%EPC-S-MONITOR, Monitor spawned successfully

The monitor is spawned up as a separate process and must be displayed on an
X/Windows device. It runs well on a PC using software like Digital' s excursions.

When a collection is scheduled for use by the monitor, the /FLUSH qualifier
should be specified to ensure that information is regularly written to the data
collection file.

DECtrace> SCHEDULE COLLECTION banking_data bank_data -
DECtrace> /BEGIN=' 17: 11 :00' /DURATION='OO: 20' -
DECtrace> /FLUSH='OO: 00 :01' /SELECTION=col l ect_banki ng

%EPC-S-SCHED, Data collection BANKING_DATA is scheduled

The monitor has three screens. The first one, shown in Figure 16.4, displays
all the processes that it is monitoring. By default it displays the direct I/O
being used, but it can be changed to a number of different resources.

We can see in this example that only one user, HOBBS on node DBSUKl, is
using the application and is currently using about 24 DIOs. By double click­
ing on user HOBBS the next screen shown in Figure 16.5 is displayed.

16.1 DECtrace 383

Figure 16.4 Initial DECtrace Monitor Screen

Figure 16.5 Resource Used by User HOBBS

With this screen one can monitor any of the resources collected by DECtrace
that were listed in the table earlier. In this example we have decided to collect
Direct IO, Buffer Reads and Lock Stall Time. The threshold values for each
of the resources can be customized and saved for subsequent use.

384 Database Tools

Figure 16.6 Resources Grouped by Client PC

The final screen available, Figure 16.6, permits a further level of analysis. A
resource selected from this screen, such as buffer reads, can be grouped by
another item such as client_pc. The client_pc can be used sometimes to refer
back to a specific location in the application code.

Hint: When observing DECtrace data, remember that information is only
displayed when a request has been completed. Therefore, a long sequen­
tial read will appear as one entry with high values,;blink and you may
miss it!

The monitor also supports a replay facility, and has a very useful screen pause
option, but you must be quick with the mouse! It is ideal to use in an interactive
environment, but there is still no substitute for the detailed analysis possible
afterwards using the formatted database.

16.2 RdbExpert 385

16.2 RDBEXPERT

RdbExpert is an artificial-intelligence-based physical database design tool that
can generate physical designs for an Rdb database. To generate a design,
RdbExpert requires the following information:

• Logical database design

•Workloads

•Volumes

• Environment

RdbExpert does not replace the database designer. It complements the design­
er's work the same way that CASE tools assist the analyst and modeler.

We will briefly describe how to generate a revised Rdb database design using
the BANKING example. All the examples shown use the Motif interface.
However, a workstation is not mandatory because RdbExpert has a command
line interface that can be used from a standard VT terminal or can be dis­
played on a PC using software that supports X/Windows displays such as
eXcursions from Digital.

The first step in using RdbExpert is to define the name of the design and
create the design directories. A typical directory screen is shown in Figure 16. 7.

Figure 16. 7 RdbExpert Directory

16.2.1

16.2.2

16.2.3

386 Database Tools

Logical Database Design

The logical database design is extracted from the metadata definitions of an
existing Rdb database root file or an SQL text file. Hence, the database must
first exist, even in some very basic form, to use this tool. Once this step has
been completed, the volume, workload, and environment information can be
specified.

Workload

It is impossible to design a database successfully without information about
how it will be used. RdbExpert needs accurate workload information, such as
database access paths, types of access, and frequency. The workload data is
defined in terms of applications, the programs that make up the application,
and the transactions and requests upon the database within each program.

Since specifying the workload information manually is a very time-consuming
task, it should be derived from DECtrace. In this case, RdbExpert will accept
as input the formatted Rdb database generated by DECtrace. Otherwise it
would be necessary to manually specify each individual SQL request to
RdbExpert.

The main advantage of using DECtrace to collect the workload information is
that DECtrace will automatically identify all requests and pass them across to
RdbExpert. Manually specifying all the program access paths and database
request statements would be a very time-consuming exercise otherwise.

Hint: If the user decides to specify the workload manually, it may take
days, weeks, or even months to accurately enter all the data.

Volume

Volume information can be extracted from an existing Rdb database or speci­
fied manually. Once the basic information has been gathered, the data can be
amended to reflect the minimum, average, and maximum volume of rows in
the table, along with a factor advising how volatile the table is.

16.2.4

16.2.5

16.2 RdbExpert 387

Environment

The environment information, such as number of disks, memory available,
space available on each disk, is the only data that must be specified manually.

Database-Design Generation

Once all the information has been specified, RdbExpert generates a proposed
database design that includes all the database creation parameters, including
allocation size, page size, buffers, storage area placement, clustering, hash­
ing, and index node sizes. Various reports are generated which include:

• Analysis report

• Audit report

•Export SQL to create the database

• Redesign procedure

• Schema report

• Workload report

Analysis Report

The analysis report explains the proposed new design. The section headings are:

•Overview

• User tables

• Storage areas

• Disk requirements

• Implementation

It is presented in the form of an English report with section headings and page
numbers.

Audit Report

Export SQL

388 Database Tools

The audit report explains the actions taken during the analysis. This report,
which can be quite large, is useful to read when a question arises over the
approach taken by RdbExpert.

Once the design has been created the schema required to create the new data­
base can be generated by RdbExpert.

Redesign Procedure

For an existing database the commands to unload and load the database can
be generated. RdbExpert provides various options to customize the resulting
file, such as whether to include the postload index creation commands or in­
clude the constraint creation commands. If you are not familiar with DCL the
command file is worth browsing for an education in writing DCL!

Schema Report

The schema report comprises a number of reports and provides useful infor­
mation about the schema. It should not be confused with the actual SQL data­
base file used to create the database. It begins with general information about
the database such as buffer sizes, number of tables, indexes and views, then it
details:

• Collating Sequences Summary

• Domain Summary - Each domain and its type

• Table Summary - Each table, its size, columns and keys

• Constraint Summary - Each by name

• Trigger Summary - By Name

• Grant Summary - Object and privileges granted

• Index Summary - Index by type, size and columns

• Area Summary - Includes type, page size, and allocation extents

16.3 Graphical Schema Editor 389

• Disk Summary - Each disk, its size and files placed on it

• Area Mappings - Indicate indexes and tables in each area

• Cross Reference Summary - For each domain and table where it is used

Workload Report

16.2.6

The workload report is invaluable to the database designer because it lists for
each table which requests are using it and for each table how it has been
accessed. The later report can be compared to the actual indexes defined in the
database for comparison. It usually makes interesting reading, spotting the
differences.

Command Line Interface

If a workstation is not available, all the required information can be specified
using the command line interface supplied with RdbExpert. The one disad­
vantage of working with this interface is that it is impossible to edit the design.
To make any changes, the current values must be deleted before the new val­
ues can be created.

16.3 GRAPHICAL SCHEMA EDITOR

Defining an Rdb database using SQL can be a daunting task, especially if one
is not familiar with SQL syntax or a design comprising many tables and col­
umns has to be built. The Graphical Schema Editor tool is a GUI tool for
designing and maintaining databases. It graphically displays each table and
its columns as shown in Figure 16.8. A column with a primary key has the
symbol of a key alongside it, such as ACCOUNT_NO in Figure 16.8. Like­
wise column BRANCH_ CODE in table ACCOUNT has the symbol of a lock
alongside, denoting a foreign key and the line between BRANCH and AC­
COUNT shows the primary and foreign key relationship.

Hint: Using the Graphical Schema Editor to check for constraints is a fast
way of checking if any are missing.

390

Figure 16.8 Graphical Schema Editor

Database Tools

CUSTOMER_NO

ilJBRANCH_CODE

BALANCE

The Graphical Schema Editor can be used to define all the components in an
SQL database definition. A validation process checks that the definition is
consistent. Therefore, errors, such as a storage map referencing a storage area
that does not exist, are highlighted immediately, rather than during the execu­
tion of the SQL statements. Using GSE to create the SQL to define the data­
base means that it will complete in one pass, rather than the many that are
normally required.

16.4 INSTANTSQL

There are still many application programmers who are not familiar with SQL
or unable to write complex SQL queries. This is when tools like InstantSQL
are invaluable. Using a GUI, the application programmer simply draws lines
between boxes to define the joins, and clicks on columns to specify the predi­
cates and a host of other options. At the touch of a button the SQL for the
query is generated.

16.5 The FrEnd Family

Figure 16.9 InstantSQL

ACCOUNT_NO

CUSTON!ER_NO

BRANCH_CODE

BRANCH_NAME

391

In Figure 16.9 the columns to be displayed are filled, that is ACCOUNT_NO
and BRANCH_ CODE. A line is joined between the tables BRANCH and
ACCOUNT between column BRANCH_CODE. A predicate is defined on
column BRANCH_ CODE.

Another window is generated where the SQL for the query is displayed.

16.5 THE FREND FAMILY

The FrEnd family of tools are produced by the Information Systems Group
Inc. of 605 North Courthouse Road, Richmond, Virginia 23236, USA, tele­
phone: (804) 794-0354. There are a number of tools in the family but we have
singled out three that should be of major interest to Rdb sites. These are:

• DBAnalyzer

• DBTune

• DBXact

16.5.1

392 Database Tools

Figure 16.10 A DBAnalyzer Display

The tools are aimed at database administrators and designers, and although
initially aimed at Rdb, they are also now available for other databases such as
Oracle.

DB Analyzer

The DB Analyzer tool is designed such that a busy database administrator can
spot trouble occurring in the database quickly. DBAnalyzer scans through a
database and inspects various physical design attributes. The findings are .
synthesized and displayed in a graphical, easy to read format. A workstation
is not necessary as DBAnalyzer can display its information graphically on a
character cell VT terminal. Some of the useful information that is summarized
includes storage area mappings, the indexes with the most duplicates and stor­
age area extensions. Figure 16.10 shows a typical DBAnalyzer display.

16.5.2

16.5 The FrEnd Family 393

Figure 16.11 A DBTune Display

DB Tune

The DB Tune tool is designed such that an existing Rdb physical design can be
optimized. This often means changing a single-file Rdb database into a multi­
file one, although an existing multifile database will often benefit from DB Tune.
After scanning the database, an SQL procedure is automatically generated
that uses either RMU/LOAD and RMU/UNLOAD or SQL IMPORT and
EXPORT, depending on whether the source database is single file or not.
Workload information can be collected via another member of the FrEnd fam­
ily, described next, and this can be fed into DBTune to further enhance its
tuning capabilities. Figure 16.11 shows a typical DBTune display.

16.5.3

394 Database Tools

Figure 16.12 A DBXact Display

DBXact

The DBXact tool is designed to monitor all the active Rdb databases on a
system. A view of all the databases can be chosen or individual databases can
be observed. While holding trend information, DBXact inspects current ac­
tivity information and can trigger alarms if anything out of the ordinary is
spotted. Specific resources can be selected and observed, such as root file
read I/Os, and as the data can be stored into a Rdb database, PC tools can
access and display the information via Microsoft ODBC if required. Figure
16.12 shows a typical DBXact display.

16.6 FOREST & TREES

The Trinzic Corporation's Forest & Trees is a multi-platform tool for access­
ing data and reporting against it. It uses an intuitive user interface running
under Microsoft Windows to access spreadsheets through to mainframe

16. 7 Microsoft Access 395

Figure 16.13 A Forest & Trees View

databases and combine the information where necessary. Its data sources can
include Rdb where it can quickly and easily analyze Rdb data, graph it, report
on it and integrate it with other information. A scheduler refreshes the data at
user-defined intervals and any exceptions to predefined value ranges can trig­
ger actions and alarms. Figure 16.13 shows a typical Forest & Trees view
displaying some data from the BANKING database.

16.7 MICROSOFT ACCESS

Microsoft Access is an easy to use but powerful desktop database product. It
can be used in a stand-alone mode, in which case a user can easily create
tables, queries (similar to Rdb views in many respects), forms and reports.
However, tables in external databases can be accessed via the Microsoft Ac­
cess attach table option. The attach to external databases is achieved via
Microsoft ODBC as described in Chapter 13. To access an Rdb database
table, an ODBC data source is first created using the ODBC Administrator.
This data source contains information such as the server name, the database
location, the network protocol and the username. Once the data source has
been created, it need not be created again. It can then be used as input to the
attach table process which prompts for a data source name.

396 Database Tools

Figure 16.14 Creating a Microsoft Access Query

Assuming the server is accessible, the user will be prompted for a password
and the Rdb database will be accessed. A list of tables and views will be
displayed and the user can then select one to attach to Microsoft Access. This
operation need not be performed again; a user merely has to treat the table as
a local table, supplying their password as appropriate. This Rdb table can be
joined with other tables or updated if the relevant permission has been granted.
It can also be used in Microsoft Access queries, forms and reports. Figure
16.14 shows Microsoft Access windows that are being displayed while a user
creates a query by choosing columns from the BRANCH table.

17 Application Programming

This chapter provides brief guidelines on how to write application programs
to access an Rdb database. Application programs must be written in either
RDO or SQL, and SQL was described in the Data Manipulation chapter.
Now everyone writes programs in SQL, unless they have some legacy sys­
tems written in a proprietary language like RDO; therefore the only decision
to make is whether to use:

• SQL precompilers

• SQL Module Language

• Dynamic SQL

The advantage of writing applications in SQL is that theoretically it makes
applications more portable and easier to program. But it should be borne in
mind that unless the application is written strictly to the SQL standard, it will
not be portable if vendor specific extensions are included. Another considera­
tion is that database engines do not all behave in the same fashion. Perhaps an
application may run on one database engine, but when it is taken to another
engine it fails due to, say, differences in the locking mechanism.

Including SQL statements in a programming language is a straightforward
process; simply begin each statement with an EXEC SQL clause. Although
writing application programs is not very difficult, there are a number of issues
that must be considered, which include:

• Transactions

• Error handling

• Lock conflicts

• Manipulating streams of data

• Trapping end-of-stream conditions

398 Application Programming

A read/write transaction is automatically initiated if a transaction is not ex­
plicitly started. However, it is good programming practice to specify the start
of the transaction with a SET TRANSACTION statement because then one
can control when objects are locked and released.

Managing some of these conditions, such as error handling, requires writing a
considerable amount of extra code. The amount depends on the sophistication
of the error-trapping routines. In lock conflicts, for example, you should keep
trying to solve the problem until the lock is released, or try x times, waiting
y seconds between successive tries. A WHENEVER clause can be used to
control actions when errors occur and from Version 5.1 three error-handling
routines are available:

SQL_REGISTER_ERROR_HANDLER
SQL_GET_ERROR_HANDLER
SQL_DEREGISTER_ERROR_HANDLER

The name of the error-handling routine is registered using SQL_REGISTER
_ERROR_HANDLER, but if a program needs to use more than one error­
handling routine, then call the routine using SQL_GET_ERROR_HANDLER.

The following sections will include some COBOL program examples of how
to use the data manipulation languages.

All programs also must include the SQL Communications Area (SQLCA),
which contains various special parameters required by SQL. The programs
also must always be linked with the library image SQL$USER.

Hint: Remember that if working in a multi-version environment, then the
library to be included must include the version number, e.g., SQL$USER60
or SQL$USER51.

17.1 SQLPRECOMPILERS

The following is an example of a COBOL program that includes precompiled
SQL. Note that each statement begins with EXEC SQL and ends with
END _EXEC. The example shows how to specify the database statements
SET TRANSACTION, INSERT and COMMIT. To transfer data from the
program variables into the database, a working storage area is created with a

17.1 SQL Precompilers 399

structure that matches the database table. In the INSERT statement, a colon
prefixing the working storage name is enough to transfer data from the appli­
cation to the database.

Hint: On Open VMS systems, using COD/Repository to build the data
definitions enables the same data definition to be used to build both the
database table and the working storage record within the program. With
this approach, everyone uses the same data definition.

On Open VMS systems the procedure for precompiling is:

$ SOLPRE :== SYSSYSTEM:SOL$PRE !Set up an OpenVMS symbol

$ SOLPRE/COBOL bank_enquiry

$ LINK bank_enquiry, SYS$LIBRARY:SOL$USER/LIB

$ RUN bank_enquiry

IDENTIFICATION DIVISION.
PROGRAM-ID. SOLPRE_example.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 COLL-CODE-IND PIC S9(4) USAGE IS COMP.

* Define the SOLCA.
EXEC SOL INCLUDE SOLCA END-EXEC.

* Declare the database.
EXEC SOL DECLARE ALIAS FILENAME 'BANKING' END-EXEC.

01 Branch_details.
02 Branch_code PIC X(4).
02 Branch_name PIC x (20) .
02 Branch_address PIC X(120).
02 Managers_name PIC x (20) .

400 Application Programming

01 data_base_key PIC X(8).
01 dbhandle PIC S9(9) COMP.

01 accept_data PIC X.
01 success_fl ag PIC X.

88 successful VALUE 'Y'.
01 transaction_started_flag PIC X.

88 transaction_started
01 retry_count
01 1 ock_error _flag

88 lock_error
01 Conti nue_key

PROCEDURE DIVISION.

Add_branch.

VALUE 'Y'.
PIC S9(4)
PIC X.
VALUE 'Y'.

PIC X.

COMP VALUE 5.

* This procedure adds a new BRANCH record to the BRANCH relation

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Add Branch " LINE 1 COLUMN 20
DISPLAY "" LINE 2 COLUMN 1

* Prompt user for input.

DISPLAY "Branch Code: " NO ADVANCING
ACCEPT Branch_code PROTECTED REVERSED
DISPLAY "Branch Name: " NO ADVANCING
ACCEPT Branch_name

DISPLAY "Branch Address: " NO ADVANCING
ACCEPT Branch_address
DISPLAY "Managers name: "
ACCEPT Managers_name.
DISPLAY " "

NO ADVANCING

DISPLAY "Accept Branch Code Y or N: " NO ADVANCING
ACCEPT accept_data.
IF accept_data = "Y" THEN GO TO Store branch ELSE

GO TO Add_branch.

17.2 SQL Module Language

Store_branch.

EXEC SOL SET TRANSACTION READ WRITE RESERVING branch FOR
SHARED WRITE

END_EXEC.

EXEC SOL INSERT INTO branch VALUES (:branch_details)
END_EXEC.

EXEC SOL COMMIT

END_EXEC.

END PROGRAM SOLPRE_example.

17.2 SQL MODULE LANGUAGE

401

The SQL Module Language provides a modular approach to writing SQL
statements. Instead of embedding the SQL statements in the application pro­
gram, calls are made to the module language code, which is made up of a
separately written, compiled, and linked module.

The major benefits of this approach are that standard modules, such as 'read
branch record' or 'find all the transactions for an account', can be written and
tested. These modules are used by all application programs, saving applica­
tion development and testing time. This approach is especially beneficial if
only a few application programmers are familiar with writing database access
code. These knowledgeable people can write the database access modules,
leaving the other programmers the easy task of calling these modules from
their application programs. A sample SQL module to retrieve the balance on
an account is shown in the following example:

- SOL Module to retrieve account balance

MODULE
LANGUAGE
AUTHORIZATION
PARAMETER

find_balance_module
cobol
rdb$handle
colons

402

- DECLARE statements
DECLARE ALIAS FILENAME BANKING

- Procedure section
PROCEDURE fi nd_the_bal ance

sqlcode
:acct_no bigint,

:bal bigint(2));

Application Programming

SELECT balance INTO :bal FROM account WHERE account no= :acct no

PROCEDURE start_trans
sqlcode;

SET TRANSACTION READ ONLY;

PROCEDURE commit
sqlcode;

COMMIT;

The following example compiles the module:

SQLMOD:== SYSSYSTEM:SQL$MOD !set up an OpenVMS symbol

SQLMOD find_bal .sqlmod

Once a module is compiled, it is called from the application program using the
standard system calls. The program is compiled normally for that source lan­
guage. When it is linked, the SQL Module Language object is included in the
LINK statement. Shown below is the COBOL program which calls the SQL
module.

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
DATA DIVISION.

balance_enquiry.

17.2 SQLModule Language

WORKING-STORAGE SECTION.
01 SQLCODE

01 dbhandl e

01 account_details.

02

02

account_number
current_balance

PROCEDURE DIVISION.

Input_data.

PIC S9(9) COMP.

PIC S9(9) COMP.

PIC S9(9) COMP.
PIC S9(9)v99 COMP.

DISPLAY "Account Number: " WITH NO ADVANCING
ACCEPT account_number WITH CONVERSION.

account_enquiry.

CALL "start_trans" USING SQLCODE.

CALL "find_the_balance" USING SQLCODE, account_number,
current_balance.

CALL "commit" using sqlcode.
DISPLAY "Current Balance is:

WITH CONVERSION.

END PROGRAM BALANCE_ENQUIRY.

current balance

• Now compile the COBOL program and link the SQL module.

$ COBOL BALANCE_ENQUIRY.COB
$ LINK BALANCE_ENQUIRY, FIND_BAL, SYS$LIBRARY :SQL$USER/LIB

$ RUN BALANCE_ENQUIRY

Account Number: 9561490
Current Balance is: 56.76

403

404 Application Programming

17.3 DYNAMIC SQL

Dynamic SQL is an API that allows a program to access an Rdb database
without first precompiling the statements. This API is appropriate when the
statements used to access the database are unknown until query-execution
time. For this reason, the Dynamic SQL interface is used in products such as
SQL/Services, where the calls are unknown at the outset. Since there is no
precompilation, the execution time of statements using the Dynamic SQL in­
terface will be slightly longer.

Dynamic SQL statements are embedded in a program using some special state­
ments that tell the precompiler that this is dynamic SQL. The non-dynamic
statements are PREPARE, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE,
DECLARE CURSOR, OPEN, FETCH, and RELEASE. The SELECT state­
ment cannot be specified directly; it must be issued from within a cursor.

In the following example, the EXECUTE IMMEDIATE statement is used to
take and immediately execute a command. A small sample of error handling
code also is included.

IDENTIFICATION DIVISION.

PROGRAM-ID.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 COLL-CODE-IND

01 COMMAND_STRING

01 BUFFER

01 LEN

* Define the SOLCA

Dynami c_SOL.

PIC S9(4) USAGE IS COMP.

PIC X(240).

PIC X(300).

PIC S9(4) USAGE IS COMP.

EXEC SOL INCLUDE SOLCA END-EXEC.

* Declare the database

EXEC SOL DECLARE ALIAS FILENAME 'BANKING' END-EXEC.

01 data_base_key

01 dbhandle

PIC XC8).

PIC S9(9) COMP.

17.3 Dynamic SQL

PROCEDURE DIVISION.
Enter_statement.

DISPLAY "Enter an SOL statement".
ACCEPT COMMAND_STRING.

EXEC SOL
END-EXEC.

EXECUTE IMMEDIATE :COMMAND_STRING

PERFORM CHECK_FOR_ERROR.

EXEC SOL
END_EXEC.

EXECUTE IMMEDIATE 'ROLLBACK'

END_OF_PROGRAM.
STOP RUN.

CHECK_FOR_ERROR.

IF SOLCODE NOT = 100 AND SOLCODE NOT = 0
DISPLAY "SOL Code Error: "SOLCODE WITH CONVERSION
CALL "SOL$GET_ERROR_TEXT" USING

BY DESCRIPTOR BUFFER,
BY REFERENCE LEN

DISPLAY BUFFER(l:LEN)
END-IF.

END PROGRAM Dynamic_sql.

405

Once the statements have been included, the program is compiled and linked
as if it were any other SQL application program, as the following example
shows:

$ SOLPRE :== SYSSYSTEM:SOL$PRE !Set up a OpenVMS symbol

$ SOLPRE/COBOL Dynami c_sql . RCO

$ LINK Dynamic_sql ,SYS$LIBRARY:SOL$USER/LIB

$ RUN Dynami c_sql

406 Application Programming

17.4 2-PHASE COMMIT PROTOCOLS

On Open VMS systems, DECdtm system service calls may be embedded in a
program to coordinate and guarantee updates to multiple databases or re­
source managers using 2-Phase Commit Protocols. It is not necessary to
embed any of the DECdtm system service calls unless the program has to
manage different resource managers together, namely Rdb and RMS.

If it is necessary to embed the DECdtm system calls, changes must be made to
the application program. The programmer must do the following:

• Declare variables required by DECdtm system services

• Declare the context structure for SQL

• Include the DECdtm system service calls

• Add a USING CONTEXT clause to all SQL statements

• Remove the COMMIT and ROLLBACK statements and replace them with
the DECdtm system service calls

A sample SQL program that includes the DECdtm system service calls fol­
lows. The underlined words indicate the changes required to use DECdtm.

IDENTIFICATION DIVISION.
PROGRAM-ID. SQLPRE_DIST_EXAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORK! NG-STORAGE SECTION.
*
* Declare the variables needed for the DECdtm system services.
*

01 SS$_NORMAL PIC S9(9) COMP VALUE EXTERNAL SS$_NORMAL.
01 SS$_SYNCH PIC S9(9) COMP VALUE EXTERNAL SS$_SYNCH.
01 DDTM$M_SYNC PIC 9(9) COMP VALUE 1.

01 IOSB.
05 COND-VAL PIC 9(4) COMP.
05 BYTE-CNT PIC 9(4) COMP.
05 DEV-INFO PIC 9(9) COMP.

01 RET-STATUS PIC S9(9) COMP.

17.4 2-Phase Commit Protocols

*
* Declare the context structure for passing to SOL.

*
01 CONTEXT.

05 CONTEXT-VERSION
05 CONTEXT-TYPE
05 CONTEXT-LENGTH
05 CONTEXT-TI D.

10 LOW_DATE
10 HIGH_DATE
10 DATE_INCARN
10 NODE_ID
10 NODE_IDH

05 CONTEXT-END

01 COLL-CODE-IND

* Define the SOLCA

PIC 9(9) COMP.
PIC 9(9) COMP.
PIC 9(9) COMP.

PIC 9(9) COMP.
PIC 9(9) COMP.
PIC 9(4) COMP.
PIC 9(4) COMP.
PIC 9(9) COMP.
PIC 9(9) COMP.

PIC S9(4) USAGE IS COMP.

EXEC SOL INCLUDE SOLCA END-EXEC.

* Declare the database

01

01
01
01
01

EXEC SOL DECLARE DBl ALIAS FILENAME 'ban kl' END-EXEC.
EXEC SOL DECLARE DB2 ALIAS FILENAME 'bank2' END-EXEC.

branch_detail s.
02 branch_code PIC X(4).

02 branch_name PIC X(20).

02 branch_address PIC X(l20).
02 managers_name PIC X(20).

data_base_key PIC X(8).

dbhandle PIC S9(9) COMP.
accept_data PIC x.
success_fl ag PIC x.

88 successful VALUE "Y".

407

408 Application Programming

01 transacti on_started_fl ag PIC X.
88 transaction_started

01 retry_count
01 l ock_error _flag

88 lock_error
01 Conti n ue_key

PROCEDURE DIVISION.

Setup_variables.

VALUE 'Y'.

PIC S9(4)
PIC X.
VALUE 'Y'.

PIC X.

* Initialize the context structure.

*

MOVE 1 TO CONTEXT-VERSION.
MOVE 1 TO CONTEXT-TYPE.
MOVE 16 TO CONTEXT-LENGTH.
MOVE ZERO TO CONTEXT-END.

COMP VALUE 5.

* Invoke the SYS$START_TRANSW system service and check the
status.

*
DISPLAY "Starting distributed transaction".
CALL "SYS$START_TRANSW" USING OMITTED, BY VALUE DDTM$M_SYNC.

BY REFERENCE IOSB, OMITTED, OMITTED,
BY REFERENCE CONTEXT-TIO

GIVING RET-STATUS.

IF RET-STATUS NOT EQUAL SS$_SYNCH THEN
CALL "LIB$STOP" USING BY VALUE RET-STATUS.

Add branch.

* This procedure adds a new BRANCH record to the BRANCH relation

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Add Branch " LINE 1 COLUMN 20
DISPLAY "" LINE 2 COLUMN 1

17.4 2-Phase Commit Protocols

* Prompt user for input.

DISPLAY "Branch Code: " NO ADVANCING
ACCEPT branch_code PROTECTED REVERSED
DISPLAY "Branch Name: " NO ADVANCING
ACCEPT branch_name
DISPLAY "Branch Address: " NO ADVANCING
ACCEPT branch_address
DISPLAY "Managers name: "NO ADVANCING
ACCEPT managers_name.
DISPLAY " "
DISPLAY "Accept Branch Code Y or N: " NO ADVANCING
ACCEPT accept_data.

IF accept_data = "Y" THEN GO TO Store_branch ELSE
GO TO Add_branch.

Store_branch.

EXEC SOL USING CONTEXT :context
SET TRANSACTION

409

read write RESERVING dbl.branch FOR SHARED WRITE ,
db2.branch FOR SHARED WRITE

END_EXEC.

EXEC SOL USING CONTEXT :CONTEXT
INSERT INTO DBI.Branch
VALUES (:branch details)

END EXEC.

IF SOLCODE NOT = 1 THEN
CALL "SOL$SIGNAL"

END-IF.

410

EXEC SOL USING CONTEXT :CONTEXT
INSERT INTO DB2.Branch
VALUES C:branch_details)

END EXEC.

IF SQLCODE NOT = 1 THEN
CALL "SQL$SIGNAL"

END-IF.

Application Programming

* Invoke the SYS$END_TRANSW system service to end
* the distributed transaction.

DISPLAY "Ending distributed transaction".
CALL "SYS$END_TRANSW" USING OMITTED, OMITTED, BY REFERENCE IOSB,

OMITTED, OMITTED, BY REFERENCE CONTEXT-TIO
GIVING RET-STATUS.

* Check the return status of the call.

IF RET-STATUS EQUAL SS$_NORMAL THEN
IF COND-VAL OF IOSB NOT EQUAL SS$ NORMAL THEN

DISPLAY "Error "
CALL "LIB$STOP" USING BY VALUE COND-VAL OF IOSB

END-IF
ELSE

CALL "LIB$STOP" USING BY VALUE RET-STATUS.
EXIT PROGRAM.

END PROGRAM SQLPRE DIST_EXAMPLE.

The examples shown here just skim the surface of what can be done within an
SQL application. One could easily devote a whole book to writing programs,
in fact the Rdb documentation bears testament to that.

18 Multimedia Databases

There was a time when the only thing that people wanted to store in a database
was textual or numerical data but that is now changing. Increasing today
people are demanding information that contains pictures, sounds and full­
motion video. PC users at home already have the capability to retrieve all this
data, now they are beginning to see the potential for exploting this technology
in the workplace. Everyone is talking about gaining access to the Information
Superhighway, the place where all types of information is exchanged and ob­
tained, irrespective of its source and datatype. New technology makes it feasi­
ble but what role does the relational database play in turning this dream into a
reality?

In the beginning, if a database contained pictures then they were usually stored
in a file system outside of the database. This method, while satisfactory, caused
a number of problems. For instance, it was difficult to guarantee data integrity
between the picture and the text. The text could be deleted, but the picture
would still exist. Suppose changes were made to the pictures; then since this
was done outside of the database it was unlikely that any auditing or security
control occurred. When backups of the data were taken, one had to remember
to backup picture files and the database.

To overcome these and many other issues, the requirement is to store objects
like pictures in the database. During this chapter we will concentrate on the
picture object, but remember that multimedia is more than pictures. The tech­
niques discussed here apply equally to sounds, motion video or any other form
of unstructured data.

To qualify as a multimedia database then it must support not only magnetic
disks, but also tertiary storage, such as optical and tape. When we talk about
the types of data likely to be seen inside a multimedia database then we mean:

412

•Audio

• Characters

•Fax

•Graphics

•Image

•Telephone

•Text

•Video

Multimedia Databases

The old addage a picture can say a thousand words is literally true. Slowly
over the last few years Rdb has been evolving to support the multimedia ex­
plosion. Today it offers basic functionality but this is one area where we will
be seeing definite expansion in the future.

18.1 BLOBS

Multimedia evolves around storing and manipulating unstructured datatypes,
usually called BLOBS (binary large object). Since Vl.O Rdb has been able to
read and write BLOBS and these are known as the datatype list of byte
varying. Using our BANKING example, suppose the bank wanted to keep a
photograph of each of its customers for the purpose of security and inclusion
on credit cards. Two solutions to this problem are:

• Include the new column as part of the CUSTOMER table.

• Create a new table which includes the photographs for each CUSTOMER.

Both of these solutions are perfectly valid. We will include the new column
CUSTOMER_PHOTO as part of the CUSTOMER table.

SOL> ALTER TABLE customer
cont> ADD COLUMN customer_photo LIST OF BYTE VARYING (32000);

18.1 BLOBS

SOL> SHOW TABLE (col) customer
Information for table CUSTOMER

Columns for table CUSTOMER:
Column Name

CUSTOMER_NO
SURNAME
FIRST_NAME
ADDRESS_LINEl
ADDRESS_LI N E2
ADDRESS_LI N E3
ADDRESS_LINE4

POSTCODE
CREDIT _LIM IT
STATUS
CUSTOMER_PHOTO

Data Type

CHAR(lO)
CHAR(20)
CHAR(20)
CHAR(30)
CHAR(30)
CHAR(30)
CHAR(30)
CHAR(lO)
BIGINT(2)
INTEGER
VARBYTE LIST

Domain

STANDARD_NAME
STANDARD_NAME

Segment Length: 32000

413

Although the BLOB column is defined as part of the table definition, when the
information is stored, it is placed separate from the row. The row contains
only a pointer to the actual BLOB. Using this approach, although extra I/O is
required to retrieve the BLOB, this disadvantage is out weighed by the ad­
verse affect it would have if it was stored with the data. It would generate huge
row sizes which would cause the row to fragment. By taking so much space,
rows would not hash to their target pages.

The placement of the BLOBS is achieved through the LISTS STORAGE
MAP. Unlike tables which have their own storage map, there is one storage
map for all BLOBS where you specify in which area they are to be stored. The
options available are:

• All BLOBS in these areas

• All BLOBS for this table in these areas

• All BLOBS for this column in a table in these areas

414

A typical list storage map would be as follows:

SOL> CREATE STORAGE MAP blob_map
cont> STORE LISTS IN photo_area
cont> FOR Ccustomer.customer_photo)

Multimedia Databases

Traditional magnetic media is often unsuitable for storing large amounts of
unstructured data. A popular alternative is to use WORM (write once read
many) optical disks and Rdb supports some third-party optical disks. Denot­
ing a WORM device is achieved by using the WRITE ONCE clause in the
storage area definition.

ADD STORAGE AREA photo_area
FILENAME eurobank:[pictures]photo_area

ALLOCATION IS 25000 PAGES
PAGE SIZE IS 8
WRITE ONCE;

When the storage area is created, it is defined as a WRITE ONCE device,
which tells Rdb to not create SPAM pages in this storage area. Then on the
storage map definition, specifying the FILL SEQUENTIAL option causes the
device to fill up sequentially rather than randomly as per normal magnetic
media.

Manipulating BLOBS is not an easy task; in SQL they are managed through
list cursors. There are two types of list cursors:

• Read-only (default)

•Insert

A BLOB may only be inserted or deleted. Modification is achieved by deleting
and then reinserting. Below is an example of how to insert a BLOB into an
Rdb database using SQL. The steps involved are to set up two cursors, one
for the rows in the table and the other for the BLOB. Create a link between the
table cursor which inserts the row, and the list cursor which inserts the BLOB.
Then insert the row and the BLOB.Note that in the example here we have just
inserted some text, but in an application this would have been our photo.
Finally commit the data and close the cursors.

18.l BLOBS 415

SOL> DECLARE insert_cust INSERT ONLY TABLE CURSOR FOR
cont> SELECT customer_no, surname, first_name, customer_photo
cont> FROM customer;
SOL> DECLARE insert_pict INSERT ONLY LIST CURSOR FOR
cont> SELECT customer_photo WHERE CURRENT OF insert_cust;

SOL> OPEN insert_cust;
SOL> INSERT INTO CURSOR insert_cust
cont> Ccustomer_no, surname, first_name) VALUES
cont> ('15645789 ·,·Hagan',' Steve·);
1 row inserted

SOL> OPEN insert_pict;
SOL> INSERT INTO CURSOR insert_pict VALUES ('Picture to go here');
SOL>
SOL> COMMIT
SOL>
SOL> CLOSE insert_pict;
SOL> CLOSE insert_cust;

As can be seen from the example, including all this code in an application is
not a trivial task. A simpler mechanism is required to manage BLOBS. This is
provided by SQL Multimedia which is a 3GL library supplied with Rdb. There
are only a few calls in the API, but it takes all the hard work out of using them.
Using the API, only two steps are required, one to insert the row data and the
other the BLOB.

EXEC SOL ATTACH 'FILENAME banking';

EXEC SOL INSERT INTO customer
CCUSTOMER_NO, SURNAME, FIRST_NAME, ADDRESS_LINEl, ADDRESS_LINE2,

ADDRESS_LINE3 , ADDRESS_LINE4 , POSTCODE ,
CREDIT_LIMIT , STATUS)
VALUES ('156235', 'Hobbs', 'Lilian', '10 New Farm Lane',

'Alton', 'Hampshire','' 5000, 1);

416

status

Multimedia Databases

SQLMM$SQL_INSERT (src_object_desc,

'IMAGE' , I* Object class*/
'DOI F', I* Object format */
[transacti on_contextJ ,
'CUSTOMER', I* Table */
[object_key_column_names] ,

[object_key_values],

'CUSTOMER_PHOTO', /*Object Column Name */
[object_processing_options],

[addr_buffer_put_in],

[buffer_put_param],
[first_buffer_address],

[first_buffer_length])

If neither of these approaches are desirable then an alternative and increas­
ingly popular method for building multimedia applications is to use a PC tool
such as Microsoft Access to load and read BLOB data from an Rdb database.
The complete environment can be built on the PC and normally an application
can be written without the need for the user to specifically call any SQL or
SQL Multimedia, because this already been included in the API used by the
tools to communicate with Rdb.

For example, an Rdb database is created in SQL which includes a definition
for a BLOB. Within Microsoft Access an attachment is made to this database
and an environment created that includes a form to display and insert data.
Via this form, pictures can be inserted and retrieved from the database with­
out any code being written. For many users this will undoubtedly be the pre­
ferred method to develop applications.

Figure 18.1 shows one of the authors in an Rdb Multimedia application built
around Microsoft Access.

This chapter is short because using Rdb to create a multimedia database is
very straightforward. If you are concerned about using SQL list cursors or
SQLMultimedia API then use a PC to read and insert the data. This is the
authors' favorite method.

18.1 BLOBS 417

Figure 18.1 Microsoft Access Retrieving Rdb Multimedia Pictures

19 Rdb on OSF/1

1994 was a momentous year for Rdb, 10 years old and now released onto an
operating system other than OpenVMS. This heralds a new beginning for
Rdb, because it was always perceived as a product that could run on Open VMS
only. Now it is being launched onto other platforms, the first, OSF/1 and the
Windows NT for Alpha.

The purpose of this chapter is to highlight the differences when Rdb is run on
a platform other than Open VMS. These differences occur due to the opera­
tion system environment, such as file specifications and functionality that
may not be available.

19.1 OSF/1 DIFFERENCES

19.1.1

Rdb Open VMS users should not be concerned about using the OSF/1 ver­
sion. It's like corning home to a house you almost know. The hardest aspect is
learning the OSF/1 commands!

As one can see from the list below, there are only a few features that are not
available in this version.

Functionality not Available on OSF/1 V6.1

• Bound volume set

• CDD/Repository integration

• Cluster support

• Collating sequences for internationalization

• RMU commands, ALTER, AUDIT, CONVERT and tape libraries

19.1.2

19.1.3

19.1 OSF/l Differences 419

• 2PC support

• Partitioned lock trees

Key Differences with Open VMS

The reader familiar with Rdb on Open VMS will notice the primary differ­
ences are in the following areas:

• Configuration files

• Different naming convention for databases

• Logical names now called environment variables

• Operation system specific file specifications

• Syntax differences

• SQL/Services architecture

• The dbsmgr account

Client/Server

Rdb on OSF/1 runs as a typical client/server application which is a major
difference from the Open VMS version. In the Open VMS version the user's
applications connects directly to the database, as illustrated in Figure I 9 .1.

t'
User Application
Code plus SQL

Rdb
Database

Figure 19.1 A Typical Open VMS Application

19.1.4

420

Figure 19.2 The OSF/1 Architecture

User1

Rdb
Server 1

Rdb
Database

User2

I
Rdb
Server 2

/

(~~~~~~R_d_b~M_o_n_it_or~~~~~__,)

Rdb on OSF/1

On an OSF/1 system the environment is different as illustrated in Figure 19.2.
A client application contains the SQL code which then attaches to a database
server process. In V6.1 the server is single threaded; that is, one client is
serviced by one server. However, this is very likely to change in a future ver­
sion. This server is a separate process on the machine and runs under the
username dbsmgr. Only these servers are allowed to attach to a database and
it is their responsibility to communicate with the Rdb monitor and to coordi­
nate all shared database access and recovery in the event of a failure.

Processes

There are more processes involved in an OSF/1 database application. The
Rdb monitor and AU processes still exist, but now because of the client/server
architecture, for each user process there is an additional database server pro­
cess. All of these processes runs under the dbsmgr user ID.

19.1.5

19.1.6

19.1.7

19.1 OSF/1 Differences 421

dbsmgr Account

All OSF/1 systems must have a dbsmgr account, which is from where the
monitor must be started and stopped. When a database is created then it is
owned by the dbsmgr account, but it is still acessible by users granted access
rights. The server process is run under dbsmgr, which is the reason behind the
files being owned by it.

Hint: Don't forget the password for dbsmgr because you will use it fre­
quently and do remember to tell everyone if you change it.

Logicals Are Now Environment Variables

One of the powerful features in the Open VMS version ofRdb is the ability to
tune the database and enable/disable feature using logicals. This feature is
still available on OSF/1 by using environment variables which are held in
configuration files. The values specified are identical to those in Open VMS
but the names have changed to RDB, as described in Appendix B.

Hint: Environment variables cannot be defined manually.

Configuration Files

Defining a configuration file is a new concept for Rdb users. Its purpose is to
describe the environment. There are two types of configuration files, system
and users. The system configuration files are:

dbengine.conf
rdb.conf

rdblck.conf
sql .conf

(Rdb client)
(Rdb servers)
(Lock Manager)
(Client and SOL Applications)

For the majority of Rdb systems it is unlikely that these will require modi­
fication.

19.1.8

422 Rdb on OSF/1

The user configuration file is called .dbsrc and a typical one is shown below
where the buffers are set to 100, the debug flags are set to S and E and the
default database is BANKING. Only environment variables defined here will
be used by Rdb.

RDB_BIND_BUFFERS 100
RDB_DEBUG_FLAGS SE
SQL_DATABASE /eurobank/uk/db/banking.rdb

Database Files

On an OSF/1 system any number of Rdb databases can be created, which is
different from some other OSF/1 database systems. Anyone can create the
database, provided they have the appropriate file system privileges to create
the files.

An OSF/l Rdb database comprises .RDB, .RDA and .SNP files like its
Open VMS counterpart but the structure is slightly different. In OSF/1, if you
wanted to create the database at /eurobanklukldb and the storage areas, the
SQL to achieve this would be:

SOL> CREATE DATABASE FILENAME
cont> /eurobank/uk/db/banking.rdb
cont> CREATE STORAGE AREA customer area
cont>
cont>
cont>

FILENAME /eurobank/uk/dbfiles/customer area

The syntax shown in the Data Manipulation chapter can be used on OSF/1. In
the example above the database is formed by creating a directory called
banking.rdb and in this directory is located the root file which is called
rdb_system. The .RDA and .SNP files will be located in this directory unless
you specify otherwise, which in this example is in the eurobank/uk/dbfiles/
directory.

When a database is created, all the files are owned by the dbsmgr account, as
shown below. It is very important that the file protections are not changed
because otherwise the database servers will be unable to access the database.

19.1.9

19.1 OSF/l Differences

ls -1 /eurobank/uk/db

/eurobank.rdb

total 57

423

-rwxr-r- 1 dbsmgr system 0 Oct 12 16:57 rdb.protect

-rwxr-r- 1 dbsmgr system 58368 Oct 22 00:42 rdb_system.rdb

#ls -1 /eurobank/uk/dbfiles/*.rda
-rwxr-r- 1 dbsmgr system 417792 Oct 12 16:57 bank_acct.rda

-rwxr-r- 1 dbsmgr system 2900992 Oct 12 16:57 bank_cust.rda

-rwxr-r- 1 dbsmgr system 3193856 Oct 18 14:21 bank_system.rda
-rwxr-r- 1 dbsmgr system 515072 Oct 12 16:57 bank_trans.rda
-rwxr-r- 1 dbsmgr system 411648 Oct 12 16:57 customer_pics.rda

To delete a database, the same rules applies as for Open VMS systems; use the
SQL statement DELETE DATABASE and not the rm command in OSF/l.

The only place where databases cannot be created is on NFS mounted devices.

RMU Utility

The RMU utility is a little different on OSF/1. Like Open VMS the GUI ver­
sion is available, but in addition there is a command line prompt facility. By
specifying the RMU command an RMU prompt is obtained. At this prompt
you can execute RMU commands and overflow onto continuation lines. It is
invoked using lowercase rmu.

Using the standard command interface, all RMU commands are prefixed with
a minus sign (-), e.g.,

rmu -dump -header -output=
rmu -backup -log /eurobank/uk/db/banking.rdb /eurobank/

backups/bank_Olll

If you use the RMU prompt, you would not have to enter the minus sign (-) for
the first command, e.g.,

rmu> dump -header -output=

rmu> backup -log /eurobank/uk/db/banking.rdb /eurobank/
backups/bank_Olll

424 Rdb on OSF!l

All the RMU commands except ALTER, AUDIT and CONVERT are avail­
able and they function as described in previous chapters and the output is
identical. Therefore, will quickly feel at home with RMU if you used it on
Open VMS.

The RMU GUI is invoked by specifying RMUwin. It then behaves exactly as
per the Open VMS version and RMU SHOW STATISTICS is only available
on the GUI version.

19.1.10 SQL

Using SQL on OSF/1 is almost identical to SQL on Open VMS. The syntax is
the same, so the only differences are due to the operating system. Therefore all
the examples shown in Chapter 3 can be tried on an OSF/l system.

Let's look at the example below where we attach to a database:

To invoke SQL enter sql in lowercase and obtain an SQL> prompt. If
SQL_DATABASE has been defined in the .dbsrc configuration file, then the
user will automatically be attached, otherwise:

SOL> ATTACH 'FILENAME /eurobank/uk/db/banking'

Once attached all commands are the same as for Open VMS:

SOL>SHOW TABLES
User tables in database with filename /eurobank/uk/db/banking

ACCOUNT
BRANCH

CUSTOMER
TRANSACTIONS

SOL> SHOW DATABASE

Default alias:
Rdb database in file /eurobank/uk/db/banking

Therefore all the features in SQL that you are used to using on Open VMS are
available, such as functions, invoking external command files and command
line recall. The only feature not implemented is the ability to edit previous
commands. Therefore the authors recommend that commands are placed in
files and invoked from within SQL.

19.1.11

19.1.12

19.1.13

19.1 OSF!l Differences 425

Naming Conventions

OSF/1 is a case sensitive language; therefore objects must be referenced ex­
actly as they are described. Therefore if a storage area is named using lowercase
letters, it is physically created as described. However SQL parses all names to
uppercase.

Hint: The SQL parser always converts to uppercase; therefore in utilities
like rmu -load, the table name must be specified in uppercase.

The example below illustrates a sample RMU command:

rmu -load banking BRANCH branch.dat

File Versions

Often it is necessary to create multiple versions of a file, such as a bugcheck
dump, but this is not standard on OSF/1. To achieve multiple versions, the
version number is appended to the filename. Therefore a bugcheck dump would
be named as

rdmbugchk.dmp.l

Therefore when searching for files, don't forget the version number, otherwise
OSF/1 will state that none of these files exist.

Lock Manager

The lock manager is different under OSF/1, but this is transparent to the Rdb
user. The monitor creates lock tables which are held in shared memory. There
is only one set of these tables and they contain lock information for all the
OSF/1 Rdb databases on the system. The locking mechanisms employed by
Rdb are unchanged in the OSF/1 version. Therefore users will still encounter
area, page and record locks, which can be monitored through the screens in
RMU SHOW STATISTICS.

19.1.14

426 Rdb on OSF/1

Security

Working in this client/server environment, authentication of the user is differ­
ent. The first time the client attaches to the server, the server identifies who the
user is, or the client explicitly states who they are when they attach to the
database, by specifying the username and password in the dbsrc configuration
file or as part of the ATTACH statement as illustrated below.

SOL> attach 'filename /eurobank/uk/db/banki ng. rdb -

cont> USER "lmhobbs" USING "Itsasecret" ';

In the above example a valid username and password was specified. If it is
invalid then the user is denied access to the database as shown below.

SOL> attach 'filename /eurobank/uk/db/banking.rdb -
cont> USER ''larry'' USING ''ResistanceisFutile'' '

%SOL-F-ERRATTDEC, Error attaching to database
/eurobank/uk/db/banking.rdb

-RDB-E-NO_PRIV, privilege denied by database facility

-COSI-F-NOPRIV, no privilege for attempted operation

Below is an example of specifying in the .dbsrc file:

SQL_USERNAME lmhobbs

SQL_PASSWD itsasecret

If you do not wish to comprise security by writing the password in a configu­
ration file, you can request it be input on the SQL attach by declaring the
variable :passwrd.

SOL> ATTACH 'FILENAME banking USER ''hobbs'' USING :passwrd ;

The X/Open standard defines that the username and password can be speci­
fied as part of the CONNECT statement.

Alternatively, if the user does not state who they are, the server finds out the
user ID of the client.

In Chapter 8 we discussed securing the database on Open VMS and the tech­
niques described there apply to OSF/1 systems. Identifiers are specified on
OSF/l systems using the group and username.

19.1.15

19.1 OSF/l Differences 427

In the example below we can see that user Larry has all access rights except
ALTER and DROP:

SOL> SHOW PROTECTION ON DATABASE rdb$dbhandle
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=[users,larry],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[systern,lmhobbs],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[*,*J,ACCESS=NONE)

The following grants user hagan access to this system. Note that entries are
always added at the beginning, but just as with Open VMS, they can be posi­
tioned anywhere in the list using the POSITION clause.

SOL> GRANT all ON DATABASE ALIAS rdb$dbhandle TO [hagan];

SOL> SHOW PROTECTION ON DATABASE rdb$dbhandle
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=[users,hagan],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[users,larry],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[systern,lmhobbs],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[*,*J,ACCESS=NONE)

SQL/SERVICES

The SQL/Services component of Rdb has been completely changed for the
OSF/l version and will be released into future versions of Rdb on Open VMS.
This change has occured because with the ever increasing number of client/
server applications being developed, an efficient, fast access mechanism is
required.

The new SQL/Services architecture is illustrated in Figure 19.3.

428 Rdb on OSF/l

Figure 19.3 OSF/1 SQL/Services Architecture

Client Program
SQUServices
MS-DOS API

----..... Y Dispatcher Process

Monitor

~
-.......;y

....--- Executor Pool

Executor Executor
Process Process

Pool of Executors \I
LJ Rdb

t-'

SQL/Services has a monitor process which is responsible for starting and
stopping servers, managing the configuration database and various other sys­
tem management functions.

The dispatcheris responsible for routing and scheduling the client requests to
the executors.

The executor receives the client requests from the dispatcher, accesses the
database and returns the results of these requests to the dispatcher.

To create this environment there is a configuration file called
SQS_CREATE.SQS. Here is where we describe which server to connect to,
how to create the dispatcher, which services are to be provided and the execu­
tors to provide for each service.

Services (defined using CREATE SERVICE) can be described as generic or
for a particular database. A generic service is described as being session re­
usable which means that every associate call from a client will create a new
process. Database class services may be either session or transaction re-us­
able. The advantage of a using a transaction re-usable service is that multiple
clients can share the same executor, but the executor can only execute one
transaction at a time. Therefore if the executor receives too many requests,
other users will be stalled in a queue waiting to be served. Therefore to reduce
the queue, you will have to create more executors for this service.

19.1 OSF/l Differences 429

Once a configuration has been defined, its details are permanently recorded.
Therefore every time the monitor and the server is started, the same environment
is created. A sample startup procedure is held in the file S~_STARTUP.SQS.

Hint: The default server creates a shared memory file of 2 Mb. If many
users are attaching through SQL/Services, this will not be adequate.
Therefore specify a large memory size on the CREATE SERVER command.

SQL/Services now has its own management utility in the form of
SQ~MANAGE. From its own command line interface, the commands shown
below are available.

Table 19.1 SQS_MANAGE Commands

ALTER EXECUTORS FOR SERVICE
ALTER SERVER
CONNECT TO SERVER
CREATE DISPATCHER
CREATE EXECUTORS FOR SERVICE
CREATE SERVER
CREATE SERVICE
DISCONNECT SERVER
DROP
GRANT USE ON SERVICE
REVOKE USE ON SERVICE
SET CONFIG_FILE

SET SERVER
SHOW CLIENTS FOR SERVICE
SHOW CONNECTS
SHOW DISPATCHER
SHOW EXECUTORS FOR SERVICE
SHOW PRIVILEGES FOR SERVICE
SHOW SERVER
SHOW SERVICE
SHOW SETTINGS
SHUTDOWN SERVER
START DISPATCHER
START EXECUTORS FOR SERVICE
START MONITOR
START SERVER

Change executors for a service
Change server parameters
Connect to a specific server
Create dispatcher for current server
Create an executor for a service
Create a server
Create a service
Disconnect a server
Drop an executor, dispatcher, server or service

Grant a user access to a service
Revoke a user's right to use a service
Specify a different configuration file
Set to a server to be the current one
Display the active users of a service
Information about the current server
Status of dispatcher objects
Status of executors of a service
Show privileges for a service
Display status of servers

Show service status
Details on SQS_MANAGEJl settings
Shut down the current server
Start dispatchers
Start executors for a service
Start the monitor
Start dispatcher and executors for current server

430 Rdb on OSF/1

This is an impressive list of commands available to manage the SQL/Services
environment. The reader should not feel daunted by all these commands. They
are extremely well described in the SQL/Services documentation which also
explains in considerable detail all the issues to be checked, reviewed and planned
when creating this environment. After a short period of time using this prod­
uct, you will wonder how you ever managed before.

Hopefully this chapter has convinced the reader that the differences between
the OSF/1 and Open VMS versions are few and far between. It's easy to use,
so enjoy!

20 The Future of Rdb

At the time of writing this chapter, Rdb has been in existence for ten years.
The product is almost unrecognizable from when it first came into being.
Many early users will remember the delight when it was possible to achieve
double figure TPS numbers. In April 1994, Rdb delivered 3692 TPS at a cost
of $4866 running the TPC-A benchmark on a 766 gigabyte database. This is
a far cry from those days when double figure TPS numbers seemed a dream.

It is estimated that there are in excess of a million users of Rdb world-wide
and over 80,000 licenses. Every day we use systems that we take for granted,
not realizing that behind the systems, there is an Rdb database providing the
information.

Over the years Rdb has grown into a product that is rich in functionality. In
the beginning all information was held in a single-file database which restricted
Rdb to databases the size of the disk or volume set. With the introduction of
multifile databases and partitioning, today databases occupying tens or hun­
dreds of gigabytes are possible, and in the future we will no doubt see Rdb
databases using many terabytes of space. At first glance one wonders how
anyone could accumulate a terabyte of data, but with the growing interest in
multimedia applications, even a terabyte may seem small. Now that Rdb sup­
ports WORM devices, it's quite easy to build a database using that much
space. As new types of storage devices are developed, Rdb will be modified to
support them.

20.1 NEW ENHANCEMENTS

Today the highest performance is expected from a relational database. Since
many are used in 'bet your business' applications, a long response time often
means keeping a client waiting. Have you ever noticed how waiting for only 2
or 3 seconds on the telephone seems like an eternity? Every release sees new

432 The Future of Rdb

enhancements to improve performance. For example, global buffers in V 4.1
increased the throughput on many systems and asynchronous batch writes
and the new AIJ features in V6.0 helped considerably. V6.l gave us the ability
to create huge in-memory structures, resulting in an almost memory resident
database for small databases in the single-figure gigabyte arena. At the time
of writing Rdb 6.1 is the only 64 bit native database in the industry.

Reducing the time to read and write 1/0 is another area to watch. Asynchro­
nous pre-fetch introduced in V6.0 currently only works for sequential scans,
but is a technique that could equally be applied to other types of searches and
structures in the database. One wonders what other new ideas the Rdb engi­
neers will develop to increase the performance of Rdb.

There is a wealth of tools out there that support Rdb, across the broad spec­
trum of 3rd and 4GL tools, to TP monitors and of course the PC tools. The
adoption by many vendors of the de facto standard ODBC means that any
ODBC compliant software can access an Rdb database.

So many organizations are adopting client/server technology in the 90s that
we will undoubtedly see improvements in Rdb to support this environment
more efficiently. The revised SQL/Services code, first released on OSF/1 and
later on Open VMS, is an indication of the direction being taken.

1994 is a significant year for Rdb because it heralds the move away from
being a database that runs on only Open VMS to one that runs on OSF/1 and
Windows NT. Perhaps now it will be acknowledged as being a portable data­
base product. In the future we will undoubtedly see Rdb appearing on other
operating systems.

Distributed databases were once a very key aspect of relational database
systems. Today there seems to be more emphasis on accessing legacy systems
and integrating heterogeneous data. The release of DEC DB Integrator in
1994 has shown that it is possible to easily access remote data. This product
is in its infancy as to product functionality. Therefore in the coming years, we
will no doubt see enhancements that will benefit anyone wishing to create a
distributed Rdb environment.

The multimedia business is proving to be a growth area in the 90s. There is a
growing need to store complex data, such as voice, graphics, image, and video.
Rdb already contains the basic building blocks to support this type of data
storage, the BLOB and the SQL Multimedia API to manage the objects. The

20.1 New Enhancements 433

functionality provided in this area is very limited, but by V7.0 content based
retrieval will be available. The proposed SQL3 standard contains many changes
to support multimedia and object-oriented extensions. Since Rdb is following
the standard very closely, in the future we are likely to see many of these
appearing in Rdb.

From V7.0 Rdb will become an object-oriented database, providing capabili­
ties such as attribute level encapsulation, virtual attributes, polymorphism.
Abstract datatypes like document, image and video and collection types of
lists, set, multi-set and arrays will exist.

Many users may be surprised to learn that Rdb V6.0 contains the work from
14 successful patent applications. Therefore watch out in the future for more
innovative work from the Rdb engineering team.

We already have the ability to create indexes in parallel and enhancements
were introduced in V6.1 to support DBI. Therefore more parallelism is an­
other feature that we are likely to see in the future.

Finally, at the time of writing, Digital is selling Rdb to the Oracle Corpora­
tion, which will ensure that Rdb has a very bright future. As part of the deal,
the entire engineering team is transferring to Oracle, who plan to continue
enhancing Rdb for at least three years and supporting it for seven. Sometime
in the future, the Rdb and Oracle database engines will converge into one.
Through a standard product upgrade, users will be able to take advantage of
the new database engine without disruption to existing applications.

Despite being ten years old, there is still much that can, and will, be done to
improve Rdb. So don't think that you can give up looking at the release notes.
There is still plenty of reading ahead and much to learn.

A Banking Database Definition

set default environment

set language ENGLISH:
set default date format 'SQL92':
set quoting rules 'SQL92':
set date format DATE 001, TIME 001:

create database files

create database
filename 'EUROBANK:BANKING.RDB'
dictionary is not required
protection is acl
buffer size is 6 blocks
number of buffers 50
number of recovery buffers 50
global buffers are enabled (number is 400, user limit 20)
statistics collection is enabled
system index compression is enabled
reserve 10 storage areas
reserve 1 journals
snapshot is enabled immediate

segmented string storage area is LIST_AREA

Banking Database Definition

create storage area RDB$SYSTEM
filename 'eurobank:BANK_SYSTEM.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 5000 pages
snapshot filename 'eurobank:BANK SYSTEM.SNP'
snapshot allocation is 100 pages

create storage area CUSTOMER_AREA
filename 'eurobank:CUSTOMER_AREA.RDA'
locking is row level
page format is mixed
page size is 2 blocks
allocation is 500 pages
snapshot filename 'eurobank: CUSTOMER_AREA. SNP'
snapshot allocation is 100 pages
snapshot extent is (minimum 99, maximum 9999, percent growth 20)

create storage area ACCOUNT_AREA
filename 'eurobank:ACCOUNT_AREA.RDA'
locking is row level
page format is mixed
page size is 2 blocks
allocation is 1000 pages
snapshot filename 'eurobank:ACCOUNT_AREA. SNP'

create storage area BRANCH_AREA
filename 'eurobank:BRANCH_AREA.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 1000 pages
snapshot filename 'eurobank:BRANCH AREA.SNP'

435

436 Banking Database Definition

create storage area TXN_AREA_93
filename 'eurobank:TXN_AREA_93.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 2000 pages
snapshot filename 'eurobank:TXN AREA_93.SNP'
snapshot allocation is 100 pages

create storage area TXN_AREA_94
filename 'eurobank:TXN_AREA_94.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 2000 pages
snapshot filename 'eurobank:TXN_AREA_94.SNP'
snapshot allocation is 100 pages

create storage area TXN_AREA_95
filename 'eurobank:TXN_AREA_95.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 2000 pages
snapshot filename 'eurobank:TXN AREA_95.SNP'
snapshot allocation is 100 pages

create storage area INDEX_AREA
filename 'eurobank:INDEX_AREA.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 2000 pages
snapshot filename · eurobank: INDEX_AREA. SNP ·
snapshot allocation is 100 pages

Banking Database Definition

create storage area LIST_AREA
filename 'eurobank:LIST_AREA.RDA'
locking is row level
page format is uniform
page size is 2 blocks
allocation is 2000 pages
snapshot filename • eurobank: LIST_AREA. SNP'
snapshot allocation is 100 pages;

create domains

437

create domain SPECIAL TEXT list of byte varying (l);

create domain STANDARD_DATE date;

create domain STANDARD_NAME char (20);

create tables

create table CUSTOMER

CUSTOMER_NO char(lO)
constraint CUSTOMER_CUSTOMER_NO_PK
primary key
deferrable,

SURNAME
FIRST_NAME
ADDRESS_LI N El
ADDRESS_LINE2
ADDRESS_LINE3
ADDRESS_LI N E4
POSTCODE
CREDIT_LIMIT
STATUS

-) ;

STANDARD_NAME,
STANDARD_NAME,

char (30),
char (30),
char (30),
char (30),
char (10).

char (10).
integer

438 Banking Database Definition

create table BRANCH

BRANCH_CODE char (4)
constraint BRANCH_BRANCH_CODE PK
primary key
deferrable,

BRANCH_NAME
BRANCH_ADDRESS
MANAGERS_NAME
) ;

create table ACCOUNT

char (20),
char (120),
char (20)

ACCOUNT_NO char (10)
constraint ACCOUNT_ACCOUNT_NO_PK
primary key
deferrable,

CUSTOMER_NO char (10),
BRANCH_CODE char (4)

constraint ACCOUNT_FKOl
references BRANCH CBRANCH_CODE)
deferrable,

BALANCE bigint,
OVERDRAFT _LIMIT
ACCT_TYPE
STATEMENT_FREQ
STATEMENT_DATE

bigint,
integer,
integer,
STANDARD_DATE,

STATEMENT_DAY integer,

) ;

constraint ACCOUNT_FK_02
foreign key CCUSTOMER_NO)
references CUSTOMER (CUSTOMER_NO)
deferrable

create table ACCOUNT_NOTES

ACCOUNT_NO
ACCOUNT_TEXT
) ;

char (10),
SPECIAL_TEXT

Banking Database Definition

create table ACCOUNT_TRANSACTION
(

ACCOUNT_NO char(lO),
TRAN_DATE char(4),
TRAN_AMT bigint,
DC_IND integer,
TRANS_CD char(4),

constraint ACCOUNT_TRANSACTION -
foreign key CACCOUNT_NO)
references ACCOUNT CACCOUNT_NO)
deferrable

) ;

create views

create view CUSTOMER_MAILING

CUSTOMER_NO,
SURNAME,
FIRST_NAME,
ADDRESS_LINEl,
ADDRESS_LI NE2,
ADDRESS_LI NE3,
ADDRESS_LI NE4,
POSTCODE
)

as select CUSTOMER_NO,
SURNAME,
FIRST_NAME,
ADDRESS_LINEl,
ADDRESS_LINE2,
ADDRESS_LINE3,
ADDRESS_LI N E4,
POSTCODE

from CUSTOMER;

439

FK_Ol

440

create view CUSTOMER_ACCOUNT INFO

CUSTOMER_NO,
SURNAME,
FIRST_NAME,
CREDIT_LIMIT.
ACCOUNT_NO,
BALANCE
)

as select C. CUSTOMER_NO,
C.SURNAME,
C.FIRST_NAME,
C.CREDIT_LIMIT.
A.ACCOUNT_NO,
A.BALANCE

from CUSTOMER C, ACCOUNT A

Banking Database Definition

where C.CUSTOMER_NO = A.CUSTOMER_NO;

create view BIG_TRANSACTIONS
as select * from ACCOUNT_TRANSACTION
where TRAN_AMT > 10000
with check option constraint CHECK_VIEW;

create triggers

create trigger CHANGE_BRANCH_CODE
before update of BRANCH_CODE on BRANCH
referencing OLD as OLD_BRANCH_CODE
NEW as NEW_BRANCH_CODE

(update ACCOUNT A
set A.BRANCH_CODE = NEW_BRANCH_CODE.BRANCH_CODE
where A.BRANCH_CODE = OLD_BRANCH_CODE.BRANCH_CODE)

for each row;

Banking Database Definition

create indexes

create unique index CUST_NO_HASH on CUSTOMER
(CUSTOMER_NO)
type is hashed scattered
store in CUSTOMER_AREA;

create index ACCOUNT NO HASH on ACCOUNT
(CUSTOMER_NO)
type is hashed scattered
store in CUSTOMER_AREA;

create index CUST_SURNAME_SORTED on CUSTOMER
(SURNAME)
type is sorted
enable compression
(minimum run length 2)
store in INDEX_AREA;

create index BRANCH_CODE SORTED on BRANCH
(BRANCH_CODE)
type is sorted
node size 400
usage query
store in INDEX_AREA;

create index ACCT_TXN_SORTED on ACCOUNT_TRANSACTION
(ACCOUNT_NO,

TRAN_DATE)
type is sorted
store in INDEX_AREA;

441

442

create storage maps

create storage map CUSTOMER_MAP
for CUSTOMER
store in CUSTOMER_AREA
placement via index CUST_NO_HASH;

create storage map ACCOUNT_MAP
for ACCOUNT
disable compression
store in ACCOUNT_AREA

Banking Database Definition

placement via index ACCOUNT_NO_HASH;

create storage map BRANCH_MAP
for BRANCH
store in BRANCH_AREA:

create storage map ACCOUNT_TXN_MAP
for ACCOUNT_TRANSACTION
store using CTRAN_DATE)
in TXN_AREA_93 with limit of ('1993')
in TXN_AREA_94 with limit of ('1994')
in TXN_AREA_95 with limit of ('1995');

B Rdb Logical Names/
Environment Variables

Rdb OpenVMS Rdb OSF/1

RDB$CHARACTER_SET SQL_CHARACTER_SET
defines an alternate character set

RDB$RDBSHR_EVENT_FLAGS SQL_RDBSHR_EVENT_FLAGS
used to override the event flag numbers

RDB$REMOTE_BUFFER_SIZE SQL_REMOTE_BUFFER_SIZE
defines the default buffer size of network transfers

RDB$REMOTE_MULTIPLEX_OFF SQL_REMOTE_MULTIPLEX_OFF
disallows a single local process to access multiple remote databases on the same node through a single
remote RDB_SERVER process

RDBVMS$CREATE_DB
restricts the creation of databases

RDM$BIND_ABW _DISABLED RDB_BIND_ABW _DISABLED
disables asynchronous batch-write operations

RDM$BIND_AU_STALL RDB_BIND _AIJ_STALL
processes wait time after AIJ commit records submission

RDM$BIND_APF _DEPTH RDB_BIND_APF _DEPTH
defines number of buffers to asynchronously pre-fetch for a process

RDM$BIND _APF _DISABLED
disables asynchronous pre-fetch

RDM$BIND_BATCH_MAX

RDB_BIND_APF _DISABLED

RDB_BIND_BATCH_MAX
defines the number of buffers that are written to the database as part of a batch-write operation

RDM$BIND_BUFFERS RDB_BIND_BUFFERS
defines the number of buffers used by an attach

444 Rdb Logical Names

Rdb OpenVMS RdbOSF/1

RDM$BIND_CKPT_TRANS_INTERVAL RDB_BIND_CKPT_TRANS_INTERVAL
defines a process-specific checkpoint interval

RDM$BIND_CLEAN_BUF _CNT RDB_BIND_CLEAN_BUF_CNT
specifies the number of clean buffers to be maintained at the end of a process's least recently
used queue of buffers for replacement

RDM$BIND_COMMIT_STALL RDB_BIND_COMMIT_STALL
defines the amount of time a transaction waits after attempting to become the group commit
process

RDM$BIND_LOCK_TIMEOUT_INTERVAL
defines a default lock wait interval

RDM$BIND_READY_AREA_SERIALLY

RDB_BIND_LOCK_TIMEOUT_INTERVAL

RDB_BIND_READY_AREA_SERIALLY
causes lock requests for logical and physical areas to be granted in the order that the lock
requests were made

RDM$BIND_RUJ_EX1END_BLKCNT
extends value for .RUJ files

RDM$BIND_STATS_DISABLED

RDB_BIND_RUJ_EX1END_BLKCNT

RDB_BIND _STATS_DISABLED
disables the writing of database statistics for a process

RDM$BIND_ VM_SEGMENT
prevents memory fragmentation

RDM$BUGCHECK_DIR
specifies the location of bugcheck files

RDM$MAILBOX_CHANNEL

RDB_BIND_ VM_SEGMENT

RDB_BUGCHECK_DIR

contains the node-specific address of the database monitor

RDM$MONITOR RDB_MONITOR
specifies the location of bugcheck files

RDM$MON_USERNAME
specifies the usemame whose quotas the monitor process will inherit

RDMS$AUTO_READY RDB_AUTO_READY
allows a process to obtain an area lock in CU mode when requesting CR

RDMS$BIND_OUTLINE_FLAGS RDB_BIND_OUTLINE_FLAGS
causes Rdb to ignore query outlines

Rdb Logical Names

Rdb OpenVMS RdbOSF/1

RDMS$BIND_OUTLINE_MODE RDB_BIND_OUTLINE_MODE
specifies which class of outlines are used by the optimizer

RDMS$BIND_QG_CPU_TIMEOUT RDB_BIND_QG_CPU_TIMEOUT
restricts the amount of CPU time used to optimize a query for execution

RDMS$BIND_QG_REC_LIMIT RDB_BIND _ QG_REC_LIMIT
limits the number of rows a query returns

RDMS$BIND_QG_TIMEOUT RDB_BIND_QG_TIMEOUT
limits the amount of time the optimizer spends compiling a query

RDMS$BIND_SEGMENTED_STRING_BUFFER RDB_BIND_SEGMENTED_STRING_BUFFER
reduces the overhead of 1/0 operations when using segmented strings

RDMS$BIND_SEGMENTED_STRING_COUNT RDB_BIND_SEGMENTED_STRING_COUNT
defines the number of entries in the segmented string ID list

RDMS$BIND_SEGMENTED_STRING_DBKEY_SCOPE RDB_BIND_SEGMENTED_STRING_DBKEY_SCOPE
specifies whether the dbkey of a modified segmented string may be re-used by the process

RDMS$BIND_SORT_ WORKF1LES RDB_BIND_SORT_ WORKF1LES
specifies how many work files the Sort utility is to use if work files are needed

RDMS$BIND_ VALIDATE_CHANGE_FIELD RDB_BIND_ VALIDATE_CHANGE_FIELD
validates records changed by CHANGE FIELD statement

RDMS$BIND_ WORK_FILE RDB_BIND_ WORK_FILE
redirects the location of temporary files

RDMS$BIND_ WORK_ VM RDB_BIND_ WORK_ VM
specifies the amount of virtual memory to be allocated to the process

RDMS$DEBUG_FLAGS RDB_DEBUG_FLAGS
allows the examination of optimizer access strategies and their estimated cost

RDMS$DEBUG_FLAGS_OUTPUT RDB_DEBUG_FLAGS_OUTPUT
specifies an output file in which to collect the output from RDB_DEBUG_FLAGS

RDMS$DIAG_FLAGS RDB_DIAG_FLAGS
assists in locating erroneous queries

RDMS$KEEP _pREP _FILES RDB_KEEP _PREP _FILES
causes the RDBPRE preprocessor to retain the intermediate .MAR and language files

RDMS$RUJ RDB_RUJ
specifies the location of the .RUJ file

445

446 Rdb Logical Names

Rdb OpenVMS RdbOSF/1

RDMS$USE_OLD_CONCURRENCY RDB_USE_OLD_CONCURRENCY
specifies the use of isolation level behavior in earlier versions

RDMS$USE_OLD_SEGMENTED_STRING
retains the old format of segmented strings

RDB_USE_OLD_SEGMENTED_STRING

RDMS$USE_OLD_UPDATE_RULES RDB_USE_OLD_UPDATE_RULES
specifies Rdb to continue to use the old update rules

RDO$EDIT
specifies the system editor selected to edit interactive RDO queries

RDOINI
specifies the name of the file that contains the RDO initialization information

SQL$DATABASE SQL_DATABASE
specifies the database that SQL declares if a database is not explicitly defined

SQL$DISABLE_CONTEXT SQL_DISABLE_CONTEXT
disables the two-phase conunit protocol

SQL$EDIT
specifies the system editor selected to edit interactive SQL queries

SQLINI SQLINIT
specifies the name of the file that contains the SQL initialization information

SQL$KEEP _PREP _FILES SQL_KEEP _FREP _FILES
causes the SQL precompiler and SQL Module Language compiler to retain the intermediate .MAR and
language files

SQL_USERNAME
Usemame for SQL attach

SQL_PASSWD
Password for SQL attach

ABM

ABW

Glossary

See Area Bit Map

See Asynchronous Batch Writes

Access Control List ACL A table that lists the users allowed to access an object and how it may be
accessed

Access Mode See Reserving

ACMS and ACMSxp A Digital transaction processing monitor. It is used to define, run, and control
transaction processing applications. Acronym for Application Control and Manage­
ment System

Adjustable Locking Granularity A process that allows Rdb to minimize the number of locks used to
enforce consistency. Resources are locked according to a hierarchy, commencing with
the database, then a storage area, and several levels of groups of pages, before the
page itself

After-Image Journal One or more files which contain copies of the rows in the databases after they have
been updated. The after-image journal files are used to roll the database forward to
a given point

Aggregate Functions Functions in SQL which return a single value as a result of grouping together many
rows, such as SUM or COUNT.

AIJ

AIJ Log Server

AIP

ALG

Alias

Anchor

ANSI

APF

See After-Image Journal

A process which manages the writing of data to the AD file. Not enabled by default.

See Area Inventory Page

See Adjustable Locking Granularity

A name given to an Rdb database to distinguish it from other active databases in an
application program

An Open VMS file directory which contains all the files making up the CDD/
Repository

American National Standards Institute and a leading force in the SQL standard

See Asynchronous Pre-Fetch

Application Control and Management System ACMS See ACMS

Area See Storage Area

448 Glossary

Area Bit Map Page Maps tables on database pages to logical areas. An ABM page is specific to a
logical area. ABM pages are pointed to by AIP pages

Area Inventory Page A database page that contains information on logical areas. A logical area entry
includes a pointer to the area's first ABM page

Ascending Order A sorting order that starts with the lowest key value and proceeds to the highest value

Asynchronous Batch Writes When pages are written back to the database they are batched and written in
parallel asynchronously. Processes do not have to wait for the writes to complete to
continue processing

Asynchronous Pre-Fetch The process of predicting the next pages required and then pre-reading the

ASCII

Attribute

information into the buffer. Works only for sequential scans to improve performance.

A computer character set and collating sequence. Acronym for American Standard
Code for Information Interchange

Another name for a column in a table

Authorization ID Identifier of who issued an SQL statement. For example user HOBBS

Backup Server for AU A process which automatically backups the contents of the AIJ files when
they become full

Batch Update A transaction mode that takes exclusive access to the database or table and executes
without the overhead of a run-unit journal. If an error occurs during the processing
of a batch update transaction, the entire database is marked as corrupt

Before Image Journal A file that contains copies of the row before the table is updated. Rdb uses

B-tree

BLOB

these before images to roll back a database transaction

A balanced tree or sorted index structure for a specified table

Binary Large Object. A datatype used for storing unstructured data such as pictures,
sound or video. The actual datatype in Rdb is list of byte varying. Also known as a
segmented string

Boolean Expression A string that specifies a condition that is either true or false

Boolean Operator

Buffers

Call Interface

Callable RDO

Cardinality

Catalog

CDD

CDD/Plus

A symbol or word that facilitates joining two or more Boolean expressions. Typical
Boolean operators are AND, OR, NOT

Can be of type local or global and is where all the pages read from the database are
held in memory

A mechanism for a program to access components of a software product

An interpretative call interface consisting of a single external routine that accepts an
Rdb data manipulation language DML or data definition language DDL statement as
a parameter

The number of rows in a table

Defined in the SQL92 standard as a group of schemas which are treated as an object

Original Data Dictionary product. Managed via the command language DMU

See CDD!Repository

Glossary 449

CDD/Repository A data dictionary system that supports the creation, analysis and administration of
metadata. Support for CDD/Repository by Rdb lets the user define global field and
record definitions; copy field or record definitions from the dictionary into an Rdb
database; receive informational messages about the shared use of CDD/Repository
field and record definitions; and integrate shareable dictionary definitions into an
Rdb database

CDO CDD/Repository Common Dictionary Operator CDO utility

Cluster See VMScluster

CODASYL Acronym for Conference on Data Systems Languages. A network model database
management system. VAX DBMS is CODASYL-compliant

Collating Sequence The sequence in which characters are ordered for merging, sorting, and comparisons

Column A relational model term that equates to a field. Also called an attribute.

Commit A statement that finishes a transaction and makes all changes upon the database
permanent

Common Data Dictionary See CDD/Repository

Common Dictionary Operator CDO Utility The command line interface to CDD/Repository

Composite Key Any type of key that comprises one or more columns

Computed By Column A virtual field that appears in a table or view definition, but not physically in
the table; therefore, it occupies no space in the database

Concurrency The simultaneous use of a database by a number of users

Consistency The level to which a database system guarantees that tables being read by a user
cannot be changed by another user at the same time

Constraint The rules that define the permitted values a column make take

Context Variable A temporary name that is used in an RDO statement to identify a record stream

Correlation Names A temporary name for an object defined in a SELECT clause which exists for the
duration of the query only

Cross Operation See Join

Cursor An object that is used to store the output of a query for subsequent row by row
processing

Data Compression Optimizes data storage for a table

Data Definition Language The statements that describe the metadata definitions

Data Distributor An optional layer for Rdb that provides the ability to make copies of a database that
are either a subset or a complete copy. See also Extraction and Replication

Data Manipulation Language The statements that allow data in the Rdb database to be stored,
retrieved, modified, or deleted

Data Table See Table or Relation

450 Glossary

Database A collection of data in which usually more than one user can access the data at the
same time. The database maintains its own data integrity and security

Database Integrator Database Integrator is a tool from Digital which allows the end-user or application
programmer to link multiple local or remote databases and work with them as if a
single database

Database Key dbkey A unique value that identifies precisely where a storage segment is located in a
database

Database Page

DATATRIEVE

Datatype

Db key

Db Gateways

DBI

DBMS

DCL

DDL

Deadlock

DECnet

DEC trace

The structure used to store data within an Rdb database. The minimum database
page size is 512 bytes or one disk block. Pages increase in increments of 512 bytes
or one block

A Digital query language for manipulating, storing, and modifying tables or records
in an RMS, DBMS, or Rdb database

The type of data assigned to a column or field such as Text or Integer

See Database Key

Database gateways provide transparent access to relational, non-relational and
custom data sources from a wide variety of tools.

See Database Integrator

Acronym for Database Management System

See Digital Command Language

See Data Definition Language

The situation where two or more transactions request the same resources and nothing
can be done to resolve the conflict, except aborting one of the transactions

The Digital networking software

A tool that works with Rdb applications to collect event and point based data on
resources used to complete a task, e.g., the direct I/O and buffer reads to perform an
SQL statement are just some of the information collected by this tool

Deferred Snapshots Update transactions only written to the snapshot file when a read-only transaction is
in progress

Denormalization The reverse process of normalization

Descending Order A sorting order that commences with the highest value of a key and goes down to the
lowest value

Dictionary Object A data definition stored in CDD/Repository, such as ACMS definitions; CDD/
Repository field and record definitions; DATATRIEVE domains, records, procedures,
plots; DBMS schemas; and Rdb database entry

Digital Command Language DCL A command interpreter for the Open VMS system

Digital Standard Relational Interface DSRI An architecture and calling standard for relational
database systems developed by Digital Equipment Corp.

DMU The command line interface to CDD

Glossary 451

Domain

Dynamic SQL

EBCDIC

Equi-join

Embedded SQL

Extraction

Field

File Type

Foreign Key

Free Space

Function Callouts

Gateway

Global Buffer

An object that is used to define a column. Based on an existing datatype, new
columns can be defined based on this object

SQL from an application that is executed at runtime

Acronym for Extended Binary Coded Decimal Interchange Code, the computer set
and collating sequence for IBM systems

A join operation that matches a column from one table with a corresponding column
in another table

SQL code that is embedded in an application and precompiled before execution

A Data Distributor facility that transfers either a complete database or a subset of a
database to a new database

A single division in a record where data is stored. See Column

The part of a file specification that describes the type of file. In Rdb databases the
file types are: RDB, a database root file; RDA, storage area files; SNP, snapshot
files; RUJ, run-unit journal file; AIJ, after-image journal file; RBF, backup file
created by RMU/BACKUP; RBR, backup file created by SQL EXPORT; UNL,
RMU/UNLOAD; and RRD, a file created by using the IRMS=FILE= option with
RMU/UNLOAD

A field in one table that is a primary key in another table

The space on a database page that is available for new data

The ability to define a user-function which calls 3GL code

See DB Gateways

A memory resident structure that allows all users on that machine to share the pages
retrieved from the database

Graphical Schema Editor A GUI tool used to define and alter the metadata definitions. Using graphical

Hashed Index

Hashing

Index

Index Fill Factor

Index Key

Index Node

InstantSQL

Integrity

objects the user defines what is required in the schema. The SQL to create the
database is then output by the tool

An index structure that is created when a row is stored in a hashed index. There are
two types of hashed index, scattered and ordered

The conversion of a key field into a database page number using a special algorithm

A structure within the database that locates a row based on a key value

A parameter that controls the initial fullness of a sorted index

A column in an index that determines the retrieval criteria

A sorted index data structure that contains the key values and pointers to tables in
the database and other index nodes in the structure

A graphical based tool for defining SQL queries. Creates the SQL or SQL module
which can then be incorporated into a program or compiled as appropriate.

The correctness of the information in an Rdb database. There are three types of
integrity control: integrity constraints, concurrency control, and recovery during or
after a system failure

452 Glossary

Interval The period of time between two dates

Isolation Level Specifies how a transaction is affected by other transactions accessing the same data

Join Operation A relational operation that selects a row from a table, associates it with a row from
another table, and presents them as though they were one table

Journal File A file that contains all the data structures modified during a transaction. The journal
file is used to reconstruct the database and maintain integrity during a system or
application failure

Journaling The process of recording all operations applied to the database. The type of informa­
tion recorded depends on the whether an after-image or a before-image journal file is
created

Key A column in a table that is used to locate one or more tables

Line Index A portion of a database page that acts as a directory to data on the page by indexing
the page offsets of individual storage data segments

Local Buffers All the pages retrieved from the database are held in the user's own private memory
which cannot be shared with any other user

Locking A mechanism for protecting transactions against interference from concurrently
executing transactions

Logical Area Another name for a table or index

Logical Name A user-specified name for any portion of or all of a file specification

Mapping Values An option available on an index to restrict the range of values that an index can take

Metadata Data that is used to describe other data

Module One or more procedures grouped together and stored as system metadata

Multifile Database A database made up of a root file .RDB and a number of storage areas .RDA

Multistatement Procedures A group of SQL statements defined as a procedure which is stored as system
metadata

Multi-threaded Backup/Restore The ability to backup and restore a database using multiple databases

No-Quiet Point The reverse of a quiet point. That is, do not wait for all transactions to complete.

Normalization The process of reducing a database to its simplest form and eliminating data
redundancy

Null

Object

ODBC

An indicator in SQL used to indicate that a value has not been supplied

There are many objects in the database such as catalog, schema, tables, columns and
indexes

Microsoft's de facto standard for PC client access to database servers. Acronym for
Open Database Connectivity

Online Transaction Processing OLTP An environment that supports many users performing the
same critical business functions. Typically, an OLTP system is made up of many
simultaneous users, all performing the same function

Glossary 453

Open VMS The major operating system for VAX computers and one of the operating systems
that can be used on the Alpha chip computers. Acronym for Virtual Memory System

Optimized Page Transfers A mechanism that prevents shared pages being flushed to disk everytime
they are changed and required by another user. Instead the page remains in the
buffer, thus eliminating the need for any disk I/O

Page Header

Page Locking

Page Number

A fixed-length section at the beginning of a database page

The ability to specify for a storage area that all information retrieved is locked at the
page level rather than the default row level

The number of a page in a storage area

Partitioned Lock Trees All the locks in Rdb are held in a tree structure. Partitioned lock trees split

Precompiler

Primary Key

Privileges

Query Outline

Quiet Point

the storage area locks by storage area and will be located on any machine

A utility that reads data manipulation language statements in a high-level language
and translates them into low-level database routines

A column or group of columns that uniquely identifies a row. A primary key cannot
be null or contain duplicates

To execute RMU commands or access information within the database privileges
must be granted which specify what can be accessed

An outline is stored as part of the metadata and it tells the optimizer how a query
should be executed. Such as in which order to join the tables and which indexes to
use

A time when no run unit is accessing the database. Quiet points can occur between
transactions

Rdb Digital's relational database management system

Rdb Management Utility RMU A DCL-level Rdb utility that allows the database administrator to

RdbExpert

RDML

RDO

Read-Only

Read-Write

Record

Record Locking

manage the database

A tool for designing new Rdb databases or tuning existing ones. Given the environ­
ment such as number of disks, table cardinalities and the application workload,
RdbExpert generates a new database design and the unload/load script

See Relational Data Manipulation Language

Acronym for Relational Database Operator

Refers to a database transaction that allows data only to be read

Refers to a database transaction that allows data to be read and changed, inserted or
deleted. According to the SQL standard this is the default transaction mode when a
transaction is not specifically started

A table

Reserving a table or rows in a table for a specific user

Record Selection Expression (rse) Defines a selection of rows that satisfy a specified condition

Record Stream A group of records formed by an rse

454 Glossary

Recoverable Latches A new mechanism that replaced the GBPT slot locks for controlling access to pages
in the global buffer

Recovery The process of restoring a database to a known state after a system or program
failure

Recovery Unit Journal See Before-Image Journal

Reflexive Join An operation that joins a table upon itself

Relation A method of presenting a collection of data made up of rows and columns

Relational Data Manipulation Language RDML A data manipulation language for the C and PASCAL
languages

Relational Data Operator RDO An interactive utility for maintaining databases, creating and
modifying definitions of database elements, and storing and manipulating data

Relational Database A database model that describes data as a set of independent tables. Within each
table, the data is organized into rows and columns

Remote Server The part of Rdb that provides access to data on another database using the DECnet,
TCP/IP or other networking protocol

Replication The process in DEC Data Distributor of transferring to a remote database, only those
rows in the database that have changed since the last replication transfer

Request A set of instructions to the Rdb database

Request Handle A variable that uniquely identifies a request

Reserving Option Defines the locking and sharing modes for tables and rows accessed

Restore The process of rebuilding a database from a backup or copy of the database

Rollback A statement that restores the database to the state at the beginning of the transaction,
as opposed to COMMIT, which makes the changes to the Rdb database permanent

Rollforward The process of using an after-image journal file to restore a database to a specific
point in time

RMU See Rdb Management Utility

Root File Part of the database that contains all the database control information, such as when
last backed up, which users are bound to the database, and where the run-unit
journal files are located

Row The relational-model term for a record

RSE See Record Selection Expression

RUJ See Before-Image Journal

Schedule Definition In DEC Data Distributor, a definition that specifies when a transfer is to take place

Security

Segmented String

Select Operation

The protection of the data held in the database against unauthorized access

See BLOB

The SQL statement for specifying which rows should be retrieved from the database

Glossary 455

Share Mode The degree of sharing of data that Rdb permits when other users require access to
the data. Possible share modes are EXCLUSIVE, PROTECTED, and SHARED

Snapshot

Sort Key

Sorted Index

A consistent view of the database as at a specific time

A column used for sorting a table

An index structure where the key values are maintained in sorted order in a b-tree

Space Area Management Page A database page that specifies the percentage fullness of each
database page in a range of pages

SPAM See Space Area Management Page

SQL Structured SQL Language. The standard query language for accessing relational
databases. It is an official standard. Comprises of both a data definition and a data
manipulation language

SQL2 The name for SQL-92 while it was a working standard

SQL3 The next revision to the SQL standard that is under discussion and review

SQL 86 The original SQL standard

SQL 89 Further enhancements to the original SQL standard

SQL 92 Is a major enhancement to the SQL standard which defines many new features and
incorporated into the standard a number of features that had already been introduced
into relational database systems. There are three levels to this standard: entry level,
intermediate and full

SQL/Services A component of Rdb that enables remote database access from a number of platforms

Storage Area A physical Open VMS file that is separate from the root file, but that is the compo-
nent of the database where the actual data is stored

Storage Segment Any structure that is stored in an Rdb database

Stored Procedures A group of SQL statements defined as a procedure and stored in the system metadata

System Relation A table that contains information required for the operation of the database manage­
ment system

Table See Relation

Thresholds Thresholds are defined for an entire mixed storage area or for a uniform area by a
logical area stored within that area. The threshold can take one of four values, 0, 1, 2
and 3 and it advises the percentage of space used on the page. Using this value the
database designer can control how much information is stored on a database page

Transaction The grouping of a number of statements together such that all are applied or none of
them

Transaction Handle A variable that uniquely identifies a transaction

Transaction Processing A style of computing supporting multiple users performing predefined tasks
against a shared database

Transfer Database In DEC Data Distributor, the location of all transfer and schedule definitions

456 Glossary

Transfer Monitor The process on behalf of DEC Data Distributor that controls the execution of all data
transfers

Tuple Relational database terminology for a row or record

UIC See User Identification Code

User Identification Code A code identifying a Open VMS user

View

VMS cluster

WORM

X/Open

X/Open XPG3

X/Open XPG4

A logical definition of a table that includes rows and columns from one or more
tables

A highly integrated organization of Open VMS systems that communicate over a
high-speed communications path. In a VMScluster, CPUs share resources, queues,
and disks

Write once read many device

An independent, world-wide, open systems organization that is supported by most of
the leading information system suppliers, software companies and user organizations

An X/Open product branded as XPG3 would adhere to the SQL 89 standard

An X/Open product branded as XPG4 would adhere to the SQL 89, SQL 92 entry
level and some SQL 92 intermediate and full features

Index

Symbols

.dbsrc, OSF/1 configuration file 422
2-Phase Commit 406

A

ABM: See Area Bit Map
ACL protection 205
ACMS 140, 371

Architecture 371
Queuing 374
Tasks 372

ADD STORAGE AREA statement (SQL)
256

Adjustable Locking Granularity 193
After-Image Journaling 237
AIJ Backup Server 241
AIJ Backups 242
AIJ Electronic Cache 239
AIJ Slots 238
ALG: See Adjustable Locking Granularity
Alias 334
ALTER 424
ALTER DATABASE statement (SQL) 256,

263
ALTER DOMAIN statement (SQL) 257
ALTERFILES 355
ALTER INDEX statement (SQL) 259
ALTER STORAGE MAP statement (SQL)

259
ALTER TABLE statement (SQL) 258
ANSI-Style Security 205
Area Bit Map 96, 106
Area Inventory Pages 106
Asynchronous Batch Write 153, 155

Asynchronous Pre-Fetch 120, 153, 154,
159

ATOMIC Compound Statements 69
Atomicity 68
ATTACH 46, 47
AUDIT 424
Authorization Identifiers 320

B

Background Only 158, 168
Backup 12
Backup by Area 236
BACKUP SERVER 239
Backups 233
BANKING Database 20, 38
Before-Image Journaling 237
BLOB 412
Buffer Length 141
Buffer Pool 140
Buffers

Global 144
NUMBER IS parameter 146
Number of 142
USER LIMIT IS parameter 146

Bugcheck Dump 425
Buried Update Problem 175

c
CALL 79, 210
CASE 72
CAST 57
CDD/Administrator 361
CDD/Repository 23, 225, 343
CDO 354

458

CDO ENTER 357
Changing Metadata Definitions 256
CHECK 220
Check, CDO Key Constraint 360
Class Server 341
Clean Region 155
Client-Server Architecture 365
Client/Server, in OSF/l 419
Clumps 90
Clustering Rows with a Sorted Index 127
Coincidental Clustering 92
Collision 129
Column Constraint 221, 226
Column Level Security 208
Column Renaming 52
Commit to Journal Optimization 200
Compound Statement 67
Compression

Hashed Indexes 138
Sorted Indexes 124

Concurrent Metadata Changes 256
Configuration File 421
Controlling RMU Commands 213
CONVERT 424
Correlation Names 51
CREATE DATABASE statement (SQL)

19, 22
CREATE DOMAIN statement (SQL) 24
CREATE FUNCTION statement (SQL) 80
CREATE INDEX statement (SQL)

25, 88, 122, 133
CREATE MODULE statement (SQL) 77
CREATE SCHEDULE statement (SQL) 325
CREATE STORAGE AREA statement (SQL)

85
CREATE STORAGE MAP statement (SQL)

88
CREATE TABLE statement (SQL) 25
CREATE TRANSFER statement (SQL) 323
CREATE VIEW statement (SQL) 27
Creating

Domains 23
Multifile Databases 32
Sorted Indexes 25
Storage Maps 88
Tables 24

Views 27
Cursor 61
Cutoff TSN 196

D

Data Distributor 119
Data Integrity 219
Data Warehousing 119
Database

Buffer Pool 140
Distributed 318
Integrator 327
Integrity 219
Key 102
Key Retrieval 120, 158, 187
-Level Security 206
Moving 267
Page 96
Page: Uniform Page Format 90
Placement Map 275

DATE 57
DATE ANSI 57
DBAnalyzer 391, 392
DBI (DEC Database Integrator) 327
DBKey 102

Retrieval 158
DBkeyScope

Attach 103
Transaction 103

dbsmgr 420
DBTune 391, 393
DBXact 391, 394
DEADLOCK_WAIT 180
Debug Flags 285
DECACMS 196
DEC Data Distributor 320

Extraction 322
Extraction Rollup 322
Replication 322

DEC Database Integrator 327
DEC Db Gateway

for Custom Drivers 344
for DBMS 345
for DSM 345
for Oracle 343
for RMS 344

Index

Index

for Sybase 345
DECdta 363, 364

Data Partitioning 368
Distribution of Processing Power 368
Replication of Components 367
Separation of Function 365

DECdtm 333, 406
DECLARE 70
DECLARE TRANSACTION statement

(SQL) 48, 181
DECtp 363
DECtrace 11, 317, 378

CREATE SELECTION 378
Monitor 382
SCHEDULE COLLECTION 380
SHOW COLLECTION 380
SHOW REGISTER 380

DEFERRABLE 220
Deferred Snapshots 115
Degree 3 Consistency 176, 187
DELETE 66
Deleting Database Metadata 32
Deleting Existing Metadata 262
Delimited Identifier 37
Diagnostics, in Compound Statements 75
Direct Index Access 124
Disabling

Indexes 139
Snapshot Transactions 114
Statistics Collection 288

DISTINCT 54
Distributed

Database 318
Deadlocks 338
Lock Manager 178

DOMAIN Statement 358
Domain Definitions 19
Domains 23
DROP STORAGE AREA statement (SQL)

257
Dropping

Columns 33
Databases 32
Domains 32
Indexes 33, 139
Tables 33

Views 33
Duplicate Index Nodes 186
Duplicate Key Nodes 121
Dynamic Optimization 158, 160, 166
Dynamic SQL 404

E

ENTER, CDO Command 357
Environment Variables 421
EXPORT statement (SQL) 263, 272
External Functions 79, 211
Extraction 322
Extraction Rollup 322

F

FAST FIRST 171
Fast First Retrieval 159, 170
FILL SEQUENTIAL 414
Flow Control 72
FOR 74
Foreign Keys 20, 222, 360
Forest & Trees 394
Fragmentation 99
FrEnd Family 391
Full Development License 17

G

General Identifiers 202
GET DIAGNOSTICS 75
Global

Buffering 144
Pages 145

GRANT 207
Graphical Schema Editor 22, 389
GROUP BY 50

H

Hashed Index 20, 120
Calculating Size 280
Creating 133
Key Compression 138
Retrieval 187
Structure 128, 132

Hashed Ordered 129, 130

459

460

Hashed Scattered 129
HAVING 51

I

IF 72
IMPORT statement (SQL) 263, 272
Increasing Storage Area Size 263
Incremental Backups 235
Index

Key Nodes 121
-Only Retrieval 124, 158, 159, 165,
168
Partioning 123
Path Lengths 316
Retrieval 120, 158, 165
Root 121

Indexes 20
Dropping and Disabling 139

INSERT 65
InstantSQL 390
INTEGRATE TABLE statement (SQL) 358
Integration 355
INTERVAL 57
Isolation Levels 49

Read Committed 188
Repeatable Read 188
Serializable 187, 188

lteractive License 17

J
Join 22, 55
Journaling 237
JUST_PAGES 250

L

Least-Recently Used Algorithm 143
License Options 17
LIMITTO 51
Line Index 98
Links 329
List Cursor 61, 414
Lists 101
LISTS STORAGE MAP. 413
Local Buffering 140
Local Buffers: Large v. Small 143

Lock
Conversion 178
Manager 425
Mode Compatibility 179

Locked Free Space 98
LOG SERVER 239
Logical Area 95
Logical Names

Index

DEFINERDM_BIND_STATS_DISABLED
288
RDMS$DEBUG_FLAGS 285

LOOP 73
Lost Update Problem 175

M

MAPPING VALUES 225
Compression 124, 125

Metadata
Definitions 256
Deleting 262

Microsoft ODBC 395
MINIMUM RUN LENGTH 126
Mixed Page Format 91
Monitor, OSF/1 421
Moving an Rdb database 267
MU/ANALYZE 284
Multistatement Procedures 67
Multi-versioning 341
Multifile Database 19, 23, 83, 85

Creation 85
Partitioning 92

Multischema Database 34

N
No-Quiet Point Backups 234
Nonrepeatable Read 188
NOT DEFERRABLE 220
NOT EXISTS 54
NOT NULL 220
Not Null, CDO Key Constraint 360
NULL 54
Null Values 20
NUMBER IS parameter 146
NUMBER OF BUFFERS IS parameter 146

Index

0

ODBC 9, 331, 395, 345
Driver 9

Online Backups 233
Operating System Commands 285
Optimized Page Transfers 153, 156
Optimizer 157
Optimizing AIJ Files 242
ORDERBY 50

p

Page
Header 97
Level Locking 190
Tail 102

Partial Outline 174
Partitioning 92

an Index 123
Personal Use License 18
Phantom Phenomenon 188
Physical Design Verification 281
Pictures 411
Pieces Tracking 353
Precompilers 8

SQL 398
Prefix and Suffix Compression 124
Prestarted Transactions 196
Primary Key 20, 222, 360
Projection 22
PROTECTION IS ANSI 206
Proxy

R

Accounts 320
Entity 351

Rdb Architecture 5
Rdb Debug Flags 284, 285
RDB$CATALOG 34
RDB$SCHEMA 34
RDB$SYSTEM 85
RdbExpert 317, 385

Directory 385
RDM$BIND_BUFFERS 142
RDM$BIND_LOCK_TIMEOUT_INTERVAL

338
RDMS$BIND_OUTLINE_MODE 174
RDMS$DEBUG_FLAGS 161, 170
RDMS$RUJ 251
Read-Only Areas 116, 209
Recoverable Latches 145
Referential Integrity 13
Relational Operation

Join 22
Projection 22
Selection 22

Relational Operators 52
Relations 20
Remote Database 319

Access 318, 319
Replication 322
REPOSITORY IS REQUIRED 350
Reserving Storage Area Slots 86
Restore 243

by Area 249
by Database Page 250

Retrieval
by Index 124
Methods 120
of Data 157

REVOKE 207
RMU 7
RMU Utility, OSF/l 423
RMU/ Commands

ALTER 231
ANALYZE 314
BACKUP 233
BACKUP/AFTER 242
COPY_DATABASE 263, 267
DUMP 316
EXTRACT 268
LOAD 268
MOVE 263
MOVE_AREA 267
OPTIMIZE/AFTER 242
RECOVER/AREA 250
RECOVER/RESOLVE 253
REPAIR 231
RESOLVE 253
RESTORE 243, 263, 266, 267
SET 213

461

462

SET AUDIT 214
SHOW LOCKS 194
SHOW STATISTICS 284, 286

Active User Stall Messages 292
AIJ Statistics 303
Asynchronous PIO Screen 297
DBR Activity Dispfay 310
Defined Logicals Display 311
Display Options Screen 291
Hashed Index Statistics 303
Index Statistics 302
IO Stall Time 299
IO Statistics by File 300
Locking (One Lock Type) 308
Locking (One Stat Field) 307
Per-Process Information 307
Physical IO Statistics 293
PIO (Fetches) 295, 296
PIO (SPAM) 297
PIO (Writes) 294
Process Accounting Display 309
Record Statistics 298
Snapshot Statistics 304
Stall Messages 292
Summary IO Screen 289, 291
Summary Locking 305
Transaction Duration 300

UNLOAD 268
VERIFY 229

RMUwin 7, 270
OSF/1 424

Root File 85
Run Time License 18
Run-Length Compression 124, 125
Run-Unit Journaling 251

s
Security

Auditing 214
Identifiers 201

Segmented Strings 101
SELECT 49
Selection 22
Sequential Retrieval 120, 157, 164, 184
SET 70

Index

SET TRANSACTION Statement (SQL) 48,
177, 181 398

SHARED DATA DEFINITION 139
SHOW MESSAGES 354
SHOW TRANSFER Statement (SQL) 326
Single-File Database 20, 22, 25, 27, 29, 31
SIZE IS Segment Truncation 124, 125
Snapshot 111

File 23, 266
Transactions 111

Solid State Disks 239
Sorted Index 20, 25, 120

Creating 122
Key Compression 124
Retrieval 185
Structure 121

Sorted Method Strategy 169
Sorted Order Retrieval 159
Sounds 411
SQL

Key Words 60
Module Language 401
Multimedia 415
Precompilers 398
Statements

ADD STORAGE AREA 256
ALTER DATABASE 256, 263
ALTER DOMAIN 257
ALTER INDEX 259
ALTER STORAGE MAP 259
ALTER TABLE 258
CREATE DATABASE 19, 22
CREATE DOMAIN 24
CREATE FUNCTION 80
CREATE INDEX 25, 88, 122, 133
CREATE MODULE 77
CREATE SCHEDULE 325
CREATE STORAGE AREA 85
CREATE STORAGE MAP 88
CREATE TABLE 25
CREATE TRANSFER 323
CREATE VIEW 27
DECLARE TRANSACTION 181
DROP STORAGE AREA 257
EXPORT 263, 272
IMPORT 263, 272

Index

INTEGRATE TABLE 358
SET TRANSACTION 177, 181
SHOW TRANSFER 326

SQL, Using on OSF/l 424
SQL$DATABASE 47
SQL/Multimedia 14
SQL/Services 8

in OSF/l 427
Statistical Functions 58
Storage Areas 19, 86, 87, 89, 91, 93

Creation 86, 87, 89, 91, 93
Size, Increasing 263
Slots 86

Storage Maps 19, 88
Storage Segments 99
Stored Names 38
Stored Procedures 76, 210
Structure of Hashed Indexes 128
Synonyms 129
SYS$END_TRANS 335
SYS$START_TRANS 335
System Metadata Index Compression 127
System Record 102
System-Defined Identifiers 202

T

Table 19, 24
Access 118
Constraint 226
Cursor 61
-Level Security 207
Locking 181

TID 336,335
TIME 57
TIMESTAMP 57
TOTAL TIME 159, 171
TP See Transaction Processing
TRACE 75
Transaction

Analysis 119, 281
Isolation Levels 183, 187
Processing 118, 362
Sequence Number 98, 112
Sequence Number Index 98

Transactions 176
Transaction Sequence Number Index 98

Transfer 323
Triggers 13, 210, 226
Tuning Plan 284
Tuning Tools 284
Two-Phase Commit Protocol 332

u
UIC 202
UNIFORM Page Format 90
UNIQUE 220, 225, 360
Unstructured Data 411
UPDATE 66
USER LIMIT IS Parameter 146
Username 320

v
Variable Declaration 69
Video, Full-Motion 411
Views 19, 27, 209, 330

w
WORM 414
WRITE ONCE 414

463

where he initially work on tems and eventua y m
database and transaction processing systems. Ken spent ten years at Digital
Equipment Corporation in the UK where he was immersed in database
systems, transaction processing systems and repositories. Ken is currently the
founder and Chief Executive of Database Technologies, Ltd., a company
which specializes in database consulting, evaluation and training.

ISBN 1-55558-124-2
90000

9 781555 581244

EY-S450E-DP

