I10S" Software

Internal Reference Manual

SM-0046 G

Cray Research, Inc.




Copyright © 1980, 1981, 1982, 1983, 1984, 1986, 1987, 1988 by Cray Research, Inc.
This manual or parts thereof may not be reproduced unless permitted by contract or
by written permission of Cray Research, Inc.

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and CFT, CFT77, CFT2, -
COS, CRAY-2, CRAY X-MP, CRAY X-MP EA, CRAY Y-MP, CSIM, HSX, I0S, SEGLDR, and
SUPERLINK are trademarks of Cray Research, Inc.

HYPERchannel and NSC are registered trademarks of Network Systems Corporation.
IBM is a registered trademark of International Business Machines Corporation. UNIX
is a registered trademark of AT&T.

The UNICOS operating system is derived from the AT&T UNIX System V operating
system. UNICOS is also based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California.

Requests for copies of Cray Research, Inc. publications should be sent to the following
address:

Cray Research, Inc.
Distribution Center
2360 Pilot Knob Road o
Mendota Heights, MN 55120 '




NEW FEATURES

Release 4.2 of the I/O Subsystem (IOS) includes several enhancements of
and additions to previous versions of the subsystem. Those enhancements
that affect the I/0O Subsystem Internal Reference Manual are presented in
this description.

Drivers have been added to the IOS to support the HSX High-speed External
Communications channel and the VMEbus. The HSX driver supports the CRI
HSX channel. The VMEbus driver allows a VMEbus-based frornt-end processor
connected to a CRI VMEbus interface to communicate with a Cray computer
system. Sections 12 and 13 have been added to document this support.

The NSC HYPERchannel driver links a Cray mainframe and a front-end
through the NSC HYPERchannel. The driver allows multiple front-end
computers to be connected to one physical MIOP channel pair. The FEI
driver provides an FEI connection for UNICOS. This connection parallels
the NSC logical path connection. The driver allows front-end stations to
communicate with the UNICOS Station Call Processor (USCP) by using the
SCP protocol. To clarify the special features of these drivers, the NSC
HYPERchannel driver and the Front-end Interface (FEI) logical path driver
are each documented in a separate section for release 4.2,

The Tape Exec (TEX) software to process tape I/0 requests from the
mainframe and the block multiplexer (BMX) channel interface software have
been restructured for the 4.2 release. The documentation for TEX and the
BMX driver has also been extensively updated and restructured.

IOS release 4.2 supports the RD-10 and DD-40 disk storage units. All
information regarding disk I/0 has been revised to document this support.







CGCRRAANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SM-0046

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level. .

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part.of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
1345 Northland Drive
Mendota Heights, Minnesota 55120

Revision Description

November 1980 - Original printing.

A June 1981 - This rewrite incorporates the interactive station,
the division of debugger code into two decks, the PATCH and
LISTO commands, descriptions of the main disk overlays, the
Concentrator Table, the dynamic allocation of overlay space in
Local Memory, the FLUSH service function, and other
miscellaneous technical and editorial changes to bring this
manual into agreement with the version 1.10 IOS software.
This manual obsoletes all previous printings.

B June 1982 - This reprint incorporates IOS tape support
software, especially the interface to block multiplexer
channels, the Tape Exec software, and their respective
tables. Other new features include on-line diagnostics; error
channel processing; the OUTCALL and ASLEEP Kernel service
functions; station message support, the LOAD, ISFIELD, FLDADD,
and FLDSUB macros; the LISTP and DKDMP analyst aids; and
miscellaneous technical and editorial changes to bring this
manual into agreement with the version 1.11 IOS software.

This manual obsoletes all previous printings.

C May 1983 - This reprint with revision supports APML loader and
Tape Exec updates, error recovery enhancements, the addition
of deadstart from 80 Mbyte disk on IOS, Local Memory refresh,
station debug commands, the A1300I Kernel service function,
new concentrator software (NSC), startup channel and device
configuration changes, and the capability of accepting bad
data from disk. It incorporates an entirely new Block Mux
section and associated tables, new history trace information
and format, a new section on SYSDUMP, and a section provided
for dump analysis. This manual obsoletes all previous
printings.

SM-0046 G iii




iv

February 1984 - This change packet brings the manual into
agreement with version 1.13 of COS and supports disk striping,
multitasking, the ECHCP diagnostic, changes to the MGET and
MPUT macros, dataset disposition to Peripheral Expander disk,
recursive error recovery for on-line tape, and an IOS on-line
mainframe channel test. This change packet also includes
miscellaneous technical and editorial changes.

December 1984 - This reprint with revision brings the manual
into agreement with version 1.14 of COS and supports the
addition of DD-49 disk controlling software, tape end-read
functions, trace event codes and parameters, the deck OVLNUM,
and the D4STIO, D4SEEK, STATIO, and SEND functions. An
entirely new section is included on User Channel I/O. Changes
are incorporated for STAGEIN and STAGEOUT tasks, concentrator
software, the structure of the interactive concentrator, the
FIELD, TABLE, and REGDEFS macros, Kernel Disk I/0, the MGET
and MPUT functions, and the I/0 processor intercommunication
function codes. Changes and additions have been made to the
device request stream and field engineering diagnostics. This
revision also contains documentation of the Integrated Support
Processor (ISP). The completed ISP code will not be available
until a later date, when you will be notified in a letter
accompanying the code. ISP manuals will be available when the
completed ISP code is released. This manual obsoletes all
previous printings.

January 1986 - This reprint with revision brings the manual
into agreement with COS version 1.15 and obsoletes all
previous printings. Information has been added to support:
DD-39 disk control and error recovery; the new TRANSFER Kernel
service function; the CLEAR, COPY, and RETREG macros; the new
BYPIO trace parameter; and the NSCNCIO overlay in the NSC
activity of the front-end concentrator. Changes have been
made to support changes to: the AWAKE, CALL, CREATE, GETMEM,
HSPR, HSPW, and PUSH Kernel service functions; some trace
event parameters; Tape Exec to support cartridge-type tape
drives; the IOS station global symbols; and the FIELD macro.
Information has been deleted about: the D4SEEK, D4STIO,
STATIO, and SYNC kernel service functions; and the F80M
diagnostic. Appendix B was deleted and relevant information
moved into the body of the manual. To support the Cray
operating system UNICOS, changes to SYSDUMP were made. Many
miscellaneous technical and editorial changes have also been
made.

SM-0046 G



SM-0046 G

April 1987 - This revision brings the manual into agreement
with COS version 1.16 and UNICOS version 2.0. Information has
been added on Target Memory, DD-19 and DD-29 On-line
Diagnostics, and Trace Event Codes supporting concentrator
status. The CONCIO Activity Description and the NSC overlay
subsections in section 7 have been rewritten and FEI Logical
Path Activity description has been added; the Field
Engineering Diagnostic information has been removed from
appendix B; and changes have been made to the DKDMP overlay in
section 11. All trademarks are now documented in the record
of revision. Many miscellaneous technical and editorial
changes have also been made.

September 1988 - This reprint with revision brings the manual
into agreement with IOS 4.2. Sections 4 and 5 were
extensively rewritten to support the restructure of the tape
and BMX software. The information on NSC HYPERchannel and
Front-end Interface logical path activity (previously part of
section 7) were put into sections by themselves (sections 10
and 11, respectively). Section 12 on the HSX channel
interface and section 13 on the VMEbus driver were both newly
added. Appendix B has been renamed "IOS Confidence
Utilities". Examples have been added to sections 2 and 14.
Many miscellaneous technical and editorial changes have also
been made.







PREFACE

This manual describes the software executing in the Cray I/0 Subsystem
(I0S). This software can be divided into the following general
categories:

The Kernel

Disk I/0 software

Tape 1/0 software

Block multiplexer channel

The IOS station

The front-end concentrator

User channel I/0 software
Drivers

Communications channel software

In addition to the preceding categories, this manual also contains
sections describing the interactive station, the program library and
macros, and debugging tools for working with the software.

Cray Research, Inc. (CRI) publications that provide additional
information on the IOS are as follow:

Publication Manual Title

SM-0007 IOS Table Descriptions Internal Reference Manual

SG-0051 I/0 Subsystem (IOS) Operator's Guide for COS

SG-2005 I/0 Subsystem (IOS) Operator's Guide for UNICOS

SM-0042 Cray Front-end Protocol Internal Reference Manual

SM-0043 COS Operational Procedures Reference Manual

SM-0044 Operational Aids Reference Manual

SG-2018 UNICOS System Administrator's Guide for CRAY Y-MP,
CRAY X-MP, and CRAY-1 Computer Systems

HR-0030 I/0 Subsystem Model B Hardware Reference Manual

HR-0077 Disk Systems Hardware Reference Manual

HR-0081 I/0 Subsystem Model C Hardware Reference Manual

Supplemental information on the IOS is available in the IOS hardware
reference manual for your site. This manual also assumes you are
familiar with and experienced in coding APML as described in the APML
Assembler Reference Manual, CRI publication SM-0036. All publications
referenced in this manual are CRI publications unless otherwise noted.

SM-0046 G vii




The following IBM form numbers are helpful in understanding the
capabilities of the Block Multiplexer channel:

Form Number Manual Title

GA22-6974-4 IBM System/360 and System/370 I/O Interface Channel to
Control Unit Original Equipment Manufacturers'

GA22-6974-5 Information (IBM OEMI Channel Standard)

GA22-7000-5 IBM System/370 Principles of Operation

READER COMMENTS

If you have any comments about the technical accuracy, content, or
organization of this manual, please tell us. You can contact us in any
of the following ways:

¢ Call our Technical Publications department at (612) 681-5729
during normal business hours (Central Time).

¢ Send us electronic mail from a UNICOS or UNIX system, using one of
the following electronic mail addresses:

ihnp4!cray!publications or sun!tundra'hall!publications

¢ Use the postage-paid Reader Comment form at the back of this
manual.

® Write to us at the following address:
Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, Minnesota 55120

We value your comments and will respond to them promptly.

viii SM-0046 G



CONTENTS

PREFACE .

. . . . . . . . . . . . . . . ¢ o

1. INTRODUCTION . . & « & o o o o o o o s

2. THE

HARDWARE SPECIFICATIONS . . . . .
SYSTEM CONFIGURATION . . . « « . &
REGISTER ASSIGNMENTS . . . « « «
TERMINOLOGY . ¢« + ¢ « & & o ¢ & &
FORMAL SYNTAX CONVENTIONS . . . .

KERNEL ¢« o ¢ ¢ ¢ ¢ o o o o ¢ o o o &

SM-0046 G

LOCAL MEMORY USAGE . . . . . « .« .
2.1.1 Local Memory scrubbing . .
BUFFER MEMORY USAGE . . . . . . .
2.2.1 System Directory . . . . .
2.2.2 Message areas . . « o .

2.2.3 Kernel area . . . . « . .

2.2.4 Buffer Memory resident datasets

TARGET MEMORY . . . ¢« + ¢ « « o &
ACTIVITY-SOFTWARE STACKING . . . .
DEMON ACTIVITIES . . « .« « « « o &
OVERLAYS ¢ o ¢ ¢ v ¢ ¢ ¢ o « o & &
INTERRUPT PROCESSING . . . . .

IOP CENTRAL PROCESSOR QUEUING AND ACTIVITY

KERNEL SERVICE REQUESTS . . . . .
2.9.1 General service functions
.9
.9.
9

I/0 operations . . . . . .
Function descriptions . .

NN
ww N

.

2.9.4.1 ALERT function (15)
ASLEEP function (14)
AWAKE function (16)
A1300I function (24)
BGET function (32)
BRET function (33)
CALL function (50)
CREATE function (55)
FIND function (53)
FLUSH function (54)
GETDAL function (26)

. . .

-
.

.
.
.

(Yo JVe J¥e Ve Ve JRTo JVe JVe JVe JVe]
.

== 0 00 NO0W;e WwN

- O

.
.

L A L

.

NN DNDNDNNDNDNNDNDDN
« e & e .

Memory allocation and deallocatlon

DISPATCHING .

vii

NN NNDNDNDNDNDMNNDNNMNDNDN
]
PP O0ONOoOOOWUwwN PR

[\V]

1
[

NN
1o
o
N N

2-12
2-13
2-16
2-16
2-18
2-19
2-21
2-22
2-23
2-23
2-24
2-26
2-26
2-27

ix




2.11
2.12
2.13
2.14

2.9.4

Function descriptions (continued)

2.9.4.12 GETMEM function (30) . . . « . .
4.13 GIVEUP function (4) . . . . . .
.14 GOTO function (51) . . . . . . .
.15 HSPR function (42) . . . . . . .
.16 HSPW function (43) . . . « « . .«
MGET function (35) . . . « .« « &
MOSR function (46) . . . . . . .
MOSW function (47) . « « « ¢ o &
MPUT function (36) . . . . . . .
MSG function (20) . . . . .+ . .
MSGR function (21) e e e s e e
OUTCALL function (37) e e e e e
OUTPUT function (22) . . . . . .
PAUSE function (7) . . « « « .« .
POLL function (44) . . . . . . .
POP function (2) . . « « ¢« « + &
PUSH function (1). . . « « « « .
RECEIVE function (25) . . . . .
RELDAL function (27) . . « . « .
RELMEM function (31) . . . . . .
RESPOND function (17) . . . . .
RETURN function (52) . . . . . .
SEND function (34) . . . . . . .
TERM function (3) . . . « . . .
TPUSH function (11) . . . . . .
TRANSFER function (45) . . . . .

.

#hk#hhhh#hhh&hh&bhh&h#h

.
NN =
= O O

2.9,
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9.
2.9.
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9

.
wwwwwwwNNNNN
O\U’l)thl—‘O\OmleU\

. .

. .

2.9.4.37

CLOCK FUNCTIONS . ¢ &+ ¢ ¢ o o o o o o ¢ o o o o o

2.10.1
2.10.2
2.10.3

Real-time clock interrupt handler . . . .
Clock demon . ¢ ¢ ¢« ¢ ¢« ¢« ¢ ¢ o o o o o &
System event timer . . . . . ¢ ¢ o ¢ & .

IOP DEADSTART . . ¢ & 4 ¢ ¢ ¢« o o ¢ o o o o o o &
STATISTICS . . « & o & o o o o o o « o o o o o o &
COMMUNICATION AMONG IOPS &« « & o o o o o o s o o o

MIOP-MAINFRAME COMMUNICATION

2.14.1
2.14.2
2.14.3
2.14.4

CHANNEL . . . . .+ .« &
MIOP-mainframe communication initialization
Input channel from the mainframe . . . . .
Input packet disposition . . . . . . . . .
Output channel to the mainframe . . . . .

ERROR PROCESSING . . . & & & o o o o « o o o o o &

2.15.1

2.15.2

Error channel processing (IOS Serial No. 21
and below) . « v 4« v ¢« 4 4 e 4 e e e e e
2.15.1.1 Interrupt answering . . . . . .
2.15.1.2
Error logging (IOS Serial No. 21 and up) .

Retrieving error log information .

2-27
2-28
2-29
2-30
2-32
2-33
2-34
2-35
2-36
2-37
2-37
2-38
2-39
2-40
2-40
2-41
2-42
2-43
2-43
2-44
2-44
2-45
2-45
2-46
2-46
2-47
2-49
2-49
2-49
2-50
2-51
2-52
2-52
2-54
. . 2-55
2-55
2-56
2-56
2-57

2-57
. . 2-58
2-59
2-59

SM-0046 G



3. DISK INPUT/OUTPUT . . ¢ ¢ « ¢ o o o o o ¢ o o o o o o«

3.1
3.2

3.3

3.4

SM-0046 G

REQUEST PROCESS OVERVIEW . . . . . . . « « « « & =«
DCU-4 CONTROLLING SOFTWARE . « « ¢« « ¢ o ¢ ¢ & o o

3.2.1

w o w
(@]
waN
1
o

DCU-4 software overlays . « « « + o« o o &
1 ACOM overlay « « « « o o o o o o
2 CDEM overlay . « « o« o « o o o o
3 DISK overlay « « « o o o o o o o
.4 ERRECK overlay . . « « ¢ ¢ o « &
5

.6

Disk driving subroutines . . . .
DCU 4 tables and packet structure . . . .
Stepflow for DCU-4 disk write request from
mainframe . . ¢ ¢ ¢ ¢ 4 e o e o o o o o .
Stepflow for DCU-4 disk read request from
mainframe . . ¢ ¢ o ¢ ¢ o o s o o s o s
Local handling of disk queues . . . . . .
DCU-4 disk read-ahead . . . . . . « . . .
3.2.6.1 Disk read . . . . ¢ ¢ « ¢ o« « &
3.2.6.2 Disk write . . . . . ¢ . « . . .
On-line disk diagnostic requests . . . . .

DISK ERROR RECOVERY . . ¢ ¢ « ¢ ¢ ¢ o « « &

Disk errors requiring recovery . . . . . .
3.3.1.1 Data error . . o« « o o o o o o &
3.3.1.2 Lost data errors . « « « o & o«
3.3.1.3 Seek errors .« « « o o o o s o
3.3.1.4 ID errors . o o o o o o o o o
3.3.1.5 Interlock status . + ¢« ¢« ¢ + .« &
3.3.1.6 Miscellaneous disk errors

I70 time-out . &+ ¢« ¢« ¢ ¢ ¢ ¢ o o o s+ o o o
Error recovery summary . « « « « o« o o &
Error status returned to mainframe . . . .
DCU-4 disk error message . . « « « o « + &

DISK CONTROLLING SOFTWARE . . « « .« « o

DCU-5 software components . . . . « « . .
DCU-5 disk driver tables and packets . .

3.4.2.1 Disk Request Packet (DAL) - DL@
3.4.2.2 Disk Control Block (DCB) - DK@ .
3.4.2.3 Local Buffer entry - LB@ . . . .
3.4.2.4 Buffer Memory Control Block

(MCB) - CB& . . . . . . .+« ¢ ..

Disk interrupt answering subroutine

3.4.2.5 Data Transfer Request (DTR) - TR@
3.4.2.6 Abort Transfer Request (ATR) - AR@
3.4.2.7 Device Parameter Table (DPT) - DP@
3.4.2.8 MEMIO Queue Table - MEM@ . . . . .
Resource management . . . « & o & o o o o

3.4.3.1 Local Memory management . .
3.4.3.2 Buffer Memory management . .

w
|
[

[
bbb WWWNNNN

W WwWwwWwwwwwww
L}

3-16
3-16
3-16
3-16
3-17
3-18
3-18
3-20
3-21
3-21
3-22
3-22
3-22
3-22
3-22

3-23
3-23
3-23
3-23
3-23
3-23
3-24
3-24

xi




3.6

DCU-5 DISK CONTROLLING SOFTWARE (continued)

4. TAPE EXEC .

4.1

xii

3.4.4 DCU-5 disk read request stepflow . . . . . . . 3-24
3.4.5 DCU-5 disk write request stepflow . . . . . . 3-25
3.4.6 DCU-5 read-ahead and write-behind . . . . . . 3-26
3.4.6.1 DCU-5 read-ahead . . . « . « « . .« 3-26
3.4.6.2 DCU-5 write-behind . . . . . . . . . 3-27
3.4.7 Spiral formatting . . . . . . . . 4 4 0 0 . 3-28
3.4.8 On-line disk diagnostics requests . . . . . . 3-28
DCU-5 DISK ERROR RECOVERY . ¢« & o ¢ « o o o o o o o o 3-29
3.5.1 Recovery activity . . . . . ¢« ¢ ¢« ¢ o« ¢« o« . . 3-30
3.5.2 Error recovery ProCess . . « « s o o« o« o o s 3-33
3.5.2.1 Unit select Process . « « « o« o o+ & 3-33
3.5.2.2 Cylinder select process . . . . . . 3-34
3.5.2.3 Head select-LMA select-read process 3-35
3.5.2.4 Head select-LMA select-write process 3-36
3.5.2.5 Unit release pProcess . « . « « « o & 3-37
3.5.3 Operator mMesSSages . « . « « « o o o o o o o 3-37
3.5.4 Error reporting . . « « ¢ ¢ o o o o o o o o . 3-39
STRIPED DISK GROUPS '« ¢ & ¢ ¢ « o o o o o o o o o o o 3-40
3.6.1 Logical to physical address mapping . . . . . 3-41
3.6.2 Stepflow for a request to a striped group . . 3-42
KERNEL INTERNAL DISK I/0 . . . . « « « + & e s e e 3-45
e 6 e e 4 e s 4 e e o o e s s e s e e o & o 4-1
ARCHITECTURE . . . ¢ ¢ ¢ ¢ ¢ « o o s s o o o o o o o o 4-1
4.1.1 Tape Exec activity . . . « ¢« « ¢« ¢ v ¢ ¢ o o . 4-2
4.1.2 BYPASS activity . & v & & ¢ ¢ ¢ o o o o o o 4-2
4.1.3 Data Stream Control Table . . ¢« « « ¢« « « + & 4-3
4.1.4 TDEM1 activity « o ¢ ¢ ¢ ¢ o o o o o o o o o @ 4-4
4.1.5 Tape error recovery activities . . . . . . . . 4-4
REQUEST AND RESPONSE PACKET ROUTING . . . . « « « « . 4-5
REQUEST PROCESSING .« « ¢ ¢« ¢ o o o o o o & o o e s 4-5
4.3.1 Configuration change request (FC$CHNGE) . o e 4-6
4.3.2 Mount request (FCSMOUNT) . . . « v v ¢ & o« o & 4-6
4.3.3 Read request (FCSREAD) . . « + 4 ¢ & o o o o & 4-9
4.3.4 Write request (FC$WRITE) . . « ¢« «o « « . . . 4-23
4.3.5 End read requests (FC$SEOFR, FC$EORR, FC$EODR) 4-37
4.3.6 NO-OP request (FCENOOP) . ¢ &+ & v ¢ & o o o & 4-40
4.3.7 Positioning requests (FC$FWFIL, FC$§FWSPC,
FC$BKFIL, FCEBKSPC) . & ¢ v ¢ o o ¢ « o o o & 4-42
4.3.8 Load display request (FC$DSP) . . . « « o . . 4-45
4.3.9 Remount request (FCSRMNT) . . +« & & o o« o o & 4-48
4.3,10 Rewind requests (FC$REWND, FC$RWND1l, FC$RWND2) 4-51
4.3.11 Unload requests (FC$UNLC, FC$UNLD1l, FCSUNLD2) 4-54
4.3.12 Free requests (FC$FREE) . . . . « + ¢« « « .+ . 4-57
ERROR RECOVERY PROCESSING . . ¢ ¢ & ¢ ¢ o « o o« o« o & 4-60
4.4.1 TAPERR routine . . . . . ¢« ¢ ¢ ¢« v 4 v v o o & 4-60
4.4.2 TERROR routine . . . . . « +« v ¢ 4 4 o o« o o & 4-60
4.4.3 TCART routine . . « v v 4 ¢ ¢ ¢ o o o o o o & 4-61
SM-0046 G



4.4

ERROR RECOVERY PROCESSING (continued)

4.4.4

Recovery subroutines . « « ¢« ¢« ¢ ¢ ¢ ¢ o ¢ o o
4.4.4.1 Equipment check (noncartridge
device only) . . .« ¢« ¢ 4 o ¢ o o .
4.4.4.2 Bus-out check (noncartridge device
ONlY) « o ¢ ¢ o e e e e e e e e e
4.4.4.3 Intervention required (noncartridge
device only) . ¢« « ¢ ¢ ¢ ¢ o o o e

4.4.4.4 Command reject, data converter check,

and not capable . . . . ¢ . ¢ & . .
4.4.4.5 Data overrun (noncartridge device
only) ¢ o ¢ v e 4 e v e e e e e e

4.4.4.6 Load point . . . . . ¢« « .+ ¢« « « « .
4.4.4.17 Data check . « « « ¢ « ¢ ¢« ¢« o ¢ o &
4.4.4.8 Data security erase . . . . . . . .
4.4.4.9 ID burst check (noncartridge device

ONlY) ¢ o o o o o o o s o o o o o
Error Aisplay .« ¢ ¢ ¢ ¢ ¢ ¢ ¢« o« o ¢ o o o o

BLOCK MULTIPLEXER CHANNEL INTERFACE . . . . . « « . .« .« .

SM-0046 G

I0OS BLOCK MUX (BMX) SUBSYSTEM OVERVIEW . . . . . . . .
BMX CONFIGURATION . & ¢ & ¢ o o o o o o o o o o o o o
BMX TABLES . ¢ v ¢ ¢ o+ ¢ o ¢ o s o o o o o o o o o o o
CHANNEL PROGRAM WORD (CPW) . . & &« ¢ ¢ o ¢ o o« o« o o &

[0S N, B 8, ]

DESC

R I 'S
e W N

w

Nondata transfer commands . . « ¢« « « ¢ « . .
Local Memory data transfer commands . . . . .
Buffer Memory data transfer commands . . . . .
Command chaining (CPN@CC) . . . « . « .« « .+ .

IPTION OF ROUTINES . ¢ ¢ « o ¢ o o o o o o o o o

BMXCON . « ¢« ¢ ¢ o o ¢ o o o o o o o o o o s o

5.5.1.1 Channel configuration (CON$CHN) . .
5.5.1.2 Control unit configuration (CON$CUT)
5.5.1.3 Device configuration (CON$DEV) . . .
5.5.1.4 BMXCON mMmeSSages .« « o« « o o o o o &

BMXCPU . ¢ « ¢ o o o o o o o o s o o o o o o @
BMXSIO o «¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o s o
5.5.3.1 Start I/0 (RQ$SIO) . . . . . . . . .
Wait I/0 (RQSWIO) . . ¢ « v o « o« &

5.5.3.2

5.5.3.3 Return to caller . . . . . . . . . .
BMXAIO . & & ¢ o o ¢ o o o o o o o o s o o o o
5.5.4.1 Halt I/0 (RQ$SHIO) . + ¢ & o o o o &
5.5.4.2 Assign device path (RQ$APTH) . e e
5.5.4.3 Release device path (RQ$RPTH) . e e
5.5.4.4 Request reset (RQ$RSET) . . . . . .

BMXDEM . . ¢ ¢ ¢ o o o o o o o o o ¢ o o o o
1 Start command sequence (KIC$SC) . .
2 Advance command sequence (KICS$AC)

.3 Advance data sequence (KICS$AD)

4 Request-in sequence (KIC$ER) . . . .

4-62

4-62

4-62

xiii




Xiv

DESCRIPTION OF ROUTINES (continued)
5.5.6 BMX interrupt handler (IBMX) .

¢ o e o . . . .

Immediate return (KIC$IR) . . . . .

5.5.6.1

5.5.6.2 Advance data (KICS$AD)

5.5.6.3 Start request-in (KIC$SR) . . . . .

5.5.6.4 Continue request-in (KIC$CR) . . . .

5.5.6.5 End request-in (KIC$ER) . . . . . .
5.5.7 BMXOPE . . & v ¢ ¢ o ¢ o o o &

5.5.7.1 Open (FC$MOUNT/FC$REMOUNT) . . . . .

5.5.7.2 Close (FCSFREE) . .
5.5.8 BMEXTPO . « ¢« ¢ o o o o o o o o

I/0 SUBSYSTEM STATION . . « ¢ ¢ o o o o o &

OO
o« o
W N =

oo O
.
O U e

STATION TASKS . . ¢ ¢ ¢ ¢ ¢ ¢ o o o &
STATION STORAGE . . o « &« ¢ ¢ o « o &
TASK FLOW AND INTERACTION . . . . . .

6.3.1 Station initialization . . . .
6.3.2 KEYBD task « « &« ¢« ¢ o ¢ o o &
6.3.3 DISPLAY task « ¢« ¢« « o & o o &
6.3.4 CLI task « ¢« o ¢« ¢ ¢ o o« o o o
6.3.5 PROTOCOL task . . « « &« o o &
6.3.6 STAGEIN task . « o « ¢ & ¢ « &
6.3.7 STAGEOUT task . . « ¢ ¢« &« +
6.3.8 STIO overlay . « « ¢ o« « o o &

6.3.9 POST overlay . « « « « &« & o &
GLOBAL SYMBOLS . . . « « ¢ &« o o« o o &
CONSOLE OUTPUT . « o « ¢ o o o o o o &
SCREEN IMAGE . . . . « o & o ¢ « o o &

FRONT-END CONCENTRATOR . . « . + « ¢« & ¢« o .

CONC OVERLAY DESCRIPTION (CONCENTRATOR
CONCIO ACTIVITY DESCRIPTION . . . . .
CONCID OVERLAY DESCRIPTION . . . . . .
CONCERR OVERLAY DESCRIPTION . . . . .
ENDCONC OVERLAY DESCRIPTION . . . . .

INTERACTIVE STATION . . . ¢ ¢ & ¢ « o o o &

8.1

INTERACTIVE CONCENTRATOR OVERLAYS . .
8.1.1 IAIOP overlay . . « « « o« + &

8.1.2 IAIOP1 overlay . . « « « + o &
8.1.3 IAFUNC overlay . « « « « « . .
8.1.4 IAMSG overlay . « « « o o+ + &

* o . . . . . .

. . . . . . . .

INITIALIZATION)

5-26
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-28
5-29

[=)]
|
U

b

|
== 000 N =

(=)}
'
NN
N

(= e e Je N e e e TN e))
I

[=)]
|

6-29
6-32
6-33
6-34
6-34

SM-0046 G



8. INTERACTIVE STATION (continued)

8.2

NTE

INTER
8.2.1
8.2.2
8.2.3
8.2.4

ACTIVE CONSOLE OVERLAYS

IACON overlay . . .
IACON1 overlay . .
IACMD overlay . . .
IAOUT overlay . . .

9. USER-CHANNEL I/0 . .« ¢« ¢« « o o o« &

9.1

[=]
12}

E
1
.1,
.1
.1,
1.
1
1
1.

(e JVe B Vo Vo RTe RETo Ve Vel
leO\U'!nbUJNH

9.1.9
9.2.1

9.2.2
9.2.3

9.2.4

R CHANNEL REQUESTS . . .

Open request (CR$OPN)
Read request (CR$RD)

.

Read-hold request (CRsRDH)
Read-read request (CR$RD2)
Write request (CR$WRT)
Write-hold request (CR$WRTH)

Write-write request (CR$WRT2)
Driver request (CR$DRV)

Close request (CR$CLS)
SHELL ARCHITECTURE . . . . .

User Channel Table .

.

User channel message handler
User channel shell (UCSHL)

9.2.3.1

SHELL AND DRIVER INTERFACE .

9.3.1

SIGNAL and WATCH macros

Shell requests . . .
Driver responses .
Buffering . . . . .

Interrupt processing .

User channel configuration

Driver installation

10. NSC HYPERCHANNEL . . . . . . . . .

SM-0046 G

NSC ACTIVITY INITIALIZATION
NSCIO ACTIVITY . . . « .« &

10.2.1
10.2.2

10.2.3

10.2.4

NSCIO idle loop .

Write sequence for the protocol- 1ndependent

interface

Read sequence for the protocol independent

interface . . . .

.

.

SCP interface logon sequence .

UCSHL open subroutine (UCOPN)
2 UCSHL close subroutine (UCCLS)
3 UCSHL read subroutine (UCRD)
.4 UCSHL write subroutine (UCWRT)
5 UCSHL driver subroutine (UCDRV)

User channel shell data handler (UCXFR)

.

R
[

LI R S S RN N A R I |

i
P PR OOONNNNOOOOOOUNMUBONIO S WWWWNNNNDN

O OOVWOOOVWOOOVOOVOVUOWVWOOVWOO OYVOOYO OOV OO
t
o oo

10-1
10-1

10-2
10-2

Xxv




10.

11.

12.

XVi

NSC HYPERCHANNEL (continued)

10.3 NSC ACTI

VITY TERMINATION . ¢ « ¢ ¢ ¢ o o« o o o o o &«

10.4 OVERLAYS . . « ¢ ¢ ¢ o o ¢ o s o o o o o o o o o o o

10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.4.8
10.4.9
10.4.10
10.4.11
10.5 ERROR RE
10.5.1

10.5.2

10.6 CHANNEL/

FRONT-END INTE

ADEM overlay . ¢« ¢« « & ¢ ¢ ¢ « o o o o o o
FNSC overlay . « « o o ¢ o o ¢ o o o o o o o
NIDEND overlay .« « o« o s o o o o s o o o o o
NSC overlay . « ¢ ¢ o o o o o o o o o s o »
NSCEND Overlay « « « o o o o o o o o o o o o
NSCID overlay . « « ¢ o ¢ o o o o o o o o o
NSCIO overlay .« ¢ ¢ o ¢ o o o o o o« o o o« &
NSCMSG overlay . ¢ « o« o o o o o o o o o o
NSCRW overlay .« « « ¢ ¢ o o o o o o « o o
SCPIO OVerlay « « o « o o o o o o o o o o &
TERMNSC overlay . . « ¢ « o o s o o o o o &«
COVERY ¢ « o o ¢ o o o o o o o o o o o o o s
Error recovery for SCP protocol . . . . . .
10.5.1.1 Driver input/read operations . . .
10.5.1.2 Driver output/write operations . .
Error recovery for the protocol-independent
interface . . ¢ ¢ ¢ ¢ ¢ o 0 0 e e e e e .
10.5.2.1 Driver input/read operations . . .
10.5.2.2 Driver output/write operations . .
ID ORDINAL DESCRIPTION . . . « « « ¢ & & & .

RFACE LOGICAL PATH ACTIVITY . . . . . . . .

11.1 FEI LOGI

11.2 FEI LOGI

11.3 OVERLAYS
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5

CAL PATH ACTIVITY INITIALIZATION . . . . . .
CAL PATH ACTIVITY TERMINATION . . . . . . .
ADEM overlay . . . « o« « « ¢ o o o o o

FNSC overlay « « « « ¢ ¢ o o ¢ ¢ o o o « o &
FEIR overlay . . . . <« ¢ ¢ v ¢ o o o o o o @
FEIW overlay . . « « o« o o o« o o o « o o o o
FEIMSG overlay . « « « « ¢ o« o s s o o o o &

HSX CHANNEL INTERFACE . . ¢ o ¢ ¢ ¢ ¢ ¢ o o ¢ o o o s o o

12,1 HSX CHANNEL REQUESTS . . . & & o « « o o o & o o o &
12.1.1 OPEN request (HSF$OPEN) . . . . . . + o« o .
12.1.2 READ request (HSF$READ) . . . . .« . « « « .
12.1.3 WRITE request (HSF$WRIT) . . . . . . . . .

12.1.4

12.1.5

CONTROL request (HSF$CNTL) . . . .
12.1.4.1 Set parameters (HSS$SET) « e e
12.1.4.2 Send interrupt (HSSSSNDI) e e
12.1.4.3 Receive interrupt (HSS$RECI) . . .
CLOSE request (HSF$CLOS) . . . . « « « « « &

« « 10-6
« « 10-6
« « 10-6
« « 10-6
. o« 10-9
« « 10-9
. « 10-9
« « 10-9
. « 10-9
. . 10-9
. . 10-10
. « 1l0-10
. . 10-10
. « 10-10
. » 10-11
.« « 10-11
. . 10-11
. « 10-12
. o 10-12
. « 10-12
. . 10-12
e o 11-1
e o« 11-1
« o 11-1
« o 11-2
. o 11-2
« o 11-3
« .« 11-3
. o 11-3
.« 11-3
e o 12-1
« o 12-1
o« o 12-2
« o 12-2
« o 12-2
.o 12-2
. o 12-2
. o 12-3
<« 12-3
« o 12-3
SM-0046 G



12. HSX CHANNEL INTERFACE (continued)

12.2

12.3
12.4
12.5

12.6

HSX DRIVER ARCHITECTURE . .+ + « « =« & o« o« o o o o o =
12.2,1 HSX DEMON overlay (HCOM) . . « « « « ¢ o o o &

12.2.2 HSX input interrupt handler (HSXI) . . . . . .
12.2.3 HSX output interrupt handler (HSXO) . . . . .
12.2.4 Buffering . « ¢ ¢ ¢ « ¢ o o o o o o o s e o
DEBUG MODE . . + ¢ ¢ ¢ ¢ o o o o o o o o o o o s o o o
OVERLAY LISTING . « ¢ « o o o o o s o o o o o o a o =
ERROR PROCEDURES + + &« « + ¢ o« o o o o o o o o o o o
12.5.1 Input Errors . « « ¢ « ¢ ¢ o o o o o o o o o
12.5.1.1 Clear pulse received (HST$CLR) . . .
12.5.1.2 Multiple bit error (HST$DATA) . . .
12.5.1.3 Data overrun error (HST$OVER) . . .
12.5.1.4 Long block error (HST$LONG) . . . .
12.5.1.5 Software time-out (HST$TMO) . . . .
12.5.1.6 Device not present (HST$NDEV) . . .
12.5.1.7 Short block error (HST$SHRT) . . . .
12.5.2 Output errors . o ¢« ¢ « ¢ ¢ ¢ ¢ 4 o s e 0 . o
12.5.2.1 Exception pulse received during
transfer (HST$XDT) . . « « o« « ¢ « o
12.5.2.2 Exception pulse received while
channel idle (HST$XFT) . . . . . . .
12.5.2.3 Receiving device aborted (HST$ABRT)
12.5.2.4 Software time-out (HST$TMO) . . . .
12.5.2.5 Device not present (HST$NDEV) . .
SPECIAL SEQUENCES . &« ¢ & ¢ o« o o o o o o o o o o o o
12.6.1 Input SEQUENCES . « « « « o« o « o o o o o o

12.6.2

12.6.1.1 Send exception pulse (HSS$SNDI) . .

12.6.1.2

Wait for clear pulse (HSS$RECI) . .

Output sequences . « ¢« « o « o o o o o ¢ o o

12.6.2.1
12.6.2.2

13. VMEBUS (FEI) DRIVER .

Send clear pulse (HSS$SNDI) . . . .
Wait for exception pulse (HSS$RECI)

. . . . . . . . . . . . . . . . . .

13.1 N-PACKET INTERFACE . . ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o

13.2

SM-0046 G

DRIVER
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12

OVERLAYS

. . . . . . . . . . . . . . . . . .

ADEM overlay . ¢« ¢ o « o ¢ o o « o o o o o o
FNSC overlay « « « « o o o o s o o o o s o o o
NSCRW overlay « « « o o o o o o o o o o o o o
VME overlay . o« ¢ ¢ o o o « s o o o o o o o
VMEND overlay . « ¢ ¢ « o o ¢« o o o o o o o &
FEIMSG OVerlay « . « « o ¢ o o o o o o o o o o
UMERD overlay .« o« o « o o« o o o o o o o s o o
VMEWT overlay . . « « ¢ o« o o o o o o o o o &
TERMVME OVverlay . « ¢ o ¢ o o o o o o o o o«
TERMNSC overlay . « « « o« ¢ ¢ o o o o o o o =
NSCID overlay « « « « o o o « o o o o o o o
SCPIO overlay « o « o« o o o o o o o o o « o &

12-3
12-3
12-4
12-4
12-4
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-7
12-7

12-8

12-8
12-8
12-8
12-8
12-9
12-9
12-9
12-9
12-9
12-10
12-10

13-1

13-1
13-2
13-2
13-2
13-4
13-4
13-4
13-4
13-4
13-5
13-5
13-5
13-5
13-5

xvii




13.

14.

xviii

VMEBUS (FEI) DRIVER (continued)

13.3

READ AND WRITE REQUESTS FLOW DESCRIPTIONS . .
13.3.1 Read request sequence . . ¢« « « o o o

13.3.2

Write request sequence . . . « .« .« .+ .

FLOW DESCRIPTION FOR SCP PROTOCOL . . . . . .
INTERRUPT HANDLING . « + « « ¢ ¢ ¢ o o o o o «

PROGRAM LIBRARY AND MACROS . . « ¢« + « o « ¢ o o o o

14.1 PL STRUCTURE . « v ¢ o o o o o o o o s o« o o »
14.1.1 Common deck structure . . . . . . . &

14.2

14.1.2
MACROS
14.2.1

14.2.2

14.2.3

14.2.4

14.2.5

14.2.6

Adding an overlay . . « « ¢ ¢ ¢ o o
Exit stack macros . . .« . ¢« .« ¢ ¢ o .
14.2.1.1 EGET mMacro . . « « ¢ o o o o
14.2.1.2 EPUT MacCro . . « « o o o o &
14.2.1.3 EINCR mMmacro . . « o« « « + o
14.2.1.4 EDECR MACro . « « « ¢ o o
14.2.1.5 EXSGET Macro . . « o« o« o o o
14.2.1.6 EXSPUT Macro . « « o+ « o o o
Execution control macros . . . . . . .
14.2.2.1 $IF MACLO « v o o o o o o
14.2.2.2 SUNTIL macro . . « « « o o =
14.2.2.3 $GOTO MACLO + o o o o o o
14.2.2.4 $PUNTIF Macro . « « « o o =
Data definition mMacros . « « + « o + &
14.2.3.1 FIELD Macro . . « « o« o o &
14.2.3.2 ISFIELD MAcCro . « « « o o
14.2.3.3 TABLE Macro . « « « « o o &
Data access MACrosS . « « « o o o« o o o
14.2.4.1 ADDRESS macro . . . « « « &
14.2.4.2 GET MACro .« « « o ¢ o o o
14.2.4.3 LOAD MAcCro . . « « + s o o &
14.2.4.4 PUT MAacCro . « « ¢ o o o o
14.2.4.5 STORE Macro . « « « o o o o
14.2.4.6 RGET MACro . +« + « « s s o =
14.2.4.7 RPUT MAcCro . . « o » o o o
14.2.4.8 RSTORE Macro . . . + « & o+ &
14.2.4.9 FLDADD MAcCro . « « o+ o o o
14.2.4.10 FLDSUB M&Cro . « « + o« o o
Overlay and register definition macros
14.2.5.1 OVERLAY macro . . +« « + « &
14.2.5.2 REGDEFS macro . . . + « + =
14.2.5.3 REGISTER macro . . « + +« o .
14.2.5.4 RETREG macro . . « +« « & o+
Memory macros « « « o+ ¢ o o o o o s s
14.2.6.1 CLEAR MACrO . + « « o o o &
14.2.6.2 COPY MAacCro . « + « « o o o

.« « 13-5
. . 13-6
e o 13-7
e o 13-7
. . 13-8
« o 14-1
e o 1l4-1
e o 14-2
. o 1l4-2
« . 14-8
. . 14-8
.+ 1l4-9
. . 14-9
.+ 14-9
. . 1l4-10
. « 1l4-10
. . 14-10
. . 14-11
. . 14-11
. . 14-13
. . l4a-14
e« o 14-15
« . 14-16
.« . 14-16
. o 14-17
« « 14-18
. o 14-19
. « 14-19
. .« 14-20
. . 1l4-20
« o 14-22
. o 14-22
. . 14-22
« o 1l4-23
. o 14-23
« o 14-25
. . 14-25
. .« 1la4a-26
. o 14-26
. o 14-27
« o 14-28
. . 1l4-29
« o 14-31
.« . 14-31
. . 14-31
SM-0046 G



15. DEBUGGING TOOLS . . ¢ ¢ o « o o o o o s o o o o o o o »

15.1 SUMMARY
15.1.1

UTILITY & & & + ¢ ¢ o o o o o o o o o o &
Overlays « o « ¢ ¢ ¢ o o o o s o o 0 o o

15.1.2 InterruptsS . « o« v & ¢ o ¢ o o o o o 2 o
15.1.3 Kernel calls . o v « ¢ o« ¢ o o o o o s o
15.2 HISTORY TRACE ¢ ¢ ¢ o s o« o o s o o s o o s o o o
15.2.1 Examining trace buffers on-line . . . . .
15.2.2 Examining trace buffers off-line . . . . .
15.2.3 Trace event codes, subcodes, and parameters

15.3 DEBUGGER . . ¢ ¢« ¢ ¢ ¢« ¢ ¢ ¢ o o o o o o o o o o &

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7

Display accumulator command . . . « . . .
Display B register command . . . . . . . .

Display
Display
Issue a
Display
Display

carry register command . . . . . . .
channel status conrmand . . . . . . . .
function on a channel command . . . .
exit stack command . . . . . . . . . .
operand register command . . . . . . .

15.3.8

15.3.9

15.3.10
15.3.11
15.3.12
15.3.13
15.3.14
15.3.15

15.3.16

Toggle display mode command .
Display Local Memory command .
Display P register command . .
Set single breakpoint command
Set double breakpoint command
Display breakpoints command .
Delete breakpoints command . .
Set count register and proceed
command . . ¢ . . e e e o0 o
Display Buffer Memory command

. . . . . . . .

from breakpoint

. . . . . . . .

15.3.17
15.3.18

Display high-speed channel command . . . .

Processing

command

of channels

e o . . . .

used by

the

.

15.4 PATCH OVERLAY . ¢ . ¢ ¢ ¢ & o o o o &
15.5 LISTP OVERLAY . . . . . . . ¢« « .« .« .
15.6 LISTO OVERLAY . . . . & v & o o o &
15.7 DKDMP OVERLAY . . . « . ¢« « o ¢ o « &

APPENDIX SECTION

A. DUMP ANALYSIS . . & ¢ &« o ¢ o« ¢ o« o o o o &

B. IOS CONFIDENCE UTILITIES . . . ¢« . o « ¢ + &

1 CHNTEST command . . « « ¢« o« o « o o
2 CPTEST command « « . « ¢ « ¢ o o« o o &
3 ECHOCP command . . « « &+ « &« &+ o « o« &
.4 HSPTEST command . . . . + ¢« « « o

5 MOSTEST command . . « . « + « « o o«

6 SSDTEST command . . « + + + + &

SM-0046 G

debugger

15-1

15-1
15-3
15-3
15-4
15-4
15-4
15-7
15-8
15-22
15-24
15-24
15-25
15-25
15-25
15-26
15-26
15-27
15-27
15-28
15-28
15-28
15-29
15-29

15-29
15-30
15-31

15-31
15-32
15-33
15-34
15-36

xix




IOS CONFIDENCE UTILITIES (continued)

B.7 STOP command . . « « ¢ o o s o o o o o o =
B.8 XDK command . ¢ « « « o o o o o s o o o
B.9 XMT command « « « o o o o o o o o s o o
B.10 XPR command . . . ¢« ¢ ¢ o ¢ o o o o o o

SYSDUMP '« ¢ ¢ ¢ o ¢ ¢ o o ¢ o o o o s o o o o s

c.1 OPERATIONAL DESCRIPTION . . . . + « o« « &
C.2 DUMP FORMAT . . . ¢ ¢ ¢ o o o o ¢ o o o &

ISP CHANNEL DRIVER . « . ¢« ¢ ¢« & ¢ o o ¢ o o o o

D.1 MAIN LOOP . & ¢ ¢ o o o o o o o o o o o o
D.2 OPEN PROCESSING . . & « o o o o ¢ o o o &
D.3 CLOSE PROCESSING . . .
D.4 I/0 REQUEST PROCESSING . « . ¢ ¢ « o & & o«
D.5 STARTIO SUBROUTINE . . . . . . « « « « « &
D.6 WAITIO SUBROUTINE . . . . ¢ ¢« ¢« ¢« & « & &
D.7 GETL SUBROUTINE . . . ¢ ¢ « ¢ ¢ ¢ ¢ o« o &

FIGURES

-1
-1

-2
-3
-4

WNDNNN PR

-1

XX

A Cray Computer System with Four I/O Processors
Local Memory Structure . . . ¢ « ¢« « ¢ ¢ « o« o &
Buffer Memory Organization . . . . . « + « « . .
ALERT Stepflow . . ¢ ¢ ¢ ¢ ¢ o o o o s o o o o« o
AWAKE Stepflow . . ¢ + ¢ ¢ ¢ ¢ ¢ o« o o o o o o

Striped Group (Six Physical Units Constituting One

Logical Unit) . .« & & ¢ ¢ v v v v v v v e e e
Target Memory Mapping for a Single Device . . .
Target Memory Mapping for a Two-unit Group . . .
Processing of Configuration Change Requests . .
Processing of Mount Requests . . « « + « & o« o« &
Processing of Read Requests . . . . . « « . . .
Processing of Write Requests . . . . . . . . . .
Processing of End Read Requests . . . .« . . . .
Processing of No-op Requests . . . « « « « « « .
Processing of Positioning Requests . . . . . . .
Processing of Display Requests . « +« « + « o« o &

Processing of a Remount Request to the Same Device

Processing of a Remount Request to a New Device

Processing of Rewind Requests . . . . . . . . .-

Processing of Unload Requests . . .+« « « o« « «
Processing of Free Requests . . . . . . « « « .
BMX OVErView . « v « ¢ o o o o o o o o o o o o

A 2-by-2 Configuration (Multiple Path, Single Bank)

. . B-11
o B-11
.« B-12
.o . B-13
o« . c-1
o« e c-1
. . C"8
.« D-1

Ooo ? Oouo
B WWNN R

- -17
. e -20
o« 3-41
.. 3-44
. 3-44
. e 4-7
.o 4-8
- 4-9
. 4-24
. . 4-38
. e 4-40
o e 4-42
. e 4-46
.« e 4-49
. e 4-50
. . 4-51
4-55
4-58
. e 5-2
5-4
SM-0046 G



FIGURES (continued)

Two 1l-by-1 Configurations (Single Path, Multiple Bank)
A 2-by-1 Configuration (Multiple Path, Multiple Bank)
Pointer to Channel Tables for Each Configured Channel
Pointer to Device Table for Each Configured Device . .
BMXDEM's Usage of the Channel Table . . . ¢« « ¢ « « &
Location of BDVAUN . . v & & ¢ o o o s o o o o o o o
Local Memory Stack Area . . . .« « ¢ o« o« o o o o o o o
Station Initialization Flow . . . ¢ ¢ ¢ « ¢ o &« o« o &
KEYBD Task Flow and Interaction . . . +« & ¢ + ¢ « o &
DISPLAY Task Flow and Interaction Operator
CLI Task Flow and Interaction . . . ¢« « « &+ « o« o o &
STATUS Command Flow and Interaction . . . « + ¢ « o &
DROP Command Flow . . . v ¢ ¢ & o o o o o s o o o o o
PROTOCOL Task Flow (Initialization) . . . . « « « « .
PROTOCOL Task Flow and Interaction (Main Body) . . . .
0 PROTOCOL Task Flow (Termimation) . . . « ¢« ¢« ¢ « o o«
1 STAGEIN Task Flow and Interaction . . . . « ¢ ¢ ¢ o« &
2 STAGEOUT Task Flow and Interaction . . . . . . . .« « .
Tree Structure of Concentrator Software . . . . . . .
Structure of Interactive Concentrator Software . . . .
Structure of Interactive Console Software . . . . . .
Shell Architecture . . . ¢ &+ ¢ ¢« 4 ¢ o o o o o o o o &
NSC HYPERchannel Driver Overlay Connection . . . . . .
FEI Logical Path Overlay Connections . . . . . . . . .
VMEbus Driver Overlay Connections . . .« « ¢ ¢« o« o &
The SUMMARY DiSPlay « « « « o o o o o o o o o o o o
15-2 History Trace Sample Output . . . . . . « « « « « «
LISTO Sample Output . . . « o v ¢ v ¢« ¢« ¢ o & o o & &
SYSDUMP Memory Map of IOP with Master Disk Attached .
AL LISt v ¢ v o o & o o o o o o o o s o o o o o o o
Head Format for OS = UNICOS . . . & & ¢ & ¢ o o o o o

=)
v
n
ke
]
]
~
(2]

PR PP OOONOORRORN UL OTWN
S e - S N I I R A T

11 P NRRRPRROONOURWNRONOU & W
[ SRS h

el
LI ® )]
Ll |
w

an
LI |
w N

TABLES

System Directory Contents . . . . . . . . . « . « . .
Overlay Format . . .+ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢« o o o o o o o &
Summary of Service Functions . . . . . . . . . . . . .
I/0 Processor Intercommunication Function Codes . . .
Error Conditions . . v & ¢« v v 4 ¢ ¢ o o o ¢ o 0 4 e
Interlock Error Conditions . . . v « v « « o« o o o« o« &
Miscellaneous Error Conditions . . . . « + ¢« ¢ o« & o
Disk Error Recovery Summary . . .« +« + o o o o o o o &
Disk Error Information in DAL . . . « « ¢« ¢« « o« « .« .
DD-49 Error Retry Limits . . . . . . + + « ¢« ¢ v o ¢ .
RD-10, DD-39, and DD-40 Error Retry Limits . . . . . .
Station Tasks . & ¢ ¢ ¢ ¢ v 4 ¢ 4 e v e 4 e e e e e W
Shared Memory ACCESS « « « « « o o o o o s o o o o o o
KEYBD Task Interaction Areas . . . . . . « ¢« « « + .

LN R S T |

OO W W W WWWwwNhNDNDN
1
WNEFENO UMD WN P A WN =

SM-0046 G

(o Wo W e W« N« NS IS S I S G
LI S |
= RPN R NNOONSNOO
N

2-5

2-11
2-14
2-53
3-14
3-17
3-18
3-19
3-20
3-30
3-31

(o Je We
|
N wN

xxi




TABLES (continued)

OP>»P R PP
[ IS I |
1)1 Nown e
N

1
=R

INDEX

xxii

DISPLAY Task Interaction Areas .
PROTOCOL Task Interaction Areas
STAGEIN Task Interaction Areas .
STAGEOUT Task Interaction Areas
Summary of Macros . . . . . . .
Trace Event Codes . . . . . . .
Trace Event Parameters . . . . .
Kernel Registers . « . « « « .« &
Stepflow for DOIO Buffered Loops

SM-0046 G



1. INTRODUCTION

This manual describes the internal design of the software running in the
I/0 Subsystem (IOS) of the CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-1
computer systems. IOS software supports either the COS or UNICOS
operating systems.

The parts of IOS software are as follows (with references to the section
that describes them):

The Kernel (section 2)

Disk I/0 (section 3)

Tape Exec (section 4)

Block multiplexer channel interface (section 5)
IOS station (section 6)

Front-end concentrator (section 7)

Interactive station (section 8)

User channel I/0 (section 9)

NSC HYPERchannel (section 10)

Front-end interface logical path activity (section 11)
HSX channel interface (section 12)

VMEbus (FEI-3) driver (section 13)

Program library and macros (section 14)
Debugging tools (section 15)

® 0 & & 6 ¢ & ¢ 0 & 0 0 0 o

Commands for the IOS are described in the I/O Subsystem (IOS) operator's
guides.

The Kernel serves as the operating system. A copy of the Kernel runs in
each I/0 Processor (IOP) in the subsystem, adapting itself to the special
functions of each processor. In addition to the operating system
section, Kernel software includes the following:

A deadstart package

An interactive debugger

A buffer from which overlay areas are allocated
A section of free memory

An I/0 buffer area

A trace buffer area

® & o ¢ ¢ o

The disk I/O software moves data in streams between Central Memory in the
mainframe or SSD Memory in the optional SSD solid-state storage device,
and disks attached to the IOS.

SM-0046 G 1-1




Tape Exec (TEX) software processes requests from the mainframe. TEX
performs functions related to tape I/O such as message routing, data
formatting, data movement, and error recovery.

Block multiplexer channel interface software drives the block multiplexer
channel hardware. It contains device-independent command and interrupt
code that executes requests from the Tape Exec.

Station software runs in the Master I/0 Processor (MIOP) and supports
operator commands, station displays, and dataset staging. All dataset
staging is performed without queuing; datasets are transferred directly
to the mainframe.

Concentrator software accepts data from front-end computers into IOS
Local Memory, builds the data into a message, and sends it to the
mainframe. The concentrator relieves the mainframe of the burden of
handling an interrupt for each subsegment of messages transferred.

The interactive station permits interaction with a job running in the
mainframe. Interactive commands are entered at a console connected
directly to the IOS.

User Channel I/0 software runs in the MIOP and supports access to IOS
channels by COS tasks. User Channels may be used for connecting new
devices or mainframes to the IOS.

The NSC HYPERchannel driver links a Cray mainframe and a front-end
through the NSC HYPERchannel. The driver allows multiple front-end
computers to be connected to one physical MIOP channel pair.

The Front-end Interface (FEI) logical path driver provides an FEI
connection for UNICOS. This connection parallels the NSC logical path
connection. The driver allows front-end stations to communicate with the
UNICOS Station Call Processor (USCP) under UNICOS by using the SCP
protocol.

The HSX High-speed External Communications channel driver supports the
CRI HSX channel.

The VMEbus driver allows a VMEbus-based front-end processor connected to
a CRI VMEbus interface to communicate with a Cray computer system. The
driver allows simultaneous use of multiple application protocols.

The I1I0S software program library (IOPPL) contains the following: the
system text ($SAPTEXT), the Kernel, the configuration overlay AMAP,
overlay decks, TAPELOAD, DISKLOAD, DUMP, and CAL overlays used for
deadstarting and dead dumping the mainframe. Macro instructions used by
the IOS are defined in $APTEXT and perform exit stack access, execution
control, table access, and overlay and register definition.

The debugging tools provide a means to analyze and maintain IOS software.

1-2 SM-0046 G



1.1 HARDWARE SPECIFICATIONS

The IOS consists of channel interfaces, at least one-half million words
of Buffer Memory, and two, three, or four IOPs.

Each IOP contains a Local Memory section, a computation section, a
control section, and an I/O section.

The computation section includes functional units for integer arithmetic
(addition and twos complement subtraction) and shifting. The computation
section does not perform multiplication, division, or floating-point
arithmetic. The accumulator (A register) is a 16-bit register used in
single-address operations. Each IOP has 512 16-bit operand registers.

The control section consists of an instruction stack, a program exit
stack, and control logic. The instruction stack is a 32-parcel circular
buffer. New instructions brought in from memory replace the parcels that
have resided the longest in the instruction stack. The program exit
stack is a set of 16 registers that stores return addresses during the
execution of subroutines and the Kernel interrupt processing routine.
Local Memory contains 65,536 parcels of 16 bits, plus 2 parity bits,
each. Local Memory is located in four sections, each consisting of four
banks.

The IOS model B is linked to the mainframe by two types of channels: the
100-Mbyte channel used for data streaming and the 6-Mbyte channel used to
pass control information. The standard configuration for the I0OS model B
provides one channel of each type (the 6-Mbyte channel connected to the
MIOP, the 100-Mbyte channel connected to the Buffer I/0 Processor
(BIOP)); a second 100-Mbyte channel linking the Disk I/O Processor (DIOP)
and the mainframe is optional. A detailed description of the IOS model B
is contained in the I/0 Subsystem Model B Hardware Reference Manual,
publication HR-0030.

The IOS model C is linked to the mainframe with the same type of
channels, but its standard configuration contains one channel of each
type for each IOP. In addition, the 100-Mbyte channels on the model C
supports a Bypass mode of operation that enables data transfer directly
between Buffer Memory and Central Memory bypassing the IOP's Local
Memory. A detailed description of the IOS model C is contained in the
I/0 Subsystem Model C Hardware Reference Manual, publication HR-0081.

The IOS may optionally be linked to an SSD Memory by a 100-Mbyte

channel. Software supports the movement of disk data over such a channel
if it is attached to the BIOP, an optional DIOP, or an optional Auxiliary
1/0 Processor (XIOP). This channel can support the Bypass mode of
operation on a model C IOS if attached to channels 14g and 15g on an

IOP.

SM-0046 G 1-3




1.2 SYSTEM CONFIGURATION

The IOS has a minimum of two IOPs, The MIOP and BIOP are mandatory. In
addition, the IOS can have either one or two DIOPs, permitting a maximum
of 48 disk units to be connected to the system. One XIOP, which
controls block multiplexer channels, can be selected as the third or
fourth processor. Figure 1-1 shows an example of a Cray computer system
with each of the four types of IOPs.

Each processor in the IOS is responsible for a unique set of functionms.

A processor's functions are defined by the peripheral equipment attached
to it., The software in each processor knows its functions and is
structured to perform these functions as efficiently as possible. The
processors can communicate with each other through Buffer Memory. Thus,
a processor can request that another processor perform a function for it.

Front-end

Printer/ Clock Computers
Plotter Unit |
Front-end
Interfaces
Mag. Boxes and/or
Disk Peripheral Tape NSC Adapters
Unit Expander Unit

To mainframe or
1/0 Subsystem

3 Displays

/

MIOP

BIOP Disk Units _ 1 to 16 Disk
Controllers Storage Units Cray Mainframe ssp
DIOP Disk Units | _ 1 to 16 Disk
Controllers (StOane Units)

1lor 2
Block Multiplexer} — _BMX Channels

Controllers

td

1

Buffer Memor

Display

\

XIOP

Display

008

=== Cray 6-Mbyte channel 1031

wmmm Cray 100-Mbyte channel
- Cray 1000-Mbyte channel

Figure 1-1. A Cray Computer System with Four I/0 Processors

4 SM-0046 G



MIOP responsibilities are as follows:

The MIOP is the first IOP in the IOS to be deadstarted. The MIOP
initializes the contents of Buffer Memory and deadstarts the other
processors in the configuration using Buffer Memory and
accumulator channels to the other processors.

The MIOP and the BIOP ‘are used to deadstart the mainframe.

The MIOP handles all communication with the mainframe over a
6-Mbyte channel. This traffic includes disk and tape requests and
station communications.

The MIOP performs front-end and station software support.

The MIOP handles input and output operations on the expander
channel.

The MIOP accepts information from the error channel and transmits
it to the mainframe for inclusion in the system error log.

The MIOP is the operator interface to the IOS editor, which
maintains deadstart and restart parameter files.

The MIOP handles input and output operations on user channels for
COS tasks.

BIOP responsibilities are as follows:

The BIOP uses a 100-Mbyte channel to transfer data between Central
Memory and Buffer Memory for all IOPs.

The BIOP transfers tape data between Central Memory and Buffer
Memory under direction of the XIOP. It also blocks and deblocks
tape data as it is moved between Central Memory and Buffer Memory.

The BIOP performs disk I/O to and from disk units attached to its
channels. (IOS software supports the DD-19, DD-29, DD-39, DD-40,
RD-10, and DD-49 Disk Storage Units.) It performs error recovery
when errors are detected on data transfers.

If a 100-Mbyte channel is connected to SSD Memory, the BIOP
transfers disk data between SSD Memory and Local Memory.

DIOP responsibilities are as follows:

The DIOP moves data from Buffer Memory to disk and vice versa at
the request of packets from the mainframe through the MIOP. These
packets also return status to the requester.

SM-0046 G 1-5




e When errors are detected in data transfers to or from disk, DIOP
software attempts error recovery.

e If a 100-Mbyte channel is connected to Central Memory, the DIOP
transfers data between Central Memory and Local Memory.

e If a 100-Mbyte channel is connected to SSD Memory, the DIOP
transfers disk data between SSD Memory and Local Memory.

XIOP responsibilities are as follows:
e The XIOP handles data to and from IBM-compatible tape drives and
buffers the data to and from Buffer Memory at the request of

packets from the mainframe.

® When errors are detected while transferring data to or from tape,
the XIOP performs error recovery procedures.

e If a 100-Mbyte channel is connected to SSD Memory, the XIOP
transfers disk data between SSD Memory and Local Memory.

Each processor logs information and keeps statistics about channel use,
error detection, and error recovery.

1.3 REGISTER ASSIGNMENTS

The 512 operand registers are conventionally assigned to IOS software
entities as follows (register numbers are in octal).

Registers Software Entity
0-377 Kernel
400-577 Overlays
600-677 Interrupt handling overlays
700-777 Debug packages (the debugger, trace, and DUMP)

The % symbol usually designates global Kernel registers and R!
usually designates APML assembly operand registers.

1.4 TERMINOLOGY

Although the IOPs are usually referred to by their acronyms (MIOP, BIOP,
DIOP, and XIOP), they can also be referred to as IOPs 0 through 3. 1In
this manual, the third and fourth IOPs are often referred to as IOP-2 and
I0P-3.

1-6 SM-0046 G



This terminology is necessary because the identities of those two
processors can vary. If the IOS has three IOPs, either IOP-2 or IOP-3
can be present. If the IOS has four processors, both IOP-2 and IOP-3 are
present. IOP-2, when present, must be a DIOP due to hardware
limitations. IOP-3, when present, can be a DIOP or an XIOP. When IOP-3
is specified, the documentation applies to either a DIOP or an XIOP.

The words task and activity are used interchangeably in this manual.
Activities (or tasks) are routines that do specific jobs within the
subsystem.

An activity is initiated either by a command keyed in at a Kernel

console or by a Kernel service request function. Within the domain of an
activity there is a set of routines that reside as overlays in Buffer
Memory. These routines operate under a stack-like structure. When an
activity begins, an initial routine gains control. The routine may give
control to another routine, and so on. As a routine completes, control
may pass back to the previous routine. An activity is terminated when
the initial routine relinquishes control.

Parcel is used in this manual when referring to a storage unit of 16
bits. Word refers to a 64-bit storage unit.

Central Memory consists of 64-bit words and is located in the
mainframe. SSD Memory consists of 64-bit words and is located in an
optional SSD solid state storage device. Data transfer to or from SSD
Memory must be a multiple of 64 words, and to an address that is a
multiple of 64 words. Buffer Memory consists of 64-bit words and is
located in the IOS chassis. Local Memory stores information in 16-bit
units (parcels) and is located within each IOP.

Target memory refers to the ability of the mainframe operating system

to specify the source or destination of disk data as being Central
Memory, SSD Memory, or the portion of Buffer Memory reserved for dataset
storage. An IOP with a 100-Mbyte channel connected to a particular
target memory is referred to as the Target Memory Processor for that
memory type.

Although the IOS includes 100-Mbyte channels between each of the IOPs and
Buffer Memory, the term 100-Mbyte channel as used in this manual refers
only to the channel linking an IOP to Central Memory or SSD Memory.
Similarly, 6-Mbyte channel refers to the command channel linking an IOP
to the mainframe, unless otherwise stated.

SM-0046 G 1-7




1.5 FORMAL SYNTAX CONVENTIONS

This manual uses the following conventions to describe macro calls,
console commands, and other formal representations:

® An uppercase word, such as MSG, is a predefined system keyword.

® A lowercase word in italics, such as msg, represents variable
data. 1Italics also highlights terms being defined.

e Information delimited by square brackets, [], is optional.

e A vertical bar in a command format (A|B) separates two or more
literal parameters when only one choice can be used.

Any command entered at a console must be followed by a carriage return,
unless otherwise specified.

1-8 SM-0046 G



2. THE KERNEL

The Kernel is the software package that controls activities running in
each I/0 Processor (IOP). Each IOP has its own copy of the Kernel, and
all copies are basically the same. At deadstart, each copy of the Kernel
dynamically adjusts to configurations and functions assigned to its IOP.

Kernel functions consist of answering interrupts, managing overlay areas,
and handling independent activities running in the I/O Subsystem (IOS).
The functions of the independent activities include handling other
activities, allocating memory, and partial handling of peripherals.

2.1 LOCAL MEMORY USAGE

Kernel code, as figure 2-1 shows, is stored in a separate area of Local
Memory away from the constants and tables it references. The table area
contains configuration maps, memory allocation tables, activity
dispatching parameters, and information about overlays in Buffer Memory
and in Local Memory.

Space for overlays follows the Kernel code area in Local Memory. A
specified amount of space is available to each of the IOPs and is
allocated dynamically as new overlays are loaded.

Three memory areas managed by the Kernel come next in Local Memory. One
area provides communication packets (DALs), one contains free memory, and
one provides I/0 buffers. The DAL area contains a linked list of
32-parcel packets. The free memory area is used for Kernel tables and
small buffers and is organized as a chain structure. Free memory is
allocated in multiples of 4 parcels, with the first address always
falling on a 4-parcel boundary.

The I/0 buffer area is allocated in pieces of 2048 parcels.

The relative size of each of these types of areas in Local Memory is
determined by parameters in the overlay AMAP during deadstart. (See the
COS Operational Procedures Reference Manual, publication SM-0043, or the
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1
Computer Systems, publication SG-2018, for information on IOP
configurations set in AMAP.) The size of the areas depends on the
functions that each IOP performs. For example, an IOP that is used
exclusively for disk I/0 has more Local Memory assigned to I/0O buffers
than an IOP that performs functions in addition to disk I/0.

SM-0046 G 2-1




0 15

0 | |
| Kernel Constants and Tables |
I |
| |
| Kernel Code |
I |
| I
| Overlay Area |
| I
I |
| DALs for Communication |
| among the IOPs |
| |
| |
| Free Memory for Kernel Tables, |
| Small Buffers, and Data Areas |
I |
| I
| |
I |
| |
I I
I |
| I
| I
| I/0 Buffers |
| [
I |
| I
| [
I |
| |
f [
I I
| |

65,536 | |

Figure 2-1. Local Memory Structure

2.1.1 LOCAL MEMORY SCRUBBING

In the IOS Model B, the ECL technology used for IOP Local Memory is
susceptible to soft memory errors caused by alpha particle migration.
These soft errors are seen as bits changing state in areas of memory

that are infrequently or never written. Because the IOS Model B has no
Local Memory correction and the IOS Model C has SECDED Local Memory error
correction only during transfer of data from Local Memory to issue, a
method is needed to correct Local Memory errors.

2-2 SM-0046 G



The SCRUB routine is used to correct Local Memory errors. SCRUB is
created in each IOP at deadstart time. It uses the TPUSH Kernel call to
activate itself once every 15 minutes.

SCRUB allocates a Buffer Memory data buffer and uses it to write out,
then read back in, the Kernel-resident area of Local Memory. SCRUB then
issues a FLUSH Kernel call, which causes all overlays to be reloaded from
Buffer Memory before being activated. The time spent in SCRUB is
approximately 0.5 ms.

The remainder of Local Memory consists of dynamically allocated parcels
that are written before they are read.

2.2 BUFFER MEMORY USAGE

The IOPs share Buffer Memory, which is organized according to the plan
defined in figure 2-2. The first locations are reserved for a deadstart
package. During deadstart, the Master I/O Processor (MIOP) initializes
common tables and the System Directory so that all the control
information is ready to begin execution when the other IOPs are
deadstarted.

The next area in Buffer Memory is reserved for the System Directory,
followed by the message area, Kernel area (includes AMAP, the overlays,
and IOPs Kernel storage), and lastly, Buffer Memory resident datasets.

Buffer Memory addresses require 32-bits (2 parcels). The high-order bits
of the address are in the first parcel and the low-order bits are in the
second.

2.2.1 SYSTEM DIRECTORY

The System Directory contains pointers to other information saved in
Buffer Memory, including message area locations for each processor, and
pointers to Kernel storage reserved for each processor. The System
Directory begins at the first address after the deadstart package.
Table 2-1 lists the directory structure.

All of the IOPs can access the System Directory, but information in the
directory can be changed only by the MIOP during Deadstart.

SM-0046 G 2-3




0

63

Deadstart package

System directory (see table 2-1 for expansion of area)

Message Area (for communicating control information)

MIOP
BIOP
10P-2 (DIOP)

IOP-3 (DIOP or XIOP)

(Size of area set in AMAP
for each IOP. Each
message area is divided
into 32 parcel units.)

AMAP (Individual IOP configuration overlays)

Overlays (Read-only, shared by all IOPs)

MIOP Kernel storage:
- Tables and queues

I/0 buffers
Trace buffer

Software stack area (2003 words)

- Other memory requirements

IOP-2 Kernel storage (same as MIOP Kernel

except size of 100g words)

storage description

IOP-3 Kernel storage (same as MIOP Kernel

except size of 100g words)

storage description

BIOP Kernel storage (same as MIOP Kernel storage description

except size of 100g words)

Buffer Memory resident datasets

Figure 2-2.

Buffer Memory Organization

SM-0046 G



Table 2-1. System Directory Contents

: Parcel : Bits : Description

| ] |

I ! |

| 0-1 | 0-15 | MIOP message area

{ 2-3 : 0-15 : BIOP message area

: 4-5 : 0-15 : IOP-2 message area

: 6-7 : 0-15 : IOP-3 message area

: 8-11 : 0-15 : Reserved

: 12-13 : 0-15 : First overlay (AMAP) address

: 14-15 : 0-15 : Unused

: 16-17 : 0-15 : MIOP Kernel storage area

: 18-19 : 0-15 : Size of MIOP storage area in 512-word blocks
: 20-21 : 0-15 : BIOP Kernel storage area

: 22-23 : 0-15 : Size of BIOP storage area in 512-word blocks
: 24-25 : 0-15 : IOP-2 Kernel storage area

: 26-27 : 0-15 : Size of IOP-2 storage area in 512-word blocks
: 28-29 : 0-15 : IOP-3 Kernel storage area

: 30-31 : 0-15 : Size of IOP-3 storage area in 512-word blocks
I I

L

2.2.2 MESSAGE AREAS

Message areas accessed by senders and receivers of messages follow the
System Directory. The sending IOP maintains control of the area and
allocates or deallocates memory within it. The receiving processor
signals when the message has been received and processed; the memory is
then released to the pool of message areas belonging to the sender. This
process is described in detail in subsection 2.13, Communications Among
IOPs.

SM-0046 G 2-5




2.2.3 KERNEL AREA

Each IOP has access to its own reserved Kernel storage area, which holds
temporary information about activities and swapped activity areas.
Reserved areas also provide data buffer storage for disks and other
peripherals. A buffer is also reserved for history trace information.
(TRACE is a debugging tool described in subsection 15.2, History Trace.)
Each area is solely under the control of its respective IOP.

2.2.4 BUFFER MEMORY RESIDENT DATASETS

Part of Buffer Memory can be allocated for dataset storage. See the COS
Operational Procedures Reference Manual, publication SM-0043, or the
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1
Computer Systems, publication SG-2018, for more information about
configuring storage for Buffer Memory resident datasets.

2.3 TARGET MEMORY

The IOS may be configured so that it can access various types of memory
through 100-Mbyte channels. The concept of a target memory allows IOS
activities to specify which of these memories to access in Kernel Service
Request I/0O functions. It also allows the mainframe to specify which
memory type to use in disk requests. An IOP with a 100-Mbyte channel
connected to a particular memory is referred to as the Target Memory
Processor for that memory.

Memory types are defined in $APTEXT by equates as follows:

Memory Type Description
TM$CMEM Central Memory
TM$SSD SSD Memory
TM$BMR BMR Memory

The Target Memory Control Block (TMCB) residing in the Kernel table area
contains a pointer to the Target Memory Control Table (TM@) for each type
of target memory. The IOS Kernel Service Request routines and the disk
software use these control tables to determine memory base and limit
addresses, and to determine the Target Memory Processor number for each
memory type.

2-6 SM-0046 G



2.4 ACTIVITY-SOFTWARE STACKING

Each independent activity is controlled by the Kernel using the
parameters and data stored within the Activity Descriptor (AD) for that
activity. The Kernel establishes an AD in the free memory section of
Local Memory when a new activity is created. The AD for each activity
currently in use remains in Local Memory until the activity is
terminated. The format of the Activity Descriptor is defined in the IOS
Table Descriptions Internal Reference Manual, publication SM-0007.

An activity may be composed of more than one overlay. When control
passes to a new overlay that is not already resident in Local Memory, the
new overlay is copied from Buffer Memory to the overlay area in Local
Memory, where it executes.

Each overlay to execute is assigned a storage module (SMOD), which saves
information relating to that overlay's executing environment. An SMOD is
of variable size. Each SMOD contains the following information:

e Links to the AD and the previous SMOD
® Overlay information (for instance, its base address)
e Contents of A, B, C, E, and P registers

Additionally, an SMOD may contain the following information:

® Contents of operand registers
¢ Entries in the exit stack

The format of an SMOD is illustrated in the IOS Table Descriptions
Internal Reference Manual, publication SM-0007.

An SMOD is created when an overlay is first activated. When an
overlay completes execution, either by returning control to the
overlay that called it or by performing a GOTO service request to
another overlay, its SMOD is deleted by removing all pointers to it.
However, if the overlay performs a service request that results in the
temporary loss of control (such as a CALL), the SMOD is updated with
the executing environment of its overlay in anticipation of the return
of control.

When an activity calls two or more overlays, multiple SMODs are
retained. The collection of SMODs for a single activity is called a
software stack. While the activity is executing, this software stack
occupies an area of fixed size in Local Memory.

When an overlay performs a CALL, its SMOD is pushed onto the

software stack. When the overlay regains control, its SMOD is

popped from the stack. Each SMOD, except the SMOD for the first
overlay of an activity, contains a link to the SMOD associated with
the overlay that called it. For the first overlay, the pointer to the
previous SMOD is 0.

SM-0046 G 2-17




When an activity relinquishes control of the IOP central processor to
the Kernel and other activities are waiting on the central processor
queue, the software stack for the activity losing control is written
to Buffer Memory. The Local Memory software stack area is thus
available to another activity. When the original activity regains
control of the IOP central processor, its software stack returns to
the software stack area in Local Memory. The AD remains in Local
Memory and contains a link to the SMOD for the next overlay to be
activated.

2.5 DEMON ACTIVITIES

Demon activities are created to perform tasks necessary to sustain
I1/0, but which take too much time and memory to execute directly in an
interrupt handler.

Demon activities differ from normal activities in that they are
assigned a Local Memory-resident SMOD. This provision minimizes
activation time by eliminating the time normally needed for the SMOD
exchange between Local and Buffer Memory.

The SMOD assigned to a Demon activity is large enough to contain the
minimum amount of information needed to activate it. No room is
provided for register saves or SMOD stacking, which means that Demon
activities cannot perform Kernel service routines (such as CALL, PUSH,
MSG, and RECEIVE) that could alter or temporarily suspend an activity.

Demon activities are created the same way as the normal activities,
using the CREATE Kernel service routine. The DPTR keyword parameter
on the CREATE macro (see the CREATE function later in this section) is
used to specify that the activity being created is a Demon. The DPTR
keyword is set to the Demon pointer D$name, which has been

previously defined using the DAEMON macro in the Kernel Demons Table.

The D$name Demon pointer is used as an index into the Kernel Demons
Table in the Kernel to find the AD for each Demon.

2-8 SM-0046 G



Example: Create ACOM Demon
Kernel Demons Table:

DEMONS *

.

ACOM DAEMON

ACOM Demon creation:

EXT D$ACOM
CREATE ACOM, ,DPTR=D$ACOM, PRI=0

The preceding statement causes an AD and SMOD to be assigned and
initialized for the ACOM Demon. The AD address is placed in the
Kernel Demons Table, using DJACOM as an index.

Demon activities are activated by making a call to the DACT Kernel
subroutine. The D$name pointer assigned to the Demon to be
activated is passed as a parameter in the accumulator.

Example: Activate ACOM Demon

EXT D$SACOM (Define if not in Kernel code)
A=D$ACOM
R=DACT

The D$name pointer is used as an index into the Kernel Demons Table

to find the AD for the Demon. If the Demon is not already active or
queued to be activated (AD@ACT=0), the AD address is passed to EQCP to
be queued for activation.

2.6 OQVERLAYS

Because of the limited size of Local Memory, the IOP software uses
overlays. An overlay is an executable program or subroutine that
normally resides in Buffer Memory. It is read into Local Memory when
activated to perform some function.

The MIOP establishes the overlays in Buffer Memory and constructs the
Overlay Table when the system is deadstarted. The Overlay Table
contains an entry for each defined overlay. (The Overlay Table entry
is illustrated in the IOS Table Descriptions Internal Reference
Manual, publication SM-0007.) The entry for a particular overlay is
derived from the overlay index, an equate of the form Ofoviname,
defined in the overlay OVLNUM.

SM-0046 G




The Kernel uses the Overlay Table entry to load the associated overlay
(if it is not already resident) when that overlay is called, and to
determine the registers through which it receives parameters. If the
overlay is called from a console, the parameters are the characters
keyed in following the command, two characters per register; the
maximum is one line of input. Internally called overlays are supplied
parameters from the caller within the caller's registers.

During deadstart, the Kernel initializes the memory allocated for
overlay space. The initialized space consists of three memory

blocks: a header and a trailer delimiting the overlay space and one
block containing the memory available for assignment. The amount of
space allocated in a particular IOP is specified as a parameter in the
overlay AMAP,

Two doubly linked lists run through the block headers. (See Local
Memory Block Header in the IOS Table Descriptions Internal Reference
Manual, publication SM-0007, for a description of the header
contents.) The two lists are as follows:

e The adjacent block list is ordered by block address and is used to
calculate block sizes and to combine a block with adjacent free
blocks when it is released.

¢ The memory search list links the free memory blocks and overlay
blocks; the free blocks are kept at the head of the list and the
overlays at the end, ordered in a least recently used manner.

When an overlay load is required, the Kernel scans the memory search list
for an area large enough to accommodate the overlay. Overlay areas are
released and combined with adjacent blocks, if necessary, as they are
encountered during the scan. Upon finding a block of sufficient size,
the Kernel creates a block for the overlay and reads the overlay into
Local Memory. If the block is larger than that required, the Kernel also
allocates a block of free memory, which is placed on the memory search
list.

Whenever an overlay is entered (through a service function such as CALL,
GOTO, RETURN, or CREATE), the memory block for that overlay is placed at
the end of the memory search list.

The format of an overlay running under the Kernel is depicted in table
2-2, The first 4 parcels contain the name of the overlay, which has a
maximum of 8 characters, zero-filled. All overlays are entered at
parcel 6.

Overlays contain no variable data areas; that is, overlays are read-only
programs and cannot be modified. An overlay obtains a data area by
requesting a Local Memory area from the Kernel. Data areas thus
allocated must be explicitly released when no longer needed. (The memory
can be released in a different overlay or even in a different activity.)

2-10 SM-0046 G



Table 2-2. Overlay Format

| I I |

| Field | Parcel | Bits | Description

[ | | |

I | I |

| OVENAM | 0-3 | 0-15 | Overlay name (up to 8 ASCII characters)
! I I |

| OVE@TYP | 4 | O | Type of overlay:

| | | | 0 Executable

| | | | 1 Data

I | | |

| OV@NUM | 4 | 1-15 | Overlay number

I I | I

| OVE@PAR | 5 | 0-15 | Parameter information:

I I I I

| SM@NUM | - | 0-6 | Number of registers

I I | |

| SM@FST | - | 7-15 | First operand register

( I I I

| OV@ENT | 6 | - | Entry point (first executable statement)
I | | |

2.7 INTERRUPT PROCESSING

With the exception of the 100-Mbyte channels to Central Memory, SSD
Memory, and Buffer Memory, IOS channels are normally managed through
interrupts rather than by polling the Channel Done flag. That is, a
function is initiated and control is relinquished to the Kernel, allowing
the Kernel to do other useful work. A subsequent interrupt or time-out
reactivates the software and processing continues.

When any peripheral function is completed (the done indicator is set), an
interrupt is generated to the address contained in the first entry of the
exit stack. That address is the same for any task running under the
Kernel. All interrupts, therefore, go to the Kernel, which processes
them in a manner consistent with the device causing the interrupt.
Essential parts of interrupt handling routines are performed with
interrupts disabled.

SM-0046 G 2-11




2.8 I0OP CENTRAL PROCESSOR QUEUING AND ACTIVITY DISPATCHING

The Kernel maintains a queue containing the activities eligible for
control of the IOP central processor. A simple priority scheme
determines the order in which the activities receive control. The queue
has 16 priority levels for activities, with priority 0 the highest and 15
the lowest. Demon activities performing Kernel functions run at a higher
priority than other activities. A Kernel function can be interrupted by
the hardware, but otherwise it gives up control only when its task is
complete. The task is always of brief duration.

The priority of an activity is maintained within the Activity Descriptor
and as such is semipermanent.

2.9 KERNEL SERVICE REQUESTS

The Kernel monitors the operation of IOP software and performs several
service functions for software activities. These services are performed
through well-defined interfaces between the activity and the Kernel.

2.9.1 GENERAL SERVICE FUNCTIONS

The general service functions are activity-oriented functions, including
queuing and dequeuing operations, activity creation, and front-end
communication.

2.9.2 MEMORY ALLOCATION AND DEALLOCATION

Each IOP has two types of Local Memory chains for allocating and
deallocating memory for activities: the free memory chain and the
fixed-size pool. The free memory chain is a block of memory that can be
allocated in variable sizes. The first parcel of each allocated segment
of memory is on a 4-parcel boundary. The Kernel always allocates in
multiples of 4 parcels, regardless of the size of the request, by
rounding up to the next multiple.

The other type of memory chain is the fixed-size pool, of which there are
two types: the I/0 buffer pool and the Disk Activity Link (DAL) pool.

Each memory piece in the I/0 buffer pool is 2048 parcels in length and
begins on a parcel boundary that is a multiple of 2048 parcels. This
pool is used for storing data from disk sectors, on its way either to or
from a disk attached to an IOP, and for other I/0 device buffering.

2-12 SM-0046 G



Each memory piece in the DAL pool is 8 words (32 parcels) in length and
begins on a 4-parcel boundary. This pool contains I/0 requests from the
mainframe and IOP-to-IOP messages while they reside in Local Memory.

The size of each of these pools is adjustable at assembly time; each
processor has a pool size consistent with its function in the IOS. For
example, the MIOP (the controller IOP) has few I/0 buffers, but it has a
relatively large quantity of free memory for use by overlays and station
software. The Buffer I/0 Processor (BIOP), because it largely moves data
to and from Buffer Memory (and disk), assigns most of Local Memory to the
I/0 buffer pool.

Six Kernel requests allocate and deallocate memory from these pools. Two
other requests allocate and deallocate Buffer Memory from the Kernel's
pool of available memory.

2.9.3 1I/0 OPERATIONS

Activities executing in the IOS perform I/0O for peripherals attached to
the subsystem. In addition, the IOS software occasionally accepts files
from front-end processors and writes them on disk at the direction of
software executing in the mainframe. At other times, an IOP moves files
from disk to a front-end computer for further processing.

The Kernel performs all of these functions. An activity running in an
IOP makes a service request to the Kernel specifying the parameters for
an I/0 operation. The Kernel loads a special overlay containing the
handler for the relevant device, and the function is performed while the
activity waits for its completion.

Table 2-3 provides a brief summary of the service functions and the octal
function codes. Each function is described in more detail in the
following subsections, arranged alphabetically by function.

A macro call is the normal method for requesting service from the Kernel.

The address to which the service request macro performs its return jump
is within the resident Kernel and is held in operand register %EX, which
is dedicated to that function. The Kernel sets the register contents;
the register must not be altered by any other software.

Following the Kernel call and the performance of the service function,
control returns to the caller at the instruction after the return jump.
After the call, the contents of the A and B registers depend on the type
of call. The operand registers specified to be saved contain the values
they contained at the time of the call, except in cases where they pass
parameters back to the caller.

SM-0046 G 2-13




Table 2-3. Summary of Service Functions

Function

Code Function

Name

General Service Functions

|

|

I

I

I

I

|

] 1 | PUSH | Deactivates activity until popped

I I I

| 2 | POP | Reactivates pushed activity

| I |

| 3 | TERM | Terminates activity

I I I

| 4 | GIVEUP | Reschedules activity

I I I

| 7 | PAUSE | Suspends activity for specified tenths of a
| I | second

I I I

| 11 | TPUSH | Pushes activity until popped or time expires
I I I

| 14 | ASLEEP | Suspends activity until an AWAKE message is
| | | received

I I |

| 15 | ALERT | Creates an activity in another IOP

| | I

| 16 | AWAKE | Activates an activity in another IOQP

| | |

| 17 | RESPOND | Sends message response to an activity in

| | | another IOP

I I I

| 20 | MSG | Sends message to Kernel console

| | I

[ 21 | MSGR | Sends message to Kernel console and waits for
[ [ | operator response

I I I

| 22 | OUTPUT | Sends message to controlled CRT

! | I

| 24 | Al1300I | Performs front-end I/0O on an NSC channel

| ! |

| 25 | RECEIVE | Waits for a character to be entered from a CRT
| | | controlled by USURP

I I I

| 37 | OUTCALL | Calls (through the CALL function) an overlay in
[ | | another IOP

I I I

| 50 | CALL | Calls another overlay to perform a function
! | |

2-14 SM-0046 G



Table 2-3. Summary of Service Functions (continued)

| I
Function | |
Code | Name | Function

] |
I I

51 | GOTO | Calls another overlay but does not save return
] | information; returns to caller of this overlay.
I |

52 | RETURN | Returns to caller of the overlay; if none,
| | terminates.
I I

53 | FIND | Returns the Buffer Memory address and length
| | of an overlay
I I

54 | FLUSH | Releases all overlays in Local Memory
I I

55 | CREATE | Creates a new activity in the system

Memory Allocation and Deallocation

26 | GETDAL | Allocates local DAL
: RELDAL : Releases local DAL
30 : GETMEM : Allocates Local Memory in multiples of 4
| | parcels from free pool
31 : RELMEM : Releases memory to free pool
32 : BGET : Allocates a Local Memory I/O buffer of 2048
] | parcels
33 : BRET : Deallocates a Local Memory I/0 buffer
35 : MGET : Gets Buffer Memory from pool of free buffers
36 : MPUT : Returns Buffer Memory to free pool

| [
Input/Qutput Operations

34 | SEND

| Sends message to mainframe

I
42 | HSPR | Reads data from a Target Memory into Local

|

|

| Memory

I
I
|
I
|
[
I
I
I
I
I
I
|
I
I
|
I
|
|
I
I
|
| 27
I
I
|
|
I
I
I
|
I
I
I
I
I
I
I
I
|
I
I
|
[
I I

SM-0046 G 2-15




Table 2-3. Summary of Service Functions (continued)

| | |

| Function | |

| Code | Name | Function

| ] |

| | |

| 43 | HSPW | Writes data from Local Memory to a target

| | | memory

| | |

| 44 | POLL | Sends message to mainframe ard waits for

| | | response

| | |

| 45 | TRANSFER | Moves data between Buffer Memory and a target

| | | memory

I | |

| 46 | MOSR | Reads data from Buffer Memory into Local Memory
I I |

| 47 | MOSW | Writes data from Local Memory into Buffer Memory
| | |

2.9.4 FUNCTION DESCRIPTIONS

The following subsections describe the service functions in alphabetical
order.

2.9.4.1 ALERT function (15)

ALERT creates an activity in a different IOP. Subsequent AWAKE functions
can pass parameters to the newly created activity.

The stepflow for the ALERT service function (shown in figure 2-3) is as
follows:

1. An activity in the originating IOP performs an ALERT service
function, specifying the first overlay of the activity to be
created and the IOP in which the activity will be created.

2., The Kernel in the originating IOP builds a message from the
information provided in the service function and sends it to the
Kernel in the target IOP by way of an interprocessor interrupt
and Buffer Memory.

3. The Kernel in the originating IOP idles the activity that
performed the service function.

2-16 SM-0046 G



Originating IOP Target IOP

Activity Activity
53 8| 4
Popcell
113 617
4
Yy Yy
Kernel Kernel

Buffer Memory

1865

Figure 2-3. ALERT Stepflow

4. The Kernel in the target IOP performs the following operations:

SM-0046 G

[ ]

Builds a popcell in Local Memory. A popcell contains
linkage and message information allowing an activity in one
IOP to communicate with an activity in another IOP.

Creates the new activity with a CREATE service function

Saves the popcell address; the address is supplied to the
nev activity in the first parameter register.

Places the Activity Descriptor on its central processor queue




5. The Kernel in the target IOP sends a message response containing
the address of the popcell to the Kernel in the originating IOP
by way of the Kernel's interprocessor message facility.

6. The Kernel in the originating IOP saves the popcell address.

7. The Kernel in the originating IOP places the originating activity
on its central processor queue. When the activity is scheduled,
the popcell address is supplied in the A register.

8. The newly created activity is popped off the central processor
queue in the target IOP. The activity can issue ASLEEP functions
to receive AWAKE requests generated in the originating IOP and
RESPOND functions to respond to the requests.

Format:
|Location |Result |Operand
| I I
| | ALERT | iop,overlay
iop I/0 Processor number:
0 I0P-0
1 I0P-1
2 I0P-2
3 I0P-3

overlay Name of initial overlay of activity to create

Example:

This example executes in MIOP and alerts overlay UCXFR (create a slave
activity) in BIOP.

|Location [Result |Operand
I I I
| | ALERT | 2, UCXFR

2.9.4.2 ASLEEP function (14)

ASLEEP gets messages supplied by AWAKE requests for activities created
through ALERT functions.

If a message is queued on the popcell DAL queue, it is immediately

returned to the activity. Otherwise, the activity is suspended until an
appropriate AWAKE message is received.

2-18 SM-0046 G



All messages must be acknowledged through the RESPOND call so that
resources allocated by the AWAKE request are released.

Format:

|Location |Result |Operand

| I I
| | ASLEEP | popcell,dal

popcell Popcell address supplied when the activity was created

dal Returned address of the message DAL

Example:

This example shows how a slave activity created by an ALERT request
checks if any DALs, representing work to do, have been sent by the master
activity.

|Location |Result _ |Operand
I | |
| | ASLEEP |R!PO,R!DAL

2.9.4.3 AWAKE function (16)

AWAKE passes parameters to an activity created earlier with an ALERT
service function by sending it a Disk Activity Link (DAL). A DAL is a
32-parcel message. The Kernel uses the first 8 parcels for control
purposes; parcels 8 through 31 may contain messages or data. The target
activity receives messages by issuing the ASLEEP request.

The stepflow for the AWAKE service function (shown in figure 2-4) is as
follows:

1. The originating activity builds a DAL with a message for the
target activity and performs an AWAKE service function,
specifying the target IOP, the popcell address, and the DAL
address.

2. The Kernel in the originating IOP sends the DAL to the Kernel in
the target IOP by way of Buffer Memory, using the interprocessor
message facility.

3. The Kernel in the originating IOP idles the originating activity.

4. The Kernel in the target IOP places the DAL on the popcell DAL
queue.

SM-0046 G 2-19




Originating IOP Target IOP

Activity Activity
y ¥ J 3
5
6
1 3 8
Popcell
4
v 4 v
Kernel Kernel
2 7
Buffer Memory
1870

Figure 2-4. AWAKE Stepflow
The target activity processes the DAL returned by the ASLEEP
request.

The target activity performs a RESPOND service function, and the
Kernel in the target IOP places a status code in the message.

The Kernel in the target IOP sends the message to the Kernel in
the originating IOP by way of Buffer Memory.

The Kernel in the originating IOP returns the status code to the

originating activity in the A register and places the activity on
its central processor queue.

SM-0046 G



Format:

|Location |Result {Operand
I I I
| | AWAKE | iop.,popcell,dal
iop I/0 Processor designator:

0 IOP-0

1 IOP-1

2 IOP-2

3 I0P-3

popcell Popcell address returned on the ALERT call

dal Message packet (DAL) address

Example:

This example executes in MIOP and shows how a master activity notifies
the slave activity that there is work to do. The master created the
slave by issuing an ALERT service request; then a DAL is sent to a
specific slave in the BIOP.

|Location |Result |Operand
| | |
| | AWAKE | 2, R!XFR, R!DAL

2.9.4.4 A1300I function (24)

The A1300I function performs as a read/write operation to a front end
that is connected through an NSC Al130 adapter. Control returns to the
caller after the specified interrupt occurs.

Format:
|Location [Result |Operand
: :A1300I :int,inl,in,chan.outl,out,q
int Interrupt control; A '0O' specifies an output channel
interrupt, and a 'l' specifies an input channel interrupt.
inl Input buffer length (in parcels)
in Input buffer starting address

SM-0046 G 2-21




chan Physical IOP input channel number

outl Output buffer length (in parcels)

out Output buffer starting address

q A 2-parcel queue address for Kernel queuing
Example:

This example shows one way to issue a read command to the Al30 adapter.

The constant value 1, signifies an input channel interrupt. The output

buffer length is specified by using a table field name; NSB is the Input
Status Buffer used to hold information relevant to the Al130 adapter. LE
represents the field name for the length of each entry in the table.

jLocation |Result {Operand

! I I
| |A1300I |1,R!LEN,R!IN,R!CHAN,NSB@GLE,R!OUT,R!Q

2.9.4.5 BGET function (32)

The BGET function allows an activity to get a fixed-size Local Memory
buffer of 2048 parcels. The request is satisfied from the pool of I/0
buffers. The first address of the buffer is a multiple of 512,

The error response, EC$BUFF, is returned in the A register if the
function is unsuccessful. If successful, the address is returned in the
specified register, and the A register is 0. The BGET call does not
require a register save.

Format:

|Location |Result |Operand

| I I

| | BGET | reg

reg Operand register in which the buffer address is returned
Example:

This example shows that a 2-character register designator may be used to
receive the address of the local I/0 buffer.

|Location |Result |Operand

I I I
| | BGET | MA

2-22 SM-0046 G



2.9.4.6 BRET function (33)

The BRET function returns an I/0 buffer of 2048 parcels to the pool of
available buffers. The BRET call does not require a register save.

Format:

|Location |Result _lOperand

| I I
| | BRET |address

address Address of buffer to be released

Example:

This example shows that a 2-character register designator may be used
when making the service request. Like anywhere else is APML, the R!
register notation could alternatively be used.

|Location |[Result |Operand _

| [ I
I | BRET |MA

2.9.4.7 CALL function (50)

The CALL function activates an overlay to perform some service for the
caller. The Kernel saves the caller's operand registers in a storage
module, pushes the storage module on the software stack, loads the called
overlay in Local Memory, and passes the parameters contained in the
caller's operand registers. The number of parameters passed to the
called overlay is determined by information the Kernel keeps about each
overlay. The parameters are moved from the caller's registers to those
of the called overlay.

After the called overlay completes the function for which it was called,
it performs a RETURN function. The Kernel reloads the original caller
(if necessary), loads its registers with the contents of the storage
module, and returns control to the caller.

Format:

|Location |Result {Operand

I I I
| | CALL lovl(,pars) [, TYPE=NUMBER]

— SM-0046 G 2-23




ovl Name of the called overlay if TYPE=NUMBER is not specified;
number of called overlay or register containing the called
overlay number if TYPE=NUMBER is specified.

pars Parameters to be passed to the called overlay. Each
register in which the caller expects a return parameter may
be specified in the parameter list using the RO=reg
option. The called overlay returns parameters to the
caller through the RETREG macro described in section 14,
Program Library and Macros. Blanks and extra commas are
not allowed in the parameter list unless they serve as
parameter space holders.

TYPE=NUMBER
If specified, ovl contains the overlay number or the
register holding the overlay number.

Example:

This example shows a call to overlay BTO, by name. Parameters are passed
to BTO according to the way the REGDEFS macro was used to define
registers within overlay BTO. Notice that passed parameters may be
registers, numeric constants, or symbols.

|Location |Result |Operand
I | I
I |CALL | BTO, (R!MSGR, D' 16,R!MSG,DTOFF,0)

2.9.4.8 CREATE function (55)

An activity can create an independent activity to run under the Kernel.
The new activity is assigned a unique activity number distinguishing it
from other activities. If the new activity is created successfully, the
A register is 0 and the descriptor address of the new activity is
returned in AD@P1 of the Activity Descriptor of the creator. If the
creation is unsuccessful, the error code is returned in the A register.

The activity executing the CREATE function specifies the priority of the
new activity, the initial overlay, and parameters for the new activity.
The parameters are loaded into the overlay's specified registers when the
new activity is activated.

The activity performing the CREATE function regains control immediately

after the CREATE; the new activity is placed on the IOP central processor
queue for later activation.

2-24 SM-0046 G



Format:

|Location |Result |Operand

I | I

[ | CREATE Jovl(,pars)([,PRI=pri)[,DPTR=dptr] ([, TYPE=NUMBER]
ovl Name of the initial overlay in the created activity

pars Parameters to be passed to the created activity. Blanks

and extra commas are not allowed in the parameter list
unless they serve as parameter space holders.

PRI=pri Activity priority (0 through 15); the default is 8.

DPTR=dptr Index into Kernel Demons Table (D$name), if a Demon;
default is AD$NODEM (normal activity, not a Demon).

TYPE=NUMBER
If specified, ovl contains the overlay number or the
register holding the overlay number.

Examples:

This example shows the simplest form of CREATE. The name of the root
overlay of the activity must be specified.

|Location |[Result |Operand
I ! |
| | CREATE | CLKSNC

This example shows how to specify the overlay number of the root overlay
of the activity. Notice that a priority may be specified in a register,
and the demon index may be contained in a register. No parameters are
being passed to the new activity.

|Location |Result |0perand

| | I
| | CREATE |R!TO, ,PRI=R!T1,DPTR=R!T2, TYPE=NUMBER

This example shows that passed parameters should be enclosed by
parentheses. If more than one parameter is passed, refer to the CALL
example to see that syntax. Priority of the CREATEd overlay can be
specified with a numeric constant.

|Location |[Result |Operand

| | I
I | CREATE |UCSHL, (R!DAL) , PRI=1

SM-0046 G 2-25




2.9.4.9 FIND function (53)

FIND returns the Buffer Memory address and length of an overlay in the
registers designated. 1If the overlay does not exist, the error code
EC$FIND is returned in the A register. If the overlay is found, the A
register contains 0, and the specified operand registers contain the
requested parameters upon return. The FIND call does not require a
register save.

Format:

|Location [Result _|Operand
I

[ I
| | FIND |ovl,mosu,mosl,size[, TYPE=NUMBER]

ovl Overlay name if TYPE=NUMBER is not specified; overlay
number or register containing overlay number if TYPE=NUMBER.

mosu Operand register in which the high-order bits of the Buffer
Memory address of the overlay are returned

mos1 Operand register in which the low-order bits of the Buffer
Memory address of the overlay are returned

size Operand register in which the word length of the overlay is
returned

TYPE=NUMBER
If this parameter is specified, ovl contains the overlay
number or the register holding the overlay number.

Example:

This example shows coding the FIND service request by using an overlay
name and 2-character register designators to hold information returned by
the Kernel.

|Location |Result |Operand
| | I
] | FIND | AMAP, T3, TA, T2

2.9.4.10 FLUSH function (54)

The FLUSH function releases all overlays in Local Memory. The memory
occupied by the overlays is returned to the overlay space pool and is
reallocated when overlays are read in from Buffer Memory.

2-26 SM-0046 G



Format:

|Location |Result _|Operand

I | |
| | FLUSH |

2.9.4.11 GETDAL function (26)

The GETDAL function allocates a DAL from the DAL pool. The address of
the DAL allocated is returned to the register provided. If no DALs are
available, an error response, EC$MEM, is returned to the caller's
accumulator. The GETDAL function does not require a register save.

Format:

|[Location |Result {Operand

I I |
| | GETDAL | reg

reg Register to receive address of allocated DAL

Example:

This example shows how to code a GETDAL request.

|Location |Result |Operand
! | |
| | GETDAL |R!DAL

2.9.4.12 GETMEM function (30)

The GETMEM function allocates Local Memory to the requesting activity
from the free memory pool. All sizes are rounded upward to a multiple of
four. The address returned is also a multiple of four. The requester is
responsible for releasing the memory to the free pool when it is finished
with it. If no memory is available, a zero address is returned to the
requester and an error response, EC$MEM, is returned in the A register;
the requester may then delay and repeat its request. If successful, the
memory address is returned in the specified register, and the A register
is 0. The GETMEM call does not require a register save.

SM-0046 G 2-27




Format:

ILocation |Result _ |Operand
| | |

[ | GETMEM |size,regl,tx0,txl,tx2]

size Number of parcels requested

reg Operand register in which the buffer address is returned
tx0,txl,tx2

Optional ASCII name (maximum of 6 characters) stored in the
4-parcel header that identifies the owner of the buffer.
If not supplied, the overlay name of the requester is used.

Examples:

This example shows a common form of the GETMEM request. Notice that the
size is designated by a symbol.

|Location |Result |Operand
| I I
I | GETMEM |MEMSIZ, R!MSG

This example shows a less common form of coding a GETMEM request. A
register is used to pass the size, and three parcels of text are being
passed through registers.

|Location |[Result |Operand
|

I I
| | GETMEM [R!T3,R!T4,R!%W1,R!%W2,R!%W3

2.9.4.13 GIVEUP function (4)

The GIVEUP function allows an activity to relinquish control of the IOP
in favor of higher priority tasks, if any exist. The Kernel places the
activity on the IOP central processor queue at the activity's priority.
If the current activity has the highest priority in the system, it
regains control immediately.

Format:

|Location |Result {Operand

I I I
| [ GIVEUP |

2-28 SM-0046 G



2.9.4.14 GOTO function (51)

The GOTO function activates an overlay without regaining control after
the new overlay completes execution. The routine receiving control from
the GOTO performs its function based on the parameters passed to it.
When complete, it passes control to the caller of the routine that
performed the GOTO. If such a routine does not exist in the software
stack, the activity is terminated. The Kernel passes parameters in the
operand registers specified in the B register of the caller. The number
of parameters depends on the routine receiving the GOTO.

Format:
|Location [Result LOperand
I I I
| | GOTO Jovl(,pars)[,TYPE=NUMBER]
ovl Name of the called overlay if TYPE=NUMBER is not
specified. Number of called overlay or register containing
the called overlay number if TYPE=NUMBER is specified.
pars Parameters to be passed to the called overlay. Blanks and
extra commas are not allowed in the parameter list unless
they serve as parameter space holders.
TYPE=NUMBER
- If specified, ovl contains the overlay number or the
register holding the overlay number.
Examples:

This example shows how to pass control from one overlay directly to
another. This example uses the name of the overlay to GOTO, and one
parameter is passed by using a symbol.

|Location |Result |Operand
l [ I
| | GOTO |CLINIT, (CLI$TERM)

This example shows how to use the overlay number on the GOTO statement.
It also illustrates that many parameters may be passed to the new overlay.

|Location [Result |Operand
I I I
| | GOTO |IR!%W2, (IA,IB,IC,ID,IE,IF,IG,IH,1J,IK,IL,IM,IN,

I0,1P,I1Q,IR,IS,I1T,IU,1IV,IX,1Y,IZ,R!IAA,R!IAB,
R!IAC,R!IAD,R!IAE,R!IAF,R!IAG,R!IAH, R!IAI,R!IAJ,
R!IAK,R!IAL,R!IAM,R!IAN), TYPE=NUMBER

_ SM-0046 G 2-29




2.9.4.15 HSPR function (42)

The HSPR function reads data from a target memory to Local Memory. If
the request is made in an IOP with a 100-Mbyte channel connected to the
target memory, the I/O is done immediately. If the request is made in an
IOP that does not have a 100-Mbyte channel connected to the target

memory,

1.

2.

Format:

the following actions are performed:
The Kernel allocates a 512-word buffer in Buffer Memory.

A DAL is built that contains the target memory and Buffer Memory
addresses and the number of words to read.

The DAL is sent to the Kernel in the IOP, which has a channel to
the target memory, by way of Buffer Memory, using the
interprocessor message facility.

The originating IOP's Kernel returns control to the calling
activity if the NOWAIT parameter is specified or idles the
activity if NOWAIT is not specified.

The AMSG activity in the Target Memory Processor reads the data
from the target memory into the Buffer Memory buffer supplied by
the originating IOP.

A response DAL is built and sent to the originating IOP, using
the interprocessor message facility.

The originating IOP receives the response DAL and reads the
requested data from Buffer Memory into a Local Memory buffer
supplied on the HSPR call. :

The Kernel deallocates the Buffer Memory buffer.

If NOWAIT was not specified, the status code returned from the
Target Memory Processor is placed in the A register of the
originating activity and the activity is placed on the central
processor queue.

|Location |Result |Operand

| I
|HSPR | tm, tmu, tml, buf,len[,NOWAIT]

SM-0046 G



tm Target memory type:
FS$CMEM Central Memory

FS$SSD SSD Memory
tmu High-order bits of target memory address
tml Low-order bits of target memory address; must be on a

64-word boundary if target memory is FS$SSD.
buf Local Memory buffer address; must be on a word boundary.

len Length of transfer in 64-bit words; must be nonzero.
Maximum length of transfer is 512 64-bit words, and length
must be a multiple of 64 words if target memory is FS$SSD.
The target memory address plus the length must not exceed
the confiqured size of the target memory (CRAY@SIZ for
Central Memory; SSD@SIZ for SSD Memory).

NOWAIT If NOWAIT is not specified, the I/0 is completed before the
activity is resumed. If NOWAIT is specified, the I/O is
initiated and the activity is resumed immediately. The
activity can then be made to wait for I/O completion, if a
100-Mbyte channel is present, by using a return jump to the
Kernel subroutine CHNWIDN with B set to the 100-Mbyte input
channel number. If a 100-Mbyte channel is not present, the
calling activity should not use the NOWAIT option, because
it cannot determine when I/0O is complete.

Example:

This example shows how to code a "high-speed read" data transfer. The
first parameter indicates whether the 100-Mbyte channel is connected to
an SSD or Cray Central Memory.

|Location |Result __ |Operand
| | I

| | HSPR | FS$CMEM, R!CU,R!CL,R!MPR,R!MOSL

SM-0046 G 2-31




2.9.4.16 HSPW function (43)

The HSPW function writes data from Local Memory to a target memory. If
the request is made in an IOP with a 100-Mbyte channel connected to the
target memory, the I/0 is done immediately. If the request is made in an
IOP that does not have a 100-Mbyte channel connected to the target
memory, the following actions are performed:

1. The Kernel allocates a 512-word buffer in Buffer Memory.

2. The Kernel writes the data from the Local Memory buffer supplied
on the HSPW call to the Buffer Memory buffer.

3. A DAL is built that contains the target memory and Buffer Memory
addresses and the number of words to write.

4. The DAL is sent to the Target Memory Processor by using the
interprocessor message facility.

5. The originating IOP's Kernel returns control to the calling
activity if the NOWAIT parameter is specified or idles the
activity if NOWAIT is not specified.

6. The AMSG activity in the destination IOP writes the data to the
target memory from the Buffer Memory buffer supplied by the
originating IOP.

7. A response DAL is built and sent to the originating IOP by using
the interprocessor message facility.

8. The originating IOP receives the response DAL,

9. The Kernel deallocates the Buffer Memory buffer.

10. If NOWAIT was not specified, the status code returned from the
Target Memory Processor is placed in the A register of the

originating activity and the activity is placed on the central
processor queue.

Format:
|Location |Result _  |Operand
[ I |
| | HSPW | tm, tmu, tml, buf, len[ ,NOWAIT)
tm Target memory type:

FS$CMEM Central Memory
FS$SSD SSD Memory

2-32 SM-0046 G



tmu High-order bits of target memory address

tml Low-order bits of target memory address; must be on a

64-word boundary if target memory is FS$SSD.
buf Local Memory address; must be on a word boundary.

len Length of transfer in 64-bit words; must be nonzero.
Maximum length of transfer is 512 64-bit words, and length
must be a multiple of 64 words if target memory is FS$SSD.
The target memory address plus the length must not exceed
the configured size of the target memory (CRAY@SIZ for
Central Memory; SSD@SIZ for SSD Memory).

NOWAIT If NOWAIT is not specified, the I/0 is completed before the
activity is resumed. If NOWAIT is specified, the I/0 is
initiated and the activity is resumed immediately. The
activity can then be made to wait for I/0 completion, if a
100-Mbyte channel is present, by using a return jump to the
Kernel subroutine CHNWTDN with B set to the 100-Mbyte
output channel number. If a 100-Mbyte channel is not
present, the calling activity should not use the NOWAIT
option, because it cannot determine when I/0 is complete.

Example:

This example shows how to code a high-speed write data transfer.

|Location |Result |Operand

[ | I
[ | HSPW | FS§CMEM, R!CU, R!CL, R!%W1, R! TLEN

2.9.4.17 MGET function (35)

The MGET function allows a user overlay to allocate one or more 512-word
units of Buffer Memory for its own use.

When multiple buffers are requested, the allocated space consists of
contiguous 512-word buffers. If the number of multiple buffers requested

is not available, a smaller number is allocated.

Format:

|Location |Result |Operand

| I I
| |MGET |upper, lower[,NUM=num] [ ,GOT=got]

SM-0046 G 2-33




upper Operand register in which the high-order bits of the
address of the first buffer are returned

lower Operand register in which the low-order bits of the address
of the first buffer are returned

NUM=num Number of contiguous 512-word buffers to allocate. 1If
num is not specified, 1 is assumed.

GOT=got Operand register in which the rnumber of buffers allocated
is returned; got is used when num is specified.
Example:

This example shows how to code an MGET request.

|Location |Result |Operand

I I I
[ |MGET [R!MU, R!ML

2.9.4.18 MOSR function (46)

The MOSR function reads data from Buffer Memory to Local Memory.

Format:
|Location |Result |Operand
: :MOSR :msu,msl,buf,len[,NOWAIT]
msu High-order bits of Buffer Memory address
ms1 Low-order bits of Buffer Memory address
buf Local Memory address; must be on a word boundary.
len Length of transfer in 64-bit words; must be nonzero.

Buffer Memory address plus length must not exceed the
configured size of Buffer Memory (MOS@SIZ).

NOWAIT If NOWAIT is not specified, the I/O is completed before the
activity is resumed; if NOWAIT is specified, the I/0 is
initiated, and the activity is resumed immediately. The
activity can then be made to wait for I/0 completion, if
desired, by using a return jump to the Kernel subroutine
CHNWTDN, with B set to the I/O channel number.

2-34 SM-0046 G



Example:

This example shows how to code a MOSR request.

|Location |Result |Operand

| | I
| | MOSR |T3,T4,MA, T2

This example shows that numeric constants and symbols can be used as
parameters.

|Location |[Result [Operand

I I I
| | MOSR |0, DEBSTART,R!NA, DEBLEN

2.9.4.19 MOSW function (47)

The MOSW function writes data to Buffer Memory from Local Memory.

Format:
|Location |Result [Operand
: :MOSW :msu,msl,buf,len[,NOWAIT]
msu High-order bits of Buffer Memory address
msl Low-order bits of Buffer Memory address
buf Local Memory address; must be on a word boundary.
len Length of transfer in 64-bit words; must be nonzero.

Buffer Memory address plus length must not exceed the
configured size of Buffer Memory (MOS@SIZ).

NOWAIT If NOWAIT is not specified, the I/0 is completed before the
activity is resumed; if NOWAIT is specified, the I/O0 is
initiated, and the activity is resumed immediately. The
activity can then be made to wait for I/O completion, if
desired, by using a return jump to the Kernel subroutine
CHNWTDN, with B set to the I/O channel number.

SM-0046 G 2-35




Examples:

This example shows how to code a Buffer Memory write request. Numeric
constants and symbols can be used as parameters.

I
I | |
| | MOSW |R!MU, R!ML, LBPT, 1

This example shows the use of the optional NOWAIT parameter. It also
shows that calculations will be performed as part of the macro processing
of the request, so that R!%TIME>2 will be evaluated and passed as the
actual parameter.

|Location |Result __ |Operand
| | |
| | MOSW |0,R!%TIME>2,R!%TIME, 2, NOWAIT

2.9.4.20 MPUT function (36)

The MPUT function request allows an overlay to return one or more
512-word units of Buffer Memory to the pool of free areas.

Multiple buffers returned must be contiguous.

Format:
|Location |Result ___ |Operand
I I |
| |MPUT |upper, lower[,NUM=num]
upper High-order bits of the address of the first buffer to
release
lower Low-order bits of the address of the first buffer to release

NUM=num Number of contiguous 512-word buffers to release. If num
is not specified, 1 is assumed.

Example:

This example shows how to code an MPUT request.

|Location |Result {Operand
[ | |
| | MPUT | R!MSU, R!MSL

2-36 SM-0046 G



2.9.4.21 MSG function (20)

An activity sends a message to the Kernel console with the MSG function.
No response is expected. A formatted line is sent to the CRT, while the
activity waits for the message to complete. The line must be in ASCII;
binary zeros in the last character of the message signal the end of the
line. The CRT-handling routine provides line feeds and carriage

returns. The line is located in a Local Memory data area, outside of the
overlay space. When the message is complete, the activity is placed on
the IOP central processor queue for reactivation at its priority.

Format:
|Location |Result 1Operand
| | I
i | MSG | msg
msgqg Message address
Example:

This example shows how to code an MSG request.

|Location |Result |Operand
I | I
| |MSG |RIMSG

2.9.4.22 MSGR function (21)

An activity uses the MSGR function to send a message to the Kernel
console and to receive a response from the operator. A formatted ASCII
line, with a binary zero for the last character, is sent to the console.
The activity then waits until the operator enters a response to the
message. The response is returned in a specified buffer and is also in
ASCII.

After the response is entered (signified by a carriage return or line
feed), the activity is placed on the IOP central processor queue for

reactivation.

Format:

|Location |Result |Operand

| | |
| | MSGR |msg, count, buffer

SM-0046 G 2-37




msg Output message address

count Response buffer size in characters (allow one byte for line
feed)
buffer Response message buffer address
Example:

This example shows that symbols may be used as parameters in the MSGR
request.

|Location |Result  |Operand
| | |
| | MSGR | R'MSG, MSGRSIZ, R!MSGR

2.9.4.23 OUTCALL function (37)

The OUTCALL function calls an overlay in another IOP for execution. The
Kernel passes the overlay number and a maximum of eight parameters to the
destination IOP. The destination IOP creates an activity that calls the
target overlay. When a RETURN function is executed, a response message
is sent to the originating IOP, which reschedules the activity that
issued the OUTCALL.

On return, the A register contains either the error code EC$IOP if the
destination IOP is not configured or the response code returned by the
called overlay, if applicable.

Format:
|Location |[Result ___ |Operand
! I I
| | OUTCALL |iop,ovl(,pars) [, TYPE=NUMBER]
iop I1/0 Processor in which the called overlay is to execute
ovl If TYPE=NUMBER is specified, the number of the called
overlay; otherwise, the name of the called overlay.
pars Parameters to pass to the called overlay (eight maximum)

TYPE=NUMBER
If specified, ovl contains the number of the called
overlay.

2-38 SM-0046 G



Example:

This example shows how to OUTCALL an overlay in a different IOP. The
name of the overlay is specified, along with the IOP in which the overlay
should run. IOP may be designated with a symbol, or by a value (0
through 3) stored in a register. It is possible to pass parameters to
the OUTCALLed overlay.

|Location |Result |Operand
I I I
| | OUTCALL |MIOP,DKERR1, (R!%MYID,R!MU,R!ML)

2.9.4.24 OUTPUT function (22)

When an activity gains control of a CRT by calling the USURP overlay, the
activity can send characters to the screen, one at a time, with the
OUTPUT function. The Kernel neither interprets the output character nor
provides any carriage return or line feed functions.

Format:

|Location |Result {Operand

I I I
| | OUTPUT |device,base,of fset, num

device CRT logical address (0 to 3)

base Output message parcel address
offset Output message byte offset from base
num Output message byte count

Example:

This example shows how to code an OUTPUT request.

|Location |Result |QOperand
! I I
| | OUTPUT |R!DEVICE, R!BUFFER, 0, R! TEMP

SM-0046 G 2-39




2.9.4.25 PAUSE function (7)

The PAUSE function enables an activity to deactivate itself for a
specified number of one-tenth second quanta. The activity is placed on a
timer queue until expiration of the interval, when real-time clock
interrupt code removes it from the gqueue and places it on the IOP central
processor queue for activation at the priority level.

Format:

|Location |Result __ |Operand

| ! |

| | PAUSE | tenths

tenths Interval before reactivation in tenths of a second
Examples:

This example shows that a common way to specify pause time is with a
numeric constant.

|Location |Result |Operand

| | |
[ | PAUSE 1

This example shows that it is possible to specify PAUSE time with a
symbol.

|Location |Result [Operand

| | |
| | PAUSE | REFRESH

2.9.4.26 POLL function (44)

The POLL function allows an overlay to send a B or S type message packet
to the mainframe and wait for a response. The message is a buffer of
6-words containing information recognized by COS. After sending the
message, the activity is placed on a PUSH queue until a matching message
returns from the mainframe. When the response returns, the waiting
activity is removed from the queue and is reactivated to process the
message received from the mainframe. Only overlays in the MIOP can make
this request.

If the request is not answered within the time-out period, the

message-sending activity is reactivated and status is returned so that it
can perform error recovery.

2-40 SM-0046 G



Format:

|Location |Result |Operand
| I |

| | POLL | message

message Message packet (DAL) address

Example:

This example shows how to code a POLL request. The R!CXT in this example
serves as a reminder that Cray packets/DALs are stored in CXT.

|Location |[Result |Operand

| | |
| | POLL |R!CXT

2.9.4.27 POP function (2)

The POP function reactivates an activity that was placed on a queue with
a PUSH function. The Kernel removes the activity from the top of the
gqueue and places it on the IOP central processor queue at its priority
for activation later. The message supplied is returned in the A register
of the activity that was popped. A response code (either 0 or EC$EMPTY)
is returned in the A register of the activity performing the POP. The
POP call does not require a register save. When a pushed activity is
subsequently popped, the A register contains a message from the routine
that performed the POP.

Format:
|Location |Result |Operand
| ! !
| | POP | queue, message
queue Queue address

message Message for popped activity

SM-0046 G 2-41




Examples:

This example shows that zero should be used as a parameter when there is
no message to send to the popped activity.

|Location |Result __ |Operand
| I |

| | POP [R!%W1,0

This example shows that a message can be passed through a register.

|Location [Result _ |Operand
| | |
| | POP |RIMJ, RIMF

2.9.4.28 PUSH function (1)

The PUSH call deactivates an activity by placing the Activity Descriptor
for the activity that is currently running on a specified queue. The
Kernel then searches for other functions to perform. The AD is removed
from the queue when another activity performs the POP function. The PUSH
function is used when an activity needs a facility that is currently
being used by another activity. When the other activity is finished with
the facility, it activates the first by performing a POP. When a pushed
activity is subsequently popped, the A register contains a message from
the routine that performed the POP.

Format:

|Location |Result _|Operand
I I I

| | PUSH | queue(, order]
queue Queue address
order Order to add activity to queue. Default is to add activity

by priority.
FIFO Add activity at queue tail
LIFO Add activity at queue head

Example:

This example show how to code a simple PUSH request.

|Location |Result _|Operand .

I I |
| | PUSH |R!%W1

2-42 SM-0046 G



2.9.4.29 RECEIVE function (25)

An activity that has gained control of the keyboard of a CRT by calling
the USURP overlay can perform a RECEIVE function. : The activity is placed
on the input queue of the designated CRT. The activity is dequeued and
rescheduled when a character is received or when the specified time
interval expires. If the A register contains 0 upon return, the input
character is in the specified operand register; if A contains the EC$TIME
message, the time limit was exceeded and no character is returned. The
character is not echoed to the screen; that is the responsibility of the
receiving activity.

Format:
|Location |Result ___ |Operand
| I

I
| | RECEIVE |device, char, tenths

device CRT logical address (0 to 3)

char Operand register to receive input character
tenths Maximum time to wait for input in tenths of a second
Example:

This example shows that the CRT address may be stored in a register, and
wait time can be specified as a numeric constant.

|Location |Result |Operand
I I |
| | RECEIVE |R!DEVICE,R!CHAR,D'10

2.9.4.30 RELDAL function (27)

The RELDAL function returns a DAL to the DAL pool. The RELDAL call does
not require a register save.

Format:
|Location |Result |Operand
I I |
| | RELDAL | reg
reg Register containing address of DAL to be returned

SM-0046 G 2-43




Example:

This example shows how to code the request to deallocate a Local Memory
DAL.

|Location |[Result |Operand
I I |
[ | RELDAL [R!RESP

2.9.4.31 RELMEM function (31)

The RELMEM function deallocates a segment of memory previously allocated
from the free memory pool. The requester supplies the address returned

in a GETMEM call. The entire buffer allocated through the corresponding
GETMEM call is released. The RELMEM call does not require a register save.

Format:

|ILocation |Result _ lOperand
| I |
| | RELMEM |address

address Address of buffer to be released

Example:

This example shows that it is common to store memory addresses in
registers.

|Location [Result |Operand

| | |
| | RELMEM | R!MSG

2.9.4.32 RESPOND function (17)

The RESPOND function is performed by the activity in the IOP named in the
AWAKE call after it processes the data in the request. A RESPOND
function allows the Kernel to release the Buffer Memory message space and
to reactivate the calling activity, if it is waiting.

Format:

|Location |Result |Operand

| | |
| | RESPOND |dal, message

2-44 SM-0046 G



dal Message packet (DAL) address

message Message returned in the A register of the activity doing
the corresponding AWAKE call

Example:

This example shows how a slave activity ALERTed in one IOP will notify
the master in a different IOP that a DAL has been processed.

|Location |Result |Operand
| I |-
| | RESPOND |R!DAL, R!UST

2.9.4.33 RETURN function (52)

The RETURN function in a CALL sequence indicates to the Kernel that the
function is complete and control is returning to the previous entry in
the software stack. The Kernel loads the registers of the previous entry
from the storage module, adjusts its software stack pointers, reloads the
overlay if necessary, and gives control to the caller of the overlay
performing the RETURN function. The registers returned may contain
parameters defined by the called routine. The RETURN call does not
require a register save.

If no entries exist in the software stack, the Kernel terminates the
activity.

Format:

|Location |Result |Operand

{ | |
| | RETURN |

2.9.4.34 SEND function (34)

The SEND function allows an overlay to send a 6-word message packet to
the mainframe without waiting for a response. If the function
successfully completes, the A register contains 0 upon return. If the
low-speed channel to the mainframe is not enabled, the EC$NRDY error code
is returned to the A register. Only overlays in the MIOP can make this
request.

SM-0046 G 2-45




Format:

|Location |Result __ lOperand
I | l
| | SEND | message

message Message packet (DAL) address

Example:

This example shows how to code a SEND request.

|Location |Result _ |Operand
| I |
| | SEND |R!DAL

2.9.4.35 TERM function (3)

The TERM function signals the end of an activity's processing. The
Kernel terminates the activity and releases its Activity Descriptor,
Buffer Memory software stack, and possibly the popcell. The TERM call
does not require a register save.

Format:

ILocation |Result _ |Operand
| | |
| | TERM |

2.9.4.36 TPUSH function (11)

The TPUSH macro deactivates an activity until either the time interval
expires or a POP is performed by some other activity. Either occurrence
places the activity on the IOP central processor queue for activation.
When an activity executing the TPUSH macro is eventually popped, the A
register contains either a message from the activity performing the POP
or the response code EC$TIME if the time limit expired.

Format:

|Location |Result |Operand

| I |
| | TPUSH | queue, tenths

2-46 SM-0046 G



queue PUSH queue address

tenths Interval before activation, if not popped, in tenths of a
second

Examples:

This example shows how to use registers in a TPUSH request.

|Location |Result |Operand
I | I
I | TPUSH [R!%W1,R!%W2

This example shows that calculations will be performed before the actual
argument is sent to the Kernel, and time can be specified with a symbol.

|Location |Result 1Operand

[ [ |
| | TPUSH |R!Q+1,CTSRW

2.9.4.37 TRANSFER function (45)

The TRANSFER function moves data between Buffer Memory and a target
memory. If the request is made in an IOP that has a 100-Mbyte channel
connected to the target memory, the I/O is done immediately. If the
request is made in an IOP that does not have a 100-Mbyte channel
connected to the target memory, the following actions are performed:

1. A DAL is built that contains the target memory and Buffer Memory
addresses, the direction of transfer, and the number of words to
transfer.

2. The DAL is sent to the Target Memory Processor using the
interprocessor message facility.

3. The originating IOP's Kernel returns control to the calling
activity if the NOWAIT parameter is specified or idles the
activity if NOWAIT is not specified.

4. The AMSG activity in the Target Memory Processor moves the data
between the Target Memory and Buffer Memory in the direction

requested.

5. A response DAL is built and sent to the originating IOP using the
interprocessor message facility.

SM-0046 G 2-47




6. The originating IOP receives the response DAL.

7. If NOWAIT was specified, the status code returned from the Target
Memory Processor is placed in the A register of the originating
activity and the activity is placed on' the central processor queue.

Format:
|Location |Result _ |Operand
| I I
| | TRANSFER {dir,tm, tmu, tml,msu,msl, len[,NOWAIT]
dir Direction of transfer:
FS$IN From Target Memory to Buffer Memory
FS$OUT From Buffer Memory to Target Memory
tm Target memory type:
FS$CMEM Central Memory
FS$SSD SSD Memory
FS$BMR BMR Memory
tmu High-order bits of Target memory address
tml Low-order bits of target memory address; must be on a
64-word boundary if target memory is FS$SSD.
msu High-order bits of Buffer Memory address
ms1 Low-order bits of Buffer Memory address
len Length of transfer in 64-bit words; must be nonzero.

Maximum length of transfer is 65,535 64-bit words, and
length must be a multiple of 64 words if target memory is
FS$SSD. The target memory address plus the length must not
exceed the configured size of the Target Memory (CRAY@SIZ
for Central Memory; SSD@SIZ for SSD Memory; BMR@SIZ for BMR
Memory). The Buffer Memory address plus the length must
not exceed the configured size of Buffer Memory (MOS@SIZ).

NOWAIT If NOWAIT is not specified, the I/0 is completed before the
activity is resumed. If NOWAIT is specified, the I/O0 is
initiated and the activity is resumed immediately. The
activity can then be made to wait for 1/0 completion, if a
100-Mbyte channel is present, by using a return jump to the
Kernel subroutine CHNWIDN with B set to the 100-Mbyte I1/0
channel number. If a 100-Mbyte channel is not present, the
calling activity should not use the NOWAIT option, because
it cannot determine when I/O is complete.

2-48 SM-0046 G



Example:

This example shows how a TRANSFER request may be coded. Note that
direction of transfer and target memory had previously been loaded into
registers R!SC2 and R!TM, respectively. :

|Location |Result __ |Operand
| | |

| | TRANSFER  |R!SC2,R!TM,R!CPU,R!CPL,R!SCO,R!SC1,R!LN1

2.10 CLOCK FUNCTIONS

The IOS real-time clock provides a system interrupt once every
millisecond. This fixed time interrupt allows the operating system to
time out events (such as pending interrupts) as well as maintain the time
of day.

2.10.1 REAL-TIME CLOCK INTERRUPT HANDLER

The real-time clock interrupt handler is given control when a real-time
clock interrupt occurs. Its functions are to do the following:

e (Clear the interrupt

® Increment the interval counter (%MSEC) by 1. When the interval
counter (%MSEC) reaches 100, indicating a one-tenth second
interval, the clock demon (CLOCK) is activated and the counter
(%MSEC) is reset to 0.

2.10.2 CLOCK DEMON

The clock demon (CLOCK) is activated once every tenth of a second by the
real-time clock interrupt handler. Its functions are as follows:

¢ Services the event timer. Decrement 1 from TMR@TM of each entry
linked to the timer queue (RTCQUE). If the decrement results in a
count of 0, a time-out is indicated and the following occurs:

- The entry is unlinked from the timer queue. The TMRE@RT field
in the entry is checked for nonzero; if nonzero, a return
jump to that address occurs, and the entry address in
register R!'EH is passed.

SM-0046 G 2-49




2.10.3

- If TMRE@RT is 0, the entry is assumed to be AD@Pl1 of an
Activity Descriptor, and the following occurs:

The function code that caused the entry to be placed on the
timer queue is checked for a POLL (AD@FU=F$POLL). If the
function was a POLL, the DAL that was being polled is
removed from the MIOP-mainframe poll queue (CPI@PQ).

If the function was not a poll, AD@RC is checked for an
event queue address. If it is nonzero, the activity is
removed from the event queue.

- Finally, the time-out code (EC$TIME) is placed in the
activity return code (AD@RC) and the activity is reactivated.

Increments the l-second interval counter (%TENTHS). If the
counter has not reached 10, indicating a l-second interval, CLOCK

terminates.
Resets the l-second counter to 0.

Updates the idle time, Buffer Memory channel transfers, and
100-Mbyte channel transfers for the last second.

Checks for MIOP-mainframe output channel time-out (CPO@TO#0). If
the condition is found, activate the NOBEAT activity to display a
message on the Kernel console.

If 1 minute has expired (SECOND=0) in MIOP, sends a heart beat
signal (M$SYNCH) to each configured IOP. Check to see if all IOPs
signaled on the previous minute boundary have responded. If any
were found to have not responded, activate the NOBEAT activity to
display a message on the Kernel console.

Updates the day clock in MIOP,

If not running in MIOP, deselects inactive disks.

SYSTEM EVENT TIMER

The system event timer provides the means to regain control when an
expected event does not occur within the expected time. It also allows
an activity to give up control for a specified amount of time (see the
PAUSE function earlier in this section).

SM-0046 G



The system event timer consists of the following elements:

Element Description

QTIME A Kernel subroutine called to link entries to the
timer queue (RTCQUE). The following parameters are
passed:

¢ R!EH - Entry address
¢ R!EG - Time Quantum in tenths of a second

DQTIME A Kernel subroutine called to remove an entry from the
timer queue. The following parameter is passed:

¢ R!EH - Entry address

CLOCK DEMON Activated every tenth of a second by the real-time
clock interrupt handler. It is responsible for
decrementing the time-out count for each entry
(TMR@TM) and processing any time-outs that occur
(TMR@TM=0) .

TIMER ENTRY Any system routine wishing to use the event timer is
responsible for the allocation and maintenance of its
timer entry, including setting a time-out routine
address in TMR@RT, calling QTIME to link the entry,
and calling DQTIME to unlink the entry, if the event
being timed occurs before the timer expires.

Activities using the service requests for timing
events (TPUSH, PAUSE, and so on) do not need to know
about the timer mechanisms. The timer entry for each
activity is contained in its Activity Descriptor
(AD@P1) and all maintenance is handled by the Kernel.

2.11 IOP DEADSTART

The original deadstart of the IOS occurs from either the Peripheral
Expander tape or Peripheral Expander disk. The Deadstart package is read
directly into MIOP Local Memory, beginning at address 0 and continuing
until complete.

Once this operation is complete, the MIOP can read and write from the

channels attached to it. The MIOP initializes Buffer Memory and any
common tables residing there.

SM-0046 G 2-51




Once Buffer Memory is established and the MIOP is running, the MIOP
deadstarts the other IOPs in the configuration. This is accomplished by
sending a special function across the accumulator channel that reads
Buffer Memory into Local Memory. Once read, the special function starts
the IOP at address 0. Processors started in this way have access to
tables and data in Buffer Memory that they can use to initialize their

Local Memory.

2.12 STATISTICS
The Kernel keeps statistics on important events within the operating
environment. The statistics consist mainly of counts of the occurrence

of various phenomena and may be useful in tuning the system to maximize
throughput and efficiency. The following occurrences and events are

monitored:

e Buffer Memory references, including both input and output

® Disk channel references and the number of times error recovery
is called, by channel

® Number of communications among IOPs
® Number of mainframe channel interrupts
¢ Number of 100-Mbyte channel transfers to or from Central Memory

¢ Number of 100-Mbyte channel transfers to or from SSD Memory

2.13 COMMUNICATION AMONG IOPs

Communication among IOPs occurs across accumulator channels. One
parcel (16 bits) of information can be passed through the accumulator
through the interrupt mechanism.

The message can be either in the accumulator itself or in a portion of
Buffer Memory specified in the accumulator. In the latter case, an
address within the Buffer Memory communications area of the sending
IOP and a function code telling what sort of action is being requested
are specified in the accumulator. Some messages can require a packet
of information in the Buffer Memory data area specified in the
accumulator. The data area indicated is an offset from the beginning
of the communications area assigned to the sending IOP.

For a listing of the function codes and their meanings, see table 2-4,

2-52 SM-0046 G



Table 2-4. I/0 Processor Intercommunication Function Codes

Function

Code Definition

The command code, contained in bits 4 through 15, is one
of the following:

M$GO Initiate SYSDUMP processing
M$SYNCH Synchronize IOP software clock

No Buffer Memory data is associated with these codes.

Unused

The message is contained in the Buffer Memory message
area of the MIOP at an address specified in the low-order
12 bits of the accumulator. Each message area consists
of eight 64-bit words. To find the Buffer Memory
address, shift the accumulator left 3 bit positions and
add the base address of the Buffer Memory message area
for the MIOP. The message is intended for the BCOM
overlay.

The message is in the area controlled by the BIOP for
messages to the other processors. Otherwise, the
protocol is the same as for function code 4. The
message is routed to BCOM.

The message is in IOP-2 message area and is routed
to BCOM.

The message is in IOP-3 message area and is routed
to BCOM.

10 The message is in the MIOP message area and is routed
to ACOM.

11 The message is in the BIOP message area and is routed
to ACOM.

12 The message is in IOP-2 message area and is routed
to ACOM.

13 The message is in IOP-3 message area and is routed

|
|
|
|
|
I
|
I
|
|
|
I
I
I
|
I
|
|
I
I
|
I
I
|
|
|
|
|
I
|
I
[
|
|
I
I
I
I
|
I
I
I
|
!
|
| to ACOM.
|

SM-0046 G 2-53




Table 2-4. I/0 Processor Intercommunication Function Codes
(continued)

4 and 5 of the accumulator. The low-order 10 bits
specify the Buffer Memory address. The message is
intended for the HCOM overlay.

| I

| Function | :

| Code | Definition

| |

I I

| 14 | The message is in the IOP message area indicated in bits
| | 4 and 5 of the accumulator. The low-order 10 bits

| | specify the Buffer Memory address. The message is

| | intended for the ICOM overlay.

| I

] 15 | The message is in the IOP message area indicated in bits
| I

| I

| |

| |

The sender of the message controls allocation and deallocation of message
areas within its own Buffer Memory space. The IOP receiving a message
informs the sending IOP when the function is complete and the message
area can be deallocated.

An accumulator message of the form 177nnn; nnn is an error code,
indicates a fatal error in the sending IOP and requests that the
receiving IOP terminate normal operations. Otherwise, the accumulator
contains the octal function code in its first 4 bits and the address or
command in its final 12 bits.

2.14 MIOP-MAINFRAME COMMUNICATION CHANNEL

All communication between the IOS and the mainframe is in the form of
fixed-length packets passed back and forth across a pair of 6-Mbyte
asynchronous channels. The communication packets are referred to as DALs
in the 1I0S.

A DAL is composed of two parts: the header (DA@GQGLH), which contains
information used internally by the IOS, and the entry (DA@GLE), which is
the actual information exchanged with the mainframe.

The first 2 parcels of the DAL entry are standard for all packets
exchanged between the mainframe and the IOS. These parcels contain the
source and destination information used for routing packets to
appropriate routines.

2-54 SM-0046 G



2.14.1 MIOP-MAINFRAME COMMUNICATION INITIALIZATION
Before communication can begin between the IOS and the mainframe, a
handshaking sequence must occur to ensure that the mainframe and IOS are
synchronized. The CRAY overlay is called either by the deadstart process
or by operator command to accomplish the following:

1. Clear both the input and output channels

2. Strip any data currently on the input channel

3. Poll an RQ$INITO(I) packet; validate content returned.

4. Poll an RQ$INIT1(J) packet; validate content returned.

5. Set input/output channels enabled (CPO@GON/CPIGON)

2.14.2 INPUT CHANNEL FROM THE MAINFRAME

The normal state of the input channel from the mainframe is busy and
not-done, which means the channel is open to accept a packet from the
mainframe at any time. (It is open to the entry portion of a DAL.) When
the mainframe sends a packet to the IOP, the input channel state (done
and not-busy) generates an interrupt in the MIOP.

The input channel has a table associated with it (CPI@), which is

described in the IOS Table Descriptions Internal Reference Manual,
publication SM-0007. The address of the table is kept in a global

register (%LSPI).
The input interrupt handler has the following functions:
® Validates and saves the channel status (CPI@ST)
¢ Validates and saves the ending channel address (CPI@CA)

® Determines by destination ID (DA@DID) who to send the packet to

¢ Reopens the channel to another DAL for the next message. If no
DALs are available, the channel is disabled (CPI@ON=0).

SM-0046 G 2-55




2.14.3

INPUT PACKET DISPOSITION

All input packets are checked for a recognized destination ID (DA@DID).
Based on this ID, the packets are dealt with in three different ways, as
follows:

Packets with a destination ID of RQ$STAT (station) or RQ$PERF
(statistics) can only be received in response to a poll. These
packets have a code (CXCNT) which is matched to a DAL on the poll
queue (CPI@PQ). The activity pointed to by the matched DAL
(DAGACT) is reactivated with the address of the DAL just received
(DA@HPO) .

A packet with a destination ID (DA@GDID) of RQ$KERN (Kernel
request) is checked for a code of KF$KILL in CXKFC of the packet.
This is a mainframe request for the IOS to crash. The IOS obliges
immediately.

Packets with a destination ID of RQ$DISK, RQ$HSX, or RQ$BMXO are
placed on the CDEM demon queue (CPI@CQ) for disposition to other
IOPs or special processing in the MIOP. Packets with a
destination ID of RQ$UCHN, RQ$SKERN, or RQ$TTY are placed on the
ADEM demon queue (DPI@AQ) for processing.

2.14.4 OUTPUT CHANNEL TO THE MAINFRAME

The output channel to the mainframe sends messages from the IOS to the
mainframe. When a message is to be sent to the mainframe, a call is made
to the SEND Kernel service request or IDALSND routine with the address of
the DAL to send.

If the channel is busy, the DAL is placed on a queue in the Output
Channel Table (CPO@QU); otherwise, the channel is immediately opened to
the entry portion of the passed DAL. When the mainframe accepts the
message from the channel, an interrupt is generated in the MIOP. The
output channel has a table associated with it (CPO@). The address of
this table is kept in a global register (%LSPO).

The output interrupt handler has the following functions:

L]

Clears the interrupt
Validates and saves the channel status (CPO@ST)

Validates and saves the ending channel address (CPO@CA)

SM-0046 G



® Checks the queue (CPOGQU) for more messages to send. If there are
more messages, a call is made to IDALSND to transfer the next
message on the queue.

® Checks the state of the input channel (CPIGON). If off, the input
channel is reenabled with the DAL that contained the message just
accepted by the mainframe.

2.15 ERROR PROCESSING

IOS error processing is handled in two different methods, depending on
the serial number of the IOS. IOSs with serial numbers of 21 or less use
an error channel on the MIOP for error processing. IOSs with serial
numbers greater than 21 use an error multiplex that passes error
information to a maintenance computer. The following subsections
describe these two methods.

2.15.1 ERROR CHANNEL PROCESSING (IOS SERIAL NO. 21 AND BELOW)

The IOS error channel exists only in the MIOP. Subroutines for
processing interrupts on this channel reside only in the MIOP. (These
subroutines are overwritten in the other IOPs and the space used for
other purposes.)

An interrupt on the error channel (channel 16) indicates an error in
Local Memory of one of the other IOPs, in Buffer Memory, in Central
Memory, or on the 100-Mbyte channel. Local Memory errors in the MIOP are
reported on the Local Memory error channel in the MIOP (channel 3).

When interrupts occur on the error channel, the hardware retains 4
parcels of information, which the software can access through registers
to learn the type and location of the error. (A complete description of
the error information can be found in the IOS hardware reference manual
for your system). Four registers contain the following error information:

SM-0046 G 2-57




Register Contents

1 The interface error status register contains a bit for
each possible error. If the bit is set, the
corresponding error has occurred. The error status
register bits are as follows:

Bit Control Signal

20 BIOP, Local Memory error

21 IOP-2, Local Memory error

22 I0P-3, Local Memory error

23 Buffer Memory error

24 Central Memory error

25 100-Mbyte channel input A error

26 100-Mbyte channel output B error

27 100-Mbyte channel input C error

28 100-Mbyte channel output D error
2 Parameter 1, containing special information that depends

on the error type

3 Parameter 2, containing the low-order bits of the
address of a Central Memory or Buffer Memory error.
This parameter is not meaningful on Local Memory errors.

4 Parameter 3, containing the high-order bits of the

address of a Central Memory or Buffer Memory error.
This parameter is not meaningful on Local Memory errors.

2.15.1.1 Interrupt answering

When an interrupt occurs on the error channel, interrupt answering
handles the possible errors singly. Interrupt answering reads the error
status register and begins processing from the rightmost bit (for the
BIOP Local Memory errors).

If a bit is set, interrupt answering reads the parameter registers for
that type, puts the status into the Error Log Table (ERRLOG) in the
Kernel, and counts the error. (See the IOS Table Descriptions Internal
Reference Manual, publication SM-0007, for the format of the Error Log
Table.)

Interrupt answering builds an error log packet (type C) containing the 4

status parcels (parcels 4 through 7 in the packet) and sends it across
the 6-Mbyte channel to be processed by the mainframe.

2-58 SM-0046 G




The MIOP maintains a table in Buffer Memory containing the last 512
errors reported on the channel. The table is circular and has 4 parcels
of information about each error (the contents of the parameter
registers). The information may be printed through an ERRDMP command at
the Kernel console. (See the IOS operator's guides for the ERRDMP Kernel

command) .

Interrupt answering processes the errors that were indicated in the
original status register readout. When all errors are processed and
logged, interrupt answering returns to routine ICHK to check for
interrupts on other channels.

If more than 65,535 errors are reported to the error channel, the
software automatically turns off the error channel so that no more
interrupts are taken. The channel can be turned on with an ERROR ON
command at the Kernel console (see the IOS operator's guides). Local
Memory errors in the MIOP are processed and sent to the mainframe in a
similar manner, except that Local Memory errors in the MIOP cause a
Kernel halt. Therefore, the information is not written to the circular
table in Buffer Memory.

2.15.1.2 Retrieving error log information

Information about errors can be obtained from the COS system log by using
EXTRACT, from UNICOS using errpt, or from one of the following
I0S-resident operations:

Operation Description

ERRDMP Entered at the Kernel console, ERRDMP prints the
contents of the circular table in Buffer Memory
containing the last 512 errors.

ERROR This station command displays error status information
as specified in the IOS operator's guides.

2.15.2 ERROR LOGGING (IOS SERIAL NO. 21 AND UP)

I0Ss with serial numbers greater than 21 use an error multiplex for
detecting and reporting IOS errors. This multiplex passes channel error
information and memory error information to a maintenance computer. The
maintenance computer program logs the error information for later
analysis.

The multiplex module captures single and multiple errors, even if the
multiple error is embedded in a burst of single-bit errors. Channels
that are multiplexed include the Buffer Memory channels, the Local Memory
channels, and the 100-Mbyte channel pairs to Central Memory.

SM-0046 G 2-59







3. DISK INPUT/OUTPUT

The I/0 Subsystem (IOS) provides control for disk input and output. This
section describes the components of the disk-controlling software in the
following order:

DCU-4 controlling software
DCU-4 disk error recovery
DCU-5 controlling software
DCU-5 disk error recovery
Striped disk groups

Kernel internal disk I/O

The IOS disk software performs disk I/0 and error recovery for the
mainframe and for routines internal to the IOS.

The IOS can access a maximum of 48 disk storage units (DSUs). The
maximum is attained by a system with four I/O Processors (IOPs), three of
which have the maximum of 16 DSUs attached. All of the DSUs can be
selected concurrently, but the number of data streams that can be
maintained is limited. This limit is based on the disk device type, the
number of 100-Mbyte channels configured, and the amount of Local Memory
and Buffer Memory available for disk use.

Two independent disk drivers support six types of DSUs on the IOS., One
driver supports the DD-19 and DD-29 DSUs through the DCU-4 Disk
Controller. The other driver supports the DD-39 Disk Unit, DS-40 Disk
Subsystem, RD-10 Disk Subsystem, and DD-49 Disk Unit through the DCU-5
Disk Controller. Both drivers may execute in the same IOP
simultaneously, allowing all types of disks to be configured on the same
IOP.

Current Cray disk conventions allocate space on disk at installation time
for diagnostic system files and scratch areas. See the COS Operational
Procedures Reference Manual, publication SM-0043, or the UNICOS System
Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1 Computer
Systems, publication SG-2018 for specific information on reserved areas.

SM-0046 G 3-1




3.1 REQUEST PROCESS OVERVIEW

The mainframe initiates disk I/0 by sending information to the IOS in a
request packet. The information sent includes a starting device address,
a target memory type and starting address, a transfer word length, and a
read/write function code. The target memory may be Central Memory, SSD
Memory, or the Buffer Memory resident (BMR) dataset portion of Buffer
Memory. See the COS Operational Procedures Reference Manual, publication
SM-0043, or the UNICOS System Administrator's Guide for CRAY Y-MP,

CRAY X-MP, and CRAY-1 Computer Systems, publication SG-2018, for more
information on BMR datasets.

The IOS disk software validates the request parameters and sends an error
status back to the mainframe if any illegal values are detected. 1I/0 is
then performed as efficiently as possible using Local Memory disk
buffers, the 100-Mbyte channel connected to the specified target memory,
and the optional Buffer Memory disk buffers. All disk buffers are 512
decimal words in length. When I/0 is complete, the IOS sends the status
back to the mainframe in the original request packet.

Buffer Memory disk buffers are used by the disk software in data caching
mechanisms called "Read-ahead" and "Write-behind.'" These mechanisms are
designed to facilitate data streaming by overlapping the disk I/O with
request preparation in the mainframe.

3.2 DCU-4 CONTROLLING SOFTWARE

This subsection describes the architecture and request process for the
DCU-4 (DD-19 and DD-29) controlling software.

3.2.1 DCU-4 SOFTWARE OVERLAYS

A set of overlays, in cooperation with disk interrupt answering, performs
the actions necessary to stream data to DCU-4 disk devices. Each overlay
is activated by the Kernel in the normal overlay activation process. The
overlays ACOM, CDEM, and DISK are, however, demon processes and thus have
only minimal SMODs associated with them. Therefore, parameters are not
passed to them through registers, and contents of registers are not
preserved if they perform Kernel service requests.

ERRECK, the error processor, runs as a normal overlay. Its activity is
created through a service request by DISK. Each time ERRECK is created,

it handles errors only for the channel for which it was created.

The following subsections describe the overlays and resident subroutines
that handle the streaming of data to DCU-4 disk devices.

3-2 SM-0046 G



3.2.1.1 ACOM overlay

ACOM handles messages from other IOPs and initiates disk processing of
new requests. It runs in all IOPs.

ACOM's message function codes are as follows:

Code Function
1 Initiate disk request
2 Release Disk Activity Link (DAL) in originating IOP
3 Transfer data from target memory to Buffer Memory
4 Transfer data from Buffer Memory to target memory
5 Send status to mainframe; the MIOP receives this function.
6 Target memory to Buffer Memory transfer done
7 Buffer Memory to target memory transfer done

3.2.1.2 CDEM overlay

CDEM is the MIOP overlay that dispatches requests from the mainframe to
the correct recipient. Messages processed by CDEM include disk, tape,
and Kernel requests.

3.2.1.3 DISK overlay

DISK runs in all IOPs that have attached disks. It performs the
following functions:

¢ Manages the Disk Control Block (DCB) done queue

e Initiates requests to the target memory processor to receive data
from or send data to the target memory

® When executing in the target memory processor, moves data to the
target memory through the 100-Mbyte channel

® Starts I/0 if the channel is disabled (the channel can be disabled
while waiting for data or a local disk buffer)

SM-0046 G 3-3




3.2.1.4 ERRECK overlay

ERRECK processes errors, attempts to recover from errors, and puts out
the unrecoverable error message. It executes in all IOPs with attached
disks.

3.2.1.5 Disk interrupt answering subroutine

The disk interrupt answering subroutine puts the finishing DAL on the DCB
done queue, allocates local buffers on reads, and initiates I1/0 for the
next DAL. Finally, it activates the DISK demon to further process the
I/0 completed on the channel. ‘

3.2.1.6 Disk driving subroutines

Disk driving subroutines are called by ACOM and DISK to build executable
DALs. These subroutines calculate the cylinder, head, sector, and the
target memory address of data. They also allocate Buffer Memory space
and initiate I/O on read requests, if necessary.

3.2.2 DCU-4 TABLES AND PACKET STRUCTURE

When the mainframe initiates communication with the I0S, it sends a
6-word (30g-parcel) packet to MIOP across the 6-Mbyte channel with
information about the request. Two words (10g parcels) of control
information are added to the packet, which is called a master DAL. The
contents of that packet are defined in the IOS Table Descriptions
Internal Reference Manual, publication SM-0007.

3.2.3 STEPFLOW FOR DCU-4 DISK WRITE REQUEST FROM MAINFRAME
The following sequence of operations handles a write to a disk attached
to the DIOP. The target memory processor is BIOP. The IOP in which each

step occurs is identified.

Step 1IOP Description

1. MIOP An interrupt on the 6 Mbyte channel is recognized as a disk
request by interrupt answering. The CDEM overlay is
activated.

2. MIOP CDEM forms a DAL using 30g parcels of information from
the mainframe and 10g parcels of control information.
The DAL function code is set to 1 (in DARIFC) and put on
the channel queue that connects IOPs, targeted for the

3-4 SM-0046 G



DIOP. Buffer Memory is allocated and the address is saved
in the DAL, DA@MES contains the encoded address in Buffer
Memory of the message. (See the IOS Table Descriptions
Internal Reference Manual, publication SM-0007, for an
example of a DAL format.)

A message crosses the accumulator channel to the DIOP.

The interrupt handler gets the accumulator channel data and
puts it on the ACOM activities data queue. ACOM is
activated by being placed on the IOP central processor

ACOM gets the entry from the queue, calculates the Buffer
Memory address of the message, and reads the DAL into the
Local Memory DAL area.

ACOM recognizes function code 1 as a new disk request. If
the DSU is not busy, or if the queue is sufficiently short,
ACOM calls subroutine DBUD to build executable DALs.

DBUD builds a DAL, allocates a disk buffer area in Buffer
Memory, puts the DAL on the executable DAL queue,
recognizes the request as a write, and sends a request to
the BIOP to get data from the target memory. This request
has a function code of 3 in the DAL; a copy of the DAL is
written to Buffer Memory so the BIOP can move the data from
the target memory to the Buffer Memory address specified in

The interrupt handler gets 1 parcel from the accumulator
channel and puts it on the ACOM data queue. The ACOM
Activity Descriptor (AD) is put on the IOP central

ACOM gets the entry from its queue. It recognizes function
code 3, reads data from the target memory over the
100-Mbyte channel, and writes it to Buffer Memory.

ACOM sets the function code in the DAL to 6, writes it to
the Buffer Memory assigned for this DAL, and sends an

accumulator channel message to the DIOP.

The DIOP gets the interrupt on the accumulator channel and

Step 1IOP Description
3. MIOP
4, DIOP
queue.
5. DIOP
6. DIOP
7. DIOP
the DAL.
8. BIOP
processor queue.
9. BIOP
10. BIOP
11, DIOQP
activates ACOM.
12. DIOP

SM-0046 G

ACOM recognizes function code 6. The data is flagged,
identifying its location as Buffer Memory.




Step

13.

14.

15.

16.

17.

18.

19.

20.

I0P

Description

DIOP

DIOP

DIOP

DIOP

DIOP

MIOP

MIOP

MIOP

If write-behind (meaning early status is requested) is
specified and if this is the last sector for this request,
status is sent to the MIOP and hence to the mainframe
indicating that the data is in Buffer Memory.

If this sector is the first or second on the disk request
queue for this channel, the data is read into Local Memory
and flagged as Local Memory resident.

If this request is at the top of the queue, the write to
disk begins. The Disk Control Block (DCB) is flagged as
performing a write.

An interrupt indicates that the write is complete. The
interrupt handler moves the top request on the ready queue
to the done queue for the DCB. If the next I/0 request is
ready, the function is started. The DISK demon overlay is
activated.

The DISK demon overlay takes the request off the done queue
and releases the Buffer Memory space assigned. It checks
to see whether this is the last write for the request; if
it is, the DISK demon writes the master DAL to Buffer
Memory with a code of 5, indicating that the status is to
be returned to the mainframe. An accumulator channel
message is sent to the MIOP.

The MIOP gets the interrupt, puts the accumulator channel
data on the ACOM queue, and activates ACOM.

ACOM recognizes the function code of 5 and sends the DAL in
six 64-bit words of data across the 6-Mbyte channel to the
mainframe.

ACOM releases Buffer Memory space for the DAL and any Local
Memory space.

3.2.4 STEPFLOW FOR DCU-4 DISK READ REQUEST FROM MAINFRAME

The following sequence of operations accomplishes a request to read a
disk attached to the DIOP. The Target Memory Processor is BIOP. The IOP
in which each step occurs is identified.

SM-0046 G



Step IOP

Description

1. MIOP
2. MIOP
3. MIOP
4. DIOP
5. DIOP
6. DIOP
7. DIOP
8. DIOP
9. DIOP
10. BIOP

SM-0046 G

An interrupt on the 6-Mbyte channel is recognized as a disk
request by interrupt answering. The CDEM overlay is
activated.

CDEM forms a DAL using 30g parcels of information from

the mainframe and 10g parcels of control information.

The DAL function code is set to 1 (in DA@IFC) and put on
the channel queue that connects IOPs, targeted for the
DIOP. Buffer Memory is allocated, and the address is saved
in the DAL. DA@MES contains the encoded address in Buffer
Memory of the message. (See the IOS Table Descriptions
Internal Reference Manual, publication SM-0007, for an
example of a DAL format.)

A message crosses the accumulator channel to the DIOP.

The interrupt handler gets the accumulator channel data and
puts it on the ACOM activities data queue. ACOM is
activated by being placed on the IOP central processor
queue.

ACOM gets the entry from the queue, calculates the Buffer
Memory address of the message, and reads the DAL into the
Local Memory DAL area.

ACOM recognizes function code 1 as a new disk request. If
the disk unit is not busy, or if the queue is sufficiently
short, ACOM calls subroutine DBUD to build executable DALs.

DBUD builds a DAL, allocates disk space, and queues the
request on the executable DAL queue. The request is

recognized as a read. If the entry is the first on the
queue, the I/O is initiated on the proper disk channel.

An interrupt indicates that I/O has successfully

completed. The interrupt handler moves the DAL to the done
queue and starts the next DAL (if another exists) or begins
read-ahead (if last). The DISK demon overlay is activated.

The DISK demon overlay takes the DAL off the done queue and
moves data from Local Memory to Buffer Memory. The
executable DAL, with a function code of 4, is written to
Buffer Memory and its address is passed to BIOP across the
accumulator channel.

The interrupt handler gets the accumulator, puts it on the
ACOM queue, and activates ACOM.




ACOM gets the entry from the queue. It recognizes function
code 4, reads data from Buffer Memory, and writes it to the
target memory through the 100-Mbyte channel.

ACOM sets the function code in the DAL to 7, writes it to
Buffer Memory assigned for the DAL, and sends the
accumulator channel message to the DIOP.

The interrupt handler gets an interrupt on the accumulator
channel, queues the message, and activates the ACOM

ACOM recognizes function code 7. It releases Buffer Memory
and DAL space. If this is the last DAL for this request,
ACOM puts a function code of 5 into the master DAL
(indicating status is to be sent to the mainframe), writes
the DAL to Buffer Memory, and sends an accumulator channel
message to the MIOP.

The MIOP gets the interrupt, puts the accumulator channel
data on the ACOM queue, and activates ACOM.

ACOM recognizes the function code of 5 and sends the
command from the DAL (containing status) to the mainframe

across the 6-Mbyte channel.

ACOM releases Buffer Memory space for the DAL and any Local

Step 1IOP Description
11, BIOP
12. BIOP
13. DIOP
activity.
14. DIOP
15. MIOP
16. MIOP
17. MIOP
Memory used.
3.2.5 LOCAL HANDLING OF DISK QUEUES

Each IOP maintains its own queues in Local Memory (by disk unit) for
disks attached to it.

Queues are composed of linked lists of disk packets that take the same
form as the 30g-parcel packets, or DALs, that come from the mainframe.
These packets reside in Buffer Memory and are allocated and deallocated
by the MIOP.
Buffer Memory or disk), a copy of the packet has already been read into

Local Memory.

When data for a disk I/0 comes into Local Memory (from

When I/0 is complete, the packet is removed from the queue

and its address sent to the next IOP, which performs processing for it.

Disk data must always move through the Local Memory of the processor
attached to the relevant disk.

SM-0046 G



Each IOP facilitates streaming on devices by reading ahead as requested
by disk packets and by maintaining the data read-ahead in Buffer Memory
until subsequent requests are received for this data. The data in these
read-ahead buffers is retained in Buffer Memory. If no request is
received to transfer the data to the mainframe before the next write
request, the Buffer Memory is deallocated for use by other requests.
Each read request that is received causes examination of the read-ahead
queue to find data that has been preread.

3.2.6 DCU-4 DISK READ-AHEAD

Each disk control block (DCB) has a Read-ahead Control Table assigned to
it at initialization time. These tables are used on both disk reads and
writes to anticipate subsequent I/0 requests.

Each entry in a Read-ahead Control Table represents one sector of data
and contains information used to identify and locate that sector. The
number of entries in each Read-ahead Control Table is determined by the
$APTEXT constants RASNUM (single-device units) and RA$NUMS
(striped-device units). Entries in the Read-ahead Control Table are
described by the RA@ definitions (see the IOS Table Descriptions Internal
Reference Manual, publication SM-0007).

The Read-ahead Control Table is treated as a circular list and has
associated with it the following pointers located in the DCB:

Pointer Description

DB@INF Pointer to the first entry in the table; remains constant
from initialization.

DB@UNF Pointer to the last entry in the table; remains constant
from initialization.

DB@IN Pointer to the next entry to be read into (reading if
from disk to Buffer Memory; writing if from the target
memory to Buffer Memory).

DB@OUT Pointer to the next entry to be used to satisfy a
request
DB@RAK Count of number of entries in the Read-ahead Control

Table; remains constant from initialization.

DB@RAF Count of number of entries containing read-ahead data

SM-0046 G 3-9




3.2.6.1 Disk read

Upon completion of a disk read request, the read interrupt routine checks
for additional I/0 requests for the current channel. If there are none,
read-ahead control is initiated. Read-ahead control anticipates that the
next I/0 request for the current channel will be a read for sectors
contiguous to the one just read.

Two cases in which read-ahead is not initiated and the channel is 1d1ed
until the next I/0 request is received areas follows:

e When a seek is required to position to the next sequential sector
® When no local disk buffers are available
The read-ahead sequence is as follows:
1. Read complete. No requests pending (DB@MDL=0). Initialize
Read-ahead Control Table:
DB@RAF=0
DB@IN=DB@QOUT=DB@INF

2. Compute disk address of next sector to be read and store in the
entry pointed to by DB@IN (RAGCYL, RA@GHED, and RA@SEC).

3. Allocate a local disk buffer and store the address in the
read-ahead entry (RAGLOC).

4, Set disk activity in DCB (DB@FLG) to read-ahead (function code is
4) and initiate read.

3.2.6.1.1 Interrupt occurs due to read-ahead - Read-aheads are
terminated if any of the following conditions are found:

e Read-ahead abort is set in the DCB (bit 215 in DBEFLG).
®¢ An error is detected in the read-ahead just completed.

® No more entries are available in the Read-ahead Control Table
(DB@GRAF =DB@RAK) .

® No local disk buffers are available.

® A seek is required to position to the next sequential sector.
The following sequence applies to an interrupt due to a read-ahead:

1. Set data location in entry pointed to by DBRIN to Local Memory

(RA@DAT=1). Increment count of read-ahead entries in use
(DB@RAF+1). Advance DBR@IN to next entry.

3-10 SM-0046 G



2. Compute next sequential disk address and store in the entry
pointed to by DBEIN (RAGCYL, RAGHED, and RA@SEC). Allocate a
local disk buffer and store the address in the read-ahead entry
(RAGLOC). Initiate read.

3. Activate Disk Demon to move read-ahead sector just completed to
Buffer Memory.

3.2.6.1.2 Disk Demon read-ahead process - The Disk Demon read-ahead
process follows:

1. Allocate Buffer Memory buffer and save address in the entry
pointed to by DB@IN (RA@BMO/BM1).

2. Transfer data from Local Memory buffer (RAGLOC) to Buffer
Memory. Set data location to Buffer Memory (RA@DAT=2). Release
Local Memory buffer.

3.2.6.1.3 I/0 request received during read-ahead - If the I/0 request
received specifies a write, the Read-ahead Abort flag is set (215 in
DB@FLG), causing read-aheads to terminate after the current read
completes.

If the I/0 request received specifies a read, a check is made to see
whether the first sector of the request matches either data previously
read-ahead or the sector currently being read.

ACOM checks to see if the first sector of the request matches any of the
sectors previously read-ahead. If there is a match, ACOM makes sure that
the pointer DB@OUT gets set to the matching entry.

ACOM then calls the DBUD routine to prepare E-DALs for the request. As
each E-DAL is built, a check is made to see whether the sector for which
the E-DAL is being built matches the sector in the read-ahead entry
pointed to by DB@OUT. If there is a match, the memory location of the
data is moved from the read-ahead entry to the E-DAL. The E-DAL is then
placed on the done queue (DB@DNQ) for processing by the Disk Demon. The
DB@OUT pointer is then advanced to the next read-ahead entry and the
read-ahead count (DB@RAF) is decremented.

This process continues until all of the read-ahead data has been used.

If the read-ahead count (DB@DRAF) is 0 and read-ahead is in progress
(DB@FLG=4), a check is made to see if the sector for which the E-DAL is
being built is the same as that being read. If they are the same, the
information from the read-ahead entry pointed to by DB@IN is moved to the
E-DAL, the Disk Activity flag is set to read (DB@FLG=1), and the E-DAL is
put on the executable queue (DB@EDL). This process is referred to as a
read-ahead steal, because the active read-ahead is redirected into the
normal read flow.

SM-0046 G 3-11




3.2.6.2 Disk write

Read-ahead during a disk write (sometimes referred to as write-behind)
involves moving sectors of data from the target memory to Buffer Memory,
where it is held until the disk is positioned to where the data is to be
written. A response is sent after the last sector of data (for a given
request) has been moved out of the target memory. The read-ahead allows
overlap of current and previous request processing; that is, overlap of
the preparing of data to be written with the writing of data to disk.

Read-ahead during a disk write always attempts to keep the Read-ahead
Control Table full. As each write request is satisfied and a new one
received, data is moved to Buffer Memory, as long as entries are
available in the Read-ahead Control Table. As each sector is moved from
Buffer Memory to Local Memory to disk, the next sequential sector of the
most recent request is moved from the target memory to Buffer Memory to
take its place.

3.2.6.2.1 Disk Demon: Read-ahead input - The sequence that applies to
Disk Demon read-ahead input follows:

1. Check to see whether there is any more room in the Read-ahead
Control Table (DB@RAF=DB@RAK). If no room exists, the sequence
ends here.

2. Check each M-DAL queued (DB@MDL) beginning with the first for a
sector waiting to be moved. (DAG@WBH # DAGTOT). If none exist,
the sequence ends here.

3. Transfer sector from the target memory to Buffer Memory. Save
Buffer Memory address of the entry in the Read-ahead Control
Table that is pointed to by DB@IN (RAGBMO/BM1l). Save the disk
address of the sector in the entry (RAGCYL, RA@HED, and RA@SEC).

4. Advance DB@IN to the next entry. Increment read-ahead count
(DB@GRAF). Increment next read-ahead/write-behind sector in the
M-DAL (DAGWBH).

5. If the last sector for the request has been moved
(DAGWBH=DA@TOT), send a response to the mainframe.

3.2.6.2.2 Disk Demon: Read-ahead output - The sequence that applies to
Disk Demon read-ahead output follows:

1. Call the Kernel DBUD routine to build the next E-DAL.

2. DBUD checks to see if the read-ahead entry pointed to by DB@OUT
matches the sector for which the E-DAL is being built.

3-12 SM-0046 G



3. The Buffer Memory address is moved from the entry (RA@BMO and
RA@BM1) to the E-DAL (DA@BMO and DA@BM1). The data location is
set to Buffer Memory in the E-DAL (DA@DAT=2). DB@OUT is advanced
to the next entry and the read-ahead count is decremented
(DB@RAF).

4, Disk Demon allocates a local buffer, detects that data is in
Buffer Memory rather than target memory (DA@DAT=2), and transfers
data from Buffer Memory to Local Memory in preparation for a
write to disk.

3.2.7 ON-LINE DISK DIAGNOSTIC REQUESTS

The DCU-4 disk driver supports on-line disk diagnostic requests for the
data, format, and correction code options of the read/write commands. 1In
addition to specifying a read/write option, the diagnostic request may
enable or disable error recovery, error reporting, read-ahead, and
write-behind.

Diagnostic request processing in the IOS proceeds according to the
following rules:

® Only full sector I/0 is supported

e Diagnostic requests may only be made for physical devices. Thus,
a diagnostic request for a device that is a member of a striped
group is valid, while a request for the striped group itself is
invalid.

In the event an error occurs during diagnostic request processing, the
I0S returns an error record to the diagnostic job and/or the system log
if indicated in the original request packet. See subsection 3.3.4, Error
Status Returned to Mainframe, for more information on error reporting.

3.3 DCU-4 DISK ERROR RECOVERY

The Kernel's disk error recovery routines process and recover from errors
on disk. The routines are resident in the Kernel overlay ERRECK, which
is activated when a disk error is recognized on one of the IOP disk
channels. The DISK overlay creates ERRECK when it recognizes that error
recovery must be attempted.

After activation, the ERRECK overlay attempts recovery in a predefined

order, according to entries in a Kernel table and depending on the type
of error. Table 3-4 summarizes the process.

SM-0046 G 3-13




ERRECK recognizes the following four types of disk errors:
e Data errors, indicating the data was not transferred correctly

e Lost data errors, indicating memory was unable to keep up with the
disk data transfers

e Seek errors, resulting from the incorrect physical movement of the
read/write head '

® Disk interlock, which occurs when the disk is not physically ready
to transfer data

The Kernel maintains statistics for each disk unit on the number and
types of errors for each disk channel.

3.3.1 DISK ERRORS REQUIRING RECOVERY

Disk storage units signal an error condition by setting the done bit and
leaving the busy bit set on the channel. The done bit causes an
interrupt that activates the ERRECK routine. The done and busy condition
is sensed by the disk interrupt routine, which reads the status into the
A register from the channel to determine the type of error that has
occurred. Table 3-1 shows the relationship between the contents of the A
register and the error condition. A bit signals an error if it is set

to 1. These errors are defined in the following subsections.

Table 3-1. Error Conditions

I I I
| Bit | Error |
I | I
I I |
| 0 | Angular position counter failure |
| 1 | Lost function |
| 2 | Lost data |
| 3 | Read error channel 3 |
| 4 | Read error channel 2 |
| 5 | Read error channel 1 |
| 6 | Read error channel 0 |
| 7 | Address error |
| 8 | Seek error |
| 9 | Write error channel 3 |
| 10 | Write error channel 2 |
| 11 | Write error channel 1 |
| 12 | Write error channel 0 |
[ 13 | Multiple head select |
| 14 | Read/write conflict |
| 15 | Read/write off cylinder ]
I 1 |

3-14 SM-0046 G



3.3.1.1 Data error

Data errors are detected on read and write functions when the hardware
senses that the correct data has not been transferred as requested. The
Kernel disk interrupt answering routine senses that both Done and Busy
flags are set and reads the disk status. If any of the bits between 3
and 6 are set in the status parcel, an error occurred in transferring
data from the disk. If any of the bits between 9 and 12 are set, an
error occurred when trying to transfer data to the disk.

3.3.1.1.1 Recovery for data errors on read operations - When a data
error is encountered, the Kernel tries to recover the data with a series
of operations. The recovery sequence occurs in the following order:

1. Error recovery repeats the read operation a fixed number of times
to determine if the error is transient.

2, If the function repetition fails, recovery is attempted through
cylinder margin selection, read early/late selection, or
combinations of the two. The READSEQ table in ERRECK controls
the sequence of events and contains margin and read early/late
parameters.

3. Disk error correction is attempted for data errors if cylinder
margin and read early/late selection retries are unsuccessful.
Error recovery reads the data and the associated error correction
code without cylinder offset or read early/late selection. The
overlay FIRECODE is called to generate correction vectors and
correct the data, if possible. The error correction algorithm
corrects data in a single burst of 11 bits or less for each of
the four read heads.

The disk error correction feature can be disabled if desired (see
the I@IOSECC parameter description in the COS Operational
Procedures Reference Manual, SM-0043 or the UNICOS System
Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1
Computer Systems, publication SG-2018).

4. If none of the preceding procedures is successful, error recovery
sends the sector of data containing the error to the mainframe
along with a status indicating the unsuccessful data request.

The remainder of the current disk request is thrown away, and the
Kernel continues processing any subsequent requests.

3.3.1.1.2 Recovery for data errors on write operations - If the disk
hardware detects an error while attempting to write data to disk, the
error recovery routine repeats the function a set number of times to
determine if the error is transient. If the requests’are not successful,
the IOS returns a status to the mainframe indicating unsuccessful
completion of the operation.

SM-0046 G 3-15




3.3.1.2 Lost data errors

When the status parcel has a 1 set in bit 2, the hardware has detected
that Local Memory was unable to keep up with the disk transfer on a read
operation. In this case, the data transfer was not completed, and error
recovery attempts to complete the function by repeating it a set number
of times.

ERRECK then clears fault flags, does a seek to cylinder 0, and attempts
to repeat the disk function. This operation is repeated a set number of
times. If the data is not successfully transferred by these repeated
operations, the IOS returns a status to the mainframe indicating
unsuccessful completion of the operation.

3.3.1.3 Seek errors

Seek errors are detected by the hardware and are indicated when bit 8 is
set in the status parcel. The recovery procedure is to return to
cylinder 0, then attempt to do the seek again. This sequence is repeated
a set number of times. If the seek cannot be completed successfully, an
error status is returned to the mainframe.

3.3.1.4 1ID errors

Following a normal disk seek operation, the hardware returns the cylinder
number from the disk ID field in the Status Response register. If this
cylinder number does not agree with the cylinder that software is trying
to select, error recovery is invoked. The error recovery procedure is to
return to cylinder 0, then attempt to do the seek again. This sequence
is repeated a set number of times. Before the final retry, the head
group is switched in an effort to determine if the correct cylinder is
being selected. If all retries fail, an error status is returned to the
mainframe.

3.3.1.5 1Interlock status

When error recovery finds no bits set in the status parcel after
detecting an error condition, it knows that the disk referenced is not in
a condition to perform the I/O. To determine the cause of the condition,
the error recovery overlay reads the interlock status into the status
response register and then into the A register with an IOB:11
instruction. Error recovery checks to see whether the IOS has reserved
bit set. If reserved, the status word is checked to see if a real
interlock condition is set. If not set, the recovery routine considers
the interlock fals® and tries to recover as though it were a
miscellaneous type. Otherwise, error recovery displays a message
indicating the type of error so the operator can correct physical
interlocks. An interlock status (irrecoverable error) is returned to the
mainframe.

3-16 SM-0046 G



Conditions considered interlocks, along with their bit positions in the
status response register, are indicated in table 3-2. 1In all cases, al
in the bit position indicates that the corresponding condition is true.

Table 3-2. Interlock Error Conditions

normal temperature range

L

I I I
| Bit | Error |
I I I
I I I
| 8 | Positive voltage supply for the |
] ] DSU is below normal ]
I I I
i 9 | Negative voltage supply for the |
| | DSU is below normal |
| | |
| 11 | DSU start switch is off |
I | |
| 12 | DSU brush cycle is in process |
I I |
| 13 | Disk heads are not loaded on |
| | the disk surface |
I I I
| 14 | Disk surface is not up to speed |
I I I
| 15 | Disk drive cabinet is over the |
I I I
I I

3.3.1.6 Miscellaneous disk errors

Certain disk errors do not fit neatly into any of the previous
classifications. When these errors occur, they are treated as transient
conditions that may disappear on retry, and the last function executed on
the channel is reexecuted up to a set maximum number of times. If the
error continues to occur, the condition is processed as though it were an
interlock condition, causing a message to be sent to the operator and a
status response to the mainframe.

Miscellaneous errors, along with their bit positions in the status

response register, are given in table 3-3. A 1 in the bit position
indicates that the condition is true.

SM-0046 G 3-17




Table 3-3. Miscellaneous Error Conditions

| | I
| Bit | Error |
| | |
I | !
| 0 | Angular position counter failure |
I I |
| 7 | Address error |
I I |
| 13 | Multiple head select |
I I |
| 14 | Read and write conflict |
I | |
| 15 | Read/write off cylinder |
I 1 I

3.3.2 1I/0 TIME-OUT

When a read, write, or seek function is sent to a disk channel, the timer
entry for that channel (DB@TMO) is passed along with a time-out value
(SEEKLIM/SEEK, DISKTLIM/READ, or WRITE) to the QTIME routine for
placement on the system event timer queue. If the interrupt occurs
before the timer expires, a call is made to DQTIME to remove the entry
from the timer queue.

If the interrupt does not occur in time, control is given to the IDKTOUT
routine. IDKTOUT is entered into TMR@RT of each timer entry (DB@TMO) for
all disk channels at system initialization. The IDKTOUT routine either
activates the disk demon (DISK) to initiate error recovery or activates
ERRECK if error recovery is already in progress.

3.3.3 ERROR RECOVERY SUMMARY

Table 3-4 summarizes the handling of the various disk error conditions.
The order of recovery is defined by the lowercase letters; the letter a
designates the first operation attempted; b, the second, and so on.

The recovery actions are abbreviated as follows:

R Repeat last function I-M IOP message to CRT

M Margin select ST Send status to mainframe

E/L Strobe early and late co Return to cylinder 0 and retry
C Combination of M and E/L FC Firecode processing (error

RS Read interlock status correction code)

3-18 SM-0046 G



Disk Error Recovery Summary

Table 3-4.

&
fxy [} [} [ ] [ )]
o
&) Q Q e} L e] o] Q o] Q Q e} (1]
e e e e ————— e ————— - — . — ]
[
77} o o ke o o o o ¢} o o] o Le) o o o] Le] 4] Le) o]
— —— — — — — — —— — —— — — — — —— —— — —— — — — — — — — — — —— — — ——— — — — — — — —
=
1 (3] 9] (8] -t L] Y4 - Q [&] 9] [ 6] 8] 9] 8] (9] 8] 0 (8] (9]
)
[7]
~ (]
& ] o ko) Le) L]
3
~N 9] 4] 4] (4]
]
e ] —— — e —_——_——_— e e ——— e —_—_—— —— . —— —— — — —
= Q o] Q Q
~ [} L] © ] [} [} © ] 2 © L} o © ] [} ] ] el n
e Al e e o —— — — —— —————— —— —— —— ——— — —
IS o - ~ ] L] n Vo] ~ © o)) (=] —t ~N ™ Lol [Te}
~ - - - - - —
m
[ ]
~ ~
= ™ ~N — o [
— ™ ~ - o e}
- — — — — + <]
<} © — —~ —~ — Q [} (V] Q [9) + o
o L¥] (] ) ) ] = 3] = sl ] ¢} —
et =} =1 o a =} = =] j+] — o >
is =] =] = o =] ] [} [+] ] [} —~ 6]
o [o) (] © ] ol K] K~} =] K~] 7] Y
o o >N K~ Ko K E=i ¢} 4} 3] 3] =] Wi
=] & Lo} [3) 3] 3] [3) ~ Le] [o] W
[e) o (1] (o) ~ -~ ~ N [1+] (o) [e]
(&) 7] ['V] ~ [N ~ N [ o o o + Q
o) = ~ (¥ ~ 4 1% ~ — — — — K] (] Q
193 Ay © o] o] o] (o] L1V] [o] = = =3 = o 4+ ~
o + i) r 19 ~ N ~ o] ] © (] ()] o o o ~ 4]
- - o} ] ~ ~ ¥ -~ 7] " (Y - ['¥} W — - [ =} (o] o]
[ © IS} o [} [} (] [} 0 [} o 2 = o 4 —
] ~ o [1}] (V] Q (] o N ~ 1 19 4
3 4 o © (] [} (0] ] A o < o + o o] o] ()] [ ] (V]
o [} %) + ] 8] iy o] [} ot o o o ~ © © € +
S| o o © © © © L] () 4 $y 4 4 = [ [] Pl [a] ]
) (o] [ Q [a} [=] [a] < /5] = = = = = [+ [+ = - —

3-19

SM-0046 G




3.3.4 ERROR STATUS RETURNED TO MAINFRAME

When a DD-19 or DD-29 disk error occurs, the IOS returns the final error
status to the mainframe. The status is returned in field DAGRC of the
disk command packet that made the original request. Valid error statuses
that may be returned are as follows:

Error Status Description

DAR$OK No error encountered
DARS$REC Recovered error
DAR$COR Corrected data error
DAR$UNC Uncorrected data error
DAR$UNR Unrecovered error

Limited information about disk errors is passed back to COS in parcels
30g through 33g of the DAL (parcels 20g through 23g of data
transferred to the mainframe). Table 3-5 defines this information.

Table 3-5. Disk Error Information in DAL

I I I |
| Parcel | Bits | Description |
| _ | |
| | | |
| 30 | 0-10 | Cylinder on which error was detected |
I I I I
| 30 | 11-15 | Head group in which error was detected |
I I I I
| 31 | 0-6 | Sector of error |
| I I |
| 31 | 7-15 | Offset from the beginning of the sector |
| | I |
| 32-33 | 0-15 | Length of actual transfer |
| | | I

Additional information is sent to the mainframe in a disk error packet for
logging. This packet is built in the REPORT overlay. (See the IOS Table
Descriptions Internal Reference Manual, publication SM-0007, for the
format of the Disk Error Packet, DE@Q.)

3-20 SM-0046 G



3.3.5 DCU-4 DISK ERROR MESSAGE
If an irrecoverable error occurs in an IOP, the error reporting overlay

(REPORT) informs the operator of the error location, the hardware status
returned, and time of the error through the following message:

CHANNEL chan - DISK ERROR CYL cyl HD hd ST status hh:mm:ss

chan Channel number (20 through 37g)

cyl Cylinder number

hd Head number

status If hardware detected the error, status is the hardware

status code returned from disk. If software detected the
error, status is one of the following:

INT-LK Channel interlocked, not ready
BAD-SK Bad cylinder number after seek (ID error)
TM-OUT Channel timed out

hh:mm:ss IOP time of day

3.4 DCU-5 DISK CONTROLLING SOFTWARE

This subsection describes the architecture and request process for the
DCU-5 (RD-10, DD-39, DD-40, and DD-49) controlling software.

The DD-40 DSUs are part of the DS-40 Disk Subsystem. The DD-40s are
connected to the DCU-5 through DC-40 Disk Controllers. The RD-10 DSUs
are part of the RD-10 Transportable Disk Subsystem and are connected to
the DCU-5 through a DCU-S1 serial Disk Controller.

It is recommended that RD-10s not share the same DCU-5 controller as
other disk types, as this may result in overrun/underrun errors on the
RD-10s during periods of heavy activity. These errors are recoverable,
but will result in a loss of performance and a potentially large number
of errors being logged.

SM-0046 G 3-21




3.4.1 DCU-5 SOFTWARE COMPONENTS

The DCU-5 disk controlling software consists of the following four demon
overlays and the interrupt answering overlay:

Overlay Function

DD49 Loads into Local Memory at IOS deadstart time and resides
as the disk interrupt handler in the IOPs that have DCU-5
disk devices configured.

D4DEM Starts I/0 to the disk and performs tasks to keep the I/O
going
ICOM Handles all communication between IOPs for the DCU-5 disk

driving software

TRANSFR Moves disk data between Buffer Memory and the target
memory through the TRANSFER Kernel service request

3.4.2 DCU-5 DISK DRIVER TABLES AND PACKETS
The following are software components that control the disk processing.

These structures are defined in the IOS Table Descriptions Internal
Reference Manual, publication SM-0007.

3.4.2.1 Disk Request Packet (DAL) - DL@

The DAL is a fixed-length packet containing request information from the
mainframe plus control information used by the IOS. For more information
about DALs, see subsection 2.14, MIOP-mainframe Communication Channel.

3.4.2.2 Disk Control Block (DCB) - DK@

The DCB is the main control table for disk operations. One DCB is
defined for each disk channel. This table is created at system
initialization and resides in Local Memory.

3.4.2.3 Local Buffer entry - LB@

The Local Buffer entry is used for Local Memory buffer control. There is
one entry for each dedicated Local Memory buffer being used by the disk
channel. The entries serve as requests to the D4DEM overlay to move a
sector of data to or from Local Memory. The Local Buffer entries
immediately follow the DCB.

3-22 SM-0046 G



3.4.2.4 Buffer Memory Control Block (MCB) - CB@

The MCB is a table resident in Buffer Memory. The MCB controls the flow
of data between the target memory and the disk on IOPs without a
100-Mbyte channel to that target memory. There is one MCB for each disk
channel defined. This table is created at system initialization. A
pointer to the MCB is contained in its associated DCB in Local Memory.

3.4.2.5 Data Transfer Request (DTR) - TR@

The DTR is a fixed-length packet used to make requests to the TRANSFR
overlay. It contains all the necessary information to move data between
Buffer Memory and target memory.

3.4.2.6 Abort Transfer Request (ATR) - AR@

The ATR is a fixed-length packet used to terminate the movement of data
between Buffer Memory and the target memory before the completion of a
DTR. This packet is sent to the TRANSFR overlay in the event of an

irrecoverable disk error.

3.4.2.7 Device Parameter Table (DPT) - DP@

The DPT contains information common to all disk devices of the same
type. During system initialization, one DPT is established in Local
Memory for each configured device type. Each DCB contains a pointer to
the DPT associated with its device type.

3.4.2.8 MEMIO Queue Table - MEM@

The MEMIO queues serve as request queues for all disk channels needing
data moved to or from Local Memory. Each request is a Local Buffer
entry. Each memory channel has its own distinct queue, allowing for I1/0
overlap on the different channels. This table is serviced by the D4DEM
overlay.

3.4.3 RESOURCE MANAGEMENT

The DCU-5 disk driving software makes extensive use of two IOS
resources: Local Memory and Buffer Memory.

SM-0046 G 3-23




3.4.3.1 Local Memory management

The sector chaining feature requires at least two dedicated Local Memory
disk buffers per active disk channel. The number of buffers is
controlled by the equates LB$DD10 for RD-10 disks, LB$DD39 for DD-39
disks, LB$DD40 for DD-40, and LB$DD49 for DD-49 disks.

Local buffers are allocated when a request is received to activate a disk
channel and are retained for as long as that channel is busy. Each
buffer address is assigned to a Local Buffer entry. These buffers are
used in a circular fashion to store data on its way to or from disk.
Buffer allocation and release are performed by D4DEM.

3.4.3.2 Buffer Memory management

Each DCU-5 disk channel has a number of contiguous Buffer Memory disk
buffers assigned to it at IOS initialization time. These buffers are
used in a circular fashion for read-ahead and write-behind data. For
disks on IOPs with a 100-Mbyte channel, the starting buffer address and
control information is stored in the channel's DCB. For disks on IOPs
without 100-Mbyte channels, the address and information is stored in the
channel‘'s MCB. The number of buffers allocated is based on the
read-ahead and write-behind count constants. More detailed information
on read-ahead and write-behind is included later in this section.

3.4.4 DCU-5 DISK READ REQUEST STEPFLOW

The following sequence of operations handles a read request to a DCU-5
type DSU attached to the DIOP:

1. CDEM receives a request packet (DAL) from the mainframe,
recognizes it as a DCU-5 disk request, and routes it to ICOM in
the target IOP. See discussions of the MIOP-mainframe
Communication Channel and Communication Between IOPs in section 2
for more information about packet handling.

2. ICOM in the target IOP validates the DAL parameters, puts the DAL
on the DCB DAL queue, and activates D4DEM.

3. D4DEM allocates Local Memory buffers and starts I/0 to the disk.
If this IOP does not have a 100-Mbyte channel to the specified
target memory, a DTR is sent to TRANSFR in the Target Memory
Processor.

3-24 SM-0046 G



4., An interrupt signals the completion of a sector transfer from
disk. The DD49 interrupt handler continues the next sector I/0
to disk and initiates the I/0 to empty the Local Memory buffer
just filled with disk data. This sector of data is moved from
Local Memory to the target memory across the 100-Mbyte channel
while the disk is filling the next Local Memory buffer with
data. If this IOP does not have a 100-Mbyte channel, the data is
moved to Buffer Memory where TRANSFR can then move it to the
target memory. DD49 then activates D4DEM.

5. D4DEM waits for the sector transfer to the target memory to
complete, and prepares the Local Memory buffer for the next read
from disk.

6. Steps 4 and 5 are repeated until the entire request is complete.
When all the data has moved to the target memory, D4DEM is
activated either by DD49, if the IOP has a 100-Mbyte channel, or
by ICOM when ICOM receives a message from TRANSFR indicating the
DTR has been completed.

7. DADEM sends the final status to ICOM in MIOP and releases the
Local Memory buffers.

8. ICOM in MIOP sends the DAL containing status back to the
mainframe to signal completion of the request.

3.4.5 DCU-5 DISK WRITE REQUEST STEPFLOW

The following sequence of operations handles a write request to a DCU-5
type DSU attached to the DIOP.

1. CDEM receives a request packet (DAL) from the mainframe,
recognizes it as a DCU-5 disk request, and routes it to ICOM in
the target IOP. See subsection 2.13, Communication Among IOPs,
and subsection 2.14, MIOP-mainframe Communication Channel, for
more information about packet handling.

2. ICOM in the target IOP validates the DAL parameters, puts the DAL
on the DCB DAL queue, and activates D4DEM.

3. If this IOP has a 100-Mbyte channel to the specified target
memory, D4DEM allocates Local Memory buffers, and fills the first
buffers with data from the target memory across the 100-Mbyte
channel. If this IOP does not have a 100-Mbyte channel, D4DEM
sends a DTR to TRANSFR in the target memory processor. The data
is obtained from Buffer Memory after TRANSFR has made it
available.

SM-0046 G 3-25




4. D4DEM initiates I/0 to the disk.

5. An interrupt signals the completion of a sector transfer to
disk. The DD49 interrupt handler continues the next sector I/0
to disk and initiates the I/O to fill the next available Local
Memory buffer with data. This sector of data is moved from the
target memory to Local Memory across the 100-Mbyte channel while
the data from the current Local Memory buffer is emptied to
disk. If this IOP does not have a 100-Mbyte channel, the data is
moved from Buffer Memory after TRANSFR has obtained it from the
target memory. DD49 then activates D4DEM.

6. D4DEM waits for the sector transfer from the target memory (or
Buffer Memory) to complete, and prepares the Local Memory buffer
for the next write to disk.

7. Steps 5 and 6 are repeated until the entire request is complete.
At that time, D4DEM is activated by the DD49 interrupt handler.

8. D4DEM sends the final status to ICOM in MIOP and releases Local
Memory buffers.

9. ICOM in MIOP sends the DAL containing status back to the
mainframe to signal completion of the request.

3.4.6 DCU-5 READ-AHEAD AND WRITE-BEHIND
The DCU-5 driving software uses Buffer Memory as a disk cache in

anticipation of contiguous disk requests from the mainframe. This
subsection describes the cache mechanism.

3.4.6.1 DCU-5 read-ahead

Upon completion of a disk read request, the DD-49 interrupt handler

automatically initiates read-ahead I/0. Read-ahead control anticipates

that the next I/0O request for that channel will be a read for sectors

contiguous to the previous request.

Read-aheads are terminated if any one of the following conditions occur:

¢ The read-ahead count, defined in $APTEXT, is satisfied; the

read-ahead equate takes the form RA$type, where type indicates
the device type.

®¢ A seek is required to position to the next sequential sector

® Sector chaining is broken

3-26 SM-0046 G



® An error is detected

e The Read-ahead Abort flag, DK@ABT, is set in the DCB: this flag is
set when an I/0 request is received that cannot be satisfied by
the current read-ahead sectors.

When an interrupt occurs, signaling the completion of a read-ahead, the
DD49 interrupt handler activates D4DEM to store the sector of data in the
Buffer Memory read-ahead area.

If the next I/0 request cannot be satisfied by the current read-ahead
data, read-aheads are terminated, as required. D4DEM then updates the
pointers to the Buffer Memory read-ahead area, indicating the read-ahead
data has been thrown away.

If the next I/O request can be satisfied by the current read-ahead data,
D4DEM moves the data stored in Buffer Memory to target memory. Any
remaining sectors for the request are read from disk through the normal
path.

3.4,6.2 DCU-5 write-behind

Write-behind control during write request processing is the equivalent of
read-ahead control during read request processing. It involves storing
sectors of data in Buffer Memory until the disk can be positioned where
the data is to be written. The mainframe is notified when all data for
the current write request has been moved out of the target memory. This
allows for overlapping the preparation of the next I/0 request with the
writing of data to disk for the current request.

Write-behind processing occurs only under the following conditions:
¢ The write-behind count constant, defined in $APTEXT, has not been
satisfied; the write-behind equate takes the form WB$type, where
type indicates the device type.

® All local buffers are full

® There is data remaining in the target memory for the most recent
write request

¢ There are no pending sectors on queue to be moved to or from Local
Memory buffers

D4DEM attempts to satisfy the write-behind count by transferring sectors
for the most recent request from the target memory to Buffer Memory in

reverse order; for example, the last sector for a request is moved into
Buffer Memory first, the next-to-last sector is moved second, and so on.

SM-0046 G 3-27




When the DD-49 interrupt handler detects that the next sector of data
resides in Buffer Memory rather than the target memory, it activates
D4DEM to get the data from the appropriate location. D4DEM updates the
pointers to the Buffer Memory write-behind area after moving the last
sector for a request into Local Memory, indicating the Buffer Memory
space is now free for subsequent write-behind requests.

3.4.7 SPIRAL FORMATTING

The DCU-5 disk driver incorporates spiral formatting to reduce the time
spent waiting for cylinder-to-cylinder seeks to complete. Spiral
formatting is done by the software and does not affect physical
formatting of the drive. Only RD-10, DD-39 and DD-49 disk drives are
spirally formatted. DD-40 disk drives are not spirally formatted as this
would defeat the read-ahead and write-behind logic in the DC-40
controller.

On a disk with spiral formatting, each cylinder starts a partial
revolution later than the previous cylinder. Thus, when moving from one
cylinder to the next, sector 0 of the new cylinder is available for
reading within a partial revolution, rather than waiting for a full
revolution to complete.

To implement spiral formatting, the driver maps each logical data sector
onto a physical sector according to a conversion table residing in the
DPT for that device. This table contains a list of offset values used to
calculate the physical sector number,

To calculate the physical sector number, add the value of the low-order
bits of the requested cylinder number to the base address of the
conversion table. The resulting location contains the correct offset
value. Add the offset to the logical sector number to obtain the
physical sector number.

Only the low-order bit of the cylinder number is used in the conversion
algorithm for DD-10s and DD-39s; thus the disk is logically divided into
two halves. The low-order 2 bits of the cylinder number are used in the
conversion algorithm for DD-49s; thus, the disk is logically divided into
four quadrants.

3.4.8 ON-LINE DISK DIAGNOSTIC REQUESTS

The DCU-5 disk driver supports on-line disk diagnostic requests for all
options of the read/write commands. In addition to specifying a
read/write option, the diagnostic request may enable/disable error
recovery, error reporting, read-ahead, and write-behind.

3-28 SM-0046 G



Diagnostic request processing in the IOS proceeds according to the
following rules:

® Only full sector I/O is supported

e Diagnostic requests may be made only for physical devices. This
means that a diagnostic request for a device that is a member of a
striped group is valid, while a request for the striped group
itself is invalid.

® Software spiral formatting is not part of diagnostic request
processing.

If an error occurs during diagnostic request processing, the IOS returns
an error record to the diagnostic job and/or the system log, if so
indicated in the original request packet. See subsection 3.5.4, Error
Reporting, for more information.

3.5 DCU-5 DISK ERROR RECOVERY

Error recovery for the DCU-5 type disks is enacted when the DD-49 disk
interrupt handler detects one of the following error types: software
detected, status register 0, or Drive General Status. When the DD-49
disk interrupt handler detects an error on a disk channel, an error
status is stored in the DCB for the channel and the D4DEM overlay is
activated. D4DEM recognizes that an error has occurred and creates an
error recovery activity for the channel.

Error recovery consists of five major areas that are assumed to be single
processes; it is rarely required to go from one process to another during

error recovery. These areas are as follows:

® Unit Select Process (D4SLR for DD-49 or D3SLR for RD-10, DD-39 and
DD-40)

¢ Cylinder Select Process (D4SKR for DD-49 or D3SKR for RD-10,
DD-39, and DD-40)

e Head Select-LMA Select-Read Process (D4IOR for DD-49, D40IOR for
DD-40, D3IOR for DD-39, or D10IOR for RD-10)

o Head Select-LMA Select-Write Process (D4IOR for DD-49, D40IOR for
DD-40, D3IOR for DD-39, or D10IOR for RD-10)

® Release Process (D4RLR for DD-49 or D3RLR for RD-10, DD-39, and
DD-40)

The following subsection describes the overlays that make up the error
recovery activity.

SM-0046 G 3-29




3.5.1 RECOVERY ACTIVITY

The error recovery activity consists of one controlling overlay, four
overlays to perform each major recovery process, three overlays to perform
subprocess disk functions, and two overlays to report errors.

The recovery activity is table-driven (for flexibility) and recursive so
that the procedure can tolerate errors on the recovery functions. It is
also time-delayed so that environmentally induced errors have a chance to
dissipate without the DCU-5 software becoming dedicated to error

recovery. An overall maximum retry count per I/0 sector and error process
is assigned (see the subsection 3.5.2, Error Recovery Process). Within
each process a retry limit is assigned to the various subprocess errors,
that is, errors which occur in the recovery functions themselves. See
tables 3-6 and 3-7 for the retry limits on each recovery function.

For more information on disk hardware status, see the Disk Systems
Hardware Reference Manual, publication HR-0077.

Table 3-6. DD-49 Error Retry Limits

I |
Seek | Read

| I | I |
|Select | |Write |Release| Description |
| | | ] L L |
I I | | I I |
| 63 | 63 | 140 | 63 | 63 | Maximum retries available |
I | | I I I |
| 15 | 15 | 15 | 15 | 15 | Time-out I
I I | I I | I
| 15 { 15 | 15 | 15 | 15 | Not ready |
| | | ! | | |
| 15 I - | - | - | 15 | Busy response |
| | | I | | I
| 15 | 15 | 15 | 15 | - | Input parity error |
| [ [ I | [ [
| 15 | 15 | 15 | 15 | - | Sequence option in progress |
[ I [ ! | I I
| - | 15 | 15 | 15 | - | Invalid command or option, |
| | | | | | function or bus-out parity |
| I I I | I |
| - | 15 |} 15 | 15 | - | Function lost |
I | I I | I I
| 5 | 15 | 15 | 15 | - | Catastrophic drive error |
I | | I I I I
| - | 15 | 15 | 15 | - | Seek fault |
I I I | I | !
| - | - | 15 | 15 | - | Overrun/underrun |
| l l [ | | f

3-30 SM-0046 G



Table 3-6. DD-49 Error Retry Limits (continued)

!
Read |Write |Release

| [ | |

|Select | Seek | | Description

| 1 | | | |

[ [ | | | I

| - | - | 45 | 3 | - | ECC, ID not found, and

| ] ] | ] | synchronization time-out

| | | | | | (retries per offset position)
I | | | | I

| - | - | 1 1 | - | Initial Local Memory Address
] | | | l | (LMA) echo error

| | | | | l

| - | - | o | 15 | - | Final LMA echo error

| | | 1 | l

Table 3-7. RD-10, DD-39, and DD-40 Error Retry Limits

| | ! |

|Select | Seek | Read |Write |Release] Description

| | ] | ] |

| | I | | |

| 63 | 63 | 140 | 63 | 63 | Maximum retries available
I I | I | I

| 15 | 15 | 15 | 15 | 15 | Time-out

| | | | I |

| 15 | 15 | 15 | 15 | 15 | Not ready

| | I I | |

| 15 | - I - | - | 15 | Busy response

| | ! | | |

| 15 | 15 | 15 | 15 | - | Input parity error

| I I ! I I

| - ] 15 | 15 | 15 | - | Command error; sequencer
| | | | | | function or bus-out parity.
| | I | | |

| 15 | 15 | 15 | 15 | - | Sequence option in progress
I I | I I |

| 5 | 15 | 15 | 15 | - | Catastrophic drive error
I I I I I |

| - | 15 | 15 | 15 | - | Seek fault

I | | | | |

| - | - | 15 | 15 | - | Overrun/underrun

I I | I I |

| - | - | 45 | 3 | - | ECC, ID not found, and

| | | | | | synchronization time-out
| | | | | | (retries per offset position)
| I | | I I

| - | - ] 1 1} - | Initial LMA echo error

| | | | | |

| - | - [ o | 15 | - | Final LMA echo error

| | | 1 1 |

——— — — — —— — — — — ——— —— — — — — —— — — —— —— — — i i o— — —

SM-0046 G




A description of each overlay in the recovery activity follows.

Overlay

Function

D4ERR/
D40ERR/
D3ERR

D4ECC/
D40ECC/
D3ECC

D4IOR/
D40IOR/
D3IOR/
D10IOR

D4LOG/
D3LOG

D4AMSG/
D3MSG

D4RES

D4RLR/
D3RLR

D4SKR/
D3SKR

This overlay is the initial and controlling overlay for
the error recovery activity. It determines the major
error type, sets up recovery tables, and calls the
appropriate overlay to process the error. At the
completion of the recovery process, D4ERR (DD-49), D40ERR
(DD-40), or D3ERR (RD-10 and DD-39) prepares the disk
channel for subsequent requests and activates D4DEM to
continue normal I/0 processing.

This overlay performs error correction code for read data
errors. It is called by D4IOR (DD-49), D40IOR (DD-40),
D3IOR (DD-39), or D10IOR (RD-10) when a read data error
is determined to be a good candidate for correction. The
D40ECC overlay performs error correction for RD-10s.

This overlay processes errors that occur during the Head
Select-LMA Select-Read or the Head Select-LMA
Select-Write disk functions. It is called by D4ERR
(DD-49), D40ERR (DD-40), or D3ERR (RD-10 and DD-39).

This overlay reports the DCU-5 Disk Error Message to the
mainframe for logging in the System Log. It also
displays a message on the IOP Kernel console if an
unrecoverable disk error occurs. The overlay is called
by D4ERR (DD-49), D40ERR (DD-40), or D3ERR (RD-10 and
DD-39) at the completion of the recovery process.

This overlay reports a message to the IOP Kernel console
informing the operator of a disk error that may require

manual intervention. It can be called by D4SLR or D4SKR
(DD-49), or by D3SLR or D3SKR (RD-10, DD-39, and DD-40).

The D4RES overlay performs either the clear faults or the
reset disk function for DCU-5 type disk devices. It may
be called by any other error recovery overlay.

This overlay processes errors that occur on the Unit
Release disk function. It is called by D4ERR (DD-49),
D40ERR (DD-40), or D3ERR (RD-10 and DD-39).

This overlay processes errors that occur on the Cylinder
Select disk function. When a Cylinder Select error is
detected by the interrupt handler, this overlay is called
directly by D4ERR (DD-49), D40ERR (DD-40), or D3ERR
(RD-10 and DD-39) to process the error. However,
D4SKR/D3SKR may also be called by
D4IOR/D40IOR/D3IOR/D10IOR when a Cylinder Select error is
detected during the Read or Write recovery process.

SM-0046 G



Overlay

Function

D4SLR/
D3SLR

D4STAT

This overlay processes errors occurring on the Unit Select
disk function. It is called by D4ERR (DD-49), D40ERR
(DD-40), or D3ERR (RD-10 and DD-39).

The D4STAT overlay obtains either Drive General Status or
any of the Selected Statuses the caller specifies. It
may be called by any other error recovery overlay.

D4STAT serves all DCU-5 error recovery activities.

3.5.2 ERROR RECOVERY PROCESS

Each major recovery process proceeds according to the following four

rules:

® The clear faults and reset functions are retried a limited number
of times on each call to D4RES. If the retry limit is reached with
no success in performing the specified function, the error is
considered unrecoverable and the entire recovery process is
terminated.

¢ The function to obtain Drive General Status or a Selected Status is
also retried a limited number of times in D4STAT before a bad
status is returned to the caller. This is not considered a fatal
condition, however, and the calling overlay may continue with the
recovery process.

® A successful read or write process is considered to include the
head select, LMA select, and read or write functions. If an error
is detected on any of these functions, the process is retried
starting with the head select.

e If the DN flag is not set when expected, or if the BZ and DN flags
cannot be cleared with the channel clear function, the error is
considered unrecoverable and the recovery process is terminated.

The following subsections describe the recovery process for each major

error type.

3.5.2.1 Unit select process

The following are conditions for unit select process error recovery.

3.5.2.1.1 Software detected errors: 1if a software time-out has

occurred, call D4RES to reset the drive and retry the select.

SM-0046 G




3.5.2.1.2 Status register 0 errors: if the drive is not ready, delay
and check repeatedly until the drive becomes ready or a retry limit is
reached. If an input parity error is detected, retry the select.

3.5.2.1.3 DD-49 drive general status errors: if a
sequence-operation-in-progress is detected, delay and check repeatedly
until the sequence operation is complete or a retry limit is reached. 1If
a catastrophic drive error is detected, inform the operator through D4MSG
that manual intervention may be required (see subsection 3.5.3, Operator
Messages, for more information). If the operator indicates a retry
should be performed, retry the select.

3.5.2.1.4 RD-10, DD-39, and DD-40 drive general status errors: if a
catastrophic drive error is detected, inform the operator through D3MSG
that manual intervention may be required (see subsection 3.5.3, Operator
Messages, for more information). 1If the operator indicates a retry
should be performed, retry the select.

If none of the above conditions are found, call D4RES to reset the drive
and retry the select.

3.5.2.2 Cylinder select process

The following are conditions for cylinder select process error recovery:

3.5.2.2.1 Software detected errors: if a software time-out has
occurred, call D4RES to reset the drive and retry the seek.

3.5.2.2.2 Status register 0 errors: if the drive is not ready, delay

and check repeatedly until the drive becomes ready or a retry limit is

reached. If an input parity error is detected, call D4RES to reset the
drive and retry the seek.

3.5.2.2.3 DD-49 drive general status errors: if a
sequence-operation-in-progress is detected, delay and check repeatedly
until the sequence operation is complete or a retry limit is reached. 1If
an invalid option, invalid command, function parity error, Bus-out parity
error, or function lost is detected, call D4RES to clear faults. If a
catastrophic drive error is detected, inform the operator through D4MSG
that manual intervention may be required. If the operator indicates a
retry should be performed, retry the seek.

3.5.2.2.4 RD-10, DD-39, and DD-40 drive general status errors: if a
catastrophic drive error is detected, inform the operator through D3MSG
that manual intervention may be required. If the operator indicates a
retry should be performed, retry the seek. If it is a function parity
error or Bus-out parity error, call D4RES to clear faults. If it is a
command error or sequence parity error, call D4RES to reset the drive.

3-34 SM-0046 G



If none of the preceding conditions are found, call D4RES to reset the
drive and retry the seek.

3.5.2.3 Head select-LMA select-read process

The following are conditions for head select-LMA select-read processing.

3.5.2.3.1 Software detected errors: if an initial LMA echo error has
occurred, reload the Local Memory address into the LMA register in error
until the load is successful or a retry limit is reached. If a final LMA
echo error has occurred, the error is unrecoverable. If a software
time-out has occurred, call D4RES to reset the drive and retry the read

process.

3.5.2.3.2 Status register 0 errors: if the drive is not ready, delay and
check repeatedly until the drive becomes ready or a retry limit is
reached. If an input parity error is detected, retry the read process.

3.5.2.3.3 DD-49 drive general status errors: if a
sequence-operation-in-progress is detected, delay and check repeatedly
until the sequence operation is complete or a retry limit is reached. 1If
an invalid option, invalid command, function parity error, Bus-out parity
error, or function lost is detected, call D4RES to clear faults. If a
seek error is detected, call D4SKR to perform seek error recovery. If an
overflow is detected, call D4RES to clear faults. If an ID-not-found or
Synchronization time-out is detected, execute retries according to the
offset algorithm that follows below. If a drive error is detected, call
D4SKR to perform seek error recovery. If an ECC error is detected,
attempt error correction according to the correction algorithm that
follows.

3.5.2.3.4 RD-10, DD-39, and DD-40 drive general status errors: if Unit
Ready is not set, call D3SKR to perform seek error recovery. If it is a
function parity error or Bus-out parity error, call D4RES to clear

faults. If it it a command error or sequence parity error, call D4RES to
reset the drive. If a seek error is detected, call D3SKR to perform seek
error recovery. If an overflow is detected, call D4RES to clear faults.
If an ID-not-found or Synchronization time-out is detected, execute
retries according to the offset algorithm below. If a drive fault is
detected, call D3SKR to perform seek error recovery. If an interface
logic fault is detected, call D3SKR to perform seek error recovery. If an
ECC error is detected, attempt error correction according to the following
correction algorithm.

The offset algorithm is as follows:

¢ Call D4RES to clear faults and retry the read until a limit is
reached.

e If ID-not-found error, call D4SKR (DD-49) or D3SKR (RD-10, DD-39,
and DD-40) to perform seek error recovery and retry the read once
more.

SM-0046 G 3-35




e Offset actuator or actuators in error toward spindle.
e Retry the read until a limit is reached.
e Offset actuator or actuators in error away from spindle.
¢ Retry the read until a limit is reached.

The correction algorithm is as follows:
This algorithm is superimposed on the offset algorithm. It is
executed following each read retry yielding an ECC error. Compute and
transfer the correction vectors for this read attempt. Compare the
correction offsets from this read with those from the previous read.
If the error offsets are consistent (within 1 parcel) on all channels,
call D4ECC (DD-49), D40ECC (RD-10 and DD-40), or D3ECC (DD-39) to

correct the last read data.

If none of the preceding conditions are found, retry the read process.

3.5.2.4 Head select-LMA select-write process

The following are conditions for head select-LMA select-write processing:

3.5.2.4.1 Software detected errors: if an initial LMA echo error has
occurred, reload the Local Memory address into the LMA register in error
until the load is successful or a retry limit is reached. If a final LMA
echo error has occurred, retry the write process. If a software time-out
has occurred, call D4RES to reset the drive and retry the write process.

3.5.2.4.2 Status register 0 errors: if the drive is not ready, delay and
check repeatedly until the drive becomes ready or a retry limit is
reached. If an input parity error is detected, retry the write process.

3.5.2.4.3 DD-49 drive general status errors: if a
sequence-operation-in-progress is detected, delay and check again until
the sequence operation is complete or a retry limit is reached. If an
invalid option, invalid command, function parity error, Bus-out parity
error, or function lost is detected, call D4RES to clear the faults. If a
seek error is detected, call D4SKR to perform seek error recovery. If an
underflow is detected, call D4RES to clear faults. If an ID-not-found or
synchronization time-out is detected, call D4RES to clear faults and retry
the write process. If the retry limit is reached for ID-not-found, call
D4SKR to perform seek error recovery and retry the write process one more
time. If drive error is detected, call D4SKR to perform seek error
recovery.

3-36 SM-0046 G



3.5.2.4.4 RD-10, DD-39, and DD-40 drive general status errors: if Unit
Ready is not set, call D3SKR to perform seek error recovery. If it is a
function parity error or Bus-out parity error, call D4RES to clear
faults. If command error or sequencer parity error, call D4RES to reset
the drive. If a seek error is detected, call D4SKR to perform seek error
recovery. If an underflow is detected, call D4RES to clear faults. If
an ID-not-found or Synchronization time-out is detected, call D4RES to
clear faults and retry the write process. If the retry limit is reached
for ID-not-found, call D3SKR to perform seek error recovery and retry the
write process one more time. If drive error or interface logic error is
detected, call D3SKR to perform seek error recovery.

If none of the preceding conditions are found, retry the write process.

3.5.2.5 Unit release process

The following are conditions for unit release processing.

3,5.2.5.1 Software detected errors: if a software time-out has
occurred, call D4RES to reset the drive and retry the release.

3.5.2,5.2 Status register 0 errors: if the drive is not ready, delay
and check repeatedly until the drive becomes ready or a retry limit is
reached. If any other error is detected, call D4RES to reset the drive;
reselect the unit, then retry the release.

3.5.2.5.3 DD-49 drive general status errors: if any error is detected
in drive general status, call D4RES to reset the drive and end error
recovery.

3.5.2.5.4 RD-10, DD-39, and DD-40 drive general status errors: if any
error is detected in drive general status, end error recovery.

If none of the preceding conditions are found, reselect the unit and
retry the release.

3.5.3 OPERATOR MESSAGES

If a catastrophic drive error is detected during RD-10, DD-39, DD-40, or
DD-49 error recovery, a message is displayed on the IOP Kernel console
informing the operator that manual intervention may be required.

The format of the message for the DD-49 is as follows:

hh:mm:ss DD49 CH ch FATAL ermsg ERROR. RETRY? ('Y' or 'N')

SM-0046 G 3-37




hh:mm:ss Time of error
ch IOP channel

ermsg Message describing the catastrophic drive status; ermsg
is one of the following:

BLOWER AIR
OVERTEMP

R/W LOGIC POWER
RUN SWITCH
SPINDLE POWER
SPINDLE SPEED
WRITE PROTECT

e & &6 0 0 0 o

The format of the message for an RD-10, DD-39, or DD-40 is as follows:

hh:mm:ss DDxx CH ch UNT un FATAL ermsg ERROR. RETRY? ('Y' or 'N')

hh:mm:ss Time of error

XX Disk type:
10 RD-10
39 DD-39
40 DD-40
ch IOP channel
un Unit number
ermsg Message describing the catastrophic drive status; ermsg is

one of the following:

DE SEQUENCE CHECK

UNIT READY

WRITE PROTECT (DD-10/DD-40)
STATUS UNAVAILABLE (DD-40)

® ¢ o O

Typing Y in response to this message causes error recovery to execute
more retries. Typing N causes error recovery to terminate with an
unrecoverable error status. A field engineer can perform any necessary
recovery actions and indicate whether or not more retries are to be
executed.

The installation parameter I@MSGRD4 defined in $APTEXT allows a site to
disable disk error messages requiring a response. If disk error messages
are disabled, only the information portion of the message is displayed,
and error recovery immediately terminates the disk request as unrecovered.

3-38 SM-0046 G



3.5.4 ERROR REPORTING

When a DCU-5 disk error occurs, the I0S sends a disk error packet to the
mainframe for logging in the System Log. The error packet contains
detailed error information that can be formatted at a later time for
printer output by the EXTRACT utility. For more information about
EXTRACT, see the Operational Aids Reference Manual, publication SM-0044.

For the formats of the DD-49 Disk Error Packet (EM@), the DD-40 Disk
Error Packet (DM@, XM@, and T@), the DD-39 Disk Error Packet (DM@), or
the RD-10 Disk Error Packet (DM@, XM@, and T@) see the IOS Table
Descriptions Internal Reference Manual, publication SM-0007. This error
packet is created in the IOP with the disk in error. Overlay D4LOG
(DD-49) or D3LOG (RD-10, DD-39, and DD-40) writes the packet to Buffer
Memory and then requests ICOM in MIOP to send it to the mainframe. ICOM
reads the packet in from Buffer Memory, breaks it into 6-word segments,
and sends each segment over the 6-Mbyte channel. All segments for one
error packet are sent with IOP system interrupts disabled, ensuring that
no other MIOP-mainframe communication interrupts the sequence.

The final error status is also returned along with the successful word
transfer length in the DAL that made the original request. Valid error
statuses that may be returned in field DA@GRC of the DAL are:

Status Description

DAR$OK No error encountered
DARSREC Recovered error
DAR$COR Corrected data error
DAR$UNC Uncorrected data error
DARSUNR Unrecovered error

If an uncorrected or unrecovered error occurs in the DD-49, D4LOG
displays an error message at the IOP Kernel console in the following
format:

hh:mm:ss DD49 ERROR CH chan CYL cyl HD hd CTL ctl GEN gen type

If an uncorrected or unrecovered error occurs in an RD-10, DD-39, or
DD-40, D3LOG displays an error message with the following format:

hh:mm:ss DDxx ERROR CH chan UN un CYL cyl HD hd CTL ctl GEN gen type

hh:mm:ss Time of error

XX Disk type:
10 RD-10
39 DD-39
40 DD-40

SM-0046 G 3-39




chan IOP disk channel in error

un Unit number in error

cyl Cylinder in error

hd Head group in error

ctl Controller status

gen Drive General status

type Major error categories are as follows:
¢ READ Read sector process
¢ RLSE Unit release
e SEEK Cylinder select
® SLCT Unit select
¢ WRITE Write sector process

3.6 STRIPED DISK GROUPS

A striped disk group is a set of physical disk units treated logically as
a single device. Requests to move data to or from such a device are
broken up into pieces that are handled in parallel by the physical units
in the group.

The IOS supports the configuration of one or more striped disk groups,
each consisting of two to seven physical units. The maximum number of
physical units is based on the track size of the unit (RD-10, DD-19,
DD-29, DD-39, DD-40, or DD-49). This number is limited by the largest
sector number that can fit in the request field DA@SEC. See the COS
Operational Procedures Reference Manual, publication SM-0043, or the
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1
Computer Systems, publication SG-2018, for more information about
configuring a striped disk group.

From the mainframe, a striped disk group looks like a single device with
tracks containing two through seven times the number of sectors found on
a single physical unit, depending on the number of units in the group.

Requests to a striped disk group are processed in the MIOP. The request
packet is identical to other disk requests except that the target IOP
(DAGIOP) is the MIOP. The request is mapped onto the physical units that
constitutes the striped group. Individual requests are then spawned to
the physical units attached to the BIOP or DIOP. The MIOP collects
responses from the physical devices. When all devices have responded, a
single response for the request to the striped group is returned to the
mainframe.

3-40 SM-0046 G



3.6.1 LOGICAL TO PHYSICAL ADDRESS MAPPING

Each disk unit in a striped group is numbered, based on its relative
position in the group, from 0 to n-1; n is the number of units in the
group. The order of the units is determined by the order in which the
units are specified at the time of configuration.

The logical head and cylinder numbers map l-to-1 to the physical head and
cylinder numbers, since widening the tracks of the striped group does not

affect the actual number of tracks.

Figure 3-1 shows a configured striped-disk group.

Request
. - MIOP
Mainframe Response
4
BIOP DIOP

Logical Unit

‘ ]
. t
\ \
. . . . . . . .
1 L}
v \
f L]
v ]
\ \
\ ]
\ \

Figure 3-1. Striped Group (Six Physical Units Constituting
One Logical Unit)

The logical sector number is used to determine the physical unit and the
physical sector on that unit. The logical sector number is divided by
the number of units in the group (logical sector/number of units =
physical sector + physical unit number).

SM-0046 G 3-41




The quotient is the physical sector:

The physical sector is from 0 to secs-1; secs is the number of
physical sectors per track on a unit.

The remainder is the physical unit number:

The physical unit number is from 0 to n-1; n is the number of
units in the group.

In summary, all logical sectors that reside on a physical unit are
equivalent MOD n; n is the number of units in the group.

Example (a three-unit striped group):

Logical Sectors Physical Sector Unit
37=3 x 12 + 1 12 1
38=3 x 12 + 2 12 2
39=3 x 13 + O 13 0
40=3 x 13 + 1 13 1
41=3 x 13 + 2 13 2
42=3 x 14 + O 14 0]

3.6.2 STEPFLOW FOR A REQUEST TO A STRIPED GROUP

A request to a striped group is received by the MIOP, then handled by
BIOP or DIOP, and finally, dispatched by the MIOP, as follows:

¢ MIOP

When the MIOP receives a request, the CDEM demon overlay becomes
active, as follows:

3-42

1.

A request packet is received with the destination ID
(DA@GDID) specifying disk (RQ$DISK). The request is passed
to the CDEM overlay for processing.

CDEM detects that the target IOP for the request (DA@IOP) is
the MIOP. CDEM locates the table for the device using the
logical channel number (DA@GCHN) as an index into the look-up
table DCCB. These tables are built at initialization time
using the configuration information in AMAP.

CDEM maps the logical request into physical requests to the

units in the group and sends the requests to the appropriate
IOPs for processing.

SM-0046 G



e BIOP/DIOP

BIOP or DIOP request processing for striped disk groups
essentially means determining the target memory address that
corresponds to a disk sector for a request.

40

e MIOP

Requests received for I/0 to a unit within a striped group
are handled the same as for I/0 to an individual disk unit.
The only distinguishable difference is in the value
contained in the request field DA@UNS. This field specifies
the number of units in the group for which this unit is a
member. The value in DA@UNS is used to map the target
memory (DA@TMO/TM1) to sequential sectors of the request
(DA@SEC). The target memory address (M;) that corresponds
to a disk sector for a request is determined according to
the following algorithm:

(Sl —So) x D'512 XU+M0 =M1

The difference between the current sector (S;) and the
base sector DA@SEC (Sp) is multiplied times the sector
size (D'512), which is then multiplied by the number of
units in the group DA@UNS (U); and finally, this number is
added to the target memory base address DA@TMO/TM1 (Mo).

For a single device, DA@UNS contains a 1, which maps
sequential sectors in memory to sequential sectors on

disk, as figure 3-2 shows. Figure 3-3 shows memory mapping
for a two-unit group.

A response is sent to the MIOP for each unit as I/0
completes.

The last steps in the flow for striped disk request processing
— involve sending a single request response to the mainframe.

6.

-— SM-0046 G

Responses received for each unit are in the demon overlay

ACOM for DCU-4 type disk units, or ICOM for DCU-5 type disk
units. Based on the value in field LCH being nonzero, the
responses are passed on to the AMSG overlay for processing.

When I/0 is complete, AMSG collects the responses from each
unit in the group. When all have responded, a single
response is returned to the mainframe.




Disk
Group

Memory Sector Sector Sector Sector
0 1 2 3
Disk Sector Sector Sector Sector
0 1 2 3
1864
Figure 3-2. Target Memory Mapping for a Single Device
Memory Sector Sector Sector Sector
0 1 2 3
* A
]
. v i
\
]
[}
\ Sector Sector Sector Sector
X 0 1 0 1
\
]
]
: Disk 0 Disk 1

Figure 3-3.

Target Memory Mapping for a Two-unit Group

SM-0046 G



3.7 KERNEL INTERNAL DISK I/0

Some Kernel routines must transfer data to or from disk. (For example,
the DKDMP routine dumps disk data directly to the IOS Peripheral Expander
printer.) Two Kernel overlays, DISKIO and DKIOEX, furnish these routines
with the ability to reference disk space through normal disk protocol.

The overlay that requires disk I/O calls the DISKIO overlay and specifies
the necessary parameters. If the I/O occurs in a different IOP, DISKIO
uses the AWAKE and ALERT function requests to activate overlay DKIOEX in
the relevant IOP. DISKIO then waits for the response that signals
completion of the request.

The following sequence in the caller's overlay calls the internal disk
I/0 mechanism.

|Location |Result |Operand

I | !

| |CALL |DISKIO, (RD|WRT, iop,chnl,unit,cyl, head, sector,
| | |length, mosu,mos1)

RD Direction of disk I/O:

WRT

RD =1 Read from disk
WRT = 2 Write to disk

iop Number of the IOP to perform the I/0; 1 through 3 are legal.
chnl Channel number; 20 through 374 are legal.
unit Unit number; 0 through 2 are legal for DD-39 disks and O

through 1 are legal for DD-40 disks. The parameter should
be 0 for all other device types.

cyl Cylinder number
head Head number
sector Sector number

length Length (in words) of data to be transferred

mosu High-order bits of Buffer Memory address into which or from
which data is to be transferred

mos1 Low-order bits of Buffer Memory address into which or from
which data is to be transferred

SM-0046 G 3-45




DISKIO returns one of the following statuses to the caller in the A
register:

Status Description
0 Normal completion
1 Bad parameter supplied by caller
2 Bad disk status; unable to complete I/O.
3 Resources unavailable; I/0 not done.

3-46 SM-0046 G



4. TAPE EXEC

The Tape Exec software (TEX) is composed of activities necessary to
accomplish the following:

Route messages between I/0 processors
Process mainframe requests

Format and move tape data

Recover from hardware and software errors

¢ & o o

4.1 ARCHITECTURE

The Tape Exec portion of the tape subsystem executes in the Master I/0
processor (MIOP), the Buffer I/0 processor (BIOP), and the Auxiliary I/0

processor (XIOP).

The MIOP is responsible for routing tape requests and responses between
the mainframe tape software driver and the XIOP.

The BIOP is responsible for moving tape data between Central Memory and
Buffer Memory over the 100-Mbyte data channel. Tape Exec routines in the
BIOP perform their function based on requests from the XIOP. Each
request from the XIOP to the BIOP refers to a Data Stream Control (DSC)
table in Buffer Memory. A DSC is used to hold data that is in transit
between Central Memory and a tape device. See the I/0O Subsystem (IOS)
Table Descriptions Internal Reference Manual, publication SM-0007, for
details of the DSC.

The XIOP is responsible for processing tape requests received from the
mainframe software driver and generating appropriate responses. Tape
Exec software uses the Block Multiplexer Channel (BMX) subsystem to issue
physical device commands and manage tables associated with the tape
subsystem. See section 5 for a description of the BMX subsystem. The
XIOP uses the Tape Exec software in BIOP to move data to and from Central
Memory in the mainframe. It communicates with the BIOP via request
packets and shared DSC tables in Buffer Memory. Tape Exec software in
XIOP also provides error recovery routines for handling software or
hardware errors encountered by the tape subsystem.

SM-0046 G 4-1




4.1.1 TAPE EXEC ACTIVITY

Each tape device is controlled by a unique Tape Exec activity (TEX)
created when the device is opened. Each TEX activity executes in the
XIOP and controls most of the request processing for the device. A TEX
activity terminates when a close request has been processed for its
associated tape device. Each TEX activity allocates a data structure in
Local Memory called a Tape Control Block (TCB) associated with the
device. The TCB holds information about the device and contains queues
for communicating with other activities in the tape subsystem. See I/0
Subsystem (IOS) Table Descriptions Internal Reference Manual, publication
SM-0007, for details of the TCB.

4,1.,2 BYPASS ACTIVITY

The request interface with the mainframe driver allows for two separate
types of I/0 to be active simultaneously. The mainframe may request that
data be moved between Central Memory and Buffer Memory in 512-word sector
units. At the same time, the mainframe may request that data be moved
between Buffer Memory and the tape device in block size units. The
mainframe specifies the block size on each request. This overlap of the
two types of data movement allows the mainframe to use the 100-Mbyte data
channel of the BIOP for fast access to buffered data, while the XIOP
handles movement to and from the slower tape devices. The mainframe
attempts to stay ahead of user requests for data by building a read-ahead
area in Buffer Memory for each tape device being read. In a similar
fashion, the mainframe attempts to off-load data to a write-behind data
area in Buffer Memory for each device being written. The mainframe
driver controls the size of each of these areas by the frequency and size
of data transfer and block I/0 requests.

The BYPASS activity in the XIOP has primary responsibility for handling
I/0 requests from the mainframe. It executes as a single activity and
processes I/0 requests for all devices. BYPASS examines each request for
data transfer or block I/0. If sectors of data are to be transferred
between Central Memory and Buffer Memory, BYPASS calls the data transfer
activity in the BIOP. 1If block I/0 is requested, BYPASS activates the
appropriate TEX activity, if not already active. The BYPASS activity
handles Buffer Memory allocation for data transfer and block I/O by
calling the BUFMAN routine.

4-2 SM-0046 G



4.1.3 DATA STREAM CONTROL TABLE

The read-ahead and write-behind data areas in Buffer Memory are
controlled by a DSC for each active device. A DSC is created in Buffer
Memory at device open time by the BMXTPO routine calling the DSCGET
routine. Each DSC table is a Buffer-Memory-resident data structure
shared between the various components of the tape subsystem executing in
the BIOP and the XIOP. The mainframe interface allows the stream of
requests for user data to be interrupted for processing of label data, or
user job special end of volume processing. When this occurs, the primary
data stream is held and a secondary DSC is allocated for the new data
stream. The BYPASS activity controls the stacking and popping of primary
and secondary DSC tables by calling the DSCGET routine for each request
requiring a change of data stream. The mainframe request interface also
allows for discarding data in either the primary or secondary data
stream. The DSC table is retained when discarding of data is requested.
All DSC tables for a device are deallocated by TEX calling DSCGET at
device close time.

A DSC table consists of a header area and a number of buffer descriptor
entries. The header area is divided into two sections, one for the XIOP
parameters used for moving data between Buffer Memory and the device, the
other for the BIOP parameters used for moving data between the Buffer and
Central Memories. In general, each IOP references only its own section
of the DSC header. The XIOP tape software references its section of the
DSC header so often that a copy is kept in Local Memory in each TCB.

This minimizes the number of Buffer Memory reads and writes needed to
maintain the XIOP header section.

The BIOP does not need to reference its section of the DSC header as
often, so it uses Buffer Memory I/O. Local Memory is also much scarcer
in the BIOP due to the need for a large number of disk buffers. This
prevents allocating any TCB type tables for device information storage.

When a DSC is allocated, the DSCGET routine computes the number of 64-bit
buffer descriptor entries needed by using the installation maximum block
size parameter. Each descriptor entry can describe a 512-word sector of
data. A DSC is allocated to hold the header plus enough descriptor
entries for at least two maximum sized data blocks. The DSC buffer
descriptor entries are used in a circular fashion to identify the start
and length of Buffer Memory data blocks. Pointers are kept in the XIOP
DSC header that demark the range of active buffer descriptor entries. A
limit value is also kept in the DSC header to describe the physical size
of the DSC table. The BUFMAN routine in the XIOP has primary
responsibility for maintaining the DSC pointers and circular list of
descriptor entries.

SM-0046 G 4-3




4,1.4 TDEM1 ACTIVITY

The TDEM1 activity in the BIOP has primary responsibility for moving data
between the Buffer and Central Memories. It executes as a single
activity and processes data transfer requests for all devices. TDEM1
receives requests from the BYPASS activity and the TAPEIO routine of each
of the TEX device activities in the XIOP. Requests to TDEM1 contain the
number of 512-word sectors of data to be transferred along with the
Buffer Memory address of the DSC table for the requested device. TDEM1
supports three data formats used by the mainframe: Transparent format,
Interchange format, and List I/0 format.

Transparent data format is used to transfer blocks of data between the
Central and Buffer Memories based on the block size specified in the
request, without any internal or external control word structures.
Transparent format is used by both the COS and UNICOS operating systems.

Interchange format is used only by COS to allow common library and system
1/0 routines for tape and disk data. The data format uses an internal
control word structure to mark the end of tape blocks. Each control word
is 64 bits. Control words are added to the data by TDEM1l as data is
transferred from Buffer to Central Memory. Control words are removed
when data is transferred from Central to Buffer Memory.

List I/0 format is used exclusively by UNICOS to transfer blocks of tape
data between the Central and Buffer Memories. Block length is
communicated in a list structure external to the actual data. TDEM1
builds this list structure and passes it to the mainframe on each read
data transfer. TDEM1 reads and decodes the contents of the list
structure on each write data transfer.

4,1.5 TAPE ERROR RECOVERY ACTIVITIES

Each TEX device activity initiates error recovery by calling the TAPERR
routine. TAPERR determines the type of device in error and creates an
appropriate error recovery activity. The TCART overlay is the highest
level routine in the error recovery activity for cartridge devices. The
TERROR overlay is called for noncartridge devices. A new error recovery
activity is created each time a new error is encountered while attempting
recovery of an earlier error. This mechanism prevents overflow of the
Kernel SMOD structure associated with an activity in situations where
multiple errors are present.

Error conditions may include software generated errors, BMX channel
errors, and device/control unit errors. The error recovery activity
attempts recovery and reports ending status to the calling TEX device
activity, or calling error recovery activity. An error message is
formatted and displayed on the XIOP Kernel console. An error response
packet is generated and sent to the mainframe to be included in the
system log file.

4-4 SM-0046 G




4.2 REQUEST AND RESPONSE PACKET ROUTING

Tape request packets are six words in length. Each request packet is
received from the mainframe by the MIOP over the 6-Mbyte low-speed
channel. All tape response packets are sent to the mainframe by the MIOP
over the 6-Mbyte low-speed channel. Each request packet contains a
source and destination ID field (TQ@SID, TQEDID). The source ID for
request packets reflects the mainframe ID, normally Cl. The destination
ID field contains either an ASCII G or D. 1Initial configuration
information is passed to the MIOP in a request G-packet. All other tape
requests contain a D in the destination ID field. Response packets to
the mainframe reverse the values of source and destination IDs.

The CDEM routine in the MIOP and BCOM routines (BCOMO, BCOM1, and BCOM3)
handle interprocessor routing of tape packets. CDEM and the BCOM
routines use the Kernel A-to-A message passing software for communicating
between processors via the MBAQ, MBBQ, and MBDQ tables in the respective
Kernels.

The CDEM routine in the MIOP passes requests from the mainframe to the
XIOP. BCOMO in the MIOP passes responses from XIOP back to the
mainframe. It handles D-packet responses as well as error response
E-packets to be sent to the mainframe system log. BCOMO ensures that
multiple packet error responses are sent in consecutive order to the
mainframe.

BCOM1 executes in the BIOP to handle requests from XIOP for data transfer
over the 100-Mbyte channel. The actual data transfer is done by the
TDEM1 routine. BCOM1 queues A-to-A messages directly to TDEM1 using the
BXQQ table in the BIOP Kernel.

BCOM3 executes in the XIOP to handle requests from MIOP and responses
from BIOP. Requests from MIOP are routed to the appropriate portion of
Tape Exec software for processing. Responses from BIOP are routed to the
mainframe via the MIOP.

Most of the Tape Exec routines send response packets directly to the MIOP
for routing to the mainframe.

4.3 REQUEST PROCESSING

BCOM3 handles initiation of processing for tape request packets received
from the mainframe. Each tape request packet contains an ordinal
(TQ@DVN) by which the associated device is known to the mainframe and the
tape subsystem. Device ordinals start at 0 and are unique for each
device. The XDEVMAX entry in the XIOP Kernel table area specifies the
number of devices configured. Each tape request packet contains a
function code (TQ@FCN) along with parameters needed for processing the
specific request.

SM-0046 G 4-5




4.3.1 CONFIGURATION CHANGE REQUEST (FC$CHNGE)

Configuration change requests are processed by BCOM3 creating the CONMAN
routine. CONMAN calls the BMX routines BMXCPU or BMXCON to perform the
actual device functions and configuration changes to the tape subsystem
tables. Pointers to the channel table list (XCHT), the device table list
(XDEV), the control unit bank tables list (XCBT), and the device bank
tables list (XDBT) are in the XIOP Kernel table.

BCOM3 recognizes the FC$CHNGE request and creates CONMAN activity to
process it. If the activity cannot be created, a protocol error response
is returned to the mainframe.

CONMAN examines the packet for type of configuration change (TQ@TYP). If
it is the initial mainframe request to configure the entire tape
subsystem, CONMAN does a Goto BMXCPU. A response is not sent to the
mainframe on the initial configuration request.

If the request is for an individual component of the subsystem (channel,
control unit, or device), CONMAN validates the request parameters. Only
one component may be changed per request. A protocol error will be
returned to the mainframe if more than one component (TQ@CHN, TQ@CNT,
TQ@DEV) is specified. A channel or control unit may be configured
on-line or off-line (TQ@OPC). A device may be configured on-line or
off-line (TQ@NAV) and up or down (TQ@OPC). CONMAN calls BMXCON to make
the requested change. BMXCON returns the status of the request to
CONMAN, which sends a response to the mainframe. (Section 5 describes
the BMXCON and BMXCPU routines.)

Figure 4-1 shows the processing of configuration change requests.

4.3.2 MOUNT REQUEST (FC$MOUNT)

Mount requests are handled by BCOM3 creating the BMXOPE routine to
perform the open for a tape device. BMXOPE does a Goto to BMXTPO for the
actual mount processing. BMXTPO in turn does a Goto to the Tape Exec
routine TEX to become the device activity for the mounted drive.

Figure 4-2 shows the processing of mount requests.

BCOM3 - Validates the requested device ordinal (TQ@DVN) to see if
it is in range (0 to XDEVMAX-1). If not, a protocol error
response is sent to the mainframe.

BCOM3 checks the Device Table Open flag (BDV@OP) to see if
a TEX activity exists for the requested device. If not
open, the BMXOPE activity is created to process the
request. If the activity cannot be created, a protocol
error response is sent to the mainframe.

4-6 SM-0046 G



| FCS$CHNGE I

BCOM3
Create
v

CONMAN

Call/Return for Goto for "G" packet
"D" packet
l BMXCON ‘J | BMXCPU I

Call/Return Call/Return

l BMXSIO J | BMXCON l

Call/Return

BMXSIO

v

Response to CPU

1503

Figuré 4-1., Processing of Configuration Change Requests

BMXOPE

SM-0046 G

- When the requested device has not been opened, BCOM3 always

assumes the requested function is FC$MOUNT. If it is not,
BMXOPE will return a protocol error to the mainframe.
BMXOPE checks to see if a device activity currently owns
the device (BDV@AI). This can occur if a configuration
change is taking place on the device. If a device activity
exists, BMXOPE waits for it to release the device, and then
assigns itself as the device activity (BMXOPE will
eventually become the TEX activity). BMXOPE marks the
device open (BDV@OP) and does a Goto to the BMXTPO routine
for mount processing.




BMXTPO

TEX

l FC$MOUNT |

| BCOM3 I

Create

| BMXOPE I

Goto

Call/Return

Call/Return

BMXSIO Initial/final
M response to CPU

TEX 1504

Figure 4-2. Processing of Mount Requests

- Allocates control tables for the TEX activity. A TCB table

is allocated (DC@) which contains the Command Parameter
Block (CPB@) used to interface to the BMX I/O subsystem, A
DSC table (CU@, NX@, BF@) is allocated in Buffer Memory by
a call to DSCGET.

BMXTPO arms the drive for load point. If the drive is not
ready with a mounted tape at load point, an initial
response indicating the not ready status is returned to the
mainframe (ST@RDY). When the drive is ready with a tape at
load point, final status is sent to the mainframe (ST@BOT)
along with any appropriate write protect status (ST@NRW).
BMXTPO does a Goto to TEX.

Waits for the next mainframe request (DC@MSG) by pushing on
the request queue (DC@QUA) in the TCB.

SM-0046 G



4.3.3 READ REQUEST (FC$READ)

Read I/O requests are passed by BCOM3 to the BYPASS activity for
processing through the DATQU queue in the XIOP Kernel. BYPASS handles
initiation of any data transfer by sending a request to TDEM1l in the
BIOP. The BYPASS activity queues requests for tape blocks to be read to
the appropriate TEX activity for the requested device. BYPASS handles
stacking of the user and label DSC tables by calling the DSCGET routine.
BYPASS handles Buffer Memory allocation for the user and label DSC tables
by calling the BUFMAN routine.

Figure 4-3 shows the processing of read requests.

| FCSREAD l

Call/Return

DSCGET

Call/Return A to A Data transfer request

A to A

I BUFMAN ]

Read block request Pop Data transfer

Response to CPU

A to A

Call/Return

TAPEIO

Call/Return
on error

Call/Return

l BMXSIO ] I TAPERR l

v

Error response to CPU.
Error message to XIOP console.

v

Block transfer
response to CPU 1505

Figure 4-3. Processing of Read Requests

SM-0046 G 4-9




BCOM3

BYPASS

Checks for a TCB present for the requested device (BDV@CP).
If not present, a protocol error response is sent to the
mainframe. BCOM3 queues the request to the BYPASS activity
on the DATQU in the Kernel. BYPASS is activated, if
waiting, by popping the TIMQU in the Kernel.

Dequeues the next request from DATQU and locates the TCB
for the requested device. The Hold Data flag (DD@HLD) in
the request is examined. If set, and the user DSC table
has not been saved, DSCGET is called. If the Hold Data
flag is not set and the user DSC table is being held
(DC@DHU, DC@DHL), DSCGET is called to restore the stacked
DSC table (DC@DSU, DC@DSL).

A read request from the mainframe may include a request for
sectors of data (TQERSC) to be transferred from Buffer
Memory to Central Memory, a request for data blocks
(TQ@RBC) to be read from tape, or both.

BYPASS assumes that the mainframe has only one request for
data sectors outstanding at a time to the IOS.

The transfer of a data sector may be truncated by the
mainframe setting the Partial Sector flag in the request
(DD@PCW). The number of words to transfer (TQ@PWC)
indicates that the mainframe buffer is less than a full
512-word sector. This mechanism is typically used for
reading label data. BYPASS ensures that a single sector of
data is being requested. Otherwise, a protocol error is
returned.

BYPASS validates list parameters if the data format is List
I/0.

The number of sectors of data requested is compared to the
number of sectors of read-ahead stored in Buffer Memory.
The sectors of read-ahead (CU@VMS) is kept in the Local
Memory copy of the DSC header (DC@DSC) in the TCB. If any
read-ahead sectors are present, a request is sent to TDEM1
in BIOP to transfer the lesser of the request size and
read-ahead size. The Central Memory address (DA@HSU,
DA@HSL) and address of the DSC (DA@DSU, DA@DSL) are
included in the request.

If the request size is larger than the read-ahead size, the
excess requested sectors are saved in the TCB (DC@RSC) and
will be processed by TAPEIO as blocks are read from tape.
The Central Memory address is also adjusted and saved
(DC@HSU, DC@HSL).

SM-0046 G



BYPASS
(continued)

BUFMAN

SM-0046 G

- The mainframe request may also contain a requested block

count to cause blocks to be read from tape. The interface
to the mainframe allows multiple block requests to be
outstanding. This creates a synchronization problem when
the IOS encounters an error or tape mark while reading.

The mechanism used to get the mainframe and the IOS back
in sync is the Next Valid Packet flag (DD@NVP) in the
request. This signals the IOS that the mainframe has
received a previous error or tape mark response and wishes
to resume processing. Read block requests received between
the time of the error and receipt of the request with next
valid packet set are discarded by BYPASS. Requests for
transfer of data sectors are not affected by this mechanism.

BYPASS calls BUFMAN to allocate Buffer Memory for the
requested number of blocks.

The mainframe directs Buffer Memory allocation by the IOS
based on the total available Buffer Memory size parameter
returned in all responses (TQE@MOS). It uses this value to
determine how many new blocks may be requested for each
active device.

BUFMAN allocates read-ahead buffers for all devices. The
DSC structure contains a header area and descriptors for
each Buffer Memory buffer allocated. The window of active
buffers is described by a top (CU@TOP) and bottom (CU@BTM)
pointer in the XIOP section of the DSC header. These
pointers are the word offset in the DSC of the descriptor
for the first buffer in the window and the next to be
allocated, respectively. Buffers are allocated at the
bottom of the window and deallocated from the top. A limit
value (CUGLIM) identifies the physical end of the
descriptor list in the DSC. The DSC may be multiple
512-word sectors. The DSCGET routine allocates the needed
size at mount time based on the IOS installation maximum
block size parameter (MBS$MAX). MBS$MAX is used to create
a DSC large enough to hold a minimum of two blocks of data
plus the DSC header.

Before allocating buffers for the request, BUFMAN
deallocates buffers that have been transferred to the
mainframe. The top and BIOP (NX@PTR) pointers mark this
range of descriptors. After deallocation, The top pointer
is adjusted to equal the BIOP pointer. Deallocation does
not clear descriptors in the Buffer Memory DSC in order to
minimize Buffer Memory accesses. Excess Buffer Memory
accesses by BUFMAN could delay the processing of tape
channel interrupts and cause software overrun errors.




(continued)

4-12

BUFMAN

BYPASS

- BUFMAN computes the number of buffers to allocate based on

the number of blocks requested and the actual maximum block
size in the request (TQ@MBU, TQE@MBL). Buffers previously
allocated at the bottom of the list that are not in use are
subtracted from the allocation count. This range is marked
by the XIOP (CU@PTR) and bottom pointers. Not-in-use
buffers result from the actual tape block size being less
than the maximum block size specified in previous

requests. A calculation is performed to determine if
descriptors for the allocation count will fit in the DSC.
If not, an error code (1) is returned to BYPASS. If the
descriptors will fit, allocation is performed.

BUFMAN checks for high priority activities waiting to
execute before starting allocation. It yields the
processor to any such waiting activities in order to allow
I/0 to proceed on active devices. This minimizes the
possibility of software overrun errors.

Allocation of buffers is done by calls to the Kernel
GETDISK routine. If buffer space is not available, an
error code (2) is returned to BYPASS, and any buffers
allocated are released. The maximum allocation count is
requested on the first call to the GETDISK routine.
GETDISK may return fewer than the number requested. By
repeated requests the allocation count will eventually be
satisfied. Buffers allocated on each request to GETDISK
are at contiguous addresses in Buffer Memory. BUFMAN
builds a descriptor for each 512-word buffer allocated in
its Local Memory copy of the DSC. Each descriptor contains
a count (BF@CTG) of the number of buffers with increasing
address that are contiguous. This value is used
extensively by the TDEM and TDEM1 routines to minimize
Buffer Memory accesses for descriptors and data. Portions
of the DSC are moved to and from Local Memory using a
paging mechanism to minimize Buffer Memory accesses.

Sends a protocol error response to the mainframe if Buffer
Memory is not available to satisfy the request or the DSC
cannot hold enough descriptors for the increased read-ahead
area.

Block I/0 is sustained by the outstanding block count in
the TCB (DC@RBC) being nonzero. BYPASS adds the new
requested block count to this field. If the TEX activity
is not executing, BYPASS will activate it by popping DC@QUA
and placing the mainframe request on the DC@MSG queue.

SM-0046 G



BYPASS - BYPASS uses the I/0 Active Control flag (DC@IOF) to
(continued) determine if the TAPEIO routine of the TEX activity is
still checking for new requested blocks to read (DC@RBC).
BYPASS considers the device inactive if the control flag is
not set and activates the TEX activity. If TEX is
executing, the added block count will sustain I/O.

BYPASS processes all requests queued to it by BCOM3 and
waits on TIMQU when finished.

At this point, a data transfer or block I/0O may be in
progress for each active mainframe read request.

BCOM1 -~ Data transfer requests are received in BIOP via the A-to-A
message mechanism of the Kernel. BCOMl receives messages
from XIOP sent by BYPASS or TAPEIO. It queues the A-to-A
message to the TDEM1 routine on BXQQ queue for processing.
TDEM1 is activated, if waiting, by BCOM1 popping the TDMQ
queue in the Kernel. BCOM1 does not read the request from
Buffer Memory to minimize the number of packet areas in use
in BIOP.

TDEM1 - TDEM1 handles all data transfer to and from Central Memory
in the mainframe for the tape subsystem. It allocates a
static area in Local Memory for the request and the DSC
header. It dynamically allocates a Local Memory buffer for
each request processed. TDEMl begins by reading the
request from Buffer Memory sent by XIOP and the shared DSC
header structure.

TDEM1 checks the data format (DD@FMT) in the request. The
three formats supported include: Transparent (FM$TRNS),
List I/0 (FM$LIST), and Interchange (FM$BLKD). The
appropriate read subroutine is called for processing.

TDEM1 read subroutine processing is driven by the requested
sector count specified by the XIOP. The requested sector
count is always less than or equal to the number of data
sectors in the read-ahead area. Data sectors in the
read-ahead area are always part of completed tape blocks.
The BIOP (NX@PTR) and XIOP (CUE@PTR) DSC header pointers
define the range of the read-ahead data area. As a result,
the BIOP pointer always trails the XIOP pointer in the
circular descriptor list for reads. Each read routine uses
a common set of routines for reading and updating DSC
descriptor entries.

SM-0046 G 4-13




TDEM1
(continued)

- TDEM1 processes requests to move data between the Buffer

and Central Memory by interpreting the contents of the
buffer descriptor entries built by XIOP for each tape
block. Each descriptor entry contains a status field
(BF@STA). A value of MD$BOR indicates that the descriptor
refers to the first sector of a tape data block.
Subsequent sectors in the block have a zero in the status
field of their descriptors. Special values of MD$EOV,
MD$EOF, and MD$EOD in the status field are used by the
Interchange data format read routine discussed below. Each
descriptor entry also contains a count of the number of
contiguous Buffer Memory buffers that follow the buffer
referred to by the descriptor (BF@CTG). TDEM1 attempts to
minimize the Buffer Memory I/0 involved in reading and
updating descriptor entries by using this field to predict
the contents of successive descriptor entries. In this
way., the address field (BF@ADU, BF@ADL) of successive
entries can be produced in Local Memory without reading the
Buffer Memory DSC. Each descriptor with a status field
value of MD$BOR contains the length of the associated tape
block in bytes (BF@RLU, BF@RLL). All other descriptor
entries contain zero in the length field.

TDEM1 also attempts to use the bypass data transfer
hardware between Buffer and Central Memory, available on
the IOS Model C, for transfers larger than one sector. The
current transfer limit is eight sectors to prevent tying up
the high speed and Buffer Memory channels. This limit
prevents impact on disk and front-end data traffic. TDEM1
will yield the processor to high priority activities after
each data transfer to allow prompt servicing of disk
channels and transfer of front-end data.

The Transparent format read routine begins by assuming that
the maximum limit of eight sectors can be transferred to
Central Memory. If the descriptor for the next sector to
be moved (NX@SCT) indicates the number of contiguous data
sectors is less than eight, the contiguous count becomes
the maximum transfer size. If the next sector to be moved
is part of a block of data with an unrecovered read error
(BF@DBF), the maximum transfer size is limited to a single
sector. The Partial Sector flag (DDE@PCW) in the request is
checked next. If set, the transfer is limited to the
number of words specified in the request (DA@PWC);
otherwise, full sectors are assumed. The current size is
compared with the remaining number of sectors in the
Central Memory buffer. The smaller of these two becomes
the transfer size. Finally, the transfer size is compared
to the number of bytes left in the current tape block. The
smaller of these two values is used as the final transfer

SM-0046 G



TDEM1 - size. After the transfer completes, the next sector to be

(continued) moved pointer (NX@SCT) is incremented. If the transfer
completed the current tape block, the BIOP block pointer
(NX@PTR) is updated. Finally, the Central Memory buffer
address is updated in anticipation of the next transfer.
The above sequence is repeated until the requested sector
count has been satisfied, or a sector of bad data has been
transferred. A transfer of bad data causes the flag
(DA@GDBF) to be set in the response packet sent to BCOM3 in
the XIOP.

Transparent read processing completes by computing the
number of words transferred in the last sector (DAGPWC),
and the number of unused bits in the last word transferred
(DAGUBC). Both values are returned in the response. The
number of sectors (DA@TSC) and number of blocks (DAGTBC)
transferred are also returned, along with the data transfer
status bit (ST@DTR), in the response.

The List I/0O format read routine attempts to transfer
complete tape blocks to Central Memory (DAG@HSU, DA@HSL).
The mainframe supplies the address in Central Memory of the
list structure (DA@GLSU, DAGLSL). The list is a table of
64-bit words where each word is used to describe one tape
block (TL@). The list size (DAGLSS) may be from 1 to 512
words.

Each time a mainframe data transfer request is received, a
new list address is supplied. As blocks of data are moved
to Central Memory to satisfy the request, successive
entries in the list are filled in by TDEM1. TDEM1 keeps a
pointer to the next position in the list (NX@LPT) in the
DSC header. TDEM1 cannot tell when an entire request has
been processed because it can receive a request from BYPASS
and multiple requests from TAPEIO for the same mainframe
request. BYPASS and TAPEIO set the New List Received flag
(DAGLSR) for the first request to TDEM1 of each new
mainframe request. This enables TDEM1 to know when to
reset NX@LPT to the beginning of a new list.

The processing loop begins by comparing the number of bytes
(BF@RLU, BF@RLL) in the next data block to be moved to the
space remaining in the Central Memory buffer. If the next
tape block will not fit, the transfer request is terminated
and the status (ST@LSE) is set in the response packet.

This implies that the Central Memory buffer must be large
enough (DA@MBU, DA@MBL) to hold at least one tape block.

] SM-0046 G 4-15




TDEM1
(continued)

- If the next data block will fit in the Central Memory

buffer, the list entry describing the block is built. The
status (TL@FMT) and block length (TL@BCU, TL@BCL) are set
in the entry. If the block to be transferred contains
unrecovered data, the Bad Data flag (TL$DBF) is also set in
the list entry and in the response packet (DA@GDBF). The
transfer request terminates after moving a bad data block.

The data transfer portion of the List I/0 processing loop
begins by assuming the limit of eight sectors can be moved
to Central Memory. If the descriptor for the next sector
to be moved (NX@SCT) indicates the number of contiguous
data sectors is less than eight, the contiguous count
becomes the current transfer size. This value is compared
to the number of bytes left in the tape block to be moved.
The smaller of these two values is used as the final
transfer size. After the transfer completes, the Next
Sector To Be Moved pointer (NX@SCT) is incremented. The
Central Memory buffer address is updated in anticipation of
the next transfer. The BIOP pointer (NX@PTR) is updated
when the entire tape block has been transferred. The loop
above is repeated until the next tape block does not fit in
the remaining Central Memory buffer area, or until a block
of bad data has been transferred.

The List I/O format read routine completes by terminating
the list structure with a zero entry, unless the list size
limit (DA@LSS) has been reached. The list is written to
Central Memory (DA@LSU, DA@LSL) and the list pointer
(NX@PTR) is updated in the BIOP DSC header. The number of
sectors (DA@TSC) and number of blocks (DA@TBC) transferred
are returned, along with the data transfer status bit
(ST@DTR), in the response to BCOM3.

The Interchange format read routine converts tape data to
COS Interchange format when transferring data to Central
Memory by inserting control words into each sector moved.

Each sector of data begins with a block control word
(BCW). Tape blocks are terminated with a record control
word (RCW). Files and datasets are terminated with
end-of-file and end-of-data control words (RCW),
respectively. See I/0 Subsystem (IOS) Table Descriptions
Internal Reference Manual, publication SM-0007, for the
description of block and record control words.

The insertion of control words in each sector of data
limits the maximum transfer size per Kernel TRANSFER
request to one sector. Each sector must be constructed in
a Local Memory buffer before being sent to Central Memory.

SM-0046 G



TDEM1 - The transfer loop begins by building a BCW in the first
(continued) word of the Local Memory buffer. Each sector contains just
one BCW. This allows a maximum of 511 words of data and

control words to be included in each sector.

The sector is filled based on the status field (BF@STA) of
the current (NX@PTR) DSC buffer descriptor entry.

A value of MD$BOR or MD$EOV indicates that part of a data
block is to be moved to the sector in the Local Memory
buffer. If all data in the tape block has been moved, an
end of record RCW is generated at the next position in the
sector.

If the status value is MD$EOV, and the sector is not full,
the Null flag (CW@NUL) is set in the RCW to indicate that
the remainder of the sector is empty. The descriptors
containing the MD$EOV values are modified by the TAPEND
routine in XIOP when a mainframe FC$EORR request is
processed. The mainframe uses this request to read a
partial sector of data at end-of-volume processing.

An MD$EOF descriptor status indicates that an end of file
RCW is to be added to the Local Memory buffer. If the
sector is not full, the Null flag (CW@NUL) is set to
indicate that the remainder of the sector is empty. The
descriptor entry containing the MD$EOF value is built by
the TAPEND routine in XIOP when a mainframe FC$EOFR request
is processed. The mainframe uses the FC$EOFR request to
insert control words into the data stream corresponding to
embedded tape marks read in a multiple file tape dataset.

The MD$SEOD status indicates that an end-of-file RCW and an
end-of-data RCW are to be added to the Local Memory buffer.
If both control words will not fit in the current sector,
the NX@MOD value in the BIOP DSC header is set to indicate
that only the end-of-file control word was generated. The
next request for data transfer will cause TDEM1 to
recognize that an end-of-data control word is still

needed. If the sector is not full after both control words
have been generated, the Null flag (CW@NUL) is set to
indicate that the remainder of the sector is empty. The
descriptor containing the MD$EOD value is built by the
TAPEND routine in XIOP when a mainframe FC$EODR request is
processed. The mainframe uses the FCSEODR request to
terminate user and label data streams with the end-of-file
and end-of-data control words.

SM-0046 G 4-17




TDEM1
(continued)

- Each tape block is moved to the Local Memory buffer

following the end of record RCW for the previous block.

The Buffer Memory address of the data is computed from the
current sector pointer (NX@SCT) and word offset (NX@WRD) in
the sector. The length to be moved may include data from
the next sector of Buffer Memory. Because the next sector
of data might not be physically contiguous in Buffer
Memory, two partial moves may be required. The contiguous
count field (BF@CTG) in the descriptor is used to determine
the number of moves required. The smaller of the contiguous
data, the remaining data in the tape block, and the
remaining space in the Local Memory buffer is moved.

The forward word index (CW@FWI) in the control word
preceding the data just moved or control word just
generated is updated. The forward word index links BCW and
RCW control words for the library routines in the
mainframe. The Bad Data flag (CW@DBF) is also set in the
preceding control word, if the data just moved was part of
a block containing unrecovered tape data. The Bad Data
flag allows the library routines in the mainframe to skip
bad tape blocks, if requested by the user job.

The above loop continues, adding data and control words,
until the sector is complete. Before the sector is sent to
Central Memory (DA@HSU, DA@HSL), the Partial Sector
Transfer flag is examined in the packet (DD@PCW). If set,
the transfer size is limited to DA@PCW words, else the full
sector is transferred on the 100-Mbyte data channel from
Local to Central Memory.

Each sector requested by XIOP is constructed and
transferred by the above loop, until requested sector count
has been satisfied, or a sector of bad data has been
transferred. A transfer of bad data causes the flag
(DA@DBF) to be set in the response packet sent to BCOM3 in
the XIOP. The number of sectors (DA@TSC) and number of
blocks (DA@TBC) transferred are also returned, along with
the data transfer status bit (ST@DTR), in the response.

The BIOP section of the Buffer Memory DSC is updated with
current values for the device when the the response is sent
to BCOM3 in the XIOP. TDEM1 continues processing new
requests from BXQQ queue and waits on TDMQ queue when
finished.

SM-0046 G



BCOM3

- BCOM3 in the XIOP receives the read data transfer response

packet from TDEM1l. It subtracts the transferred sector
count (DA@TSC) from the count of read-ahead data sectprs in
Buffer Memory (CU@VMS), The updated total of data sectors
is placed in the response packet (TQ@VMS). The number of
unallocated sectors of Buffer Memory is computed and also
placed in the packet (TQE@MOS). The data transfer response
is sent to the mainframe through the MIOP.

BCOM3 checks for error conditions (no ST@DTR, TQ@DBF,
ST@LSE) that terminate any additional sector transfers for
the request. If an error occurred, the residual sector
count (DC@RSC) in the TCB is cleared to prevent TAPEIO from
initiating any new requests to TDEM1 in the BIOP,.

Finally, BCOM3 activates any activities waiting for the
data transfer response by popping the BIOP wait queue
(DCRQUB) in the TCB and decrementing the count of
outstanding requests to BIOP (DC@BRQ).

This concludes the description of the read data transfer processing
initiated by BYPASS.

TEX

TAPEIO

SM-0046 G

The TEX activity is activated by BYPASS when all previous
read block requests from the mainframe have been satisfied.
TEX dequeues the new request from DC@MSG.

If an error terminated a previous read block request, the
Next Valid Packet flag (DD@NVP) is checked in the request.
The mainframe signals that it received the previous error
status by setting the Next Valid Packet flag to resume
processing. The error flag (DC@ERR) is cleared when next
valid packet is recognized by TEX. Read block request
packets received without Next Valid Packet flag set are
ignored by TEX when the error flag is set in the TCB.

TEX allocates two Local Memory buffers for reading tape
data and saves their addresses in the TCB (DC@BFA,
DC@BFB). If two buffers are not available, TEX allocates
none and waits on the TXBQU queue in the Kernel. Other
activities releasing Local Memory buffers will Pop this
queue.

TEX calls the TAPEIO routine to initiate read processing
for the device.

Provides the data I/0O interface to the driver software in
the BMX subsystem for the TEX activity. The interface uses
the Command Parameter Block (CPB@) in the TCB and calls to
the BMXSIO routine. The CPB contains the device command
and response parameters that describe the I/0 state during
device processing.




TAPEIO
(continued)

- TAPEIO processes read block I/0 requests until the

outstanding block count (DC@RBC) in the TCB is satisfied,
Or an error occurs.

TAPEIO attempts to build multiple read commands for the BMX
subsystem when possible. The chaining of commands allows
the BMX driver to sustain data I/O transfer at the rate of
the device. Each command in the chain represents a request
to read one block from the device. TAPEIO limits command
chains to ten blocks in order to allow other devices to
access the BMX channels and control units. This allows a
fair distribution of I/0 among active devices, without a
significant loss in transfer rate on any particular device.

Each command to the BMX subsystem is stored in a Channel
Program Word (CPW@) structure in the CPB. TAPEIO uses
three CPW structures in a circular fashion for command
chaining. Each CPW contains a flag (CPW@CC) to indicate
whether the command is chained to the next command. TAPEIO
builds a CPW for each block to be read (up to three) and
calls BMXSIO to initiate the read command chain.

TAPEIO checks the operation status (CPB@OS) and count of
commands complete (CPB@CD) when BMXSIO returns. Normally,
BMXSIO returns one command complete for each call by
TAPEIO. If the data blocks are small, or activity on other
devices is heavy, more than one command may complete before
BMXSIO can return to TAPEIO. The Return Kernel service
function can allow another activity to gain control of the
processor, which can delay the return to TAPEIO. 1In this
case, the operation status (OS$§) applies to the last
command of the count completed.

TAPEIO processes each tape block just read. For each
block, the descriptor in the DSC referred to by the current
block pointer (CU@GPTR) is updated with MD$BOR status
(BF@STA) and the block length (BF@RLU, BF@RLL) in bytes
from the CPW for the block read. The completed CPW is
rebuilt if a command chain is active. The current block
pointer (CU@PTR) is advanced to refer to the descriptor for
the next block to be read. The outstanding block request
count (DC@RBC) in the TCB is decremented. The count of
sectors of data in the Buffer Memory read-ahead area is
incremented by the size of the block just read. If the
data format is Interchange, the number of control words to
be added by TDEM1 will be included in the calculation. If
a request for transfer of read-ahead sectors (DC@RSC) is
present in the TCB, a request will be generated and sent to
TDEM1 in BIOP for the number of sectors now available.

SM-0046 G



TAPEIO - This allows data to move to the mainframe as quickly as
(continued) possible. Finally, a block finished response is generated
with status (STE@BTR) and sent to the mainframe through the
MIOP. The number of data sectors in the read-ahead area
(TQ@VMS) and the total number of Buffer Memory sectors
available for allocation (TQ@MOS) are included in the
response.

An operation status of OS$RT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPEIO rebuilds the command chain and calls
BMXSIO to initiate I/O.

An operation status of OS$BZ implies that the command chain
is continuing. TAPEIO calls BMXSIO to wait for the next
command to complete.

A status of OS$DN implies that all commands in the chain
are done. TAPEIO checks for new block requests added by
BYPASS (DC@RBC). If a requested block count is present,
TAPEIO builds a new CPW list and initiates I/O by calling
BMXSIO again. If no new block requests have been received,
TAPEIO clears the I/0 Active flag (DC@IOF) and returns to
TEX.

OS$HD status indicates that the mainframe has issued an
FCSFREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active
command chain in progress. TAPEIO clears the I/0 Active
flag (DC@IOF) and returns to TEX.

Finally, an operation status of OS$ER indicates that the
BMX subsystem detected an error on the last command in the
count completed. The error may be related to a hardware
condition (channel error, unit check, unit exception,
mid-block CCR), or a software detected condition (overrun,
large block).

TAPEIO detects the unit exception condition encountered by
examining the Tape Mark Read flag (CPBR@TE). An end-of-file
status (ST@EOF) is returned, along with block finished
status (ST@BTR), in the mainframe response for the

command. The End-of-file Detected flag (DC@EOF) is set in
the TCB. TAPEIO clears the I/O Active flag and returns to
TEX. TEX will wait for the next mainframe request with
Next Valid Packet flag (DD@NVP) set before processing is
resumed.

SM-0046 G 4-21




(continued)

TAPEIO

TEX

- If no other errors are present, TAPEIO checks for a large

block error by examining the Length Error flag (CPB@LE).
The large block condition is detected by the BMX subsystem
when a tape block larger than the specified maximum block
size (TQ@MBU, TQ@MBL) is read. Data beyond the block size
limit is discarded. TAPEIO responds with the large block
status (ST@BIG), along with block finished (ST@BTR), in the
mainframe response for the command. TAPEIO clears the I/0
Active flag and returns to TEX. TEX will wait for the next
mainframe request with Next Valid Packet flag (DD@NVP) set
before processing is resumed.

Channel errors and software errors are detected when the
CPB@EC field is nonzero. A unit check error is present if
the Device Detected error flag (CPB@DD) is set. If either
type of error is present, TAPEIO calls TAPERR to create an
error recovery activity to retry the failed command.

TAPERR returns the status of the recovery attempt. A
status of zero indicates the command was recovered
successfully. Normal end-of-command processing is
performed, and I/0 continues.

TAPERR may also return an unrecovered data check status
(STRURE) to indicate that the data in the tape block could
not be read. The tape is still positioned properly, as if
the block had been read. In this case, TAPEIO will set the
Bad Data flag (BF@DBF) in all descriptor entries in the DSC
for the failed block. If no data was recovered, a
descriptor entry is still reserved for the empty block and
a byte length of one (BF@RLU, BF@RLL) is set to prevent the
software from dealing with blocks of zero length. TAPEIO
performs normal end-of-command processing and I/0 continues.

Any other status returned by TAPERR is considered
unrecovered and is returned to the mainframe in the
response packet (TQ@STS). TAPEIO clears the I/0 Active
flag and returns to TEX. TEX will wait for the next
mainframe request with Next Valid Packet flag (DD@NVP) set
before processing is resumed.

The return from TAPEIO causes TEX to release the two Local
Memory buffers (DC@BFA, DC@BFB). If an error response was
returned, the TCB error flag (DC@ERR) is set. The error
flag invokes the next valid packet mechanism for checking
mainframe requests. If an error is noted, the BUFMAN
routine is called to deallocate Buffer Memory buffers for
requested blocks that were not used by TAPEIO.

SM-0046 G



BUFMAN - BUFMAN is called to deallocate unneeded read buffers from
the bottom (CU@BTM) of the circular descriptor list. The
area between the XIOP block pointer (CU@GPTR) and the bottom
of the list defines the range of buffers to release. After
deallocation, the bottom pointer is adjusted to equal the
XIOP block pointer. This is the only instance where a
descriptor entry pointer moves in a backward direction.

Descriptor entries between the top pointer (CU@TOP) and new
bottom pointer may still contain references to the buffers
just deallocated in their contiquous count fields (BF@CTG).
The BF@CTG field is adjusted in all active descriptor
entries in the list to reflect the deallocation.

TEX - Waits for the next mainframe request (DC@MSG) by pushing on
the request queue (DC@QUA) in the TCB.

4.3.4 WRITE REQUEST (FC$WRITE)

Write I/O requests are passed by BCOM3 to the BYPASS activity for
processing through the DATQU queue in the XIOP Kernel. BYPASS handles
initiation of any data transfer by sending a request to TDEM1 in the
BIOP. The BYPASS activity queues requests for tape blocks to be written
to the appropriate TEX activity for the requested device. BYPASS handles
stacking of the user and label DSC tables by calling the DSCGET routine.
BYPASS handles Buffer Memory allocation for the user and label DSC tables
by calling the BUFMAN routine.

Figure 4-4 shows the processing of a write request.

BCOM3 - Checks for a TCB present for the requested device (BDV@CP).
If not present, a protocol error response is sent to the
mainframe. BCOM3 queues the request to the BYPASS activity
on the DATQU in the Kernel. BYPASS is activated, if
waiting, by popping the TIMQU in the Kernel.

BYPASS - Dequeues the next request from DATQU and locates the TCB
for the requested device. The Hold Data flag (DD@HLD) in
the request is examined. If the Hold Data flag is set and
the user DSC table has not been saved, then DSCGET is
called. If the Hold Data flag is not set and the user DSC
table is being held (DCE@DHU, DC@DHL), DSCGET is called to
restore the stacked DSC table (DC@DSU, DC@DSL).

A write request from the mainframe may include a request
for sectors of data (TQ@RSC) to be transferred from Central
Memory to Buffer Memory, a request for data blocks (TQ@RBC)
to be written to tape, or both.

SM-0046 G 4-23




BYPASS
(continued)

| FCS$WRITE l

BCOM3

Call/Return

DSCGET

Call/Return A to A Data transfer request
Pop
I BUFMAN | | BCOM1 TDEM1
Write block request Pop
TEX Atoa
Call/Return
y
TAPEIO Zop BCOM3
Call/Return Call/Return
on error Data transfer

Response to CPU

| BMXSIOC I [ArTAPERR I

Error response to CPU.
Error message to XIOP console.

v

Block transfer
response to CPU 1506

Figure 4-4. Processing of Write Requests

- BYPASS assumes that the mainframe has only one outstanding

request at a time to the IOS for data sectors.

BYPASS validates list parameters if the data format is List
1/0.

The mainframe can request that data sectors (TQ@RSC) be
transferred to the Buffer Memory write-behind area. Any
tape blocks ending in these data sectors must be indicated
in the request (TQ@RBC). The absence of a block request
count indicates that the data sectors all belong to the
current block being assembled in the write-behind area.

SM-0046 G



BYPASS -~ BYPASS attempts to minimize the number of calls to BUFMAN

(continued) for allocation by only making requests as new blocks are
transferred from the mainframe. This presents a problem on
the first data transfer request when the write-behind area
is empty. BYPASS solves the problem by making an extra
call to BUFMAN in this situation to allocate an extra
buffer of maximum block size (TQ@MBU, TQ@MBL). This extra
buffer allows BYPASS to always stay one buffer ahead of
mainframe data transfer requests.

BYPASS must also make a special call to BUFMAN to adjust
the size of the extra buffer when the mainframe increases
the maximum block size on a request without a block count.
BYPASS detects this increase by saving the maximum block
size from each data transfer request in the TCB (DC@MBU,
DC@MBL). The saved value is compared to the block size in
each new request to see if the mainframe has increased it.
BUFMAN adjusts the size of the extra buffer based on the
new block size value.

BYPASS calls BUFMAN to allocate Buffer Memory for the
requested number of blocks.

BUFMAN - The mainframe directs Buffer Memory allocation by the IOS
based on the total available Buffer Memory size parameter
returned in all responses (TQE@MOS). It uses this value to
determine how many new blocks may be requested for each
active device.

BUFMAN allocates write-behind buffers for all devices. The
DSC structure contains a header area and descriptors for
each Buffer Memory buffer allocated. The window of active
buffers is described by a top (CU@TOP) and bottom (CU@BTM)
pointer in the XIOP section of the DSC header. These
pointers are the word offset in the DSC of the descriptor
for the first buffer in the window (CUGTOP) and the next
buffer to be allocated (CUGBTM). Buffers are allocated at
the bottom of the window and deallocated at the top. A
limit value (CU@GLIM) identifies the physical end of the
descriptor list in the DSC. The DSC may be multiple
512-word sectors. The DSCGET routine allocates the needed
size at mount time based on the IOS installation maximum
block size parameter (MBS$MAX). MBS$MAX is used to create
a DSC large enough to hold a minimum of two blocks of data
plus the DSC header.

SM-0046 G 4-25




(continued)

BUFMAN

BYPASS

Before allocating buffers for the request, BUFMAN
deallocates buffers that have been written to tape by
TAPEIO. The top and XIOP (CU@PTR) pointers mark this range
of descriptors. After deallocation, the top pointer is
adjusted to equal the XIOP pointer. To minimize Buffer
Memory accesses, deallocation does not clear descriptors in
the Buffer Memory DSC. Excess Buffer Memory accesses by
BUFMAN could delay the processing of tape channel
interrupts and cause software overrun errors.

BUFMAN computes the number of buffers to allocate based on
the number of blocks requested and the actual maximum block
size in the request (TQ@MBU, TQ@MBL). Buffers previously
allocated at the bottom of the list that are not in use are
subtracted from the allocation count. This range is marked
by the BIOP (NX@PTR) and bottom pointers. Not in use
buffers result from the actual tape block size being less
than the maximum block size specified in previous

requests. A calculation is performed to determine if
descriptors for the allocation count will fit in the DSC.
If not, an error code (1) is returned to BYPASS. If the
descriptors will fit, allocation is performed.

BUFMAN checks for high priority activities waiting to
execute before starting allocation. It yields the
processor to any such activities in order to allow I/0 to
proceed on active devices. This minimizes the possibility
of software overrun errors.

Allocation of buffers is done by calls to the Kernel
GETDISK routine. If buffer space is not available, an
error code (2) is returned to BYPASS, and any buffers
allocated are released. The maximum allocation count is
requested on the first call to the GETDISK routine.
GETDISK may return fewer than the number requested. By
repeated requests, the allocation count will eventually be
satisfied. Buffers allocated on each request to GETDISK
are at contiquous addresses in Buffer Memory. BUFMAN
builds a descriptor for each 512-word buffer allocated in
its Local Memory copy of the DSC. Each descriptor contains
a count (BF@CTG) of the number of buffers with increasing
addresses that are contiguous. This value is used
extensively by the TDEM and TDEM1 routines to minimize
Buffer Memory accesses for descriptors and data. Portions
of the DSC are moved to and from Local Memory using a
paging mechanism to minimize Buffer Memory accesses.

BYPASS sends a protocol error response to the mainframe if
Buffer Memory is not available to satisfy the request or if
the DSC cannot hold enough descriptors for the increased
write-behind area.

SM-0046 G



BYPASS
(continued)

BCOM1

TDEM1

SM-0046 G

BYPASS checks the mainframe request for the special Last

Block Write flag (DD@LBW) used for Transparent format data.
The last block write request is used to force a data block

in the write-behind area that is less than maximum block
size to be considered a full block. No data transfer takes
place for the request in TDEM1 in the BIOP.

BYPASS generates a request to TDEM1 in the BIOP to move the
requested data sectors to the write-behind area, or process
the Last Block Write flag, if set.

Another special flag in the mainframe request indicates
whether blocks moved to the write-behind area are to be
written to tape. If set, the No Write flag (DD@NWR) causes
BYPASS not to activate the TEX activity.

Block I/0 is sustained while the count of blocks (CUGVMS)
in the write-behind area is nonzero. BCOM3 adds to this
field on data transfer responses from TDEM1 in BIOP as
blocks are transferred to the write-behind area.

BYPASS will activate the TEX activity by popping DCEQUA and
placing the mainframe request on the DC@MSG queue. BYPASS
uses the I/0 Active Control flag (DC@IOF) to determine if
the TAPEIO routine of the TEX activity is still checking
for new requested blocks to write (CU@VMS). BYPASS
considers the device inactive if the control flag is not
set, and activates the TEX activity. If TEX is executing,
the added block count will sustain I/O.

BYPASS processes all requests queued to it by BCOM3 and
waits on TIMQU when finished.

At this point, a data transfer or block I/0 may be in
progress for each active mainframe write request.

Data transfer requests are received in BIOP through the
A-to-A message mechanism of the Kernel. BCOM1 receives
messages from XIOP sent by BYPASS or TAPEIO. It queues the
A-to-A message to the TDEM1 routine on BXQQ queue for
processing. TDEM1 is activated, if waiting, by BCOM1
popping the TDMQ queue in the Kernel. BCOM1 does not read
the request from Buffer Memory to minimize the number of
packet areas in use in BIOP.

TDEM1 handles all data transfer to and from Central Memory
in the mainframe for the tape subsystem. It allocates a
static area in Local Memory for the request and the DSC
header. It dynamically allocates a Local Memory buffer for
each request processed. TDEM1 begins by reading the
request from Buffer Memory sent by XIOP and the shared DSC
header structure.




TDEM1
(continued)

- TDEM1 checks the data format (DD@FMT) in the request. The

three formats supported include: Transparent (FM$TRNS),
List I/0 (FM$LIST), and Interchange (FM$BLKD). The
appropriate write subroutine is called for processing.

TDEM1 write subroutine processing is driven by the
requested sector count specified by the XIOP. The
write-behind area in Buffer Memory is described by the BIOP
(NX@PTR) and XIOP (CU@PTR) DSC header pointers. As a
result, the XIOP pointer always trails the BIOP pointer in
the circular descriptor list for writes. Each write
routine uses a common set of routines for reading and
updating DSC descriptor entries.

TDEM1 processes requests to move data between the Central
and Buffer Memories by generating buffer descriptor entries
for each tape block moved.

Each descriptor entry contains a status field (BF@STA). A
value of MD$BOR indicates that the descriptor refers to the
first sector of a tape data block. Subsequent sectors in
the block have a zero in the status field of their
descriptors. A special value of MD$EOF in the status field
is used by the Interchange and List I/0 data formats to
indicate an end-of-file mark is to be written to tape.

Each descriptor entry also contains a count of the number
of contiguous Buffer Memory buffers that follow the buffer
referred to by the descriptor (BF@CTG). TDEM1l attempts to
minimize the Buffer Memory I/0 involved in reading and
updating descriptor entries by using this field to predict
the contents of successive descriptor entries. 1In this
way, the address field (BF@ADU, BF@ADL) of successive
entries can be produced in Local Memory without reading the
Buffer Memory DSC. Each descriptor with a status field
value of MD$BOR contains the length of the associated tape
block in bytes (BF@RLU, BF@RLL). All other descriptor
entries contain zero in the length field.

TDEM1 also attempts to use the bypass data transfer
hardware between Buffer and Central Memory (available on
the Model C IOS) for transfers larger than one sector. The
current transfer limit is eight sectors to prevent tying up
the high-speed and Buffer Memory channels. This limit
prevents impact on disk and front-end data traffic. TDEM1
will yield the processor to high priority activities after
each data transfer to allow prompt servicing of disk
channels and transfer of front-end data.

SM-0046 G



TDEM1
(continued)

SM-0046 G

- The Transparent format write routine begins by checking

that the length of the current block being assembled is
within maximum block size (DA@GMBU, DA@MBL). If the block
size has been exceeded, the Large Block Status flag
(ST@BIG) is set in the response to BCOM3 in XIOP.

The data transfer loop begins by assuming that the maximum
limit of eight sectors can be transferred to Buffer

Memory. If the descriptor for the next sector to be filled
(NX@SCT) indicates the number of contiguous buffers is less
than eight, the contiguous count becomes the current
transfer size. The current size is compared with the
remaining number of data sectors in the Central Memory
buffer. The transfer size becomes the smaller of the two.
Finally, the transfer size is compared to the number of
bytes needed to fill the current tape block. The smaller
of these values is used as the final transfer size. After
the transfer completes, the next sector to be filled
pointer (NX@SCT) is incremented. If the transfer completed
the current tape block, the descriptor for the first sector
of the block is marked with MD$BOR status and the block
length in bytes (BF@RLU, BF@RLL). The BIOP block pointer
(NX@PTR) is updated. Finally, the Central Memory buffer
address is adjusted in anticipation of the next transfer.
This sequence is repeated until all requested sectors have
been moved.

Transparent write processing completes by checking for the
Last Block Write flag (DDELBW) set in the request. If set,
any partial tape block is marked with the MD$BOR status and
the number of bytes in the block (BF@RLU, BF@RLL). The
BIOP block pointer (NX@PTR) is adjusted. The request may
also contain the Sync Request flag (DDE@SNC). This causes
any partial data block to be discarded, if set. The BIOP
sector pointer (NX@SCT) is reset to the beginning of the
block. The word offset pointer (NX@WRD) and the current
record length are reset to 0.

The number of sectors (DA@TSC) and number of blocks
(DA@TBC) transferred are returned in the response to
BCOM3., If no errors are being reported, the data
transferred status bit (ST@DTR) is also set.

The List I/O format write routine attempts to transfer
complete tape blocks from Central Memory (DAGHSU, DA@HSL).
The mainframe supplies the address in Central Memory of the
list structure (DA@LSU, DAGLSL). The list is a table of
64-bit words where each word is used to describe one tape
block (TL@). The list size (DA@LSS) may be from 1 to 512
words. Each time a mainframe data transfer request is
received, a new list address is supplied.




TDEM1 - The List I/0 write routine begins by reading the list into
(continued) a Local Memory buffer from Central Memory. Successive
entries in the list are decoded by TDEM1l as blocks of data
are moved to Buffer Memory to satisfy the request.

The processing loop begins by examining the status field
(TL@FMT) of the 1list entry.

A value of TL$EOR indicates a data block is to be moved to
Buffer Memory. If the block length (TL@BCU, TL@BCL) is 0,
a write format error status (ST@WFE) is returned to BCOM3

in the XIOP.

The block length is then validated against the maximum
block size (DAGMBU, DA@MBL) specified in the request. If
the maximum is exceeded, a large block error status
(ST@BIG) is returned to BCOM3 in the XIOP.

The List I/0 transfer loop begins by assuming the limit of
eight sectors can be transferred to Buffer Memory. If the
descriptor for the next sector to be filled (NX@SCT)
indicates the number of contiguous data sectors is less
than eight, the contigquous count becomes the current
transfer size. The current transfer size is compared to
the number of bytes left to be moved in the tape block.

The smaller of these two values is used as the final
transfer size. After the transfer completes, the next
sector to be filled pointer (NX@SCT) is incremented. The
Central Memory buffer address is updated in anticipation'of
the next transfer. The descriptor for the beginning of the
block is marked with MD$BOR status and the block length
field (BF@RLU, BF@RLL). The BIOP block pointer (NX@PTR) is
updated when the entire tape block has been transferred.

If the list entry status is TL$EOF, the descriptor for the
beginning of block is marked with MD$EOF status, the block
length field is set to 0, and the BIOP block pointer is
updated. If the list entry status is neither TL$EOR or
TL$EOF, the write format error status (ST@WFE) is set in
the response packet returned to BCOM3 in XIOP.

The loop above is repeated until all requested sectors have
been transferred to Buffer Memory as complete blocks.

The number of sectors (DA@TSC) and number of blocks
(DA@TBC) transferred are returned in the response to
BCOM3. 1If no errors are being reported, the data
transferred status bit (ST@DTR) is also set.

4-30 SM-0046 G



TDEM1
(continued)

SM-0046 G

- The Interchange format write routine converts COS

Interchange format to raw tape blocks when transferring
data to Buffer Memory by removing control words from each

sector moved.

Each sector of data begins with a block control word (BCW).
Tape blocks are terminated with a record control word
(RCW). Files and datasets are terminated with end-of-file
and end-of-data control words (RCW), respectively. See the
I/0 Subsystem (IOS) Table Descriptions Internal Reference
Manual, publication SM-0007, for the description of block
and record control words.

The appearance of control words in each sector of data
limits the maximum transfer size per Kernel TRANSFER
request to one sector. Each sector must be deblocked in a
Local Memory buffer before being sent to Buffer Memory.

The transfer loop begins by reading the next sector from
the Central Memory buffer into Local Memory. The first
word of the sector is validated as a block control word
(BCW). If a BCW (CW@MOD) is not present, the write format
error status (ST@WFE) is returned to BCOM3 in XIOP.

The forward word index (CW@FWI) in the BCW describes the
number of words of data between the BCW and next control
word.

If data is present, the EOF Pending flag (NX@EFP) is
checked in the DSC header. When an end-of-file record
control word (RCW) is encountered during the deblocking of
a sector of data, its interpretation is not clear until it
is known what follows it in the data stream. An
end-of-file RCW followed by data or another EOF RCW should
be treated as a tape block. However, an EOF RCW followed
by an end-of-data RCW is not considered a tape block. It
just marks the end of the dataset. At times, this
ambiguity cannot be resolved until the next sector of data
is transferred from Central Memory. This occurs when the
EOF RCW is the last word of data in a sector. In the worst
case, the next sector is not available until the next
mainframe data transfer request is made. The NX@EFP flag
in the DSC header allows TDEM1 to remember that an EOF RCW
was encountered and that its interpretation is pending. If
the pending EOF RCW is followed by data, the descriptor
entry for the current block in Buffer Memory is marked with
the MD$EOF status. The BIOP block pointer (NX@PTR) is
updated, and the NXG@EFP flag is cleared.




TDEM1
(continued)

- The data is next moved from the Local Memory buffer to

Buffer Memory at location NX@SCT, NX@WRD. The contiguous
count field (BF@CTG) in the descriptor for the sector
determines whether one or two moves are needed.

If the entire Local Memory sector has not been deblocked,
the next word to be examined must be a control word. If
not a control word (CW@MOD), the Write Format Error Status
flag (ST@WFE) is set in the response packet to BCOM3 in
XIOP.

If the control word is an end-of-record control word, a
nonzero length tape block should have just been moved to
Buffer Memory, else a Write Format Error Status (ST@WFE) is
returned to BCOM3.

The number of unused bits in the last word of the block is
checked by examining the count (CW@UBC) in the control
word. For tape data, the count must always be a byte
multiple, else the Write Format Error Status flag (ST@WFE)
is returned to BCOM3.

The number of unused bytes in the last word is subtracted
from the length of the current block. The result is
validated against the maximum block size (DA@MBU, DA@MBL)
specified in the request. If the maximum size is exceeded,
the large block error status (ST@BIG) is returned to BCOM3.

If the block length is valid, the descriptor entry for the
beginning of the block in Buffer Memory is marked with
MD$BOR status and the block length (BF@RLU, BF@RLL). The
BIOP block pointer (NX@PTR) is updated.

If the control word is an EOF RCW, a check is made to
ensure that a data block has not just been moved to Buffer
Memory. Data blocks must be terminated with an
end-of-record control word. If the end-of-record control
word is missing, a write format error status (ST@WFE) is
returned to BCOM3.

If the control word is a legitimate end-of-file, the NX@GEFP
flag is checked to see if the previous control word was
also an EOF RCW. If so, the previous EOF RCW is treated as
a tape block and marked in the Buffer Memory descriptor as
such, and the NX@EFP flag is set to indicate that
interpretation of the new EOF RCW is pending.

If the control word is an end-of-data RCW, the NX@EFP flag
from the DSC header is checked. It should be set, because
datasets are terminated with both end-of-file and
end-of-data control words. If not set, the Write Format
Error Status flag (ST@WFE) is returned to BCOM3.

SM-0046 G



TDEM1
(continued)

BCOM3

- The above loop continues until the requested sector count

is moved from Central Memory to Buffer Memory, an error is
encountered, or an EOD RCW is processed.

Finally, the Sync Request flag (DD@SNC) is checked in the
request. If set, this flag causes any partial block to be
discarded. The BIOP sector pointer (NX@SCT) is reset to
the beginning of block and the word offset pointer (NX@WRD)
and the current record length are reset to zero.

The number of sectors (DA@GTSC) and number of blocks
(DA@TBC) transferred are returned in the response to
BCOM3, If no errors are being reported, the data
transferred status bit (ST@DTR) is also set.

The BIOP section of the Buffer Memory DSC is updated with
current values for the device when the the response is sent
to BCOM3 in the XIOP. TDEM1 continues processing new
requests from BXQQ queue and waits for TDMQ queue when
finished.

BCOM3 in the XIOP receives the write data transfer response
packet from TDEMl. It adds the transferred block count
(DA@GTBC) to the count of write-behind data blocks stored in
Buffer Memory (CU@GVMS). The updated total of data blocks
is placed in the response packet (TQ@VMS). The number of
unallocated sectors of Buffer Memory is computed and also
placed in the packet (TQ@MOS). The data transfer response
is sent to the mainframe through the MIOP.

BCOM3 activates any activities waiting for the data
transfer response by popping the BIOP wait queue (DC@QUB)
in the TCB and decrementing the count of outstanding
requests to BIOP (DC@BRQ).

This concludes the description of the write data transfer processing
initiated by BYPASS.

TEX

SM-0046 G

- The TEX activity is activated by BYPASS when all previous

write block requests from the mainframe have been
satisfied. TEX dequeues the new request from DC@MSG. 1If
an error terminated a previous write block request, the
Next Valid Packet flag (DD@NVP) is checked in the request.
The mainframe signals that it received the previous error
status by setting the Next Valid Packet flag to resume
processing. The error flag (DC@ERR) is cleared when next
valid packet is recognized by TEX. Write block request
packets received without Next Valid Packet flag set are
ignored by TEX when the error flag is set in the TCB.




TEX

(continued)

TAPEIO *

TEX allocates two Local Memory buffers for writing tape
data and saves their addresses in the TCB (DC@BFA,
DC@BFB). If two buffers are not available, TEX allocates
none and waits for the TXBQU queue in the Kernel. Other
activities releasing Local Memory buffers will Pop this
queue.

TEX calls the TAPEIO routine to initiate write processing
for the device.

TAPEIO provides the data I/O interface to the driver
software in the BMX subsystem for the TEX activity. The
interface uses the Command Parameter Block (CPB@) in the
TCB and calls to the BMXSIO routine. The CPB contains the
device command and response parameters that describe the
I/0 state during device processing.

TAPEIO processes write block I/O requests until the
outstanding block count (CU@QVMS) in the DSC is satisfied or
an error occurs.

TAPEIO attempts to build multiple write commands for the
BMX subsystem when possible. The chaining of commands
allows the BMX driver to sustain data I/0 transfer at the
rate of the device. Each command in the chain represents a
request to write one block to the device. TAPEIO limits
command chains to ten blocks in order to allow other
devices to access the BMX channels and control units. This
allows a fair distribution of I/0 among active devices,
without a significant loss in transfer rate on any
particular device.

Each command to the BMX subsystem is stored in a Channel
Program Word (CPW@) structure in the CPB. TAPEIO uses
three CPW structures in a circular fashion for command
chaining. Each CPW contains a flag (CPWE@CC) to indicate
whether or not the command is chained to the next command.

TAPEIO builds a CPW for each block (up to three) to be
written by examining the descriptor entries for the next
three blocks in Buffer Memory. The location of the
descriptor for the first block (CU@PTR) is known. The
location of the descriptors for the next two blocks is
computed from the block length (BF@RLU, BF@RLL) of prior
entries. The status (BF@STA) in each descriptor is checked
for an end-of-file (MD$EOF). If present, TAPEIO will write
to tape any blocks preceding the EOF, and then generate a
response to the mainframe with the End-of-file Status flag
(ST@EOF) set. TAPEIO will return to TEX. This allows the
mainframe to request that a tape mark be written.

SM-0046 G



TAPEIO
(continued)

SM-0046 G

- The length of each block is set in each CPW (CPW@BU,

CPW@BL). TAPEIO activates the TDEM activity to preload the
first sector of the first block in the chain to Local
Memory. TAPEIO calls BMXSIO to initiate the write command
chain.

TAPEIO checks the operation status (CPB@OS) and count of
commands complete (CPB@CD) when BMXSIO returns. Normally,
BMXSIO returns one command complete for each call by
TAPEIO. 1If the data blocks are small or activity on other
devices is heavy, more than one command may complete before
BMXSIO can return to TAPEIO. The Return Kernel service
function can allow another activity to gain control of the
processor, which can delay the return to TAPEIO. 1In this
case, the operation status (OS$) applies to the last
command of the count complete.

TAPEIO processes each tape block just written. The XIOP
block pointer (CU@PTR) is updated to point to the
descriptor for the next block to be written to tape. If a
command chain is active, the completed CPW is rebuilt. The
outstanding block request count (CU@VMS) in the DSC is
decremented. A block finished response is generated with
status (ST@BTR) and sent to the mainframe via the MIOP,

The number of data blocks in the write-behind area (TQG@VMS)
and the total number of Buffer Memory sectors available for
allocation (TQ@MOS) are included in the response.

An operation status of OS$RT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPEIO rebuilds the command chain and calls
BMXSIO to initiate I/0.

An operation status of OS$BZ implies that the command chain
is continuing. TAPEIO calls BMXSIO to wait for the next
command to complete.

A status of OS$DN implies that all commands in the chain
are done. TAPEIO checks for new block requests added by
BCOM3 (CU@VMS). If the write-behind area is empty but a
block is currently being moved to Buffer Memory by BIOP,
TAPEIO waits for the move to complete by pushing on DC@QUB
in the TCB. TAPEIO builds a new CPW list and initiates I/0
by calling BMXSIO again. If no new block requests have
been received, and none are in process, TAPEIO clears the
I/0 Active flag (DC@IOF) and returns to TEX.

OS$HD status indicates that the mainframe has issued an
FC$FREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active




TAPEIO -

(continued)

TEX

command chain in progress. TAPEIO clears the I/0 Active
flag (DCQIOF) and returns to TEX.

TAPEIO detects the unit exception condition encountered by
examining the End-of-tape flag (CPB@TE). If the flag is
set, TAPEIO will backspace over the last block written to
leave room for end-of-volume labels. When processing label
data, the Block Finished flag (ST@BTR) is set along with
the End-of-tape flag (ST@EOT). If user data is being
written to tape, just the End-of-tape flag (ST@EOT) is set
in the mainframe response for the command. TAPEIO clears
the I/0 Active flag and returns to TEX. TEX will wait for
the next mainframe request with Next Valid Packet flag
(DD@NVP) set before processing is resumed.

Finally, an operation status of OS$ER indicates that the
BMX subsystem detected an error on the last command in
count complete. The error may be related to a hardware
condition (channel error, unit check, unit exception,
mid-block ccr) or a software detected condition (overrun).

Channel errors and software errors are detected when the
CPB@EC field is nonzero. A unit check error is present if
the Device Detected error flag (CPB@DD) is set. If either
type of error is present, TAPEIO calls TAPERR to create an
error recovery activity to retry the failed command.

TAPERR returns the status of the recovery attempt. A zero
status indicates the command was recovered successfully.
Normal end-of-command processing is performed, and I/0
continues.

TAPERR may also return an end-of-tape encountered status
(ST@EOT). The above procedure for unit exception
processing is invoked.

Any other status returned by TAPERR is considered
unrecovered and is returned to the mainframe in the
response packet (TQE@STS). TAPEIO clears the I/0 Active
flag and returns to TEX. TEX will wait for the next
mainframe request with Next Valid Packet flag (DD@NVP) set
before processing is resumed.

The return from TAPEIO causes TEX to release the two Local
Memory buffers (DC@BFA, DC@BFB). If an error response was
returned, the TCB error flag (DC@ERR) is set. The error
flag invokes the next valid packet mechanism for checking
mainframe requests.

TEX waits for the next mainframe request (DC@MSG) by
pushing on the request queue (DC@QUA) in the TCB.

SM-0046 G



4.3.5 END READ REQUESTS (FC$EOFR, FC$EORR, FC$EODR)

End read requests are issued by the mainframe tape driver to terminate
Interchange format data with appropriate end-of-file, end-of-record, or
end-of-data control words.

The end-of-file read request (FC$EOFR) is issued when a tape mark has
been encountered that is not followed by a label on a multiple file tape
dataset. An end-of-file record control word will be generated by TDEM1
to complete any partial sector of data residing in the Buffer Memory
read-ahead area.

The end-of-record read request (FC$EORR) is issued during special
end-of-volume processing by a mainframe user job. An end-of-record RCW
will be generated by TDEM1l to complete any partial sector of data
residing in the Buffer Memory read-ahead area.

The end-of-data read request (FC$EODR) is issued to generate the
end-of-file and end-of-data RCWs that terminate a user dataset or label

data stream.

End read requests are passed by BCOM3 to the BYPASS activity for
processing on the DATQU queue in the XIOP Kernel. BYPASS queues the
request to the appropriate TEX activity for the requested device. BYPASS
handles stacking of the user and label DSC tables by calling the DSCGET
routine. TEX calls the TAPEND routine for the end read processing.

Figure 4-5 shows the processing of end read requests.

BCOM3 - Checks for a TCB present for the requested device
(BDV@CP). 1If it is not present, a protocol error response
is sent to the mainframe. BCOM3 queues the request to the
BYPASS activity on the DATQU in the Kernel. BYPASS is
activated, if waiting, by popping the TIMQU in the Kernel.

BYPASS - Dequeues the next request from DATQU and locates the TCB
for the requested device. The Hold Data flag (DD@HLD) in
the request is examined. If it is set and the user DSC
table has not been saved, DSCGET is called. Likewise, if
the Hold Data flag is not set and the user DSC table is
being held (DC@DHU, DC@DHL), DSCGET is called to restore
the stacked DSC table (DC@DSU, DC@DSL).

SM-0046 G 4-37




(continued)

BYPASS

TEX

TAPEND

FC$EOFR
FC$EORR
FC$EODR

BCOM3
Pop

Call/Return
BYPASS DSCGET

Pop

v

]

Call/Return

response to CPU 1507

Figure 4-5. Processing of End Read Requests

- An End Read request from the mainframe may include a

request to append (DD@APP) the contents of a held data
stream (DDE@HLD) to the active data stream. If BYPASS finds
no hold data stream (DC@DHU, DC@DHL), a protocol error
response is returned to the mainframe.

BYPASS activates the TEX activity by popping DCRQUA and
placing the mainframe request on the DC@MSG queue.

BYPASS processes all requests queued to it by BCOM3 and
waits on TIMQU when finished.

Calls the TAPEND routine to initiate End Read processing
for the request.

Begins processing by checking the Append Data flag (DD@APP)
in the request. If it is set, the write-behind data
described by the held DSC (DC@DHU, DC@DHL) is appended to
the active read data stream (DC@DSU, DC@DSL).

SM-0046 G



TAPEND
(continued)

BUFMAN

TAPEND

SM-0046 G

Write-behind data is appended by copying the range of
buffer descriptor entries described by the XIOP block
pointer (CU@GPTR) and the BIOP block pointer (NX@PTR) in the
held DSC header to the active DSC at the bottom pointer
(CU@BTM). A protocol error check is made to ensure that
all descriptors copied from the held DSC will fit in the
active read DSC. The count of data sectors in the
read-ahead area (CUGVMS) is adjusted by the amount of data
appended, plus any control words that will be added by
TDEM1 when the data is moved to Central Memory.

After any append processing is complete, TAPEND checks the
function code in the request for an end-of-file or
end-of-data read. If either is requested, a call to BUFMAN
is made to allocate a buffer descriptor entry for the EOF
or EOD block to be added.

Before allocating a buffer for the request, BUFMAN
deallocates buffers for any data previously transferred to
the mainframe. The top and BIOP (NX@PTR) pointers mark
this range of descriptors. After deallocation, the top
pointer is adjusted to equal the BIOP pointer.

BUFMAN allocates a single buffer, based on the function
code in the request being other than read or write. A
check is made to determine if the descriptor for the buffer
will fit in the DSC. If not, an error code (1) is returned
to TAPEND. If a single buffer is not available, an error
code (2) is returned to TAPEND.

Returns a protocol error to the mainframe if an error
status is returned from BUFMAN,

If allocation was successful, the descriptor for the buffer
just allocated is marked with the appropriate status
(BF@STA) for end-of-file (MD$EOF) or end-of-data (MD$EOD).
The count of sectors in the read-ahead area (CURGVMS) is
adjusted to include the control words to be added by TDEM1
when the data is transferred to Central Memory.

If an end-of-record read is requested instead of EOF or
EOD, the last partial block, if any, in the read-ahead area
is to be completed. A call to BUFMAN is not needed because
the descriptors for the partial block are already present
in the DSC. The status field (BF@STA) for each descriptor
of the partial block is marked with the end-of-record
(MD$EOV) status. This causes TDEM1 in the BIOP to set the
Null flag in the end of record control word for the block
when the partial sector containing the end of the block is
transferred to Central Memory.




TAPEND - TAPEND generates a response containing the count of data
(continued) sectors in the read-ahead area (TQEVMS) and the number of
unallocated buffers in Buffer Memory (TQ@MOS), and sends it
to the mainframe before returning to TEX.

TEX Waits for the next mainframe request (DC@MSG) by pushing on
the request queue (DC@QUA) in the TCB.

4.3.6 NO-OP REQUEST (FC$NOOP)

The No-op request is issued by the mainframe tape driver to guarantee
that all outstanding mainframe requests have been processed by the tape
subsystem. The request is typically used to clear any outstanding data
transfer requests after an error or end-of-file condition is reported.

No-op requests are passed by BCOM3 to the BYPASS activity for processing
on the DATQU queue in the XIOP Kernel. BYPASS queues the request to the
appropriate TEX activity for the requested device. BYPASS handles
stacking of the user and label DSC tables by calling the DSCGET routine.
TEX handles discarding of data in the user and label DSC tables by
calling TAPDIS.

Figure 4-6 shows the processing of a no-op request.

I FC$NOOP l

BCOM3
Pop
Call/Return
BYPASS DSCGET
Pop

Call/Return Call/Return

response to CPU 1508

Figure 4-6. Processing of No-op Requests

4-40 SM-0046 G



BCOM3

BYPASS

TEX

TAPDIS

BUFMAN

TEX

SM-0046 G

Checks for a TCB present for the requested device
(BDV@CP). If no TCB is present, a protocol error response
is sent to the mainframe. BCOM3 queues the request to the
BYPASS activity on the DATQU in the Kernel. BYPASS is
activated, if waiting, by popping the TIMQU in the Kernel.

Dequeues the next request from DATQU and locates the TCB
for the requested device. The Hold Data flag (DD@HLD) in
the request is examined. If it is set and the user DSC
table has not been saved, DSCGET is called. If the Hold
Data flag is not set and the user DSC table is being held
(DC@DHU, DC@DHL), DSCGET is called to restore the stacked
DSC table (DC@DSU, DC@DSL).

The residual sector count (DC@RSC) in the TCB is cleared to
prevent any new data transfer requests to TDEM1 by TAPEIO.

BYPASS activates the TEX activity by popping DCGQUA and
placing the mainframe request on the DC@MSG queue.

BYPASS processes all requests queued to it by BCOM3 and
waits on TIMQU when finished.

Calls the TAPDIS routine to deallocate buffers for the
active or held DSCs if the Discard User Data flag (DD@DUD),
or Discard Label Data flag (DD@DLD) is set in the request.
TEX waits for all data transfers in progress to complete
before calling TAPDIS by pushing on the DCEQUB queue in the
TCB.

Calls BUFMAN to discard the data buffers for the user data
DSC and label DSC. The user data DSC may be the active DSC
or the held DSC. TAPDIS determines where the user DSC can
be found and passes the appropriate parameter (FN$DISC,
FN$DISCH) to BUFMAN. The label DSC can only be present
when a user DSC is being held.

Deallocates all buffers described by the range of
descriptors between the top (CU@TOP) and bottom (CUG@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

Generates a response with a 0 status field (TQ@STS) and
sends it to the mainframe.

TEX waits for the next mainframe request (DC@MSG) by
pushing on the request queue (DC@QUA) in the TCB.




4.3.7 POSITIONING REQUESTS (FC$FWFIL, FC$FWSPC, FC$BKFIL, FC$BKSPC)

The mainframe driver may issue tape positioning requests to the tape
subsystem to forward or backward space some number of files or blocks on
the tape. Tape marks delimit file boundaries during positioning.

Positioning requests are passed by BCOM3 to the appropriate TEX activity
for processing on the DC@MSG queue in the TCB for the requested device.
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX
handles discarding of data in the user and/or label DSC tables by calling
TAPDIS. TEX calls TAPMOV to process the position request.

Figure 4-7 shows the processing of positioning requests.

FCSFWFIL
FCSFWSPC
FCSBKFIL
FC$BKSPC
BCOM3
Pop
Call/Return Call/Return
Call/Return
TAPMOV
Call/Return
Call/Return on error

rBMXSIO J I TAPERRj
v

Error response to CPU
Error message to XIOP console

v

response(s) to CPU 1509

Figure 4-7. Processing of Positioning Requests

4-42 SM-0046 G



BCOM3

TEX

TAPDIS

BUFMAN

TEX

TAPMOV

SM-0046 G

Checks for a TCB present for the requested device (BDV@CP),

If not present, a protocol error response is sent to the
mainframe. BCOM3 queues the request to the TEX activity on

DC@MSG queue in the TCB. TEX is activated, if waiting, by
popping the DC@QUA gqueue in the TCB.

If the Discard User Data flag (DD@DUD) or Discard Label
Data flag (DD@DLD) is set in the request, TEX calls the
TAPDIS routine to deallocate buffers for the active or held
DSCs. TEX waits for all data transfers in progress to
complete before calling TAPDIS by pushing on the DC@QUB
queue in the TCB.

Calls BUFMAN to discard the data buffers for the user data
DSC and label DSC. The user data DSC may be the active DSC
or the held DSC. TAPDIS determines where the user DSC can
be found and passes the appropriate parameter (FN$DISC,
FN$DISCH) to BUFMAN. The label DSC can only be present
when a user DSC is being held.

Deallocates all buffers described by the range of
descriptors between the top (CU@TOP) and bottom (CU@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

Calls TAPMOV to process the positioning request.

Provides the nondata I/0 interface to the driver software
in the BMX subsystem for the TEX activity. The interface
uses the Command Parameter Block (CPB@) in the TCB and
calls to the BMXSIO routine. The CPB contains the device
command and response parameters that describe the I/0 state
during device processing.

TAPMOV uses the requested block count (TQ@RBC) in the
packet to determine the number of blocks or files to be
skipped.

TAPMOV builds single positioning commands for the BMX
subsystem. Each command is stored in a Channel Program
Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once
for each block or file to be skipped.

TAPMOV checks the operation status (0OS$) when BMXSIO
returns.

An operation status of OS$RT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPMOV calls BMXSIO to restart the I/0.




TAPMOV
(continued)

- An operation status of OS$IP implies that the command is

not complete. The control unit normally presents an
initial status to the BMX subsystem on positioning commands
that may take a long time to complete. The initial status
indicates that the control unit has disconnected from the
channel and will present ending status when the command is
complete. This initial channel end status is reflected
back to TAPMOV as an OS$IP operation status. TAPMOV calls
BMXSIO to wait for the ending status of the command.

A status of OS$DN implies that the command completed
successfully. TAPMOV checks for additional blocks or files
to skip. If the requested count is not exhausted, TAPMOV
calls BMXSIO to repeat the command. If the request is
complete, TAPMOV generates a final response to the
mainframe and returns to TEX.

OS$HD status indicates that the mainframe has issued an
FC$FREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active
command in progress. TAPMOV generates a response to the
mainframe with the not ready status bit (ST@RDY) set and
returns to TEX.

Finally, an operation status of OS$ER indicates that the
BMX subsystem detected an error on the last position
command. The error must be related to a hardware condition
(channel error, unit check, unit exception) because no data
I/0 is active.

TAPMOV detects the unit exception condition encountered by
examining the ending device status (CPB@DS) for the unit
exception status bit (ST$UE). An end-of-file status
(ST@EOF) is returned in the mainframe response if a space
block function was requested. TAPMOV returns to TEX in
this case.

The unit exception condition is normal status for file
positioning functions. Processing continues if additional
files are to be skipped.

Channel errors and software errors are detected when the
CPB@EC field is nonzero. A unit check error is present if
the ending device status (CPB@DS) has the unit check status
bit (ST$UC) set. If either type of error is present,
TAPMOV calls TAPERR to create an error recovery activity to
retry the failed command.

TAPERR returns the status of the recovery attempt. A zero
status indicates the command was recovered successfully.

SM-0046 G



TAPMOV - Any other status returned by TAPERR is considered
(continued) unrecovered and is returned to the mainframe in the
response packet (TQ@STS). TAPMOV returns to TEX.

TEX - If TAPMOV detected an error, TEX sets the error flag
(DC@ERR) to invoke the next valid packet mechanism.

TEX waits for the next mainframe request (DCE@MSG) by
pushing on the request queue (DC@QUA) in the TCB.

4.3.8 LOAD DISPLAY REQUEST (FC$DSP)

The mainframe driver issues the load display request to the tape
subsystem to display a volume serial number (VSN) on the display panel of
a cartridge type tape device. The load display request can also be used
to clear a previous VSN shown on the display.

Load display requests are passed by BCOM3 to the appropriate TEX activity
for processing on the DC@MSG queue in the TCB for the requested device.
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX
handles discarding of data in the user and label DSC tables by calling
TAPDIS. TAPMOV is called to process the display request.

Figure 4-8 shows the processing of a display request.

BCOM3 - Checks for a TCB present for the requested device (BDV@ECP).
If not present, a protocol error response is sent to the
mainframe. BCOM3 queues the request to the TEX activity on
DC@MSG queue in the TCB. TEX is activated, if waiting, by
popping the DC@QUA queue in the TCB.

TEX - If the Discard User Data flag (DD@DUD) or Discard Label
Data flag (DD@DLD) is set in the request, TEX calls the
TAPDIS routine to deallocate buffers for the active or held
DSCs. TEX waits for all data transfers in progress to
complete before calling TAPDIS by pushing on the DC@QUB
queue in the TCB.

TAPDIS - Calls BUFMAN to discard the data buffers for the user data
DSC and label DSC. The user data DSC may be the active DSC
or the held DSC. TAPDIS determines where the user DSC can
be found and passes the appropriate parameter (FN$DISC,
FN$DISCH) to BUFMAN. The label DSC can only be present
when a user DSC is being held.

SM-0046 G 4-45




FC$DSP

Call/Return

Call/Return Call/Return

Call/Return

TAPMOV

Call/Return
on error

BMXSIO

J [7 TAPERR l

!

Error response to CPU
Error message to XIOP console

v

response to CPU 1510

BUFMAN -

TEX -

TAPMOV -

Figure 4-8. Processing of Display Requests

Deallocates all buffers described by the range of
descriptors between the top (CU@TOP) and bottom (CU@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

Ensures that the type of the requested device is a
cartridge tape unit. If not, a protocol error response is
returned to the mainframe.

TEX calls TAPMOV to process the display request.

Provides the nondata I/0 interface to the driver software
in the BMX subsystem for the TEX activity. The interface
uses the Command Parameter Block (CPB@) in the TCB and
calls to the BMXSIO routine. The CPB contains the device
command and response parameters that describe the I/0 state
during device processing.

SM-0046 G



TAPMOV
(continued)

SM-0046 G

- TAPMOV copies the display data from the request packet to a

Local Memory scratch buffer. Up to 16 bytes of data,
preceded by a function code byte, may be displayed.

TAPMOV builds a single load display command for the BMX
subsystem. The command is stored in a Channel Program Word
(CPW@) structure in the CPB. TAPMOV calls BMXSIO to issue
the device command.

TAPMOV checks the operation status (OS$) when BMXSIO
returns.

An operation status of OS$SRT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPMOV calls BMXSIO to restart the I/O.

An operation status of OS$IP or OS$BZ implies that the
command is not complete. TAPMOV calls BMXSIO to wait for
the ending status of the command.

A status of OS$DN implies that the display command
completed successfully. TAPMOV sends a response packet to
the mainframe and returns to TEX.

OS$HD status indicates that the mainframe has issued an
FC$FREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active
command in progress. TAPMOV generates a response to the
mainframe with the not ready status bit (ST@RDY) set and
returns to TEX.

Finally, an operation status of OS$ER indicates that the
BMX subsystem detected an error on the load display
command. The error must be related to a hardware condition
(channel error, unit check, unit exception) because no data
I1/0 is active,.

Channel errors and software errors are detected when the
CPBREC field is nonzero. A unit check error is present if
the ending device status (CPB@DS) has the unit check status
bit (ST$UC) set. If either type of error is present,
TAPMOV calls TAPERR to create an error recovery activity to
retry the failed command.

TAPERR returns the status of the recovery attempt. A
status of 0 indicates that the command was recovered
successfully. Any other status returned by TAPERR is
considered unrecovered and is returned to the mainframe in
the response packet (TQE@STS). TAPMOV returns to TEX.




TEX - Waits for the next mainframe request (DC@MSG) by pushing on
the request queue (DCE@QUA) in the TCB.

4.3.9 REMOUNT REQUEST (FC$RMNT)

The mainframe driver issues the remount request to the tape subsystem
when the end-of-volume, in a multiple volume dataset, is encountered. A
remount request is also issued when an unrecovered write error forces
premature termination of a tape volume. The remount request differs from
the mount request in that the data streams associated with the original
device are carried over to the new device.

Remount requests are passed by BCOM3 to the appropriate TEX activity for
processing on the DC@MSG queue in the TCB for the requested device.
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX
calls the BMXOPE routine in the BMX subsystem to process the request.
BMXOPE calls BMXTPO for the actual mount processing.

Figure 4-9 shows the processing of a remount request to the same device.
Figure 4-10 shows the processing of a remount request to a new device.

BCOM3 - BCOM3 checks the Device Table Open flag (BDV@OP) to see if
a TEX activity exists for the requested device. If not
open, the BMXOPE activity is created to process the
request. If the activity cannot be created, a protocol
error response is sent to the mainframe.

If the requested device is open, BCOM3 checks for a TCB
present (BDV@CP). If not present, a protocol error
response is sent to the mainframe. BCOM3 queues the
request to the TEX activity on DC@MSG queue in the TCB,
TEX is activated, if waiting, by popping the DCE@QUA queue
in the TCB.

TEX - TEX calls the BMXOPE routine to process the request to
remount to the original device.

BMXOPE - BMXOPE examines the previous device ordinal (TQ@PDV) in the
request to determine if a remount is requested on the
original device or a new device.

If a new device is requested, BMXOPE checks to see if a
device activity currently owns the device (BDV@AI). This
can occur if a confiquration change is taking place on the
device. If a device activity exists, BMXOPE waits for it
to release the device, and assigns itself as the new device
activity.

BMXOPE marks the device open (BDV@OP) and does a Goto to
the BMXTPO routine for mount processing.

4-48 SM-0046 G



Remount to same device

Goto

Call/Return
BMXTPO DSCGET

Call/Return
Initial/final
BMXSIO
response to CPU

Return

1511

Figure 4-9. Processing of a Remount Request to the Same Device

BMXTPO

SM-0046 G

- If a remount to a new device is requested, BMXTPO allocates

control tables for the TEX activity. A TCB table is
allocated (DC@) which contains the Command Parameter Block
(CPB@) used to interface to the BMX subsystem. If Data
Stream Control tables (DSCs) are present for the original
device, their addresses are moved to the new TCB.

Otherwise, a new DSC table is allocated by a call to DSCGET.

If a remount to the original device is requested, the TCB
associated with the original device is reused. A new DSC
is allocated by a call to DSCGET, if one is not already
present for the device.




FC$RMNT

|

Remount to same device

I

BCOM3

Create

Call/Return

Call/Return

m Initial/final
response to CPU

1512

@
o
Ind
(]

Figure 4-10. Processing of a Remount Request to a New Device

BMXTPO
(continued)

TEX

-~ BMXTPO arms the drive for load point. If the drive is not

ready with a mounted tape at load point, an initial
response indicating the not ready status (ST@RDY) is
returned to the mainframe. When the drive is ready with a
tape at load point, final status (ST@BOT) is sent to the
mainframe along with write protect status (ST@NRW).

If the remount is to the original device, BMXTPO returns to
the original TEX activity. Otherwise, BMXTPO does a Goto
TEX to become the activity for the new device.

Waits for the next mainframe request (DCE@MSG) by pushing on
the request queue (DC@QUA) in the TCB.

SM-0046 G



4.3.10 REWIND REQUESTS (FCSREWND, FC$RWND1, FCSRWND2)

The mainframe driver issues rewind requests to the tape subsystem to
cause a mounted tape to be rewound to load point. The FC$RWND1l and
FC$RWND2 functions specify that one or two tapemarks should be written
before the rewind.

Rewind requests are passed by BCOM3 to the appropriate TEX activity for
processing on the DC@MSG queue in the TCB for the requested device.
BCOM3 pops the TEX activity waiting on the DC@QUA queue jin the TCB. TEX
handles discarding of data in the user and label DSC tables by calling
TAPDIS. TAPMOV is called to process the position request.

Figure 4-11 shows the processing of rewind requests.

FCSREWND

FCSRWND1
FC$RWND2

BCOM3

Pop

A
[::::; Call/Return Call/Return
TEX TAPDIS BUFMAN

Call/Return

\ 4

| TAPMOV
Call/Return

Call/Return on error
A

[7 BMXSIO I I TAPERR I

Error response to CPU
Error message to XIOP console

4

'

response (s) to CPU 1513
Figure 4-11. Processing of Rewind Requests

BCOM3 - Checks for a TCB present for the requested device (BDV@CP).
If it is not present, a protocol error response is sent to
the mainframe. BCOM3 queues the request to the TEX
activity on DC@MSG queue in the TCB. TEX is activated, if
waiting, by popping the DC@QUA queue in the TCB.

SM-0046 G 4-51




TEX

TAPDIS

BUFMAN

TEX

TAPMOV

If the Discard User Data flag (DD@DUD) or Discard Label
Data flag (DD@DLD) is set in the request, TEX calls the
TAPDIS routine to deallocate buffers for the active or held
DSCs. TEX waits for all data transfers in progress to
complete before calling TAPDIS by pushing on the DCE@QUB
queue in the TCB.

TAPDIS calls BUFMAN to discard the data buffers for the
user data DSC and label DSC. The user data DSC may be the
active DSC or the held DSC. TAPDIS determines where the
user DSC can be found and passes the appropriate parameter
(FN$DISC, FN$DISCH) to BUFMAN. The label DSC can only be
present when a user DSC is being held.

BUFMAN deallocates all buffers described by the range of
descriptors between the top (CU@TOP) and bottom (CU@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CUGPTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

TEX calls TAPMOV to process the rewind request.

TAPMOV provides the nondata I/O interface to the driver
software in the BMX subsystem for the TEX activity. The
interface uses the Command Parameter Block (CPB@) in the
TCB and calls to the BMXSIO routine. The CPB contains the
device command and response parameters that describe the
I/0 state during device processing.

TAPMOV writes zero, one, or two tape marks before
rewinding, based on the function requested.

TAPMOV builds write tape mark and rewind commands for the
BMX subsystem. Each command is stored in a Channel Program
Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once
for each tape mark to be written and once for the rewind
command.

TAPMOV checks the operation status (0S$) when BMXSIO
returns.

An operation status of OS$RT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPMOV calls BMXSIO to restart the I/O.

SM-0046 G



TAPMOV
(continued)

SM-0046 G

- An operation status of OS$IP implies that the command is

not complete. The control unit normally presents an
initial status to the BMX subsystem on rewind commands that
may take a long time to complete. The initial status
indicates that the control unit has disconnected from the
channel and will present ending status when the command is
complete. This initial channel end status is reflected
back to TAPMOV as an OS$IP operation status.

TAPMOV generates an initial response packet to the
mainframe with the Beginning-of-tape flag (ST@BOT)

cleared. TAPMOV calls BMXSIO to wait for the ending status
of the command.

A status of OS$DN implies that the device command completed
successfully. For rewind commands, OS$DN status may
instead indicate that the tape drive was manually reset and
later made ready again.

TAPMOV returns a response to the mainframe containing the
block finished status bit (ST@BTR) and EOF status bit
(ST@EOF) for each tape mark written.

On completion of a rewind command, TAPMOV reads the sense
bytes from the device to check that the tape is really at
load point (SB$LPT). If the tape has not reached load
point, TAPERR is called to determine and report the cause
of the failure. If the rewind completes successfully, the
beginning of tape status bit (ST@BOT) is returned to the
mainframe. Otherwise, the error status from TAPERR is
returned. TAPMOV returns to TEX.

OS$HD status indicates that the mainframe has issued an
FC$FREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active
command in progress. TAPMOV generates a response to the
mainframe with the not ready status bit (ST@RDY) set and
returns to TEX.

Finally, an operation status of OS$ER indicates that the
BMX subsystem detected an error on a write tape mark or
rewind command. The error must be related to a hardware
condition (channel error, unit check, unit exception),
because no data I/O is active.

Channel errors and software errors are detected when the
CPB@EC field is nonzero. A unit check error is present if
the ending device status (CPB@DS) has the unit check status
bit (ST$UC) set. 1If either type of error is present,
TAPMOV calls TAPERR to create an error recovery activity to
retry the failed command.




TAPMOV - TAPERR returns the status of the recovery attempt. A
(continued) status of 0 indicates that the command was recovered
successfully.

Any other status returned by TAPERR is considered
unrecovered and is returned to the mainframe in the
response packet (TQ@STS). TAPMOV returns to TEX.

TEX - If TAPMOV detected an error, TEX sets the error flag
(DCEERR) to invoke the next valid packet mechanism. TEX
waits for the next mainframe request (DC@MSG) by pushing on
the request queue (DC@QUA) in the TCB.

4.3.11 UNLOAD REQUESTS (FC$UNLD, FC$UNLD1l, FC$UNLD2)

The mainframe driver issues unload requests to the tape subsystem to
cause a mounted tape to be rewound and unloaded. The FC$UNLD1l and
FCSUNLD2 functions specify that one or two tapemarks should be written
before the rewind and unload.

Unload requests are passed by BCOM3 to the appropriate TEX activity for
processing on the DC@MSG queue in the TCB for the requested device.
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX
handles discarding of data in the user and label DSC tables by calling
TAPDIS. TAPMOV is called to process the unload request.

Figure 4-12 shows the processing of unload requests.

BCOM3 - Checks for a TCB present for the requested device
(BDVE@CP). If it is not present, a protocol error response
is sent to the mainframe. BCOM3 queues the request to the
TEX activity on DC@MSG queue in the TCB. TEX is activated,
if waiting, by popping the DC@QUA queue in the TCB.

TEX - If the Discard User Data flag (DD@DUD) or Discard Label
Data flag (DD@DLD) is set in the request, TEX calls the
TAPDIS routine to deallocate buffers for the active or held
DSCs. TEX waits for all data transfers in progress to
complete before calling TAPDIS by pushing on the DC@QUB
queue in the TCB.

TAPDIS - Calls BUFMAN to discard the data buffers for the user data
DSC and label DSC. The user data DSC may be the active DSC
or the held DSC. TAPDIS determines where the user DSC can
be found and passes the appropriate parameter (FN$DISC,
FN$DISCH) to BUFMAN. The label DSC can only be present
when a user DSC is being held.

4-54 SM-0046 G



FCSUNLD
FC$UNLD1
FC$UNLD2

I BCOM3 I

Pop

Call/Return Call/Return
TAPDIS

Call/Return
TAPMCV
Call/Return
Call/Return on error
BMXSIO *] l TAPERR ]

l

Error response to CPU

¢’ Error message to XIOP console

response (s) to CPU 1514

Figure 4-12. Processing of Unload Requests

BUFMAN - Deallocates all buffers described by the range of
descriptors between the top (CU@TOP) and bottom (CU@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CUEPTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

TEX - Calls TAPMOV to process the unload request.

TAPMOV - Provides the nondata I/0O interface to the driver software
in the BMX subsystem for the TEX activity. The interface
uses the Command Parameter Block (CPB@) in the TCB and
calls to the BMXSIO routine. The CPB contains the device
command and response parameters that describe the I/O state
during device processing.

TAPMOV writes zero, one, or two tape marks before
unloading, based on the function requested.

SM-0046 G 4-55




TAPMOV
(continued)

- TAPMOV builds write tape mark and unload commands for the

BMX subsystem. Each command is stored in a Channel Program
Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once
for each tape mark to be written and once for the unload
command.

TAPMOV checks the operation status (OS$) when BMXSIO
returns.

An operation status of OS$RT indicates that the device
command should be retried. This typically occurs when
Channel Command Retry status is detected by the BMX
subsystem. TAPMOV calls BMXSIO to restart the I/0.

An operation status of OS$IP implies that the command is
not complete. The control unit normally presents an
initial status to the BMX subsystem on unload commands that
may take a long time to complete. The initial status
indicates that the control unit has disconnected from the
channel and will present ending status when the command is
complete. This initial channel end status is reflected
back to TAPMOV as an OS$IP operation status.

TAPMOV generates an initial response packet to the
mainframe with the Not Ready status flag (ST@RDY) cleared.
TAPMOV calls BMXSIO to wait for the ending status of the
command.

A status of OS$DN implies that the command completed
successfully. For unload commands, OS$§DN status may
instead indicate that the tape drive was manually reset and
later made ready again.

TAPMOV returns a response to the mainframe containing the
block finished status bit (ST@BTR) and EOF status bit
(ST@EOF) for each tape mark written.

OS$HD status indicates that the mainframe has issued an
FCSFREE request to halt all processing on the device.
BMXSIO will detect this condition and terminate any active
command in progress. TAPMOV generates a response to the
mainframe with the Not Ready status flag (ST@RDY) set and
returns to TEX.

Finally, an operation status of OS$ER is reported by the
BMX subsystem when an error occurs on a write tape mark
command or as normal ending status for an unload command.
(A unit check condition is reported by the device at
completion of an unload.)

SM-0046 G



TAPMOV - Channel errors and software errors are detected when the
(continued) CPB@EC field is nonzero. A unit check error is present if
the ending device status (CPB@DS) has the unit check status
bit (ST$UC) set. If either type of error is present for a
write tape mark command, TAPMOV calls TAPERR to create an
error recovery activity to retry the failed command.

The interpretation of error status for an unload command is
a bit more complicated. TAPERR is called to handle any
channel errors or software errors. A unit check error on
initial status from the device is considered an error
condition. TAPERR is called to determine and report the
cause of the error. If a unit check error is presented by
the device on ending status, TAPMOV reads the sense bytes
for the device to check the Intervention Required sense bit
(SB$IVR). If the bit is set, the unload completed
successfully. The Not Ready status flag (STE@RDY) is set in
the response packet and sent to the mainframe to indicate
the unload request is complete. If the Intervention
Required sense bit is not set, the unload may not have
completed successfully. In this case, TAPERR is called to
determine the cause and report the error.

TAPERR returns the status of the recovery attempt. A zero
status indicates the command was recovered successfully.

Any other status returned by TAPERR is considered
unrecovered and is returned to the mainframe in the
response packet (TQ@STS). TAPMOV returns to TEX.

TEX - TEX sets the error flag (DC@ERR) to invoke the next valid
packet mechanism if TAPMOV detected an error.

TEX waits for the next mainframe request (DCEMSG) by
pushing on the request queue (DC@QUA) in the TCB.

4.3.12 FREE REQUEST (FC$FREE)

The Free request is issued by the mainframe tape driver to terminate
processing and close a device. All resources allocated at mount time are
released at close.

Free requests are passed by BCOM3 to the BYPASS activity for processing
on the DATQU queue in the XIOP Kernel. BYPASS queues the request to the
appropriate TEX activity for the requested device. BYPASS handles
stacking of the user and label DSC tables by calling the DSCGET routine.
TEX handles discarding of data in the user and/or label DSC tables by
calling TAPDIS. TEX calls BMXOPE for close processing.

SM-0046 G 4-57




Figure 4-13 shows the processing of free requests.

| FC$NOOP I

Pop
zcom3
Pop
Call/Return
BYPASS |€————P| DSCGET
Pop
Call/Return Call/Return
Goto
BMXOPE
Call/Return Call/Return
I BMXAIO | | TAPFUN

BCOM3

v

response to CPU

1515

Figure 4-13, Processing of Free Requests

- Checks for a TCB present for the requested device (BDVECP).

If it is not present, a protocol error response is sent to
the mainframe.

Some routine of the Tape Exec activity for the device may
be waiting for a prior I/O or mount request to complete.
In this case, the Tape Exec activity will be pushed on the
task wait queue (BDV@TQ) of the device table. BCOM3 pops
the Tape Exec activity, if waiting. The Free Pending flag
(CPB@FP) is set in the CPB section of the TCB to signal
that processing should terminate.

BCOM3 queues the request to the BYPASS activity on the

DATQU in the Kernel. BYPASS is activated, if waiting, by
popping the TIMQU in the Kernel.

SM-0046 G



BYPASS

TEX

DSCGET

BUFMAN

TEX

BMXOPE

SM-0046 G

- Dequeues the next request from DATQU and locates the TCB

for the requested device. The Hold Data flag (DD@HLD) in
the request is examined. If the flag is set and the user
DSC table has not been saved, DSCGET is called. If the
Hold Data flag is not set and the user DSC table is being
held (DC@DHU, DC@DHL), DSCGET is called to restore the
stacked DSC table (DC@DSU, DC@DSL).

The residual sector count (DCE@RSC) in the TCB is cleared to
prevent any new data transfer requests to TDEM1 by TAPEIO.

BYPASS activates the TEX activity by popping DC@QUA and
placing the mainframe request on the DCE@MSG queue.

BYPASS processes all requests queued to it by BCOM3 and
waits on TIMQU when finished.

Calls DSCGET to deallocate any active or held DSC present
in the TCB. TEX waits for all data transfers in progress
to complete before calling DSCGET by pushing on the DC@QUB
queue in the TCB.

Calls BUFMAN to release all buffers for the DSC (DC@DSU,
DC@DSL). DSCGET then releases the Buffer Memory for the
DSC.

Deallocates all buffers described by the range of
descriptors between the top (CURGTOP) and bottom (CU@BTM)
pointers in the XIOP DSC header. After deallocation, the
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted
to equal the bottom pointer. The remainder of the XIOP and
BIOP sections of the DSC header are cleared.

Clears the Free Pending flag (CPB@FP) in the CPB section of
the TCB. TEX does a Goto BMXOPE to close the device.

Reads the sense bytes for the device to relieve any
contingent connection caused by an earlier unit check. The
cartridge display panel is cleared, if appropriate. A
selective reset command is issued for the device by a call
to BMXAIO. BMXOPE releases the Local Memory for the TCB
associated with the device, and sends a response to the
mainframe for the free request.

The Tape Exec activity terminates.




4.4 ERROR RECOVERY PROCESSING

Each device activity initiates error recovery by calling the TAPERR
overlay. Error recovery may also be called recursively when new errors
are encountered during recovery. Alternating or cyclic errors could
cause an indefinite number of error recovery activities to be created.
Kernel SMOD storage for activities would quickly be exhausted in such a
situation. The RCV$MAX parameter in APTEXT is used to limit the number
of recursive calls during error recovery. TAPERR returns the
nonoperational status (ST@NOP) when this limit is reached. The count of
error recovery levels in progress is stored in the TCB (DC@LEV). The
calling device activity and each subsequent level of error recovery wait
for a response on the DC@QUC queue in the TCB. Activities are queued in
LIFO order.

4.4.1 TAPERR ROUTINE

The TAPERR routine handles creation of error recovery activities. It
enforces the maximum level of recovery allowed. TAPERR returns the
ending recovery status to the calling routine. The TERROR or TCART
routine is created as the first overlay of each error recovery activity
based on the type of device in error. TCART is used for cartridge
devices and TERROR is used for noncartridge devices.

4.4.2 TERROR ROUTINE

The TERROR routine controls noncartridge device recovery. It is
responsible for decoding the type of error encountered, calling the
appropriate error subroutine, calling the TRTELL routine to display an
error message on the XIOP console, and creating an error packet to be
sent to the mainframe system log file.

TERROR begins by checking for a channel error or software error (CPBREC).
A software overrun error may have occurred on a device command that is
still active. TERROR calls BMXAIO to halt any device command that may be
in progress.

The ending device status is then examined for a unit check error (ST$UC).
If a unit check error is present, it may or may not be accompanied by the
device end status (ST$DE). The lack of device end status occurs when a
device has gone not ready, typically during a positioning or control
command. The absence of the device end status indicates that the device
will present ending status when readied. TERROR signals the BMX
subsystem to throw away the device ready status by clearing the
Request-in Expected flag (BDVE@RI) in the device table. This prevents the
BMX subsystem from reassigning ownership of a control unit path to the
device, because the device activity may terminate before the unit is
readied.

4-60 SM-0046 G



If not presented by the calling routine, the sense bytes for the device
are read. Each sense bit is checked in priority order by TERROR. The
sense bits are listed below in priority order along with the routine that
handles recovery for the error.

Sense Bit Routine
Equipment check TREQC
Bus out check TRBOC
Intervention required TRINR
Command reject TERROR
Hardware overrun TRORN
Load point detected TERROR
Data check TRDCK
Data security erase TERROR
Data converter check TERROR
Not capable TERROR
Id burst check TRIDB

If none of the device detected errors above are present, the TRCER
routine is called for recovery of timeouts, software, or channel errors.

4.4.3 TCART ROUTINE

The TCART routine controls cartridge device recovery. It is responsible
for decoding the type of error encountered, retrying the device command
in error, calling the TCTELL routine to display an error message on the
XIOP console, and creating multiple error packets to be sent to the
mainframe system log file. Multiple error packets are needed because the
sense bytes for cartridge devices will not fit in a single packet.

TCART begins by checking for a channel error or software error (CPB@EC).
A software overrun error may have occurred on a device command that is
still active. TCART calls BMXAIO to halt any device command that may be
in progress.

If not presented by the calling routine, the sense bytes for the device
are read. Sense byte 3 specifies the error recovery procedure (ERP) to
be used. Based on the ERP code and command, retries may be attempted by
calling the error recovery I/0 routines (TRWRT, TRRDF, TRRDB, or TAPFUN).

If no device-detected errors are specified by the ERP code, the TRCER
routine is called for recovery of timeouts, software, or channel errors.

SM-0046 G 4-61




4.4.4 RECOVERY SUBROUTINES

The following subsections describe the subroutines called by TERROR or
TCART to perform specific error recovery tasks.

4,4.4.1 Equipment check (noncartridge device only)

Equipment checks are unrecoverable. They generally point to a mechanical
problem that prevents tape motion.

TERROR calls TREQC. If Device End is not set, control returns
immediately with a status telling TERROR to ignore the equipment check
and go on to the next sense bit. If device end is set, TREQC checks the
sense bytes to see if reset was hit or if tape indicate is set. A reset
hit is reported by the ST@RST status. Tape indicate is reported as a
tape off the end of its reel (ST@LST). If neither is set, nonoperational
status (ST@NOP) is returned.

4.4.4.2 Bus-out check (noncartridge device only)

Bus out checks refer to parity errors between the channel and the control
unit. If device end is set and the command is a write, the tape is
backspaced to the start of record (TAPFUN). Recovery is attempted by
retrying the command six times before returning a nonoperational (ST@NOP)
status. Retry is accomplished by calling the subroutine responsible for
the failing command as follows:

Command Subroutine
Read forward TRRDF
Read reverse TRRDB

Write TRWRT
Others TAPFUN

4.4.4.3 Intervention required (noncartridge device only)

Intervention required means manual intervention is required to correct
the condition.

TERROR calls TRINR for processing. TRINR checks for device end; if set,
the return status tells TERROR to keep checking sense bytes. If the
current function is a rewind (CM$RWD) or unload (CM$RWU), intervention
required is ignored. Otherwise, TRINR checks to see if reset was hit or
if the tape went off the end of the reel, and it sets the appropriate
status.

4-62 SM-0046 G



4.4.4.4 Command reject, data converter check, and not capable

Command reject, data converter check, and not capable errors are all
unrecoverable. TERROR or TCART determines the appropriate status to
return. Command reject errors are checked for the presence of a write
ring during a write. If the write ring is missing, a ST@NRW status is
returned; otherwise, nonoperational (ST@NOP) is returned. Data converter
checks are returned as nonoperational (STEGNOP). Not capable is returned
as ST@NCP.

4.4.4.5 Data overrun (noncartridge device only)

Data overrun occurs when the channel cannot keep up with data flow to or
from the control unit. Recovery consists of retrying the I/0 six times
before returning unrecoverable error status. Retries are accomplished by
repositioning the tape (TAPFUN) and calling the appropriate subroutine
based on the command that failed.

4.4.4.6 Load point

Load point is set when a load point marker is sensed on the tape. TERROR
or TCART returns load point status (ST@BOT), unless load point was
encountered during an error recovery command.

4.4.4.7 Data check

Data check is set when an error is detected on the data being written to
or read from the tape. Recovery depends on the command in effect.

Write (noncartridge device only) - Write recovery consists of
repositioning the tape (TAPFUN), issuing an erase (TAPFUN), and retrying
the write (TRWRT). Fifteen attempts are made before returning an
unrecovered error.

Read (noncartridge device only) - Read recovery consists of repositioning
the tape (TAPFUN) and retrying the read (TRRDF). The read is retried 41
times with a tape cleaner sequence (TRCLN) issued after every fourth
retry. The tape cleaner sequence consists of moving the tape back over
the tape cleaner and then repositioning for the next retry. If the error
persists, read reverse recovery (TRRDB) is given 41 retries before
unrecovered error status is returned.

4.4.4.8 Data security erase

TERROR or TCART returns unrecoverable status (STENOP).

SM-0046 G 4-63




4.4.4.9 ID burst check (noncartridge device only)

ID burst check is set when an error occurs while writing the ID burst off
load point. Recovery consists of issuing a rewind (TAPFUN) and retrying
the command. Write commands are retried 15 times. Write tapemark and
erase commands are retried 16 times.

4.4.5 ERROR DISPLAY

After the error recovery subroutine returns to TERROR or TCART, TERROR or
TCART calls the TRTELL or TCTELL overlay to record the error recovery
information in Buffer Memory and display a message on the XIOP Kernel
console. The message is in the following format:

hh:mm:ss err cmd rtec chn dev sta

hh:mm:ss Time when error occurred

err Type of error. See the list of tape device error messages
in the IOS operator's guides.

cmd Command in effect when error was detected. (See the list
of commands for tape device error messages in the IOS
operator's guides.)

rtc Number of retries issued to recover the error (decimal)
chn Channel on which the error was detected (octal)
dev Control-unit/device address at which the error was detected
sta Ending status:
RECOVERED
UNRECOVERED

4-64 SM-0046 G



5. BLOCK MULTIPLEXER CHANNEL INTERFACE

5.1 I0S BLOCK MUX (BMX) SUBSYSTEM OVERVIEW

The I0S Block Mux (BMX) subsystem is composed of the following software
routines, which are necessary to support the connection of IBM-compatible
devices to Cray computer systems:

Routine

Description

| BMXSIO

BMXDEM

IBMX

BMXCPU

BMXCON

BMXOPE

— SM-0046 G

The BMXSIO overlay is the device driver. It is the
interface between device activities and the BMX channel
driver (see figure 5-1). It is responsible for:

¢ Assigning the device path
e Initiating I/0 for the device
® Returning status to the device activity

The BMXDEM overlay is a demon activity responsible for
all I/0 between the channel and the device; see figure
5-1.

The IBMX routine is the Kernel-resident interrupt handler
for all BMX channel interrupts; see figure 5-1.

The BMXCPU overlay is responsible for the BMX table
structure and device configuration (see figures 5-2 and
5-3). These configurations are based on information in
the Configuration Table (CNT) passed to the IOS by the
CPU at startup time. See the COS Table Descriptions
Internal Reference Manual, publication SM-0045, for a
description of CNT.

The BMXCON overlay is responsible for configquring
individual BMX device components up or down. The
components include:

e BMX channels
® Attached control units
e Attached devices

The BMXOPE overlay is responsible for opening and closing
devices attached to the BMX subsystem.




BMXTPO

The BMXTPO overlay is responsible for
completing the open (tape mount) function.

These routines are described in more detail later in this section.

Dev 0 Dev 1 Dev 2
Activity Activity Activity
BMXSIO BMXSIO BMXSIO
{50 ]
BMXDEM Controller
| D2 I
' L )
\ .
]
' X IBMX
: ' Interrupt
: CLeceeem=~ Handler
\
]
\
]
]
L]
L L T U ap A, > Data
Handler
Legend

——P Linkage set up at configuration

----- - Linkage set up at device path assignment

1849

Figure 5-1.

BMX Overview

SM-0046 G



5.2 BMX CONFIGURATION

The table structure that describes the BMX subsystem reflects the
hardware configuration. There is a table for each component attached to
the BMX subsystem, and, as shown in the following figures, the way the
tables are structured corresponds to the interlinkages between the
hardware components.

Three basic structures can be configured in a BMX subsystem, as follows:

e Multiple paths to a single bank
e Single path to multiple banks
¢ Multiple paths to multiple banks

A path is the channel/control-unit pair used to issue I/0 to a device.

A bank is the set of control units all having access to the same set of
devices. A bank with four control units that all access the same eight
devices is represented as a 4-by-8 bank or configuration (4 control
units, 8 devices).

The total BMX configuration may be a combination of one or more
multiple-path, single-bank structures, along with one or more
single-path, multiple-bank structures, or multiple-path, multiple-bank
structures.

In figures 5-2, 5-3, and 5-4, the table structure diagrams represent the
three basic structures that can be configured. 1In each figure, the
hardware configuration is shown along with the table structure
representing it. The solid lines in the table structure diagrams show
the linkage that would be set up at configuration time; the broken lines
show linkage set up at the time of path assignment to a device.

5.3 BMX TABLES

All BMX tables are allocated and set up by BMXCPU based on information in
the CNT (Configuration Table) that is received from COS at startup. (See
the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for a description of CNT.) The CNT contains one entry per
device and one subentry for each path to that device.

SM-0046 G 5-3




5-4

CHT@
cuT@
BDV@
CBT@
DBT@

Figure 5-2.

Hardware

Channel
20

'

Channel

21

;

Controller Controller
0 1
Device Device
0 1

CHT@

Channel 20

cute y§

Controller

0

Table Structure

CHT@

Channel 21

¥ cure

BDV@

Device 0

Channel Table

5

4

CBT@

Bank 0

DBT@

I

¥

Controller 1

BDV@

Device 1

4

Control-unit Table

Device Table

Control Unit Bank

Device Bank

Bank 0

1118

A 2-by-2 Configuration (Multiple Path, Single Bank)

SM-0046 G



Channel
20
Controller Controller
—
0 1
Device Device
0-F 0-F

Table Structure
CHT@

1 Channel 20

Device 0-F

J—N Bank 0

cure CBTE
> >

—- Controller 0 " Bank 0
.. -
BDVE DBTE
> <

—> Bank 1

Device 0-F

CUT@ CBT@
L » >
: ———
s -p| Controller 1 Bank 1
ven —
: BDV@ DBT@
>

1119

Figure 5-3. Two l-by-1 Configurations (Single Path, Multiple Bank)

SM-0046 G




Channel
0

0

Controller

1

Controller

Hardware

Device
0-F

Device
0-F

Table Structure

Channel
1

Controller

0

Controller
1

Bank 0

Bank 1

CHT@

Channel 21

fecenees

CUTe

Controller 0

Figure 5-4.

CHT@
—] Channel 20
cuTe CBT@
— ¢
e Controller 0 Bank 0 <
> -
E BDV@ DBT@
: Cevice 0-F Bank 0 <
cuTe CBT@
L > <
-4 Controller 1 Bank 1
; BDVE DBT@
Device 0-F — Bank 1 -
‘> o

& : H
BDV@ o
Device 0-F | |
> S
cuTe :
|- :
Controller 1[@: "
. ..-:
BDVR :
Device 0-F g
> i

1811

A 2-by-1 Configuration (Multiple Path, Multiple Bank)

SM-0046 G



Pointers to lists of tables in the Kernel table area are as follows:

Pointer

Description

XCHT

XDEV

XCBT

XDBT

Figure 5-5.

SM-0046 G

Points to a list of Channel Tables (CHT@) for all
configured channels. The list is ordered by each
channel's offset from channel 20g (see figure 5-5).

Points to a list of Device Tables (BDV@) for all
configured devices. The list is ordered by each device's
logical ordinal number (see figure 5-6).

Points to a list of Control-unit Bank Tables (CBT@) for
all configured control units. The list is ordered by
logical bank numbers.

Points to a list of Device Bank Tables (DBT@) for all

configured devices. The list is ordered by logical bank
numbers.

Channel Table List

20 CHT@
XCHT | e
21
CHT@
CHT@
37
1850

Pointer to Channel Tables for Each Configured Channel




BDV Tables List
(by ordinal number)

0 BDV@

XDEV | '
\ BDV@
BDV@

1851

Figure 5-6. Pointer to Device Table for Each Configured Device

The following list briefly describes the BMX tables set up by BMXCPU
(tables with a single use are described more fully here than the
multipurpose tables). For field definitions and descriptions, see the
IOS Table Descriptions Internal Reference Manual, publication SM-0007.

Table Description
BDV@ Device Table; each configured device has a BMX Device Table

associated with it.

CBT@ Control-unit Bank Table; each configured control-unit bank
has a Control-unit Bank Table used for path assignment.
This table is composed of a header followed by a list of
pointers to all Control Unit Tables (CUT@) included in the
bank.

CHT@ Channel Table; each channel configured has a Channel Table
associated with it.

CPB@ Command Parameter Block. Each open device has a Command
Parameter Block associated with it. Where CPB@@LE
specifies the number of parcels, the CPB is the first

CPB@E@LE parcels of the Tape Control Block allocated by a
device activity when the device is opened.

cuTe Control Unit Table; each configured control unit has a
Control Unit Table.

5-8 SM-0046 G



DBT@ Device Bank Table: each Control-unit Bank Table has a
corresponding Device Bank Table. This table is used by
BMXDEM to find the Device Table corresponding to
asynchronous (request-in) interrupts received. The table
is composed of a header followed by a list of pointers to
the Device Tables (BDV@) representing all devices in the
bank.

5.4 CHANNEL PROGRAM WORD (CPW)

The CPW is the structure that conveys individual device commands from a
device activity to the BMX software. CPWs are issued singularly or in
lists, called command chains, and are classified into three types
depending on the command requirements:

® Control commands that do not transfer any data to or from the
device.

® Data transfer commands that use Local Memory only for data.

¢ Data transfer commands that use both Local Memory and Buffer
Memory for data.

When a device activity calls the BMX device driver to issue commands, it
stores the address of the first, or only, CPW in the Command Parameter

Block (CPB) at CPB@CC.

CPW classification is accomplished by the device activity setting
particular CPW flags. The following subsections describe these
classifications and data required for each.

5.4.1 NONDATA TRANSFER COMMANDS

Nondata transfer commands are all control commands (although some control
commands require data transfer, such as Load Display). The only data
required in the CPW for these commands is the channel command and the
flag CPW@DT set to zero. Command chaining is supported for these
commands but is not used.

SM-0046 G 5-9




5.4.2 LOCAL MEMORY DATA TRANSFER COMMANDS

Local Memory data transfer commands transfer data to or from the device,
but the data is not copied to or from Buffer Memory. The only two
commands currently in this class are the Sense and Load Display
commands. For these commands the following data is required:

¢ Field CPW@GCM must contain the channel command.

¢ Flag CPWE@DT must be set to 1 (indicating the command transfers
data).

® Flag CPW@IN must be set to 1 for transfers from (Sense) or 0 for
transfers to (Load Display) the device.

e Flag CPWEMS must be set to 0 (indicating Buffer Memory, MOS, is
not used).

¢ Field CPW@DA must contain the address of the Local Memory data
buffer (must be aligned on a word boundary).

¢ Field CPWEBL must contain the number of bytes to transfer. If the
command transfers from the device, upon completion this field will
contain the number of bytes actually transferred.

Command chaining is supported for these commands but is not used.

5.4.3 BUFFER MEMORY DATA TRANSFER COMMANDS

Buffer Memory data transfer commands are used to transfer tape blocks to
or from the device. For reads (Read Forward and Read Backward), data
transferred into Local Memory from the device is copied to preallocated
Buffer Memory data buffers. For writes (Write), data is loaded from
prefilled Buffer Memory data buffers into Local Memory for transfer to
the device. The BMX software transfers the data between Local Memory and
Buffer Memory as the data is being transferred to or from the device. A
double-buffering scheme is used.

For these commands, the following data is required in the CPW:
® Field CPW@CM must contain the channel command.

® Flag CPW@DT must be set to 1 (indicating the command transfers
data).

® Flag CPW@IN must be set to 1 for transfers from the device and set
to 0 for transfers to the device.

5-10 SM-0046 G




e Flag CPWEMS must be set to 1 (indicating Buffer Memory, MOS, is to
be used).

® For reads, fields CPW@BU and CPW@BL must be 0. When the command
is complete, these two fields will contain the number of bytes
actually transferred.

e For writes, fields CPW@BU and CPW@BL must contain the number of
bytes to transfer to the device.

These commands also require the following data in the CPB:

¢ The DSC Buffer Descriptor Entry for the first sector of the first
or only block must be placed in CPB@DE.

e The DSC's Buffer Memory address must be in CPB@DU and CPB@DL.
e The size of the DSC must be in CPB@LI.
¢ The offset of the above Buffer Descriptor Entry must be in CPB@PT.

¢ CPB@BO and CPB@Bl must contain the addresses of two Local Memory
data buffers.

e CPB@BP, CPB@OR, CPB@1R must be set properly for writes. Whichever
buffer CPB@BP points to must be filled with the data for the first
segment of the first block and its ready flag must be set (CPB@OR
or CPB@1R).

¢ For reads, the maximum block size (CPB@GMU and CPB@ML) must be set.
® Field CPB@PR must address an initialized PRW.

Command chaining by the TAPEIO overlay is usually used for these
commands. Error Recovery never command chains its block I/O0.

5.4.4 COMMAND CHAINING (CPW@CC)

Command chaining provides the most efficient method of issuing multiple
commands to the same device. With command chaining, the BMX software
does not reassign an I/0 path for each command, thus minimizing channel
and control unit overhead.

Command chaining requires an array, called a CPW list, of at least two
CPWs. The boundaries of the list must be set in the fields CPB@CB and
CPB@CE. Additionally, all CPWs but the last one to be processed must
have the flag CPW@CC set to one.

SM-0046 G 5-11




The BMX software processes the list in a circular fashion. The first CPW
executed is the one pointed to by CPB@CC, the next is the one with an
address 4 parcels greater. List wrapping occurs when the CPW just
completed has an address equal to CPB@CE; the CPW addressed by CPB@CB is
then executed. The field CPB@CC is always updated to reflect the CPW
currently being executed.

Command chaining continues until the CPW just completed has the CPWECC
flag set to 0, an exceptional status is presented by the device, or the
BMX software detects some kind of overrun condition.

As each CPW is completed, the BMX software returns to the caller with an
Operation Status (CPB@0OS) equal to OS$BZ. This allows the caller to
rebuild the CPW just processed. Specifically, the caller must clear the
flag CPW@DN (which is set by the BMX software) as an indication that the
caller's processing is in synchronization with the command chain.
Additionally, the caller must not clear the flag CPWECC in CPWs still
pending execution (as opposed to those with the CPWE@DN flag set), since,
in certain time-dependent situations, the device may still be command
chaining.

5.5 DESCRIPTION OF ROUTINES

The following subsections describe the BMX channel interface routines in
detail.

5.5.1 BMXCON

BMXCON configures the subsystem components up or down.

Format:
|Location |Result |Operand
I I I
] | CALL | BMXCON, (c¢m, ch, cu,dv,of ,dw)
cm Component:
CONSCHN Configure channel
CON$CTU Configure control unit
CONS$DEV Configure device
ch Channel number. Required if configuring either channel or

control unit.

5-12 SM-0046 G



cu Control unit ID. Physical address. Required if
configuring control unit.

dv Device ordinal. Logical device ordinal associated with the
device. Required if configuring device.

of Component Off-line flag:
CON$ON Configure specified component on-line
(available)
CONS$OFF Configure specified component off-line (not
available)
dw Device Down flag:
CON$UP Configure device up

CON$SDOWN  Configure device down

5.5.1.1 Channel configuration (CON$CHN)

If configuring the channel down, the flag CHT@OF is set in the Channel
Table to indicate that the channel is configured down. All control units
attached to the channel are marked in the associated Control Unit Tables
as not available for assignment (CUT@NA). Current I/0 is allowed to
complete normally.

If configuring the channel up, the CHT@OF flag is cleared in the Channel
Table and all attached control units are marked as available (CUT@NA
clear). If the channel had previously been down, BMXCON issues a System
Reset channel function and turns various data patterns around through the
channel registers as a minimal checkout before configuring the channel up.

5.5.1.2 Control unit confiquration (CON$CUT)

If configuring the control unit down, the flag CUT@QOF in the Control Unit
Table is set to indicate that the control unit is down. Current I/O is

allowed to complete normally.

If configuring the control unit up, the CUT@OF flag in the Control Unit
Table is cleared. If the control unit is not currently in use (CUT@CO
clear) and a channel is on-line and free, a TEST-I/0 command is issued.
The resultant input tags are checked for select-in tag (IT$SLI).
Select-in is set to indicate that the addressed control unit cannot be
found and the control unit is then left down.

SM-0046 G 5-13




5.5.1.3 Device configquration (CON$DEV)

Unlike channels and control units there are two states defined for
devices: on-line/off-line and up/down. A drive that is off-line is
simply that. A drive that is on-line may be either up or down. All
configuration requests contain values for both states.

If configuring the device off-line, the flags BDV@DW and BDVE@OF in the
Device Table are set (a drive cannot be both off-line and up). If
configuring the device on-line, the flag BDV@OF is cleared. 1If
configuring the device down, the flag BDVE@DW is set.

When configuring the device up when it had previously been down, a check
is made to determine if any paths are configured on-line; if not, the
request is rejected. If at least one path is on-line, a Selective Reset
is issued. The device is then queried for ready status, indicating the
presence of a tape mounted and in ready state. If the device is found to
be ready, a rewind-unload is issued. The flag BDV@DW is then cleared.

5.5.1.4 BMXCON messages

BMXCON displays a message to the Auxiliary I/O Processor (XIOP) console
for each configuration request received. There are three types of
messages corresponding to three component types: device, channel, and
channel/control unit.

The information each message provides is as follows:

Information Description

Time Time of day that message issued

Component Channel, device, or channel/control unit and address
type of component

Status Status of component. The Data Expected and Data

Received information is part of the Data/Byte/Status
register error information.

The format for each type of message follows. In these descriptions x
is the physical address of the device or control unit in hexadecimal,
nn is the bank number in octal, 00 is the channel number in octal,
and 111111 and mmmmmm are octal values.

5-14 SM-0046 G



Device message format:

Time Component Type

time device (x) bank (nn)
Channel/control unit message format:

Time Component Type

time channel(00)/control unit(x)

Channel message format:

Time Component Type
time channel (00)
5.5.2 BMXCPU

Status

One of the following:

-off-line
-on-line/up
-on-line/down
-not available
-not configured

Status

One of the following:

-off-line
-on-line

-not configured
-not available
-time-out

Status

One of the following:
-off-line
-on-line
-not configured
-not available
-time-out

and in addition, any of the
following:
-data register error
-byte register error
-status register error

pPlus:
- Data Expected: 111111
- Data Received: mmmmmm

BMXCPU allocates and builds all tables used by the BMX subsystem through

information in the CNT received from the mainframe.

See the COS Table

Descriptions Internal Reference Manual, publication SM-0045, for more

information on CNT.

SM-0046 G




Format:

ILocation |Result __ |Operand
I | I
| | CALL | BMXCPU, (dal)

dal Address of DAL

BMXCPU first scans the CNT for the number of BMX device entries present.
The CNT is then processed, one entry at a time. There is one subentry
for each path available to the device. These subentries contain the
necessary information to build the Channel (CHT@), the Control Unit
(CUT@), the Bank (CBT@, DBT@) Tables, and the Device (BDV@) Tables.

5.5.3 BMXSIO

BMXSIO serves as the interface between each device activity and the BMX
channel driver (BMXDEM). It is referred to as the BMX device driver.

Format:
|Location |Result |Operand
| I I
| | CALL |BMXSIO, (fn,cpb,dvn)
fn Function code:
RQ$SIO Start I/0 to a device
RQSWIO Wait for I/0 to complete on a device
All other values are passed to BMXAIO (this interface is
not currently used).
cpb CPB address. The CPB is the BMX communication area for the
device activity. (See the IOS Table Descriptions Internal
Reference Manual, publication SM-0007, for more
information.)
dvn Device ordinal. Logical device address.

5.5.3.1 Start I/0 (RQ$SIO)

The Start 1/0 sequence is requested by the device activity to issue I/0
to a BMX device.

5-16 SM-0046 G




Assign device path - BMXSIO begins the Start I/0 sequence by assigning to
the device a path composed of a channel/control-unit pair.

BMXSIO accomplishes path assignment through the use of the Control-unit
Bank Table (CBT@) associated with the device. This table is found in the
Device Table (BDVE@CB) associated with the device.

The Control-unit Bank Table (CBT@) contains a list of pointers to all
Control-unit Tables (CUT@) for the control units that have access to the
device. The search begins with the value of pointer BDV@LC as the most
likely path to be available, since it was the last one used.

BMXSIO searches the Control-unit Bank Table list for a control unit that
is both free (CUT@CO = 0) and available (CUT@FL = 0). If no control
units are available, the device activity is suspended by a PUSH onto the
control-unit bank queue (CBT@QU). The control-unit bank queue is
serviced by each device activity when the path assignment for the device
is released.

When a control unit is found, the channel number in the Control Unit
Table (CUT@CN) is used to locate the attached channel. If the channel is
available, indicated by a zero in field CHT@CO, that channel/control unit
path is selected. If the channel is not available, the device activity
is suspended by a PUSH onto the channel resource queue (CHT@QU). The
channel resource queue is also serviced by each device activity when the
path assignment for the device is released. Also, it is serviced by
asynchronous (Request-in) interrupt processing of the BMX channel

driver. Once the device activity is resumed from the channel resource
queue, device path assignment starts all over again (by searching for the
next available control unit). This is necessary because the available
control unit and/or channel may have been assigned by another device
activity while this one was suspended.

When a control unit and channel are found, the Device Table address is
entered in the Control Unit Table (CUT@CO), which marks the control unit
as assigned. The current pointer into the Bank Table (CBT@) is saved in
the Device Table (BDV@LC) for subsequent assignments. Entry of the
Control Unit Table address in the Channel Table (CHTE@CO) assigns the
channel.

Finally, the physical path address is formed by combining the
control-unit address (CUT@CA) with the device address (BDV@UN) and
storing it back in the Device Table (BDV@UN). This address, along with
the channel number, is used by the driver to issue I/O instructions to
the device.

| SM-0046 G 5-17




There are three special cases related to device path assignment as
follows:

e Contingent connection

A device error is detected by the presence of unit check (ST$UC)
in the device status (BDV@DS). BMXSIO sets the Error flag
(BDVE@ER) to indicate that a contingent connection exists.

When a unit check is received in the ending status, a contingent
connection exists between the control unit and the device. This
condition remains in effect until sense information related to the
unit check is taken from the control unit. BMXSIO detects this
condition by reading the flag BDVE@ER from the Device Table. 1If
the flag is set, BMXSIO only assigns the last path used (BDV@LC)
to the device. In addition, BMXSIO validates that the command in
the CPW to be issued is a Sense I/0 (CM$SNS) command.

e Control-unit assign

BMXSIO detects control-unit assign when either of the CPB flags

CPB@PA or CPB@TA are set, which indicate that the last path used
by the device (BDV@LC) is to be assigned. The flags are set by

the device activity, either for on-line diagnostics (CPB@PA) or

error recovery (CPB@TA). The flags remain set until cleared by

the calling routine.

¢ Path already assigned

It is possible, because of time-dependent situations involved with
asynchronous (Request-in) processing, that a path is already
assigned to the device. 1In this case, that path is reused.

Once a device path has been determined, the request is sent to BMXDEM for
processing. This is accomplished by entering the Start Command sequence

(KIC$SC) into the assigned Channel Table (CHT@NP) and placing the Channel
Table on a queue (XCIQ) for BMXDEM. BMXDEM is then activated (see BMXDEM
in this section).

BMXSIO suspends the device activity on the Device Table queue (BDV@TQ)
and remains there until activated by BMXDEM or as a result of a device
time-out.

Device time-out - Usually BMXSIO uses the TPUSH (timed push) mechanism to
suspend the device activity on the device queue. If control is returned
to BMXSIO with the time-out count exhausted (BDV$TMO), an error (ES$DTO)
is put into the CPB (CPB@EC) and an error operation status (OS$ER) is
returned to the caller.

5-18 SM-0046 G



BMXSIO uses the PUSH (untimed push) mechanism to suspend the device
activity if the Device Not-ready flag (BDV@NR) is set. This flag is set
by the device driver when an interrupt is expected only after manual
intervention such as a tape being mounted.

Control-unit busy - Control-unit busy is indicated by the presence of
Busy (ST$BZ) along with Status Modifier (ST$MD) in the device status
(BDV@DS). Control-unit busy means that the selected control unit is not
in a state where it can accept commands from the attached channel.

BMXSIO marks the control-unit busy in the Control Unit Table (CUT@BZ) and
selects a new path for the device. The I/O request is then reissued to
BMXDEM. The Control-unit Busy flag is cleared when the control unit
presents control unit end status (ST$CUE) through asynchronous
(Request-in) interrupt.

Device busy - Device busy is indicated by the presence of Busy (ST$BZ)
without Status Modifier (ST$MD) in the device status (BDV@DS). Device
busy means that the selected device is not in a state where it can accept
commands from the selected control unit. The defined BMX channel
protocol requires the device to present an asynchronous (Request-in)
interrupt with a Device End (ST$DE) in the device status (BDV@DS).
BMXSIO marks the Device Table as pending CPW restart from a busy
(BDV@RS), waiting Device End (BDVE@WE) and Request-in (BDV@RI), and
suspends the device activity on the device queue. When the Request-in
interrupt is received from the device, BMXDEM will resume the device
activity and BMXSIO reissues the request to BMXDEM,

Channel Command Retry - Channel Command Retry is indicated by the
presence of Status Modifier (ST$MD), Channel End (ST$CE), and Unit Check
(ST$UC) in the device status (BDV@DS). Channel Command Retry means that
the selected control unit must perform some internal operation before the
command can be accepted. The device status may contain Device End
(ST$DE) also. If it does, the command may be reissued immediately; if it
does not, the defined BMX channel protocol requires the device to present
an asynchronous (Request-in) interrupt with a Device End (ST$DE) in the
device status (BDV@DS).

In the case where Device End is not present, BMXSIO marks the Device
Table as waiting Device End (BDVEWE) and Request-in (BDV@RI) and suspends
the device activity on the device queue. When the Request-in interrupt
is received from the device, BMXDEM will resume the device activity and
BMXSIO then returns to the caller with an Operation Status of OS$RT.

In the case where Device End is present, BMXSIO immediately returns to
the caller with an Operation Status of OS$RT.

SM-0046 G 5-19




5.5.3.2 Wait I/0 (RQ$WIO)

The wait I/O (RQ$WIO) request is made by the device driver when awaiting
ending status from a device used in a previously initiated I/0 operation
or for another command to complete when command chaining. BMXSIO
determines whether the device is busy (OS$BZ or OS$§IP). If it is, BMXSIO
suspends the activity on the device wait queue (BDV@TQ).

When reactivated after suspension on the device wait queue, BMXSIO
determines the current status and takes appropriate action.

5.5.3.3 Return to caller

Before returning to the caller, BMXSIO determines whether or not to
release the device path. The device path is released if ending status
has been received and if no error has occurred.

Releasing the device path consists of clearing channel ownership (CHT@CO)
and control unit ownership (CUT@CO), enabling request-in interrupts, and
servicing the Control Unit Block Queue (CBT@QU) and the Channel Resource
Queue (CHT@QU). Request-in interrupts always remain enabled when the
device path is not assigned.

5.5.4 BMXAIO

BMXAIO handles auxiliary functions for the BMX subsystem. These are
functions that are not frequently used.

Format:

ILocation [Result _ |Operand

| | |

| | CALL | BMXAIO, (fn,pg.p1i.P32)

fn Function code:
RQ$HIO Halt I/0
RQ$SAPTH Assign Path (DIA task only)
RQSRPTH Release Path (DIA task only)
RQSRSET Reset channel/device

Po CPB address if fn = RQ$HIO or RQ$RSET

Channel number if fn = RQ$APTH or RQ$RPTH
P1 Device ordinal
P2 Control unit address if fn = RQ$APTH or RQ$RPTH

-BMA:1 accumulator value (reset type) if fn = RQ$RSET

5-20 SM-0046 G



5.5.4.1 Halt I/0 (RQ$HIO)

This function requests that BMXAIO terminate I/0 to the device indicated
by the CPB address and device ordinal.

If the channel (CPBE@CN) is currently busy, BMXAIO issues an interface
disconnect to the channel, terminating all I/0 to the device and freeing
the device path.

BMXAIO then releases the device path, which involves clearing CHTECO,

clearing CUT@CO, and enabling request-in interrupts. A status of OS$HD
is returned to the caller.

5.5.4.2 Assign device path (RQ$APTH)

This function is used by on-line BMX diagnostics to assign a device path
and allows a diagnostic to do its own I/O concurrent with the system.

The on-line diagnostic request DIA sets a diagnostic request bit in the
packet. BMXAIO uses logic similar to BMXSIO to assign the path (see
above).

BMXAIO returns a status (0) indicating successful assignment; otherwise a

protocol error is returned.

5.5.4.3 Release device path (RQ$RPTH)

This call is made to release a path previously assigned by the RQ$RPTH
request.

BMXAIO releases the device path by clearing all previously assigned

tables, reinitializes the channel, and returns to the caller. 1If the
device is not active, a protocol error is returned.

5.5.4.4 Request reset (RQ$RSET)

BMXAIO finds a path and issues a selective reset or channel reset
depending on the caller's parameters.

5.5.5 BMXDEM
BMXDEM is the BMX subsystem channel driver. It is responsible for the

initiation and control of all I/O to a BMX device through the assigned
channel and control unit.

SM-0046 G 5-21




BMXDEM receives all of its requests from the channel queue (XCIQ), where
the address of the Channel Table (CHT@) corresponding to the assigned
channel is placed.

BMXDEM is activated by BMXSIO, to initiate I/0, and the BMX channel
interrupt handler, IBMX, which processes interrupts.

BMXDEM is driven by the sequence code stored in the Channel Table

(CHT@NP). All necessary tables can be located by BMXDEM using the
Channel Table, as shown in figure 5-7.

CHT@CO —— > CUT@
cuTecO ——————3»BDV@
BDV@CP —————>CPB@ (CPB Address)

Figure 5-7. BMXDEM's Usage of the Channel Table

5.5.5.1 Start command sequence (KIC$SC)

The Start command sequence initiates I/0 to the specified device
(BDV@UN), beginning with the CPW addressed by CPBG@CC.

BMXDEM determines from the command (CPWE@DT) whether or not a data
transfer is indicated. If a data transfer is indicated, the following
additional processing is done.

Data transfer - To accomplish a data transfer, the channel data buffer
and byte-count registers must be set. The channel hardware contains two
data-buffer and two byte-count registers to provide data chaining
capability. Data chaining allows for data transfers too large to be
contained in a single Local Memory data buffer and is used only if Buffer
Memory is to be used for the command (CPW@MS set to one).

The data address word entered into the channel data address registers
contains two flags, in the low-order 2 bits, which control hardware data
chaining. The format for the word is as follows:

| Buffer Address | DC | BP |
215 22 21 20
Flag Description
pC Data chain; if this bit is set, the channel hardware

automatically switches to the buffer address in the other
buffer register. The switch occurs when the byte counter
decrements to 0. The byte-count register is updated from
the auxiliary byte-count register. The hardware returns an

5-22 SM-0046 G



DC interrupt when the switch occurs to allow the software to
(continued) process the completed buffer and reset the buffer address
register and byte count if the data chain continues.

BP Buffer register pointer; indicates which of the two
registers the buffer address applies to.

If data chaining will not be used for the command, BMXDEM sets both
buffer addresses and the first byte count from the current CPW (CPW@DA,
CPW@BL). The second byte count is set to one.

If data chaining is to be used, the first address is set from whichever
buffer pointer is pointed to by CPB@BP (CPB@BO or CPB@Bl). The second
address is set to the other pointer. For transfers from the device, the
two byte-count registers are set to 4096 bytes and the data chain bit is
set in both buffer address registers. For transfers to the device, if
the transfer length in the CPW (CPW@BU and CPW@BL) is less than 8192
bytes, then the two byte-count registers are set to the transfer length;
otherwise, the two byte-count registers are set to 4096. The data chain
bits in the buffer address registers are set appropriately.

Issuing the command - Before actually issuing the command, the device
address/mode word must be sent to the channel. The format for this word
is as follows:

Field Description

CM Channel mode. This field indicates which of the following
interface protocols is to be used between the channel and
the control unit:

¢ DC Interlock or Offset Interlock
® 4.5 MByte/second Data Streaming
¢ 3.0 MByte/second Data Streaming

BMXDEM obtains the value for this field from BDV@CM.

IM Interrupt mode. This field indicates the conditions under
which the hardware will generate an interrupt to the
system. When issuing commands, this field is always set to
zero, causing the hardware only to generate an interrupt
when ending status is received or when the byte counter
decrements to 0 during a data transfer.

CCM Command chain mode. This field indicates the condition on
which the control unit is to chain. BMXDEM sets command
chain on Device End if indicated in the CPW (CPW@CC). This
mode leaves the device connected to the device path after
the current operation completes, if no abnormal status
conditions exist. The next command can then be issued
immediately.

SM-0046 G 5-23




Field Description

STK Stack Status; this flag tells the control unit to hold any
pending status until the channel is ready for it. This
flag is never set by BMXDEM.

SK Skip Data Transfer; this flag tells the channel not to
transfer any data on a data transfer. This flag is never
set by BMXDEM.

DA Device address; this field contains the physical address of
the device. It consists of control-unit address in the
high-order 4 bits (0 through F) and the device address
(0 through F) in the low-order 4 bits. BMXDEM obtains the
device address from the Device Table (BDV@UN) and then
issues the command from the CPW (CPW@CM) to the channel.

If the command issued was a data transfer to the device, BMXDEM activates
the data handler pointed to by the PRW address from the CPB (CPB@PR).

The next Local Memory buffer can then be filled with data while the
current one is being sent to the device.

Channel time-out - After issuing the command, BMXDEM calls the QTIME
routine, with the channel timer address (CHT@TO) and timer value
(CHT$TMO), for placement on the event timer queue. The time-out handler
address (IBMXTO) is entered into TMR@RT of each channel's timer entry
(CHT@TO) at initialization time.

If a channel time-out occurs (the count for a channel that is being timed
decrements to 0), IBMXTO is activated. IBMXTO disables interrupts on the
timed out channel, enters an error code (ES$CTO) in the Channel Table
(CHT@EC), and activates BMXDEM. BMXDEM returns the error to the device
activity via BMXSIO by resuming it.

Sequence code update - Finally, BMXDEM updates the sequence code. If the
command was for a data transfer, the sequence code is set to Advance Data
(KIC$AD). Otherwise, the code is set to Advance command (KIC$AC). The
code is saved in the Channel Table (CHT@NP) and is processed on the next
call to BMXDEM for the channel.

5.5.5.2 Advance command sequence (KIC$AC)

The Advance command sequence is entered after the completion of current
I/0. Completion is indicated when the Channel Done flag is set.

BMXDEM always activates the device activity upon entering the Advance

command sequence. BMXDEM then determines from the ending status (CHT@DS)
whether or not to continue processing. Ending status can be as follows.

5-24 SM-0046 G



Interrupt pending - If Device End (ST$DE) is not set in the device
status, BMXDEM sets the operational status (BDV@OS) to interrupt pending
(OS$1P) and terminates processing on this device. Interrupt pending
indicates that the paths (channel and control unit) to the device are
free to be reassigned, but that the device is still busy processing the
command. Device end is reported through the asynchronous (request-in)
mechanism when the device has completed the command.

Unit check/unit exception - Unit check (ST$§UC) or unit exception (STS$UE)
in the device status indicates an abnormal condition. BMXDEM returns an
error status (OS$ER) in the operational status word (BDV@OS) and
terminates processing on the device.

If no abnormal condition exists, BMXDEM checks the CPW (CPWRQCC) for
command chaining. If set, BMXDEM advances to the next CPW in the list.
Processing from this point is the same as for the Start command sequence
described previously.

5.5.5.3 Advance data sequence (KIC$AD)

The Advance data sequence is used when processing a Data Transfer command
and is responsible for sustaining the data transfer until ending status
is received. Ending status is indicated if the Channel Done flag
(CHT@DN) is set.

The Advance Data sequence is activated by the channel interrupt handler
(IBMX) each time an interrupt is received, indicating that the channel
has switched data buffers. The software can then process one buffer
while data is transferring between the other buffer and the device.

BMXDEM determines the byte count transferred on the completed buffer and,
if a transfer from the device, increments the count in the associated CPW
(CPW@BU and/or CPWE@BL). The data handler is then activated via the PRW
pointed to by the CPB.

Once a data transfer begins, the interrupt handler and, on writes, the
data handler, are responsible for sustaining the channel data transfer by
setting new channel address and byte-count registers.

With data transfer still going, BMXDEM resets the channel time-out count

and terminates. When the data transfer has completed, BMXDEM sets the
sequence code to Advance command (KIC$AC) and processes that sequence.

5.5.5.4 Request-in sequence (KICS$ER)

The request-in sequence is used to process status presented
asynchronously from the control unit or device. BMXDEM receives the
ending status and device address from the interrupt handler (IBMX) in the
Channel Table (CHT@DS and CHT@RA, respectively).

SM-0046 G 5-25




BMXDEM uses the device address to search for the Device Table associated
with the device presenting status (see figure 5-8).

CHT@

CUT@
DBTQ
CHT@SC |—W BDVE
CUT@DB
CUTRCA DEV o pP——P
DEV
BDVQUN
1853

Figure 5-8. Location of BDV@UN

If the Device Table is found and the device is waiting for pending status
(BDV@RI), BMXDEM resumes the waiting device activity (BDV@TQ). If the
device is not waiting for pending status or if no Device Table exists for
the device address presented, BMXDEM checks the ending status for
control-unit end (ST$CUE). This condition indicates that the status is
being presented as a result of a previous control-unit busy condition.
BMXDEM clears control-unit busy (CUT@BZ) in the Control Unit Table and
checks the control-unit bank queue (CBT@QU) for suspended device
activities. If there are any, BMXDEM activates the first one queued.

BMXDEM locates the Device Table first by finding the Control Unit Table
that has a control-unit address (CUT@CA) matching the one received. Once
the Control Unit Table is found, the Device Table is found by indexing
into the Device Bank Table (DBT@) associated with the control unit
(CUT@DB). The index used is the device address within the field CHT@RA.

5.5.6 BMX INTERRUPT HANDLER (IBMX)

The BMX interrupt handler is responsible for handling all interrupts
received on channels assigned to BMX interfaces. IBMX is activated by the
Kernel interrupt handler using the Interrupt Jump Table (EITB).

IBMX disables interrupts for the channel and then locates the associated
Channel Table (CHT@), using the BMX Channel Look-up Table (XCHT).

The channel timer entry (CHT@TO) is passed to DQTIME to remove the entry

from the timer queue. Input tags, device status, and channel flags are
saved in the Channel Table for use by the BMX driver (BMXDEM).

5-26 SM-0046 G



IBMX uses the sequence code (CHT@NP) to determine how to process the
interrupt.

5.5.6.1 Immediate return (KIC$IR)

This sequence code indicates that the channel is assigned to an activity
that is doing its own I/O (BMXAIO or BMXCON). IBMX activates the task
(if there is one) waiting on the channel function queue (CHT@CF). No
further processing is done for the interrupt.

5.5.6.2 Advance data (KIC$AD)

If the Channel Done flag is set, IBMX activates BMXDEM to process ending
status on the data transfer.

If the Channel Done flag is not set, the channel has switched data
buffers to sustain a chained data transfer. IBMX uses the data buffer
pointer present in the channel input tags register to identify which
Local Memory data buffer address (CPB@BO or CPB@B1l) to use to reset the
channel in preparation for the next buffer switch. In the case of
transfers from the device, data chaining is always indicated to the
channel and a new byte-count register value of 4096 is set.

In the case of transfers to the device, data chaining is set only if the
CPB indicates more than a sector remains to be transferred from Buffer
Memory (fields CPB@BU and CPB@BL are greater than 4096). A new
byte-count register value is never set, deferring that to the data
handler. This ensures that the Local Memory buffer is reloaded before
the channel switches to it.

IBMX checks the respective buffer ready flag in the CPB (CPB@OR or
CPB@1R) to see if the new buffer is ready for I/0. If the flag is not
set, a software overrun error (ES$SOR) is set into the Channel Table
error code (CHT@EC). BMXDEM is activated to process the completed buffer
of data and prepare for the next interrupt or to process the error.

5.5.6.3 Start request-in (KIC$SR)

IBMX marks the channel in use by entering the request-in process as the
channel owner (CHT@CO = CO$RI). IBMX then issues a channel function to
read in the device address associated with the request-in. The sequence
code is set to continue request-in (KIC$CR) and IBMX terminates
processing until the next channel interrupt occurs.

SM-0046 G 5-27




5.5.6.4 Continue request-in (KIC$CR)

The Continue Request-in sequence saves the device address received from
the previous sequence in CHT@RA and issues a channel function to read in
the status from the interrupting device. The sequence code (CHT@NP) is
updated to End Request-in (KIC$ER), and IBMX terminates until the next
interrupt occurs.

5.5.6.5 End request-in (KICS$ER)

The End Request-in sequence saves the device status in CHT@DS, activates
BMXDEM, and terminates.

5.5.7 BMXOPE

BMXOPE is called to open or close a BMX device for a device activity.
Processing is based on the function code (TQ@FCN) and the device ordinal
(TQ@DVN) .

Format:
|Location |Result |Operand |Comment
| | | |
I | CALL | BMXOPE, (dal) |
dal Address of a formatted mainframe request

5.5.7.1 Open (FC$MOUNT/FC$REMOUNT)

BMXOPE opens a device by placing the Activity Descriptor (AD) address of
the activity into the Device Table (BDV@AI) based on the device ordinal.
If the device is already open, BMXOPE returns a protocol error (ST@DAL)
in the packet (TQ@STS). BMXOPE then passes the request on to BMXTPO for
device-dependent processing.

5.5.7.2 Close (FC$FREE)

BMXOPE closes a device by performing the following steps:
1. Issuing a Sense command
2. Clearing the operator display on cartridge-type devices

3. Issuing a selective reset

5-28 SM-0046 G




4. Clearing device ownership (BDV@AI)
5. Releasing the device table space (CPB/TCB) addressed by BDVE@CP
6. If a DIA task, calling BMXAIO to release any path assignment
(RQ$RPTH)
5.5.8 BMXTPO
BMXTPO is called to complete the open of a BMX tape device.

Format:

ILocation |Result |Operand
| I I

| | CALL | BMXTPO, (dal,dvn,fn,sid, pdv)
dal Address of a formatted mainframe request.
dvn Device ordinal. Logical device address.
fn Function code:

FCSMOUNT Mount a tape on the device
FCSRMNT Remount a tape on a new device

sid Sender ID:
RQ$CPU Request is from mainframe.
Otherwise request is intermnal.
pdv Previous device ordinal. FC$RMNT only.
The difference between FC$MOUNT and FC$RMNT is that any data associated
with the previous device is copied to the new one for remounts.

BMXTPO performs the following functions:

1. If the function is FC$MOUNT or FCSRMNT to a different device, a
Tape Control Block (TCB) is allocated.

2. If a Datastream Control Table does not exists, DSCGET is called
to allocate one.

3. If the request is from the DIA (BMX on-line diagnostics) task,
BMXAIO is called to assign the path (RQ$APTH).

4, If the device is of cartridge type and there is a Display Control

Byte (TQE@BCS) in the DAL, a Load Display command is issued to the
device.

SM-0046 G 5-29




5-30

The device is then armed. This involves issuing a No-op command
to the device. The only acceptable states for the drive are to
be ready at load point or not ready (unloaded). If the device
has a tape mounted but it is not at load point, it is unloaded
and the arm is retried. If the device is not ready, the device
activity waits for tape to be loaded.

If a tape is successfully loaded, control is either passed to TEX

to process further mainframe requests, if the request is from the
mainframe, or returned to the caller.

SM-0046 G



6. I/0 SUBSYSTEM STATION

The I/0 Subsystem (IOS) station is a collection of closely associated
tasks executing in the Master I/0 Processor (MIOP)+ that provide
operator command and display facilities and dataset staging capabilities
independent of any front-end computers.

The cloce association among the tasks is maintained through communication
areas and shared data areas allocated in Local Memory.

The station operates under the control of the Kernel. All station code
exists in the form of overlays stored in Buffer Memory. The Kernel
manages the scheduling of the station tasks and the loading of overlays
into Local Memory. A station task interfaces with other tasks and the
Kernel through the standard Kernel service requests.

6.1 STATION TASKS

Table 6-1 lists the station tasks and describes the function of each.
Each task name is also the name of the initial overlay or the controlling
overlay for that task.

The station is initiated by entering the STATION command at an MIOP
Kernel console. Multiple stations may be executing provided that
resources, including a dedicated console for each, are available.

The STATION command initiates one set of the console handling routines:
KEYBD, CLI, and DISPLAY. A set of these routines is also initiated to
handle each console added to the station through the CONSOLE command.
The tasks terminate when an END command is issued at the corresponding
console.

Only one PROTOCOL task can exist at a time. It is created by the LOGON
command and endures as long as communications with the mainframe are
maintained. Communications are terminated explicitly by the LOGOFF
command or automatically if the task encounters communication errors.

+ A task in the Buffer I/O Processor (BIOP) is required to move messages
between Buffer Memory and Central Memory. This task is not unique to
the station in that it services all active stations and concentrators.
This task is discussed in the section describing the concentrator.

SM-0046 G 6-1




Table 6-1. Station Tasks

device

I |

| Task | Function

| ]

| |

| CLI | Interprets and executes the operator commands

I I

| DISPLAY | Formats the operator displays

I I .

| KEYBD | Receives characters entered at the console keyboard
| !

| PROTOCOL | Manages communications between the station and the
| | mainframe

I I

| STAGEIN | Stages a dataset from an IOS input device to the

| | mainframe

I I

| STAGEOUT | Stages a dataset from the mainframe to an IOS output
| |

I l

A STAGEIN task is started by the PROTOCOL task for each input dataset
staging operation; a STAGEOUT task is started for each output dataset
staging operation. The tasks terminate when the staging operation
completes or is aborted. The number of staging tasks simultaneously
active is governed by protocol parameters assembled in the STATINIT
overlay: the maximum input stream count (IST), the maximum output stream
count (OST), and the maximum active stream count (AST).

6.2 STATION STORAGE

The station tasks allocate storage in Local Memory and Buffer Memory.
Some of these storage areas are accessible by more than one task; the
area contains shared data and intertask communication areas.

Pointers to the shared memory are maintained in global registers,
allowing access by called overlays without requiring that the address be
passed as a parameter. Table 6-2 indicates the tasks that access each
shared memory area. The IOS Table Descriptions Internal Reference Manual
contains detailed descriptions of the shared memory areas.

6-2 SM-0046 G




Table 6-2. Shared Memory Access

| | | l | |

| I

| | Task

| Register |

I I | I | I |

| | KEYBD | CLI | DISPLAY |PROTOCOL | STAGEIN |STAGEOUT
| ] | L | ] |

I I | I I I |

| %STAT | | X | X | X | X | X
| %CLI I | X I X | I |

| %STCON | x | X | x | | {

| %PROT [ | | xt x | xt xt
I

+ The reference is through a parameter rather than a direct reference
using the global register.

The shared memory areas are as follows:

Register Area Name Contents

%STAT Station shared Local Station parameters and queued
Memory (SS@) dataset information

%CLI Console support tasks Console display parameters

shared memory

%STCON Console Driver Console parameters
Table (C$)
%PROT PROTOCOL task Local Addresses and I/0 Stream
Memory (PT@) Control Tables used by PROTOCOL
task

All task interaction occurs using the shared memory areas. This
interaction takes two forms:

¢ Modifying parameters used by another task. This may be viewed as
indirect interaction, because it does not directly affect task
scheduling.

e Interfacing with another task through the Kernel service calls
PUSH, POP, and TPUSH, all of which require Local Memory queue
cells.

The two types of interaction are often used in conjunction. For

instance, the LOCK, UNLOCK, WATCH, and SIGNAL macros require both a data
parcel and a queue used by one of the PUSH, POP, or TPUSH service calls.

SM-0046 G 6-3




The individual tasks also allocate unshared storage areas. The Local
Memory stack areas reserved by the CLI, DISPLAY, and PROTOCOL tasks allow
the tasks to allocate and release small, variable size buffers through
the GETSTACK and FRESTACK macros, respectively. This mechanism
guarantees that a memory buffer is available when required and eliminates
the overhead involved in GETMEM and RELMEM Kernel service calls.

However, a memory buffer large enough to contain all simultaneously
allocated buffers (for that task) must be reserved for the stack.

A stack (see figure 6-1) consists of a Local Memory buffer and two global
registers: %STACK, which points to the next available location, and
%LIMIT, which points to the end of the stack buffer. %STACK and %LIMIT
are initialized by the INSTACK macro after the Local Memory buffer has
been reserved.

—o0 Link

B

GETSTACK Buffer

GETSTACK Buffer

Link

-

Figure 6-1. Local Memory Stack Area

1857

6-4 SM-0046 G



Fill uses between 0 and 3 parcels, enabling all buffers to begin on a
word boundary.

6.3 TASK FLOW AND INTERACTION

This subsection describes the general flow of the station tasks and the

interaction between them.

In the task flow descriptions, the overlays

responsible for the function cited are listed on the right. Diagrams
show the hierarchy of the overlays and the areas of interaction with the
other tasks.

6.3.1 STATION INITIALIZATION

The station is initiated with the STATION command, which is entered at an

MIOP Kernel console.
initialize buffers and create the triad of tasks KEYBD,
DISPLAY.
released, and an explanatory error message is generated.

Station initialization is shown in fiqure 6-2.

Step

The station initialization routines allocate and

CLI, and

If any aspect of initialization fails, all resources are

Function .

1.

2.

Validate the station console number
Allocate and initialize shared Local
Memory buffer (%STAT) and a shared buffer

in Buffer Memory

Usurp station console and allocate console
support buffer (%STCON)

Allocate and initialize shared memory
buffer (%CLI)

Set up stack (%STACK and %LIMIT) and
create DISPLAY task

Create KEYBD task
Write title line to console
Set up stack and create CLI task

Output error message (if necessary)

SM-0046 G

Its flow is as follows:

Overlay

STATION

STATINIT

USURP
ICONSL

CLINIT

CLINIT

CLINIT
CONSL
CLINIT

STATION

6-5




USURP

Station
Command

!

STATION STATINIT CLINIT <—>»1 TCONSL

v
Initialization

complete L
CONSL o — - - Display

——— CALL, RETURN, GOTO
-~~~ Data path

(T overlay

1126

Figure 6-2. Station Initialization Flow

6.3.2 KEYBD TASK

The KEYBD task receives input from the console keyboard and passes it to
the CLI task for interpretation. Because the character processing is
negligible, the task is always available to receive input. Thus, the
operator is able to type ahead; that is, key in commands before CLI has
completed processing the previous command. The interaction areas for
KEYBD are described in table 6-3.

The KEYBD task is shown in figure 6-3. Its task flow is as follows:

Step Function Overlay
1. Check for termination request. 1If KEYBD

posted, respond to the CLI task and
terminate. The KEYBD task is not
responsible for releasing any resources.

2. Receive next character KEYBD
3. Translate the character using the table KEYBD
appropriate to the console type. CONSL

Characters requiring special handling by
CLI (such as the carriage return) are
translated to special codes. If the
character is illegal, ring the console bell.

4. Store character in the circular buffer KEYRD
and activate the CLI task (if necessary)

6-6 SM-0046 G



Table 6-3.

KEYBD Task Interaction Areas

Register |Field or Table

Use

%CLI

%CLI

%CLI

%STCON

fr e — — —— —— —— — — . — — — —— — — —— — . min ——— ——

$B@CB

$RECLI

$T@KEY

C$LOCK

Keyboard input circular buffer.

task stores characters and updates the in
pointer; the CLI task removes characters

and updates the out pointer.

The KEYBD

CLI activation area. When CLI is idle
waiting for the next command to be entered,
it suspends by watching this area (through

the WATCH macro). KEYBD, upon receiving

input, activates CLI with the SIGNAL macro.

Termination communications area.

task monitors this area for a termination

The KEYBD

request. CLI, as part of END command

processing, posts a message then suspends

(using the same area), awaiting an
acknowledgment from the KEYBD task.

Interlock that controls access to the
display. This is used when the KEYBD task

must ring the console bell.

Keyboard - KEYBD CONSL |- — —.
L]
7 3 ..

L]
L]
L]

SM-0046 G

CALL, RETURN, GOTO
Data Path

Shared Memory Access Path

Figure 6-3.

L]
L]
L]
/
/
Circular |-
Buffer

Areas of interaction (PUSH,

Task

(::::::::::) POP LOCK, UNLOCK,
and SIGNAL)

KEYBD Task Flow and Interaction

WATCH,

1127




6.3.3 DISPLAY TASK

The DISPLAY task generates the operator and debug displays. It is
responsible for acquiring and formatting the data and sending it to the
console. The DISPLAY task execution is based on parameters stored in
shared areas. These parameters, indicating display type, refresh rate,
and so on, are set by the CLI task and are described in the task
interaction areas table.

The DISPLAY task also interacts with other tasks and with the Kernel in
the sense that it taps various tables for data used in the displays. The
partial list of tables in table 6-4 includes shared memory areas (%STAT
and %CLI), the I/0 stream control tables, the expander device control
tables, and the Kernel error logging table.

Table 6-4. DISPLAY Task Interaction Areas

I
Register |Field or Table

Use

DISPLAY task activation area. When the
task is idle, it suspends the use of this
area through a timed WATCH request. The
task is reactivated either when the timer
(the display refresh interval) expires or
when CLI signals a display refresh due to
a change of state (new display, LOGON or
LOGOFF, and so on).

$RE@DIS

Termination communications area. See
KEYBD task $T@KEY.

$T@DIS

$L@DIS Interlock controlling access to the display
parameters that follow. Its use prohibits
the CLI task from altering the display
parameters while the DISPLAY task is

generating a display.

The following are parameters controlling
the DISPLAY task and describing the active
display:

$DEINT Interval between display refreshes, in
tenths of a second, if automatic refresh
is enabled

$F@FLG Flag bit FLG$REF indicates whether
automatic refresh is enabled.

6-8 SM-0046 G



Table 6-4.

DISPLAY Task Interaction Areas (continued)

Register

Field or Table

Use

|
I
I
|
[
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
!
I
I
I
| %STCON
I

$DATYP

$DEOVL

$DE@PAR

$DE@FRM

$DEQUE

$D@DEB

$DELFT

$D@RGT

$D@MOD

$D@TSK

$D@JOB

C$LOCK

I
I
|
I
I
|
|
I
I
I
I
|
I
I
|
I
I
I
I
I
I
|
I
I
I
I
|
|
I
I
I
[
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I

Display type: none, operator, or debug

Number of overlay controlling display
generation:

DISPO01 Operator displays
DISP02 Debug displays

Parameter defining operator display type
(for instance, STATUS). The parameters
for the various displays (DP$type) are
generated by the DISPARS macro.

Frame number for the LINK, STATUS, and
STORAGE displays

Queue flags for the STATUS display

Display descriptors: one descriptor for
each debug display (A-2)

Address of the debug display descriptor
for the left debug display

Address of the debug display descriptor
for the right debug display. If the
right display is inactive, the address
is 0.

Mode of the debug display (for instance,
COS EXEC) if the mode is not defined in
the display descriptor

COS task number used if the display mode
is TASK and the number is not specified
in the display descriptor

COS job sequence number used if the
display mode is JOB and the JSQ is not
specified in the display descriptor

Interlock controlling access to the console

SM-0046 G




Table 6-4. DISPLAY Task Interaction Areas (continued)

task is activated, if necessary, after
message information is stored in the
Operator Stream Control Table.

| | I
| Register |Field or Table | Use |
I L | I
| I | |
| %STAT | sseop | Interlock controlling access to the |
| | | Operator Stream Control Table |
I | I |
| %STAT | SS@TAB | Operator Stream Control Table:; it exchanges |
| | | message request and response information |
| | | between the DISPLAY and PROTOCOL tasks. |
I | I |
| %STAT | SSE@REQ | PROTOCOL task activation word. PROTOCOL |
| | I |
I | | |
I I | I
I l | I

The DISPLAY task flow and interaction on operator displays are
illustrated in figure 6-4. The following steps are performed by the task:

Step Function Overlay
1. Suspend, waiting for a display refresh DISPLAY

request or the expiration of the automatic
refresh interval.

2. Check for termination request; if posted, DISPLAY
respond to the CLI task and terminate.
The DISPLAY task is not responsible for
releasing any resources.

3. Set the display interlock ($L@DIS). DISPLAY

4. 1If a display is active, do the following:

a. Toggle the display refresh indicator. DISPLAY, CONSL
b. Call DISPOl1l to process an operator DISPO1
display.
c. Call DISP02 to process a debug DISPO2
display.
5. Clear the display interlock. DISPLAY

The DISPOl routine acquires the data for a display and calls an overlay
to perform the formatting. In the cases of the LINK, STATUS, and STORAGE
displays, the information is acquired from the mainframe through normal
protocol messages. The DISPLAY task calls the POST overlay to send a
message to the mainframe and to receive a response message. In fact,
this overlay interfaces with the PROTOCOL task, which controls all
protocol messages.

6-10 SM-0046 G



IDEBUG » IDRCT <—» COMBO
SYSTAT »| MESSAGE
LINK
MSTAT
DISPLAY DISPO1 STADIS > DEVDAT -+ CONSL | _ _ _ _ Display
: 3 A A e, .
. N1/ Ce,
$R@DIS hd
$T@DIS pisplayt ERRDIS Operator
$L@DIS Parameters Stream e . .
. +"| Control =~ . .
. 7 s . 04
A , , Table PROTOCOL | | .
. / r4 . .
V4 ° .
POST . |
. ’.. . . KEYBD
. ss@gop )* *{ sserep )° :
® 00 0 000 00 0000 0000000000000 0000000000000 "
CALL, RETURN, GOTO
————— Data Path
e o o o ¢« Shared Memory Access Path
+ Accessed by several of the overlays diagrammed 1128

Figure 6-4. DISPLAY Task Flow and Interaction Operator Displays?

6.3.4 CLI TASK

The CLI task manages the operator interface; it interprets, executes, and
responds to the station commands.

Other tasks can be directly involved in the processing of a command. For
example, the commands that require communications with COS involve the

PROTOCOL task.

The END command requires termination processing by the

KEYBD and DISPLAY tasks and possibly the PROTOCOL task (and thus, the

STAGEIN and STAGEOUT tasks).

+ Does not include MULTIPLY, DIVIDE, BTO, and BTD overlays

SM-0046 G

6-11




The tasks can also be affected by a particular command. For example, the
REFRESH and LINK commands affect the DISPLAY task environment. The SAVE
and SUBMIT commands queue a dataset for staging to the mainframe,
impacting the PROTOCOL task and implying the creation of a STAGEIN task.

The validation of the command keyword is performed by the overlay CLI.
Once the command type is established, an overlay is called to validate the
remaining input parameters and execute the command. The overlays used to
process commands have names of the form COMMnn; n is a decimal digit.

The association between command keyword and the proper COMMnn overlay is
made using the parameters CV$§command, a unique index associated with the
command. CV$§command and CP$command are external symbols defined in

the OVLNUM overlay using the COMPARS macro and referenced in the CLI
overlay using the CMD macro.

The general flow of the CLI task follows. Examples of the processing of
several commands are also included. The STATUS command is representative
of the display commands, while the DROP command is typical of those
requiring communication with COS. Except where indicated on figure 6-5,
the areas of interaction are not enumerated; see the KEYBD, DISPLAY, and
PROTOCOL task descriptions in this section. The task flow for CLI is as
follows:

Step Function Overlay
1. If reading from the console, input the READ

characters from the keyboard circular
buffer. Echo the character to the console
or perform editing functions as required.
Continue until an entire station command
is accumulated.

If reading commands from a command CFREAD
file, read the next command line and
display it on the console screen.

2. Validate the command. A valid command is CLI
indicated by a special initial character
or command keyword delimiter (for instance,
+ to roll the display) or by a command
keyword that matches an entry in the
command table.

3. If the command is not recognized, output ERROR
an error message and go to step 1. MESSAGE
CONSL
4. Call the overlay that processes the given COMMnn
command.

6-12 SM-0046 G



For commands that may have parameters, perform steps 5 through 8.

Step Function Overlay
5. Locate the table that describes the DESCRIBE

parameters.

6. Build a table of information describing DECODE
the parameters. Validate them using DECOD2
entries in the parameter descriptor
tables. Convert parameters to an internal
format if required (for instance, decimal
to binary conversion),

7. If a required parameter is invalid or ERROR
missing, output an error message and MESSAGE
return an error response. CONSL

8. Perform remainder of processing for the coMMnn

particular command.

| 1
f Overlays to Implement the Command |

L J

/

/
/
¥
coMMnn DESCRIBE DECODE »| DECOD2
CLI - ERROR MESSAGE
REARD CONSL
* . °
N < N\
.
\ .u . M ) L \
\\ *e ..'. : '-. Display
\ ‘. o . %e
. .
N . . S .
Circular (g — KEYBD DISPLAY KEYBD
Buffer
CALL, RETURN, GOTO
----- Data Path
e ¢ o ¢ » Shared Memory Access Path 1131

Figure 6-5. CLI Task Flow and Interaction (Does not include
decimal to binary (DTB) and octal to decimal (OTB)
overlays)

SM-0046 G 6-13




The flow of the STATUS command is given in figure 6-6 and the following
stepflow.

Step Function Overlay
1. Set the display interlock. COMMO1
2. Save display parameters: COMMO1

$DEQUE Queue flags (from parameters
on command)

$D@FRM Display frame number (0)

$D@TYP Display type (operator)

$DEOVL Overlay number (DISPO1)

$D@PAR Display parameter (STATUS)

3. Activate the DISPLAY task. COMMO1

4. Release the display interlock. coMM01

° coMMO1 o

o. '.
. | '
[ ] \ Y
° .
. i .
o’ [ ®e
o. ! .‘
° U .
.. ' * hd
$LADIS Display $R@ADIS
. Parameters
Y [ ]
'y P
° T [
L4 °
3 | °
.. ! [ ] ®
. I .
. .
o. . o
o. !
. .'
—————— Data Path
e o o o o » Shared Memory Access Path 1132

Figure 6-6. STATUS Command Flow and Interaction

6-14 SM-0046 G



The flow of the DROP command is given in figure 6-7 and the following

stepflow:
Step Function Overlay
1. Construct an operator function request COMMO6

message segment, inserting the job sequence
number specified as a parameter,

2. If not logged on, return an error response. POST
Send the operator function request to the
mainframe and receive a response.

3. If an error response has been returned, CcCoOMMO06
output an error message. ERROR
MESSAGE
CONSL
ERROR MESSAGE

— T .

.
°
.
POST
) =)
...0 " ..
° H . *e,
] . .o..
SSRREQ ; * SSROP es ool
y
'o
.
.
.
.

Operator
Stream
Control
hd Table

® A

. —CALL, RETURN, GOTO
—————— Data Path

PROTOCOL
e ¢ o o 0o e Shared Memory Access Path

1133

Figure 6-7. DROP Command Flow

SM-0046 G 6-15




6.3.5

PROTOCOL TASK

The PROTOCOL task controls the message interface between the IOS station

and the
respons

[ ]

[ ]

mainframe. In general, the PROTOCOL task has the following
ibilities:

Generates messages sent to the mainframe

Validates the mainframe response messages

Maintains the input and output stream states

Creates tasks to manage input and output dataset transfers
Monitors Operator Stream Control Table for message requests

Monitors I/O stream control tables for message requests and stream
state changes

Schedules messages for transmission to the mainframe

Distributes mainframe response messages

The PROTOCOL task is initiated by the LOGON command and exists as long as

communi
be trig
breakdo

Table 6

cations with the mainframe are maintained. Task termination may
gered externally, by the LOGOFF command, or internally, by a
wn in communications with the mainframe.

-5 describes the interaction areas for the PROTOCOL task.

Table 6-5. PROTOCOL Task Interaction Areas

Regis

I
ter |Field or Table
]

Use

%STAT

%STAT

%STAT

SS@PRO Activation and termination communications
area. The CLI, after creating the PROTOCOL
task, pushes itself on the queue while
awaiting a response from the PROTOCOL task
initialization. For a LOGOFF command, CLI
posts a termination request and
discontinues its wait for an acknowledgment.
SS@REQ PROTOCOL task activation area. When the
task is idle, it suspends by watching this
area (using the WATCH macro).

SS@ID Station logon ID

SM-0046 G



Table 6-5.

PROTOCOL Task Interaction Areas (continued)

Register |Field or Table

Use

%STAT

%STAT

%STAT

%STAT

%STAT

%STAT

%PROT

%PROT

%STAT

%STAT

%STAT

%STAT

%STAT

— v — i — v — ——— — —— — — — — — — —— —— — ——— — s sttt s et s eairas s s st s s e s i o et sttt st

I
I
I
|
|
I
I
I
I
I
I
|

SS@TID

SSE@POL

SS@IN

SS@ouT

SS@FLG

SS@TAB

PT@TAB

PT@XAN

SS@IQ
SS@QST

SS@QHI

SS@QLO

SS@QTB

Station logon terminal identifier

Interval between CONTROL messages, in
tenths of a second, for an idle system

Address of the first Input Stream Control
Table

Address of the first Output Stream Control
Table

The STA$LOG flag indicates whether the
station is logged on to the mainframe.

The STA$STG flag indicates whether dataset
staging is enabled.

Operator Stream Control Table; used to
exchange message and response information
between the CLI and PROTOCOL or between
DISPLAY and PROTOCOL.

Input and output stream control tables;
used to exchange information between the
STAGEIN and PROTOCOL tasks or between
STAGEOUT and PROTOCOL tasks.

Acquire request response area. A message
is posted to PT@XAN by a STAGEIN task
after it processes an acquired dataset.

Queued input dataset information:

Queueing Enabled flag
Queue Status flag

High-order bits of Buffer Memory address
of dataset header segment

Low-order bits of Buffer Memory address of
dataset header segment

Device control table address

SM-0046 G

— e e e e i e e . —— . — S S —— ——— — — - v — —— — . — — — Y — — — — — — — — — — hn im S e — —




Table 6-5. PROTOCOL Task Interaction Areas (continued)

I I |

| Register |Field or Table | Use
| | |

| I |

| %STAT | SseQaQ | Acquire flag

I | |

| %STAT | SseQDv | Input device

I I I

| %STAT | SS@QBK | Blocking flag

I I |

| %STAT | SS@QFL | Tape file number

| I I

| %STAT | SseQcC | Blocking control character
| ] |

The initialization sequence for the PROTOCOL task is illustrated in

figure 6-8. The steps followed in initialization are as follows:
Step Function Overlay
1. Allocate and initialize Local Memory PROTINIT
(%PROT) and the task stack area (%STACK
and %LIMIT). 1Initialize the I/O Stream
Control Tables.

2. Initialize the I/O descriptor table and ONLINE
the stream descriptor tables in Buffer ENTRID
Memory. Identify the station to the
channel driver.

3. Format and send a LOGON message. Validate LOGON
the START response message. LCP

CRAYIO

4. 1If successful, set the Logged-on flag LOGON
(STAS$LOG) .

5. Respond to the CLI task, popping it from PROTINIT
the response queue.

6. Go to PROTOCOL. PROTINIT

If initialization fails, all resources are released, an error response is

sent to

CLI, and the PROTOCOL task terminates.

SM-0046 G



ONLINE

ENTRID

PROTINIT F—> LOGON LCp
L]
L]
L]
L]
.
SS@PRO PROTOCOL CRAYIO Kernel
L]

|
¥

Shared

Parameters

\as

Buffer
Memory
€~~~ Message
LCPS and |q ~ = CRAY-1
Segments CPU

CALL, RETURN, GOTO

- - ~Data Path

e o ¢ ¢ o Shared Memory Access Path

+ The lowest level communication routines are documented with the

concentrator and are not included in subsequent diagrams.
++ Accessed by several of the overlays shown

Figure 6-8.

1134

PROTOCOL Task Flow (Initialization)

The PROTOCOL task flow and interaction (for the main body of the task)
are illustrated in figure 6-9.

Step

Function

1.

SM-0046

Suspend waiting for a request from

another task or the expiration of the

poll interval.

Go to PROTINIT for task termination if
CLI has posted a termination request.

If the Request-pending flag is set in a
return a control LCP.

received LCP,

G

The steps followed by the main body of
the PROTOCOL task are as follows:

Overlay

PROTOCOL

PROTOCOL

PROTOCOL

6-19




y

UPDATE I~

~1/0 Stream
Control
»”| Tables

STREAMS

Input Queue
Parameters

STAGEIN .

PROTOCOL

ACQUIRE

Acquire
Parameters

® 9 © 0 0 0500000000000 OG0O OO

s

3
e0c0ce00000c00s0 00000

CRAYIO o

Operator
Stream
Control
7| Table

...0 SS@REQ ©000e00esscsrecescose

()
- e

L]
[ ]
]
L]
L
L ]
L)
»
L[]
*
L]
.
L]
.
L]
L]
L]
L]
L]
L
e
L]
L]
L 2
L J
L]
L]
.
.
L]
L ]
L]

+H++++ Intertask data path

CALL, RETURN, GOTO

------ Data Path
® ¢ o ¢ ¢ Shared Memory Access Path
1135
Figure 6-9. PROTOCOL Task Flow and Interaction (Main Body)
Step Function Overlay
4. Schedule a dataset transfer reply message ACQUIRE
if a response has been posted (PT@PAN or
PT@XAN).
5. If a message is not scheduled and a PROTOCOL
request has been posted in the Operator
Stream Control Table, schedule the
operator message.
SM-0046 G



Step Function Overlay

6. For each input stream, update the STREAMS
stream state if a request is posted in the
corresponding I/0 Stream Control Table. If
the stream has data to send, the mainframe is
ready to accept it, and no other message is
scheduled, schedule the dataset header or
dataset segment message for that stream.

7. For each output stream, update the stream k STREAMS
state if a request is posted in the stream
control table.

8. Activate an input stream if the following STREAMS
conditions are met:

A dataset is queued for staging.
An input stream is available.
Staging is enabled.

The input stream and total stream
maximums have not been reached.

If all conditions are met, a STAGEIN task is
created and supplied with the input queue
parameters. The stream is flagged as active,
and the queue status is changed to empty.

9. Activate an output stream if the following STREAMS
conditions are met:

® The mainframe wishes to initiate staging
on a stream.

® Staging is enabled.

¢ The output stream and total stream maximums
have not been reached.

If all conditions are met, a STAGEOUT task is
created, and the stream is flagged as active.

10. Clear queueing flag if all input streams STREAMS
are active. This prevents datasets from
being queued by a SAVE or SUBMIT command
or a dataset transfer request.

11. Save the stream control byte (SCB) for STREAMS
each defined input and output stream in
the LCP. The SCB is based on the stream
state.

SM-0046 G 6-21




If no other message is scheduled, schedule

a CONTROL message.

Generate the message LCP.
to the mainframe and receive the response

Step Function
12,
13.

message.
14.

Perform processing per the message type,
one of those defined below.

For operator response message:

15.

16.

Validate the response message. If
invalid, go to PROTINIT to handle the
task termination.

Save response parameters in the Operator
Stream Control Table and activate the
suspended task.

For dataset header or dataset segment message:

17.

18.

Validate the response message. If
invalid, go to PROTINIT for task
termination.

Store response parameters in the I/0
Stream Control Table and activate the
STAGEOUT task.

For CONTROL message:

19.

Validate the response message. If
invalid, go to PROTINIT for task
termination.

For dataset transfer request message:

20.

21.

Validate the response message. If
invalid, go to PROTINIT for task
termination.

Schedule a postpone response message if
another request is being processed or if
the input queue is in use. Otherwise,
save parameters for the input stream
activation.

Send the message

Overlay

PROTOCOL

LCP
CRAYIO

PROTOCOL

LCP

PROTOCOL

LCP

PROTOCOL

LCP

LCP

ACQUIRE
QUEUE

SM-0046 G



For restart or message error message:

Step Function Overlay
22, Go to PROTINIT for task termination. LCP
23, Generate a new state based on the previous UPDATE

state and the response SCB for each input
and output stream. Store a response in the
Stream Control Table and activate the
corresponding STAGEIN or STAGEOUT task if
so indicated by the new state.

For station message:

24, When a station message is received, call STMSG
overlay with pointers to the LCP and
segment. If PROTOCOL gets a nonzero return
from STMSG, a message response has been
built. Send it immediately to SCP.

PROTOCOL task termination is initiated by either a LOGOFF command, in
which case CLI posts a message in SS@PRO, or an unrecoverable error in
communications. 1In either case, PROTOCOL enters the overlay PROTINIT to
process the task termination. Note that the overlays used for
termination processing are those used for initialization. Parameters
provided on the call select the desired function.

The task flow for PROTOCOL termination is illustrated in figure 6-10.
The steps in termination are as follows:

Step Function Overlay
1. Send a logoff message to the mainframe if LOGON
termination was initiated with the LOGOFF LCP
command. CRAYIO
2. Terminate input and output dataset PROTINIT

transfers. Wait until all I/O Stream
Control Tables are idle.

3. Disable queueing of input datasets. PROTINIT
Release buffers reserved by queued input
datasets and queued dataset transfer
requests.

4, Remove station ID for the Channel Driver ONLINE
Table.

SM-0046 G 6-23




Step Function Overlay

N

5. Release Local Memory. PROTINIT
6. Clear to Logged-on flag (STAS$LOG). PROTINIT
7. Check the Operator Stream Control Table. PROTINIT
Send an abort response if a request is
outstanding.
8. Send a response to the CLI task through PROTINIT
the communications area SSE@PRO.
9. Terminate the task. PROTINIT
’//ﬁ LCP
K//, LOGON
PROTOCOL » PROTINIT \ CRAYIO
L g ® \
° [
Y * ONLINE
ssereQ ) ( SsePro )
L
L]
. I A
‘e | A
L]
Shared — CALL, RETURN, GOTO
Parameterst| = = -————-- Data Path
e o o o ¢ Shared Memory Access Path
+ Accessed by several overlays shown 1136

Figure 6-10. PROTOCOL Task Flow (Termination)

6-24 SM-0046 G



6.3.6 STAGEIN TASK

A STAGEIN task stages a dataset from the IOS to the mainframe; one task
exists for each active staging operation. The STAGEIN task is created by
the PROTOCOL task when a staging request is received. The request may
originate from a SAVE or SUBMIT command or from an ACQUIRE or FETCH
message from the mainframe. Table 6-6 describes the task interaction
areas for STAGEIN.

Table 6-6. STAGEIN Task Interaction Areas

address of this word is a parameter
supplied by the PROTOCOL task at STAGEIN
creation.

! I

| Register |Field or Table | Use

| ] |

I I |

| - | Stream | Exchanges protocol message request and

| | Control | response information between the STAGEIN
| | Table | and PROTOCOL tasks. The PROTOCOL task

| | | passes the address as a parameter when it
| | | creates the STAGEIN task.

I | I

| %STAT | SS@REQ | PROTOCOL task activation area

| | |

| %PROT | PT@XAN | Response word for acquire requests. The
| I I

I | |

| I |

| I |

The task flow for STAGEIN is given in figure 6-11 and in the following
stepflow:

Step Function Overlay
1. Open the stream and send the dataset STAGEIN
header to the mainframe. The Buffer STIO

Memory address of the dataset header is
one of the parameters supplied by
PROTOCOL at creation.

2. Initialize the Stream Control Table, then STAGEIN
go to the overlay controlling input
staging; the name of the overlay is
dictated by the acquisition code:

MT STTAPI Expander tape
ST STXDKI Expander disk

SM-0046 G 6-25




STXDKI

N/

STAGEIN STIO q
[J \\
° N
L4 N
L] N
° N
[ N
. \
\\
ACQTRM SS@REQ \| Stream
- control
! . A table
| . Vs
[ Vi
! ® ’
. /
¥y ’
/
PT@XAN - -~ — - PROTOCOL
CALL, RETURN, GOTO
——_———— Data Path
e o ¢ ¢ ¢ Shared Memory Access Path 1137

Figure 6-11. STAGEIN Task Flow and Interaction

For tape input, the STAGEIN task opens the device, which generates a tape
mount request on the MIOP Kernel console. The STAGEIN task reads a block
of data from tape into Local Memory, writes the data to a buffer in
Buffer Memory, and sends it to the mainframe.

For disk input, the STAGEIN task opens the device, which generates a disk
mount request on the MIOP Kernel console if the requested volume is not
mounted. The STAGEIN task then reads a block of data from disk into
Local Memory, writes the data to a buffer in Buffer Memory, and sends it
to the mainframe.

When the end of the input file is encountered or if an error occurs
during the staging process (for instance, an abort response from the
PROTOCOL task or an error on a read operation), all resources allocated
by the task must be released. Any or all of the following operations may
be required.

¢ Release Local Memory buffer

¢ Release Buffer Memory buffer
¢ Post a response to the acquire request

6-26 SM-0046 G



® Free the input stream
¢ Release the Stream Control Table
® Terminate the STAGEIN task

6.3.7 STAGEOUT TASK

The STAGEOUT task stages a dataset from the mainframe to the IOS; one
task exists for each active staging operation. The STAGEOUT task is
created by the PROTOCOL task when the mainframe initiates staging on an
output stream. Table 6-7 describes the task interaction areas of
STAGEOUT.

Table 6-7. STAGEOUT Task Interaction Areas

I I

| Register |Field or Table | Use

| L i

| I I

| -- | Stream | Used for STAGEOUT-PROTOCOL task

| | Control | information interchange. The PROTOCOL task
| | Table | passes the address as a parameter when it
| | | creates the STAGEOUT task.

I I I

| %STAT | SSE@REQ | PROTOCOL task activation area

| l |

The task flow and interaction for STAGEOUT is shown in figure 6-12. The
steps in the task flow are as follows:

Step Function Overlay

1. Open the stream and read the dataset STAGEOUT
header.

2. Initialize the Stream Control Table. STAGEOUT

3. Go to the overlay controlling output STAGEOUT

staging; the name of the overlay is
dictated by the disposition code:

MT STTAPO Expander tape
PR STUBPR Expander printer
PT STPLOT Expander plotter
ST STXDKO Expander disk

SM-0046 G 6-27




TURNPG

UNBLK

AN

STUBPR

HDRPAG

STAGEOUT » STPLOT

o
Stream
Control
Table
E 4
7/
/7
Ve
PROTOCOL
CALL, RETURN, GOTO
- - --—Data Path
e o ¢ ¢ o Shared Memory Access Path 1138

Figure 6-12. STAGEOUT Task Flow and Interaction

For tape output, the STAGEOUT task opens the device, which generates a
tape mount request on the MIOP Kernel console. The STAGEOUT task then
receives a segment of data, copies the data into Local Memory from
Buffer Memory, releases the Buffer Memory block, and writes the data to
tape.

For disk output, the STAGEOUT task opens the device, which generates a
disk mount request on the MIOP Kernel console if the requested volume is
not mounted. The STAGEOUT task then receives a segment of data, copies
the data into Local Memory from Buffer Memory, releases the Buffer
Memory block, and writes the data to disk.

For printed output, STAGEOUT generates a header page for the listing.
It prints each segment of data received from the mainframe. Each line
contained in the segment is copied to Local Memory, deblocked, and
printed before the Buffer Memory block is released. If data is to be

6-28 SM-0046 G



printed in document format, each line is written to Buffer Memory instead
of to the printer. When a full page has been gathered, the TURNPG
routine is called to format and print the page.

Plot output is handled like the printed output except that a header page
is not produced and deblocking of the output is not required.

At the conclusion of the transfer or if an error is encountered (for
instance, an abort response from PROTOCOL or an error during a write
operation), some or all of the following functions must be performed:

Release Local Memory buffer
Release Buffer Memory buffer
Close the device

Free the stream

Release the Stream Control Table
Terminate the STAGEOUT task

o & ¢ o o o

6.3.8 STIO OVERLAY

The STAGEIN and STAGEOUT tasks communicate with the PROTOCOL task using
the I/0 Stream Control Tables (SCTs). An I/O task stores stream state
and message control parameters in its SCT. The PROTOCOL task uses this
information to generate messages for the mainframe and to validate
response messages. When appropriate, it stores response parameters in
the SCT and reactivates the controlling I/O task. The I/0 tasks use the
STIO overlay to interface with the PROTOCOL task. For a STAGEIN task,
STIO is activated with a CALL service request of the following format:

|Location |Result |Operand

I | I
! | CALL |STIO, (fcode, table, sgn,sgbc, segu, segl)

fcode Function code, as follows:
ISFSWRIT Send dataset header message to mainframe if
sgn=0.
Send dataset segment message to mainframe if
Sgn#0.
ISF$END Send END SCB, release SCT, and terminate task.
ISF$CAN Send CAN SCB, release SCT, and terminate task.

ISF$PPN Send PPN SCB, release SCT, and terminate task.

ISF$DONE Release SCT and terminate task.

SM-0046 G 6-29




table SCT address

sgn Stream segment number

sgbc Segment bit count

segu High-order bits of Buffer Memory address of message segment
segl Low-order bits of Buffer Memory address of message segment

sgn, sgbc, segu, and segl are meaningful only if fcode is ISF$WRIT.

If the function code is ISF$WRIT, STIO stores sgn, sgbc, segu, and

segl in the appropriate SCT fields. It also stores a message

descriptor in the SCT (dataset header message descriptor if sgn=0;
otherwise, dataset segment message descriptor). STIO then stores a
function code in the SCT, activates the PROTOCOL task if necessary, and
stops, waiting for a response. Because of the asynchronous nature of the
tasks and the fact that state changes may be initiated by the mainframe
(for instance, postponing the transfer) or the PROTOCOL task (for
instance, postponing because of a logoff), the SCT may already contain a
response.

The PROTOCOL task, which monitors the SCTs for requests, ultimately
schedules and sends the requested message to the mainframe. A response
code is stored in the SCT, and the STAGEIN task is reactivated. The STIO
overlay returns the response to the calling overlay in the A register.
The responses and their significance are as follows:

Response Meaning

ISR$OK OK; proceed with next request.

ISR$PPN Postpone the dataset transfer; the next function must be
ISF$DONE.

ISR$CAN Cancel the dataset transfer; the next function must be
ISF$DONE.

For function codes ISF$END, ISF$CAN, and ISF$PPN, STIO stores only the
function code in the SCT for processing by the PROTOCOL task. These
functions cause PROTOCOL to send the appropriate SCB to the mainframe.
When a response is received, the SCT is released and the task
terminated. No response is possible; the calling overlay is required to
release all resources before issuing these functions.

Function ISF$DONE causes STIO to release the SCT and terminate the task.
No communication with the PROTOCOL task is performed.

6-30 SM-0046 G



For a STAGEOUT task, a call to STIO takes the following form:

|Location |Result |Operand

[ | [

| | CALL |ST10, (fcode, table, sgn,RO=sgbc, RO=segu,
I | |RO=segl)

fcode Function code, as follows:

OSF$READ Read dataset header (sgn=0).

OSF$SVD Send SVD SCB, release SCT, and terminate task.
OSF$PPN Send PPN SCB, release SCT, and terminate task.
OSF$CAN Send CAN SCB, release SCT, and terminate task.
OSFSDONE Release SCT and terminate task.

table SCT address
sgn Expected segment number
RO=sgbc Register in which segment bit count is returned

RO=segu Register in which the high-order bits of the Buffer Memory
address of the message segment are returned

RO=segl Register in which the low-order bits of the Buffer Memory
address of the message segment are returned

Parameters sgn, sgbc, segu, and segl are meaningful only if the function
code is OSF$READ. If the function code is OSF$READ, STIO stores a
message descriptor in the SCT (dataset header descriptor if sgn=0;
otherwise, dataset segment descriptor), posts a read function code,
activates the PROTOCOL task, and waits for a response.

The PROTOCOL task informs the mainframe that data can be sent on the
output stream (an RCV SCB is posted). When the mainframe responds with
data for the stream, the PROTOCOL task validates the message using the
descriptor in the SCT. The PROTOCOL task stores the message segment bit
count, segment address, and a response code in the SCT and reactivates
the STAGEOUT task. STIO loads the returned parameters from the SCT and
returns them to the calling overlay. The response code, which is
returned in the A register, may be one of the following:

Response Meaning
OSR$OK OK; proceed with the next request.
OSR$END END SCB received; the next function must be OSF$SVD,

OSF$PPN, or OSFS$CAN,

OSR$CAN CAN SCB received; the next function must be OSF$DONE.

SM-0046 G 6-31




Functions OSF$SVD, OSF$PPN, and OSF$CAN send a function to the PROTOCOL
task. After the function is performed, the task is terminated. An
OSF$DONE function terminates the task immediately.

6.3.9 POST OVERLAY

The CLI and DISPLAY tasks communicate with the PROTOCOL task through the
Operator Stream Control Table. The interlock SS@OP is associated with
the table to prevent both CLI and DISPLAY from accessing the table
simultaneously. The CALL macro for the POST overlay takes the following
form:

|Location [Result __ |Operand
I I I

| | CALL | POST, (glcp, segment, sgbc,vicp,flags,
| | | RO=upper,RO=1ower,RO=rbc)

glcp Message descriptor controlling the LCP format

segment Local Memory address of message segment

sgbc Segment bit count

vicp Response message descriptor

flags POS$NO; release response message segment.

RO=upper Register to receive the high-order bits of the Buffer

Memory address of the response message segment

RO=lower Register to receive the low-order bits of the Buffer
Memory address of the response message segment

RO=rbc Register to receive the response message segment bit
count

If flags=POS$NO, upper, lower, and rbc are used.

The POST overlay stores the output message parameters (glcp, the

address of the segment written to Buffer Memory, sgbc, and vicp), sets a
flag to request processing, activates the PROTOCOL task, and suspends
itself.

The PROTOCOL task ultimately schedules the message for output; it uses

the message descriptor to generate the LCP. When a response message is
received, the PROTOCOL task validates it using the response message

6-32 ‘ SM-0046 G



descriptor. It stores the segment address and bit count in the Stream
Control Table, activates the CLI or DISPLAY task, and returns a response
code to that task.

The POST routine loads parameters from the Operator Stream Control Table
and releases the segment or saves the parameters, depending on the

flags specification. It returns to the calling overlay, returning the
response code in the A register.

6.4 GLOBAL SYMBOLS

A partial list of the types of global symbols is as follows:

Type Definition and Use
Function code An overlay may provide more than one function. A

function code, passed as a parameter, selects the
function to be performed. For example, CLINIT
performs both initialization and termination
processing for the CLI task. The function is
selected by the function code CLIS$INIT or
CLISTERM.

Error code An error code is generated by the ERCODE macro.
The error code includes overlay number and
message offset information that allows the
MESSAGE overlay to access message text and
formatting data. Error codes are defined in the
SYSTEXT overlay.

LCP descriptors LCP descriptors are pointers to LCP Descriptor
Tables in the LCP overlay. The descriptors are
generated by the LCP macro. The LCP overlay uses
the descriptors to construct or validate message
LCPs.

Display parameters The display parameters, DP$disp and DV$disp,
identify the display type and the overlay that
initiates the display. The parameters are
defined by the DISPARS macro in the OVLNUM
overlay.

Command parameters The command parameters, CP$comm and CV$comm,
identify the command type and the overlay that
processes the command. The parameters are
defined by the COMPARS macro in the OVLNUM
overlay.

SM-0046 G 6-33




Type Definition and Use

Stream states The input and output stream states are defined in
the UPDATE overlay by the STATE macro. The
symbol defines the stream state and includes the
following information:

SCB to send in next message

Stream available for assignment
Stream ready to send or receive data
State transition table address

® ® o o

The state transition table address is an offset
into the UPDATE overlay. It points to a table
used to validate the SCB in the response LCP and
identify the succeeding stream state.

Parameter descriptors
The parameter descriptors are offsets into the
SYNTAX overlay that are generated by the PARAMS
macro. The descriptors reference a table
describing the parameters associated with a
particular command.

6.5 CONSOLE OUTPUT

The CONSL overlay is called to handle all console output and special
functions (for instance, ring console bell or scroll the screen). The
output is not formatted for a particular device type; it must be
translated to the codes and control characters used for a specific
console. Currently, the station supports the AMPEX Dialogue 80, the
SOROC 1Q-120, and the TEC 455 consoles. The AMPEX, SOROC, and TEC455
overlays handle the output translation for the respective devices.

6.6 SCREEN IMAGE

The station maintains an image of the console screen in Buffer Memory.
Output destined for a particular location on the screen is compared to
the existing data and, in general, is not output if it is unchanged.
Pressing the ESCAPE key at the station causes the entire screen to be
rewritten from the image buffer. The image buffer is also used for the
SNAP command, which prints an image of the station screen.

6-34 SM-0046 G



7. FRONT-END CONCENTRATOR

The I/0 Subsystem (IOS) concentrator relieves the mainframe from the
burden of handling the interrupts for each subsegment of messages
transferred between the mainframe and attached front-ends. The
concentrator looks exactly like a Cray channel pair to a front-end, so no
changes are necessary in existing front-end stations. The concentrator
can handle data from multiple IDs through one channel. Any front-end ID
may send subsegments of variable lengths to the concentrator. All
segment buffers are allocated dynamically. (This connection is used only
by the COS operating system and supports only the Station Call Processor
(SCP) protocol.) Refer to section 11, Front-End Interface Logical Path
Activity, for information on the UNICOS operating system.

The concentrator software will support the receiving of additional input
data, from the station during subsegment transfers, beyond what was
expected. This allows stations, whose channel width is not the same as
the IOP channel width, to use segment sizes that are not multiples of the
two channel widths. This feature is controlled with the $APTEXT
parameter I@XTRA. The value of I@XTRA is the number of additional
parcels of input data that may be received beyond the segment size and
not be considered an error. Only valid data in the segment will be
transferred to the mainframe.

Figure 7-1 shows the structure of the concentrator software.

CONC — —> CONCID

I CONCIO

ENDCONC [ L——®| CONCERR

1856

Figure 7-1. Tree Structure of Concentrator Software

SM-0046 G 7-1




7.1 CONC OVERLAY DESCRIPTION (CONCENTRATOR INITIALIZATION)

Overlay CONC is activated by the Kernel command CONC or by a master
operator entering a CHANNEL ON command that specifies an I/0 Processor
(IOP) concentrator. The Kernel console output contains descriptive
messages that indicate successful or unsuccessful completion of the
concentrator initialization. A flow description follows:

Call CRAY overlay to ensure IOP/Cray are linked

Determine the channel ordinal of requested concentrator

Locate the Front-end Interface (FEI) table entry for this ordinal

Validate the requested ordinal. For example, check the channel type,
current status.

Clear the IOP channel pair

Set hold disconnect on the output channel

Get Local Memory for the concentrator table

Empty the input channel of any residual data

Do a Port Select function is it is a VAX interface

Set flags indicating that this FEI is initialized and active

Create CONCIO activity

Send console message detailing the fate of the initialization
procedure

Terminate

7.2 CONCIO ACTIVITY DESCRIPTION

Upon entry, the CONCIO global register (LOCAL) points to the Local Memory
table for this concentrator. Registers LCP0O and LCP1 point to the LCP
Buffer Memory address. Register CHAN contains the associated input
channel number. Register MCO is the channel ordinal, and register FEI
points to the proper FEI table entry.

Physical I/0 requests are asynchronous and are executed in the overlay
code itself. The activity does not surrender control when initiating
I/0. Upon an interrupt, the Kernel SIGNALS an I/0 queue determined from
the associated FEI table entry. A flow description follows:

Get addresses of input and output LCPs from the concentrator
table (CT@ILC, CTE@OLC). Also get concentrator's address
of the I/0 queue (CT@IOQ).

Initialize flags.

Send a restart LCP to the front-end station (FE).

RESTRT program label

Open the input channel for a logon-LCP (6 words) from the front
end.

7-2 SM-0046 G



WATCH program label
Store "waiting for input" in the concentrator's status field
(CT@ST).
UNTIL "input" is signaled on the concentrator’'s I/0 queue (IOQ):
WATCH the IOQ:; time-out value equals approximately three

seconds.
Get the value of the front end interface termination flag
(FEI@TM).
IF FEI@TM is nonzero, GOTO program label TERMIN,
ENDTIL

INPUT program label

Store "inputting' in the concentrator table's status field (CT@ST).

RETURN-JUMP to program label CHKIO.

IF CHKIO returned an error status, GOTO program label ERROR.

CALL CONCID to find the entry in the concentrator ID table.

IF CONCID returns an error code, GOTO program label ERROR.

Get the Channel Extension Table(CXT) address from the

concentrator ID table (CEGCXT).

IF use of link trailer packets (LTPs) is flagged for this FE
(CEGLTP), THEN get the address of where to put LTPs for this
concentrator (CT@GLTP).

Get the variable subsegment sizes flag (CE@VSS).

IF the station accepts variable subsegment sizes THEN

IF this is a logon-LCP THEN
Set subsegment size to 6 words.

ELSE
get the size out of the LCP's segment bit count (LC@BCU &
LC@BCL).
ENDIF
ELSE
get the size from the concentrator ID table (CE@SG2Z).
ENDIF

Get the number of subsegments out of the input-LCP (LC@NSS).
IF there is a data segment or an LTP to follow this input LCP
(ILCPP), THEN
Using the number of subsegments, the LTP flag (1 or 0), the
subsegment size, and the maximum amount of extra input likely
to be received, allocate the appropriate number of I/0 buffers
(maximum of 2). Determine the amount of the next transfer by
executing a RETURN-JUMP to program label SETXLEN. Start the
read from the station.
ENDIF
Get the Cray's ILCP address from the CXT table (CXCILO & CXCIL1).
IF there is no ILCP address or this is a logon segment, THEN
Poll the Cray for the ILCP address.
IF a poll error occurred, THEN
GOTO program label ERROR.
ELSE
Copy the DAL to the CXT and release the DAL.

SM-0046 G 7-3




ENDIF
Clear the logon and type flags of the CXT (CXLOG & CXTYPE).
Get the new Cray ILCP address from the CXT (CXCILO & CXCIL1).
ENDIF
Write the ILCP to the Cray on the high-speed channel.
Get the Cray's input segment address from the CXT (CXISGO &
CXISGl).
UNTIL this segment is all read in from the station :
WATCH the IOQ for a completion signal from the previous I1/0;
this watch times-out after ten seconds.
IF the channel times-out, GOTO program label ERROR.
RETURN JUMP to program label CHKIO.
IF CHKIO returns an error status, GOTO program label ERROR.
IF this is a logon segment, THEN
Get the subsegment size from the logon message segment
(LM@SSG), convert to parcel size,& store in the concentrator
ID table (CE@SGZ). Get the variable subsegment size flag out
of the logon message segment (LM@VSS) and store in the conc.
ID table (CE@VSS). If the checksum enabled flag in the logon
message segment (LM@CKZ) is set, THEN set the LTP flag in the
concentrator ID table (CE@QLTP) and get from the concentrator
table the address in which to read LTPs (CT@LTP).
ENDIF
Switch to the local memory buffer least recently used.
IF there are more subsegments to transfer, THEN
IF the current subsegment has been completely transferred,
THEN Decrement the number of segments left to transfer.
ENDIF
ELSE
Get the Cray LTP address out of the CXT (CXILTO & CXILT1).
ENDIF
IF there is more data or an LTP to be transferred, THEN
Determine the next I/O length.
Input the determined amount from the FE.
Write the information to the Cray over the high-speed channel.
ENDIF
IF there is more data to transfer, THEN increment the Cray
segment address by the length of the last transfer.
ENDTIL
Store "waiting for output"” in the concentrator table's status
field (CT@ST).
Poll the Cray for a new CXT.
IF a poll error, THEN
GOTO program label ERROR.
ELSE
Copy the DAL to the CXT and release the DAL.
ENDIF
Get the number of subsegments out of the CXT (CXTNSS).
IF the variable subsegment size flag is set, THEN
IF the number of subsegments is nonzero, set it to one.
Get the Cray subsegment size from the CXT (CXLSEG)& convert to
parcels.

SM-0046 G



ENDIF
Using the number of subsegments and the subsegment size, allocate
the appropriate number of I/O buffers (maximum of two).
IF an LTP is expected by the FE, THEN get the concentrator table's
address of where to put the LTP (CT@LTP).
Store "outputting" in the concentrator table's status field
(CT@ST).
Get the Cray's output-LCP (OLCP) address from the CXT (CXCOLO &
CXCOL1).
Read the OLCP from the Cray on the high-speed channel.
Open the I/O channel for an ILCP from the FE.
Send the Cray's OLCP to the FE.
Get the Cray's output segment address from the CXT (CXOSGO &
CX0SsG1).
UNTIL there is no more data to write to the FE :
IF there is more subsegment data or an LTP, THEN
IF there is subsegment data, THEN
Determine the next I/0 length.
Set flag to send a channel disconnect if this transfer is
the last for this subsegment.

ELSE
Get the Cray's address of the LTP from the CXT (CXOLTO &
CXOLT1).
Set flag to send a channel disconnect.
ENDIF
Read the segment data/LTP from the Cray on the high-speed
channel.

Flag that there is data ready to be written to the FE.
Increment the Cray's segment address pointer by the length
of the last transfer,
ENDIF
WATCH the IOQ for completion of the last I/0 to the FE; this
WATCH times-out after three seconds.
IF the WATCH timed-out, THEN
GOTO program label ERROR.
ELSEIF the previous I/0 returned an error status, THEN
GOTO program label ERROR.
ELSEIF the WATCH returned a status indicating that the
concentrator has been sent input from the FE, THEN
Prepare to verify the input interrupt.
GOTO program label INPUT.
ELSEIF the WATCH returned a status indicating both output and
input interrupts have arrived, THEN
Save output channel's address and transfer length; re-open
the input channel; restore output channel's parameter's so
that the output transfer may be verified.
ENDIF
GOTO program label CHKIO.
IF CHKIO returned an error status, go to program label ERROR.
IF have just finished transferring a complete subsegment and
there are more subsegments to transfer, decrement the
subsegment count.

SM-0046 G 7-5




7-6

IF there is data ready to be written to the FE, THEN
Clear the data ready flag.
Write the data to the FE.
ENDIF
ENDTIL
Get the acknowledgment flag out of the CXT (CXACK).
IF the acknowledgment flag is set, THEN
Poll the Cray with the done flag set in the CXT & without
activating the SCP task in COS.
IF there was a poll error, THEN
GOTO program label ERROR.
ELSE
Copy the DAL to the CXT and release the DAL,
ENDIF
ENDIF

TERMIN program label

Release any I/0 buffers that were acquired.

If this ID is being terminated, THEN
CALL CONCID to terminate this ID's concentrator ID table entry.
Release the concentrator table's memory.
Clear the table address, terminating flag, and active flag in

the FEI table (FEI@TB, FEI@TM, FEI@AC).

ENDIF

Prepare to read in another ILCP.

GOTO program label WATCH.

ISSUE program label
Store the "hold channel disconnect" flag for the KERNEL (CT@HLD).
Function the channel for the transfer (input or output) to the FE.

CHKIO program label
IF there is no I/0 error currently detected, THEN
Compare the actual channel address to that expected following
the last transfer.
IF there is a mismatch in addresses, THEN set the error code.

ENDIF

DISC program label
Send a single disconnect on the output channel.

ERROR program label
Get the current concentrator state out of the conc. table (CT@ST).

CALL CONCERR to display the error message.

IF the current concentrator state equals "outputting", and no poll
error is present, THEN
RETURN jump to program label DISC.

GOTO program label RESTRT.

SM-0046 G



7.3 CONCID OVERLAY DESCRIPTION

The CONCIO activity calls overlay CONCID to locate ID-based table
entries. It links new entries, unlinks logged-off entries, and issues
LOGOFF LCP requests to the Cray mainframe upon concentrator termination.
The Kernel console receives descriptive messages on a LOGON/LOGOFF
request and a concentrator termination. A flow description follows:

Initialize registers
IF registering/deregistering an ID, THEN
UNTIL all ID entries have been searched, or the selected entry has
been found ...
Get current entry pointer
IF Log Off Requested flag set, THEN
Unchain this entry from the ID entry chain
Release this entry's memory space
ENDIF
ENDTIL
IF a LOGON request, THEN
IF the entry table is not found, THEN
Get memory for a new entry table
Store ID in the new entry table
Link new entry to chain of entries
ELSE
Clear flags in the entry table
ENDIF
Store logon segment size in entry
Flag concentrator activity that this is a logon request
Initialize the CXT
ELSE
Set logged-off flag in entry table
ENDIF
ELSE
Send LOGOFF LCPs to mainframe for each entry
Unqueue entry table and release memory
Send logged-off message for each ID to the Kernel console
. ENDIF
Send Kernel console message
Retrun entry address and logon-request flag if appropriate

7.4 CONCERR OVERLAY DESCRIPTION

The CONCERR overlay handles concentrator errors. A flow description
follows:

Empty and clear the IOP channel pair if non-NSC channels
Issue a Port-Select function if this is a VAX interface
Issue a descriptive error message to the Kernel console
Return

— SM-0046 G 7-17




7.5 ENDCONC OVERLAY DESCRIPTION

The ENDCONC overlay initiates concentrator termination. The Kernel
console receives a descriptive message if ENDCONC cannot process the
termination request.

Determine the specified concentrator channel ordinal
Locate the FEI table entry for this channel ordinal
Validate the specified channel ordinal

Set the Termination flag in the FEI entry

Terminate

7-8 SM-0046 G



8. INTERACTIVE STATION

The interactive station is a set of tasks running in the Master I/0
Processor (MIOP) that permits consoles connected directly to the MIOP to
become attached to mainframe jobs. A job is created in the mainframe
when an interactive console logs on.

This station is composed of two parts: the interactive concentrator and
the interactive console. The interactive concentrator gathers messages
from the consoles, sends them to the mainframe, receives responses, and
distributes them to the console routines. The interactive console
routines handle the input and output to and from the consoles and prepare
messages to be sent to the mainframe through the interactive concentrator.

The structure of the interactive concentrator is illustrated in figure
8-1. Figqure 8-2 defines the structure of the interactive console
routines.

The commands described in this section must be followed by a carriage
return.

8.1 INTERACTIVE CONCENTRATOR OVERLAYS

The overlays described in the following subsections constitute the
interactive concentrator.

8.1.1 TIAIOP OVERLAY

The IAIOP overlay initializes the interactive concentrator and processes
commands for it. IAIOP creates the task IAIOP1, which is the control
overlay for the interactive concentrator.

The interactive concentrator supports the following commands: LOG,
LOGOFF, POLL, and END. Each command is preceded by IAIOP.

The LOG command logs on the interactive concentrator and initializes it

if it is not already initialized. This command is entered at the Kernel
console.

SM-0046 G 8-1




IAMSG

USURP

Figure 8-1.

CRAYIO

IAIOP

Queue

'

IAIOP1

IAFUNC

ENTRID

IACON

'

CRAYIO

REMVID

ICONSL

IACON1

KEYBD

IAOUT

1854

Structure of Interactive Concentrator Software

[ 4

IACMD

ERROR

CONSL

Figure 8-2.

ERROR

ICONSL

USURP

1855

Structure of Interactive Cpnsole Software

SM-0046 G



Format:

I I
| IAIOP LOG [id] [tid] |
I I

id Optional 2-character identifier used by the mainframe to
associate messages and data with this console; the default
is II.

tid Optional 8-character operator station identifier; this

parameter has a default of 0.

By default, each console's message buffer is checked every tenth of a
second to see if it has a line of input ready to be transferred to the
mainframe. The length of time between checks can be changed with the
POLL command.

Format:

| I
| IAIOP POLL nn |

nn Interval, in decimal tenths of a second, between checks for
input

The LOGOFF command logs off the interactive concentrator. The END
command logs off the interactive concentrator if it has not already been
logged off and terminates it.

Formats:

I
| IAIOP LOGOFF
| IAIOP END
I

NOTE

The interactive concentrator must be initialized to
bring up an interactive console, and all interactive
consoles must be terminated to terminate the
interactive concentrator.

SM-0046 G 8-3




8.1.2

IAIOP1 OVERLAY

IAIOP1 is the main control overlay of the interactive concentrator. The
following stepflow describes its processes:

1.

10.

11.

12,

8.1.3

Wait for poll interval to expire or for a command function from
IAIOP.

If it is a command function, call IAFUNC to process it.
If not logged on, go to step 1.

Begin the main body, checking each interactive console for a
message to send to the mainframe.

Move each message bound for the mainframe from the interactive
console buffers to a segment in Buffer Memory.

Reactivate the interactive console processes to interpret the
next line of input.

Go to step 4 until all consoles are processed or until the
segment is full.

Build the segment descriptor and write it to Buffer Memory.

Call the CRAYIO overlay to send the message to the mainframe and
get a response.

Update the message counter.
Read the response LCP from Buffer Memory. If a segment is
present, call IAMSG overlay to distribute the segment to the

console tasks.

Go to step 1.

IAFUNC OVERLAY

Overlay IAFUNC processes three commands: LOG, LOGOFF, and END.

The stepflow for processing a LOG command is as follows:

1.

2.

8-4

Get a Buffer Memory buffer for use by the interactive
concentrator while it is logged on.

Build the logon segment and write it to Buffer Memory.

SM-0046



3. Build the Descriptor Table for this ID and write it to Buffer
Memory.

4. Build the logon LCP and write it to Buffer Memory.

5. Call CRAYIO overlay to send the logon message to the mainframe.

6. Prepare the LCP for interactive requests.

7. Write a message to the Kernel console confirming the logon.
The following stepflow details IAFUNC processing of a LOGOFF command.

1. Build a logoff message LCP.

2. Call CRAYIO overlay to send the message to the mainframe.

3. Release the Buffer Memory buffer used while logged on.

4. Clear the Logged On flags for all active consoles.

5. Write a message to the Kernel console confirming the logoff.
END command processing involves the following stepflow:

1. Perform all logoff processing.

2., Check all interactive consoles. If any are still active, write
an error message to the Kernel console and return.

3. Release Local Memory used by the interactive concentrator and
terminate the task.

8.1.4 TIAMSG OVERLAY
The IAMSG overlay distributes the segment from an Interactive Reply
message among the interactive consoles. The stepflow for this overlay is

as follows:

1. Read the stream descriptor from Buffer Memory and get the segment
address from it.

2. Begin the main loop, consisting of reading and distributing the
messages.

3. Read one message from Buffer Memory.

SM-0046 G 8-5




If the message is a Start message, determine the corresponding
console from the job name. Enter the process number in a map for
finding the corresponding console on later messages and set the
Logged On flag for the console. Go to step 2.

If the message is not a Start message, find the corresponding
console from the process number.

Move the message for this console to its circular output buffer
in Buffer Memory and update the IN pointer.

If the output buffer is more than three-fourths full, set the
Suspend flag in this console's terminal header and set a flag to
force an interactive control for the terminal.

Go to step 2 for all messages in the segment. Return to caller
when done.

8.2 INTERACTIVE CONSOLE OVERLAYS

The overlays in the following subsections constitute the interactive

console.

8.2.1

IACON OVERLAY

IACON overlay initiates an interactive console. 1Its stepflow is as

follows:

l‘

2.

Allocate Local Memory for use by the console.

Check to ensure the interactive concentrator is initialized. 1If
it is not, write an error message and return,

Allocate a Buffer Memory buffer to hold output.

Enter this console into a table of consoles in the concentrator's
Local Memory area.

Initialize local buffer addresses for this console.
Allocate the console to this task.

Create the KEYBD task to read from the keyboard.

SM-0046 G



8. Create the IAOUT task to move output from the Buffer Memory
output area to the screen.

9. Go to IACON1l overlay, which is the interactive console control
routine.

8.2.2 IACON1 OVERLAY
IACON1 overlay is the control task for the interactive console. It reads

input from the keyboard buffer, processes it, and informs the interactive
concentrator that the input is ready. The stepflow for IACON1l is as

follows:
1. Call READ overlay to get a line of input.

2. If the first character is the current control character, call
IACMD overlay to process the command.

3. Build the block control word (BCW) for the message.
4. Build the record control word (RCW) for the message.

5. If the console is not logged on, write an error message and go to
step 1.

6. If the interactive concentrator is not logged on, write an error
message and go to step 1.

7. Set flag for the interactive concentrator. A message is ready to
go out.

8. Wait on queue until the interactive concentrator has sent the
message in.

9. Go to step 1.

8.2.3 TIACMD OVERLAY
IACMD overlay processes commands to the interactive console. All

commands must be preceded by the command control character, which is a
slash by default.

SM-0046 G 8-7




The following commands are available. The shortest unique string of
each, underlined below, may be entered as follows.

Command
ABORT

ATTENTION

BYE

CHANGE ¢

COMMENT
EOF
LOGOFF
LOGON

STATUS

Action

Sends an abort status to the interactive job

Sends an attention status to the interactive job. (An
attention status may also be sent by pressing the break
key.)

Terminates the interactive console

Changes the command control character; ¢, which can
be any character, becomes the new control character.

Allows comments

Sends an end-of-file on the $IN dataset
Logs off the interactive console

Logs on the interactive console

Requests Cray job status

8.2.4 TIAOUT OVERLAY

Overlay IAOUT moves data from the interactive console's output buffer to

the screen.

It suspends output while the user is typing at the keyboard

until a carriage return is entered. It also forces a resume output
status to be sent to the interactive job when the output buffer becomes
less than 25% full.

The stepflow for IAOUT is as follows:

1. Push onto OUTQ2 for 1 second or until output is received.

2. Check the Termination flag; if it is set, terminate.

3. Check the Hold flag; if it is set, the user is typing a line.
Push onto OUTQl until a carriage return.

4. Check to see whether any output is ready; if not, go to step 1.

SM-0046 G



5. Read the next message from the Buffer Memory output buffer to
Local Memory, unless more records exist from the previous message.

6. Reset OUT pointer for this circular buffer.

7. If Buffer Memory buffer is now less than 25% full and output is
suspended, set flag to resume output.

8. Call CONSL overlay to write one record to the display.

9. Go to step 2.

SM-0046 G 8-9







9. USER CHANNEL I/0

User Channel software provides the following capabilities for connecting
new devices or mainframes to the I/O Subsystem (IOS):

e Enables COS jobs executing on the mainframe to transfer data to
and from user-channels connected to the IOS

® Provides easy development of software channel drivers in the I0S
for networking or communications applications by site personnel

& Supports full duplex communication on IOS user-channels

User Channel software is protocol-independent and supports standard OPEN,
CLOSE, READ, and WRITE operations. Special operations that are required
by specific applications can be easily added to the standard set.

User Channel software resides in the Master I/0 Processor (MIOP) on the
IOS. It consists of the User Channel shell software supplied by Cray
Research, Inc. (CRI) and various User Channel drivers.

The shell is responsible for handling requests from and responses to
Central Memory, transferring data between Central Memory and channel
driver, allocating all IOS resources for channel drivers, and processing
hardware interrupts for user-channels.

9.1 USER CHANNEL REQUESTS

This subsection describes the processing of User Channel requests. The
function codes, which begin with CR$, are received from Central Memory in
F-packets on the MIOP.

9.1.1 OPEN REQUEST (CR$OPN)
CR$OPN must be the first request made for the input or output side of a

user-channel. The open request names the driver overlay to be invoked
for the channel.

SM-0046 G 9-1




9.1.2 READ REQUEST (CRS$RD)

CR$RD transfers data from the input side of a user-channel to Central
Memory. If data is already present in Buffer Memory as the result of a
previous Read-Hold request, the data in Buffer Memory is transferred to
Central Memory. If data is not present in Buffer Memory, the channel
driver activity is called to read data from the channel. When the read
completes, the data is sent to Central Memory. The response to the
mainframe is then sent after the data transfer to Central Memory.

9.1.3 READ-HOLD REQUEST (CR$RDH)

CR$RDH transfers data from the input side of a user-channel to Central
Memory. An additional read operation is performed on the channel with
the data held in Buffer Memory. As in the Read function, any data
present in Buffer Memory from a previous Read-Hold request is transferred
to Central Memory first.

The channel driver is called if data is not present in Buffer Memory to
satisfy the first half of the Read-Hold request. The response to the
Read-Hold request is sent to the mainframe immediately after data has
been transferred to Central Memory. The channel driver is then called to
read data from the channel for the second half of the request. The
second data is held in Buffer Memory. 1In this way, processing of the
first data may be overlapped with the next channel read on the IOS.

9.1.4 READ-READ REQUEST (CR$RD2)

CR$RD2 transfers two data buffers to Central Memory from the input side
of a user-channel. The Read-Read function is similar to the Read-Hold
function except that the second data read from the channel is sent to
Central Memory rather than held in Buffer Memory. In addition, the
response to the mainframe is delayed until the second data buffer has
been transferred. The Read-Read request does not allow the overlap of
processing and I/0 activity obtained by the Read-Hold request; however,
the Read-Read request does reduce by 50% the interrupt overhead on the
mainframe because two data reads are performed with each request.

9.1.5 WRITE REQUEST (CR$WRT)
CR$WRT transfers data to the output side of a user-channel. 1If data is

already present in Buffer Memory as the result of a previous Write-Hold
request, the data in Buffer Memory is transferred to the channel by the

9-2 SM-0046 G



—

driver. If data is not present in Buffer Memory, data from Central
Memory is transferred to the channel by the driver. The response is sent
to the mainframe after the data transfer to the user-channel is complete.

9.1.6 WRITE-HOLD REQUEST (CR$WRTH)

CR$WRTH transfers data to the output side of a user-channel. An
additional buffer of data is transferred from Central Memory and held in
Buffer Memory. As in the above CR3WRT function, any data present in
Buffer Memory from a previous Write-Hold request is transferred to the
user-channel first. If data is not present in Buffer Memory, data from
Central Memory is transferred to the channel by the driver to satisfy the
first half of the Write-Hold request. The second buffer of data is then
transferred from Central Memory and held in Buffer Memory. The response
to the Write-Hold function is then sent to the mainframe. The Write-Hold
function allows buffer space in the mainframe to be freed up without
waiting for the data to actually be sent out on the channel. This may be
an important consideration if buffer space is limited, or is being shared
for input and output on a group of channels.

9.1.7 WRITE-WRITE REQUEST (CR$WRT2)

CR$WRT2 transfers two data buffers to the output side of a user-channel.
The Write-Write function is similar to the Write-Hold function with the
second data from Central Memory being sent to the channel instead of held
in Buffer Memory. Also, the response to the mainframe is delayed until
the second data buffer has been transferred. The Write-Write function
halves the interrupt overhead on the mainframe because two data writes
are performed with each request.

9.1.8 DRIVER REQUEST (CR$DRV)

CR$DRV causes the channel driver to take special action that is typically
protocol dependent. No data transfer is associated with the request.

The response is sent to the mainframe when the channel driver has
completed the request.

9.1.9 CLOSE REQUEST (CR$CLS)
CR$CLS must be the last request made for the input or output side of a

user-channel. The channel driver usually terminates when a Close
function is received.

SM-0046 G 9-3




9.2 SHELL ARCHITECTURE

Each user-channel pair on the MIOP is controlled by two independent shell
activities, one for the input and one for the output side of the

channel. Each shell activity has a corresponding driver activity created
when a request is made to open a user-channel. Associated with each
shell and driver activity pair is a data structure User-Channel Table
(UCT) containing information needed to control the channel.

A data handling routine in the Buffer I/0 Processor (BIOP) is responsible
for moving data between Central Memory and Buffer Memory.

An interrupt handling routine is resident in the MIOP Kernel for
processing hardware interrupts on User Channels.

Figure 9-1 shows shell architecture.

Central Mainframe
Memory
BIOP Data Handler MIOP Message Handler
A
A Y
Buffer Shell Shell
Memory Activity Activity
(IN) (out)
Local Driver Driver
Memory Activity Activity
(ucT) (IN) (ouT)
A
Interrupt
Handler
A
Y
User User
Channel Channel
(IN) (ouT)

1129

Figure 9-1. Shell Architecture

9-4 SM-0046 G



9.2.1 USER CHANNEL TABLE

The User Channel shells and channel drivers share a common data structure
in MIOP Local Memory. The User Channel Table (UCT) contains a header
allocated at system initialization and entries, one per input or output
side of a user-channel, allocated and deallocated dynamically as channels
are opened and closed. Each table entry is divided into four sections;
identification and linkage information, storage used by the shell,
storage used by both the shell and driver, and finally, information used
by the channel driver. Use of specific fields within the UCT entry will
be described in the following routines.

9.2.2 USER CHANNEL MESSAGE HANDLER

F-packet requests arriving in the MIOP Kernel are queued to the common
packet handling demon (ADEM). ADEM attempts to locate the entry in the
UCT referred to in the F-packet. A table entry is allocated and a shell
activity created, if necessary, and the request queued to the UCSHL
routine.

F-packet responses are sent to the mainframe through the SEND Kernel
service request by the shell.

9.2.3 USER CHANNEL SHELL (UCSHL)

The UCSHL routine handles F-packet requests one at a time. The requested
function is validated against the channel state (for example, Reads and
Writes are legal only on open channels) and calls the appropriate shell
subroutine for processing.

9.2.3.1 UCSHL open subroutine (UCOPN)

UCOPN saves information from the F-packet in the UCT entry for the
channel being opened. The overlay specified by the driver name in the
request is located and a driver activity created. The driver activity is
invoked to perform any open processing required. The response to the
F-packet is then returned to the mainframe.

UCOPN creates a data transfer activity in BIOP (UCXFR) and allocates a
buffer descriptor table in Buffer Memory for transferring data.

SM-0046 G 9-5




9.2.3.2 UCSHL close subroutine (UCCLS)

UCCLS calls the driver activity to perform any close processing
required. The response to the F-packet is then returned to the mainframe.

UCCLS terminates the data transfer activity in BIOP (UCXFR) and

deallocates the Buffer Descriptor Table and any buffers containing
unprocessed data in Buffer Memory.

9.2.3.3 UCSHL read subroutine (UCRD)

UCRD handles the Read, Read-Hold, and Read-Read F-packet requests. UCRD
checks for data present in Buffer Memory from a prior Read-Hold

function., If present, the data is transferred to Central Memory at the
first address specified in the F-packet by calling UCXFR in BIOP. Excess
data is truncated to the length requested in the F-packet. If data is
not present in Buffer Memory, the channel driver activity is called to
read data from the channel for the first length specified in the
F-packet. The data is transferred to Central Memory at the first address
specified in the F-packet by calling UCXFR in BIOP.

If the F-packet request was a simple Read or a Read-Hold, the length of
data transferred to Central Memory is entered into the response packet
and the response is sent to the mainframe.

If the F-packet request was a Read-Hold or Read-Read, the channel driver
activity is called to read additional data from the channel for the
second length specified in the F-packet. If the data is to be
transferred to Central Memory (Read-Read), the UCXFR routine is called to
send the data to the second address included in the F-packet. The length
of the second data transferred to Central Memory (Read-Read) is entered
into the response packet and the response is sent to the mainframe.

9.2.3.4 UCSHL write subroutine (UCWRT)

UCWRT handles the Write, Write-Hold, and Write-Write F-packet requests.
UCWRT checks for data present in Buffer Memory from a prior Write-Hold
function., If data is not present in Buffer Memory, it is transferred
from Central Memory to Buffer Memory from the first address for the
length specified in the F-packet by calling UCXFR in BIOP. The channel
driver activity is then called to write the data to the channel.

If the F-packet request was a simple Write, the value for length of data

transferred to the channel is entered into the response packet and the
response is sent to the mainframe.

9-6 SM-0046 G



If the F-packet request was Write-Hold or Write-Write, the UCXFR routine
in BIOP is called to transfer data from the second address and length in
Central Memory to Buffer Memory. If the F-packet request was a
Write-Hold, the response packet is then returned to the mainframe.

If the F-packet request was a Write-Write, the channel driver activity is
called to write the data to the channel. The length of the second data
transferred is entered into the response packet and the response is sent
to the mainframe.

9.2.3.5 UCSHL driver subroutine (UCDRV)

UCDRV handles all nonstandard F-packet requests. It calls the channel
driver activity to process the function and returns the response to the
F-packet to the mainframe.

9.2.4 USER CHANNEL SHELL DATA HANDLER (UCXFR)

The UCXFR routine handles data transfers between Central Memory and
Buffer Memory over the high-speed channel. It is called by the MIOP
shell activity with a direction, Central Memory address, length, and list
of Buffer Memory buffers to supply or receive data.

9.3 SHELL AND DRIVER INTERFACE

Reference was made previously in the description of the UCSHL subroutines
to calling the driver activity. This subsection details the calling
mechanism and parameters passed.

9.3.1 SIGNAL AND WATCH MACROS

Because the shell and driver are separate activities, the overlay CALL
mechanism cannot be used for communication between them. Instead, the
SIGNAL and WATCH macros are used. This implies a high degree of
synchronization between the shell and driver. The shell accepts F-packet
requests from the mainframe and signals the driver activity, which should
be suspended watching for the next request. When the driver has
completed a request it signals the shell, which has been watching for a
response from the driver activity.

SM-0046 G 9-7




Several fields are allocated in the UCT entry for communication between
the shell and driver activities. The SIGNAL and WATCH functions require
3 parcels of storage for queuing requests between activities. The UC@SDR
and UC@SDQ fields are used for communication when the shell activity is
to signal a request to a watching driver. Similarly, the UC@DSR and
UC@DSQ fields are used by a driver to signal a response to the watching
shell. The address of the UCT entry for the channel is passed as a
parameter to the driver when the driver activity is created.

9.3.2 SHELL REQUESTS

The request codes signaled from the shell to the driver are as follows:

Code Function

UCSOPN Perform driver open processing

UCS$CLS Perform driver close processing

UCS$RD Read requested number of bytes from channel into supplied
buffer

UCSRDL Read last requested number of bytes from channel into

supplied buffer. Driver should terminate read from channel
after data has been read.

UC$WRT Write requested number of bytes from supplied buffer to
channel

UC$WRTL Write last requested number of bytes from supplied buffer
to channel. Driver should terminate write to channel after
data has been written.

UCS$DRV Perform nonstandard driver processing

. Additional driver-dependent parameters may be contained in the F-packet

request. The original request may be referenced by the driver by using
the address contained in the UC@REQ field of the UCT entry.

9-8 SM-0046 G



9.3.3 DRIVER RESPONSES

The response codes signaled from the driver to the shell are as follows:
Code Function
UC$CMPT The driver has successfully completed the shell request

UC$CONT The driver has successfully completed the UC$SRD or UC$WRT
request. The driver is still expecting a UC$RDL or UC$WRTL
request from the shell.

UC$NOOP The driver has accepted the supplied buffer and length
parameters. This is the first response to a UC$RD or
UC$WRT request when the driver is double buffering.

UCS$ERR Response codes equal to or greater than this value indicate
that the driver has detected an error in processing the
request. The shell terminates the F-packet request
processing and returns the response code to the mainframe.

9.3.4 BUFFERING

The shell performs all resource management of Local and Buffer Memory
buffers. A single Local Memory buffer is always allocated for use by the
channel driver on Open, Close, and Driver functions.

The shell has the ability to support either single or double buffering of
data on Read and Write functions. Double buffering allows the shell to
overlap movement of data to or from Buffer Memory with channel I/O by the
driver because they are separate activities. The shell assumes single
buffering mode unless the driver sets the UC@XBF (extra buffer) field in
the UCT to 1. Typically, the buffering mode should be selected during
driver open processing and should not be changed later.

Because Local Memory buffers in the IOS are 4096 bytes in length,
requests to read or write large data buffers are split by the shell into
several subrequests for the driver. The shell supplies a Local Memory
Buffer address and length (in bytes) in the UC@SDB and UC@SDZ fields of
the UCT when signaling the driver with a request. Similarly, the driver
responds with a buffer address and length (in bytes) in the UC@DSB and
UC@DSZ fields of the UCT when signaling the shell with a response.

SM-0046 G 9-9




9.3.5 INTERRUPT PROCESSING

The shell performs interrupt handling on user-channels in the MIOP Kernel
routine IUCIO. The channel driver activity is responsible for initiating
physical I/0 on the channel. The driver initiates the I/0O and then
pushes itself onto a wait queue, UC@IWQ, in the UCT entry, by calling the
TPUSH Kernel service request. A time-out should be supplied with the
TPUSH call., The UC@TMO field in the UCT contains a time-out value
supplied in the F-packet open request by the controlling mainframe task.
The driver may use this value, if appropriate. The Interrupt Pending
flag, UC@IPN, in the UCT entry should be set before the TPUSH call.

When the interrupt occurs, the IUCIO routine is entered in the Kernel.
The routine locates the UCT entry corresponding to the interrupting
channel. The interrupt status is read from the channel and saved in
UCRIST of the UCT entry. The ending buffer address of the I/0 is read
and saved in UC@IBF, the Interrupt Pending flag is cleared, and the
Interrupt Returned flag, UC@IRT, is set. The channel driver activity is
then placed on the processor queue for execution.

The channel driver should check for a time-out by examining the result
returned from the TPUSH for a value of EC$TIME. The Interrupt Returned
flag, UC@IRT, should be cleared. If a time-out did not occur, the
interrupt status, UC@IST, and ending buffer address, UCQIBF, should be
examined for errors. Error recovery processing is the responsibility of
the channel driver activity.

9.3.6 USER CHANNEL CONFIGURATION

User-channels on the IOS must be designated as type UC in the MIOP
channel declaration section of the AMAP overlay. Such channels appear as
type UCHN on the MIOP Kernel console CONFIG display.

9.3.7 DRIVER INSTALLATION

New drivers may be added to the IOS by replacing dummy driver overlays
named UCDRVO through UCDRV9 in the OVLNUM overlay. Driver names are
limited to a maximum of 8 alphanumeric characters. The new driver
overlay should then be assembled with APML and the resulting code file
copied to the library of the IOS routines. New Kernel and overlay
binaries should then be produced with the BIND utility.

9-10 SM-0046 G



10. NSC HYPERchannel

The I/0 Subsystem (IOS) Network System Corporation (NSC) multipoint
driver links a Cray mainframe and a front-end station through the NSC
HYPERchannel. This driver allows multiple front-end computers to be
connected through an NSC A130 adapter to one physical Master I/0
Processor (MIOP) channel pair. The Al130 adapter is shared by both
Station Call Processor (SCP) and other protocols.

The protocol-independent interface can buffer a maximum of n messages
with associated data on a logical path basis. This number n is defined
at system generation time and has a default value of 4. Because there
are limitations to I/O Subsystem (IOS) resources, caution must be used
when the default value is exceeded. It should be noted that after the
logical path buffering capability has been exhausted, any incoming
messages will be discarded.

One NSC activity is associated with each physical IOP channel connected
to an NSC adapter (SCP and others) and acts as an interface between the
relatively complicated NSC protocol and multiple modified versions of the
IOP concentrator. Because two-way alternate protocol is not enforced for
each front-end station, one concentrator is set up for each logical ID
connected through the NSC channel. It handles data transmission on a
synchronous, point-to-point basis, which is typical of Cray protocol.

The special requirement of the NSC multipoint driver is that the channel
always be open for more input data, because multiple front ends can be
attached to the channel.

10.1 NSC ACTIVITY INITIALIZATION

The NSC activity is initialized either by the ADEM overlay, because of a
request from the mainframe, or through a command keyed at the MIOP Kernel
console (refer to the I/0 Subsystem (IOS) Operator's Guide for COS,
publication SG-0051, or the I/O Subsystem (IOS) Operator's Guide for
UNICOS, publication SG-2005).

NSC locates the Front-end Interface (FEI) Table for the ordinal

specified. If it cannot find the table, it posts an error message.
(The IOS operator's guides describe the NSC messages).

SM-0046 G 10-1




Next, NSC verifies that the ordinal is of the correct channel type
(FEIQCT=CH$NS) and is not in one of the following states:

Initializing (FEI@II=1)
Terminating (FEI@TM=1)
Active (FEI@AC=1)

If any of the preceding conditions are true, NSC posts an error message
and then clears the channel pair (FEI@CH), clears the adapter, and gets
the current adapter status. If the status is abnormal, an error message
is posted.

NSC allocates the NIO Table for the initializing ordinal and saves the
address of the NIO Table in the FEI Table (FEI@TB). The NSCIO activity
is created and a completion message is posted.

10.2

NSCIO ACTIVITY

NSCIO sets the activity to active (FEI@AC=1) and locates all of the NIO
buffers and queues used for accomplishing I/O. Then NSCIO allocates
table space for its NIO (front-end ID) Tables and enters its idle 1loop.

10.2.1 NSCIO IDLE LOOP

The NSCIO idle loop is as follows:

10-2

1.

NSCIO issues a wait-for-message function (NFB$WFM) to the adapter
attached to its channel pair. This function sets the adapter to
return an interrupt when an inbound message arrives at the A130
adapter.

NSCIO checks each of the following queues for requests:

[

FEI@TM#0 indicates that NSCEND has begun termination of

the NSC activity for the current ordinal. NSCIO calls
NIDEND to terminate all active station IDs on the attached
adapter. 1In addition, TERMNSC is activated to terminate
protocols other than SCP. When both NIDEND and TERMNSC are
complete, the NSC activity terminates.

The input interrupt handler sets the message cell of the
wait-for-message queue (NIO@MQ) to NSC$SR in response to an
interrupt following issue of a wait-for-message function
(NFB$WFM). This indicates that an input message is
pending. NSCIO then enters its read sequence.

SM-0046 G



10.2.2

® The concentrator or a logical path write activity links a
write packet to the write request queue (NIO@WC) to indicate
that a write to a write request is pending. NSCIO enters
its write sequence.

NSCIO suspends itself on its wait-for-message queue and waits to
be signaled by either an input interrupt or a write request from
a concentrator or logical path connection. When signaled, NSCIO
jumps back to step 2 of this process to check any requests.

WRITE SEQUENCE FOR THE PROTOCOL-INDEPENDENT INTERFACE

A typical write sequence for protocols other than SCP is as follows:

1.

10.2.3

FNSC creates the NSCRW write activity during the assign logical
path sequence.

After initialization, NSCRW waits for a write request from the
ADEM activity.

When the request is received, NSCRW allocates a write request
packet in Local Memory. The message is then transferred from
Central Memory to MIOP Local Memory. Buffer Memory buffers are
allocated, and the associated data is moved from Central Memory
to Buffer Memory.

NSCRW puts the write request packet in the NSCIO write chain
queue and signals the NSCIO overlay to execute the request. The
write activity then pushes itself on a queue to wait for the
write operation to be completed.

NSCIO completes the write operation and deallocates the buffers
in Buffer Memory. NSCIO notifies NSCRW, through a pop Kernel
call, that the write operation is completed.

NSCRW returns the ending status in the N-packet to Central

Memory, releases the write request packet, and waits for the next
request.

READ SEQUENCE FOR THE PROTOCOL-INDEPENDENT INTERFACE

A typical read sequence for protocols other than SCP is as follows:

1.

FNSC creates the NSCRW read activity during the assign logical
path sequence. FNSC passes parameters specifying the number of
messages to buffer and their maximum data length.

SM-0046 G 10-3




2. After NSCRW initialization, a read request packet is put in the
NSCIO queue. NSCRW then waits on a push queue for one of the
following to occur:

® NSCIO receives a message to satisfy the read request, and
the following sequence occurs:

- The NSCIO activity pops NSCRW.

- NSCRW immediately allocates an additional read
request packet and puts it in the NSCIO read chain
queue.

- If a CPU read request is outstanding, the driver
copies the message and associated data to Central
Memory, deallocates Local and Buffer Memory, and
returns an ending status in the N-packet. Otherwise,
NSCRW buffers the message/data (if space is
available) or discards it if space is unavailable.

® A read request is received from ADEM, and the following
sequence occurs:

- NSCRW checks to see whether any messages/data are
currently being buffered for the specific logical
path.

- If messages/data are being buffered, the oldest
message/data is transferred to Central Memory.

- If no messages/data are being buffered, the driver
waits for an inbound message to arrive, or an
indication of a read time-out. Should a time-out
occur, an error status is returned in the N-packet.

10.2.4 SCP INTERFACE LOGON SEQUENCE

The SCP interface uses a typical read/write/read operation for a logon
sequence. For additional information, refer to the Front-end Protocol
Internal Reference Manual, publication SM-0042.

The first read operation for the logon sequence is as follows:

1. NSCIO reads an inbound message link control package (LCP) from
the NSC adapter and calls NSCID to determine the destination
protocol.

2. NSCID examines the LCP content to verify that the message is for

SCP. SCP requires a destination logical path of 0 and a logon
message code with the appropriate segment bit count.

10-4 SM-0046 G



3. NSCID allocates Local Memory for the Front-end Station Table and
its associated read/write packet. NSCID creates SCPIO to handle
all communication between Central Memory and the front-end

station.

4. SCPIO initializes and enters a queue that is waiting to be
activated by NSCIO when the read operation is completed.

5. Before returning the read/write packet address to NSCIO and
terminating, NSCID verifies that SCPIO was successfully created.

6. NSCIO puts the message in the read/write packet and reads any
associated data from the adapter into Buffer Memory (the
read/write packet contains pointers to all buffers containing
data). NSCIO then pops SCPIO to signal the completion of the
read operation.

7. SCPIO polls Central Memory with a B—packet.f SCPIO then
completes the inbound data transfer.

The write operation for the logon sequence is as follows:

1. SCPIO reads the B-packet in Central Memory to obtain the address
of the outbound message and associated data. SCPIO then puts the
information in the read/write packet.

2. SCPIO links the read/write packet to the end of the NSCIO write
chain and NSCIO begins the write operation. SCPIO enters a queue
to wait for NSCIO to complete the write operation.

3. NSCIO completes the write operation and pops SCPIO to set up for
a read.

For any subsequent read operations, SCPIO links a read/write packet to
the NSCIO read chain and then enters a queue to wait for the next inbound

message.

SCPIO has a maximum subsegment length defined by the IOS installation
parameter NSCBFC, which must match the value of the COS installation
parameter I@NSCBFC. SCPIO will truncate any transfers that exceed this
maximum length. NSCBFC is equal to 128 kbytes by default, and it is
described further in the COS Operational Procedures Reference Manual,
publication SM-0043.

+ The B-packet specifies the location in Central Memory in which the
message and associated data are to be placed.

SM-0046 G 10-5




10.3 NSC ACTIVITY TERMINATION

NSC activity termination is accomplished by the NSCEND activity. NSCEND
is created either by ADEM, in response to a CHANNEL OFF command, or
through a command keyed in at the MIOP Kernel console (refer to the
appropriate IOS operator's guide).

NSCEND searches for an FEI Table that corresponds to the ordinal being
terminated. If no match is found, an error message is posted and NSCEND
terminates.

NSCEND sets the Termination In Progress flag (FEI@TM) and waits until
NSCIO responds by clearing the Active flag (FEI@AC). NSCEND then sends a

clear-adapter function (NFB$CA) to the adapter. Finally, NSCEND releases
the NIO Table space, posts a completion message, and terminates.

10.4 OVERLAYS

The following overlays are associated with the NSC activity. Figure 10-1
shows the NSC HYPERchannel driver overlay connections.

10.4.1 ADEM OVERLAY

The ADEM overlay routes N-packets received from Central Memory. ADEM
puts a read or write request in a queue to be processed by the NSCRW job

associated with the logical path. ADEM puts all other requests in a
queue to be processed by the FNSC job.

10.4.2 FNSC OVERLAY

The FNSC overlay performs processing functions based on the type of the
N-packet, as follows:

N-packet FNSC Processing Functions

Open If necessary, FNSC creates a channel table for the
channel specified in the packet and links the table to
the channel table chain. FNSC also allocates an open
table and links it to the open table chain for the
channel.

10-6 SM-0046 G



NSCRW
Overlay

Read
Activity

NSCEND
Overlay

Overlay

ADEM

FNSC

————® | Overlay

NSCRW
Overlay

Write
Activity

TERMNSC
Overlay

A

NSCID

<———% Overlay

AN

SCPIO
Overlay

NSC NSCIO
Al130 Char.mel overlay
Adapter Pair
—eee
NIDEND
Overlay
—_— Create
+—> Push/Pop
—> call

Figure 10-1.

1576

NSC HYPERchannel Driver Overlay Connections

FNSC creates logical path tables for input and output
and links them to the logical path chain for the channel
number and owner identification in the packet. FNSC
creates two NSCRW jobs; one to process input and one to

N-packet FNSC Processing Functions
Assign
Logical
Path
process output.
SM-0046 G

10-7




N-packet FNSC Processing Functions

Release FNSC terminates the NSCRW jobs associated with the path
Logical input and output and then releases the logical path
Path tables.

Close FNSC releases all logical paths associated with the

channel number and owner identification specified in the
packet. It also releases the open table and then the
channel table (if there are no open tables linked to it).

After processing a request, FNSC returns the status in the N-packet to
Central Memory. The status is one of the following:

Response Codet Description

0 Operation completed with no errors
3 Protocol error

4 Illegal channel number

5 Illegal function

6 Illegal driver

7 Data address error

10 Data length error

11 I0S resources not available

36 Logical path not available

37 Local adapter not available

40 Message proper length error

41 Read time-out

42 Read error

43 Write time-out

44 Write error

45 No corresponding read on a loop-back write

46 Transfer length error

47 Release logical path error

50 Function code error

51 Trunk address not specified

52 Internal resource allocation error

53 Remote adapter not available

54 Driver termination in progress

55 Requested read length greater than initialized
value

56 Invalid transfer length specified (write)

57 Insufficient space allocated (read)

60 Loop-back write error (read buffers exhausted)

61 Residual data present after end-of-transfer

62 Bad CPU address

+ Response codes are in octal.

10-8 SM-0046 G



10.4.3 NIDEND OVERLAY

The NIDEND overlay is created by NSCIO. NIDEND terminates the NSC
concentrator associated with a specific station ID, releases buffer
space, and issues a LOGOFF message to the Cray mainframe.

10.4.4 NSC OVERLAY

The Kernel creates the NSC overlay during initialization or when the NSC
command is entered at the MIOP Kernel console. NSC creates the NSCIO

table.

10.4.5 NSCEND OVERLAY

NSCIO calls the NSCEND overlay to terminate all NSC activity. All
concentrators are terminated, all buffers are released, and the I/0

channel is master cleared.

10.4.6 NSCID OVERLAY

NSCIO calls NSCID to locate the read/write request packet associated with
an incoming message and any associated data. For SCP protocol, the
search is based on the station ID., For non-SCP protocol, the search is
based on the logical path in the message proper. NSCID handles the logon
LCP from the front-end station.

10.4.7 NSCIO OVERLAY

The NSCIO overlay is created by NSC. NSCIO issues I/O requests to the
NSC channel pair; it also issues functions to the adapter using the A130
protocol. The NSCIO, SCPIO, and NSCRW overlays coordinate network
activity.

10.4.8 NSCMSG OVERLAY

The NSCMSG routine is called by all NSC routines that require the display
of a message on the MIOP Kernel console. All NSC messages consist of two
lines of information. The first identifies the NSC element to which the

message applies. The second contains the message.

SM-0046 G 10-9




Format:
hh:mm:ss NSC: CONCENTRATOR X [ORDINAL y]
message
hh:mm:ss Time in hours, minutes, and seconds
b4 NSC concentrator ordinal number in octal
y Front-end ordinal number in octal

message See the appropriate IO0S operator's guide for a list of
NSC messages

10.4.9 NSCRW OVERLAY
FNSC creates the NSCRW overlay to handle any non-SCP protocol. The NSCRW

read activity buffers incoming messages and data. Hooks are provided to
run adapter diagnostics.

10.4.10 SCPIO OVERLAY

NSCID creates the SCPIO overlay to process network messages and
associated data through the SCP protocol handler for the front-end
stations. NSCID creates an SCPIO activity for each unique station ID.

10.4.11 TERMNSC OVERLAY

The TERMNSC overlay terminates all logical path connections.

10.5 ERROR RECOVERY

Separate error recovery schemes exist for SCP protocol and for the
protocol-independent portion of the driver.

10-10 SM-0046 G




10.5.1 ERROR RECOVERY FOR SCP PROTOCOL
The error recovery scheme for SCP protocol consists of the following:

e Driver input/read operations
¢ Driver output/write operations

The HYPERchannel driver does not generate front-end driver (FED) error
codes, so the front-end stations do not receive FED error codes 330, 331,
332, and 333.% 1n addition, the driver does not return an FED error
code of 307 to SCP when a write error occurs.

10.5.1.1 Driver input/read operations

The driver input/read operations are as follows:
e Error recovery is not invoked.

® The driver does not send an error code to SCP or to the front-end
station; instead, it waits for the next inbound message.

¢ The front-end station detects the error as a software time-out.

For information on error recovery, refer to the Front-end Protocol
Internal Reference Manual, publication SM-0042.

10.5.1.2 Driver output/write operations

The driver output/write operations are as follows:

e The device tries to execute each write request for a period of 30
seconds before aborting. Each attempt to complete a write request
consists of two retries, separated by a short time delay. 1If both
retries are unsuccessful, the write request is requeued at the end
of the NSCIO write chain. Further attempts will be made after
other requests have had an opportunity to complete.

¢ If the write operation is not completed, SCP is not notified, and
the front-end station detects this as a software time-out.T

+ The FED error codes are in octal. For additional information, refer
to the Front-end Protocol Internal Reference Manual, publication
SM-0042.

SM-0046 G 10-11




10.5.2 ERROR RECOVERY FOR THE PROTOCOL-INDEPENDENT INTERFACE

The error recovery scheme for the protocol-independent interface consists
of the following:

e Driver input/read operations
® Driver output/write operations

10.5.2.1 Driver input/read operations

The driver input/read operations are as follows:

e Error recovery is not invoked.
e Error status is returned.

10.5.2.2 Driver output/write operations

The driver output/write operations are as follows:

e FEach attempt to complete a write request consists of two retries,
separated by a short time delay. If both retries are
unsuccessful, the write request is requeued at the end of the
write chain. Further attempts are made after other write requests
have had a chance to complete. A write request returns an error
if the operation has not completed and the write timer has
expired. (Timer value is set by the Assign Logical Path command).

NOTE

The driver returns an error immediately on any
unrecoverable conditions, such as an attempt to send a
message to a nonexistent adapter.

10.6 CHANNEL/ID ORDINAL DESCRIPTION

Any IOP station, concentrator, or front-end station activity known to COS
has a corresponding Channel Extension Table (CXT) entry in the COS
Executive. Front-end station activities are those that handle station
IDs logged on to COS over an FEI, NSC, or VMEbus connection (for more
information on the VMEbus driver, refer to section 13, VMEbus (FEI)
Driver).

10-12 SM-0046 G



See the COS Table Descriptions Internal Reference Manual, publication
SM-0045, for information about the CXT. A CXT entry is directly related
to the channel ordinal number assigned to its activity on the IOP. For
example, if the IOP station is assigned to ordinal 1, the first CXT entry
is used.

Any master operator station logged on to COS can initiate the
concentrator or front-end station on the IOP by turning on its associated
CXT entry. For example, if a front-end station activity is assigned to
ordinal 5, the master operator station command CHANNEL 4,5 ON initiates
that IOP front-end station activity. The IOP is on the mainframe's
physical channel 4, and 5 is the requested ordinal.

Likewise, any master operator station can terminate a particular ID that
is logged on through an IOP front-end station activity, using the same
command: CHANNEL 1,ordinal OFF (ordinal is the ordinal number

assigned to the activity). Ordinals assigned to a front-end activity
such as a concentrator, VMEbus driver, or NSC driver can be determined by
an examination of the MIOP CONFIG display. Ordinals assigned to a
logged-on ID can be determined by an examination of the master operator
station's LINK display.

Only channel ordinals assigned directly to a front-end activity
(currently only the concentrator, VMEbus activity, and an NSC activity)
can be initiated or terminated by the CHANNEL command. The interactive
station and operator station on the IOP require the respective Kernel or
station commands.

If a channel ordinal is turned off, communication between the mainframe
and the IOP associated with that CXT ordinal is disabled. It can be
reenabled with the CHANNEL ON command.

Two Kernel commands control the initiation or termination of NSC-related
activities: NSC ordinal and NSCEND ordinal. NSC ordinal initiates

the NSC activity on the IOP channel associated with the specified
ordinal; NSCEND ordinal terminates it.

Two Kernel commands control initiation or termination of VMEbus-related
activities: VME channel mode and VMEND channel (channel is the
physical input channel number of the low-speed channel pair connecting
the IOS to the VMEbus that is to be initiated. mode is the mode of
execution; graphics and networking are the valid modes). VME channel
mode initiates the VMEbus driver activity on channel. The activity is
brought up in mode. VMEND channel terminates the VMEbus (FEI) Driver
activity on channel.

SM-0046 G 10-13




The following are the default channel ordinal assignments in the IOP;
they can be changed to fit the needs of individual systems.

Ordinal Descriptor

IOP station O

IOP station 1
Concentrator 0(CONC)
Concentrator 1(CONC)
Interactive concentrator
VMEbus activity

NSC activity

NV b wWwN P

Ordinal assignments to IDs begin with ordinal number 8 by default. The
number of CXT entries equals 7 plus the number of logical IDs coming over
the NSC and VMEbus channels combined. The number of ordinals available
for assignment is directly related to the number of CXT entries
configured on the Cray operating system; that is, the number of CXTs
equals the number of channel ordinals configured.

10-14 SM-0046 G



11. FRONT-END INTERFACE LOGICAL PATH ACTIVITY

The Front-end Interface (FEI) logical path driver provides an FEI
connection for UNICOS. This connection parallels the NSC logical path
connection by making use of the F/N-packet as defined in the COS Table
Internal Reference Manual, publication SM-0045. It allows front-end
stations to communicate with the UNICOS Station Call Processor (USCP)
under UNICOS by using the SCP protocol.

Two FEI logical path activities, FEIR and FEIW, are associated with each
physical IOP channel pair connected to an FEI device. Only one logical
path per channel pair is supported.

11.1 FEI LOGICAL PATH ACTIVITY INITIALIZATION

The FEI logical path activity is initialized (or created) when an Assign
Logical Path command is processed by FNSC. At this point, FNSC verifies
that the channel pair is connected to the FEI device, and that this
device is not being used by COS in the Guest Operating System (GOS)
environment. Equally important, the activity ensures that the channel
type is correct. If any of these conditions are not correct, an error

message is posted.

The FEI logical path activity allocates the F/N table and saves the
address in the FEI table (FEI@TB). The FEIR and FEIW overlays are
created, and a completion message is posted.

Currently, this connection is used solely by USCP. Refer to the

Front-end Protocol Internal Reference Manual, publication SM-0042, for
more protocol information.

11.2 FEI LOGICAL PATH ACTIVITY TERMINATION

The FEI logical path activity is terminated when FNSC receives a Release
Logical Path command from the CPU.

SM-0046 G 11-1




11.3 OQVERLAYS

The following overlays are associated with the FEI logical path

activity. Refer to figure 11-1 for the FEI logical path driver overlay

connections.

Output
Channel

———— Create
<4—> Push/Pop

ADEM
Overlay

FEIW
Overlay
(Write
Activity)

FEIMSG
Overlay

FNSC
Overlay

FEIR
Overlay
(Read
Activity)

FEI

Figure 11-1.

11.3.1 ADEM OVERLAY

The ADEM overlay routes N-packets received from the CPU.

Device

FEI Logical Path Overlay Connections

Channel

ADEM puts a

read or write request in a queue to be processed by the FEIR and FEIW

activities associated with the logical path.
requests in a queue to be processed by the FNSC activity.

11-2

ADEM puts all other

SM-0046 G



11.3.2 FNSC OVERLAY

The FNSC overlay performs processing functions based on the type of the
N-packet, as follows:

N-packet FNSC Processing Functions

Open If necessary, FNSC creates a channel table for the
channel specified in the packet and links the table to
the channel table chain. FNSC also allocates an open
table and links it to the open table chain for the

channel.
Assign FNSC creates logical path tables for input and output
Logical and links them to the logical path chain for the channel
Path number and owner identification in the packet. FNSC

creates FEIR to process input and FEIW to process output,

Release FNSC terminates the FEIR and FEIW jobs associated with
Logical the path input and output and then releases the logical
Path path tables.

Close FNSC releases all logical paths associated with the

channel number and owner identification specified in the
packet. It also releases the open table and then the
channel table (if there are no open tables linked to it).

After processing a request, FNSC returns a status in the N-packet to
Central Memory.

11.3.3 FEIR OVERLAY
The FEIR overlay processes the read requests from ADEM and controls the

input channel of the FEI device. FEIR sends data to Central Memory
location and responds to all N-packet read requests.

11.3.4 FEIW OVERLAY
The FEIW overlay processes the write requests from ADEM and control the

output channel of the FEI device. FEIW reads data from Central Memory
and responds to all N-packet write requests.

11.3.5 FEIMSG OVERLAY

The FEIMSG overlay generates the FEI logical path information messages
for the MIOP console. It is created by FEIW.

SM-0046 G 11-3







12, HSX CHANNEL INTERFACE

The I/0 Subsystem (IOS) HSX channel driver software provides the
following capabilities to support the CRI HSX High-speed External
Communications Channel:

e Provides a protocol-independent driver for HSX channels connected
to the IOS

e Supports full-duplex communication on HSX channels (enabling
loop-back testing)

® Allows data transfer between HSX channels and any of three target
memories: Central Memory, SSD Memory (through the IOS backdoor),
and the Buffer Memory Resident (BMR) portion of Buffer Memory

The driver provides the ability to read or write discontiguous target
memory buffers in the same HSX data block by giving the mainframe control
of the End-of-block channel signal. The driver software supports the
configuration of an HSX channel on a Buffer I/0 Processor (BIOP), Disk
I/0 Processor (DIOP), or an Auxiliary I/O Processor (XIOP). The IOS HSX
driver requires a standard Cray 100-Mbyte channel connecting the IOS to
the desired target memory on the same IOP as the HSX channel. If SSD
Memory is chosen as the target memory, the SSD I/0 buffers must begin on
a 64-word boundary, and they must be an integral multiple of 64 words in
length.

The HSX driver software can coexist with other channel drivers in the
same IOP, including the on-line tape and disk drivers; however,
performance drops on all channels when the HSX channel and other channel
types are active simultaneously.

12.1 HSX CHANNEL REQUESTS

This subsection describes the processing of HSX channel requests. The
function codes, which begin with HSF$, are received from the mainframe in
H-packets (destination ID of RQ$HSX). See subsection 2.14,
MIOP-mainframe Communication Channel, for more information about packet
disposition. See the IOS Table Descriptions Internal Reference Manual,
publication SM-0007, for a description of the HSX request packet.

| SM-0046 G 12-1




The I0OS HSX driver supports OPEN, READ, WRITE, CONTROL, and CLOSE
requests from the mainframe. At the completion of each request, the
driver returns status information to the mainframe in the original
H-packet.

12.1.1 OPEN REQUEST (HSF$OPEN)

HSF$OPEN must be the first request made for the input or output side of
the HSX channel. Each side of the channel must be opened by a separate
request. The OPEN request causes the HSX driver to load the input or
output interrupt handler into Local Memory, and to allocate Local Memory
I/0 buffers for the duration of the time the channel is open.

12.1.2 READ REQUEST (HSF$READ)

HSF$READ transfers data from the input side of the HSX channel to the
target memory address specified in the request. One or two target memory
buffers may be supplied in the request. The response to the mainframe is
sent after all the data is transferred to the target memory buffer(s).

12,1.3 WRITE REQUEST (HSF$WRIT)

HSF$WRIT transfers data from the target memory address specified in the
request to the output side of the HSX channel. One or two target memory
buffers may be supplied in the request. The response to the mainframe is
sent after all the data is transferred from the target memory buffer(s)
to the channel.

12.1.4 CONTROL REQUEST (HSF$CNTL)
HSF$CNTL causes the HSX driver to take special action regarding HSX

channel control. No data transfer is associated with the request.
Subfunction codes that begin with HSS$ specify the necessary action.

12.1.4.1 Set parameters (HSS$SET)

HSS$SET causes the HSX driver to set software execution control
parameters in the HSX control table. The parameters that may be
specified are a software channel time-out value in tenths of a second,
and a debug mode flag. If no HSS$SET request is issued, or if a 0
time-out value is set in an HSS$SET request, the IOS driver default value
is used. Setting the debug mode flag causes the HSX driver to allocate a

12-2 SM-0046 G



Buffer Memory buffer used to simulate HSX channel I/0 on subsequent
requests. Clearing the debug mode flag causes the HSX driver to release
the Buffer Memory buffer. See subsection 12.3, Debug Mode, for more
information about the debug mode.

12.1.4.2 Send interrupt (HSS$SNDI)

HSS$SNDI causes the HSX driver to send either a clear pulse signal on the
output side of the channel or an exception signal on the input side of
the channel. These signals may be used as part of a user-defined

protocol.

12.1.4.3 Receive interrupt (HSS$RECI)

HSS$RECI causes the HSX driver to wait for either a clear pulse signal on
the input side of the channel or an exception signal on the output side
of the channel. These signals may be used as part of a user-defined
protocol.

12.1.5 CLOSE REQUEST (HSF$CLOS)

HSF$CLOS must be the last request made for the input or output side of
the HSX channel. A close request causes the HSX driver to unload the
input or output interrupt handler, and to release the Local Memory I/O
buffers allocated when the channel was opened.

12.2 HSX DRIVER ARCHITECTURE

The HSX driver software consists of one demon overlay (HCOM) and two
interrupt handler routines; one for the input side (HSXI) and another for
the output side (HSXO) of the channel. A common data structure called
the HSX Control Block (HCB) is shared by all of these routines. Refer to
the IOS Table Descriptions Internal Reference Manual, publication
SM-0007, for a description of the HCB.

12.2.1 HSX DEMON OVERLAY (HCOM)

HCOM is responsible for all activities related to the HSX channel, except
for the handling of hardware interrupts. These activities include
receiving and processing HSX requests from the mainframe, starting
channel I/0, and restarting channel I/0 if the interrupt handler
temporarily halts I/0 for any reason.

SM-0046 G 12-3




12.2.2 HSX INPUT INTERRUPT HANDLER (HSXI)

HSXI is the heart of the HSX read activity. After HCOM starts the
channel input, HSXI performs all necessary actions to keep I/0
functioning until the request is completed.

When an interrupt is detected on the HSX input channel, HSXI checks for
errors, restarts channel input to the next Local Memory buffer, and
starts the high-speed channel write to transfer the data just received to
the target memory. HSXI sends the response to the mainframe after
waiting for the completion of the last data transfer to the target memory.

If HSXI detects that other software activities are waiting, it
temporarily suspends HSX I/0 to allow those routines to perform their
tasks and it activates HCOM to restart the channel.

12.2.3 HSX OUTPUT INTERRUPT HANDLER (HSXO)

HSXO is the heart of the HSX write activity. After HCOM starts the
channel output, HSXO performs all necessary actions to keep I/0
functioning until the request is completed.

When an interrupt is detected on the HSX output channel, HSXO checks for
errors, restarts channel output from the next Local Memory buffer, and
starts the high-speed channel read to transfer the next data from the
target memory to Local Memory. HSXO sends the response to the mainframe
when the last data has been written to the channel.

If HSXO detects that other software activities are waiting, it
temporarily suspends HSX I/0 to allow those routines to perform their
tasks and it activates HCOM to restart the channel.

12.2.4 BUFFERING

HCOM performs all resource management of Local Memory buffers for the HSX
driver. At channel open time, HCOM allocates two Local Memory buffers of
equal length to support the input or output channel activity. Double
buffering allows the driver to overlap channel I/0 with data movement
between the target memory and Local Memory.

Because requests for the HSX channel are typically for data blocks larger
than the Local Memory buffer size, the driver must split the I/O0 into
several smaller requests to the channel; therefore, the size of the Local
Memory buffers directly affects HSX channel performance. The larger the
buffers, the less interrupt overhead and the better the performance:;
therefore, HCOM attempts to allocate buffers that are larger than normal.

12-4 SM-0046 G



Local Memory buffers in the IOS are normally 4096 bytes in length. HCOM
tries to find an integral number of these buffers that are contiguous.
The number of 4096-byte buffers to allocate is controlled by $APTEXT,
which defines a minimum and maximum buffer size. The minimum size is
specified by HSX$IBMN for the input channel and HSX$OBMN for the output
channel. The maximum size is specified by HSX$IBMX and HSX$OBMX for the
input and output channels, respectively.

If the maximum number of contiguous buffers cannot be found, HCOM accepts
a smaller number. If the minimum number cannot be found, an error
response is sent to the mainframe indicating insufficient resources to
open the channel.

12.3 DEBUG MODE

A debug mode is provided to facilitate software testing when no HSX
channel hardware is available. In debug mode, the IOS reads or writes
data to a Buffer Memory buffer instead of the HSX channel. Debug mode
does not support loop-back testing; that is, data is not preserved in
Buffer Memory from a write request to a read request. Debug mode does,
however, allow either read or write performance testing.

Debug mode may be enabled for only one side of the channel at a time.
This is because the Buffer Memory channel is a half-duplex channel and
there is no way to distinguish an input interrupt from an output
interrupt. Debug mode is controlled by a flag in the HSR$CNTL request
packet with a subfunction code of HSS$SET.

12.4 OVERLAY LISTING

The HSX channel overlays are grouped together with the APML list
identifier of $HSX.

12.5 ERROR PROCEDURES

The error procedures performed by the IOS HSX driver are intended to be
very simple so that a variety of protocols can use the same hardware
driver. Each separate protocol may implement additional error procedures
(such as retries) as needed at the protocol level of the software.

SM-0046 G 12-5




12.5.1 INPUT ERRORS

The following error procedures are performed by the IOS when unusual
conditions are detected during HSX input channel activation.

12.5.1.1 Clear pulse received (HST$CLR)

When a clear pulse is received, the IOS performs the following command
sequence:

1. Reset input channel control logic.
2. Wait 250 ns as required by hardware-defined protocol.
3. Send exception pulse to transmitting device.

4, Return status and transfer length to mainframe.

12.5.1.2 Multiple bit error (HST$DATA)

When a multiple bit error is received, the IOS performs the following
command sequence:

1. Continue reading until end-of-block.

2. Send exception pulse to transmitting device (before clearing
enable block hardware signal).

3. Wait 250 ns as required by hardware-defined protocol.
4. Reset input channel control logic (clearing enable block signal).

5. Return status and transfer length to mainframe.

12.5.1.3 Data overrun error (HST$OVER)

When a data overrun error is received, the IOS performs the following
command sequence:

1. Continue reading until end-of-block.

2. Send exception pulse to transmitting device (before clearing
enable block hardware signal).

3. Wait 250 ns as required by hardware-defined protocol.
4. Reset input channel control logic (clearing enable block signal).

5. Return status and transfer length to mainframe.

12-6 SM-0046 G



12.5.1.4 Long block error (HST$LONG)

When a long block error is detected, the I0S performs the following
command sequence:

1. Return status and transfer length to the mainframe.
2, If indicated in the mainframe request, continue to read until

end-of-block and throw away the data to drain the channel.

12.5.1.5 Software time-out (HST$TMO)

When a software time-out is detected, the IOS performs the following
command sequence:

1. Reset input channel control logic.

2. Return status and transfer length to mainframe.

12.5.1.6 Device not present (HST$NDEV)

When an error is received because a device is not present, the IOS
performs the following command sequence:

1. Reset input channel control logic.

2. Return status and transfer length to mainframe.

12.5.1.7 Short block error (HST$SHRT)

When an unexpected end-of-block signal is received (indicating a short
block), the IOS returns the status and transfer length to the mainframe.

12.5.2 OUTPUT ERRORS

The following error procedures are performed by the IOS when unusual
conditions are detected during HSX output channel activation.

SM-0046 G 12-7




12.5.2.1 Exception pulse received during transfer (HST$XDT)

When an exception pulse is received during a transfer, the IOS performs
the following command sequence:

1. Continue writing until end-of-block.
2. Reset output channel control logic.

3. Return status and transfer length to mainframe.

12.5.2.2 Exception pulse received while channel idle (HST$XFT)

When an exception pulse is received while the channel is idle, the IOS
performs the following command sequence:

1. Reset output channel control logic.

2. Return status and transfer length to mainframe.

12.5.2.3 Receiving device aborted (HST$ABRT)

When a device has aborted, the IOS performs the following command
sequence:

1. Reset output channel control logic.

2. Return status and transfer length to mainframe.

12.5.2.4 Software time-out (HST$TMO)

When a software time-out occurs, the IOS performs the following command
sequence:

1. Reset output channel control logic.

2. Return status and transfer length to mainframe.

12.5.2.5 Device not present (HST$NDEV)

When an error is received because a device is not present, the IOS
performs the following command sequence:

1. Reset output channel control 1logic.

2. Return status and transfer length to mainframe.

12-8 SM-0046



12.6 SPECIAL SEQUENCES

Special command sequences performed by the IOS HSX driver are described
in this subsection. Each separate protocol may use the special sequences
as appropriate for its communication needs.

12.6.1 INPUT SEQUENCES

The following command sequences are defined to allow special control of
the HSX input channel.

12.6.1.1 Send exception pulse (HSS$SNDI)

When an exception pulse is sent, the IOS performs the following command
sequence:

1. Reset input channel control logic.
2. Send exception pulse to transmitting device.

3. Return status to mainframe.

12.6.1.2 Wait for clear pulse (HSS$RECI)

Waiting for a clear pulse causes the IOS to perform the following command
sequence:

1. Wait for clear pulse from transmitting device.

2. Reset input channel control logic.

3. Wait 250 ns as required by hardware-defined protocol.
4. Send exception pulse to transmitting device.

5. Return status to mainframe.

12.6.2 OUTPUT SEQUENCES

The following command sequences are defined to allow special control of
the HSX output channel.

[ ] SM-0046 G 12-9




12.6.2.1 Send clear pulse (HSS$SNDI)

When a clear pulse is sent, the IOS performs the following command

sequence:
1. Reset output channel control logic.
2. Send clear pulse to receiving device.
3. Wait for exception pulse to be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>